ASPECTS OF D- BRANE PHYSICS AND

QUANTUM GRAVITY

TAPOBHATA SARKAR

A THESIS IN PHYSICS
Presented to the University of Madras in Partial Fulfillment of

the Requirements for the Degree of Doctor of Philosophy

SEPTEMBER 1999

The Institute of Mathematical Sciences

C.L.T. Campus, Taramani,

Chennai 600113 INDIA




THE INSTITUTE OF MATHEMATICAL SCIENCES
CIT Camprus, TARAMANI, CHENNAI 600 113, INDIA

CERTIFICATE

This is to certify that the Ph.D, thesis titled “AsprcTs oF D- BRANE PHYSICS
AND QUANTUM GRAVITY” submitted by Tapobrata Sarkar is a record of bonafide
research work done under my supervision, The research work presented in this thesis
has not formed the basis for the award to the candidate of anv Degree, Diploma.
Associateship. Fellowship or other similar titles, It is further certified that the thesis
represents independent work by the candidate and collaboration was necessitated

bv the nature and scope of the problems dealt with.

L _HE ;5—7 .55.,1_¢_L.._—.=...ﬁ

T. Javaraman

September 1999 Thesis Supervisor




ABSTRACT

In this thesis, we have studied some aspects of D-brane physies and quantum
gravity. The main results obtained are summarised below.

In part one of the thesis, we have considered D-branes wrapped around super-
symmetric cycles of Calabi-Yau manifolds from the viewpoint of N = 2 Landau-
Ginzburg models on world sheets with boundary, as well as by consideration of
boundary states in the corresponding Gepner models. Using the Landau-Ginzburg
approach, we provide a target space interpretation for the boundary states. In our
method, the boundary states are obtained by applying Cardy’s procedure to combi-
nations of characters in the Gepner models which are invariant under spectral flow,
We relate the two descriptions using the common discrete symmetries of the two de-
scriptions. We thus provide an extension to the boundary of the bulk correspondence
between Landan-Ginzburg orbifolds and the corresponding Gepner models.

We have studied D-branes on Calabi-Yau manifolds from the point of view of
gauged linear sigma models. We obtain an appropriate set of boundary conditions
on the fields of the theory from the variation of the action under ordinary and
supersymmetric variation. These boundary conditions, that define the D-brane are
studied in the gauged linear sigma model as well as its infra-red limit. We find that
we can obtain a consistent set of boundary condition describing DO branes and also
D-branes wrapping middle cycles of Calabi-Yau, the deseription of D2, D4 and D6
branes on Calabi Yau manifolds appear to be more difficult.

Next, we have studied an application of D-branes to a certain class of string
theoretic black holes. We study the emission of scalar particles from a class of near-
extremal five dimensional black holes and the corresponding D-brane configuration
at high energies, and show that the distribution functions and the black hole grey-
body factors are modified in the high energy regime of the Hawking spectrum in
such & way that the emission rates exactly mateh in both descriptions. We extend
the results to charged scalar emission in five dimensions and to neutral and charged
scalar emission in four dimensions.

Finally, we have studied the application of holography, a generic principle of

quantum gravity and hence of string theory, to inflationary cosmology. We have
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applied the holographic principle during the inflationary stage of our universe. We
have illustrate the analysis in the case of new and extended inflation which, together,
typify generic models of inflation. We find that in the models of extended inflation
type, and perhaps of new inflation type also, a naive application of the holographic
principle leads to its violation, whereas the correct procedure, that restores the

holographic principle, leads to a lower bound on the density Huctuations.
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Chapter 1

Introduction

String theory [1][2] is the leading candidate for a fundamental theory of nature that
unifies all known interactions. While at observable distance scales, quantum field
theory (QFT) provides an accurate description of natural phenomena, it becomes
unsatisfactory at very short distances, i.e at extremely large energies. This is because
in such regimes, quantum effects of gravity become important, and it has proved
to be extremely difficult to formulate a consistent theory of quantum gravity, using
known methods of (QFT.

The underlying reason for this difficulty is that QFT is essentially a theory
of point particles, whose interactions diverge at small distanees. Whereas for the
electromagnetic and for the strong and weak interactions, these divergences can
be handled by the standard method of renormalisation, this procedure fails for a
theory of gravity, which can be shown to be non-renormalisable under usual QFT
techniques. This inability to formulate a consistent, finite theory of gravity in the
framework of QFT leads us to string theory. In this theory, the basic entities are
one-dimensional extended objects, called strings, rather than point particles. These
extended objects, embedded in space, trace out a world sheet with time. Consistency
conditions require that the dimension of this embedding space-time (often referred
to as the target space) is ten, for a string theory that describes both bosons and
fermions. Further, perturbatively consistent string theories appear to require space-

time supersymmetry.
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Due to the extended nature of strings, short distance divergences that arise
in usual QFT because of the point-like structure of its basic entities, are absent.
Oscillations of the string give rise to an energy spectrum that can be interpreted as
particle excitations. Among the several types of particles that arise in the spectrum
of the oscillating string are the massless spin two particle, the graviton, that is
present in all consistent string theories. This makes string theory a natural eandidate
for a quantum theory of gravity. Ameng its various other features, string theory
can give rise to abelian and non-abelian gauge interatcions that can include the
standard model, and is thus a leading candidate for a grand unified theory, that
includes gravity.

There were, however, a number of drawbacks in the initial formulations of string
theory. First of all, in these theories, gravity was treated perturbatively, i.e the
metric was assumed to be a small perturbation over flat space. This was not entirely
satisfactory, since it was not apriori clear how to describe, for example, objects like
black holes, in the framework of string theory. Further, there was no unique string
theory, and five known consistent string theories could be formulated, In the past
few years, there has been a great deal of progress in our understanding of these
issues. Irom the ideas of string duality, it has been possible to relate certain string
theories at small values of the string coupling to other string theories at strong
coupling. All the consistent theories, formulated perturbatively, turn out to be
limits in the space of vacua of a single theory, called the M-theory. (Some perhaps
would prefer a description in terms of two basic theories, M and F-theory). Duality
conjectures have also motivated in part the discovery of extended objects in string
theory, called D-branes. These objects, which are solitonic in nature, are playing a
very important role in the development of our understanding of physics at strong
gravitational coupling.

In this thesis, we have studied some aspects of D-brane physics and quantum
gravity. The thesis is organised as follows. In chapter 2, we will study D-branes on
curved manifolds [3]. In particular, we consider D-branes wrapped around super-
symmetric cycles of Calabi-Yau manifolds. We use two different approaches for this.

First, we treat these objects from the viewpoint of supersymmetric Landan-Ginzburg
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maodels on a world sheet with boundary. Secondly, we formulate a deseription of these
wrapped D-branes by considering their boundary states, using Gepner models. This
method uses Cardy’s general prescription for the construction of boundary states
in boundary conformal field theories. The Landau-Ginzburg approach enahbles us
to provide a target space interpretation for the boundary states, We will relate the
two approaches by using the common discrete symmetries of the two descriptions.

In chapter 3, we will consider D-branes on curved manifolds, using the formalism
of supersymmetric gauged linear sigma models on a world sheet with boundary [4].
We attempt to construct a consistent set of boundary conditions on the fields of this
model, that describes D-branes, that is successful for some cases. We show how the
consistency of boundary conditions on the various fields demands the addition of
new surface terms in the theory.

In chapter 4, we turn to the application of D-branes in the physics of black holes.
We study the process of scalar Hawking radiation from a class of near-extremal five
and four dimensional black holes and the eorresponding D-brane configurations, at
high energies [5]. We show how the correspondence between black-holes and D-
branes, one aspect of which is the similarity of the Hawking radiation spectrum, is
preserved even for high-energy particle emission in five dimensions. We also point
out a possible discrepency for four dimensional black holes.

In chapter 5, we study the application of a general principle of quantum gravity
(and hence of string theory), namely holography. in the context of cosmology [6].
We discuss how to apply the holographic principle (initially proposed for standard
cosmology) to the scenario of the inflationary universe, We discuss how naive appli-
cation of the holographic principle in this case leads to its violation, while the correct
procedure that does not violate the principle in the inflationary universe leads to a
lower bound on density fluctuations of the universe, that is close to observed values.

Finally, we conclude with some remarks on possible further directions of study.
In the rest of this introductory chapter, we review some of the background necessary
for the work reported in this thesis. We begin with a briel review of string theory

and its solitonic solutions, the D-branes.



CHaAPTER 1

1.1 String theory and D-branes

The worldsheet action for a free string theory propagating in ten dimensional Hat

space-time (in conformal gauge) 1s given by
8= /dcm‘; [0 XX, + Ui, + e r] (1.1)
dral

where o denotes the world sheet coordinates ¢ and 7, the X*s and *s are the
bosonic and fermionic degrees of freedom, with p=10,1,- -9 and the string tension
is given by T = 1. The bosonic part of the action, when written in the Nambu-
(Goto form, can be seen to be proportional to the area of the world sheet in ten
dimensional space-time. Consistency of the quantum theory forces the restriction
that the target space is ten dimensional. There are five different types of consistent
string theories in ten space-time dimensions, namely the Type [, Type IIA, Type
B, Eq x Ey heterotic and SO(32) heterotic strings. Details of these can be found
in the standard literature [1](2]. In this thesis, we will be concerned mostly with
Type I superstrings, and, for the sake of completeness, we will briefly discuss Type
Il strings in ten dimensional flat space-time.

Type I string theory is a theory of purely closed strings. The world sheet theory
in these cases is a free field theory that contains ten scalars and ten Majorana
fermions. The fermionic degrees of freedom living on the world sheet can have
periodic or anti-periodic boundary conditions on a spatial slice of the world sheet
(which is a cirele in this case). Periodic houndary conditions are nsually referred
to as Ramond (R) boundary conditions, while anti-periodic ones are called Neveu-
Schwarz (NS) boundary conditions. The scalars satisfy the nsual periodic boundary
condition on the world sheet.

Since there are two sets of fermions, namely the left moving and the right moving
ones, we can specify four different sectors in the theory. These are the NS-NS,
R-R, N5-R and R-NS sectors respectively. Space-time bosons are obtained from
the NS-N5 and R-R sectors, and space-time fermions from the other two sectors.
Two different Type II theories can be defined, by projecting the [ull spectrum onto
states that contain only an even number of left moving and right moving fermions,

a procedure called the GSO projection. In the Type LA theory, opposite G50
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projections are taken in the left and right sectors, so that the target-space fermionic
spectrum is nonchiral, while similar GSO projection in the two sectors defines the
Type IIB theory, whose target-space fermionic spectrum is chiral,

As we have remarked, the space-time bosons in the two theories come from the
NS-NS and the R-R sectors. Type IIA and TIB theories differ only in the Ramond
sector, and hence the NS-NS bosonie states are the same for both theories. These are
the metric, a rank two antisymmetric tensor, and the dilaton. The massless states
in the R-R sector, are, however, different in the two theories. While in the Type
ITA theory, these consist of a one form vector field and a rank three antisymmetric
tensor, in the Type IIB theory, the massless R-RL spectrum consists of a scalar. a
rank two antisymmetric tensor, and a rank four self-dual anti-symmetric tensor field.

Generically, a (p 4+ 1) form potential coming from the B-R sector would couple
to a p — brane, which is an extended object in p space dimensions, generalising
the one form vector potential conpling to the electric charge in electromagnetism.
In fact Type Il supergravities, that arise as the low energy limit of Type Il string
theories, are known to have black p-brane solutions that carry such charges [7].
In perturbative closed string theory, however, there are no objects that can carry
R-R charge. This is because in the space of states of perturbative string theory,
the R-IR fields appear through the field strengths, rather than the potentials. Most
non-perturbative string dualities, on the other hand, require the existence of such
solitonic R-R charged objects. Consider for example, M-theory, whose low energy
limit is 11 dimensional supergravity. Massless R-R and NS-NS fields of the Type [TA
can be obtained by dimensional reduction of 11-D supergravity. The dimensional
reduction of 11-D supergravity however also gives Kaluza-Klein states, which are
charged under a R-R field in the Type IIA theory. Since, perturbative string states
do not carry R-R charges, this implies the existence of states that carry this charge,
outside the usual perturbative spectrum. These R-RR charged states can in fact
be shown ta be solitonic zero-branes of Type 1A theory. Similarly, the SL(2, Z)
self duality of the Type IIB string theory can be shown to require the existence of
objects that carry a R-R 2-form charge, and thus requires the existence of a solitonic

1-brane, namely a solitonic string. Higher (solitonic) p-branes carrying R-R charges
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can similarly be shown to be required under certain duality conjectures.

Solitonic solutions in string theory carrving NS-NS charge were discussed earlier
in the context of solitons that couple to the dual of the NS-NS rank 2 antisymmetric
tensor field. The Type IIA or Type IIB fundamental string itself couples to the
NS-N5 2-form field, while its Hodge dual, a 6-form potential, couples to a 5-brane,
commonly known as the NS 5-brane. The NS 5-brane breaks half of the spacetime
supersymmetry and hence is a BPS saturated object. An important feature of this
soliton is that the dilaton field blows up at the centre of the solution, which signals
the presence of a region of strong string coupling, called the core. Away from the
core, the five-brane is exactly described Ly a superconformal field theory. The SCFT
in transverse coordinates is the tensor product of an N = 4 supersymmetric S U{2)
WZW model and a free scalar field with a background charge.

In contrast, solitons carrying R-R charges have a simpler CFT description. Initial
efforts of realising the solitonic states involved the construction of these solutions as
(singular) solutions of the low energy supergravity equations of motion. However, a
means of realising these solitonic objects in a CFT deseription (with an appropriate
world sheet) as in the case of perturbative string states was still lacking. This situ-
ation was remedied by Polchinski [8], who suggested a novel way to construct these
solitonic solutions, by CFT methods. These solutions are known as the D(irichlet)-
branes, a Dirichlet p-brane being charged by one unit under the R-R (p + 1) form
gauge field. We may note here that the difference between these objects and the
usual quantum field theory solitons is that the mass of D-branes go as gl,, gs being
the string coupling, as opposed to the usual inverse square relationship of the mass
to the coupling constant for ordinary field theory solitons as well as NS 5-branes.
These D-branes saturate the Bogomolny-Prasad-Sommerfield (BPS) bound, i.e the
mass per unit volume m of a D-brane in appropriate units equals its R-R charge, ¢.
They also break hall the space-time supersymmetry.

The existence of D-branes as solitons can be understood in the following simple
way. Cousider the bosonic part of the open string action, in eq. (1.1)

5_1

47!
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The variation of this action is

= . ] 2 L TR v T l i s Tl A -
6y = _ﬁ_ d*ad X*g .?'L” + m dod X vl',-i'nj!»p

In order to make the surface term vanish, we might impose either Neumann or Dirich-
let boundary conditions on the coordinates, Imposing Neumann boundary condition
on the field X* would imply d,X* = 0 with n denoting the normal derivative to
the open string world sheet. This boundary condition is Poincare invariant (in the
target space) in the subset of jt's on which the condition is imposed. We can also im-
pose Dirichlet boundary conditions 8, X* = 0 on some of the coordinates, where 4,
denotes the tangential derivative along the world sheet. Imposing Dirichlet bound-
ary conditions on some or all of the coordinates defines a hvper-plane in the theory,
whose world volume lies along the directions transverse to the ones on which Dirich-
let boundary conditions have been imposed. Further, open string endpoints can lie
on this hyperplane. This extended object is called a D-brane. In a ten dimensional
superstring theory, a D-p brane, i.e a p-dimensional extended object is defined in

terms of the boundary conditions on the bosonic felds as:

Hﬁ)\rn(ﬂ.:u?nr}:ﬂ [}{:ﬂ“’:ﬁ
XMo=0,m) =2 (p+1)<F<9 (1.2)

Boundary conditions on the world sheet fermions are determined from the above, us-
ing various consistency conditions. For example, world sheet supersymmetry trans-
formations, that relate these bosonic fields to the corresponding fermions impose
various conditions on the fields, if one requires that the boundary conditons on the
bosons as given above are to be compatible with these transformations. As we have
mentioned earlier, we consider only Type II theories in this thesis. Type TIA theory
containg D-p branes for even values of p, while for type 11D strings, there exists D-p
branes for odd p. An important property of these D-branes is that thev are BPS
saturated objects. Due to the presence of boundaries in the open string world sheet
that defines the D-brane, the left and right moving space-time supercurrents get
related at these boundaries, as a consequence of which only a linear combination

of the corresponding supercharge is conserved. Thus, the D-brane breaks hall the

=]
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space-time supersymmetry and is BPS saturated. As a consequence of this, parallel
D-branes do not exert any force on each other. This can be seen as follows. Consider
the interaction of two parallel D-p branes via the exchange of a closed superstring.
This is a tree-level process in the closed string channel, but can also be viewed as
a one-loop open string process. The one loop amplitude in the open string channel
can be evaluated using the Coleman-Weinberg formula [9] and the result is

£l 1

it e ¢ i
. :E-I.-] — (87 fl ERPE —— _[n g L3 4 i) 17 2
A=W [ rot) e s @) - o) - 0] (1)

where V1 denotes the volume of the D-p brane, x is a vector denoting its separation
in transverse space, and g = ™™, where oo < ¢ < 0 is the modular parameter. 5 is
defined as () = ¢"/* [[2°,(1 —¢*")? and the #; are the usual Jacobi theta functions.
The expression for A vanishes due to the Jacobi identity, and hence the net static
force between two parallel D-p branes is seen to be zero. From the point of view
of the closed string channel, this is interpreted as the cancellation of forces between
the N5-NS and R-R sectors reflecting the fact that the D-branes are BPS saturated.

Action principles for D-branes, describing its low-energy degrees of freedomn,
were first formulated in [10] in the context of bosonic D-branes. Here, a world
sheet non-linear sigma model corresponding to mixed Dirichlet-Neumann boundary
conditions (defining the D-brane) was written down for bosonic string theory, and
it was shown that the equations of motion of the background fields computed from
the sigma model (via usual renormalization group techniques) agreed with those
obtained from a proposed world-volume Dirac-Born-Infield (DBI) action of the D-
brane. Supersymmetric generalisations of DBI actions, corresponding to branes
in Type II theories were considered by several authors. In [11], DBI actions that
consistently incorporated R-R gauge field couplings to the D-brane were considered.
Let us briefly state this result, It was shown in [11] that the action for a D-1 brane,

that couples to a R-R 2-form field is given by
S8 =T / d*oe XV det(Grn(X) + Bun(X) + Fan( X))

1
+ agfmn [CTJ”I o C"'{F‘mn = an]} R {l"”

Where T is related to the D-string tension by TP = e *?T, and Gpn By and Cy,

are the pullbacks to the world sheet of the target space metric, the NS-NS 2-form
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field strength, and the R-R two form field strength, and are given by
Gmn = Guu(X )0 X", X" Chn = Cou(X)00, X"0, X" Bpp = B X 18, X 0, X

where p, v =0,1,---9. The dots indicate the fermionic part of the action. The o's
are world sheet coordinates. Fi, is the world sheet gauge field strength. Actions

for higher dimensional branes can also be written down similarly.

1.2 D-branes on curved manifolds

Till now, we have considered superstrings and D-branes in ten dimensional flat space-
time. In order to formulate more realistic theories in four dimensional space-time,
one has to compactify some of the dimensions of the theory, A string theory with
four space-time dimensions can, for example, be constructed by considering the ten
dimensional space-time to be an (external) Minkowski four-manifold M times an
"internal manifold” Z, which is six-dimensional. In the limit when the dimensions
of T become very small, one expects to obtain a theory in four dimensions. The
manifold T constrains the behaviour of the theory in the four external dimensions.
and as it turns out, there arc only a few choices for the internal manifold T that gives
rise to phenomenologically interesting theories in M. In such theories, one would
like to have some unbroken space-time supersymmetry, which is required to obtain
a tachyon-free string spectrum and is also important in resolving issues like the
cosmological constant problem. ' Such supersymmetric compactification has been
studied widely in the literature. One can, for example, consider the internal space-
time to be a torus of appropriate dimensions. Toroidal compactifications, however,
give rise to theories with large supersvmmetry, and are not phenomenologically
interesting. Theories that preserve lesser space-time supersymmetry were studied
in the important work of Candelas et. al [12], in which it was shown that solutions

to the classical equations of motion of ten-dimensional N = 1 supergravity could be

U'While recently there has been much discussion of non-supersymmetric string theories without
tachyons, it is still not clear that such theories are consistent. The issue af non-perturbative

breaking of supersymmetry in string theory remains an unresolved problem.
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obtained, preserving V = 1 supersymmetry in four-dimensional space time, provided
the internal manifold 7 was a Calabi- Yau manifold.

Let us first briefly describe the basic notions about Calabi-Yau manifolds. A
complex manifold is a topological space, with local eomplex coordinates, denoted by
(z#, z#), such that the transition functions which relates the local coordinates in two
different patches of the manifold are purely holomorphic t.e a function of z# only. A
complex manifold is called Hermitian if it is has a metric that can be written in the
form

2 i
) ds” = guedz"dz"

with g, = gz = 0. In a hermitian manifold, it is possible to write down a (1, 1)

Kihler form, using the hermitian metric,
J =igupdzt Adz"

and the complex manifold is called a Kihler manifold if this (1, 1) form is closed, i.e
if dJ = 0. A Calabi-Yau (CY) manifold in d complex dimensions is defined to be one
which 1s Kihler, and in addition has an SU(d) holonomy. It can be shown that the
metric on such a manifold is Ricci-flat. Alternatively, one can define a CY manifold
as a Kahler manifold with a vanishing first Chern class, with a theorem due to Yau
then implying that there exists a unique Ricei-flat metric on the manifold. A notion
that will be useful for us is that of a (p, q) form, which is a completely antisymmetric
tensor of rank (p, q), defined as % = Q,,, . 5i.5,d2" Av -2 Adzfrdz™ A-- o Adz™
A (p,q) form is said to be harmonic if it 15 annihilated by the Laplacian operator
acting on it, and we can define the Hodge numbers A" of the Calabi-Yau manifold
as the number of independent harmonic (p, g) forms on it.

Now let us briefly recapitulate the spectrum of Type I string theory compactified
on a CY manifold of complex dimension 3, 1.e with the external space-time being four
dimensional Minkowski space-time. The spectrum of these theories can be shown
to have the multiplet structure of N = 2 supersymmetry in four dimensional space-
time. In particular, with A%! denoting the number of harmonic (2, 1) forms, and A'?
the number of harmonic (1,1) forms, it can be shown that the spectrum of Type

1A theory will contain h*! + 1 hypermultiplets (each containing four scalars) and
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A veetor multiplets, For Type 1IB theories on CY manifolds, it can be similarly
shown that there are A" 41 hypermultiplets and A%! vector multiplets.

The internal part of a string theory compactified on CY can be described in terms
of a non-linear sigma model, with a CY manifold as the target space. Let us consider
the compactification of a superstring theory on a CY 3-fold. The corresponding
N = 2 supersymmetric non linear sigma model (NLSM) in two dimensions governs
the map @ : ¥ — T where T is a Calabi Yau manifold and ¥ is a two dimensional
Riemann surface characterised by local coordinates (z,Z). .Denoting the bosons,
which are the (complex) co-ordinates of the target space CY as ¢* and ¢”, and
the left moving and right moving fermions as ¥4 and ¥, and the corresponding

complex conjugates as r,-"Ji‘ and 17, the action for this model can be written as

. I 1 l ¥ T = - i N ¥ i3 [
o= [ d°% [aﬂﬂﬁdz@'“dffﬁp +19aVE DY gl Dol +

dmnt

Rypusbi v 7 | (1.5)

Gepner [13], on the other hand, provided an exact CFT description of super-
strings compactified on CY by using tensor products of minimal models, which are

unitary representations of N = 2 SCFT’s, with the central charge of the kth min-

imal model being ¢ = 2%5. In this construction, the internal SCFT part of the

compactified theory is constructed by tensoring together an appropriate number of

minimal models so that the central charge of the product theory has the required
value, and then projecting the spectrum onto odd integral /(1) charged states. For
example, compactification on a Calabi-Yau 3-fold requires an internal SCFT with
¢ = 9, and one particular way of realising it is to tensor five copies of the & = 3
minimal model, each having a central charge of g Carrying this out, and finally
projecting onto states with odd integral U(1) charge, it can be shown that the mass-
less spectrum of this model is identical to that of the superstring spectrum on the
quintic hypersurface in CP*.

Gepner's description of Calabi-Yau compactification of superstrings via minimal
models may seem surprising, because apriori the minimal models do not have any
geometric significance. This connection between minimal models and CY was stud-

ied further by Greene et al [14], using the fact that the RG fixed point of the N = 2

11
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Landau-Ginzburg (LG) model for a single chiral superfield €@, with superpotential
W(®) = ¢*** is indeed the k'th N = 2 minimal model. Using a naive path integral
approach, these authors showed how the form of the L.G superpotential correspond-
ing to a particular combination of minimal models gives rise to a constraint that is
exactly similar to the defining equation of the corresponding CY. This was put on a
more firm basis by Witten in [15], where it was shown, starting from a gauged linear
sigma model, that the CY non-linear sigma model and the LG model are actually
describing two different phases of the same theory, with the variation of the Kihler
parameter in the theory interpolating between the two. Let us briefly review this
argument.,

We start with the gauged linear sigma model (LSM) in two dimensions, that has
N = 2 supersymmetry, and is obtained from dimensional reduction of N = 1 su-
persymmetry in four space-time dimensions. The theory contains a chiral multiplet
and a vector multiplet. The chiral multiplet consists of six scalar fields @,, their
fermionic partners, v; and v'_;, the auxiliary fields F; and the complex conjugates
of these. Here, + and — labels on the fermions label the left moving and the right
moving ones respectively. The vector multiplet contains the gauge fields v, and
vy, the real auxiliary field D, the scalar ¢, the left and right moving fermions, A,
and A_ and the complex conjugates of the o and A. The action, with the simplest
gauge group U(1) contains the usual kinetic energy term, gauge term, and a term

involving the theta parameter. In addition, it contains a superpotential terin and a
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Fayet-Tliopaulos term. These terms are given by

(Uil Do + D) — ((Do+ D)) v

| w=.

SF.'I'H — [f.lriy - Duq‘gipn@ﬁi -+

i _
+ E [‘n‘i“+i[Dﬂ = D]:Jw-l:' o [:[,D:] == D'|'}HIJ+=} ?+'II+=-]
+ |EP = 260Q%bid — V2Qi(adibs + od_abn) + DQidid,

= W@Q:fﬂ{‘ﬁﬁ'—ai— - 'L'I"'-H*’II"--:J - I\EQI¢1{;—LE+I - j""'i#;—I}

l l . 1 . 1o o . .
Sguug: = E ﬂf?y E'UE:’ =+ EL}Z i E [}L_}{dg = C}]}}q. — {{f']u - al})'l+} }1+:|
b %[E_(aﬁa,})._ — ((Bo+3)A)A] — B00°
, ow oW O W .
Sw = — fdzﬂ (Ea_d)‘ + Eiﬁ!—f";’?i + "Li -.D?—GE: == a‘zﬂéf w—iw'f'i‘)
4 >
Sr,ﬁ‘ = —7[({2!}.{} - T?r'ffi'-y'b'm lrl.{‘.l}

Here, Dy = (Jy+iQsvg) and Dy = (8, +iQ;1, ) denote the gauge covariant derivatives,
i labels the coordinates on a complex manifold C™*'. and vy, = dyvy — J,1p is the
/(1) field strength. The fields D and F; enter as auxiliary fields, and one can solve

for their classical equations of motion, and obtain

D = ¢ (Z il — )

am
o = 5= B
56 (1.7)
Where e is the gauge coupling constant and @; denotes the (1) charges of the
bosonic fields = ¢;. The potential energy of the dynamical scalar fields ¢; and o (a

scalar field from the gauge multiplet) is given by
' b 5
Ui o) = z|GFZQ§[¢,-|2+2—EZ+Z|E,-|E (1.8)
I T

Requiring anomaly cancellation and R-invariance, The superfields are taken to be n
fields S; of charge 1 and 1 field P of charge —n, ensuring that the total /(1) charge
of the bosonic fields is zero, and in addition we assume a gauge invariant form of
the superpotential, W = P.G(S;) where GG is a homogeneous polynomial of degree

n. Then, the D term in the potential energy is given by

D=-¢ (Z |sif® — nlpf? — T')
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p and s; being the bosonic components of P and S, respectively. Now, minimising
the potential energy, and noting the non-trivial dependence of the Fayet-lliopoulos

term [J on r, one can show that for r >> 0, the minimising procedure gives
E .':ﬂ-.si- =T
i

which 15 precisely a copy of the complex projective space CP" ! with a Kihler class
proportional to r. On the other hand, in the limit r << 0, i.e negative values of the
Kihler parameter, one obtains a unique classical vaceum st.latm with the massless
excitations governed by a superpotential that has a degenerate critical point, and
hence defines a Landau-Ginzburg theory. Witten's construction thus shows that the
Calabi-Yau and Landau-Ginzburg are two different phases of the same theory, the
LG being obtained by the analytic continuation of CY to negative Kihler class.

It is clear that the topics that we have discussed above relating to superstring
compactification need to be studied in the context of D-branes. A study of D-branes,
in string theories compactified on CY, would naturally be a very important part of
the study of these solitons. D-branes wrapped on supersymmetric cycles of CY, have
been, in particular, a topic of interest. In [16] and [17], wrapping of branes on such
cycles were discussed and the authors obtained geometric eriteria for the wrapping
cycles to preserve hall the space-time supersymmetry. Wrapping of D-branes on
supersymmetric cycles of CY from a CFT point of view was discussed by Ooguri et
al [18]. They considered boundary states of such D-branes, and showed how the ge-
ometric data is encoded in the boundary states. The difference in approach between
[16] and [18] is that while the former used the formalism of low energy effective
supergravity actions for the p-brane solitons to study the supersymmetric cyvcles,
the latter used the approach of the open string N = 2 world sheet superconformal
field theory (SCFT) to study these cycles.

In [18], Ooguri et al classified the boundary conditions for the world sheet N = 2
SCFT that preserves half the space-time supersymmetry, by considering relation-
ships between the felds in a supersymmetric sigma model for Calabi-Yau given in
eq. (1.5). This model can be twisted in two different ways to give topological

field theories, that are related by mirror symmetry [19]. There are two possible
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boundary conditions for the model (called the A-type and the B tvpe boundary
conditions) which relate to the two different wavs of topologically twisting it (the
A twist and the B twist). In [18], appropriate Dirichlet and Neumann boundary
conditions were imposed on the fields of the model of (1.3), thus defining D-branes
in these models. Tt was shown that the A-type boundary conditions in particular
led to D-branes wrapping middle dimensional cycles of the target space Calabi-Yau,
which are special Lagrangian submanifolds, and the B type boundary condition
corresponds to D-branes wrapping on even dimensional ¢ycles, which are complex
holomorphic submanifolds. These authors also analysed mirror symmetry in the
presence of D-branes, and some issues regarding open string world sheet instanton
corrections.

Analysis of D-branes on supersymmetric cyeles of CY from a conformal field
theory viewpoint, was further discussed by Recknagel and Schomerus [‘Eﬂi, who
have used Gepner models in their analysis, Boundary states for ¢ iepner models
can be obtained by tensoring together an appropriate number of minimal models,
and imposing the A or B type boundary conditions that we Lave just describer.
This procedure involves Cardy's construction of boundary states in conformal field
theories defined on a manifold with boundary.

In the work presented in chapter 2 of this thesis, we have taken a somewhat
different approach in studying boundary states of D-branes in Gepner models. Our
method uses the formalism developed in [21], where a space-time supersymmetric
modular invariant partition function for the closed string was constructed. This
method used certain combination of characters in the N = 2 minimal models that are
invariant under spectral flow, an operation, which in general, interpolates between
the varivus isomorphic representations associated with the N = 2 superconformal
algebra. Using the supersymmetric characters associated with spectral flow (which
in this case can be thought of as interpolating between the Neveu-Schwarz and
Ramond sectors of the theory), we will discuss how to construct cyvlinder partition
functions in a manner in which some space-time supersymmetry is preserved. We
will caleulate the associated boundary states, and in order to provide a target-space

interpretation of these boundary states, we will consider boundary Landau-Ginzburg
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(LG) models. The relationship of LG models with Gepner models is provided by
the fact that we have stated earlier, namely that an LG model of a scalar superfield
with superpotential &2 flows in the infrared, to a level & N = 2 minimal model.
In chapter 3 of this thesis, we will study the CY-LG correspondence, from the
point of view of Witten’s LSM, in the presence of D-branes. It is expected that
D-branes can be defined for some continuous value of the Kihler parameter of the
theory, r. For example, one may consider the effect of putting a D-brane on a CY
space and varying the Kihler parameter r. Reducing the value of v and making
it negative, one enters the LG phase. It is interesting to see what happens to the
D-brane under this change of Kihler parameter, by using the LSM description of the
D-brane boundary CFT. In this framework, one can also investigate processes that
result in a change of topology of space-time. Aspinwall ef al, in [22] have argued that
there are physcally smooth processes in string theory that result in such changes
of topology. These processes are interesting if we keep in mind that in Einstein's
general theory of relativity (GTR), the space-time metric is defined with respect
to a fixed topology, that does not undergo any changes under smooth processes of
general relativity, Of course, it might be expected that large curvature Auctuations
might result in such a change, but these processes are hitherto unknown in the
context of general relativity. String theory, which is a candidate for a quantum
theory of gravity, indeed provides examples of such processes as argued in [22].
One can try and investigate these topology changing processes in the presence of
D-branes. In order to begin addressing these issues, it is necessary to formulate
a boundary description of Witten's linear sigma model (which deseribes the open
string CFT), and construct D-branes in these models. We study some aspects of

such a construction in chapter 3.

1.3 Black holes in string theory and their D-brane
description

Despite the undoubted success of string theory as a means of understanding pertur-

bative quantum gravity, this is still an insufficient test of the theory as a quantum
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theory that incorporates gravity. A natural question that arises is whether string
theory provides a better understanding of other general relativistic phenomena in the
semi-classical or quantum regime. In particular, an interesting question is whether
string theory provides a better understanding of black holes.

Black holes, which arise in GTR as singular solutions to the Einstein's equations,
are thermal systems obeying laws of thermodynamics. An understanding of the
nature and behaviour of black holes has been a long standing problem in GTR,
Before the advent of D-branes, these issues were difficult to address in string theory,
which was formulated essentially in the perturbative regime. as opposed to black
holes, which exist at strong coupling regimes of gravity. This, however, seems to he
possible with the discovery of D-branes. Of course, D-branes exist at weak values
of the string coupling, but being BPS configurations, they can be used to caleulate
certain quantities that would remain unchanged even when the coupling is tuned to
large values. In this section, we address the issue of D-brane descriptions of black
holes.

Two of the most interesting aspects of black holes are entropy and Hawking
racdiation. Bekenstein and Hawking [23] showed that the entropy of a black hole is
proportional to the area of its horizon. 1.e
A
4G

where 5 denotes the entropy, A the area of the black hole, and G is the Newton's

(1.9)

L

constant. Efforts have been made to attribute this entropy to the degeneracy of the
quantum states of the black hole. These attempts have achieved remarkable success
in the case of D-brane description of black holes, Certain combinations of D-branes
were shown to have properties that closely resembled black holes. In a description of
extremal and near-extremal black holes using such D-brane configurations, certain
quantities can be calculated at weak string coupling which can be expected to be
valid at all values of the coupling due to the non-renormalisation thearems available
for BPS configurations, Hence one can extrapolate black hole results from the D-
brane picture of black hole entropy.

The first such calculation was done by Strominger and Vafa [24] who obtained

the area dependence of black hole entropy by considering a certain class of string
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theoretic black holes in five dimensions (that arise out of low energy su pergravity
solutions for Type II strings), and the corresponding D-brane descriptions of these
black holes. As we have remarked varlier, D-branes have the property that open
string endpoints can end on them. Counting the degeneracy of such open string
states, for a particular configuration of D-branes, Strominger and Vafa reproduced
the familiar area law of Bekenstein and Hawking (eq.(1.9)).

The other important aspect of black holes which we will study in chapter 4 of this
thesis is Hawking radiation. In classical general relativity, the singularity associated
with a black hole is always hidden behind a horizon, which essentially implies that
nothing can escape from the area within the horizon. However, Hawking [25] showed
that quantum mechanically, a black hole can, indeed, emit particles. He further went
on to prove that in the semi-classical approximation, the spectrum of the emitted
particles was thermal in nature, and hence is a random distribution containing no
mformation about the state of the black hole. This immediatelyv led to one of the
still unsolved paradoxes in the extension to the semi-classical regime of GTR, the
information loss paradoz. If a black hole Hawking radiates, i.e, emits a thermal
spectrum, then, since infalling particles into the black hole might carry information,
we ultimately end up with a loss of information as the black hole evaporates. A
precise understanding of Hawking radiation from black holes, and the information
loss paradox, is an essential part of our attempts of understanding general relativity.
One would like to address these issues from the string theory point of view as well.

As we remarked earlier, certain configurations of D-branes are seen to have prop-
erties that seem to identify them with black holes at strong coupling. The process
of Hawking radiation of scalars in this picture can be understood as follows. Let us
consider black holes arising out of the low energy effective actions of Type 1B string
theory in five dimensions, the internal space being a 5-torus, 7°. We start from the
low-energy effective action for Type I1B string theory in ten space-time dimensions,

1

0y /=g | R = 2(V4)? — —eH?
Sip = o Gm/ a4 |:R tﬁl} (1.10)

where I is the Ricci scalar, ¢ the dilaton field, and H the R-R three form field
strength, and /)y denotes the ten-dimensional Newton's constant. All the other

fields have been set to zero. Now, on toroidally compactifying this theory to five
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dimensions, where the internal five space dimensions consist of a cirele of radius
R and a 4-torus, 7" with volume V', and in addition some momemtum along the

direction of the circle, there exists the following solution to the ten dimensional

—3/4 — —1/4
nh fy r& sinh
o ) (1 + “—27)
?.

9 T 12 i
[ dt* + dx} T -2 (cosh odt + sinh odzs)? + (] g W) rfJ:,fi.r:‘]
. r
o (] b r|:| S“lh L'l) Epd (1 i ],ﬁq:"+h2,_:r) a4 y

1— - ﬂf." +r dnf] (1.11)

metric

P
dig =

The three charges, corresponding to the three form R-R field strength, its Hodge

dual, and the momentum are given by

Vo Vri

_ N~ s - .
¢ = —-'hr?g e« H= —Zg sinh 2a
) 1 r2
{ = : H = -Ysinh?2
25 47-24:;[ 3 Y
R2Vy2
no= % sinh 20 (1.12)
2g*

Where n is related to the momentum P along the circle, by P = &. @, and ()5 are
chosen to be large. Now, on dimensionally reducing this metric to five space-time

dimensions, we get the five dimensional metric,

. 2y ; 2y 1
dsf = —f213 (1 ~ lﬁ) dt* + f/° |:(L - ;—g) dr® + rzdﬂg} (1.13)
2

with f being a function of the three charges, given by

2 sinh® o & sinh® 5 2 sinh”
fru (H_ﬂ) (lﬂ,u_?_z_‘r) (Hn_ﬂ) (1.14)

This is the five-dimensional Schwarzschild metric, with the event horizon at r = g
[26] The corresponding D-brane configuration consists of an appropriate number of
D-1 branes and D-5 branes, wrapped in the internal compact space time, with the

D-1 brane lying along one of the directions of the D-5 brane and there is in addition
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a net momentum along the D-1 brane direction. This configuration, as we will see
in chapter 4, is equivalent to a long D-1 brane in the direction of the original 1
brane. Now, open strings can move along the world volume direction of the D-1
brane, and the left and right moving open strings can be taken to constitute two
sets of non-interaction one dimensional gases. The interaction between a pair of
oppositely moving open string states may result in the formation of a closed string,
which cannot reside on the world volume of the D-brane and is hence emitted as
scalars in space time.

This picture was studied in detail by Das and Mathur in [27]. The authors
studied the emission rate of low energy scalars, in the model described in the last
paragraph, by considering the Born-Infield action of the long one brane wrapped
along one of the directions of the 7°. They then calculated the absorption cross
section of such low energy quanta by the corresponding extremal black hole, with
the metric described above, and found exact agreement of the two results.

Let us briefly describe their result., Consider the Dirac-Born-Infield action for

the D-1 brane, (1.4). Setting the gauge field and the R-R field to zero, we get

Spr = Tj d*oe ™Y\ /det(Grn (X) + Bun (X) (1.15)

Starting from this action, The lowest order interactions are obtained by treating
the metric as a small perturbation over the flat metrie, and also expanding the
transverse coordinates around the brane position. In this approximation, from the
action above, in static gauge (X" = ¢". X! = ¢!}, the interaction between two open

strings and the metric is given by the term
1 ==
; {5.3 + EGL[;.FI-U'} ﬂn)‘{ ldn}f?

Where ¢, = 2,---0 denote the coordinates transverse to the D-string and we have
expanded the metric as G, = 5. + 2Gph,(X). From this interaction term,
it 1s possible to do a field theoretic calculation of the absorption cross section of
transverse gravitons which can be thought of as a scalars in space-time (with the
indices in the internal part). The final result is [27]

W dk
= A —— | m—— 1.16
P = Aun(7) G (116

20



CHAPTER 1

Ay is the horizon area of the corresponding black hLole in the supergravity limit,
obtained in terms of the D-brane parameters from entropy caleulations 127] and p
is a thermal distribution function with the effective temperature being the Hawking
temperature of the black hole. In the above caleulation, it was further assumed
that the left and right moving open strings on the world volume of the 1-brane,
which constitute two sets of non-interacting one dimensional gases, have offective
temperatures T, and Ty, with T >> Tp.

The result in the last paragraph is then compared to the corresponding low
energy absorption cross section in the black hole regime with the 5-D black hole
metric given by eq. (1.13). Computation of the absorption cross section in the
semi-classical approximation is carried out by solving the scalar field equation in
the background of this metric. Writing the massless minimally coupled scalar wave-
function as ¢(r,t) = R(rje ™!, w denoting the energy of the scalar quanta, the field
equation reduces to, on rewriting g(r) = r*2R(r),

d*g(r) 3

—gz FW n)g(r) — 5a(r)| =0 (1.17)

Note that in the above, we have restricted only to spherically symmetrie wave-
functions, since the higher angular momentum components can be shown to have
negligible contribution to the absorption cross section in the limit of low w that we
are interested in. The solution to the above equation will contain constants, that
can be evaluated by solving the equation in the regions near and far from the black
hole horizon, and demanding that the solutions match at some intermediate region.
For the region far from the black hole horizon, the solutions of the wave equation
are Bessel functions, while they are Coulomb functions in the region close to the
horizon. The arbitrary constants are matched in an intermediate region where hoth
solutions reduce to an inverse square relationship between R and r. We will not go
into the details of the computation, a similar case will be worked out in chapter 4 of
this thesis. For the moment, let us just state that the result for the absorption cross
section from the semi-classical calculation is exactly the same as the expression in
(1.16). These caleulations have also been carried out for other fields, like formions.
fixed scalars etc. and agreement and disagreement of the results from the two sides

have been analysed. In refs [28],[29], an ab-initio derivation of the Hawking radiation
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spectrum from the D1- D3 system has been attempted, starting from the moduli
space of the low-energy degrees of freedom of the corresponding sauge theory, and
the Hawking emission spectrum of minimal and fixed scalars have been computed.
In chapter 4 of this thesis, we will study neutral and charged scalar Hawking
radiation rates from a class of five and four dimensional near-extremal black holes
and their corresponding D-brane configurations, in the regime of high energies of the
emitted quanta, while relaxing the condition T}, >> T%. We will calculate black hole
greybody factors under these conditions, following the methods of [27] and [26]. We
will show that in this extended range also the black hole emission rates will match
the corresponding results obtained from the D-brane picture. We will also show that
for four-dimensional black holes, the black hole and D-brane emission rates mateh

for a more restricted range of energy compared to the five-dimensional case,

1.4 The holographic principle in string theory
and cosmology

The D-brane black hole correspondence that we just described, brings us to another
important issue of application of string theory techniques to the more ‘observable’
aspects of GTR. A natural question to ask, for example, is how the string theory
solitons fit in with the description of our observable universe. The latter is described
in terms of the Friedmann equations of cosmology, arising as special cases of the
Einstein’s equations in GTR. At the same time, one can also ask how the general
principles of string theory and D-branes translate into the case of our universe. This
is important because string theory, is a quantum theory of gravity and the general
principles that are applicable to string theory and D-branes, must, somehow play an
important role in the description of our universe as well. In this section, we address
one such issue, namely, the question of how helography, conjectured to be one of
the deep and important principles of quantum gravity and hence of string theory
manifests itself in the context of cosmology.

Holography, originally proposed in the context of quantum gravity by ‘tHooft

[30] was extended to string theory by Susskind in [31]. The principle, which states
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that any macroscopic region of space can be effectively described by a theory which
lives on its boundary, with the number of degrees of freedom per Planck area not
exceeding unity, has been seen to have wide-ranging consequences. This theory has
been put to test in the context of D-branes, via the recently proposed AdS/CFT
conjecture, by Susskind and Witten [32]. Stated mathematically, the holographic
principle implies that the entropy 5 contained in a region of volume V', will never
exceed the area A4 that bounds this volume.

A motivation for the holographic principle is the following: consider a region of
space with volume V', bounded by an area A and containing an entropy S. Assume
that this entropy is greater than that of a black hole with the same surface area.
Now, if we add more energy to this region to form a black hole, then, assuming
that the entropy of the black hole is given by the Bekenstein-Hawking (BH) formula
G ﬁ! (in units where the Newton’s constant Gy = 1, we see that the generalised
second law of thermodynamics (23] will be violated. In order to avoid this. the
holographic principle proposes that the entropy and area are related by 751 )

It is expected that the holographic conjecture arising in the context of string
theory, would play an important role in the description of the observable universe.
Before attempting to address such issues, however, one has to understand the precise
meaning of the holographic principle applied to our present universe, 1.e in cosmol-
ogy. As it turns out, a naive application of the holographic principle to cosmology
often gives incorrect results, and a refinement of the procedure has to be earred
out. The procedure to correctly apply the holographic principle to cosmology has
recently been conjectured by Fischler and Susskind (FS)[33]. Let us first briefly
review their argument,

We start with the usual Friedmann-Robertson-Walker (FRW) metric, that is

assumed to deseribe the nniverse.

a

ds® = dt* — R?I:J',} [Lﬂ'r2 JL8 l:dfl!?"": + Si[izlgdt;ﬁz)] (1.18)

The first law of thermodynamics, when applied to this scenario, gives us,

d[ﬂ] =40 (1.19)
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where p and p are the equilibrium pressure and energy density respectively, Thus, we
define the comoving entropy density, ¢ = P;_,',.f-’HS, which is a constant in the evolution
of the universe. Because of this, the entropy contained in a region of coordinate size
r, say will be given by 5 = or. Now, the area of this region can be shown to be
A = Rr® Hence, when r is sufficiently large, the entropy exceeds the area and the
holographic principle, which requires that S must always be less than 4 is violated.

Now, we state the F'S proposal that remedies this. According to this proposal,
the holographic principle should be restated as follows. If rjy denotes the coordinate

size of the cosmological horizon, given by the expression

4 d
rult) Z[ ﬁ

then, the entropy contained within a volume of coordinate size ry should not exceed

the area of the horizon, in Planck units. Mathematically,

Iri—]

aryy < [Rry (1.20)

for a theory with d spatial dimensions. That this proposal is along the correct lines,
can be seen easily. Consider first the present day universe. The horizon size of the
present universe, which is the same as the age of the universe, is numerically equal
to 10%, whereas the entropy of the observable universe is of the order of 10%. Hence,
clearly the holographic principle is satisfied today. Now consider what will happen
in the future. Assuming an expansion rate of the form R(T') ~ 7, so that ry ~ 17,
the holographic principle, from (1.20), dictates that p > é. This can easily be shown
to lead to a bound on the parameter 7 in the equation relating the pressure and the
energy densities, p = yp, namely, v < 1. The bound on v is known to follow from
well known facts about special relativity, and hence gives added support to the FS
proposal. Finally, Fischler and Susskind were also able to prove that their proposal
for the holographic principle was also valid in the past, i.e, upto Planek time.

The 'S proposal, is however valid for standard cosmology, arising out of the
FRW metric. Standard cosmology, however, has a number of shortcomings, two
of them being the horizon problem and the flatness problem. We will deal with
these morefully in Chapter 5. For the moment, let us remark that one can take two

alternatives as a way out of these problems. The first is the so called inflationary
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cosmology, where it is assumed that at some peint of time during its evolution,
the universe passed through a phase of exponential growth, that finally results in a
huge release of entropy, and it can be shown that this scenario and its refinements
cure many of the problems arising in standard cosmology. The second approach
is string cosmology, first proposed by Veneziano, who argued that in string theory,
the cosmological evolution of the universe is different from standard cosmology. In
particular, along with the post big-bang phase with an initial singularity, it predicts
a pre big-bang phase with a final singularity, and the two branches can be connected
smoothly. Several problems arising in standard cosmology can be shown to be absent
in string theory inspired cosmology. Both these approaches have heen successful in
explaining several observed features of the present universe. A study of the FS
proposal in the context of string cosmology has been carried out in [34]. In chapter
5 of this thesis, we will study the application of the FS proposal in the context of
the inflationary universe. We will argue that a naive application of the FS proposal
would imply a violation of the holographic bound, but a more careful analysis Las
to be performed during the process of entropy production in the inflationary stage,
which shows that holography is indeed obeyed in this model. This will lead us to a
derivation of an interesting lower bound on the density fluctnations of the universe,

that is close to observed values.




Chapter 2

D-branes on Curved Manifolds : I

[n this chapter, we pursue two different worldsheet approaches to understanding
D-branes wrapped on supersvmmetric cyeles in Calabi-Yau manifolds. The two ap-
proaches that we use are the boundary N = 2 supersymmetric Landau-Ginzburg
(LG) formulation and a boundary state construction in terms of the Gepuer model.
The Landau-Ginzburg formulation of strings on Calabi-Yau manifolds has been very
successful in understanding various aspects of such closed string theories. We would
extend this by considering the same LG models on worldsheets with boundary, in
a manner that preserves a N = 2 worldsheet supersymmetry on the boundary, We
will discuss how these LG models with boundary provide a natural description of D-
branes wrapped on both even and middle-dimensional supersymmetric cyeles in the
general Calabi-Yan manifold. In the second description, we use the Gepner model
construction. However, in contrast to other approaches available in the literature, we
would consider linear combinations of characters of the spacetime super conformal
field theory (SCFT) and the internal SCFT that are invariant under the cperation
of spectral flow. With this approach we discuss how to construct the cylinder par-
tition functions in a manner that explicitly demonstrates that some of spacetime
supersymmetry 18 preserved and thus leads to a vanishing partition function., We
will discuss the associated boundary states for these partition functions. As specific
illustrations, we would consider in this chapter the 1? and 2? Gepner models that de-

scribe a T? compactification. We will relate the boundary state construction to the
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boundary condition LG description by making use of a common discrete symmetry
group occurring in both the Gepner model and its corresponding LG orbifold.

Throughout this chapter, we will, for simplicity, restrict ourselves to the case
where all the spatial coordinates are wrapped on the appropriate supersymmetric
cycle and hence from the viewpoint of the non-compact spacetime, we have a zero-
brane. From this point of view, the world-volume theory describes the moduli of
the corresponding D-brane wrapped on the eycle inside the Calabi-Yau manifold
[35, 36]. .

Before we begin, let us first briefly summarise the progress that has been made
in providing a conformal field theory description of D-hranes wrapped around su-
persymmetric cycles in Calabi-Yau spaces. The first important step was provided
by the work of Ooguri, Oz and Yin[18], who formulated the general boundary con-
ditions on the world-sheet N = 2 SCFT that would be necessary to describe such
cycles. Subsequently using the work of Cardy on boundary CFT[37], Recknagel and
Schomerus[20] described in some generality the boundary states in Gepner models
[13],[38], that would be relevant to the description of both even and odd dimen-
sional supersymmetric cycles in the corresponding Calabi-Yau manifolds. Further
in refs. [39] some applications of this construction have been pursued. In later work,
Recknagel and Schomerus have also studied the role of boundary operators in such
constructions(40]. Other approaches have studied the case of D-branes in the context
of group manifolds as described by Wess-Zumino-Witten (WZW) models[41, 42, 43].
Finally, we must mention the important work of Brunner, Douglas, Lawrence and
Rémelsberger[44], that studied in detail the structure and several aspects of D-
branes on the quintic, using both Gepner models and other techniques. We consider
the techniques of the work presented in this chapter to be complementary to the
ideas and results contained therein.

To begin, let us, for future reference, introduce some results that we shall be
needing. This will also set the notations and conventions that will be used through-

out this chapter.
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2.1 Background and conventions

The N = 2 superconformal algebra can be expressed in terms of the
(anti)commutation relations among its generators, which consist of the ENergy mo-
mentum tensor, T'(z), its worldsheet superpartners, G*(z) of conformal weight 3/2,
and a U(1) current, J(z), which is a primary field in the algebra with conformal
weight 1. The algebra is given by the following relations that can be derived from
the operator product expansions of the generators. Writing the mode expansion of

the operators as

T(2) = Byluz™
J(z) = Sodyz!

a

Gt(z:] — Equ:t“E_i“iu:l ! {21:]
where we have rewritten the two supercurrents G and G2 as
1 ;
Gt = —(G' + iG? 2.2
75 ) (2:2)

and the free parameter a in the expansion of the G's has the range 0 < a < 1 The
algebra is given by the following relations that can be derived from the operator

product expansions of the generators[49].

B Ln] = (m=—m)Lai, < %m (m* = 1) mpnio
[Lm.-Gf:tf;] = (% =—{nk 1‘1}) G

[Faiida] = %mﬁmM‘U

[Lm Im] = —mJp,
[Jm Giiu] = :I:Gi+f::|:u

{GF G Y} = B+ (n—m+28) Josn

+§ ({n +a)? — 11) B (2.3)

In terms of the free parameter a, @ = 0 corresponds to the Ramond (R) algebra and

a = § corresponds to the Neveu-Schwarz (NS) algebra. We shall refer to states in

representations of the Ramond algebra as Ramond states and similarly, one obtains
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Neveu-Schwarz states. Primary states of the N = 2 algebra are labelled by their
dimension h and U{1) charge q.
A subset of the primary fields of the NS algebra are the chiral primary fields.

which create states that are annihilated by the operator G o

Giuz":"‘l'} =0 1 [24}

Similarly, antichiral primary fields are constructed with the condition that the cor-

responding highest weight states are annihilated by the operator G~ fa- This means

that there are no poles in the operator product expansion of these fields and G, ie
G*(z)d(w) ~ regular (2.5)

Caonsidering the relation
(B{C.61,10) = (¢l (2Lo — Jo)I9) (26)
which follows from the (antijcommutation relations of the N = 2 algebra, we can
see that since the Lh.s of the above equation vanishes, by the definition of the chiral

primary field, we obtain, the following relationship between the dimension and [7(1)

charge of a chiral primary field:

b= (2.7)
2

the more general relation being hy > % as can be seen from the positive defi-
niteness of the Lh.s of (2.6). Similarly, anti-chiral fields satisfy h = —¢/2. In a
theory with (2.2) worldsheet supersymmetry, i.e., theories with N = 2 supersym-
metry in the holomorphic(left-moving) and anti-holomorphic(right-moving) sectars,
one can construct four combinations of the chiral and anti-chiral fields, These are
(e,e), (e, a), (e,a), and (a, ) states in the theory, Let us consider the chiral primaries
ance more. From the relationship between the dimension and the U(1) charge, one
can easily write down the operator product expansion between these fields, which is

of the form;

$(2)p(w) = iz —w)™ "y (w) (2.8)
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From the fact that the U(1) charges add on operator product expansion and using
the relationship of eq. (2.7), one can easily see that there is no singularity in the
above OPE and that for consistency, the only terms surviving on the r.h.s are those
for which the field y; is itsell a chiral primary. This proves that the chiral primaries

form a closed ring under OPE. Further, using the anticommutator
2
(@HC5.C* o) = (ol (200 — 3% + Ze) o (29)

where |@) is a chiral primary state, we can deduce that the conformal dimension
of ¢ is bounded from above, i.e fi; < g Hence, we obtain the result that the chiral
primaries in N = 2 SCFT form a closed finite non- singular ring under OPE.

An important aspeect of the N = 2 algebra is the existence of a spectral flow

isomorphism. One can show that the after the following redefinition:

B, = FEenk, s %?]zCﬁ",ﬂ
A ri?]rcﬁ,,_.,}
3 .
(GF) = Ghy . (2:10)

the redefined operators also satisfy the N = 2 algebra with a moding shifted by the
parameter 71 (& —+ a + 7). This correspondence can be carries over to the states
in the representation of the algebra. This is done by means of the spectral flow

operator L, which is defined by the unitary mapping

Ur.l} = Unl‘ﬁ'} [?-]1]

|f) defining a state in the representation of the original algebra, and |¢,) being in
the i twisted sector of the theory, and the unitary map U, transforms the generators
Ly(Jy) as

Lh(d) = Upln(JR)U; (2.12)

To derive an expression for the spectral flow operator, we first note that the U(1)

J(z) = f\/gazab (2.13)

current can be bosonised as
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where ¢ is a free boson, and in terms of this, and field f that creates the state | Ly

with dimension /i and [7(1) charge @@ can be written as
f = geVie (2.14)

where the field g is neutral, its U7(1) charge being zero and the dimension given by

L

2¢

, = h — (2.15)

From this, we easily see that if we shift the bosonic exponent in the expression for

f as

fo = geiVilarinie (2.16)

Then the dimension and U(1) charge of the new field in the twisted sector is given

by
0
hy = h + g + Ec
d = q + v% (2.17)

which is exactly as required, as seen by comparing this with the expressions for
the twisted modes. Hence an explicit representation of the spectral flow operator is

given by

U, = Ve (2.18)

n

When 5 = £, the spectral flow operator interpolates between the Neveu-Schwarz
and the Ramond sectors. In the context of spacetime supersymmetric string theory,
this spectral flow relates spacetime bosons to spacetime fermions.

For a given representation p of the N = 2 algebra, the character is defined as
Xp {TT 2, ,”_] — pHTu Ty Ldimady EEIHT(L:}—%J (319]

where the trace runs over the particular representation denoted by p and u is an

arbitrary phase. The explicit formulae for the characters of certain models in terms
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of the Jacobi theta functions will be written down later. Under spectral flow with

parameter 17, the character for the 5-shifted representation is given by

4

x; {T1 21 = Tr E'.:‘:WJ{', E'.Zurr{f,;_%]
1, 1 |
= AT gl e g (2.20)

Next, let us briefly discuss boundary states in N = 2 SCFT’s that we will use in
our analysis. A BPS state such as a D-brane wrapped on a supersymmetric cyele
will preserve half the spacetime supersymmetry. Using the correspondence between
spacetime supersymmetry and the existence of a global N = 2 supersymmetry on the
worldsheet, the presence of a BPS state will be signalled by the boundary preserving
a linear combination of the (2, 2) worldsheet supersymmetry, The analysis of Ooguri
et al. shows that there are two possible linear combinations[18],

A-type boundary condition:

Ji==Jp , GI=4Gy , & =¢'n (2.21)

B-type boundary condition:

Jo =g , Gi=%G} gl = (4)9pifet0r (2.22)

where the ¢'s are the scalars associated with the bosonisation of the U(1) current
of the N = 2 supersymmetry algebra in the left and right-moving sectors. These
boundary conditions are for the open string channel.

Boundary states which preserve a N = 2 supersymmetry are expected to be
related to D-branes wrapping around supersymmetric cyeles. The boundary states
satisly the closed string equivalent of the above boundary conditions. In order to
do this, we write the boundary conditions in the closed string channel with the
replacement Jp — —Jp and G}, —+ iG5 as compared to the open string channel.

The A tvpe boundary condition then reads,
(Jo—=dJdr)I1B)=0 ; (Gf £ iG})|B)=0 |, (2.23)

where |B) is a boundary state. The condition on the U(1) current picks out a

selection rule for the fields of the theory that can contribute to the boundary state,

32



CHAPTER 2

namely for the A-type boundary condition, corresponding to D-branes wWrapping
around middle dimensional cycles, we have g, = gg for the U/(1) charge. Thus, the
(¢,c) and (a, a) states can contribute to the A-type boundary state while the (a, ¢

and (c, a) states cannot. Similarly, for the B-type boundary condition
(Ju+Jr)|BY=0 ; (G + iG})|B)=0 (2.24)

implying that the (c,a) and (a, ¢) states contribute to the boundary state,
Generalising a procedure due to Ishibashi, one can construct solutions of the

above conditions for all primary fields which are ‘left-right’ symmetric[30]. The

explicit form of the Ishibashi state associated with such a representation o is given

by

a)) = > la; N) ® Ula; Ny (2.25)

=
where |a, N} is an orthonormal basis for the representation a and €7 is an anti-
unitary matrix which preserves the highest weight state |a). For A-type boundary
conditions, one has to replace IJ with UQ2 where Q is the mirror automorphism of
the V = 2 algebra[20]. We shall label the Ishibashi states for the A-tvpe and B-type
boundary conditions by [a)} 4 and |a))p respectively.

Let us now turn to Cardy’s construction of boundary states in a conformal field
theory formulated on a manifold with boundary. The set of Ishibashi states that we
have discussed, form a basis for such boundary states. Thus, any boundary state
|} is given by a linear combination of the Ishibashi states

: T|'-|I‘r|':|“ i
@) =3 o la)

, (2.26)

where 5 is the modular S-matrix and 0 refers to the identity operator. The 10.°
are not arbitrary but will have to satisfy a consisteney condition which we will now
derive. The arguments are due to Cardy[37] but we will follow the discussion in
ref. [51]. Consider a conformal field theory associated with a chiral algebra on
a cylinder with perimeter 7' and length L subject to boundary conditions a and
. The partition function of the system can be calculated in two wavs: One can

consider the result as coming from periodic ‘time’ T evolution with the preseribed
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boundary conditions. Topologically, this corresponds to an annulus. The annulus

partition function is given by
Ang = anﬂ xilg) (2.27)
£

where 1;,% denotes the number of times the irreducible representation # ococurs in
the spectrum of the Hamiltonian H,s (which generates the ‘time’ evolution) and
g = ¢ "% Another way corresponds to treating the L direction as time and the
partition function for time evolution from the boundary state |a) to the boundary

state |3) is given by

b myt i
Eﬂﬂ i Z Ya {“.l'ﬁ :] XE{q} {223}

So" '

(21

where § = e~ ¥ L/T

and the sum is over Ishibashi states. On equating eqn. (2.27)
to the modular transformation = = —1/7 (with 7 = i2L/T) of eqn. (2.28), one
obtains the following consistency condition:
4 S_ﬂ-
niaf= ¥ o5 Ve (") (2.29)
el

il

In the above, note that the sum is over Ishibashi states while the index 7 is over
characters of all irreducible representations of the chiral algebra. Note that these
two are not necessarily the same except for theories which are ‘left-right’ symmetric
1.e., the toroidal partition function is given by 7 = 5" Cyxi(g)x;(g), where C is the
charge conjugation matrix, It can be shown[51] that the matrices n; = {n,-)n” form

a representation to the fusion algebra
r k
> miatngg? =) Ntnga? (2.30)
g k

where N,-jk is the fusion matrix. Cardy has provided a solution to the consistency
equation (2.29) for theories whose toroidal partition function is left-right’ symmet-
ric. He constructs boundary states (and hence boundary conditions) corresponding
to the representations m which appear in the Ishibashi states. Let us label the
corresponding boundary states by |@) given by

S b
i) = E ——ThYY 3
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where the sum is over Ishibashi states. This solves eqn. (2.29) for
il = Nt (2.32)

The consistency condition now turns into the Verlinde formula. Complications can
arise in attempting to apply Cardy's results directly, One which we will encounter is
that different representations may have the same Virasoro character. This will show
up as a multiplicity in the appearance of the characters in the toroidal partition
function. In addition, the S-matrix will not have several of its.usual properties such
as it being symmetric and so on. In such cases, the S-matrix needs to be resolved.
There is a fairly general procedure due to Fuchs. Schellekens and Schweigert which
one uses to obtain a resolved S-matrix which has its usual properties[52]. Sometimes,
however there exists some discrete symmetry which distinguishes representations
which have the same character. In these cases, one can use the charge under the
discrete symmetry to obtain a resolved (or at least a partially resolved) S-matrix.
We refer the reader to ref. [52] for the procedure to resolve the S-matrix. We will
discover in the case of Gepner models that this is the case generically. and we will
need to resolve the S-matrix before using Cardy’s solution to eqn. (2.29).

We now briefly review Gepner models and discuss results that will be useful
for us. As we have commented before, Gepner models are exactly solvable super-
symmetric compactifications of type II string theory, where the internal part of the
SCFT is constructed by tensoring together N = 2 minimal models. The central
charge of the minimal model of level k is given by |

3k
T k2

&

(2.33)

A simple construction of the minimal model of level k is realised by adding one
free boson to the Z; parafermionic field theory. This is done as follows: from the
free bosonic theory with the field denoted by ¢, and the Z; parafermionic theory

with paralermionic fields labelled by v, and its hermitian conjugate, t,.i={, one can

Car
i
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construct
2k -y ST
2 = (et eV
k42
2k 2
G (z) = gl g
(} k+2M
2k
= 1 . 2.34
0 (2:34)
The operator product expansions for these generators satisfy the N = 2 super

conformal algebra. The primary fields of the theory are labelled by three integers

l,m,s, and denoted by ®!,  whose dimension i and U(1) charge g are given by are

given by
[l 4+2) —m* e
] et Enli AR !
: i+ T3
m 3 =

wherel = 0,1, kand m = —(k+1), =k, -+ , (k+2) mod (2k+4) and 5 = 0,2, +1.
The labelling integers satisfy the constraint [ +m+ s € 2Z. In addition, there is an
identification given by {{.m,s) ~ (k—=I,m+k+2,8+2). The N = 2 characters of

the minimal models are defined in terms of the usual Jacohi theta functions as:

.,diﬁ‘] {T Z ”‘ Z rr1+1_1n u E21'?'-1-'-{ d7—adk+2)2k(k+2) {T zkz ”] I:E‘RG:I
J omod &

where f, (7, 2, 1) denotes the Jacobi theta function, and the C! (7) are the char-
acters of the parafermionic field theory. The characters have the propertv that v is)
is invariant under s —+ s +4 and m — m + 2(k + 2) and is zero if [ + m + 5 £ 0
mod 2. By using the properties of the theta functions, the modular transformation
of the minimal model characters is

L . w(l+1)(F+1) i’
A -=,0,0] = P\ 5
©(-300) = 3 an () e (T

I om' s

] !
X exp ( :ﬂisq) t[f (7,0, 0) (2.37)

where in the above sum we impose ' + m' + s’ = 0 mod 2. Gepner constructed

compactifications of the heterotic string which had spacetime supersymmetry by
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representing the internal part by a tensor product of N = 2 minimal models. IHis
considerations are equally applicable for compactifications of the type 1I string.
Consider the tensor product of n minimal models of level &; (: = 1,--- ,n). The

total central charge of the internal model is given by

i
3k;
i = 2.38
L o k‘ -+' 2 { :I
where ¢ = 15 — 3d/2, where d is the dimensionality of spacetime. Thus, for

d =4, cjn = 9. Gepner constructs a spacetime supersymmeﬁric partition function
by first projecting onto states for which total U(1) charges in both the left-moving
and right-moving sectors is an odd integer. Then, in order to preserve N = 1
worldsheet supersymmetry, the NS sector states of each sub-theorv are coupled to
each other and do not mix with the R sector states. He thus multiplies all the
NS sector partition functions in each sub-theory and similarly for other sectors{i.c,
;‘_"-'::5-:;, R and E] The full partition function is a sum of the contributions from the
four sectors. Modular invariance of the full partition function is a consequence of
modular invariance in each of the sub-theories. In considering boundary states for
D-branes wrapped on cycles of Calabi-Yau manifolds, we consider the internal part
of the SCFT to be product of N = 2 minimal models. Our method for constructing
boundary states for Gepner models uses the formalism (based on Gepner’s analysis)
developed by Eguchi et al. in ref [21]. A modular invariant partition function is
constructed by using spectral flow invariant orbits(these are certain sums of N = 2
characters dictated by spectral flow). The type Il partition function is written
in terms of supersymmetric characters associated with the spectral flow invariant
orbits. Spacetime supersymmetry is manifest in this following an argument due to
Gepner|38, 13].

Let us now turn to the Landau-Ginzburg description of the Gepner models that
we have just discussed. There is a lot of evidence that the level £ N = 2 minimal
model can be obtained as the RG fixed point of a Landau-Ginzburg model (with
global N = 2 supersymmetry)of a single scalar superfield with superpotential &%+,
It has been shown that the central charge of the RG fixed point matches that of the

minimal model and more recently, the elliptic genus of the two theories was shown
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to match[53].

The massless spectra and symmetries of certain Gepner models are in one to one
correspondence with those obtained in some Calabi-Yau compactifications[38, 13].
This result was initially shown by Gepner for the quintic hypersurface in C' P* which
is equivalent to the (k = 3)® Gepner model. For this example, it was shown in ref.
[54] that certain Yukawa couplings between the massless fields also agreed from both
sides. The explanation of this phenomenon came first by a path integral argument
due to Greene et. al [14]. Using the relationship between the level £ N = 2
minimal model and the the LG theory with superpotential @2, for the Gepner
model given by (ky, ks, ...k, ), they chose the LG superpotential W(®,, &y, - @) =
PR 4 @R o @fe 2 Assuming that the D terms in the theory are irrelevant
operators and their effect can be neglected in the path integral for this model, it
was shown in rel. [14] that one exactly ends up with the constraint that defines
a Calabi-Yau manifold in weighted projective space. There was a need to impose
a discrete identification in order to make the argument work. This corresponds to
an orbifolding of the LG model and gives rise to the integer projection imposed by
Gepner in order to have spacetime supersymmetry. Thus the precise statement is
that the Gepner model is equivalent to the LG orbifold. The Calabi-Yau - Landau-
Ginzburg correspondence was later proved more rigourously by Witten [15] where
it was shown how a varying Kahler parameter interpolates between the geometrical
(Calabi-Yau) and the non-geometrical (Landau-Ginzburg) phases.

For instance the string vacuum that corresponds to five copies of the k = 3,
N = 2 minimal model, is obtained by orbifolding by expli2n Jg|, where Jy measures
the left /(1) charge. Other more complicated orbifolding possibilities exist, {and lead
to other Calabi-Yau manifolds) but we shall not consider them here. An N = 2 LG
theory which has not be orbifoldized contaings only (¢, ¢) and (a, a) states. However
in order that a LG description of a N = 2 super conformal field theory reproduce

the string vacuum it is essential that it also include the (a,c) states. These states

appear in the twisted sector of the LG orbifold[55, 56].
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2.2 D-branes in Landau-Ginzburg models

In this section, we will deseribe D - branes wrapped on supersymmetric cyeles using
the Landau-Ginzburg description of Calabi-Yau manifolds, We will first rencralise
the bulk Landau-Ginzburg theory by including boundary terms which preserve part
of the worldsheet supersymmetry following the work of Warner[57]. We will obtain
the analog of A and B type boundary conditions in this system. For the case
of the quintic, we will show that A-type boundary conditions naturally choose a
real submanifold which is the supersymmetric three-cyele constructed by Becker et
al.[16].

We will consider the massive Euclidean Landan-Ginzburg theory in two dimen-
sions, with complex bosous ¢; and complex Dirac fermions denoted by 1, ¢, with the
left and right moving components denoted by the subscripts + and — respectively.
The action for the model (in which we have taken the boundary to lie on the line

' =r =0and z' = y) is given by

5= Sbu]k F Shl:ulndﬁ.r}' : {239}

where
] [="] -
Spulk = f du:“f dz' {— (8. 0,0, ;)
- O — D
| _ o _
-3 (Y_iB6¥—i — ¥ oiBothys — o(_ s + (o, )ibss)

+ % (E-,‘alw—i =+ ’I',TJ+551'¢+,' = a!{m_fhﬁ—: = al(@-ﬁ}ﬁ’%)

a*w i - A I aW’ .
al P — 'Iz : 3 — :
i (Hc,é,ﬁqab_,) Ryt (3¢"{f3¢1') V| ey | }

o 1 .
Stnuundar_-,' = f dy (_ 5";’;’7. 1,"-IJI) {2 40)

=

In the above W (@) is a quasi-homogeneous superpotential, As is usual for the-
ories with boundary, the kinetic energy term for the fermions written in symmetric
form. In addition, we have included an explicit boundary term following the work
of Warner[57].".

'The dictionary which relates Warner's notation to ours is as follows: M=t A=y, A =
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We have used an off diagonal basis where the two dimensional v matrices are

defined by

o [0 : 01 1 0
gt = = gt = (2.41)
01 1 0 0 -1

The supersymmetry transformations of this model are given explicitly in terms

of the components to be

doy = — {?r’-lr+i£-§- -+ 1:'1"—15—]

60, = (bt +¥.E)

Tir
dby; = (—0Oogy +id1¢) 5 + '??{tf
= = e AW
lf!?__-'l.l‘_é_i = (ﬂu¢i - -;a,ﬂ'ld:‘-) €y — E{;ﬂl [
11
oy = (Opgh; +idheh)E- — ?%’Eﬂ
. ta
dp_; = (—dod; —idhe;) e~ + 2‘; (2.42)

This action is now varied under ordinary and supersymmetric variation, giving rise
to boundary terms, and consistent boundary conditions are imposed in order to

cancel these. The boundary terms coming from ordinary variation can be written

a8
§iS== ] WEFI5S + BB+ 5 (B ) (s + )

- § (i — i) (B0, + 60, (2.43)

evaluated on the line z = 0. Similarly, the boundary terms arising out of supersym-

Wy A=l 0 =F_, 0 =E,, @) =€, Bza=¢€-.
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metric variations of the action can be written as

= 1 . . = o o .
'Es.susyS - [ d":" l_zaﬂéi ('{o':'_; - I}r"-H} + %alﬁaf {.ul:—l + 1.*'IJ+1'):| {E— - E-r}
| — [
-+ liautfl, (Vi — ) + %51445{ (Yo + ﬁ’-i}] (e —e)

g
(ﬂf#.) (Wi + ) (€= + &)

aw
- 5(F) BB +e) | (2.41)

Now, following our earlier discussion on the A-type boundary conditions, we will

look for the unbroken N = 2 supersymmetry to be given by 2

B = s (2.45)

The above choice is dictated by A-type boundary condition G} = +G, for the
supersymmetry generalors.

The supersymmetric variation the action S after imposing ¢, = £_ is
P gt

‘ssus}'s = /_ .d?f [_%auﬁﬁ; (E’-—i = E+i) T %alﬁﬂ’i GE*:_;' + 'T.TJ+,)1| {f+ —€_)

| i, =
+ |:.-_‘jﬂ¢"{ (e — i) + —5'1¢'1- (W4 + 'I.'E’-i}j| (€4 —€)

[gzt {T,.J i Y- } = %&:{¢+1 = tr"—:)jl {E-!— + f—} {246]

Further, let us assume that the fermions also satisfy the following condition:®
(Vsi — Y_i)|zmo =0 (2.47)

The following set of boundary conditions on the bosonic fields makes the ac-
tion invariant under the N = 2 supersymmetry. The bosonic boundary conditions

are also consistent with the supersymmetric variation of the fermionic boundary

*One can also choose €, = —£_ here.

*Since Ji, = —Jg for A-type boundary conditions, we are not permitted to set dapt =0

on the boundary. Thus one has to choose (Yy; —1_;) = 0 on the boundary.
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condition in eqn, (2.47).

Ej[! {"3": e !?h) [I:‘U = 0

c’jl] [ﬁ}r. + 5;} |1':EI = 0
(27,
a'i’f 55,

Hence (2.47) and (2.48) give us a set of boundary conditions on the fields such that

= 0 (2.48)

=0

we have an unbroken N = 2 supersymmetry on the boundary. The last line of the
eqn. (2.48) has to be viewed as a consistency condition on the boundary condition.
It has a simple interpretation (in the infrared limit) provided the equation W = (
admits a pure imaginary solution. It corresponds to the statement that for directions
along the brane, the variation of W has to vanish. For example, for a circle given by
flz,y) = (2* +y* — 1) = 0, the analogous statement is that daf = 0, where ¢ is the
angle in cylindrical polar coordinates. We will see that similar conditions appear
even for B-type boundary conditions whenever a Neumann boundary condition is
imposed on fields.

These ‘mixed’ boundary conditions should correspond to a D- brane wrapped on
some cycle of Calabi-Yau given by the equation W(¢) = 0. Let us see if this can
be substantiated. Notice that, the last of the equations in (2.48) implies that the
real part of all the complex scalar fields ¢; can be chosen to vanish on the boundary
at & = 0. Thus, the target space interpretation is that the cycle corresponds to
a submanifold of the Calabi-Yau given by the coordinates becoming imaginary on
the boundary. As shown in [16], for the quintic hypersurface defined in C'P* by the

equation
Zate) =0 , (2.49)

imposing the reality (or equivalently pure imaginary)' condition on all the ¢, indeed
provides one with a submanifold which is a supersymmetric three-cycle.

Actually, (2.47) and (2.48) are not the most general choice choice of boundary

"We will nevertheless refer to this as real submanifold.
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conditions, The following set of boundary conditions is more general:

(b= A2 T )omp = 0
an. ((,'5: - ‘_._1!} Ej) |;r—.{I = D
o ({fh‘ a a"hj !;E_?) |.1':U = 0

oz 2L00)

Ay - — = 0 | 2.50
dé}' ad’f ( " :I

£=D
where the symmetric matrix 4 satishes 44* = 1 and it is block diagonal ie., it
does not mix fields with different charge under the U(1) of the unbroken N = 2
supersymmetry algebra. One simple choice is given by A = Diag(e'®, ...  e'n)
subject to the condition involving the superpotential being satisfied.

Given a matrix A which provides boundary conditions consistent with the su-
perpotential, we can construct other consistent choices. Let us assume that the
superpotential is invariant under a discrete group G which acts holomorphically on
the fields. Let #¢; = g7¢’ be the the action of ¢ € G. The invariance of the super-
potential under 7 implies that W(¢) = W (*¢). Corresponding to the element q, we
can construct another N = 2 preserving boundary condition on the fields given by
A, =g'-A-g". Clearly, if g is a real matrix, then A and A, belong to the same
conjugacy class and we do not abtain new boundary conditions.

Clearly with a LG theory it would be difficult to provide a description of the
boundary states in the cylinder channel with the same degree of explicitness that we
can associate with free-field theories. However we can notice the following. We can
label the boundary states by the primary fields associated with them as in the general
case discussed by Cardy and implemented by Recknagel and Schomerus. Since for
the A-type boundary condition, one needs equal charges from the left and right
moving sectors in the construction of the boundary state, it is clear that the lowest
states are associated with the application of the LG fields themselves on the ground
state vacuum of the theory. It is elear that this may involve appropriate number of
¢ fields, such that the U(1) charge projection condition is satisfied, a similar set of
states with the application of ¢ fields and also states built by application of both
¢ and ¢ fields such that they have integral /(1) charge. Some of these states will

be obviously in the massive sector and will not contribute to massless states but as

4.3
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we shall see later such states are required in the general definition of the boundary
state. This ties in rather nicely with the method for the construction of boundary
states that we will pursue in section IV of the paper. In this connection we note also
that so far we have no means yet, strictly within the LG formulation, to determine
the normalization of the boundary states as is done by the method of Cardy for the
boundary states of an arbitrary minimal model.

We will now discuss B-type boundary conditions. For the B-type boundary

conditions, the N = 2 supersymmetry is given by

€4 = —€_ . (2.51)

We will now look for boundary conditions on the fields such that the above super-
symmetry is preserved. Under supersymmetry variation of the action, (after setting

€, = —c_ as required), we obtain a boundary term of the form

j dy {0t i = Bys) — 0065 (s + 1) &
+ [Bodi (Wi — Yoi) + 010, (s +¥)] €4 ) (2.52)

The vanishing of the above boundary term suggests two possible boundary condi-

Lions:

L. Gy@ile=0 = 0 and (1_; +94:)|z=0 = 0. This corresponds to Neumann boundary
conditions on the field ¢; and its complex conjugate ¢.. Consistency with
supersymmetry imposes the additional condition %%h:u = (. Note that this
i5 a condition in spacetime where it says that the I;'angem;ia] derivative along

the boundary vanishes.

2. hoilr—o =0 and (h_; — 10i)|z=0 = 0. This corresponds to Dirichlet boundary

conditions on the field ¢; and its complex conjugate ¢,.

Since the above set of boundary conditions treat both the real and imaginary parts
of the complex scalar fields ¢; in identical fashion, the cvele which is chosen by the

boundary conditions will correspond to a holomerphic submanifold of the Calabi-

Yau. Thus the cycle is a supersymmetric cycle.
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Again, one can construct a general boundary condition. [t is specified by a
hermitian matrix B which satisfies B* = 1 and is block diagonal i.e., 1t does not mix
fields with different charge under the U(1) of the unbroken N = 2 supersymmetry

algebra. The general boundary condition is given by

(¥4i + Bt_j)|e=0 = 0
Eu{fi‘i =+ Bijgbj:] |.r=ﬁ =1 T
(b — B dj)|emp = 0

(aw : Bl_jaw)

] —— =0 i
9. % g, a0

=0

Since B squares to one, its eigenvalues are £1. An eigenvector of B with eigenvalue
of +1 corresponds to a Neumann boundary condition and —1 corresponds to a
Dirichlet boundary condition,

Let us now discuss what the B-type boundary states would look like with Dirich
let or Neumann boundary conditions on the LG fields. With Neumann or Dirichlet
boundary conditions it is easy to see that the U(1) current obeys boundary condi-
tions that require all boundary states to have equal and opposite charges in the left
and right moving sectors. This implies that all the boundary states for such cycles
must come from the twisted sector in the LG theory. [t is not immediately clear
what difference the Neumann and Dirichlet boundary conditions would make since
in the twisted sector the zero-mode of the LG fields are no longer present. However
it is nevertheless clear that the even supersymmetric eycles are charged under the
Ramond-Ramond ground states of the twisted sector. Before we turn to specific
examples we would add that all the massless states could probably be constructed
by an extension of the method of Kachru and Witten[58] where they used the co-
homology of the ), charge to define the massless states in the left-moving sector
of a {2,2) compactification of the heterotic string. In the case of D-branes in the
openstring sector we have only one Ly operator and two supercharges. It is clear
that an extension of the methods of ref. [58] will be possible[4].

We now present some explicit examples for the construction of boundary condi-
tions that we have outlined above. From our previous analysis, we have seen that

a general A-type boundary condition is parametrised by a matrix A and a matrix
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B for B-type boundary conditions. As mentioned earlier, one has to ensure that
a particular choice of the matrix A or B, the consistency condition involving the
superpotential is satisfied. We find that for B-type boundary conditions in all the
examples we consicer we are unable to impose Neumann boundary conditions on all
fields simultaneously. A simple example involving one scalar field (like the LG mode
associated with the N = 2 minimal model at level k) shows that the only condition
one can impose on the scalar is the Dirichlet one. This is not inconsistent with the
fact that in the models we consider, in the infrared limit, the best one can do is to

impose Neumann boundary conditions on all but one of the felds.

1. The 1* model

This model is described by the superpotential involving three scalar felds given
by W = (¢ + ¢3 + ¢3). A-type boundary conditions pick out the submanifold
(one-cyele) given by
(z} +a3+23) =0

where z; = Im¢;. The discrete symmetry group of this superpotential is
given by G = (53 x (Z;3)%)/Z,°. Other supersymmetric cycles which can be
constructed from this cycle are (izy, sy, iwz;), where a and b are integers
satisfying a+06 = ) mod 3°. These correspond to choosing A = Diag{1, w®, w?).
Thus, we a = 2,5 = 1 respectively. One can verify that the three one-cycles

are non-intersecting,

There exists another choice for A given by A; = Diag[l, 1, exp(i2x/3)], which

leads to the one-cvele given by
(e +25-23) =0 ,

where z; = Img, (1 = 1,2), z3 = Im(exp(—in/3)d3). By studving the action of

Sy on this cycle, we will see that this cycle is not chosen in the Gepner model

583 is the permutation group with three elements (here it permutes the three felds), the three
Z3's are generated by the action ¢' = wey; (for i = 1,2,3). (w is a non-trivial cube root of unity.
g ¥

The quotient Zy is the diazonal Zs,
8This condition comes from requiring that the discrete symmetry generator commute with the

SUpersymmetry generator,
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construction,

Earlier, we had imposed the condition @ + b = 0 mod 3 in the matrix 4. Re-
laxing this condition, we will get two more sets of one-cycles corresponding to
a+b=1,2 mod 3. Within each set, the one-cycles are non-intersecting. How-
ever, if one considers one-cycles from different sets, they can intersect. For
example, the one-cycle chosen by A = Diag(1,1,1) intersects the one-cycle
chosen by A = Diag(1,w,w) at the point (0,1,1) =~ (0,w,w) in homogeneous
coordinates. The cylinder amplitude between these two states will not van-
ish since the two boundary states do not preserve the same supersymmetry

generators. Further, one expects to see a tachyon in the open string spectrum.

For B-type boundary conditions, we find the following consistent choices:

(a) Choose B = Diag(—1, -1, —1) which corresponds to Dirichlet boundary
conditions on all scalars. Let ¢; = ¢; where ¢; are constants. Presumably,
they will have to satisfy (¢} + ¢} + ¢}) = 0 given the infrared limit of
the bulk theory but this does not follow from the consistency conditions.
Clearly (1, s, c3) corresponds to a point (in homogeneous coordinates)
on the torus and corresponds to a supersvmmetric zero-cycle,

0 -1 0

(b) For B=| —1 ¢ 0 |, the consistency eonditions imply that ¢, +

0 0 -1
@2 = 0 and ¢ = 0 with (¢, — ¢4) being free i.c., satisfving Neumann
boundary conditions.

We are unable to find choices for B such that one obtains two Neumann and
one Dirichlet boundary condition in addition to the all Neumann case which

can be clearly ruled out by analysing the consistency condition involving the

superpotential.

. The 2% model

This model is deseribed by the superpotential W = &1+ a5+ d2, where we have

included a ‘trivial’ quadratic piece. For A-type boundary conditions given by
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A = 1, there are no real solutions. However, choosing A = Diag(1,4,1), one

obtains the one-cyele given by the cquation
= S S
T — 2y, +zy =0

where 11 = Im¢, , 1. = Im{qﬁ;;’wﬁ} and 73 = Img¢;. This equation has
solutions for real x;. The discrete symmetry group of this model is given by
G = (82 % (Z4)* x Z3)[Z;. Choosing an element of G given by g = (i%, i, ()7
with a + b+ 2¢ = 0 mod 4. By following the procedure mentioned earlier
we obtain 4, = Diag[(—)%i(—)" 1] which provides cvcles related to A =
Diag(1,1,1) by a Z5 subgroup.

There is another choice given by 4, = Diag(1, 1, ~1), one obtains the one-cyele
given by the equation

4 4
By =1t =0 ,

where 2, = Im¢y , 73 = Im¢y, and 4 = Regy. Again, this one-cycle is not
chosen by the Gepner model model construction. This eyele is invariant under

the 5, exchange while the first choice is not invariant.

The Quintic

We have already seen the example of a real three-cyele obtained from the A-
type boundary conditions with A = 1. The Quintic has a discrete symmetry

group G = (85 x (Z5)°/Zs). A subgroup is given by the Z; generated by
g . I:{;bii ¢’2: ¢3| d"d.'u ff’%} — {d}! L] ﬁ¢21 az'f’:i! ﬂlz(lb4? &4¢5} 1

where « is any non-trivial fifth root of unity. This boundary condition corre-
sponds to a three-cycle of the quintic which is related to the real three-cyele by
the Z; transformation. It follows trivially that this cvele is a special Lagrangian
submanifold of the deformed quintic and hence a supersymmetric cvele, It is
clear that this procedure leads to the construction of supersymmetric eycles.
Considering the full group G, one can generate G-related supersymmetric Cy-
cles by the choice ¢ = Diag(1, a®, o, o%, a?), where a, b, ¢, d are integers which
satisly a + b+ ¢+ d = 0 mod 5.
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For B-type boundary conditions, we find the following three consistent

choices for the matrix B: (i) B, = Diag(—1, —=1,=1, =1, ~1): ) Be. =

—{T} 0 (l
—oy 0 01
and (iii) By = 0 —oy 0 where 7; =
[N 10
( 0 —ih

is a Pauli matrix. The first choice is the all Dirichlet one. The second choice
has one Nenmann and four Dirichlet conditions and the last one has two Neu-

mann and three Dirichlet conditions on some linear combinations of the fields.

4. The Conifold

The deformed conifold is described by a non-compact Calabi-Yau associated

with the superpotential[59, 60]

2 2 . L
W=ﬁ+@+ﬁ+ﬁ—§

5

where p = 0 is the conifold limit and g = |ule™ is complex. Imposing A-
type boundary conditions with A = Diag(1,1,1.1, €%%) chooses the three-cycle

given by the equation (z; = Imd;, i = 1,2,3,4 and 15 = Im(dse—))

F . L
o S S I =
5
Working in inhomogeneous coordinates Wi = &/ s, we obtain an 5? of radius
v/ Ijt| which is known to be a special Lagrangian submanifold of the conifold

and hence is a supersymmetric cycle.

2.3 D-branes in Gepner models

In this section we will be constructing the boundary states associated with cyeles
of a Calahi-Yau space which can be obtained as a Gepner model. The Calabi-Yau
is specified by tensoring together N = 2 minimal models and truneating to states
with integer charge under the U(1) of the N = 2 supersymmetry.

The torus partition function is constructed in terms of supersymmetric charac-
ters. The analysis of Gepner showed the relationship between spacetime supersym-

metry and spectral flow with 7 = £ in the N = 2 supersymmetry algebra. The
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supersymmetric character is obtained by first constructing the Virasoro character
in the Neveu-Schwarz (NS) sector and then including all characters (whose states

are related to the original one by spectral flow in steps of n = Ly

). For example,
the graviton character is obtained by first considering the identity operator. Then,

one applies the spectral flow operation once to obtain a state in the Ramond sector.
The second application leads one back to the NS sector, This procedure is repeated
until one returns to the original state after a few iterations. The supersymimetric

character (in the lightcone gauge) can be written as

Xi= : {NS:' (ﬂ—a) — N5, (ﬂ—lj —f (E—z) + R, (ﬂ) } g (2.54)
. i 1 1 T

where {%}” come from level one SO(2n) characters associated with the non-compact
spacetime of dimension d{with n = (d—2)/2). The signs reflect the GSO projection
required in order to obtain the correct spin-statistics connection. In the above, N§
refers to the Virasoro character in the NS sector (N5 = trys g o) while R refers
to the Virasoro character in the R sector (R = trp ¢%~*). NS and R refer to the
Virasoro characters in the appropriate sector with the inclusion of ()", where F
is the worldsheet fermion number (NS = trys (—)F gfo=e/2) A5 a consequence of
spacetime supersymmetry, each of the supersymmetric characters vanish identically.
See ref. [38, 13] for the details of the argument. However, in the cases considered in
this chapter, we have also explicitly verified that this is indeed true.

Since the multiplicities D; is generically not equal to one, one needs to resolve
the S-matrix associated with the Gepner model. There is a procedure due to Fuchs,
Schellekens and Schweigert which we employ to resolve the S-matrix[52]. The Cardy
prescription can then be applied to the resolved S-matrix in order to obtain the
boundary states corresponding to D-branes wrapped around cycles of the Calabi-
Yau corresponding to the Gepner model. The resolution of the S-matrix for models
such as the quintic is computationally complex and hence we will illustrate the
procedure for the simple case of the 1% and 2% Gepner models (for A-type boundary
conditions). Here, we will see a very nice match with respect to the analysis using

the LG description and hence be able to directly achieve a target space interpretation
for the boundary states.
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We should point out the differences between our approach and that of Recknagel
and Schomerus. In their construction, the boundary conditions such as J; = I
are imposed separately in each of the minimal models which enters the theorv after
which they construct boundary states for by tensoring together boundary states
of the individual minimal models. Thus, the boundary is forced to preserve the
N = 2 algebra of each minimal model rather than the diagonal N = 2. This

seems to ensure that the setting is “rational”. In our construction, we work with

spectral flow invariant orbits. Given the intimate relationship between spacetime
supersymmetry and spectral flow, our restriction may seem natural in the context
of D-branes since they are BPS states in spacetime. The supersymmetric characters
can be seen to be sums of characters of the extended algebra W, one obtains by
including the 5 = § spectral flow operator to the N = 2 algebral21]. Thus, our
boundary states preserve the extended algebra W rather than the N = 2 of the
individual minimal models. “Rationality” is obtained because we work with only a
finite number of supersymmetric characters rather than characters of the irreducible
representations of W, We believe that these two approaches complement each other
and must not be considered to be distinet.

Let us start our analysis with the example of the (k = 1) Gepner model. This
model is obtained by the tensoring of three copies of the k = 1 ¥ = 2 minimal model.
This is the Gepuner model for a torus at its SU(3) point. The characters of the & = 1

minimal model in the NS sector will be labelled as follows. (y! = ™" 4 =2

Xm

¥ q h Label

X0 | 0|0 = boa(3)/n(7)
Xi | 1/3 | 1/6 | B =8;4(5)/n(r)
XLy | -1/3 | 1/6 | Be = f43(3)/n(r)

B is associated with a chiral primary state and B, is associated with an anti-chiral

primary state. Under spectral flow(with 7 = 1), we have the sequence
AsB— B — A

The spectral flow invariant orbits for this model in the NS sector are

al
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Label Orbit, q; h
NS [A+B+B| g=h=0
NS, | 34BB. G=0:h= 15

In the above table, the values of g and h correspond to the state with the smallest
value of h oceurring in the spectral flow invariant NS orbit. NS, is the graviton
orbit and the other orbit is massive i.e., it corresponds to massive states in the non-
compact spacetime. The choice of 3488, rather than ABHF as the character for
the N.5; state can be understood as follows: Let us assume that the three minimal
models are labelled 1,2, 3 respectively. Then a spectral flow invariant orbit is given
by (A1 B3Bs + B B.oAs + BaA:By), where we have explicitly kept the minimal

model label. Getting rid of these labels leads to 34 BB, and hence our choice. The
S-matrix for this model is derived to be

1 I 2

V3l 1 1
Dy =1and D, = 2. It is sufficient to consider the NS sector to obtain the S-matrix.

One can show that this S-matrix is identical to that obtained from the modular

transformation of the full supersymmetric character[38, 13]. A modular invariant

torus partition function for this model is given by

1
T=) Dil|Xf (2.55)
i=il

where X, are the supersymmetric characters’.

However, as things stand one cannot apply Cardy’s prescription here since the

character X, oceurs with multiplicity 2 in the toroidal partition function. In order

to obtain the resolved S-matrix. one splits D, = 2 = 1 + 1. Thus the resolved

"The multiplicity of two associated with NS, again is related to the fact that if we kept track
of the minimal model labels, there are two distinct spectral flow invariant orbits piven by the
even permutation NS+ = (A, 0. B3 + BiBad; + By AsBy) and the odd permutation N 5,- =
(BidaBe + By Bads + A1 B2 B3). This actually completely resolves the S-matrix here. Tn more

complicated situations, this will enable us to partially resolve the S-matrix.
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S-matrix is a 3 x 3 matrix. It is

L 1 I

- 1

Si= ?3 1 w  w? (2,56)
1 w w

where w is a cube root of unity. One can check that:

1 §d

e 5% = C where C=]1001 is the charge conjugation matrix.

010
e Sis symmetric and unitary.
. (ET}B =52 with T = Diag(—2, —iw, —iw).

Now, one can apply Cardy's procedure using the resolved S-matrix. Let [0} 4,
1704, [17))a be the Ishibashi states (associated with the characters Xp, X;.)

which satisfy A-type boundary conditions.

10} = 37Y4(j0))a+ 1)) a4+ [17)a) (2.57)
1) = 37 (|0))4 + WP a+w17))a) (2.38)
12) = 37V(10))a+w 1))+ w|17))A) (2.59)

Note that if we kept track of the minimal model labels, under the exchange of labels
24 3, |1))a ¢ [17)) 4. Thus, under the same exchange |I) « |2} with the state
10} being invariant. These boundary states fit in beautifully with the analysis of
the 17 model in the LG deseription. There we obtained a set of A-type boundary
conditions parametrised by A = Diag(l,w® «®) with a + b6 = 0 mod 3. We make
the following correspondence: The a = b = 0 boundary condition is identified with
the state |0) and (a,b) = (1,2),(2,1) with the other two boundary states (using
properties of these b.c.’s under the 2 ++ 3 exchange in the LG model)®

*The ather choice of boundary condition given by 4, = Diag(1, 1, exp[i2x/3]) is ruled out

because the equation for the one-cycle is clearly not invariant under the 2 & 3 exchange,
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A more direct correspondence can be worked out by considering the part of the
boundary state involving only the (c,e) and (a, a) states. Following the analysis in
the LG orbifold, the boundary condition given by the matrix 4 = Diag(l, w®, w")
corresponds to multiplying the (a, a) field by the phases given in 4. Let (@1, @2, 03)
be the generators of the (a,a) ring. Multiplying this by A, one sees that |0)) 4 —
0004 1704 = w?17)) 4 and |17))4 = wP|17)) 4, where we have used a +b = 0
mod 3, Thus, these boundary states are related to D1-branes of the type 1IB string
wrapping around Z3 related supersymmetric one-cyeles on the torus at the SU(3)
point. This result is in agreement with the analysis of Qoguri et al, using different
methods. We can also compare with the result of Recknagel and Schomerus. The
three boundary states we obtain are a subset of the nine states they construct, They
correspond to special linear combinations of their boundary states as picked out by
our requirement of spectral flow invariant orbits.

It is easy to verify that the cylinder partition function C; = 3-V2(X, + 2X,).
This reflects the Zy relationship between the three supersymmetric cycles. Under
a modular transformation, the annulus partition function we pbtain is given by
A= = Xy, This implies that ngﬁ = dip 1.e, only the identity sector propagates in
the vacuum channel, Both amplitudes vanish as required by supersymmetry. Let
us briefly indicate how this comes about in the cylinder channel. Putting in the

appropriate spacetime factors, the partition function can be written as

Z = ;? [|E§N5’; — B3NS, — ﬂﬁfE{F] (2.60)
For the massless orbit, the partition function equals

N 21— q) + 3¢5 1,01 - ¢%) .
er::s]'cs.s - ('];IJ 1[ HDCI (l_qgjj ll:: (H; = H: = H;} {251]

=1

and that for the massive orbit equals

3‘?% [1Z.(1 — ™)
Zmasn' o = Er_\:ll_ == 'H-l = E_i — HI 262}
1 J'=|{1 = I'.'j’lj} ( a 4 2) {

As can be seen, both vanish due to Jacobi's abstruse identity. Finally, the annulus

amplitude Az = X;. Thus, we see that the massive character X, is related to off-

diagonal D-brane configurations (i.e., a D-brane confisuration that begins at one
boundary and ends at another).

o
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Next, we come to the (k = 2)* Gepner model, which describes a torus at the

SU(2)x5U(2) point. The characters of the k = 2 minimal model in the NS sector

will be labelled as follows. (x!, = =" + {=%)

2l h Label

Xo | 0 | 0 |A=xo(r)bo2(27) + X1 (7)f22(27)
X5 | 1/2 | 1/4 | B =xo()02(27) + xy (7)032(2r)
Xty | -1/2 | 1/4 | Be = xo(r)832(27) + x1(7)0h.2(27)
Xo | 0| 1/2] C=xo(r)baa(2r) + x3 (7)05 5(27)
xi | /4 1/8| D=xy(7)8ia(r)
Xy |1/ 1/8 | D= xy (D000

where

R 1 EE{T] 04(7)
o) = z( TG ncrn) '
1 fan) [es(n)
I%{T] = §(¢?}(T] = ‘/”[T]) and
ta(r
o - 28

are the Ising model characters. Under spectral flow (with n = 1), we have the
sequernces
A=+B—sC—B.— 4

D—D.— D

The spectiral flow invariant orbits for this model are

Label Orbit g; h
NS |A*+B*+C*+B?| g=h=
NS, | 2(AC + BB,) g=0;h=1
NS, | 2DD, g=0;h=3
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N5y is the graviton orbit and the other two orbits are massive. Again, a straigh-
forward but lengthy caleulation shows that the cvlinder channel partition function

is indeed zero. To state the results,
Zmﬂ:.#!r.'.qa = "H;i{ETJ (H;{T . 9_1 {T} Hd{T}} {253}
while the massive orbits give rise to

Zmassive = 205(27) (83(7) — 6}(r) — 63(r))

Zrznr::.s.nm — (33[:2"’_] + E‘Fl{ZT}} (9;[7'} - H:{T} s Eg['r]) {264}

[

The S5-matrix for this model is derived to he

1 1 2
1
S=- —_
5 | O | 2
1 =1 0

D=1, Dy=1and D; =2
In order to resolve the fixed point ambiguity, we need to split the s as the sum
of squares. D)y can be written as 1+ 1 leading to a resolution of S as a 4 x 4 matrix.

The resolved S-matrix is given by

Lyt
Il
|

1 -1 1 -1

As one can see, § is symmetric and squares to the identity matrix.

Now, one can apply Cardy's procedure using the resolved S-matrix, Let
03} 4, 11))a [2%)) 4, 127))4 be the Ishibashi states associated with the characters
KXo, X1, Xy 1+ which satisfy A-type boundary conditions. Then Cardy’s formula leads

to the following four boundary states:

0) = 272 (|0))a + 11)ha+ 12D a +127))) (2.65)
1) = 272 (j0))a + [1)ha — 24))a = [27))a) (2.66)
12} = “'°{iﬂ}}A 11))a = 127))a + [27))a) (2.67)
13) = 272 (j0))a — 11))a+ 125))a—[27))a) (2.68)
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We thus obtain four boundary states. These four states are related to each other
by an Sa x Z, subgroup of the discrete symmetry group. The Zs is the same one
which gave different one-cycles in the LG description, The boundary state |0 can he
identified with the boundary condition corresponding to A = Diag{1,4,1). Now let
us discuss how the other choice for A is ruled out. The character D is associated with
the LG field ¢. We will thus use ¢, to represent the corresponding chiral primary
in the :-th minimal model. Thus the character B is associated with ¢®. The part
of the Ishibashi state involving only the chiral primaries associated with DD, will
look something like

125)) = (1o £ i )|0) +---

where there is a sign ambiguity in the definition if we require that it be an ecigenstate
of the permutation group Ss. Both states will be associated with the same character
NS; = 2DD.. The resolution of the S-matrix distinguishes between these two
boundary states. Under Sy, we have that [2%)) — +|2%)). The Ishibashi state
associated with NSy remains invariant under this S.. However for the character

associated with N5, there are two possible Ishibashi states
[1%)) = (6262 + G262)[0) + -+ |

where & denotes the S, eigenvalue. Requiring that S, relate the boundary state |0}
to either |2) or |3} chooses the minus sign. Thus, we get under this S, 0% «+ |3) and
1) & [2).

There is another Zy subgroup of the discrete symmetry group generated by ¢, —
i¢y and ¢ — —igyy (This corresponds to @ = 1,b = 3 using the notation given
in the examples section for the 2° model.) One can check that under this 7o,
2%)) — —|2%)). One can also see that the states associated with NS, and NS,
remain invariant under this Z,. Under the action of this Z, one has |0} «+ 1) and
12) ¢+ 13)

In order to translate this picture into the LG language let us summarise the effect

of the two discrete groups on the LG fields. Under the Ss, ¢ < ¢ and under the Z.,

¢y — 1)y and ¢y — —id,. We had discovered two different boundary conditions in
the LG model given by 4 = Diag(1,4,1) and 4, = Diag(1,1, —1). Under the S, x 7,
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A gives rise to [our different boundary conditions, while 4. boundary condition is
invariant under 5y, Thus the Gepner model construction seems to choose the A
boundary condition.

We will now compare with the results of Gutperle and Satoh (GS) for the 27
model obtained by using the method of Recknagel and Schomerus, One can show
that NSy = by(r)[63(r) + 63(r))/n(r) and NS, = 05(r)63(r) — 62(r)]/n(r). (Here
is the Dedekind eta function and ; are the standard theta functions.) The annulus
amplitude Ay, = Xy which can be seen to be equal to partition function for ) =

(0,0) in the notation of GS {upto factors of 5), The boundary state |0) + [T} gives
rise to the annulus amplitude (2X, + 2.X,) which is equal to the GS caleulation for
(15,15) = (1,1). Interestingly, there does not seem to be a consistent boundary state
which can give rise to the (I{,{,) = (1,0). For example, there is a state given by the
‘combination of Ishibashi states.m}},.{ +[1)) .4 which cannot be written as an integer
sum of the four boundary states we have constructed. This state gives the annulus
amplitude for (I}, 13) = (1,0) but is ruled out by its incompatibility with eqn. (2.29).

Finally, In order to illustrate the increase in the degree of complexity, we consider
the simplest non-toroidal model: the 1° Gepner model. This corresponds to one of

the orbifold points in K3 moduli space. The notation for the & = 1 characters are
as in the 1% model.

Label Orbit Multiplicity
NSy | A"+ B85+ BS 1

NS, | A3B%+ BB} + B*A° 20 |
NS, | 3A’°B*B? 30

NSy | A*BB, + ABB. + ABB} 30

N5y corresponds to the graviton orbit, NS, is a massless orbit and N S, NSq are

massive orbits. In the above table, by multiplicity we mean the number of distinet

orbits which oceur if we keep track of the minimal model labels.
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The S-matrix is calculated from the S-matrix of the minimal model to be

1 20 30 30
1 =7 3 3

5!
9112 3 —g
19 = 3

Dy=1, Dy =20, Dy =30 and Dy = 30. The resolved S-matrix is expected to be
an 81 x 81 matrix which increases the complexity of the operation. However, in this
example, if one keeps track of the minimal model labels, one should in principle be
able to directly compute the resolved S-matrix. This is because we find that the
‘multiplicity is equal to the D, associated with the orbit. This is not generically true.
This model is presumably tractable if one uses a computer program to automate
the process.

As a natural extension of the work presented in this chapter, it would be of
interest to investigate D-branes from the point of view of Witten's gauged linear
sigma model (GLSM). Techniques used in this chapter can be used to study this
case, with the GLSM deseription of the open string CFT. [t would be particularly
interesting to see whether the LG-CY correspondence shown by Witten by making
use of linear sigma models in the closed string example will go through with open
string boundary conditions. In the next chapter, we begin a systemmatic study of

this issue. We analyse boundary linear sigma models, and discuss how to define

- D-branes in the same, and study how the boundary conditions as presented here

translate into that case.
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D-branes on Curved Manifolds : II

In this chapter, we consider the gauged linear sigma model (GLSM) approach to
the construction of D-branes on curved manifolds. As we have remarked before, it
was shown by Witten [15] that the Calabi-Yau (CY) nonlinear sigma model and the
Landan-Ginzburg (LG) model are two different phases of this theory. The Kihler
parameter 7 for CY manifolds with A'! = 1 interpolates between the two phases.
Large positive values of r correspond to the geometric (CY) phase, while for large
negative values of r, the theory goes to the non-geometric (LG) phase. Construction
of D-branes in the GLSM, would help to ascertain the behaviour of D-branes as the
theory passes from the geometric to the non-geometric phase. To achieve this, we will
first set up a consistent set of boundary conditions starting from the N = 2 gauged
linear sigma model with a boundary. This model has certain bosonic and fermionic
fields arranged in chiral and vector multiplets. We impose boundary conditions such
that the boundary terms that arise under ordinary and supersymmetric variation
of the action cancel. We verify the consistency of these boundary conditions under
supersymmetre variation. These boundary conditions (Neumann or Dirichlet) will
then define the D-brane. In the same way as in Chapter 2, we define A-type and B-
type boundary conditions, that would correspond to D-branes wrapping on middle

and even dimensional cycles of the CY. Let us begin by deseribing the notation and

conventions to be used in this chapter.
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3.1 Notation and conventions

We will begin with a description of the N' = 2 gauged linear sigma model in two
dimensions. The model can be obtained by dimensional reduction of N = 1 su-
persymmetry in four dimensions. We would consider a theory with a single [/7(1)
vector multiplet and n charged chiral multiplets. In the Wess-Zumino gauge, the
U(1) vector multiplet consists of a vector field v,, & = (0,1), a complex scalar o,
two complex chiral fermions Ay, and a real scalar auxiliary feld D. Each of the n
chiral multiplets consist of a complex scalar ¢;, two mmple:!{ chiral fermions 14,,
and a complex scalar auxiliary field Fi. They have charges @; under the U(1).
The Wess-Zumino gauge breaks supersymmetry, but modified supersymmetries ex-
ist which close up to gauge transformations. These transformations are labelled by
two Grassmann parameters €.

The Lagrangian of the GLSM is given as a sum of four terms, the kinetic, (su-
per)potential, gauge and the Fayet- lliapoulos and theta terms. In addition, we will
also add a boundary term to this action, which we refer to as the contact term,
Seontace- As we will argue later, this is necessary in order to impose a consistent set
of boundary conditions in the infra-red limit of the GLSM. The action is written in

components (in the Wess-Zumino gauge) as
= Ter ; -
Sgin = /dzy — Do D% + 5 [W_i(Dg + D), — ((Dg + D)) i)

+ % {w“’rfl[ﬂﬂ = Dy — ([Du = DI:'T.EH) T;f)+i]
+ |F* — 260Qiy — V2Qi(Gd o + o i) + DQididy
- i{ﬁ?ztﬁ:{!ﬂ-ih - ri"+= S 1"-"!_@ ff’:{)\ w+1 = )'1+Tr-’ i)

1 1
Sgauge = Eg dzyz'”m + §D? i E [)"+[aﬂ —d)Ay — ({30 = 31”%-} ;"-+]
+ 5 @+0)A — ((@+)A)A] — 0d”s
. W iy . AW W

Sw = —fﬂf‘zy (E B0 ¥ Y. it =t Fiaf&‘_ = ::'i?qb, —:Tr’+1)

&a = —r/dzyD + %/d‘!yvm
] {9 N _
'Scmnr_' = fd Y e ey i I i g1 "I'_f J 3.1

tact y4i‘TzJQ§[¢i3]2 gQ ('I,J-}- Iﬂll"'l- B 1;") ) B { ]
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Here i labels the coordinates on a complex manifold C*. In writing down the action,
we have symmetrized the fermion kinetic terms as appropriate for a theory with a
boundary. As we have remarked earlier, we have used a single (1) pauge field in

writing down the action. This is appropriate for CY manifolds such as the quintic

which have A" = 1 restricts us to such a choice.

This model is invariant under the supersymimetry transformations that ean be
deduced from [61], and were listed in [15], which we include here for completeness.

Our convention follows that of [15]. The dimensionally reduced formulae for the

vector multiplet are

duo = 1(E AL +E A + edy + e ),
dvy = i(Ephy — £ A e, — e-A),
b = —iv2e A —iv2e Xy,

—iv2e, A — iR Ay

—€:(Dh — Ay )Ay — {8y + D) A

+ €4 (B — )y +e_(F+ ),

S
I

S
||

0Ay = e, D+ V2(8 +8,)Fe- — vorey,

A = 1D+ V28 — 8))oe, + Vpi€_,

6Ay = —iE, D+ V2(8y + A )oE_ — vgéy,

0A_ = —e. D+ V2 — 8,)FE, + vye. (3.2)

‘The transformation rules for the gauge multiplet is given by

(5{.35,' = Vﬁ[ﬁ%‘”— - E-"IIEI"-]-:}:
Oy = iV2(Dy+ Dy)gie_ + V2, F; — 2Qid5¢,,

S = —iVoADy— Dy)gue, + V2 F + 20.¢.0%.
0F = —iv2e.(Dy — D)y — ivV2e_ (D, + D).
+20Qi(E4 00 + E_ovy) + 20Q;di(E_ A, — ExA) (3.3)
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3.2 Variation of the action and surface terms

When the action (3.1) is varied under ordinary, gauge and supersvmmetric varia-
tions, in addition to giving the equations of motion of the various fields, it produces

non-trivial boundary terms. The requirement that these boundary terms vanish

gives rise to boundary conditions that relate the different fields and the super-
symmetry parameters on the boundary. In order to determine a consistent set of
- boundary conditions, our strategy is as follows. We start with the A-type or B-type
‘boundary conditions on the boson ¢;. Demanding that this is consistent with super-
symmetry then leads to various boundary conditions on other fields of the theory,
‘and finally these will be used to check whether the boundary terms in the variation
of the action eancel. These boundary conditions then define a wrapped D-brane in
the GLSM.
We now list the boundary terms arising out of the variation of the action in £0-

(3.1), under ordinary and supersymmetric variations. Note that the variation of any

of the terms in the action under gauge transformations of the {7 (1) gauge group does
not give rise to any boundary term.

L. Boundary terms arising due to ordinary variation are given by

ISP = f‘i‘f = [(B1s + 1Quu1 )6 + (81 — 1Qy ;)0 |
%[{w 8 — ubily) — (Dabiy, — w61 )],
sgrd = L f dy — vorbvg — [(813)80 + (80)00]

¥ % (A=A = ALdds) — (Ai6A; — 20X )

&
885 = dy dug
T

OScontact = “""Zf;ﬂz Qo, [Ql (it + 9. I’U'_;)} (3.4)
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2. Boundary terms arising due to supervariation are
Sus ]' i - ¥7 - T T
055, = /riyv—@ [(Bodi) (€D + & 3p1) — (Bod)(estb + )]

+ é [(B164) (€t — E-p4) — (D) (ervp — €_10)]

+ 0 () Esd 4 EB) + (o) e+t

¢ % (i) (€D — ) + (B eg e — e by )]
+iQ; [dioesths + GiFE by + diFe P+ dioE_1_|
+ % [{E+1ii'+ —EY-)F + (s —evp)F]
1 ] i 5

ssutt, = = [ du = [Gho)eds —ed) = @) (e 3y — 0]
" é ((Bi)(es Ao+ E-Ar) + (Br8)(e_Rs + E2A1)]
: Er,m 7 I PR LI R

i [{+1+ —e_ Al FEAL — B4y

aw aw. - ;
5SS = V2 f dy[aé_{.f—w— &) + Grle-y- _E'*w*']]

—ift f .
ESsT.I.E!‘I' - ﬁ-/ d'_i_,‘ {E_+‘JL+ + E+}i+ =+ E._f}'t_ -+ f-/\.-] {dfﬁ}

Finally, we have boundary terms arising out of the variation of the contact term,

0 G iz - |
Y, G & [qw (Paitows + %ﬁ’—im}} (3.6)

Emy Smn taet —

In the above, we have not written down explicitly the expressions for d,.4Seontac
and Oy Seontact, a8 for most of our purposes, this will be cancelled by the ¢ term
in the original action. The boundary terms given above can be used to analyse the

boundary conditions that cause (3.4) and (3.5) to vanish consistently.

3.3 GLSM in the infra-red limit

In the GLSM, the presence of the # term in the action making it difficult to impose

4 consistent set of boundary conditions. 1t seems natural, therefore, to consider first

Gd
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the action in the limit of the gauge coupling ¢ — 0. The GLSM, in this limit,
reduces to a non-linear sigma model (NLSM), with the fields in the vector multiplet
becoming Lagrange multipliers providing constraints. Let us begin by deseribing
these constraints.

In this limit, the fields of the vector multiplet, o, Ay, v,, D become nonpropagat-

ing. The D-term constraint is
E Qilo'F—r=0 . (3.7)
z :

A becomes a fermionic Lagrange multiplier in the path integral and enforces the

constraint
Z Qidithix =0 (3-8)

which forms the coefficients of the SUSY parameters in the Grassmann variation of
the D-term constraint. Further variation of eq. (3.8) under supersymmetry gives
us several other constraints. Note that o enters quadratically in the action, and its
equation of motion is: '
3 Qubwt
V23(Q:) e

The gauge fields, in this limit provide the Gauss law constraints,

(3.9)

Yo = m Z [iQ; (6:Bodi — o) + Qs (Pyitpss + b))
S E_jz—Qlegﬁﬁ Z [iQ: (#:016x — ¢idhdi) + Qi (Pivhss —Y-o—i)]  (3.10)
Also, in this limit, variation of the expression for o gives rise to the constraints,
D Qi =0
i QM i =0
Z Qi =0
> Qi =0 (3.11)
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In trying to impose a consistent set of boundarv conditions in the infra-red
limit, we are faced with a problem because of the nature of the expression for .
From (3.10). we see that the solution for vy involves a fermion bilinear, and this in
particular, makes it difficult to impose sensible boundary conditions on the fields of
the theory. The 8 term, is however, to be interpreted as the NS-NS B-field turned
on over a Z-cycle, whose size is controlled by the Kahler parameter r. In order to
obtain an explicit expression for the NS-NS B-field, we substitute the solutions in

(3.10) in the & term of the bulk action. The result is a B-field coupling

[ #5846) @801 - 8,508 (3.12)
where

W Qi (Q:(Q5)% + Q;(Qs)*) & d'niamj; .
W= [ TAQPIFE T (@) v e

and a fermion hilinear term which is a total derivative:

&[Q—Wﬁ Z /ﬂﬁx [{6” N 31}15"'*1""]“‘" + —(G + 51]'1.3_’—«;’{.'5—1]

Here
1a0'd' = ¢ (3.14)

15 the flat metric in complex coordinates.

The fermion bilinear is cancelled by the contact term of Eq. (3.1). To see that
this term has be be cancelled by the introduction of a new term, note that in the
ordinary supersymmetric nonlinear sigma model, fermion couplings to the B-field
appear only through couplings to the three-form, H = dB. In fact if we look at H in
the space C" it will not vanish, but upon restricting it to the svmplectic quotient,
it will. The simplest way to see this is as follows. Since B appears with holomorphic
and anti-holomorphic indices, the components of H will have the structure H,; and

Hiz. The fermion bilinear terms will appear in the action as:

faﬂmﬁfﬂ:‘ (09" Hyi + 06 H i) (3.15)
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Given the indicial structure of B, H can be written as:
Hy; = 0 By (3.16)

Inserting this in Fq. (3.13) gives us zero after we impose Eqs. (3.7) and (3.8).
Hence, we should not expect any fermion bilinear terms in the action, and have
explicitly cancelled the one that arises, by introducing a contact term. Such a term
arises in ref. [62] as well. There one finds that in flat space one needs to add a
fermion bilinear term proportional to £ in order to maintain the two-form gauge

invariance and spacetime supersymmetry.

3.4 Boundary conditions in the infra-red limit

With the addition of the contact term, let us analyse the boundary conditions for
the GLSM in the infra-red limit, From our analysis in the last chapter, we would
like to describe consistent boundary conditions ;::nn the fields, that describe D-branes
wrapping around middle or even dimensional cycles of Calabi-Yau. Let us first

consider the A-tvpe boundary conditions.
A-type boundary conditions
As in the last chapter, for the A-type boundary condition, we impose
(ST (3.17)

These impose different boundary conditions on the real and the imaginary parts of

¢ and are given by
' ¢ — ¢ =0
h(d + @) =0 (3.18)
Supervarying the first of the two equations gives the fermion boundary condition,
Yy =Py (3.19)

where we have set Further variation of the fermion boundary condition in (3.19)

gives

Fi+Fi=0 (3.20)
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Under the above boundary conditions, it is easy to see from the equation of motion
of o in (3.9), that

a=10 (3.21)
and the supersymmetric variation of the above equation gives
Xy +Ao=0 (3.22)

Note that for this boundary condition, from the expression forag in (3.10), it is clear
that vy = 0. This requires § susyUn = U, which is indeed consistent with (3.22)

B-type boundary conditions

.A. Pure Dirichlet boundary conditions

First let us consider Dirichlet boundary conditions on all the bosonic coordinates.
This would correspond to a DO brane in Calabi-Yau, Let us first consider the
boundary conditions for the chiral multiplet. For each direction labelled by 1, we

require, in this case that the bosonic variation vanishes, i.e
behy = dedy = 0 (3.23)

On supersymmetric variation. this boundary condition leads to a condition on the

fermions, namely,
Ui =t (3.24)
where, as appropriate for B-type boundary conditions, we have imposed
€y =6

Supersymmetric variation of (3.24) then leads to the condition

Dy, + \j@ﬂ,}i (6+6)¢: =0 (3.25)

This actually implies the following boundary conditions,

aﬂ @1

g + ——{CT-I'ET:I:{}

V2
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as can be seen from the expressions for vy and o, at the boundary. In order to
determine the allowed boundary conditions on the other fields of the gange multiplet,
first note that in the infra-red limit, the contact term cancels the boundary term
coming from the & term. This is because the contribution of the # term to the
variation of the action is given by % [ dydug, and on substituting the value of
from the Gauss law constraint given by eq. (3.10), and using the ¢; boundary
condition, this variation exactly cancels that of the fermionic contact term.

Under supersymmetric variation of the Gauss law constraint, comparing coeffi-

cients of €4 and €4 in the variation of (3.10) leads to the following expressions for
A

2y

A=) % [\/5 (Do + D) itpys — iV2E0_, + EiQiéia-uﬁ_,-] (3.27)

A Z Qs [v@ (Dy — Dy) ¢y — iv/2Faby, — '3?'@1'#555154-1]

and the complex conjugates of these equations. Similar expressions can also be
obtained from varying the expression for o in (3.9). Now. on imposing the boundary

condition (3.25), and the constraints in eq. (3.11), we can see that the boundary

condition on Ax is

Ay =X (3.28)

The boundary condition on o can be similarly determined by using its expression
in terms of ¢4 in (3.9). It is easy to see that in the purely Dirichlet case, with the

boundary condition of (3.24), the boundary condition on o is given by
ga=a (3.29)

It is easy to see that the boundary terms in the ordinary and supersymmetric vari-
ation of the action vanish on imposing the boundary conditions for the gauge mul-
tiplet.

B. Pure Neumann boundary conditions

Let us now turn to the pure Neumann case. In this case, all the coordinates of

the CY have Neumann boundary conditions, and thus should describe a six-brane
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wrapping the entire CY. The imposition of the Neumann boundary conditions is
however difficult in the NLSM limit. From eq. (3.1), we can see that the contact
term has the bosonic contribution Y, Q?|¢:|? in the denominator, whose contribution
to the surface terms in the variation of the action makes it difficult to impose sensible
boundary conditions on the fields. A simplification oceurs if we restrict ourselves
to the large volume limit of the CY, where one bosonic field of U(1) charge n is set

to zero, and the remaining n bosonic fields have unit [7{1) charge. In this case, the

contact term is

f = =
Scontact = /‘dya Z Qt' (Inb+i1:ﬂ+t' < ﬂ—ii‘f}—f,}

However, even in this case, the variation of the bosonic part of the # [ dyéw, term
gives rise to rotated boundary conditions on the bosons, with a rotation parameter
proportional to #, even if we consider the case of a single Neumann direction. This
clearly poses a problem, because in order to interpret these # dependent rotated
boundary conditions as an effect arising due to the NS-NS 2-form B-field, we need
two Neumann directions defining a D-2 brane.

Rotated boundary conditions are also difficult to interpret for the mixed case,
i.e., for the D2-brane and D4-brane, In these eases, the boundary conditions on the
vector multiplet coming from the Dirichlet and Neumann directions are seen to be
in conflict. While the Neumann directions imply a rotated boundary condition on
a and Ay, the Dirichlet directions impose no such rotated condition.

One possible resolution to this problem is to introduce a Wilson line term in the
action that totally cancels the effect of the # term. This would make it possible
to impose a consistent set of boundary conditions in the pure Neumann and the
mixed Dirichlet Neumann cases on the fields of the gauge multiplet. However, the

Jjustification of the introduction of a Wilson line term in the action is not apriori
clear.
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3.5 Boundary conditions at finite gauge coupling

We will now carry over the above set of boundary conditions to the case of finite ¢

A-type boundary conditions

For A-type boundary conditions, continuing the results that we have presented
for the infra-red limit to the regime of finite gauge coupling is simple. It can be seen
that all the boundary terms arising in the variation of the action in (3.1) will cancel

on imposing the following set of boundary conditions
® The supersymmetry parameters satisfy the condition
€4 = E_ (3.30)
* Boundary conditions on the fields of the chiral multiplet
(s — A fEJ = 0
Ailee + Alg;) = 0

Wy = t.b—l'
E+AlF, = 0 (3.31)

e Boundary conditions on the fields of the vector multiplet

g =0
A+ =0 (3.32)

where we have introduced the matrix A as in chapter 2, with the same conditions
on the 4, i.e A is block diagonal and 44* = 1 In effect, the contact term plays no
role in the A-type case, since it is identically zero due to the boundary condition
on the .. These boundary conditions thus smoothly carry over to the regime of
finite coupling, and defines a D-brane wrapping around a middle dimensional cvele
of CY.

B-type boundary conditions

For B-type boundary conditions, the extrapolation of the results of the infra-

red limit to regimes of finite gauge coupling seems to be difficult. For the case of
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purely Dirichlet boundary conditions, however, one can see that the following set of

boundary conditions, cancel all the boundary terms arising in the variation of the

action.

e The supersymmetry parameters satisfv the condition
g =6~ (3.33)

o Boundary conditions on the fields of the chiral multiplet

oty = 0 (3.34)

e Boundary conditions on the fields of the vector multiplet

g+ é{n +a)=0
Ar = Ao
o = a
e + a)=0
vgp = 0 (3.35)

The case of Neumann boundary conditions poses a problem similar to the one in
the GLSM as in the NLSM limit, As we have mentioned earlier, the contact term
gives rise to non-trivial bosonic contributions to the boundary terms in the variation
of the action that makes it difficult to impose sensible boundary conditions on the
vector multiplet, with one or more Neumann directions. As we have remarked, a
possible resolution to this problem is to introduee a Wilson line term in the action
that cancels the effect of the # term, so that no contact terms are necessary. Such a
term would however have non-trivial effects in the GLSM limit. The transition from
the geometric (CY) to the non-geometric (LG) phase in the GLSM is controlled by
the parameter r. A theory with a non-zero value of # can be shown to have a smooth

transition between the two phases, while for # = (), the transition becomes singular

atr=>0.
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We have not vet been able to determine a fully consistent set of boundary con-

ditions for the fields in the GLSM that describes one or more Neumann boundary

conditions, and work is in progress in this direction.




Chapter 4

D-branes and stringy black holes :

Hawking radiation of high energy

scalars

In this chapter, we shall study the emission of scalar particles from a class of near-
extremal five dimensional black holes and the corresponding D-brane configurations,
at high energies.

D-branes have been used to provide a microscopic interpretation to the
Bekenstein-Hawking entropy of certain stringy black holes. These black holes can be
identified with elementary or solitonic string states and the degeneracy of the latter
has been has been shown to match with the entropy of the black hole [65, 55, 66].
Hawking radiation of scalars has also been understood in terms of their D-brane de-
‘seription. The Planck distribution function in the Hawking spectrum was obtained
in [67, G8] using the distribution functions of open string states residing on the D-
branes. Thereafter, it was shown in [27] that the rate of D-branes decaving into
low energy scalars perfectly matched the Hawking spectrum from the corresponding

‘black hole.
We shall discuss how, for a certain class of five dimensional stringy black holes,
‘the distribution functions and the black hole greybody factors are modified in the

‘high energy tail of the Hawking spectrum in such way that the emission rates still
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match exactly. Further, we will extend the results to charged scalar emission and
to the case of four dimensional black holes.

Let us first set the notation and conventions used. The black holes to be con-
sidered are solutions of the low energy eflfective action of type IIB string theory
compactified on a five dimensional torus which we denote by T°. Their D-brane de-
seription consists of @5 D-5-branes wrapped around 77 and @, D-1-branes wrapped
around S contained in the 7% and a collection of open strings carrying some mo-
mentum along S'. The situation is equivalent to a single ‘long’ D-1-brane wrapped
(1Q5 times around the S' |68, 69]. The left and right moving massless open string
states on this long brane constitute two non-interacting one dimensional gases, of
temperatures Ty and Ty, approximated by canonical ensembles at low energies. A
pair of oppositely moving states, each carrying energy w/2, can annihilate to form a
closed string state, like the graviton in the internal dimensions, of energy w, which
cannot reside on the D-brane and is emitted as a scalar particle. This is broadly
the effective deseription of Hawking radiation of these black holes in the D-brane
picture.

The Hawking radiation rate can be caleulated from the Dirac-Born-Infeld action.

To leading order, this rate is given by :

w w a'k

where p(w /2Ty g) = 1/ (exp(w/2Ty ) — 1) and gug is related to the parameters

of the corresponding black hole. T} and T are the effective temperatures of the left
and right moving canonical ensembles. d*k is the usual phase space factor. In the
limit Ty, = T, it was shown that [27],

wY d'k
Ip=Aup (T_H) @) (4.2)

where Ty is the Hawking temperature of the black hole [27]. On the other hand,

the Hawking spectrum from the black hole is given by

i d*k
Cu=oue 7)oy G
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where, 1, 18 the greybody factor for the black hole, which for low energy emissions,
15 just the area of the event horizon Ay. Substituting, Tahg = Ap in eq. (4.3), we
find that the rates (4.2) and (4.3) mateh exactly.

In [72], the restriction Ty, > Ty was dropped, while still remaining in the near

extremal region, and it was shown in general that for Ty ~ T,

=Ty _ q
Fabs = Yeff ¢ E-;wﬂ?l 1) {eufﬁ?}q —1) {4‘4J
with the Hawking temperature given by
2 1 1
A e e (4.5)
Ty T, Tg

Once again, it is seen from (4.1) and (4.3), that the D-brane and the black hole
decay rates match.

In the above analysis, it was strictly assumed that the energy of the emitted
scalars was vanishingly small. The emission of high-energy scalars from D-branes
and black holes was studied in [70] although confined to the T; 3 Ty regime. The
energy w was chosen such that T Ty < w < T;. In this regime, the right mov-
ing open strings were treated as a microcanonical ensemble and the corresponding

distribution function was modified to

7 (fﬁ) = exp [Sp(Ny —m) — Sp(Ny)] = exp(—ASg) (4.6)

where ASg is the change in the right moving entropy on removal of a boson at level
m with energy w/2. Here Ny, and N} are the left and right moving momenta on the
long D-1-brane respectively (the actual momenta on the 1-brane is given in terms
the quantum number Ny p = N} /Q1Q5). Now, the black hole entropy is given by
27, 70)

Suy = ETE{ v IV + 1ML-:?J (4-?]

In the limit T, > Tk, since Np > Nj, we get from (4.7), ASgy =~ ASz. Thus,

w

e (ﬁ) 5z BXp [Sgy{ﬂff —w) = Spu(M)] = exp(—ASpy) (4.8)

where ASgy is the change in the entropy of the black hole of initial mass M after

it emits the Hawking particle of energy w.
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On the black hole side, this change in the distribution [unction has been at-
tributed to the back reaction effects which become important at high energies. In
[76, 70] this was studied by modelling the outgoing particle as a spherical shell and
quantising it. In the WKB approximation, the Hawking factor p(w/Ty) turned out
to be precisely the right hand side of Eq.(4.8). The left distribution function and
the grevbody factor remains unchanged and thus, once again the D-brane and black
hole emission rates are found to match.

In the rest of this chapter, we will calculate the grevbody factor in a more
complete analysis that relaxes the condition Ty 3 Ty and we work in the range
w > T pp- The gas of open strings is treated as a microcanonical ensemble in both
the left and the right sectors. We show that the greybody factor gets significantly
modified in the high energy tail of the spectrum. With these conditions, we find
that the emission rates match in this extended range also. Finally, we generalize
these results to charged scalar emission from five-dimensional black holes and also

to neutral and charged scalar emission from 4-dimensional black holes.

4.1 D-brane Emission Spectrum at High Energies

Consider a one-dimensional gas of massless open strings in a box of length L. The
total momentum P of the gas is given in terms of the quantum number N' by

P =2xN'/L and the energy of a colliding string by
w/2=2rm/L (4.9)

For low enerpy excitations, such that m < +/N', the gas is well approximated by
a canonical ensemble, and the distribution funetion is of the Bose-Einstein form.

However, for higher energies, when
VN' €< m< N' (4.10)

which amounts to the excitation energy being much greater than the corresponding
temperature, the canonical description is inadequate, and the gas should be de-

‘scribed by a microcanonical ensemble. Since we are interested in the regime where
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Ty ~ Ty and w exceeds these temperatures, the microcanonical distribution func-
tions should be invoked in the right as well as the left sectors. This is given by
[70]:

() b (o yTm)]
From Eqs.(4.7) and (4.9), we write
()el) - ol (- )
xemp[ o (VWG - [Ny L )]

= exp(—AS, — ASg) = exp(—ASuy) (4.12)
- Thus, Eq.(4.1) can be written as
[p = gopw exp(—ASpy) {3:;4 (4.13)
In the black hole side, the Hawking factor becomes, on inclusion of back reaction
[70],

7 (;—H) = exp [Spy (M —w) — Spu(M)] = exp(—ASgy) (4.14)

which implies
: Ty = o, exp(—ASpr) —— EF (4.15)

(2m)1
In the next section, we will caleulate Tyhg @nd compare the D-brane and black hole
emission rates. Note that, in [T0] the left sector did not contribute to ASyy and

the relation between the distribution {unctions was

o(ame) = (a)

J-Iere, on the other hand, both the sectors become equally important and contribute
:*.%Q.the Hawking factor.
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4.2 Black Hole Greybody Factors at High Ener-
gies

In this section, we calculate the grevbody factors for the 5-dimensional black hole
under consideration for quanta with high energies. We follow the methods of [T1,
72, 73]. This is appropriate in the energy regime where back reaction becomes

important. We solve the Klein-Gordon equation in the background of the metric

given by [74]:
ds* = ;zn[_””z (l_r_m
(fifafa)™ "

oy =1
+ (fifefa)'" [(1 - :-1;1) dr?+r2c:ﬂ§] (4.16)
where ; ; ;
Fh T rs
=1+ 2)(1+3)(1+5)
re ~
and h=1 — = (4.17)

The parameters ry, rs and 7, can be expressed in terms of the two charges ¢, €

and the momentum n along the D-1-brane as follows:

- 2
s 9Gh 2 ,8inh 2o gn 2 9 eo1D
ry= T rs =90 T4 5 = R T. =T155inh* o

o

where o is a boost parameter. The radial part of the Klein-Gordon equation for a

scalar field ¢, in the the s-wave approximation, and propagating in the background
of the above metric is given by
hod qdR 5
22 (et ZE) 4 wffR=0 (4.18)
™ dr dr
In our calculations, we relax the low energy condition wrs, wry <€ 1, originally
imposed in [72] and solve the above equation by treating the new w dependent
terms that enter due to this relaxation, as a perturbation over the terms originally
present. The following analysis is valid as long as wry,wrs < 1, although it need

not be vanishingly small. Towards the end of this seetion, we show that this is the
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relevant range for comparing with the D-brane results. Equation (4.18) is solved
by dividing space into two regions, the near and far zones, and then matching the
solutions at some intermediate region. We assume the following relation between

the various parameters:
Ty Tn ¥ <T1,73 {4191

where the near and far solutions are matched at r = »,,. In the far region, equation
(4.18) becomes

y — praf 2
ﬁ + [wz 4 3}"4 + W {rl+rs}}w:[} {42']}

A2 -
where we have substituted 2 = ¥r~%? and the restrictions given in (4.19). The
term w*(r{ + ri) was absent in [72] because of the low energy condition. Defining

f = wr, we obtain,

d*i 3/4 —WP(r+ 13
EF__[_l ﬁ } =10 (4.21)
which has the solution
w y
0= 'Ep [adi_c(p) + BN, _.(p)] (4.22)

where ¢ = w*(r +r2) /2. Now, in the matching region, we use the small p expansion

for the Bessel functions, and finally obtain the solution,

Ry [srtamg + 5 ((8) "oorntt -0~ g (™)

(4.23)

OUn the other hand, the asymptotic expansions of the Bessel functions vield the

Tralp) = \gcos[ L:H (4.24)
RO

which are used to compute the incoming flux at 1nﬁmty, given by

solutions

Lt o
Py = —=laf (4.25)
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In this computation, we have dropped a # dependent piece. 'rom equation (4.23),
it is clear that the term multiplying 5 is large for small values of the perturbation

parameter. This implies that §/a < 1.

In the near zone, Eq.(4.18) can be written as

hd (h HdR) T u {{THTITE:]E Ji (rirs)* I (r{ +75)

T" e
3 dy dr rh i re

] R=0  (4.26)

Defining new variables v and parameters 4, B as,

) 2 i 2 2 N2
L J F1TsTn L Ty

p=—; A=—|——]: B=— 4.27
re 4 ( To ) 4 ( To ) (4.20)

equation (4.26) becomes

T 292

[1—7}}% ({lﬂv]%) + {A—[—E-FL] R=10 (4.28)

Notice that close to the horizon, v — 17, Thus, on writing v = 1 —4 and expanding

the 1/v* term in square brackets, we obtain the equation for the near region as

(1 —v}% ({1 —v}%) + [m- < T*‘? y ?] R=0 (4.29)

Hereafter, we drop the e4/2 term, which is very small. In order to compute the flux
of nentral scalars absorbed into the black Lole, we need to know the near region

solution very close to the horizon. In equation (4.28), if we make the substitution

y = —In(1—wv), we obtain, in this region, a simple harmonic equation for /f, namely
d*R € .
— A+B+-)R= .
a0 + (A+ B+ 2)& 0 (4.30)

And the incoming solution is given by

Ry = K exp(—i\[A+ B+ 5 In(l - v)) (4.31)

Substituting z = (1—v), and writing an ansatz for the solution as R = Kz-rtal/2 R,
we obtain

d* R,

Al=2) dz*

dR
+ [1-3}{1-@—-@}?; + pghy =0 (4.32)
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This is seen to be a hypergeometric equation in K, where we have defined p and ¢

by the equations

b+ =4A+B+3) i pg=B + 5 (4.33)

The above equation has the solution
Ry = F(—ip,—iq,1 —ip — ig,2) , (4.34)

where F'is the hypergeometric function, and henee the full solution for R is given
by 1

w

R= KPP (_gp —ig, 1 —ip— ig, 2) (4.35)

Next, we express p and g in terms of the black hole parameters. Solving the equation
(4.33) yields for p and ¢

WINTs o, WTo (r2+72) 1

= —e
5 Zro 4 rrs cosho '

_ wnTs e 4 Wiy {r% +T§} 1 {4 36)
%= 270 4 mrs cosho '

Substituting for T}, g, namely

- "o -
L s o 4.37
bl 2‘?;7‘[?’5 3 [ }

and using ry ~ rs, we get

W L o d W 4 _Wre
— Al —
47Ty 2cosho 9 4Ty, 2 cosho

In order to proceed to calculate the absorption cross section, let us first match the

P (4.38)

far and near zone solutions at r = r,,,. Extrapolating the near solution given by

equation (4.35) to the region of small v (large r) yields,

[T = ip —ig)
i
5 ‘Lﬂ~¢wu—w

where a and b are constants depending on p and ¢. Next, we expand the right hand

+ (e + b Inyy) (4.39)

side of Eq.(4.23) in powers of ¢, and retaining the lowest order terms in €, we find

the matching condition at r = r,,,:

\g{ﬁf’? [% (1—¢ ln{pm,fzj}] = K[E+vn(a+b Invy)] (4.40)
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where
['{1 —ip —ig)
[(1 —ap)T(1 —2q)
and we have imposed the condition z =~ 1. The matching region is chosen such

that wry, is slightly less than unity. Thus, the second term on the left hand side of

Eq.(4.40) can be dropped, and we get the relation as in [72]

ELIJ

3/2

| 2

—KE (4.41)

Now, let us calculate the absorption cross-section [27]. The flux into the black hole,

from Eq.(4.31) is given by

Dops = —Tolp+a)| K (4.42)

From Eqs.(4.25) and (4.42), we get

e 2.2
Tabs = g%% == ELE'EP + rﬂ& (4.43)
Using the identity
0 — i)t = ——
we get
1 e exp(27(p+q)) — 1 k)

|E2 p+qlexp(2mp) — 1)(exp(2mg) — 1)
Now, recalling the expressions for p and ¢, in Eq. (4.36), we see that in the limit when
w/Tr, R 3 1, we can ignore the factors of unity in the numerator and denominator

and finally we are left with the following expression for the absorption cross-section:

— =0
Tabs = Pabs T Cabs (4.45)

where, 00y = wr{riw , and the correction term o} = 4m’wriryrscosho. Thus, we
(3

see, following the relation between the various parameters that we have considered,

! 2
a T
abs ., (r—“) <1.
Zahs :

Using the definition gog = 7'r{rs, we get,

Tabs = Joff ¥ (4.46)
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Now, let us compare the expressions for the black hole and D-brane decay rates
at the high energy regime that we are considering. Substituting (4.46) in (4.15), we
see that the black hole decay rate becomes

g

[y = Joff & exp[—&sau] W

(4.47)

which is just the D-brane decay rate (4.13). It may be noted that this matching
cannot be obtained by naively ignoring the unity factors in (4.1),(4.3) and (4.4),
This is because of the fact that in the regime of high energy particle emission that
we are interested in, the Planckian distribution of the Hawking particles is no longer
valid and we have to instead resort to Eqgs. (4.12) and (4.14). Hence our result
(4.46) effects a subtle match between the black hole and D - brane decay rates at
high energies, It can be shown that in the special case Ty > Ty (0 — o0), the
results of [70] are reproduced.

A word about the range of validity of the above result is in order., As stated ear-
lier, microcanonical corrections become important when the condition (4.10) holds.

Using (4.9) and substituting the expression for temperature [27], namely

BEL r
Tor= 7= (4.48)
in (4.10), we obtain,
w
—_—1 4.49
Trn (4.49)

‘which was the condition under which we had derived (4.46). Hence we see that taking
‘microcanonical corrections into consideration naturally enforces the high energy
‘condition (4.49). In terms of the black hole parameters, this can be written as
wrs > 2 (4.50)
Ty
Also, our perturbative analysis is valid so long as wrs < 1, which is consistent
‘with the condition m < N p of Eq.(4.10). Hence, the range of w for which our

calculations are valid is

e Kwr; <1 (4.51)
Ti
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On the other hand. it is clear that for low energies (canonical distribution), m <
VN, implying wry; < rofry. Thus, it is sufficient to calculate the greybody factor
for wrs < 1, asin [72]. However, in our case, it becomes important to look at Tabs
for higher w, and (4.51) exhausts the range over which the D-brane distribution

functions follow that of microcanonical ensembles.

4.3 Charged Emission Rates Including Back Re-
action

The results of the previous sections can be extended to include charged scalar emis-
sion. The decay rate for low energy charged scalar emission from D-Branes, has
been obtained in [75]. The emitted massless graviton field with polarization along
the compact directions now have a net momentum along the compact S direction

on which the 1-brane is wrapped. The decay rate is given by,

B (w?® — e?) (w+e w—e\ dk :
to=se —2— 2\ 57, ) P\ o7 ) (2r) (4:5%)

Comparing with Eq.(4.1), we find that here the energies and the momenta of the left

and right modes are shifted by a factor of e/2 respectively. This ensures that there
is a net momentum ¢ in the S' direction, while the energy of the outgoing particle
15 w. This net momenta along the compact direction gives rise to a Kaluza-Klein
charge e for the space-time scalar and there is also a mass such that le| = m. When

Ty == Tg, and w is low, the emission rate is,
."'1H|[UJ = E] b —g dtlk
FD = .
fwt 2TR [21’!’}4
For higher energies, however, the decay rate is modified. In the regime Ty ~ T,

(4.53)

(wxe)/2T; g > 1, the density functions are best approximated as a microcanonical
distribution in this regime. The expression for the left and right densities are same as
that in eq (4.12), however with energies (w+¢)/2 and (w —¢) J2of the left and right
particles respectively. The product of the left and right density functions combine
to give

wHte W —e
e o =3 4.
p ( 5T, ) p ( Ty ) exp(—ASpy) (4.54)
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where now ASgy is given by ASpy = S(M, Q) — S(M —w,Q — €). Here M is the
ADM mass of the black hole and @ it's Kaluza-Klein charge, proportional to the
momentum Ny — Ng. Clearly ASgy is the change in entropy due to the emission
of a particle with energy w and charge e. Then Eq.(4.52) can be written as

- {MZ - EEJ . d'k i

Up = gefr & exp(—ASgy) —{Ewr}'1 - (4.55)

The microcanonical decay rate thus obtained can be reproduced exactly from
field theory, following [70], using the technigues developed in [76]. Charged black
holes emit charged particles at a rate given by,
w? — et w—eY dk
= ————— Oahs 4.56
T'p N Fabs P ( T, ) @) (4.56)

The density function is evaluated by computing Bogoliubov coefficients. These relate

the wave function at the horizon to the normal components of the wave function at
7 — o0, Due to the infinite boosts associated with the horizon, the wavefunction ¢,

15 well approximated by the WKB value
by = exp(eS) (4.57)

The action § is calculated along the trajectory of the charged shell which approxi-
mates the outgoing charged scalar wave. The Bogoliubov coefficients are hence,

it = ul‘[r;ﬂ /;: e dt | Buw = ;{?1_?] /;: e"etS (i (4.58)
where u(r,e) and v(r, —e) give the radial wavefunction of the positive energy, posi-
tively charged particle and negative energy and negatively charged particle respec-
tively. Since w and the action diverge near the horizon, the saddle point value of
the integral dominates. The saddle point value is determined through the following
eouation,

% +w=0 (4.59)
By the Hamilton-Jacobi equation, the saddle point corresponds to H¥® = . H
being the Hamiltonian of the outgoing particle. Since, the trajectory of the charged

shell is that of a null geadesic in the metric [76]

ds® = —[N(M + M, Q + e)dt]* + [dr + N.(M + H,Q + e)dt]* (4.60)
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we have,
F=N(M+HQ+e)—N(M+H,Q+e) (4.61)

Using this and the fact that S/dr = P (P is the canenical conjugate momentum},

wi find;
|t | = exp(—Im [TI Podr) |fu.| = exp(—Im /rf P_dr) (4.62)
o Tl r—o
where P. correspond to the positive energy, positively charged particle and negative
energy, negatively charged particle trajectories respectively. As in the case of [70],
the positive energy trajectory gives a real value of the integration, while there is an
imaginary contribution from the other. As rg = R(M —w,Q —€) — ¢,

" Y dH - 2dQ | .
I ' dr = - = —= dS 4.63
m | P ") BRRGE EL.Q )

where we have used 7 dP = dH — $dQ near the horizon and dH = (k/27)dSpy +

$d(), @ being the electromagnetic scalar potential at the horizon. Thus

|Buar |* = exp[Spu(M —w,Q — €) — Spu(M, Q)] = exp(—ASpn), |aws| =1

(4.64)
The density function, in the high energy approximation is [70],
w—e | Bt |
g 4.65
() = o o
Therefore,
w—e
fal ( T ) = EK]:'!I: —ﬂSBH:I {455}
H

and from equation (4.54), it is seen that this equals the value of p(w+e/2T%) plw —
e/27;) obtained from the D-brane pieture.
The greybody factor, o, for high energies is determined using the same meth-

ods as in the neutral emission case. The scalar equation is

2 2 2
I 4 6 SRR — L PR L
(1+r2) (1+r2) [w ¢* + (wsinh ¢ — ecosh o) T._J R+r3dr (fa'r e =0
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Bv making the following transformations as in [72]

i . : ) wFe
wz:mz_ez1 E_{:u:E:t:r( )‘

- r = rgsinho’ (4.68)
Lt

we obtain equation (4.18) with w — w' and r,, — /.. To order (ry/7,)*, we again
obtain the o, as in[72] as
=

e T —1

Gats = Goff W' ( i ) ( = 1) (4.69)

et =1 | e¥r —

Here (w+e)/Ty+(w—e)/Th = (w—e®)/Ty and ® = tanh o is the value of the scalar
potential at the horizon. Thus clearly as w'/Ty g > 1, g4, — Gugr w'- Inserting this

value in Eq.(4.56), it is seen to match with Eq.(4.55).

4.4 Scalar Emission in Four Dimensions

In this section, we briefly comment on the extension of our results to include high
energy emission of scalar particles in the more realistic case of four dimensions. In
the five dimensional case that we have analysed, inclusion of the high energy effects
did not affect the matching of the black hole and D-brane decay rates, even when
the low energy condition of [72] was relaxed, upto leading order of the perturbation
parameter that we considered. However, in this case we shall show that the same is
not true, and that there is indeed a leading order correction to o, which means
that the decay rates no longer match exactly as one goes beyond the low energy
condition, wr; < 1. We shall not indicate the calculations explicitly, which are
essentially in the same lines as in Section (III), but rather state the main results.
The results for charged scalar emission rates may be obtained by a simple extension

[77]. The relevant wave equation whose solution we seck is [77, T8

2 dr dr

1 g (hri-@) + *fR=0 (4.70)

where [ = I—[f=i (1+ frl), r;'s being the parameters of the four dimensional black

hole. This equation can be expanded in powers of 1/r in the near and far regions
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exactly as we did in the five dimensional case. For the near region, keeping the next

to leading order term in 1/r leads to the equation
d? AN "
P (1 + ;)wif):ﬂ (4.71)
where
.*1={1"| + 9 -k ?"3:|, 1,'1F=TR
Interestingly, this equation is formally similar to the Coulomb wave equation. It has

a solution in terms of confluent hypergeometric equations, namely

v =aF(mp) + BG(np) (4.72)

=

Where p = wr and n = —5= 15 a small parameter. The asymptotic form for this

expression for large r is given by
F=gcosf + fsinf G = feosfl — gsind (4.73)

where f and g are constants depending on the black hole parameters, namely, to

first order in n,

Ui
= 1 i
/ + 2p
. ,
g = 17 (4.74)
@ = p— nn2p—ny,

+ being Euler's constant. The flux of incoming particles caleulated from this form

of the wave function at infinity is given by

|af? U 1 1) .
fin = a3 (-—1 T 2wy 4w2r2) (—w W ;) (4.75)

It can be seen that most of the terms in the above expression can be neglected as

r — oo and we are left with

la]?

fin="7-w (4.76)

Note that we have dropped a 3 dependent piece in fi, as exactly in the five dimen-

sional calculation it turns out to be extremely small compared to the a dependent

ferm.
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In the near region, the equation (4.70) reduces after keeping the leading order

terms in descending powers of * to

h d a7 A B C\ op e
Very close to the horizon we can once again make the substitution y = —log (1 — v)

so that the equation (4.77) reduces to the simple harmonic equation

d* R

ryﬂ o (ﬂ o f)}R: 0 - (4?3]

where

(a+b6)°=4(A+B+C); ab=B+C

Just as in the five dimensional case, a and b are related to the black hole parameters,

the relation being given by

w
= + 27w Ty (riry + rarg + mr
4?1’?}1 Y H[ 173 273 1 2}
W
b= + 2w Ty (rrs + rary + mirs) . (4.79)
4?TTL

Apgain, writing the incoming solution as

R=Kexp(-VA + B + C Infl — v)) (4.80)

the incoming flux at the black hole horizon is calculated to be

(a + b
2

fgbs = |K!2Tﬂ (4.81)

Now, matching the near and the far zone solutions as in [72] gives the relation
A w w
R [ L 4.82
a K ( 2 ) (£:52)

where £ is given in terms of gamma functions as

I(1 —ia — ib)
T(1— ia)T(1 — ib)

E= (4.83)

so that the caleulation for o) finally yields

Tabs = E?: = Ogpell — 1] (4.84)
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where ggbs = 4m*riryraw at high energies. Hence we see from (4.84) that there
is a order 7 correction to oy, in contrast to the five dimensional case where this
correction was negligible. This, along with the microcanonical condition implies

that the D-brane and black hole decay rates match only in the energy regime given

by
To
f— Fwry €1,
™

where the emission rates in four dimensions is given by

, &k
Ty =Tp=4nrirors w exp(—ASpy) )

The difference between the five and four dimensional cases that we have dealt
with is also apparent from the general analysis of [78]. The far zone equation that

was effectively the source of the difference in the two different dimensions can be

written to leading order, for D dimensions as,

d*y (D —2)(D —4) :
Pr + [l = 7 } =10 (4.85)

where p=wr, and R = J"_%'t,-fl. The general solution of the above equation is

=
F= J;P%J[D—EJI‘Z(P] (4.86)

In five dimensions, the addition of an interaction terms also of the form 1/p?) sim-

ply modifies the order of the Bessel function. The resulting corrections in a.j,. is

abs
negligible. However, in four dimensions, there is a new 1/p term, which gives rise to
the Coulomb wave function and a leading order correction in the final result. The
fact that in four dimensions the D-brane and black hole rates exactly match only
for a restricted range of paremeters have also been pointed out by other authors [78]

In conclusion, let us note that in the calculation of high energy grevbody factors
presented in this chapter, it was assumed that there were no explicit back reaction
effects as in the case of the Hawking spectrum. This can be justified as follows: the
modified black hole metric due to back reaction of the shell can be approximated

by the original metric with a shift in the ADM mass of the black hole by w. The

corresponding effect on the D-brane is the reduction of the excitation energy of the

91




CHAPTER 4

gas of open strings i.e. £ =L, + Ey = E —w. Since F can be written as
g™ ry cosh 20
8(rs
the parameters ry and o are changed accordingly. It can be shown that these changes
result in a correction also of order (ro/r)* in 0,3, and hence can be ignored.

In this chapter, we have studied an application of D-branes to black holes. We
have analysed Hawking radiation rates for high energy scalar particles from D-branes
and compared them to corresponding black hole results. It is an interesting question
to study further applications of principles of string theory and D-branes in general
relativity. One interesting area for the application of such principles is cosmology. It
is natural to ask how physical principles, formulated in string theory and D-branes
are applicable to our universe. In the next chapter, we study one such issue, namely
the application of the holographic principle to cosmology. The holographic principle,
originally proposed in the context of quantum gravity and string theory, and tested
for D-brane physics, has recently been applied in standard cosmology. We will study

the application of this principle in inflationary cosmology.
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Holography and inflationary

cosmology

5.1 The holographic principle: notation and con-
ventions

The holographic principle, was first proposed by 't Hooft [30] in the context of black
hole physics and later extended by Susskind [31] to string theory. As we have stated
in chapter 1, it implies that the degrees of freedom in a spatial region are all encoded
on its boundary, and that the number of degrees of freedom per Planck area does
not exceed unity. Accordingly, the entropy in a spatial region does not exceed its
boundary area in Planck units. As a consequence of the holographic principle, for
example, the physics of the bulk is describable by the physics on the boundary. In
the context of D-brane physics, this principle has been studied recently for some
anti de Sitter spaces [79, 80]. An understanding of the holographic principle in
the context of cosmology is interesting, since general principles applicable Lo string
theory and D-branes should finally have applications to the present universe. As it
turns out, however, a naive application of the holographic principle to the present
universe gives erroncous results, Fischler and Susskind (FS) propose to remedy this

by arguing that the correct application of holography in the context of cosmology

93



CHAPTER 5

should be to apply it to a region determined by the cosmological horizon.

Before considering the FS proposal in details, let us summarize a few basic facts
about standard cosmology, that would set the notation and conventions for the rest
of the chapter. The universe is assumed to be homogeneous and isotropic, and
described by the Robertson-Walker metric,

2

ilr

1 — kr?

ds® = —dt* + R*(t) [ + r2(d6* + sin? Bde?) | . (5.1)

where & = +1, —1 or 0 for a closed, open or flat universe. The ‘'evolution of the scale

factor R(t) is governed by the Friedman equations

d*R 47
aE - a etk
ki 8
HEgp — = j
t = Gp (5.2)

where H = lﬂ% is the Hubble constant and p and p denote the energy density and
the pressure of the universe. The Friedmann equations may be shown to imply that
for a radiation dominated universe (p = % o), the scale factor evolves with time as
Hx ?.%!, while for a matter dominated universe (p = 0), the relationship is 7 x 13
and for a vacuum energy dominated universe, it is B o< exp™. Now, let us consider
the flat universe, i.e, k = 0. With p, p, and T be the energy density, pressure, and

temperature of the universe, let us also define the quantities

r "t and o rylt
H= =y H=TH
o K

which are the coordinate size and the physical size of the horizon respectively. The
(constant) comoving and the (varying) physical entropy densities, o and s respec-
tively, are then given by

_ptp
=7

R =R . (5.3)

With the above definitions, let us examine the Fischler and Susskind (FS) [81]
method of applying the holographic principle to cosmology. Their proposal is as
follows. Let I' be a spherical spatial region of coordinate size r with boundary B

and let L be the light-like surface formed by past light rays from B towards the
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center of I, Then according to FS proposal, the holgraphic principle implies that
the entropy passing through L never exceeds the area of B [81].

The entropy S contained within I', and the area A of the boundary B are

8 = ?sd:‘;{ (5.4)
= dwdy . (5.5)

According to FS proposal, the holographic principle implies that
55A. (5.6)

The approximate order of magnitude values of various quantities in our universe at
different epochs are tabulated below [86]. All quantities, here and in the following,

are in Planck units, unless mentioned otherwise.

v To 5.5eV | 10YGel” T

R | §x10% | 2x10% 109 129

TH 1 Tx10"% [4x 1072 | 3x 107

dy |G 10 | T 10% | HRI0° 0.3

5 1995 | 2 1079 |10t 2

S| 10% | 3x10% | 5x10" 0.3
4% 10" | 3% 10" | 3x10% 1.4

Ty = 2.75K is the present temperature of the universe and T, = 1.2 % 104 Gel is
the Planck temperature. Note that the constant comoving entropy density is given,

for our choice of ry(present) =1, by
o = ].DET .

It ig clear from the above table that the holographic principle is obeyed in our
universe from Planckian time upto the present. It is obeyed indefinitely in the
future too if our universe is flat or open [81].

The above (FS) analysis was for the standard scenario, based on the Friedmann

equations. This standard model, however, has a number of shorteomings. In the
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next section, we outline two of them, namely the flatness problem and the horizon
problem, and discuss the inflationary scenario which was proposed originally by
Guth and then extended by several other authors, in order to solve some of the

problems of standard cosmology.

5.2 Problems with standard cosmology and the
Inflationary scenario

From Einstein’s equations, one can show that the energy density p of the universe
at a given time t and the critical energy density corresponding to a flat universe, p.

are related by

_P= P _ @ -
0-1= 12222~ | 4] 5:7)

The present day value of €1 is known to be given by
N1 <€Q,<2 (5.8)

where the subscript p denotes the present value of 2. On the other hand, in the
. : -2 :

early stages of evolution of the universe, [4F]™" = ¢, so that the quantity |2 — 1|

was extremely small. It can be shown that for Q to lie in the range (5.8) now, the

early universe must have had

g M2
=1L 107F (5.9)
T being the corresponding temperature. Thus, at Planck time, T = Mg,
[ =1} 10758 (5.10)

The question of why the energy density of the early universe was so close Lo the
critical value is known as the flatness problem.

The second problem, the horizon problem, is the fact that inspite of the assump-
tion that the initial universe was homogeneous and isotropic, it can still be shown

to be composed of a huge number (10%) of causally disconnected regions. If we
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consider the physical distance ! that a light pulse starting at { = 0 would traverse
at a time ¢ and the radius L(t) of the region at time t that evolves into the present

universe, then a ratio of the volumes gives

I ;

Ezm““ (5.11)
at T'= 10""GeV. Since * would denote the volume of a causally connected region,
the universe is thus seen to consist of 10% causally disconnected regions, This is the
horizon problem.

In order to solve these, and some other problems of standard cosmology, Guth
[83] proposed the inflation scenario. The basic idea of inflation is to assume that
there was a period of time when vacuum energy was the dominant component of
the energy density of the universe, and hence the scale factor grew exponentially.
Generically, in the inflationary scenario, a small, causally connected patch of the
universe inflates from say time t = 0 to { = t,. The scale factor R grows by a factor
of e and the universe supercools. At the end of inflation, the universe reheats to a
temperature T = Ty, releasing an enormous amount of entropy. This scenario can

be shown to solve, among others, the two above mentioned problems in standard

cosmology.
The actual details of the reheating and the entropy production are model depen-
dent [86, 87, 88]. However, the relevent physical process falls broadly in one of the

two categories where the reheating and the entropy production are due to
o (1) the decay of the ‘slow rolling' inflaton - typified by new inflation [84] or
e (2) bubble wall collisions - typified by extended inflation [85].

As an illustration, let us briefly discuss the process of new inflation as in (1).
Stated in general terms. inflation is understood by the dynamics of a massive scalar
field in the expanding universe. This scalar field ¢, which weakly interacts with
other fields - scalars, fermions, photons, gravitons ete., is assumed to be trapped in
a false vacuum charactarised by (¢) = 0 with a vacuum energy V(¢), and, during
the course of evolution, rolls to the actual minimum of the potential, denoted by

{¢) = o. During this process, the field ¢ might also encounter a barrier in the
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potential. However, the actual details of this will not be relevent to our discussion.
During the time it takes for ¢ to evolve to the minimum of the potential, the universe
possesses an enormous amount of energy, py.. =~ V{d = 0) = M. Now, once the
temperature of the universe falls below a certain critical temperature T = T = M,
this vacuum energy is the dominant component of the energy density of the universe,
and the universe expands exponentially, according to the Friedmann equations. The
crucial feature of this model of inflation is the period of slow rollover of the field ¢,
which is typieally = 107* seconds. _

The potential becomes steep as ¢ nears the minimum of the potential, and on
reaching the minimum, ¢ oscillates about the value ¢ = @, in the process releasing
the enormous amount of vaccum energy V(¢ = 0) in the form of thermal energy
of the particles that it decays into. This decay process will result in the end of
inflation, and finally the universe is reheated to a temperatue given by Ty where
T4 = V(g = 0) = M*. The reheating process is accompanied by an enormous release
of entropy that is crucial in solving some of the problems of standard cosmology.

In view of the crucial role played by the amount of entropy in the universe for
the application of the holographic principle to cosmology, it is a natural question to
ask if this principle is still satisfied during the inflationary stage. Let us consider

this question in more detail in the next section.

5.3 Holography in the inflationary universe

For the region with ry = 1, the natural values of the entropy S and the area A at

the beginning of inflation are

Sy o ope Toty =100 (107%)
Ay =~ =T, (109,

where the numbers in the bracket are the values if Ty = 107°. So, S, < Ay and the

holographic principle is obeyed at the beginning of inflation.
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At the end of inflation we get, for the region with ry = 1,

AN -3
- PR el 3

Ay = g

where we have taken T = T}. In order to account for the observed entropy of the
universe, we require [83, 86]

g, 2 og =~ 1057 .

Hence,

e 2 of Ty (10%) .
This is the required 60 e-folding of the inflationary scenario [83]. For these values,

Se o 19
ﬂ—ﬂ_ﬂ Tb [lﬂ }

which clearly wviolates the holographic principle. The required entropy production
will not violate the holographic principle, as applied above, only if Ty £ 10717 ~
10°GeV with e¥T, < 1. However, such a low value is unsatisfactory for other
reasons |86).

More importantly, the above application of the holographic principle is naive and
is precisely the one Fischler and Susskind warned against. The spatial region I' and
the boundary B, which evolve along the light-like surface L into the present ones,
are marked at the end of inflation, when T' = Ty = Tj,, by (Table I}

rp =3 x 1070 Tt (107%)
For such a region, we get
%’: ey The™ = 10730
The holographic principle is then obeved if the inflation factor
e £10%
which is sufficient to solve all the problems in Guth’s original proposal for inflation

[83].
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Typically, however, ¢V is of the order of 10'% — 10°* in extended inflation [85]
and of the order of 10" —10'" in new inflation [84, 86]. So, the above bound is a
severe constraint on inflationary models and acheiving it is likely to be unnatural,
if possible at all. Also, the above application of holographic principle is in the era
immediately following the entropy production, and not when the entropy is actually
being produced.

The entropy is produced at the end of inflation during the reheating process
and the universe reheats to a temperature Tp £ Ty, where T} is the temperature
at the beginning of inflation. The physical entropy density sg during the entropy

production can be taken, on an average, to be [86]
522 Tf?_ i

The holographic principle, applied during this process to a suitable region, to be
identified below, of physical size =~ d (hence of volume d® with boundary area d*),

implies that
SpiAp — TRdS1. (5.12)

The actual details of the reheating and the entropy production are model de-
pendent [86, 87, 88]. However, the relevent physical process falls broadly in one of
the two categories where the reheating and the entropy production are due to (1)
bubble wall collisions - typified by extended inflation [85], or (2) the decay of the
‘slow rolling inflaton - typified by new inflation [84]. We now identify the size d in
each of these cases.

(1) The true vacuum bubbles nucleate during inflation, expand with the speed of
light, and eventually percolate the universe, thus ending the inflation. Upon perco-
lation, the bubble walls collide and release the energy and entropy into the interior
of the bubbles, thereby reheating the universe to a temperature Tq = Ti,. Typically,
the reheating time is of the order of the time required for light to cross the bubble
[88]. Thus, it is natural to apply the holographic principle to the interior of each
bubble. On an average, the time between the bubble nucleation and collision is less

than or of the order of #., the duration of inflation. The interior of the bubble is in
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a true vacuum state and, thus, its size d = .. With no further condition on T, the

holographic principle implies that
Teta 21 . (5.13)

(2) The inflaton slowly rolls down to its minimum and begins to oscillate, thus
ending the inflation. The oscillating inflaton decays into other particles, releasing
the energy and entropy into the universe and, thereby, reheating it to a temperature
Tp = Ty. The entropy is produced simultaneously and everywhere in the inflated
region. Thus, it is natural to apply the holographic principle to any region covered
by a light ray starting from a point and travelling for a time =~ tg, where {p is the
duration of reheating, The universe is in a true vacuum state during reheating and,
thus, the size of this region d = tg.

The universe reheats within a few Hubble time H; ! =~ {, at the end of inflation.
Taking tp = t,. and with no further condition on Tk, the holographic principle
implies the relation (5.13), same as in the prmridus case.

As we have remarked earlier, the inflaton decay is often modelled by that of
a massive scalar field interacting with other fields [86, 87]. In typical models, the
reheating time i = 7 ', where 4,4 is the decay rate which, for T = 101GeV, is
@(10% — 107**) in Planck units depending on the model and the decay products.

Moreover, the reheating temperature T is related to 4y by

Tg = A

in Planck units. Note that, in these maodels, the reheating time {g (the reheating
temperature Tx) has no relation to the Hubble time f, at the end (the temperature

Ty at the beginning) of inflation. The holographic relation (5.12) then implies
Vi <1, (5.14)

a condition well satisfied in these models.

We now explore the consequences of the relation (5.13). The reheating tem-

perature Ty < Ty depends only on at what temperature the inflation sets in. The

101



CHAPTER &

duration of inflation ¢, then satisfies an upper bound given by (5.13). Such an upper
bound on ¢, can be expected, among other things, to lead to an upper bound on the
inflation factor €. This is simply because longer the duration of inflation, larger is
the expansion factor,

N can, in turn, be expected to lead to a lower bound on the

An upper bound on e
density fluctuations in the universe, which seed the large scale structure formation.
This is because, essentially the inflation dampens the quantum fluctuations of the
fields, which reenter as density fluctuations in the later era. Hence, larger the
inflation factor, more the damping of quantum fluctuations, and thus smaller the
resulting density fluctuations.

Although the above physical reasoning is direct and simple, the actual caleula-
tions of {, and of the density fluctuations are quite involved. Also, to our knowledge,
there is no model independent formula which relates the density fluctuations to the
duration or the amount of inflation. Hence, in the next section, we illustrate these
consequences explicitly in the context of new and extended inflation. However,

following the above reasoning, they are expected to be valid generally.

5.4 A lower bound on density fluctuations from
the holographic principle

Consider the duration of inflation {, and the expansion factor ™. (For details about
various expressions used below, we use references [84, 86, 87] for new inflation and
|85, 88, 89, 90] for extended inflation.)

New Inflation: Let the mflaton potential be
A n _
V:Vu—aff) 1 ﬂE'—l. [El'-.:l:l

'
where 1 = %ﬁ = M*~ T} and A is a coupling constant. Equation (5.13) implies

that the inflation factor eV is restricted by an upper bound given by

: N
N Hit. 5 [ == g
. (Tﬁ') T
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Note that with T, = 10" GeV and Tk = 0.17}, we have N = 10%, which conforms
well with the amount of inflation oceuring in these models.
The duration of inflation {, is related to the coupling constant A by
L3 3\~
t, =~ 4wt H} . -
A ¥ (8??2.?-.)

Equation (5.13) then implies a lower bound
X iEH *. : (5.16)

Extended Inflation: The model is specified by a parameter w =~ 10 — 20 = 25.

Equation (5.13) implies that the inflation factor e” is restricted by an upper bound

EN il E:...l+% - T—3[¢n‘+;—}
o e o :
Note that with Ty ~ T, = 10"GeV, and with w = 10, we have e” < 10", which

conforms well with the amount of inflation occuring in these models.

Consider the density fluctuations on a seale Ap(= 10% for the horizon) today.
Let Ty = 2.70K be the present temperature of the universe.
New Inflation: The inflaton potential is given by (5.15). The density fluctnations

are then given by

o n—4 _
Lo AuHT AT (5.17)
Yy
where n > 4 and B
16 (2 HyApTp "¢
A= —1=In .
d 3 TR
With H, = M? = T7, equation (5.16) then implies a lower hound on the density
Auctuations:
- T T:i'.tl_
0p . R\ T )
— Al = PRt LJ.].S}
P (Tb) 4 (

For Ty = 104GeV, Tp = 017, and n = 4, A,; ~ O(10%) and the above bound gives

5F> —&
— 20(1077).
e S
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Considering the approximations involved, the above lower bound on the density
fluctuations implied by equation (5.13) is remarkably close to the observed value
~ 107% [91] if inflation takes place at T, ~ 10MGelV/.

Extended Inflation: The density fluctuations are given by

& -__,—q_' e
s A (Tha’ﬁ.gv?w + l) A (2w + 1)t ™7 (5.19)
o
where 2wl
e

.. S met Gw +9
il TR 6 + 5

With A = 1050, T} = 107*, and w =~ 10, equation (5.13) then implies a lower bound
on the density fluctuations:
I+l

P o 1B ALT, (5.20)
i

For Tp = T, =~ 10"GeV and w =~ 10, 4,; = O(1) and the above bound gives

% > op0y.
£

Considering the approximations involved, the above lower bound on the density
Auctuations implied by equation (5.13) is remarkably close to the cbserved value
~ 107 [91] if inflation takes place at T, = 10"GeV. ‘

Before we end this chapter, let us note that equation (5.13), which led to our
lower bounds on density fluctuations, arises as a consequence of the holographic
principle in models, typified by extended inflation, where the reheating and the
entropy production are due to bubble wall collisions. The reheating temperature is
taken to depend only on at what temperature the inflation sets in. Thus, in such
models, the lower bound on density fluctuations is a consequence of the holographic
principle,

Equation (5.13) also arises as a consequence of the holographic principle in those
models, typified by new inflation, where the reheating and the entropy production
are due to the decay of the ‘slow rolling’ inflaton decay, if the reheating time is of the
order of a few Hubble time at the end of inflation and if the reheating temperature

depends only on at what temperature the inflation sets in. Then, in these models
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also, the lower bound on the density fluctuations is a consequence of the holographic
principle.

Often the inHaton decay, relevent in the models of new inflation type, is modelled
by that of a massive scalar field interacting with other fields. In such models, the
reheating time (the reheating temperature) has no relation to the Hubble time at
the end (the temperature at the beginning) of inflation. Typically, the holographic
principle is automatically satisfied in these models with no further CONSeqUences,

Perhaps, it is that such models of inflaton decay may be specific possibilities only,
while the generic possibilities have reheating times (the reheating temperature) of
the order of the Hubble time at the end (the temperature at the beginning) of
inflation. If 80, then, in the models of new inflation type too, the holographic
principle is likely to lead to a lower bound on the denisty fluctuations.

Conversely, and just as likely, the inflaton decay models are the generic models
of reheating. Moreover, it may also be that similar generic models exist for bubble
wall collisions too, in which the reheating time (the reheating temperature) has
no relation to the Hubble time at the end (the temperature at the: beginning) of
inflation. If so then, in the models of extended inflation type also, the holographie

principle is likely to be automatically satisfied with no further consequences.



Chapter 6

Conclusions

In this thesis, we have reported on the work done on some aspects of D-brane
physics and quantum gravity. First, we have studied D-branes wrapped around
supersymimetric cycles of Calabi-Yau manifolds using boundary Landau-Ginzburg
(LG) theory as well as boundary conformal field theory (CFT) formulations. Next,
we have analysed such D-branes from the point of view of gauged linear sigma
models on world sheets with boundary. We have then investigated some aspects of
application of D-brane physics to the understanding of Hawking radiation of black
holes. Finally, we have studied the application of the holographic principle, a generic
principle for quantum gravity, in the context of cosmology. We conclude this thesis
with comments on the work presented here, and directions for future research.

Our LG formulation of D-branes on curved manifolds is suitable for understand-
ing the associated boundary conditions from the target space viewpoint, while the
boundary CFT formulation provides the corresponding boundary state. As we have
shown, the common discrete symmetry group associated with both the LG orbifold
and the corresponding Gepner model is a useful tool in relating boundary conditions
to boundary states. It also suggests that boundary states of D-branes constructed
in [20], by tensoring boundary states for the individual minimal models may be fur-
ther classified by means of charges associated with the discrete symmetry group. In
our method, this is also seen through the resolution of the S-matrix of the Gepner

model.

106




CHAPTER G

It would be an interesting problem to extend the program of studyving closed
string vacuum for Calabi-Yau compactifications involving the use of LG models and
the general structure of N=2 superconformal theories, to the case of D)-brane states.
Clearly, we would need to extend the use of the Landau-Ginzburg model techniques
so that more relevant information can be extracted. As has been noted by other
authors, this may involve the extension of the methods of the N = 2 topological
field theory techniques to the case of boundary N = 2 SCFTs. Index calculations
of various kinds, for example, may be performed in the LG meodel using purely free-
field techniques by extension of similar techniques used in the closed string case [53].
A calenlation of Tr(—1)" in the Ramond sector of the openstring was carried out in
[44], and it would be interesting to evaluate this by our methods.

The construction that we have used in chapter 2 for the boundary states seems
a priori difficult to extend to the case of K3 and Calabi-Yau three-fold compact-
ifications, In particular the fixed point resolution would appear to be hopelessly
complicated even in the simplest cases. But since the resolution would involve pre-
sumably no more than the use of the full symmetry of the model it might be possible
to solve the problem by computer techniques. In such a situation, the results pre-
sented for the 7% in Chapter 2 would be extendable to the case of compactifications
like the quintic Calabi-Yau. The diagonal partition functions (that is between iden-
tical branes) in the cvlinder channel and hence in the annulus channel are however
known even despite the fixed point resolution even in the complicated cases by our
construction. It would be interesting to extend this to non-diagonal cases by our
methods.

In chapter 3 of this thesis, we have studied D-branes on Calabi-Yau manifolds
from the point of view of gauged linear sigma models (GLSM). We have tried to
determine a complete set of boundary conditions defining D-branes in the GLSM
description of the open string CFT, This begins an analysis of whether the LG-
CY correspondence shown by Witten by making use of linear sigma models will go
through for the case of linear sigma models with boundary. We have shown that a
careful analysis of the boundary conditions, by demanding consistency in the infra-

red limit, forces us to introduce a fermion bilinear term in the action, a fact which
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hias been known in other contexts. This, although it seems to produce a complete set
of boundary conditions for the DO brane, still does not resolve ambiguities regarding
the boundary conditions of higher dimensional branes. In particular, we have seen
that boundary conditions in the gauge multiplet are difficult to define in these cases.
Although in this thesis we have not completed the full analysis of D-branes on CY
using the GLSM description, it is worth noting that the two matrices A and B that
we introduced in Chapter 2 to parametrise general A-type and B-type boundary
conditions, might be useful to resolve this issue. Also, the boundary conditions for
the D-0 brane that we have written down, seems to be manifestly independent of
the Kahler parameter, and seems to imply that the D-0 brane moduli space does
not receive any corrections on the transition from the geometrie (CY) to the non-
geometric (LG) phase. This however, needs to be checked by explicit calculations
of open string instanton corrections, which we have not attempted in this thesis. It
would be interesting to investigate this in details.

In chapter 4 of this thesis, we have studied an application of D-branes to black
holes. We have compared black hole and D-brane decay rates for neutral and charged
scalar emission at high energies. Whereas previous studies of these emission rates
were confined to the regime of small energies of the emitted quanta, we have gener-
alised these results by treating the one-dimensional gases of the open strings moving
along the Dl-brane (in the long brane approximation) as a mierocanonical ensem-
ble. This naturally incorporated the high energy condition, w /Ty, g 3 1, which was
crucially used in calculating the black hole grevbody factor. We have shown that
while in five dimensions, the decay rates mateh for all values of energy consistent
with the microcanonical picture, in four dimensions, they match only in a restricted
range.

Calculations involving emission rates from D-branes and comparison of these
with corresponding black hole results has also been carried out in the context of the
recently discovered AdS-CF'T correspondence. Several approximations that we have
made in our calculation, are not necessary in this picture, although the final results
seem to be in agreement. This puts the D-brane black hole correspondence on a

more firm footing. We note however, that stronger statements regarding this corre-
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spondence can be made by studying.the moduli space of the D-brane configurations
that we have studied in this thesis, a method that has heen used in the calculations
of [28]. Calculations of emission rates for other particles like vectors and fermions
have also been carried out in the literature, and as an application of the results
presented in Chapter 4, it would be interesting to extend these calculations to the
regime of high energy emissions, and see whether matching conditions are still valid.
It would also be interesting to compare our results from calculations using CFT
techniques, in view of the AdS-CFT duality.

In chapter 5, we have moved on to another important aspect of general relativity,
namely cosmology, and shown how the holographic principle of quantum gravity
(and of string theory) 1s applicable to the inflationary universe. We have shown that
a correct application of the holographic principle to the case of new and extended
inflation (which corresponds to generic models of inflation) leads to a lower bound on
density Auctuations. Considering the approximations involved, the lower bound on
the density fluctuations that we have obtained is remarkably close to the observed
values. To our knowledge, this is the first instance where a lower bound on the
density fluctuations is obtained theoretically. It would be interesting to establish
such a bound rigorously, in a model independent way, This could then be taken as
a prediction of the holographic principle.

Another interesting point to note is that by an appropriate coordinate trans-
formation [86], the inflating universe can be cast into a static de Sitter one. One
can then translate the present analysis and compare the results with those obtained
for some anti de Sitter spaces in [80]. This might provide some insights into the

holographic principle in static universes.
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