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Abstract il 6

In this thesis, we study the justification of eigenvalue problems for elassical lower
dimensional models of linear elastic shells and rods. Maore precisely, it 1s to show that
the eigensolutions of the lower-dimensional problem is the limit, in some suitable
topology, of the eigensolutions of the three dimensional problem when the thickness
of the shell goes Lo zero.

In chapter 2, we study the case for shallow shells. The techniques used here for
proving the convergence rely on those used by Ciarlet and Miara [18] [or the justifica-
tion of the two-dimensional equations of a linearly elastic shallow shell. Here we con-
sider an eigenvalue problem in three-dimensional elasticity posed over a shell, with
thickness ¢ having a specilic geometry and clamped on a portion of its lateral surface,
By suitable scalings on the domain, eigensolutions ete., we transform this problem
into a domain which is independent of €. Our main result then consists of showing
that the scaled cigensolutions are bounded and the scaled eigenfunctions converge
in some suitable topology to a limit which is the solution of a two-dimensional eigen
value problem. We also show that all eigensolutions of the two-dimensional problem
occur in this way, i.e. each eigensolution of the two-dimensional problem is the limit
of a sequence of eigensolutions of the three-dimensional problem as the thickness
tends to zero.

In chapter 3, we study the case for rods. The techniques used here for proving
the convergence rely on those used by Le Dret [28] for convergence of displacement
and stresses for linearly elastic rods. Here we consider an eigenvalue problem in
three-dimensional elasticity pased over linearly elastic rod of thickness 2¢. clamped
on both ends. By suitable scalings on the domain, eigensolutions, etc; we transform
this problem inte a domain which is independent of ¢, Our main result then con-
sists of showing that the eigensolutions are bounded and converge in some suitable
topology to the eigensolutions of a one dimensional model. We also show that the
eigensolutions oblained as the limit of the three-dimensional model problem consist

of all the eigenvalues of the one-dimensional problem.



In chapter 4, we study the case ol flexural shells. The techniques used here
for proving the convergence rely on those used by Ciarlet, Lods and Miara [17]
for Asymptotic analysis of flexural shells and Ciarlet and Lods [14] for Asymptotic
analysis of membrane shells. Here we consider an eigenvalue problem in three-
dimensional elasticity posed over a linear elastic shell of thickness 2Ze, clamped on a
portion of its lateral surface, under a geometric assumption on the middle surface
of the shell that the space of inextensional displacements is non-zero. Our main
result then consists of showing that if the above mentioned space is infinite dimen-
sional, then for each positive integer I, the eigenvalues are of order O(¢?) and the
corresponding scaled eigensolutions converge in some suitable topology to the eigen-
solution of the two-dimensional problem for flexural shells. In this case, we also
show that the eigensolutions obtained as the limit of the three-dimensional problem
consist of all the eigensolutions of the two-dimensional problem. If the space is finite
dimensional, say N, then we show that the first N eigenvalues are of order O(¢*) and
the corresponding scaled eigensolutions converge to the N eigensolutions of the two-
dimensional flexural shell problem and for { > N the eigenvalues are bounded and
that either the corresponding eigensolutions converge to the eigensolutions of the
two-dimensional membrane equations or that the eigenfunctions converge to zero
weakly in (H'(0))* x L*(Q).

In chapter 5, we study the case of membrane shells. The techniques used here
for proving the convergence rely on those used by Ciarlet and Lods [14]. Here we
consider an eigenvalue problem in three dimensional elasticity posed over a linear
elastic shell of thickness 2¢, clamped along its entire lateral surface. We make an
essential geometric assumption on the middle surface of the shell that the shell
is “uniformly elliptic™. DBy suitable scalings on the domain, eigensolutions, etc.,
we transform this problem into a domain which is independent of . Qur main
result then consists of showing that the eigenvalues are bounded and that either the
corresponding eigensolutions converge to the eigensolutions of the two-dimensional

problem [or membrane shell or that the eigenfunctions converge to zero weakly



in (HY(D))* x L*Q). We also show that the eigenvalues of the two dimensional
problem obtained as limit of the eigenvalues of the three-dimensional problem lies
in a bounded subset of IR whereas the two dimensional problem has a sequence of

cigenvalues which is unbounded.

i
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Chapter 1

Introduction

Elastic bodies like plates, shells, rods et are three-dimensional bodies. However,
often, one or more of their dimensions say, the “thickness™, is “small” compared
lo the others, In such cases lower dimensional theories have been proposed as

approximations of the usual three-dimensional theory,

One reason for preferring lower-dimensional theories is their simpler mathemat-
ical structure which permits one to obtain a richer variety of results. The other, is

that these theories are more amenable to numerical computations.

Most of the lower-dimensional theories proposed by Koiter, Nagdhi and others
rely on @ prieri assumptions of a mechanical or geometric nature. Further, it is not
evident which is the model most suited to a particular case in hand. The answer
to this question is of greal importance, for it makes no sense to devise accurate

methods of computation for the solution of an inappropriate model.

Consequently, before approximating the exact solution of a given lower
dimensional model, we should first know whether it is “close enough” 1o the exact

solution of the three-dimensional model it is intended to approximate.

Thus one is led to the question of mathematically justilying a lower-dimensional

model starting from the three-dimensional model.
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One way of doing it is by a [ormal asymptotic methed. In a formal asymptotic
method, the three-dimensional solution (the displacement field and in some cases
the stress field) is first scaled in an appropriate manner so as to be defined on a fixed
domain, then expanded as a formal series expansion in terms of a small parameter
e, which is the dimensionless hall-thickness of a plate or a shell or the dimensionless

half-diameter of the cross-section of the rod,

The formal series expansion of the scaled solution is then inserted into the three-
dimensional boundary-value problem, and sufficiently many factors of Lthe successive
powers of ¢ found in this fashion are equated to zero until the leading term of the
expansion can be computed and, hopelully, identified with the scaled solution of a
known lower-dimensional problem. Such a method is “lormal”™ in that the successive
terms of the expansion, except the leading one, cannot usually “fully satisfy™ the

boundary conditions of the three-dimensional problem.

Ciarlet and Destuynder (e[ and [10]) applied this method to the weak, or
vartational formulation of the boundary-valne problem of three-dimensional linearly
and non-linearly elastic plates. Without making any @ priorr assumptions, they
justified in this fashion, the linear and non-linear Kirchofl-Love plate theories; only
the magnitude of the components of the applied loads and of the Lamné constants
must be scaled as appropriate powers of the thickness but, as shown in a systematic
way by Miara (ef. [36] and [37]), such scalings are unavoidable, The approach of
Ciarlet and Destuynder was then extended to von-Karman plates by Ciarlet [6], to

Margurre-von larman shallow shells by Ciarlet and Paumier [19],

The most noticeable virtue of the asymptotic method applied to the weak for-
mutlation of elasticity problems is its amenability to a rigorous asymptotic analysis
which shows that the three-dimensional scaled solution converges in some suitable
topology to the leading term of the formal asvmptotic expansion. Such convergence
theorems have been established by Ciarlet and Kesavan [11] for plates, Ciarlet and

Miara (18] for linearly elastic shallow shells. Ciarlet and Lods [14] for membrane
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shells, Ciarlet, Lods and Miara [17] for flexural shells and Le Dret [28] for linearly

elastic beams.

Convergence theorems can also be obtained from [N-convergence theory. as in
Bourquin, Ciarlel, Geymonat and Raoult [4] for linear elastic plates. Nonlinear
“membrane” models that are invariant and valid for large deformation have also

been obtained in this fashion by Le Dret and Raoult (ef. [30], [31] and [32]).

Again, for nonlincarly elastic shells, the formal asvmptotic method has been
successfully applied by Rao [40] to spherical shells, and to general shells by Miara
(ef. [38] and [39]), Lods and Miara [35] who showed that the leading term of the
formal asymptotic expansion can be identified with the solution of a non-linear
two-dimensional membrane or flexural equation according to specific geometrical or
kinematical assumption as i the linear case. A convergence theorem has also been
obtained by Le Dret and Raoult (cf. [33] and [34]), who also used I'- convergence
theory to obtain non-linear “membrane” shell models that are invariant and valid

for large deformations.

Our purpose is to study the corresponding eigenvalue problems, which are im-
portant in the analysis of vibrations of the shell. In particular, starting with the
assumptions made lor stationary problems and transforming the problems as de-
scribed above, we wish to obtain the limiting lower-dimensional models for vibra-
tions of shells and compare them with the models obtained from the stationary

problem.

[ Chapter 2, we study the eigenvalue problem for “shallow shells” and in Chap-
ter 3, we study the eigenvalue problem for “rods”. The eigenvalue problem for
“flexural shells™ is studied in Chapter 4 and, in Chapter 3, we study the eigenvalue

problem for “membrane shells”.



Chapter 2

Shallow Shells

2.1 Introduction

In recent years, a lot of work has been done on the mathematical justification of
various classical lower-dimensional models for the study of thin linearly elastic shells.
Ciarlet and Miara [18] have considered the case of the shallow shell while Ciarlet
and Lods (ef. [14], [15] and [16]) have studied the membrane shell model, Koiter's
model and the generalized membrane shell model. Ciarlet, Lods and Miara [17] have
justified the flexural shell model. For & general reference on shells and their models,

see Clarlet [7].

The main idea in the above mentioned works is to pose the problem over a
three-dimenstonal domain of the form w x (—=,2), where w C I is a bounded
domain and = > () 1s a parameter representing the thickness of the shell and which
eventually tends to zero. The problem is then transformed to one over a domain
independent of &, say w x (—1,1}, and the parameter ¢ now appears in the various
bilinear forms constituting the variational formulation of the problem. The limiting
problem obtained as e—0 is then shown Lo be one of the classical lower-dimensional
models. All the problems considered so far are of the stationary type, viz. the study

of the deformation of the shell under the action of body and for surface forces.
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Our purpose is to study the corresponding eigenvalue problems, which are im-
portant in the analysis of vibrations of the shell. In particular, starting with the
assumplions made for stationary problems and transforming the problems as de-
scribed above, we wish to obtain the limiting lower-dimensional models for vibra-
tions of shells and compare them with the models oblained from the stationary

problems. In this chapter, we confine our attention to the case of the shallow shell.

Apart from the techniques of the authors cited above, we will also need the
methods used by Ciarlet and Kesavan [11] (for the study of eigenvalues of clamped

plates),

We now brielly outline the problem studied in this chapter and describe the

results obtained.

Let w € R* be a bounded domain and let £ > 0 be a parameter (which eventually
tends to zero). Let #° @ w— M be a smooth mapping. Then the set of points
P* = (zy,1,0%(x), 27)), for (xj.x;3) € w. constitutes the ‘middle surface’ of the
shell. Let d*{xy,r2) denote the normal to this surface at P, Then the reference
configuration of the shell is given by 0 = O7(0°), where, 0 = w x (—&,2) and [or

each z° = (xy;x3,25) € 117, we have
O%(2*) = (e ze: B (2, 22)) + 250 (o) (2.1.1)
If [ = dw x [—2,&], then ['* = @%(I) stands for the lateral surface of the shell.
Note that if 8 = 0, then we get a plate.

In the sequel, we assume, for simplicity, that the shell is clamped along its lateral
sucface. Thus, if ©° is an admissible displacement vector, then ©° = 0 on [, For
such a displacement vector, we deline the linearized strain tensor & = (&5,(¢")) (for
1<1,75=3) by

PR, 1 =

B3 (8) = (0

=)
&
T

=i

L ﬁ] {fi'..].':?‘,l

Rl
b

(Here, and throughout the sequel, 4, will stand for 8/8%¢). The eigenvalue problem

consists of finding pairs (€7, @), where £ € IR and &° is an admissible displacement.,
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such that, for | < < 3,

— I (ATEL 006y + 2pt (0 } = & indl (2.1.3)
u = 0 o' %

where A® and p* are positive constants depending only on the material the shell is

made of. (The Latin indices take the values 1,2 and 3 and we use the convention of

summation over repeated indices).

The problem (2.1.3) can be put in variational form. We define the space of
admissible displacements as

V' o= (& e (1)) |5* = 0 on ). (2.1.4)
Then, the problem is to find pairs (£5,4%) € It = V \{0} such that
I[ﬁr{AEE;F{&*JE;q{ﬁ’] + 2ptE (@)eE, (8°))dE* = E/ﬁ edede (2.1.5)

for every ©° € V', It can be shown that there exists a sequence of eigenpairs

{(&, @) )72, such that

H

£.2

G{Er.lg _EE‘!'!-S_}-’_\:, {Jiﬁ]

Wy

and {@™'} is a complete orthonormal basis for [Lz[ﬁ"]]“.

We then transform (2.1.5) into an equivalent problem posed over w = (—1, 1) after
suitable transformation and rescaling of the variables £, @°, the Lamé constants

A%, 0% and the function #.

In this fashion. we obtain scaled eigenpairs (€4z), u'(e)) € I} = V., where () =

w x (=1.1) I' = dha x [=1 1] and
V={ve (H(M)|lv=00onT}, (2:1.7)

which satisfy variational equations in which £ occurs as a parameter. We show thad,
as e, we have £(z) =€ and w'(z)—=u' (in (H'{Q))*) for each [ for a suitable
subsequence. We also show that ) = (' is a function independent of ry. In fact

¢'€ H*(w). The other components are given by

ui — t,II - rgﬂr,txfj, fore=1,2 [2.1.8)
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The ¢! € H!(w) and can be uniquely determined in terms of ¢, The pair (€', ') is
an eigenpair for a fourth order elliptic problem posed over w. We also show that £
is the {-th eigenvalue of this problem for each positive integer {. i.e. there are no
other eigenvalues for Lthe limit problem, and that the {('} forms a basis for L¥(w).

These are shown using the methods of Ciarlet and Kesavan [11].

There is an important difference between the two-dimensional shell model ab-
tained by Ciarlet and Miara [18] and the eigenvalue problem studied in this chapter.
The former is a system of coupled fourth-order equations invalving all the compo-
nents of the limit of u(z); the latter involves only the third component. Thus, for
the eigenvalue problem of shallow shells, the limiting situation is similar to that of
plates. We will comment about this in greater detail later (c¢f. Remark 2.5.3 be-
lowr ).See also Remarks 2.5.2 and 2.7.1 for a discussion of some other minor differences

i the model abtaimed,

This chapter is organized as follows. In Section 2 below, we describe the three-
dimensional problem and in Section 3, we transform the problem 1o one over a
fixed domain. In Section 4, we obtain the necessary a prior estimates needed to
pass to the limit, which is done in Section 3. In Section 6, we study the limiting
eigenvalue problem. In Section 7, we translate the results back to the original setting

by descaling the variables, Section 8 is reserved for concluding remarks.

2.2 The Three - Dimensional Problem

Throughout the sequel, the Latin indices will vary over the set {1,2,3} and Greek
indices over the set {1, 2} for the components of vectors and tensors. The convention

of summation over repeated indices will be used in conjunction with the above rules.

Let w C I7* be a bounded domain. We assume that the boundary 8w is Lipschitz
4 I

continuous and that w lies locally on one side of dw. For each = = (), we define the



CHAPTER 2 SHALLOW SHELLS b
sets

R =aw (~gi8) o I, = fe)y; TT =ww {~g} (2.2.1)
Let % = (13, 22, 25) be & generic point in ¥ and let 8, = d° = .'.nij-,, and d5 = %

We assume that, for each = > 0, we are given a function ¢ € C*(w). The middle

surface of the shell is then given hy

{{rp 22,05 (21,22)) |1, 22) € ).

At each point of the middle surface, the normal lies in the direction
(—ch0, —aht® 1)

and we denote the unit normal vector obtained by normalizing this by d*(zy, x3).

Then, we define the mapping 97 : F =+ IR? hy
€5(r*) = {2, 7o O (T4 T2)) + zid (xy;13). [2.2:2)

We assume that 0% : 07 =07(0°) is a C'- diffeomorphism. The set 0F = O (1) is

the reference configuration of the shell and we denote a generie point of this set by

iy

ITA* = 0 and g > 0 are the Lamé constants associated with the material the
shell is made of, then the eigenvalue problem describing the vibrations of the shell

takes the variational form given by (2.1.5).

The V© - ellipticity of the bilinear form appearing on the left-hand side of (2.1.5)
follows from Korn's inequality. Hence for cach £ € (L3Q9))%, there exists a unigue

weV satisfying

_[ﬁﬁfagpfi‘uﬂﬁwtﬁf] + 2T (W0 )EE (7)) = /ﬂ feozda, (2.2.3)
for every 9° € V. We denote & = G*(f) and thus G* : (L) <V defines a
bounded linear operator. Since the inclusion V' s (L2(€))* is' compact, we can

consider * as a compact linear operator of (L*(0%))* into itself. Tt also follows




CHAPTER 2 SHALLOW SHELLS 9

(from the symmetry of the associated bilinear form) that G* is self-adjoint. Thus,

the problem (2.1.5) then reduces to finding @ € ?\.‘{ﬂ} and EE € IR such that
T e T (2.2.4)

From the spectral theory of compact, sell-adjoint linear operators, it follows that
there exist eigenpairs {{f"ﬂﬁ”}}'ﬁl with the properties announced in the previ
ous section. The eigenvectors can be normalized in any way and, in view of the

transformations we wish to effect in the sequel, we choose them such that

e e R TR T 3 i
o U dET = 8y 2.9.5
j;‘r { )

The eigenvalues {£5'} can be characterized intrinsicallv via the min-max yeinciple
& 3 i I

for the corresponding Rayleigh quotient which is given by

qe (XE(B7)E5, (D7) + 2, (°)E5, (0°) ) di*
Er['ﬂ!] = i!_'l: PF‘P{U :I -.I_l;lll.l'l"'I }_\_ _ I"f_{_l_r{ﬂ }E._;I(U '”" r {221:']
Joye vev;dz®

for 5 € V '\ {0}. We have

"= min max R*(v) (2.2.7)

Wee 0 eW

where V¢ denotes the collection of all [~dimensional subspaces of V.

2.3 Transformation of the Problem

since the mappings ©° : (°=0* are assumed to be C'-diffeomorphisms, the corre-

spondence that associates with every element ©° € V' the veetor
f = B 0 0% : Oy I (2.3.1)
induces a bijection between the spaces V' and V*, where

V= {v* e (H'(0))’lv" = 0 on 7). (2.3.2)
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For each £ > 0 and +* € . consider the Jacobian matrix (FO5(x%)). Let
(&;;(7)) denote the inverse of Lthe Jacobian and let 6%(x%) denote the determinant
of the Jacobian. We assume, henceforth, that all the mappings 0F are orientation
preserving, i.e.

0°(x%) = 0 for all =° € 1. (2.3.4)

By the chain rule, we have
Je51(7) = b, s (). (2.3.4)

Then we can transform (2.1.5) into a problem over the domain 0. From (2.3.4) and
the change of variable formula for integrals, it follows that if (£7.4%) € I » Vii{o)

15-a solution of (2.1.5), then {E".u’) € IR = V*\ {0} satisfies
Ne(u®,v%) = EE /ﬂf uividtdr® (2:3.5)

for all v V7, where 7 = 4° o @° and

wmy T

NE[uf o) = fiy[l’bfpﬂfufﬁ,-l + po (b, 6, uf + 0505w )b, dEvdtda. (2.3.6)

We now set 2 = w x (=1,1),T' = dw x [~1,1] and with each point » € 01, we

associate the point r* € 0° through the bijection

e ir=(2) € Qe 2t = () = (21, 12.202) € TT7.

Given v* € V*, we associate the scaled functions v(e) € V', where

V={ve(H () =0on '}, (2.3.7)
via the relations .
vh (%) = fvale)(x)
(2.3.8)
vy = ewle)(r)

for all r* = #*(x).
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We also scale the eigenvalues as follows:
& =ele). (2.3.9)

Finally, we make the [ollowing assumptions on the data: we assume that there
exist constants A > 0, > 0 and a function 0 € C¥{@), all independent of =, such
that

AM=A>0, ff=p=>0 2:310)
and

0y, 22) = 20{z1, 20) for all (2, 20) € @ (2.3.11)

Remark 2.3.1: The assumptions (2.3.10) are justified if we assume that the shells
{for each = > 0} are all made up of the same material. Thus the Lamé constants
would not depend on the thickness (£) of the shell. The assumption (2.3.11) is the

crucial shallow shell assumption of Ciarlet and Miara [18].

|
If (e:;(w)) is the standard strain tensor of v € V, ie.
eglv) = %(afﬂj + ), (2.3.12)
we define the tensor (ef (v)) as follows:
ehlv) = eap(v)— b, + 0,00.0,).
caalv) = €5, (v) = eas(v) — 18,080, (2.3.13)
efv) = esslv),

In the following three Lemmas we state various results that will be needed i1 he

proof of convergence.
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Lemma 2.3.1 Let the function 07 be of the form (2.3.11), with 8 € C*(&). Then
there erists s = 29(0) > 0 such that the Jacobian matriz (@ O%e*)) is invertible
for all 2% € () and all ¢ < =4, For = < en, et the functions bislz) : Q=R and
8(e) : Q= IR be defined by

bole)(2) = beo(a®) (2.8.14)
dz)(x) = &(z*) (2.3.15)

where the funclions 6°; : (0F) = IR and §° : (S¥) IR denotes the inverse and deter-

minant of the Jacobian, Then

baule) = Bag+ebiy(e.0) (2.3.16)
bas(e) = edaf +e%bTy(c.0) (2.3.17)
buagle) = —cdah + 0% (=, 0) (2.3.18)
ba(e) = 1+2%%(c,0) (2.3.19)
8e) = |+ 0 (2.3.20)

and there erists a constant Co(#) such that

sup max max |65 (2, 8)(x)| < Co(0) (2.3.21)
hgeey W el
sup max |67 (z,8)(x)] < Cy(8) (2.3.22)

hr<ey TEL

Proof. See the proof of Lemima | in Clarlet and Miara [18]. B

In what follows, |.on and [|.|];a denote the L*(0) norm and HY) norm, re-
spectively, for both the scalar and vector-valued [unctions.
Lemma 2.3.2 Let the assumplions and notations be as in Lemma 230, and lel
the functions % : QIR be related to the scaled Junctions v, : QI through the
bijections (2.3.1) and (2.3.8). Then
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Ean(B°)(7) = Mela(v) + et (e, 0:0)} (2) (2.3.23)
Cas(B)F) = e{ena(v) +eefale, biv)}(2) (2.3.24)
€3a(0°)(F) = eleg,(v) + el (e, 05 0) () (2.3.25)
En(BNT) = {enlv) + Led(e,0v)} (x) (2.3.26)

= {eaa(v) + £2(8.00,3 + bi(e, 0)Dyvs)
+e'eqs(e, 05 0) Ha (2.3.27)

and there erists a constant C(0) sueh that

sup max |e¥ e divlloa+ sup |eh(e,00) |00 < C1E)||v]]i0 (2.3.28)
(be<ley 1od Dgeay
Proof. Sec the proof of Lemma 2 in Ciarlet and Miara [18]. 5

Lemma 2.3.3 Let 0 € CN@) be a given funelion, and lel the functions e 4(v) be
defined as i (2.3.13). Then the mapping

A,
2

v {Z Ifi{vilﬁ_:a} (2.3.29)

16 @ norm over the space V' which is equivalent to the norm ||.||, q.

i€, there erists constants Ca(0) and C5(0) such that

lle]lin < Caf#) {Z |ﬁ?j[”?|§.n} < Ca(0)||v]], a (2.3.30)
i
Proof. See the proof of Lemma 3 in Ciarlet and Miara [18]. 5

Before we present the transformed problem, we need to introduce some more
notation, For each v € V', we define the symmetric tensor K(z)(v) = {Hﬂ{:‘}(v}] =
(L*(£2))? by means of the following relations:

Kos(e)v) = efylv),
Koa(e)(v) = e7tely(v), (2.3.31)

h‘iS[ o) = e el {U}—i-a 03, v4.
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‘We introduce the bilinear forms N(g) and D(z) on V x V hy

Ni)uw,v) = ;
SR ()b + 2K (o) )05 — (D508, + 0,000 da
E L[M{jn{gjqunﬁﬁﬁﬁgurg + b2, 0)dvs) + Aek, (=, 0, w)avs|da
* fn 2prely(e,0,)[Fsv, + Tyvs — 8,0040s)da
# A+ 2u)eb (e, 0, u)Byusda }
+ /ﬂ (A+ 20) K5 () (u)(03005us + bEi (e, 0)404)dr
et [ 2l () () B + Buvs — 0,00405)d

+e~7 fn[lﬁ'g.@{a]fu] + (A + 2 W3s(2) (w)]|Bava( 1 + 26% (=, 0))dz

+eBE(e,0, K (e)(u),v) + 2BF e, 0. u. )

.

(2.3.32)

and
Me)(w, v) =Ezﬁunua£(£}dﬂ'+ /;1{:31:35[5}{&5. (2.3.33)

IT (E‘,u-’} € IR = V°\{0} satisfies (2.3.5), then the pair (E(z) u(=)) € R = V\{0}

obtained via the transformations (2.3.8) - (2.3.9) satisfies the following equation:
N(e)(ule),v) = (=) D(=) (ule), v) (2:3.31)

for every v € V. where

sup |Bf(e,0, K, v)| < Cl ) K |oallvlq

Oceln,

(2.3.35)
sup |Bf[51ﬂ,u,v]! < Cyluliallv)a
n{ﬂgﬁu

forallu,v € Vand K € (L*(©))". The constant ('4(0) > 0 is independent of £. The

quantity |uf, o stands for the usual Sobolev semi-norm of u. i.e. the L*())-norm of

the gradient of wu.
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Thus if {(£=, ') }i2, are the eigensolutions of (2.1.5) normalized as in (2.2.5),
then the transformed elements {(&'(e),u'(2))}i2,, transformed as in (2.3.8)-(2.3.9),

verify [2,3.::‘}4] and are normalized by the condition

g2 j;l TIL[IEJ{IETEM(E )dz + 1/; -ﬂ@%[E}H?EE}ﬁ{Ede = iy - (2.3.36)

Our aim is to pass to the limit in (2.3,34). To this end, we first need to obtain

a priovi estimates for {£'(2)}, which we do in the next section.

2.4 A Priori Estimates

In this section we show that, for each positive integer [, the scaled eigenvalues
{€'(z)} are bounded uniformly with respect to =. To this end, we consider some

special classes of elements of V.
Let v € H2(w). Then
v, o= (—xadyp, —rathe, ) € V., (2.4.1)

Then it is immediate to see that (cf. (2.3.13))

1
el a(v,) = —zabape + (33,0 + 0,0055). (2.4.2)

We now compute the expression for N{e)(v,, v,). First of all, observe that
Pi(ve)s = 0 and that (d,(v.)s + h{v.).) = 0. Thus, ff__a{vﬂ = t:ga['t?;] =0
Further (ef. (2.3.31)).

Koale)(vy) = €2 a(v,), Ks(e)(w,) = ely(v,) = 0

and

Ki(e)(v,) = 8,08, 0.
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Thus, we get

N(eNve, vy} =
A fn [—asAe + 8,80, 0] dz

) | _ ’
+2#fn Y [—wabanp + iif’iﬁﬂﬂuaﬁ + @, 00p)] dx

a3

(2.4.3)
+,f"'.fn(—;i‘;i.’.‘1:;z+ . 08,0)d3000dr

+(A + 2#}4/;1{3:,33@55]%{1:

+eB¥ (e, 0, Ko =)(v,),v,) + 2BE (=, 0, Yt

Before we prove our main result we need the following preliminary estimates.

Lemma 2.4.1 There erists a constant (' > 0, depending only on 0 such that

B (e, 0. K* () (v,),v,)|

4

C L, |Ap]de
(2.4.4)
|BY (e,0,v,,v.)] < [, |Ap|dw.

Proof. By virtue of our preceding computations. it is immediate to see that

IK*(e)(ve)lon < CO)]|# ]2
Similar!g.r,
lvellie < Cllelle..
Since i € H2{w), by Poincaré’s inequality,

lell2, < Clel, = C j AP,

The result now follows from (2.3.35). a

Theorem 2.4.1 For each positive integer |, there ezists a constant K(l) > 0

(depending also on 0, butl independent of ) such that

(=) < K(0). (2.4.5)
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Proof. Since the problem (2.3.34) was derived from (2.3.5) after a change of vari-
able and change of scale, we still have the variational characterization of the scaled
'g_él_gé'nmlues £'(z). Let V; denote the collection of all {-dimensional subspaces of V.
then

Nie)(v,v)

! = . R e ol 7
E'le) = ﬁ}—ﬂllEnV;t?éaﬁcf Bie)e, o) (2.4.6)

Let W, denote the collection of all I-dimensional subspaces of H?(w). Let W e W,
Then define
W={uv,lpe W}

It follows that W € V. Hence, it follows from (2.4.6) that

Niz)(v,,v,) (2.4.7)

I .
£l <  mn max 4
& ] “We Wu;:— e W HEE}[]’UWU.;]

We now use the expression (2.4.3) for N(g)(v,,v,). Integrating, with respect to i,
all the integrals on the right-hand side of (2.4.3), we are lefi with integrals over w. It

is then immediate to see that, by virtue of Lemma 2.4.1 and Poincaré’s inequality,
N(E)vsv) < C / |Ag|2dw.
Now,
D) (v, v,) = f [E2e2|Vol? + P]8(e ).
il
By virtue of the relation
§e) = 14 %6%(z.0),

where §%(=.0) is bounded uniformly with respect to £, we have, for = sufficiently
small, that §(z) > 1/2. Thus, with a further appeal to Poincaré’s inequality, we

liave

Dic)ve,ve) = C-'f :,::'?ﬁ.’u;h

 Thus,

AP
'ffI:E} < min max M
yEWl"'PEH'F _L.'-,’?ﬂfw
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But the min-max expression on the right-hand side of the above relation gives exact]y

the [-th eigenvalue of the two-dimensional elliptic eigenvalue problem

Aw = Aw inw }

w=dw = ( on duw. (2.4.8)

This completes the prool of the theorem on setting K({) = A(l), where A(l) is

the [-th eigenvalue of the problem (2.4.8). x

2.5 Passing to the Limit

Theorem 2.5.1 (a) For cach pesitive integer |, there exists a subsequence (still
mdezed by = for convenience) such that (€'(c), u'(2)) converges in R x V to (£, u'y;
Jurther, w = ¢4 € H?(w) and

I

ur_, = t:.i - J-"3{:]11'l*;;;,w fﬂ!" oy = 1-\.! {2:]-1]

with ¢! & H{w).

(b) The pair (&',¢") where ¢' = (¢, ¢4) € (H)(w))? x H3(w), satisfies the follow-

ing vartational equations:

= [ sl @)oot + [ (¢80 = € [ G

(2.5.2)
f nl (CNFanade = 0
forall p e (H}(w))* x H(w), where
Mapl({3) = — [mz—}ﬁmﬁl.a + ;:rl.”m] : (2.5.3)
2050 = o (C)our+ 2l () (25.4
or it X _]_2“ o o o f? suhs
and
I = = 1 = L "
enl€) = 5(0ulo + o) + (Dub0Ga + 0a00,G). (25.5)

fm* € E(HNw))* x HYw).
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Remark 2.5.1: On the face of it, it looks as though the tensor e’(¢) defined by
(2.5.5) is different from the one defined by (2.3.13). Indeed, in view of the relation

(2.5.1) connecting u' and ¢'. we have

I

€ap(t') = €4p(¢') — 230apCa.

Notice that the tensor e defined by (2.3.13) is of order 3 while the one defiged

above in (2.5.5) is only of order 2. Pl

Remark 2.5.2: The coeflicients occurring in the expressions of Map and nf; are
one hall of those prescribed by Ciarlet and Miara [18]. We will defer a detailed

comment on this until Section 7 (¢f. Remark 2.7.1 below). '

Proof. The proof is similar to that of Theorem 1 of Ciarlet and Miara [18]. Through-
out the proof, the various generic constants appearing in the inequalities will he

independent of = but could depend on 6.

Step 1: Boundedness of the eigenvectors.

Setting £ = £/ and @ = @*' in (2.1.5) and using the assumptions (2.3.10), we get

2,“];15 _{ﬁcr‘}gfj{ﬁs,i}di:g 5 EEI’—/ﬂ r[..h.‘fdli_
=: hysdge e
fﬂ N2.5.6)
a _2I 3
S f[ (2) + *(up(e))]8 (<) da
= £¢(e)

in view of the normalization condition (2.3.36).
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We next have
o o, o () (@i
s 1
= 2ue” (‘_I_[ﬂ {egj{ur{fj] +E" [ H]I} di

3:, fﬂ 2 {easlu!(e) + elae, B! ()} {1 + 6%2.0) ) e

efi(e. 00 (e))} {1 + 220%(

[Z{rzm ([

[=3%1]

e (e, 0;u'( } {l 0% (c }ci:.':)

and whence

jZ{c,J (u'(e)) + e (e, Oiul(e))} do (2.5.8)

2.3.22)).

‘:'#fﬁ fu{u” ::U{u‘E

for ¢ < min{l, } (ef.{:

2 c: (@)
The inequalities (a + 3)* > % — 3%, (2.3.28) and (2.3.30) then imply that

i {etwt

&

=

=

fnr & 5 ?‘THH =] f:”

)+ elef (e, 0| ]}} d

'l Z| {ur{ |u a _4Z|
(M0} = 9L (0)F7) (o)1
105(0)

(el g

B ﬂ}{ 1{#}}

w'(e))f;

Hence step 1 follows by combining relations (2.5.6) and inequalities (2.5.8)-(2.5.9).
Step 2: Il we denote K™ (z) = Ka(u;{sj}, then the norms |Kﬂ‘1{fjlu o are bounded.

To see this, we simply combine the triangular inequalities

Kap(e)lyq < [eholu'(e)) +e*edyle, 0inl(e))],  + < |efie, 50,
|

Kool < < letaw!(e) +fefie,0,ul(e))]  + = el 0.u(e))],

; 1 ;

K5i(e),q < E—z|a§3qu*|:s})+eﬂg§3(f_~,a,u*(sn[m+|anar¢,ug{s)]m
+efle, 02 (e))]
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with relations (2.5.6)-(2.5.7) the boundedness of the family (w!'(2)).5p in the space

H'(0) established in step 1, and inequalities (2.3.28).

Step 3: By step 1, there exists a subsequence, still indexed by & for convenience,
and there exists an element u' € V such that u'(z)—u' weakly in V. Since the
sequence {I{'E'{{e]}:}u is bounded in L*(€}) (cl.step 2 ), there exists a constant D8
such that

|eds(u'te))],

Dy (0)z . |c§3(u!{£}]| < Dy(0)= (2,5.10)

51 = o —
by definition of the function A'%'(=). Since a norm is a weakly lower semi-continuous

function,

a(u)], g S liminf|ehy(a'(e))], =0 (25.11)

and whence ft?3|[ur) = (. This in turn implies that ej(u') = 0 and a standard
argument (cf.[6]) then implies that the components u! of the limit %' are of the form

given by (2.5.1).

Step 4: By step 2, there exists a subsequence, still indexed by £ for convenience,
and there exists an element K™ = (!fﬂ'!) € L*(0) sueh that K*'(z)—= K% weakly
in L*(£2) as e—0 (we may assume that the subsequence found in step 3 and 4 are

the same). Then

-8, N -, P
'F"r:pf = Pﬂ'ﬂ{u :I h:; = fg, = ﬂ, ﬁ.’??f == _.:’; 4 2,!:[ fip{ﬂ'i}' EJG].J}

Since Koh(e) = ef j(u!(2)) and w'(z)—u! in HY(Q), it first follows that

Ko —sef () in L3(Q). (2.5.13)
We next note the following easily established result: let w € L¥(}) be given; then
jﬂwah;t:d:: =0forallve HY Q) :v=00n " = w =0, (2.5.14)

Letting va = 0 in equation (2.3.34) and multiplying by ¢, we get

fu I (2)Byvade = € ()R (e, 0 KO &), ul(s), v) (2.5.15)
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[~

with

sup [Riz. 0, K, u,v| < Dy(0)(|Kon + ||u|lia + Dol g (2.5.16)

0<e<eg
for all (v,) € H'(2) that vanish on I'. For each such (v,), the left-hand side of
(2.5.15) converges to fﬁ 2l dr as £—0, by definition of weak convergence, and
by (2.5.16) the right-hand side of (2.5.15) converges to 0, since a weakly convergence

sequence is bounded. Hence f K38sv,dr = 0 and thus KP4 =0 by (2.5.14).
Q
Letting v, = 0 in equations (2.3.34) and multiplying by 22, we find that

L{Mﬁﬁj{a] F (A zmngj{sj} Byvadr = e€'(e)S(e,0; K*(2), w'(c),v)  (2.5.17)

sup [S(e. 8 K, u,v| < Dy(0)(|Klog + [|ulli0 + 1)[v])0 (2.5.18)

Doy

for all va € H'(Q2) that vanishes on . Hence passing to the limit as =—0 gives

[ﬂ {ARS + (0 +20) K7} Byvadz = 0 (2.5.19)
and thus the last relation {2.5.12) follows by another application of the implication
(2.5.14),
Step 5: The function (¢4, (3) solves the variational problem (2.5.2).

To see this we restrict the function v = (v;) appearing in the variational equations
(2.3.34) of the form
s = 25 By = (2.5.20)
with 7, € Hi(w). s € Hi(w). A simple computation then shows that the equations
(2.3.34) reduce for such functions v to
B Y ; Ly i
fﬂ {XKE ()80 + 2R3 () {r}.,uﬂ — (@005, + dnﬂr}gvﬂ}} A5
i fn [ARZHE) + (A + 20) K3 (2) } 8508,03de
+ B (e, 6, K™ (2),v) + £ B (=, 0: %/ (), v)

e)Die)u'(2),v). (2.5.

| 4]
o
[
—
e
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Passing to the limit as e¢—0. and taking into account the relation

AI{E;JI + (A + '.Z,e::lffg&f =10 i (2.5.22)

that was found in step 4, we are left with
1
[ 5300 + 20k} { 0, — (00000 + 0,0, ua) } d

- f*’fnuauan.'r (2.5.23)

forall v = () of the form (2.5.20). Once the components u! of 2 have been replaced
by their expressions (2.5.1) and the components v; of v have been replaced by their
expression (2.5.20), it is verified that equations (2.5.23) coincide with equations

(2.5.2),
Step 6: The family (u(z)).s0 converges strongly to ' in H'Y(Q).

To show this, it is enough to show that the family (e®u'(2)).sn. where ef(u!(2)) 1=
{efj{u"{::]}} converges strongly to e”(w!) in L*(0), as the conclusion will then follow

from Lemma 2.3.3.
Given two symmetric tensors § = (s;;) and T = (¢;;) in L¥(£2). let
]i; AS : Tdz := L{Asppsw + 2usit; b, (2.5.24)
Then we have:

.,
2u|K(e) - K, < /ﬂ A(K® () — KM (K () — K™Yda

= j} AK® (K% — 2K% (e))dr + [ﬂ AKM(e) KM ey de  (2.5.25)
1 .
It is easily checked that, when v = u!(g), equation (2.3.34) can be written as

fn AK"(e) : K"(c)dx + e BY (2,0; K™ (=), u'(c)) = €(e) D(e)(ul (), u'(=))

(2.5.26)
where
sup |B3 (2,0, K, v| < Dy(0)(| K3 + |lv]2g) (2.5.27)

O<elep




(CHAPTER 2 SHALLOW SHELLS 24

Using the bounds (2.5.27) and the weak convergence of (u'(z)).sg and

(K“'(2)).s0, we infer from (2.5.26) that
]ﬂ AK®(2) s K} do—se! / G i as.e—50 (2.5.28)
and thus

{[ AR (K 2K () 4 S AK ) - ey
_}{— fn AK® K%z 4 ¢ fﬂ l.’_:ﬁ_{;_-j{f;r'} as £—0 (2.5.29)
Using the last three equalities in (2.5.12), and letting » = w' in (2.5.23). we obtain
Using q B ( :
-Lt AK™ » K% dy :f {};H’f;: f'l'.';": + d,u."tﬂhm dir
:f (ARSI RE + 20 KK 4 AR 4 (A + 20) K K2 ) de
f{}nh“ﬁaﬂ—l—?ph SR de = ¢ fl:,,,gqnfr (2.5.30)

Hence it follows from (2.5.25) and (2.5.29) and (2.5.30) that () ) evn converges
strongly to K™ in £3(0)

Note that ¢%(u') = 0 and hence

! 6.
le'(w!(s)) — e “(u! oo < Z |f1m; ﬁu,ﬂ'%.ﬂ

3

+?~EZ|hua Moo +e' | Kas ()5 +2'10ubalb(e)B g (2.5.31)

‘and the conclusion follows. "

Remark 2.5.3: As already mentioned in the introduction. there is an lmportant
difference between the limiting equations obtained by Ciarlet and Miara [18] and the
equations (2.5.2) obtained above. In the [ormer, the right-hand side of the second
equation 1s a function of the horizontal components of the forces whereas in the
latter, we get zero. This is because the horizontal and vertical components of the
(displacements and the forces have been scaled in different ways by Ciarlet and Mi-
ara [18] to balance the different powers of £ occurring on both sides of the equation.

n the case of the eigenvalue problem, we can scale only the displacements and the
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[ ]
(i |

_a?genva]ues and hence the powers of £ do not get balanced. The equations (2.5.2)
obtained do not give an eigenvalue problem in (/1] (w))? = H2(w) corresponding to
the problem obtained by Ciarlet and Miara [I8]. [nstead, as we will show in the
following section, we get a two- dimensional fourth order elliptic eigenvalue problem

in which the eigenvector is the third component ¢} of the vector ¢'. B
P i

2.6 The Limit Problem

In this section, we will analyze the limit problem (2.5.2). In particular, we will show

that it can be considered as an elliptic eigenvalue problem in the third component

~alone and that the limiting pairs {(£',¢})} completely describe the spectrum of this

problem.

Lemma 2.6.1 Given (3 € H}(w), there exists a unique vector (C,) € (H! (w))? such
Ehﬂt_l ifc = {{:01{:3}.-

f niE{C}ﬂgqnﬂ!’w =) (2.6.1)
Jor all (n,) € (H}w))2.

Proof. Set 7 = (.) € (H}(w))? and define the usual strain tensor

. 1 .
ﬂ.;.-;a{'il'}':l = S{aﬂnf} + dﬂ”{rj~

Then consider the bilinear form

[ 2hu

a(¢.9) = [u A+ 2u

Ep.ﬂ(&ﬁnﬁ + 3,“*-.:;;{&}} 1)t

_-/Ek,u_[-— =i 5 25 sta ] 4
= _mcm Cleaa M) + 2peaa(C)ean(fy)| dw.

This is a symmetric and (H(w))* elliptic bilinear form and hence by the Lax-
Milgram Lemma, given (f,) € (H™')% there exists a unique ¢ € (H!{w))? such
that

E{E1 N =< foita >
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for every 77 € (H]{w))?. The result now follows by setting

< fasTle >=— f Pon G ) Bgrpacle

where

A+ 2u

ﬂi;j‘{{:S:I = (s 00:C)0an + 1020850 + Jatld,(a)

Thus, given (3 € HZ(w), we denote by T'¢y € (H}{w))? x H?(w), the vector
(CasGa) where (() € (H]}(w))? is the solution of (2.6.1). substituting this in the

first equation of (2.5.2), we can rewrile it as

b(CL, 7s) = & fu Chyd (2.6.2)

for all 3 € H2{w) where
I!J{'{:;_;.,?’j';” = _f mnﬂ[iﬁ}au.@ﬂﬂd'-‘;'f‘fHEH{T{;J}I":}”HE}HHJEM. (2{1?!}

Lemma 2.6.2 The bilincar form b(.,.) defined by (2.6.3) is symmetric and 2 (w)-
elliptic.

Proof. Step 1: First of all, we have the following

Claim: The bilinear form

B(C.m) = — f maa( G ), gnadw + f ngﬁ[CHﬂaﬂﬂ;,r;g + dan, |dw

defined for ¢, ;€ (H!(w))® = H2(w). is symmetric;

Assuming the validity of the claim for the moment, we can conclude 1he proofl

of the symmetry of 0(.,.) as follows, Let (3,14 € H3(w). Let (C), (na) € (H(w))?

(4]

I:ue such that ((a,(s) = 7'y and (5., m:) = T'ps. Ther,
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[a
=1

b)) = — [, map((s)0agnad + [, :f_ﬂH[T'L_j;Jﬂnﬂﬁ”r;;;du

+ [, n? al T'Cs)dan,dw
since the last integral on the right-hand side is zero by virtue of the definition of 7'

Hence,
b(G3sms) = B(T s, Ts) = B(Ts, TGs) = blrpa, Cs).

This proves the symmetry of b(.,.). Thus, we just need to substantiate the claim.
Step 2: Now,

el 2Ap . 2 .
—j;maﬂﬂa}daﬁf?ﬂdw = j;[mﬂfaaﬂ?}a+§.113m3t,;+daﬁfh e

—] —f anﬂfﬂg]an.'?t_.-;}d‘w

which is symmetric in {3 and 73 Further,

[ st tmmades [ ()
2Apn i . 1
= /w >+ 2 (3260 + 0,00,C] [0, 00,13 + Bans) du

1 ! o s . . =
-|-f 2 [eﬂﬁ{Cj + 50,0850 + dgf?dufm]l] [0:005m + Sm, | duw

T ; . ;
- j:, L + 2 €l €)eaaln) + 2neg,(C)eqs(n) | du
which is also symmetric in ¢ and 5, thus proving the clain.

Step 3: We now prove the ellipticity of the bilinear forimn. By definition, the integral
[ S TG0 ) e

is zero and hence, replacing nz by G in (2.6.3) and adding the above integral to the
right-hand side, we get

5{9'31 '5.'1} = H{TI:.]‘ f{,,g}

where B(.,.) is the bilinear form associated to the lefi-hand sides of the equations

%ﬁ?j A simple computation shows that
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4 n

1 ; ]
B = [ o {50m) + (el () o

1 - | _
g {5 2 |Gagmalp, + 32 Ifi.e{n}lé,u} (2.6.4)
a8 o
By Lemma 2.3.3, there exists a constant €' > 0 such that

T |E?J(U]i§,n > Clofig forallve V. (

L

| R
£
o1 ]

Given arbitrary elements 9 = (5., ) € (H3(w))* x H}{w), the function v = (v,)
! ﬂéﬁned by v, = 1, — ra3f.nz and vy = 11, belongs to the space V. It is then easil ¥

verified that, for such functions v, inequality (2.6.5) reduces to (note that ef, = ()

) . : 2 .
Z |fi;5r{“}|ﬁ'.n =2} If‘iﬁfﬂ“iw 2= qz |5aﬁ?i':s]é,u
a3 o3 -

- - o ?.(.:’r — A B o e
> Clola = 20 ¥ 10umsl + - X [0aamli, +4C X 0amli,  (266)
o3 % L 1
Hence the relations (2.6.4) and (2.6.6) together imply that there exists a constant

[ =0 such that

B(n.nm) =4 {Z |Basmals, + 5 |ﬁuqﬂiﬁ1w} (2.6.7)
o, 7 o, 7

Since the mappings

(na) € (Hylw)) =ngli. = {Ziﬂarrﬁlﬁ.u}
o

P

1 € Hilw)=nslaw = {Ziﬂaurmlﬁ,m} (2.6.8)

ve 1

are respectively equivalent to the norms ||.||y. and ||.||2., over the spaces (H!(w))?

and Hi(w) the bilinear form B(. ) in elliptic over (H}(w))? x H2{w). Thus
b(Cs:Ca) 2 BT C)alli e + NGslI3,) = BIGIE.

and the proof is complete.
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Thus, given [ € H*{w), there exists a unique (3 = Af € H?(w) such that
!‘[AJF'.- Fh} =< .||r1 Ifa =
forevery ny € H2{w). Hence the system (2.5.2) is now equivalent to finding (£, (3) €
IR x H?*(w)\{0} such that
-'”E{;SJ = (3.

‘The injection H](w) — L*(w) 1s compact and so we have a sequence of eigenvalues

tending to infinity and eigenvectors which form an orthonormal basis of L*(w).

‘Theorem 2.6.1 Lt Ele)—E and let w'(e)—u! in V. Then € is the {-th E1gern-
value of the problem(2.6.2) (which is equivalent to the system(2.5.2)) and {ul} is
an orthogonal basis for L*(w). Thus, all the eigenelements of the limil problem are

obtained as limits uf{l[Ef(r:}!H'![EH'}?:}l-

Proof. Step 1: Since we already know that

0<Ee) <)< - <€) S EHF Y(2) < .-

My 4

‘and since b(.,.) is elliptic. it follows that

B & €682 wmad g,

Since the operator A is compact, its cigenvalues are all of finite multiplicity. Hence
it follows that the sequence {€'} is unbounded. Thus, £'—eo as [—o0o. Further the

‘orthogonality condition (2.3.36) vields, on passing to the limit

fn ufiu;ldz' =i

‘which in turn gives the orthogonality condition

| .
f i dos = S, (2.6.9)

?Stl;p 2t There are no other eigenvalues of the limit problem. (This will complete

the proof of the theorem). Assume the contrary. Let £ € I be an ei genvalue such
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that € # € for all L. Then there exists an eigenfunction (a such that

j Cw = % and f CaChdw = 0 for all L (2.6.10)

For each = > 0, let w(c) € V' be the unique solution of the problem

N(=)(wle),v) = ¢ fﬂ Bowads (2.6.11)

-a.nd that w, = z, — rad,z3 and that wy = 2, € Hf[wj. Further, il z =, (z

e 23]?

b z3,1a) =§Lf;3.ﬂadw (2.6.12)

St ep 3: Sinee the sequence {£'} is unbounded, choose  such that

£< g (2.6.13)
Consider the vector

v(e) = w(e) - :2; De)(w(e), u*(e))u’(z).

Since D(s)(v(e), u*(c)) = 0 for 1 < k < 1, it follows, from the variational character-

ization of the eigenvalues, that

N(e)(v(e), v(<)) ,
O S D) (e

| Let us evaluate the numerator and denominator of the right-hand side of (2.6.14)
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~ On one hand, observe that

Nie)(w(z),w(e))

Il

& Jo Carwal)de
= 26 [, Gdw,
Ne)w(e).u¥(z)) = €)D(e)(w(e), ut(e)),
Nie)ub(z)u™(e) = )bk,
Die)(w(e), uMz)) = [foletwa(z)ub(e) + wale)ub(e))b()de
— 2 [ CaCldw = 0,

Combining these relations we pet

N{z) (o). v(z))—2¢ f Celo.

Lat

|
‘On the other hand, it follows from the above relations that

vie) —w(s)—=0in V.

Jiy D(E)(v(e). 0(6)) = Jimg Die)(w(e), w(e)) =2 [ o

r;e, passing fo the limit in {2.6.14), we get
fH_I <= E

| which contradicts (2.6.13) and the proof is complete. .

‘We have used the method int roduced by Kesavan [24] in the study of the homoge-
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2.7 The Two-Dimensional Model

We now “descale” the functions (. u} and the eigenvalues £ obtained in Theorem
'25.1. to obtain the two-dimensional model approximating the three-dimensional

;p_rﬁh.lam. In view of the scalings (2.3.8) - (2.3.9), we now define
p-

¢.I_,:

a o G'=c¢h on w  and =22 y—193,. ... (2.7.1)

We also define

el

d (0)(©%(2)) = cuy(w)

for all 27 = 7z € 07, where ©° : {F—0° and 7 : 1T are as defined in Sections

BE0)(O(%) = 2l (x) } (2:7.2)

2and 3. Then we get the following result.
Th_eurem 2.7.1: (a) The pairs (£, ¢ € IR HZ(w)\ {0} satisfy the equations

_-/ﬂtrrﬁicsﬁ }duﬂn-.id[""—l_f |.'r,L‘l" EE G} 'H d-‘aqul‘.v{w — 'EE-J-/ L:;'t”:dw

(2.7.3)
”ffi( Ci"l Jihan,dw = 0
::_l:q;' all n = (1., ) € (H}{w))?* x H2(w), where
et pe 2Au
mealls) = —&? [?M—-I—.E__]I Cilap + ;lﬂr,ﬁi.q] ; (2.7.4)
nla(cy = 220 (eeyg o 4 2l (¢t (2.75)
orfd )1-5-3 ,r.u! [Tk a3 o
and
£ |
O€7) = 5(0aG5+ uC5) + 5D Do + 00" DuC5). (2.7.6)

t:."[ri{'emll that A and p are the Lamé constants of the material the shell is made of

and that 87 = 20 is the middle surface of the shell.)
(b) The descaled functions @*'(0) approximating the eigenvectors ™ are given by

G O)NE) = (o 2a) — 25B.C (01, 22) }

ENO0NE) = ey, ea) (2.7.7)

t all points #* = ©%(x, w0, 25) € ar,
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As in the previous section the problem (2.7.3) can be expressed as a fourth order

elliptic eigenvalue problem involving the pair (€74, 5 alone.

Remark 2.7.1: We already observed (ef. Remark 2.5.2) that the coefficients ob-
tained for m.g and nf in this paper differed from those obtained by Ciarlet and
Miara [18] by a factor of 2. Now we further observe that in the descaled muodel,
the coefficients of m¢ ; and nE; differ from those obtained in [18] by a factor of 2:
Indeed, we can reconcile the two models as follows. Instead of defining p (in the

absence of surface forces) as the integral of 7 over [, &], we should rather define

il as the mean over [—.;‘.:‘], i€,

[ £ ;
pi= o [ fredas,

e -

We feel that this is more natural and it also removes the discrepancy between the

models obtained for the stationary and the eigenvalue problems. Of course. in the
presence of surface [orees, we will then get terms i{gﬁf +g, ") in pf and (g7 —y7*)
in s, (cf. [18]) which have to be suitably interpreted. M

2.8 Conclusions

We have started with the three-dimensional eigenvalie problem for a thin shell

“and obtained a two-dimensional model based on the shallow shel] assunplion as in

Ciarlet and Miara [18].

The principal difference between the models obtained for the stationary and
‘eigenvalue problems is that in the latter case, it is possible to express the two-

dimensional problem as a problem involving only the third component of the eigen:
vector.

This situation is reminiscent of plate theory (cf Ciarlet and Kesavan [LE]).

Indeed, this is perhaps to be expected for we have assumed that 05 = =6 which
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 to zero as =—0. Thus, we can expect the shell to behave like a plate. Further,
e set 0 = 0, we recover the results of Ciarlet and Kesavan [11] for plates. In

ar, we can see that (! =0 fn_f all 1.

- The other difference is a minor one, concerned with the presentation of the model.
lained in Remark 2.7.1, the coefficients of the limit problems obtained in the
b cases differ by a factor of 2 (22 in the descaled models) and this difference can
cconciled if we put the mean of the forces in the ws-direction (rather than just

their integrals) on the right-hand side of the limit problem in the stationary case.



Chapter 3

Rods

3.1 Introduction

In this chapter, we will derive a one-dimensional eigenvalue problem that describes
the limit behaviour of the three-dimensional eigenvalue problem of a thin linearly

elastic rod when the thickness of the rod goes 1o zero.

The study of lower dimensional approximations of three dimensional eigenvalue
_problems from the mathematical viewpoint has been done in the works of Ciarlet
and Kesavan [11] for plates, Le Dret [29] for folded plates and Kesavan and Sabu

[25] for shallow shells ( ef. Chapter 2 ).

In each instance, one or several portions of the whole three-dimensional strue-
ture have a small thickness which we denote by ¢ Then if the varions data behave
a5 specific powers of ¢ as € — 0, one can establish the convergence of the (appropri-
'.;alel_y scaled) components of the displacement vector field towards the solution of a
lower dimensional problem. In this chapter, we likewise establish the convergence
of the eigenvalues and the associated eigenfunctions towards the solution of a one-

| dimensional eigenvalue problem in the case of thin rods. We now briefly outline the

problem studied in this chapter and describe the results obtained,
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Let w © IR? be a bounded domain and let

Qe =ewx (0,1} %, = 30N {23 =0}, %, = 00N {23 =1} and 7, = 7, U7,.

(3.1.1)
For all 3 x 3 tensors ¢, we define

(AC),, = Audy; + 2u(;, (3.1.2)

‘where A and g are the Lamé constants of the material. We then define the space of
“admissible displacements as

V= {v" € (H3(0,))% v =0on ). (3:1:3)

For each admissible displacement v*, we define the linearized stress tensor e{v')

ei(v)) by

|
gi(uf) = 5wy + 85vp) (3.1.4)

'r'.fur I <,3 < 3. Then, the eigenvalue problem consists of finding pairs (u', £) &
V\{0} x R such that

/ﬂ (Ae(u))jeq(v)dr = € fn i (3.1.5)

for every v* € V' with the convention of summation over repeated indices. It can

._:.bﬁ:sliﬂtvn that there exists a sequence of eigenpairs {(u*', £°)};2, such that

h< g @t grvggg o ee (3:1.8)

I} forms a complete orthonormal basis for (LA

We then transform (3.1.5) into an equivalent problem over @ = w x (0,1) after

suitable scalings of the variables £ and u*,
In this fashion, we obtain scaled eigenpairs (u'(e), £'(¢)) € V\{0} % I? where

V={ve (H(2);v=00nv} (3.1.7)
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which satisly variational equations in which ¢ occurs as a parameter. We show that
as e — 0, w'(e) = u' in (H'(Q))* and () — € for each fixed ! for a suitable

subsequence. We also show that

]

w, = Ch(ea), uh = —za(C!(23)) (3.1.8)

for some ¢' = (¢!, &) e (H2(0,1))%. The pair (€', £') is an eigenpair for a fourth
order elliptic problem posed over (0,1).We can also prove that every eigensolution of

the limit problem is a limit of a subsequence of (u!(¢c), £'(¢)) for some integer { > 1.

There is an important difference between the one-dimensional model abtained
by Le Dret [28] and the eigenvalue problem studied in this paper. The former is a
system of coupled fourth order equations involving all the components of the limit of
ufe). The latter involves only the horizontal components. We will comment about

this in greater detail later.

This chapter is organized as follows. In Section 2 below. we describe the three-
dimensional problem. In Section 3, we transform the problem into one posed over a
fixed domain and in Section 4. we study the limit problem. Section 5 is devoted to

concluding remarks.

3.2 The Three-Dimensional Problem

Throughout this chapter, the Latin indices will vary over the set {1,2,3} and Greek
indices will vary over the set {1,2} for the components of vectors and tensors. The
convention of summation over repeated indices will be used in conjunction with the

above rules.

We consider a family of three-dimensional, isotropic, homogeneous, linearly elas-

tic bodies whose reference configurations are the sets 0, defined for all ¢ > 0 by,
e S B ) € Fij,{rhrg} Ew,,l <23 <1} (3.2.1)

there w, = € w and w is a bounded subset of IR, ie, straight cylinders in #2° with
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axes 1n the ry direction of length 1 and cross section w, in the (zy,25) plane We

refer to ¢ as the thickness of the rod under consideration.

Without loss of generality, we may assume that

f:ﬁldz:ldx-z:fx-_;ri;rlrfn =f1:1.r?ri.r|d.1'g =10 (3.2.2)

which means that we choose the origin of coordinates at the centre of gravity of w,

and the coordinate axes to be the principal axes of inertia of w. Let 1 be the 2 % 2

inertia tensor of w whose components are

Ly = f Satpdayduy: (3.2.3)

We let v, = 90, N {23 = 0} and v, = J, N {xy = 1} denote the ends of the
rod and S, = #2, N {0 < 23 < 1} denote its lateral surface.We assume that the rod
is clamped on both ends; if v° is an admissible displacerent vector, then the stress

tensor corresponding to this displacement is given by = = A(e(v")),

The usual scalar product of two vectors uw and v will be denoted by w.v = u;.v;

and the usual scalar product of two tensors 7 and & will be denoted by 70

7;;0:;. With this notation, the eigenvalue problem for the rods under consideration

admits the following variational formulation.

Find (u*, £°) € V*\{0} % I such that
[ Ae(u): e(v)de = € [ wvtde (3.2.4)
I, i,

for all v* € V",

The V* ellipticity of the bilinear form appearing in the left-hand side of (3.2.4)

éd_:_t;':-'lIf.w.r:i from Korn's inequality. Hence for each f* € (L*(12,))?, there exists a unique
w* € V* such that

f Ae(w') : e(v*)de = j Futds (3.2.5)
i1 L
rall ot e V-
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We denote w* = G*(f°) and thus 7 ; (LE())* — V* defines a bounded
linear operator, Since the inclusion V© <3 (L2(£),))® is compact, we can consider
(+* as a compact linear operator of (L*(2,))% into itself. It is also clear that € is

selfadjoint. Thus problem (3.2.4) reduces to finding u® € V* and & £ R such that
ut=E0 ut).

From the spectral theory of compact, selfadjoint, linear operators it follows that

there exists a sequence of eigenpairs {{u*', £)72 } such that

0 < Ef.l {_: E’--z E:-_ E ,E"'! E e (-i.&h}

fﬂ utt witde = 6, (3.2.7)

The eigenvalues (£°') can be characterized via the min-max principle for the

corresponding Rayleigh quotient by

A “) s elvt )z
{hf == ]Tlil-l max ,J’ﬂ‘ ?{‘u :' {U :]f ! ::J,E.HJ
WE'I.J[" U'EW jﬂ-e U{.'UEIIT

where Vi denotes the collection of all (-dimensional subspaces of V.

3.3 The Rescaled Problem

We set 1 = w = (0,1) and y = 90N {3 = 0,1} and with each point = € . we

associate the point 2* € €0, through the bijection

£

7t ir = (1) € Q= x* = (exy, exq,7a) € Q. (3:4:0)

Given v € V', we associate the scaled function v(e) € V where
V={ve(H()):v=00n~} (3.3.2)

wvia the relations

v (a') = va(e) ), v(z") = cvale)(r) (3.3.3)

or all & = 7*(x). We also scale the eigenvalues as follows:

£ = 2£(€): (3.3.4)
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Based on the above scalings and the routine calculations of change of variable

in the integrals, we deduce that for a given ¢, the rescaled eigensolutions of (3.2.4)

satisfy the following variational problem.
Find {(u'(e). &'(e))}72, € V' {0} % IR such that
J bt v = €40 [ (ale)vs + ugfe)es)da (3.3.5)
for all v € V', where the bilinear form b, is given by
blw.v) = ¥ 2pesslu)e,s(v) + enalte)ess(v)]

e dpeaa(u)eqas(v) + Meaa(w)eas(v) + eas(uw)eqa(v))]
(20 + Meas(w)eaa(v).

(3.3.6)
and the rescaled cigenvectors {u'(¢)}2, satisfy the normalization condition
[ﬂ (uale)uge) + uy(ehuf(e) )z = . (3.3.7)
The variational problem (3.3.5) may also be rewritten as
f ot elodde =€e) [ (ualehun + uleus)de (3.3.8)
for all v € V' where the rescaled stress tensor o(€) is defined as
Taple) Zpeeap{ulc)) + Ale e, (ufc)) + e 2ess(ulc) )18,

Tasle) = 0salc) = 2uePeas(u(c)) } (3:3.9)
oale) = (2p + Meaalu(e)) + Ae2e, (ule)).

If we introduce the auxiliary tensor y*(e);

Xaple) = E_Eﬂa_ﬂiu{f]}}

Naalt) € ' eaa(ule))
Vaale) eaa(w(e))

the rescaled stresses assume the more homogeneous form

Taale) = '-'_‘E[Q.Hknﬂ{f]"!'J*.'ﬁ;wlc}fjc.s]l]

(3.3.10)

Il

g.:.‘i{’r-} = U’-"I-u{r'-] :I)#E_I\UJE(}

(33.11)
el = 2pxaale) + Avile)

Tapl€) = € ANX())ag;  Tasle) = e (Ax(e))ua: aasle) = (Ax(e))aa (3.3.12)

e denote the tensors o{¢) and x(c) associated to the eigenvector u!(c) using the

bove formulae by o'(e) and x'(¢) respectively,
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3.4 The Limit Problem

In this section we prove that the various unknowns involved (u'(e), €'(e)) satisfy
appropriate bounds, which upon extraction of a subsequence will allow us to consider
limits for these unknowns as ¢ — 0.Then, we will identify the one-dimensional
problem satisfied by the limits. As these limit problems will turn out to be well-
posed eigenvalue problems, we will thus be able to determine precisely the limit

unknowns as being the eigenvalues and eigenvectors of the limit problem.

To begin with, let us consider the eigenvalues £/(¢).

Lemma 3.4.1 For each integer | > |, there exists a constant k' (independent of ¢
such that €'(e) < &

Proof. Since the problem (3.3.5) was derived lrom (3.2.4) after a change of variable

and change of scale, the eigenvalues can be characterized as follows,

£(e) = min max Ja belv,v)dr

: Lpd 3.4.1
WeviveW [o(vd + ¢fui)dr ( )

where V; denote the collection of all L-dimensional subspaces of V.

Let Wi denote the collection of all {-dimensional subspaces of 120, 1).

For 2 € W € W, we define

v, = {ples)p(ra), (21 + 22)(23)} W = {0, s p € W) (3.4.2)

"Then it is casy to verify that We V; and €aplVi) = fualvy) = 0. Hence it follows
from (3.4.1) that

1 o Iﬂ. bt‘{'ul;q v;}ﬂl.!'
Hfr'nEI'Pr'i'J E]E%V Iﬂ[{'“a?):i 4 r?-{;_,w }%}dl
= min max Jo(A + 2“)‘533(”#]53:?{“@41
WeWw, el J};[{w}ﬁ + ﬂz{“;}ﬁ]di‘

i P
. dir
{ min max Iﬂ—gu
WeW, weW J;] L'Dzdit;;

E'(e)

b
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where (7 is a constant independent of ¢. The expression on the right-hand side of
the above relation gives exactly the I-th eigenvalue of the one-dimensional elliptic
eigenvalue problem
dw
&y = , (3.4.3)
wil) = w'(0) =w(l) =w'(l)=0.

This completes the proof of the lemma by setting &' = CA({) where A(!) is the

I-th eigenvalue of the problem (3.4.3). 1

Let us now consider the eigenfunctions. To begin with, we need the fallowing

lemma that will be used in several instances in the sequel.

Lemma 3.4.2 Letw C IR" be an open, connected, veqular subsel of IR7 and let P be

a continuous linear operator from H'(w; IR®) into L (w; IR™) satisfying the following
elliptic estimate:

ol oty < © (Ul ey PR ) for € ' ). (3.4.)

Let R be the kernel of P and R = L3(0,1: R). Then

e 5
wis Wl s= () 1Pullty, e ) (3.4.5)

defines @ norm oon L0, 13 H' (w; ﬁj"}),f"?i that is equivalent to the quotient norm

cand there erists a linear continvous mapping P from L0, 1 H'{w: IRY)) into R
such that

I 5 £}
[ —— ]ﬂ 1Pul,,,, g dt (3.1.6)

Moreover, of n € HY((0,1); L3 {w; IH"'” (resp. HL((0, 1}); L3 (w. ﬁ"]}}. then we have
Pue H'((0,1); R) [resp. HI({0,1); R))

T:,'g"lz_g't:f’f.: See the proof of Lemma 1 in Le Dret [28]. 5

emark 3.4.1: We will use Lemma 3.4.2 in the following two cases; n = 2

d either & = 1, m = 2, P is the gradient operator Pu = (&, du)" and
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R=1IR o k=2 m=4and P is the linearized strain tensor operator

(Pu)ag = (duus + dpua)/2, in which case (3.4.6) is just the two dimensional Korn's
inequality and £ is the space of two dimensional infinitesimal rigid displacements. In
both cases, we will use the immediate consequence of Lemma 3.4.2 that, if u,, is a se-
quence such that |||u,||| is bounded independently of n, then u,, can he decomposed

a8 Uy = vy + wy where v, is bounded in L0, 1; H'(w; 12%)) and w, € L2(0,1; R)

has the same regularity in t as w, (just set w, = Pu,) M

Theorem 3.4.3 a) For each positive integer I, there erists a subsequence (still in-

dezed by ¢ for convenience) such that (u'(c),&(c)) converges in V x IR to (u £
further there exists (¢) € (HZ(0,1))? such that

ul, = ¢! (za)yul = —2400 (23) (3:4:7)

b) The pair (¢, €') satisfies the following variational equation

v E
fu N ot gtz = ¢ f Chnud (3.4.8)
Jorall (1, ) € (HF(0,1))?, where £ = % is the Young's modulus of the material,
log is the inertia tensor and a = [, dxydz, is the area of w,

Proof. The proof follows the methad used by Le Dret [28]. For sake of clari ty, the
proof is divided into several steps.
S.MP 1: Boundedness of w'(¢) and x'(¢):

Taking v = u'(¢) in (3.3.5), we get

/Ax e)dr = E'(« ]/ (ul () + e (ub(e))? ). (3.4.9)

Due to positivity of the elasticity tensor A, the left-hand side of (3.4.9) is bounded

M
".-

from below by y||x'(€)|| L2(e2,a0)- Therefore using Kérn’s inequality. we have

f‘”“ [E}”Hl{ﬂ ") < pllefu'( E”Hi!m,w-} < H||XI{‘:|||i=m.M] <éEe) <k (3.4.10)

for ¢ < 1. This completes the prool of step 1.
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Step 2: It follows from step 1 that (for a subsequence) £(¢) — € in IR.au'(e) — u!

weakly in V and x'(¢) — x' in L*(2, M) and hLence it follows from (3.3.10) that

'\'f;:; = fHﬂ[“! )

(3.4.11)

‘and there exists a constant C (independent of €) such that

leaa(w'(e))lamy < Ce, lean(t'(e)) || Laay < Ce (3:4.12)

Therefore e,,(w'(¢)) — 0 strongly in L) for all o and i and as wl(e] = w' weakly
in H'(Q), we have e ;(u'(e)) = e..(2!). Therefore exil®') = 0 for all & and i. Then

a standard argument (cf. Le Dret [28]) shows that there exists [gi] € 'iHS(U,l}}'-’_.
¢h e HL(0,1) such that

g = CL(Ta) uh = Clxa) — 2l ().

(3.4.13)
Step 3:We have
—AMEE (23) = 2,00 (23))
I o "!I. — a3 " ! 2o
Ny Nz 2N+ ) ¢ X12=0
Nm = Ghlrs) — aaCl (2y) (3.4.14)

(We do not identify the ! ; components as they do not play any role in identification
of the limit functions !

Let w = (wy,wy) € H'Yw; %) and 0 € D0, 1)),

We consider equation (3.3.5) with admissible test function
v(ay, a2, 23) = (Wi, 22)0(23), wo(zy, 22)0(xa), 0)7 (3.4.13)
-multiply it by €%, This yields:

Jﬂ[':f'l.‘fr[fﬂaﬂﬂ.,ﬁ[w]lﬂ o t‘{.ﬂxl[nj}oamaﬂ’]dﬂv = LEEE(E}./E‘] u'(€)waOdr. (3:4.16)
sing to the limit as € — 0 gives

[ (AxVapean(w)tdz = 0 (3.4.17)
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Now, as this is true for all # € D{(0,1)), it follows that

f (A o deaplub)dsdis =10 (3.4.18)

for almost all = € [0,1], where w. = w % {&3 = z} is the cross section at height =
Choosing a countable family w, € H'(w; [#?) that is dense in HY w; 7%, we see
‘that (3.4.18) holds almost everywhere for all such w,. Let N be the subset of zero
‘measure of [0,1] on which (3.4.18) fails. For z ¢ N the density of w, in H' w IRY)
implies that (3.4.18) actually holds for all w € H ' (w; IR?).

Recall now that

(Ax Vag = 20X+ 20 + X )as (3.4.19)

‘with
Xhs = 3 (#3) - raC" (23), (3.4.20)
Because of estimate (3.4.10) on v/ 4(¢), it follows from Lemma 3.4.2 applied to

i,:[ﬂil[f}, ub(e)) with the two-dimensional strain tensor operator that ! (¢) can be
decomposed into

u,(€) = il () + 1 (c) (3.4.21)
where @, (¢) is bounded independently of ¢ in L2(0, 1 H' (w; 11*)) and rl(c) €
Jf}."_{'ﬂJ;Rg] where Ry is the space of two-dimensional infinitesimal rigid displace-

ents. Hence we see from equation (3.4.21) that \/ (c)

= e,a(W(c)). so that
by extracting if needed a further subsequence, we may conclude that there exists

it € L2(0, 1; H'(w)) such that

Vop = €apl(T) (3.1.22)

peets

et us now define, for almost all = € [0, 1], a two-dimensional displacement y' by

o w SHer L
Yz, o) = ( G (8] — ] ir}+m:a£{z})

F i S ) o {3':1"?3}
520G (2) — mpaa(2) + 2ol (2)

his displacement is such that e,p(y') = yid.s for 23 = =
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Therefore,
A

Al = (HEE + ot —af
(Axap = E(u+2{}.+m'yz

))an (3.4.24)

Using (3.4.24) in (3.4,18), we obtain:

wz{ﬂfr(ﬁ + ST “]yi Neaglw)dz dey = 0 (3.4.25)
for almost all = € [0,1]. If we choose
L S y! (3.4.26)
g{}t -I- #) =T PR

then, the positivity of the elasticity tensor A implies that

ewn(T + yl) =0 (3.4.27)

2(A A+ )
‘on almost all cross section w.. which is to say in €. This proves the claim, since
Xop = eap(®').

i*fffi_ter: 4: We define

Ven(R) = {ve Vidn, € Hj(0,1),ns € H0, 1),

Vol T2, a) = nals) vala, @a, 23) = nales) — 2.0/(29)}{3.4.28)
For test functions v £ V gy the equation (3.3.8) becomes
Lagz{(}fzgj{v]d:r = ¢ L{ML[E}U._—. + 2l (e)uy)dar. (3.4.20)
‘:-,’_fe know from (3.3.11) that a'(¢)s — ohy weakly in L2(Q) with
g = 2jtXa5 + Axi (3.4.30)
j...F can thus pass to the limit in (3.4.29) and obtain
./um"”‘g:* + xxb)es(v)de = € fﬂ ub i il (3.4.31)

r all v € Vgn(R2). Taking v = (0,0,7(x3)) and substituting the values of v, we
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|
L ¢Infidey = 0 Tor all gy € HI0,1). (3.4.32)
Taking 73 = (3 in equation (3.4.32), we get
j:{{ja'fti-??a =0 (3.4.33)
‘This implies that (¢!} = 0 and since ¢4(0) = ¢4(1) = 0, we have
Cs=Uon (0,1). (3.4.34)
_HEI'ICT.‘
Wy = ((2g),ud = —2all(x3) (3.4.35)
Xii = Xha= W Yha = 0, Xy = =20 (22). (3.4.36)

‘and the equation (3.4.8) follows by using the above values of u! and viand expressing

I;he test function v, in terms of their associated one-dimensional functions noin

(3.4.31).

We define

3 = = R | i A,
'7'.-l.ﬂ = Xam T35 = Xag and Tad =

plix'(e) = 7' lpamary < I/;i-*lix!(f-}—T“}:{xiif]'—“r!}ffm (3.4.37)

L[Ax‘(e} sx!(e) — AT (2% () = 71))da

L[EIIEJ[H*EELHT{E]} — A7 (2x() — )]du,

Il
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We can pass to the limit in the right-hand side of this inequality. by using all the

already known weak convergences, and thus obtain
plimsup [ (c) = T'llf ) < ]ﬂ €, ul) — A7 (23 — T)lde. (3.4.38)
=t

To conclude, we just remark that A" (2x'—7') = Ar' . 7' since the a3 component
do not contribute to this scalar product. By using equations (3.4.8) with 5, = ¢/, it

follows that the right-hand side of (3.4.38) is zero. '

‘Remark 3.4.2 : As already mentioned in the introduction, there is an important
difference between the limit equations obtained in Le Dret [28] and the equations
‘obtained above. In the former, the right-hand side of the second equation is a
::ffullct'lnn of the vertical components of the forces whereas in the latter we get zero.
This is because the horizontal and vertical components of the displacement and
forces have been scaled in different ways in Le Dret [28] to balance the different
powers of ¢ occurring on both sides of the equation. In the case of cigenvalue

problem, we can scale only the displacements and the eigenvalues and henee the

powers do not get balanced. This leads to vanishing of the vertical component
of the displacement and we get a one-dimensional fourth order elliptic eigenvalue
problem in which the eigenvector is made up of the horizontal components of the

vector u'.

Lemma 3.4.4 The problem (3.4.8) 15 a well posed eigenvalue problem which has

a sequence of eigenvalues and the corresponding eigenvectors form an orthonormal

basis for (L2(0, 1)) and a basts for (HZ(0,1))%.

of. The result follows from the ellipticity of the bilinear form appearing in the

ft-hand side of the equation (3.4.8) over (H (01 M

Though we have proved that each subsequence (u'(€),£'(¢))es0, [ = 1 strongly

onverges in (H($2))* x IR to a solution (!, ') of the limit problem (3.4.8) (cf,

coremn 3.4.3), nothing tells us so far whether £ is precisely the (-th eigenvalue of
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the problem (3.4.8). We shall answer this question affirmatively in the next lemma
‘using the ideas developed by Kesavan [24).

Lemma 3.4.5 The sequence (€172, comprises all the eigenvalues of the problem

(3.4.8) and the corresponding eigenvectors form an orthogonal basis for (L2(0,1))2
and a basis for (HZ(0,1))7.

-j:'-.'l'ﬂﬂf; Since we already know that
0< &) <)< <€) L (e)-+- = o0

(3.4.39)

and since the Green's operator associated with the limit problem is compact.it fol-

"!_gyvs that each £ is of finite multiplicity and thus

ﬁ{fjifz"'iﬁiﬂ_:f!-l-l"'_}m [:3{14[]]

Passing Lo the limit in the orthogonality relation (3.3.7), we get

! |
-Luuu:‘d.:-" —fy. (3.4.41)

Suppose that there exists £ € # such that £ # & for all / and € is an eigenvalue

f the problem {3.4.8). Then there exists an eigenfunction ¢, such that

f 8 = f Gl de =0, farall b, (3.4.42)
For each ¢ = 0, let w(e) € V' be the unique solution of
ble)(w(e),v) = g[ﬂ Cusde, forall v e V. (3.4.43)

Then proceeding as in Theorem 3.4.3, we can show that w(¢) — w € V and

o= ZalTa), wy = —r,2) (r3) for some =z, € (H3(0,1))% Further (z,) will satisfy

s I ;
/ —Lgziyldes = ff Catjatra, for all y & (H2(0, 1)) (3.4.44)
o oa 0

By the uniqueness of the solution, it follows that =, = ¢,
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Since the sequence {£'} is unbounded, choose { such that
bt (3.4.45)
For u,v € V, define _
De)(w,v) = funt:uti'm + szu3ilgdﬂj, (3.4.46)
'Consider the vertor
v(e) = w(e) = Ve D(e)(we) u(e))uk (). (3.4.47)
Dic)(v(e),u(c)) =0 forall | <k <L (3.4.48)

Therefore it follows from the variational characterization of the cigenvalues that

o Jab((0(e), v(e)) |
E < e, ote) (8:445)

Passing to the limit in the above inequality, it can be shown that

gL E (3.4.50)

';h_i_::h contradicts (3.4.45) and the proof is complete.

emma 3.4.6 A smooth enough solution (¢}, £') of the variational equation (3.4.8)
olves the following equation.

E o . ;
2oy (29))" = £C, in (0,4)

«l

Gl0) = ¢5(0) = ¢ (1) = ¢!(1) =0.

roof. It follows easily [rom integration by parts in equation (3.4.8).
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3.5 Conclusions

By rescaling the variables and posing the three dimensional eigenvalue problem for
thin rods over a fixed domain, we have been able to show that the eigensolutions
converge towards those of a one-dimensional fourth order eigenvalue problem. Tt is

possible to now effect a descaling and obtain a one-dimensional model approximating
the original problem.

The main difference between the model obtained for the eigenvalue prablem stud-
ied here and the stationary problem studied by Le Dret [28] is that in the former we
get a one-dimensional eigenvalue problem involving only the horizontal components
of the limit eigenvectors and the vertical component converges Lo zero, while in the
latter, we have a coupled fourth order system involyving all three components. This
has been commented upon in detail earlier (cf. Remark 3.4.2 in Section 4) and, in
some sense, our model is more intrinsic since il does not involve special kinds of

sealings of the force components which the stationary problem needed.

Another minor difference is in the presence of the coefficient Y a being the arca
‘of the cross section w, in the bilinear form of the one-dimensional model. Again this
.Ilatura]. Even the stationary problem should have this coefficient (¢f. Equation
(35) of Le Dret [28]). The right-hand side of this equation would then have the

erage of the forces over a cross-section rather than just the integral.

Both these phenomena were also observed in the case of shallow shells in chap-

ter 2. [n that case it is showed that shallow vibrating shells, in the limit. behaved

manner similar to vibrating plates.



Chapter 4

Flexural Shells

4.1 Introduction

In this chapter, we study the limiting behaviour of eigenvalues and eigenfunctions
describing the vibrations of a thin linearly elastic shell, clamped along its lateral
surface, under a geometric assumption on the middle surface of the shell that the
space of inextensional displacements (cf. (4.4.1)) is non zero. In the stationary case,
under additional assumptions on the order of magnitude of the body forces, this

leads to the two-dimensional model of the “flexural shell” as shown by Ciarlet, Lods

‘and Miara [17].

Examples of clamped shells which obey the above geometric condition, thus
leading to the flexural model, are plates or, more generally, shells which are “flat” in
some region (cl. Remark 4.4.1 below). Also, if the middle surface of the shell is a
cylinder and the shell is clamped along a part of the lateral surface, the middle line
of which is contained in a generatrix of the cylinder, the above geometric condition

holds. The results of this chapter, though proved for shells clamped along the entire

lateral surface, holds for partially clamped case as well.

Our procedure to study the corresponding eigenvalue problem is the standard

one. Starting with the three-dimensional eigenvalue problem (corresponding to the
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one studied by Ciarlet, Lods and Miara [17] in the stationary case), we rescale the
variables and obtain a problem posed over a fixed domain where the parameter ¢ (cor-
responding 1o the thickness of the shell and the dimension of the three-dimensional
domain over which the reference configuration of the shell is defined) now appears
in the various bilinear forms. We can then pass to the limit after obtaining suitable
@ priort estimates. [Unlike the preceding chapters, where we worked in Cartesian

coordinates, we will henceforth work in curvilinear coordinates.

The key to making this procedure work lies in obtaining the suitable a prioe
estimates. 'T'his is where the principal mathematical contribution of this chapter lies.
It must be observed that in previous works (¢[. Ciarlet and Lods [14] and Ciarlet,
Lods and Miara [17]) the membrane and flexural models were obtained based on
two assumptions. First the nature of the space of inextensional displacements and

~second, the orders of magnitude of the body forces. If the forces were of the order
0(1) and the middle surface of the shell is “uniformly elliptic” in the sense that the
o principal radii of curvatures are either both = 0 or both < 0 at all points of the
-middle surface of the shell, then the above mentioned space reduces to zero and the
“membrane shell model was obtained in the limit. If the space was non-trivial and

(the forces were of order O(e?), the flexural shell model was obtained in the limit.

In our case, we do not have the body forces and so we cannot make any extra
assumption on their size. So how does the shell decide on its limiting bhehaviour
Vis-a-vis its vibrations, on the basis of the nature of the space of inextensional dis
r:]'ilacemem's? We show in this chapter, that if the space is infinite-dimensional. then
the cigenvalues ( at each level [, | = 0,1,2....) are of the order O(c*) by considering
stitable test functions to be used in the variational characterization of the eigenval-
tes and the corresponding scaled eigensolutions converge to the eigensolutions of the
two-dimensional lexural shell problem. We also show using the techniques of Ciarlet
and Kesavan [11], that all the eigensolutions of the two-dimensional problem are ob-

ained this way. If the space is of finite dimension, say N, then we show that the first
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N eigenvalues are of order O{¢*) and the corresponding scaled eigensolutions of the
three-dimensional problem converges to the N eigensolutions of the two-dimensional
flexural shell model (which now reduces to a N-dimensional algebraic eigenvalie
j:mhlem] and that either the other eigenfunctions of the three-dimensional problem
“converge to zero weakly in (HY(R))? x L*(Q) or the eigensolutions converge to a

solution of the two-dimensional eigenvalue problem for membrane shells.

As in the case of the shallow shell, there will be a difference of a [actor of 2

J . i ; ;
- (2¢ after descaling) between the coefficients obtained here and those obtained on
B ¥ g

This chapter is organized as follows. Section 2 describes the principal notations
and the formulation in curvilinear co-ordinates, of the three dimensional problem
its scaled version over a fixed domain. In Section 3. we study the rescaled

problem and Section 4 is devoted to the derivation of suitable a priori bounds which

will be needed to pass to the limit. In Section 3, we study the limit problem and

Section 6 is devoled to concluding remarks.

4.2 Statement of the Problem

wC IR* be a bounded domain with Lipschilz continuous boundary =, such that

the domain lies locally on one side of its boundary. Let y = (1.) denote a generic

in w. (Greek indices will vary on the set {1,2} and the Latin indices will

on {1,2.3}. The summation convention will be used for repeated indices in

tonjuniction with the above mentioned rule). Let 8, = Erfr.,' Let ¢ : @ — R be an

._Ii__w.' mapping of class C* such that the two vectors
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it
(k1|

a‘-"{y:] =) anfrﬁ'{?}

are linearly independent vectors for all y € @, thus forming a covariant basis of the

tangent plane to the surface
5 = ¢(®@)

at the point @(y). The dual basis (contravariant basis) is denoted by a™(y). We

defline

a1 X s
a*(y) = as(y) = m-

Then we can define
Qop i= Qg.ag a®? = a™ aP
bup 1= a®. 930, B i= a®h,, {4.2.1)
(R = a%.dpaq

in covariant, contraviriant or mixed components as the case may be. These verify

the usual symmetry relations. We also define

hls = Bubh— 1% br=TE g0 (4.2.2)

+

e = Kb (4.2.3)
The area element along S is \Jady, where
a = det(aqp). (4.2.4)
By the continuity of the functions defined above, there exists ay > 0 such that
0<as<aly) forall ye @ (4.2.5)

siven € > (), we define the sets

l
W =wx(—6e), [ =wx {xe},I§ =5 x [~¢ ¢ (4.2.6)
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where T U I U [ defines a partition of the boundary of (1 and I’} is the lateral

surface. Let =* = (xf) denote a generic point in @ and set o

= d—i* Thus:at =
i
and so &, = d,.

Define @ : 07— R? by

b(2°) = dly) +25e’(y), for all #* = (y,24) € 0",

(4.2.7)
It can be shown that, there exists an ey = 0, such that the vectors

gi(e') = P (a)
are linearly independent at all points ¢ € T for 0 < ¢ = ¢g and that the mapping

® is injective. These vectors forms a covariant basis of the tangent space of ${1°)
(which is M%) at ®(z*) and one can, as usual, define the contravariant basis {g"(x*)}

by duality. The covariant and contravariant metric tensors are given respectively by

gl = gi-g; and g7 = g g (4.2.8)

The Christoffel symbols are defined by

r::i;e =i gﬂ,f_afg;

(4.2.9)
The volume element is now given by \/g?ds on ®{)) where
g" = delt(g;,). (4.2.10)
It can be shown that for 0 < ¢ < ¢,
0<go <yt <oy (4.2.11)

where gy and g, are constants independent of .

The set ®(11') is the reference configuration of a shell of thickness 2¢ with middle
irface (). We assume that the shell is clamped along its lateral surface I',. (Note :
last assumption is just for simplicity of the exposition. The results remain valid

1in Lhe partially clamped case as mentioned in the introduction, )
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Assuming that the material of the shell is homogeneous and isotropic and that

®({') is natural state, the material is characterized by its Lamé constants A* > ()

and p* > 0. Then the contravariant component of the three-dimensional elasticity

tensor are given by
A:'jkl',-: . )'tgu.tgk!.c T “r(gik,ty_rf,f e gnf,cg_;k,f } (47212]

Expressed in terms of the curvilinear co-ordinates (z°) of the reference conligu-

ration @ (%) of the shell, we define the space of admissible displacements by

V() = {vf = (v]) € H' ()| =0 on I}, (4.2.13)

For a displacement vector v° € V(0*), we define the covariant components of

the linearized strain tensor by

ey (V') = (8] + Bjuf) — Mo,

(1.2.14)

Then the eigenvalue problem consists in finding pairs (€7, u*) € i » V(Q )\ {0} such
that

fn AML (e (o) /@ dat = € L N (4.2.15)

for all v¢ € V(Q). By classical arguments, we can show that there exists a sequence

of eigenvalues

U < _IE!II {_:_- Ef..’ E s _S_ El:.ll . .

i

. 20 (1.2.16)

f ut el gt = 8. (4.2.17)
e

he sequence {u'} form a basis in the weighted space

(L3 g Q) = {u‘[fﬂ uSu ST st < -:c-} (4.2.18)

th the obvious inner-product. (However, in view of the inequalities (4.2.11), it

llows that (L*(g,;2°))* = (L*(Q2))® and that the two topologies are equivalent).
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4.3 The Rescaled Problem

We now scale this problem to one posed over a domain independent of . We set

Q=wx (=L}l =wx {£1},Tp =5 x [-1,1]. (4.3.1)
If z = (2;) € is a generic point, we set 8, = a‘% and with »* = (2¢) € O, we
associale & € {1 by
1
Fa = '!-.':; = Hay Tn = _I';- {4;2}
¢

Thus, 8, = d, and 35 = 10,
Given a vector v* € V(Q)'), we associate the vector v € V(1) where
V(Q) = {v e (H'(1)) v =0o0n Iy} (4.3.3)
by
oix) = v (%) (13.4)

where = and z° have the correspondence mentioned above. Given an eigenvecior
u, we denote the corresponding vector obtained via (4.3.4) by u'(e). We assume
if_u;thar that the material properties of the shell do not depend on the thickness, and
S0 we sel

AM=A20pu" =p>0 (4.3.5)
where A and p are independent of ¢,

Finally, given an eigenvalue £, we associate with it the “scaled” eigenvalie £'(¢)

&1 =8 (4.3.6)
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same scaling as for shallow shells. Another point to note is that in the case of shal-

low shells, the shape of the middle surface and its thickness change with ¢, while

now the middle surface is of fixed shape. B

With the functions 7. g%, A¥%< . ' - IR appearing in (4.2.9),(4.2.10) and

(4.2.12), we associate the functions [Fi(e), gle), A (e) 1 1 — R defined by

I"E;{f}{j} = f‘E‘-‘{.x"] for all +* € 7",

(4:3.7)
glef{z) =g (z) forall 2" € 7. (4.3.8)
A (e)(x) := A2 for all x¢ e T (4.3.9)

Given (v) = (1) € (H'())?

, we associate the symmetric tensor (eqle)(v)) by

capale)(v) = F(Bavy + dava) — I 5(e)v,
eqja(eifv) = %[3,,113 + %ﬁava} — I (e, (4.3:10)
capplellv) = %C}ati

Then if (£, u

)€ Mt V()N {0} is a solution of (4.2.15), the scaled variables
(€le) ufe)

1) € I < V{E1)\ {0} is a solution of the problem

jA’ (eleyute)(w(e) ey, e ) (v)/gle)de = ¢ f{f}f il €)oo/ gle)dr (4:3.11)

forall v € V(). Once again. it is clear that {£'(c}} corresponding to £ via (4.3.6)
are the only eigenvalues of (4.3.11) and that the corresponding eigenvectors {u'(c)}

are complete in (L*(€2))* and satisfy the orthogonality conditions

/i; u‘:{r}u:"{c}ﬁy[f lde = &y {4.3.12)

further, we have the following variational characterization of the eicenvalies
Define the Rayleigh quotient f(e)(v) for v & V(Q)\ {0} by

~'“ Epile qle)dr
Rie)(v) = Jo A (el e)v)es; () (v)y /gl :ld (4.3.13)
€2 fo vi; \/J (€)dr

el Vi be the collection of all [-dimensional subspaces of V(f1). Then

ey = ﬁ}icf:a ufﬁ}f{u] Rie)(v) (4.3.14)
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Our first result gathers all the properties needed in the sequel concerning the
behaviour of the functions [7;(¢), gle), AV¥(e) as ¢ = 0. If w € CY(), we define

1]l o 7 7= sup fuelr)), (4.3.15)
e}

Lemma 4.3.1 The functions I'};(c), ge), AV¥(c) are defined for ¢ > 0 as in (4.3, 7)-
(§.3.9) and the functions n"‘?,b,_.,,j-._bﬂ,!‘zﬂ._bgimf,”.; are defined as i (§.2.1)-(4.2.3).
Then

ITea(e) = (Pag — exabflolllg g S C (4.3.16)
Uos(€) = bag— exacas; (4.3.17)
[Tos(e} + b3 llg 0 m = C (1.3.18)
Frahe) = Tilel= 0 (4.3.19)
llgte) = ally . < Ce (4.3.20)
|| A (e) — ATH0)]|, o < Ce (4.3.21)
AP = ARG =11 (1.3.22)

!fm‘ all 0 < ¢ < ey, where

A [ﬂ} ::.}.ﬁaﬁ{‘;ﬂf 4 ﬂl:”.arru.ﬂi o Hur”ﬁn] (4.3.23)
A™R(0) = ha®, A7H0) = pa®, (4.3.24)
ATF(0) = A + 20, ATH0) = A" — g (4.3.25)

and, finally there exisis a constant C such that

Lt < CA ™ e)(z)tuty; (4.3.26)

for all | < ¢ < ¢, v € 1, and for all symmetric lensors (t:;

E'I_i_!mof, bee the proof of Lemma 3.1 in Clarlet and Lods [14]. "

In the next lemma, we analyze the asymptotic behaviour as ¢ — 0 of the functions

aiale)(v). To this end, we are naturally led to introduce the three dimensional
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analogs (cf. (4.3.27)-(4.3.28)) of the two dimensional change of metric tensor and
change ol curvature tensor, which play a fundamental role in the definition of the

limit eigenvalue problem.

Lemma 4.3.2 For any v = (v;) € H'(Q), let the functions v, 5(v) € L) and
paplv) € H=HQ) be defined by:

1.,
Taplv) = i{dnv,rj + dava) — I gve — bagus, (4.3.27)
Pa(V) = Oapva— T Er:-’;l:ﬁ‘"va s

+ 85(Fpva — Ih,v0 ) 4 b0 Ja0, — eopus (4.3.28)

Then the functions e, ple)(v) defined in (§.3.10) sabisfy

”%c““ﬁm“’} = eaal(0)llog £ Ced [lvallog (4.3.29)

where

]- i i ]' [r3 Lr)
ealiale)(v) = 3¢ (Gatis + Bava) = (5506 + bagrs) + wabjlave + zacapvs  (4.3.30)

and

1 =
Hgaﬂﬁnliﬂ{ﬁ)[v} t paplv)||-10 £ {Z |Fﬁi||:+[f1l|:“:|[|u.n + fL ||Uu||u.ﬂ + f'||'t-‘3”|,n} .
‘ ’ (4.3.31)

Proof. See the proof of Lemma 3.2 in Ciarlet, Lods and Miara [17]. "

The next two lemmas are crucial as they play essential role in the proof of the

boundedness of the scaled eigenvalues as ¢ — ().
Lemma 4.3.3 Lel the two-dimensional clasticily tensor o® be defined by

gl 4Ap

i ol _oT oLy ar . o 295
: J'L—HEIHE o T 2ala™ T ATttty (4.3.32)

Then there erists a constant € = 0 sueh that

rx"ﬁ”t”a‘,ﬂﬂ = Ctys)? for all symmetric lensors (t.5). (4.3.33)

Proof. See the proof of Lemma 2.1 in Bernadou, Ciarlet and Miara [3]. n

J82e- (t _ :
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Lemma 4.3.4 For g € Hj{w) = H){w) = Hi{w), lel the functions +.3(n), paslt1)
be defined as in ({.3.27) and [{.3.28). Then there exists a constant C such that

(E1|—m{=r:}||..?";.w +Z||pc.ﬁ{n}||ﬁ.u) = (Z nalld, + ||n3=|§N) (4.3.34)
e 7 o

(R )

for all g = (n;) € (Hl(w))? x HE(w).

Proof. See the proof of Lemma 3.2 in Bernadou, Ciarlet and Miara [3].

4.4 A Priori Estimates

In this section, we will show that if the space Vi(w) is infinite dimensional, then
the scaled eigenvalues £'(¢) are bounded uniformly with respect to e for each fixed
positive integer [ 1f Lhe dimension of Ve{w) is finite. say N, then we show that for
I <1< N, &) is uniformly bounded with respect 1o e, and for { > N, we will show
that ¢*£'(¢) is uniformly bounded with respect to ¢ and the limits of et e),l > N

lies in a bounded subset of 7.

We henceforth denote by (', a constant which does not depend on both ¢ and !

but its value varies from place to place.

First of all. we need to define the space of inextensional displacements. Following

carlier works (cf.[17]), we define the space of inextensional displacements Vi(w) by
Ve(w) = {m = () € (Hy(w))? x Hi(@)vas(n) =0 in w} (4.4.1)
As observed by Ciarlet and Lods[14], Ciarlet, Lods and Miara[17]. this space
may or may not be trivial.
Assumption: We assume henceforth that Ve(w) # {0}

Remark 4.4.1: It is not clear whether the space Vi(w) is always infinite dimen-
sional if it is non-zero. But if the functions b,z defined in (4.2.1) vanishes in a

neighbourhood w' of a point in w, then the space 0 x 0 x Hf(w') is conlained in
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Velw) and hence Vi(w) is infinite dimensional. For example. in the case of plates,

bag =0 and Vp{wj = {ﬂ} b4 {D} .4 Hg{m] ]

It follows from Lemma 4.3.4 that,

z

7~ (Z IFpaa{n}EIQ‘i,ﬂ) (4.4.2)
o

- will be a norm on the space Vi(w) equivalent to the {H}(w))? x H2(w) norm.

Let m = (i) € (Hg(w))® x Mi(w). Then we define, following an idea of Miara
and Sanchez-Palencia, v,(57) € V(Q) by

(ve(m))a = no —exa(@ams + 261,) {4.4.3)
(ve(m))a = m. (4.4.4)

For brevity. we will set
0., = Boms + 200, (4.4.5)

With these notations we have the following result.

Lemma 4.4.1 Lel g € Ve(w). Then,

¢ eapale)(v.(n)) = —zapaa(n) in L2(Q) ase — 0 (4.4.6)
e eapal€)(v(n)) is bounded in L) (4.4.7)
eaale) (v (1)) = 0 for all ¢ > 0 (4.4.8)
v(n) =1 in V(Q) as € — 0. (4.4.9)

Proof. Relations (4.4.8) and (4.4.9) arc obvious.

A simple computation shows that

f_lﬁulla(fjfﬂt{'?” = _E_E(Fzg{‘] + 6301, + 2305 4(e)0,. (4.4.10)

Combining with the relation (4.3.18) proves (1.4.7).
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We finally prove (4.4.6). '
v e Vi)

lo start with, by the Lemma 4.3.2, we have that for

I eapsle)(v) = elale(®)llog < Ce S [[vallon (4.4.11)

where

Conple)(t) = € yup(v) + 2565 ava + Tacuss. (4.4.12)

Observing that y,4(n) = 0, we find (after a tedious computation) that
ﬁ:.”ﬁ(f}{l’c':"'?” = —Zapas(n) — C-szﬂla - (4.4.13)
Thus from (4.4.11) and (1.4.13) and the definition of v.(n) given by (4.4,3)-(4.4.4).

we gof

lle™ eaale)(ve(m) + w3003(0)|lon < Cef (el low + |17l .) (4.4.14)

which proves (4.4.6).

Theorem 4.4.2 Assume that Ve(w) is infinite dimensional subspace of V(). Then

or each { = 1, the sequence £4¢) is bounded uni ormly with respeet to ¢,
i ! i

Proof. Let W) denotes the collection of all -dimensional subspaces of Ve(w).

Consider the map

T Velw) = V() defined by

T.(n) = v(n). (4.4.15)
For sufliciently small ¢, T, is one-one. Thus if W € Wy, then T.(W) € V.. Conse-
quently, we have
)< min max (v (m). (1.4.16)
Wew, e Wh )

We now proceed to estimate R,(v,(n)) for 7 & Vi(w)., On one hand
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fn{v-{n}}:{vc{w)}svg[ﬁ}dw > gﬂjj’l{ut[n}]f[n,(q)}.dm (4.4.17)
= Zgqu;r_ﬁdw + guZL{Hr, — ersf, ) da{4.4.18)

Since [ zanafa.dz = 0, we get

fﬂ (oo ()il v ()il )dz = 26 L ST (4.4.19)

On the other hand,

:qj;lf"-"mifl€k||:if]'{vc(‘*?]}ﬂ:'|li'{fFit*c(ﬂ}lmdlf
< gt { [ 470 [Feert o m))] [eonstelun)| d
[ 49 [Feap(wm)] [eastodm] de} - (44.20)

using the symmetries of AV ) the fact that AoPed(e) = A" (¢) = 0, relations
(4.2.11) and (4.4.8). By virtue of the relation {4.3.21)-(4.3.26), relations (4.4.6)-

(1.4.9) of Lemma 4.4.1 above and the (Cauchy-Schwarz inequality, we get
| :
= [ﬂ AR egule)(vc(m)Jea (v (m) )y gle)dx
2
= G[znﬂuxi(ﬂ)”u.u ¥ (}:”ﬁ'nﬂn.m T |]??3|11.un
or o
2
b (Sl + ol

< g {Z pas(mlles + > allo. + Hrmnfﬂ,} Q (4.4.21)

o T

for ¢ < L. But from (4.4.2) it follows thal, since 17 € Vp(w),
(znm.us,u Fimlf.) < C (it + ||=m||§,u)
< O |Ipes(mli.: (1.4.22)
F
Thus

:—zfﬁff‘"“'iE}Ekwiﬁ'.i(m(n}}ﬂ.m(ﬂ}{vc{n)} ge)dz < C S lpap(mMIE,.  (4.4.23)

[E
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It follows from (4.4.19) and (4.4.23) that

Tasllpas(mlE,

Rivm)) € C 5 T (4.4.24)
From Lemma 4.3.3 it follows that there exists C' > 0 such that
[ a7 pag(mper(m)vady > € 3 llpas(mlf:. (1.4.25)
for all § € Vi(w). Thus, we have
- afor
Ri(v.(n)) < €1 ?U;(;T’adfj)ﬁdw (4.4.26)
and hence, from (4.4.16) and (4.4.26) it follows that
£'(e) < CA' (4.4.27)
where A' is the ["-eigenvalue of the two-dimensional problem:
Find (A, ) € B = Ve{w)\ {0} such that
[ a0 (Qpup(m)ade = A | Gn/ads (4.4.28)
for all 7 € Vie(w). This completes the prool. M

Theorem 4.4.3 Assume that dim(Vp(w)) = N. Then for 1 <[ < N, £le) is
uniformly bounded with respect to ¢ and for each positive mteger [ = N, there exisls

constants (' (independent of € and ) and K (independent of €) such that 2Elle) =
C(1 + k).
Proof. The proof that for 1 <1 < N, £'{¢) is bounded follows from Theorem 4.4.2.
Let W, denote the collection of all I-dimensional subspaces of Hg(w).
For n € W), define w,(n) € V() by

(w,(11))e = —€xatlay (4.4.29)

(tw.(n))a = 7. (4.4.30)
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Then a simple computation shows that

Capiple)(we(n)) = —exa(Gapn + T 5(e)0an) — [ 5(edn
eafale)(we(n)) = —exal 8.7
eapalwe(n)) = 0.
For W e W, define
W ={w(n):ne Wk

Then W & V; and hence it follows {rom (4.3.14) that

<
El(e) < ”}:‘.}.,‘, LG R (w.(n)).

We now proceed to calculate R, (w,(n)). On one hand

_/':‘” {m7))i(w.m)); \f!i’{_“f-f = E.H:-j;l[wcl[rj:ll.(wc[n}},-riar
240 fn nd.

On the other hand

j;; AT (el e)(wm))es(e)(w, ()3 gle)de
< 91% {‘L AP e () (e ()| eayale) (we(n))|die
b A el (o) (n)

67

(4.4.31)
(4.4.32)

(4.4.33)

(4.4.34)

(1.4.35)

(4.4.36)

(4.4.37)

using the symmetries of A7 (¢), the fact that A**(¢) = A*¥¥¢) = 0, the relations

(4.2.11) and (4.4.33). By virtue of relations (4.3.21)-(4.3.26), (4.4.31), (1.4.32) and

the Cauchyv-Schwarz inequality, we get

./;1 A’JHEf]ffkll:(f]{wr.{??””ill;‘ii}{“"':””\/g(—‘}'!"r

2
£ [ (ledaﬂ fﬂllww‘lec}uﬂlluu) +|l’?”0-wjl

i3

+ CeY|Jun|P

¢ [E?ZHEL.-MIIE.JJ + IITIHL} -
o

(4.4.38)
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It follows [rom (4.4.36) and (4.4.38) that

(¢ T [1Bagnl 3.+ 19113,

Elwl(ng) <=C . 4.4,38)
! Tl ‘
Hence from (4.4.35) and (4.4.39), it follows that
) < Ol +1) (4.4.40)
where k' is the [-th eigenvalue of the two-dimensional problem:
Find (k.C) € IR > H}{w) such that

A= B i

{=0o0nodw } ’ gty
This completes the proof. 5

4.5 The Limit Problem

In this section we show that if the space Vi{w) is infinite dimensional, then for each
fixed integer { = 1. the scaled eigensolutions (£'(¢), u'(¢)).nn converge towards a
limit (£, u') which can be identified with the eigensolution of the two-dimensional
*flexural shell” problem posed over the sel w. If the dimension of the space Vi(w)
is linite, say N, then we will show that the first N scaled eigensolutions converge
to the N eigensolutions of the two-dimensional “flexural shell” problem and other
eigensolutions either converge to the solution of the two-dimensional “membrane

shell” problem or the eigenvectors converge weakly to zero in (H'(())* = L*(9).

The next three lemmas are crucial; they play an important role in the proof of
the convergence of the scaled unknowns as ¢ — 0. In the following statement, the

symbols — and — denote the strong and weak convergences respectively.
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Lemma 4.5.1 Let V(Q) be the space defined in (4.3.3) and the functions
eqslel(v) € L3R, vaalv) € LAQ), pas(v) € H YD) be defined for any func-
tionw e V) asin ({.3.10) ,(§.8.27) and (4.3.28). Let (v(e))eso be a sequence of
functions in V(1) such that

vle) = v in H'(Q) (4.5.1)

%E;”J'{{}I:'UI:(}} — E',]-”j in L*(12) (4.5.2)

as e — 0. Then

v = () 15 mdependent of the transverse variable s,

T E = é[_lt vdrs € (H}(w))? x Hi(w) (4.5.3)
Yas(v) =0 (4.5.4)
puﬂ'{v) & L?“‘“ ﬂ'”'d'l pr}ﬁl”} = _ﬁﬂf:ll,””- {4-35]

If in addition to (§.5.1)-{4.5.2), there exists a function Yoa € H7YE) such that

Pailv(€)) = Xag in H71()) as e — 0 (4.5.6)
Then
vie) = v in H'(0) ase - 0 (4.5.7)
Pailt) = Xoa and thus v,z € L*(R) (4.5.8)
Proof. See the proof of Lemma 3.3 of Ciarlet, Lods and Miara[17]. M

The key to the convergence theorem (Theorem 4.5.4) is the gencralized Korn's
mequality (4.5.9), which involves the unctions e,,(¢)(v) defined in (4.3.10) instead
of the traditional function e;;(v). This generalized Korn's inequality is valid for
an arbitrary surface S = ¢(w) (the only requirements are that the set w and the
-mapping ¢ satisfy the assumptions of Section 2), irrespective of whether the space

Vr(w) defined in (4.4.1) reduces to zero or not.
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Lemma 4.5.2 Let the space V(1) be defined as in (§.3.3). Then there erists

0<e<e and C >0 such that for all 0 < ¢ < ¢

L

€ .
lolha = — (Z Ilf-nzlt}{vllllf.,n) Jor all v € V() (4.5.9)
1,

where the tensor ey;(c)(v) s defined as i (§.3.10).

Proof. See the proof of Theorem 4.1 of Ciarlet, Lods and Miara [17].

Theorem 4.5.3 There erists a positive constan! ¢ such that for all 0 < € < ¢

{): lfvalliq + ||u-3||f,n} <C {Z’llcemtc}{vlll{%m + 2 ||v.||§,ﬂ} (4.5.10)

for all v = (v;) € (H'(11))*

Proof. Given v & (H' ()7, let wle) = (v, vo, cva) € (H(Q)).

Then

eap(vle)) = eqpple)(v) + [ sle)vy (4.5.11)
eanlv(€)) = eeqale)(v) + ela(c)v, (4.5,12)
eaa(v(c)) = e“ezpale)(v) (1.5.13)

where ¢,;(v) = 1(d;v;, + div;), and consequently by (4.3.16)-(4.3.18)

{Z |1f’--‘;{vtﬂ}}l|§,n} <C {Z e () (e)la + > IImIIﬁ.n} (1.5.14)
L.} £.d 1

for ¢ < 1. By the classical Korn's ineguality.
loielllia = Do llvallia + llevs|liq

< U{ZHe-—;—{vtcnllﬁ.u+i|m:f}||§,ﬂ} (4.5.15)

and the theorem follows from inequalities (4.5.14) and (4.5.15).
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Theorem 4.5.4 Assume that the space Ve(w) is infinite dimensional. Then

a) For each integer | > |, there erists a subsequence (still indezed by ¢ for

convenience) such that (£'(¢), u'(€))s0 converges in IR x HY() to (€', u'); further

!

u' 1s independent of the transverse variable s and @ e Ve(w).

b) The pair (€',7') solves the two-dimensional cigenvalue problem for the flerural

shell, viz;

Find (£,C) € IR % Vp(w) such that

%jﬂﬂ”ﬂ”ﬂm'{ﬁﬂaﬂfﬂ)ﬁ@ = E_[JC;??,-@@ Jor alln = (n;) € Vi(w)  (4.5.16)
where @7 and pop(v) are defined us in (.9.32) and (4.3.28).
Proof. The proof is similar to that of Theorem 4.1 of Ciarlet, Lods and Miara [17].
For clarity, the proof is divided into several steps..
Step |: Boundedness of the eigenvectors in H'{0):

From the variational equation (4.3.11), relation (4.3.12), inequality (4.2.11), the
boundedness of the eigenvalues £'(¢), the generalized Korn's mequality (4.5.9) and

by virtue of relation (4.3.26), we infer that
SOl < X lleqn(e)lu(eDlidq
bt

E f?gfﬁt“1.'."“I:E:IEg“g{t}fu'r{f.:IJE.'{”_T{E:IEHJ{{]II] y{EJt‘fJf
= 207 E(e) fﬂ al(c)ul()/gle)dr

=1
3

< E0g7 N (4.5.17)
Hence the assertion follows.

Step 2: It follows from Step 1 that there exists functions u' € H'Y Q) and e:lllii =
L*(€2) such that

u'(e) = u' in HY(R) (4.5.18)

éc,-m{ﬁ}{u!{c}]l - ::}ﬂ; in LA(0). (4.5.19)
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=]
(AW}

Hence it follows from Lemma 4.5.1 that o' is independent of x4 and +, (') = 0,

ie, @ € Vir(w).

Step 3: The limit functions e:l‘;j are related to the limit function u' by

—Buelp = pap(u') (4.5.20)
ehjs =0 (4.5.21)
1! —A a1

Esljz = T E.L-ta €41

Relation (4.5.20) follows from Lemma4.5.1. Let v = (v;) be an arbitrary function

in the space V{(§1). Then

[E'?Hﬁ{{][:l’} —¥ D E szn:lf {LEE'}]
ceqyale)(v) — éﬁa’ug in L0, (4.5.24)
eesjale)(v) = dhog for all ¢ > 0, (4.5.25)

Using the variational equation (4.3.11) and relation (4.3.22), we may write

~ [ A et Neas(e)(w)ale)da
= [ {A @E et} {ecom )} atonte
i {A"ﬁ“{fJ[‘—eauatcuu’tfn I} {ecaste)(0)} Valdz

j;l{ﬂl,alnaaa [ Laih{é (f}}]} ceqalelv) }mﬁf«r
{

+

-+

./;1 {AMW{ }[1 eofir(€)(w'(€)) } cea)sle) 'ﬂ}} ale )
/{‘4 [““suﬂfl

-+

} {”‘ﬂl!?

} gle)dr

Keep v £ V(0] fixed and let ¢ — 0.
(4.5.23)-(4.5

f {},{m ﬂliid;;v,, + [Aa®Te le + (A + Ep}ﬂ_:l'::i]ihvg} vadz = (.

E(e) [ iJale)dz.

.25) and the weak convergences (4.5.19), we obtain

(4.5.26)

Using relations (4.3.21),(4.3.23)-(1.3.25),

(4.5.27)
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Letting v vary in V/(§2) then yields relations (4.5.21)-(4.5.22) ( we use the fact that
ifw e L) and [ wdwdz =0 for all v € H'(Q) that vanish on I'y, then w = 0).
Step 4: The pair (£, @') satisfies the variational equations (4.5.16).

Keep the function i € Vp(w) fixed, let v = (v,(57)) in the variational equation
(4.3.11), where (v,(n)) is defined in (4.4.3)-(4.4.4), and let ¢ — 0. Using relations
(4.3.20), (4.3.21}-(4.3.25), (4.4.6)-(4.4.9), (4.5.21), (4.5.22) and the weak conver-
genees (4.5.19), we obtain:

| N
lim = [ A (Qeuple) w(e)eay(e)(w(m)y ol da
1 |
- { 1"""3"”{F Ef:a“-;- I:'LL {f:l ]} {: r-'r||.~3{{ T’ Tﬂ } t]f{f di’
1
{’Fﬂ (e)] Eﬂa}rs }{“ (e))] { }
]
{14"%1{ ][ eaale)(u'(c ]]} Ealale)(ve(n) }}mfﬂ{ﬁ}fﬁﬁ
1
{dzdar cHr pn”? (2 [c}}]} { €3yl €)( f{ﬂ}}} \/_; Jelir
1 l
{ ‘-13‘”“5 t}[r E1||1,{E 't-l- } {E—E dll!{f] } g ch'.

=3 Lf R f,f|rpnﬁlir?}v’r_:dy

+ gle)dr

Eapale)(veln))

+

ds
:‘:‘F“-«E“-ﬁ;‘:‘r"ﬂfﬁ“'ﬂ?z“'ﬂ
H\.'—.l'_""—il'hlb--c

= lim¢' c}/ﬂuitc}tu,{nwgte}dz=E‘fuuﬁwﬁd: (4.5.28)
We have yet to take into account relation (4.5.20), viz; p,a(u') = ~ﬂ3ﬂ-i'|'l|ﬂ in

L3(12). Since the function ' is independent of =4 (chistep 2), relation (4.5.20)
implies that

et = Ohy — Tapua(@'), with 0!, € L) (4.5.29)
Therefore

1 oT
—= | 50 Te G'II pap(n)Vadr =
2 I f

230" par(w ) paa(m)v/ade

P po (W) pap(m)Vady. (4.5.30)

%"“-.;':T'“"-
=]
)

[ I o I

and thus we have established that (&, %') satisfies the variational equation (4.5.16).
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Step 5: The weak convergence (4.5.19) is in fact strong: i.e.

%E,'“_,'{{}III‘HEI:EH - Eillllii in L) (4.5.31)

Using inequalities {4.3.26) and (4.2.11), and letting v = u'(¢) in the variational
equations (4.3.11), we obtain
S l
C~'gd 2 lI=eas(e)('(e) = ejj o < A'(e), (4.5.32)
LIF)

where

[ 476 (Ceten () — ebf) (et - ekt ) yaterds
= €0 [l o(hdz + [ AM(0) (e~ Zeapte)w(e))) el /ot

The convergences (4.3.20), (4.3.21), together with the convergences ul(¢) = u! in

L23(2}) and the weak convergences (4.5.19) imply that

= lim A'(e) = € [{u ) ads — [ AP (0)eyp e, Vadz (4.5.33)

Using (4.3.23)-(4.3.25),(4.5.21)-(4.5.22) and the fact that «' is independent of 74 we

lurther infer Lhat

. |
A= o¢! L{nﬂ}‘ﬁd - EL Porell et fady (1.5.34)
By (4.5.29)
L a?Prely elavads = uf sargl gt Jady + 2 [ 0" g (T ) poal @ ) ady

(4.5.35)

and thus, since @' satisfies the variational equations (4.5.16)
A= f a®frgl 0o Jady. (4.5.36)
w

Since A' = 0 (cf. inequality (4.5.32) and definition (4.5.33)) and since the tensor
(a”%"7) is uniformly positive definite (with respect to y € w (cf.Lemma 4.3.3), we

conclude that #); = 0. These relations have two consequences. First,
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=
|

and thus the strong convergence (4.5.31) holds; secondly, the functions f'_l‘l:h.{ are
iven by

E;rl|f|ﬂ1‘ - —-anarf{ur? (4.5.38)

Step 6i: The weak convergence (4.5.18) is in fact strong,.
u'(e) = u' in H(Q) (4.5.39)

By Lemma 4.5.1, it remains to how that each family (p.s(u'(€)).s0 strongly con-

verges in H~'(). Since

I

;aﬁﬂnual:u!{r}] — Iﬂgﬁilﬁﬁ in H71(Q)

as a consequence of Step 5, and since
paalw(e)) + ~Oreaale)(w'(c)) = 0 in H7(9)
as a consequence of inequality (4.3.31), it follows that
paglue'(€)) = {—daess} in H7H(Q)

and thus the strong convergences (4.5.39) are established. M

T'hough we have proved that each subsequence (£'(e), w!(¢)),nn.l = 1, strongly
converges in Mt x H'(f}) to a solution (&, @') of the two-dimensional eigenvalue
problem for the flexural shells. nothing tells us so far whether £ is precisely the
eigenvalue (counting multiplicities) of (4.5.16), nor whether the set {E'!}fi[ forms a
complete set in Lhe space Vie(w), We shall answer these questions in the affirmative

in the next lemma using the ideas developed by Kesavan|24].

Lemma 4.5.5 Let (£,@'),] = 1, be the eigensolutions of problem (4.5.16) found
as limits of the subsequence (E'(¢), u'(€)),wu.0 = 1 of eigensolutions, orthonormalized
as in (§.3.12) of problem ({.3.11). Then the sequence ()72, comprises all the
eigenvalues, counting multiplicities, of problem ({.5.16) and the associated sequence

()72, of eigenfunctions forms a complete ovthonormal set in the space Vie(w).
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Proof. Passing to the limit in the orthogonality relation (4.3.12], we get

We first show that
fiEites e K. 5% (4.5.41)

Since 0 < £'(¢) < E%e) < ... < E€'(€) < ... = oo, it follows that 0 < £ < £2 < .
since the bilinear form associated with the left-hand side of equation (4.5.16) is coer-
cive over Vi(w), it follows that £' > 0. I the sequence were bounded, the eigenvalue
problem could have only a finite number of linearly independent eigensolutions, since
its associated operator is compact over the space L%(w); but this would contradict

the orthonormalization condition (4.5.40). Hence the relation {4.5.41) holds.

We next show that if £ is any eigenvalue of the problem (4.5.16), there exists an

integer [ = 1 such Lhat £ = £\

Suppose the contrary holds; ie, that £ # & for all { = 1 and let ¢ denotes an

associated eigenfunction, which satisfies

L[ a9 gy (€ pus(m)Vades = € [ Gni/ades for all m € Velw) (4542
jggga =%,/Qﬁﬁﬂ4=ﬂhrﬂH (4.5.43)
['or each ¢ > 0, let w{¢) be the unique solution of
fﬂ AMeyple)wle))eq; () (v)y/glc)de = ¢ /nﬂ-w gle)dzx for all v € V(9)
(4.5.44)
Then proceeding as in Theorem 4.5.4, we can show that w(e) — w in V(1] and

w € Vp(w). Further w satishies

%j a7 o (W) pas(n)Vadw = ff Wi /adw for all g € Vie(w) (4.5.45)

By the uniqueness of the solution, it follows that @ = . Since the sequence £ s

unbounded, we can choose an [ such that

E< ¢ (4.5.46)
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For w,v € V{Q), define

Die)(u,v) :_/;_aui-m glejdr (4.5.47)

Consider the vector

|
v(e) = wie) — :L? D(e)(w(e), u*(e))u(c)
Then

Die)(v(e),u*(e)) =0 forall 1 <k < L. (4.5.48)

Therefore it [ollows from the variational characterization of the eigenvalues that

£r+1|:6} < jﬁ‘4l-jH{f}Eklﬂif}{ﬁ(E}]ﬁ;HjEt]{‘U[i”n.‘I{,i'{ﬁ:lff;r

; 4.5.49
ED()(v(0), olc)) A
Passing to the limit in the above inequality, it can be shown that
EH < (4.5.50)
which contradicts (4.5.46) and the proof is complete. .

Theorem 4.5.6 Assume that dim(Ve(w)) = N and let the space V,,(w) be defined
by

Vilw) = {m = (i) : ma € H}lw), s € L¥w)}). (4.5.51)

Then,

a)for 1 <1 < N, {EE{E},HEEE}L}Q converges strongly in R = IfYQ) te the N

eigensolutions of the “flezural shell” problem, wiz;

Find (£,() € # x Vp{w) such that

1
5 [ a7 por(Qopas(mady =€ [ Gir/ady for allm € Ve(w).  (45.52)
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blFor each integer | = N, there erists a subsequence {still denoted by ¢ ) such that

u' (€) = ul in HY{(Q) (4.5.53)
uy(e) = ujin L*(9) (1.5.54)
6 (e) = € (4.5.55)

u' = {uf] is mndependent of the transverse variable x4

) The pair (€', 4" solves the two-dimensional eigenvalue problem for “membrane
shell” inz;
Find (£,) € IR » Vy(w) such that

1
= [ @ e (Cras(m)Vady = € [ Gni/ady for all n € Viu(w).  (4.556)

Proof. [or clarity, it 15 divided into several steps.

Step 1: The proof that for 1 <1 < N (&(¢),u'(¢)),w0 converses strongly in IR %

H'(1) to the N eigensolutions of (4.5.52) follows from Theorem 4.5.4.

Step 2: We now proceed as in Ciarlet and Lods [14]. From the variational equation
(4.3.11}, relation (4.3.12), inequalities (4.2.11), (4.3.26), (4.4.40), (4.5.10) and the

boundedness of the eigenvalues, it follows that

Do llua(e)lia + leus()llig

= rﬁ{ZlIcfm.ftcnuw:cn||3.u+ nu‘{rmf..n}

< Cgt{ [ Ao ()eq( ) ol + 1}

< Cot {c?f’{f] fﬂ u{e)ul{e)/ale)ds + 1}

< Cgo (& + 1) . (4.5.57)

Hence the norms [|eq; () (' (e))]log, |11 (6)] |1 a. [|uh(€)] o are bounded independent

of ¢. Consequently, there exists a subsequence (still indexed by ¢ for convenience)
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and there exists functions CJEIU e LYQ),u! e HY D), satisfying «,, = 0 on I'; and

uh € L2(Q) such that

eqple)a'(e)) — E:”J in L) (4.5.58)
u' (e) = ul, in /() (4.5.59)
uhle) = uf in L) (4.5.60)

Step 3: The limit lunction u! found in (4.5.59)-(4.5.60) are independent of ;.
By (4.3.18) and Step 2,
et (€) + e ubl€) = 2¢ {e:nua{tj[uI{c}] + 1‘;'3[.5}1;;({}} —0in L*(Q)  (4.5.61)

Let ¢ € D(S1); since u! (¢) = ', in H'(Q) and since (ui(e)),5p is bounded in L*(f1)
by Step 2,

[ Bl e = i ] it (e)ddlz (4.5.62)
S =0 J53
lim fn eyl = —lim f! 1 cul(e)daode =0 (4.5.63)

whence [, dsu! @dr = 0. Therefore dyu!, = 0 in L*{(€).
Also by Step 2,
dube) = eeapale)(w!(e)) = 0 in L*(9) (4.5.64)
Let ¢ € D(Q); since u(e) — ub in L2(0) by Step 2

)

o

fn ddspdz = lim ‘];1 o) By = — Tiowems 0 fn daul(ode =0 (4.56

whenee dyus = 0 in the sense of distribution. Hence it follows that ug is independent

of x4

Step 4: The limit functions t:{-”_f found in (4.5.58) are independent of rs. moreover

( r
they are related to the limit function (u!) hy

f-“:.mi = Yanlu') (4.5.66)
5L||3 =0 (4.5.67)
! = afd |

3|l = mﬂ Ealja (1.5.68)




CHAPTER 4 FLEXURAL SHELLS =0

The convergences (4.5.58)-(4.5.60) and relations (4.3.16)-(4.3.17) imply that

1 , : R
callp() (') = S{@atthle) + Baut(e)) — Male)uble) = vup(ul) = ey in £2(9)
(4.5.69)
which shows that the functions eL”ﬂ satisly (4.5.66) and are independent of z; ( the

[unctions u! are independent of x3).

Let v = (v;) be an arbitrary function in the space V() .The following relations

are immediate consequences of definition (4.3.10) of the functions e, a(¢)(v).

eeaale)(v) =+ 0in L3H(Q) (4.5.70)
el e)(v) = $hva in L3(Q) (4.5.71)
cegya(v) = dhuy for all € > 0. (4.5.72)

Using the variational equations (4.3.11) of the scaled three-dimensional problem and

relations (4.3.22), we pet

| A7 euple)(ul () el (v)y/al)d

= [ {7 @leap e NI} {eeapae) o)} fole)dz
/ﬂ{r"s“m:’{ﬂ[ﬂaua{f]E“Ififm}{Eﬂuuﬁff}[l’}}- gleldx
[ {347 eapte (N H ceaple)(®)} ol c)dr
J AN @leans (DT} {eeanste)(@)} ale)dz
[ {A e eapte) w1} {eeaiute) (v)} Vol )da

= f-3f’{t]lfnuf-{tllzvq#g[c}dz- (4.5.73)

Reep v € V() lixed and let ¢ — 0. Using relations (4.3.20),(4.3.21),(4.3.23)-
(4.3.25),(4.5.70)-(4.5.72) and the weak convergence (4.5.58), we obtain

+ o+ 4+ o+

_/;l{i;m”"'rff,”ﬁﬂg:rg +[Aa el + (A + 2;:]&{3”3]33193} Vadz = 0. (4.5.74)

Letting v vary in V() then yields relations (4.5.67)-(4.5.68) (if w & L*(f1) and
Jawiyvdr = 0 for all v € H'(f2) that vanishes on [y then w = 0).
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Step 5: The pair (£', @) solves the variational equations (4.5.56).

Let v = (1) € V() be independent of the variable ra; then (cf, inegquality
(4.3.16)-(4.3.18))

1 2
ealile)v) = Yag(v) = {a{ﬂavﬁ + dav,) — 55000 — b,,_dua} in L7(8), (4.5.75)

Calsle)(v) — {%ﬂ‘,_.,-u;, - Eﬁ‘;uﬂ} in L*(0), (4.5.76)

E_‘g”:g{f]('t}} =1, {15??}

as ¢ —+ 0. Keep such a function v € V() fixed in the variational equation (4.3.11)
and passing to the limit as ¢ —+ 0 and taking into account of the relations (4.3.16)-
(4.3.25). the strong convergence (4.5.75)-(4.5.77) and the weak convergence (4.5.58)
we gel,

5 @ e (@ s o) ady = € [ alvi/ady (4.5.78)

Given = (i) € (H}(w)), let v = () be defined by
v(y, x3) = nly) for (y, 1) € O

Then v € V({1), v is independent of ry and thus equation (4.5.78) are satisfied
with © = 7. Since both sides of equation (4.5.78) are continuous, linear forms with
respect to 13 € L*(w) and Hj(w) is dense in L*(w), these equations are valid for all

e Vilw). B

Remark 4.5.1: Observe that we ecannot conclude from the above theorem that
(€', @') is an eigensolution of the two-dimensional membrane shell problem. This
is because we do not know if @' £ 0. In previous cases, we found that ' # 0 by
passing to the limit in the orthogonality relations. Also, Ciarlet and Lods [14] prove
the strong convergence of the solution in (H'(Q))* x L*(0}) in the stationary case
under the assumption that the body force f(e) — f strongly in L%(Q). We do not

have that situation here and we only know that u){e) — u, weakly in L2(Q). Thus
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we can only say that either @' = 0 or (£, @) is an eigenfunction of the membrane

problem for { > N. [

Remark 4.5.2: Note that if Vi(w) is finite dimensional of dimension, say N, then
{€'(e}} for I = N cannot be of order O(c?). For, if this were the case, we can get
convergence of {u'(c)} in V(Q) to @, an eigenvector of the flexural shell problem.

This @ (l > N) will be orthogonal to @', 1 <7 < N and will contradict the fact that

dim (Vi(w)) = N. "

4.6 Conclusions

As mentioned in the introduction, we have investigated the behaviour of elgen-

solutions of a thin shell based uniquely on the non-trivial nature of the space of

inextensional displacements Vi(w).

In the stationary case, if Vi-(w) were nontrivial and the body forces were of order
O(c*).one got the flexural shell model. Here we have no supplementary assumption,
If V({w) were infinite dimensional, all the eigenvalues were shown to be of order Ofe?)
and they converge, for each fixed level |, to those of the flexural shell model. Further,
all the eigenvalues of the flexural shell are obtained this way. The eigenvectors

converge strongly.

IT the dimension of Vi(w) were finite, the above results hold only up to the level
equal to that dimension. Higher eigenvalues are bounded but are not of order Ofe*),
These higher eigenvalues converge to eigenvalues of the membrane shel] model, unless

the corresponding eigenvectors converge weakly to zero.

Sauchez Palencia[42], when discussing, the eigenvalues of the shells via the [Koi-
ter’s model, says that when Ve(w) # 0, the cigenvalues are “low frequency” Lype
and converge to the flexural eigenvalues while when dim Vi(w) = 0 one could get
(for instance under the additional assumption that the shell is “uniformly elliptic™)

the eigenvalues of the membrane shell in the limit. Such eigenvalues are said to be

of “medium frequency™.
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Here we observe that if dim Ve(w) = N < oo, then both kinds of eigenvalues -

low and medium frequency- may be present.

OF course, we do not know if the eigenvectors for [ > N converge weakly Lo zero
or not. If they all converge weakly to zero, then no medium frequency eigenvalues
exists. It will be nice to know if this is indeed the case. If so, it will also be nice to

know how to characterize the limits of ¢*€'(¢) for { > N.

Of course, to the best of our knowledge, we do not know of any examples of
shells for which if Vi(w) # 0, then it is finite dimensional. Sanchez Palencia states

that, n general, V() is infinite dimensional. This is yet another open question.




Chapter 5

Membrane Shells

5.1 Introduction

[n this chapter, we study the limiting behaviour of eigenvalues and eigenfunctions
describing the vibrations of a thin linearly elastic shell, clamped along its lateral
surface, under a geometric assumption on the middle surface of the shell that it is
“uniformly elliptic™(cf. (5.2.13)). In the stationary case. under additional assump-
tions on the body forces, this leads to the two-dimensional model of the “membrane

shell” as shown by Ciarlet and Lods [14].

Our procedure to study the corresponding eigenvalue problem is the standard
one. Starting with the three-dimensional eigenvalue problem (corresponding to the
one studied by Ciarlet and Lods[14] in the stationary case), we rescale the variables
and obtain a problem posed over a fixed domain where the parameter ¢ (correspond-
ing to the thickness of the shell and the dimension of the three-dimensional domain
over which the reference configuration of the shell is defined) now appears in the
various bilinear forms. We can then pass to the limit after obtaining suitable a

priovi estimates.

It must be observed that in previous work of Ciarlet and Lods [14], the membrane

model was obtained based on two assumptions. If the forces were strongly convergent



CHAPTER' 5 MEMBRANE SHELLS

o0
g

in L) and the middle surface of the shell is “uniformly elliptic”™ in the sense that
the two principal radii of curvatures are either both > 0 or both < 0 at all polnts
of the middle surface of the shell, then the membrane shell model was obtained in

Lhe limit.

In our case, we do not have the body forces and so we cannot make any ex-
tra assumption on their convergence. So how does the shell decide on its limiting
behaviour vis-a-vis its vibrations, on the basis of the assumption that the shell is
“uniformly elliptic™?. We show in this chapter, that the eigenvalues ( at each level [,
[=1,2,...) are of the order O(1) by considering suitable test [unctions to be used in
the variational characterization of the eigenvalues and either an eigensolution of the
three-dimensional problem converges a solution of the two-dimensional eigenvalue

problem for membrane shells or the corresponding eigenfunction converges to zero

weakly in (H'(2))* x L*(Q) .

The assumption on the set w, the notation and the geometrical and mechanical
nature of the shell are the same as in Chapter 4 ; for this reason, they shall not be

repeated here,

Then the eigenvalue problem consists in finding pairs (€, u') € M x V (Q)\{0}

such that

J, A el (Wards' = € [ oy (5.1.1)
for all v* € V(2*). By classical arguments, we can show that there exists a sequence
of eigenvalues

< <. << s 0 (5.1.2)

and we can choose a corresponding family of eigenfunctions {u'} such that

.[1 uf ™ gt = B (5.1.3)

{

The sequence {u**'} form a basis in the weighted space

(L2(ge; ) = {uf] j; utui/gds’ < oo} (5.1.4)

with the obvious inner-product.
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5.2 The Rescaled Problem

We now scale this problem to one posed over a domain independent of ¢. We set
P & P

R=wx(=1,1),ls =wx{X1},[y==x[-1,1]. (5.2.1)

If # = (2;) € 1 is a generic point, we sel @, = a% and with 2° = (25) € @, we
associate v € {1 by
L= IL — yl_.“ Ty = —I;;l_. {522]
¢

Thus, 3, = d, and 85 = 1d,.

Given a vector v© € V(%) we associate the vector v € V() where
V(Q)={ve (H'(2)lv=0o0n Ty} (5.2.3)

by

vi(a) = vi{z") (5.2.4)
where & and z* have the correspondence mentioned above. Given an eigenvector
u"!, we denote the corresponding vector obtained via (5.2.4) by u'(¢). We assume

further that the material properties of the shell do not depend on the thickness, and

S50 we sef

A=A =p >0 {5:2:5)
where A and g are independent of ¢.

Finally, given an eigenvalue £, we associate with it the “scaled” cigenvalue £/(¢)
by
£ =¢(e), (5.2.6)

Remark 5.2.1: Uplo now we have always scaled the eigenvalues as £ = ¢2£/(¢),
but now we do not scale them at all. This is the same situation which aceured for

eigenvalues € in the flexural shell case when [ > N = dim Vp.
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Given v = (v;) & (H'(Q))", we associale the symmetric tensor (eqple)(v)) by
eaale)(v) = (D, ﬂﬁ+5‘a*f ) = 7 a(e)v,
Ea]l:i{ﬂ{”} = 3{5 Uz + *’}ﬂ’ ) = [osle)v, (5.2.7)
caa(€)(v) = Idhua

Then if (£u™') € IR x V(2 {0} is a solution of (5.1.1), the scaled variables
(£e), u'(e)) € R x V{Q)\{0} is a solution of the problem

_/ AT (el (wt(e))ei; () (v)y/ gle)da = £ }f ui{€)viy gl e)dx (5.2.8)

for all v € V/(Q). Once again, it is clear that {£(¢)) corresponding to £ via (5.2.6)
are Lthe only eigenvalues of (5.2.8) and that the corresponding eigenvectors {ul(e))}

are complete in (L3(0))" and satisfy the orthogonality conditions

fﬂ ul(ehul(e)/ale)dz = &, (5.2.9)

Further, we have the following variational characterization of Lhe eigenvalues. Define
the Rayleigh quotient R(e)(v) for v € V(2)\{0} by

Uk (e (e)(v)es T
R(e)(v) = Jo AV (E)equle)(v)eqile)(v)y /gl e J-ff (5.2.10)

Ja viviy/gle)dr

Then

y = min ax i
€ {fl_— W Heﬁt}m{“] R(e)(v) (

tab |
T
=
—i
—

where Vy is the collection of all [-dimensional subspaces of V(1)

Define the space

V() = {1 = (1) € (Hp(w))? x L2(w)) (5.2.1

e
[
sl
e
S

The shell is said to be “uniformly elliptic” if its middle surface § is uniformly

elliptic in the following sense:; there exists a constant b > 0 such that

bag(y)€"€” = blé|" (5.2.1:

(]
e
s
el

—

for all § € w and all £ = (£7) € R?,
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Under this assumption, it is shown in Ciarlet and Lods [14] that the function

i . !
7 = (Zaal[vep(n)|]*)? (5.2.14)

is a norm in V;, (w) which is equivalent to the (H}(w))? % L%(w) norm and hence it
follows from Theorem 4.1 of Ciarlet and Lods [14] that there exists a constant ¢,

and a constant €' > () such that for all 0 < ¢ < ¢,

{Z [vallig + ||v3||§.,n} <c {Zr|equ{enunlﬁﬂ} (5.2.15)

for all v = (v;) € (H'(2))®

5.3 The Limit Problem

In this section we show that for each integer ! > 1, the scaled eigenvalues are bounded
uniformly with respect to ¢ and the limits of {£'(¢}},{ = 1 lies in a bounded subset
of /i and either the eigensolutions converge to the solutions of the two-dimensional
eigenvalue problem for the membrane shell or the cortesponding eigenlunction con-

verges to zero weakly in (H'(0))? = L*(f).

Theorem 5.3.1 t)For each integer | > 1, there exists a subsequence (still denoted

by ¢ ) sueh that

wlie) = u! in Y0 weakly (5.3.1)
wyle) = ubin L3(0) weakly (5:3.2)
Efe) —+ & (5.3.3)

u' = (u!) is independent of the transverse variable T3

i) Either the pair (€',@') solves the two-dimensional eigenvalue problem for “mem-

brane shell” viz;
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Find (£,C) € 17 % (Hj{w))? x L*(w) such that

lj] a7y, (C)vaaln)ady = (f[ Ceiv/ady for all & (H(w))? < L*{w). (5.3.4)

or, w'(e) = 0 weakly in (H'(0))? x LA (8.

ut) There exist positive constants Cy and Cy, independent of ¢ and [, such that

<O <€ <Oy foralll > 1.

Proof. Taking v = w'(c) in (5.2.8), it follows from the positivity of the tensor

AYH (), inequality (5.2.15) and the orthogonality condition (5.1.3) that
£(e) 2 C) forall { > 1 (5.3.5)
and hence £ > O for all { > 1.
It follows from Theorem 4.4.3 that
€(c) < Ca(1 + % (5.3.6)
and hence £ < € for all { > 1.

Also the proof that (ul(e), ul(e)) — (u,ul) weakly in (HY(2))* = L*() and

(@', £') satisfies (5.3.4) [ollows from part b) of theorem 4.5.6. .

In the case of the stationary problem, Ciarlet and Lods [14] prove the strong
convergence of the solution under the additional hypothesis that the body forces
converge strongly in L*(f). In the case of eigenvalue problem we are unable to
prove the strong convergence of {uf(e)} in L*(f1) for cach [. For this reason we are
unable to check that ' is non-zero and hence £ may or may not be an eigenvalue

of the limit problem (ef. Remark 4.5.1).
Let us denote u(c) = G°(f) and w = G(f) where

/ﬁz‘li-“"{t]m"{u{c]}E,-m{t:]n'glfﬁlrfr = fnf,--u,- gle)dr forall v e V() (5.3.7)

and

f ™"y () yas(n)ady = L { /_ ]I f,-ffma} nady for all 7 € Vi, (w).  (5.3.8)

i
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Under the assumption (5.2.13), it has been shown in Ciarlet and Lods [14] that the

Green's operator G converges strongly to the Green’s operator G.
ie,
NG () = GUF) | arappzs ey =+ 0

Thus we have the following result.

Theorem 5.3.2 i)For each € € o((), the spectrum of G, there erist E(e) € o(G*)
such that £(e) — €.

ulf E(e) is a sequence in the discrete spectrum o4((°) of (i such that E(e) = €,
where £ does not belong to o((), then the normalized eigenvectors associated with

the eigenvalues £(¢) converges weakly to zero in (HY(Q))? % L3(12).

Proof. See the proof of Proposition 2.1.11 of Allaire and Conca [1]. .

Observe that the Green's operator associated to the limit problem | i.e. G is not

compact. Hence the structure of its spectrum is complicated.

Let A be the unbounded operator whose inverse is . (Thus if the bilinear form in
the left-hand side of (5.3.8) is a(u,v), we define A by a(u,v) = (Au, vy ). The
spectrum of G contains the reciprocals of the spectral elements of A. Then apart
from isolated ecigenvalues of finite multiplicity, A also has an essential spectrim
which may consists of accumulation points of eigenvalues, eigenvalues of infinite
multiplicity, continuous spectrum and so on. As the essential spectrum is bounded,
and as A is unbounded, there exists eigenvalues of A, of finite multiplicity, tending

to infinity (ef. [41])

We saw in Theorem 5.3.1 that the limits {£'} form a bounded set. Thus there
exist an infinity of eigenvalues of the limit problem which cannot be expressed as
limits of {£'} for fixed [, as e —+ 0. This case is thus in vivid contrast to all the cases
considered hitherto where all eigenvalues of the limit problem could be obtained as

limits as described above.
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Neverthless, by virtue of Theorem 5.3.2, every spectral element s the limit of a
sequence of eigenvalues of the given family of problems. Thus if A is in the spectrum

of A. we have

A = lim (¢ (5.3.9)

0
l.e. the [ now varies with e. In view of this, Jet
A= 1in1$ni'.sf{c} (5.3.10)
Then it is clear that o(A) N [0,4) = ¢. Also if C is the constant appearing in
Theorem 4.4.3 such that & < € for all 1. it follows that the eigenvalues of A which

are greater than C can only be approximated as in (5.3.9) and nof as a limit of

{E4(e)} for some fixed I,

We are unable to specify the behaviour of {€'(¢)} for fixed L. The limit may fall
in the resolvent set, i.e. w!(e) — 0 weakly in (H'(Q))? x L¥(Q) or € may be an

ergenvalue of finite or infinite multiplicity.



Concluding Remarks

We summarize below the important conclusions obtained and open problems

raised by our study of eigenvalue problems of thin elastic shells.

o Shallow shells behave like plates. The solutions of the limiting elgenvalue
problem correspond to the third component of the limits of eigenvectors of
the three-dimensional problem and the other components of the limit can be

obtained in terms of this component.

o Similarly, in the case of rods, the eigenvectors of the limit problem give the
harizontal components of the limit of the three-dimensional eigenvectors while

the third component tends to zero.

o In the case of flexural shells if dimVy = oo, we get the eigenvalue problem

corresponding to the flexural model abtained in the stationary case.

» [n all the above cases, all the eigenvalues of the limit problem can be obtained

as limits of “vertical’ sequence of eigenvalues, i.e. limits of {£/(¢)} for fixed 1,

o In all the cases, there is a difference of a factor % in the coeflicients of the
limit problem compared with those presented in the literature for the corre-
sponding slationary cases. However, this discrepancy is easily removed if the
limit models for stationary cases are presented with ri-averages ol the body
[orces on the right-hand side rather than mere integrals with respect to the
xa-variable. This is even more important when we descale the problems to
describe the two-dimensional limit model in terms of the thickness 2¢ of the
shell. The power of e which oceurs will vary by one in the two models, but if

we present the body body forces as zy-averages, then both models will be the

same. (cf. for example, Remark 2.7.1).



In case dimVp < oo for flexural shells and in the case of membrane shells
we have an ambiguity regarding the behaviour of limits of *vertical’ SeOUEences

{€'(e)} for fixed 1.

This leads to some open questions.

If Vie # {0} then is it always infinite-dimensional. If not construct examples

of shells with dimVp < oo,

fdimVe = Nand [ > N, does u'(e) — 0 weakly in (H'(2))* x LA, (1 not,
the flexural shell will have two kinds of eigenvalues in the limit- the *fesural’
eigenvalues for { < N and ‘membrane’ eigenvalues for { > N. We conjecture

that this will not be the case.

In case of membrane shells, describe the limits of {€/{¢)} for I fixed.



Bibliography

[1] Allaire G and Conea C. Block-Wave Homogenization for a Spectral Problem

in Fluid-Solid Structures, Arch. Rat. Mech. Anal, 135, 1996, pp.197-257,

[2] Acerbi E, Buttazo G and Percivale D. A wvariational definition of the strain

energy for an elastic string, J. Elasticity, 25, 1991, pp.137-148.

i-'iﬁ Bernadou M, Ciarlet P.G and Miara B. Existence theorems for two-dimensional

lincar shell theories, J. Elasticity. 34, 1994, pp.111-138,

[4] Bourquin I', Ciarlel P.G, Geymonat G, and Raoult A, 1- convergence et analyse
asymplotique des plaques minces, C. R. Acad. Sei. Série.l, 315, 1992,

pp.1017-1024.

[5] Caillerie D.  The effect of thin inclusions of high rigidity in an elastic body,

Math. Methods Appl.Sei, 2, 1980, pp. 251-270.

6] Ciarlet P.G. A justification of the von Karmin equation, Arch. Rational.

Mech. Anal, 73, 1980, pp.349-389.

[7] Ciarlet P. G. Mathematical Elasticity, Vol I: Three Dimensional Elasticity,

North-Holland, Amsterdam, 1985,

[8] Ciarlet P.G.  Plates and Junctions in Elastic Multistructures. An Asymptotic

Analysis, Mason, Paris, 1990.

b4



BIBLIOGRAPHY

[9] Ciarlet P.G and Destuynder P. A Justification of the two-dimensional plate

model, J.Mécanique, 18, 1979, pp. 315-344.

[10] Ciarlet P.G and Destuynder P. A justification of a nonlinear model in plate

theory, Comp. Methods in Appl. Mech. Engrg., 17/18. 1979, pp.227-258,

[11] Ciarlet P.G and Kesavan S. Two-dimensional approximation of three-
dimensional eigenvalue problem in plate theory, Comp. Methods in Appl. Mech,

Engreg.. 26, 1981, pp.145-172.

[12] Ciarlet P.G, Le Dret H and Nzengwa R. Junctions between 3D and 2D

linearly elastic structures, J. Math. Pure. Appl, 68, 1989, pp. 261-295.

[13] Ciarlet P.G and Lods V. On the ellipticity of linear membrane shell

equation, J. Math. Pure. Appl. 75, 1996, pp.107-124.

[14] Ciarlet P.G and Lods V. Asymptotic analysis of linearly elastic shells 1, Jus-
tification of membrane shell equation, Arch. Rational Mech.Anal., 136, 1996,

P 119-161.

[15] Ciarlet P.G and Lods V. Asymptotic analysis of linearly elastic shells 111,
Justification of Koiter's shell equations, Arch.Rational Mech. Anal., 136, 1996,

pp.191-200.

[16] Ciarlet P.G and Lods V. Asymptotic Analysis of linearly elastic shells. “Gen-

eralized membrane shells”, J.Elasticity, 43,1996, pp.147-188.

[17] Ciarlet P.G, Lods V and Miara B. Asymptotic analysis of linearly elastic
shells. 11, Justification of flexural shell equations. Arch.Rational Mech. Anal., 136,

1996, pp.162-190.

[18] Ciarlet P.G and Miara B. Justification of the 2D equations of a linearly elastic

shallow shell, Comm. Pure and Applied Math, 45, 1992, pp.327-360.

K



BIBLIOGRAPHY

[19] Ciarlet P.G; and Paumier J.C. A justification of the Marguerre-von Karman

equation, Computational Mech, 1, 1986, pp.177-202.

[20] Ciarlet P.G and Sanchez Palencia E.  An existence aned uniqueness theorem for

2D linear membrane shell equations, J. Math. Pure. Appl. 75, 1996, ppR.51-67.

[21] Cimitiere A, Geymonat G, Le Dret H, Raoult A and Tutek 7. Asymptotic
theory and Analysis for displacement and stress distribution in non-linear elastic

slender rods, ). Elasticity, 19, 1998, pp.111-161,

[22] Conca C, Planchard J and Vanninathan M. Fluids and Periodic Structures,

Wiley and Masson, Paris, 1995,

[23] Fox D.D, Racult A and Simo J.C. A justification of nonlinear properly invari-

ant plate theories, Arch, Rat. Mech. Anal, 124, 1993, pp.157-199.

[24] Kesavan S.  Homogenization of elliptic eigenvalue problem. Part 1, Appl.

Math, Optim. 5, 1979, pp.153-167.

[25] Kesavan Sand Sabu N. Two dimensional approximation of eigenvalue problem

in shallow shell theory (to appear in Mathematics and Mechanics of Solids).

26] Kesavan S and Sabu N. Two dimensional approximation of i envalue problems
I g I

in shell theory: Flexural shells. (to appear).

[27] Kesavan S and Sabu N. One dimensional approximation of eigenvalue prollems

in linear elastic rods. (to appear).

[28] Le Dret H. Convergence of displacements and stresses in linearly elastic slender
rods as the thickness of the rods goes to zero, J. Asymptotic Analysis, 10, 1995,

pp-365-402.

[29] Le Dret . Vibrations of a folded plate, Mathematical Modelling and Nu-

merical Analysis, 24, 1990, pp.501-521.

i



BIBLIOGRAPHY

[30] Le Dret H and Racult A. Le modéle de membrane non liné aire comme limite
variationnelle de 1" élasticité non lineaire, €. R. Acad. Sci. Série.l, 317,

1983, pp.221-226.

[31] Le Dret H and Raoult A. From three-dimensional elasticity to nonlinear mem-

branes in Asymptotic methods for elastic structures,

[32] Le Dret H and Raoult A.  The non-linear membrane model as variational
limit of nonlinear three-dimensional elasticity,  J.Math.Pure Appl, 74. 1995,

pp-549-578.

[33] Le Dret H and Racult A. Dérivation variationnelle de modéle non linéaire de

coque membranaire, C. R. Acad. Sci. Série.1, 320, 1995, pp.511-516.

[34] Le Dret H and Raoult A.  The membrane shell model in nonlinear elasticity:

A vanational asymptotic derivation, J.Nonlinear Sci, 6, 1996, pp.59-84.

[35] Lods V and Miara B.  Analyse asymptotique des coques “en flexion” non-

linearement élastiques, O, R. Acad. Sei, Série, 1, 321, 1995, pp.1097-1102.

[36] Miara B. Justification of the asymptotic analysis of elastic plates. 1. The linear

case, Asymptotic Analysis, 8, 1994, pp. 259-276.

[37] Miara B. Justification of the asymptotic analysis of elastic plates. 2. The

non-linear case, Asymptotic Analysis, 9, 1994, pp. 119-134.

[38] Miara B. Analyse asymptotique des coques membranaires non lineairement

elastiques, C. [. Acad. Sci. Série 1, 318,1994, pp.689-694.

[39] Miara B. Asymptotic analysis of nonlinearly elastic membrane shells

Asymptotic methods for elastic structures (Lisbon, 1993), pp.151-159.

[40] Rao B. A justification of a nonlinear model of spherical shell. Asymptotic

Anal, 9, 1994, pp.47-60.




BiBLIOGRAPHY s

[41] Rappaz J, Sanchez Hubert J, Sanchez Palencia E and Vassiliew D. On spectral
pollution in the finite element approximation of thin elastic “membrane shells”

Numer, Math. 75, 1997, pp.473-500.

[42] Sanchez-Palencia. Statique et dynamique des coques minces,|.Cas, de flexion

pure noninhibee. C. R. Acad. Seci.Série.1, 309, pp411-417.

[43] Sanchez-Palencia. Statique et dynamique des coques minces.2 ,Cas the flexion
pure inhibée-Approximation membranaire, C. R. Acad. Sei. Série.1, 309, 1989,

pp.531-537.




