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ABSTRACT

Black holes are one of the most interesting objects of study in gravitational
physics, Classically they trap everything including light. They are characterised
by a event horizen which encloses a curvature singularity. A study ol black hole
mechanics shows that the black hole behaves as a thermodynamic system, with the
area the event horizon as entropy, and a geometric quantity called surface gravity as
the temperature Ty of the black hole. Semiclassical calculations, in which quantum
matter fields are studied on a fixed black hole background show that it radiates par-
ticles like a blackbody, at temperature Ty, In this thesis, we try to understand black
hole thermodynamics mainly from a statistical interpretation using a microscopic
theory.

Black hole radiation and subsequent evaporation imply a non-unitary evolution as
the final state of evaporation is a mixed thermal state. Here we study how inclu-
sion of back reaction of infalling matter fields on the black hole geometry leads to
interactions with the outgoing fields [i]. This interaction is unitary, and shows that
back reaction effects are important in order to understand radiation,

However, the complete microscopic description has to come from a quantum theory
of gravity, and String theory is one of the candidates for it. In this thesis we
study how string theory gives a microscopic description of certain extremal and
near extremal black holes which arise in low energy string theory. These black hole
solutions correspond to string solitons or D branes wrapped on compact manifolds.
The logarithm of the degeneracy of states of the solitons are calculated giving the
area law for black hole entropy. In this thesis we study extremal black holes lii]
and show that they occupy a special place in general relativity, infact semiclassical
methods show their entropy to be zero. Though the generic extremal black hole
in string theory obeys the area law, some special ones do not. To understand
the microscopic counting, we propose that the string states correspond to limiting
extremal black holes, instead of exactly extremal ones.

Further, we study how the microscopic theory of D branes can be used to stud ¥ Ta-
diation from black holes [iii]. We study [ermionic radiation from a four dimensional
black hole and show that the radiation rate has a structure which can be reproduced
from a 141 dimensional Conformal Field Theory. We also give a microscopic eal-

culation in which two open strings collide to give a fermionic closed string mode in



the bulk. This calculation gives the fermion radiation rate from a five dimensional
black hole upto coefficients.

There are 24-1 dimensional black holes called BTZ black holes which appear in the
near horizon geometry of the above string black holes. We study fermion radiation
[iv] [rom these and show that like the higher dimensional black hales, they have a
rate which can be reproduced from a 1+1 dimensional Conformal Field Theory, The
2+1 BTZ black hole is asymptotically anti de Sitter, and it has been conjeciured
that string theory on anti-de Sitter space is dual to a conformal field theory whicl
lives on the boundary of the AdS space-time (AdS/CFT correspondence). Tn the
light of this, we examine radiation of scalar, fermion and vector particles for all
partial waves from a five dimensional black hole [v]. by probing the near horizon
BTZ geometry. We find that the radiation rate can be eractly reproduced from a
I+1 dimensional Conformal field theory, which lies on the boundary of the near

horizon geometry.
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Chapter 1

Introduction

Black holes are formed when siars with mass around few times the mass of our
sun (Mg ) or higher collapse under their own gravitational field. All the mass of the
black hole is confined within a radius as small as 2G M /¢ !(~ few km for a star with
mass 6Mg) for non-rotating ones. This radius, is called the Schwarzschild radius.
Classically nothing, not even light can escape from within this critical radins. At
the centre of the black hole is a curvature singularity. Objects which fall inside the
black hole inevitably fall to the centre. Since the nature of space-time is undefined
at the centre due to the singularity, we cannot determine the physics at that point
in the framework of classical physics.

We donot know the complete theory of quantum gravity vel. However, as we shall
study in this thesis, our understanding of the quantum black hole has progressed
considerably in the last few vears. We shall study the semi-classical approach to
quantisation in the beginning. In this gravity is treated as classical, whereas all
other fields are treated as quantum fields. This approach led to the discovery of
the phenomenon of black hale radiation [1]. Semi-classically black holes cease to be
objects which can only absorb, but they also radiate particles in a therinal spectrum.
This spectrum is very much similar to black body radiation at a temperature related
fo a geometric quantily called the surface gravity of the black hole. This evidence
and other laws of black hole mechanics led to the identification of black hole as a
thermodynamic systemn.

Ordinary thermodynamic systems have a statistical description in terms of mi-
croscopic constituents e.g. a gas has molecules as its microscopic constituents, Does
the black hole have such a description? We shall precisely address this question

in this thesis. String theory is a theory which describes all interactions including

' = Newton's constant, ¢ =speed of light



gravity in a unified frame work, and hopes to give a complete theory of the quantum

nature of space-time. We study how this theory helps us give a microscopic descrip-

tion of black hole thermodynamics. Whether it answers more difficult questions of
| the smoothening of curvature singularity is not very clear at present. There are al-
| ternative approaches like canonical quantisation of gravity using Ashtekar variables,
| which is beyond the scope of this thesis.

In this chapter we shall review aspects of black hole thermodynamics and semi-
| classical gravity including Hawking radiation. We give a brief introduction to String
- theory and explain some of the solitonic ohjects called D-branes which describe
‘ black holes. We also describe anti-de Sitter spaces which help us to understand the
| properties of certain black holes with the help of a recent conjecture relating physical

quantities on anti de Sitter spaces to those of a conformal field theory which lives

| on its boundary,

| Black Hole Thermodynamics

| A study of classical black Lole physics reveals a set of laws of black hole mechanics
which are similar to the laws of thermodynamics. Like the irreversibility of entropy
in a thermodynamic system, there is an inherent irreversibility in all phenomena
| associated with black holes. As we know, black holes are solutions of Einstein’s
equation which relates space-time to matter. The metric which is a second rank
| tensor under general coordinate transformations, is the field which describes the

nature of space-time and hence gravity. The metric of the simplest black hole the

Schwarzshild metric:

; 2GMYN 2GMN ;
ds® = — (l - :: ) dt® + (l Sk ) dr® + r2d® (1.1)
I,

2

Where M is the mass of the black hole, and ¢, r, ) stand for the time. radius and
angular coordinates respectively. There is a curvature singularity at r = 0. However
the metric singularity at r = 26GM/e? can be removed by a coordinate transforma-
tion. At this eritical radius, all non-spacelike curves bend into the black hole, except
the light rays given by r = 2GM/¢?, 0 = constant, which reach future infinity, All
such light rays travel parallel to each other, and constitute a null surface. This
surface is called the event horizon of the black hole and lightcones inside the event
horizon bend towards r = ) instead of future timelike infinity. A future directed
light signal sent from inside the event horizon does not reach future null infinity,

but ends up at the singularity. Thus at any space-like slice containing a black hole,
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there exists future directed non-spacelike curves which do not reach future infinity,
and thus in subsequent space-like slices they must remain within a black hole. Thus
it is possible for two black holes to unite to form ane or new black holes to form
at later times. However, black holes once formed cannot disappear or break into
two [2]. Bilurcation of black holes is not allowed as any non-spacelike curve inside
the black hole can be deformed into another through a sequence of curves. Thus
since space-time is connected, in a later slice, the event horizon cannot bifurcate into
two. This irreversibility in black hole processes actually leads to the area increasing
theorem, which states that in any process, the area of the event horizon Agy never
decreases,

The generic black holes present in General Relativity posess angular momentum
or charge (or hoth), apart from their masses. [t can be shown that in any process
the change in the Mass Mgy, angular momentum J, charge @ of the black hole are
related to the change in area of the event horizon Agy by a simple law. Thus. taken

together, the two laws of black hole mechanics are [3]:

I

q-f_‘_'rﬁ;iﬂn + O ppdQ + Qpudd (1.2)

dAgy = 0. (1.3)

SMgan

Where Mpy, J. @ are mass, angular momentum, charge of black hole, Agy, area
of horizon, gy and d g are angular momentum and electromagnetic potential at
the horizon; & is surface gravity *. This is a geometric quantity, which is defined
as the force exerted by an observer standing far away from the black hole to keep a
unit mass test particle stationary at the horizon. It is remarkable that this force is
constant all over the horizon, and hence is determined in terms of black hole parame-
ters. These laws closely resemble the laws of thermodynamics if we identify the area
of the black hole as entropy, and the surface gravity » as proportional to the tem-
perature of the black hole. Does this imply that the black hole is a thermodynamic
system? Thermodynamic entropy has interpretations from information theory, and
more impaortantly from statistical mechanics as the logarithm of the degeneracy of
a microscopic states. In [4]. it was shown that using the amount of information tlat
is lost when a particle falls into the black hele, the area of the event horizen can
be related to entropy. The statistical interpretation is the subject of study of this

thesis. Moreover, the fact that the black hole has an intrinsic temperature associ-

2, Henceforth we work in natural units h=c=1



ated with it implies that il it is placed in a surrounding at a lower temperafure,
then it should radiate as a ordinary hot body does. Classically a black hole cannot
radiate as the event horizon acts as a one way membrane. On using the semiclassical
approximation near a black hole where all fields except gravity are quantum, §. W.
Hawking showed that indeed black holes radiate particles at a temperature related
to its surface gravity. We review semiclassical gravity and Hawking's derivation of

hlack hole radiation next.

Semiclassical Approximation

In order to estimate the length scale where quantum effects of gravity become im-
portant, we determine the Comptan Wavelength of a black hole and equate it to
its Schwarzschild radins. Hence, the correct relation gives b/ Mgpe ~ GMpy /e
Where h is Planck’s constant. Using the values of the constants. Mgy is determined
as ~ 107%gm, and hence the size of the object as 107" ¢m, a very small length in-
deed. Thus for black holes which are larger in size than 10~ em, gravity can be
taken as classical. However, for all other interactions, quantum effects are important
at much higher length scales. In [1] scalar fields were taken in the background of
a collapsing body. In curved space-time, the decomposition of a field into positive
and negative frequency components is not unique. For example a positive frequency
mode €' is a mixture of positive and negative modes of ¢!, when the time { of
one observer is related to the other observer's time t' = logt (such transformations
are not allowed in flat space). Hence the concept of particles and anti-particles is
not well defined in curved space. However, for asymptotically flat black holes, one
can consider modes in the far past, and the modes in the far future and decompaose
them uniquely. The evolution of these modes can then be traced from the distant
past of the black hole to the far future. The support of the massless scalar felds
in the past is on the past null infinity surface (77, and in the future on the [uture
null infinity surface (Z7). Using a Heisenberg description where the field operator
$ evolves, but the states remains same, it can be shown that the vacuum in T
actually has particles in the thermal spectrum in T+, A detailed derivation of this
construction shall be given in Chapter 1. Thus the vacuum defined by o~ |0} =0
where o~ is the annihilation operator of the past, has

oy — Tabs _
OIN10p = L —exp(2rw/s)’ (A




where N7 is the number aperator in the future, and T, b 18 the “Greybody factor’ of
the black hole. Since the state in the far past did not contain patticles. these particles
must have been radiated from the black hole. The spectrum has a remarkable
similarity to the black body radiation spectrum at a temperature # /27, The *Grey
Body factor’ or the absorption coefficient of the black hole, is an additional factor
which comes due to the geometry of the black hole space-time. Since the black
hole geometry is curved, the emitted particles have to travel through a potential
barrier to reach an ohserver far away from the black hole. Thus only a fraction of
the particles determined by the transmission coefficient of the potential barrier (also
the absorption coefficient) of the black hole is detected by an observer standing far

away. For certain black holes like the Schwarzschild blaek hole, the G revbordy factor

Wr

!

1
T
r=203 NF r

Figure 1.1: Potential Barrier for a Scalar Field

is frequency independent and for low frequencies equals the area of the horizon. For
these black holes, the spectrum is very similar to black body radiation. For certain
other black holes, this factor plays a erucial role as we shall see in Chapter 4, 5 and
6 of this thesis.

Most black holes are not stable against the above radiation. TFor the
Schwarzschild black hole. Ty = /27 = I/Mgy This implies that a very small
radiation would increase the temperature, and hence the radiation rate. This is a

runaway process and the black hole rapidly evaporates away. A complete evaporation

I



of the black hole implies that finally there will be radiation left in fat space-time.

The above lead to the famous ‘information loss’ paradox. The initial pure state
which constitutes the black hole evolves into a thermal stale in the future which
can only be described by a density matrix. This is a non-unitary evolution, where
all information about quantum numbers of particles which fall into the black hole
are retained only partially in thermal averaged quantities. Non-unitary evolution
is not allowed in quantum mechanics, where pure states can evolve only into pure
states. The same situation may arise when a piece of charcoal completely burns
away. However, we know the microscopic constituents of coal and there is a uni-
tary microscopic process which explains the burning. Presence of a large number
of degrees of freedom for the macroscopic burning coal system neccssitates a ther-
modynamic description. Thus for a black hole also, we expect a resolution of the
puzzle from a microscopic description,

The theory of quantum gravity will give the complete picture of Hawking Radiation.
Will that theory have o different nature than other quantum theories where unilary
evelution is @ prime requirement?

On the other hand, we can think of the black hole as made up of microscopic con-
stituents. The degenervacy of those states should give the entropy of the black hole.
A inleraction of the micro-constituents should give a radiative process which models
Hawking radiation. Moreover the origin of thermalisation of these states for black
holes have to be determined, as unlike other thermodynamical systems, the black hole
s nol associated wilth a heat bath.

In the absence of a quantum deseription of the black hole, the collapse of a
body and its subsequent evaporation was re-examined. The derivation of Hawking
radiation ignores the back reaction of the infalling and outgoing Hawling particles
on the background geometry which is taken as fixed and classical. In [5] it was shown
that as the particles near the horizon travel at the speed of light, their gravitational
field is carried in a shockwave. When the shockwave hits the horizon. there is a
change in the horizon coordinates. An outgoing Hawking particle sees this shift,
and the resultant interaction between infalling and outgoing particles is completely
unitary [6, 7]. It thus follows that the complete evolution of the infalling particles
into the outgoing radiation may be described as a unitary S-matrix. However the
Hawking spectrum can not be determined from the S-matrix description.

In this thesis, we study the back reaction of scalar and fermion matter fields
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on the black hole geometry [8, 9]. The fields have support on space-like slices very
near the horizon. The energy momentum tensor of the matter fields is treated as a
small perturbation on the back ground and causes a linearised shift in the black hole
metric, As determined in [8], we find that the shift in the metric affects the outgoing
particles non-trivially for the fermions as well as the scalars. The wavefunction
of the outgoing particles is solved in the shifted metric, and it is shown that it
depends on the energy momentum of the infalling particle. On treating the shift as
classical, there is an delta [unction type of interaction between the outgoing fields
and the infalling fields. This interaction is ultra local in the angular coordinates
as well. Unlike the scalars, the simplest bilinears of the fermions do not see this
ultra-local interaction [9]. On prometing the shift to a quantum operator through
a correspondence principle, an exchange algebra for the fields is determined, which
is not ultralocal as earlier. The fermions and scalars have a behave similarly in
this case. Our calculations reveal that back reaction effects are important in the
derivation of Hawking radiation and even in the lowest approximation in h lead
to an interaction of the matter fields. However, this approach does not help us in
determining the entropy of the black hole. The major breakthrough in this respect

comes from String Theory. We shall examine the results obtained using string theory
in rest of the thesis.
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Black Holes and String theory

String theory is one of the approaches to quantum gravity. Here the graviton which
is the quanta mediating gravitational interactions, arises as a vibrational mode of
a string. The “string’ is a one dimensional object which replaces the particle as
the fundamental object in all physical interactions. Tt has a fundamental length
associated with it, ;. As the action for the particle is determined by the proper
distance along the trajectory of the particle, the string action is determined by
the infinitesimal area swept out as it propagates in space-time. 'The 2-dimensional
surface which arises due to string propagation is called the ‘world sheet” of the string.

The string world sheet action is thus [10]

Pl T/rfrﬂh\,j—dc.!gm,.‘{#_’{" (1.5)

where X are the coordinates of the string and Huvs the metric of the space-time on
which the string propagates. o, + parametrise the space and time directions on the
world sheet, This action can be mapped to a 2 dimensional free scalar Beld action for
the X*'s on the world sheet, with a set of constraints. Infact, the 2dimensional field
theory is a conformal field theory, with a given central charge. Thus like in ordinary
field theory, the X's can be expanded in normal modes. and the quantisation of
these modes gives particle excitations which are representations of the space-time
lorentz group. Quantisation of a closed string gives the scalar, an antisyrmetric
gauge field and the graviton as massless excitations. There are other massive modes.
with masses proporfional to 1/{;. When we confine ourselves to energies much less
than the above, field theories in space-time, corresponding to the massless modes are
recovered. Thus we see that in string theory, gravity arises naturally in the same way
as other fields. In this thesis we shall study the supersymmetric string, where there
are fermionic fields for each X*, and the action is invariant upto a total derivative
under ‘supersymmetry’ transformations of bosons to fermions and vice-versa, Due to
consistency requirements, the superstring propagates in 10 dimensional Minkowski
space. Low energy theory for superstring vields supergravity in 10 dimensions.
We shall consider the open string in 10 dimensions, here and show how they give
rise to the concept of extended solitons called D branes [11]. As the X's are fields on

the world sheet, appropriate conditions have to be imposed on the boundary o =0

I1f the string is purely bosonic, then a tachyon with negative mass is present in the spectrum,
This tachyon is not present in the superstring.
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and o = 7. Two kinds of boundary conditions can be imposed on the X* s of the
open string. One of them is the Newinan houndary condition, in which the normal
derivative along the boundary is zero. The other boundary condition, which leads
to important objects in string theory is the Dirichlet boundary condition. This i
given by X" = constant along o = 0 or 7. In general the open string can have the

following boundary conditions:

d. X" = 0 p=0..p

A% = 0, a=p+1.9 (1.6)

In the above, clearly. the open-string end points are fixed on a p+1 dimensional
hypersurface which lies along ¢ = 0, L., p directions. This hypersurface is dynami-
cal. It has a mass which is proportional to 1/g, (g, is the coupling constant of the
string). and hence is infinitely massive in perturbative string theory, Thus these
branes, called Dp branes are actually solitons in string theory. They are charged
under p+ 1 form field strengths called Ramond-Ramond fields, [11] which arise also
in the massless spectrum of super string theory., Thus in perturbative string theory,
these solitons are described by open strings stuck on them. Their presence breaks
translational invariance along the a directions. The commutator of two SUPETSVITIT-
teries gives a translation, and hence only some of the space-time supersymimetries
are preserved in the presence of the D brane. States which salisfy a certain bound
relating masses to central charges of the SUSY algebra are called BPS states. They
preserve 1 /2" (where n is an integer) of the supersymmtery transformations. Dp
branes precisely satisfy this condition, and this property helps in maodelling extremal
black holes with the same M = [lfvﬁﬁfg criterion,

The black holes corresponding to these Dp Branes are obtained when these hiy-
persurfaces are wrapped on compact manifolds like the torus. As the radii of the
torus are taken to zero, the branes appear as point like objects in the non-com pact
directions. In the low energy limit where all the massive particles of the string can
be mtegrated out, the gravitational field due to these ohjects are determined by
solving ordinary supergravity equations. The metric obtained with at least three
non-zero charges, e.g. (15 D5 branes, (), D1 branes. and momentum along the D1
branes wrapped on T x §'. are black hole solutions with a stable horizon [12].

In this thesis, we shall study such black holes. We shall also examine briefly black

holes which arise in heterotic string theory, and also 11 dimensional supergravity




Figure 1.3: D-branes with open strings stuck on them

compactified down to lower dimensions. Heterotic string theory arises when only
the left (or right) moving modes of the string are supersymmetrised. 11 dimensional
supergravity is low energy limit of a theory called M-theory, which gives the strong
coupling limit of type lIA theory. Other sueprstring theories are also related to M-
theory by various dualities. The spectrum of 11 dimensional supergravity consists
of the graviton, the gravitino, and a four form field strength. Hence five-dimensional
and 2 dimensional extended branes naturally arise in this theory as they couple to
the four form gauge field and its dual in 11 dimensions. As deseribed above, the
M-branes like the D-branes can be wrapped on compact dimensions to yield point
like excitations in lower dimensions. The black hole solutions have multiple U{1)
gauge fields in the lower dimension.

The string black holes for which the entropy was reproduced from a microscopic
counting correspond to extremal black holes. In General Relativity extremal black
holes occupy a special place as their temperature is zero and their entropy is not
proportional to area, some derivations infact show it to be zero. In this thesis we
review all aspects of extremal black hole entropy [14]. It can be shown that the
entropy of a black hole is proportional to the euler characterestic of the topology of
near horizon 2 dimensional r — 7 (Euclidean time) plane. For a generic non-extremal
black hole, this topology is that of dise whose euler characterestic is 2. However
for an extremal black hole this is annulus, whose euler characterestic is zero [13].

Hence extremal black holes being topologically different from non-extremal ones

10




have their entropy as zero. We show in this thesis how ordinary black hole processes
like Hawking radiation and superradiance cannot take a non-extremal black hole to
an extremal one. All this shows that extremal black holes have a special place in
general relativity, What about extremal black holes in string theory?

In string theory. the heterotic black holes have a horizon which coincides with
the curvature singularity at the center of the black hole space-time. For these black
holes semi-classical entropy is zero as area of the horizon is zero [13]. Tor black holes
formed by branes, there are multiple U(1) charges. and generically the near horizon
topology is not that of an annulus. For these black holes, entropy is non-zero and
equals the area of horizon. However under restrictions that all U(1) charges of the
black hole are equal. the extremal metric of general relativity is recovered, whose
near horizon Euclidean topology of » — 7 plane is that of an annulus. It is expected
that the entropy of these black holes is zero.

The above black holes correspond to BPS states in string theory. Since the BPS
relation involves relation between the quantum numbers like mass and charge of
the state. these quantities donot undergo renormalisation. The counting of string
states is done where the string coupling g, is weak, and the effective gravitational
coupling, which is proportional to g,(). (Q is the charge of the branes)is small. The
background space-time is essentially flat in this limit, The degeneracy of states
obtained in this limit remains the same as g€} 3 | and the black hole with the same
quantum numbers arises.

It was shown in [15], that the logarithm of the degeneracy of heterotic string
states corresponding to the black hole is finite. Due to the presence of high curva-
tures near the horizon of the black hole, it can be assumed that stringy corrections
modify the metric in such a way that the black hole entropy ings finite. Using this
consideration, the black hole entropy is shown to be the logarithm of the degeneracy
of states upto a numerical factor. This reveals that it is perhaps possible to model
black holes by string states.

For black hole in five dimension obtained by compactifying 1) branes on a five
dimensional comapact manifold (7 x S* or A® x §'), a similar counting of states
gives the logarithm of string states to be finite. In this case. since the black hole has
a stable and finite horizon, the area of the black hole is finite. Black hole entropy
exactly equals the degeneracy counting. In this thesis we point out that though the

generic D brane black hole obeys the area law, the black hole considered in [16] is




obtained when all the U({1) charges are equal and does nol obey the area law. It's
near horizon topology is that of an annulus. and its entropy is zero. Thus there is
an apparent contradiction in the results. We point out thal this may be resolved
by observing that the black hole considered is extremal only in a limiting sense,
in which case the area law continues to hold. The nearly extremal black holes are
stable under hawking radiation due to vanishingly small hawking temperature, and
hence can be modelled by stable states in string theory. However. this resolution of
the puzzle is not unique.

To have a complete understanding of the microscopic description of black holes,
we have fo reproduce Hawking radiation. In this thesis. we shall study radiation
from the string black hales and try to madel them by a microscopic radiative process.
Lo observe radiation, the black holes have to have non-zero temperature, and we
take the ‘near’ extremal black holes corresponding to the black holes described
above. It has been shown that Hawking radiation rate for scalars from these black
holes [17, 18] can be reproduced from a 141 dimensional CFT. Here we shall study
fermion radiation try to see whether a radiative process can be determined to mode]
the radiation [19].

The particular four dimensional black hole we consider in this thesis is a solution
of N=4 SUGRA in four dimensions. It is obtained hy compactifying on 17, la
configuration of three M5 branes intersecting along a line to get a black hole in
4 dimensions [20]. In addition to the three five brane charges, there is momentum
along the common line of intersection. This is achieved by boosting the metric in the
compactified common intersection line of the five branes. Momentum along compact
direction is quantised, and appears as a U(1) charge in the lower dimension. When
there is only left moving momentum, the black hole is extremal. Addition of right
moving momentum makes the black hole non-extremal, with a non zero Hawking
temperature. We study emission rates of minimally coupled fermions, and determine
the greybody factor in the above black hole background, The grevbody factor has

the following form:

= g {7 o gl .
Tabs = Gessst (€777 1) pg (E_"FL) PF (ETR) (1.7)

Where g.s¢ is a constant depending on the charges, TrandTy are quantities pro-
portional to the leflt and right moving momentum, and the Hawking temperature
Ty = TyTr{2(Ty + Tx). pp and pp stand for the bose and fermi distributions

respectively, I'or Ty = Tq. this rate can be reproduced from a 141 dimensional
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CFT with the central charge which reproduces the entropy of the black hole. The
radiative process which gives rise to the above rate is an interaction between CFT
excitations with left moving weight 1 and right moving weight 1/2. However, since
this minimally coupled fermion is not present in the spectrum of M-theory compact-
ified to 4 dimensions. Therefore we donot attempt to give a microscopic deseri ption
of the above radiation rate.

We give a plausible microscopic radiative process for fermion emission from the
D-brane black hole in 5 dimensions, where the microscopic structure is well under-
stood. This consists of Q) D1 branes, and (J5 D5 branes wrapped around a compact
manifold 7% x 5. The D1 brane is wrapped on §!, and in addition. there is mo-
mentum along the S§! direction. which is carried by the open strings stuck on the
D branes. The radiative process which models emission from the 1) brane configu-
ration, [17. 18], is the interaction of a left moving open string colliding with a right
moving open string to give a closed string excitation in the bulk. From conserva-
tion of spin, one of the open string modes is taken to be fermionic and the other
bosonic. The emitted closed string mode is the gravitino with vector polarisation
along the T directions. Thus for the non-compact directions, this transforms as a
spin 1 /2 particle. The amplitude for this process is caleulated and it is found that
it is proportional to w, the energy of the emitied gravitino, Since the degeneracy
of the massless open string states colliding is very high. we assume that the initial

states are thermalised at left and right temperatures 75, and T, Thus the emission
=] P L

r . w o w d*: (1.8)

This upto a coefficient is exactly the emission rate from the 5D black hole as found
in [21].

rate has the form:

In all the derivations given above, the string theoretic calculations are done when
4:& < 1. For near extremal black holes, which are not BPS slates, there 1s no non-
renormalisation theorem which prevents the decay rates from receiving corrections
as the result is continued to the black hole regime. Thus the matching of decay
rates cannot be explained. Moreover, the location of the D-brane degree of freedom
or the CFT degree of freedom is obscure. In the black hole space-time. it is not
possible to determine where these states lie.

In this thesis we shall study anti-de Sitter spaces and the 241 dimensional BTZ,

black hole [22] formed by certain identifications of AdS; space. The near horizon
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geometries of string black holes are the product of BT Z black hole and a compact
manifold. As we shall see, these space-times are closely related to conformal field

theories, and provide a better understanding of the black hole micro states.

Anti-de Sitter Space and Conformal Field Theories

Anti-de bitter space-times are solutions of Einstein gravity with a negative cosmo-
logical constant. The curvature for the maximally symmetric metric AdS space-time
is constant and equal fo inverse of the cosmological constant. It can be thought as

a hyperboloid in d+2 dimensions. where 2 of the directions are time like [23]:
R | LR K R, (1.9)
where x denotes d spatial directions. and the metric in the embedding space is:
ds® = —du® — dv* + dx* (1.10)

The group of isometries of this space is SO(2,d). The space includes closed time like
curves which can be removed by going to the covering space of the manifold. The
metric can also be mapped to the upper half plane in d + 1 dimensions. Here, the
metric is written in Poincare coordinates as:
2 L 2 i

st = i_nj (drn + dr;dz') (1.11)
where g 2 (and #; are such that i = liod — 1 and include a time like direction.
The boundary of the space is given by g = 0 and the point at infinity. It can be
shown that the boundary is time like, and light ravs take finite time to propagate
to the boundary. The d dimensional boundary of AdS,.; is Minkowski space, and
the global group of isometries S0(2.d) acts as the conformal group on this, From
this it is anticipated that physical quantities calculated in the bulk AdS space-time,
can have a relation with conformal field theories defined on the boundary, In case
of AdSs, this is closely related to the fact that 241 dimensional gravity with or
without a cosmological constant can be mapped to a Chern Simons theory [24].
As we know Chern Simons theory is a topological field theory which induces a
conformal field theory on the boundary of the manifold, In case of AdSs, the pauge
group of the field theory is SL(2, B) x SL(2, R). Though the bulk field theory is
topological, introduction of a boundary gives rise to boundary degrees of freedom

which constitute a Wess-Zumino-Witten Conformal field theory.
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Figure 1.4: Anti-de Sitter Space-time

Independently. it was shown by Brown and Henneaux [25], that the asymptotic
generator of diffeomorphisms which preserve the AdS metric fall off conditions sat-
isfy a Virasoro algebra, and constitute a Liouville field theory. The close association
of asymptotically AdS space with a conformal field theory was used to quantise
a 2+1 dimensional black hole, called the Banados-Teitelboim-Zanelli (BTZ) black
hole. This black hole solution arises with suitable identifications of AdS, space-time,
The black hole solution however has no curvature singularity but a constant cur-
vature. It obeys the area law for entropy and the absorption coefficient for various
particles can be calculated in a manner similar to higher dimensional black holes,

To quantise the black hole, the horizon was used as a boundary and the conformal
field theory induced ou it determined. It was shown that for a small cosmological
constant and under certain assumptions about what constitutes the physical states,
the degeneracy of this conformal field theory gives the entropy of the black hole
exactly. Historically this is one of the first microscopic countings of black hole
entropy [26].

In this thesis we consider absorption coefficients for fermion particles propagating
on the BTZ geometry [27]. The SO(2,2) covariant derivative for the fermions involves
the term involving the derivative, the spin connection corresponding to the 50(1,2)

symmetry well as the triads which represent the connection along additional 50(2,2)
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generators. This ‘non-minimally’ coupled fermion equation is solved exactly to get
the fermion wavefunctions. The potential barrier caleulation then gives the grevbody
factor. We initially calculate the GBF for the s-wave fermions only. It is seen that
this has a structure very much suggestive of a underlying 141 CFT, with a left and
right splitting of temperatures, very much similar to that of the D1 D% system. Also
the comparison of the rate with the fermion absorption eross-section of D1 D5 black
hole gives the same answer, upto phase-space factors. However, if we want to obtain
Hawking emission rates for these fermions. we find that the local temperature for
these fermions decreases as p~! (radial distance) and is essentially zero at spatial
infinity. To obtain the Hawking radiation rate and compare with higher dimensional
black holes. we take an ohserver standing at p — [, where | is related to the inverse
of the cosmological term, To determine a microscopic description of the radiation
process, we need to know what the fermions correspond to in the boundary CFT.
However, in the frame work of the Chern Simons theary, it is difficult to include
particle excitations. To consider particle excitations on AdSs. a theory with all the
particles including gravity, has to be defined on the bulk, The answer to this comes
again from String Theory on AdS; spaces.

Evidences for the relationship of string theory on AdS spaces and conformal
field theories arose in the description of D-branes. The world volume theory of N
coincident D3 branes is a super-conformal SU(N) gauge theory. In the low energy
limit, tlie supergravity solutions representing these extended-branes is a meiric with
a horizon, whose near horizon geometry has the same symmetries as AdS- apace [28],
The size of AdS space is determined by N. Caleulations of the absorption coeflicient
for the supergravity branes can be reproduced from a 4-dimensional Super-conformal
field theory, and as mentioned earlier, the D1 D5 system was shown to be dual io
a 141 dimensional CFT. The near horizon seometry of the D3 brane solution is
AdSs » §% and that of the D1 D3 system compactified on T x §7 is AdS, x 5%,
The boundary of AdS; is 4 dimensional, and a A° = 4 supersymmetric theory
can be defined on it. Similarly, AdSs has a 1+1 dimensional CTT defined an the
boundary. All these considerations, lead to a conjecture: Superstring theory on
AdS spaces are dual to Superconformal theories which lie on the boundary of AdS
space-time. In case of the N coincident D brane configurations, the duality relates
it to superconformal SU{N)gauge theories. The details of this can be found in [29].

Since AdS spaces are not asymptotically flat, interactions are not cut off at spatial




infinity, Thus instead of scattering amplitudes, the relevant physical observables are
correlators. Fields in the bulk space-time are dual to operators on the boundary.
The bulk field acts as a classical source for the boundary operator. [f o is the
bulk field then, there exists a coupling with the boundary operator @ of the form:
[ dixgO, where vy is v evaluated at the boundary. The bulk-boundarv relation in

the low energy limit has the following form [30]:

exp(—1i(ih)) = <f:qr-_n|[ /LU]> (1.12)
. cFT

The classical supergravity action for the field in AdS space is represented by I{w)
(given thn). One very important point to note in the above is that classical quantities
in the bulk get related to quantum expectation values of operators in the boundary.
Since in the supergravity limit g, N is kept fixed and large, with i — 0 and N very
large, the 't Hooft limit of Yang Mills theory is realised in the boundary theory. In
this limit, only the planar diagrams dominate and physical quantities are caleulable.

Using this correspondence, black hole emission rates can be understood VETY
easily. In this thesis we consider emission from a five dimensional black hole of
N = 8 supergravity [31]. This black hole can be embedded in Type 1IB string
theory by modelling it by the D1-D3 system, wrapped on T x S'. On lifting the
5 dimensional black hole to 6 dimensions, a black string solution is obtained. The
near horizon geometry of this confi guration is 4d5; x 57, We calculate absorption
cross-sections for scalars, fermions and vector particles for all partial waves and find

that there is a common form for them:

Uy = gagespl—mw/e) |[Lh +iw/4xT ) (h + s + 1w/ dnTr)|? {"g;% (L.13)
The temperatures Ty, and Tx satisfy 47/(rk) = 1/Ty + 1/Th, w. is the energy of
the outgoing particle, i is a number related to the orbital angular momentum of
the emitted particle, s is the spin of the particle and Goff depends on the charges
of the black hole and kinematic factors. This structure, also noticed earlier from
mdependent caleulations for the scalars and fermions, is suggestive, and fi, h + s,
seem to correspond to the left and right weights of conformal operators.
As per the AdS/CFT conjecture, the information about the bulk AdS is con-
tained in the CF'T defined on the boundary of the near horizon geometry. The
correlators of the CFT are determined using 1.12, for each field separately. A plane

wave incident on the CFT from asymptotics then couples to the CFT operator hy
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a coupling of the form: [ ¢O. This plane wave is retained as classical. and the op-
erator (J is quantum. A quantum mechanical calculation is then done to determine
the emission rate ol the ¢ particles, similar lo emission phenomena from atoms in

the presence of a classical electromagnetic field. This calculation gives the emission
rate as:

I'p~ /Ei”'r(}'li;n,ﬂ}rf’t.n {1.14)
A knowledge of the correlator (V(,0), then gives us the emission rate. We find
that this is exactly the same as obtained in the grevbody factor caleulation. This
is a quantum mechanical deseription of the radiation from a black Tiole, The CFT
degrees of freedom which lie on the boundary of the near horizon geametry constitute
the quantum degrees of freedom of the black hole space-time. It should be mentioned
that all these emission rates are low energy emission rates from the black Lole.

As the above results show, we definitely have a understanding of microscopic
states corresponding to certain black holes in string theory. However non-extremal
black heles. and the Schwarzschild black hole remain an enigma.  Though the
Schwarzschild black hole is a possible salution of low energy effective string the-
ory, they cannot be modelled by D-branes. There are some attempls to quantise
Schwarzschild black holes in higher dimensions, using Yang Mills theory describ-
ing DO branes, but they are confined to order of magnitude estimates [32]. There
is a microscopic counting of Schwarzschild entropy in the framework of canonical
quantisation of gravity. In this degrees of freedom also belong to a 141 dimensional
CFT induced on the horizon [33]. Infact, a recent work by §. Carlip shows that
the diffeornorphisims which leave the horizon in any black hole invariant constitute
a CF'T algebra. The asymptotic density of states of this give the black hole eutropy
[34]. This semi-classical analyses has to be reproduced from an underlying quantum
theory of gravity.

This thesis is organised as follows, in the next chapter, we describe semiclassical
effects and study backreaction of fermion and scalar fields in a black hole background,
The Schwarzschild black hole is taken for simplicity. and we find the interactions of
the fermionic and scalar outgoing and infalling fields, and show that they cannot
be ignored in a derivation of Hawking radiation. In the third chapter, we consider
extremal black hole entropy and see that semiclassical derivations suggest that it is
zero. However for string theoretic black holes only a very special case of extremal

black loles has this feature. Since string theoretic counting gives finite entropy for
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all, we study the special case, and suggest a resolution of the apparent contradiction
for those black holes. In the fourth chapter. we try to understand Hawking radiation
form a black hole in 4 dimensions, obtained by compactifying M theory on 77
The radiation rate has a structure reproduceable from a 14+1 CFT. We also give a
microscopic description of fermionic radiation from the D1 D5 black hole, In the fifth
chapter, we discuss the 241 dimensional BTZ black hole. and fermionic radiation
associated with it. In the sixth chapter we consider radiation form a five dimensional
black hole, whose near horizon geometry is the product of 241 dimensional BTZ
black hole and a compact manifold. The emission rates for scalars, fermions, and
vectors are determined by probing the near horizon geometry. The answers are
reproduced from a 141 dimensional CFT which lies on the boundary of the near
horizon geometry. Lastly in the seventh chapter, we conclude with a discussion of

the eurrent status of understanding of black hole thermodynamics.



Chapter 2

Back Reaction Effects in Hawking
Radiation

The discovery of black hole radiation is one of the most interesting results in the-
oretical physies. The horizon. which is a one way membrane classically, ceases to
be one in the presence of quantum fields. This phenomenon of ‘Hawking Radiation’
also leads to the information loss paradox. Evaporation of the black hole due to
radiation suggests a non-unitary evolution, We show here that the study of black
hole evaporation is incomplete without including the effects of back reaction of the
fields on the black hole space-time. In the initial derivation of Hawking's result
[1], the gravitational effect of the quantum fields propagating on the black hole
space-time were completely ignored. In this chapter, we try to understand why this
cannot be done. In the lirst section we define what is back reaction and show the
non-trivial effects infalliug particles have on the horizon even classically, We sty

this for scalar and spin half particles propagating in the background of a massive
Schwarzschild black hole. In the next section we study the effect of quantising the
fields and how a non-trivial interaction arises between the infalling particles and the
outgoing HMawking particles. We also investigate the case where gravilational field
due to the matter fields is itself "quantised’ by a correspondence principle. This
leads to a non-trivial exchange algebra of the infalling and the outgoing particles.

The use of this to give a complete unitary evolution for the black hole space-time,
18 a work for the future,

2.1 What is back reaction?

We begin this section by analysing the propagation of quantum fields (spin 0 and

spin 1/2) with the black hole space-time as a fixed classical background. We observe
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their behaviour on space-like slices near the horizon. We take a Schwarzschild black
hole for simplicity. The extension to charged and rotating black holes is straight

forward. The metric for this black hole of mass M, is given in f,r, 8, ¢ coordinates
as:

IGMYN .. SAMNT -5 g
st (1_ -P‘)dm(l— = ‘r) & + 12d0? (2.1)

The metric is asymptotically flat. as » — oo, g, — 1,0, the flat Minkowski metric.

The null geodesics of this metric are given by u =t — " = e,0 = # + 1* = ¢ where

rt =1+ 2GM log (r/2GM — 1), and ¢ is a constant. The coordinates u. v, diverge
near the horizon, r = 2GM, with 4 — oo and v = —aa, The asymptotic null
infinities are given by ¢ — sc. (T%) in the future, and o — —o0 (™), in the past.

The metric in the ahove coordinates is singular at r = 2GM. The singularity of

the metric can be removed by resorting to the w, v coordinates, in which the metrie
looks ke

., 25N S
g (l - . ‘f) dudu + rd0)* (2.2)

r

We examine matter propagation on this particular geometry in the next subsections.

2.1.1 Scalar Fields in Schwarzschild black hole

Hawkings's [1], initial analyses used asyimptotic fields at T+ and 7= to derive black
hole radiation. Here, we shall study the behaviour the scalar wavelunctions on a
Cauchy surface very close to the horizon, The relevant equation of motion of the /™

partial wave for the massive scalar in the metric 2.2, is given by [3]:

2G A
8,8 W= (M +mi4 3G ﬂ réh = 00 (2.3)

r? )

For a collapsing body. only the future event horizon exists, given by « — so. From
the above, we can ignore terms proportional to =% and it follows that, d,d.0 = 0.
Hence ¢ = ¢ (v) + &**(u). Thus near the horizon, the wavefunction splits up into
two functions one outgoing ¢™*(u), a function of u and the other ingoing &'"(v), a
function of v. Before the collapsing body shrinks behind its Schwarzschild radius,
the ingoing modes ¢ (v) travel through the centre of the body to emerge as the
outgoing mode ¢™*(u). Near the horizon. due to the fact that the local cnergy
of the mode w;, = wgg, ', diverges, there is an infinite blue-shift associated with

the scalar modes, the geometric optics approximation becomes valid and the waves
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singularity

Figure 2.1: Hawking Construction

fravel along null rays parallel to the horizon. Following Hawking's construction Jlls
‘we take a outgoing wave and trace its path back in time. For this purpose, a vector
n* is taken, which satisfies L.n = —1, where /% is tangent to the future horizon.
en® connects a point on the horizon to the constant phase surface of the ou tgoing
mode, This is then parallel transported back in time and it always connects the same
constant phase surface. The distance measured along the normal is proportional to
the affine parameter along the null geodesics v=constani near the horizon. The
affine parameter along these geodesics can be determined by assuming that the
Sehwarzschild solution is analytically continued into the collapsing body to obtain
the past event horizon, Once n* lies along the past event horizon. which is a v = o
null surface, n® = dr* /d\, where X is the affine parameter. It can be shown that
i}'\: e”"". So for small distances along n®, we assume dr® M. hence ¢ & A o ="
(K is the surface gravity of the horizon and for the Schwarzschild black hole is
';gfgﬁ_ja.l to 1/4GM.) Thus the coordinate distances measured in u, get translated as
—1/kloge. When the null vectors are translated through the centre of the hody,
'_:ﬁey:still connect the surface of constant phase. The distance is now measured in
— v, 50 that, € x 1y — v. In order to match the ingoing wavelunction ¢; with the

itgoing wavefunction translated back, we essentially have a reparametrisation:

"(v) = ¢ (u(v)) (2.4)




Here u(v) is given as

u(v) = vg — 4GM log (”"{__, “’) (2.5)

Clearly vg acquires a special significance in the fact that it gives the critical ingoing
fime at which any ray released when extended to the future grazes the event horizon
[8]. No ingoing wave released after vy reaches future null infinity. €' is a constant,
which we from dimensional analysis fix as 1/x = 4GM. This reparametrisation is
valid only for ¢ < vg. Within Hawking’s approximation, ¢;(v) for v > vy fall inside

the horizon, and are lost forever. However, as we shall, see it is precisely these fields
which leads to a non-trivial interaction.

2.1.2 Weyl Fermions in a Schwarzschild black hole

To study these, we take the metric (2.6), in Kruskal coordinates, where o+ =
EUIGM = — omuf2GM

:2 .Fr_" 3 I 2
ds® = iﬁj—f ~rRGM gt de— — Rd0?

r (2.6)
A choice of tetrad components ¢ *7 reproducing this metric is given by [35]
r-""+‘i'+ P _m I{?..T’,I
S ch’LIr:'s.'-f'J 12:#)
= 1y S (2.9)
e =t = —t/rsind b tfrsind (2.10)

Here, A = (1— 22, The dotted-undotted pair of indices indicate a tangent space
vector as usual, with dotted (undotted) indices per se indicating chiral (antichiral)

spinors of the tangent space Lorentz group, The Wey| equation is given by,
;‘\.7”;’};'.-,. =0 = :?“-'}-cf-',.-,.
where
VR = R0 — i T ) et
and w?  are the (chiral) spin connection matrices, given in terms of the tetrad

components by the formula

E-,_-“ﬁ nim * {zlj.]



Their spin connections are given in Appendix A, Near the horizon, A — 0 : keeping
in mind that length (and time) as measured by asymptotic observers seale by the
singular factor A in the horizon region, because of infinitely large blue-shifts that

the solutions of the dynamical equations underso, one can rescale o — /AZ. This
reduces the pair (2.11) to

iy = 0 = i {2.14)
dtp- = 0 = au‘.-':-'i: (2.15)

where u, v are the null coordinates, Thus. the Weyl field decomposes into retarded’

(outgoing) and ‘advanced” (incoming) solutions near the horizon, similar to the scalar

field,

st

P = U (u, Q)

B

(i = ghu(w8).

(2.16)
(2.17)
One can mateh the advanced and retarded propagation of these solutions at the

horizon a la’ Hawking [1], leading to the reparametrization

e u(0), ) = (v, 1) (2.18)
where, u{v) = vy — UM log| ‘Tﬁ . The reparametrization is singular at vy which
represents the latest reference "time’ at which an incoming wave leaves T= to gel
scattered to I along the event horizon given by u — oc. For o > g, all incoming
waves are trapped by the black hole.

In Hawking’s original asymptotic analyses, this reparametrisation was used to
relate modes at Z% with those on 7=, Following the original treatment [1], the
reparametrization above is used to compute the (asymptotic) Bogoliuhov coefficients
appearing in the Bogoliubov transformations connecting the creation-annihilation
operators of fields having support on the two asymptotic null infinities

Cp = /\dh'--:'.r E Gt + -g;..-u.rrb?_w' } L] (i‘lg}

%_'s'fl__]E:E ¢, ¢ (a, a' ) are the creation-annihilation operators associated with
W ( Uin) on TF (Z7). The distinction from the scalar case now manifests as one at-

mpts to calculate the spectral distribution of the oulgoing radiation by calculating
the expectation value of the number operator ¢fe in the vacuum on T7; For lermions,

must recall that these operators obev an anticommutation algebra instead of
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@ commutation relation. For the scalar case the spectral distribution emerges as
a Bose-Linstein distribution and for fermions, it is a Fermi-Dirac distribution. For
both, the surface gravity has to be identified with the Hawking temperature [1], [35].

This analysis obviously ignores the change in the black hole geometry induced

by infalling and outgoing fermionic matter - the backreaction. In the next section

we attempt fo imcorporate it within the semiclassical approximation: the linearized
change in the black hole metric due to infalling fermionic matter is determined, and

re-expressed as a shift in the horizon. This is then used to determine an exchange
algebra for the fermionic fields.

2.1.3 Classical Backreaction

The derivation of the Hawking radiation as sketched in the above two subsections.
show how the scalar and fermion modes behave near the haorizon. We find that
the gravitational effect of these fields cannot be ignored. In a earlier work by "t
Hooft [6. 7], it was shown that the gravitational fields of ordinary test particles lead
to a non-trivial effect near the horizon. Coansider a massless photon incident on a
black hole, along +% = 0. The particle carries a spherical gravitational shock waye
near the horizon. As it falls inside the horizon. a non-trivial shift in the harizon
coordinates takes place. The shift, given in Kruskal coordinates is as below:

szt = pin_ﬂﬂ, 0 (2.20)
Where Pin: is the infalling particle’s momentum, and the shift occurs at += = 0

JIQ.9) is the two dimensional Green's function on the sphere. This shill can also
be incorporated as a shift in the metric itself.

Motivated by the above, we try to ascertain the back reaction due to the energy
‘momentum tensor of infalling scalar and fermionic matter, as in [8]. The main
(observation is that the above shift can be traced to a shift in the metric com ponents.
We take an infalling energy momentum tensor near the horizon, whose dominand
component is Tovo4 (2%, 1), We assume the other components are small. This energy
‘momentum tensor is thus supported by fields which are released after ¢ = vy, so
a,t they fall into the horizon. The effect of the infalling fields can be realised by

aking an ansatz of the metric of the form:

g 3UGM)?

: e~ AGM jo+ (de™ 4 by (xt, Q)dzT) + 240 (2.21)




Where h+ .+ is an infinitesimal, but smooth function. Using this ansatz in Finstein's

“equation, il is seen that:
(Vo — 1) Hesan= kT (2.22)

‘where k is a constant. As earlier, the shift can also be absorbed by a coordinate
transformation: 2~ = 4~ + ,F hescode?. This implies that in this new metric. the
affine parameter along the null geodesics near the horizon is A = ¢—* + dvg, where

WBvg= [ hotzedxT. Thus for v > vy, we arrive at the following reparametrization:
o™ = (1) + Sy). (2.23)

Due to the sign of the shift, an outgoing field which would have reached I+ now
gets trapped behind the horizon. This effect is non-trivial, and crucially shows that
the backreaction effects are non-trivial on the outgoing Hawking particles.

We now repeat the above analysis for fermions, using Einstein-Cartan approach
for convenience and use the two component notation for the fermions. The domi-
‘nant effect of backreaction of quantum fermionic matter on the classical hlack hole
‘geometry can be charecterized by a linearized perturbation of the frame COmMpo-
- nents: E:F — ﬁ;:,ﬁ + h;;f'. The linearized fluctuations hﬁ;f*:‘ are related to linearized

Mluctuations of the Schwarzschild metric according to
a g
Roun = €hog o (2.24)

where the c;'j:f" are the Schwarzschild tetrad components given in (2.10). We are spe-
‘cially interested in the effect of infalling fermionic fields on the black hole geometry,
f’ﬁiﬂowing Hawking’s approach to black hole radiation [1], it is sufficient to restrict
‘o waves of very high frequency near the horizon, i.e.. adopt the geometrical op-
tics approximation. For fermion fields falling on the horizon. therefore, the largest
(contribution to the backreaction will come from 7,4 L4 and T.- - the nonzero
‘components of the energy momentum tensor in the longitudinal direction, where
ET,:‘B may be faken to be {the expectation value of) the fermionic CHETEY MOmern-
tum tensor near the horizon. The other energy-momentum density components are
‘negligible in the kinematical regime of interest.

As for the scalar case, the shift written in the two component notation gets

ated to the energy momentum tensor of the fermion.

|
]
[l }

hpt 4 = fﬂrzﬂj F(95 ) Ton 45 4 2.
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where, [(£1.€') is the Green's lunction of the Laplacian on the twa-sphere [3]. With
this modification of the geometry near the black hole horizon. consistent propaga-

tion of Wey! fermion fields, very close to the horizon, is described by the modified
equations (cl. eq.s (2.14, 2.15))

V-t = 0 = 2"V i, (2.26)
where, Vo+ = i s — hpved- ete. Where b+ = e hot .. The formal solution
for " = 1'_ may be written as

be = dile" f dy* Bty 1)) (
i

[
[ o]
=]

Asimilar solution exists for t/'" = ¢_ with a shift in the other Kruskal coordinate rt,

The important point to note in (2.27) above is that the integration limit excludes the
interval (0,2 ); as pointed out in [8]. this region is not interesting for our purpose
of estimating the effects of backreaction, since lor v < to. all infalling waves reflect
hac:k onto I7, Backreaction effects are important only for particles that get trapped

hehind the horizon.

Relating the shift dx~ given in (2.27) to the affine parameter A of the null geodesic

generator of the modified event horizon (obtained to linear order in the shift of the

tetrad components), one can obtain a la” Hawking [1] a matching condition for v > 1w,
between the incoming and outgoing solutions

W () + ) = P )

(2.28)
where,
v{u) = wvp— 4G Melo—W)AGM (2.29)
o
Srg = — / dv f dft F(Q,Q)elee—vHEM T s b (2.30)
w

Where we have made a transformation of the shift to u, v coordinates, and taken as
;ﬂm lower limit of integration, v = v, A remark on the similarity of the shift dup
found here and that found in [8] for scalar matter is perhaps in order. Recall that
niear the horizon infalling particles are blueshifted to enormously high energies,
50 that one can appeal to the geometrical optics approximation in dealing with

ﬂﬂﬂ Now in flat spacetime, it has been shown [36] that in this approximation




— -

(which corresponds to the eikonal approximation), fermionic and scalar cross sections
become identical for electromagnetic interactions, pointing to an on-shell induced
supersymmetry. The similarity between the gravitational effect of fermions and

scalars on the horizon seen here may be attributed to such a su persvinmetry. Clearly,

in the geometrical optics approximation, helicity-flip amplitudes for Weyl fermions

wvanish. In the next section we study how the above back reaction leads to non-trivial

interaction between the outgoing and infalling modes.

2.2 Effects of Backreaction

2.2.1 Semiclassical Approximation

‘The semiclassical approximation, as always, considers quantum matter in a clas-
sical gravitational background, which in this case is a (backreaction-modified)
Schwarzschild geometry. In the absence of backreaction, scalar field operators corre-
sponding to ouf and in solutions of the covariant Klein-Cordon equation are known
to be mutually commuting for v > vy [8]. It is easy to see that, with the modifica

tion discussed above to the geometry, this is no longer the case: in powers of the

{e-number) shift dvy, one can show that
| -
(67, ) . ¢ ) = 2wibu [l + hud + (F)0 + o]
P 1

% B — )0 — (2.31)

where use has been made of the canonical commutation relation for scalar helds and
the reparametrisation (2.23).

[ (v, ), Bud™(v2,0)] = 2mid(uy) §2(Q, —0,) . (2.32)
Eq. (2.31) reveals a departure from canonical behaviour in the ‘ultralocal’ limit
0= v~y = O inthe formofa power series in the v coordinate shift duvg which,
we recall, is the central signature of elassical backreaction. Thus, it is interesting that
even for a e-number coordinate shift of the horizon under gravitational backreaction.

albeit for a restricted kinematical range, hints of new features already appear. A
similar analysis for fermionic field aperators.

using the canonical enticommuting
relations

{0 ), ¥™ (e, Q) } = 0

{ @™ ), v™(v, D)} = 2midlvg) 6200, — Q) (2.33)



may indeed be performed. It is easy to show that, fo all erders in the horizon shift
dvp and all values of the coordinates,

L™ (u(v), Q) , ™ (v, )} = 0. (2.34)

The signature of the horizon shift. does. however. survive in the other anticomnii-
‘tator,

{ 7w, Q) , o™ (0, ) } = 2mieP Da(v— o) SO — @) . (2.35)

Once again, the rhs of (2.35) survives only in the “ultralocal’ limit v — ¢ ~ vg s 51—
§¥. But the physical information about fermions is not completely contained in
eq:s (2.34) and (2.35); indeed, as is well known, fermionic fields are themselves
unobservable; densities constructed out of fermionic bilinears are the true observable
quantities. The simplest bilinear composites constructed out of ferimions are the
lightcone components of the current Jus vizg S0, Q) L S Q) defined as
Jr'"[l'] = ‘j"!"(f-’}'ﬁ:’rﬂ{l‘} 3 .fuu!{_u} - r,_"'lmrl:‘”J&"nﬂr[H] ) [l-ﬁﬁ,'l
As sketched in Appendix B . using eq.s (2.34) and {2.35). one now obtains the

surprising result that, to all ovders in the classical horizon shift duy, and indeed as

given in Appendix A, for all values of the coordinates,

[ .-er“l{'“{'l’jl,g.ljl \ Jinitr’,ﬂf_] ] = []. [jrr]
Thus, even in the ‘ultralocal’ limit of the coordinates. when the horizon shift-
dependent terms on the rhs of eq. (2.35) become important, these observables
constructed out of the fermion field operators appear not to provide any hint of
departure from canonical behaviour. There may be other combinations of the fields
(like 4" &™) which do not necessarily commute with J,,,. Our result in eq. (2.37)
above pertains only to the simplest fermion hilinear observables in the semiclassical

approximation. The observed disparity between bosons and fermions in this very

restricted context should not be extrapolated to more general situations. Indeed,

as we show in the next section, this disparity is no longer present in the quantiim
exchange algebra between the same current components.

"The ather components are negligible in the kinematical situation under consideration. Also.
scalar bilinears vanish for chiral fermions.



2.2.2 Quantum Correspondence and Exchange Algebras

‘With fields as operators, the energy-momentum flux operator® P, = L:‘ dv T,, has
a nontrivial commutation relation with the incoming field. It generates translations
along the v direction. For scalars, this gives:

[Pulv)s div)] = 2mib*(2 — Q) (2:38)

The same is true for the fermijon field.

[Pole), ™ (0] = 2mid? (2 — ), (o', ) (2.39)

Now, as seen in equation (2.30), the shift dvy is related to the energy momentum
tensor. If we assume that this classical relation can be promoted as such to a relation
between operators by means of some sort of a quantum correspondence principle, it

be used find the commutation relation of vy with the incomin g field

[Guol82) . ™(Y)] = —16maf(£), Q)eln-WAGM g oin

(2.40)
[Seal ) . v™(@)]

v eg . (2.41)

—16me f(2, Q)elro—rMAGM g 4in

1]‘l:us result can now be used, following Kiem et. al, [8] to determine an exchange
algebra between the i and out field operators. Keeping in mind the canonical

_ianl;i}cunmnﬂatiun relations obeved by the fields. this algebra (to lowest order in
the backreaction) is given by

M Mo™(0. ) = {1 = 16mf(Q, Q)eleu46Mg 5
)e!
X" (v, Q)™ (1, Q)

P ™o, ) = = {1 — 16mf(Q,0)el-AGM G 5 )

#

e (0, Q) 0, Q) (2.43)

In the absence of backreaction f(€, ') = 0, we get the standard (anti)jcommutation
telation between the field operators.

Thus to the extent one can trust the procedure of promoting (2.30) to the level

of an ﬂpemtur relation. fermionic field operators appear to obey the I‘EEIIHI‘{‘mEI'ltb of
— §F

 *The Energy Momentum tensor is not well-defined near the horizon, but the momentum Aux is
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correspondence approach, the exchange algebra of fermionic bilinear densities: this

turns out to be similar to the exchange algebra of scalar fields (2.42).

T, )T (0, ) = {1 — 16w f(Q, Q)= HGMY b} 1m0 )5 (0, Q)
)

(2.44)
[p other words, observables, mutually commuting in absence of backreaction, now
‘obey a nontrivial exchange algebra (for v > vg). The similarity of the exchange
Ee‘hras for the fermion bilinears and scalar fields is of colurse, no surprise, being

&

xpected on account of the similarity in the behaviour of fermions and sealars un-

er spacetime Lranslations which lies at the root of the derivation of these algebras.
n addition, as already mentioned, since the geometrical optics approximation is
‘essentially being used here, and fermions and scalars behave similarly in this ap-
_proximation, the only difference that may he expected is from the statistics, i.e.. the

“fact that fermionic field operators obey a canonical anticommutator algebra.
2.3 Conclusions

T.t. should be pointed oul that, just like in the scalar field case [8l, (2.44) is valid
Hor 2 and ' quite distinct, and as such, its domain of validity does not include the
Cultralocal’ domain in which a nontrivial result beyond the canonical was obtained
* the semiclassical approximation in the scalar case. The absence of a similar
‘noncanonical behaviour for the simplest bilinear observables of spinor fields in the
i’-ﬂlﬁ&lu’cal‘ semiclassical situation similarly does not imply any disparity with scalar
fields outside this domain, or indeed. even within this domain for more complicated
fgrmii:mic bilinears. Thus, the most general result that one expects for either kind
of fields should incorporate both angular domains and may therefore quite possibly

‘turn out Lo be alike for the two classes of fields. More future work is necessary Lo

resolve the issues to one’s satisfaction.

It is important to bear in mind however, that, in the foregoing analysis, as we

we taken the effect of the longitudinal components of the energy momentum tensor.
ansverse gravitational interactions as well as non-gravitational lorces have been
Jdgnored on the plea that they would be subdominant in the kinematical situation
saged. Such forces could coneeivably change the results somewhat [37], although
complete picture can only be expected after nonperturbative ‘quantum gravity’ is

rstood. Furthermore, the relevance of the asymmetry between the semiclassical

4l

- el



viour of scalar and spinor fields, discerned by us, may emerge in a clearer manner
transverse gravitational backreaction effects are incorporated.

mentioned earlier, the validity of the exchange algebras derived above hinges
he assumption that the shift duo, while a shift in the optimum value of a co-
ate, can be elevated to the level of an operator on Fock space. Clearly, as an
tor, §vg is bilocal which might possibly underlie a justifiable suspicion of a vio-
on of microcausality. In the scalar field case, Kiem et, al. introduce a third scalar
é‘l"’" to ensure that microcausality is maintained, with ¢™ evolving unitarily to
. the horizon from I-. It is not clear whether this is a valid procedure without
il quantum theory of gravity to back it up. We therefore adopt a deliberately
alent stand on this issue.
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Chapter 3

Extremal Black Holes

(Charged or rotatin g black holes are characterised by two horizons. The outer horizon
s the event horizon, but the inner horizon is a Cauchy horizon. When the two
horizons merge under special restrictions on the charges or angular momentuir,
these black holes are called extremal black holes. These occupy a special place
in black hole physics in the fact that they are stable against Hawking Radiation.
When embedded in low energy string theory, they are modelled by states which are
invariant under certain supersymmetries. These states are also stable. The extreral
black holes were the first ones to be modelled by string theory. In this chapter, we
investigate the thermodynamics of these objects and the microscoplc interpretation
of their entropy using String theory. The classical laws of black hole mechanics lead
to the identification of area of the black hole with entropy. The precise identification
s

Sgy = jl%{ s (3:1)
where Spp stands for the entropy, Agy is the horizon area and G is Newton's
constant. We deseribe in the first section how semi-classical methods show that
ordinary extremal black holes do not obey the above area law for entropy. We try to
explain why the same does not apply for the extremal black holes which appear in
low energy string theory. These black holes are modelled by certain supersymmetric

string solitonic states called D-branes. The microscopic counting for these black

holes gives as the logarithm of the degeneracy of states precisely relation (3.1).

3.1 Extremal Black Holes in General Relativity

- The black holes obtained as solution of Einstein’s equation are characterised by

eir mass (M), and U(1) charge (Q), or angular momentum J. For black holes with
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jig]iarge and angular momentum, certain restrictions on the above parameters give
tise to solutions with special properties. These black holes are called extremal black

-

holes. For them,

M = (1/VG)Q (charged black holes) M = {lf\f’ﬁ)j{miat,ing black holes)

|
M =/ E{Q"" + 7%)( rotating and charged black holes) (3.2)

rﬁ_‘hesa black holes are special as their Hawking temperature is zero, and they are
able against Hawking radiation. The non-extremal counterpart of these, with
> (), J, have non-zero Hawking temperature, as well as non-zero entropy. Ini-
tial calculations of entropy for extremal black holes using semiclassical methods all
_!_{Jwed that these do nof obey the area law for entropy. Infact, their entropy is
zero. In this section we give evidences for these and also examine physical processes
which show that non-extremal black holes cannot transform into extremal ones, All

.'E]:Leﬁe give the extremal black holes a special place.

splution of Einstein’s equation coupled with a U(1} Maxwell field

2000 G2 207 Vi
RN A

r e r

T

g, =1
Cf‘? ) dr® +r7dQ* . (3.3)

e following relation holds when the black hole undergoes an infinitesimal change

in mass, charge and horizon area :

k
M = —dApy + 9dQ | (3.4)

e M and () are the mass and the charge of the black hole respectively, The
zons are at vy = GM £ G /M? —Q2/G. The surface gravity & is piven hy
—7_)/2r} and ¢ = Q/ry is the electrostatic scalar potential at the outer (event)
zon. The Hawking temperature of the black hole is given by Ty = /27 and M is
ist the energy £ of the black hole. Comparing with the first law of thermodynamics,

dE = TdS — PdV , (3.5)

nd replacing PdV by —o¢dQ, we see that the entropy S must be identified with
G ', thus giving Eq.(3.1) [3].

~upto an additive constant | which we set to zero by demanding that Sgy — 0as M —= 0
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The extremal limit of these black holes is given by v,

= r_. Clearly, for extremal
RN black holes, Ty = 0, since ry = r_. Thus, we can no longer compare equations

(3.5) and {3.6) to obtain (3.1), Moreover, using the relation for temperature

. JdSpx .
1 — —— ,
Tff == ( aﬂf )Q 1 flj. { ::|

we see that the right hand side diverges at Ty = 0, indicating that the entropy

as a function of M has a singularity at the extremal limit M = Q/VG. The
above arguments hold good for D-dimensional charged black Loles as well, for which
Ty = (D - 3)(r2=2 — +2-2) famr2-2,

In [4], an alternative approach was used to interpret the area of the black hole
as entropy. Simple arguments were given using the definition of entropy and in-
formation contained in a thermodynamic system. We analyse in the light of the

arguments given in [4], the case of extremal RN black hole. Firstly, the entropy is

assumed to be an arbitrary function of area:

Spn = flA), (3.8)

from which, one can write

ASgy = d——“ir'_”‘..-'l . (3.9

dA

where ASgy and AA correspond to the change in the entropy and area respectively
of the black hole when a particle falls into it. The quantity AS can be estimated
using information theory, Before it enters the event horizon. it is certain that the
particle exists. Onee it enters the horizon, we loose all information about the parti-
cle. It is thus justified to assume that it is equally probable for the particle to exist

as it is for it not to exist. Thus the minimum entropy change (ignoring possible
internal structures of the particle) is given by

(AShuin = Y palnp, = In2, (3.10)

where summation over n correésponds to all possible states of the particle. Now, for
an infalling particle with mass p and its center of mass at ry + 4§, the praper radius

bis f:” Vrrdr. Then the minimum change of black hole area accompanied by
the absorption of the particle will be [4]

(AA)in = 2ub,  with

b= 25+

T (3.11)
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where b is obtained using ¢, = (r—r_)(r—r r*, and non-extremality condition
B o, + A

(14 — r— > 4). However, in the extremal limit (ro — r_), we get:
T g

b = & + ryln(r—ey )i+, (3.12)

"+

which diverges for any § > 0. This means that for any finite &, however small,
the corresponding proper radius of the infalling particle is infinite. Thus. the above
equation makes sense only for § = 0. Thus, we take b = 0 corresponding to a

point particle resulting in (AA ), = 0. Thus to satisfy equation (3.9) we require.

i f :
(E-I)“:.-_ —F 20 , (3.13)

which once again shows (hat the entropy is not continuous at the extremal limit.
The discontinuous nature of entropy under the transition from non-extremal
to extremal black hole asserts that the entropy of extremal black holes cannot be
determined as a Timit of the non-extremal one. Independent derivations of the
entropy for extremal and non-extremal black holes have heen given [13] which are
in conformity with the above result. It has been shown that the topology of the
il_!_ack hole near the horizon plays a crucial role in determining the entropy. We now
briefly review these arguments.

The Euclideanised metric in d dimensions near the horizon is

ds® = N*dr? + N72dr® 4+ 07 dQ3_, . (3.14)
For the above metric, the proper angle © in the r — 1 plane near the horizon is
defined as

proper length ,Jr,iz Ve dr

B = = = S
proper radius I NG dr

= (NN, (t2 — ty), (3.15)

w]]ene the prime denotes differentiation with respect to r. It can be shown that N

satisfies the following relation:
(ta —t)N? =20 (r—ry) + O(r —r4 )] . (3.16)
&u, the two dimensional metric near the horizon can he written in the form

ds® = dp* + p*dO* | (3.17)

e p = /2(r — 1. )/NN'. To avoid a conical singularity at the horizon, the

:":_"_u.::'d of © is identified with 27, which corresponds to the topology of a dise with
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zero deficit angle in the »— 7 plane. This can always be done for non-extremal black
holes, as (NN')|.. in Eq.(3.13) is non-zero. However, for extremal hlack holes. the
proper radius diverges (see Eq.(3.12)), and hence the proper angle tends to zero,

Thus the conical deficit angle becomes 2 and the topology is that of an annulus

[13]. The topology of the transverse section in either case is S92,

Now, we need 1o see how this topology reflects on the entropy caleulation. Treat-
ing the black holes as microcanonical ensemble, the action f in the Hamiltonian
formulation of gravity is proportional to entropy. The dimensional continuation of
Gauss-Bonnet theorem to d dimensions [13, 38] determines

I = x Ais [3.18)
where y is the euler characteristic of the Euclideanised r — 7 plane and A44_s 1s the

area of the transverse S92, The exact expression for the black hole entropy is given

by

xA :
ek (3.19)

For non-extremal black holes \ = 1 (disc). leading to the area law (3.1}, while for

S =

extremal black holes v = 0 (annulus), implying a vanishing entropy.

It has also been argued by Hawking et al [39, 40], that the Euclidean action for
extremal black loles is proportional to the inverse Hawking temperature () in a
canonical ensemble leading to the vanishing entropy. This follows from the relations
= — (_.-"i%— I) InZ ,and 2 = ¢ 1.2

Thus, it is clear that extremal black holes cannot be thought of as limits of non-

extremal black holes at least as far as the expression for their entropies are concerned,

In the next section, we investigate some physical processes which further support
this conclusion.

3.1.2 Physical Processes

Far the charged non-extremal black holes, we know that Hawking radiation is dom-
Eﬁ_llaut in the energy regime w > e¢ where ¢ is the charge of the emitted particles.
On the other hand, the Penrose process (and its quantum analog - superradiance) is
significant when w < ea. We study both the processes, thus spanning all the energy
regimes, to confirm that non-extremal black holes cannot transform into extremal

'-.ﬂﬂ -

“Extremal black hole entropy has been explored by alternative methods as well in [41].
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Superradiance and extremality

RN black holes can lose mass and charge by processes like Penrose process and
superradiance, which are dominant for low energies of the infalling particles. We
examine Lere, whether a non-extremal black hole can reach extremality through
these processes.

The energy of a particle in a curved back ground with a time like killing vector
£ is given by E = p.£ | where p, is the particle’s four momentum, For a massive
charged particle in 40 RN background this energy shall be m.\/g,, + ¢Q[r. where

£ = d; and the electrostatic energy is added. Thus this is given by [42]

E=m\/(l :*) (1—:—‘)+E?—Q (3.20)

Where m and ¢ are the mass and charge of the infalling particle. If this particle has

a charge opposite to that of the black hole, then sufficiently close to the horizon,
the first term tends to zero, making the energy negative. Hence in this regime,
|f:|<:@. (3.21)
I+
If two oppositely charged bound particles with total energy Ly fall near the black
hole and separate there, one of the charges can have negative energy by the above
argument. The particle with negative energy will fall into the black hole and the

other particle escapes. By conservation of ETnergy.

E; = [Lg+|Ei|
M = M—|E]

E, is the energy of the particle which escapes, E| is the energy of the particle which
falls into the black hole and M’ is the final mass of the black hole. Thus there s
a decrease in mass ol the black hole, while the escaping particle carries back more
energy. Also as an oppositely charged particle is absorbed by the black hole, it's

effective charge decreases to hecome Q' = (J — e, Since for a non-extremal black hole
(VGQ/ry < 1), We find from equation(3.21). that

e

7= (3.24)

cother words the decrease of mass of the black hole will be less than the decrease

= |}‘lnl1| ‘

f charge due to this process. Hence, the condition of non-extremality M > Q /G

be maintained as the rate of charge loss will exceed the rate of mass loss,
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The quantum analog for this phenomenon is Superradiance. Fields with low
energy are shown to be scattered away from the black hole such that the reflection
coefficient is greater than one. The charged scalar field equation can be solved in
the RN back ground and the following relation for the reflection coellicient |K|* and
transmission coefficient or the absorption coefficient [T, can be obtained by explicit
calculation as [43],

| 1 - .
- ‘:?J i (3.25)

1—|R? =
Due to the curvature of space-time the reflection and transmission coefficients need
not add up to 1. For w < eQ/ry, the reflection coefficient, |R|* is greater than

1, or the scalar wave takes away energy from the bluck hole, The condition for

superradiance is thus

W zae e (3.26)
ry
‘The rate of charge loss and mass loss for the black hole is

=k
fo L S a
—_ = — w 3.2
o f/m | R|“d (3.27)

o M N _/
dt »

We find that the for the initial value of the integrands, (¢/V/G)|R(m)|* > m|Bim)|*.

I

+

| RFwdw . (3.28)

‘Thus as equation (3.26) holds for each value of w which is bounded [rom above.
d@ d:'i"f ;
= 7|l— . 3.2
= ::»\r"(._]d” (3.29)

‘Hence from the quantum process also it is clear that the M = Q/VG condition will

be maintained.

The above result is easily extendible to higher dimensional charged dilatonic

- . ; - \ 1=247 {D=4a?) __
= myf(1- (20-) (1= o) )

Here D is the dimension of space and a stands for a parameter which interpolates

etween the general relativistic solution a = 0 and the dilatonic stringy black hole

Hfor the D-dimensional charged metrie, see [44].
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a=1. As r"?'n =0GM + {}’\/M—E—_—W, non-extremality will imply VGO < =3
and equation (3.24), hold for these, The equation for the reflection and transmission
coefficients for these black holes has been calculated in [45.. The condition for
superradiance equation (3.26), is the same for these black holes.

Apart from the induced process stated above, the black hole loses charge spon-
taneously by vacuum polarization as shown in [43]. For this the rate of charge loss
will also be very high, and the black hole will tend to discharge itself very fast. The
M = Q/VG condition, once again, will not be obtained. Thus in the Processes

considered so far. the extremality condition cannot be atlained from a non-extremal
state,

Hawking Radiation and Extremality

In this section, we consider mass and charge loss of black holes by Hawking radiation.
When the RN black hole radiates, the spectrum of particles is given by the Planck
ﬂis_trilmtluu [1] times the grevbody factor or the absorption coeficient of the black
hole. For our purposes. we use the approximation where the absorption coefficient is

proportional to a constant factor so as to give ordinary Planck spectrum for massless
particles, Thus the energy loss due to radiation is:

_ [w‘-ﬁff}}n i §
W = o —1 * (3.31)

where d [, is the radiation energy in the spectral range w to w + duw. Integrating

over w from ed to oo, one obtains the rate at which the black hole loses energy, i.e.
mass [42]

(3.32)

dM g (ry—r)

T (3.33)

+

We integrate (3.33) to get,

ip =13 MO il '
/ EH = {4!! :] / ]"'+ ﬂi-.l"!-f . {134,3
il =) N

oo (P4 —r-)!
e 1y is the time taken for the black hole to reach a final state with mass and charge

M"and Q' respectively, from their initial values My and Qy. We are interested in
1 an P
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calculating ty to reach a final extremal state (i.e. M’ = Q'/VG). from a non-

extremal initial state. For simplicity, let us first assume that the radiated particles

are electrically neutral, i.e. e = 0 and hence () is a constant. Then, the time taken
for the black hole to hecome extremal is:

“ 4y W 8 dM
f di M) i f _fdl
] o A

M'=@QofvG Japy,  (ry —r2 )t !

A3 B 7
S i I LTV Y - OAACA R
T ;,_fr_,_Quh;’r__; 12 M — QUIJ"U‘{_

L (-’328'123 — 128M3G? — 128Q2 MG
12(02 — Qafﬁ')u:

198QEM — 128 M7 (7 — GAQ MG AM=Ar
12(M? — QF/G)

I

M =My
Clearly, ty diverges. That is, the RN black hole which emits neutral particles, takes

an infinite amount of time to reach extremality. Generalizing the proof for Hawking

particles carrying charges is not difficult. Then € is not a constant in Eq.{3.34).

However. as before, the integrand on the right hand side diverges as ry — r_ and

thus lg —+ oc. Identical conclusions follow for general relativistic charged black holes

in D-dimensions, for which, the rate ol mass loss is given by

dM D—3\7 [P)— 2P
- = —ap .'1.;)._1( T ) {D 2}[1’} )

ap being the D-dimensional Stefan-Boltzmann constant and Ap—; the area of unit

SP=2, Here too the integrand diverges in the extremal limit. In general, ty — 20
whenever Ty = 0 for the extremal black hole. We shall see later, that this includes

“a certain lass of stringy black holes.

Thus, we conclude that a extremal black hole state with Ty = D cannot be

reached in a finite time by Hawking radiation from a non-extremal black hole. This
15 in conformity with the third law of hlack hole thermodynamics, which asserts

that the same cannot be reached in a finite sequence of operations [3]. These also
provide pieces of evidence that the area law for the entropy of non-extremal hlack
_:ples cannot be extended to the rase of extremal hlack holes. In the next section

we will study the entropy of certain extremal stringy black holes which supposedly
sbev the area law.
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3.2  Extremal Black Holes in String Theory

We examine in this section. the black holes which arise in string theory. Some of the
extreme black holes in string theory obey the area law, and indeed a microscopic
counting gives the same. However, for another set of black holes, though the classieal
metric appears to fall in the same class as considered in 3.1.1, the string theoretic

counting yields the area law. We try to obtain a resolution of this apparent puzzle,

3.2.1 Black Hole Solution

In the Jow energy limit of string theory, ordinary supergravity is recovered. These
supergravity actions have additional fields in their spectrum, which couple to p
dimensional extended objects called branes. Since string theory is 10 dimensional.
the supergravity solutions, when compactified down to lower dimensions. yield black
hole solutions, with multiple U(1) charges. Many of these black hole solutions have

two horizons, and extremality for these is defined by the coincidence of these two

horizons.
Based on this delinition. we can divide extremal stringy black holes into two

broad classes:

L. The horizon merges with the curvature singularity. These black holes have

zero horizon area and the dilaton field becomes singular at the horizon.

2. The two event horizons coincide as in General relativity. The area for these

black holes is non-zero and the dilaton is regular at the horizon.

A few examples of these extremal stringy black holes and their properties are tabu-

lated below.

[ Type Example Tu Macro Entropy | Micro Entropy
| NE D NE E NE E
| Het. on 7° | #0 [ 1/4zme | AJA | 0 - [ A/
' 2 [ITBon K*x 8T £0 0 A4 (0 - A4

where NE = nonextremal, E = extremal and A, is the area of the stretched horizon.

A -
wlE

o= semiclassical entropy, Micro= Counting of string states. The examples
teferred to here are taken fram Refs. [15, 16].
The first type of extremal black holes [15]. obtained by compactilying heterotic

:il;i:g theory on T® has Ty # 0. Henee in accordance with the third law of black
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hole thermodynamics, the extremal state can be reached in a finite sequence of steps.
In particular, one can see [rom Section 3.1.2, that the time £y to reach extremality
by Hawking radiation is finite *. Similarly, the discussions in section 3.1.1 hased
on [4, 40] is valid for this example since proper radius is finite. It follows that
these extremal black holes can be regarded as [imits of non extremal ones and their
‘enfropy ebeys the area law. In order to determine this entropy. we look at the
extremal stringy black hole solution of the low energy effective action of heterotic

string theory compactified on 7% The Euclideanised metric near the horizon is [15]:
2 T IRT T O L (I i £
dit = I?-wfr- + dF + i (d6? + sin® 0dg?) | (3.36)

‘and the solution for the dilaton field is ¢* = #2/4 , Here 72 = dgr and 7 = 7/my
~where g is the string coupling and the parameter nig is related to the mass of the
‘black hole. Note that the topology near the horizon (¢ = () is dise =52, which is
that of a generic non-extremal black hole. Althongh § = A/4(, the entropy vanishes
as the horizon area is zero. Tt has been proposed that stringy corrections near the

horizon modifies the metric and the dilaton of this metric. A possible modification

of the metric and the dilaton is
; | A Sl | i ) ; ;
dst = _—13""4“’*" +dr* + 2 A7) (d6* +<in® 0de®) © ¢ = fulr), (3.37)

where filr) and fi(r) are two smoothing functions which are positive constants
al 7 = 0 and equal /4 for large 7. Now, the horizon area can be shown to be
m which is finite.

T second type of the stringy extremal black holes is obtained from type 11B

string theory compactified on A™ x §'. The action has the following form in five

dimensions:

1{; d°zy/= [ =2 (H +4(Veg)? - %H*) —_ll ] (3.38)

... here I is a Ramond-Ramond field strength, and # is a three form field strength
associated with the NS-NS two form present in the string spectrum. The charges
ate Oy = 1/47° [+ BH . Qp = 1/167 [ **/3F, give the non-zero black hole
ation. The horizon area A # 0 if both NS-NS charge Qy and R-R charge (}p,

4The grey-body factor for Lhe metric (3.36], for low encrgy quanta, seems to be zero hecause
ishing horizon area. However, as argued in [15]; due to the singular nature of the harizon,

mftnr suffers large stringy corrections resulting in the metric (3.37) which has a non-zero
h:hed} horizon area.
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are non-zero [16]. The extremal black hole solution from low energy effective theory
is the five-dimensional RN metric [44]:

" Te 2y v Te By I
s = — (1 - (?—) ) dt* + (1 — (r—) ) dr? + r4d2 | (3.39)

where the horizon radius in terms of the charges Qg and Qp is r, = I[SQHQ}}T{Z'}”H,
As discussed in Section 3.1.1, the Euclidean topology of this is annulus x 5% and
hence its entropy is zero. The above black hole solution can also be obtained by
compactifying a configuration of ¢}y D1-branes, and Q5 D3-branes. which are charged
with respect to the three form Ramond-Ramond gauge field and it’s six dimensional
dual. The compactification of this configuration on T" % 51 vields a black hole of
N = 8§ supergravity and on K™ x 8" yields a black hole of N = 4 supergravity in 5
ﬁhﬂ&nsions, The conliguration consists of the Di-brane wrapped along 7% x 8! and
the DI-brane wrapped around S'. The metric of this in five dimensions is given by

ds? = — 334 4 fH3 (m-'z + r"-‘-cm*) (3.40)

Where [ = (14r/r?) (L+03/r?) (L+22/r2), 12 = @uQi/V 1% = Q572 =
fﬁélnhia, and rg(sinh 20 /2) = ¢Zn/( B*V), where n is momentum added along the

51 whose radius is B' and volume of T4 is V (small). The entropy of this black hole
has a very simple form

A
§ == =21/QiGn (3.41)
| 5

The five dimensional RN metric (3.39) for this configuration is recovered under the
restriction i = 75 = ] = r7, and with a redefinition of the coordinates: +'? = r24.r?,
The standard area law for the extremal RN metrie vields the entropy as in (3.41).

However, as we know from the arguments given in section(3,1.1). that for this metric.
the area law ceases to be valid,

golmonyi-Prasad-Sommerfield (BPS} bound as it is called. is satisfied by config-

¥

urations which preserve 1/2n where n is an integer, of the supersymmetry transfor-

mations in the theory. Since the bound involves the charges and mass of the classical
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solution. these do not receive any quantum corrections or undergo any renormali-
sation. Hence, for these black holes. it is reasonable to look at the string theorv
states which have the same quantum numbers, or global charges. The degeneracy
of these states when they undergo gravitational collapse cau be identified with that
of a black hole solution, with the same charges.

For the black hole considered in [13], the degeneracy counting is obtained hy
looking at heterotic string states with the same charges as the black hole. The
logarithm of the degeneracy of states yields § = 27mg/g. which is same as the
entropy of the black hole if f,(0) = 4. This is a remarkable calculations. in which a
microscopic interpretation is obtained for black hole entropy.

The degeneracy counting of string states or D-brane states, as given in [16],
reproduces the entropy for the above black hole cractly. Here for convenience, we
give a review of the counting given in [12] for the above black hole obtained by
T' x S! compactification. The D-brane configuration corresponding to the black
Eg_le consists of €5 D5-branes. and wrapped on T* x 8! and @, Dl-branes wrapped
on the 5*. The limit of small size of T and larger S radius is taken. The oper
strings which stretch between the branes connecting the 1 and 5 branes remain
massless and contribute most to the entropy. Instead of considering separate (,(5)
é_ﬁl(ﬁ]-Branes wrapped round the S', a single brane of length Q5 R can be taken.
such that the momenta of the massless quanta along the 87 direction are given by
n/(Q1Qs ). where 1 is an integer. The number of hosonic and fermionic species of
hE massless modes of the theory is obtained as 4 bosonic and 4 fermionic. Henee

the central charge c=6(1 for each boson and 1/2 for each fermion). The asymptotic

_!:_usit}' of states for large NV in any CFT is given by dy = exp(1/cN/6). Where N
is the oscillator level. Here N = (210Q5n. Henee, the entropy would be

5 = 2/ Q1 0Qsn (3.42)

This is precisely the black hole entropy determined above, il we assume that the area
 holds for the metric (3.39). This poses an apparent puzzle. Since semiclassical
ods seem fo give the extremal black holes a special place due to their topology.

he string theoretic counting does not recognise the above. Moreover, as we shall



3.2.3 Resolution

As the previous discussion suggests that for the string theoretic extremal black holes
the arguments used in section (3.1.1) need not apply. Another relevant suggestion
is that there could be string theoretic or other quantum gravity corrections which
would prevent the metric near the horizon from being ezactly extremal, such that the
area law continues to be valid, It has been argued that Planck scale effects become
mmportant near the horizon [7. 47]. Stringy modifications were also anticipated in
[48] on the basis of stability requirements, In view of the above. the modified metrie

with the correct topology should be of the form,

; e J 0y 2 = 2
ds* = —[(r) (1 (’;”) ) dt* + f(r)™! (1 =: (’?—‘) ) dr® +r7dQ] . (3.43)

where f(r) is a positive definite and bounded Tunction of r in the Tange rg = r <
oo, such that f(rg) # 0, although it can be arbitrarily small. The corresponding
Hawking temperature gets modified [rom zero to Ty = f (ro)/2mrg.

However though the exact nature of the stringy corrections are not ascertained.
the metric (3.43) can be understood from an alternative approach. In general the

non-extremal metric solution of type 11B action compactified on five dimensional

manifold is of the form [44]:

: - ra ; r2NTH b Gy ,
det = (1 — T—“) + 1 [(1 = ;'-j-) rf;~2+r%f§z;] . (3.44)

where,

e (1+ ié—“ihg ”) (1-|~ —rf,sii]lz T) (i . Tgsnlile Siﬂhz J) (3.45)
r 54 T

Here, a, v and o are three hoost parameters. These parameters along with ry,

radius £ of 5 and volume V' of the four dimensional compact manifold determine

metric in having two horizons. The D-brane configuration corresponding to this has
. it moving momentum in addition to left moving momentum in the ' direction.
he five dimensional Reissner-Nordstorm metric is obtained when all these boost
meters are equal, e, a =y =0

y = o . and simultaneously doing the coordinate
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transformation »* = r* 4+ r2sinh’a -
5 gl h2 2 | 2 i
d? = [l B f.ruqmz e ] [l B I[ruf:ua.{ a) e
T re
it e
20 346
[l ﬂrusinhinri] []. frutushz.:r}'-‘]? df el {‘]'-H:]]I
D I
The two horizons are at
re =rgeosha | ro = rysinha . (3.47)

Itis evident that the extremal linit (rp — r_) is achieved when the hoost parameter
becomes indefinitely large, ie. o — oo, and @ — 0 such that ae® is held fixed,
Clearly, taking this limit does not change the Euclidean topology from dise = §2
to annulus x 5% as exact equality of the horizons is not achieved. The metric is of
the proposed form (3.43). coinciding with the metric (3.30) only in a limiting way.
- Therefore the extremal black hole metric considered in the above limiting sense
“obeys the area law for entropy. The stability of the black hole is ensured by the fact
that the Hawking temperature, Ty = 1/27a cosh” a. is infinitesimal,

The string theoretic counting for these near extremal states does not show a

discontinuity at extremality, This is also not expected for generic extremal black

holes in string theory, except for the specific RN extremal black hole. Tn that case.
an additional restriction has to be imposed on the number of charges. For these

black holes, the limiting situation correctly vields the area law.

3.3 Conclusions

In this chapter, we have shown that non-extremal and extremal black holes in general
! - - - . - v - - 4 . "
relativity are physically quite distinet objects and it is impossible to transform the

T

{ormer to the latter by physical processes. These have different Euclidean topologies
and hence they do not share the same entropy formula. Extremal black holes have
2610 entropy as opposed to non-extremal black holes which obey the area law. On
1':u1:her hand when the same black hole solutions are embedded in low energy
string theory, the degeneracy counting for BPS saturated states follows the area
aw. We have proposed a form for the string black hole metric which indeed oheys
liearea law. We have justified this proposal by showing that this metric corresponds

o the extremal limit of the black hole solutions in string theory, instead of being




exactly extremal. The interesting question remains as to what kind of statistical
interpretation can be given to the exactly extremal RN black holes if so whether it
shall be a stringy interpretation. There is additional literature, where it is proposed
that the area law is valid for extremal black holes when the partition function

‘involves a sum over topologies [41]. However, the last word about this has not

been yet said,



Chapter 4

Branes and Hawking Radiation

i_"__'[_nthis chapter we look at four dimensional black holes embedded in low energy
string theory, and try to understand Hawking radiation from them. This black
hole is a solution of A" = 4 supergravity obtained by compactifving 11 dimensional
supergravity on 177, We probe the black hole with a minimally coupled massless
fermion [19]. We show that surprisingly this rate has a structure which is experted
um a microscopic 14+1 dimensional CFT, Since the above fermion is not present in

the string spectrum, a radiative process modelling the above caleulation cannot be

.

eproduced using string theory, The scalar emission from these black holes was ini-
tially studied in [50] and emission rates for various spin particles (minimally coupled)
in the Neuman-Penrose formalism were considered in [51]. However, as we saw in
the earlier chapter, string theory provides a microscopic counting of the Bekenstein-
wking entropy of certain extremal five dimensional black holes. The near-extremal
k holes can be modelled in a similar way using string micro-states. Once the
croconstituents are known, an attempt ean be made to study a microscopic ra-
diative process which leads to Hawking radiation. Tt was first shown for scalars in
17, 18], that the D1 brane, D5 brane configuration vields a microscopic decay rate
which equals the black hole Hawking radiation rate exactly. Here we attempt to
obtain 2 microscopic calculation for the fermions and obtain a D-brane decay rate,
thich reproduces the Hawking emission rate of the fermions upto coffecients [19],

i
A1

it the first section we study the four dimensional black hole configuration. in the

second. we derive the Hawking radiation rate for a minimally coupled massless spin

.-'.-’T:h particle and then for a non-minimally coupled fermion. In the last section, we

give a string theoretic microscopic derivation of the radiation rate.
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4.1 Four dimensional black hole and M theory

11 Dimensional supergravity is considered as the low energy limit of M-theory., The
separate string theories, Type I, Tvpe [IA, Type 1B and the heterotic are recovered
from this theory by various duality relations. In particular. the strong coupling limit
of Type TIA theory vields M theory. 11-dim supergravity contains the graviton, a
Jour form field strength and the gravitino as the complete spectrum. Since a p
‘dimensional membrane cou ples to a p4+2 form field strength. this theory automati-
cally incorporates @ two brane and its dual, a five brane. Various supergravity brane

solutions exist which satisfy the BPS bound. Here, we look at a configuration of

st = (ifafo) ™ [fifafa (—dt* + daf + b (dt + diy)?) (4.1)
+afsldal + daf) + fifal(dal + dad) + Jofi(dad + ded) 4 di? + 12d03]

wheré; f; = (1 + ﬁ) =123, k=12 (1.9)
[ i

In the above, r; are related to the charges of the three five branes. and », is related to
momentum along the string. In the above, there is only left moving momentum
¢ the common intersection string, and the solution is extremal. The first hrane
ong (@, a4, o5, ra, 7 ), the second along(ry, e, 09, 04, 7=) and the third along
s, Ta, 24, r5). The radial distance in the rest of three space is denoted by r.

ﬂ':four form field strength is:
Ey =3 (edF7 A dyg A dys + #dF7Y A dyy A dys + wd PN A dys A dys) {4.3)

* refers to the three dimensional dual. On compactifying this conficuration

onifg..2-) T°, a black string solution wound around a compact &, is obtained as:

ds® = [ (—dt* 4+ dad + ke (dt + de))?) + Fdr? + r2d3) (4.4)



ﬁ.’.s:': = —f‘lf?dig =B fuz (u‘.'r"2 + r‘zdﬁ“;} .

f 1_1[(1 +, (4.5)

=1

akes a simple forin as seen earlier in [20]

A .
Spp = 10, = TV Qasn. (4.6)
T
his as the formula suggests can be reproduced from a conformal field theory with

itral charge ¢ = 6}, Or in the long string approximation, ¢ = 6. There

dst = —fTPhd? 4 PR 4 rRd0?)
4
i b B
- bt v andh=1 45 4.
I E( + r') andfn +?‘ (4.7)

te left and right momentum are given by n; = roearp(a) and ng = raeap(—er) and
Ty = rosinh 2o, The extremal limit is defined by 1y — 0 and & — . with r., fixed.

The entropy of this black hole is piven by:

Sz%:h\f’mtﬁ‘F VItR) (4.8)
Under the assumption, that the left and the right modes interact very weakly, the
‘:nve entropy can again be reproduced from a CFT with the left and right oscillator
levels being given by ny and np. But having a near extremal black hole. implies
# non-zero Hawking temperature, and lence emission of particles. The emission of
ess bosons from this black hole gave very interesting results, and the emission
ate had a structure which can be reproduced from a 141 CFT [50]. In this chapter,
k at fermion emission from these black holes. Firstly we take the simplest
here a massless neuﬁral fermion propagates on the back ground of this geom-
‘his calculation reveals that though the above particle does not exist in the

| avity spectrum, it still has a structure that can be reproduced from a 1+1
mensional CIT.
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4.2 Hawking Radiation for fermions

To determine the radiation rate of any particle from a black hole. we essentially need
to evaluate the absorption cross-section of the black hole, or the Greybody factor,
This is done on the lines of a potential barrier problem. The ratio of the radial Aux
into the horizon to the incident radial flux at the asymptotics gives the probability
of the particle to be absorbed by the blackhole. This is normalised to give the
fraction of the plane wave which is absorbed. By definition, it gives the absorption
cross-section of the black hole. To determine the fluxes. and the ratio exactly, we
“have to study the equation of motion in the black hole hackground. Having abtained
the solution for the wavefunction, we subsequently determine the GBF's in the next

subsection. The generally covariant Dirac operator in any dimension is given hy

= EE“:"H {";}H + """'F} (4.9)

Where e, where y is the world index. @ is the tangent space vector index, w, is
the spin connection associated with the metric, In the first subsection we look
minimally coupled fermion emission from a four dimensional black hole. This

fermion simply satisfies the equation Vb= (L

4.2.1 From 4-dim black hole

A convenient choice for the local tetrad components appropriate to (4.7) is given by
& = FapNE ed s FHAR=L

eg = [ & = fMrsing, (4.10)

-'"..ding the Weyl equations (for the radial components of the Wevl spinor field.
med left-handed)

i/ flhw Ry -i-rv‘ﬁ% = -} ARy,
v f IR w Rg—:-x./??% = MR, (4.11)

€ A is a constant, and w is the frequency associated with the time dependence

[ the solutions, assumed exp(—iwl).

Near the horizon (r — ry), we introduce the variable = = | — o/ and approxi-



where K = r, rara/rh, and rq = rgsinh® o defines o, From eq. (4.11), a second order
differential equation is easily deduced for either of the radial functions. For Ry, we
.{(ake the ansatz

Ay = Az™ (1—2)" £(z);

and restricting ourselves to the region r ~ rq, we obtain a hypergeometric equation

for F(=)
d* I 1 1 dF
ay _ = o S 9 g o
{1 —z) T + [(Herz) z (£+Hm+..n+2)] e

2
(m—i—n-i—hli) + yfm.r:r]] =, (4.12)

Here, we have already made the choices, m = —i(%E) [ n* = A2 with
afresp. b) = wr/rirarafry € (resp. ¢7) . In the regime a 2= b corresponding to
~ 0, the Munction plw.a) = —1/16 + i(a + b)/8 and hypergeometric function
televant to (4.12) is given by Fle, 3.v;2) where, o = —ifla+b)+n+1, g~
-__.%{ﬂ +b)+n . 5 =—ila+b)+ ;. The physical significance of this regime may
be open to question since it corresponds to ry < ry, and since all semiclassical
tonsiderations pertain to behaviour outside the blacklole horizon. However, we
de this for completeness.

In the other regime where o > | corresponding to @ = b, we have

(i g) = —|[1/4—qfa —b],r"?d]z.i The solution for f2;(z) in the near zone can

s be shown to be

RS = A2 () oy Pla,Biyie) (4.13)
: 1 , : 1
o = —iatntg B=—ibtn, y=—ilatb) 4. (L14)
large o, b = 0, and parameters are & = —ia +n + 2 B=mn, v ==fa+ 1.

can be derived allernatively by using the Newman-Penrose lormalism., In either
in the limit = — 0 , B (2) = Az~ lat8)/2

The near zone solutions obtained above are to be matched by extrapolation
0 the regime z — 1 to the small distance limit of the solution in the far zone

f— 1, h — 1). The latter solution can be shown to be given in terms of the

aker function [52] as

R (r) = Wy (wr) . (4.13)




Using the small distance limit of the Whittaker function [52], and matching with

the near solutions yields the ratio of the constants A and 5. in absolute value, Lo

be
Bl 1 [(n) [(7) Dy —a— @)
] (JPAS e 1O .16
M 2 M) Ty = a) Ty = 3) T
Now, with the conserved fermionic flux given by
F = |Ri|*—|R*, (4.17)
the absorption cross section of interest! can be expressed as
27 ..FD il -"1- 2 o
Tabs = Ba= T e (4.18)

where, Fy (resp.F.) is the flux entering the black hole horizon (resp. flux arriving

:-ﬁ'pm past infinity). Thus, the Hawking radiation rate for fermions is given by

d* &
(27)*

i
ik

(4.19)

m S

My =

3
‘ {‘,'_'.!:'rlju+b} + I:I—]
W

For a = b, using eq. (4.16) and appropriate values of the parameters o, 3 and

with n = —1 {which corresponds to s-wave solution for the Wevl fermion) we get

1 . 1 Y ; Tia S 7 S WY -1
iy = —Irrgrf,{ﬂ +0)[—+ E[u-l—h}j] [ezloth < 1) (t"—' (o) o I) o
1 (27)
{4.20)
Bor a > b, we get, forn = —1,
o bl 2 5
Iy = Ariri_— i+a) ! I“_ , (4.21)
{E..!fru. + 'l:l {FEJTEI _ I}[g?l_;ll.i
| ,,H_ﬁith n=—1 one pbtains Tor ¢ 5 &
. R i
Ip = zﬂ']‘” [— 4 {Jg} (6‘277'1 + l) : (2—}3' (4.22)

(11 dimensional supergravity compactified down to 4 dimensions. we cannot look

WThe contribution of Ra is negligible,

HE




for a microscopic description of the above. However, under certain considerations
‘of supersymmtery breaking. these particles can arise. 1t will be in teresting to inves-
tigate is such a situation. However for the five dimensional black hole, an attempt
can be made to understand the emission of fermions through a radiative process in
which two open strings collide to give a closed string in the bulk. A dimensional
reduction of our calculations might apply for the four dimensional black hole also.
(To describe Hawking radiation of scalars from the four dimensional black hole the

microscopic formula for the five dimensional black hole obtained in [18] was dimen-

sionally reduced to four dimensions [30],)

] O
CLESED STRENC

.-"'-F'-F-
I-HEANE

Figure 4.1: D-brane radiation

To obtain a microscopic description of Hawking radiation, interaction between
H open sirings propagating on the D-branes is used. The open strings collide to
fducc a closed string, which is then emitted from the D-brane, This radiative
process is unitary, and the decay rate for scalars, fermions which are present in the
ed string spectrum can be reproduced. In ordinary perturbative string theory,
attering amplitudes of open strings interacting to give closed string excitations are
ily caleulated. In the lowest order in string coupling, the world sheet diagram of
two open strings as incoming and outgoing states, can be ma pped to a dise diagram
With two vertex inserfions by a conformal transformation. Vertex operators are local
itors denoting the quantum state of the string mode, For the production of a
d string excitation, a vertex operator corresponding to the closed string mode is
in the bulk of the disc. In presence of a D-brane, the boundary conditions on
en-string coordinates X", changes to dirichlet in the direction perpendicular
D-brane directions. On incorporating the appropriate boundary conditions,
leulations, the D-brane closed string scattering amplitudes are determined
similar to perturbative string scattering amplitudes.

the five dimensional black hole. the D-brane confisuration consists of D5-
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branes wrapped on T x §' and DI-branes wrapped on S? direction. In the ap-
proximation of the volume of T* — 0. the entire configuration can be replaced by
& D-string along the ST direction. So, for our purposes, we study closed string
“emission amplitudes from a D string. The closed string mode we shall consider is a
gravitino mode. with vector polarisation in the compact directions. Gravitinos with
polarization vectors transverse to the D-string emerge as chiral spin-1 /2 particles
akin to those considered in [21]. By spin conservation, one open string vertex inser-
tion is fermionic and the other bosonic. The gravitino vertex operator of the closed
string can be decornposed into open string bosonic and fermionic vertex operators.
i_:ife work in the Green Sehwarz formalism, where there is explicit space-time super-
symmetry. The bosonic coordinates of the string are X7, and the corresponding
space-time super partners are #, where ¢ are Majorana-Wey] space-time spinors,
iﬁthe lightcone gauge. the number of fermionic degrees of freedom are reduced to
half and are 8 in number; same as bosonic degrees of freedom. In this gauge, the

fermionic modes are denoted by 5%, where a stands for a spin{8) spinor index. The
yvertex operators are:

I'iH':”] = i':’:l'“_:n&'{:ntzrl.} = t:_r{Hi{ATrr--?n] f“‘-"':”:":l

Vrin) = Veluppaiza) = [:::“F”(ch::n]l—|—u,".'f‘"‘l‘l[h,,_:n]}E"p""“:“]_ (4.23)

ere (, stands for the bosonic polarisations, u* stand for the spinor wavefune-

gt = pt (4.24)
B = X'— Ry} (4.23)
_13'+ 12
o (T) 5" (4.26)
. —1/2 1 o
o= —) (7. X8) + 2 (SR ok (4.27)
pt 3
R!J == %’}':}:‘,Suﬂa

. Where 12 indicates operator ordering. In the above, p* de-
r_']ie zero mode of X%, Due to the presence of the D-string, the X* are restricted
s upper half of the complex plane to which the dise can be mapped. However,

e directions where there are Dirichlet boundary conditions, the holomorphic
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fields get related to the anti-holomorphic fields by the following relations:
X.(2) =MIXu(3) (4.28)
Where M is a matrix which ensures the boundary conditions. On USINE SUPEersym-

metry, the conditions on the 5" can be fixed by using matrices denoted by M, and

M. Tor the four point amplitude, the requisite matrix element may be written, in
the light cone Green Schwarz formalism [54]

4
Alpr,paopaaps) = Vide [Hdg,- < Vp(1) Vg(2) Va(3) Ve(4) >,  (4.20)
=l

Where, the following identifications are made for the computation of the D-siring
emission rate:

2}_‘3‘| - 21*.'1..2312 — Ek-z,?j?;j = zkﬂg E}!L.ﬂf — qk.. [13{”

fi. = fyu’ =ege.M = xu, (4.31)
Where i, u" is the polarisation of the open strings and ¢ is the gravitino polarisa-
tion. Now in case of D-strings. only momentum parallel to the D-string is conserved.
The D-brane in the perturbative string approximation is infinitely massive and is
like a rigid wall. Thus momentum transverse to the D-string direction need not be
conserved. This gives only one invariant which is independent and that is taken to
bet = 4k by, Having done this, we now evaluate the amplitude for the process.
he points of insertion of the vertices are fixed as (x, —r. i, —i) since by SL{2.R)
inva riance, three of them can be fixed, leaving only one independent parameter. The
;’_‘ en string modes lie on the real axis. On evaiuating_ the integral. we lind:

Fi=24) ..
m{hf}ﬁ"flfz"rf'ﬁfz‘i‘---} :

e

(4.32)
e we have only written oue representative polarisation term to illustrate the
nentum dependence.

Independently, another approach can be used to get the above result. Ward

ities corresponding to the surviving spacetime supersymmetries for the -string
|, which may be expressed schematically as

y;;,:.G/Hd:; < Q. Ve()Ve(2)Va(3)Ve(4)] > = 0.

(4.33)




This enables ns 1o express the desired amplitude purely in terms of the bosonic
amplitude calculated for instance in ref. [55]. Here we merely estimate the energy
dependence of the amplitude to check consistency with the semiclassical results. The
amplitude for two open string bosons on the D-string fusing into a graviton with
polarization ¢ transverse to the D-string is given by [55]

=2t) .,

T (e () 4.3
Ag “,“_m;f (Cr -~ Ca) (4.34)

Using (4.33) one obtains, once again for vector polarization camponents of the grav-
itino being transverse to the D-string, the amplitude (suitably covariantized) the
same result as in 4.32. In contrast to standard computations, as is commonly ac-
cepted [17], a decaying gas of D-strings does not afford the usual facility of preparing
initial state. The standard procedure of averaging over initial states for unpo-

larized” initial states must therefore be replaced by a summation over all possible

pelw, Tg) and pp(w. Tr) respectively. where, the temperatures T, Ty may not be

equal. The total decay rate for the D-string with appropriate phase space factors is

i

I'p = w pr(dr) pells) (272 :

(4.35)

.

In this chapter, we have seen how fermions behave in the backpround of a four di-
ensional black hole. We have taken a minimally coupled fermion which has an
esting emission rate structure. This for T) > Th has the same structure as
expected from a CI'T with the right central charge and which reproduces the
v of the black hole. For Tp = Tg. this however is not true, and it is an
nteresting task to find why this happens. The first step would be to identify the
particular fermion mode which approximates the minimally coupled fermion in case

upersymmtery is broken. We shall study the non-minimally coupled fermion in this

try by using a near horizon geometry approximation in subsequent chapters.
Jur microscopic caleulation on the other hand provides an order of magnitude es-

te of the fermionic emission amplitude from a five dimensional black hole with



the D-string emission rate calculation, Indeed as shown in a paper [21] later, the
correct power of w and the form of the decay rate is reproduced from our ealculation.
The decay rate for s-wave fermions as determined in [21] is:

A comparison with (4.35). shows that though the exact factors cannot he Fepro-
duced. the similarity is striking. The left and right temperatures which appear in the
tesult are also same as in the semiclassical caleulation. The above calculations help
in strengthening the D-brane black hole correspondence. However, one major prob-
lem with this approach is that the D-brane calculations are done in the perturbative
regime of string theory. where the black hole does not exist. In the large coupling
ii‘mit, where ¢,0), ¢ being the string coupling and @ being the charges, is very large,
ﬁie D-branes are expected to collapse to form black holes. For near-extremal black
ioles, there is no non-renormalisation process to protect the charges from receiving
puantum corrections. Hence the correspondence and exact matching of entropy and

iation rates remains mystery. In the last chapter. we shall try and address some
these questions.




Chapter 5

The BTZ Black Hole

In this chapter, we shall study the 241 dimensional BTZ black hole and Hawking

- emission rates from them. This black hole is a solution of 241 gravity with a negative

cosmological constant. It was first obtained in a paper by Banados, Teitelboim and
@_ﬂﬂeili [22], hence the name BTZ black hole. This black hole was the first for
which a microscapic counting of degeneracy of states pave the Bekenstein- Hawking
entropy and is associated with a conformal field theory. The near horizon metric
of some four and five dimensional black holes are a product of the BTZ black hole
and compact manifold. Thus the BTZ geometry can be used as a tool Lo investigate
:f!i_gher dimensional black holes. In this chapter, we study the BTZ black hole, with
the above motivation in focus. We examine radiation from the black heles and
whether that has any microscopic interpretation. In the first section we shall study
the black hole solution, and find it's Bekenstel n-Hawking entropy. We study how
+1 gravity is associaled with a CF'T, which lives on any timelike surface and how
the black hole entropy can be determined using this. In the next section we stid ¥y
ions in the BTZ background, and raleulate a “absorption coeflicient” of the black
hole. Since the BTZ black hole is not asymptotically flat. we define the arevbody
or to be just the ratio of particles entering the black hole to the fux of particles
ing through a time like surface at p = [. The rate measured by this observer
‘a structure which ean be reproduced [rom a 141 CFT. In the third section we

are this rate with that from higher dimensional black holes.

241 Gravity and the BTZ Black Hole

ein’s gravity in 2+1 dimensions is essentially topological, and does not admi

hole solutions. It can he cast into a Chern Simons Theory under suitable

G




redefinitions. We shall study gravity with a negative cosmological constant, which

‘admits a black hole solution. The action is:

|
.ﬁ-zz__/tfﬂx{ﬂ +2°%) + B (5.1)

Where # is the scalar curvature and A = —(1/1%) is the cosmological constant and

B is a boundary term. We have put ¢ = 1/8. The solution of this action is a

space-time with constant negative curvature i.e

Rﬁt!f}-ﬂ' = k.flr'ell{ﬂp-"-ﬂkﬂ = HJ:.‘I..S?J.L:I’J-
The maximally symmteric metric of that is given in ¢, p. ¢ coordinates as
. 52 _ . )
ds? = (l + ;2) dt* + (! -+ !;_.z') dr + ptde? (5.2)

This is called the anti de Sitter space-time. The global group of isometries of this
1,2)

metricis 5O(2,2). This gronp has additional generators apart from the usual SO L
generators. Asymptotically the metric is of the [orm:

, " . A5 2
r'fSZ - _'%J?dt‘!_:_ —gl‘.{?': + F"{fd""z {r ‘Ij}

i [25] as 31/2¢.

The BTZ metric is derived by discrete identifications of anti-de

ter space time. [t can be independently determined as a solution of the action

a:1
g with the boundary term. The boundary term is added to subtract the surface
term which comes in the variation of the action. The BTZ metric in coordinates p.t
_'-'r,f:: 5 (0<p<o0,0<d<2n)

Al

{ ~ 'l
do* = —ppdi® —cfr + 9 (d@ £ “f -d:) : (5.4)

A= (p* = p3) (P — 7). (5.5)

; the metric represents a rotating black hole, with two horizens at p, and

he angular momentum of the black hole is J = 2p, p_ /1. and its mass is M =

- p2 )/ These can also be recognised as the conserved quantities associated
. & q

e killing divections Ly — Ay and Ly + Ry which represent the zeroth mode of

asoro generators L. It is easy to see that the metric is an identifictaion of

Sitter space by going to coordinates defined by:

+ _ Vi — N BT [ lt) _ VN wT (bt =T (bl =1) &
= € 1 = & [n.ﬁ]
P —

w




Where N = pi —p? Ty =27 ”‘f‘. The metric gets mapped to the Anti de Sitter
metric in Poincare coordinates:

# 5 By .
= (ey* + dietduw ) {5.7)
i

with the following identifications of the coordinates due to the fact that for &+ 2

det =

is the same point in the BTZ manifold:

- S, E-::.-*Ti S T 4T

¥ 4]

¥~y (5.8)
These identifications are not present in AdS space-time. In this thesis. we shall take
the metric in more convenient coordinates, with the radial coordinate p defined in

s of hyperbolic coordinate p. The redefinition is:

g = ‘ai cosh® p — p{ sinh® i, (5.9)

el

it

[ : £ ) it -
ds® = — sinh? i (p_l_T - ,r}._ﬂ"f.-‘}) 4 Pedp® + :;Ubih‘!‘u (—p_rT + p_,_rfq:':) {H.110)

A convenient set of linear combinations of t and ¢ gives us ot = p 1/l — p_o and
£ = —p_t/l+ pyd, and the killing directions of the metric are #,+ and -

ﬁ.\rer:.’ interesting observation is that the action 5.1 can be cast as a SL(2. B) »

% /Tr { AT A dAT + %Aﬂ‘ AAYAAY - AT AdA — %A— AATA _4—}
(5.11)
fith AX = w, +e,/l and k = /4G in a particular representation of the SL(2,R) gen-
8. The Chern Simons theory is topological, but it induces a WZW conformal
heory on any p = constant boundary. The central charge of the induced CFT
ated to the Chern Simon's coupling constant & by the formula: ¢ = 3k /{4 2).
ip used this in [26]. showed that the at the horizon, the CFT induced is of
charge c=3 +3 [or large k. Defining the physical states of the black hole as
ich-are invariant under the action of Ly — Ky and Lo + Ky, he found that
of the degeneracy of such states is 2rr /40, the entropy of the black hole.
dently, A. Strominger used the fact the asymptotic Conformal symmtery

d the central charge, to determine the density of states as [56]:

| M \/M-Jﬂ
& [\/ o TV e

—
in
iy
5=
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This is precisely the Bekenstein-Hawking entropy of the black hole if we replace 1

ermine Hawking radiation from these black holes and see whether there exists a

microscopic interpretation of the Hawking radiation rate,

2 Fermion Emission

calar emission from these black holes was considered in [37]. It was observed
the greybody factor for this has a non-trivial structure which can be reproduced
a 1+1 dimensional CFT. In this thesis. we study fermion emission from these

k holes.

1 Equation of motion of the fermion in BTZ background

ace time, The appropriate covariant derivative for spin- half felds is:

D=4 (0, +w, + ¢ €a7") (5.13)

eny = sinhp e =coshp
e = L (5.14)

1 zero spin connections for this are:

I
Wyt = —grcoshp e
3 .
. . ke 21 B 1R
= o sinh e 7', (5.15)
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here 02* = 1/2[7%.+%]. Using the above, we substitute them in (5.13) and obtain the

ﬁmiun equation on the BTZ space-time as

I ']rll (H i sinh p cosh p ) - ';.-n i tp o 7 9 1 |

I\ 2coshp -‘lenh;_t sinh p Tmshlu at

=0 (5.16)
take the representation of gamma matrices to be: 40 = 10?2 4! = 51,47 = ¢,
:'_E': killing isometry requires that d.21¢) = —ik*, where k% are constants depending
on the energy and azimuthal eigenvalues w and m respectively. In fact they can be

mined, and & = (w—mQ) /(271 Ty) and k= = (p_w — pemfl) [(27lpi Th).

Hawking temperature is Ty = (p? — p* )/27%p, and 0 = J[2p%. We take the
owing form for the wavefunction: The radial equations for the two components
letermined as

dfot | k™
P T i T S [ e & 1T
(" .‘si'nh,e;:)H (2 cnsh,u) ! 947}
1
2

( ket ) . (
d, + — e = — =+
sinh

tingly, to separate the wave functions. we have to go to a different basis of

fave functions, Let us call them ¢ and v, defined as,

B+t = (1- t.anh?p}_””' 1+ tanh p (1] + vh) (5.19)
Yy — iy = (1 —tanh® ,u}hm v 1 = tanh g (] — o) {5.20)

We obtain the equations in coordinates y = tanh ot for the ¥ below as:

Lot

(1= y*)dy v =l (%Hf'y)u'ﬁ% =— {1=al(kt+ k)bt (5.21)
ot

(1 =y )y + ol (‘H-‘H) ¥ =— {1+d(k*+ &)} (522)
u

jations are now very easily separable. The second order differential equation

from the above two equations can be cast in a simple form in the variable

ghich we denote as = for convenience.

. 1 , ket 4 Pt o
=) + = (1 — 32) du) 4+ % (L—+— +all — 2 ) !

-

L

lution to this equation is determined to be Wi = 2™ — 2V Fla.fiv: 2)

15 a hypergeometric function. For the ingoing function, the constants are

tid




be determined easily now. It is: gy = 2*/2(] — z)-1/2 (—(v=1)/a) Fla—1,3;4—
j, where a, 3,7 are constants as defined above. The flux for this function as
Wi in the next section is negative, indicating a flow into the black hole.

‘Thus we see that the fermion equation of motion in the BTZ background is
tly solvable. It is interesting to note that n = 0 corresponds to a minimally
'--;-": fermion, and in that case ¥ = a+ /3. The hypergeometric solution is not well
haved, and does not converge as = — 1. There can be other kinds of couplings
he BTZ metric. and they will be interesting to investigate. The BTZ black hole
'.y anti- de Sitter space, with global identifications. Tt will be interesting to
hether the solutions obtained Lere can be related to those obtained for AdS,

_], modulo the global identifications,

Grey Body Factor

hlack hole grey body factor is also the absorption coefficient of the black hole.
metry of the black hole provides a kind of potential barrier for the fields
ating on it. Only a fraction of the incoming (nx at infinity is absorbed
_"'i:::-_-:i-dg,r, and rest is reflected back. In order to determine the total Hawking
tion rate of the observer, sitting far away from the black hole, we need to
ate this absorption rate. Indeed, as in ordinary quantum mechanics. the black
sorption rate, which we denote by Tabs 15 related to the ratio of the ingoing
horizon and incoming flux at infinity. The fermion fux into the horizon will
ined by the current which enters the horizon. Usually, to probe the black
metry, an incoming plane wave is taken at infinity. However. here. for our
we take the incoming flux in the region p ~ { % p, as the incident flus
black hole. This would correspond to an BTZ observer, sitting at finite p,
g radiation. Though, the physics of this picture is not very clear , there are
umber of reasons for choosing this. In curved space-time, an observer measures
spectrum depending upon his local temperature, which is Tu/\/Go. In

ically flat space time, \/goo — 1 as p — ~o. However, this is not the




it small mass BTZ black holes, i.e. py < 1. it is easily seen that, Voo — 1
ien p ~ . This motivates the choice of the observer. Moreover, to COImpare onr
'..ansv.'er with higher dimensional black hole rates, going infinitely away from the

on would imply a modification of the near horizon B17 geometry, and we are
interested in probing that region. As p ~ [, the black hole metric is same as
nptotically anti-de Sitter space. Solutions determined in this metric is also the

me as that obtained in the vacuum solution of the black hole [39]. The metric is
> Py )

. determine the wave functions we then solve the radial equations:

1wat? | iy .
(,ﬁl ﬂp = —p—) ‘il,'f-'jl{_.a} = (E = ?) E,L-‘"rz{” (}2'3]

sparate this set, we go to a frame in which, v/, = ¢/, 4+, and s = !, — v,
uation can be exactly solved in this frame. The solutions are determined, in

of Bessel functions,

v = Vo (Ando(Az) + 1 AaNy(Ar)) (5.26)
t"!': == %f:‘h.h[s\m]+:_4g_-"v"1|:.-ﬂ;a_-}] (5.27)

: '-J" and N, are bessel lunctions of the first and second kind. A 1 and Ay are
constants of integration. Alsor = 1/p. A = Vw22 —m? F = Hwl4m) /A,
hat the same solutions will survive when p — = in anti-de Sitter space. The
g aspect about anti-de Sitter space is that p — o is a time like surface,
/it is necessary to specily houndary conditions, which are either Dirichlet or
on the surface. These boundary conditions. also called reflective houndary
s [60] can be realised in the set of functions defined in (3.27). On choosing
this condition can be ensured for the above wavefunctions. 1t is easy to
ab in that case \/pi» = 0 for p — 0. However, here we are not jnterested
g the wall totally impervious. Instead, we are forced to take A, have non-
es if we want the wavefunction to match the wavelunction determined in
nfinued to = — 1, This shows that, our cheice of a net inflow of flux into the
ensures that we donot have reflecting boundary conditions at infinity. For
fic anti- de Sitter space, this might be related to the transparent boun dary

defined in [60]. Before we can determine the greybody factor using this far
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e . & ﬁ?ﬁ“*%u—ﬂWMﬁeww+um (5.28)
2p

+47 (lr:rg (ﬁf{;) +4 {f*)}
Vi = p-

Wy —* —V—@_P—E| (5.29)
_ (GG —a—5) .
5= (o= =) o

are the digamma function (subsequently, we write 23(W{a )+ W( 3+ 1)) = ¥, 3)).
=p2 —p,and ¥(1) = —C (euler’s constant). The factors +/(p. +p_)/N
‘as this wavefunction given in terms of ¢, p.¢ coordinates is lorentz rotated

he wavefunetion obtained in o%,z.2~ coordinates. Note in the above. we

| 21 A, A ;
o Aa : ;

I oo 2

wEApt/?’ (5.32)

ymiptotic constants are determined from the above equations,

Nipy +p_) _ a A o
--—T:&.—_E, (1 —W(a,3)) As= ?—v,—ﬁ—\fr —p_E (5.33)

fhe fermionic flux is given by:

F=+/—gF" = poefy' (3.34)

(5.35)

ming flux at p = [ is determined as (The flux obtained from the above
gstanis is multiplied by /°/N* for normalisations)

[

av Bl (2= 2Re¥(a, ) (5.36)

Fl=_




T h&ahsmptmn coefficient is defined as the ratio of total number of particles entering

he horizon with the incoming flux at infinity [6 2]. The total number of particles
‘entering the horizon is:

—] v —gJ o do {3.37)

This is equal to: Apl/4N|(+ — 1)/al*, where Ay is the area of the horizon. The
orption coefficient is then determined as (for m = 0);

oo = Au 1=11\ M)y ~a = B)|” (5.38)
abs = 7 Rell|a. 3) o (v —ea)T{y — 3) ]

 ReW(a, ) = — (w /4Ty ) tanh (wf1T}) — O( 3

) for m=10. Using the expressions
- hypergeometric parameters as given in the carlier section, the greyvbody factor
n be written in a interesting form;

wAgy explw/Th) +1 i
~ AT;(1 + /ATy, tanh(w/3nTr)) (exp(e/2T7) — lexpla/2a) ¥ 1) 039
, the quantities Ty and Tx are defined by

1 | o ) 1 1 ( o ) sy
- = l —_—— = ] + e . -"'].U
T, Ty ( e T Ty 4 9401

Phe extremal limit, defined by taking py — p_, corresponds to Ty > Ty, Clearly,

the above limit in equation (5.40), the absorption coefficient reduces to Au /2.
awking radiation rate will he now a product of thermal distributions. instead
ng a single fermionic distribution, Infact, it is:

wAy d*k )
ATy (explw/2T1) — 1)(exp(w/2Tr) + 1) \9:1)

4 i . -
s s precisely the form expected for emission rates from an under] ving conformal

'y =

finite temperature [53]. The fermion in the bulk couples to operators of
dimensional conformal field theory, The system is at finite temperature 1Y,
1 be split into left and right temperatures such that LTy +1/Tr = 2/Ty.
rate at linite temperature due to the coulping stated above is caleulated
the form of a product of left and right distributions. The fermions are
d with rightmoving temperature, indicating that fermions considered here
chiral conformal operator. Using the results of [53] it can be predicted
e conformal fermion couples to operator in the conformal theory of the form
'l:ié_re OF is rightmoving, and has conformal weight 1/2 and O~ is leftmoving

1. It will be interesting to determine the nature of the coupling as that
e coefficients exactly.
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5.3 Comparison with Higher dimensional black
holes

C e of the reasons behind the renewed interest in three dimensional black holes.
he fact that near horizon geometries of certain higher dimensional stringy black
es are BTZ times a compact manifold. Near horizon geometry has heen exten-
ely used to learn about entropy of the higher dimensional black holes [12. 64, 63].
e briefly review this mapping [12, 64] and discuss the implications. The so-
n due to RR charged one branes and five branes wrapped on T % §'. and
za. Klein momenta along S' in 10 dimensions. has a near horizon seometry
% % T x 5% The radius of the §* direction is [ = rirs, where r; and r; are
-=q-_-. to the one brane and five brane charges respectively. The time, transverse
| distance p and S' direction (@) constitute the BTZ black hole coordinates.
ordinary kaluza-klein reduction of the 10-D solution on 7% % 8! yields a 5-D
 hole, which preserves N = 8 supergravity. The entropy of the 5-D black hole
al to the entropy of the near horizon BTZ black hole and scalar decay rate
5 the decay rate for scalar emission from BTZ black holes. Here we make a
arison for fermion decay rates. In [21], it has been shown that the SUCRA

ermions of A” = 8 supergravity, have a Hawking decay rate for the five dimensional

- = it ﬂ”lif
I\a = . 5] . . —
ATy, (exp(w/2T,) — 1) (cxp(w/2TR) + 1)

(5.42)

,our decay rate is identical to this decay rate. The temperatures of the left
hit distributions are exactly the same as given in (5.40) and 7y is the area
i the horizon of the five dimensional black hole. A inferesting point to note is that
lig rates can be matched upto exact coefficients if we choose to factor out the phase
factars of 5% and ¢ = a5/l (25 is the S direction. with radius i) from the
v rates, as A} /AY, = =1/ R. However, an observer in five dimensional Space
particles at infinity sees all the three dimensions of 52 as uncompactified.
snot clear what the above result implies. However, it can be said that our
ms the observation about scalar decay rates. The range of frequency for
calculations, wr; < 1. is also same.

‘exact matching observed above provides a basis to predict rates for non-
y coupled fermions which propagate on the background of the four di-

al A" = 4 SUGRA black hole obtained by compactifying M-theory (11-D

6Y




supergravity ] on 7% x S described in the previous Chapter. To identify the re-
G mred fermion one requires to take the equation of motion in the 11 1) Supergravity
Iutmn. and take the near horizon geometry limit as described above, All fermions
.5I __u_:h will couple in the same way as in equation (3.13) in the BTZ part, can then be
predicted to have the rate obtained in this paper. The metric in (4.2) is due to 3 M
1_:&11&5 wrapped on 7% x §1, i.e. directions x,..2, and a boost in the ;. (51 direc-
The near horizon limit results in the metric splitting up into a BTZx 8% x T,

here S? is the two sphere of the noncompact t.r.0, ¢ dimensions of the four dmmn—
sional black hole. The radius of the two sphere is B = /2 = (ryrar3)"3, where r;
related to the charges of the black hole. As in the five dimensional case here
811 /R0 = 2R (vo + mosinh® ') { By is the radius of ), and time lorm
lhe BTZ coordinates. To find the relevant fermions which will have the rate as
id in this paper, we start from the 11-D gravitino ;. Clearly gravitino with
or polarisation along 'y, or the other Iy, &'y, ¢y directions will not satisfy our re-
ements. We take a representative v, as in the near horizon limit. all the torns
directions are similar, apart from constant scalings. Iu this limit, since g;; =consl,

‘1_1:.._9, we can split the 11-D equation of motion as;
. ,
(ﬂg + Tﬂ1> Pp=10 (5.43)

e f and [k are the dirac operators in the BTZ and the two sphere metries
ﬂctwely To get simultanouos eigenstates of both the operators, we multiply

L

e two dimensional chirality matrix Iy = 1T,Ty. Thus for s b = A, the

jon of the fermion in the near horizon limit is:

(E’E.ﬂ ; + #) =10 (‘5“44}

= 1/4, we have the required fermion (£’ = T, ). 1t is not very difficult to solve
nvalue equation stated above. The arguement given here is hueristic. and we
wenot been careful about the supersymmetry preserved by the hackground metric,
) be checked whether the fermion taken above falls in the N = 4 multiplet, as
dimensional black hole preserves N = 4 super symmetry. However, it 1s an

sting calculation, and is under further investigation at present.




5.4 Discussions

In this paper we have calculated emission rate of fermions rom BTZ, geometry, using
techniques of asymptotically flat space-time calculations, like the grevhody factor.
However, since the physical situation we are interested in is when BTZ occurs as the
near horizon geometry of higher dimensional black hole, this is justified. We show
that indeed the BTZ calculation reproduces the rate of the non-minimally coupled
fermions in the background of a five dimensional black hole whose near horizon
geometry is BTZ x §%. The fact that the rate observed by a BTZ observer at Pl
looks identical to that of an asymptotic observer in a five dimensional black hole
is interesting. The physical implications of this are still not clear. but the answer
might lie in the location of the degrees of freedom of the underlying conformal field
theory. There are several ways to approach the problem. It is known that 2+ 1
gravity can be cast in the form of Chern Simon theory, which induces a conformal
field theory on the boundary. However, on inclusion of matter fields the theory is
no longer topological, and the same conclusions cannot be drawn about the entropy.
Hence. it is not clear how to study Hawking emission in the above frame work.
Recently, matter fields have been treated as a classical perturbation in the Chern
Simons action, and the decay rate obtained for scalars[65]. The scalar action is

tfaken as:

[, = f d* 28, ), g™ (5.45)
.:!iil_"‘-'rl‘.'lich gives rise to a boundary term in the f, p. ¢ coordinates as:

Iy = f /= 99" &' B, + 0,0/ (5.46)
The boundary given by p — oo has the coordinates: 1 = it =, v =1fI+¢. The
solution at the houndary is of the form:

d={1 —1e )by (uv)+ {1+ e M (1, v) {5.47)

he background metric can be written in terms of the S gauge fields. At the
boundary, At = A7 = 0. Furthermore, the gauge choice used is: Ar =b"19,b. A7 =
bab~'. where, b = exp(pTy). Ts being a generator of SL(2, B). The other field A,

s determined from Gauss law as:

A+ — ( at*(u) e at(u) )

efatun) —at3(u)

il



Where the functions e®(u),a™(v) are arbitrary fields at the boundary. Under in-
finitesimal diffeornorphisms of the boundary. the a* (1) and a~{v) transform as (1,.0).
(0,1) operators, in the houndary CFT. The metric in terms of the alu) and ale)

goes as:
ds* = Pdp* — Pe*a (u)at(v) + ... (5.48)
In terms of this . the boundary action 5.46 wives:

o H/r.i.'ud:r (@™ (v)a~(u)) [¢;+¢=T_ — ¢_¢L] (5.40)

o | , - + = |
The main result of [65]. is the above result. where at the boundary, the scalar fiold

clearly couples Lo an operator with conformal weights (1,1). A quantum mechanical

stant C is undetermined, and we can fit it to the semiclassical result to abtain
t matching. The agreement with the black hole decay rate is remarkable for the
ars, and calls for further investigation for the fermions.

‘Apart from this, the BTZ black hole is asymptotically anti de Sitier. and has «
aformal field theory living on it’s boundary [25, 56]. With the AdS/CET corre-
ence, it is known now, that string theory on orbifolds of AdS; times a compact
ianifold M is dual to a super conformal field theory whose target space is symmei-

yduct of M [12]. In this matter fields are automatically included. and we shall




Chapter 6
The AdS/CFT Correspondence

In the fourth chapter, we studied emission from string black holes. We found that
the decay rates have a structure which can be reproduced from a 11 CFT. In the
next chapter, we studied the BTZ black hole which is also associated with a similar
CFT. In this chapter, we use the BTZ black hole and the CFT associated with it
to understand the higher dimensional string black holes [31]. We concentrate on
studying emission rates of particles from a five dimensional black hole and give a
microscopic derivation of the rates. The black hole solution is obtained by com-
pactifying Type 1I B string theory on 7% x S'. On retaining the 87 as a compart
direction with a large radius, it gives a black string solution wrapped around the 8.
The near horizon geometry of this confignration is BTZ x 53, The emission rates
of neutral particles obtained in the black string background are the same as that
from the 5-dimensional black hole [12, 66], and the near horizon BT Z geometry has
a crucial role in determining the greybody factors [27. 7, 67]: We study the matter
fields obtained as perturbations of the given 6-dimensional supergravity background
cand obtain the equations of motion of particles in the near horizon geometry, by
_considering a AdSy x 5* compactification of the six dimensional su pergravity. Since
BT Z space is locally AdS;, to study the equation of motion of particles it suffices
o study AdSy x 5% compactification. The complete wavefunetion is determined by
taking the wave functions in the near horizon geometry and matching it suitably
“with the wavefunctions in asvmptotically flat spacetime at a distance r ~ | from
the horizon, where ! is the AdS; radius. We look at arbitrary partial waves for the
scalar, fermion and vector particles, and determine the greybody factors for each.
In all our microscopic decay rate caleulations, we replace the entire near horizon
geometry of black string solution by an effective 14+1-dimensional CTT which lies

at a finite distance from the horizon, i.e. at r ~ [ ~ /rirs. Here [ is a measure of

73



the size of the near horizon geometry, and ry, 5 are related to the charges of the
black hole. A quantum mechanical caleulation of the emission rate is done where a
plane wave excites the operators of the CFT. The correlators of the CFT operators
are determined by the AdS/CFT correspondence aceording to the prES{.‘ript;mn as
described in Chapter 1 1,12 [24, 29, 68, 69, 70, T1]. The partial wave compenents
of the plane wave incident from spatial infinity couple to the CFT operators and
excite the CFT. The microscopic caleulation using the correlators with their proper

normalisation constants reproduces the emission rates eractly.

6.1 Five Dimensional Black Holes and Their Near

Horizon Geometry

The black hole solutions of string theory that we will consider arise from the low
energy effective action of Type [IB string theory in L0-dimensions, by compactifving

on 1% x §1. The full 10-dimensional metric is given by [72, 73]

ds* = Jrl_llu J'rr,_l'm I_’“Iz +{da"y
+ @ (cosh odt + sinh mm;,}:! + [i daidir’] k6:1)
R

sy =

where r” is along S' and & .1 = 6,..,9 are the coordinates on the T, The [unctions

fi and f5 are given by:

:.2
II=]+I_‘1! '..llrl'r:l-i'

The resultant black hole metric in 5-dimensions after Kaluza-Klein reduction has
six parameters, vy, 5, ro, 0. V' [volume of the 7% and R [length of the §']. In the
case of the black hole obtained by wrapping ()5 D-5 branes. (), D-1 branes with
momenta n along the 1-1 brane the three charges of the black hole viz, Qy, 5. n
can he re-expressed as:
rgsinh2e g'n

2 v
The black hole in five dimensions obtained by wrapping the 1) branes, is the same as

2 4
o = Tk re = glls

described in Chapterd. The black hole horizon is at rg. The non-zero field strength
in this background is given by:
Ty

2
—L_(Af)Y Hae = €2 (fifs) )
{r-z_l_}_.f}z {fl.fnj ) ulic \‘.gbcra {f]lrn} (ﬁ--j

Huwp = €pup



Where p,v.. run over t,r5, r coordinates and «a, b. ¢ denote the angular directions,
In the metric (6.1) we take the near horizon limit r — ry and in the so-called
dilute gas approximation ry.rs 3 ro, 1. We find that the harmonic Tunctions =

Lo r"'fm,."r"E =2 :‘?{ﬁ}fr"", The metric can be split up into three parts,

ds® = dshpy + dska + dsis (6.3
where
BY o % o Bepi i R°
o2 — 2 2 ) : +
ﬂ':.wﬂ.rrz - —ﬂﬁlf 4 F{flﬁl -+ i (d{r'?— flp:z {'H) {ﬁ*f}

A* = (p* = pi)p* = pt)
Clearly this is same as the metric in the earlier chapter, 5.4 and thus is the metric
of (2 + | )-dimensional 877 hlack hole. which is a solution of Finstein's equation
in 3-dimensions with a negative cosmological constant A = —1/1* 5.1. We have
made a coordinate change v* = p? — p? to get the above metric. The coordinate
®, the parameter [ and the horizons of the BTZ black hole py are related to the

S-dimensional black hole variables and parameters by the following relations:

] ixl *

d=x"fl , py =vocoshe .p_ =rysinhe I =rirs (£.3]

The part ds7, is just the metric on the 4-torus and dﬁ:::n is the metric on the three
sphere with a constant radius I, The BTZ metric includes time, the periodic #°
direction and the radial direction of the 5-dimensional black hole.

The above decomposition forms the basis of the approach we are considering,
in which all thermodynamic properties of the black hole will be attributed to the
‘non-trivial” BT Z part. The relevant near horizon part of the metric thus preserves
SL(2, ) = SL(2, R) symmetry which is absent in the full five dimensional geometry.
In fact as shown in earlier cases. the equation of motion of the particles in the five
dimensional black hole background show this symmetry near the horizon. The
inclusion of the extra direction «® does not affect this property, since the extra
dimension is a killing direction and does not change the symmetries of the equations
of motion.

By compactifying the 10 D metric on 7%, the black string salution in 6D is
probed. The black string is wrapped on S', and thus has a finite size. Black
strings are one dimensional objects with a horizon aound them. This prticular

black string is a solution of A" = 8 supergravity in 6-dimensions, In D =6, A" = 8

~1
bk |



supergravity theory, the spectrum consists of 40 fermions apart [rom 5 anti-self dual,
anti-symmetric gauge fields. 16 vector fields, 25 scalar fields and 8 Rarita-Schwinger
fields. Out of these, as seen in (6.2). only the anti-symmetric gauge field strength
is non-vanishing apart from the metric background. There is a SO(5.5) global
symmtery which gets broken due to the black hole background to SO(4)x SO(5). We
look at certain particles in the spectrum, namely the minimally coupled scalars and
non-minimally coupled fermions and gauge fields in 6D, The scalars correspond to
gravifons along the T direction. The scalars satisfy ordinary Klein Gordon equation
in 61}, and on compactification on AdSy x §%, are expanded as ¢ = 3 $(¢, », )y L0
‘where Y5 are spherical harmonics on S, The equation of motion for scalar fields

for the partial wave L on 5% satisfies the massive Klein-Gordon equation
[Vi— M =0 (6.6)

in the AdS, spacetime with the mass p given in terms of L as [T4, 73]

11"! = llr_z"l!lul:lllr ] -}
In the notation of [76] the fermion equation of motion is
Ilj ¥ n avap ey l ] ATV Hex m
?I"- I.E.:Iﬂ.,l"ﬁlqﬂ o EP ”{,.:I.nllﬂrh‘i N "!.-"Li“\-' o ﬂ 1.-'I."|I'."-."PI AN P,‘I.ﬂ x5

i i |I"Ir [ MN _ & [ | R
+ Fipn (77 )5 MY T 0 — IF”"HL” Telalwaly| =0 (6.7)

where M, N.. represent 6 dimensional world index. ¢ and a. S0(5) = SO(5) vector
= 4 BN GG an 3 : -
index , o, 3 SO(5) = SO(5) spinor index. The 4 and — sign denote the chirality of
0

he fermions. In the above P are related to the kinetic term of the scalars. Fiesis

elated to the three form field strength, Fi, are related to the field strengths of the

d strength is given in the near horizon limit by, Hivo = (1/ D)€, 8™ and HY, =

(1/1)e5.40°% where p. v, ... ete indicate the three AdS directions and b.e.d... are the 57

ion field \ in terms of an undetermined function of the BTZ coordinates. times

harmonic functions on the three-sphere. We also work in the representation
i P

e (v7)x = v. In this linearised approximation, the resultant expression is:

l

™ Dy — 75 Hu pIMNF L =g (6.8)




The expansion in harmonics of 5% is of the form y = 3 (PF2Y £ 404
obey YYP-UE = +i(p + 1)YV P22 where p is a half integer, labeling the spin
representation. Plugging in this expansion in the equation of motion (6.7), and
using the decomposition of 6-dimensional I'M matrices into 3-dimensional ones as

given in the appendix, the two-component equation takes the form

1
DX+ (Flp+ ) —1)x' =0 (6.9)

Where PEV2 = ' Which can be written as:

1
o (EJ,L+L::“+ }-[L+UIZI) v =0 (6.10)

where p = L + 1/2, and we have chosen one of the eigenvalues of the spherical
harmonic (choosing the other sign gives L + 1/2 + 2 for the mass term). The spin
connections correspond to BTZ spacetime. Note that, here [ stands [or the orbital
angular momentum. and in the previous chapter. the calculations were done for
L = 0. From the above it also follows that the lowest mass term in the BT Z
space time is non zero and equals 1/2. This is our basic set of equations for the
determination of the fermionic grevbody factor. It is interesting that on plugging
the three dimensional spin connections and using the relations (6.5). it can be shown
that this equation is the same as that of the fermionic fluctuations in the background
of the 5-dimensional black hole in the near horizon limit [21]. We confine ourselves
to particles without any Kaluza-Klein momentum along the compact direction z
In ather words, the particles belong to the s-wave sectar with respect to the BTZ
black hole. Inclusion of the azimuthal quantum number along +* will imply charged
fermion emission in five dimensions.

Similar decomposition can be made for the vector equations of D = 6.A" = §
supergravity into AdS; = 5% The exercise has been done in [77]. Note that this
~vector couples to the threeform, and hence its linearised equation of motion reduces

to:

The gauge fields when expanded in the spherical harmonics 4, = Y AEy (L)

reduces to:

i, 1
VO Ay = 76" O A = FLL+2)A) (6.12)

|
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wher we have dropped the indices (L, 4+1). These set of equations correspond to a

massive gauge field in the BTZ background. and we solve for this to get the required

grevbody factor.

6.2 Greybody Factors

In this section, we solve the scalar, fermion and vector equations of motion of the
previous sections to lind the absorption cross-sections of the black hole for these
particles. Since we study particles of various spins, a Newman-Penrose formalism
would have been ideal for the study of particle propagation on the BTZ background,
However, this has not been developed in three dimensions, and we separately con-
sider the various equations of motion and find their solutions in the near horizon

and in the asymptotic regions.

6.2.1 Scalar Greybody Factor

The scalar greybody factor for arbitrary partial waves for the fve dimensional black
hole was [ound earlier in [T8]. Here, we exploit the near-horizon (BT Z) geometry
of the black holes to solve the scalar wave equations. As stated beflore. the massless
scalar wave equation for an arbitrary partial wave L in the 50 background can
be reduced to the massive RKlein-Gordon equation in the BTZ background. This
equation was solved for the massless case in [57].

From (6.6} and (6.4), we we get the massive s-wave scalar equation in BT 7

backeround:
1d [A*dD wip? ;
—— | —— b — M® =10 . A3
pdp (I‘“ﬁ' ffﬂ) a? w=D SR
Defining _
-
St
and assuming ®{x") ~ {'E""'EEI"{PL the equation takes the form
d*® P A M?
(1 —= — )+ |- -—| &= G.14
=2 =2 g [: fi—ay o (830
where
A= (w/ArTy ), B = (p [p2)A
and

?’l — Iui _ 'rjg-
" 2nllpy
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is the Hawking temperature of the BT7 black hole. Plugging in the ansatz

O(z) = 2™(1 — 2)"F|z] (6.15)

we get

o F
+ [(Zm4+1)—(Zm+2n 41 )z] i
m*+ A i nin—1)— M?/4

- o~

2 | —z

-+

—(m+n) — B| F =0(6.16)

Setting the coeficients of the 1/z and the 1/(1 — 2) terms to zero, as required by
the continuity with the solution very close to the horizon [79], the above equation
reduces to the familiar hypergeometric equation

diF

(1= 2) = +(2m 4 1) — (2m + 20 + L}zl% —((m+n)2L BIF =0. (6.17)
Thus, the final solution is:
P{z) = z™(1 — 2)" Fla, 87 2] (6.18)
where

m = —ivA . n=—_—;
o = —i[\a’{._—i.fﬁ}+n L B=—i(vVA+ i.fﬂ}+'n (6,19
g = 1 =9A

and we have substituted M? = L{L +2)/1*. The flux of particles into the black hole

can be caleulated form the formula

i [ G
R el [5@:'— - .-;..-;.] (6.20)
t |l p  dp
which vields
Fo=dnwlip, (6.21)

Now to lind the incoming flux at infinity. we have to solve the wave equation
al very large distances from the black hole, where space time is almost flat. The
corresponding wave equation is solved in the six dimensional black string back-
ground, with the metric given in Eq.(6.1), with r = 2c. The solution is ex-

panded as 3 ®(r)¥ 19, where the Y5?) are the spherical harmonics on S%, Using



VYD) — _ (L 4+2)Y¥0 where V2 is the Laplacian on the 57, the radial equation
of motion follows;

i 'I.'nlII :.;dd} ) L{L + JJ Tt 15)
i (r dr) + |:u. — =, ¢ =10 (6.22)
having the ingoing Bessel solution:
|
i - (Adpgi{wr) + BNpp(wr)) (6.23)

The asymptotic expansions of the Bessel functions vields the following flux at

.

Fo =2[|AF + |B* + i(A"B - B*A)] (6.24)

Since the far solution should smoothly go over to the near horizon (BTY) solution.
swe investigate the nature of the solutions near the region r ~ {, till which region we
e that the AdS; geometry is a good approximation to the black hole spacetime,
om Eq. (6.5) and the dilute gas approximation, near r = | > rqsinhe. we
~ r and hence the angular parts of the wavefunctions are the same. Thus.
we simply compare the radial wavelunctions. The intermediate region is obtained
sefting = — | and rw << 1 in the hypergeomelric and the Bessel solutions

pectively to obtain the matching condition [61. 80] :

L4
4 — ar=Ljf2 [y E F['ﬂ <y
A=N ( L+ L)L) (..d) Ty = a)T(n ey . (6.25)

e N = p% —p? = r?. The other constant B is much smaller by factor of { Nw?).
hence is neglected in the subsequent caleulations,

A interesting point to note is that if we solve for the scalar wavefunction in the
Iptotic AdS space, the solutions are obtained as & = Jrpi(wl* [ p)+ Ny (wl®/p),
d thus at p = r = [, this has the exact polvnomial behaviour as the flat Space Wave
finctions as the arguments of the bessel functions both reduce to w!. Although we
ot use the scalar wave functions in asymptotically AdSy space to determine the
:-':.13:-- factor, it would be interesting to check whether the above ohservation has
ser significance, since the location r = [ has no apparent physical significance.
The greybody factor is then evaluated using standard methods of caleulation of

sorplion crossections by taking the ratio of the fAuxes. Thus from (6.21). (6.24)

S0




and (6.25), the grevbody factor is:

d= -‘FU
Tabs = UJ:,,'LL 1y — 7.
2 w20 I+l W \
=y (E) P (6.26)

=

ID(1 + L/2 + iw/ArT_D(1 + LJ2 + iw/47T,)|?

ean)
&', Ty o

and we have included the plane wave normalisation factor (L4 1), We have also

where

HI

used the identity |I'(1 —iz)|* = 7a/sinh7wx. The above expression for the grevbody

factor reduces to the area of the black hole for L =0, T_ = T, , and w — 0 [¥1].

6.2.2 Fermion Greybody Factor

We shall solve the equation of motion of the fermions equation (6.10) on the BTZ
background, in a suitable set of coordinates, We define p? = p2 cosh® p — p? sinh?
and 0% = +pit [l F p=d and assume the following form of the wavelunctions:

it et ph=r=)

o o : Loy B
cosh psinh p

where (1.2) refer to 1the two components of the spinor. The spin connections for the
BT Z-metric are:
1

a1
wye+ = ——cosh po . ddaecTs

2/

The equation of motion for ¢ takes the {ollowing form:

— sinh po®!

2

) ikt , HE™ | 2
i+ "= i 4 v+ (L + = =0 (6.27)
sinh g cosh p 2
Here we work in the representation, ' = at.4" = 10%, 4% = ¢*. Then we deline a

new set of wavefunctions ¢ , as

4y = (1 —tanh®p)” x..r‘l-i-’hmhlre (g + ) (6.28)
thy —4p = (1 —tanh®pu)” B /T~ tanh (h — o (6.29)

whence the Dirac equation assumes the form:

; kt . . .
n—.:_.r"'myﬂ'é—i(_ﬂ-—y) vy = =LA LrilkT + 57y (6.30)
Y
% ] - JE-'+ — ! s —1
(=gl +il —+hy) vf = —[L+1—ilk"+k )y (631)
n

81




where we have defined y = tanh p. Next, we choose the following ansatz
Wy = Biaa™ (1 — 2" Falz) (6.32)

where B, , are arbitrary constants z = y* and F(z) are yel undetermined solutions.
Substituting in the Dirac equations, separating the equations for ] and ¥ and
demanding continuity of this solution with the solution obtained very close to the

horizon. we finally obtain the following hypergeometric differential equations for
Filz) and Fy(z) :

e 15
21— 2 ij: + [(2m; +1/2) — (2m; + 20y +3/2): ]lrd
il — 1232
— [mylm; + 1/2) +n(ng + 1/2) + 2myn; — r—L]F =10
(6.33)
(6.34)

The constants vy, n,. the hypergeometric parameters o, 7.4 and the integration

constants B; are tabulated below

L+ ilk™
my = L=mg+lfﬂ
2
I
ny = —5[L+1} = Ty
L elk_
fry = 'FT?1+T?-1+E+T:Q'E+1
) k= .
g = frrl+:1]—i;;— = (6.35)
) l
N = 2”.’]4‘3 = ‘rE‘I‘l
A==l
#H, = —-|——I|B
: [n—{in-{—]]] :

In our subsequent caleulations, we shall normalise By = 1. This solution is an exact
solution for the BTZ space time and it approximates the fermionic wave function
near the horizon.

The lux into the black hole can be calculated using the p — py.z — 0 limit of

this solution. The flux of particles entering the horizon is

:FD A \A‘flr_'-; ]p+ ‘g"{—ﬁ-ti'}'l'ﬂlj . {bv_ll‘h}




bubstituting the above solutions it is clear that ¢+, dominates the flux, and the latter
turns out to be
S ]_

Fo=N|—1—°
= e —=(zn + 1)

(6.37)

Now, to find the incoming flux at infinity, we solve the radial Dirac equation in
the fi-dimensional metric (6.1) away from the horizen, i.e. taking g [ | a1

Then the metric assumes the follmvmg form:

e = —-—t!'t‘

— 2 (dr® + rtdQ? il
m m f'i T ..rl,lr- ( T } (G.38)

The spin connections for this metric are:
2 ] , 2 a
W — 51 1 Tl 's wit = — — LA s "5
¢ = —w, LWy = .
4\,#.? 15 1"f ' 4 | i

where b stands for the S world indices and i the §% tangent space index. Now, in

el | et

six dimensions the wavefunction is a four component chiral spinor. We start with

the appropriate equation of motion in 6D as given in (6.8). Including all the terms,

the equation of motion s

; ; |
(fifa) 08 + 1 (e:r,. + % + gdrﬂn{f]ﬁa]}) UG 0 R o A r*’ﬂa} \ A gy =

(6.39)
Where Dy = dy + wi. where b denotes the S* directions, and wi’s;; is the spin

connection with the 1. 7 indices running over tangent space 5% indices only. The

1 ar
EF"‘”’PHM.&'P = — [E“ﬂ{fifﬁ 1] \/ E

Using the decomposition of I' matrices into SO(2,1) and SO(3} parts we can separate

funciion

glr) =

out the equation of the components of the 6D chiral wavefunciion into two sets of
two compenent wave functions [75]. Again we expand in terms of the spherical
harmonics on 5% as: v = Y \'(#,)Y, where \" are two component wave functions.
Further, y' = ¢'l«r=mel (7 £y71/5 r= %" (1) is delined. Then from (6.39), we get:

(L+3/2)

IS

[ ) 2908+ 40, + (i fs) 270, ) b = [ - H(I':’] ! (6.40)

Separating the components gives us the equations:

(0= s ) 7 = (=22 ) = (om0t (60

(de + U o) PPi0) . = (””“ o)+ U fe)' P ) 1 (642
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Defining, vy +94 = (fifs) ot and ¢ —wf = (fi )"~ and with the additional

approximation g{r) = —1/4d. lu( f; f5). the equations reduce to:
L+3/2 ;
(¢ +2E22) ot = it (6.43)
L+3/2
(rf,. — +r” ) W = et (6.44)

where we have put 1t = 0. The second order differential equation has the following

form for o

{:ﬁ_”‘ +3/2)(L+1/2) |

e

+w(fifs }] (6.45]

We solve this equation in two regions: r ~ { and r > [,
Intermediate Region

In the first region r ~ [, which we call the intermediate region, we take w*f, [z =
Wi +ra)/ri 4 & Tor low energy emissions. The differential equation in terms

of r = 1/r has the form:

2 L+ 1/2) — (rF +rhjt
24 2, LI +12) — (4 +H__z!.:]
!

= =0 (6.46)

The solution for the above differential equation is the Bessel function =27 (wi*r)

where, v = /(L + 1) — (ri +r)w? 2= L + 1 for low energy emissions wl < 1.

Hence explicitly the solutions are;

¥ = o [andegr (W) + aeNpa (Wi )] . (6.47)

And the coupled differential equation for ¢+ yields:

. ]|'2 . :
¥ = 57 [aidu (0 r) + aa N (/1)

For r < I, the function [ = /r" and in the limit we are considering, i.e. ol <

L. ~ [, we can do a small argument expansion of the bessel function. Hence

i [ 1w o\
r'_1'll"_|_, A~ ? f_(_) +ﬂ1|:.|[. l:l (W;z) } |:6|8l,'|

. " ! 1 .',;,!!IE' L+1 "}T' L1
o= R — b — ! : .
Y VT ('.Z*r) shiei (w) (5:49)

Which gives the leading order behavior of

[ 3
'(1{2} ~ azl.! (“}) ) phti2 (6,50




For v > I, fifs = | and hence the above wavefunctions go to:

; | 1 fwl\" ar " S

I wsz =1 2]" L+t

Which gives the wavefunetion in the leading powers of » as:

iR L+l
‘(1[2} = 13 Ll (?) T‘L [553}

Far region:

For v = ry.rq. we approximate f; fz = 1, and the second order differential equation

for o is:

_— " L4272 —1/4 .
r_fﬁ{,h* s [ (et = / LT =10 (6.54)
2
This has the solution:
i =/wr tfr';JL_l_g{wr‘:l + ay Npaa(wr)) (6.55)

Now, we can use this solution in the coupled equation {6.43) and get

=T ]_L[;JL+| 4 & fi;-"\"rf.-+l] !

We now see, how the wave lunctions behave and obtain matching conditions for their
simooth joining. Using the expansion for Bessel functions we obtain the leading order
behavior of the wavelunctions as: r ~ [

\’m (w)L“i-I FL

m E (6.56)

i f)
Yz = %

and For r— 20 the asviptotic expansion of the bessel functions become important

and the wavefunctions go as;

£

1
] ! — T o
i) = —= (6.57)
e
The flux at infinity entering the black hole spacetime is calculated from the asymp-

totic expansions of the Bessel functions, which is given by

12
Fa = |‘;—1_r] (6.58)




Matching:

To compare with the near horizon wave function solved in the #%, r, 2~ coordinates,
we have to use the properties of the spinor under such transformations from & ¢

coordinates. This gives a rotation on the two component wavefunetion by a matrix

[cosh (%) + isinh (%) ga]x, cosh&f2 = \/ps F p= [NV 4+ /s —p- [NYVE

&

The near horizon solution. when extrapolated to = — 1 {(keeping the leading term

in the expansion) is

ﬂ{zp — py — po LI2HAN LG phmlit (6.59)

where

o D(3/2 4w /27Ty)

T T 4312 + iw/ArTOT(L + 2]/2 — iw/4nT)
Thus comparing with the intermediate solutions and then with the far solution nsing
equations (6.50.6.53,6.56) we get:

o) =2 L Ry (6.60)

Substituting in F we finally get
mil+ (L +2) Fo
w? I,
w( L+ 2)NEH (u_..) 21
AL+ (L) (ps —p-) N2
cosh{w/2Ty) [T L/2 + /2 + iwfdn T OL/2 + 1 + iw/dxT_)|16.61)

Tahs =

-

where, we have used the fact that [I(1/2470)]* = 7/ cosh 7o and we have multiplied
by the appropriate plane wave normalisation [21]. The wavefunction corresponding
to the 5% spinor Y712 gives rise to a greybody factor with 7'y — T_ and viee-versa.
Hence the total greybody factor is a sum of two terms, one due to each set of two

component fermions.

6.2.3 Vector Greybody Factor

The vector equation of motion is given in (6.12). The higher partial wave in five
dimensions gives a mass term for the gauge field in three dimensions. In addition.
there is another set of equations as as explained in the Appendix B [77] :

. I8
("9, Ap = —TAs (6.62)




This is derived from the representation theory of one forms on SL(2,R) manifolds.
Since the BTZ space is locally anti-de Sitter, whose covering group is SL{2,R)x
SL(2.R), the equation of motion gets supplemented by the above. On substituting
the above equation in 6.12, the vector equation of motion reduces Lo (for convenience,

we set the AdS radius [ = 1 in the rest of this section) :
N Ay = L*A, (6.63)

It is to be observed that (6.63), can now be derived from (6.62) by operating with

V on both sides. There is also the consistency condition :
A =0 (6.64)
We would like to solve the above equations of motion in the background of the BTZ

black hole. In the coordinate system (p,2.27) that we had adopted previously,

the 4+ and — components of (6.12) can be written as:

J*A, 4+ (tanhp — coth u)d, Ay + 2coth pily A,

—2tanhpd_ A4,y = LIL+2)A, (6.65)
FFA_  — (tanh g —coth p)d, A- + 2tanh pd_A,
—2cothpdhady = L(L+2)A (6.66)
where @* = ¢"%¢, s = "0, + 070, + 7 d_, we have taken ¢**~ = | and have used

the gauge condition (6.64). Defining
;—h_g = :L-,. + 4_ [ﬁﬁ?}

it is clear that the eguation for A, gets decoupled by adding {6.66) and (6.65). To
\

decouple the equation for A;, we use the equations (6.62) to substitute for the 4,

terms in (6.65) and (6.66). As a result. we get the following equations for the A,

and As (These set of equations can also be derived directly [rom (6.63):
F*A; + (tanh p + coth )@, A; = (L% — 2¢,L)A4, . (6.65)
wherei = 1,2 . g =—=1 . ¢ = 1. Next, we substitute the solution
A== )

which is consistent with the isometries of the metric, Substituting in (6.68), and

defining = = tanh” i we get:

d* A, dA; TEE k2 [2-9:0
Zll ==z } — Syat g |k _Zm  SE SRRl p il
f ] d=t + [-I- } s - 1- 1 4{1 = :} 4, {) fﬁ f}{”




Next, we substitute the ansatz
A; = ™1 = 2" F(z)

in the above equation to obtain (¢; 5 are constants)

d* F: . dF;
s A z e 7 '_3 _—
21— =) = + (L +2m) — (1 + 2m + 2n}] o
2 12 _ o 2 _ 9,
m +_;L+H - nln—1) I(LN Ht.L}H] F (6.70)
1.2
_ [lgm-l-n]?—i-T_] F =10 (6.71)

Continuity with the corresponding wave equations very close to the horizou (= — U)
gives harmonic solutions in logz of the form A; = el"etfilors 4 giutemrialoes, To
obtain a ingoing solution, we put ¢/*" = 0. To ensure that (6.71) smoothly joins
with this. we determine m and »n and find that the coefficients of 1/z and 1/(1 — z)
terms vanish. The residual part of (6.71) is simply the hypergeometric dilferential
equation. Thus the functions Fi(z) are the hypergeometric funciions Fla;,bisei 2]

and the complete solution for the gauge potentials can be written as

A, = ez™(1— 2V Flanbienz] (6.7

=]
Lot
e

We can express the various parameters in terms ol kg and L :

mt, = —z'k:—+
2
L T,
ny = ; -1 v g = ;
< TR T R W TP G T
a, = —5':-+— —]l+§+ 5 1——§ﬁ++ -'H-?j‘* (6.73)
[ {; 1 [
g — ﬂ—_E[ltt+'_k_]+E b‘z= bz—i{k.{.‘i‘.{.'_}-{"g
o == 14+2m;

Ay can now be determined from the definitions (6.67) and the solution for A, can

be constructed [rom the pg-component ol (6.62):

| :
A, = Ao o i
. L cosh pesinh p k£ (6.74)

The important point to note is that the two components A; satisfy equations which

are scalar equations in the BTZ background. The spin dependence of the solutions is




not obvious. The constants e, and e, are not independent by virtue of the auxiliary
equations (6.62) and the consistency conditions. To determine the ratio, we use the

equation with g = 4+ in (6.62).
—tanh p (d,A- —0_A,) = LA, (6.75)

On substituting A4, from (6.62), and going the z coordinates, the equation reduces
to in terms of 4; and A4, as.

W ky L _ e ks L
b L — 2 = 2: . — — A II_H
[“.:i__ 7 + 1—:] 4 [ . i T :] A, (6.76)

On substituting the solutions for A;, the above simplifies to:

2ab 2he_k:
‘1 [ i.z‘rr1[”+l~b+l¥¢'+li—*}+ (H"HJ— 7 z) F[r:t,b;r::z]]

11 . 2hk_k

S [3 e e e
.

L+ 1 |

Using a series ol recursion relations, we get some simplified expressions as explained
B 24 i

in the Appendix B. The final expression is written below:

ek
e 1268 (a, b+ Lie 2 + (ﬂ. —b—- JL;RI) F{u.b:c:z]]

- % Sb— Lja+ (a — b)L + 2h_ky] Fla.b+ Liciz) .
-I-rj: (0 — b4+ 2k _ky/L)(a— L)YF(a, b e 2)

(6.79)
From the above, the ratio of constants are now easily determined to be:
e fre
o TR, (6.80]
€y a

where ko = [ky + k_]/2. Plugging in this ratio of constants into the solutions and

using appropriate recursion relations, the wavefunctions can be written as

AL = _;—;_{l — :]L”:'rkﬂ") [—LF[H,J‘J + Liesz) + (L — ikt Fla,be; :]l[ﬁ.ﬁl]
Al = — ;b (1— 2) M2 L P(a,b+ Loy 2) + ik Flabie 2))] (6.82)

In the above, the soluiion is aciually the real part of the wave function determined

above. The flux of the vector field at the horizon of the black hole is caleulated using




the energy momentum tensor for the massive vector field. Sinee our wave [unction
is Re A;. the energy momentum tensor which involves products of the fields will
have the square terms proportional to e and ¢=**'. Under time averaging, these

terms po to zero, and hence the steady rate of particle influx is given by cross terms

1 , P I " ;
(Irlp_'l. = _q“FIJ + En‘]'.'|ﬂ|2:|5|':a.k + fr,ﬂ-ll'_\‘ + 'l’ﬂﬁ_-"ll,.s"!.h {{JSS]

Where m stands for the mass. For our purposes m? = L{L +2). To determine the

flux. we incorporate the red-shift factor and integrate over the horizon area to gel:

FN*L
-"FU — : L_E'_
20

€a*

b

0 {6.84)

where N = p —p2. kY = w/(27(Ty ), and we have restored the radius of anti-desitter
space, Also ) = 87% denotes the factors which come from the angular integral. The
Note thai the Hox vanishes for L = 0, since the latter is a not a dyvnamical mode
[77]

Hefore determining the waveform at infinity, we solve (6.63) in the asymptotic
AdSy metric in the coordinates (1, p, ¢¢)as an interesling exercise, as it sheds light on
the houndary behavier of the wavefunction in the BTZ geometry. The wavebunc-
tions, A; = ¢'"“' B, are solved, with the help of (6.62) as:

wi? wil®
Bix) = /o led(—)+ diN,(—) (6.85)
P P

where J, and N, are Bessel functions of the first and second kind respectively.
y=L—1,m=L+1ande.d; are arbitrary constants. Further, consistency with
the equations (6.62) requires that ¢ = —e; = cand d), = —d; = d.

1o determine the wavefunciion at asvmptotic infinity which joins with the BTZ
wavelunction, we need to look at the vector equation of motion in six dimensions.
As given in Lg. (6.11), the vector equation of motion involves all the other A,
components which are scalar in the {,r. ¢ plane as well as the Hyvp three form
field strength in six dimensions. Since we are interested in that part of GBF which
is due to the three dimensional vectors, we take N = g in eqn 6.11 and take the

limit r — 2¢. The equation of motion reduces to:

v Fu.'.-' + v Fu:p: =1 (GSG}

90




Where we liave kept terms of O(1/r*). In six dimensions Hyvp = €judifs where
€;jki is the flat space epsilon tensor along the four non-compact directions x,. which
gives the second term in equation 6.11 to be order (1/r") form (6.2) and hence can
be ignored. In the gauge VM Ay = 0, we assume that VYA, = V*4, = 0. The
main observation is that the A,'s decouple in this gauge. For the wavefunctions

A, = e=temo g (1) [1r#? the equation of motion for the m = () case is of the form:

A, + [u.-" WL lfi U 4] Al,=10 (6.87)
The solutions are: \
A = 5 1ﬂ:~fL+1{'-ﬂT} + azNp g1 (wr)] (6.88)
A, = - [u Jrpr(wr) + ab Ny {wr)] (6.89)
4, = =l -—m}f PP A d (6.90)

It is interesting to note that the wavefunctions determined here do not share the
exact palynomial nature of the wavefunction obtained in (6.85) at r = p = . asin the
case of scalars. The reason behind this is that due to the loss of SL(2, B) x SL(2, R)
symmetry, the equations (6.62) are no longer valid for the asymptotic metric, Thus
the wavelunctions match with each other only in leading order in wr. Let us lind
ihe relation between the coefficients of the solutions (6.72) and (6.90) for which.
we compare the two solutions in the region = — 1, and rw << L. Using standard
results for the hehaviour of hypergeometric functions as = — 1, we find the leading
hehaviour of the wave functions as [61]:

€2 {J.'rlw”z,w IC(e)
b= [la)l(b+1)

A A — (6.91)

We mateh the solutions with the far region wavelunctions using the relation: A =

pe Ay — p_ A which gives:

—{l+1)
wl=d = -:a fap==a. Y NF Lfﬂ(}) DL+ 2T+ 1)E, (6.92)
Where #£, = [(e)/(I'(a)l(b + 1)). The other constants are negligible and hence

ienored.  The solutions go as Al ~ /1 /2mwe™™" at large distances. The flux,

determined from equation (6.83) is

Fu




Taking the ratio of the near horizon and asymptotic fluxes (6.81) and [6.93) and
using the above relations for the ratio of the constants, we finally get the probability
of absorption of the L' partial wave as

Fo T LhF 2N

Fo Pp2{p, —p P(T(L+2)T(L + 1)) | Ey]?

o (6.94)

This is the general result for the partial wave L. It is clear that the evaluation of the
pamma-functions will give rise to the familiar form of the greybody factor with ther-
mal distribution functions corresponding to two incoming particles and one outgoing
particle. The latter always is always associated with a Bose distribution function. as
Dl +w/2aTy * = (w/2Ty)/ sinh(w/2Tx).

However, the nature of the “ingoing’ distribution funclions depend on the value of L

can be seen from the relation [Uie)|* =

that one considers. In particular, on substituting the values of « and b from (6.73)
in P, we find that the the gamma-functions in the numerator correspond to fermi
distributions for odd-L and bose distributions for even-L. Thus, depending on the
partial wave, the vector particle can be thought of arising out of the interactions of
two bosons or two fermions.

The Grevbody factor or the absorption coeflicient of the black hole is determined

by multiplying by the plane wave factor as:

LN+ w
Tabs = LD 5. Tips — p_ )2
W/ TH v Lf2 4+ iwfanTD(L/2 4+ 1 + i/t (6.95)

If we include rest of the components of the six dimensional vector, i.e. A, then
the total GBI will involve a sum of the individual greybody factors. The grevbody
[actors due to A, are same as that of the scalars. Since those terms do not contain
the spin dependence, we ignore them.

The decay rates are obtained from the above grevbody factors by multplying with
the appropriate Planck or Fermi-Dirac distributions. It has been known for long that
the these decay rates can be reproduced form a microscopic caleulation using CFT
operators. Farlier, the dimensions of the CF'T operators were guessed from the
structure of the decay rates [53, 82]. However, using the AdS/CFT correspondence,
the dimension as well as the exact correlators with correct normalisations can be
determined using prescription given in 1.12, [24, 68, 69, 70]. In the next section, we

rely on the correspondence to determine the correlators.



6.3 CFT Description

We note that the near horizon approximation of the black holes can be used at most
till ¢ ~ (. Though the near horizon metric will receive corrections as r approaches
{. we ignore them in this region. The correlators are determined in Poincare coordi-
nates for convenience,
The Poincare coordinates are related to the BTZ coordinates by the relations
3.8: The metric in Poincare coordinates is:
, P
ds* = -;g (dzg + dwtduw—) (6.96G)

The Klein-Gordon equation on this background can be written in the following form:

) 1, g L{L+2) =
I:din = ";{:I-(]_ru - 45‘4.{;:_ == T i = [ {ﬁ.gf}

Substituling:
B = ]dzu:qvk[r;,jﬁ"g'ﬁ (6.98)

The solutions which are ingoing or regular at the black hole horizon are:
dplay) = axghp g (keg)

Where, & = 4k k_ and @ is an arbitrary constant of integration. To determine the
correlator corresponding to the above scalar field and look at the bahavior of the
wavelunction at r = [, which implies ry ~ rp/l & 0 in the dilute gas approximation.
The boundary of the AdS field is taken at xo = ¢ where ¢ is infinitesimally small
and set set ogle) = 1, The action is:

| = l ffzurﬂf':rﬂ.L [g“"t}' @i, + rnzﬁ‘ig] (65.99)

2 Red g s A

On partially integrating, the boundary term from this action at &y = ¢ is:

Ig = feri lim dd,, & (6.100)

AF Tg=¥c

On using (6.95) in the above, and using the solutions for ¢ (xg). the action (fourier

compoenent | consists only of the boundary term at xy = e. The fourier component

thus is:

e Nigilhry) , aoRW g (ko)
lim '8k + k') =L d
ol )f-,’f_+|[.i.:5] K g ealke)




—— :
'sing the expansion for
b=
- 1 — =1 sz th-n
Ralkzo) = 3 ‘“”kWTJ(E) +
= k=n i
k=oc
1 z ntZk
iyl L el pER - /0
(=1) gm{ﬁw}! (z) lin /2
—%xyu.~+ Y %lﬁb{k}} , (6.101)

the expression reduces to:

REFT] SRYEE e
(L4 1)L\ 2 2

The leading non-analytic term has a In[ke) dependence. We keep the coefficient of
the term with e dependence as ¢**+'In ¢ and fourier transform to position space to

gel the correlator

l

Fw,w') =2 + 1 ———m——
} |“-' o wr|2L+!

(6,102)

For the fermionic correlators, we do a caleulation similar to that done in [T0, 83].

The beundary is taken at e. The action is taken as;

fi= -/d!md:eru%—s-ét?"—i— L+ 12+ 0 / d* s (6.103)
«¥p

Where €' is a constant, which gets lixed when we try to abtain exact matching. The

solution of the equation of motion in the representation of 4 matrices where vy is

diagonal, the two compenents of 1 are:
= o ik )
ihy = [ dPwe P, Ky (Keo) 1y = f nf*}tuc"““TTﬁHll[k:rn | (6.104)
On specifying one of the components at xg = ¢, the other component also gets
related to it. Using the above solutions. and substituting in the boundary term of

the action, one [ourier component is read as:

: kyas Kpkay)
Sk 4k :
AR S B )

Taking the expansion for A, as given in equation (6.101), and keeping the coefficient

of the ¢ ne term, the greens function in the fourier transformed space is read

ofl as:

{L + ]} [!E_ wi}'ﬁ:l"ﬂ'.d

G, w') s =
] { 3 ]ﬂ.fj |1E = IE-'F[L‘I‘E]

(6.105)

04



Where af stand for spinor indices. The correlator has also been determined in [83].

To find out the correlators for the CF'T operators corresponding 1o the vectors,
it is useful to employ the methods of [T0, T1]. We solve the vector equations in AdSy
space, in Poincare coordinates. The equation of motion for 4y = f d* we? 4y and

Aj=fd we™ 7 A; have the forms:

2 L 2, FP-1 i
£ Ay~ —dyAg— [BR+Z ") As=10 (6.106)
T xS
" 1 5 7 A Sy
& Ar+—dygds — (R 4+ — | = —iksdy (6.107)
9 dyg 4 in

The equation for Ay is easily solved as Ag = apreZp(bxy), where k% = 4k k_.
For k* > 0, Z..(kro) = Wa(kro) (modified bessel function of second kind) and
for &% < 0, this is Z,.(kxa) = J.(kzy). However, since we conline ourselves to
Euclidean metric, we choose the former solution. The other two components are

easily separated using equation (6.62). The solutions for the two components are:

Ay = aga K g lkag) (6.108)

The use of (6.62) also leads to a relation between the constants a’s, which implies.
that only one can be fixed independently by boundary condition. The other arbitrary
constants are related to it, and hence are determined. Thus only one component of
A, can be lixed at the boundary. and hence the classical source is actually chiral.

The ratio of constants are as follows:

|I|T.L
Gy = ugf (6G.1049)
This obviously implies that e fa_ =k /k_. Also, the function A_ falls slower than

Ag, and hence we specify A_ at the boundary. The other components then pet

related to it. The expression for the action is:

['= f(.f u'{hu% [qf}me + L[f —i—‘?]z'i“ﬂ“} (6.110)

0

The boundary term which comes due to one partial integration is:

.IB= /\E'I"tb—i"l_kFD_'{' 4 FU_].] {G.111)

Using the solutions obtained above, one fourier component of the action evaluated

at a distance ¢ is :

I'L.L_q.ll:l[ut} [ I‘.kj'_| rIi'f:}

f'=8(k+ ke Kis1(ke) ke Kzi1(ke)

Sk + (6.112)




On using the expansion of (6,101) we find:

et SETTRNTTRN A By
Kpey  (E=US) o+ 858 g
Bz LU (k)7 g B () (k)

(—1)" In{ke/2) | kf)“‘ (L —2)! (k_{’)zL+2 T
L! (L —1) (? LML+ 2 AH

Thus retaining only the leading power of ¢ in the above and using that in (6.112),

Wwe fet:

Ig'::i: IL,EL—E
| = i3 e Sk + &) (6.114)

L-2LI(L — 1)

The fourier transform of this vields in Poincare coordinates, the correlation unction

as

( wt — w'+ }2

[ — (@[22

<t:_1"0‘”> —9(L4+1) (6.115)

We now calenlate the emission rates from the microscopic theory. The quantum
mechanical caleulation involves modelling the entire black hole spacetime by a CFT
at the boundary of the near horizon geometry ¢ ~ [ This is in keeping with the
AdS/CIT correspondence. as the information about the near horizon BTZ x §°
is supposed to be encoded in the boundary of the BTZ space. A plane wave is
taken to be incident on the black hole . which couples with the operators of the
CFT in the region r ~ [. The emission rate due to this excitation is calculated
using the results for ordinary stimulated emission. The incident wave is regarded as
classical. while the CFT operators are treated as quantum. The plane wave has to
be expanded in spherical waves, to get oul the partial wave components, The plane

wave is expanded in terms ol spherical functions as:

Z VORI L+ 1)

Lz0

= fur
[

EEE e Zy ol cost) (G.116)

The spherical wave, near r = [ goes as r"dg(d, 1) (where n is an integer depending
on L). It couples to the CFT operator as [ d®egnQ.

To determine the dimension of ¢y under conformal transformations. we look at
the behaviour of the wave function at v ~ [. The part of the wave function which

goes as r" comes from contribution of J, (wr) which is analytic in the region we are

considering. For the scalars, the wavefunction near r ~ { goes as v"¢y. As on the




boundary, the theory is invariant under conformal transformations, g should have a
definite behavior under transformations which can be scalings like ds* = f2(r)(ds™).
Here the coordinates scale like f(r) and the wavefunction scales like ¢ = flota).
Since @ is a scalar, @ has to scale as f~f, Which gives it a dimension of — L.
Accordingly, the coupling [ d*repQ implies the dimension As = L 4 2 for the
operator (). This is consistent with the correlator determined earlier.

For the fermions, the two components of the wave function do not fall off in an
identical manner, and the eigenstates of 4' (which is the chirality matrix for two
dimensions) ,x1+ y2 = \s falls slower than \y — y2 = y- as given in equation (6.50).

So for our purposes. we take ¢y = 0. For
v = (1) 5 dda(t, @)

and we get the fall off power of y_ as A = L — 1/2. Since the fermion is a scalar
under transformations r' = f(rir. ¢y has the dimension of L — 1/2 under this
transformation, which is like a conformal transformation in the boundary metric.
Hence by conformal invariance of the term [ d*xgpO, the dimension of O is Ap =
24+ A =L +3/2. The operator v is a spin 1/2 object under the group SCHZ,2).
and hence, O is also spin-1/2. but of opposite chirality. Hence, the left and right

conformal weights are determined as hi_ + iy = L +3/2 and h- — by = 1/2. thus
ho=L+1.hy =L+1[f2.

This is the same as that appears from the correlator caleulation given above.

As for the vector field, it is immediately observed, that the two separable com-
ponents at the boundary, A, = A, £ A, /L. correspond to left moving and right
moving sources in the boundary. The fall off in powers of r is different for the two
components and the case we are considering, and as seen [rom earlier section, A,

[alls slower than As. and hence Ay = 0. The fall off in Ay 15 as follows:
Ay =rPAg(L, 8) .

Since under the transformation v — f{r)r, A; transforms as a covariant vector, the
dimension of Ay, A = L — 1. Thus Ay is a source for the CFT operator (), with
weight A, =24 L — [ = L4 1. The left and right weights can now be determined

&L

241, hy=1L/2.



All the weights determined above are same as those predicted using group theoretic
methods in [77].

We are now ready to compute the emission rate due to the plane wave-CFT
coupling [ @p0. If due to this interaction term, the state in the CFT undergoes a

transition, [i) — |f). then, the transition probability for this process is:
wyi = |dof*| (f1O i) [*éle; — e — )

Where ¢, ¢; are the energies at of the initial and final states of the CI"T. The above
can be written as an integral over the two coordinates of the boundary, and in case

the final state is not a unique state, we sum over the final states which gives:
Mo Z f {r'.!"trﬁl'wr (”Eir,!(}TE_l‘Lr:U—) {ﬂo|$} |r.1}0|¢ :
f
If the initial state is the Poincare vacuum, then the transition probability is:

T /J—*.-nfm (0[O (1)O(0)]0) |éo (6.117)

Essentially we need Glw.w')|dyl* to complete the calculations.  For @y we
use the form of the plane wave solutions at r ~ [ as determined in sec-
tion 11I. However. as these have heen determined in BTZ coordinates, we use
the conformal dimension of these when we use Poincare coordinates, In ef-
fect. ¢f = (2nl w* Y=l mT o~ Yi-—Y( NF) e th-gBTZ - An additional power of
(N[ the = (4r2T_T 14+ '~ enters, since in BTZ coordinates. we assume that
the wave function scales like r"+**= at the boundary and in the poincare coordi-

—iAs4ha
nales Wu‘ bt )

. (xg = VN /r at the boundary, and we use [ to make the scalings
in both the coordinates dimensionless) Using the fact that ¢ = (1/477L) lnw* +
(1/47T_}lnw™, we get the integral in the transmission coefficient to be:

fi= T e {rr_!-l' :I,';.-,-"aITrT++h+—1{.|,_U- ji&d.l"-ln'f'_+JL__|
] L i {”_}+ - ]]2’!.}.[1”— . ljzh_

where we take the nitial

wE = 2Tl

at the origin of the BTZ coordinates. The rauge of w* is from 0 to oo, Changing
from w* — —w*, and using Blr.y) = uc” dt *71 /{1 4+ t)**¥, the integral can be

done:

o I
T OI(2h )20 )

e TH|D (hy + dwfdn Ty )P0 A + dwfan T )2
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The emission rate 15 evaluated as:
(T )+ (20 P T2 go|2C'T

Where (' is a normalisation constant, which includes the plane wave normalisation.
Plugging in Inputting the correct normalisation for each of the correlators, and
using the appropriate ¢, the emission rates are exactly same as the semiclassical
calculations. For the scalars. ¢o = 1/(L + 1) (w/2)5+!, Using this, as well as
hie = hy = L2 4 1, the relation that 4'%*7.T_ = N.,and multiplying by the
appropriate factor to get the plane wave normalisation, we get the emission rate as:
(Nw)P exp(—w/2T5)

PHLY

[IT(L/24 1 +aw/d4nTe ) T(L/241 + fue 4w T )| (6.118)

15 —_ AT
GFt = b ;:'\I'

=

A comparison with equation (6.26), shows that the semiclassical caleulation has
been reproduced exactly. There is an alternative derivation for the s-wave emission
in [63).

For the fermions. the wave is chosen to be of a given chirality, and hence in the
expression for the emission rate, ¢y = whtdRo—(b+1) L1 with h_ = L2411 hy =

L{2 + 12, the emission rate is determined as:

- a{ L4 1P L2 (2B T MY (22T ) (i)ﬂ-
cft AL+ DET(L + DT(L +2) 2
o e P (L2 4 1+ s fdnTo) (L12 + 12 4 tw/4=T4)[F (6.119)

Using the expressions for the temperatures, it can be seen that the above expression
exactly matches that obtained in equation (6.61) after multiplying by the Fermi-
Dirac distribution, 1/{exp(w/Ty)+1). The special case of s-waves for T_ = Ty was
obtained in [84]. The GBF for the other set of two component wave functions in six
dimension can be obtained by the same procedure above, but now with fiy and f_
interchanged.

For the vector coupling, we retain the component of the wave [unction which
falls slower as a function of r at r ~ [. This couples to the operators on the

boundary. Hence for the vector ¢y = A; + A = /(L + Dl{w/2)%*+. This along



with b = L2 4 1, hy = L2, yields the emission rate as:

Voo (w)” (L+1P (2nPTy )i (AnPT_ )
et " L3y LD DL L+ 2)
;== Th
x  ——|D(L)2 +iw/4nT)D(L/2 + 1 + iw/anT_ )]
o (.ﬂm ) ¥ N
A ) ()Y ey —p-P
E—uf’ff}f 5
x o |D(L)2 + fwfARTOD(L]2 4+ 1 + fw/4n T (6.120)
!

This is same as eqn (6.95) multiplied by the Planck distribution with temperature
Ty Thus we see for each of the cases stated above the matching is exactly obtained.
It is interesting to note how the varions factors conspive among themselves to yicld

this exact matching, using the AdS/CFT correspondence.

6.4 Discussions

In this chapter, we studied the emission rate for particles for arbitrary partial waves
by probing the near horizon geometry of a 5-dimensional near extremal black hole.
We determined the grevbody factors of scalars, spinors and vector particles by solv-
ing their respective equation of motion in the BTZ back ground and matching them
with wavefunctions obtained at large distances from the black hole. For fermions.
the matching was non-trivial, and we solved the equation of motion in an interme-
diate region; r ~ [, The answers obtained for the scalars and spinors reproduced
the results obtained previously for the five dimensional black hole. Our calenlation
for non-minimally coupled vector particles is the first caleulation for emission rates
[or the given configuration.

Next, we used the conformal field theory at the boundary to obtain the quan-
tum mechanical spontaneous emission rates, This is in the spirit of the AdS5/CFT
correspondence, in which all information regarding the bulk degrees of freedom are
entirely encoded in the degrees of freedom at the boundary, Indeed. we used the
varions 2-point functions which have been caleulated from the AdS/CFT correspon-
dence to find the decay rates, and the latter perfectly matches with the semi classical
Hawking radiation rates, for all partial waves, The asymptotic plane waves that ex-
cite the CFT near » ~ [ carry non-trivial kinematical information and influence the
spontaneous emission rate. Thus our calculation shows how the AdS/CFT corre-

spondence can be successfully used to predict the emission rates from black holes,
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The exact matching suggests that the thermodynamical properties of these black
holes are *holographically” encoded in the boundary CI'T,
It is to be noted that the CFT is at a finite distance from the horizon, and the

role of the horizon degrees of freedom are not very clear, unlike the CFT determined

in [26]. Also the thermodynamics of non-extremal black holes like the Schwarzschild

black hole remains unaddressed, as the near horizon BT Z x 8% geometry emerges
£

anly for near extremal black holes.




Chapter 7

Conclusions

More than twenty vears of research in black hole thermodynamics has revealed
many interesting features of the nature of quanium gravity. A complete picture
incorporating all the facts learned is now a challenge for the future, This thesis
has tried to understand some of the important results in the last few vears mainly
using String Theory. The calculation of black hele entropy using the canonical
quantisation of gravity, is one important result which is beyond the scope of this
thesis, In this concluding chapter, we try to see whether there are any features
commaon to all of the above approaches. These features might help us in determining
# [inal and unified theory of the black hole as a quantum system.

In the introductory chapter of this thesis, we reviewed the laws of black hole ther-
modynamics, and saw how the concept of entropy arizes from black hole mechanics,
Elementary considerations of black hole processes show that the area of event hori-
zon can never decrease. Further, the change in angular momentum, charge. mass
of a black hole are related to the area of the black hole and the surface gravity (a
geometric quantity) in a manner very similar to ordinary laws ol thermodynamics
if we relate area to entropy and surface gravity to temperature. Moreover. the use
of quantum field theory in the background of a black hole reveals that black holes
radiate particles in a thermal spectrum, with temperature proportional to the sur-
face gravity ol the black hole. Thus the black hole does function as a hot body at
a finite temperature, except that the temperature of stellar black holes is expected
to be very small (107* A7), Primordial black holes, which are of much smallar mass
and have a higher temperature can be formed in the early universe and are vet to be
detected. However, even without experimental evidence the puzzle of understand-
ing black hole entropy and radiation using a microscopic theory. remains one of the

outstanding theoretical problems.
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One of the main problems which arises with the result of black hole radiation
is the loss of unitarity associated with it. The nature of Hawking evaporation is
against the laws of quantum theory. The loss of information due to the complete
evaporation of the black hole may not happen if there exists a Planck size remnant.
However, the amount of information that has to be retained in this remnant is
enormons, and this theory did not provide much answers.

Inclusion of backreaction of the infalling particles on the black hole metric how-
ever changes the situation somewhat as described in Chapter 2 of the thesis, The
resultant interaction of infalling and outgoing particles as described in Chapter 2, is
completely unitary, A S-matrix can be written for the evolution of such individual
particles in the far past to the [ar future. It is expected that a averaging of this
leads to Hawking radiation. But this has not been derived, nor the black hole en-
tropy recovered from the S-matrix theory. In this thesis. we have approached the
effect of backreaction in the frame work of field theory. We show that even in the
classical regime, the ingoing and outgoing scalar fields have a delta function type of
interaction. absent in the simplest fermion bilinears. The promotion of the shift in
the metric to a quantum stature, gives a very interesting exchange algebra for the
ingoing and outgoing fields showing that back reaction effects need to be understood
in the complete evolution of the black hole. This feature has to be investigated to
its conelusion, The validity of promotion of the shift to a quantum operator has to
be checked in the full framework of quantum gravity. It is to be determined how
the nature of the final state of the evaporating black hole shall change on inclusion
of backreaction. Though with the advent of string theoretic approach to the under-
standing of black hole entropy the focus has shifted. it is not clear how backreaction
effects can be included in the string picture also. It is indeed an important problem
to investigate. Till now string theory has helped us to understand the semi-classical
nature of Hawking radiation. Inclusion of backreaction does modify the picture, and
the complete theory of hlack holes should include these.

The string theoretic counting of black hole entropy openes a new dimension to
black hole thermodynamics by giving a quantum deseription of entropy and ra-
diation. The rest of the thesis follows this approach and we come across many
interesting results. But as we realise in the end, the main limitation of the approach
is a special preference for extremal and near extremal black holes. Motivated by this.

we have investigated extremal black hole entropy in Chapter 3. As we show in that
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chapter. extremal black holes are also special in the framework of general relativity.
In the case of charged or rotating black holes, there are usually two horizons, which
coincide for the extremal black hole. These black holes have zero temperature and
some semi-classical methods show that their entropy is not proportional to area,
but is infact zero. In case of black holes which occur as solutions of low energy
string theory, and are multiply charged, there are solutions with two horizons (non-
extremal). The coincidence of the horizons gives the extremal black hole. Not all
of these extremal black holes have zero entropy except for one particular case where
under certain restriction of charges, the extremal black hole of General Relativity is
recovered.

The microscopic counting of string states which are used to model the black holes
gives a finite result for black hole entropy for all the extremal black holes. Hence
there is an apparent contradiction for these special black holes. We address this issue
and observe that the string theoretic counting models the special extremal black
holes only in a limiting sense. The black holes which are not exactly extremal (but
very close to extremality), are stable against Hawking evaporation due to vanishingly
small temperatures, and satisfv the area law for entropyv. However, the question
which naturally arises is that which string states then model the exactly extremal
ones? If there exists such a string state then it must be unique. This is indeed a
problem for the [uture.

In the fourth chapter, we investigate the microscopic description of Hawking
radiation using string theory. In all the derivations of Hawking radiation rate using
the string black holes, the common feature is a radialion rate of a product of two
thermal distributions, one at temperature 1}, and the other at temperature Tx, such
that 2/Ty = 1 /Ty + 1/ Ty This suggests an underlying quantum theory, where the
excitations constitue a 1+1 dimensional gas. From simple considerations, it can be
shown that in the case of very weak interaction between the left and right moving
modes, the characterestic left and right temperatures are Ty and Th. In Chapter 2 we
study radiation rate for fermions as the scalars have been investigated previously.
The radiation rate for T, 3 Tk has the expected structure of a product of two
thermal distributions, one Fermi-Dirac and the other Bose-Linstein distribution with
the characterestic temperatures. Infact, the radiation rate can be reproduced from
a CFT where a right moving excitation of weight 1/2 interacts with a left moving

excitation of weight 1 to give the result.
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To model Hawking radiation rate using string theory, we have to embed the black
hole in 11 dimensional M-theory. Since the fermion considered above does not lie
it the spectrum of this theory, we have not been able to proceed here. However
for another black hole in five dimensions, the microscopic structure is clearer. Here,
the entire configuration of D branes is replaced by a single D string. The decay
rate due to the interaction of a right moving lermionic open string mode with a left
muoving bosonic open string mode gives a closed string fermion in the bulk. The rate
is caleulated. However, the initial open string states are taken to be thermalised.
This assumption is justified in the limit where the degeneracy of the open strings is
very large. Since their is no heat bath in contact with the D branes, the ensemble
iz microcanonical. This is approximated for low energies with a canonical ensemble.
The temperatures are reproduced as T}, and Th. Our caleulation gives the result
upto coefficients, but the origin of thermalisation remains obscure,

Another aspect of the string theoretic description is that the microscopic picture
and the black hole exist in two different coupling constant regimes. To see the D-
branes, and use the perturbative string techniques. the effective coupling. ¢,() has
to be very small. However. a black hole solution exists when ¢,) = 1. Thus there
is an explicit assumption of non-renormalisation of the theory. However. though the
extremal black holes correspond to BPS states, the near extremal black holes do
not (The corrections are probably small). Also, since the quantum description is in
the I} brane regime, where space-time is essentially flat, the nature of the quantum
degrees of freedom when the black hole exists remains obscure.

In the fifth Chapter, we mvestigate a 2+1 dimensional black hole which is asso-
ciated with a CFT. The remarkable feature which we highlight in Chapter 6 also.
is the fact that this black hole appears in the near horizon limit of the string black
holes. "The clue about the location of the quantum degrees of freedom of the higher
dimensional hlack hole lies in the near horizon geometry. With this motivation in
mind., we study fermion emissions from the 2+1 dimensional asymptotically anti- de
Sitter BTZ black hole. As the black hole is not flat asvmptotically, the absorption
cross-section or the grey body factor of the black hole which comes with the fermi
factor cannot be calenlated so easily. However, since we keep the fact that the BTZ
black hole approximates the near horizon geometry in mind, we take an ohserver
around p = [, where [ 15 the radius of the anti de Sitter black hole. The rate de-

tected for s-wave fermions, by such an observer is exactly same as that from a five
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dimensional black hole. Both the above rates are reproduceable from a CFT, with
the excitations which collide to give radiation in the bulk having weights (1.1/2).
The importance of the p = [ observer is not clear, as there is no special physical
significance associated with her, Perhaps, the nature of the potential of the black
hole is such that at p = [ the metric Hattens out, simulating an asymptotically Hat
observer.

A more complete picture is obtained in the sixth chapter, where we take a five
dimensional black hole of A" = 8 supergravity. We take scalar, fermion and vector
particles which lie in the A" = 8 spectrum and study their behavior in 6 dimensions,
hy lifting the black hole to six dimensions and obtaining a black string solution. The
cquation of motion become much simplified in the near horizon geometry which is
BTZ = 5% This helps greatly in solving for the wave functions. The near horizen
wavelunctions then join with the asymptotic flat wavelunctions to give the complete
wavefunction for the black hole. Using this, the decay rate is determined.

For a microscopic caleulation. we then show that the entive near horizon geometry
can be replaced by a 141 dimensional CFT, which lies on the boundary of this
geometry. A plane wave incident from infinity couples to the operators of the CFT.
To determine the correlators of the CI'T operators. we appeal to the AdS/CFT
correspondence. This recent conjecture relates the bulk guantities of AdS space. to
those on the boundary, with a set of prescriptions. To determine the correlators of
the boundary operators, we calculate the bulk held action. The bulk field action -
has the form: [ = | 2)G(x, ") 2"), where ¢ is the bulk field, and G, ") is the
correlator in the boundary, &, ' represent the coordinates in the |41 dimensional
boundary. The remarkable fact is that the correlators come out as those at finite
temperature Ty with the required Tp, Tr splitting. Our microscopic calenlation
gives the decay rate exactlv., Earlier for the D brane decay rates, the thermalisation
of the CFT was imposed using arguements of high degeneracy of open string states.
In this approach. the thermal correlators emerge naturally in the given framework.
Oune point to be noted is that our work is not a test of AdS/CI'T correspondence, as
it uses that to define the correlators of the boundary operators. The correspondence
sugeests that string theory on AdSy is dual to a SU(2|1,1) = SU{2|1.1) Conformal
Field theory. An independent derivation of the decay rates from that theory would
be a real test. However, due to the identifications which result in the BT'Z black

hole, the boundary theory is expected to be only a sector of the above theory. All
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these are for future investigations.

In conclusion the work presented in this thesis, definitely points to an under-
lying CI'T for the string black holes. The non extremal black holes, specially the
Schwarzschild black holes however remain outside the scope of this work. It is ex-
pected that non-perturbative string theory will tell us how to study gravitational
collapse. and address more realistic black holes. Work focussing on non-BPS [85]
states in string theory will also help us in studying these. We hope to have many
answers in the nera future.

The alternative approach to quantise gravity is canonical quantisation using
Ashtekar variables. This theory is free of the requirements of the presence of su-
persymmetry and higher dimensions, The recent calculation of Schwareschild black
hole entropy using this approach eventually counts CFT degrees of freedom [33, 26].
The CI'T is induced on the horizon by a Chern Simons™ theory. Thus a feature
underlyving all deseriptions of black holes is the presence of a 1+1 dimensional CI'T.

This fact appears as a universal phenomena associated with black holes in a
recent work by 5. Carlip [34]. The diffoemorphisms which leave the black hole
horizon invariant are shown to constitute a Virasoro algebra. The central charge of
this algebra is determined classically. If we assume that quantum mechanics does not
add corrections to the central charge, then the asymptotic density of states found
using Cardy’s [ormula gives the black hole entropy correctly. This is a universal
result, irrespective of the underlying quantum theory of gravity. It seems thus that
the presence of a CFT in all approches to quantise black holes is not a surprise.
However, one major crucial difference remains in the fact that the string theory
CFT degrees of freedom do not correspond to horizon degrees of freedom. This

question definitely has to be addressed clearly. We hope to work on all these issues

in the future.

107




Appendix A:
Exchange algebra for fermions

The linear order perturbation to the tetrads is shown to satisly the following equa-

tion:

| Té — 1 ]h..r-l-l- A

TT

= Mhrps (A.1)

The tetrad is perturbed to linear order €27 — ¢77 £ ho9. Hence, to linear order in
|

m m ™
h. the two form,
|.r.:!'.‘n.:-l = i T ..1:5.'..‘i I 0 I':l.'_.;._-l;: _||-;I'. -l".'é"l ,.'-'é o} :'. -'r'l‘.“l . I'-'f
H man == L}f“ r':”"'rl. I'-},, O al + I"i"""rri u..-.ll _-_.flq:r T My .5",1._,_.” -.:-’..':”
‘_ I'|Ii I|-|.';I',_|-"|';" I"n"i o ¥ 3" 37 | )
—d A " = UthI,,rl;-' l:'IL'"".'. ':_.lkl.._:l

Where §w stands for the linearised spin connection. The change in the tetrad. is only
along the longitudinal direction as near the horizon the energy momentum tensor

of the matter field is dominant in these directions only.

B i = Rae pa ™3™ 80, TN (&1, 2=, 5) (A.3)

The changes in the spin connection very near the horizon (neglecting terms propor-

tional to o* and higher powers).are calenlated and the self dual parts are:

n & .'r'rl.'—_ o
(Buipt )T = ;T;H* (A.4)
. = e b y
[ bt ]+ — —; (Uhj -+ m ﬁ I".ni',ln.) Jr!_,_+l+_i_ {A:D)
i
(g:,:.',--i-' = g = (}. |il » i .."'I.-E‘-I
0wy ) rainll " ettt VD)
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Similar equations are obtained for fw,~. The spin connections of the original metric

werce,

1 4(C M)
" + ( )

(wet)e = 25 o= (A7)
| el = £GP (A
wipt = Fa (A.9)
Wy = Frcosd (AL10)
Wy, T = usinfAM?, (A.11)

Using the above the perturbed curvature can be caleulated from equation A.2. The

contraction with the vierbein gives R, _: = e™"“R . & From Einstein-Cartan
equation:
l::ri mJ" = Erﬁ | :
H:u = = ft = Trrr ¥ tﬂ]“”
" . Y

equation (A1) follows.

1 Commutator to all orders in duy

1 Through all orders in the classical horizon shift drg, the commutator of the currents
15 calenlated as

[Jruutl:”"njl : J”‘(t*’., “J'-I] = [ i .-m‘ uur u ﬂ] Hin, m{ . “!}]
- Eﬁ!u“r {r,'l."m” : Lﬂin} t||-,I|::r1 . 4I;|1m:|.! 5 I.!JI”} ﬁ:JDutT,-"m
4 J'. ”“f,- in {_L_ll__-;lu! . Jﬂ.} i {I.‘ l::":l'rl.:} L‘:‘rﬁh.lg}
Using the anticommutators given in equations (2.33), (2.34) and (2.35), and the
relation of the incoming and outgoing fields.
) = e+ du) . (A.14)
the above commutator is simplified to:
[Jou, @), S )] = 2ae e’ P(v —o)APHDY — @)
( Avg iy i:u }H' ] - m{v] Bug &, 'h'"r."('tl])
o 271’1‘{512}“1 = ﬂ?] {frﬁ'u.: il {L'_Jm[ L‘] 5{ T _“f” 'ﬂ,'l’rlnﬁr!'l] s T,'."”]{'E":ifﬁt.n e {tjﬂ:t' - _uf} L""”'[f'}] }
= . (A.15)
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Appendix B.
AdSs x S Compactification

Here we study the S? compactifications.  For that, we need to know the
d’Alembertian on the Wigner functions. The eigenvalues can be determined from

group theory, For 5%, where the symmeltry group is SO(4), this is determined to be;

VIV = _ [l 42) + B - s(s+1)] YiP (B.16)

Where the SO(4) representation is given by ({;, [5) and the SO(3) representation by

5. We consider the cases of inferest:

VI = i+ 2™ {B-A7)
14 Al P VT U A SR v il
Y =+ Y, k)
A SL{2. R) group has similar representations as SC7(2). Since SO(4) = S17(2) =

SU7(2), transverse one forms on the AdS5(SL{2, B) = SL(2, H)) manifold also satisfy
equation B.18,

I'he spinor harmonics obey:

e B F (p4 1) ] yip£/2l gyl 2 — aip 4 1Y EYE (B 19)

The gamma matrix decomposition for the SO(1,5) — SO(1,2) = SO(3) s of the

form:

a

M4 = % 1 oy, [ =1 % 4° x o™ (B.20)

. Where I are 50(1.5) matrices.
Using various recursion relations of HG funetions, in equation (6.77). we try to

derive equation (6.78) here. The LHS of (6.77) is:

2abez

£1

2#_.!‘:"'_;_! g
Fla+ 1,0+ Llie+12)+ ; Fla, b e z) (B.21)

-
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In this we use:
azFla+ Lb+ e+ Liz) =eFla, b+ Ligy2) —eFa, by 2) (B.22)

This gives LHS of equation 6.78. The RHS of (6.77)is:

g y 2;1'_Jil|.'|_
Fla+2b+2e4+liz)+a+b+2 — ——

L
AL+
(1—z)

2x{a+ 1)0b+1)

r

Eg{l = -?:'

) Fla+1.b+1:e,2)| (B.23)
In this we use the following recursion relations;

(e +1Wb+ Dz(l —2)Fla+ 2.6+ 2;¢+ 1:2)
=—c¢clc—a—1)Fla.b+ 1.¢)
—ele—(b+ 1)z — (a+ 1)2)Fla+ Lb+1,¢) (B.24)
all —z}Fla+ Lb+legz)=(c—a—-b—1)Fla.b+ 1ie;2)
+e—b—1)Fla.be ) (B.25)

to get the RHS of equation (6.78)
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