COUNTING COMPLEXITY
AND
COMPUTATIONAL GROUP THEORY

by

VINODCHANDRAN N. V.

A THESIS IN COMPUTER SCIENCE

Submitted to the University of Madras in partial {ulfillment of
the requirement for the {lcgrcl:'. of Doctor of Philusoph}'

MAY 1998

The Institute of Mathematical Sciences
C.1.T. Campus, Tharamani
Chennai (Madras), Tamilnaduo - 600 113, INDIA

ﬁxc'-‘”] ‘?:}
A @ g,"x T y?ﬁ\\
T i
4 .
.
S o2

| e AN
SHENY D 2

CERTIFICATE

This is to certify that the Ph.D. thesis submitted by VINODCHANDRAN N. V. to
the University of Madras, entitled Counting Complexity and Computational
Group theory, is a record of bonafide research work done during 1993-1998 under
my supervision. The research work presented in this thesis has not formed the basis
for the award to the candidate of any Degree, Diploma, Associateship, Fellowship

or other similar titles.

It is further certified that the thesis represents independent work by the candidate
and collaboration when existed was necessitated by the nature and scope of problems

dealt with.

V. Arvind
MH-_'_\" 1998 Thesis Supcrvisur

M AL HAS-S00 113
The Institute of Mathematical Sciences
C.LT. Campus, Tharamani

Chennai (Madras), Tamilnadu - 600 113

Abstract

The study of counting complexity classes has been a very fruitful and promising
area in complexity theory. This study has given important insights into the inherent
complexity of many natural computational problems. Problems arising from group
theory have been studied by many researchers. These problems are interesting from
the complexity-theoretic viewpoint since the complexity status of many of these
problems is not settled.

In this dissertation, we study some problems from group theory in the context of
counting complexity. More specifically, we place some basic computational group-
theoretic problems in counting classes of low complexity. These results help in giving
further insights into the intriguing nature of the complexity of these problems.

This thesis consists of two parts. In Chapter 4, which comprises the first part,
we study the complexity of three basic computational group-theoretic problems over
black-box groups. The problems are Membership Testing, Order Verification and
Isomorphism Testing. These are computational problems for which no polynomial-
time algorithms exist. It was shown that over general black-box groups, Membership
Testing is in NP M co-AM, Order Verification is in AM M co-AM, and Isomorphism
Testing is in AM [B584, Bab92]. We show that these problems, over solvable black-
box groups, are in the counting class SPP. The proof of this result is built on
a constructive version of the fundamental theorem of finite abelian groups. The
class SPP is known to be low for the counting classes PP, C_P and Mod.P for
k = 2 [FFK94]. Since it is unlikely that the class NP is contained in SPP, these
upper bounds give evidence that these problems are unlikely to be hard for NP.

In the second part of the thesis we study the problem of computing a generator
set of an unknown group, given a membership testing oracle for the group. Because of
the close relation of this problem with concept learning, we study this problem in the
framework of learning theory. In Chapter 5, for analyzing the complexity of learning,

we introduce a new model of exact learning called the teaching assistant model. This

model can be seen as an enhancement of Angluin’s [Ang88] exact learning model.
The main ingredient of this model is the notion of a teaching assistant which acts as
an intermediate agent between the learner and the teacher. The power of this model
for studying the complexity of various concept classes, comes from the fact that it is
possible to define classes of teaching assistants. These classes are analogous to the
known complexity classes. The teaching assistant classes of main interest to us are
the ones analogous to the counting complexity classes SPP and LWPP. In Chapter 5,
after giving detailed definitions of all the notions involved in this model, we study
the complexity of learning three representation classes in this model. These are the
classes SYM of permutation groups, LS(p) of linear spaces over the finite field of size
p and the class 3-CNT of boolean functions represented in conjunctive normal form
where each clause has at most three literals. We show that the class SYM is learnable
with an LWPP-assistant and LS(p) is learnable with an SPP-assistant. On the other
hand, we also show that 3-CNF is not learnable with an SPP-assistant (LWPP-
assistant) unless NP C SPP (respectively, NP € LWPP). These containments are
unlikely. Motivaled by these results, in Chapter 6 we define more assistant classes
and prove absolute separations among these assistant classes. For separating various
assistant classes we use some natural subclasses of the representation class 5Y M.
All the results leading to this dissertation have been published. The results that
we show in Chapter 4 have appeared in [AV9Tb, Vin97]. The results proved in

Chapters 5 and 6 have appeared in [AV96] and [AV97a] respectively.

1

Acknowledgments

Foremost, 1 would like to express my deep gratitude to my advisor V. Arvind.
He has been a wonderful guiclle throughout my research career. If anything that
[can claim to know about research; reading and writing technical papers, solving
problems and more importantly posing new problems, T learnt only from him. I
am also grateful to him for giving me confidence and comfort when I required them
most.

I greatly thank Meena Mahajan for teaching me circuit complexity and being ac-
cessible virtually at anytime for almost anything. Thanks are due to all the members
of the TCS group at IMSc; Kamal Lodaya, Venkatesh Raman R. Ramanujam, Anil
Seth, V. Kamakoti and the graduate students P. Madhusudan, Swarup Mohalik,
5. V. Nagaraj and S. Srinivasa Rao, for providing an excellent research environ-
ment. Special thanks to S. S. Rao for his valuable companionship. The company of
A. Srinivasan and Jyothishman Chatterjee had been wonderful during the first two
years of my graduate days.

I am indebted to the TCS group at Spic Mathematical Institute for their kind
encouragement. Thanks to Madhavan Mukund, K. V. Subrahmanyam, P. S. Thi-
agarajan and Deepak D’Souza. I am especially thankful to Deepak for carefully
proofreading an earlier version of this thesis.

Thanks to all the members of the IMSc hostel, specially to those in IMSe footer
team. Without the footer experience at [MSc, T strongly doubt whether my stay at
IMSe would have been enjoyable.

Finally, no words can express my gratitude towards my lamily for all the troubles
they had gone through (and still going through!) just for me. My interest in
mathematics would never have been there, had Amma not taken special care at an

early stage of my schooling.

i

Contents

1 Introduction
1.1 Counting complexity classes and lowness
1.2 Contribution of the Dissertation
1.3 Solvable Black-box Group Preblems
1.4 Complexity of Exact Learning

1.5 Organization of the Thesis

2 Preliminaries
3 Computational Group Theory

4 Solvable Black-box Group Problems
4.1 Introduction L e e e e
42 Mapaging Abelion:Groups 5 o cud Gad 0w Lan e B B i
4.2.1 Counstructing an Independent Generator Set
4.3 Solvable Groups and Canonical Generator Sets . .

4.3.1 Constructing an Independent Generator Set for Abelian Fac-

tor Groups o o 0 o e e e e e e e
4.3.2 Constructing a Canonical Generator Set

4.4 Solvable Group Problems are in SPP

45 BRIMINREY oo soom m ey 0 PSS B e R ed SR N B SoaE win

5 Exact Learning via Teaching Assistants

-

.1 Inmbtroduction L e

16

24

28
28
28
33
43

al
39
60

62

5.2 Learning Theory: Notations and Definitions 64

3.3 Angluin’s Model of Exact Learning 66
5.3.1 Complexity of Learning SYM, LS(p) and 3-CNF in Angluin’s

MOHEL 5 6 h siieim mur o mn momim s s mor s e see 68

5.4 The Teaching Assistant Model of Exact Learning 71

5.4.1 Comparison with Angluin’smodel 75

5.5 Upper Bounds on Learning SYM and LS(p) 78

B8 DUMIEALY o sow i vos sowsw e 5w oo smend N W e BSE W BT WO e 829

6 Separating Teaching Assistant Classes 91

6.1 More Assistant Classes 93

6.1.1 Learning with NP Nco-NP and UP M co-UP assistants 94

6.2 Learning Subclasses of SYM L 98

B3 DHMMATY <o s w aos o e s @ o5 wrae ss @ 05 90 % 5m e poe 1

7 Conclusion 104

Bibliography 106

Appendix 113

Chapter 1

Introduction

A central aim of computational complexity theory is to classify computational prob-
lems according to the resources (usnally time and space) required for solving them
on & given model of computation. Most computational problems arising in practice
fall naturally into different complezity classes, depending on the resource bounds of
interest. Using the fundamental concept of resource-bounded reductions, il is pos-
sible to meaningfully compare the relative difficulty of two given problems within a
complexity class. This gives rise to the notion of complete problems for each com-
plexity class: complete problems are the hardest problems in a complexity class.
The theory of NP-completeness illustrates the usefulness of these notions. Natural
problems in the class NP, which are computationally intractable in practice, turn
out to be NP-complete. Thus, within the complexity class NP, we have the subclass
P of problems that can be feasibly solved (i.e. in polynomial time) and the subclass
of NP-complete problems. A question that arises is whether there could be problems
of “intermediate” difficulty. Might it not be the case that NP consists solely of P
and NP-complete problems? Assuming P3NP, it was shown by Ladner [Lad75] that

there are many problems in NP that are neither in P nor NP-complete.

In spite of the fact that there are a large number of problems of intermediate
complexity in NP as shown by Ladner’s theorem, there are only a few natural can-

didates for problems of intermediate complexity (in contrast, the number of natural

o Rt

. W’H

——

E‘_ sl n.'_,{:
i

ClHARTER 1 Introduction 2

NP-complete problems abound, see [GIT8]). In fact, to date, none of them are prov-
ably of intermediate complexity even if we assume P£NP. A well-known example is
the problem of testing whether two graphs are isomorphic (in short, GI). Researchers
believe that GI is not in P since there is no subexponential time algorithm known
for this problem. On the other hand, it is not known whether GI is NP-complete.
The theory of reductions and completeness does not give us any further insight inte

the computational complexity of problems such as GI.

A useful tool that provides some understanding about problems of intermediate
complexity like GI is the notion of lowness for complexity classes introduced by
Schéning [Sch83]. To make this notion precise, let € be any relativizable complexity
class. A language A is said to be low for C if C* = C, where C* denotes the
relativized version of C with A as oracle. Lowness of A for C intuitively means that
A'ls powerless as an oracle.to C. It is easy to see that any problem in NP which is
low for some level of the polynomial-time hierarchy (PH) is not NP-complete unless
PH collapses. Thus, lowness of a problem for some level of PH is an evidence that
the problem is unlikely to be complete for NP. It is shown in [Sch88, BHZST7]| that
(i1 is low for 3}, the second level of PH. Since the introduction of this notion the
study of lowness of problems to various complexity classes has been of much interest

(see [K6b95] for a survey on lowness).

1.1 Counting complexity classes and lowness

Among various complexity classes, the study of counting classes has received con-
siderable attention. In general, these are the language classes related to the function
class #P. Valiant [Val79] introduced the class #P as a class consisting of functions
computing the number of accepting paths of polynomial-time nondeterministic Tur-
ing machines and showed that computing the permanent of a 0-1 matrix is complete
for #P. The study of counting classes has been a major research area since this sem-

inal resull. Here we brielly survey some important counting classes. Some of these

CHAPTER 1 Introduction 3

classes are defined later in the thesis. See the survey article [For9T] and references

therein for more details.

Among counting complexity classes, considerable research has gone into under-
standing the structure of the class PP (Probabilistic polynomial-time). This class
was originally defined by J. Gill [Gil77] and independently by J. Simon [Sim75]. The
class PP is very closely related to the class #P. Indeed, it is easy to show that the

closure of PP and #P under polynomial-time Turing reductions coincide.

PP is computationally a hard class; the class NP is contained in PP. The hardness
of PP was further established by a celebrated result due to S. Toda [Tod91]. He
showed thal the entire polynomial-time hierarchy is contained in PPP. PP also
enjoys many nice closure properties. It is closed under complementation [Gil77].
The question posed by Gill in his seminal work [Gil77], whether PP is closed under
intersection (or union), was settled in the affirmative by Beigel et. al, in [BRS95].
The techniques used in [BR595] were extended by Fortnow et. al. [FR96] to show

that PP is also closed under polynomial-time truth-table reductions.

The notion of lowness, originally defined in relation to the polynomial-time hi-
erarchy [Sch83], was first studied for the class PP by Tordn in [Tor88]. He gave
a sufficient condition for languages to be low for PP, More precisely, he showed
that languages in CH [Wag86] (Counting hierarchy; a hierarchy of classes over PP)
which are #P-rankable are low [or PP. Since then, many researchers have studied
the structure of low sets for PP, It was shown in [KSTT92] that the class Few (in-
troduced in [CHY0] as a generalization of FewP [AlI&6]) is low for PP. In [KSTTY92]
the authors also show that the probabilistic class BPP is also low for PP, Since these
lowness proofs relativize, it is easy to get more and more complex sets thal are low
for PP. Another interesting lowness result shown in [KSTT92] is that the sparse sets

in NP are low for PP.

Other counting classes that have been studied include classes C_P (defined in

[Wag86]) and Med,P for & = 2 ([PZ83, BG92, Her90, CHY0]). These are also

CHAPTER 1 Introduction 4

computationally hard classes; for example, from the definition of C_P, it follows
that co-NP © C-P. Also, as an intermediate step in the proof of Toda's theorem
it 1s shown that PH C BP. @& P (the class obtained by applying the BP operator to
P} [Tod91]. In general, it holds that PH € BP.Mod,P [T092].

The class UP introduced by Valiant [Val76] is another important complex-
ity class. UP consists of those languages in NP accepted by nondeterministic
polynomial-time machines having at most one accepting path. Valiant defined UP
for studying the relative complexity of checking and evaluating. This class later
[ound applications in the areas of one-way functions and cryptography; for example,
in [GS84] it is shown that P is different from UP if and only if one-way functions
exist. More recently, it is shown in [FK92] that the problem of deciding primality is

in UP Mee-UP. UP is also low for many counting classes like PP, C_P and Mod,P

for & = 2.

The class GapP, studied by Fenner et. al. in [FFK94], is an important [unction
complexity class. The main motivation for defining this class is from the observation
that the class #P cannot take negative values. This led to the introduction of the
class GapP as the closure of #P under subtraction. The class GapP satisfies many
algebraic closure properties, Specifically, it is closed under exponential summation
and polynomial multiplication. Using the notion ol gap-definability, Fenner et. al.
have given a uniform method for defining different counting complexity classes (gap-
definable counting classes). These new definitions have proved to be very convenient

to work with.

The notion of gap-definability also gives rise to some new counting complexity
classes. Of special interest to us is the class SPP [FFK94]. (This class is also
independently studied in [OHY3] under the name XP and in [Gup93] under the name
ZUP). The class SPP can be seen as the gap analogue of the class UP. More precisely,
SPP consists of langnages that are accepted by polynomial-time nondeterministic

Turing machines such that, for inputs in the language the difference in the number

I e [ntroduction

[y}

of accepting and rejecting paths of these machines is exactly one, and for inputs not

in the language this difference is zero.

The class SPP is large enough to include FewP and it is contained in the classes
PP, C_P and Mod,P for £ > 2. This class is interesting mainly because of its lowness
properties. It is shown in [FFK94] that SPP is exactly the class of languages that
are low for the function class GapP [FFK94]. From this result it easily follows that
SPF is low for PP, C_P and ModP for & > 2 and even SPP itself. In particular,
it is closed under polynomial-time Turing reductions. Hence, intuitively, SPP is a

class of “low counting complexity”.

Another complexity class which is of interest is the class LWPP [F FK94]. LWPP
is a generalization of SPP. From the definitions, it follows that SPP € LWPP. LWPP

also enjoys many of the lowness properties of SPP. For example, LWPP is low for

PP and C_P and is closed under polynomial-time Turing reductions.

Though SPP and LWPP are structurally defined classes, it is shown that some
natural, computationally hard problems fall in these classes. In [KST92], it is shown
that GIis in LWPP. They also show that Graph Automorphism problem (GA; the

problem of deciding whether a graph has a nontrivial automorphism or not) is in

SER.

Membership of a problem in the class SPP or LWPP can be seen as an evidence
that the problem is unlikely to be hard for the class NP, Firstly, as mentioned before,
intuitively we can say that problems that are in SPP or LWPP are of low counting
complexity and hence it is unlikely that these problems are NP-hard. Secondly, the
classes SPP and LWPP are defined by imposing strong restrictions on the computa-
tion tree of nondeterministic Turing machines accepting languages in them. It will
be surprising that all the problems in NP can be accepled by Turing machines with
such restrictions. In view of these explanations, membership of GI in LWPP shown

in [KKST92] gives additional evidence that GI is unlikely to be complete for NP.

CHAPTER 1 Int roduction 6

1.2 Contribution of the Dissertation

The main contribution of this dissertation is in proving upper bounds on the counting
complexity of some computational problems that arise from group theory. Broadly, it
consists of two parts. The first part concentrates on studying the complexity of three
basic, computationally hard group-theoretic problems over black-box groups. These
problems are Membership Testing, Order Verification and Isomorphism Testing. We
investigale their counting complexity over a class of groups called solvable groups.
Solvable groups form a large subclass of finite groups. Indeed, a celebrated theorem
in group theory due to Fiet and Thompson says that all finite groups of odd order
are solvable. It is shown that all these problems over solvable black-box groups
are in the complexity class SPP. This result provides additional evidence that these
problems are unlikely to be hard for NP. Another aspect of this result is that it adds
to the list of natural problems that are in SPP but not known to be in P. Graph
Automorphism and permutation Group Intersection are among the few members

that were already known to be in SPP but not known to be in P [KST92].

The main focus of the second part of the thesis is to investigate the complexity of
a computational problem over finite groups which can be thought of as an *inverse
problem” of Membership Testing. The problem can be informally stated as follows.
Given an unknown permutation group (G and an oracle to test membership in G}
compute a generator set for the group. We observe that this problem is very closely
related to the problem of learning representation classes in computational learning

theory.

Motivated by this, in the second part of the thesis, we focus on studying the
complexity of various representation classes with respect to their learnability. Of
particular interest to us is the learnability of some group theoretic and linear al-
gebraic concept classes. We compare the complexity of learning these algebraic
concept classes to that of learning boolean functions represented in conjunctive nor-

mal form. One of the learning models thal we are interested in is the exact learning

CHAPTER 1 Entrﬂductimi T

model proposed by Angluin [Ang88]. It turns out that Angluin’s model of exact
learning is inadequate for distinguishing the complexity of learning various classes
of interest to us. In order to do a finer classification of the complexity of exact
learning, we propose a refinement of Angluin's model called the teaching assistant
model of exact learning. The main ingredient of this model is a new agent namely
the teaching assistant. A teaching assistant acts as an iﬂtﬂ:rface between the teacher
and the learner. In order to classify the complexity of learning, we define the notion
of teaching assistant classes. These classes are defined in exact analogy with known
complexity classes. We show that the complexity of exactly learning algebraic con-
cepts like permutation groups or linear spaces is different from the complexity of
learning bounded CNF formulas in the teaching assistant model. More specifically,
as one of our main results, we show that while permutation groups {linear spaces
over fixed finite fields) can be learned using a teaching assistant in the assistant class
analogous to LWPP (respectively, SPP), it is unlikely that the class 3-CNF can be
learned using an LWPP or SPP assistant (unless NP € LWPP or NP C SPP).
We also investigate the power of various assistant classes and exhibit representation

classes which separate these assistant classes.

Although the two parts of the thesis are addressing apparently two different is-
sues, there are some underlying connections between the two parts. Firstly, in both
the parts, we are addressing the issue of analyzing the complexity of some com-
putational problems over finite groups, although the exact nature of the problems
differ. Secondly and importantly, while in the first part the complexity class of
interest to us is SPP, in the second part, our interest is in the teaching assistant
classes related to low complexily counting classes SPP and LWPP. Hence, the learn-
ing algorithms we design with LWPP and SPP teaching assistants are buill on the

complexity-theoretic ideas used in showing the upper bound results in the first part

of the thesis.

In the next two sections, we briefly explain the technical contents of the thesis

CHAPTER 1 Introduction 8

more formally. Most of the group-theoretic and complexity-theoretic notations that

we use are given in the next chapter.

1.3 Solvable Black-box Group Problems

In this section, we explain the contents of the first part of the thesis in more detail.
This part is devoted to the investigation of the counting complexity of three basic
computational problems over solvable black-box groups. Before giving the exact
definitions of problems of interest o us, we explain the framework of black-box
groups. Intuitively, in this framework we have an infinite family of abstract groups.
The elements of each group in the family are uniquely encoded as strings of uniform
length. The group operations (product, inverse etc) are assumed to be easily com-
putable. Black-box groups are subgroups of groups from such a family and they are

presented by generator sets.

Remark. We would like to note here that the black-box groups we define above are
a slightly restricted version of black-box groups introduced in [BS84]. The definition

in [B584] is technically more general so as to incorporate factor groups.

Definition 1.3.1 A group famuly is a countable sequence B = {5, },,5, of finite
groups My, such that there are polynomials p and g satisfying the following condi-
tions. For each rn = 1, elements of B,, are uniquely encoded as strings in ZF™), The
group operations (inverse, product and testing for identity) of B, can be performed
in time bounded by g(m), for every m > 1. The order of B,, is computable in time
bounded by g(m), for each m. We reler to the groups B, of a group family and their
subgroups (presented by generator sets) as Mack-bor groups. A class C of black-box

groups is said to be a subelass of B if every ¢ € C is a subgroup of some 8, € B.

For example, let 5, denote the permutation group on n elements. Then, {Sﬂ}nzt

is a group family of all permutation groups S,. As another example let GL,(q)

CHAPTER 1 [ntroduction 9

denote the group of all n x n invertible matrices over the finite field F, of size ¢.
The collection {GLn(q)}(nq is a group family. For any group family B, the class
of all abelian (solvable) subgroups {G' | ¢ < B, for some m and G is abelian

(respectively solvable)} is a subclass of B.

Let B = {B..};u>0 be a group family. We consider the following three basic

computational problems over black-box groups.

Membership Testing £ {(m, S, g) | (S} < B, and g € (5)}].
Order Verification 2 {{m,5n) | {5) < By, and |[(S)| = n}.
Group Isomorphism & {{m, 51, Sz} | (51) and {5;) are isomorphic subgroups of B,,}.

In Chapter 4, we prove the following theorem.

Theorem Quer any group family B, the problems Membership Testing, Order Ver-
ification, Group lsomorphism over the subclass of solvable groups are in SPP and

hence low for the classes PP, C_P, and ModiP for k = 2.

A few remarks about the above theorem are in order, Using the fact that tesling
for primality is in UP [[FK92], it can be shown that the above-mentioned problems
when defined over eyelic groups are in the class UP. So the above result can be seen
as a nontrivial extension of the upper bound for cyclic groups to solvable groups.

Note that the class SPP is a generalization of the class UP.

We very brieflly explain the main ideas that go into the proof of the above the-
orem. Since solvable groups can be viewed as a series of abelian factor groups, we
first consider the above problems over abelian groups. Using a constructive version
of a flundamental theorem on the structure of abelian groups, we first show the same
upper bound for abelian factor groups. Then, using a procedure for computing nor-
mal closure to get generator sets for the commutator group of a finite group, we

extend the upper bound for abelian groups to solvable groups.

CHAPTER 1 [nt I'Ddl.‘u:tiun 10

1.4 Complexity of Exact Learning

In this section, we explain the contents of the second part of the thesis. As mentioned
before, in this part we are interested in analyzing the complexity of learning some
group-theoretic representation classes. Before we state our main results, we give a

very brief introduction to learning theory.

Learning theory is concerned with providing mathematical models for machine
learning and analyzing the learnability /non-learnability of various classes of concepts
in these models. Among various models that have been proposed, Valiant’s PAC
learning model [Val84] and Angluin’s exact learning model [Ang88] have received
considerable attention. In both these models the concept classes are sets of subsets
of finite strings over a finite alphabet along with a short representation for each of
the sets (concepts) in the class. A concept class along with a representation for each
coneept is called a representation class. By learning a representation class we mean
to find a representation for the concept of interest with limited access to it. Among
the representation classes which have received much attention are DFAs, DNF's and

CIRCUITS. See the article by Angluin [Ang92] for a survey on learning theory,

A major area of research in computational learning theory is the classification
of different representation classes with respect to the difficulty of learning them in
any reasonable learning model. In this direction many interesting results are known.
In Angluin’s model (this is the model of interest to us), one way Lo quantify the
complexity of a representation class is to consider the type and number of queries
that a learner has to ask the teacher in order to learn any concept in the represen-
tation class. The two types of queries that Angluin had introduced in her model
are membership and equivalence queries. There have been successful attempts to
capture the complexity of representation classes with respect to the type of queries
needed to learn them in this model, by combinatorial properties like approximate
fingerprints, polynomial certificates etc. [Angd0, BCG*96, HPRV96, Heg95). Also,

Watanabe [Wat90] used complexity-theoretic ideas to analyze the complexity of

CHAFTER 1 Irl!-rnfluttiﬂn 11

query learning. He defined the notion of machine types to capture various types of

queries in Angluin's model (see also [W(G94]).

Our focus is to further investigate the complexity of exact learning (henceforth,
by learning we mean exact learning). Our approach towards classifying the com-
plexity of learning representation classes is built on ideas from complexity theory.
To motivate our study, consider the scenario where there are two representation
classes both of which can be learned using polynomially many equivalence queries
but cannot be learned using polynomially many membership queries. What further
can we say about their learnability? It could be the case that one of the classes is
easier to learn than the other because the [ull power of equivalence query may not
be necessary to learn the former although it is required to learn the latter. To frame
the above question more formally, we first give a brief introduction to Angluin's

exact learning model.

Let P be a representation class (for example, the class CNF: in this case the
boolean functions are the concepts of interest and the representation of a function
is by conjunctive normal form formula). A learner, usually a deterministic Turing
machine, has to output the representation of the concept fixed by the teacher, Dur-
ing the computation, the learner can ask two types of queries to the teacher about
the concept of interest; membership queries and equivalence queries. To a member-
ship query = asked, teacher gives YES/NO answer depending on whether z is in
the concept or not. An equivalence query is a string y which is a representation for
some concept in the class and the teacher answers YES if y represents the concept of
interest or produces a string = in the symmetric difference of the concept of interest
and the concept represented by y, as a counter example. An efficient learner is one
which outputs a representation of the concept, in time polynomial in the length of

the minimal representation of the concept.

Now consider the three representation classes; SYM of permutation groups (a

subgroup G of 5, is represented by a generator set for &), LS(p) of linear spaces

CHAPTER 1].mmcluctiﬂ n 12

over finite fields (represented by a basis) and 3-CNFs (the exact definitions of these
classes are given in Chapter 5). We have the following theorem on the complexity

of learning these classes in Angluin’s model.

Theorem The elasses 3-CNF, SYM and LS(p) are polynomial-time learnable with

equivalence queries bul not polynomial-time learnable with only membership queries.

An immediate question that arises is whether we can say more about the learn-
ability of these classes. Intuitively, we can expect that the algebraic classes SYM
and LS(p) may be easier to learn than 3-CNF due to their inherent algebraic struc-
ture. Our goal is to investigate this possibility. We develop a new exact learning
model, called the feaching assistant model of exact learning. This can be seen as
a refinement of Angluin’s model. The new ingredient in our model is the concept
of a teaching assistant. This model allows us to make a finer classification of the

complexity of exact learning than what is possible in Angluin's model,

The motivation for the definition of this model is the following. In Angluin's
model of exact learning the learner communicates with the teacher through equiv-
alence and membership queries in order Lo learn a concept. It is easy to show that
Ftl.l equivalence query can be replaced by a series of queries to an NP oracle where
the machine accepting this oracle is a non-deterministic oracle Turing machine with
access to the concept of interest (a similar result can be seen in [WG94]).! So, intu-
itively we can think of the NP oracle as an intermediate agent (a teaching assistant)
between the learner and the teacher. To this teaching assistant the learner can make
queries and the Turing machine accepting this assistant is allowed to make member-
ship queries to the teacher. Hence informally, we can say that a representation class
which is polynomial-time learnable (hereafter, we use the notation FP-learnable)
using equivalence queries is also FP-learnable with an assistant in NP. Now, this

idea can be extended to other well-studied complexity classes also; for example the

'The above stalement is informal. In Chapter 5, after defining teaching assistants, we will give
a more formal proof of this,

CHAFTER 1 Introduction 13

classes NP M co-NP, UP, SPP, LWPP etc. This immediately gives a framework for

comparing the complexity of exactly learning various representation classes.

The second part of the thesis spreads over into two chapters, Chapters 5 and
6. In Chapter 5, one of our main contributions is the precise definition of the
new teaching assistant model and that of FP-learnability using various assistant
classes. The teaching assistant classes that we define here are the ones analogous
to the classes P, NP I}, SPP and LWPP. After giving definitions of all the nolions
involved in our model, we formulate the notion of learning any representation class
efficiently with assistants from a teaching assistant class C (FP-learnability with a

C-assistant). The main result we show here is stated as the following theorem.

Theorem The representation class SYM is FP-learnable with an LWPP -assistant.
The representation class LS(p) over any fired prime p is FP-learnable with an SPP-
assistant. The class 3-CNF is not FP-learnable with an LWPP-assistant (SPP-
assistant) unless NP © LWPP (respectively NP C SPP).

T'his theorem illustrates the possibility of a finer classification of the complexity
of exact learning than what is possible in Angluin’s model. For proving the upper
bounds, we make use the algebraic structure of these representation classes. In par-
ticular, in the case of representation class of permutation groups, we make use of the
properties of special generator sets called strong generator sets for any permutation

Eroup.

In Chapter 6, we further investigate the fine inclusion structure that is possi-
ble among various teaching assistant classes, In particular, we consider the FP-
learnability of some subclasses of SYM, with teaching assistants from assistant
classes UPNco-UP, UP and NPMeo-NP. We show upper bounds and absolute lower

bounds on the learnability of these representation classes.

CHAPTER 1 Introdu clion 14

1.5 Organization of the Thesis

This thesis consists of seven chapters. In Chapter 1, we have already seen the
basic motivation for studying the complexity of computational problems over finite
groups. Chapter 2 consists of the necessary notations and definitions which we use
throughout the thesis; both from complexity theory and group theory. Most of these
are standard. At the end of Chapter 2 we prove a lemma (Lemma 2.0.2) which is
the basic complexity-theoretic technique (both the lemma and the proof method)
we use in almost all our upper bound proofs. So a good understanding of this lemma
as well as the proof will considerably aid in understanding most of the upper bound

proofs.

Chapters 3 and 4 contain the first part of the thesis. In Chapter 3, we give a
very briel survey of computational group theory. Chapter 4 is devoted completely
for proving the upper bound of SPP for the three basic computational problems
over solvable black-box groups; namely Membership Testing, Order Verification and
Group Isomorphism. The proof of this upper bound is built on the fundamental
theorem of finite abelian groups (Theorem 4.2.1). The proof of the fundamental
theorem given in [Bur55] is recommended for easily understanding the proof of our
upper bound result. A proof of Lemma 4.2.6, which is the basic ingredient of the
prool of the fundamental theorem, is given in the Appendix. Though the upper
bounds we prove here are for solvable groups, we devote a large part of this chapter
for dealing with abelian groups. This helps in understanding the basic ideas involved

in the proofs for solvable groups.

Chapters 5 and 6 contain the second part of the thesis. These can be read
independently of Chapters 3 and 4. In the first two sections of Chapter 5, we
develop the teaching assistant model of learning. Naturally, these sections are basic
requirements for the rest of the results in Chapters 5 and 6. Among all the learning
algorithms that we design in Chapters 5 and 6 | the design of the learning algorithm

for the class of permutation groups, SYM, is the most involved (Theorem 5.5.1).

—

CHAPTER 1 Introduction 15

For proving the correctness of this algorithm, the notion of a strong generator set

for a permutation group and its properties are crucial.

Finally in Chapter 7, we conclude the thesis and stale some open questions that

arise from this investigation.

Much of the group theory (and some linear algebra) that we use are elementary
and can be derived fairly easily from basic definitions. But, for completeness sake,

in the Appendix we give proofs for most of the group-theoretic and linear-algebraic

results we use in this thesis,

Chapter 2

Preliminaries

In this chapter we give the necessary notations and basic definitions that we use

throughout the thesis.

Complexity-theoretic Notations and Definitions

We fix the finite alphabet £ = {0,1}. X~ denotes the set of strings over £. A subset
of ¥* is called a language. " (X5") denotes the set of strings over £ of length n
(respectively, < n). A denotes the empty string. For an € £*, |¢| denotes the
length of z. For y1,52 € E° y, < y; denotes that y, is lexicographically smaller than
or equal to ye. For any finite set X, |X| denotes the cardinality of X. Note that we
are using the same notation for the cardinality of a set and length of a binary string.
The meaning of the notation will be clear from the context. For L C ¥, 0L (1L)
denotes the language obtained by prefixing 0 to all the strings in L (respectively 1).
For sets A and B, symmetric difference of A and B is denoted by AAB. The base-
2 logarithm function is denoted as log. We use some standard pairing functions,
denoted by (-, -} which can be computed and inverted in polynomial time. Z and N
denote the set of integers and natural numbers respectively. Let X = {z;,...,z,

be an ordered set. Then ({,,,...,(,,) denotes a formal tuple indexed by set X', Some

times we denote such a tuple by (I.|z € X).

CHAPTER 2 Preliminaries 17

Next we very briefly describe the framework of computation we will be work-

ing with. For delailed definitions, we refer the reader to standard text books like

[BDGSS, Pap94].

The standard Turing machine will be our basic model of computation. We will
consider both deterministic-and nondeterministic Turing machines. Sometimes we
allow Turing machines to have access to an oracle. In this case Turing machines will
have an additional write-only tape and a special state called QUERY-state, which
are used in a standard way to access the oracle. We assume the familiarity with
the standard complexity classes such as P, NP, PH, FP, #P. Refer [Pap9] for the
definitions of these classes. For any complexity class £, Co-£ denotes the class of

languages whose complement is in L.

Fenner et. al., in [FFK94] defined the class of functions GapP as the closure of
Valiant's class #P under subtraction. A funetion f : ¥* — Z is gap-definable il there
is a polynomial-time nondeterministic (in short, NP) machine M such that, for cach
r € ¥, f(z) is the difference between the number of accepting paths (denoted by
acey(#)) and the number of rejecting paths (denoted by rejy () of M on input z.
For each NP machine M let gapys denote the gap-definable function defined by it,
Let GapP denote the class of gap-definable functions. It is easy to see that GapP is
the closure of #P under subtraction. The class GapP enjoys nice closure properties.
Most of these closure properties have been shown in [FFK94]. Many of the counting
classes that have been studied in the literature have equivalent characterizations

using gap-definable functions.

Now we give the definitions of three counting classes which are of main impor-

tance to us.

Definition 2.0.1 A language L is in

o UP if there is an NP machine M such that: = € L implies that acey(z) = 1,

and x & L implies that acep(x) = 0.

CHAPTER 2 Prel] minaries 15

o SPP if there is an [€ GapP such that: = € L implies that flz) =1, and
z ¢ L implies that f(z) = 0.

o LWPP if there are functions f € GapP and h € FP such that: = ¢ [, implies
that f(z) = h{ﬂ'”'}, and z € L implies that f(z) =D,

It follows from the definitions that UP € SPP C LWPP.

I'or the sake of completeness, we give definitions of PP, C_P and Mod,.P. A
language L is in PP if there is a GapP function f such that: z € £ iff flz) = 0.
A language L is in C_P if there are functions f € GapP and h € FP such that:
z € L & f(z) = h(0"). A language L is in Mod,P if there is function f € GapP
such that z € L« f(z) =0 (mod k).

Ior all the above-mentioned classes, their relativized versions can be defined
by allowing the nondeterministic machines accepting the languages in the class to
have access to an oracle. Il M is an NP machine which accesses an oracle A. then
the corresponding gap function is denoted by gapaea. For any class € which is
relativizable, C* denotes the relativized version of C with respect to the set A. Then

a language L is said o be low for C if C4 = (.

Group Theory: Notations, Definitions and Basic Results

Here we give some notations and basic definitions from group theory. We also
describe some basic results. TFor further results and their proofs, please refer to

standard textbooks [Bur55, Hal59].

A group is a tuple (G, +) where G is a nonempty set and # is a binary operation
(we call this operation “product™) on (' satisfying the following properties. (7 is
closed under . The operation * is associative. There is an element e (7, called
the identity of G, such that z+e = e+ 2 = 7, for all z € (. For every x € (5 there

exists a unique 7' € G, called the inverse of z, such that r+ 2 1 = 2= 4 7 = ¢,

CHAPTER 2 Preliminaries 1G

When there is no ambiguity we do not explicitly specify the group operation and

denote the product x * y by xy. Also, by abusing notation, henceforth we denote

the group (G, *) by just G.

Let & be a group. A subset H of G is called a subgroup of G (denoted H < G
or G > H)if H is a group under the group operation of . For a subset S of G,
the smallest subgroup of (¢ containing S is called the group generated by S and is
denoted by (S} (note that we are using the same notation for the pairing function
also. The exact meaning of the notation will be clear from the context). This group
15 the same as the set of all finite products of elements from 5. A subset 5 of G isa
generator set for G if G is identical to (5). A group G is finite if the cardinality of
the set i is finite. In this thesis, we are only interested in finite groups, Henceforth
by a group we mean a finite group. The order of 7 is defined as the cardinality of
the set (G and is denoted by |G]. A group is said to be cyclic il it is generated by a
single element. Ior an element g € (&, the order of g (denoted as og)) is the order
of the cyclic subgroup generated by g. This is the same as the smallest positive
integer & such that ¢* = e, (g* denotes the product of ¢, k times) where e is the

identity of (5.

A Tundamental theorem in finite group theory, due to Lagrange, stales that if
I < G then |H| divides |7]. This theorem has a large number of algorithmic
applications. For example, it follows from Lagrange’s theorem that any finite group

(+ is generated by a sel of group elements of cardinality bounded by log |G].

Let H be a subgroup of a group . For ¢ € G the set {hg | h € H}, denoted
| by Hg, i1s called a right coset of I in G. Similarly, the set ¢ = {¢h | h € H}
is called a left cosel of H in . H is a normal subgroup of & if for all gy € G it
‘ holds that Hg = gH. A lundamental result in the theory of groups is that if H is a
, normal subgroup of G, then the set of right cosets of H in G forms a group (called
the factor group or a quotient group induced by H and denoted by () H) under the

binary operation - defined as flx - Hy = Hiry. The identity element of this group is

|

-,

CHAFTER 2 Prdlminarles 20

the coset He = H. For a set X C @, the normal closure of X is the smallest normal

subgroup containing X.

Two groups G and H are said to be isomorphic if there is a bijection (set-
theoretic) ¢ from G to H such that for any 2,y € G, ¢(zy) = ¢(z)é(y). Isomorphism

preserves all structural properties of groups.

Let p be a prime. A p-group is a finite group whose order is a power of p. Let &
be finite group such that |G| = p{'pF* ... p. The existence of subgroups in G which
are p-groups, is given by Sylow’s theorem. That is, for each ¢ there is a subgroup of

G of order pi*. A subgroup of G of order p' is referred to as a p;-Sylow subgroup of
.

Let (X, *) and (Y,.) be two groups. The direct product of the groups X and
\ Y is defined as the group (X x ¥,o), where X x Y is the cartesian product of
| sets X and Y, and for (z1,11), (22,92) € X % Y their o composition 15 defined as

(T1,01) @ (22,42) = (71 * 29,30.2). Let H, K be subgroups of a group (7. Suppose
\ that H is normal in @ and the set {zy |2 € H,y € K} = . Then (is isomorphic
to the direct product i = K.

Solvable groups

Here we give the definition of a selvable group and state some properties of them.
Intuitively solvable groups can be thought of as a generalization of abelian groups.
A group G is abelian if Yo,y € G : zy = ya; that is zyz~'y~" = e. In general. the
element zyz~'y~! is called the commutator of elements z and y in . The subgroup
of & generated by the set {zyz~'y™' | z,y € G} is called the commutator subgroup
of . We denote this subgroup by (/. Observe that if G is abelian, 7 is the trivial
group containing only the identity element. The commutator subgroup G is actually
a normal subgroup of G and the factor group G/G" is abelian. For a group @, the
' sequence G = Gy > G > ... is called the commutator sequence, where each group

(; is the commutator subgroup of ,_,. (7 is solvable if the commutator sequence

» YR LA R
CHARTER 2 Preliminaries 21

terminates in the trivial subgroup (e) in finitely many steps. This intuitively means

that any solvable group can be decomposed inlo a series of abelian factor groups.

Solvable groups form a large subclass of all finite groups. In fact, a celebrated
result due to Fiet and Thompson says that any finite group of odd order is solvable.
Any subgroup of a solvable group is solvable. It follows from Lagrange’s theorem
that, if G is solvable, then length of the commutator sequence is bounded by log |G|
From a computational viewpoint this fact is very useful. It also holds that two
solvable groups GG and H are isomorphic if and only if the factor group H;_,/H, is

isomorphic to Gi_, /G| for all i. Here H,; (G;) is the i*" element in the commutator

series of H (respectively, (7).

A Complexity-theoretic Technique

The main complexity-theoretic technique that we use for showing membership in
SPP is the following lemma proved in [K§T92). In fact, in [KST92] a more general
version of this lemma is proved. For our purposes the following is enough. For the

statement of this lemma, we first give some definitions.

Let M be an oracle NP machine and let 4 € NP be accepted by an NP machine
N. We say that a query y made by M is I-guarded for N if N(y) has at most 1
accepting path. We say that M makes 1-guarded queries to A, if there exists an NP

machine N accepting A such that on all the inputs r to M, the queries made by M

to A are 1-guarded for V.

Lemma 2.0.2 [K5T92] Let M be a nondeterministic polynomial-time oracle ma-

chine that makes I-guarded queries to A € NP. Then the function gapya(z) is in
GapP.

Proof. Let z be an input to M which makes 1-guarded queries to A € NP. Let

N be the corresponding NP machine accepting A. For a computation path pof M,

CHAPTER 2 PrEIimin aries 22

define v(p) = 1 if p is accepting and v(p) = —1 if p is rejecting. In this notation the
gap function defined by M is gappsa(z) = ¥,0(p). Let ¢ be the polynomial bounding
the number of queries asked by M. Without loss of generality, we can assume that
on any input z, M makes exactly g(|z|) queries. Design a machine M’ as follows.
M" on input = guesses a computation path p of M and simulates M on p. For the
'™ query y;, made by M, M’ guesses a; € {0,1} as an answer to the query (this way
M" avoids access to the oracle) and continues simulation of M on p, treating a; as

the answer to the query y; of M. At the end of the computation on p, M’ produces

the following gap.
gap = o(p)IE (aigapy (i) + (1 — as)(1 — gapy(u:)) (2.1)

We argue that gapyn(z) = gapya(z) as follows. Call those computation paths
of M', where all the guessed answers g; to the queries y; are correct (a; =1 if and
only if y; € A}, good. Observe that corresponding to any computation path p of M,
there is exactly one computation path p' of M’ which is good. We show that, on
the good paths, M’ produces a gap = v(p) and on all the computation paths which
are not good, M’ produces a gap = 0. From this and the observation that for any
computation path p of M, there is exactly one computation path p' which is good,

it will follow that gapy(z) = gapyalz).

Consider a path p' of M' which is good. Since p'is good, all the queries constructed
by M" will be same as the queries made by M on the path p and hence will-be 1-
guarded for M. Consider the i'" term in the product of RHS of (2.1). If a; = L, then
yi € A and gapy(y) =1 (since the query is 1-guarded for N). If ¢, = 0 then y, & A4
and gapy(y) = 0. Hence on the good paths, M’ produces a gap = v(p)17071) = y(p).

Now we shall consider the gap produced by M’ on paths which are not good. Let
t' be the first value of ¢ for which M’ guesses a; which is not correct. This means
that ap = 0 if an only if yp € A. Here we make a crucial observation that all the
queries y; for j < i, computed by M’, as queries made by M to A are 1-guarded

for NV (the queries y, computed by M’ for & = ' may not be 1-guarded for N since

CHAPTER 2 Preliminaries 23

the answer to query yu is guessed wrong by M’). Now if ay = 1, gapy(yir) = 0 and
hence a;gapy (1) + (1 — a¢)(1 — gapyn(y:)) = 0. Similarly if a; = 0, gapy(ye) = 1
and a;gapy(yi) + (1 — ai)(1 — gapy(y;)) = 0. In any case, contribution of the i
term in the product of RHS of 2.1 is 0 and hence the total gap produced by M’ on

p 1s 0. This concludes the proof of the lemma. |

The above lemma is useful in showing certain problems to be in the class SPP.
For example, to show that a langnage B is in SPP, it is enough to show that there
exists a polynomial-time deterministic machine M and a language 4 € NP such
that M makes 1-guarded queries to A and accepts B. To see this, observe that the
machine M can be very easily modified to get a machine M such that M’ will have
a gap=1 if = € B and will have a gap=0 otherwise. Now we can apply the above
lemma directly to get B € SPP. For all the upper bound proofs in Chapter 4, we
will be explicitly using this method for proving membership in SPP. On the other
hand, in Chapter 5, we will essentially follow the line of proof of the above lemma for
showing upper bound on learning linear spaces using an SPP-assistant. The above
lemma can be generalized for getting a sufficient condition for membership in the
class LWPP. This is done essentially by generalizing the notion of 1-guarded queries
to f-guarded queries, where [is a function on natural numbers. In fact, a slightly
more complicated adaptation of the above proof is used for proving upper bound
on the learnability of permutation groups using an LWPP-assistant in Chapter 3.

By slightly modifying the above lemma we can also show that SPP is low for the

classes PP, C_P and Mod.P.

Chapter 3

Computational Group Theory

In this introductory chapter we give a brief survey of some results from computa-
tional group theory. Our main focus will be on the complexity of group-theoretic

problems. We are interested when the groups involved in the problem instances are

specified by generator sets.

Research in computational group theory centers mainly on problems concerning
permutation groups and matriz groups. Among the basic problems that have been
studied are membership testing, order computation, normal closure computation,

computing structural elements like composition series, center, Sylow subgroups ete!.

Much of the research in the area has gone into developing efficient algorithms for
permutation groups (these are the subgroups of the symmetric group), For this class
of groups many computational problems have polynomial time solutions. Central in
many of these algorithms is the notion of a strong generator set for a permutation
group introduced by C. Sim [Sim70]. The importance of this notion is mainly because
of the fact that many basic problems like membership testing, order computation
and computing the normal closure are efficiently reducible to the computation of a
strong generator set. Sim [Sim70] gave a method for constructing a strong generator

set from an arbitrary generator set. A variant of Sim’s alporithm was shown to be in
YE B

"We omit the formal definitions of these problems. Please see [KL40] for definitions of these
problems in the context of permutation groups.

CHAPTER 3 Camputationa] Gmup Thec:ry 25

polynomial time by Furst et. al. in [FHL80]. This gives polynomial-time algorithms

for membership testing, order computation and computing the normal closure.

The problem of computing the composition series and center for permutation
groups was shown to be in polynomial time by E. Luks [Luk87]. The analysis of
Luks" algorithm uses many deep permutation group-theoretic results along with a
detailed knowledge of the classification of finite simple groups. The problem of
computing a generator set of a Sylow p-subgroup for prime p, was shown to be in
polynomial time by W. Kantor [Kan85]. A library of polynomial time algorithms
for a long list of problems over permutation groups (even for factor groups) is given
in [KL90]. In [BLS87], Babai et. al. have shown that membership testing, order
computation, computing the center and the composition series can be performed in

NC. These results also depend on consequences of the classification of finite simple

groups for their analysis.

Though there are efficient algorithms for a large number of problems over perinu-

tation groups, the scenario is quite different in the case of matrix groups over finite

| fields (these are subgroups of the group of invertible matrices over a finite field).
The problem of testing membership for | x 1 matrix groups over finite fields is the
decision version of the discrete logarithm problem, for which no polynomial time

\ algorithm is known. The techniques developed for fast management of permutation
\ groups will not work for matrix groups. The main reason for this is that, while
permutation groups act on a set of “small” size (the subgroups of S, act on a setl of

size n), the action of n x n invertible matrices over a finite field is on a vector space

of size exponential in n. The polynomial-time algorithms for testing solvability and

| nilpotence of matrix groups over finite fields, due to Luks [Luk92], is an important

| result in this area.

From the point of view of complexity theory, these problems over matrix groups
are interesting since the exact complexity of many of these problems are not charac-

terized. In order to study the complexity of these hard problems in a general setting

-

CHAPTER 3 Computational Group Theory 26

Babai and Szemerédi [BS84] introduced the notion of black-box groups. The main
motivation was to avoid the the actual representation of group elements while inves-
tigating the complexity of group-theoretic problems. Intuitivel y in this framework,
the group elements are uniformly encoded as binary strings and the Zroup opera-
tions are performed by a group oracle. Hence an upper bound for a computational
problem in this framework gives the same upper bound for the problem over groups

for which the operations can be done efficiently.

Let us consider the complexity of testing membership in black-box groups. Notice
that it is not obvious whether the problem is in NP. Naive idea of guessing a product
over generators does not work. But in [BS84] it is shown that for any finite group G,
an element of &' can be “reached” using a short straj ght line code over an arbitrary
generator set of (. From this reachability result it easily follows that mermbership

testing over general black-box groups is in NP,

Verification of the order (decision version of computing the order) is a central
problem when we are interested in the complexity of group theoretic problems; many
problems reduce to order verification [Bab92]. For example, it is easy Lo see that both
membership and non-membership testing reduces to verification of order. For matrix
groups over finite fields, it is believed that order verification is in NP. In [BS84] it
is shown that, over solvable matrix groups, order verification in NP M co-NP. This
puts membership testing in NP M co-NP for this class of groups. This is a strong
mdication that membership testing over solvable matrix groups cannot be complete

for NP (unless NP = co-NP).

In [Bab92], using sophisticated combinatorial and group-theoretic techniques, it
is shown that order verification over general black-box groups is in the class AM N
co-AM [Bab85]. This places membership testing over general black-box groups in
NPrMco-AM. Since AMMco-AM is known to be low for the second level of PH [Sch8g],
it is unlikely that the problems membership testing and order verification are hard

for NP. In [Bab82|, using this above-mentioned upper bound result, similar upper

CHAPTER 3 Cmnpu tational Grnup Theor}' 27

bounds were shown for a large number of problems over black-box groups. For

example, 1t is shown that isomorphism testing over black-box groups is in AM.

Randomization has also played an important role in computational group theory.
The notion of random normal subproduct introduced in [BCF*95] has given rise to
an efficient randomized algorithm for computing normal closures over black-box
groups. This, along with random subproducts [BCF*95] gives a co-RP algorithm
for testing solvability (see also [CF93]).

There are computationally difficult problems concerning permutation Eroups
also. Group intersection, group factorization and coset intersection are some among
them (see [KST92] for exact definitions of these problems). There are no polynomial
time algorithms known for these problems. On the other hand these problems are
in NP 1 co-AM [Bab92] and hence are not complete for NP unless the polynomial-
hierarchy collapses. The counting complexity of these problems were first investi-
gated in [KST92]. It is shown in [KST92] that group intersection is in SPP while
group factorization and coset intersection (along with Graph lsomorphism), belongs
to LWPP. Hence these problems are low for the counting classes PP and C_P,
These results shows the similarily of the complexity of these problems to that of
Graph Isomorphism. There are also some problems over permutation groups that
are NI'-complete. One interesting example is the problem of deciding whether a

group contains an element which is fixed-point free [Lub81].

In the next chapter we investigate the counting complexity of three hasic prob-
lems; membership testing, order verification and isomorphism testing, over black-box
groups. We show that over solvable black-box groups these problems are in SPP,
This result has appeared in [AVO7h, Vin97]. In [AV9T7h, Vin97], it is also shown that
over solvable black-box groups, the problems group intersection, group factorization

and coset intersection are in LWPP.

Chapter 4

Solvable Black-box Group
Problems

4.1 Introduction

This chapter is devoted to showing the membership of some basic problems from
computational group theory in the class SPP. For the sake of completeness, we once

again give the exact definitions of problems of interest to us.

Let B = {B,.}mso be a group family. The problems of interest to us are the

following:

Membership Testing - {{m,S,¢) | () < B,, and g € (5)}.
Order Verification 2 {(m,S,n) | (5) < B and |(S}| = n}.

Group Isomorphism 2 {{m, 51, 52) | (1) and (S5} are isomorphic subgroups of B,,}.

We show that these problems over any group family are in the class SPP when
restricted to solvable groups. For showing this upper bound, we design appropriate
deterministic oracle algorithms accepting the above languages which make only 1-
guarded queries to a langnage in NP. Then by Lemma 2.0.2 proved in Chapter 2 we

get the desired upper bound.

CHAFTER 4 Solvable Black-box Gmup Problems 29

Remark. Note that we are considering these problems when the groups invelved
in the definitions of the problems are solvable. Although there is no deterministic
polynomial time algorithm known for Solvability Testing over arbitrary black-box
groups, later in this chapter we show that Solvability Testing is in SPP. Hence,
without loss of generality we can assume that the groups encoded in the problem

instances are solvable.

Let B = {Bm}mso be a group family. Recall the definition of a solvable group.
A group G is said to be solvable if the commutator sequence G = Gy > G, > ...
terminates in the trivial subgroup (e) in finitely many steps. Let k be the length of
this series. From Lagrange’s theorem, it follows that k is bounded by a polynomial
in m. Now, since (;_; /G is abelian for all ¢ < k, we can informally say that any
-solvable subgroup of B, can be viewed as a short series of abelian factor groups.
So intuitively it is clear that abelian groups are the basic building blocks of solvable
groups and it is natural that tight upper bounds on abelian group problems may
lead to upper bounds for solvable groups. In view of this observation. in the next
section we concentrate on oracle algorithms for abelian groups. As an illustration,
at the end of the next section we give an upper bound of SPP for the problems
over abelian groups. Then, we extend these upper bounds to more general class of

solvable groups.

4.2 Managing Abelian Groups

For dealing with abelian groups, we use a constructive version of the fundamental
theorem about the structure of finite abelian groups. This theorem completely char-
acterizes any finite abelian group up to isomorphism. We next state this theorem.
Proof of this theorem can be seen in any standard book in group theory (see [or

example [Hal39, Bur55]).

CHAPTER 4 Solvable Black-box Grnup Problems 30

Theorem 4.2.1 [Burb3] Let G be a finite abelian group such that |G| =

Pips ... ptr, where the p; s are distinct primes.

1. The group G can be expressed as the direct product of its Sylow subgroups
S(p), 3(p2)s-... S(pe) where |S(p)| = pf* for1 <i <.

2. For 1 <1 < r, each Sylow subgroup S(p;) can be uniquely erpressed as the
direct product of eyclic groups of orders pi**, p52 . .. (Pt such that ey > egp >

]

e 2 €y, and B2 05 = €.

3. This decomposition of (G is unique up to isomorphism.

The above theorem implies that, for any abelian p-group @ of order pt, there is a
unique sequence of natural numbers e; > e > ... > ¢, such that Yicjemt; = € and
G can be expressed as a direct product of m cyclic groups of respective orders p® |
I < j < m. The sequence (e;,¢€3,...,6,) is called the type of the p-group . Since
any abelian group can be decomposed into its Sylow subgroups (Theorem 4.2.1, we

can extend the definition of the type to an arbitrary abelian group.

A consequence of Theorem 4.2.1 is the existence of special kind of generator sets,
called independent generator sets, for any abelian group. Let G be an abelian group
which is a direct product of n cyclic groups Cy,Cs.. ... C, generated by elements
91,82, ++ - Gn Tespectively. Then the set § = {91:92,...,0.} is a generator set for
G. Since & is the direct product of Cy,Cs,.... (., it follows that for any g € 5,
(@) M (S — {g}) = {e}. We call a generator set with this property an independent

generator set. Formally, we have the following definition.

Definition 4.2.2 Let (be a finite abelian group. An element g € (7, g # ¢, is said
to be independent of a set X of elements of G if {g) N (X) = {e}. A penerator set §

of G is an independent generator sel for G, if every g € § is independent of S — {g}-

As a consequence of Theorem 4.2.1, all finite abelian groups have independent

generator sets. Also, the size of the generator set is logarithmic in the size of the

CHAPTER 4 Solvable Black-box Gmup Problems 31

group. Now we prove a key group-theoretic proposition about independent generator

sets. For stating this, first we give some definitions.

Let G be an abelian group generated by a set § = {g1,--..9x} € G (in the
sequel, we shall assume that the elements of a generator set are ordered according
to some fixed order. Wherever necessary, we will prescribe the order). Since & is
abelian, for any element g € G, thete is an ordered tuple of (1, ..., li) (we call this
tuple exponents), 1 <; < o(g;) for all 1 <i < k such that, h = 15, . In most of
our algorithms in this chapter, a major computation involved is that of exponents.

In some places such computations have to be carried out for abelian factor groups

also. Motivated by this, we give the following definition.

Definition 4.2.3 Let G be an abelian group generated by aset S C (7. Let X C §.
Then for g € G, a tuple (I:|x € X) is called an X -exponent of g with respect to S,

ifforall z € X, 1 <1, < o(z) and there exists indices {l, |y € § — X} such that

g= H:lrES ‘Sl!"

In most places the set 5 of the above definition will be clear from the contlext.

In this case we omit the reference to S and simply say X -ezponent.

Now we prove a proposition which guarantees the uniqueness of exponents for
independent generator sets. This property of independent generator sets is crucial

for us.

Proposition 4.2.4 Let G be an abelian group and S be an independent generator

set for . Then for any g € G and X C S, the X -ezponent of g is unigue.

Proof. Notice that it is enough to show that for any ¢ € G, the S-exponent is
unique. Then it will follow from the definition that, for any X C S, the X-exponent

of g is also be unique. Let § = {g;,...,g,}. Suppose for some g € & the S-exponent

| of g is not unique. Let (4, ...,I.) and (#,...,l") be two S-exponent of ¢ such that

CHAPTER 4 Solvable Black-box Cmup Problems 32

l; # I!. Then g = gy'...g" = gi; ...gin. Since G is abelian, this implies that
it

g ' € (5 —{gi}) which is a contradiction to the fact that S is independent since
G e "

The usefulness of independent generator sets comes from the above proposition.
To make this clear, suppose § C B,, be a generating set for an abelian group.
Also, assume that the orders of all the elements in the set S are given. Then, it
1s easy to design an NP machine which on input (m, S, g) tests whether g € (S).
The machine basically guesses an S-exponent of g and verifies in polynomial time
that the guess is correct. Now if S is an independent generator set then the NP
machine will have a unique accepting path if and only if ¢ € (). This observation
along with the fundamental theorem (Theorem 4.2.1) indicates that computing an
independent generator set and the type of the abelian group may be sufficient for all
the three problems of our interest. Hence our focus is to design a deterministic oracle
algorithm for this computation. This algorithm is allowed to use an NP language
as oracle with the promise that the queries made to this oracle are 1-guarded. The
main functions of this NP language will be to aid the algorithm for exponent and
order computations. Nolice that the exponent computation is at least as hard as
computing the discrete logarithm. The key factor that helps to make 1-guarded

queries to these NI languages, is the above proposition.

In the next subsection, we concentrate on the construction of an independent
generator set for an abelian group from an arbitrary generator set. For application
to solvable groups, we will actually be interested in the construction of an inde-
pendent generator set for abelian faclor groups. But, for clarity of presenting the
methods involved, we first give a detailed design of a deterministic oracle algorithm
(we shall call it INDEPENDENTGENERATOR) which takes an arbitrary generator sei
for an abelian group and converts it into an independent generator set by making
l-guarded queries to an NP language. In next section, we explain how we can mod-

ify INDEPENDENTGENERATOR to incorporate the construction of an independent

CHAPTER 4 Solvable Black-box Graup Problems 33

generator set for abelian factor groups.

4.2.1 Constructing an Independent Generator Set
This subsection is devoted to the proof of the following theorem.

Theorem 4.2.5 Let B = {Bpn}mso be a group family. Then there ezists a deter
ministic oracle algorithm INDEPENDENTGENERATOR and a language L, € NP such
that INDEPENDENTGENERATOR takes (m, S) as input, where § C B,., and L, as
oracle. It ouiputs |(S)|, types of each Sylow subgroup of (S) and a set of independent
generators for (5) if (S) is abelian and outputs NOT ABELIAN if (S) is not abelian.
Furthermore, INDEPENDENTGENERATOR runs in time polynomial in |(m,S)|, and

makes only [-guarded queries to Ly,

As mentioned before, for the construction of an independent generator set, we
use a constructive version of the Theorem 4.2.1. So, before we zo into the details
of the design of INDEPENDENTGENERATOR, we briefly explain the steps involved
in the proof of the fundamental theorem. The first part of the theorem follows
from the Sylow theorems. The proof of the second part, is essentially the proof
of the following technical lemma. This lemma gives a greedy strategy to compute
an independent generator set from an arbitrary set of generators for any abelian

p-group. A proof of this lemma is given in the appendix at the end of the thesis.

Lemma 4.2.6 ([Bur55]) Let G be a finite abelian p-group. Let Fiif2... g be
1 independent elements of G of orders p™ p™ .. p™ respectively such that for
al 7, 1 < j < 4, the mazimum order of any element in the factor group
Gl{{91,92.--19;}) is p™* . Let g ({g1,92--.,0:}) be an element in the factor
group Gf({g1,92-..,4:}) of order p™+1. Further, let (Z1,@2,...,3;) be the unique
{91,92...,9:}-exponent of {g:_l_l}""m‘“. Then p™+ divides z; for | < j < i. Let
' yj =z;/p™t forl <7 <1 Then gy = glaygr 02" ...g7% is an element of G

of order p™+1 which is independent of {gi,g2...,4:).

i

CHAPTER 4 Solvable Black-box Gmup Problems 34

The first step for computing an independent generator set in INDEPENDENT-
GENERATOR, is the construction of generator sets for all the Sylow subgroups of
(5). Once we have the generator sets for each of the Sylow subgroups of {5}, then we
can use the method given by Lemma 4.2.6 to convert each of them into independent
generator sets. The union of the independent generator sets of its Sylow subgroups

forms an independent generator set for the group (S).

The next group-theoretic lemma shows how to construct generator sets for the
Sylow subgroups from a generator set of an abelian group. We give a proof of this

in the appendix.

Lemma 4.2.7 Let G be a finite group of ordern and let p5'p3? ... ptr be the complete
prime fuclorization of n. Let H be an abelian subgroup of G generated by the set

{91,92-..,0:} © H. Then for each j, the p;-Sylow subgroup of H is generated by
Xi={o"" " |1<i<s).

From the statement of Lemnma 4.2.6, it is clear that the two major computations
involved in the construction of an independent generator set are the exponent and
the order computations. We use a language L;; € NP precisely to aid INDEPEN-
DENTGENERATOR for these computations. Before we give the exact definition of
the language L;,, we state a group-theoretic proposition which will give us a method
for computing the order. Since we will be interested in computing the order in factor

groups, we state the proposition for factor groups. See the appendix for a proaf,

Proposition 4.2.8 Let G, and K be finite groups such that H, K < & and K is
a normal subgroup of H. Let |G| =n = pi' ...pT be the unique prime factorization
of the order of G. Then for any element hi in H/K, the order ol hiV) is of the
form p P2, where for all i; 1 < i < r, d; is the smallest integer j such lhat

(k™2 e K

This proposition essentially says that the computation of order can be done in

polynomial time, provided we have oracles for membership testing and factoriza-

CHAPTER 4 Solvable Black-box Cmup Problems 33

tion. Notice that computing large powers can be done in polynomial-time using the
method of “doubling”; by computing the squares successively., Next we define the
language L;, which INDEPENDENTGENERATOR will be using as oracle for order and

exponent computations.
Oracles for INDEPENDENTGENERATOR

Here we give the precise definition of the NP language L;;. We define L;, as a

disjoint union of two prefix languages L, and [, in NP.

Let L be a language in NP accepted by an NP machine M. The prefix lan-
guage of L with respect to M is defined as follows; Prefiry,(L) = {(z,y) | 3z €
L such that yz is an accepting path of M on input z}. I is easy to see that
Prefiry (L) € NP. Moreover, if L. € UP, then Prefiz, (L) € UP.

We use the following theorem [rom [FK92] for defining L;. Let PRIMES denote
the language consisting of prime numbers encoded in binary. We use the following

theorem from [FK92].
Theorem 4.2.9 ([FK92]) PRIMES € UP.

Now, consider the following language L.
]
LY S {(n,pryeesPieers e oyek) | Vi <k, p; € PRIMES; py < ... < pyi n = II#}
1=1

From the facts that PRIMES £ UP and for any integer there exists a unique prime
factorization, it follows that L] € UP. Let M; be a UP machine accepting L!.
Define L, = Prefiryp(Ly). We have Ly € UP. Notice that it is easy to design
. a deterministic oracle polynomial-time machine which can compute the complete
factorization of any integer by a prefix search using L; as oracle. We formally write

these observations as a proposition.

CHAPTER 4 Solvable Black-box Group Problems 36

Proposition 4.2.10 The language L] € UP. Let M| be a UP machine accepting
L. Let Ly = PrﬁﬁmM;{Li}. Then Ly € UP. Moreover, there erists a polynomial-
time deterministic oracle machine FACTOR which takes an integer as inpul and

compules its complete prime factorization using L, as oracle.

Now we will define the language Lo. Ly is defined as a prefix language of another

language Ly defined below. Let B = {B,, } ;>0 be a group family.

Ly Z {{m,8,9) | g € B, S C By, and Yh € S; 30y < o(h) such that g = Maesh™}

The following proposition essentially shows how to make 1-guarded queries to
s

Proposition 4.2.11 There ezists an NP machine M} witnessing L) in NP. More-
over, for those inputs {m, S, ¢) € LY, such that S is an independent generator set for

the abelian group (5), M} will have a unique accepling path.

Proof Sketch. Consider an NP machine M} which on input (m, S, ¢}, first
computes |B,,|, then guesses a string ([Bmlspryov.proers ...) and verifies that
B, = [T, p? by simulating the UP machine M] given by the previous proposi-

tion. Notice that, at the end of this computation, M} will have the complete prime
factorization of [By| on a unique path. Next, using the factorization of | B[, M}
computes o(/) for all A € 5 in polynomial-time. For this computation it uses the
method given in Proposition 4.2.8. That is, it computes d; for all i:1 <1 < r where
d; is the smallest j such that (g™)" = ¢. Since 1 < d; < g and ¢; is bounded
by a polynomial in m, for every i, each d; can be computed in time bounded by a
polynomial in the length of the input. After this computation, M} guesses indices
Iy for each h € S such that 1 < Iy < o(h) and accepts if g = I'I;LEgh“'. Note that
(lslk € 5) is an S-exponent of g. Now, if 5 is an independent generator set for
the abelian group (5}, by Proposition 4.2.4, the S-exponent of ¢ will be unique and

hence only one of the guesses of Mj leads to acceptance. |

CHAPTER 4 Solvable Black-box Group Problems a7

Before we proceed further, we make a few remarks about the language L. Firstly,
notice that if (5) is abelian then L is same as Membership Testing (for general
groups this is a “weak Membership Testing” oracle since L), € Membership Testing).
This can be a little confusing since one of our goals is testing membership. But,
though we will be using this language as an oracle, we will be very careful about
accessing this oracle. We will always make sure that whenever a query (m, S, g) is
made to this oracle, S is an independent generator set for (S). This is acceptable

for us because, from the above proposition, such queries will be 1-guarded.

Now define L; as Prefiryg(LY). Then L, € NP. Let M, be the corresponding NP
machine accepting Ly. Given g and an independent generator set S for the abelian
group (S5), using Ly as oracle we can prefix search for the X-exponent of g, where
X € 5. For each such query made to Ly, M, will have at most one accepting path.
Thus, if S is an independent generator set for an abelian group (&, then for any
X € 5and g € G, the unique X-exponent of g can be computed in deterministic

polynomial-time by making only I-guarded queries to L,. These observations we

state as a lemma.

Lemma 4.2.12 [et [, = Fi‘ﬂﬁ;t!M;{L’E}. Then Ls & NP, Moreover there exists a
deterministic polynomial-time oracle algorithm EXPONENT which takes (m, 5, X, g}
as input and Ly as oraele such that, if the input satisfies the promise that § is an
independent generalor set for the abelian group (§), X C S and ¢ € (5), then
EXPONENT outputs the unique X-exponent of g. Furthermore, for such inputs FX-
PONENT makes only I-guarded queries to the oracle. The behavior of EXPONENT is

unspecified if the input does nol satisfy the promise.

In the next lemma, we give a deterministic oracle algorithm ORDER for comput-
ing the order of any element in a factor group. ORDER uses the method described
in the Propesition 4.2.8 for this computation. It uses the UP language L, for factor-

. ization. Again, Membership Testing is needed for computing the order in a factor

CHAPTER 4 Solvable Black-box Group Problems 38

group. But we will be computing the order in a factor group H/K only when an
independent generator set for K is already computed. So once again we can use the

language L} in a 1-guarded manner for testing membership.

Lemma 4.2.13 Let B = { By, }wms0 be a group family. Then there exists a deter-
ministic polynomial-time oracle algorithm ORDER which takes as input (m, g, X, Y},
and 0L, U1LY, as oracle such that, if the input satisfies the promise that X,Y C B,,,
Y is a normal subgroup of X, g € (X) and Y is an independent generator sel for
(Y), then ORDER outpuls o(g{Y)). Furthermore, for such inputs ORDER makes

only l-guarded queries to the oracle. The behavior of ORDER is unspecified if the

input does not satisfy the promise.

We have defined the languages that we will be using as oracles for all the algo-
rithms in this chapter. We can unify these languages into a single language L;; by
defining f;; = 0L, U1 Ly (disjoint union of L, and L;). Notice that all the languages
Ly, LY, and L, are subsumed by L,,. Sometimes, for clarity of presentation, we may

split L,, into its component languages.
The Algorithm INDEPENDENTGENERATOR

Now we are ready to give a formal description of INDEPENDENTGENERATOR and

prove that it has the behavior as given in Theorem 4.2.5.

We first explain how the algorithm works and then give a formal description of
it. Algorithm INDEPENDENTGENERATOR on input (m, S), first checks whether (5)
is abelian, This can be done easily by checking whether gig; = g;9: for all gi,g; € 5.
Then it computes |B,,| and using the algorithm FACTOR as subroutine computes
the complete factorization of |B,,|. Knowing the factorization pi*p3* ... p& of |Bal,
it can compute a generator sets for all the Sylow subgroups of {S) using the method

given in Lemma 4.2.7. Let X, denote the generator set thus constructed for the

p;-Sylow subgroup.

CHAPTER 4 Solvable Black-box Gmup Problems 39

The next step of INDEPENDENTGENERATOR is to convert the generator sets of
the Sylow subgroups into independent generator sets. Lemma 4.2.6 provides a greedy
strategy for this. Consider the pj-group (X;). Let it be of type (m1,ma,...,m,).
Let g1,92...,9: be 1 independent elements of (X;) so far constructed such that g
is of order pi** for 1 < k < ¢. Suppose we could get an element gl,, € (X;)
such that gi,,({g1,92...,4:}) is of maximum order p™+ in the factor group
(X;)/{{g1,92-..,9:}). Then by the method of Lemma 4.2.6, we can convert gy, to
gi+1 € (X;) of order p™+' which is independent of {g1,92...,0:} as follows. First
compute the {g1,g2...,0:}-exponent (zy,zs,...,7;) of {g,ﬂ_ﬂl”jﬁﬁI using the algo-
rithm EXPONENT as subroutine. Then compute g1 = gl,,07 % g2 % ... g7 " where
Y = @ /p™+ for 1 < k < i Then by Lemma 4.2.6, g;4, is an element of (X;) of

order p™+! which is independent of {g;, g, ...,:}, there by incrementing the partial

independent set by one.

For implementing the above method, we need to compute an element gf,, €
(X;) and p™+' such that g/ ,({g1,92...,0:}) is of maximum order p™+ in the

factor group (X;)/{{g1,92...,4}). For this the following two propositions can be
employed.

* The first proposition is an ebservation which is crucial for our algorithm. It says
that, for an abelian p-group, any generator set contains an element of maximum
order among all elements of the group. So for getting an element of maximum

order, we need only to search in the generator set.

Proposition 4.2.14 Lel G be an abelinn p-group generated by a set S. Let

(mi,ma, ... ,m,) be the type of G. If g € S is an element of mazimum order among

the clements of S, then g is of order p™ .

Proof. (' is a group of prime power order. Since (my,my,...,m,) is the type of G,
the maximum possible order of an element in @ is p™. If all elements of § are of

order less than p™ then every element of G will be of order less than p™ since §

F

CHAPTER 4 Solvable Black-box Gmup Problems 40

The next propesition allows us Lo apply the above observation for abelian factor

groups. It follows from the group-theoretic fact that for any group G, G is isomorphic

to G/H » H where H is a normal subgroup of G.

Proposition 4.2.15 Let G be an abelian p-group of type (mi,my,...,m,). Lel
H < G such that H is of type (my,mae,...,m;). Then G/H is of type

(Miga, Mgz, ..., 7,).

Finally, we give a formal description of the algorithm INDEPENDENTGENERA-
TOR. We then argue that the behavior of the algorithm is as piven in the Theorem.

This will complete the proof of Thearem 4.2.5.

INDEPENDENTGENERATOR(m,)
if 3g;,9; € S such that g;9;9:7'g;7" # ¢
then output NOT ABELIAN:
no— |Bul;
PiPs ... pir +— FACTOR(n);
fori:1 <i<y
do Compute the generators set X; for the p;-Sylow subgroup;
/* Using Lemma 4.2.7 */
end-for
fori:1<:1<r
do 5; — & N; — 1;iT; +— ()
/* S stands for the set of independent generators
of pi—Sylow subgroup so far constructed */
while 3 & € X; such that (m, S;, h) & L}
do Find an element hi; € X; such that
p:’ +—ORDER(m, h;, X;, 5;) is maximum;
(%, | g € 5¢) «— EXPONENT(m, 5;, 5i, h;);

b | ek i fomd 1 s
o G R La R = DA 00 =1 TN e LS D

17 S o= 8:U {h; 1 es,9770/7);

18 N; — p:’.N.-;

19 Lia=Tol ()

20 end-while

21 end-for |
22 Output UT_,S; as the independent generator set;

23 Output Il <<, N; as the order;

24

Output T; as type of the p;-Sylow subgroup of (S) for 1 <7 < r.

CHAPTER 4 SD]‘-"&I]]E BEE}.C]&-IJCIX GI‘GUP Pl’ﬂi'}l";‘l'ﬂs

41

It is clear from the above discussions and the description of the algorithm that
INDEPENDENTGENERATOR on input (m, 5) outputs NOT ABELIAN if (S) is not

abelian and outputs an independent generator set, order and type of (S) otherwise,

in time polynomial in [(m, S})|.

Now, we will see that the algorithm makes only 1-guarded queries to I; 4. The
algorithm makes oracle calls in lines 4,13,15 and 16. In line-4, it makes a call to
the language L; through the subroutine FAcTOR which is 1-guarded since L, € UP.
Now, it is clear from the above discussion, that whenever the algorithm enters the
while-loop of line-13,the set 5; will be a set of independent elements. Hence, at
line-13, the query (m, S;, k) to L} will be 1-guarded from Proposition 4.2.11. The
calls to L;; at lines 15 and 16 are through the subroutines ORDER and EXPONENT,

So these calls also will be 1-guarded since the generator set S involved in these

subroutines calls are independent (see Lemma 4.2.12 and 4.2.13).

Upper Bounds for Abelian Group Problems

Here we shall illustrate how the algorithm INDEPENDENTGENERATOR can be mod-
ified to get upper bounds on the counting complexity of some of the problems over

abelian black-box groups. Later in the chapter, we will extend these upper bounds
for solvable groups.

Theorem 4.2.16 Ouver any group family, Membership Testing, Order Verification,
‘and Group Isomorphism for abelian black-boz groups are in SPP. Henece these prob-

lems are low for PP, C_P and the Mod,P for k > 2.

Proof. Firstly, we can assume that the groups encoded in the problem instance

are abelian for all the three problems. Now consider Membership Testing. Let B
be a group family. Consider an oracle NP machine M, which on input {m, S, g)
converts the set 5 to an independent generator set if S generates an abelian group, by

simulating the algorithm INDEPENDENTGENERATOR on input {m, S). Let §' be the

CHAPTER 4 Solvable Black-box Gmup Problems 42

independent generator set thus constructed. Then M., makes one query (m, 5", g}
to the language L; and it accepts, producing a gap=1, if the answer is ‘YES’, If
the answer to the query is ‘NO’ then M branches into an accepting and a rejecting
path, thus producing a zero gap. So, from Theorem 4.2.5 and Proposition 4.2.11, it
follows that M, runs in time polynomial in the length of the inpul and makes only
l-guarded queries to L. Since (m,S’,g) € L, if and only if ¢ € (5" = (8), gap

produced by M, is 0 if g & (5) and gap is 1if g € (S). Now from Lemma 2.0.2, it
follows that Membership Testing is in SPP.

To show that Order Verification is in SPP, notice that one of the outputs of
INDEPENDENTGENERATOR on input (m,S) is |(S)|. Hence, it is easy to modify
INDEPENDENTGENERATOR to an oracle algorithm M,, which on input {m, S, n)
produces zero gap if n # |(S)| and gap 1 if n = |(S)|. Hence, again {rom Theo-

rem 4,2.5 and Lemma 2.0.2 it follows that Order Verification is in SPP.

Finally we show that Group Isomorphism for abelian groups is in SPP. Let
(m, 51, 52) be an instance of Group Isomorphism. Sy and S, generate abelian sub-
groups of B,, € B. Firstly, observe that any two abelian p-groups are isomorphic
if and only if their types are identical. This follows from the fact that the type
uniquely determines an abelian p-group up to isomorphism [Bur53]. Furthermore,
two abelian groups {5:) and (5;) are isomorphic iff [(S,)| = [(S2)], and for every
prime factor p of [(51)], the p-Sylow subgroup of (S;) is isomorphic to the p-Sylow
subgroup of {Sz). Thus, in order to check that {S,) and (S,) are isomorphic, it
is only required to verify that the p-Sylow subgroups of (57} and ($,) respectively
have identical types, for cach prime factor p of [(S1)]. Hence, from Theorem 4.2.5

and Lemma 2.0.2 it follows that Group Isomorphism is in SPP, |

CHAPTER 4 Solvable Black-box Cmup Problems 43

4.3 Solvable Groups and Canonical Generator
Sets

In the case of abelian groups, we have seen that the existence of an independent
generator set played a crucial role in proving upper bounds {or various computational
problems. Motivated by this, we abstract out the essential structure that we need in
a generator set which will help us in proving similar upper bounds for other classes of
groups. More precisely we define the notion of eanonical generator set for arbitrary
classes of finite groups as a generalization to the notion of independent generator

sets. Then we show the existence of canonical generator sets for the class of solvable
groups.

Definition 4.3.1 Let B = {B,, }ms0 be any group family. Let C be a subclass of B.
The class of groups C has canenical generator setsif for every G € C,if G < B,, then
there is an ordered set S = {¢1,92,...,¢s} © G such that § generates G and each
g € G can be uniquely expressed as g = gl' g2 .. g, where 1 <1 < o(g),1 <i<s.

Furthermore, s < g(m) for a polynomial ¢. S is called a canonical generator set for
G.

Irom the above definitions, it is clear that if S is an independent generator set
for an abelian group ¢ then each r € G can be uniquely expressed as a product
Miesg's for 1 < 1, < olg), and it holds that |S| < log(|G]). Thus for an abelian

group, an independent generator set is a canonical generator set.

Note that the ordering of the elements of the canonical generator set is irrelevant
for abelian groups since products commute. However, for classes of groups which are
not abelian the ordering of elementsin a canonical generator set has to be prescribed.

Now we shall extend the notion of exponents to any class of groups with canonical

generator sets.

CHAFTER 4 Solvable Black-box Gmup Problems 44

Definition 4.3.2 Let B = { B, }su>a be any group family. Let C be a subclass of B
which has canonical generator sets. Let G be an element of C. Let S be a canonical
generator set for G and let X € 5. Then for g € G, the tuple (l.|z € X) is called
the X-exponent of g with respect to S if for all z € X, 1 < I, < o(z) and there
exists indices {I, | y € § — X} such that g = [],c55".

From the definition it follows that for ¢ € G the X-exponent of g is unique.

We now show that the class of solvable black-box groups for any group family has

canonical generator sets,

Lemma 4.3.3 Let B = { B, }mso be a group family such that |B,,| < 29™) for a
polynomial q. Let G < B, be a finile solvable group and G = Gy > G > ... >

Gr-1 = Gy = e be the commutator series of G, Let T = {hy, ki, ..., his. } be a set

of distinel cosel representatives corresponding to an independent set of generators
Jor the abelian group H; = Gi_1/Gi. Then for any i, | <t < k, the ordered sef’

9 = L,—Tj forms a canonical generalor sel for the group (; and |5;| < q(m). Thus

the class of solvable groups from B has eanonical generator sels,

Proof. Let B = { B} >0 be a group family such that |B,,| < 24" for a polynomial
¢ Let G < By, be afinite solvable groupand G =Go > G > ... > Gy > G = {e)
be the commutator series of . Recall that subgroups of solvable groups are solvable.
We prove by induction on & — ¢, that foreach i:1 < < k, Uff:.‘+1 1} 15 a canonical
generator sel for ;. For the base case, when k& — 1 = 1 it clearly holds, since Gy
is an abelian group and T} is an independent set of generators for ;. Suppose,
as induction hypothesis, that Uf=i+1 T; is a canonical generator set for ;. Consider
the group G_q. The factor group G;_;/G; is generated by the independent set

of generators X; = {haGi haGy. .. by, G}, An element ¢ € Gi_; belongs to
exactly one right coset in G, /. Let that right coset be hG;. Thus ¢ = hg' for

"The elements of the set Uf::ﬂ' are ordered on increasing values of the index j, and lexico-
graphically within each set T,

CHAPTER 4 Solvable Black-box Group Problems 45

some g' € Gi. Now, since X; is an independent generator set of the abelian group
Gi-1/G;, there are unique indices {liy, liz, ..., /i, } such that hG; = hf—‘i‘ h:]_"l' ;.
Consequently, {li1, li2,..., i, } are unique indices such that ¢ = hg' = hf.*]i . _.Ff”‘" "

ik, G
where g € Gi. By induction hypothesis, [J5_;,, T} is a canonical generator set

for G, implying that g" can be uniquely expressed as a product of powers of the
elements in Ujf::- +1 15, We have proved the induction step that every ¢ € G,_; can be

uniquely expressed as a product of powers of the elements in Uf_:- T;. Thus, Ut

i=i

T
is a canonical generator set for Gi_;.

Finally we show that g(m) bounds ||JS, Ti|. Observe that since for each i,

1 <1 < k the set X; is an independent generator set for the quotient group
Gi_1/Gi, it holds that |Tj| < log(|Gi-1/G;]). Therefore, it follows that |UL, T} <
Licicr log(|Gi1 /Gil) = log(|G]) < ¢q(m) since |G| < 290m), -

In the rest of this section, we will consider the problem of constructing a canon-
ical generator set from an arbitrary generator set for a solvable black-box proup.
Since from Lemma 4.3.3 a canonical generator set for a solvable group is an ordered
collection of independent generator sets for the abelian factor groups of the cornmu-
tator series of the solvable group, in the next subsection, we consider the problem

of computing an independent generator set for an abelian factor group.

4.3.1 Constructing an Independent Generator Set for
Abelian Factor Groups

Here we will design a deterministic oracle algorithm FACTINDGENERATOR which
takes generator sets for two groups G and H such that # is normal in & and G/H

is abelian, and computes coset representatives for an independent generator set for

G[H. More precisely, we prove the following theorem.

Theorem 4.3.4 Let B = { By }mso be a group family. Then there exists a determin-

istic ovacle algorithm FACTINDGENERATOR such that FACTINDGENERATOR takes

CHAPTER 4 Sﬂival:le Hlac]c—]mx Gmup Prﬂblems A6

m,S,Y) as input, where S,Y € By, and L, as oracle. Suppose the input (m,S,Y
P o P

satisfies the following promise:

1. Y 1s a canonical generator set for the solvable group (Y).

2. {Y) is normal in (S) and (S)/(Y) is abelian.

Then FACTINDGENERATOR outputs |(S)/(Y)| and a set of independent genera-
tors for (S)/(Y). Furthermore, FACTINDGENERATOR runs in time polynomial in
|(m, 5,Y)|, and makes 1-guarded queries to L;,. The behavior of FACTINDGENER-

ATOR is unspecified if the inpul does not satisfy the promise.

Notice here that FACTINDGENERATOR is using as oracle the same NP language

L;, defined in the previous section.

Let us recall the definition of the language I, which is one of the main compo-
guage L. F

nents of L;,.

Ly £ {(m, 5,9) | g € By S € B, and Vh € 5: 31, < o(h) such that g = Myesh!™)

' Now we make an importani observation that for an instance (m, S, g} of L}, il
S is a canonical generator set of a solvable group (S) then (m,S,¢) € LY if and
only if g € (§). That is, if a solvable group is presented by a canonical generator
set, then Membership Testing can be done using the language L. Moreover, the
machine M; (given in Proposition 4.2.11) will have at most one accepting path on

such instances. We state these observations as a proposition.

Proposition 4.3.5 Let {m,S5.g) be an instance of LY such that § is a eanonical
generator for the group (S). Then (m, S, g) € L, if and only if g € (S). Moreover,
for those inputs (m, 5, g) € L), such that S is canonical generator set for the group

(5), M3 will have a unigue accepting path.

CHAPTER 4 Solvable Black-box Cmup Problems 47

Because of the above property of L, we have lemmas identical to Lemmas 4.2.12

and 4.2.13 for computing order and exponents over solvable groups also. We state

them here.

Lemma 4.3.6 Let B = { B, }mso be a group family. Then there ezists a determin-
1stic polynomial-time oracle algorithm EXPONENT which takes (m, S, X, g) as input
and Lz as oracle such that, if the input satisfies the promise that 5 is a canonical
generator set for the solvable group (S), X € § and g € (S), then EXPONENT
outputs the unique X-exponent of g. Furthermore EXPONENT makes only 1-guarded

queries lo the oracle. The behavior of EXPONENT is unspecified if the input does

not satisfy the promise.

Lemma 4.3.7 Let B = {B,, } 0 be a group family. Then there exists a determinis-
tic polynemial-time oracle algorithm ORDER which takes as input (m,g, X,Y), and
0Ly U 1L, as oracle such that, if the input satisfies the promise that XY € B,,,
Y is @ normal subgroup of X, g € (X) and Y is a canonical generator set for (Y),
then ORDER oulputs o{g(Y)). Furthermore ORDER makes only I-guarded queries

to the oracle. The behavior of ORDER is unspecified if the input does not satisfy the

promise.

Finally we come to the design of FACTINDGENERATOR. The design of FAcTIND-
GENERATOR follows very closely that of INDEPENDENTGENERATOR. Observe that
the Lemma 4.2.6, 4.2.7 and Proposition 4.2.14, which are important in the design of

INDEPENDENTGENERATOR, are purely group-theoretic and hold for abelian factor

groups also.

Before giving a formal description of FACTINDGENERATOR, we shall briefly ex-

plain how the algorithm works.

Let B be a group family. Let G < B,, be a group and H be a normal solvable

subgroup of G such that the factor group G/H is abelian. We are interested in

computing an independent generator set for G/H. Let the group G/H be presented
by a set X' of coset representatives of generators of G/ H and a canonical generator
set ¥ for H. It is clear that if prime factorization of |B,,| is known, then using
method given by Lemma 4.2.7 we can compute a set of coset representatives for
a generator set of the Sylow subgroups of G/H. So we shall assume that (7 [H is
an abelian p-group for prime p. We use the method given by the Lemma 4.2.6 for
converting X into a set of representatives for independent generator set for G/ H.
Let G/H be of type (my,.

ments of G/ H of orders p™ .

oym,) and g1 H, ..., g;:H be a set of independent ele-

.. p™ respectively. Firstly we have to find an element

941 € X such that gl # will be of order p™+! in the group ({g1 H,...,¢:H}). Then
for getting an element g4/ independent of ¢, H, . .. ,g:H of order p™+!' we have

Lo cumPUtE? t]'.lﬁ {g’lfj.l - :FiH}'ExpDnent C‘f l:_i}'s"'_] ff}?mr'pl)

Notice that, we have to do order and exponent computations over factor ETOups
of G/H which itsell is a factor group. Next we state an isomorphism theorem by
which we can avoid computations over factor groups of factor groups. The theorem

is elementary and can be seen in any standard text book in group theory [Hal39,
Bura5].

Theorem 4.3.8 (Isomorphism Theorem) Let H and K be normal subgroups of
Gand H < K. Then K[/H 1s normal in G/H and the map gH(K/H) — gK from

the fuctor group (G/H)[(K[/H) to G/K is an isomorphism of (G/H)/(K/H) to
G/K.

Nexl we state a proposition which will help us in using the algorithm ORDER

for order computations. The proof is implicit in the proof of Lemma 4.3.3 and is

omitted here.

Proposition 4.3.9 Let H,G be solvable and H be a normal subgroup of G such

'I:.imt G[H is abelian. Let X C G be a sel of coset representatives of an independent

CHAPTER 4 Solvable Black-box Grnup Problems 48

s

CHAPTER 4 Solvable Black-box Gmup Problems 49

generator set for GfH and Y be a canonical generator set for H. Then the ordered

set S = X UY is a canonical generator set for G, where elements from X are before
these from Y in S.

From the above two results, it follows that, the order of any element gH €
G[H in the group ({g H,...,g:H}) is same as the order of g € G in the group
({g1,--.,:}UY). So the algorithm ORDER can be used to compute this. Moreover,

since {g1,...,9} UY is a canonical generator sct, the ORDER makes only 1-guarded
queries to LY.

Now we see how we can use the algorithm EXPONENT to compute exponents.

Proposition 4.3.10 Let (i be a solvable group and H < G be a normal subgroup
of G such that G/H s abelian and Y be a canonical generator set for H. Lei
ﬁ_{91H1...?g,-H} be a sel of independent elements of G/H. Then for any gl &
W H,....aiH}). the {g:H,..., g:H}-exponent of gH is same as the {g,

coa i }-
ezponent of g with respect to the canonical generator sel {gy,..., g} UY.

Proof. Since {g,H,...,g;H} are independent, it follows that the {a:1 H,

- gif }-
exponent of gH is unique. Let it be (I, .

oydi). Then gH = (g, H)" ... (g;H)". This
‘means that there is a unique * € H such that g = gy’ ...gf";r. The proposition

follows. m

It follows that the algorithm EXPONENT can be used appropriately for the com-

putation of exponents over a set of independent elements of a abelian factor group.

The rest of the computation is exactly same as that in INDEPENDENTGENER-
ATOR. Finally we give the description of algorithm FACTINDGENERATOR. The

roof that the algorithm behaves as given in Theorem 4.3.4 is very similar to that

CHAPTER 4 Sc[va,ble Bla.c]-:—]mx Group PI‘CIEIIEII‘[E

FACTINDGENERATOR(m, 5, Y)

1 n+«—|Bul|;

2 pi'pd...pf" + FACTOR(Rn);

3 fori:1<i<r

4 do Compute a set of coset representatives for the generator

5 set X for the p;-Sylow subgroup of G/H;

f /¥ Using Lemma 4.2.7 */

7 end-for

§ fori:1<i<r
9 do 5 — N — LT « ()
/* 5; stands for the representatives for a set of independent
generators for p;-Sylow subgroup of (/H so far constructed */
12 while 3 & € X; such that (m,S;UY,h) & L
13 do Find an element k; € X; such that

14 p,{’ «—ORDER(m, hj, X;, S; UY') is maximum;
15 (z, | 9 € 5i) — EXPONENT(m, 5, Y, k;);

16 Si — S;U {hlles,g~50/7 };

17 Ny p? N T; = T U (1)

18 end-while

19 end-for

20

OQutput UL, 5; as representatives for an independent generator set for G/ H;
21 Output [l<i<,N; as the order of G/ H;

Output T; as type of the p;-Sylow subgroup of (S)/(Y) for 1 < i < r,

4.3.2 Constructing a Canonical Generator Set

Now we are ready to design a deterministic oracle algorithm (we shall call it CANON-
ICALGENERATOR) which takes an arbitrary generator set of a solvable group & and
‘converts il into a canonical generator set for . The algorithm makes queries to
the language L;, defined earlier in this chapter. Apan, for applications to our
upper bound proofs, we will make sure that CANONICALGENERATOR makes only

l-guarded queries to L;;. We state the behavior of CANONICALGENERATOR as a

theorem. This subsection is devoted to the proof of this theorem.

?ﬁi‘henrem 4.3.11 Let B = {Bu}wmzo be a group family. Then there is a determin-

wstic oracle algorithm CANONICALGENERATOR such that CANONICALGENERATOR

CHAFTER 4 Solvable Black-box Gmup Problems al

takes (m, S) as input and L;, as oracle, and outputs a canonical generator set for
(S) if (S) 15 solvable and outputs NOT SOLVABLE otherwise. Moreover, CANONI-
CALGENERATOR runs in time polynomial in the length of the input and makes only

I-quarded queries to Li,.

Before going into the formal proof of the theorem, we give the basic ideas behind
the proof. Firstly we shall see the usefulness of the algorithm FACTINDGENERATOR
(Theorem 4.3.4) in the design of CANONICALGENERATOR. Let S be an arbitrary
generator set for a solvable group G < B,,. Let G = Gg > ... > G; > ... >
Gy = {e} be the commutator series of G. (Notice that k& < p(m) where p is
the polynomial bounding the length of the encoding of elements of the group in
the group family. This follows from the fact that |B,| < 2*) and Lagrange's
theorem.) From Lemma 4.3.3, a canonical generator set for a solvable group is
an ordered collection of independent generator sets for each abelian factor groups
Gi1/Gi. So, suppose we have given a set of generators S; for each of the groups
(; in the commutator series, then we can construct a canonical generator set for
G by a series of simulations of FACTINDGENERATOR on inpuls (m,S;_;, 5}, for
k> 1 = 1, starting from i = k and decrementing ¢ by one after each simulation.
Here §! is the output of FACTINDGENERATOR on the previous simulation. So we

have the following theorem.

‘Theorem 4.3.12 Let B = { By, }uz0 be a group family. Then there is a delerminis-
tic oracle algorithm CANONIZE such that CANONIZE takes (m, Sy,5:), 5; C By,
‘a5 input and L, as oracle. Suppose the input satisfies the promise that (S} is solv-
‘able and for all 0 < ¢ < k, S, generates the i commutator subgroup of (So). Then
CANONIZE outputs canonical generator sels for (S;) for 0 < i < k. Moreover, CAN-
ONIZE runs in time pofy?;,amz'ﬂf in the length of the input and makes only 1-quarded

quertes to L. The behavior of CANONIZE is unspecified if the input does not safisfy

the promise.

e

CHAPTER 4 Solvable Black-box Group Problems 52

In view of the above theorem, it is clear that the problem of computing a canon-
ical generator set for any solvable group essentially boils down to the problem of
computing a short generator set for the commutator subgroup of the group. The
following proposition provides a method for this computation. A proof of this is

::_Ei_VEH in the appendix.

Proposition 4.3.13 Let G be a finite group generated by the set 5. Then, the
commutator subgroup of G is the normal closure of the set {ghg™*h™' | g,h € 5} in
G.

The above theorem gives us the following easy polynomial-time oracle algorithm
COMMUTATORSUBGROUP which takes (m, S) as input and Membership Testing as

‘oracle and computes a generator set for the commutator group of (S).

COMMUTATORSUBGROUP(m, S)

1 X —{ghg™'h | g, he S}

while Jdg € 5; = € X such that (m, X, gzg™"') € Membership Testing
do X «— X Uygzg™?;

end-while

Output X.

It easily follows from Proposition 4,3.13 that the algorithm CoMMUTATORSUB-
|GROUP, on input (m, 5) outputs a generator set for the commutator subgroup (§)'.
Let X; be the set X at the beginning of the +*" iteration of the while-loop. If, after
the i*" iteration, no new element is added to X;, then X, is output. Otherwise, if
_X,-H = X;U{g}, it [ollows from Lagrange's theorem that |X.;,| = 2|X;|. Hence the
‘number of iterations of the while-loop is bounded by p(m), the polynomial bounding

the length of the encoding of the elements of the group in the group family.

A straightforward adaptation of the above algorithm for computing a generator

set for the commutator group seems difficult because of the queries to Membership

CHAPTER 4 Solvable Black-box Group Problems 53

Testing oracle. Suppose we can make sure that whenever a query (m, X, g) to Mem-
bership Testing is done, X is a canonical generator set for the solvable group (X),
then we can replace Membership Testing oracle by L} and from Propesition 4.3.5
it will follow that query y will be l-guarded. We make sure this promise, by con-

structing the commutator series incrementally.

The algorithm CANONICALGENERATOR works in stages. Let §7 denote the
partial generator set for the " element in the commutator series of Gy constructed
at the end of stage (j—1). At stage ! we have S} = S and S} = {e} for 1 <i < p(m),
where p is the polynomial bounding the length of any element in the group family.
Input to Stage 7 is the tuple (i, 7,..., 5,) such that for [> 7, §7 is a canonical
generator set for the solvable group {.S'f} During the computation of this stage,
we will make sure that for all the queries made to L;;, the groups involved in the
queries will be only those for which a canonical generator set has been constructed,
thereby making these queries l-guarded. At the end of the stage, we update each
.5';' to Sfﬂ such thal .S’f“ is still a subgroup of Gy, the i commutator subgroup of
(. To keep the running time within polynomial bound, we make sure that after
p(m) stages, there exists &, such that the &* partial commutator subgroup doubles
in size. Then from Lagrange’s theorem, it will follow that the commutator series

will be generated after p(m)” stages. We now formally prove the theorem.

Proof. (of Theorem {.3.11) We first give a formal deseription ol the algorithm

CANONICALGENERATOR and then prove the correctness.

CANONICALGENERATOR uses oracle algorithms CHECKCOMMUTATOR and
'CANONIZE as subroutines. CHECKCOMMUTATOR takes as input (m, X,Y) such
that XY C B, and checks whether (Y} contains the commutalor subgroup of
(X). This is done by first checking whether the commutators of all the elements
in X are in {Y'). If this is not the case, the algorithm returns such a commutator,

Otherwise, it further checks whether (¥} is normal in (X). Notice that, to do this

it is enough to verify that ¥z € X1y € YV, zyz~' € (¥). If this condition is false,

CHAPTER 4 Solvable Black-box Gmup Problems o4

the algorithm returns an element zyz~' @ (Y'). If both the conditions are true, it

follows from Proposition 4.3.13 that (}') contains the commutator subgroup of (X).

CHECKCOMMUTATOR makes oracle queries to the language L. (weak Mem-
bership Testing, defined in the section 4.2.1) for testing membership in (V). It
should be noted that, for CHECKCOMMUTATOR to work as intended, ¥ should be a
canonical generator set for the group (¥). We will make sure that CANONICALGEN-
ERATOR makes calls to CHECKCOMMUTATOR with (m, X, Y} as input, only when

Y is a canonical generator set for the solvable group (Y). A formal description of

the subroutine CHECKCOMMUTATOR is given below,

CHECK COMMUTATOR(mm, X, Y)
1 if 324,27, € X, such that (m,Y, 212027 2;") & LY,
2 then g « zyz~'y™!;

3 Return g.

4 else if dz € X,y € Y such that {0, V,zyz~") & L}

5 then g «— zyz~

fi Return g.

ff else ¢ «— YLES;

8 Return g.

9 end-if

0 end-if

The subroutine CANONIZE is the algorithm promised by Theorem 4.3.12 for com-
puting a canonical generator set for a solvable black-box group (7, given an arbitrary
generator set for the commutator series of (. We use the notation [CANONIZE()]

fo denote the generator set produced by CANONIZE for the ™ element Gy, in the

commutalor series of (.

Following is the description of the algorithm CANONICALGENERATOR. CANONI-

CALGENERATOR makes queries Ly, through the subroutines CANONIZE and CHECK-

COMMUTATOR.

CHAFTER 4 Solva.}:le Hlac]{—box Gruup P'mi:riema a5

CANONICALGENERATOR(m, S)
Stage 0
57+ 8; 8 — {e} for 1 < i < p(m);
1— 1;) .
Stage j (Input to this stage is (i, 57,...,5),.,))
ko1 o
g +— CHECKCOMMUTATOR(mn, 51, 51,);
while g # YES
- do Sy « S{U {g};
ka—k+1;
if k& = p(m)
then Output NOT SOLVABLE.
end-if -
g ¢« CHECKCOMMUTATOR(m, 57, Si.,);
end-while
if k=1 o -
then Output [CANONIZE(S], S3,..., S -
else SIS for1 << (k- 1)
S« [CANONIZE(SE, 5411 -, Shm))i for k < 1< p(m);
te— (k—1);
golo Stage j + 1;

end-if

Now we are ready to prove the correciness of CANONICALGENERATOR. We first

prove a series of claims, from which the correctness will follow easily.

Claim 4.3.13.1 In the algorithm CANONICALGENERATOR, af any stage 3, it holds
Mhat Vi; 1 < & < p(m), {Sh,) < (S7)".

Proof. We prove this by induction on the stages. For the base case, when j = (0, it

isclear that the claim holds. Assume that it is true for (j — 1)*" stage, Now consider

Case 2. S = §/7'u {g:}: S, = §/7!. From the induction hypothesis, it follows

CHAPTER 4 Solvable Black-box GI‘DUP Problems o

that (5},.) = (S) < (SI7) < (2"

Case 3. 5! = &7, 51, = S5 U {gis1). The element giy; is added to the set
Si 770 at line-8 of the algorithm, where gi1; is the clement returned by the subroutine
CHECKCOMMUTATOR. Suppose gi4y is a commutator of the set 7 = S7='. Then
gis1 = zyz~'y"" for some elements z,y € S!. TFrom induction hypothesis and
-the definition of the commutator subgroup of a group, it follows that (,_H} =
{S,H U{gi+1}) < (SI)'. On the other hand, suppose gi;; is of the form zyr~! for
somez € S7 = 57" and y € Si'. We have, (S/71) < (S771) = (§7Y. But we know
that (S?)’ is normal in {S?). So, in particular gis1 € (67)" and hLence { 1)< (S,
Case 4. 57 = 577" U {g:}: f+1 S+1 U {gi41}- From induction hypothesis, we
have (Si') < (S} It follows that (S/7l) < (Si™' U {@:)}). Now using a very
ﬂimllar argument as in Case 3, it is easy to show that (S7,,) < (8)",

Hence the claim.

Ula:m 4.3.13.2 In CANONICALGENERATOR, the input (i, 87,57, .. 55{,,1;.? to

any stage 3, is such that for all i < 1 < p(m), S} is a canonical generator for the

solvable group (S57).
J

Proof. 'We prove this by induction. For 7 =1, it is easily verified that the claim
is true. Let us assume that the claim is true for j stage. Let (1, S7,....! o))
be the input to the j** stage. Let the while-loop is exited through line-14 after |
E_J:a.tions with the value of g="YES". (If the loop is exited through line-11, then
there are no more stages to be considered). Then the value of k = i 4 { and for
i:I- k, 57 is not updated inside the loop, and hence by induction hypothesis, it
remains a canonical generator set for the solvable group (/). Since the value of
g= CHECKCOMMUTATOR(mm, S}, 5.,) is “YES’ we have that (5]} < (S1,,). From
(Claim 4.3.13.1 we have (S1,,) < (S1)". Hence (S1,,) = (S2)'. It follows that (S7)
15 solvable and S7 for k <t < p{m) are generator sets for the commutator series of
} Hence at line-18, CANONIZE will output a canonical generator set for each of

the elements in the commutator series of (S1). At line-19, i is updated to k—1, and

CHAPTER 4 Solvable Black-box Gmup Praoblems av

the input to the j + 1'" stage (k—1, 5711, 5%, ... ,S:?;i}) where 57t is a canonical

generator set for the solvable group (Sf“} for k <1 < p(m). Hence the claim. m

Claim 4.3.13.3 In the algorithm CANONICALGENERATOR, for any stage j, it
holds that 3i such that [(Sf"'ﬂm]'ﬂ > 2|(S7)| if stage j + p(m) exists.

Proof. Notice that, if the algorithm at stage j enters the while-loop, then there
Ji such that SI*' = S U g for a g ¢ (S7). So, it is enough to show that the
while-loop 15 entered at least once after every p(m) sages, if such a stage exists.
Suppose the stage 7 is entered with the value of i = i'. It is clear from the algorithm
that if the algorithm never enters the while-loop in the next p(m) stages, at stage
(7 4 p(m) + 1), the value of ¢ = ¢' — (p(m) + 1) < 0, for all ' < p(m), which is
impossible, since the algorithm is terminated when the value of i = 0. Hence the
‘claim. L
To complete the proof of the theorem, first we shall see that the algorithm
'CANONICALGENERATOR runs in time polynomial in the length of the input. Ob-
sserve that it is enongh to show that the number of stages executed by the algorithm
Jis bounded by a polynomial, since the number of iterations of the while-loop in
| Eﬁ;s 7-14 is bounded by p(m). Now, the claim is that the the number of stages exe-

Ill‘| < m) Hence for any j, f_LT] [(57y] < 2°'(m). Suppose the claim is false.

Now from Claim 4.3.13.3 it follows that, T2 [(5770")| > 217259 1(S7)]. Henee

1=1 =1
T (5271 | > 29*tm), 4 contradiction.

| Now we shall see that CANONICALGENERATOR makes only 1-guarded queries

ded. I is enough to show that whenever CANONICALGENERATOR calls CHECK-
COMMUTATOR with argument {m?SijSﬁH} in stage j, .S';:_,_l is a canonical generator

sel. But from Claim 4.3.13.2, the input (£,587,5%,,,...,5%,)) to any stage j, is

CHAPTER 4 Solvable Black-box Gmup Problems 52

such that for all i < ¢ < p(m), 5] is a canonical generator for the solvable group
(§7). Now, by inspecting the description of the algorithm, it follows that whenever
CANONICALGENERATOR calls CHECK COMMUTATOR with argument {m, 5i75i+1}=
81, is a canonical generator set.

To see that the queries to L;, through CANONIZE are 1-guarded, notice that
calls to CANONIZE are made outside the while-loop. This means that CHECK-
'COMMUTATOR with input (mn, Si, Si_H] returns YES. That is (51} < {Sf;H}. Hence
(S) = (S1,,) from Claim 4.3.13.1. So it follows that calls to CANONIZE with ar-
i;-_gumenl, {551.5'{;1_1,, sy S:;(m}} will be such that 57 for i < { < p(m) will generate the
_commutator series of $7 for all i. It follows from Theorem 4.3.12 that queries to L}

will be l-gnarded.

Finally, we show that the above algorithm on input (m, §), cutputs a canonical
“generator set for the group & = (S) if G is solvable and outputs NOT SOLVABLE
otherwise. Now, observe that if H, < H, are two finite groups, H| < H}. Hence
it follows from Claim 4.3.13.1 that, {57) < G for any 7 at any stage j, where (5} is
the " element in the commutator series of . We know that after the execution
ﬁf:-ﬂp?'{m] stages, the algorithm outputs either a set X C B,, or NOT SOLVABLE.
Suppose it outputs NOT SOLVABLE in stage j. This happens after the value
of the variable inside the while-loop is assigned p(m). From the description of
E_m algorithm inside the loop, it follows that the group {S;m}} does not contain

the commutator subgroup of {S;I:m}-'i}‘ But if & where solvable, then we know that

Gotm) = {€} and since {Sjl[m,) < Gpfm) from Claim 4.3.13.1, we have a contradiction.

Suppose the algorithm outputs a set X' C B, al fine-16 in stage j. Thus the
ue of the variable £ is 1. Notice that, inside the while-loop, the value of k is
_:'jrincremf:nted. This implies that at stage j the while-loop is not entered (the
alue of i could not have become 0 at a previous stage). So inpul to stage j is
;1[1,'.-.95"1...,.5',,{.“].}. Irom Claim 4.3.13.2, it follows that for all 2 < ¢t < p(m), (57)

5 solvable and 57 is a canonical generator set for the group (.5';’). From the value

CHAPTER 4 Sclvable Black-box Gruup Problems 59

of ¢ =YES and Claim 4.3.13.1, it follows that (57}’ = (S3). Also, since 8! = § for

any stage 7, it follows that 57 generates the i*® element in the commutator series of

(S) = G. Hence, from Theorem 4.3.12, it follows that [CANONIZE(S, ..., ;lm}]ll

is a canonical generator set for . This completes the proof of the the theorem.

4.4 Solvable Group Problems are in SPP

Finally, in this section, we show that all the three basic problems over solvable
groups we consider here are in SPP. Notice that, the problem of checking whether a

and Lemma 2.0.2. Now we show how the algorithm CANONICALGENERATOR can
be modified to get the required upper bound.
Theorem 4.4.1 Over any group family B, the problems Membership Testing, Order

Verification, Group Isomorphism ever the subelass of solvable groups are m SPP and

The proof is very similar to the upper bound proofs for abelian groups
ven in Theorem 4.2.16. Consider Membership Testing. Let B be a group family.
lonsider an oracle NP machine M which on input {m, 5, g) converts the set S to a
‘canonical generator set if § generates a solvable group, by simulating the algorithm

'CANONICALGENERATOR on input {m,S). Let S’ be the canonical generator set

CHAPTER 4 Sulv&bie Black-box Grﬂup Prnhlems Gl

runs in time polynomial in the input size. Hence from Lemma 2.0.2, it follows that

Membership Testinge SPP,

To show that Order Verification is in SPP, notice that the algorithm CANONI-
CALGENERATOR can be easily modified to get an algorithm M, so that on input
E(m,S}, it computes |(S}|, by making only 1-guarded queries to L;,. Hence, again
bj’ Lemma 2.0.2, it follows that Order Verification 1s in SPP.

Finally we show that Group lsomorphism for solvable groups is in SPP. Let
%:{mTSth} be an instance of Group Isomorphism. Let Let (§)) =Gy > Gy > ... >
Gi=(e) and (S2) = Ho > Hy > ... > Hy = (e) be the two commutator series. (S;)
and (S;) are isomorphic iff for each i : 1 < i < k, the abelian factor groups G [G
and H;_,/H; are isomorphic. (;_;/G; and H;_;/H; are isomorphic if the types of
_-.':'_1_1 [G; and H,_,/H; are the same. Now, the algorithm CANONICALGENERATOR
can be modified to get a polynomial-time oracle Turing machine M;, which computes
the type of each of the abelian factor groups involved in the commutator series of
the solvable groups given in the input, making only 1-guarded queries to L;, and
producing a gap=1 if {5y) is isomorphic to (5;) and a gap=0 otherwise. It follows

:s:;t Group Isomorphism is in SPP. n

4.5 Summary

In this chapter we considered the complexity of three basic computational problems
‘over solvable black-box groups namely Membership Testing, Order Verification and
1- orphism Testing. These problems are neither known to be in P nor known to
be hard for NP. We showed that these problems are in the low complexity counting
class SPP. Hence these problems are low for many counting classes and unlikely
to be hard for NP. The upper bound is built upen a constructive version of the
fundamental theorem of finite abelian groups. For extending the result from abelian

groups to solvable groups, we extend the concept of an independent generator set

CuAPTER 4 Solvable Black-box Gmup Problems 61

of an abelian group to a similar, special kind of generator set (we call it canonical

generator set) for solvable groups.

This concludes the first part of the thesis. In the next chapter, we will study

ra

P R]

0E2 0 & o

Chapter 5

:'f'-“xa(:t Learning via Teaching
Assistants

|L .1 Introduction

4

In this and the next chapter we focus on the issue of classifying the representation

es with respect to the complexity of exactly learning them. For this purpose,

we propose a relinement of Angluin’s model of learning, called the teaching assistant

model of exact learning. Here we give a briefl survey on the known results in this

:::j'-_: ea and motivate the need for the new model.
Kl

In Angluin’s model, a natural method for quantifying the complexity of a repre-
: ation class i1s to consider the type and number of queries that a learner has to
the teacher in order to learn any concept in the class. Hence, characterizing the
power of various queries (mainly membership and equivalence) in Angluin’s model
been of interest among researchers. Angluin [Ang90] showed that polynomially
“y.equivalence queries are insufficient for learning representation classes which
: a combinatorial property called approximate fingerprints. Applying this re-
gult she showed that deterministic finite automata (DFA), context free languages
, conjunctive normal form formulas (CNF) and disjunctive normal form formu-

DNF) are not learnable with polynomially many equivalence queries. In [Gav93],

alda proved that the nonexistence of approximate fingerprints is actually a suf-

CHAPTER 5 Exact Learning via Teac]ling Assistants 63

ficient condition for learnability with polynomially many equivalence queries. In
particular, he showed that the representation class of CIRCUITS (boolean functions
represented by logical circuits) are polynomial-time equivalence query learnable with
the computational aid of an oracle in polynomial-time hierarchy. This shows that
CIRCUITS are, in a sense, easier to learn than classes like DFAs, NFAs, CFGs,
CNFs or DNFs. An improvement on the complexity of the oracle used for learning
CIRCUITS is given in [BCG196]. More recently, Hellerstein et al. [HPRVY6] have
shown thal a represeniation class is learnable with polynomially many membership
and equivalence queries, if and only if the representation class has polynemial-size

certificates. A similar characterization has also been given in [Heg5).

Another interesting approach towards analyzing the complexily of exact learn-
ing via queries was proposed by Watanabe and Gavalda [Wat90, WG94]. They used
ideas from structural complexily theory for this purpose. In [WG94], a notion of
‘machine types is defined in order to capture various types of queries in Angluin’s
‘model. The authors also show a close relation between the polynomial-time query

learnability of representation classes and the complexity of some related representa-

Mion finding problems.

" The results mentioned above help us in classifying various classes according to
the difficulty of exactly learning them. However, the classification could be finer.
.: ﬂr example, how do we compare two representation classes that are both exactly
li:arnahﬁe with polynomially many equivalence queries but not learnable with poly-
ﬁu_mia.]l}' membership queries? It could be the case that one of these classes is easier
than the other because the full power of equivalence queries may not he needed to
one although it is required to exactly learn the other. Our main interest in

s chapter is to explore this possibility.

In this and the next chapter we are mainly interested in the learnability of some
lgebraic classes in the teaching assistant model. To motivate this model, we con-

er the learnability of three representation classes: SYM of permutation groups,

CHAPTER 5 Exact Learni.ug via Teacl}ing Assistants 64

LS(p) of linear spaces over finite fields and the class 3-CNF, in Angluin’s model.
In the next section, we give some essential notations and definitions from compu-
tational learning theory. We also give the precise definitions of the representation
classes of interest to us. Then we formally define Angluin’s model and prove upper
‘and lower bounds on the learnability of the above-mentioned representation classes
in this model. TFinally we give the definition of the teaching assistant model in
‘detail and prove upper bounds on learning these algebraic classes in this model.
In the next chapter we further study the learnability of various subclasses of the

“above-mentioned representation classes and prove some absolute lower bounds on

the learnability of these classes in this new model.

52 Learning Theory: Notations and Definitions

A representation class P is a tuple (R, p,1) where ¢ is a polynomial, # C £* and
fis a collection r = {pn} N such that p, : B — 25" is a many-one mapping.
ﬁ.ny element in the range of p is called a concept of P. The set of all concepts of
1? i5 called the concept class represented by the representation class P. When there
I;.nu confusion, we denote the concept class represented by P also by P. For any
n, let P, denote the concepts of P in X4 For any concept ¢ € P, let size(c)
te minf|r| @ pa(r) = ¢}. Let Py, denote the concepts of P in T* which

‘have representations of size less than or equal to m. For two representation classes

Here, we give the precise definitions of three representation classes of interest to

In Chapter 6, we also consider some subclasses of {hese representation classes.

CHAPTER 5 Exact Learning via Teaching Assistants 65
Representation classes SYM, LS(p) and 3-CNF

The symmetric group S, consists of all permutations on {1,...,n} with permutation
composition as group operation. Subgroups of S, are called permutation groups.
Now let us fix the encoding of permutations. Let the n-tuple o = (14....1n) repre-
sents the permutation j — i; in §,. Let m = [logn] and the binary representation

of i; be zj; ... jm. Then we represent o with the binary string

11211 -+« TimT101Z21T01 oo TamTam0) . .. 0l Ty Znt o o Brn T

;_figngth 2nm + 2(n — 1). It is clear that the group operations can be performed in

fime linear in n.

Let SYM = (R, {gs}n>1,t) denote the representation class of permutation
groups where & = U5, iy, and r € R, encodes a set of permutations of S,,, namely,

re

it is a concatenation of some strings, each encoding a permutation as explained

field of size p. Let the n-fold direct sum of £, be denoted by F3. A vector u € F}

epresented as an n-tuple (u[l],... u[n]) for u[i] € F,. We can use the pairing

ectors which spans the subspace. More formally, LS(p) = (R, {2 }as1,t). Here
R = Uy>1 Ry, where r € R, encodes a set of vectors of F'. TFor r € R, pa(r) is
vector space spanned by the set of vectors encoded in r. Since testing whether
' Tf;:.u vector is in the span of a set of vectors can be done in polynomial time, it

pllows that LS(p) is an honest representation class.

CHAPTER 5 Exact Learning via Teac]ling Assistants [§14]

Finally, 3-CNF= (&, {gtn }u>1,1), where R = Uns1dty, and + € R, encodes a
‘boolean function from {0,1}" to {0,1} in conjunctive normal form where each clause

‘has at most 3 literals. Here t(n) = n.

Now we are ready to give a detailed definition of Angluin's model of exact learn-

ing and consider the learnability of the above-defined representation classes in this

5.3 Angluin’s Model of Exact Learning
et P = (B p,t) be a representation class. Angluin’s model of learning [Ang88]
«consists of a teacher and a deterministic learner. The learner o on input (o™, 0),
as to output a representation r € R such that pu,(r) = c if size(c) < [, for the
f m;qd concept ¢ selected by the teacher after some finite number of computation

“steps. During the course of learning e can make two types of queries to the teacher,

to unbounded learning where the length parameter [is not given to the learner,

‘Now we look at some standard complexity measures on resources used by the
L. A . 7 X
learner. Let P be a representation class. Then P is said to be polynomial-query

CHAFTER 3 Exact Learning via Teaching Assistants 67

learnable, if there exists a polynomial ¢ and a learner a, such that for all n and I,
and for all ¢ € P, the learner on input {07,0') with ¢ as target concept such that
size(e) < I, outputs a represeniation of ¢ by making at most ¢(n + I) queries to
the teacher. P is said to be polynomial-time learnable, denoted by FP-learnable, if
there is a polynomial g and a learner «, such that for all n and {, and for all ¢ € P,,

the learner on input (07, 0') with ¢ as target concept such that size(c) < [, outputs

a representation of ¢ within g(n + [) time steps.

Notice that any upper bound on the time complexity is an upper bound on the

query complexity. Hence if P is polynomial-time learnable then it is also polynomial-

query learnable.

Before we go into the details of our results, we briefly explain the need for
considering bounded learning as opposed to unbounded learning. In unbounded

| learning the learner is not given the length parameter [as a part of the input.
Hence for polynomial-time unbounded learnability the learner is allowed to run for
a number of time steps polynomial in n + size(¢). Though bounded learnability is
weaker than unbounded learnability, we restrict ourselves to bounded learnability
because it is difficult to deal with learners whose running time is sensitive to the
output, particularly when we consider learners which are nondeterministic oracle
Turing machines. (We will be dealing with nondeterministic learners as a technical
tool in the next chapter. The exact definition of these learners are given there.) For
Cinstance, consider in the unbounded learning setting, a nondeterministic learner a
learning a representation class P. Lel a take 0" as input and run in time g(n +
size(c)) where ¢ € P, is the target concept. We can ensure that nondeterministic
computation paths of o which outputs a representation of ¢ are of length exactly
g(n + size(c)). But on those computational paths where a is not going to output
a string, cannot be timed to run exactly g(n + size(c)) steps, because the machine

simply does not know when to stop on that path.

Bounded and unbounded learnability coincide for those representation classes P

CHAPTER 5 Exact Learning via Teaching Assistants 68

which have representations of size bounded by a polynomial in n for all concepts in
P, (in a complexity-theoretic sense P can be viewed as a subclass of the nonuniform
complexity class P/poly). We note that both the classes SYM and LS(p) have this
property. To see this for the class SYM, we recall Lagrange’s theorem which states
that if G is a finite group and H < G then |G] is divisible by |H|. Tt can be easily
gﬂeduced from Lagrange’s theorem that every subgroup G < S, has a generator set
‘of cardinality bounded by nlogn. Hence, each concept ¢ € SYM,, has a represen-
tation of size polynomial in n. It holds for LS(p) also. As a consequence, bounded
learnability coincides with unbounded learnability when we consider polynomial-
time learnability of subclasses of SYM and LS(p). So, in this case we can do away

~with the parameter 0' from the learner’s input which denotes the bound on the size

: gf the target concept.

5.3.1 Complexity of Learning SYM, LS(p) and 3-CNF in
Angluin’s Model

~ An m-cycle is a permutation o € S, such that there are indices i;,. .. i
Bis n: o(i;) = i;+1(nmd T and (i) =1 il 1 #4; for | <j < m. It is easy to

note that the order of any m-cycle is m. We have the following proposition on the

3y generated by p-cycles.

CHAFTER 5 Exact Lﬂa,ruing via leaching Assistants 9
Theorem 5.3.2 The representation elasses SYM, LS(p) and 3-CNF are

1. FP-learnable using only equivalence queries in Angluin’s model.

2. not F'P-learnable using only membership queries in Angluin’s model.

Proof. (1). It is shown in [Ang88] that the class 3-CNF is FP-learnable using
only equivalence queries. We give here a learner for the class SYM which makes at
most nlogn queries to output a generator set for a subgroup of 5,. A learner for
TL:S{;:-] which makes at most n queries to output a basis for a subspace of F' can be
designed very similarly. We omit the proof of this.

L

We give the description of the learner EQUIVLEARN for SYM. As mentioned

'!': lier, we omit the length parameter { from the input to the learner.

'EQUIVLEARN(D")
i S {e};

2 while Answer to query S is ‘No'
fﬁ do g +— COUNTER EXAMPLE ;

S SuU{g)

5 return S.

~ Consider the i*" iteration of the while loop. Let § = {g;,...,gi-1} be the
generator set constructed so far. From the fact that G is a group and the identity
e € G, it follows that (S) < . So the counterexample g; given by the teacher at
the i*" iteration is in G but not in (S) thereby growing the generator set by one.
To show that the while-loop is executed at most n logn times, it 13 enough to show
that at most nlogn counter examples are sufficient. Form Lagrange’s theorem it
ws that if G and [be two groups such that ff < G and g € & but g € H, then

(H.g)| = 2|H|. Hence addition of an element into the set S, grows the size of the

group (S5) by at least twice the previous size. The result follows.

(2). Now we show that none of these classes are FP-learnable using only mem-

ship queries. Note that to show this it is enough to show that these are not

CHAPTER 5 Exact Learning via Teaching Assistants 70

polynomial query learnable using only membership queries. Again, we prove it for
the class SYM. The proof is by an adversary argument. Suppose there is a learner
a which on input 0" has to output a generator set for a subgroup S, by making
only membership queries. Let s be the polynomial bounding the number of queries
asked by a. Choose large enough prime p such that (p — 2)! > s(p) + 1. The ad-
versary keeps all the (p — 2)! p-cyclic groups with him. Let {q;,4...,q.} be the
set of membership queries made by a. For each membership query ¢; # ¢ by a,
the adversary answers ‘No’, and the adversary answers ‘Yes' if ¢; = e. Now, from
Proposition 5.3.1, and the fact that (p—2)! > s(p) + 1, it follows that the adversary
can consistently answer in this manner and still there will be at least 2 p-cyclic
groups which are consistent with the answers to the queries. Hence the learner will

]_}e unable to decide which one of the cyelic groups to output.

A very similar adversary argument can be given for showing the lower bounds for

both LS(p) and 3-CNF (in the case of LS(p) the adversary keeps all 1-dimensional

liner spaces of " and in the case of 3-CNF the adversary can keep all the conjunction

of n literals). .

We prove new upper bounds on the learnability of these classes in this new model.

CHAPTER § Exact Learning via Teaclling Assistants T3

5.4 The Teaching Assistant Model of Exact
Learning

Before we give formal definitions of the main ideas in the new model, we give some
intuitive explanations. As mentioned earlier, apart from the learner and the teacher
the new ingredient of this model is an intermediate agent between the learner and the
teacher, called a teaching assistant. We define a teaching assistant as a set of strings
whose membership in the set depends on the concept of interest. Then we define the
notion of oracle Turing machines accepting these sets. These oracle Turing machines
are allowed to make membership queries to the concept of interest (the concept fixed
by the teacher). By varying the acceptance eriteria of these Turing machines, we get
different teaching assistant classes. We will be interested in acceptance criteria which
are analogous to known complexity classes. A learner learning a representation class
can ask membership queries to a pre-defined teaching assistant. Now the complexity
of a representation class can be quantified by the complexity of the teaching assistant
using which a learner (usually a deterministic oracle Turing machine) can learn

the concept (output a representation for the concept). We move onto the formal

definitions of the teaching assistant model.

Definition 5.4.1 Let P be a representation class. Let @ : NxNxE"x 25 — {0,1}
be a predicate. A tuple (n,l,z,¢) € N x N xZ° x 25" is said to be P-validif c € P,
‘and size(e) < l. The teaching assistant defined by @ w. r. t. the representation class
E:{P_is the set

JL{P} ={(n.{,z,c}|(n,{,z,c) is P-valid and Q(n, !, z,c)}.

In the above definition notice that, consistent with the notion of bounded learn-

ability, we have the parameter [as part of P-valid tuples.

Now we formalize the notion of learning via teaching assistants, Let P = ([, u, t)
be a representation class and L(P) be a teaching assistant for P. As in Angluin’s

odel, learners are deterministic oracle Turing machine transducers. The learning

CHAPTER 5 Exact Learning via Teaching Assistants 72

algorithm comprises of a learner and teaching assistant pair. The teacher selects
a target concept ¢ € P,. The learner a, on input (0",0'), has to output a rep-
resentation r € R such that p.(r) = ¢ and size(c) < [, after some finite steps of
computation. During the course of the computation e can query its teaching assis-
tant, say L(P). Notice that when & wants to query the teaching assistant about
(n,l,z,c}, it is enough that o communicates z to the teaching assistant, since the
“other parameters are implicit. For such a query z by the learner, the learner receives
the answer ‘Yes'if (n,l,z,c) € L(P) and ‘No’ if (n,[,z,¢) & L(P). P is said to be
learnable with assistant L(P) if there is a learner o for P with queries to L{P) as

teaching assistant and we say o learns P using teaching assistant L{P).

Let P be a representation class. Let @ be a learner which learns P using a
‘teaching assistant L(P). For an input (0™,0') and ¢ as the target concept, the time
complexity of the learner is the number of steps it takes hefore it writes down a
representation for ¢. P is said to be deterministic polynomial-time learnable (in
short, FP-learnable) with a teaching assistant L(P)., if there is a polynomial ¢ and a
deterministic learner e learning P using L{P) such that for all n, and for all e € P,

Con input (0%, 0%, the time complexity of @ is bounded by q(n +).

In order to quantily the complexity of teaching assistants we define certain teach-
ing assistant classes with respect to a given representation class. The teaching as-

sistant classes we define here are the ones analogous P, NP, 3}, SPP and LWPP.

Definition 5.4.2 Let P be a representation class and L(P) be a teaching assistant.

1. L{P) is said to be in the class Y5(P) if there exists a polynomial-time %,
oracle machine which for any P-valid tuple (n,l,z,¢), on input (0%, 0, z) uses

¢ as oracle and accepts (0",0', z) if and only if (n,{,z,¢) € L(P)

2. L(P) is said to be in the class P(P) if there exists a polynomial-time deter-

ministic oracle Turing machine M which for any P-valid tuple (n,l,z,¢), on

CHAPTER 5 Exact Learning via Teaching Assistants 73

input (07,0',x) uses ¢ € P, as oracle and accepts {(0°,0',z) if and only if

(n,l,z,¢) € L(P).

3. L{P) is said to be in the class NP(P) if there exists a polynomial-time non-
deterministic oracle Turing machine M which for any P-valid tuple {n,l,z,¢c),
on input (0",0',z) uses ¢ € P, as oracle and accepts (0",0', z} if and only if

(n,d,z,¢) € L(P).

4. L(P) is said to be in the class SPP(P) if there exists a polynomial-time non-
deterministic oracle Turing machine M which for any P-valid tuple (n, i, z,¢),
on input (0", 0, z) uses c as oracle and produces a gap=1if (n,{,z,¢) € L(P)
and gap=0 if {n,l,z,c) g L(P).

- 5. L(P) is said to be in the class LWPP(P) if there exists a polynomial-time
| computable function f and a polynomial time nondeterministic oracle Turing
machine M which for any P-valid tuple (n,{,z, ¢}, on input {0™,0', z) uses ¢ as
oracle and produces a gap=f(n) if (n,l,z,¢) € L(P) and gap=0if (n,l,z,¢) ¢
L(P).

‘n all the above definitions, the behavior of machines accepting the teaching assistant

15 not specified on inputs which are not P-valid.

- The following containments among teaching assistant classes follow directly from

the above definitions.
roposition 5.4.3 For any represeniation class P

| » P(P) C SPP(P) C LWPP(P).

¢ P(P) C NP(P) € E§(P)

Finally, we have the following definition of learning with an assistant from a

particular teaching assistant class.

CHAPTER 5 Exact Lca.rnjng via Tea.cl'l.ing Assistants T4

Definition 5.4.4 Let P be a representation class and C be any assistant class de-
fined with respect to P. We say a representation class P is FP-learnable with a
C-assistant if there exists a teaching assistant L(P) € C(P) and a learner a, such
that P is FP-learnable with L(P).

‘Remark. The notion of learning via teaching assistants is somewhat similar to
;.l‘._ile notion of self-producible circuits studied in [GW93]. (This is a generalization of
self-p-producible circuits introduced by Ko [Ko85] and further studied by Balcazar
‘and Book [BB86].) For comparing the two notions, we give some definitions. For
‘any reltivizable funciion complexily class F, a language L & P/poly is said to
_have F-self-producible circuits, if an advice for L can be computed in F(L). The
-motivation [or this delinition was to study the relative complexity of producing
circuits for languages in P/poly. The main focus in [GW93] was on proving lower
bounds. For example, it is shown that there exists a language A € P/poly which
Jis not FP-self-producible. We are interested in producing representations (learning)
for a class of concepts (as oppose to a language in [GWO3]). We need learners which
work for all the concepts in the class. Hence intuitively, it may be diflicult (easier)
to prove upper (respectively, lower) bound results in our framework compare to
the one in [GW93]. For example, for proving the above-mentioned lower bound in
[GW93], the authors have to diagonalize against all polynomial time reductions. On
the other hand, an easy adversary argument is enough for showing the existence of

a representation class that is not 'P-learnable with membership queries.

For the sake of comparing the teaching assistant model with Angluin’s model,

in the next subsection we give a briefl sketch of how to simulate equivalence and

membership queries in the new model.

CHAPTER & Exact Lea.rning via Teaching Assistants 75

5.4.1 Comparison with Angluin’s model

In this section we first prove a universal upper bound on the learnability of any
representation class. Then we show the relationship between Angluin's model and

the teaching assistant model for specific assistant classes,

Theorem 5.4.5 For any representation class P, P is FP-learnable with a ¥f-

assistant.

Proof Let P = (R, p,t) where p = {tn}a31 be any representation class. Define a
teaching assistant as follows: L(P) = {(n,l,z,c) is P-valid| Jy such that |cy| < {
and jin(zy) = c}. We define a ¥} machine M accepting L(P). M on input (0,0, z)
existentially guesses y of length bounded by [— |z| and then universally verifies
whether p, (xy) = ¢ by universally guessing a string z € £4" and verifying whether
z € pn(xy) if and only if z € c. Since P is honest, checking membership in u,(zy)
can be done in polynomial time, given zy. Membership of z in ¢ can be done by

querying the oracle c.

Now we give the description of the learner & for P which prefix searches for a
representation of the targel concept using teaching assistant L(P). Let ¢ € P, be

the target concept and [be such that size(c) < L.

L3-LEARNER(O™, 0)
1 i1

2 while {n,s —1,),¢) € L(P)
3 do1w—1-=1;

4 r— A

5 for j—1to:

6 do if {n,i,zl,¢) € L(P)

(f then z « z1;

ot else r «— z0);

9 Output = .

CHAPTER 5 Exact Learning via Teaching Assistants 76

We now compare Angluin’s model with the teaching-assistant model. We show
that membership queries are characterized by P-assistants. On the other hand,
the combination of membership and equivalence queries can be simulated with NP-
assistants. However, we show that NP-assistants are striclly more powerful than
the combination of membership and equivalence queries. In fact we prove in this

section that it is not possible to capture the power of proper equivalence queries in

the teaching-assistant model.

Theorem 5.4.6 For any representation class P, it is FP-learnable with membership

queries if and only if it is FP-learnable with a P-assistand.

Proof Let a be an FP-learner for P = (&, p,t) where p = {p,}.»1 which uses
membership queries to the teacher. Define a teaching assistant L{P) as follows.
L(P) = {{n,l,z,c)|z € ¢}. It is obvious that L(P) € P(P). Let ¢ € P, be the
target concept and let | be such that size(c) < 1. Consider a learner o' which
‘behaves as follows. a' on input {0",0') simulates & on input{0”,0'). Whenever o
makes a membership query r, o makes a query {n,l,z,c} to L(P) and treats the
answer as the answer to the membership query for o and continues the simulation
of . It 1s easily verified that o outputs a representation of ¢ in time polynomial in

n+ 1, if and only if @ outpuls a representation of ¢ in time polynomial in n 4 .

To show the other containment, let § be a FP-learner which learns P using
teaching assistant L(P) € P(P). Let M be the polynomial-time oracle Turing
machine witnessing L(P) € P(P). Let ¢ € P, be the targel concept and let [be
such that size(e) < I, Consider a learner 3 which on input (0%,0') and ¢ as target
concept, simulates . Whenever § makes a query (n,l,z,¢) to L(P), 8" writes
down (0", 0%, z) on its work tape and start simulating M on input (0", 0, z). During
this simulation of M, whenever M makes a membership query y to ¢, 3 makes a
membership query y to the teacher and treats the answer Lo this as the answer to
the query y of M. Now, 3" outputs a representation of ¢ in time polynomial in n + {,

if and only if # outputs the same representation of ¢ in time polynomial in n + L.

CHAPTER § Exact Lea.rn.ing via Tea,ching Assistants T

Theorem 5.4.7 For any representation class P, If P is FP-learnable with equiva-

lence and membership queries, then P 1s FP-learnable with an NP-assistani.

Proof. Let o be an FP-learner for P = (R, p,t) where p = {gt, }n>1 which uses
membership and equivalence queries to the teacher. Define a teaching assistant L(P)

as follows.

L(P) = {{n,l,z,¢})| if £ = 1y implies y € ¢, and il = = Oy#z implies there is a
w € TP such that yw € eAp,(z)).

It is easy to see that L(P) € NP(P), since P is honest. Let ¢ € P, be the
target concept and [be such that size(e) < [. Consider a learner o' which behaves
as follows. o' on input (0", 0') simulates & on input (0™, 0'). Whenever & makes a
membership query z, o' makes a query (n,l,lz,c) to L{P) and takes the answer
as answer to the membership query of @ and proceeds. Whenever o makes an
equivalence query z, a' first makes (n, [, 042, ¢) to L(P). If the answer to this
query is ‘No’, then o' outputs . Otherwise ¢’ uses L(P) to prefix search for a
string u € eApa(z) and uses u as counterexample and proceeds. It is easy to see
thalt a' outputs a representation of ¢ in time polynomial in n + I, if and only if &

outputs a representation of ¢ in time polynomial in n 4 [. =

Let P and P' be concept classes such that P’ is a subclass of P. Although
it intuitively appears reasonable that P’ should be as easy to learn as P, such
is not the case in Angluin’s model [Ang88]. While 3-CNF is FP-learnable with
only equivalence queries, the subclass of 3-CNF consisting of concepts of cardinality
exactly 1 (SINGLETONS) is not FP-learnable with membership and equivalence
queries. [t is known that this anomaly is caused by equivalence queries: more
precisely, the anomaly arises from the fact that in Angluin’s model equivalence
queries must be representations of concepts that belong to the concept class. On the
other hand, we observe that in the teaching-assistant model this anomaly does not

arise by virtue of the fact that the teaching assistant makes only membership queries

CHAFTER 3 Exact Learning via Teaching Assistants 78

to the teacher. We state this as a proposition. The proof is by a very straightforward

adversary argument.

Proposition 5.4.8 [Ang88] There erist honest representation classes P and P
such that P' is a subclass of P, and P is FP-learnable with equivalence queries

but P' is not FP-learnable with equivalence and membership queries in Angluin’s

model,

Remark. We observe here that the teaching assistant model does not have the
above anomaly. It follows from the definitions of a subclass and learning with
teaching assistants that if P is FP-learnable with a C-assistant (C is any of the
sbove-defined teaching assistant classes) then P’ is also FP-learnable with a C-
assistant. Hence, any upper bound on learning P is an upper bound on learning P’

and any lower bound on learning P’ is a lower bound on learning P. We summarize

this as a proposition.

Proposition 5.4.9 Let P and P' be representation classes such that P’ is a subclass
of P. Let C be any of the above-defined teaching assistant classes. Then if P is FP-

learnable with a C-assistant, P’ is also FP-learnable with a C-assistant.
- From Propositions 5.4.8 and 5.4.9, we have the following interesting corollary,

Corollary 5.4.10 There is no leaching assistanl class C such that the teaching

assistant model captures equivalence query learnability in Angluin’s model.

In the next section we prove upper bounds on the learnability of the two algebraic

concepts SYM and LS(p) in the teaching assistant model.

5.5 Upper Bounds on Learning SYM and LS(p)

In this section, we show some of the main results of this part of the thesis. First we

show that the representation class SYM is FP-learnable with an LWPP-assistant.

CHAPTER 5 Exact Lea.rning via Teanhing Assistants 79

Then we show that the class LS(p) is FP-learnable with an SPP-assistant. These
results indicate that LS(p) may be easier to learn that the class SYM. Finally we
show a lower bound on the learnability of the class 3-CNF. More precisely we show
that 3-CNF is not FP-learnable with an LWPP-assistant (SPP-assistant) unless
NP € LWPP (respectively NP C SPP).

Remark. We would like to observe here that as in the case of Angluin’s model,
without loosing any generality, the length-bound parameter { in various definitions
of the teaching assistant model also can be omitted when we are considering rep-
resentation classes which have short representations (polynomially bounded) for all
the concepts. Since all the algebraic classes we are interested in have this property,
we will not mention this parameter for various learning algorithm that we design
here, either as part of the input Lo a learner or as part of tuples defining a teaching

assistant with respect to these classes.
Learning SYM with LWPP-assistant

We prove the following theorem.

Theorem 5.5.1 The representation class SYM is FP-learnable with an TWPP-

nsststant.

Before we go into the proof, we give some definitions from the theory of permu-

tation groups. Please recall the basic group-theoretic definitions given in Chapter 2.

Let G < S, Forany ;0 <i < n,theset {g € G |Vj<i:g(j)=j} forms
a subgroup of G. Denote this subgroup by GU). This definition gives rise to the
following chain of subgroups of G: {e} = G < -1 < ... <« G = G. Now
consider the left cosets of G in G0, It is easy to verify that two elements gy, g2 €
GU=1) are in the same left coset of G iff g1(1) = ga(2). A set Ti = {gi1. 92, -- -+ G, }

of distinct (left) coset representatives of GU) in G~ is called a transversal. Notice

20

CHAPTER 5 Ixact Learning via Te&cl]jng Assistants

that GU-1} = Uff—.l g:;;GY), where d; = |Ti|. This means that any element g € Gt~
can be uniquely expressed as g;;h for some h € G!) and 1 < j < d,. 1t follows that

the set |, T; generates G. We call such a generator set a strong generator sel for

G.

For any set X C {1,2,...,n}, let Gix] denote the subgroup {g € G | g(i) =
i Vi€ X}. For any permutation o € S, let G, x| denote the set {g € G | g(i) =
a(i) Vi € X}. Note that G, x) = oGx)-

Now we state some useful properties of permutation groups in the following

lemma. A sketch of the proof is given in the appendix.

Lemma 5.5.2 Let G < 5,.

1 |GW = [1js.d; for each i, 1 <i < n.

2, The number of strong generator sets for G is [['_,,, |G| for cach i, 1 <

1< n.

3. Let X C{1,2,...,n} and o0 € S,. Then |G[‘,1)‘-1[= |G{;.;]|

Now we formally give the proof of the Theorem 5.5.1

Proof. (of Theorem 5.5.1) Let ¢ be the target group. Define the assistant L{SYM)
a5l

LSYM) = {{0", ki, 1. ...k, G)|3g € G such that g fixes 1 to i; g(i +{) = ji for
1 <1<k}, We first show Lthat this set defines an LWPP-assistant by constructing
a nondeterministic machine which produces zero gap if the input string is not in the
set and produces a gap = (n!)*+! if it is in the set. Then we give a FP-learner
which uses L(SYM) as assistant for prefix searching for a strong generator set of

any target group.

Claim 5.5.2.1 There 1s a nondeterministic oracle machine M such that given a

group G < 5, as oracle it has the following behavior:

CHAFTER § Exact Learning via Teaching Assistants 81

o If{0", ki, j1,. ey Ji, GY € L{SYM) then M on input (0", k,t, j1,...,Jk} pro-

duces a gap = (n!)¥"+1.

o [f (0" ki, j1y. 00k, G) & L(SYM) then M on input (0%, %, ¢, f1,-..,Jk) pro-

duces zero gap.

FProof For ease of exposition, we will give a structured description of machine M.
Intuitively speaking, M simulates another machine N on all computation paths
on which a “correct” guess 1s made. We need to introduce the new machine N
(invoked as subroutine by M) in order te ensure that the gap produced by M is
the easily computable quantily stated in the claim. We will also further structure
the description of V by designing another machine N’ which is a subroutine to N.
All these machines aceess 7 as oracle. The main work involved is in the design of
N which has the behavior that on input {0®,1) it produces a gap = (n!)2*' 117G,
The following is the description of machine M.
DESCRIPTION OF M{0™, k, 2,714+« 4Jk)
Guess g € S,;
if g€ pu(r)and g(j) =J; Vi1l < j<tand gi+) =j V1 <1 <k

then Simulate Machine N on input {0",1 + &) ;

else Branch into twe paths ;

accept on one path and reject on the other path ;
end-if

Now we argue that M has the claimed properties (assuming the behavior of N
which we later establish). Suppose (07, k%, j1, ..., Ji,) € L(SYM). Then there
exists no ¢ € G such that g(i +1) = ji for 1 < 1 < k. In this case the if
test in fine 2 of M fails for all guesses and M produces zero gap. Now, suppose
(0%, &y, g1y 0 0k, G) € L{SYM). It follows from part 3 of Lemma 5.5.2 that the
number of guessed permutations ¢ that fulfill the if test is [GUHH)|. Now, suppose N
on input {0",7 + k) produces gap = (n!)?*+1/|GU+9)|, Since N is being simulated
on |G| paths, the total gap produced by M is ((n!)? +1/|GUHH]) x |GU+HH)] =

(nt)2e*+1,

CHAPTER & Exact Lea.ming via Teac]].ing Assistants 52

Now the task is to design N so that it has the desired behavior. Beflore we

describe N we describe its subroutine N'.

DESCRIPTION OF N'(07,1,7)

1 Guess g € S,;

2 if g € GUY such that g(i) = j
3 thenifge &

4 then accept.

5 else reject.

6 end-if

DESCRIPTION OF N(0%,%)

1 Guess an encoding X; = (Tiy1,...,Ty) of a strong generator set for Gl
2 if X, does not correctly encodes a strong generator set produce a gap = 0
3 forge X;; if ¢ ¢ GY produce a gap =0

4 Using X; compute & = [Tzpa: [Tk

5 Using X; compute § = [Tus;5i([Tuzes; 1T6)5!

6 Branch into (n!)""*'/af and continue

T Using X; construct the set S;

8 Compute v = [[ypjni([Tapas; [Tel) =151+

9 Branch into {n!}“‘fh paths

0

10 Produce a gap of [];ues, ((Tazis; [T1) — acen: (07,5, k})

Observe that N’ has the following behavior: If there is ¢ € GU-Y such that

g(i) = j then there are |G")| accepting paths, otherwise N has no accepting paths.

The machine N produces the required gap as follows. On input (0",i), N tries
to compute |G| nondeterministically with G as oracle. For that it first guesses an
encoding of a strong generator set X; = §f R iy Y G0 and verifies that it
actually encodes a strong generator set of some subgroup of S,. By making queries
to 7 it verifies that the elements encoded in X; are all in GY. The bad case that
still remains to be handled is that the guessed set X; does not generate all of G)
but only a preper subgroup of it. On computation paths where a generator set for a

proper subgroup of G} is guessed, it must produce zero gap. We now give delails.

CHAPTER 5 Fxact Learning via Teaching Assistants 83

Let X; = (Tiy1,--.,Ty) where T, for (+ 1) € j < n, encodes in lexicographic
order a transversal of G in GU=1), (We use T; to denote both a transversal of G
in G and its lexicographic encoding.) Let S; = {{j, k) |(1+1)<j <k <nand
A g€ X;nGYU~Y such that g(;) = k}. (By ‘g € X, we mean g is encoded in X;.)

Let K; denotes the number of strong generator sets for G*),

Let us analyze the behavior of N. It is clear from the description of N that after
line 3 only those computation paths matter which correctly encode a subgroup of
G, All other paths contribute zero gap to the overall gap produced by N. The
remaining steps of V ensure that those paths on which the guessed X; generates a

proper subgroup of Gt contribute zero gap.

First, let p be a computation path on which the guessed X; encodes a strong
generator set for GU'), We now show that N produces gap = (n!)2"#1/|G)|. By part
1 of Lemma 5.5.2, & computed in line 4 is |G|, Also, from part 2 of Lemma 5.5.2,
computed in line 5 is K, which is the number of strong generator sets for G'", So, in
line 6 p contributes gap = (n!)"*1 /(|G| K;). (Notice that (n!)™*! is chosen to be
divisible by the denominator.) In line 9, each such path again branches into {ral}“? [
paths. So at this point the path p has contributed (n!)*"+1 /(|G| K,~) paths. In line
10, since X; generates G it follows that acep({0%, 4, %)) = 0, for each (j,k) € S..
Hence the gap produced in line 10 is []; hes,(Ilasiss [T1]) which, by rearranging
terms, is easily seen to be [Tus,5i(TTnzks; |T|){n=a=1Ti41) = 4 Therefore, at end of
line 10 p contributes a gap = ((n))™ +1 /|G| K;v). Since there are K; different
paths p, one for each strong generator set for GY, the total contribution to the gap

from the K; generator sets adds up to (n!)2+1 /|G|,

Now, let p be a computation path on which the guessed set X, generates a proper
subgroup of G, We show that this path contributes a gap = 0. Notice thatl in order
to prove that p contributes gap = 0, it suflices to show that the gap produced in line
8 1s zero. Observe that corresponding to X; thereis a least j < 1, say jo, such that T,

is not a transversal of G40) jn Glo—1), Therefore, there exists k < n and ¢ € G such

CHAPTER § Exact Lea,rning via leaching Assistants 84

that (jo, k) € Si, g € GY~Y, and ¢(jo) = k. On the other hand, since jo is the largest
such index U,sis;, 11 is @ strong generating set for GU°). Pulting the preceding two
statements together, we can see that machine N’ on input (0%, jo, k) has |Gl»)]|
accepting paths. Furthermore, since [[,5p;, [T1] = |G| = acen ({0, jo, k), it
holds that the product [1y; yes,(acen:((07, 7, k)) = (TTusis; [T1])) = 0. Hence the gap
produced on path p is zero. Finally, notice that the gap prescribed in line 10 is

indeed producible from the closure properties of GapP. This proves Claim 5.5.2.1.

Claim 5.5.2.2 There is a polynomial time deterministic learning algorithm
LEARNSYM with L{SYM) as assistant which, given a targef concepl G from the
class SYM outputs a strong generator set for G.

Proof The objective of the learner LEARNSYM is to compute a strong generator
sel as a union |JL, T}, where T} is a transversal of GU) in GV for | < ¢ < n.
To this end, the learner first computes, with the help of L(SYM), the set of pairs
{{z,7) | 3 g € G such that ¢ € G and g(i) = j}. For each such pair (i, j)
it invokes a subroutine CONSTRUCT on input (0%,7 j) in order to compute the
lexicographically first ¢ € GU=") such that g(i) = j. This is done by a prefix search
with the help of L{SYM). It is easy to see that the set of all these computed

elements g is a strong generator set. We give a formal description of this simple

learning algorithm below.

CHAPTER 5 Exact Learning via Teaching Assistants 85
LEARNSYM(0™)

1 for pairs (i,7;1 <1< j<ndo

2 af (07,1, —1,5,G) € L(SYM)

3 then ConstrucT(0,4,7);

4 end-if

5 end-for

ConsTrRUCT(0™,2,7)

1 k1

2 repeat

3 Find first {z;¢ < I < n such that

1 {U“Tk—]—],f—ljj,I'l,...,Ik_],l'.Ik,G) EL(SYM};
5 L +— I'k;

G b—k+1;

7 until k=n—1

8 return: (108 — 15,10, 000 s Tasi)

It is easy to see that LEARNSYM has time complexity O(n").]

Learning LS(p) with SPP-assistant

Now we show the following upper bound on learning the class LS(p).

Theorem 5.5.3 For any prime p, the representation class LS(p) is FP-learnable
with an SPP-assistant.

For the proofl we need to give some notations and definitions from linear algebra.
We give only definitions that are essential lor our proof. For more basic definitions

and results please refer to any standard linear algebra book (see for example [HKT71]).

Let [/ be a vector space over a field F'. We denote the zero vector of U by 0. U
is called nontrivial if I/ £ {0}. Let V' < U/ denote that V is a subspace of /. For
X C U let (X) denote the subspace of I/ spanned by X. The direct sum of [/ and
V' is denoted by U @V, and the n-fold direct sum of F is denoted by #*. For the
proof of the Theorem 5.5.3, we need to recall some results form linear algebra. The

following resull easily follow from basic definitions.

CHAPTER & Exact Learning via Teaching Assistants 26

Proposition 5.5.4 Let W < V < U/ be finite dimensional veclor spaces over a field
F. Let A be a basis for U and B a basis for W. Let A" be a mazimal subset of A
such that A'U B is linearly independent. Then A" U B is a basts for U. Moreover,
V=Wa({A)nV).

Let F be a field, and U be a nontrivial subspace of F". Let U denote the
subspace {fu e U/ |[for 1 €7 <1: u[j]=0} of U, for 1 <1 < n, and let U9 denote
/. The O-inder of U is the maximum k such that U™ is nontrivial. We have the

following proposition. See appendix for a prool.

Prnpnsitinn 5.5.5 Let F' be a field and U be a nontrivial subspace of F™. If k 1s
the 0-index of U then U is a [-dimensional subspace.

Proof. (Of Theorem 5.5.3) We first define an assistant L(LS({p)) and show that
LS(p) is FP-learnable with assistant L{LS(p)). Then we prove that L(LS(p)) €
SPP(LS(p)).

On input 07, let V' < F7' be the target subspace. Let vectors F! be uniformly
encoded in strings of length {(n) for polynomial { (recall the definition of LS(p)).
Define L(LS(p)) as: L(LS(p)) £ {(0*, A, 2,3, V)|t is the O-index of ({A)NV): 3z €
YY) with yz € (A) N V;iyz # 0},

We first give an intuitive idea of how the learner works. The aim of the learner
is Lo construct a basis for the target subspace V. Suppose we have constructed
an independent set of vectors B € V. We use L(L5(p)) to prefix search for a
vector v € V — (B) as follows: Let A be a fixed basis for B2 (for example, the
standard basis of unit vectors). Construet A’ C A such that A'U B is a basis for
F‘;‘. (This can be done with some rank computations, which can be carried out in
polynomial time.) Next, compute the 0-index of the space ((A") N V) with L{L5(p))
as oracle, by making queries of the form (07, A", i,e, V) for 1 <1 < n. We now

construct v using prefix search with queries to L(LS(p)). Notice that if (B) # V

CHAPTER 5 Exact Learning via Teaching Assistants 87

then by Proposition 5.5.4 {A") NV is nontrivial and every nonzero element in it is
independent of vectors in {B). Therefore, including v in B increases the dimension
of (B). This process of including new vectors in (B) will therefore terminate within

n steps. We now formally describe the learning algorithm.

LEARNLINEAR(0™)
1 B+« {0};
2 A+« {el,...,e.} (* Standard basis for FT *) ;
3 Construct A’ C A such that B U A’ is maximally independent ;
4 1+ 1;
5 while (0™, A"z, A\, V) € L(LS(p))
6 dor+—1+41;
7 end-while
B ifi=n+1
9 then output B and stop .
10 end-if
11 gy A

12 for j « 1 to t(n)
13 do if (0", A 4,y1, 7} € L{LS(p))

14 then y «— yl;
15 else y «— yl;
16 end-if

17 end-for

18 B« Bu{yh

19 goto 3;

We now show that L(LS(p)) € SPP(LS(p)). We construct a GapP ma-
chine M which on input (0", A,{,y), uses V as oracle, and has the property that
M(0™, A’ 4, y) produces gap = 1 if (0", A'.4,y, V) € L(LS(p)) and produces gap =10

otherwise.

To this end we define another NP machine N (which uses V' as oracle). On inpul
(0%, A", 1, ¥, k} the machine N guesses p — 1 distinct nonzero vectors vy,...,Up—1
(A"} in lexicographically increasing order, such that y is a prefix of v; and N
accepts along Lhis path ifl each v; € V. It follows from the definition of 0-index that
if £ is more than the O-index of A’MV then N has no accepting paths. Furthermore,

if k& is the O-index then, from Proposition 5.5.5, N has a unique accepting path.

CHAPTER 5 Fxact Learning via Teaching Assistants &8

Let accy({0™, A’,7,y,k)) be the number of accepting paths of N on input
(0", A’ 1,y, k). We now design the desired machine M which uses N.

DESCRIPTION OF M(0", A,%,y)
1 Produce a gap of gapy({0™, A',2,y,1)) - [Ti_i1 (1 — acen ({07, A1, y, k).

Notice that on input (0", A',¢,y), if ¢ is not the 0-index then M has a gap = 0.
Furthermore, if 7 is the 0-index and y is the prefix of the guessed vector vy, then M
has gap = 1 otherwise M has gap = 0. Hence L(LS(p)) is in SPP(LS(p)). M can

produce the gap prescribed in line 1 above by appropriate simulations of machine

N. =

Hardness of learning 3-CNF

Now we show a complexity-theoretic evidence that it is unlikely that 3-CNFs are
learnable with an 5PP-assistant or an LWPP-assistant. We prove the following

theorem.

Theorem 5.5.6 [f3-CNF is FP-learnable with an SPP-assistant, then NP C 5PP.
If 3-CNF 18 FP-learnable with an LWPP-assistant, then NP C LWPP.

FProof. We prove that if 3-CNI is FP-learnable with an SPP-assistant, then NP C
SPP. The proof of the second statement 15 identical and is omitted. For proving
this, we show that if 3-CNF has a learning algorithm with an SPP-assistant, then
the co-NP-complete language TAUT= {{0™,0', f}|f encodes 3-CNF on n variables
of size < { and [is a tautology} is in POYY which is SPP [FFK94]. Since SPP is

closed under complement, the result follows.

Let @ be an FP-learner, which on input (0", 0'} learns an n-variable 3-CNT of

size less than or equal to | with an SPP-assistant L(3-CNF) = {{n,L,y.c}|ly €

CHAPTER § ixact Learning via Teaching Assistants 89

5% Q(n,l,y,c)} accepted by a machine N, where ¢} is the predicate defining the
SPP-assistant. Define a language A = {(0™,0%,y, f)ly € £7; f encodes a 3-CNF
formula and @'(n,l,y, f}} where the predicate @' is such that if @'(n,l,y, f) is true
then N on input (07,0',y) with f as target formula has gap = 1 and if Q'(n,l,y, f)
is false then N will have a gap = 0. It is easy to see that A € SPP. Consider the
deterministic machine M, for accepting TAUT, which on input (0%,0', f} does the
following. M simulates a on input n two times, sequentially. In the first simulation
whenever o makes a query (n,l,y,c) to L{ 3-CNF), M makes a query (0",0',y, f)
to A. In the next simulation whenever a makes a query (n,[,y,¢) to L(3-CNF'), M
makes a query (0", 0',y,T) to A (T is the trivial formula true). M accepts (0%,0°, f)
if the output of M in both the cases are the same. Now we crucially observe that
since @ 15 a deterministic machine it outputs the same string in both simulations iff

f is a tautology. Theorem follows. =

5.6 Summary

In this chapter we investigated the complexity of exact learning some algebraic rep-
resentation classes. Our major interest was in learning the class of permutation
groups and linear spaces over finite fields. First we observed that Angluin’s model is
insufficient for a fine classification of the complexity of these representation classes.
Hence, we proposed a refinement of Angluin's model called the teaching assistant
model of exact learning. To classify the complexity of learning various representation
classes in Lhe teaching assistant model, we introduced the notion of teaching assistant
classes and defined some teaching assistant classes analogous to well-known complex-
ity classes. Among these, the teaching assistant classes analogous to the complexity
classes SPP and LWPP were of importance. As our main results, we showed that
permutation groups are polynomial-time learnable with LWPP-assistants and linear
spaces are polynomial-time learnable with SPP-assistants. We also showed that it

15 unlikely that the representation class 3-CNF is polynomial time learnable with

CHAPTER 5 [ixact Learning via Teaching Assistants an

any of these assistant classes, These results formalize the intuition the complexity
of learning 3-CNF is quite different from that of learning either permutation groups
or linear spaces. Notice that in Angluin’s model, it is not possible to bring out this

difference.

In the next chapter we continue our investigations on the complexity of exact
learning. We define more assistant classes and prove some absolute separations
among these classés. We use subclasses of the representation class SYM for showing

these separations.

Chapter 6

Separating Teaching Assistant
Classes

In the previous chapter, we introduced various assistant classes and used these classes
to give finer upper bounds on learning some algebraic representation classes, As
mentioned earlier, the different assistant classes thal we have defined are in exact
analogy to standard complexity classes. Furthermore, the previous chapter indicates
that some of these teaching assistant classes have some correspondence with exact
learnability in Angluin’s model. Motivated by the possible finer classification of
representation classes, and again in analogy with complexity classes, in this chapter
we define and study some more teaching assistant classes, Particularly, we define
assistant classes corresponding to the classes UP M co-UP, UP and NP M co-NP.
Using some subclasses of the representation class SYM, we show some separations

that are possible among various teaching assistant classes that we consider.

Before going into the proofs, we summarize the containments and separations
that we show among various teaching assistant classes in the following figure. TFor
the completeness sake, we also compare various types of queries in Angluin’s model.
In the last chapter we have shown thal the membership queries in Angluin's model
are completely characterized by P-assistants in the teaching assisiant model. It is
shown in [Ang88] that the class £-CNF is FP-learnable with only equivalence queries

in Angluin's model. It is also shown there that the representation class monotone-

CHAPTER € Sepa.rating_ Tea.dilng Assistant Classes 92

DNF (class of monotone boolean functions represented by monotone DNF formulas)
is FP-learnable with equivalence and membership queries. In [AHK93], it is shown
that the class of monotone Read-once formulas {class of monotone boolean functions
representable by monotone formulas in which all the literals appear exactly once)

are F'P-learnable with only membership queries.

"

LWPP
(5YM)
SPP NP
{LEV \
T /
up NP N co-NP
[CYCLIC.EYM)
.
~ \
UP N co-UP- - - Equiv4-Memb
(n-CYCLES) (Mumafuna-DNF].

[
]

"“H]
\ o~ .
P=Memb - - - Equiv

(Monotone Hesdeonee)] (k-CNF)
Figure 1. Inclusions and separations of different teaching assistant classes'.

In the next section we define three more teaching assistant classes analogous
to complexity classes NP M co-NP, UP N co-UP and UP. We also prove machine
characterizations of some of these classes. These characterizatlions are used to show

some more lower bounds in the teaching assistant model,

'In the figure a bold line with arrow indicates inclusion, a dashed line with arrow indicates
proper inclusion, and a dashed line without arrow indicates separation in both directions. For each
teaching assistani class C in the picture, a representation class that is FP-learnable with C-assistant
is given in brackets under the assistant class, Formal definitions of these classes are given later.

CHAFTER 6 Separating F[‘ea.c}iing Assistant Classes

93

6.1 More Assistant Classes

Let us first define the assistant classes of interest to us in this chapter.

Definition 6.1.1 Let P be a representation class and L(P) be a teaching assistant.

1. L(P) is said to be in the class NP(P) Neco-NP(P) if there exists a polynomial-

time non-deterministic oracle Turing machine M which for any P-valid tuple
(n.l,z,c), on any path outputs ‘accept’, ‘reject’ or ‘7" such that: on input
(0,0, z) uses ¢ as oracle and outputs ‘accept’ on at least one of its paths
and does not output ‘reject’ on any path, if (n,[,z,¢) € L(P) and outputs
‘reject’ on at least one of its paths and does not output ‘accept’ on any path,

if (n,1,z,c) & L(P).

2. L(P) is said to be in the class UP(P) if there exists a polynomial-time non-

deterministic oracle Turing machine M which for any P-valid tuple (n, [, z, ¢},
on input (07,0',x) uses ¢ as oracle and accepts (0",0',z) if and only if
{n,,z,¢) € L{P) with the promise that M has at most one accepting path on

any imput.

. L{P) is said to be in the class UP{P)Nco-UP({P) if there exists a polynomial-
time nondeterministic oracle Turing machine M which for any P-valid tuple
{n,l,z,c), on any path outputs ‘accept’, ‘reject’ or *'7" such that: on input
(07,0', &) uses ¢ as oracle and outputs ‘accept’ on a unique path and does
not output ‘reject’ on any path if (n,{,z,¢) € L(P), and outputs ‘reject’ on a

unique path and does not output ‘accept’ on any path, if {n,{,x,c} & L{P).

In all the above definitions, the behavior of machines accepting the teaching assis-

tants is not specified on inputs which are not P-valid.

Remark. Since we are interested in the query complexity (in an information-

theoretic sense) of teaching assistants, it is some times useful Lo define relativized

CHAPTER 6 Separa.ting Teal:}ling Assistant Classes 94

teaching assistant classes by allowing Turing machines accepting teaching assistants
to have oracle access to a language, say A C £°. Notice that this language aids the
machine only in computation (we term such an oracle a computational oracle) and
not in retrieving information about the target concept. Let P be a representation

class. Then the assistant class C(P) relative to a computational oracle A € X" is

denoted by C(P)*.

The following refinement of Proposition 5.4.3 from the previous chapter is direct

from the definitions.

Proposition 6.1.2 For any representation class P

o P(P) C UP(P)Neco-UP(P) C UP(P) C SPP(P) C LWPP(P).

e P(P) C UP(P)Nco-UP(P) C NP(P)Nco-NP(P) C NP(P) € E3(P)

6.1.1 Learning with NP Nco-NP and UP N co-UP assistants

Machine characterizations of learners which use assistants from NPNco-NP and UPN
co-UP assistant classes will be handy in many of our proofs, especially for proving
lower bounds. We next show these characterizations. For this purpose, we extend the
deterministic learners in Angluin’s model to nondeterministic learners. We consider
two types of nondeterministic learners; NP5V learners and UPSV learners. Let P be
a representation class. A NPSV (UPSV) learner is a nondeterministic oracle Turing
machine transducer which on input {07,0') and ¢ € P as target concept, has to
output a representation r € R such that y,(r) = ¢ (i size(e) < [) for the concept e,
on al least one (respectively, ezactly one) of its paths. Moreover, the learner should
output the seme representation on all the paths on which it is outputting. Also,
the running time of the transducer must be bounded by a polynomial. As in the
case of teaching assistant classes, we also allow these learners to have access to a

computational oracle whenever necessary.

CHAPTER 6 Separating Tca.c]:j.rlg Assistant Classes 95

In the next theorem. we show machine characterizations of the above-defined as-
sistant classes. The proof of the theorem is an adaptation of the proof that a function

7 & FPNPrco-NP 5o 004 only if f is NPSV computable (implicitly in [BLSS4]).
Theorem 6.1.3 For any representation class P, and any language A C E*

1. P is NPSV-learnable with membership queries with the aid of a computational
oracle A if and only if P is FP-learnable with an (NP N co-NP)*-assistant.

2. P 1s UPSV-learnable with membership queries with the aid of a computational
oracle A if and only if P is FP-learnable with an (UP N co-UP)! -assistant.

=

Proof. We prove part 1 of the above theorem. The second part can be proved very

similarly.

Let P = (&, {0 }uz1,t) be any representation class and A be a computational
oracle. Let § be an FP-learner for P using a teaching assistant L(P) in (NP{P) N
co-NP(P))*. Let M# be a nondeterministic oracle Turing machine witnessing L(P)
in (NP(P) neo-NP(P))4. Let ¢ € P, be the target concept and [be such that
size(¢) < [. Consider the following learner @ which on input {07,0') simulates the
learner 4 on input (0",0'). Whenever 3 makes a query (n.[,z,c) to LP, ' start
simulating M on input (0*,0°, r} by guessing a path p of M. During the simulation
of path p of M by 3, whenever M makes a query y to A, 3 also makes query y to
A. Whenever M makes a query z to the target concept ¢, 3’ makes a membership
query z Lo the teacher and treats the answer as the answer to M’s query z. I the
path p outputs ‘?”, then #' abandons that path. If the path p outputs ‘accept’ then
3' treats this as answer ‘Yes' to the query {n,[,z,¢) of 3 and proceeds. If the path
p outputs ‘reject’ then 3 treats this as answer ‘No' to the query {(n.l.z, ¢} of 3
and proceeds. Now, on any single simulation of M by &', the paths which are not
abandoned by 3" has the same answer, it clear that, in the end, ' running in time

bounded by a polynomial in n 4 [, outputs the same string as oulput by /3.

CHAPTER 6 Deparating TEE.d’lil‘lg Assistant Classes 96

To show the containment in the other direction, let P = (R, {ptn}n>1,1) be
any representation class that is NPSV-learnable using membership queries. Let o
be an NPSV-learner for P which uses A as computational oracle. Let g be the
polynomial bounding the running time of a. Without loss of generality, we can
assume that for input (07, 0'), all the paths of a runs for exactly g(n 4 1) time steps.
Consider the following teaching assistant L(P) = {(n, [, (1,), ¢)|e on input (0,0},
with ¢ as target concept, and A as computational oracle, runs for g(n 4 {) steps
and outputs a string y whose i*" bit is b}. Now we show that L{P) € (NP(P)n
co-NP(P))4. Consider the following oracle Turing machine M* which on input
(07,0, (4, b)) simulates the learner a for g(n + I) steps using ¢ as oracle. On any
path p of @, il @ makes a query y to A, M4 also makes query y to A. Whenever o
makes a membership query z to the teacher, M* makes a membership query z to
the targel concept ¢ and treats the answer as the answer to a's query z. At the end
of g{n + 1) steps of computation, on the paths where o does not output anything,
M# outputs *7” and on the paths where o outputs a string y M* outputs ‘accept’ if
1" bit of y is b and outputs ‘reject” if i*" bit of y is not bor |y| < 1. It is easy to verify
that M# witnesses L{P) € (NP(P) N co-NP(P))". Now we give an FP-learner o'
for P using teaching assistant L{P). Let ¢ € P, be the target concept and [such
that size(e) < L
NP M co-NP-LEARNER o'(07,0")

1 1+1:
2 while (n, 0, (i,b),¢) or (n,1,(z,b),¢) € L(P)
3 doif {n,L,(i,b),¢) € L(P)
4 then y — yb;
A else y «— yhy;
ti end-if
T t—i4 1
8 end-while
9

Qutput y.

It is clear that o' constructs the representation of ¢ which is output by a. Also,

the running time of o' is bounded by O(qg(n +1)). E

CHAPTER Separa.tlng Teaching Assistant Classes a7

What is the difference between NPMco-NP-assistants and UPMNco-UP-assistants?
We show in the next theorem that information-theoretically they have the same
power. More precisely, we show that UP N co-UP-assistants with computational
oracles in NP are as powerful as NP N co-NP-assistants. Thus, separating these

assistant classes in the polynomial-time learnability sense is as hard as separating

P and NP.

Computational difficulty of separating UPMco-UP and NPMco-NP assistants

Here we prove the following theorem.

Theorem 6.1.4 Let P be any representation class. If P is FP-learnable with an
(NP M co-NP)-assistant, then there is language B € NP such thal P is FP-learnable
with @ (UP N eo-UP)P-assistant.

Proof. We use the machine characterization of FP-learnability using NP M
co-NP-assistants and UP 1 co-UP-assistants proved in Theorem 6.1.3. Let P =
(R, {ftn }uz1:L) be any representation class which is FP-learnable using NP fico-NP-
assistant. Then by Theorem 6.1.3, there is an NPSV-learner a, which learns P
using only membership queries. Consider the langnage (not to be confused with a
teaching assistant) B = {{0*,0',z,y)|3 a path p of a , which is lexicographically
lesser than z, and e on input (0",0"), u.(y) as target concept, outputs a string on
p}. We first show that B is in NP. Consider a nondeterminisiic oracle machine N
which on input (07,0', z,y) first guesses a path p, which is lexicographically smaller
than z, of o on input (07,0} and p.(y) as target concept and simulates o on that
path. Since the representation class is honest, checking membership in p,(y) can
be done in polynomial-time. So whenever & makes membership queries = to the
target concept g, (y), N computes the answer to this query using the representation

y (part of input) of pa(y). Hence B € NP.

CHAFTER 6 Separating Ttea,c]ling Assistant Classes 93

To complete the proof, consider a UPSV-learner o, which on input {0",0') and
target concept ¢, simulates the NPSV-learner a on input (07,0} and target concept
e. Il @ on a computation path z outputs a string y as a representation of the target
concept, o’ makes a query {0",0', z,y) to B. If the answer is ‘No', o' outputs y. If
the answer to the query is “Yes', & halts without output. It is clear that &' outputs
only on the unique lexicographically first path on which e outputs. Hence o' is a
UPSV-learner with membership queries and B as oracle for P. From Theorem 6.1.3,

it follows that P is FP-learnable using a (UP M co-UP)®-assistant with the help of

an NP oracle. m

The next corollary is immediate.

Corollary 6.1.5 [f there exists a representation class P that is FP-learnable with
an NP M co-NP-assistant, and nof FP-learnable with a UP M co-UP-assistant, then
P £ NE,

6.2 Learning Subclasses of SYM

In this section we show more results on the learnability of algebraic represen-
tation classes n-CYCLES and CYCLIC-SYM. These are subclasses of SYM =
(£, {ftn }nz1,1). By restricting elements in R to satisly some pre-specified property,
we define these subclass of SYM as follows. P' = (R, {y} }151,¢') be a subclass
of SYM. P’ is the class CYCLIC-5YM if R’ consists of those sets of permutations
which generate a cyclic group. P’ is the class n-CYCLES if R’ consists of a single
n-cyele (please recall the definition of an n-eyele from the previous chapter). It is
clear that n-CYCLESCCYCLIC-5YMCSYM. Since SYM is honest, it follows that

all these classes are honest.

Next we show upper and lower bounds on learning these subclasses in teaching

assistant model. These results are relatively easier to prove. The purpose of these

CHAPTER 6 Separating Teaching Assistant Classes 99

results is to illustrate the separations that are possible among various teaching as-

sistant classes that we have defined.

First we show upper and lower bounds on learning n-CYCLES.
Learning n-CYCLES

We show the following theorem.

Theorem 6.2.1 The class n-CYCLES is noi FP-learnable with P-assistants. It is
FP-learnable with a UP M co-UP-assistant.

Proof. Notice that FP-learning with membership query in Angluin’s model is same
as I'P-learning with a P-assistant. Now, the proof of the first part of the theorem
is already given as the proof of the Theorem 5.3.2 given in the previous chapter,

namely the class SYM is not FP-learnable with membership queries,

For the proof of the second part, we need the following elementary fact about
the number of generators of a group generated by an n-cycle. To be more precise,
let ¢{n) = |{i|1 < i< n;ged(i,n) = 1}|, for n € N. For each n-cyclic group & < S,

there are precisely ¢(n) n-cycles o such that G = (o).

Now, we describe a UPSV-learner that learns »-CYCLES with membership
queries. On input 0%, the UPSV-learner first computes ¢(n), then guesses a lex-
icographically ordered set of @¢(n) n-cycles, and finally makes membership queries
corresponding to each guessed n-cycle. The learner outputs the first of the gnessed
n-cycles, if answers to all the queries are ‘Yes'. From Theorem 6.1.3, it [ollows that

n-CYCLES is FP-learnable with a UP M co-UP-assistant =

We now turn to the learnability of the class CYCLIC-SYM.

CHAPTER 6 Separating Teaching Assistant Classes 100

Learning CYCLIC-SYM

We show that while CYCLIC-SYM is not learnable with NP M co-NP-assistants, it

is F'P-learnable with a UP-assistant. We first prove the lower bound.

Theorem 6.2.2 The rlass CYCLIC-S5YM s nol IPP-learnable with NP N co-NP-

asstsiants.

Proof. To show this lower bound, notice that it suffices to show that CYCLIC-SYM
15 not NP5V-learnable with membership queries. Suppose @ is an NP5V-learner for
CYCLIC-SYM. Let s be a polynomial such that s(n) upper bounds the number of
membership queries asked by a(0"). Choose a prime p such that (p — 2)! > s(p).
Consider the computation of a(07), with target group {e). Let p be a computation
path on which e outputs a representation for (e). Furthermore, let (¢1,92.. .., qup))
be the set of elements of S, queried by o on the path p. Since the target group is {e)
the answers to all queries except e is *No'. Since (p — 2)! > s(p), Proposition 5.3.1
implies that there is a p-cycle g such that {g |1 <1 < s(p)} — {e} N {g) = 0. Now
consider the same computation path p for a(07) for target group (g). Notice that
the answers Lo queries (gy, 2. .., sip); €) 15 the same whether the target group is (e)
or {g). Therefore, a ends up outputting a representation for (¢} on path p, even for

the target group (g). This contradicts the definition of NPSV-learnability. m

Now we give an upper bound on learning CYCLIC-SYM. For Lhe proof of this
theorem we require the following simple group-theoretic results. See the appendix

for a proof.

Proposition 6.2.3 Let G be a cyelic subgroup of S,.

1. If G is of order p*, for prime p, then p* < n.

2. Let |G| has the prime factorization pi* ... p;'. Then the number of elements in

(7 of order pf‘ is ;r:r:"i - pf‘_l, for each 1 and k; < ;.

OHAPTER Separating Teaching Assistant Classes 101

Theorem 6.2.4 CYCLIC-SYM is FP-learnable with o UP-assistant.

Proof. For CYCLIC-SYM we define a teaching assistant as follows:

LICYCLIC — SYM) = {{0",p, k,2,G)|G < S,,p* < n,pisaprime, Iy € B+ zy
encodes the lex. first ¢ € G : o(g) = p*}.

Now we describe a machine AcCEPT-L(CYCLIC-SYM) that witnesses
L(CYCLIC-SYM) in UP(CYCLIC — SYM).

ACCEPT-L(CYCLIC-SYM)(0", p, k, z, G)

1 Ko p"‘ —p"“_l;

2 if p* > n or p not a prime

3 then reject

4 end-if

3 Guess K distinet strings =y, ...,z in lexicographical order
6 fori=1to K

7 do if x; does not encode a permutation of S,

5 then reject

9 else Compute the order o; of the element encoded by z,
Lo if o; # p*
11 then reject
12 end-if
13 end-if
14 end-for

15 if dy such that =; = 2y
16 then accept

17 else reject
18 end-if

IL 15 easy to see thal the machine accepts the teaching assistant L{CYCLIC-
SYM). Now we will see that the above non-deterministic machine has the required
time bound and unambiguous behavior. Let (7 be the targetl cyclic group. line 2 can
be obviously done in time polynomial in n. Since p* < n the nondeterministic step
in line-5 can also be done in time polynomial in n. Computing the order of g € 5.,
in line-9 can be done in time polynomial in n by writing the cycle decomposition

of g and computing the lem of the cycle lengths in the decomposition. Now, [rom

CHAFTER & Separa.ting Tea.chiug Assistant Classes 102

Proposition 6.2.3, if there is an element of order p*, then there are p* —p*~! elements
of order p* in (7. Hence at most one non-deterministic guess can be an accepting path
after completing the for-loop. It follows that L{CYCLIC-SYM)e UP(CYCLIC-
SYM).

Now we describe the CYCLICLEARNER for CYCLIC-SYM, which uses the as-
sistant L{CYCLIC-SYM). Let G be the target concept. We first give an intuitive
idea of how CYCLICLEARNER it works. Let pi' ...p;" be the prime factorization of
|G|, where GG is the target cyclic group. Let G; denote the unique subgroup of G
of order pi*, 1 <2 <[Il g is a generator of (i, then it is easy to see that []g;
generates (G. CYCLICLEARNER exploits precisely this property: using the assistant
L(CYCLIC-SYM) it computes a generator g; for each G; and then finally computes

a generator for G by multiplying the g;'s. The formal description follows.

CYCLICLEARNER(0®)

. 2

2 for primesp<n

3 do Compute the largest index d such that p* < n;
4 while (0", p,d, A, G) € L(CYCLIC-5YM)

do d —d—1;

i end-while
7 (* Using L(CYCLIC-SYM) prefix search for g, of order p* *)
8 z =X

9 while (07, p, d, 20, G) or (0%, p,d, 21,G) € L(CYCLIC-SYM)
10 do if (0%, p,d, 20, G) € L{CYCLIC-5YM)

11 then =z — z0;
12 else =z« z1;
13 end-while

14 Pl

15 O — T hp;

16 end-for

17 output o.

CHAPTER 6 Separating Teaching Assistant Classes 103

6.3 Summary

The main focus of this chapter was on separating some of the teaching assistant
classes that we defined in this and the previous chapters of the thesis. We introduced
subclasses of the representation class SYM for showing some of the separations.
(The separations shown are depicted in Figure 1.) The main purpose of defining
these subclasses was to illustrate the possibility of separations among the teaching
assistant classes, However, it will be interesting to see whether there are other

representation classes studied in the literature which witness these separations.

Chapter 7

Conclusion

In this thesis, we investigated the structural complexity of some computational
group-theoretic problems. The main results shown in this thesis provide more in-

sights into the complexity of these problems.

In Chapter 4 of the thesis, we investigated the complexity of three basic com-
putational group-theoretic problems; Membership Testing, Order Verification and
Isomorphism Testing. All these problems are computationally difficult; there is no
polynomial time algorithm for any of these problems over black-box groups. But,
it is also not known whether they are hard for NP. In Chapter 4, we showed that
these problems over solvable black-box groups are in the counting class SPP. This
upper bound of SPP implies that these problems will not provide additional power
as oracle to counting classes like PP, C_P and Mod;P. This is an indication in
support of the beliel that these problems are unlikely to be hard for NP. Another
important aspect of this result is that these problems provide more examples of

natural problems in SPP which are not known to be in P.

There is one major open question that arises from this investigation. Extended
the above upper bound to problems defined over general black-box group. We believe
that the problems we considered here are low for PP even over general black-box
groups. The methods we used for solvable groups will not extend for the general

case. We feel thal new methods based on classification theorems about finile simple

CHAPTER T Gﬂni‘.lllﬁit’}n 105

groups may be required for the proofl of this. A more general question is to show

membership of other natural problems in the complexity classes like SPP or LWPP.

In Chapters 5 and 6 of the thesis, our focus was on the complexity of learning
some algebraic representation classes. Since Angluin's model of exact learning is not
enough for a fine classification of their complexity, we proposed a new exact learning
model called the teaching assistant model. For classifying the complexity of learning
in this model, we introduced the notion of teaching assistant classes. Using these
notions we were able to show that complexity of learning permutation groups and
linear spaces over finite fields are quite different from that of learning 3-CNF. In
Chapter 6 we considered separating teaching assistant classes using subclasses of

the representation class of permutation groups.

We mention some open problems. Firstly, it will be interesting to see whether
there are representation classes that can be learned with an LWPP-assistant but not
with an SPP-assistant. Is it true that class SYM is polynomial-lime learnable with
an SPP-assistant? As a first step towards answering this, it will be inleresting if one
can show that the subclass of SYM consisting only of abelian groups as coneepts,

can be learned using an SPP-assistant.

The teaching assistant model for learning is as vet of only theoretical interest.
As the next step, it will be interesting to develop more learning algorithms in this
model for various other representation classes (not necessarily algebraic), and explore
further the relationship between the teaching assistant model and other well-known

models of learning.

Bibliography

[AHK93]

[Al186]

[Ang8s]

[Ang90]

[Ang92]

[AVI6]

[AVOTa]

D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formu-

las with queries. Journal of the Association for Computing Machinery,

40(1):185-210, 1993.

E. Allender. The complexity of sparse sets in P. In Proc. of the Ist [EEE
Structure in Complexity Theory Conference, pages 1-11, 1986. Lecture
Notes in Computer Science # 223.

D. Angluin. Queries and concept learning. Machine Learning, 2:319-342,
1988.

D. Angluin. Negative results for equivalence queries. Machine Learning,

5:121-150, 1990.

D. Angluin. Computational learning theory: survey and selected bibliog-
raphy. In Proc. of the 24th ACM Symposium on Theory of Computing,
pages 351-369, 1992.

V. Arvind and N. V. Vinodchandran. The complexity of exactly learning
algebraic concepts. In Proc. of the Tth International Workshop on Algo-

rithmic Learning Theory, pages 100-112. Springer-Verlag, 1996. Lecture
Notes in Artificial Intelligence # 1160.

V. Arvind and N. V. Vinodchandran. Exact learning via teaching as-

sistants. In Proc. of the Sth International Workshop on Algorithmic

[AVOTD]

[Bab8s]

[Bab92]

[BB&6)

[BCFT95]

[BCG*a6]

[BDGSS]

[BGY2]

(BHZ87]

[BLSS4]

Bibli Dgra.plly 107

Learning Theory, pages 291-306. Springer-Verlag, 1997. Lecture Notes
in Artificial Intelligence # 1316.

V. Arvind and N. V. Vinodchandran. Solvable black-box group problems
are low for PP. Theoretical Computer Science, 180:17-47, 1997.

L. Babai. Trading group theory for randomness. In Proc. of the 17th
ACM Symposium on Theory of Computing, pages 421-429, 1985.

L. Babai. Bounded round interactive proofs in finite groups. SIAM
Journal of Discrete Mathematics, 5:88-111, 1992.

J. Balcazar and R. Book. Sets with small generalized Kolmogorov com-

pelxity. Acta Informatica, 23:679-688, 1986.

L. Babai, GG. Cooperman, L. Finkelstein, E. Luks, and A. Sercss. Fast
monte carlo algorithms for permutation groups. Jouwrnal of Compuler

and System Sciences, 50:206-308, 1995.

N. Bshouty, R. Cleve, R. Gavalda, 5. Kannan, and C. Tamon. Oracles
and queries that are sufficient for exact learning. Journal of Computer

and System Sciences, 52:421-433, 1996.

J. Balcazar, J. Diaz, and J. Gabarrd. Structural Complerity - I & [IL
Springer Verlag, Berlin Hiedelberg, 1988.

R. Beigel and J. Gill. Counting classes: Thresholds, parity, mods and

fewness. Theoretical Computer Science, 103:3-23, 1992, -

R. Boppana, J. Hastpad, and S. Zachos. Does co-NP have shorl interac-

tive proofs? Information Processing Letters, 25:127-132, 1987.

R. Book, T. Long, and A. Selman. Quantitalive relativization of com-

plexity classes. SIAM Journal on Computing, 13:461-487, 1984,

[BLS87]

[BRS95]

[BS84]

[Burss|

[CFo3)

[CHY0]

[FFK94]

[FHLSO]

[FKH2]

[Ford7]

Bibliography 108

L. Babai, E. Luks, and A. Seress. Permutation groups in NC. In Proc.
of the 19th ACM Symposium on Theory of Computing, pages 409-420,
1987.

R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection.
Journal of Computer and System Sciences, 50(2):191-202, 1995.

L. Babai and E. Szemerédi. On the complexity of matrix group problems
L. In Proe. of the 25th IEEE Sympestum on Foundations of Computer
Science, pages 229-240, 1984.

W. Burnside. Theory of Groups of Finite Order. Dover Publications,
INC, 1955.

G. Cooperman and L. Finkelstein. Combinatorial tools for computational
group theory. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, Vol. 11, 1993.

J. Cai and L. Hemachandra. On the power of parity polynomial time.

Mathematical Systems Theory, 23(2):95-106, 1990.

S. Fenner, L. Fortnow, and 5. Kurtz. Gap-definable counting classes.

Journal of Computer and System Sciences, 48:116-148, 1994.

M. Furst, J. I\. Hopcroft, and E. Luks. Polynomial time algorithms for
permutation groups. In Proc. of the 215t IEEE Symposium on Founda-
tions of Compuler Science, pages 36-45, 1980.

M. Fellows and N, Koblitz. Sel-witnessing polynomial time complexity
and prime [actorization. In Proe. of the 7th Structure in Complezity

Theory Conference, pages 107-110, 1992,

L. Fortnow. Counting complexity. Complexzity Theory Retrospective I1,
Springer Verlag, 1997.

[FRO6]

(Gav3]

(GilT7]

(GI78)

(GS84]

[Gupds]

(GW93]

[Hal59]

[Tegds]

[Her90]

[HKT1]

[HPRV96]

Bibliography 109

L. Fortnow and N. Reingold. PP is closed under truth-table reductions.

Information and Computation, 124(1):1-6, 1996.

R. Gavalda. On the power of equivalence queries. In Proc. of the EU-
ROCOLT, pages 193-203, 1993.

J. Gill. Computational complexity of probabilistic complexity classes.

SIAM Journal on Computing, 6:675-695, 1977.

M. Garey and D. Johnson. Computers and Intractability: A guide to the

theory of NP-Completeness. Freeman Sanfransisco, 1978.

S. Grollmann and A. Selman. Complexity measure for public-key crypto-
systems. In Proe. of the 25th IEEE Symposium on Foundations of Com-
puter Science, pages 495-503, 1984.

S. Gupta. Closure properties and witness reduction. Journal of Computer

and System Sciences, 50(3):412-432, 1995,

R. Gavaldi and O. Watanabe, On the computational complexity of small

descriptions. STAM Journal on Compubing, 22:1257-1275, 1993.
M. Hall. The Theory of Groups. Macmillan, New York, 1959.

Hegediis. Generalized teaching dimensions and the query complexity of
learning. In Proc. of the 8th ACM Conference on Computational Learning
Theory, pages 108-117, 1995.

U. Hertrampl. Relations among mod classes. Theoretical Compuler Sei-

ence, 14:325-328, 1990.
K. Hoffmann and R. Kunz. Linear Algebra. Prentice Hall Inc, 1971.

L. Hellerstein, K. Pillaipakkamnatt, V. Raghavan, and D. Vilkins. How
many queries are needed to learn? Journal of the Association for Com-

puting Machinery, 43(5):840-862, 1996.

[Kan85)

[K1.90]

[Ko85]

[K8b93]

[KST92]

[KSTT92]

[LadT5]

[Lubsi1]

[Luk§7]

[Luk92]

[OHO93]

Bibling raplly 110

W. Kantor. Sylow’s theorem in polynomial time. Journal of Computer

and System Sciences, 30:359-394, 1985.

W. Kantor and E. Luks. Computing in quotient groups. In Proc. of the
22nd ACM Symposium on Theory of Computing, pages 524-534, 1990.

K. Ko. Continuous optimization problems and a polynomial hierarchy of

real functions. Journal of Complexity, 1:210-231, 1985.

J. Kobler. On the structure of low sets. In Proc. of the 10th IEEE
Symposium on the Structure in Complezity Theory, pages 246-261, 1995.

J. Kobler, U. Schoning, and J. Toran. Graph isomorphism is low for PP.

Journal of Computational Complexity, 2:301-310, 1992.

J. Kébler, U. Schéning, S. Toda, and J. Toran. Turing machines with few
accepting paths and low sets for PP. Journal of Computer and System

Seciences, 44(2):272-286, 1992,

It. Ladner. On the structure of polynomial time reducibility. Journal of

the Association for Computing Machinery, 22(1):155-171, 1975.

A. Lubiw. Some NP-complete problems similar to graph isomorphism,

STAM Journal on Compuling, 10:11-21, 1981.

E. Luks. Computing the composition factors of a permutation groups in

polynomial time. Combinatorica, 7:87-99, 1987,

E. Luks. Computing in solvable matrix groups. In Proc. of the 33rd
[EEE Symposium on Foundations of Computer Science, pages 111-120,

1992.

M. Ogiwara and L. Hemachandra. A complexity theary for feasible clo-

sure properties. Journal of Computer and System Sciences, pages 295

325, 1993.

[Pap94]

[P783)]

[Schs3]

[Schag]

[Sim70]

[Sim75)

[T092]

[Tod91]

[Tor&8]

[Val76]

Bibliography 111

C. Papadimitriou. Computational Complexity. Addison-Wesley Publish-
ing Company, 1994,

C. H. Papaﬂimitrioil and 5. K. Zachos. Two remarks on the complexity
of counting. In Proceedings of the Sizth GI Conference of Theoretical
Computer Science, pages 269-276. Springer-Verlag, 1983. Lecture Notes
in Computer Science #145.

U. Schoning. A low and a high hierarchy with in NP. Journal of computer
and System Sciences, 27:14-28, 1983.

U. Schoning. Graph isomorphism is in the low hierarchy. Journal of

Computer and System Sciences, 37:312-323, 1988,

C. Sims. Computational methods in the study of permutation groups.
In Computational Problems in Abstract Algebra, pages 176-77. Ed.

John Leech, Pergamon press, 1970.

J. Simon. On some central problems in compulational complexity. PhD

thesis, Cornell University, Ithaca, Newyork, 1975.

5. Toda and M. Ogiwara. Counting classes are at least as hard as the
polynomial-time hierarchy. SIAM Journal on Computing, 21(2):316-328,
1992.

5. Toda. PP is as hard as the polynomial-time hierarchy. STAM Journal

on Computing, 20(5):865-877, 1991.

J. Tordn. An oracle characterization of the counting hierarchy. In Proc.
of the Srd IEEE Structure in Complexity Theory Conference, pages 213
993, 1988. '

L. G. Valiant. Relative complexity of checking and evaluating. Informa-

tton Processing Letters, 5:20-23, 1976,

[Val79]

[Val84]

[Vin97]

[Wag86]

[Wat90]

[WGo4]

Bibhography 112

L. G. Valiant. The complexity of computing the permanent. Theoretical
Clomputer Seience, 8:189-201, 1979.

L. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, 1984,

N. V. Vinodchandran. Improved lowness results for solvable black-box
group problems. In Proc. of the 17th International Conference on the
Foundations of Software Technology and Theoretical Computer Science,

pages 220-234, 1997. Lecture Notes in Computer Science ## 1346.

K. W. Wagner. The complexity of combinatorial problems with succinet

input representation. Acta Informatica, 23:325-356, 1986.

Q. Watanabe. A formal study of learning via queries. In Proc. of the
17th International Colloguium on Automate, Languages and Program-
ming, pages 139-152. Springer-Verlag, 1990. Lecture Notes in Computer
Science # 443,

0. Watanabe and R. Gavalda, Structural analysis of polynomial time

query learnability. Mathematical Systems Theory, 27:231-256, 1994.

Appendix

In this appendix we give the proofs of several group-theoretic and linear algebraic

facts that we used in the thesis.

Lemma 4.2.6 Let G be a finite abelian p-group. Let 1,92 ...,4; be 1 independent
elements of G of orders p™ ,p™2, ..., p™ respectively such that for all j,1 < 7 <
1, the marimum order of any element in the factor group G/({m,g2...,9;}) is

prtt. Let gl (491,92 -+, 9i}) be an element in the factor group G/{{g1.92...,4i})
of order p™+ . Further, let (zy,22,...,x;) be the unique {41,95...,9:}-ezponent of

(gh). Then p™ir divides x; for 1 < j < i, Let y; = z;/p™* for 1 < j <

i. Then g1 = gl Vg2 ™ ...g; " is an element of (G of order p™+! which is

independent of {g1,62...,6:}.

M1

Proof. From the statement of the lemma we have (g;,,)" =gy iy First

we show that p™+t divides z; for 1 < j € 4. Fixa j; 1 < j <1i. Let us focus
on the group generated by {g1,92...,9;}. Since any element of the factor group
G/{{g1,02...,4;}) is of order at most p™ we have gE_HFmJ € {{g1,92...,9;}). Bul

notice that m; = my,. Hence

ik £ gt]T""'J Mt

':5’:+1]p = {Fi+t

(o7 --.g)

—1r3

£

e ({g1,0 -0 05))

Now, since for all £, j < k < i, gi is independent of {gi,g2...,0:} — {ge}, we

have (gi*)7 """ =e. In particular (g7’)™ "+ = ¢. But the order of g; is p™

and it should divide x;(p™ ~™+1). Hence p™+! should divide z;.

To show that giy; = gl 197 " g2 ... g; " isof order p™+1 in (G and independent of
{@1,02.-.,0:}, first notice that g;1, and g:4, are in the same coset of ({gy,92...,4:})

. E - - Frig "
in G. Hence it is enough to show that (gi,)7 "' = e. Bul, since p™+ly; = z; and

pil

(gisq) =gi'...g;", the result follows. =

J"'Lppenfﬁix 114

Lemma 4.2.7 Let G be a finile group of order n and let p7’ p3 ... pir be the com-
plete prime factorization of n. Let H be an abelian subgroup of G and is generated
by the set {g1,92...,9s} © H. Then for each j, the p;-Sylow subgroup of H is
generated by X; = {gfnfp?] | I E5E 3,

Proof. It is not hard to see that for each j, the group (X;} generated by X;
is a subgroup of the (unique) p;-Sylow subgroup of . Therefore, it is enough
to show that each generator of H can be generated using products of appropriate

elements from the different X;. Consider a generator g;. Let o(g) = n;. Since

ged(ny, Enfp;’) = 1, it follows that g is in the cyclic group generated by [[}_, gr“fp’
=

Proposition 4.2.8 Let G, H and K be finite groups such that H . K < G and K 15
a normal subgroup of H. Let |G| =n = pi* ... pt" be the unigue prime factorization
of the order of G. Then for any element hK in HIK, the order ol h) s of the
form ph .. p¥, where for all 1; 1 < i < r, d; is the smallest integer 7 such that

(WP e K

Proof. We shall prove the result for the case when the group K is trivial. The proof
for the general case is identical. Let h be any element of H and for 1 <1 < r, d; be
the smallest integer j such that {h“-‘f”fl) = . Let us denote the number n/pf" by
Ny, for 1 <7< r. Also denote p ... pd by N. We first show that o(h) divides N.
Since for each 1, h""f"’;j'. = e, we have o(h) divides N,p:?r‘ for each ¢; 1 <1 < r. This
means that ol h) divides g{:{[[{.'""rr,-pf' | 1 <& < r}), which is the same as N. Hence

ol k) divides V.

To show that NV divides o(h), assume that o(h) < N. But we already have o(h)

divides N. Hence there exists a prime p;; 1 <1 < r, such that A%/ = e. But this

d,—1
By

means that (A™) = e. This contradicts the definition of d;. Hence N divides

ol k). The result follows. m

f'!lppenc}jx 115

Proposition 4.3.13 Let G be a finite group generated by the set S. Then, the

commautator subgroup of G is the normal closure of the set {ghg™'h™" | g,h € §} in

G.

Proof. Let N be the normal closure of the set X = {ghg™'h™ | g, € S} in G and
' be the commutator subgroup of G. Recall that G' = ({ghg™ k™" | g,h € G}).
It is a well known group-theoretic fact that G’ is normal in G and G/G' is abelian.
Moreover if H is a normal subgroup of G such that &/ H is abelian, then G' < H.
Now, from the definition of N and &' and the f{act that G’ is normal in G, it follows
that N < G'. Hence to show that N = @', it is enough to show that G//N is
abelian. Firstly observe that G/N is generated by {gN | g € 5}. But for all
g, h €8, (gN)AN)(gN)"Y(hN)™' = N. Hence the result. m

Proposition 5.3.1 Let p be a prime. Then there are (p — 2)! cyclic subgroups of

5, generated by p-eyeles.

Proof. The number of p-cycles in S, is (p — 1)!. Let g be any arbitrary p-cycle.
Since pis a prime, all the p—1 elements except identity in (g) are p-cycles and all of
them generate the group (g). Also, if k & {g) is any p-cycle, then from Lagrange’s
theorem it follows that {g) N (k) = {e} where ¢ is the identity permutation. Hence
there are (p — 1)!/(p — 1) = (p — 2)! cyclic subgroups in S, generated by p-cycles.

=

Lemma 5.5.2 Let G < 5,.

1 |G = [I;5:d; for eachi, 1 <i <n.

2. The number of strong generator sets for GV is T |C}'{-’:'|LEJ foreach i 1 <

R [

.'"'l.ppcnc].ix 116

3. Let X C{1,2,...,n} and o € S.. Then |Glax1l = |Gl

Proof. (1). From the definitions it follows that for any 7, G is the disjoint union
of diyy right cosets of GU+1) in GU). Hence, |G| = diy; [GU*1)|. The result follows

by induction.

(2). Consider the chain of subgroups {e¢} = G® < Gin-1) = | < GO = g,
Then the set Ui, T; forms a strong generator set for G where T; is a complete right
transversal of G in GU-1). Observe that for 1 < i € j < n, if there exists a
permutation in G that fixes 1 to i — 1 and maps ¢ to j, then there is an entire right
coset of GU) in GI'=Y) that fixes 1 to i — 1 and maps i to j. Consequently, any one
element of this right coset can be included in T}. Thus for each pair (i,7), ¢ < j,
there are |G| choices for inclusion of a generator in 7% that fixes 1 to i — | and
maps ¢ Lo j. Henceif d; is the cardinality of T} then there are |GV |% complete right

transversals of G in GU-1), Hence the result.

(3). The result follows from the observation that for any o, G, x| is a right coset

of Gix)in G. |

Proposition 5.5.5 Let F be a field and U be a nontrivial subspace of I'™. If k is

the O-index of U then U™ is a 1-dimensional subspace.

Proof. Let us recall the definition of 0-index. For 1 < i < n, U is the subspace
{fueU|forl <j<i: ulj]=0}of U U® denotes I/. The 0-index of I/ is the

maximum k such that U/'®) is nontrivial.

Define V; to be the subspace {v € F}, | v[j]=0; for 1 < j < n} of £ and let V;
denote F™. It is clear that for 1| < j < n, V; is of dimension n — i. Now, we have

Ut =1 n Vi

Since k is the O-index of U/ we have U*+1) is trivial but U/¥) is nontrivial. Suppose

the dimension of U*) is greater than 1. Let u; and uy be two linearly independent

ﬁppendix L7

nonzero vectors in /¥), Let a; be a vector in some fixed basis of Vi that is not in

Vig1. Then there exists nonzero scalars ay, e € F and vectors vy, v € Vi such

Lthat

Uy = w4+ ad

Uz = Uyt Qullg

Now consider the vector u = ayu; — aqus. This is a nonzero vector (since u; and
uy are independent) which is identical to esv; — ayvy and hence in Viyy. But we

already have u € U. Hence u € U1 which is a contradiction to the fact that

{Jk+1) ig trivial. =

Proposition 6.2.3 Let G be a eyclic subgroup of S,,.

1. If G is of order p*, for prime p, then p* < n.

2. Lel |G| has the prime factorization pi* ...p}". Then the number of elements in

G of order pf* is pf — ph=' for each 1 and k; < ¢..

Proof. The first part immediately follows from the fact if o(a) = p*, for o € S, and
prime p, then the cycle decomposition of o has a cycle of length p*. For the second
part, recall that if (7 is cyclic and d divides |G| there is a unique cyclic subgroup

of G of order d. Also, any cyclic group of order d has ¢(d) generators, where & is

the Buler totient function. The proposition follows since ¢(p;*) = pi — p for

1 gl =

