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Chapter 0

Abstract

0.1 Introduction

Neutrinos are electrically neutral spin half particles which interact only via weak
interactions with other particles. Historically the neutrino was first postulated by
Wollgang Pauli to explain apparent violation of energy momentum conservation in
nuclear beta decay. The particle first proposed by Pauli is what we call today the
electron antineutrino denoted as i, the particle which accompanies Lthe electron
in weak interaction processes. Its antiparticle the electron neutrino denoted as
v, accompanies the positron in weak interactions. Today we know that there are
three types or flavors of neutrinos, the electron type v, the muon type w, which
accompanies the muon in weak interactions, and the tau type denoted by v, , which

actcompanies the tau lepton in weak processes.

Presently neutrinos form one of the building blocks of the GSW (Glashow, Wein-
berg, and Salam) model of weak and electromagnetic interactions. In this model
the neutrino is assumed to be a massless particle paticipating only in the weak in-
teractions. This model is consistent with all the laboratory data examined so far,

and, there is no irrefutable evidence for neutrino mass.

A problem however arises when one considers neutrinos from extraterrestrial

sources, specifically neutrinos from the sun and neutrines from the atmosphere.
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The first major discrepancy between theory with massless neutrinos and data came
with respect to neutrinos from the sun, i.e solar neutrinos. The mechanism which
is responsible for energy release in the sun is nuclear fusion. A byproduct of the
fusion reactions are the electron type of neutrinos. Astrophysical madels of the sun,
called as the standard solar model of the sun (55M) predict a definite flux of these
electron neutrinos which should reach the earth. Experiments which have measured
the flux of these neutrinos have consistently found less number of neutrinos visa
vis the 55M. This is called the solar neutrino problem, and it has been with us
for over thirty years. It is also extremely difficult to reconcile data with theory by

changing the parameters of the SSM, as the SSM has to satisfy other conditions like

for example the luminosity constraint.

However, there exists another attractive alternative by which the Solar Neutrino
problem may be resolved, and that is the idea of neutrino oscillations. 1f neutrinos
are massive, then they may mix with each other, i.e the flavor states could be
different from the mass eigenstates, and they can be linear combinations of the mass
eigenstates. These mass eigenstates have masses, y; and p; say in the framework
of only two flavors. One can now have the phenomenon of flavor oscillations, i.e.,
a neutrino of one flavor can get converted into a neutrino of another flavor after
propagating for some time. This conversion process is basically controlled by the
mixing angle # between the two neutrinos, and the difference between the masses
of the two mass eigenstates 83, = pj — pj. Also the conversion can be drastically
different in matter, as compared to conversion in vacuum, due to what is known as
the Mikhail, Smirnov and Wolfenstein effect or the MSW effect. It is immediately
obvious that oscillations via mixing is possible only for massive neutrinos, therefore
any positive signal of oscillations, is also a signal for new physics beyond the GSW

maodel.

Another problem that has emerged recently is the so called atmospheric neutrino
problem. The atmosphere is a source of electron as well as muon type of neutrinos
and antineutrinos. These neutrinos are the end product of a cascade process which
is triggered by cosmic rays interacting with nuclei in the earth’s atmosphere. There

are Monte carlo predictions for these fluxes, and experiments have measured these




respect to the monte carlo predictions, while the electron type of neutrinos are in

reasonable agreement with the Monte carlo predictions.

Mare importantly if one analyzes the solar and atmospheric neutrino problems
with massive neutrinos, then it may be possible to reconcile experiment with the-
oretical predictions. There have been many analyses of the solar and atmospheric
neutrino problems, in a scenario where one flavor of neutrino mixes with the other
favor, and it has been demonstrated that one can reconcile theory with either the
solar or the atmospheric neutrino experiment depending on which experiment one
analyzes, and that there is a region in the two flavor parameter space, i.e in the ¢
and da) space where one gets agreement with experiment. But the erucial point to
be noted is that, the mass scale (i.e the §) that is required for these two problems
are drastically different. This immediately tells us that one needs two independent
mass squared differences, and hence at least three mass eigenstates. This in turn
implies that we need at least three flavors of neutrinos. Now a major drawback of a
two flavor analysis is that the influence of the third Aavor on the two flavor results
are unknown. The inclusion of the third flavor could lead to significantly differ-
ent results. Also independently we know from LEP data, that the number of light
neutrino species is three. So any realistic analysis of these problems with neutrinos

must take all the three flavors into account.

This thesis makes a systematic analyses of the solar and the atmospheric neutrino
problems in a single framework in which all the three flavors of neutrinos can mix
with each other. The region which is allowed by solar and atmospheric neutrino
data in the three neutrino parameter space is mapped out. [t is shown that one gets
bounds on all the five parameters which control the oscillations. Novel effects of
neutrino oscillations such as the day- night asymmetry observable in the real time
solar nentrino detectors. The possible enhancement of the solar neutrino counting
rate during a solar eclipse is analyzed. It shown how these can constrain the neutrino
parameter space mapped out previously. It is pointed out that these effects can
establish, in a model independent way, the fact that neutrinos are massive as these
effects can occur only if neutrinos oscillate. These effects can be probed efficiently

by the high statistics detectors like Super-Kamiokande, Borexino , SNO etc. Lastly




by the high statistics detectors like Super-Kamiokande, Borexino , SNO etc. Lastly
we take the constraints coming from terrestrial experiments into account, and show
that this can drastically reduce the allowed region in the three flavor parameter

space, and also give an estimate of the contribution of various channel of oscillations

to different experiments.

A summary of the mail results of this thesis is as follows.

0.2 The solar neutrino problem

We describe the salient features of the solar neutrino problem. The point is em-
phasised that the suppression seen by the various detectors is an energy dependent
quantity, Because of this it is extremely difficult to explain the solar neutrino prob-
lem through meodifications to the SSM. Therefore neutrino oscillations provides a
very attractive alternative as a possible solution to the solar neutrino problem. The
solar neutrino problem is then analyzed in the context of three Havor neutrino oscil-
lations. We assume a mass heirarchy in the vacuum mass eigenvalues pf > p2 > pd
but make no approximation regarding the magnitudes of the mixing angles. It is
shown that the solar neutrino problem involves only three of the five parameters rele-
vant to three flavor oscillations, viz &gy, the (12) mixing angle w, and the (13) mixing
angle ¢. We develop a perturbative analysis of the neutrino evolution equations in
the sun, and obtain a three flavor expression for the MSW resonance condition in
the sun. Finally we develop an analytic expression for the electron neutrino survival
probability on the surface of the earth. Using this expression we compute the solar
neutrino detection rates for the various detectors. We map out the allowed region
in the three parameter space using the constraints coming from the available data,
i.e from the solar neutrino experiments. We also compute the recoil electron energy
spectrum in detectors that use v, — e scattering (mainly the high statistics detectors
like Super-Kamiokande, The Sudbury Neutrino Observatory(SNO) and Borexino),

and show that it can distinguish between some regions in the parameter space.




0.3 The atmospheric neutrino problem

We introduce the atmospheric neutrino problem and then analyze the atmospheric
neutrino data in the context of three flavor neutrino oscillations. With the hierarchy
among the vacuum mass squares, u2 > u2 > p?, we show that the solution of the
atmospheric neutrino problem depends on 83y = pj — pi and the (13) and (23)
mixing angles ¢ and v*. Therefore the atmospheric neutrino problem is also a three
parameter problem with the parameter ¢ being the common parameter between
the two problems. We first analyze the sub-GeV data on atmospheric neutrinos
and find that a lower limit on §5; > 1072 eV? can be got. We then analyze the
zenith angle dependent suppression observed in the multi-GeV data and find that
it limits d3y from above also. The allowed regions of the three parameter space are
strongly constrained by the multi-GeV data. Consistent with our earlier solution to
the solar neutrino problem which depends on d3; = u3 — ui and the (12) and (13)
mixing angles w and ¢, we obtain the ranges of values of the five neutrino parameters
which solve both the solar and the atmospheric neutrino problems simultaneously.
Therefore the two problems together give us bounds on all the three mixing angles
of the neutrino mixing matrix. Note that this is possible only in a three flavor
framework where both the problems are addressed simultaneously unlike two flavor

analyses where only one problem can be addressed at a time.

0.4 Novel effects of neutrino oscillations

If neutrino oscillations are indeed the solution to the solar and atmospheric neutrino
problems, then are there other signals for this phenomenon which unlike the solar
and atmospheric neutrino problems do not depend on astrophysical predictions of
the solar neutrino fluxes, and the monte-carlo predictions of the atmospheric neu-
trino fluxes? The one effect which was realised quite some time ago which could
demonstrate such a signal is the so called day-night effect. It is possible to see this
effect in the real time solar neutrino detectors. This effect has been analyzed in the

literature for the case of two flavor mixing. We do the analysis of the day-night effect




in a genuine three flavor case, and demonstrate that the third flavor distinetly alters
the two flavor results. We believe ours is the first calculation of this kind with three
neutrinos included. We also develop an analytic way of handling the night regenera-
tion effect, whereas previous efforts were based on brute force numerical integration.
We show that this analytic formula agrees very well with the previous two flaver
results (which we get as a limiting case) which were based on numerical integration.

Most importantly absence of day-night effect is instrumental in constraining a part

of the solar neutrino parameter space.

If the earth can affect the solar neutrinos on their way to the detector in the
night, then it is quite likely that during a solar eclipse, the moon too could affect
the neutrinos on their way to the detector, especially since the Wolfenstein term due
to the moon is of the same magnitude as that of the earth. And this effect again
could be monitored by the real time detectors, since they continue taking data during
the eclipse also, and mest importantly they can measure the rate during the specific
duration of the eclipse. If a change in the counting rate is seen during an eclipse as
compared with the no eclipse rate, it would be a spectacular demonstration of the
phenomenon of neutrino mixing and oscillations. This however requires a real time
detector with high statistics. We do a three flavor analysis of such an effect, and
show that such an effect can be measured by the high statistics real time detectors.
Hence the eclipse effect is another spectacular signal of neutrino oscillations. Even
the absence of such an effect constrains part of the solar neutrino parameter space,

hence the eclipse effect is yet another window on neutrino physics.

0.5 Terrestrial experiments and future experi-

ments

Up to now now the reactor and accelerator experiments which looked for signals of
neutrino oscillations, were short baseline experiments, and hence were not capable
of probing the actual three flavor parameter space allowed as fits to solar and atmo-
spheric neutrino data. But the recent CHOOZ result is the first of the longbaseline

experiments to probe the neutrino parameter space. We analyze the CHOOZ result
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in a three flavor framework, and show that it has a dramatic influence in the three
flavor parameter space when included as a constraint. As a spin off of this result,
we show that the atmospheric neutrino anomaly is dominantly due to v, + v, os-
cillations, and hence the atmospheric neutrino problem is mainly due to vacuum
oscillations. Therefore zenith dependence is a strong indication of the oscillating
term which comes in the neutrino survival probabilities, which ultimately is a sig-

nal of neutrino oscillations. Also future long baseline experiments will be able to
confirm the CHOOZ result.

Among the high statistics detectors which will start operating in the near future
(Super-Kamioka has already started operating), one of the most important experi-
ments will be the Borexino detector. We analyze the physics prospects of Borexino
in the context of three flavor neutrino oscillations and show that Borexino mea-

surements can focus on a very small region in the three flavor parameter space |

and hence it is a powerful tool to distinguish between the various solutions to the
solar neutrino problem. Because of its very high statistics, Borexino is an ideal tool
to look for day-night effects in solar neutrino signals (which could be a very small
effect for some values of the neutrino parameters). Therefore Borexino can probe an
appreciable part of the neutrino parameter space, with no dependence at all on the
| absolute prediction of the "Be flux which is unique to this detector. An evidence
| for day-night effect from Borexino will be an unambiguos signal for neutrino mixing

and oseillations.

0.6 Conclusions

In this chapter we summarize the main results of the thesis, and offer a few remarks.

We also list some possibilities for future research.
This thesis is based on the following papers.
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Chapter 1

Review of neutrino masses and

oscillations

1.1 Introduction to neutrinos

Neutrinos are electrically neutral spin half particles. Historically, neutrino was first
postulated by Wolfgang Pauli to explain the continous electron spectrum, which was
observed in nuclear beta decay of the neutron. This decay was thought to be the
following process

n—=pt+e.

Since the final state contains only two particles the electron energy must be a line

spectrum, in contradiction to what was observed.

Pauli proposed that, the above process is actually a three body decay, and that
a third massless, spin half neutral particle is emitted along with the electron. This
particle was called the neutrino, and was denoted as v. Further more it was assumed
to interact only weakly with matter. This particle which accompanies the electron in
beta decay is what we call today the electron antineutrino denoted as .. Therefore

the above reaction is properly written as

n—=pte + ..
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Its antiparticle the electron neutrino denoted as v, accompanies the positron in weak
interactions. The subscript e tells us that this is the neutrino that accompanies the

electron in weak interaction processes.

Soon after this Fermi proposed his theory of beta decay (which was later extended
by Gamow and Teller), in which the neutrinos were an essential component. In this
theory the interaction Lagrangian for the beta decay of the neutron is of the form.

Gr

o= —Empﬁu@ﬂill‘i’e'j"@v[I].

This was modelled after the current current interaction of quantum electrodynamics
(QED). the quantum field theory of electromagnetic interactions. In the above
equation (ir is a coupling constant, which is experimentally found to be 1.16639 x
10~°G'eV =% in natural units ( = ¢ = 1). ¥ denotes the quantized fermion field, and
¥ its conjugate field. Positron emission along with a electron neutrino is described
by adding to the Lagrangian the hermitian conjugate of the above term. The Fermi
theory was extremely successful in explaining nuclear beta decay, and the idea of
neutrino gained universal acceptance. The first experimental demonstration of the
electron neutrino, was done in a classic experiment by Reines and Cowan [1]. Today
we know that there are three types or flavors of neutrinos, the electron type v, the
muon type 1, which accompanies the muon in weak interactions, and the tau type
denoted by v, which accompanies the tau lepton in weak processes, The existence of
the second type of neutrino (viz the muon type) was demonstrated at Brookhaven
National Laboratory by Danby et al [2]. The existence of the v,, is inferred by
experiments at the electron positron collider (LEP) at CERN, via what is ealled
"the invisible width” of the Z boson. This quantity directly gives the number of
light neutrino species. The experimental value of this number is [3] 2.987 & 0.016.
So even though the number of neutrino species is fixed by experiment, the question

of whether the neutrino is massless or not is still unresolved.

1.2 Present status of neutrino masses

Laboratory experiments try to measure neutrino mass by studying weak decays

involving neutrinos as one of the final products. Today we only have upper limits
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on the masses of the three types of neutrinos. The upper limit on the electron

neutrino mass comes {rom studying the beta decay of tritium.
H o Het+e™ +5..
The present experimental result is [4]
m(r,) < 7.3eV. (1.1)
The upper limit on the muon neutrino mass comes from studying the decay
7 =p 4oy
The present result is [A]
miv,) < 270K eV. (1.2)
The limit on the tau neutrino mass comes from study of the 5 7 invariant mass
distribution in the reaction
et +em a7t 42,
followed by
T a2t 43 4

The present result is [6]

m(v.) < 35MeV. (13)

The point to be emphasised at this juncture is that since we only have upper bounds

on the masses, they could be zero also. So at present there is no irrefutable evidence

of neutrino mass.

Since neutrino is electrically neutral, there also exists the possibility that the
antineutrino is the same particle as the neutrino. Such a self conjugate spin §
particle is called a Majorana particle. In this case the lepton number is not a
good quantum number, i.e lepton number is violated. If the neutrino is indeed a
Majorana particle, then one can have the process of neutrinoless double beta decay.

This process is described by the following reaction

(A, Z) = (A, Z+2)+ 2,
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where a nucleus decays into another nucleus with the emission of two electrons.
This process requires that, in addition to being Majorana type, the neutrino must
also be massive. There has been lot of experimental effort to look for neutrinoless
double beta decay. But no positive signal is found for this effect till now. The
present experimental limit on the electron neutrino mass coming from a study of

nentrinoless double beta decay is [7]
m(.) < 0.68eV. (1.4)

Thus all the laboratory experiments examined so far are consistent with zere neu-

frine mass,

At present the GSW model of particle physics forms the basis of our under-
standing of the electromagnetic and the weak interactions of elementary particles.
Neutrinos along with the other leptons and quarks form the basic building blocks
of the model, The quarks and leptons are arranged into three families, where each
family consists of one doublet of leptons and one doublet of quarks. The doublets

are as follows. The three lepton doublets are

(o) (e Jma(2).

The three quark doublets are

(2)-(2)=(3)

The first family consists of the first of the lepton doublets and the first of the quark
doublets written above. For the neutrinos it is only the left handed components of
these doublets that are present in the model. Therefore the neutrino is massless
in the GSW model. The GSW model with the inclusion of QCD, which is the
theory of strong interactions is called the standard model of particle physics. The
standard model has been extremely successful in explaining almost all the observed
phenomena in particle physics. However it should be remarked that today there is a
general consenses that the standard model may not be the final theory of the strong,
weak and the electromagnetic interactions, and it is only part of a more complete

theory. There are quite a few candidates today for the other theories. Examples are
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Supersymmetry, Left-Right symmetric models, Grand Unified theories ete. In all
these theories neutrinos are massive particles. Also neutrinos are one of the favoured
candidates for hot dark matter of the universe, which in turn demands neutrinos to

be massive. So massive neutrinos are quite a natural possibility.

-

1.3 Consequences of massive neutrinos

Experimentally it is known that there is mixing in the quark sector of the GSW
model. This means that the quarks which participate in the weak interactions
are linear combinations of the quarks with definite flavor. This can be expressed

as follows. Let d, ', and b be the quark states which participate in the weak

d i
s |=U]s], (1.5)
b i

where U is a three by three unitary matrix, and is known as the mixing matrix, or

interactions. Then one can write

the Cabbibo-Kobayashi-Maskawa matrix. As stated before, mixing arises because
quarks are massive and the quark mass eigenstates are not the same as the weak
interaction eigenstates. If neutrinos are massive, then in a manner similar to the
quark mixing, there could be mixing in the neutrino sector also. This possibility
was raised long ago by B. Pontecorvo [8]. The three neutrino flavor eigenstates, i.e
the states that are produced in weak decays, would then be related to three mass

eigenstates through a unitary transformation in general. So we can write

/s i
iy | =Y vi |, (1.6)
vy vy

where the superscript v on r.his. stands for vacuum. The 3 % 3 unitary matrix [/
can be parametrized by three Euler angles (w, ¢, ") and a phase. The form of the

unitary matrix can therefore be written in general as,

oy = ri.'l{ﬂ’"} x Upﬁn:c = 1513[‘;'} X U”EML
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where Uj;(0;;) is the mixing matrix between ith and jth mass eigenstates with the

mixing angle #,,.

This can lead to the novel phenomenon of neutrino oscillations. Since there are
three flavors of neutrinos, one must in general consider oscillations between all the
three flavors. However the basic features of neutrino oscillations can be illustrated
even in a two flavor framework. So let us first consider the case when there are only
two flavors of neutrines. i, and v,. These two flavor states will then be related to

two mass eigenstates vy and ;. We will first consider oscillations in vacuum. We

i, cosf  sind ¥ (1.7)
= R o
i, —sinf cosé 1

(Here we suppress the superscript v on the mass eigenstates), # is known as the

can write

vacuum mixing angle. In general we can write

|"-1} = Z '['rm“"l}r

where a@ = ¢, i, .., and the sum runs over the various mass eigenstates, Now suppose
that at time ¢ = 0, a neutrino of flavor a is born in & weak interaction process. Also

for the sake of definitiness let a be the electron flavor. Then we can write
[v.(0)) = cos 0], (0)) + sin 0]u(0)).
After a time { the state will be

[e(t)) = cosBlin(t)) + sin Olwa(t))
= ¢ ' E o5 0)14(0)) + e~E2* sin 0]uy(0))
= (e7Ftcos? 0 + e B 5in? 0) |1, (0))

+ sinfcos l.'i'q{er"“E"’t - EHE“”%{UD-

where

;= \fpz + m?.

Here 7 is the three momentum of the neutrino, and m is the mass of the mass

eigenstate. Here we assume that all the mass eigenstates have the same momentum.
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One sees that at time f there is a finite probability, that the neutrino of flavor & (in
this case of Havor e) has oscillated into a neutrino of another flavor (the u flavor).
The probability that a neutrino of flavor e, has oscillated into a neutrino of flaver p

is given by
Plve = v,) = [wa0)we(t)F,
= sin®20sin’(E> — Ey)t.

Now since neutrinos are ultrarelativistic, we can write
2
= r
E=\ypP+mi=p+—.
2p
assuming m << p. Using the above equation we get

dm?

Ey— FEy == ‘]P‘

(1.5]

where dm* = m3 — mj.

Hence our expression for the conversion probability becomes

m?
Plv, = v,) =sin’ 20 sin’[-&?:].
Here t has been replaced by z, and p by E as the neutrinos are ultrarelativistic.
This probability is also called the conversion probability | and is denoted by F.,.. [t
gives the probability of conversion of one flavor to another. Note that the conversion
probability depends on two parameters, the mixing angle ¢ and the vacuum mass
squared difference dm?*. Therefore to have oscillations, one needs non zero mixing,
ag well as non degenerate masses, The survival probability, i.e the probability that

the neutrino retains its original flavor denoted by P, is given by

P.e = 1—Plyv. —v,)
5m?

— 1 —sin?20sin? (2L
= 1 —sin® 28 sin [4E.r],
Define a quantity called the oscillation length as
inE
=33 (1.9)

In the above equation, L is in meters provided, E is in MeV, and dm® is in eV?. We

._get

"I
1.10
73 (1.10)

P.. = 1 —sin® 28 sin’(
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and the conversion probability becomes
P = 5iu?235in?{?}. (1.11)

Observe that in order to have appreciable conversion. the distance travelled must
be comparable to the oscillation length. On the other hand if one can average out

the oscillating term then one gets

P., = —sin®20. (1.12)

[ ]

So the conversion probability can be very small, if the mixing angle is small. At this
point it is instructive to note a very important aspect of neutrino oscillations. Let

us write down the evolution equation of the two mass eigenstates. We can write

ig{wn]:(ﬁ. u) |uimn‘
dt | |e(t)) 0 By ) | |wf0) |

Note that here we have written the evolution in the mass eigenstate basis. The
matrix is diagonal as each mass eigenstate in vacuum propagates independently. The
expressions for the oscillation probabilities l',lhutil conversion and survival) derived
earlier, depends as stated before, on the weak mixing angle and the oscillation length.
The oscillation length defined in (1.9) can be written in the form

27
b= BB
Notice that the denominator is the difference between the diagonal elements of
the evolution matrix. Hence any element which is common to both the diagonal
elements, does not matter for neutrino oscillations. In other words any multiple of

the identity matrix is redundant for oscillations.

1.4 Neutrino oscillations in matter

So far, we have studied neutrino oscillations in vacuum, and derived expressions for
conversion and survival probabilities. However, when neutrinos propagate in matter,
these results can change significantly. When neutrinos propagate through matter,

the forward scattering of neutrinos in matter will alter the propagation of the mass




L7

eigenstates, Using the GSW model of neutrino interactions with matter, neutrinos
will scatter off the background matter via the charged current and the neutral cur-
rent. The neutral current interaction influences all neutrino flavors equally. But the
electrons in the matter will interact via the charged current with the electron neu-

trinos only. The interaction term for the charged current interaction can be written

as
Gr _ S
H = ﬁcﬁ“{l — ¥ eleru(l — TS}E,
where G is the Fermi constant, e and v are the quantized electron and electron

neutrino fields. Fierz reordering the above term one gets
G s
H= EV,T”[I — 7 hEyall — 75}{--
For forward scattering of neutrinos off electrons, the electron momentum is un-
changed. Also for electrons at rest only the 4% component of the electron density
can contribute. The v#4® term mixes "small” and “large” components of the electron

spinor, 0 it does not contribute. The term involving the electron fields becomes

’:'Afu{ I — T“}f = Enﬂ -"‘l"rn

where NV, is the number density of electrons in the medium. The net result of the

interaction term is [9)
V = GV2N,
as the interaction resembles an external potential for the neutrino. The effective

energy of the electron neutrino will be given by (to order V)

. m?
Eg=p+ ? + (ev | H|ew, ).
This can be written as
¥
. m
Eg = p+ E +V

L. a0 s o
= P‘f‘ﬁ{m + 2pV)

&

1 2 A
P+ 5(m* +2EV).

Thus V' is equivalent to an addition to m?* of

Oy B (1.13)

§m? = 2EV = 2v/2(

T
T,
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A is known as the Wolfenstein term [10]. In the above equation m,, is the mass of

the nucleon, Y, the number of electrons per nucleon in the matter which is & 1, and

p is the density of matter in gm/cc. Let us look at the evolution equation of the

neutrine mass eigenstates in vacuum, which we wrote down previously.

ii'iu,{f}} = [(p 0 ) +l m; 0 ) 1 (0)
dt | u(t)) 0 p 2p\ 0 m3 lea(0)) |

Neglecting the terms proportional to the identity matrix we can write
cd | 1)) 1 mi 0 [y (0))
= = e *
d{ Jua(t)) | T2E\ 0 m2 ) | (o))
The two by two matrix
m; e
0 m3

is known as the mass squared matrix in the mass eigenbasis, as the diagonal terms
give the squared masses of the mass eigenstates. Since interactions are specified
in the flavor basis, to study neutrino propagation in matter, we first look at the

evolution in the flavor basis. This will be given by

N N B Y A (O)
dt | Jw(0)) | 2877 | o)y |

where M is the mass square matrix in the flavor basis, and is given by

2
Mp=u[™ O ute 2 0).
0 m3 0 0

Here U/ is the two by two unitary matrix which relates the flavor to the mass eigen-
states defined earlier. Note that in the flavor basis the interaction term appears only

in the ee position in the mass squared matrix. On using the form of I/, we get

; | 1| A—-Acos20 A sin 20
M= tmiemiva)| 0|41 s o |
2 0 1 2 Asin 20 —A 4+ Acos20

where A = mj; — mj.

M} can be diagonalized to find the instantaneous eigenvalues and eigenstates.

Let us' define '™ to be mixing matrix in matter, and M3, to be the two mass
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eigenvalues in matter. So one can write

: M? 0
ey = | : 1.14
S [ 0 M ] (1:14)
The eigenvalues of M} are
Y4 A) £ JI[A - Acos20)? + (Asin 26)2

M, = : )21 . J ], (1.15)

where ¥ = m{ + m3 The mixing matrix in matter can be defined analogous to the

vacuum mixing matrix as
e cosfB, siné, e
= ; ' (1.16)
v, —sintl,, cosf, by
= L':" .
vy

The mass eigenstates are v{* and vf". f,, which is the mixing angle in matter is

given by
sin 20 L (L17)
b m = . oy
VI(A = A cos20)? + (Asin 26)2]

One observes that the mixing angle in matter can be substantially different from the

vacuum mixing angle. However, the most interesting feature of 0,, is its resonance

behaviour as a function of A. That is if the condition
A= Acos2f (1.18)

15 satisfied, then we get
sin20,, =1

i.e., the neutrino mixing angle reaches a value of 7 independent of the vacuum
mixing angle. So even a small mixing angle can be amplified to maximal mixing
due to matter effects. Note that the resonance can occur only if the vacuum mixing
angle 0 is less than %, i.e., the electron neutrino is dominantly coupled to the lighter

of the two mass eigenstates.

Let us now compute the electron neutrino survival probability F.., after the

eutrino propagates in matter.




Case (1) Medium with constant density

Suppose the neutrino is produced as well as detected in a medium of constant
density, then F,. is the same as the vacuum case, with the difference that the vacuum
parameters are replaced by the matter dependent parameters. The vacuum mixing
angle 8 gets replaced by f,, and the vacuum oscillation length L is replaced by L.,
The survival probability is given by

SF o . 3 g o
P, =1-5sn"20,, sin {L—]l (1.19)
and the conversion probability becomes
= . By T
F., = sin® 20, sin [!—], {1.20)
where
A E

MI— M2
1= E

\/[{"1 — Acos20)? + {‘_\Singa}u]'

Again if one can average out the oscillating term, we get
L .2 e
Py = Esm 20, (1.22)

and
Pe=1- %sin: 20, (1.23)

Case (2) Medium with varying density

Suppose the neutrino propagates in a medium with varying density. For example
the neutrino may be produced in matter and then detected in vacuum, which is what
happens in the case of solar neutrinos. Or they may be produced in vacuum and

then detected in matter, as in the case of neutrinos from the atmosphere.

Since the mass eigenvalues and mass eigenstates are functions of the density in
the medium, the mass eigenstates obtained earlier are no longer eigenstates of the

Hamiltonian. Let us start with the evolution equation of the neutrinos in the flavor




t‘i |ve) = l
dx f2) 4p Asin 28 —A+ Acos28 | )

2E 0 M? iy |

(from now on we suppress t and ( in front of the states) We have also substituted r

[lm}: m[lﬂi"}]
) Ve

and keeping in mind that /™ is r dependent, we get

ey | _ L [[ M o0 ] ed T )
[ |u,, }] - 2E {[ ] *'”;_? ] =Y }TIEL ] [|y£u>]
[ s ~-E’§?l '!um]_
v

To get the last equation we have used the explicit form of U™, 1t is easy to show
that

basis derived earlier
A-Acos?0  Asin20 } [ 12, ]

for { . Now using the fact

(1.24)

dim 1 ~ Asin 26 dA .25
dr ~ 2(A— Acos20)? + (Asin20)? dr’ 1-23)

and

M} — M} = \J(A = Acos20)? + (Asin20)2. (1.26)

The offdiagonal term in (1.24) causes the mixing of the states " and ¢J". Let us

study this term in some detail.

Let us consider the case in which p(z) is a slowly varying function, so that =

is small. The condition for the offdiagonal term to be small can be written as

0,  IMP-M? o«

—| s —=—— = —.

| dr ls< 4E B
This can be cast in terms of the electron density as

1 dN, 1 2x Ll -

N dz | == 28 L, I (1.27)
where

4n E
Lg=""22 (1.28)

A
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Equation (1.27) is called the adiabatic condition. If the density variation is very
small, the two mass eigenstates evolve independently. There are no transitions

between them and the heavier mass eigenstate remains heavier for all time and the
lighter mass eigenstate lighter.

Adiabatic evolution in matter can have very interesting consequences. Suppose
an electron neutrino is born in matter at a very high density, such that 8,, =~ I.
Then since

lve) = cos b |vf) + sin 8, )

we get |1} = [11]"). That is the electron neutrino is dominantly born in the heavier
mass eigenstate. As the neutrino moves from high to low density, the mixing angle
will decrease, and at the resonance point where A = A cos 20 it will become =, Then
't__h'e neutrino proceeds out into the vacuum. Since the evolution in adiabatic, the

neutrino state will remain the same mass eigenstate. In vacuum we have
15} = cosBlin) — sinlley).

Bince the vacuum mixing angle is expected to be small. we get |e2) == |ur,), e the
second mass eigenstate is essentially populated by the muon neutrino. Therefore
in evolving adiabatically from high densities to vacuum, the flavor content of a
mass eigenstate changes almost completely. This is called the Mikheyev, Smirnov
and Wolfenstein (MSW) effect [11]. This has tremendous repercussions for what is
called the "Solar neutrino problem” which we shall address later. [t can be shown

easily [12], that if an electron neutrino propagates adiabatically from matter where

the mixing angle is 0,,, to vacuum where the mixing angle is 0, then

P.. = %{1 + 05 20 cos 20, ). (1.29)

One sees from the above equation that if f,, = =

e

and for small vacuum mixing angles,
Fee 2 0. That is when 0 is very small there is almost complete flavor conversion.

Now there may be situations, where the adiabatic approximation does not hold.

;[qﬁu_ch a case there will be corrections to the formula stated above. The adiabatic

T

dition breaks down when eq. (1.27) approaches an equality. That is

fmm[h_ M} — M?
dr '~ 4E

L |
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Using eq. (1.25), |%=| has a maximum at the resonance, and eq. (1.26) implies that
; 4= p
|M7 — M?| has a minimum at resonance. Therefore the condition for adiabaticity

becomes most stringent at resonance. Since at resonance

L
™ sin28’
we can write the adiabaticity condition as
A in® 26
pi A R (1.30)

Eli %],n cos 20
If v = 1, then there will be considerable corrections to the formula for P.. derived
earlier. But such corrections will typically be appreciable only in a small region
around the resonance. As the resonance region is very marrow, propagation out-
side this narrow region will be adiabatic. At resonance corrections to adiabaticity
take the form of level crossings, where the state ¢]* can cross over to vf" and vice
versa. Let P denote the level crossing probability from " to vf* (which is also the

probability for crossing from v" to +*. Then we can write

Pe = [(vf (z4) I (=), (1.31)

where 24 refer to two faraway points on either side of the resonance point. (1-P.)
18 obviously the probability for ¢” to remain in ¢J". It has been shown [13] that the

electron neutrino survival probability now becomes

P = %+{%-!‘L}cos?ﬂcnsiﬂm, (1.32)

P. can be generically parametrized as
p. = c.rp{—;LrF}T (1.33)

where v is the adiabaticity parameter defined earlier in eq. (2.26). The function F°
depends on the density profile in which the neutrino propagates, and is tabulated
in [12] for various density profiles.

1.5 Three flavor oscillations

et us now consider the realistic case where all the three neutrino flavors mix with

ther. As stated previously this can be parametrized in the following way (analogous




to the two flavor case)

(TS [
L 5}
v ||=ItF v |,
i
vy vy

‘where the superscript v on r.h.s. stands for vacuum. The 3 x 3 unitary matrix (/¥
l‘l:.;-i.n be parametrized by three Euler angles (w,é, 1) and a phase. The form of the

‘unitary matrix can therefore be written in general as,
U = Upa(¥) X Upgase % Usa(@) x Uya(w),

where U;;(8;;) is the mixing matrix between ith and jth mass eigenstates with the

Al

‘mixing angle 8;; [12]. The explicit form of U is

Caulu CaSe S
Ul= | —cgs.e® — sysacne™  cucoe — sgSgse™®  sycge |, (1.34)
SpSue® —eysgee™  —sycie® —eysas e cyoge™

where 54 = sin¢ and cs = cosé etc. All the angles can take values between 0 and
/2. The above equation can also be written as

3

I”n} =t UI""I}!

mhﬂc [va) is the column vector, comprising of the three flavor states, and |1} is

‘made up of the three mass eigenstates. The matrix U defined earlier can be written

as
Ua Ug Ua

’ Ur=| Un UV Ua |. (1.35)
U U Us

Iﬂ a way, exactly analogous to the two flavor case, we can compute the electron
neutrino survival probability in vacuum, after the neutrino has travelled a distance

@ We get

P, =1—-4U,U% sin?[z—x} —4ULUZ sin!{E —4ULUZ, ain:{E}, (1.36)
12 Ly

Lys
where
4x E
i = —_— 137
12 5 (1.37)
B
i* (1.38)
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and
irE
Lia == = N {1-35}}
day
In the above equations, 63, = m} —mj, 83 = m}—m? and &3, = m2 —m?. If one ne-

glects C'P violation , i.e., put the phase § = 0, then the mixing matrix contains three
angles. Also with three masses. m,, m; and ms one can construct two independent
m'éss squared differences. This can be taken as &y, and §s;. Therefore three Aavor
neutrino oscillations involve five parameters, as compared to two flavor oscillations
which involve only two independent parameters. All these five parameters can be
modified in matter, and we shall study these in detail when we address the solar

neutrino problem.

From eq. (1.36). we see that in the case, where the oscillating term can be

averaged out, we get
Prr = ] ——y 2{;‘?' 'E.l;rzuz — 2{':'32!{':.33 - 2{,"‘[3['{3' " {1.4”}

Consider the case where the three neutrinos are maximally mixed with each other,
this corresponds to the case U,y = Uy = Uy = % . Substituting in eq. (1.40), we get

P = 5. Therefore three flavor vacuum oscillations can give a maximum suppression
1
of 5.

In the next chapter we discuss the implications of neutrino oscillations for the
solar neutrino problem, and show that neutrino oscillations can provide an elegant

golution to the solar neutrino problem.




Chapter 2

The solar neutrino problem

2.1 Introduction

In order to explain the solar neutrino problem, we first need to know how the
neutrinos originate in the sun. Our present understanding of the production of
neutrinos in the sun is based on what is usually referred to as the Standard solar
model of the sun or simply SSM. The Standard Solar Model is an astrophysical
model of the sun. This model attempts to describe the main features of the sun, like
surface luminosity, opacity, elemental abundance etc [14]. This model of the sun is
based on the following observed parameters:

o Surface luminosity Lg = 3.86 x 10™ erg/sec .

s Surface Temperature T,p = 5.78 x 10° K .

e Solar Mass My = 1.99 x 10°3 g .

e Solar Radius R = 6.96 % 10'0 cm .

e Age of Sun = 4.55 x 109 yr.

L is also assumed that the sun is spherically symmetric, in hydrostatic and thermal
:;i:grium, and is described by the ideal gas equation of state.

26
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According to this model the mechanism responsible for energy production in the
sun is nuclear fusion. The main set of processes which power the sun is called the
proton-proton, or the pp chain. The net effect of this chain is the conversion of four

protons into a helium nucleus, positrons, electron neutrinos and energy. This set of

reactions may be summarized as
dp — *He + 26 + 2,

This reaction releases 27.6 M eV of energy, where the neutrinos on an average carry
away 0.59MeV’ of energy. About 99 percent of the sun’s energy is produced by the
pp chain. The remaining comes from what is called the CNO cycle. These nuclear

reactions are concentrated in a small region within the core of the sun.

As far as neutrino production is concerned, there are four important reactions

in the pp chain. They are as follows. The first of these reactions is
ptp—H+et 4o,

The neutrinos from this reaction are called pp neutrinos, and they from a continuons
spectrum from 0 to 0.42 MeV. In a sense these neutrinos are the most fundamental|
since this reaction initiates the pp chain.
The second reaction is

pt+e +p—=H 4.
The neutrinos from this reaction are known as the pep neutrinos, and it is a line
spectrum at 1.442MeV |
The third reaction is

e”+"Be—= "Litu,.
The neutrinos from this reaction is known as the Beryllium neutrinos, and it is a
line spectrum at 0.861 MeV.
The last of the reactions is

B - %Bet et +u,.

e neutrinos form a continuos spectrum from 0 to 15 MeV. Neutrinos are also

. mitted in several other reactions as well as through CNO cycle. But the only

levant ones are the four reactions given above.
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Neutrino type. | Flux (x10'9)
pp 5.91
pep 0.014
“Be 0.515
LY - 6.62 =% 10~*

Table 2.1: Neutrino fluxes from BP (95) Solar model.

At present the standard solar model of Baheall and Pinsonneault (BP) [15] is
the widely accepted model of the sun. This model has specific predictions for the
neutrino fluxes which come from the above reactions. The BP model predictions of
the neutrino fluxes from the four reactions listed in table 1.1. The line spectra are
2

_given in em™*s™!, while the continuous ones are given in em~2s~' MeV—1,

So the low energy neutrinos are the most copious, while the high energy neutrinos
are the least. The Standard solar model also gives the neutrino spectrum as a

function of energy, for the pp and the Boron neutrinos.

Today there are four detectors on earth which measure the flux of these solar
neutrinos. The oldest of the solar neutrino experiments is the *C'l experiment at
Homestake. Its energy threshold is 0.814 MeV and it can detect the neutrinos from
"Be (B, = 0.861 MeV) and 88 (E, < 14.02 MeV) reactions. The detection is via

inverse beta decay, The reaction is:
e +3Cl ¢ +Y Ar.

In the standard solar model (SSM) of Bahcall-Pinnsonneault [15]. the capture rate
in the *"Cl experiment is predicted to be 9.3%12 SNU. However, the measured rate
is only |16]

Rery =254 £0.16 £0.14 SNU. (2.1)
The water Cerenkov detector at Kamioka, with a threshold of 7.5 MeV, can detect

only the neutrinos from the upper end of ®B spectrum. The detection is via elastic

neutrino electron scattering:

Ve +€7 €.
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'Ti'-'he Kamioka result [17] is given by the ratio,
R T
Ukam = 2 = .423 4 0.058, (2:2)
Rﬁ'ﬂ.m:SSM

e

linm experiments SAGE and GALLEX, with energy threshold of 0.233 MeV can
getect the neutrinos coming from the dominant p — p reaction (£, < 0.42 MeV) as
well as the neutrinos from " Be and ®B reactions. Like the chlorine experiment the

detection is again via inverse beta decay, but on a Gallium target. The reaction is:
v+ 'Ga = e + "'Ge.
Their measured rates are [18. 19]

Rsage = 73 +8.5122 8NU,
Rearrex = T76.24£6.5+5SNU,

and the average is

% RGamey = 74.6 £ 9.33 SNU (2.3)
as opposed to the SSM prediction of 137*2 SNU. Recently, Super-Kamioka have
__ ounced their first results. This detector is a much larger version of Kamioka,

‘with a threshold of 6.5 MeV. The Super-Kamioka result [20] is

Riarca
YsKam = =22 — .379 + 0.034. (2.4)

Rskam:ssm

his discrepancy between the solar model predictions and experiment is known
a8 the "Solar Neutrino problem”. A rough model independent analysis of these
results indicates that the low energy neutrinos from the p — p reaction suffer little
suppression whereas the high energy neutrinos are suppressed to a large extent.
That is one has an energy dependent suppression of the solar neutrino flux. Also
%u Kamioka result, combined with either ¥ Cl experiment result or the results
of '_.'.ﬂGq experiments, rules out astrophysics or nuclear physics based solutions [21]
':: . _Rhe solar neutrino problem. On the other hand nonstandard neutrino physics

with neutrino oscillations, with the MSW effect [10, 11] included, provide the best

e
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other active flavor, then the corresponding solution has two disjoint viable regions in
the parameter space of mass-squared differerice (§;,) and the mixing angle w. These
are the so called small angle and large angle solutions [21]. However, since there are
three active neutrinos, one must consider mixing and oscillations between all the
three flavors. With this point in view, we analyze the solar neutrino problem in a
three flavor framework. Note that since both Kamioka and Super-Kamioka are real
time detectors, they give us event rates as a function of time of arrival of the neutrino
(or equivalently of the distance travelled by the neutrino). Hence it is possible for
these real time detectors to study if there is a difference between the day time and
the night time counting rate. The night time counting rate could in principle be
different from the day time counting rate, because during night the neutrinos have
to travel through the earth, and the earth matter could affect the flavor composition
of the neutrino beam. This possible asymmetry between day time and night time
counting rates is called "day - night” effect. In this chapter we shall ignore day-night
effect, and assume that the day time counting rate is the same as the night time
counting rate. The analysis presented in this chapter is similar to ref.[22]. The flux
.and cross sections have been updated, and the latest experimental data have been
-used to make the analysis up-to-date. Constraints coming from day-night effect will

be presented in detail in a later chapter.

2.2 Three neutrino oscillations in matter

We briefly discuss the mixing between three flavors of neutrinos and then obtain
the probability for a v, produced in the sun to be detected as a v, on earth. The
three flavor eigenstates are related to the three mass eigenstates in vacuum through

a unitary transformation,

Ve vy
w, | =U" w3 | (2.5)
Ly vy

‘where the superscript v on r.h.s. stands for vacuum. The 3 % 3 unitary matrix U

‘can be parametrized by three Euler angles (w, ¢, ) and a phase. The form of the
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ary matrix can therefore be written in general as,

U* = Uphase % Uza(¥h) x Ura(@) x Uya(w),

re U;;(0;;) is the mixing matrix between ith and jth mass eigenstates with the

[ C4Cu cas S4

U = | —epsue® —sysacie™  cycue™ —sysasue® sy | (2.6)
8y5,6" —cysacne™®  —sgc et —cpsus.e7F epege?

e 54 = sing and ¢; = cos @ etc. All the angles can take values between 0 and

t has been shown that the expression for electron neutrino survival probability,

grated over the time of emission and of absorption, is independent of the phase

ind the third Euler angle v [23, 24]. They can be set to zero without loss of

i

enerality and we have the following form for U*
Cacy, Cafw  Fg
v = —S8, Ciu 0 1 {2'?}
b —dgC, —Sa8, Cg

there 54 = sin ¢ and ¢4 = cos ¢ ete. The angles w and ¢ can take values hetween ()

?2. Note that one of the flavors decouples if either w or ¢ is zero and we have
o flavor scenario.

. E(_ﬁ masses of the vacuum eigenstates are taken to be y;, gy and py. In the mass
nbasis, the (mass)* matrix is diagonal,

B 00
My = | 0 u o
0 0 4
0 0 0
= pil+|0 & o0 |, (2.8)
0 0 én

re dg; = p3 — p? and 83 = p3 — pl. Without loss of generality, we can take &y
.m-.'}:f' to be greater than zero. Neutrino oscillation amplitudes are independent of
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the first term so we drop it from further calculation. In the flavor basis the (mass)?
matrix has the form

MZ = UMU™t

= fay Mz + 83 My, (2.9)
e
.si 0 sucs
My = 0 0 0
Sala 0 Ci

Ce5.  CeSuCu —CySgs
My = CaS..C., !:Z, —Sasuc. |- (2.10)

2 1.2
_1:@3;5” —5a45,,0C, 5'_1'-5U

As in the two flavor case, matter eflects can be included by adding A(r), to the

¢ — e element of M? where

9oy E. (2.11)

Mp

In the above equation m,, is the mass of the nucleon, Y, the number of electrons per

A= 2V/2

nucleon in the matter which is = 1, and p is the density of matter in gm/ce. In the

Sun A can be written as

A=0.76 x 1077 pE.

A is in eV2 if B is expressed in MeV. The matter corrected (mass)? matrix in the

flavor basis is

J”r,i = 63111"13] -+ fs‘]lMﬂ + A.ﬂ"".r_.(, {212]
where
1 00
Mi=|000|[. (2.13)
000

r'Ib calculate the evolution of a neutrino in matter we have to find the matter cor-
rected eigenstates by diagonalizing M2 . For arbitrary values of d3; and d,, it is
cumbersome to find the eigenvalues and eigenvectors of M2 algebraically. However,
the eigenvalue problem can be solved using perturbation theory, if the mass differ-

ces have the following hierarchy d3; 3> d3;. This assumption is plausible in light of
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the observed atmospheric muon neutrino deficit. Kamiokande have analyzed their
spheric neutrino data, assuming that the deficit is caused by the oscillation of
, into another flavor. Their analysis assumes mixing between only two flavors
(1 ;iﬁ}-'tﬁ or v, ++ v ). For both cases their best fit yields a mass square difference of
rder of 1072 eV? [25, 26]. In our analysis we take 83 to be 1072 eV?. Thus we
63, much larger than A.... and hence the oscillations involving the third gen-
on are not influenced very much by the matter effects. In order for the matter
ects to be significant (as necessitated by the solar neutrino problem), the other

ss difference in the problem, &z, should be such that the resonance condition is

(e

0 ; R
\‘-“4
(0

0 3 1 1,
\ 0
f‘,‘

a3 0o 1. (2.14)

\ &

r ' AM 4 + d13 M3y as perturbation to the dominant term in M? and carrying
legenerate perturbation theory, we get the matter dependent eigenvalues and
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(oS
my SR [
\ —S4mSuim
&,
mi 0 |- (2.15)
\ C¢n

Thﬂ above eigenvectors are the columns of the umt.arjr matrix '™ which relates the

v, vy
v | =U"| 2 (2.16)
Iy vy

e matter dependent mixing angles can be expressed in terms of the vacuum
arameters and A as

tan Qe 831510 2w

T by cos2w — Acos? VAT
sin:;ﬁ,,,=sinqb-[l+6 cos ¢] 3 cos-;ﬁm—coaé[l——sm’qé] (2.18)
3

he matter dependent eigenvalues m? are given by

m; = Acos® ¢cos’ wm + 8z 5in® (w — wy,),

=
I

Acos® ¢sin® w + 63; cos® (w— W),
831 + Asin® ¢ ~ &a,.

3
w
Il

(2.19)

A[T] = EH cos 2w.

The new feature here, which occurs due to the mixing among the three neutrino

avors, is the presence of the second mixing angle ¢ in the resonance condition.



35

This dependence on ¢ leads to a larger region of allowed parameter space in the
iree flavor oscillation scenario as will be shown in the next section. Since 4y, A(r)
and cos” ¢ are all positive, a resonance can occur only if cos 2w is also positive, or if

w i H‘fd.
In the three flavor case, the electron neutrino survival probability is given by

(By =3 Uz oz

1a=1

we v (2.21)

vs

2
Wy = 8. (2.22)

probabilities involving the third state, xy3 and x13 are expected to be negligibly
| small. Thus we have the expression for electron neutrino survival probability to be
(Pee) = cos® pcos® dn (cuszu:ms“ Wy + sin’ wsin® um) + sin” ¢sin® ¢y,
—213¢08° ¢ c08” Py, €O 2w COS Aty (2.24)

For ;2 we use the formula,

_ exp— 5] — expl—525]

e i 2.25
T T el Vi)
s  is defined as
& in? 2w
1= (2.26)

144 2
E|x? ras cos 2w
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7 is known as the adiabaticity parameter, and it gives us a criterion for estimating
t"-nnnadiabatic effects during the propagation of the neutrine. If v > 1, then
nonadiabatic effects are negligible and the propagation is essentially adiabatic. On
z-e:'other hand v = 1 means there can be substantial corrections to the adiabatic
approximation. Note that v is evaluated at the resonance point, that is because
nonadiabatic effects are important only in the vicinity of the resonance. The function

F depends upon the density profile in which the neutrino propagates, and
F=1-tan’w (2.27)

for an exponentially varying solar density[12] as in the case of the sun. We use
eq. (2.25) for the jump probability since it is valid both for large and small mixing

Gt
R

gles. In the extreme non-adiabatic limit ;5 — cos®w and when vF >> 1, we

‘have the usual Landau-Zener jump probability given by z,; — exp[—%] [12] as
expected.

sion for ¢,, in (2.18) that the angle ¢ is almost unaffected by the matter effects.

T
Howe

However, w,, can be significantly different from w and can undergo resonance if the
resonance condition in (2.20) is satisfied. Since this resonance condition depends on

,\ﬁil addition to dy; and w, a larger region of parameter space satisfies the three
constraints from the experiments.

To search for the regions allowed in the three parameter space d;;, w and ¢, we

.ia';j_:-- the suppression factors observed by the four types of experiments

Rﬂu;uugr
. = CSw 544 4 (0,074,

| e Heassm

| Rey
= —C° 02731 £0.044
v Revssm '
R
Ykam = 2P — (.423 + 0.058, (2.28)
RK:Im;SSH
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R La
ys&-nm — iﬂ‘_ = D;3T’g iﬂ-ﬂm| {2'29}
RSKnm;SSM

# here the first number refers to the average of the data given by two experiments-
pamely GALLEX and SAGE. The predicted SSM rates for various experiments were

" 1 from Bahcall-Pinsonneault SSM calculations [13]. The uncertainties in y; are
the sum of the experimental uncertainty in the numerator and the theoretical uncer-

ity in the denominator, added in quadrature. Because of its different threshold,
treat Super-Kamioka as a different experiment.

T]1-.=: predictions for y; for the three flavor oscillation scenario are obtained by

convoluting the SSM fluxes and the detector cross sections with (Pee} from (2.24),
HJ:lt eXpression we use is

_ Ik [Emes 4E@ g (E)o(E) < Po. > (E)

mien

Tk Jemer dEbg (E)o(E) ’

(2.30)

.'-';',T"u- the sum over K refers to the neutrino fluxes from various sources contributing
to the process. We also include the contributions from the CNO cycle apart from
‘dominant contributions from the p— p cycle. In the case of Kamioka, and
Super-Kamioka only the ®B flux contributes and one must also take into account
[he neutral current contribution arising from the muon and tau neutrinos interacting
1 the detector material. The parameter ranges are then calculated by putting
on y at 1.60 levels. The energy dependent fluxes were taken from Ref. [15]

an ‘:_.yhe cross sections were taken from Rel. [14].

‘We show the results in Fig.(2.1) as regions allowed at 90 percent C.L in the w—4é;,
plane, for various values of ¢. The following features emerge from the graphs.

|

ii,.-‘rhe_paue] labelled (a) shows the region allowed for ¢ = 0°. There are two

- distinct regions in the parameter space. The first region has &5, < 107%V?,
~ and w about 3°. This is called the small angle region. The other region has
5;; > 107%eV?, and w > 25°. This is called the large angle region. Notice the

‘clear seperation between the two regions.

Panel (b) shows the region allowed for ¢ = 10°. One sees that there is no

‘perceptible difference, when compared to the ¢ = 0° case.
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. Panel (c) shows the region allowed for ¢ = 20°. Now the value of ¢ starts
influencing the parameter space. The small angle region almost the same,
while the large angle region broadens a bit to include slightly smaller values

of w.

4. Panel (d) shows the region allowed for ¢ = 30°. Now both the small angle
as well as the large angle regions broaden, and they almost merge at a point.

Each region has the appearance of two limbs.

5. Panel (e) shows the region allowed for ¢ = 40°. The two limbs merge with
each other at one end of each limb. But one can still discern the two different
limbs.

. Panel (f) shows the region allowed for ¢ = 45°. Now two limbs completely
merge with each other, and there is one single patch in the parameter space.

Hence the effect of increasing ¢ is finally to merge the two disjoint regions into

one single region.

e that the parameter space obtained in the present analysis, is more or less the
same parameter space which was obtained in previous analyses of solar neutrino

i blﬁm in three flavors using older data [22, 28].
The various regions of the allowed parameter space may be classified as follows:
small d;y, small w, small ¢,

2. large 0, large w, small ¢,

he small or large 85, means either 63 < 107%eV? or 63y > 107%eV?. The first
s corresponding to small ¢ in the above classification belong to an approx-

wo generation situation since the angle @ is small. The one corresponding
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to small w is the usual non-adiabatic solution, whereas the one corresponding to
e w is the usual adiabatic solution. The rest invoke the genuine three generation
oscillation mechanism. In the two flavor scenario, the small angle solution (corre-
sponding to w small as in case 1 above) gives the best fit [21]. There the parameter
space allowed is small because the resonance condition and the non-adiabatic jump
tor fix d; and w almost uniquely. These values of parameters indicate that the
mneutrinos from the p — p cycle suffer very little suppression and those from 7 Be
'e:_r almost complete suppression as will be illusirated soon in the analysis of the
~survival probability. In the three flavor scenario, the resonance condition (eq. 2.20)
nd the survival probability (eq. 2.24) are dependent on the second angle ¢ also.
-‘-fiIFil- suppression of the p— p neutrinos depends on the value of ¢ and if this suppres-
‘sion is significant, then the complete suppression for " Be neutrinos can be relaxed.
‘This is one of the important differences between the three flavor and the two flavor

‘oscillations.

Fig.(2.2) shows the energy dependence of (F..) for some representative values
of w, ¢ and §3;. The curve labelled (a) corresponds to ¢ = 2°. As there is very

t’t.]r. mixing between the first and the third generation of neutrinos, this is infact

‘an almost two generation case. In agreement with the two generation analysis,

A

there is almost no suppression of the p — p neutrinos and the 7Be neutrinos are

nost completely suppressed. The survival probability at high energies relevant
‘fo Kamioka is almost a linear function with an average around 0.5 as one would
pect. Also here the values of w and §;; are small (they are almost equal to

‘the values obtained in the two flavor case) and the non-adiabatic effects become

\important beyond 2 MeV. Keeping w small if we increase ¢ in the allowed region

ncreased, however, there is a qualitative change in the survival probability
! .*. ofi e, In this range both w and ¢ are allowed to be large. Here also there is a
qualitative change when w is small or large. For large w the survival probability is a
T t]1 function resembling the adiabatic case of the two generation analysis (curves
and (f)) whereas for small w it is almost a step function (curve (e)) which is like
-Eia.ss:c adiabatic case discussed by Bethe in the two generation case [9]. One
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common feature of the large &,y case is that the p— p neutrinos undergo substantial
suppression varying between 0.6 -0.5. The resonance also occurs at a much higher
energy than in the small &, case. Curve (f) has w, ¢ and &, all large and in some
sense it can be called ‘most representative’ of the three flavor oscillation scenario
because both the mixing angles in this case are large. In all the above cases, except
(e), the average survival probability above 7 MeV is in the neighbourhood of 0.4
which is what is required by Kamioka and Super-Kamioka data, and there is no

dramatic change from one to the other. This is not so at low energies where the
curves differ dramatically.

One way of experimentally measuring the energy dependence of (F,.) is to look
at the recoil electron spectrum in those detectors that use v, — e scattering. In
'.'.[13:] we have shown the recoil electron spectrum for the six cases plotted in
;'g-.(ﬂ.Ej. Except case (), they cannot be distinguished beyond 10 MeV, whereas
there are substantial differences at low energies. It is interesting to note that it may

E__.puasible to see this difference in the experimental recoil electron spectrum in the

SNO[29] and Borexino[30] detectors. Note that in computing the recoil electron
ectrum, we have used the spectrum of *B neutrinos as input. This is because
threshold in experiments which can measure the recoil electron spectrum (like

0 and Kamioka) is more than a few MeVs where only this flux matters. The

o

only exception is Borexino where the threshold is much lower and there are other
contributions below 1.5MeV. In particular the recoil spectrum induced by the 7Be
neutrinos, can give a clear pointer to the vacuum parameters. We will analyse
ino in detail at a later stage. We mention in passing that a recent analysis of
" Kamioka recoil spectrum [21] rules out large values of &3, =~ 10~%eV? ,

In conclusion the solar neutrino problem enables us to put bounds on three of
five parameters, which oceur in three flavor neutrino mixing. In the next chapter
all analyze the atmospheric neutrino problem, and show that one can obtain
ds on the other two parameters also. Hence together with the solar neutrino

em, one can obtain bounds on all the five parameters which occur in three

~Mlavor neutrino oscillations.
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Figure 2.1: Allowed regions in the w — &3, plane for various values of ¢. The x axis
shows log(sin” 2w) and the y axis &y in eV?
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Figure 2.2: Survival probability (F..) vs E, for typical values of ¢, w and &y in the
allowed region. The parameters chosen are: (a) 83 = 4.0 x 107°%, w = 3.0°, ¢ = 2.0%
(b) 81 = 4.0 x 1078, = 3.0° ¢ = 16.0°% (c) &y = 7.0 x 107%, e = 2.0°, ¢ = 38.0°;
(d) 8y = 2.5 x 107%,w = 33.0°,¢ = 3.0% (e) 62 = 3.0 x 1075w = 1.0°,¢ = 30.0°
[f} 831 = 9.0 x 1075, w = 24.5°, ¢ = 24.0°; &3, is given in terms of eV>.
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Figure 2.3: Recoil electron spectrum for different representative points of the allowed
parameter region. The parameters for the difference curves labelled (a)-(f) are the
same as in Fig.2.2 The inset shows a comparison of all six cases with the SSM
spectrum(dashed line).




Chapter 3

The atmospheric neutrino

ions produce pions which, in turn undergo the following decay.

- -

7% = p* +,(5,),

pE = et + v () + ().

One observes that there are twice as many muon type of neutrinos as that of the
n type. (Unless explicitly stated, in this chapter we call neutrinos and anti-
s collectively as neutrinos). The atmospheric neutrino spectrum extends
bout 100 GeV'. The flux has a strong energy dependence, which goes roughly
and also has an angular dependence, which is different at each location on
This is primarily due to the effect of the earth’s magnetic field. The

on of these fluxes is hence quite involved. There are detailed Monte Carlo

44
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predictions for these fluxes, and they confirm that the ratio of the flux of muon
neutrinos @, to the flux of electron neutrinos ®,, is about 2 [31, 32]. The abso-
hte neutrino fluxes predicted from different calculations however differ significantly
from each other (by as much as 30%), but the predictions for the ratio of the fluxes
;,H,r‘fl',' are in good agreement with each other (to within 5%). This is because

though the individual fluxes have large uncertainties, this cancels out in the predic-
JLnl on of the ratio.

" In recent years, deep underground detectors have been measuring the flux of
e neutrinos. The large water Cerenkov detectors Kamiokande and IMB [33] have
‘measured this ratio and have found it to be about half of what is predicted [34].

This anomalous value of the ratio is called "The Atmospheric neutrino problem?”.

.f_fﬁxperimﬂntal results are presented in the form of a double ratio

R . (%)u&-; . Toba 3 1
B (E:i] a r."tf(a‘t [: - }
MC

by

'f is the number of events which are induced by muon type of neutrinos, while
i, 18 the number of events induced by electron type of neutrinos. The suffix "obs”
for the observed number of events, while "MC” stands for the Monte Carlo
prediction. Kamiokande collaboration have presented their results for neutrinos with
f less than 1.33 GeV (sub-GeV data) [54] and for neutrinos with energy greater
.33 GeV (multi-GeV data) [55]. For the sub-GeV data, R = 0.60*3% + 0.05
nd for the multi-GeV data, R = 0.57*3%% + 0.07 after averaging over the zenith
le. Here the zenith angle denoted by @ is the angle between the direction of
he incident neutrino, and the vertical axis passing through the detector. As the
or is located about a few Km below the surface of the earth, 0 = 0°, means

irinos are coming straight from above, and # = 180° means the neutrinos
' "“g'frum below, i.e., neutrinos which travel the whole diameter of the earth
 the detector (Note the downward direction is taken as the positive zenith
5). ; : value of R has no significant zenith angle dependence for the sub-GeV
However, for the multi-GeV data, R is small for large values of zenith angle
going neutrinos) and is large for small values of zenith angle (downward
irinos). Also the number of electron neutrino events alone are in reasonable

eement with data, while there is an appreciable deficit of the muon neutrino



46

‘events. Similar to the solar neutrino problem it is quite natural to assume that

neutrino oscillations are the cause of this departure of the ratio R from unity (i.e.,

:f:'! Monte Carlo expectation).

‘Kamiokande have analyzed their data assuming that the smaller observed value
1R15 caused by neutrino oscillations. Since the upward going neutrinos travel
large distances inside the earth before entering the detector, matter effects may
nportant for these, especially at higher energies [35, 36]. Therefore one must
matter effects into consideration while analyzing v, & v, oscillations. The
ikande collaboration [54, 55] have in fact taken matter effects into consideration
eir analysis. They have done two independent analyses, one assuming two
oscillations between v, « v, and the other assuming two flavor oscillations
#, ++ vy. For both the cases, they obtain a mass-squared difference dm? ~
eV* and a mixing angle nearly 45°. However since there are three flavors of
trinos, a proper analysis of the atmospheric neutrino problem must take mixing
Pﬂ;ﬂilla.tiuns between all the three flavors into account. Atmospheric neutrino
n was analyzed in the three flavor neutrino oscillation framework previously.
ef. [37] the sub-GeV data were analyzed under the assumption that one of
{':2-3:' differences is much smaller than the other. The matter effects due to
 passage of nentrinos through the earth were included and the allowed values
ol neutrino parameters were obtained. Various other authors have analyzed, in
ntext of three flavor oscillations, accelerator and reactor data in conjunction

e sub-GeV atmospheric data [38] or the multi-GeV data with zenith angle
dence included [39]. However, in both these cases the earth matter effects were
ken into account. Several authors have attempted a simultaneous solution of
‘and atmospheric neutrino problems in three flavor oscillation scenarios.
lution in Ref. [40] assumes maximal mixing between all the three flavors and
the constraints on the mass differences. The solution thus obtained restricts
ass difference to be very small (~ 107'° ¢V?) and is somewhat fine-tuned.
ber solutions have assumed the mass hierarchy that was considered in Ref. [37]
1ed the allowed regions in the neutrino parameter space [41, 28, 43, 22].
, all these analyses were based on the sub-GeV atmospheric neutrino data.

lti-GeV data and its zenith angle dependence were not included. In a recent



47

analysis of the multi-GeV data, earth matter effects and the zenith angle dependence
were taken into account [44]. However, this analysis considered the atmospheric

neutrino problem only.

In this chapter, we analyze the Kamiokande atmospheric neutrino data in the

framework of three flavor neutrino oscillations. We only assume that, of the two

lso take the allowed values of neutrino parameters from our earlier analysis of the

' ﬁ.r neutrino problem as inputs to our present analysis.

is section we describe the three flavor neutrino mixing and calculate the prob-
bility for a neutrino produced as v, in the atmosphere to be detected as 175 in the

rth, where o and 3 are flavor indices,

In vacuum the flavor eigenstates are related to the mass eigenstates by

e P‘l
v | =U vy |, (3.2)
vy vy

igre the superscript ‘v' denotes vacuum. The unit matrix /Y can be
P ary

U* = UB(g) x UP% x U(g) x U (w), (3.3)

{E;_,»} is the two flavor mixing matrix between the ith and jth mass eignes-

th the mixing angle 6;;. For simplicity, we neglect the CP violation and set
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In the mass basis the mass-squared matrix is diagonal and can be taken to be

pi 0 0 0 0 0
Mi=|0 @2 0 |=pI+|0 6y 0|, (3.4)
0 0 p 0 0 é&un

W = p3—pi and &3 = p3—pd. p?, i = 1,3 are the squares of the vacuum mass
G 'va.lues Without loss of generality we can take pz > ps > gy so that both &y

are positive. For extreme relativistic neutrinos, the oscillation pmbablht},f

M2 = U2y (3.5)

the propagation of neutrinos through the earth, we need to take the matter
into account. The charged current scattering between electrons and v, induces
ective mass-squared term for v, which is of the form A = 222G N, E, where
the number density of electrons and E is the neutrino energy [10]. In this
r A is the Wolfenstein term induced by passage of the neutrinos through the

- This term is present only for the ¢ — ¢ element in the flavor basis so the

quared matrix including the matter effects is

r L3

A
M:=M24+1|o0 (3.6)
0

o o o
o o o

‘hermitian matirx and can be diagonalized by unitary matrix U™, which

he flavor eigenstates to matter dependent mass eigenstates

FTR v
v | =0T [ o |, (3.7)
vy vy

erscript ‘m’ stands for matter. We denote the matter dependent mass
as my, my and ms. The matter dependent mixing matrix /™ can be
in terms of three mixing angles in a manner similar to that of U¥ as

3.8). The matter dependent mass eigenvalues and mixing angles can
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be obtained, in terms of the vacuum parameters and A, by solving the eigenvalue
problem of M, in eq. (3.6).

The distance scales and the energy scales in the solar neutrino problem and the
atmospheric neutrino problem are very different. Therefore, one needs two distinct
ass scales to solve the solar and the atmospheric neutrino problems simultaneously.
‘we saw in the previous chapter to simultaneously satisfy the constraints from all
olar neutrino experiments, one must choose da; ~ 107° &V?, which is roughly
e matter term A for the solar neutrinos due to their passage through the sun. The
ysis of the atmospheric neutrino problem by Kamioka [55], requires that the
s scale relevant for atmospheric neutrino oscillations is ~ 1072 eV?. We take
tu be the scale relevant to the atmospheric neutrino problem. Hence we have
3 gy, If & ~ 107° eV?, the oscillation length corresponding to it, even for
the minimum of the atmospheric neutrino energies, is of the order of the diameter
of the earth. In the expression for the oscillation probability, §y; can be set to

ero. Therefore the oscillations are dependent on only one mass difference &5, in the
atmospheric neutrino problem.

In the approximation of neglecting d4y, it is straightforward to show that the
ation probability is independent of the mixing angle w. The argument is as

ws. The explicit form of the vacuum mixing matrix is

CoCw CoSuw S¢
—CySu — 34846 CyCu — SySeSu  SyCs |, (3.8)
SySu — CySgCu  —SyCu — CydgSu Cyls
2 54 = sin¢g and ¢y = cos ¢ etc. All the angles can take values between 0 and
. U* can also be written as

Uzl Uﬂl Uﬂ
U= Uy U Uss |- (3.9)
Un U Us

glecting 51, the mass-squared matrix in vacuum mass eigenbasis becomes
00 0

M = |00 0

0 0 8y
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0
= 651|000 (3.10)
001

Transforming to flavor basis we get

M2 = UM ()
UL UalUn UslU.s

= &3 | Uwala U2 Ul |- (3.11)
Ualls UslUs Ufa

e that the mass squared matrix is a function of only three elements of the mixing
y viz U.3, U,z and U5, From eq. (3.8), we see that these three elements of
I ng matrix do not involve w. Therefore the eigenvalues and eigenvectors of
ill also be independent of w. So the oscillation probabilities which are built
he elements of the eigenvectors will also be independent of w. It is obvious
ding matter effects does not change the above conclusion. Note, however,
lecting 82, does not reduce the problem to an effective two flavor mixing.
se flavor nature of the problem is reflected by the fact that the oscillation
pbability is a function of the mass difference d5, and two mixing angles ¢ and 1. In
an effective two flavor mixing, the oscillation probability is dependent on
angle only. Including matter effects and diagonalizing the mass squared
'1.-'. ed in eq. (3.11), we get the mixing angles and mass eigenvalues in matter.
(ing angle 1) remains unaffected but the angle ¢ becomes matter dependent,

s 531 sin 2¢'
tan 2¢,, = m, (3.12)
W = . (3.13)

value of v{" remains 0 (actually it is of the order of d5; which we are

. The other two matter dependent mass eigenvalues are given by

= 5[+ A~ ViEcos26— A + (Busin2gy],  (314)

% [{Jm + A) + /(531 cos 26 — AP + (8, sinﬂgﬁ}zJ . (3.15)
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ations (3.12), (3.14) and (3.15) are valid for neutrinos. For anti-neutrinos, we
imilar set of formulae with A replaced by —A.

'The neutrinos produced in the atmosphere enter the earth after travelling
h the atmosphere for about 20 Km and finally reach the detector after travel-
through the earth. The distance travelled through the earth is a function of the
 angle. For the five bins considered by Kamiokande [55], the average values of
he cosine of the zenith angle are —0.8, —0.4, 0.0, 0.4, 0.8 and the average distances
'- ed through the earth are 10210, 5137, 832, 34, 6 Km respectively [40].

eutrino of flavor o, produced in the atmosphere at time { = 0, propagates

h the atmosphere as a linear combination of the vacuum mass eigenstates. If

itrino enters earth at time { = t,, its state vector at that time can be written

2E

ieexpressing the vacuum mass eigenstates in terms of flavor states, we have

[balts)) = 3 Usieap (—i% )z:. o). (3.17)

;
‘entering the earth, the neutrino propagates as a linear combination of the

dependent mass eigenstates. We take the earth to be a slab of constant

Wa(tr)) = 3" Uliezp (—f’—ﬁ) ). (3.16)

At the time of detection t = ty, the state vector takes the form

2
Ba) = T seop (-5t) St S 0gess () 1y, )

2E

nce the amplitude for the neutrino produced as flavor a at t = 0 to be detected
neutrino of flavor 3 at time t; is given by

_"";:'.71} w(f-ﬂ} Z E Z 2iUx: UGUpy exp (—iﬂ?ﬂ) exp ( M) ,

2E 2F

(3.19)
ibility of oscillation P, is given by the modulus square of the above

(14— 1y is set equal to zero (that is if the total time of travel is equal to
travel through the atmosphere) then the expression in eq.(3.19) reduces

e vacuum oscillation amplitude. The same is true if the matter effects
Af U™ = U* and m; = pi-
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For bins 1,2 and 3, the distance travelled in earth is much larger than the distance
travelled in the atmosphere. Therefore ¢, is much smaller than ¢, for these bins and
can be neglected. Neglecting t,, simplifies the expressions for oscillation probability
‘and we obtain the expressions derived earlier in Ref. [37]. However, for bins 4 and
distance of travel in atmosphere is comparable to that in earth. Therefore i,
is of the same of order of magnitude as ¢ and can not be neglected. Keeping ¢, # 0

q.(3.19) properly takes into account the non-adiabaticity in the abrupt change
m density when the neutrino enters earth.

Calculation and results
33.1 Sub-GeV Data

first we describe our analysis of the sub-GeV data. Matter effects are unimportant
e sub-GeV data. If the earth is taken to be a slab of density 5.5 gm/em”,
bie matter term A for the sub-GeV neutrinos is less than 3.8 x 107 V2, As we
nll s

ill shortly see, the sub-GeV data sets a lower limit on &y > 10~? eV2. Hence the

natter effects can be neglected and the expressions for P.j in the sub-GeV analysis
te gimply the vacuum oscillation probabilities

0 v v )2 T v rre V2
Pon = (UnU3) + (ULUS) + (UzUz)

d
+2 U2 U2,U3, U3, cos (2.53 —gﬂ)

42 U2 USUS U, cos (2.53%)

8
+2 UL, Uz, Us,Us, cos (9,53“{ E”) - (3.20)

iere d is the distance of travel in meters, §'s are the mass differences in eV? and F
eutrino energy in MeV. Because we have neglected the CP violating phase,
ation probability for the anti-neutrinos is the same as that for the neutrinos.
very small, the cosine term containing it in eq.(3.20) can be set equal to .
two cosine terms are dependent on 43 (and 83, ~ 43;), the neutrino energy

stance of travel which is related to the zenith angle. As mentioned earlier,
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taneously.

In the presence of oscillations, the number of muon type and electron type events

can be written as

No = [bPucidB+ [ én,PaosdE + [, PoodE (320
+ [ 6o, PiosdE

Ne = [$.PuodE+ [ ¢ PacedE + [ 6, PucoidE (3.22)
+ [ b6, PreredE

e @'s are the atmospheric neutrino fluxes, P,5’s are the probabilities for neu-
ino of flavor a to oscillate into flavor # and ¢,'s are the charged current cross
gotions for the neutrinos of flavor & to interact with the material of the detector.
ke one further approximation which simplifies the analysis considerably. The
current cross sections o, and o,, in general, have different energy depen-
However, it was shown [45] that o, ~ o, and o; ~ o, for E, > 200 MeV.
ore we restrict our attention to the part of the data satisfying the constraint
-H MeV. Using all these above approximations, the expression for R can
aply be written as
1 =it achu (3.23)
P2 ¥ raeFo
ey
MC T T [fuoe + S0 dE
e rpe is the Monte Carlo expectation of the ratio of number u-like events
e number of e-like events. From the sub-GeV data of Kamiokande, we find
= | '_'_EZ_[-E and R = 0.60798% £ 0.05 [54]. We take the allowed values of &

(3.24)
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Bin No. | (cosf) | (distance) in Km | rl,. r i 1
1 -0.8 10,210 3.0 | 0.87133¢ | 0.29*232
2 -0.4 5,137 2.3 | bos2ER | 042 Y
3 0.0 832 23 | LOTHE | 0517018
4 0.4 34 2.3 | L4535 | 0.6313:%2
5 0.8 6 30 | 3543 | 1358

Table 3.1: Zenith angle dependent data from Kamiokande [6]

i experimental value. The region allowed by the sub-GeV data, where ¢ was
ricted by the solar neutrino data and ¢ is allowed to vary between 0 to 90°, is
in Fig.(3.1). The region between the solid lines is the parameter space which
sfies the experimental constraints at 1o level whereas the region between dashed
atisfies the experimental constraints at 1.6¢ level. One important point to be
in this analysis is that the sub-GeV data place only lower bound on &5;. The
wed region in ¢ — ¢ plane is quite large.

Multi-GeV data

ie multi-GeV data of Kamiokande have been presented for five zenith angle bins
Ref. [55]. For each of these bins, the observed numbers of electron-like events and
e events and their Monte Carlo expectations (without neutrino oscillations)

given. From these one can calculate two sets of ratios

. NY
R — (3.25)
N J me
) N:
Toe = | =7 . (3.26)
N«; obs
d the set of double ratios
Ry = rigs/rige (3.27)

_:’biﬁ 1= 1,2,...,5. We summarize the multi-GeV data of Kamiokande [55]
i .'gxi 4
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The p-like events are subdivided into fully contained (FC) and partially contained
(PC) events whereas all the elike events are fully contained. The efficiency of
ion for each type of event is different and is a function of the neutrino energy.

5 we have three detection efficiencies c7(E), epo(E) and £°(E). We obtained
efficiencies from Kamiokande Collaboration [46].

=

__m::-__ns produced in the charged current (CC) interactions of v, can either decay
n it detector or pass out of the detector. Hence the p-like events are subdivided
fn]iy_ contained (FC) and partially contained (PC) events. However, all the
events are fully contained. The efficiency of detection for each type of event is
erent and is a function of the neutrino energy. Thus we have three detection effi-
iesspo( E), epe(E) and £°( £). We obtained these efficiencies from Kamiokande
Jollaboration [46]. The detection efficiency for a particular type of event is defined
b the ratio of the number of correctly identified CC events of that type to the
er of generated CC v, or v, events. Fully contained events are produced by

f low energy and hence by neutrinos at the lower end of the spectrum. Al-

of the partially contained events are produced by neutrinos of high energy.

i shapes of the efficiency curves are roughly as follows:

® Epc: is non-zero only for smaller neutrino energies. It has its maximum value

of 0.2 at £, ~ 2 GeV and falls sharply to 0 when E, > 5 GeV.

 Epp: rises sharply from 0.1 to 0.8 in the neutrino energy range 2 GeV < F, <
| GeV. Then it slowly decreases at higher energies.

rises to about 0.6 at about E, =~ 10 GeV and slowly decreases at higher

NCTEIES.

g Kamiokande data set of p-like events is the sum of both fully and partially

‘events. Hence we add the efficiencies for fully and partially contained
ts to obtain the number of muon events.

xpected number of p-like and e-like events, in the absence of neutrine
s, 18 Eiven h}"

Niluc. = [[6,(E)o(E)+ 6}, (E)3(E)] (cholE) + eho(E))dE (3.28)
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Nive = [[8.(B)o(E) + i, (B)3(E)] < E)E, (3.29)

where ¢'s are the fluxes of the atmospheric neutrinos at the location of Kamiokande.
E.'BE are tabulated in Ref. [31] as functions of the neutrino energy (from E = 1.6
GeV to E = 100 GeV) and the zenith angle. & and & are the charged current
s sections of neutrinos and anti-neutrinos respectively with nucleons. The cross
gection is the sum of the quasi-elastic scattering and the deep inelastic scattering
). The values for quasi-elastic scattering are taken from Gaisser and O’Connel
and those for the DIS are taken from Gargamelle data [48]. In calculating the
DIS cross section, we took the lepton energy distribution to be given by the scaling
formula (which is different for neutrinos and anti-neutrinos) and integrated do /dE).,
from the minimum lepton energy Enin = 1.33 GeV to the maximum lepton energy
= E, —m.. The maximum lepton energy is chosen by defining DIS to contain
one pion in addition to the charged lepton and the baryon. The differences in
ucial volumes and exposure times for fully contained and partially contained
have been incorporated into the detection efficiency ef(E). From equations
and (3.29) we calculate our estimation of the Monte Carlo expectation of
, the ratio of the p-like events to the e-like events. The numbers we obtain are
ithin 10% of the values quoted by Kamiokande collaboration in Ref. [55]. The
| nces could be due to the different set fluxes used [49] and due to the simple

pproximation we made for the cross sections.

n the presence of oscillations, the number of p-like and e-like events are given

iy

; ,I'jllm

I
s
=Y

s Pant + 84, Pug + &, Pus + 6%, Pesd | (e + ) dE(3.30)
Niloe = [ [0, P + 65, Pusd + 84, Pucor + o, Pua] e°dE, (331)

e Pas are the probabilities for neutrino of flavor a to oscillate into flavor
ed in the last section. These oscillation probabilities are functions of the
s of travel d, the mixing angles ¢ and ¥, the mass difference 43, and the
er term A. These are calculated using the formulae in eqs. (3.12), (3.14),
) an | (3.19). The probability of oscillation for anti-neutrinos Pyj, in general,

t from P, because of the different A dependence.
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om equations (3.30) and (3.31) we can calculate the ratio of p-like events to

¢-like events in the presence of oscillations to be

- N’i 3.32
Tose = N; - [ - }
i double ratio :
R, = 2= (3.33)
Tmc

1 the atmospheric neutrino deficit is due to neutrino oscillations, then the double
E‘;u given in eq. (3.33) should be within the range of the corresponding
d double ratios R';,, which are given in Table I. We searched for the values
neutrino parameters ¢, v and ds; for which the predicted values of B! satisfy

serimental constraints on the double ratios for all the five bins. The ranges

f variation in the three parameters are

| ¢ < 50° This is the range of ¢ allowed by the solar neutrino problem.
For this range of ¢, there exist values of §,; and w such that all the three solar

neutrino experiments can be explained [22, 50].
0 <t <90° o is varied over its fully allowed range.

3. 10 eV? < 85 < 107 eV2 The lower limit is given by the sub-GeV data
‘and the upper limit is the largest value allowed by the two flavor analysis of
'_' multi-GeV data by Kamiokande [55].

esults are plotted in Figs. (3.2), (3.3) and (3.4). Fig.(3.2) gives the projection
wed region on the ¢ —1 plane, Fig.(3.3) gives the projection on the ¢ — s,
d Fig.(3.4) gives the projection on the ) — &3, plane. The solid lines enclose
of parameter space whose predictions lie within the experimental range

“uncertainties. The broken lines enclose regions whose predictions fall
in range given by 1.60 uncertainties.

en from Table 2.1, the uncertainties in bin 5, which has (cos 8) = 0.8, are
- compared to the uncertainties in the other four bins. Moreover, 5, is

n 3 through most of its range. Hence the double ratio R%, > 1 for
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o of its range. The Monte Carlo expectation of the electron neutrino flux is
than that of the muon neutrino flux and the oscillation probabilities P4 are
‘than 1. Using these facts, one can show from eqs. (3.25) and (3.32) that,
neral, 75, < Tyc or Ri,. < 1. Therefore, the region of overlap between R,
is very small. It is 0.9 — 1.0 for 1o uncertainties. It is possible that this
overlap.is imposing a very strong constraint, leading to a situation where the

with the largest uncertainty is essentially controlling the allowed values of the

of Ri,. are within the ranges of corresponding R, for only the first four

e results of the 4 bin analysis are plotted in Figs. (3.5), (3.6) and (3.7).
gives the projection of the allowed region on the ¢ —1 plane, Fig,(3.6) gives
ection on the ¢ — 83, plane and Fig.(3.7) gives the projection on the i — §,,
gne. As before, the solid lines enclose the regions satisfying 1o vetoes and the
lines enclose regions allowed by 1.6 vetoes. Comparing the corresponding
we find that the allowed values of parameters for the 4 bin fit are the almost
to those from the 5 bin fit at 1.60 level. The allowed regions at lo level
what larger compared to the 5 bin fit. This is not surprising because the
ses a very strong constraint at lo level. If this constraint is relaxed, then
t larger region is allowed. The 4 bin fit shows that the 5th bin, which
gest uncertainty, does not exercise undue influence on the selection of the
space. Note that we have presented results for | o intervals also, this is
th angle dependence is only a 1o effect. Hence one must also look at
meter space. The fact that some amount of v, — v, oscillations is needed
th dependence, which in turn demands a non zero value of ¢, is seen only
ese results have been presented in [51]).
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Discussions and conclusions

he parameter space shown in Figs. (3.1) to (3.4), together with the allowed values
for w and 6, from our earlier work [22] and chapter 1, provides a complete solution
0 the solar and the atmospheric neutrino problems in the framework of three flavor

rino oscillations. The salient features of the results of the multi-GeV analysis

® Most of the parameter space allowed by the multi-GeV data is a subset of the
space allowed by the sub-GeV data.

# The range of d3; allowed by 1o vetoes is extremely narrow. It is very close to

the best fit value given by the two flavor analysis of Kamiokande.
» The value of v is always large (1> > 40%) and 1 = 90° is allowed.

# In the region allowed by lo vetoes ¢ is always non-zero. ¢ = 0 is allowed only
at 1.60 vetoes.

m the parametrization of U, effective two level mixings can be obtained for

ance the electron neutrinos or do both. The v, #+ v, channel, which
es electron neutrinos but leaves muon neutrinos untouched, cannot account
nospheric neutrino problem. Hence any solution of atmospheric neutrino
should be away from the effective two flavor 1, ++ v, oscillations. The large
angle 1 is just a reflection of this fact. The allowed region includes the
90° Then the atmospheric neutrino problem is explained purely in terms

o flavor oscillations between 1, v,, with the relevant mass difference
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being 5. In this case, the solar neutrino problem is solved by v, — v, oscillation

which is determined by the mass difference 3, (and the mixing angles w and &).

How important are the matter effects in the analysis of the multi-GeV data 7 It
 be seen from figures 2(d)-2(f) of Ref. [55] that most of the expected multi-GeV
s are caused by neutrinos with energies less than 10 GeV (over 80% for muon-
events and over 90% for electron-like events). The matter term, for a neutrino
mergy 5 GeV, is about 2 x 107%eV2. Since the initial range we considered for 5,
ed from 1072 €V? to 0.1 eV?, apriori one must include the matter effects in the
jons for the oscillation probabilities. However, the value of d5; in the allowed
n, especially for the 1o vetoes, where it is about 0.03 eV?, is much larger than
natter term. Therefore, it is likely that the matter effects may not play an
mpo tant role in determining the allowed parameter regions in the analysis of the
'5 data. To check this we reran our program with the matter term set equal
zero. With this change, the double ratio R, defined in equation {3.32), changes
ut 10% in the first bin and by about 5% in the second bin. There is no
ible change in the other three bins. Since the errors in R/, are about 30%,
iese small changes in K}, do not lead to any appreciable change in the allowed
gions of the parameter space. However, the effect of matter terms may become

scernible when more accurate data from Super Kamiokande become available.

Since the earth matter effects seem to play no role in the determination of the
parameter space, can one interpret the observed zenith angle dependence purely in
18 of vacuum oscillations? For an energy of 5 GeV, the mass square difference
corresponds to an oscillation length of about 1200 Km. Thus bins 1 and

atain many oscillation lengths and the second and the third cosine terms in_

ons [52] in the context of our analysis of atmospheric neutrinos. The

aboration is an accelerator based experiment which searches for signals
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«uamlla.tmns by looking for signals of 7, from an initially pure , beam. The

LSND collaboration gives an oscillation probability Paz = (3.1711 £0.5) x 107 for

muon anti-neutrinos in the energy range 20 — 60 MeV. In the framework described
:El'l section II, the oscillation pmbability relevant for the LSND experiment is the

...

dé
PR, = P, = sin® 2¢sin® ¢sin’ (1.2? E“) : (3.34)

Note that both & and 1 have to be non-zero for P,. to be non-zero. In the region

llowed by the 1o vetoes of the multi-GeV atmospheric neutrino data we have

Minimum (sin2 2 sin? ¢~) ~0.04 for & ~8" 4~ 40°

Maximum (sin? 2 sin® l.-") ~1 for &= 40° ¥~ 90°

stituting these values and the oscillation probability obtained by LSND in eq,
}, we obtain

0.001 < sin? (1,27d ;“) <0.1. (3.35)

or the LSND experiment the distance d = 30 meters. Taking the AVETAgEe energy
(E} = 40 MeV, we obtain the range of d4; to be

0.03 eV? < 85, < 0.3 eV2, (3.36)

from the analysis of multi-GeV atmospheric neutrino data we have the upper limit
bn 03y < 0.06 eV? (Figs. (3.3) and (3.4)). Hence there is a small region of overlap
t the range of neutrino parameters required by the atmospheric neutrino
d the LSND data. This suggests that the standard three flavor analysis can
ccommodate all the data so far [53] and perhaps a fourth sterile neutrino is not

_'Cﬂuclusion, we have analyzed the atmospheric neutrino data of Kamiokande
n the context of three flavor neutrino oscillations. We took into account both the
enith angle dependence of the multi-GeV data and the matter effects due to the
: gation of the neutrinos through the earth. We obtained the regions in neutrino
ameters which solve both the solar and the atmospheric neutrino problems. We

pund that the matter effects have negligible influence on atmospheric neutrinos

nF HH.TH.-.I,”}.
‘hﬁ' ‘0, \
2380 (S T\
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t the atmospheric neutrino problem, it is conceivable that the atmospheric
rino problem is mainly driven by v, — 1, oscillations. We shall examine this
ility in detail in a later chapter as well as the constraints coming from other

ator based experiments on the atmospheric neutrino parameter space.
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Figure 3.1: Allowed region in ¢— plane by the sub-GeV data (with 8y, > 102 eV?)
al lo (enclosed by solid lines) and at 1.6 (enclosed by broken lines)
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Figure 3.2: Allowed region in ¢ — ¢ plane by 5 bin analysis of multi-GeV data
(with 107 eV? < &, < 107! eV?) at 1o (enclosed by solid lines) and at 1.6

(enclosed by broken lines)
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Figure 3.3: Allowed region in ¢ — &y, plane by 5 bin analysis of multi-GeV data
(with 0 < 4 < 90°) at lo (enclosed by solid lines) and at 1.60 (enclosed by broken
lines)
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Figure 3.4: Allowed region in ¢ — &, plane by 5 bin analysis of multi-GeV data
(with 0 < ¢ < 50°) at 1o (enclosed by solid lines) and at 1.60 (enclosed by broken
lines)
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Figure 3.5: Allowed region in ¢ — ¢ plane by 4 bin analysis of multi-GeV data
(with 1072 eV? < &5, < 10 eV?) at 1o (enclosed by solid lines) and at 1.6o (enclosed

by broken lines)
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Figure 3.6: Allowed region in ¢ — 4y, plane by 4 bin analysis of multi-GeV data
(with 0 < ¥ < 90°) at 1o (enclosed by solid lines) and at 1.6 (enclosed by broken
lines)
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Figure 3.7: Allowed region in ¢ — &, plane by 4 bin analysis of multi-GeV data
(with 0 < < 90°) at 1o (enclosed by solid lines) and at 1.60 (enclosed by broken
lines)




Chapter 4

Novel effects of neutrino

oscillations

Introduction

fhe theoretical possibility that neutrinos could be massive, and hence exhibit the
benomenon of mixing and oscillations has been with us for quite some time [8].

we know that there is mixing in the quark sector, which for example gives rise

The solar neutrino problem was the first problem to give an strong impetus to
a of neutrino oscillations, as oscillations provided an elegant solution to the
n (as we saw in chapter 2). There are however a few unsatisfactory aspects of
iclusion. In the solar neutrino problem, the calculated rates for the various
ectors is based on the SSM predictions for the neutrino fluxes. These fluxes are in
endent on many of the inputs which go into the SSM. So one may question
bility of the predictions. Even though astrophysical solutions to the solar
problem are highly disfavoured [21], one still cannot escape the fact that

M plays a central role in giving a pointer to neutrino oscillations.

70
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In the case of the atmospheric neutrino problem also the event rates for the
nospheric neutrino detectors are dependent upon the Monte Carlo predictions for
the atmospheric neutrino fluxes. These predictions have large uncertainities (about
%) as mentioned previously in the absolute magnitude of the muon and electron
type of fluxes, however the ratio of the two types of fluxes is quite robust. So the
maly in the ratio of the fluxes is a very significant event. So it is the atmospheric

irino problem which today gives us the strongest evidence in favor of neutrino

In spite of the hints given by the solar and the atmospheric neutrino problems in
avor of neutrino oscillations, it is natural to ask, are there unambigious signals for
ieutrino mixing and oscillations, where are reasonably independent of the theoretical
flix predictions. One effect which was realised {;uite some time ago is what is
lled the "day-night™ effect with respect to the solar neutrinos. This effect arises
se during the night the neutrinos have to travel through the earth to reach
etector. The passage through the earth could in principle lead to changes
n the flavor composition of the neutrino beam which reaches the earth from the
#un, if the neutrino parameters (i.e the masses and the mixing angles) are in a
jitable range. This change in the flavor composition will reflect itself as a different
11 ting rate during night vis a vis the day counting rate. For real time detectors
ke Super-Kamioka, Borexino ete it is possible to look for a difference between the
e and night time counting rates. Such an asymmetry in the counting rates
erved will be a model independent signal for neutrino oscillations. Although
day-night asymmetry outside the error-bars was seen at the Kamioka detector
,85] the high statistics detectors like Super-Kamioka [56], SNO [29]and Borexino
7] will be much more effective in investigating this effect. All these detectors are
r mainly sensitive to neutrino trajectories which go through the mantle of
he earth only, as these detectors are quite far from the equator. It was pointed out
'.'ly [58] that the small angle solution to the solar neutrino problem could show
atic day-night effect, if the neutrino trajectory passes through the core of the
Hence a real time solar neutrino detector located around the equator could

spectacular signal of neutrino oscillations.
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ight effect has been investigated previously by various authors [59]. All
ym have however been in a two flaver framework, and have relied on
orce numerical integration of the neutrino trajectory through the earth. In

rwe analyse in a three flavor framework the day-night and present a com-

nalytical method of computing the neutrino survival probability at night.

.

r another effect was pointed out, which is similar in spirit to the day-
- This is the "eclipse effect” [62]. The basic idea is as follows. If the

fect the solar neutrinos on their way to the detector in the night, then

ors, since they continue taking data during the eclipse also, and most
‘they can measure the rate during the specific duration of the eclipse.
in the counting rate is seen during an eclipse as compared with the no
it would be a spectacular demonstration of the phenomenon of neutrino
woscillations. The next round of real time detector with high statistics

~measure such an effect. In this chapter we analyse in a three flavor
the eclipse effect.

b point out that even the absence of such novel effects has significance,
an exclude some regions in the neutrino parameter space. Therefore

ull effect. gives us some information about the neutrino parameters.

ay - night effect

interested in computing the counting rate during night, we first obtain
eutrino survival probability during night time after the neutrino has

e distance through the earth, in addition to the travel through the sun.

rino of flavor @ be produced at time ¢ = tg in the core of the sun. Its

(4.1)

7) are the mass eigenstates with mass eigenvalues uf and US are the

[Walto)) = lva) = 3°USIE),
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neutrino propagates in the sun adiabatically upto tg (the resonance point),
s non-adiabatic transitions at tg, propagates adiabatically upto t; (the edge of
un) and propagates as a free particle upto t; when it enters the earth. So the

[Walt2)) = D |vi)ezp(—ig;(ta—t1))ezp (—i j:h Ef{t]dt) Mﬁ

3.0
i

xeap (i [ ”,-:;-‘*'mdf) ve, (4.2)
tn

(t)(= E + (p?(t))*/2E) are the matter dependent energy eigenvalues in
e sun, ¢; and |i;) are the energy eigenvalues and the corresponding eigenstates
vacuum and M_;—“i is the probability amplitude for the non-adiabatic transition

- We multiply the right hand side of eq.(4.2) by T [vf)(ef| ( = 1)where

=1,2,3) is the complete set of matter dependent mass eigenstates inside the

(we shall soon correct for nonadiabatic jumps during this propagation), and

e vector at 4 15

= X f)exp (~iek(ts ~ ) (wElean (=ieytta = 1) =i | 500

kg

xMjexp (—;’ jfrn Ef{!}:ﬂ) US,

; L
3 lvf)ezp (—ief(ts — ta)) MEexp (—fﬁj[fa —ty) —i j sftc}ru)

ke

xMezp (4 f mefu}m) UE. (4.3)

ta

introduced the probability amplitude M£ for non-adiabatic transitions

e to the abrupt change in density when the neutrino enters the earth . It

Mg = (Ve |v;) = Y (eI ly) = Y UED:, (4.4)

j is the mixing matrix in vacuum . The probability amplitude for detecting

futrino of flavor 4 at t5 is

ta
(valWa(ts)) = 3 UE: MEMSUS ezp {—:‘ ( f: e (t)dt

ks
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+ &(ts —t1}+j‘: Ef{t]dt+£nef[t}dt)}. (4.5)

veraging the probability |(v5|W.(t3))|* over tg results in the desired incoherent
ire of mass eigenstates of neutrinos reaching the surface of the earth. Calling
eraged probability as P, ( the probabilty for a neutrino produced in the sun

8 ¥ to be detected as v in the earth at night), we can write the result as

P = ZPSPE (4.6)
P = ZWS (4.7)
P = Z v Usie MEME; exp (—2i®u) (4.8)
o = 3 f (eE(t) - ebi(t))dt. (4.9)

is the probability that a flavor state o has oscillated into a mass eigenstate
the surface of the sun. ﬁf} is the probability that a mass eigenstate J is detected

ineutrino of flavor 3, after travelling a distance 3 — ¢; through the earth.

For ! .e.daytime, put ty = 3 so that P becomes |Uy,|? and so eq.(4.6) reduces

sual [13, 22] transition probability in the day:

Po —ZZIUmI’tM PIUSE. (4.10)

putiting a = [ = ¢, we get the formula obtained in chapter 1 for P.,. It is
to note that the factorization of probabilities seen in eq.(4.6) is valid only
nstates in the intermediate state. An equivalent statement of this result

the density matrix is diagonal only in the mass-eigenstate representation and

n the flavor representation.

next show how to take into account nonadiabatic jumps during the propa-
the earth. Consider v propagation through a series of slabs of matter,
g inside each slab smoothly but changing abruptly at the junction
cent slabs. The state vector of the neutrino at the end of the n** slab
ed to that at the end of the (n — 1)* slab [n — 1) by

In) = FRIM®M|R — 1), (4.11)
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e M™) describes the nonadiabatic jump occuring at the junction between the
1)* and n'* slabs while F(") describes the adiabatic propagation in the n*t
ab, They are given by

MY = P = (D) (4.12)

F;E"j = dezp (—ifr“ EJi}di) ; (4.13)

Em—i

there the indices (n) and (n — 1) occuring on v and [/ refer respectively to the n*’
(n — 1)*" slabs at the junction between these slabs. Also note that M) is the
as MF defined in eq(4.4). Defining the density matrix at the end of the n'®

slab as p\") = |n)(n| , we have the recursion formula
pl") = Fm) pptn) pin=1) prinit pinit, (4.14)

tarting with p'® = |v;)(v;] (i.e v; entering the earth), we can calculate ™) at the
id of the N** slab using eq.(4.14). The probability of observing vs at the end of
he N' lab is

PE = (uslp™ug) = (UWpM) '), (4.15)

~.urmu1a{which reduces to eq(4.8) for N = 1) can be used for the earth modelled
sisting of (N + 1)/2 concentric shells, with the density varying gradually

'1 n each shell. We shall present numerical results for N = 3 (mantle and core)
' However for < 0.84, neutrinos pass only through the mantle and so N = 1.
ceuracy achieved with this model is adequate for the present purposes, but the
grmalism allows one to improve the accuracy to any desired level, by adding more

ells and therefore slabs.

Apart from the nonadiabatic jumps occuring at the density-discontinuities, such
imps can occur also at any MSW resonance in the earth. The formalism presented
i5 capable of handling this. One simply replaces eq.(4.12) for M™ for that
;-'.'-,n by an appropriate Landau-Zener formula[12].

As before we parametrize the mixing matrix U in vacuum as U =
B(U)U'3(¢)U'(w) where U%(6;) is the two flavor mixing matrix between the
nd the jth mass eigenstates with the mixing angle 8;;, neglecting CP violation.

flie solar neutrino problem v drops out [12, 24]. The mass differences in vacuum
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efined as 633 = pj — pf and &3 = pd — p?. It has been shown [22, 28] that

niltaneous solution of both the solar and the atmospheric neutrino problems

Yoo -
e 3]

equires the mass hierarchy ds) > &3 and under this condition 43, also drops out.
The rediagonalization of the mass matrix in the presence of matter (in the sun or

garth) under the hierarchy condition leads to the following results [22]

1521 sin 2w
tan 2w, = . 4.16
Al Saycos2w — Acos?a’ E )
8i @m =sing, (4.17)
d3) = 621 co5 2w — wy,) — A cos® deos 2y | (4.18)

iere A is the Wolfenstein term A = 2y/2 G N, E (N. is the number density of

trons and E is the neutrino energy) . We note that §3; > A, for A evaluated at
¥ point in the sun or the earth. In eqs (5.17) - (5.19), the *m” stands for matter
n using these equations, one must use the appropriate density of matter that

equired at the various points along the trajectory of the neutrino.

All the probabilities P2, PS5 and PE satisfy the normalization conditions, as for
nce, To; P = 1. For three flavors, use of these conditions allows us to express

Sin terms of P2, PE. PE and P3 as

let
PY = [P2(PE — PE) — cos® ¢(sin® wPE — cos® wPE
—P3((3cos® pcos’ w — 1)PE — (3cos? psin®w — 1)PE
— cos® ¢eos® w)]/(cos® ¢ cos 2w). (4.19)
mplifications arise from the mass heirarchy condition.
5_.i5 nonzero for 1,j = 1,2 only. (This approximation was used in analyz-
he solar neutrino problem in chapter 2) So PJ, becomes |US[?, which is just
Po & sin’¢. And hence we can replace P3 in eq(4.19) by sin® ¢o. |ME?

aken to be the modified Landau- Zener jump probability for an exponentially
jing solar density [12]. Further from eq.(4.4), we get

cos@ sinf 0
MW" = | _sinf cosf 0|, (4.20)
0 0 1

80 — w, — ;. That is M™ are basically reduced to 2 x 2 matrices. So

atic effects even in the crossing at the surface of the earth, is only between
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PE = cos® ¢lcos® wg — sin 2w sin 2(wg — w)sin® By, (4.21)

P&E = cos’ ¢[sin® wg + sin 2w sin 2(wg — w)sin? @,,], (4.22)

e wg is the mixing angle, just below the surface of the earth. Using eqns(19)
_q—j.c- eqn(18), we get the following simple expression for P
[1 —2P2 — sin® ¢(2 — sin® 4)]
cos 2 cos? o
X{P:f — sin® w cos® ). (4.23)

PY=F2 4
bove goes over to the one given in [64] for for two flavors by setting ¢ = 0.

Calculations and results

| I,.ipresent some details about the different neutrino trajectories during the
t. The neutrino samples different amounts of matter in the earth during a
gle night and also during a year. The distance d travelled by the neutrino inside
 during night, as a function of time ¢, is given by

d=Zﬂfsinqﬂ;sinﬁ+ms¢;cm§mﬁ[g;,r—f}}, (4.24)
(]

sind = sin 23.5% sin( Eﬂ} (4.25)
Ty
I 15 the radius of the earth, ¢ is the latitude of the location of the detector,

length of the day, Ty is the length of the year and zero of { is chosen at

ight on autumnal equinox. The time variation of z = {ﬁ} during the nmght

ill require the function f(z) defined as the time duration per unit interval
i0]. f(x) for different locations are plotted in Fig.(4.1b), which shows the

merits of the detectors for exposure to regions of z.
e neutrino detection rates for a Super-Kamioka type of detector is given by

R= f o PodE + % f ¢o(1 — P..)dE, (4.26)
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where the second term is the neutral current contribution and ¢(E) is the solar
geutrino flux as a function of the neutrino energy £ and a(E) is the cross section
neutrino electron scattering and we integrate from 5MeV onwards. The cross
section is taken from [14] and the flux from [15]. The rates for the night and day
and Rp are calculated using P and P2 respectively. We define the day-night
mmetry ratio as A = (Ry — Bp)/(Rx + Rp). We can multiply Ry and Rp
-' function f(z) displayed in Fig.(4.1) to get the rates per unit interval in z.
that f(z) cancels in the asymmetry ratio calculated theoretically. However,

xperimentalists have to weight the day rate Bp with f(r) before comparing
heir data with our theoretical curves.

-':'.-Fig;_;.{rl.ﬂ] and (4.3) we have plotted A as a function of z, the fractional dis-
nce travelled by the neutrino inside the earth for various values of the neutrino
srameters d;,w and ¢. Different values of these parameters have distinguishable

eristics. Some gross features which may enable us to specify their approxi-

te domains are the following:

8 For small angle w there is a gradual increase of the asymmetry with r, whereas
for large w the oscillations in z start showing up. For £ < 0.84 (i.e. trajectories

through mantle only) there is a very clear discrimination between the small w

and large w, irrespective of §;; and ¢.
' As ¢ increases, the asymmetry at any r decreases.

s The amplitude of the oscillatory pattern is largest for small 8, and decreases

steadily as &z, increases.

) For small w and large §;;, asymmetry is appreciable only in the core and is a
‘sensitive function of d&;;.

the reasons for nonzero ¢ diluting the asymmetry are twofold. -

ity demands that 3; PE = 1. This means that in three flavors PE is always
its value in the two flavor case.

sonance condition in the case of three flavors has the form

A EDE2 qﬁ = 1‘531 cos 2w, [4‘2?‘}
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’j{;ﬁsﬂnance which occurs at a given energy, in the core of the earth in the two
flavor case ¢ = 0 will either occur at a higher energy or it may not occur at all
_;;_:he three flavor case. Since the boron neutrino flux falls rapidly with energy,
nance occuring at a higher energy is not as effective as resonance occuring at
r energies. Another point to be noted from eq.(5.24), is that if one fixes the
gy at which resonance takes place in two flavors, then in the three flavor case
nding on the value of ¢, the resonance will be shifted to a higher density, which
‘not be available in the earth. Thus overall the resonance effect is supressed
in the case of three flavors. So a nonzero ¢ dilutes the asymmetry. Qur numerical
results include the effect of any adiabatic MSW resonances that may occur inside
the earth. For ¢ = 0, as pointed out recently [61, 58], MSW resonances do occur in
i earth’s core. However, for large ¢ they disappear and this is another reason for

fhie regencration efect to be smaller for large ¢, in the core.

In Fig.(4.3) we have chosen a few parameter sets for which A4 is very small
(€ 0.15) since they are possible solutions to the solar and atmospheric neutrino
lems [22, 28, 21]. But we cannot rigorously exclude other values of the neutrino
parameters at the present stage of knowledge. Day-night effect must be studied in
i unbiased manner, especially because the ratio A is relatively independent of the

incertainties of the solar models.

Eclipse effect

this section we will discuss two possibilities : (1) Neutrinos detected during a
plar cclipse which pass through the moon. (2) Neutrinos detected at the far side
ffithe earth during a solar eclipse pass through the moon and the earth. We shall
fll this scenario (2) a double eclipse. Two previous works [65, 66] have discussed

enario (1), however both are incomplete in many respects. We do a proper analysis

'the above mentioned possibilities.

‘We first present some astronomy relevant to the eclipse effect. Solar neutrinos
e produced within the solar core whose radius is of order 1/10 of the solar radius

id we shall approximate this by a point at the centre of the sun. What is required
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for our purpose is that the lunar disc must cover this point at the centre of the sun
and so as far as the neutrino radiation is concerned , the solar eclipse is more like

an occultation of a star or a planet by the moon.

Astronomers characterize the solar eclipse by the optical coverage C' which is
ed as the ratio of the area of the solar disc covered by the lunar disc to the
area of the solar disc. For neutrino physics we require the distance dyy travelled
‘the neutrino inside the moon. Defining the fraction z = K13 where Hys is the

2Ry
tadius, z can be given in terms of C by the following formulae:

r = J(4z(2—2)—3), (4.28)

C = % (::us"'[l =z)~ (L =2/ (2= z]) : (4.29)

tuted in eqn(4.28). The relationship between x and ' so obtained is plotted
.(4.4). When the lunar disc passes through the centre of the sun, C is 0.39 and
8 neutrino eclipse starts at this value of C. When the optical coverage increases
 39%, « rises sharply from zero and reaches 0.6 and 0.95 for optical coverage

8f50% and 80% respectively.

For any point of observation of the usual solar eclipse (which we shall call single
there is a corresponding point on the other side of the earth where a double
e occurs.  With the coordinates labeled as (latitude, longitude), the single

point (e, 3) is related to the double eclipse point (A, o) by the relations (see

A = a+2b
o = #—280yr—p (4.30)
; 5 5 o oot
sin é = sin 23.5° sin{—). (4.31)
Ty

18 the length of the year , zero of time t is chosen at midnight of autumnal
inox i.e.Sept. 21, and Oyy is the angle corresponding to the Universal Time —
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During a double eclipse, the neutrinos travel through the earth in addition. The
: ance dg travelled by the neutrino inside the earth along the chord between the

........

points (a, 3) and (A, o) as a function of time i, is given by

dg=QRE[sianain5+ms.-\ms£cos{2T—ﬂ-}], (4.32)
o

where R is the radius of the earth and Tp is the length of the day. This is the
same distance that needs to be calculated in the study of the day-night effect and

a plot of this distance as a function of ¢ is given earlier in this chapter.

-I__’.'rmcut. and upcoming high statistics neutrino detectors expect to collect a few
slar neutrino events every hour. As discussed in Secs. 4.4.1 and 4.4.2, single and
double eclipse can lead to enhancements of rates by upto two and a half times.
iEven with such large enhancements during the eclipse the signal may not exceed
tatistical errors, since each solar eclipse lasts only for a few hours. However they
oecur fairly often. As many as 32 solar eclipses are listed to occur during the 14 year
beriod 1996 through 2010. Global maps and charts are available[67] for location and

tion of both the umbral and penumbral coverage. In the planning of sites for

ieutrino-detectors of the future, these locations may be kept in mind.

Thr.': eclipses during the 2 year period 1997 through 1999 are the following;

97 March 9 - Total Solar Eclipse

997 Oct 12 - Partial Solar Eclipse

998 Feb 26 - Total Solar Eclipse

808 Aug 22 - Annular Solar Eclipse

809 Feb 16 — Annular Solar Eclipse

899 Aug 11 - Total Solar Eclipse

e analyzed the five total /annular eclipses. We have not examined the partial

lar eclipse of 1997 October 12, since we have not so far been able to procure the

fata for this eclipse from the references cited in [67]. It is important to remark
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IFL

‘here that although partial solar eclipses are not so useful to astronomers they are

‘nevertheless relevant for neutrino physics as long as C is above 0.39.

A study of the global maps of the five total /annular eclipses listed above shows
‘that only three of them can occur as a single or a double eclipse at any of the
three existing detector sites Kamioka, Sudbury and Gran Sasso with coordinates

(36.4°N, 140°E), (46.5°N,81°W) and (42.5°N,13.5°E) respectively. Approximate

imates are presented below for the duration and optical coverage of the relevant

‘detectors at these sites:

1997 March 9 — This eclipse was a single eclipse for the Super-Kamioka, with an
approximate duration of two and a half hours and a maximum optical coverage
- of just.over 60%. In addition, there was a double eclipse at the Gran-Sasso,

the site of Borexino, at almost the same time as at Kamioka and for the same

duration, with a 70% optical coverage.

1998 Feb 26 — Though Sudbury has an optical eclipse the coverage is less than
39% and so no neutrino-eclipse occurs. However, a double eclipse oceurs at

Gran-Sasso with a maximum coverage of 70% to 80%. This corresponds to

the single eclipse at (319N 45°W).

099 Aug 11 - This eclipse will provide one of the best opportunities, as a single
eclipse with 90% optical coverage and almost 3 hour duration at Gran-Sasso.
In addition Super-Kamioka site will also get a double eclipse with 90% to

100% optical coverage, corresponding to the single eclipse at approximately

(36°N,40° 1)

44.1 Single eclipse

v describe a straightforward way of obtaining the neutrino regeneration effect
the ' moon by using a model of moon of constant density (3.33zms/cc). Our
farting point is the same as in the previous section. Let a neutrino of flavor @ be

joduced at time { = {; in the core of the sun. [ts state vector is

Walte)) = o) = S USI),
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ere [7) are the matter dependent mass eigenstates with mass eigenvalues pu?
> are the matrix elements of the matter dependent mixing matrix in the core
sun. We use Greek index a to denote the three flavors e, u,7 and Latin
i to denote the mass eigenstates i = 1,2,3. The neutrino propagates in the
abatically upto tg (the resonance point), makes non-adiabatic transitions at
agates adiabatically upto ¢) (the edge of the sun) and propagates as a free

le upto ¢, when it enters the moon. So the state vector at 1, is

[Bo(ta)) = T lsdesp(~izy(ta—t)exp (=i [ <5 (0)de) M3

verp (_;' j::n.—:f{t]d!) us, (4.33)

- gﬂf}{E E + (i (1))?/2E) are the matter dependent energy eigenvalues in

sun, &; and |1;) are the energy cigenvalues and the corresponding eigenstates in

1 and M_ﬁ is the probability amplitude for the non-adiabatic transition ¢ — j.

trino propagates upto the the other end of the moon at a1, and the state
or at Ly is

[Wa(ta)) = 3 "exp (—ied (ts — ta)) (vl |u)

kg0

Xexp (—iE_,-I'_h =) - 'f': Ef“}di)
b Mf.c.rp ("f jl;’ﬂ Ef“]fﬁ) U.fi
= z Ivf‘}e:p (-I'Et’{la - fz}) ﬁﬂ‘f

k.24
xerp (-—iajl:fg — 1) —1 j;h Ef{!}dt) (4.34)
x Mezp (—i f: e [I}di) Us. (4.35)

ve introduced the probability amplitude M,‘:f for non-adiabatic transitions

¢ due to the abrupt change in density when the neutrino enters the moon. It

M]ﬂ = {“’ti]"ﬁ} = Z{I’flyﬂ}{”ﬁll"j} = ZU:::U—;_;: (4.36)

¥
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here U,; is the mixing matrix in vacuum . We multiply the right hand side of
) by &) [vi){u| where |14) (1 =1,2,3) is the complete set of vacuum mass
ates. The neutrino leaves the other end of the moon at ¢ = ¢3 and propagates

pto the surface of the earth, which it reaches at ¢, .So the state vector at #4 is

. [Falts)) = 5 |u;)es:p( i} ia—fﬂ) ()

kgl

KMffe:tp( 1£ {fg—h}—t/ ‘S{f]dt)

x| "vfsezp ( f*ﬂ S-S{I]di) Ufiezp (—izi(ty = ta))

= > MY MY MIUS exp(—i®in), (4.37)
kgl

M : M e R g .

Wikt = €5 {!3-11}+£i{14—t3]+£J[l}Lf|j+£ -EJ,“}df"--[‘ E; “}{'ﬂ. {4.38}
R a

used the fact that the the probability amplitude for non-adiabatic transi-

s k — | due to the abrupt change in density when the neutrino leaves the moon

(nld’y = M-, (4.39)

e probability of detecting a neutrino of flavor 3 at t, is

(| Wa(ta))* = ZUﬂIUﬂf'Mk, Mﬁmﬂr .Mk*rMbM et o

cri’

HCIP{ '—l{q"uk; - ';".;f‘,lkqf} i I:"i"i'D]

nﬁ—zpsfﬂ“*.?:‘P“(J"‘?ﬂ} (4.41)
Pila—j) = E IMOPIUS (4.42)
PM(j—B) = Z Uz Use MY MM= MM MY,
Lk K

xezp (—i(edf — el Jda — i —ev)r). (4.43)
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_I".4'.43] we hm'e_ replaced ({3 —13) by dyy, the distance travelled by the neutrino
: the moon, and (14 — 13) by r the distance travelled by the neutrino from the
to the earth. If there is no moon , we put dyy = 0, so that PM(; — 3)
s [Up;|* and so eqn.(4.41) reduces to the usual [13, 22] averaged probability
[ Vs produced in the sun to be detected as v in the earth :

P = Z (U I*| MG IUZI

Double eclipse

se a model of earth of constant density (5.52gms/cc). The variation of density
be taken into account by using the analytical formulation of Ref. [68]. This is for
uture. We start with W,(t4) given by eq.(4.37) and multiply the right hand side
IVE}{VEl (= 1) where |uE'} (1 = 1,2,3) is a2 complete set of mass eigenstates
8 the earth. The neutrino enters the earth at time t = {, and is detected at
gt = {5 inside the earth. The state vector at time t= t; is

Walts)) = D |p) MEME MY MIUS, exp (—idiju,) , (d.44)

kgdp

€ we have introduced the probability amplitude M% for non adiabatic transi-

il = p due to the abrupt change in density when the neutrino enters the earth.
given by
My = (v lw) = Y UED;, (4.45)

SOy = € (ts— ) + b (ts — ta) + &ty — ta) + £5(ta — 1)
| 1 t

eS(1)dt + f " (). (4.46)
i L]

{ ﬁ{i 5}} I Z U Uﬁpr.l!l:f P"FM .J..l'fk.r!: MJS: M US Un:u*
> Exp{—tfﬁijkjp — q’irjq:lyp.fj}! (4,4?}
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‘the summation is over the set of indices 1,3, k, [, p, i, 7', k'.l',p’ Again aver-
over i and calling this averaged probability as PM¥ [ the probability for a

produced in the sun as v, to be detected as vy in the earth after passing

=3 Pa— j)PME(j = B), (4.48)

BYE( ) = Y UEUEMEME MM MY:mY-MY,
Lkp kP

xezp (—i(ef —eB)dg — i(e} — eM)dy — i(er — ev) r) (4.49)

1 we have replaced (#5 —t4) by dg. the distance travelled by the neutrino
e earth, ({3 — t3) by day, the distance travelled by the neutrino inside the

pon and (4 —t3) by r the distance travelled by the neutrino from the moon to the

flor the sake of completeness, we state that if we put dyy = 0 in eqn.(4.49) we

he regeneration in earth alone:

=2 P(a = j)PE(j - B), (4.50)

IJE{j g .B} z Uﬂ ‘Uﬂp;uﬁﬁfkr}ﬂrp (_thk = l:.y }d,ﬁ,) ("15].}

Py
[4.50) and (4.51) were used in the previous section on day-night effect [68]. We
nphasise that that the factorization of probabilities seen in eqs(4.41),(4.48)

(4.50) is valid only for mass eigenstates in the intermediate state,

The parametrization of the three flavor parameters, in vacuum and matter is
the same as in the previous section on day-night effect. We again work in
rarchy da; > ba;.
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Calculations and results
hie neutrino detection rates for a Super-Kamoika type of detector is given by
1
o j HE) o(E)Pecd E + o f (8(E)o(E)(1 — P..)dE) (4.52)

re the second term is the neutral current contribution and o{E) is the solar
o flux as a function of the neutrino energy E and o(E) is the cross section
eutrino eleciron scattering and we integrate from 5MeV onwards. The cross
L is taken from [14] and the flux from [15]. The rates for a single eclipse,
eclipse and without eclipse (at day-time) Rar, Rpg and Rp are caleulated
Py PME and PE from eqns.(4.41),(4.48) and (4.4.1) respectively. We define
renhancement factors /" and G for a single and double eclipse respectively:

Fo— Iy — Rp

e, 4.5

i (4.53)

¢ = Fme—Rp (4.54)
fp

5 easy to see that F'and G have to be less than 5 and this theoretical maximum
rs when P = 0 and P and PMF are put 1. If one imposes the constraint
observed [69] neutrino rate is 0.51 4 0.07 of the prediction of the standard

ot ,_E'l, the maximum possible enhancement is reduced to about 1.40 (at 90%

yealculate the enhancement factors F and @ for various values of the neutrino
fers, w, 831, and ¢. We show the results as contour plots in the 8y-w plane
t values of ¢. Figs. (4.6) and (4.7) show the F-contours for ¢ = 0° and
respectively. For cach ¢ we show the contours for different distances of
of | he neutrino through the moon. Fig.(4.8) shows the (-—contours for ¢ = 0
kimum distance of travel of the neutrino inside the moon and the earth.

ain features of the results are as follows:

distance travelled by the neutrino inside the moon increases one can

-.1ppre.-ciahle increase in the enhancement factor F. [t increases from less

% to about almost 100% when the neutrino travels the whole diameter

of the moon in the case of two flavor mixing i.e & = 0.
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o Large (> 40%) values of F occur for w between 20° and 30° and 85, ~ 10~%eV/?

This is true even for nonzero ¢.

» The effect of a non zero “13" mixing angle ¢, is to dilute the enhancement
factor F' for all values of distance travelled through the moon.(In fact for

¢ 2 45°, F is practically zero and so we have not plotted this case.)

o If large enhancement F is seen for values of z < 0.6, it immediately signals a
very small value of ¢. On the other hand, if no enhancement is seen for small

z but there is enhancement only for z > 0.8 it signals an appreciable value of

.

» For a double eclipse there are considerable enhancements even for small values
of w. There is enhancement throughout the range of w from small angles till
about 40°. In fact the regions of largest enhancement (> 100%) are for w

between 5° to 20°.

®» The region of maximum enhancement factor (7 is centered around a value of
821 which is a little above 10-%¢V?, this being the value for maximum in F.
This can be traced to the fact : A% > AM. However sizeable enhancement

occurs over a wide range of &3,.

¢ If enhancement is not seen, then certain regions of the neutrino parameter
space can be excluded.If no enhancement is seen for single eclipse, a panel of
w between 5 — 25 and &3 & 2 x 1077 — 2 x 107%V? for ¢ = 0 can be ruled

out. If it is not seen for a double eclipse, a larger region can be ruled out.

4,5.1 Remarks

We have studied the effect on the solar neutrinos of their passage through the moon
8 well as the moon together with the earth. Although the numerical results pre-
ented in the paper cover only a representative sample of the set of various pa-
ameters, our analytical expressions can be used for more extensive calculations

ending on the requirement. Also one can go beyond the hierarchy : 83; >> d&a;.

We now offer a few concluding remarks:
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o Together with the day-night effect, the eclipse effects provide us with the tools
for studying solar neutrinos, in a way independent of the uncertainties of the

solar models.

s If the neutrino mass differences are really very small (§2; < 107%eV?) there is
no way of pinning down the neutrino parameters other than using the astro-
nomical objects such as the moon or the earth for the "long-base-line experi-

ments”.

‘o It is important to stress that even the demonstrated absence of any eclipse

effect would provide us with definitive information on neutrino physics.

‘s Accumulation of data over many eclipses may be needed for good statistics.
However, it may be possible to see the effect even during one single eclipse if
the large Borex detector with neutrino counting rates of about 40 per hour([30]

or other such large detectors are built.

» [t appears that Nature has chosen the neutrino parameters in such a way that
 the sun aflects the propagation of solar neutrinos. It may be hoped that Nature
]

has similarly chosen "lucky” parameters so that the moon and the earth too

" can affect the neutrinos !

o Finally, we stress the novelty of the whole phenomenon, and urge the exper-
imentalists to look for and study the eclipse effects in an unbiased manner.

‘They may even discover some surprises, not predicted by our calculations !
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FIGURES FOR ECLIPSE EFFECT :

Fig.(4.4). The fractional distance travelled by the neutrino inside the moon

e % is plotted against the optical coverage C of the solar eclipse.
~ALAf

Fig.(4.5). Geometry relating the double eclipse point (A, #) to the single eclipse
point (e, 3). (a) Section of the earth passing through (e, 3) and perpendicular to
the ecliptic. (b) Section passing through (e, ) and parallel to the equator.

Fig.(4.6). Contour plots of the enhancement factor for single eclipse F(=
Rim _ -) in the w — &z plane for ¢ = 0° and for four values of z (2 = 0.4,
0.6, 0.8 and 1.0). The enhancement factor (regarded as a percentage) increases by

10% for every adjacent ring, as we move inwards towards the centre of the plot.

Iig.(4.7). Contour plots of the enhancement factor for single eclipse F(=

R
MR JI]I in the w — d;; plane for ¢ = 30° and r = 0.6, 0.8 and 1.0. The en-
{2

hancement factor (regarded as a percentage) increases by 10% for every adjacent

ring, as we move inwards towards the centre of the plot.
Fig.(4.8). Contour plot of the enhancement factor for double eclipse (=
By — It . .
—%-—O]I for @ = 0 and = 1.0. The distance travelled by the neutrine in-
)
side the earth is also taken to be the full earth diameter. The enhancement factor

increases by 20% as we move inwards.
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Figure 4.1: (a)The fractional distance r travelled by the neutrino inside the earth
during night is plotted against time for the latitude (36.47) of the Super- Kamioka
detector. The lower figure gives the envelope of the 365 maxima during the year. As
examples of the actual curves, those for a few nights during three specific seasons
of the year are shown in the upper figure. The function f(r) in hours per unit
x is plotted for various latitudes; Super-Kamioka (36.4°), Borexino {42.457), SNO
(46.5°), equator (0.0°), pole (90°).
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Chapter 5

Terrestrial experiments and

future experiments

5.1 Introduction

Until now we have discussed the implications of neutrino oscillations for the solar
and the atmospheric neutrino anomalies. A combined solution to both these prob-
lems requires at least three flavors of neutrinos, and hence we have a three flavor
parameter space spanned by five parameters. The constraints arising {rom these
solutions have implications for laboratory neutrino experiments. Laboratory neu-
trino beams from reactors and accelerators are ideal sources to look for signals for
neutrino oscillations, This is because the composition as well as the spectrum of the
beam is very much under control. This is to be contrasted with the case of "nat-
ural” sources like solar and atmospheric neutrino beams, where one has absolutely
no control over the beams, and one has to rely on elaborate Monte Carlo methods

for determining the initial beam spectrum.

Reactor beams are mostly made up of electron antineutrinos (27.) as they are
produced during the decay of neutrons which are copiously produced in reactors.
These neutrinos have energies in the range 1 — 10MeV. Since the neutrino energy

is too low to produce p or 7. it is only possible to look for 7. — B, oscillations
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(survival) and i, — &, oscillations (disappearance). That is one looks for a possible
attenuation in the original flavor as a signal for flavor oscillations. Accelerator
neutrinos are mostly made up of muon antineutrinos (#,). These neutrinos have
energies from tens of MeV to a few GeV. Therefore for accelerator neutrinos it is
possible to look for signals in the appearance mode of the other flavor, i.e b, —
oscillations. Here r can be either e or 7. For a good review of reactor and accelerator

based experiments see [70].

Neutrino oscillation experiments with laboratory beams can be broadly classified
into short baseline and long baseline experiments. In a short baseline experiment
the source to detector distance is typically less than 1 km. For the long baseline
experiments the distance is hundreds of km. As stated in chapter.], the survival
probability, i.e the probability that the neutrino retains its original flavor denoted
by P,. (we consider electron neutrinos and only two flavors as an example) alter
travelling a distance r is given by

2

. ]
Poe =1 —5in'2ﬂsin]{d—ﬁ—:}.

In usual units the formula for F., can be written as

1.278m?* (eV* ) (m)

P.. = 1 — sin® 20 sin?( E(MeV)
2Ll e

) (5.1)

and
1.276m* (eV¥)z(m)
E(MeV)

where the distance = is measured in meters, dm® in eV? and E is in MeV.

P, = sin® 20 sin*(

) (5.2)

One sees from the above two equations that for a given value of dm?® and sin® 20,
the sensitivity of a baseline experiment to possible oscillations is controlled by the
factor &. Example if dm? is very small, then one needs large values of % to observe

oscillations with fine tuning.

All the laboratory experiments performed so far (with one exception which we
shall discuss in detail later) have been short baseline experiments. For a review
see [71]. The range of % accessible to these experiments has been from about
107% =10 (in units of mMeV ™'}, None of these experiments has found any evidence

for neutrino oscillations (with the sole exception of the controversial LSND signal
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which was discussed in chapter.3). Also these experiments have not been able to
probe the actual parameter space allowed by the atmospheric neutrino problem.
The next generation of proposed accelerator neutrino experiments will have very

long source to detector distances. For example

® 730 km for the Fermilab to Soudan experiment (MINOS) [72] .
o 250 km for the KEK-PS to Super-Kamiokande experiment [73] .
® 68 km for the Brookhaven National Laboratory experiment ES89 [74].

» 732 km for the CERN to Gran Sasso experiment, with ICARUS [75], RICH
[76], or NOE [77] as candidate detectors.

Very recently the CHOOZ collaboration [78], a reactor based experiment which
searches for signals of &, — &, oscillations, where r can be any other flavor, in the
disappearance mode of the original flavor has reported the results of its first run
[78]. Even though the source to detector distance for CHOOZ is only about 1 km,
it mimics a long baseline experiment. This is because the beam energy being very
low (= 3MeV) the average value of £ is equal to 300. Hence it can probe mass
squared differences as low as 107%eV?, an order of magnitude lower than previous
reactor experiments. The collaboration sees no evidence of oscillations of the original
flavor. They have analyzed their results assuming two flavor oscillations between v,
and another flavor and gave an exclusion plot in the parameter space spanned by the
mass squared difference Am? and the mixing angle #. Their main result is that for
Am? >3 x 107%V? sin*(20) must be less than 0.18 [78]. We analyze the CHOOY,
result in a realistic framework where mixing between all the three flavors of neutrinos
are taken into account. We show that it is possible to deduce on which of the three
mixing angles, the CHOOZ constraint actually applies. Also we demonstrate that

this has dramatic repurcussions on the parameter space allowed as solutions to the

solar and atmospheric neutrino problems.

Among the next generation of solar neutrino experiments, SNO and Borexino

will play a pivotal role in furthering our understanding of neutrino physics. In this
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chapter we do a detailed analyses of the physics prospects of Borexino in a three

flavor framework. We also make a few remarks regarding SNO.

5.2 Three flavor analysis of CHOOZ result

We begin by recapitulating the relation between the flavor and mass eigenstates in

vacuum. The flavor eigenstates are related to the mass eigenstates by

Ve i
e | =U | 1
¥y 13

Here we can take. without loss of generality, that ms > ma > my. The unitary

matrix U can be parametrized as
U e rfﬂ'ﬂ{uﬁ} . Uphau - Ula{é} o U‘z[w},

where U/%(0;;) is the two flavor mixing matrix between the ith and jth mass cignes-
Lates with the mixing angle #,;. For simplicity, we neglect the CP violation and set
UPhe*e = [. The vacuum oscillation probability for a neutrino of flavor a to oscillate

into a neutrino of flaver 3 is given by

Py = (UalUp)* + (UsaUs)? + (UasUpa)® + 2 Uy UsalUgy Ugy cos (2-53‘2'#[) +

d & §
% i Uaglips Ui co8 (2.53 E;"“) 4+ 2 UsqllasUssllgy cos (u!.aa“f F“) ,(5.3)

where d is the distance travelled in meters, E is in MeV, and mass squared differences
are in eV?. We may also note the vacuum oscillation probabilities are same as in
eq. (5.3) for the case of antineutrinos because CP violation is neglected. If we assume
the hierarchy among the neutrino mass eigenstates 84, > dy,, and that & is about
107%eV*, which is required to fit solar neutrino data [21], then the oscillatory term

invcrlving_ d21 can be set to one. The oscillation probability relevant for the CHOOZ

experiment is the electron neutrino survival probability P.. which is easily computed

from eq. (5.3) to be

P.. =1 —sin*2é5in? (1.2?d g‘“) . (5.4)
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Notice the interesting point that this involves only the (13) mixing angle ¢, and
because of the heirarchy the (12) mixing angle w disappears from the probability.
So we reinterpret the CHOOZ result [78], to be that for da; > 3 x 1079, sin(2¢)
must be less than 0.18, i.e ¢ < 12.5°. At this point we wish to emphasise again the
importance of a three flavor analysis. The fact it is the (13) mixing angle which is

constrained by CHOOZ can be seen only in a three flavor analysis.

We have discussed the atmospheric neutrino anomaly in detail in chapter.(3).
We saw that in a three flavor analysis, both e — p and e — 7 oscillations contribute
to the observed double ratio. Using the three flavor interpretation of the CHOOZ
result we can now estimate the maximum contribution of the e — p channel to the
atmospheric neutrino anomaly. Since the relevant d; is about 10~%eV*?, matter
effects are negligible for the problem [51]. Hence the relevant probability is the

vacuum i, ¢+ i, oscillation probability,

L o
Poy=P,= sin® 2ésin® o sin? (i.?? If_:”) ;

Note that both ¢ and ¢ have to be non-zero for P, to be non-zero, and also

(5.5)

the oscillation length corresponding to d;; does not contribute to the atmospheric
neutrino problem [51]. Now solutions to Kamiokande atmospheric neutrino data
[51, 22] require a value of ¢ > 45°. The average contribution of the oscillatory
term is 0.5. Therefore using the CHOOZ result that the maximum value of sin®(2¢)

allowed is (.18 we get
P < 1.0 x 0.18 x 0.5 = 0.09 (5.6)

which is less than 9 percent. Hence the atmospheric neutrino anomaly is driven
almost completely by v, ¢+ v, oscillations. In our previous analysis of the atmo-
spheric neutrino problem [51] we found that matter effects play a negligible role in
the solution to even binned Multi-GeV data. Hence the 8 dependence of data can

be simply explained by the distance dependence of various oscillation probabilities.

In three flavors since 1, can oscillate into 1, also we compute the e — 7 conversion.

The v, ¢+ v, conversion probability is given by

Pe; = P., = sin® 2¢ cos® 1 sin® (1.2?2{"") . (5.7)
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Since ¥ > 45°, we find that the € — 7 conversion probability is less than 5 percent,
1.e there 1s very little e — 7 oscillations. Therefore the electron neutrino flux is

more or less close to the Monte Carlo (no oscillations) prediction, which is what is

experimentally observed.

Lastly we incorporate the CHOOZ constraints on our previous fits to solar and
atmospheric neutrino data, and so we reproduce the plots from our earlier works,
with the constraints coming from the CHOOZ results shown on them. In Fig.(5.1),
the light contours enclose the parameter region in ¢ — ¢ plane allowed by the binned
multi-GeV data of Kamiokande with 1.6 ¢ error bars. The present CHOOZ con-
straint has been shown as a thick vertical line, with the region to the right of it
being excluded. Fig.(5.2) shows the allowed region in the & — &1 plane from the
same analysis, with the CHOOZ constraint again being shown as a thick vertical
line [51]. Fig.(5.3) and Fig.(5.4) show the previcusly allowed regions by the solar
neutrino data in ¢ —w and ¢ — 4y planes respectively along with the new constraint
[22]. One sees that the CHOOZ constraint as properly interpreted in a three favor
framework drastically cuts into the parameter space which was previously allowed.
Note the fact that ¢ being the angle which connects the solar neutrino parameter
space spanned by w, ¢, and 8y, with the atmospheric neutrino space spanned by
¢, b, and &gy, the constraint on ¢ also translates into a strong constraint in the
solar neutrino parameter space. Now observe what is probably the most important
consequence of the CHOOZ result. The fact that ¢, the link between the solar
and the atmospheric neutrino problems is constrained to be small implies that the
solar neutrino problem can be essentially viewed as a two flavor v, + v, oscilla-
lion phenomena, and the atmospheric neutrino problem essentially as a two flavor
Yy &+ v oscllation phenomena even in a three flavor framework.. We mention that
this remarkable result implies that for the solar neutrino problem there is essentially
only the small angle and the large solutions. See Fig from chapter.(2) where the
parameter space for ¢ = 10° is shown. There is no discernible change as compared
to the ¢» = 0° case. So the Super-Kamioka constraint on the two flavor parameter
space which comes from the absence of day-night effect, even though it comes from

a two flavor analysis is really a very strong constraint.
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Lastly we analyze the consequences of the CHOOZ result for the tentative signal
reported earlier by the LSND collaboration. In the ref. [51] the results of the LSND
Collaboration [52] were analyzed in the same three flavor framework, along with the
atmospheric neutrino problem. It was found that there is a small region of overlap
between the respective parameter spaces allowed by each experiment. Hence one
could account for the solar neutrino problem, the atmospheric nentrino problem and
the LSND results in a three flavor framework. This is no longer possible if one takes
the CHOOZ result into account. If the CHOOZ constraint & < 12.5° is imposed.
then the lower limit on &3 from LSND goes upto about (.1 eV2, which is larger
than the maximum allowed value from the atmospheric neutrino analysis. Hence it
is not possible to explain the solar and the atmospheric neutrino problems and at

the samne time satisfy the results of the CHOOZ and LSND experiments in a three

neutrino flavor framework,

Hence in conclusion the recent CHOOZ result enables us to draw the following

conclusions.

It establishes the fact that the atmospheric neutrino anomaly is mainly driven

by 1, ¢+ i e vacuum oscillations.

¢ [t demonstrates that even in a three flavor analysis, the solar and the atmo-

spheric neutrino problems approximately decouple from each other.

o It excludes large parts of the parameter space previously allowed as solutions

to solar and atmospheric neutrino data.

e It is not possible to reconcile CHOOZ and LSND signals in a three flavor

framework.
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5.3 Borexino

5.3.1 Introduction

As described in chapter.(2), neutrino oscillations, with the MSW effect included,
provide the best solution to SNP. If one assumes that the electron neutrino u,
mixes with only one other active flavor, then the corresponding solution has two
disjoint viable regions in the parameter space of mass-squared difference (d,;) and
the mixing angle w. In the region characterized by small mixing angle, the entire
flux of " Be neutrinos, which has a line spectrum with E, = 0.861 MeV, is converted
into the other flavor. In the large mixing angle region, only about half of the "Be
neutrinos oscillate into the other flavor. In a three flavor analysis, depending on the
parameters of the three flavor mixing, especially the mixing angles, the flux of "Be
neutrinos can vary between 0% to 50% of its SSM value [22]. Hence, an accurate
measurement of " Be flux is of paramount importance in determining the neutrino
oscillation parameters. Further the accurate measurement of ¥ Be flux has important

implications for the SSM.

Borexino is a real time solar neutrino detector[30], which can measure " He flux
quite accurately because the signal rate due to these neutrinos is about 50 events
per day for SSM flux. The detection of neutrinos is via v — e scattering. The recoil
energy of the electrons scattered by the monoenergetic ” Be neutrinos is expected to
be in the range 0.25 — 0.66 MeV. Hence a kinematic cut on the electron energy in
the range 0.25 — 0.80 MeV, selects events which are almost entirely due to the "Be
neutrinos [30]. This unique ability to measure the signal due to only the "Be neu-
trinos enables Borexino to distinguish between the different values of the neutrino
oscillation parameters, which are currently viable but which predict different sup-
pression factors for the " Be neutrinos. Because of its very high statistics, Borexino
is an ideal tool to look for day-night effects in solar neutrino signals (which could be
a very small effect for some values of the neutrino parameters), and hence probe an
appreciable part of the neutrino parameter space, with no dependence at all on the
absolute prediction of the "Be flux. An evidence for day-night effect from Borex-

ino will be an unambigious signal for neutrino mixing and oscillations. Further if
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day-night asymmetry is there Borexino will be able to map out the asymmetry as
a function of the distance travelled by the neutrino in the earth during night at
a single neutrino energy which will single out a very small region in the neutrino
parameter space. Borexino will also be sensitive to the * B flux, though 90 percent
of its signal will be due to the " Be line. In this chapter, we calculate the rates which
Borexino will measure, assuming oscillations among all the three active neutrino
flavors and arbitrary mixing :u:nong the three flavors. We also compute the signals
for day-night effect which Borexino can measure for various ranges of the neutrino
parameters including those which are preferred solutions to the solar neutrino prob-
lem. Day-night effect for Borexino has been analyzed previously [79] and recently in
[80] but both have been done in a two flavor framework. We demonstrate that the
inclusion of the third flavor can substantially change the results of the two flavor
analysis. In particular we point out how the binned asymmetry can give a strong
pointer towards the neutrino parameters and show characteristic effects of the third

lavor.

5.3.2 Theory

The theoretical framework for Borexino is similar to that of the other solar neutrino
experiments with the important difference that there is no energy integration over
the neutrino energy, as the dominant contribution is from a line spectrum. Because
of this we recall the main features of the theory below. We first analyze the recoil
spectrum measured during the day from which one can calculate the total scattering

rate,

Let ¢ be the "He flux from the sun as given by the standard solar model. In
the absence of neutrino oscillations, we can write number of electrons scattered with

energy T
do

ﬁlﬁ:

where 42 = electroweak cross-section for v — e elastic scattering and N(T) is the

N(T) = (5.8)

spectrum of recoil electrons. The Total scattering rate is given by

E=¢é —=dT = Rssy. (5.9)
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With oscillations one has

d d
N(T) = P+ 2

Héil_Pth {5‘1[']

where F.. is the electron neutrino survival probability (we shall discuss this in detail
later) as a function of the neutrino energy (E, = 0.861 MeV') and o' = v, — ¢ elastic

scaltering cross-section, where r # e.

The total scattering rate R is

R=¢P.X + ¢(1 — P.)Y, (5.11)
where 2
. 0.5 [ ]
A = 0,25 ﬁﬂ-‘
and e
5 da
Y g
0.25 deT
Since
Rssy = ¢X,
we gel R v
=Pn+_,l_Pt:+ 912
e xU-ro (5.12)

Henee, the ratio ﬁ-f;-; allows one to directly extract P.. , and hence strongly
constrain the vacuum parameters. Note that Rsspye involves the SSM flux of 7 Be,
and therefore even though one can extract P,, from the experimental number, it is
still dependent on the SSM flux. The major gain with respect to other detectors is
the fact that one can get P.. at a single neutrino energy as there is no integration
over the neutrino spectrum. Also note that the recoil spectrum (i.e N(T') vs T') as

well as the total rate just scale with respect to the SSM expectations.

We now focus on the day-night effect. We define the day-night asymmetry as

_N-D

A=¥+D

(5.13)

where [) is the usual day time scattering rate defined previously (R), and N is the

scattering rate at night after the neutrino has travelled a distance z through the
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earth (z is dimensionless , expressed as a fraction of the earths diameter).

do do’
N=—o¢P) + —o(1 - PY), 5.14

dﬂr¢ P dT¢[ e |: J
where PY is the electron neutrino survival probability after travelling a distance =
through the earth. Note that PY differs from P2 since the neutrinos travel through
the solar matter as well as through the earth. For some parameter ranges this second
travel may introduce drastic changes. i.e P is a function of E,, r as well as of the
vacuum parameters. So A becomes
P, !,:r =, eIE

= X
PXY 4 PD 4 2

A

(5.15)

where P is the same P,. defined previously in eq.(5.10). Note that the day-night

R
Resn

asymmelry unlike the ratio is completely independent of the 55M Huxes , and is

dependent only on the particle physics aspect 1e., only on the ascillation probabilities
and the scattering cross sections. This is where Borexino has an advantage over the

other real time detectors. The average asymmetry is defined as

< N>-<D>
A 5=
e <N>4+<D> 2:16)

where < N > means the night rate integrated over all the x bins.

As before we parametrize the neutrino mixing matrix U in vacuum as U =
L) @)U (w) where UV(8;;) is the two flavor mixing matrix between the ith
and the jth mass eigenstates with the mixing angle 8;;, neglecting CP violation. In
the solar neutrino problem i drops out [12, 24]. The mass differences in vacuum
are defined as 83 = pj — pf and 83, = pd — pl. It has been shown [22, 28] that
the simultaneous solution of both the solar and the atmospheric neutrine problems
requires the mass hierarchy ds > da; and under this condition §3; also drops out.
The rediagonalization of the mass matrix in the presence of matter (in the sun or
earth) under the hierarchy condition leads to the following results [22]

thn i = daysin 2w

= EQICDE?M_ACDEE{:}T {5£T}
SN @y, = SIN G, (5.18)

57 = 82y 005 2(w — w,) — Acos? peos 2wy, , (5.19)
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where A is the Wolfenstein term A = 24/2 G N, E (N. is the number density of
electrons and E 1s the neutrino energy) . We note that &5, > A, for A evaluated at
any point in the sun or the earth. In eqs (5.17) - (5.19), the “*m” stands for matter
and in using these equations, one must use the appropriate density of matter that

is required at the various points along the trajectory of the neutrino.

The probahility for an electron neutrino produced in the solar core to be detected
as an electron neutrino on earth at day (in the heirarchy defined above) , averaged

over the time of emission and the time of absorption, has been shown to be[22]

P2 = cos?¢cos’ oo (n:.'a:us2 w€0s” Wy, + sin’ wsin? u.-,.,) +sin® ¢sin® ¢,

—I'13 COS* D COs” P, COs 2w cos Dusy, . (5.20)

Where 145 is the Landau Zener jump probability between the first and second mass
eigenstates, for a exponentially varying density profile, which is taken from [12].
Note this expression for P2 is derived in a different framework in [68]. In [68], one
averages the exact formula for P2 only over the resonance width to get the formula

in eq.(5.20), i.e., does not have to average over the time of absorption.

The derivation of P is quite complicated and is given in the previous chapter
on day-night effect. For example for trajectories that pass only through the mantle

we gel
1 = 2PE — U422 - |Ual®)]
(IUa|? = [Ue2]?)

where U, are elements of the first row of the vacuum neutrino mixing matrix and

Py =pD 4

x (Pf = |Ueal?), (5.21)

PE is the probability of the second mass eigenstate oscillating to the electron flavor

at the point of detection. It is given by
P, = cos® ¢lsin’® wg + sin 2wg sin 2(wg — w)sin® &y,). (5.22)

Here wg is the mixing angle in matter evaluated at the point of detection, and &,
is given by
1 :
b =5 [ () - ), (5.23)
Iy

where &

are mass eigenvalues in earth, and {; refers to the time when the neutrino
mass eigenstate hits the surface of the earth from the core of the sun, and t; refers

to point of detection in the earth. The equation is much more complicated for
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trajectories that cross the core of the earth also. The method of computing it, as
well as other details about the day-night effect is outlined in the previous chapter.
For Borexino in a year less than 5 percent of the events pass through the core, so

core events are very small in number as compared to events that go through mantle

only.

5.3.3 Results and discussions

We first compute the recoil spectrum during day. We calculate the recoil spectrum
for various values of the vacuum parameters including those which are the favoured
solutions to the solar neutrino problem. The crosssections are taken from [14]. Then
we compute A, and < A > for a range of vacuum parameters including those which

are favoured solutions to the solar neutrino problem.

In Fig.(5.5) we show the recoil spectrum of the scattered electrons (during day
time) for various values of the vacuum parameters. The top curve is for the SSM, i.e.,
no oscillation case. The curve labelled (a) corresponds to the small angle solution
to the solar neutrino problem, while that labelled (b) corresponds to the large angle
solution. The curve labelled (¢) is a three flavor solution to the solar neutrino
problem. One sees that the recoil spectrum, and hence the total rate basically just
scale w.r.t the SSM (i.e no oscillation) recoil spectrum. So just knowing the scale

factor gives one a strong pointer towards the vacuum parameters.

We show the average asymmetry as a function of the vacuum parameters in Lhe
form of a contour plot. Fig.(5.6) is the plot for ¢ = 0.0° i.e a two flavor case, The
enhancement factor (regarded as a percentage) increases by 10% for every adjacent
ring, as we move inwards towards the centre of the plot. Note the large enhancement
region (=2 20 — 30) percent are for &, < 107% V2. This is simply a reflection of the
low energy of the "Be line (0.861 MeV) i.e the Wolfenstein term A in the earth at
the energy of the "Be line is order of 1077eV?, and hence if 8y, is close to A one
can get large enhancement in the matter mixing angle, and so a large asymmetry.
Note that our result agrees very well with that of Bahcall. This clearly illustrates

the robustness of our analytic approach vis a vis numerical integration. Figs. (5.7),
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The reason for nonzero ¢ diluting the asymmetry is twofold.
1) Unitarity demands that 37; PE = 1. This means that in three flavors PE is always
less than its value in the two flavor case.

2) The resonance condition in the case of three flavors has the form
Acos’ ¢ = &, cos 2w (5.24)

Since, for Borexino the neutrino energy is fixed, a resonance which occurs at a given
density in the core of the earth in the two flavor case ¢ = 0 will either occur at a
higher density or it will not occur at all. Thus the resonance effect is suppressed
in the case of three flavors. Note that for the region of dz; favoured by the solar
neutrino solutions, (107 to 107 %eV?) day-night effect is rather small even while
it is nonzero. Therefore from the contours for various values of @ it is obvious
that if Borexino sees small day-night effect. it either points to a large (13) mixing
irrespective of §3; and w, or small (13) mixing with 4y, in the region favoured by the
MSW solutions to the solar neutrino problem . Conversely a large day-night effect
would point to small (13) admixture and dz; small e < 107"V One also sees
that from the day-night contours the above conclusions are valid for a large range
of w. So to get further constraints on the vacuum parameters one needs further
information which is provided by looking at the day-night asymmetry as a function
of the distance travelled by the neutrino during night, i.e.., one needs to look at

binned asymmetries.

In Figs. (5.10) and (5.11) we show the day-night asymmetry as a function of =
for some representative values of the neutrino parameters. Fig.(5.10) is for ¢ = 0.07
and Fig.(5.11) is for ¢ = 30.0°. In each panel in the above figures, small dashes
correspond to w = 57, large dashes to w = 40° and solid line to w = 20° all for a

fixed value of ;.

Different values of these parameters have distinguishable characteristics. Some
gross features which may enable us to specify their approximate domains are the

following:

e For small (12) mixing angle w there is a gradual increase of the asymmetry with

z, whereas for large w the oscillations in z start showing up. For = < 0.84 (t.e.
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trajectories through mantle only) there is a very clear discrimination between

the small w and large w, irrespective of dz; and &.

For ¢ = 0 and 85 > 2.51 x 107%eV?, the asymmetry is negligible. So null
day-night effect at Borexino implies that for ¢ = 0 or very small, 85, is in the
range given by the MSW solutions to the solar nentrino problem.

Note that for d3; > 107%°eV?, there is hardly any asymmetry for the small
w. while for large w, it shows up as regular oscillations with a oscillation
wavelength which is close to the vacuum oscillation length. The reason being
that for d2; > 107%¢V?*, the Wolfenstein term is quite small compared to d4.
He= ?:T' then it is easy to show that (for & =0)

871 = 8 (1 — () cos(2w)) (5.25)

and

P2 = jﬁl E“]cm{&d”d (5.26)

where 83} denotes differences of mass eigenvalues in matter. Hence the mass
squared difference in matter is almost the same as the vacuum mass squared
diflerence which results in the oscillation wavelength in matter being close to
the vacuum oscillation length, with the approximation becoming more exact as
w increases. Here we see an intriguing feature, i.e there is day-night asymme-
try, hence matter effect(although small), but the oscillations in matter being
controlled by the vacuum oscillation length. The above conclusion holds for
nonzero ¢ also with the difference that the asymmetry is less than that for

¢ = 0.
As ¢ increases, the asymmetry at any r decreases.

The amplitude of the oscillatory pattern is largest for small ;; and decreases

steadily as d1; increases.

For small w and large d,;, asymmetry is appreciable only in the core and is a

sensitive function of &4;.
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Lastly as remarked before, in light of the CHOOZ result, one essentially has
only the large or the small angle solution to the solar neutrino problem. So the
Borexino measurement of the "Be can really pick out the solution to the solar

neutrino problem. Hence in conclusion the Borexino measurements could be some

of the most decisive results in neutrino physics.

We now briefly point out the importance of the Sudbury Neutrino Observatory

(SNOY) [29], which is expected to begin operating in the near future.

The Sudbury Neutrino Observatory (SNO) [29] is high statistics real time de-
tector like Super-Kamiokande with an expected threshold of 5MeV. The target
material in SNO is deuterium instead of water which is what is used m Super-
Kamioka. Hence unlike Super-Kamioka which measures the solar neutrino flux only

via neutrino electron scattering, in SNO it will also be possible to study the following

two reactions seperately [81].

vet D s ndpt v (5.27)

where ¢ can be e, p or 7, and

ve + D= p+pte. (5.28)

Observe that eq.(5.27), which is the neutrino dissociation of the deuteron is a neatral
current process. This reaction is flavor blind, and hence all Havors of neutrinos can
contribute. Therefore this reaction will measure the total neutrino fux. Feq.(5.28)
which is a charged current reaction is accessible only for the electron type of neu-
trinos. Therefore this reaction will measure the total electron neutrino flux. If this
measurement is different from that of the total flux, then one has a signal for neu-
trino oscillations independent of the SSM flur predictions. Thus SNO is another

experiment which can conclusively confirm the phenomenon of neutrino oscillations.
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Chapter 6

Conclusions

The Solar neutrino problem has been an persistent problem in neutrino physies
for more than three decades. The discrepancy between experiment and the standard
solar model estimates first seen in the Davis experiment has been confirmed by three
other experiments. Thus the observation of the deficit in the neutrino flux dubbed
as the solar neutrino problem is a real problem. At present astrophysical solutions
seem to be highly disfavoured, hence pointing to some nonstandard neutrino physics
as a possible solution to this anomaly. The idea of nonstandard neutrino physics
being the cause of the solar neutrino deficit has been given further impetus by the
atmospheric neutrino problem, which was reported by the Kamioka as well as the
IMB collaboration. Recently Super-Kamioka, an upgraded version of Kamioka with
much higher counting rates, has also confirmed the deficit in the atmospheric neu-
trino flux with better sensitivity. The zenith dependence of the suppression in the
Multi-GeV atmospheric neutrino events, observed by Kamioka is also a very signif-
icant event. Together these two problems constitute a major challenge to neutrino
physics and some nonstandard properties of neutrinos are strongly suggested as the

possible solution to these anomalies.

One of the most natural extensions of the standard model is to assume that
neutrinos are massive. This in turn can lead to mixing and oscillations between
the various flavors of neutrinos. In this thesis, we have demonstrated that, if one

assumes mixing between the three known Havors of neutrinos, then one can find a
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solution to the Solar and the atmospheric neutrino problems in a consistent way.
There exists an appreciable region in the three flaver parameter space, which can

account for both the solar and the atmospheric neutrino data.

If neutrino oscillation is indeed the cause of the solar and the atmospheric neu-
trino escillations, then for some values of the neutrino parameters, there could be
significant day-night and eclipse effects. These effects are model independent sig-
natures of neutrino oscillations. The observation of positive signals for these novel
effects will have significant impact on the parameter space. Conversely even the
absence of such effects constrain some part of the neutrino parameter space. In this
thesis we have done a thorough analysis of such effects for the existing as well as
for the future high statistics real time detectors in a three flavor framework. The
existing detectors are not the :deal ones to observe the day-night effect since the
neutrinos for most part of the year travel through the mantle, a detector situated

close to the equator will be a boon to the study of day-night effect.

The parameter space allowed by solar and atmospheric neutrino data were com-
pletely consistent with all the previously running reactor and accelerator experi-
ments which were short baseline experiments. The recent result from the CHOOZ
experiment is the first result of a long baseline experiment. We have shown in this
thesis that a three flavor analysis of the CHOOZ result has dramatic consequences
for the solar and the atmospheric neutrino problems. An appreciable parl of the
allowed three flavor parameter space is ruled out by the CHOOZ result when prop-
erly analysed in a three flavor framework. Note that these conclusions could not
have been reached in a two flavor framework. In fact in a two flavor framework
the CHOOZ result is inconsistent with the atmospheric neutrino problem. A three
flavor analysis resolves this contradiction. It should be mentioned at this stage that
future long baseline experiments will be able to confirm the CHOOZ result, as well
as further probing the neutrino parameter space. In fact different parts of the neu-
{rino parameter space can be probed by tuning the neutrino energy and the distance
it travels between the source and the detector. While the Solar and the atmospheric

neutrino deficits have focussed the attention on the neutrino properties, perhaps

the most precise information on neutrino parameters is to be expected from long
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baseline experiments in the near future. Since these are lab experiments one has

better control on the experiments.

Among the next generation of solar neutrino experiments, SNO and Borexino will
play a major role in distinguishing allowed solutions of the solar neutrino problem,
and hence as a consequence the atmospheric neutrino problem also. In this thesis
we have done a three flaver analysis of the physies prospects of Borexino, and shown
that coupled with the CHOOZ result Borexino can narrow down available range for
the actual solution to the solar neutrino problem. SNO can in a model independent
way test the hypothesis of neutrino oscillations. Together SNO and Borexino can
unambiguously demonstrate neutrino oscillations as the cause of the solar neutrine

problem.

In conclusion neutrino oscillations between the three known flavors of neutrinos
provide a robust solution to the solar and the atmospheric neutrino problems. The
allowed region in the three flavor parameter space will be severely constrained by the

next generation of experiments, notably by the long baseline experiments, Borexino

and 5NO,

Now il one accepts neutrino oscillations as the reason for the solar and the
atmospheric neutrino anomalies, then it is natural to look for the dynamical origin
of these masses and mixing angles. Various extensions of the standard model can give
rise to such masses and mixing angles. There have been enough effort in recent years
in this direction, but all these models are rather fine tuned and have met only with
very limited success. So one of the most challenging problems in neutrino physics
will be to construct a mass model which is consistent with what is allowed today
in the three neutrino parameter space. Another important issue is the question
of CP violation in the lepton sector, which can arise from the complex phase in
the neutrino mixing matrix. CP violation can in principle be determined by using
data from long baseline experiments. Recently there have been efforts to analyse

CP violation effects, in long baseline experiments though more refined analyses are

called for.

Neutrinos by virtue of being one of the most favoured candidates for hot dark

matter (HDM) can play a major role in Cosmology. Neutrinos are also emitted hy
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supernovae. (In fact Kamioka was the first experiment to detect neutrino bursts
from a supernova). It will an interesting exercise to see what repurcussions, the

values of the neutrino parameters allowed by present solar, atmospheric and long

baseline data have for the role of neutrinos in cosmology.
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