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Motivation

B =

In day-to-day life, one comes across a number of services that are distributed in nature, for
example, network applications like computer aided education, remote diagnoses, reservation
svstems, remote bank transactions, electronic mail and the World Wide Web, to name a few.
Une observes that such systems are essentially spatially distributed autonomous processes
(Or agents as we call them at times) with some kind of communication mechanism that
enables them to transfer and/or share information among themselves, These are usually
called distributed systems.

Distributed systems have become essential because of a variety of reasons. The
basic cause, however, is the lack of resources, both informational and computational, in a
single localized system. Thev provide faster service when the communication medinm is fast
(by having dedicated servers on the network) and they provide a high degree of reliability
{by duplicating services). These systems also facilitate access to diverse kind of information
available at different locations in LANs and WANs.  Recently, with the advent of Java,
apphications that use such distributed information are becoming commonplace.

With some reflection. one notes that spatial distribution is only relative to the
gratularity at which one views a system. Therefore, while it is easy to think of networks of
computers as natural examples of distribution, even a set of components on a chip can be
seen as a distributed system where each component does its own computation and interacts

with others over the the data and control lines on the chip. Such a distributed view of any



system is particularly interesting from the point of analysis of its behaviour. This is because
it offers the hope of cutting down complexity of verification of large svstems by studving
properties of the component processes and then composing them. There have been several
attempts from this point of view and there is some success for a limited classes of properties
(notably, safety properties), though compositional verification in full generality still remains
a holy grail for theoretical computer science.

Design and analysis of distributed systems has to address a range of problems that
are absent in sequential systems. They arise mainly as a consequence of the need for synchro-
nization among agents in the system. Two fundamental problems are those of contention
and cooperation [LL] which lead to problems such as starvation and deadlock. One must be

able to verify the design and implementation of distributed systems to avoid these and other

problems.

1.1 Models of concurrency

In order to understand the nature of distributed computing, and to help the design and
analvsis of distributed systems, we need mathematical frameworks in which one can describe
them and reason about their behaviour. In the theory of concurrency one studies models
like Petri nets, event structures, trace languages and labeled transition svstems or antomata
[BC, Dro, Muk, NRT, WN] . These models are designed so as to capture the semantics of
distributed programs; reasoning about these programs is carried out in process algebras,
dyvnamic and temporal logics, automata theory ete.

In many areas of theoretical computer science, notably model checking, one studies
finite state systems, mainly to be able to get decision procedures that help in mechanizing
verification. The assumption of “finite number of states” is actually not very restrictive
for the following reason. Many interesting properties of distributed svstems are confrol
properties (like deadlock, reachability, termaination ete). They depend upon boundedly many
changes in the values of only a finite number of variables (semaphores, number of messages

sent, number of messages recewed ete.) [MP]. Consequently, for the purpose of analysis, the

(B



state space of the system can be partitioned into a finite number classes. In the light of this,

it suffices to study models of concurrency in the context of finite state systems.

1.2 Process models and local presentation

Typically, the models mentioned above are at a global level, i.e., they describe systemn be-
haviour from the viewpoint of an external observer who can view the entire system, As
opposed to this, we can also consider process models (as, for instance, usually studied in

distributed algorithms) where no such global observer is assumed|LL].

In process models, a distributed svstem is assumed to consist of a finite number
of sequential processes, which have some resources allocated to them. They proceed asvn-
chronously and periodically exchange information among themselves. Process models are
distingnished by the mode of communication employed among the agents, which mayv be
message passing, synchronization on actions or information exchange through shared vari-
ables or any other protocol. The global behaviour of the over-all system depends upon (a)
the behaviour of individual processes, (b) the protocol specifying the interaction between
processes and (¢) some global specifications iimposed by the environment (like fairness con-
straints, termination at desired states) that the behaviour should satisfy.

Abstracting away from process models, we say that

a class of distributed systems is locally presented if it is modeled
as i set of components, one for each process, and the global he-
havionr is completely defined by o fixed set of construction rules

universal to Lthat class.

In this thesis, we study local presentations of finite stafe distributed systems (FSDS),
where each component is modelled as a finite state automaton(FA) over a fixed finite set
of actions and global behaviour of the system is specified by a product of the component
processes. By imposing different structures on the component automata and by different

rules for product construction, we get different classes of local presentations




An important reason to study local presentations is that the sequential components
can serve as natural models for temporal logics based on local reasoning. Compositional
model checking is one of the major goals of computer-aided verification and we believe that
local presentations (particularly over infinite words) may help [AH,KV]. Consider a temporal
logic with local assertions that may refer to other agents’ local formulas and with global
formulas that assert compatibility. Then the hope is that each formula can be associated
with a component automaton and it may be possible to do model checking individually for

each agent and globally for compatibility.

Moreover, the local presentations considered in the thesis (namely, Assumption-
compatible systems of Chapter 3) seem to be closely related to the class of knowledge-based
programs[FHMV]. Tt is hoped that these systems offer an automata-theoretic account of

knowledge in distributed svstems,

1.3 Goal of the thesis

We want to study locally presented FSDS’s from the point of view of their language he-
haviour. This is well-motivated for the following reason. We know that FA's form a robust
class of models for finite state sequential systems. Their language theory is well-studied [HU]
and serves as a foundation for many areas of computer seience and, in particular, for verifi-
cation methodologies like model checking [VW] and bisimulation techniques [Hoa, Mil]. Tao
achieve similar ends in the case of locally presented FSDS’s, developing a language theory [or
ther makes eminent sense. Our goal is to establish tight connections {essentially Kleene's
theorem) between classes of FSDS's that are locally presented, the languages they accept
and their syntactic presentation in a top-level parallel fashion which reflects the architecture
of process models.

Notice that this is essentially a distribution problem: given a class of behaviours in
terms of languages, lind whether there is a class of locally presented FSDS's that characterize
it. Without any constraint on the number of processes in the svstem and on the resource

allocation, this problem has an easy solution [BP], Things, however, become substantially



complicated when there is an a prier, fired distribution of resources (or, the actions).

Even with this constraint, the problem of distribution of global behaviour has heen
solved in various ways. One could distribute the transitions by imposing some independence
condition on them while keeping the states global. The independence relation models the
spatial distribution of actions in the system. Thus one gets the asynchronous transition
systemns of [Bed]. One could also allow concurrent transitions on many actions thus allowing
for true concurrent behaviour as opposed to interleaving behaviour, and this is the basic
idea behind distributed transition systems|LPRT]. There models lack any explicit notion of

sequential components and henee are not locally presented.

States of the system can also be distributed among the processes. Asvnchronous
automata[Zie| and asynchronous cellular automata|CMZ] model such distribution. But in
these formalisms there is some global specification, in terms of global transitions. so that
behaviour of the systems is not derived from that of its components. Henee we do not

consider them to be locally presented.

Study of even simple systems shows us that in order to locally present complex
behaviour, some amount of global information has to be encoded in the local states of the
components. When the processes communicate and cooperate with each other, this global
information is used to filter out undesired computations. Given a global behaviour. we study
what type of global information can be distributed into the local states and what should be
the product construction that achieves this global behaviour. To do this in a uniform way

is the real challenge.

1.4 Contribution of the thesis

The salient points of the thesis are

1. introduction of a framework for local presentation of finite state distributed syvstems

(FSDS),



2. showing that a class of systems, called Assumption Compatible Systems characterize

all regular behaviour over the given set of actions that is distributed over the processes,

3. showing that by putting constraints on system structure, we get different classes of

behaviour, and

4. showing that infinite behaviour can also be characterized by these systems with suitable

acceptance conditions.

The framework is in the spirit of the assumplion - commitment [FP, MC] ar rely -
guarantee [Jon] paradigm which was introduced fo facilitate compositional reasoning, The
main idea behind the paradigm is that each process makes assumptions about the behaviour
of other processes and commits to fulfilling those made by other processes about its own
behaviour. We can compose processes only when mutual assumptions of processes are met.
One can then reason about the behaviour of each process separately (locally), assuming tha
others maintain relevant properties and reason globally about their compatibility. While a
number of researchers seem to have studied this paradigm in the context of programming
methodology, process algebras or temporal logics, there seems to have been little effort in
formulating it from an automata-theoretic viewpoint. We formulate our framework using
finite state automata as components. Assumptions and commitments are made by hav-
ing a special alphabet called the commit alphabet. The product is then constructed with

compatibility of assumptions and commitments as a main criterion,

In a distributed system, since processes may execute asvnchronously, distribution of
a given behaviour becomes complicated. This is because one has to ensure that the global
behaviour is exactly constructed from local behaviours, If every process could know the state
of computation of every other process, this becomes easy but in a distributed svstem. any
process’s view about the system at any point of time is necessarily partial. Then it becomes
unclear as how to preserve the global behaviour via distribution. In Chapter 3, we present
view-based systems that are loeally presented and capture the well-studied hehaviour

of regular consistent languages (RCL) accepted by asvnchronous cellular automata, Our
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focus here is on deriving some intuition about the nature of distribution. The assumiption -

commitment framework is introduced later in Chapter 4.

In Chapter 5 we propose a class of locally presented svstems, in the assumption -
commitment framework. We call these Assumption-compatible systems. We show
that this class of systems captures the most general kind of behaviour that the finite state
systems can exhibit, namely, all regular behaviours over the set of actions in the system.
The Hexibility of the framework is demonstrated in Chapter 6 by showing that with simple
restrictions in the framework, we can capture various natural classes of language behaviour.
We also show that by only changing the environmental specification (keeping the product

construction unchanged), one can capture all infinite behaviours of finite state systems.

1.5 Scope

Our study is restricted to only top-level parallelism of static process models where
the number of components is constant and each component can earry out only a fixed set
of actions. Also, in our maodel, the only way in which processes can explicitly communicate
15 by synchronization (handshaking) and this is modeled by having actions common to
components. Surely, one needs to relax these constraints and study the automata theory of
other models, like message-passing systems. But even with this simple model. the problem

of distribution seems well-motivated and remains non-trivial,

There are several other divections in which this work needs to be expanded. The
algebraic theory of loeally presented FSDS's awaits formulation. We have not addressed
the issues of complexity and suecinetness in the thesis, while for design of actual svstems.
study of these is essential. Logics that can take advantage of the proposed models for better
decision procedures and model-checking need 1o be designed. In order to demonstrate the
utility of the suggested framework. one must analvze and verify protocols in these models.
Last but not the least, the relationship of these models with others (like knowledge based
programming ) [FHMV] is to be explored in depth. All these promise to lead the present work

into a fruitful area of research in theoretical computer science.
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Preliminaries

oo

The main purpose of this chapter is to study the concept of products of finite state automata.
This notion is crucial for local presentations of finite state distributed systems (FSDS) be-
cause interaction between components of such systems is captured by the construction of the
product. We describe the simplest product construction where synchronization is the only
way to control behaviour. It turns out that products of locally presented FSDS's accept only
a very weak class of langnages. In the rest of the thesis, we will essentially be working with
variants of this notion to increase the expressive power (in terms of language aceeptance) of
the models, Hence we fix some uniform notation and note several preliminary concepts and

results about products in the chapter.!

2.1 Finite automata and regular languages

Since we will be dealing with finite state systems throughount the thesis, and. in particular,
about the class of langnages they accept, we give some basic definitions and results in the
language theory of finite state systems[HU]. The notation is nonstandard, but the reader is

requested to bear with this in the interest of what comes in the sequel.

'Some of the results in the chapter are classical, some known and some new but sinple.



2.1.1 Transition systems and automata

Let 3 be a finite and nonempty alphabet. £ is the set of all finite strings over £. We use
a,b,c, ... for the letters of © and x,y, 2, ... for strings. The empty string is denoted as ¢,
Concatenation of two strings = and y is denoted as either x - ¥ or just as zy. Any subset
L C " is called a language over .

A transition system (TS) over ¥ is a tuple M = (Q, —, ¢°), where @ is a finite set
of states, —+ € (€ x I x @) is the transition relation and ¢° € @ is the initial state. We
use letters p, g etc. for the states of a TS. When (g,a,¢') € —, we wrile it as g—2q".

The one step transition on letters is extended to transitions on strings over ¥*. We
denote the extended transition relation as = : @ x &' x @. It is defined inductively as
follows:(1) p==-p, (2) p=">¢ il there exists an r £ @ such that (p==2+ and r—4g). When
D¢, We say that there is a run of M from pto g on x.

We call a TS deterministic (DTS) if — is a function on (Q x £). This entails
that whenever p—qg and p—¢" we have ¢ = ¢, Naotice that if M is a DTS, the extended
transition relation is a function. This implies that given any p € Q and © € ¥, there is a
unique ¢ such that p==q. (Existence of g is ensured by the totality assumption). In this
case, we denote by (), the state g such that ¢"==%q.

Phe tuple A = (M, F), where M js is a TS and F C Q, is called a finile state
automaton (FA), When qo==2g; and g, € F, we say that the string @ is accepted hy A
The set of all strings accepted by A (also called the language of A) is denoted as L(A) or

JrJI:J'IlI'L F:'

Observation 2.1 Let (M, F) be a findte state automaton and let [ = {rﬁr, r;f: _____ q{}. Then,

LM, FY=|J LM {e}).
164 1k}

Definition 2.2 (fven X, the class of languages accepted by FA's over © 15 defined as
L Ax) ¢ {LC X | there is an FA (M, F) such that L = L(M, F)}.
We also call this class of languages recognizable and denote it as Reex.

10



An FA (M, F) is called deterministic (DFA) if M is a DTS, We denote the class of
languages accepted by DFA over £ as L(DFAg). It is easv to show that non-determinism
does not add to expressive power of FA's in terms of language aceeptance, ie., £(DF Ay) =
L{FAz) = Recy. DFA’s have many nice properties. Easy complementation is ane of them.

This has been extremely useful in automata-theoretic techniques for model checking,

Observation 2.3 Let (M = (@, —,¢"), F') be an FA, Then its complement is (M, Q — F),
It is easy to show that ©* — L{M, F) = L(M,Q — F)

2.1.2 Simulations and language acceptance

Let M = (@, —+q") and M' = (@', —',¢"") be two transition systems over ©. We say
that M" stmulates M iff there exists a map 6 : Q" — @ such that

i

1. 2fg") =q%

2. for plg' et p’L}rq’ then G(p')—+0(q'),
3. for p,g € @, if p—"4q and there exists p' € Q' such that O{p') = p, then there exists a

¢' € ' such that ©(¢') = g and p'—5¢'.
M is essentially an unfolding of M.

Proposition 2.4 Let M = (@), —,q") and M' = (', —'.¢"") be two transition systems
over L such that M' sunulates M. Also, lel ' = {p' | O(p') € F}. Then LM, F) =
LM F).

Proof: We first show the left-to-right inclusion L(M, F') © LM, F'), Consider the following,
claim.
Claim: Suppose that p.gq € €} and there is a p' € Q' such that S(p") = p. If p==2q then
there is a ¢ € @ such that ©(¢') = ¢ and ,r}'="';-if;“.

Assume the claim. Let z € L{M, F). Then, there is a state ¢/ € F such that
¢"==¢/. Since B(¢"') = ¢"(from condition (1)), by the claim, there is a ¢f € ' such that

O(g’) = ¢f and ¢"==¢". Hence ¢/ € F' and r € L{M', F"). Thus, L(M, F) € L(M', I),

11




Proof of claim: The proof is by induction on length of z. The base case when = = ¢ is
trivial. For the induction step, let £ = ya and let p==¢. We have to show that there is a
¢ € Q' such that ©(g') = ¢ and p'==¢'.

Since p=='q, there is an r € (@ such that p==>r—"3q. By induction hypothesis, there
isan r' € Q' such that ©(r') = r and p'=="+'. Then, by condition (3) of simulation, there
isa q' € Q' such that ©(q') = g and ¥—25'¢’. Hence p'22'¢', or, p'=='g" . This proves the
claim.

Now, we need to show the other inclusion L{M, £) 2 L{M', F'). A straightforward
induction on 7| using condition (2) shows that whenever p'==s'g’ in ', B(p)=©el(y) in
M.

Let z € L(M', F'). Then, there is a state gf' € F' such that ¢®=2¢”. By the
observation above, @(¢")==0(¢/"). Since O(4") = ¢° and ©(g") & F(by the definition
of '), & € L(M, F'). Therefore, we have L(M,F) 2 L{M', F') and the the proposition is

provecd. -

2.1.3 Regular expressions and Kleene’s theorem
Let REGy be the smallest set such that
1. 0 € REGx.
2. ¥ C REGY,
3. XY € REGy, then X + Y and XY are in REG e, and
4. f X € REGy, then X° in REGy.
The elements of REGy are called regular expressions over ¥ We assign to each ex-

pression a language over ¥°. First we define the concatenation and = operation on languages

over 2.

LI . L..{ dé']. {_’r."ljl,r | T e L| and e EE_}}

L[! = {r} H!]d L”H = L . Ln_ SE’T. Lt I_lir U er_

=)

12



Semantics of regular expressions is given by a function [| : REGy. — 922" defined as

follows:

o [0] =0,

la] = {a} when a € T,

(X +Y]=[X]u[y],

[XY] = [X]-[¥],

X =[]

Definition 2.5 4 set L © X* is called regular if there exists a reqular erpression K on

[

REGy such that L = |R]. We denote the set of all regular languages from ©° as Regs,

Informally, a subset of X* is regular if and only if it is obtained from the letters
of ¥ by a linite number of unions, concatenations and the star operation. Thus, we now
have two classes of languages over X: the class of recognizable sets characterized by finite
state automata over X and regular sets defined by regular expressions over £, The following

well-known theorem of Kleene establishes the equivalence of the classes of recognizable and

regular sets over 30
Theorem 2.6 (Kleene) Rees = Rege.

[Kleene’s theorem is significant because it allows one to express succinetly, through the regular
expressions, the languages accepted by FA's. In any class of models hased on automata, in
order to have such suceinet presentation of language behaviour, a svilactic characterization

is helpful; in other words, one proves a Kleene theorem for such models,

2.2 Languages for distributed systems

Behaviour of finite state sequentiol svstems is deseribed by regular languages over some

alphabet. What kind of languages deseribe behaviour of finite state distributed svstems?
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Naturally, these are regular since we are considering only finite state svstems. But we are
interested in knowing exactly what additional properties these languages have by virtue of
being able to model distribution. For example, suppose there are two processes P, and £ in
the system and they can carry out two actions a and b (respectively) independently. Then
we can have both ab and ba as the behaviour since these actions are not causally related.
Therefore any language this system accepts will be closed under such commutations of o and
b. Similarly, since there may be different kinds of interaction in distributed svstems, one
can expect various subelasses of regular languages capturing behaviour of different kinds of
distributed svstems. In the following we present some well-known subclasses of languages

for such systems. But first we fix some notation.

2.2.1 General notation

As discussed in Chapter 1, we want to model a static network of processes. Fix once and
for all that there are “n" processes in the system., The finite set of locations is called
Loc={1.:-+;n}n >0

We model the distribution of actions among the processes by a distributed alphabet
YOIt is a tuple (¥1,---.%,), where each ¥; is a {inite nonempty set of actions and is
called a local alphabef, The local alphabets are not required to be disjoint. In fact, when
a € X M, ¢ # j, we think of it as a potential synchronization action between ¢ and ;.

Given a distributed alphabet ¥, we often speak of the set ¥ 4 Yy &Y z=diByeas
the alphabet of the system since the overall behaviour of the system is expressed by strings
from X°. For any action in ¥, we have the notion of agents participating in this action, Let
loc : ¥ — 2thnt be defined by loc(a) el i |« € ). Soloc(a)(called “locations of a”)
gives the set of agents that participate (or, synchronize) in the action a. By definition, for
all @ € E, locla) # W,

We extend the notion of locations (or, participating processes) to strings over £°.

Ifz e, alph(z) ™ {a €T | a occurs in r \, Then, loc(z) % L toc(a).
asalple)
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From the definition of locations, we can derive an irreflexive and svimmetric relation
T on X. We call this an independence relation. The independence relation is defined to
be T % {la,b) € © x T | loc(a) Mloc(b) = B}. Informally, (a,b) € T iff the participants
in the actions a and b are disjoint. Sinee processes are spatially distributed, it entails that
the participants of b remain unaffected by the execution of a and vice versa. Hence in
the system, independent actions may proceed asynchronously. This is a crucial property of
the distributed systems we consider. We call this the asynchrony property of the systems.
Extending the same idea to strings over £*, we say two strings ¢ and y are independent, i.e.,
(z,y) € T iff loe(x) Nloe(y) = . Two independent strings can be thought of as independent
execution sequences of two disjoint sets of processes.

Lastlv, we say that the distributed alphabet ¥ is non-trivial iff the independence
relation on ¥ is non-empty. For example, the distributed alphabet (£, = {a, b}, 5, = {h, ¢})
s non-trivial because (a,c) € I. On the other hand, the distributed alphabet © =< 5, =
{@,b}, Ty = {b.c}. Xy = {c,a} > is trivial because loe(a) Mloc(h) = {1} £ 0 and so on for

every pair of letters and hence T is empty.

2.2.2 Shuffle languages

The simplest kind of interaction in the distributed system is disjoint parallelism, when there
1§ no interaction among the components. In that case, global behaviour is just interleaving

of local actions. This is the idea behind Shuffle languages.
Given two linite non-empty alphabets X, and Xy, let € 0 and ¢y ¢ £, Define,
! I | | g
@ || v (shuffle of = and y) as

T et ] " — -
oy = {xyyy o oapyy | forall iz € 5y € Yoand o =mime om0 = iy ik}

Shuffle of = and y gives all possible interleavings of the two strings, For example,
when Xy = {a, b} and s = {e. d}, ad ﬂ cil = {abed, achd, cabd, acdb, cadb, edab}. One extends
this operation to languages over 3.

Let £y € £} and Ly C EJ,

5 || La =2 {z€eZ |3zel y€li:z€x ﬂ u}
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Observation 2.7 || is associative and commutative. Hence, given languages L; C £ i =

1...n, their shuffle can be written as Ly || --+ || L.

The following proposition verifies that shuffle of regular languages is also regular.
Proposition 2.8 Suppose L, C Regs, and Ly € Regy,. Then Ly || Ly € Regs,um,.

Proof: From the assumption, there are finite automata (M, Fy) and ( My, F3) such that for
i€ {12}, Li = L{M,, F}). Let M; = (Q;. —1,4"). Construct an FA (M = (), —s, ¢%), F)

over ¥ U ¥y where

L @=0Q, xq,,

2. ¢° = (gf,40),

3. F=F x F, and

4, — C (Q = (X, UX¥s) = ) defined as:

either (> py and ) = g}, or

(21, ) =+ (pa, q2) iff .
(p1 = pp and gy —aga ).

It is easy to see that M accepts the language Ly || L. This proves the proposition. ]

Corollary 2.9 Let ¥ = (%, ---. %) and suppose, for all v € Loc, L, € Rege . Then
Lyl - Il Lo € Regs.

2.2.3 Synchronized shuffle languages

We now consider a somewhat more interesting subelass of languages for distributed svstems

where the only way of communication is via svnchronization on common actions. Note Lhat
given two alphabets ¥ and £y, the intersection £ M Yy mav not be empty, ln this case the
gommon actions act as syuchronization points.

For example, let ¥y = {a,¢} and £; = {b,¢}. Then, svnchronization shuffle (or

Just sync-shulfle) of ¢ € X7 and ¢ € I} is the string ¢ and not ce as would be generated
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by shuffle. Similarly. sync-shuffle of ae and b should be {ach} whereas shuffic of ac and cb

would generate the set {aceh, cach, chac, ache, cabe}.

We give the formal definition below. For this it is useful to define a component
projection map [: (Z* x Loc) — ¥*. Given a string over ¥*, it finds the maximal subsequence
over any local alphabet. It is defined inductively as follows.

€ ifr=e
rli=1¢ yli if # = ya and 1 & loc(a)
(y[1)a il & = ya and 1 € loc(a)

One can extend the component projection to sets of strings L € £* as:
. el :
L[t = [=[i |@e L)

Let = € X} and y € £, Then,

rllgu . {z€ (5t UEy)" | [l =z and 2[2 =y},

Thus, when ¥, = {a.c} and E; = {b.r}, ac || b = 0. This is becanse for any = to

be in the sync-shuffle, z[1 must be ac. Hence, ¢ must ocenr in z and therefore, ¢ must also
occur in z{2. But by definition of svne-shuffle, z[2 must onlv be b, which is a contradiction.

Hence, the syne-shuffle 15 empty.

We now extend syne-shuffle to languages over the distributed alphabet . Let

I, CXE and L, C ¥5.

LJHLfE{:EEWHJFLhyELM:FIHﬁﬂ

Observation 2.10 In general, when a distributed alphabet has n components, one can

extend |l toan n-ary operator. Let z; C ¥, ¢ =1...n. Then,

s = ;
£ ”t. Fal “E Ly = |z €ex

for all § € Lee,z[i = ;1
Extending to languages L, TE! 0 = 1. .. n, n-way sync-shuffle can be defined as:

Lillg <o llg Ln € {x e | foralli € Loec,efi € L;).



ey -

Proposition 2.11 Suppose L; € Regr i =1...n. Then L, || --- |g Ln € Regy.

The proof of this proposition is similar to that of in Proposition 2.8, The only change
i5 in the definition of transition relation where we now ensure that all the participating
agents make local transitions when they synchronize. When n = 2, for example, we can

define — C (@ x (Z; UXy) x @) as: (py, q1)——(pa, g2) iff either
1. pp—+ps and g; = g, when a € £\, or
2. g1 = pg and (i —=242), when a € E,\X,, or

3. p——py and (1 —+22), when a € £, 1 .

Definition 2.12 A language L C ¥° 45 called a regular shufile language(RSL) if for all
t € Loc, there are regular languages L, C B! such that L = L, ﬂ_, |Tq L,. Gien a

distributed alphabet X, the class of reqular shuffle languages over ¥ is denote as LERSLs).

From now on we consider only svnchronized shuflle of languages. Hence, we drop
the subscript “S” and use || for svne-shuffle.

By the above proposition we know that the svnchronized shuffle of regular languages
is regular. Is the converse true? That 15, 1s every regular language a regular shuffle lansuape?

Formally, given a distributed alphabet ¥ and a regular language L over 5°, do there exist

el

L;C E},i € Loc, such that L = L; || ... || Ln 7 Note that constructing a distributed
alphabet ¥ and an RSL over & for a given regular language is easy. The problem is non-
trivial only with £ fixed or given.

If the distributed alphabet is such that £, = £, = -+« = X, then letting L, = L
for all © € Loc, we get an easy answer to the question. For general distributed alphabets,
however, it is not the case that every language can be expressed as a syne-shuffle, ln fact, we
can show that for non-trivial distributed alphabets EERSL\_;]I 15 a strict subelass of Regs.
How do we do this?

We know that the class of regular languages over any alphabet is closed under

boolean operations and concatenation. So, if £(RSL=) was equal to Regse. then the former
p 5 1 3
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should also be closed under these operations. But as we show in the following, this is not

true for all distributed alphabets because of a simple characterization of syne-shuffle.

.

Proposition 2.13 Given a distributed alphabet &, let L = Ly || - || L, where for all
i€ Loc, L; €T Then, L=(LI1) || ... | (L[n).

Proof: Since, x € L implies z[i € L[i, by definition of ||, L C (LI ... ] (Lfn)

On the other hand, il € (L[1) | . | (Lin), for all 4,2[i € L[4, that is, there
isau; € L such that z[i = u;[i. But then 1:1-['.5 € L;. Hence, x[i € L;. This implies

TE Iy ﬂ | - ﬁ Ly = L and therefore (L[1) ﬁ ﬂ (L[n) C L. =

Corollary 2.14 Let & be a non-trivial distributed alphabet. Then E{RSLS—,] s nol closed

under union, complementation or concatenation.

Proof: By assumption, there are at least two letters @ and b in ¥ and (a,b) € . To avoid
much notation, assume that there are only two processes and that 5 = ({a}, {b}) satisfying
the assumption.

Take L = {a} and E. = {b}. Both L, l, € LIRSLg) since L, = {a} I {e} and
Ly={c} [| {b}.

Let L., = X*\L; so that {a} € L. Now, e,abe L.. So,ae L.[landec L_[2,

This implies {a} © (L.[1) || (L-]2). So, L- £ (L.[1) || (£-]2) and hence L. & L(RSL).

Let Ly = LU Ly = {a.b}. Then, (L,[1) || (Lul2) = {e,a.b,ab.ba} # L, Hence.
Ly# L(RSLZ).

Let L, = LiL, = {ab}. Then, (L.J1) || (L.[2) = {ab.ba} # L. Hence, L ¢
.C[:RSLE]I and thus the corollary is proved. u

2.2.4 Regular consistent languages
|

[n distributed systems, independent actions can happen in any order in the absence of a
global synchronization scheme (like a common clock). This kind of behaviour is modeled as

languages that are closed with respect to commutation of consecutive independent actions.
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The resulting languages are called Regular consistent languages (RCL) or Regular trace lan-
guages (RTL) of [Maz]. We discuss this class of languages, and later the automata models
for them (Zielonka automata) in some detail, because Zielonka automata are quite close to

local presentations.

Definition 2.15 Define the relation ~ on £* as: for all 3,y € ', 2 ~ y et for all

i€ Loc, z[i = y[i. It is easy to see that ~ is an equivalence. The equivalence classes of ~

are called traces,

In trace theory, it is customary to present ~ in an alternative form. Recall that
given ¥, the independence relation T € T x ¥ is defined as T = {{a.b) | locla) Mloc(h) =
B}. We define D = ¥\Z. Then the graph G where elements from ¥ form the vertices and

D is the edge relation is called the dependence graph of (X, D),

Definition 2.16 Two words x and y are I-trace equivalent, v ~; y, if there are words

wv € X and (a,b) € T such that © = uabv and y = ubav. The trace equivalence, ~,, 15 the

reflexive transitive closure of ~;.
The definitions of ~ and ~; can be shown to be equivalent[Maz].
Proposition 2.17 Forallx, y e B, v~y iff 7 ~ y.

Proof: (=) : It suffices to show that if 2 <, y then = ~ y. Suppose © ~, . Then there

exists w, v € X* and (a,b) € T such that © = weby and y = ubav. We need to show that for

alli € Loc.x[i = y[i. Note that since loc(a) N loc(h) = 0,

a when ¢ € loc(a).
abi = bafi = }
b when ¢ € loc(b).

1. for all i & loc(a) Uloc(b), o[i = (u[i){v]i) = y[i.
2, for all i € loc(a), x[1 = (u[i)(ab[i)(v]i) = (u[i)alv[i) = y[i, and

3. for all j € loc(b), x[5 = (uw[y)(0]i)(v[s) = (u[/)0{v]5) = y[j.
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Hence, for all i € Loe.z[1 = y[i, which implies z ~ y.

(¢=) : The proof is by induction on length of 2. Let = = e. Sinee y[i = ¢ for all i € Loc.

y =€, and hence z ~; y.

Let z = wa. Then, by assumption, for all i € loc(a), x[i = (ua)[i = y[i. Since
(a)[i = (u[i)a, y = vaw for some v,w € £* such that for all i € loc(a), w[i = ¢. This
implies that lec(a) M loe(w) = 0. Hence, y ~; vwa. By the first hall of the proof, for all
i € Loc, y[i = (vwa)[i.

By assumption, for all ¢ € Loe.x[t = y[i. Hence, we lLiave for all i € Lo¢, z[i =
(ua)[t = (vwa)[i. This gives us for all ¢ € Loc,ult = vw[i. By induction hypothesis,
u ~; vw. Hence ua ~; viva or & ~; y. m

In the light of the above, we will use the symbal ~ to mean ~; as well. From
the definition of ~, we know that if = ~ y then alph(z) = alph(y). Hence for a trace
t, alph(t) {alph(x) | t = [¢].}. Then, similar to strings, one can define loc(f) % loc(r)
where t = [z].. We say two traces arc independent iff their locations are disjoint i.c..
(ti,te) € T iff loe(t,) N loc(ty) = 0.

M{Z,I) = £/ ~ is called the trace monoid, Let ¢ 5* — M(X,T) be a morphism

such that &(x) = [z].. The syntactic congrience ~ on M(E, ) is defined by
Vrote M(E D)t ~rriff Vin b e MIE Dttt €T S tyrtae T,

Definition 2.18 A frace language T C M (X, T) is vegular iff the syntactic congrience ~q

w5 of finite wnder. Eguivalently, T s veqular off ¢7'T is a reqular subset of £

One can read the definition of regular irace langnages as those regular languages
that are also closed under the equivalence relation ~. In the thesis we make little use of the
algebraic theory of languages and hence will confine ourselves to this view of regular trace

languages,

Note that the closure of a regular language under ~ need not be regular, For
example, let ¥ = {a,b} and L = (eb). T T = {{a,b), (ba)}, then ¢7'L is the language

containing strings with equal number of a's and #'s, which is not regular any more.

N T
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Definition 2.19 A language L C £* is said to be a regular consistent language iff L € EEQ,E_:

and 15 closed under ~.

Let E{RG'LE] denote the class of all regular consistent languages over &, When a
distributed alphabet is fixed, we refer to this class as just “RCL".

2.2.5 Ochmanski’s theorem

Ochmanski's theorem characterizes regular trace languages in terms of trace recular expres-
he g = P

sions. For the semantics of the trace regular expressions, one needs a notion of connected

fraces.

‘Definition 2.20 (Connected traces) A trace t € M is called connected if the dependence
\graph of t is connected or, equivalently, if the letters of alph(t) induce o connected subgraph

in the graph of the dependence alphabet (X, D), that is, (alph(t). Dlalph(t)) is connected.

Every trace t € M can be partitioned into connected components £ =, @ --- @ ¢,
‘where t; C t are non-empty connected subtraces and (b t;) €T forl < i, <n,i#j. Given

a trace language L © M define the language of its connected components by
Con(L) = {t' € M | ¢ is a connected corponent of some f € L}

The regular expressions given by Ochmanski are:
TT.REgi v==t& M|r) +ralry - ralr!

Semantics of these expressions is similar to that [or regular expressions except for

eration where it is defined as [rf] = (Con([r]))".

EDI‘EIII 2.21 (Ochmanski) Let L € M be a trace language. Then L is recognizable off

.-_ijer&.ia a regular expression re T'rﬁegi such that L = [r].

I
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2.3 Automata for distributed systems

A finite state sequential system can be modeled as an FA. The natural idea to model f-
nite state distributed systems is by a collection of FA’s, one for each process, over some
local alphabets. Since we are interested in process models that are top-level parallel, each

_component process is taken as a sequential system.

Definition 2.22 A distributed system over 5 is a tuple M = (M,, .. M), where for all
A€ Loc, M; = (Q;, —.4") is a TS over &;.

Fix a distributed system M= (M., My) over 5. Global transitions of M is

_:;‘_g_'iven by a product transition system (product TS).

‘Definition 2.23 Let Q & @, x--- x Q,. A TS M = (3, —». (", . q%)), where & C O,
— C {fj % ¥ % Q) and (g% - -,q%) € Q, is called a product TS of M on ¥ 4f it satisfies

%he asynchrony condition:

tﬁi!:”':pﬂ} = [."':Irlf---.-'rfn] iﬂ

1. ¥i € loc(a), pi—+q;, and
2. Yj & loc(a), p; = q.
i‘fﬁ u complete product TS if () = ().

We use p, 7 ete. to denote elements of @, For any global state § = (P1.pae. o pal.

sli| denotes the i-th component p,. From the definition of a product TS of a distributed

m. we make the following observations.

fisa

hﬂer‘!r'atmn 2.24 1. Suppose Misa complete product TS of M and locla)Miloc(b) = 1.
Then, for all p and § in (),

Cah o
(P==ij implies p%ﬁ},

2. Suppose that all the M; s are deterministic . Then, (1) the product Mis also determin

stie, and (2) for all x,y € B°, if y[i = ¢, then (1) ﬁ[?ﬁ] = {:r:y}_ﬁ[i]_



Global behaviour of a system is given by the language accepted by the product automaton

of M,

Definition 2.25 The product automaton of M s o pair (M, F) where M is a product
TS of M and F C Q. The language accepted by M is L( M) el L(M, F).

From Observation 2.24(1) above, it is clear that languages accepted by systems of

complete products are consistent,

In the following two sections, we exemplify the notion of product construction by
the simplest. of rules. The consequent classes of distributed automata which we call product

systems and extended product systems characterize classes of languages we have seen before,

2.3.1 Product systems

Define a class of distributed systems in the following manner.
Definition 2.26 4 Product System over ¥ 15 a tuple

NE= (M o M € Foynns BL S, aphiere

Lo (My,---, M) is a distributed system over 5,

2. for alli € Loc, (M, F)) 1s an FA over ¥, and

-

. the product automaton of M is (M, F) where M is the complete product TS of M and
1. | F —_ H':Tzl F[-

Let PSf stand for the class of product systems over . The class of lansuages
“accepted by PSE is denoted as E{FSE}. Formally, E{FS}—:] ={LC X | thereisa P§ S
over = such that L = L(M)). Later in the section we will show that this is exactly the class

gular shuffle languages over S(namely, £{RS Li”'
Example Let & = {{a,c}, {b.c}}. Fig. 2.1 illustrates a very simple PS M = (M, Fy)
b, Fy)

1

). Here Fy = {pa} and Fy = {@}. O = Q, x @2, The language accepted by M is
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Figure 2.1: A simple product system accepting {abe, bac}

(.ﬁ} = {abe,bac}. Note that in the complete product TS, the states (p3.72) and (pa, ¢4)

scome unreachable from the initial state.

In 2.2 we give another example PS over ¥ and its product. Note that all the glohal

':‘“gpl;ls_itiﬁn 2.27 Lit M = = (Moo M S Bl ey By =) be a product system. Then
Ll{lll'!hF! | Ilf{fl’!mﬂl

C:) Let x & L(M). Note that L(M) = LM, I F) where A is the product

- Hence, there is an accepting run (¢}, -+ ¢2)==(¢], ..., ¢/) where for all

im: Forallz € 2 (py.....po)=={q1. ..., qn) implics (for all i € Lo D= [ G- )
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Figure 2.2: A slightly more complex product system accepting (abe + bac)*.

Assume the claim. Then, for all ¢ € Loe, ¢?== { :q] which means for all i € Loe, [t e

L{M;, F;). Hence x € L(M,, Fy) | || LM, F).
Proof of claim: We prove the claim by induction on the length of ». When r = r.
P = g for all . Hence the claim holds trivially. For the induction step. let & = pa.
If (py, .. o Pa )= gy, gw) then Py D)=y, ..., Fu) =1 ) for some state
(Fi,...,7a) in M. Because of the asynchrony property, Vi € loc{a). ri— 4, and ¥i #
ocla), i = ¢;. By induction hypothesis, for all 1 plé:l»,ri-.
Let 2 € for(a). We have p,-é[;-,r,—ﬁnqs- This implies p;=—=,q;.

Now let @ ¢ loc(a). Then xfi = y[i. Henee, we got p, —[‘x G o

(2:} Let x € L{M,, F\) b - |l L{M,. F,). Then for all { € Loc,z[1 € L(M,, F).

which implies for all i € Loe, q“:l*z q! for some ¢/ € F).

blaml Forall z € &*, {for all i € Lo, pf;[;ilq,,i' implies (pr.. .., pa)=(q1. . 40)

' Assume the claim. Then we have (g%, -~ ¢2)==s(¢. . ... 1), Since (¢f .. .qf) isin
[, F; and L(M) = L(M, I, F), we have ¢ € L{M]).

>roof of claim: We prove the claim by induction on length of » again. When & = ¢, r[i =
€i € Loc. Hence, for all i,p, = ¢,. Then the claim follows trivially. For the induetion

e,ru-J
=l

wpothesis, let r = ya. By the assumption, for all § € tocla), p
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Let 1 € lac(a). Then, pfl[yzhg?qi. Hence, there is an r, € @, such that p;é&;‘ri—uhq;.

Let 1 & loc(a). We have, p;y—[;ir. =g;.
Thus for all « € Loc, p,——!'l-[i,-rl-, Therefore, by induction hypothesis, we have
(ph . ..1ﬂn}é{T1,, o ,Tﬂ}.

Also by asynchrony property,

(mizan Fal—Hau - ).

Hence, finally, (py. ..., pa)==>(q1, - qn).

2.3.2 Syntax for regular shuffle languages

We define a class of languages over 3 through the following syntax. This is presented moa
'Iinp-Ievel parallel fashion so that it reflects the structure of distributed systems. We hmld
the syntax in two layers: first for ‘local’ expressions and then for parallel compasition.

Let ¥ be a distributed alphabet, We define SREG o (shuffle regular expressions vver

5) as follows.
SREG, :=Wae ¥ | p+qgl| pmyg|p'. where mg e SREG,
SREG§ = || e || Ty Where 7 € SREG:

Notice that at the local level, we have regular expressions over the local alphabets.
rﬁéjnt;e; semantics for clements in REG; is the usual map ||, : SREG, — 2% For the

elements of SREC v We give the semantics via synchronized shuffle,

(]
=~1



[0] =0,

lal; = {a},

[p+ g, = [pl; U 4],

g, = [0, - [al,.

'], = ([p];)", and finally

Pull o=+ 1l ral =l T - T fral

The class of regular languages generated by the SR.EG' ¢ expressions is denoted
as L(SREGz). Formally, LISREG) = {L C X* | there is an F? € SREG -
= [R]}.

5 such that

2.3.3 A Kleene theorem for regular shuffle languages

We have throe classes of languages: L{RSLg) defined using the ﬂ operators, Z(SREG S )
defined syntactically and LIPS defined via product systems. We show below the equality

of these three classes thus proving a Kleene theorem for regular shuffle languages over £

Theorem 2.28 E[H‘:f] E(P‘;L} ,CQSREG'ﬁj.

Proof: ( 'E{RSLE,] C .E.{PS-—}): Since L € E[H.G'Li}, there exist regular langnages
L; €, for all ¢ € Loc sueh that [ = I, i| - || L. Sinee L;'s are regular. there
exist FSA (M, F}) such that L, = L(M,, F)). Take the product svstem Af = (MY, - M
< Fy,....F, >). By Proposition 2.27, L[:_ﬁ,'l = L{M, F) ﬂ .|-' LiM,, F,). Henee

LM) =Ly || -+ | Lu = L. which shows L. € £(PS

&)
1{1:[1335} C £{SREGE}J: Let L € L(PSg). Then there is a product system Af =
i({MiTE],,..,(.-‘L-I,“ F,)) over £ such that L = L(AT). By Proposition 2.27,

L=L{MyF) | - ] BOM,, B2

Since each L{M,, F,) is recognizable over Yoo we have a regular expression r; over

&isuch that [r], = L(M,. F)). Note that r, € SREG..i € Loe, Take ¢ = rroll e || e



We know 7€ SREG. Also, [r] = [ril, T -+ [l fral, = LMy B) | - | L(My, Fy) = L.
Hence L € E{.S'H,EGEJ,

(E{SREG NS ﬁ{RSLE}] Follows from definition of svnchronized shuffle.

Observation 2.29 Consider a subclass of product systems over a given Y where the com-

ponent FSA's are deterministic. Call this class DPSs. Then £(D P&s)

It is obvious that E{DF‘: )€ L{P‘S ). Interestingly, the converse also holds. One

way to prove this is by using the Kleene theorem above.

By 2.24(1), we know that E(PSi.} 2 E{RSL-E]I, When L € E[H.G'LE} there exist

regular languages L, € E7, for all i € Lor such that [, = L ﬂ ﬂ Ly. Now, instead

cof taking arbitrary FSA's for L,’s take DFA's (M;, Fy) that aecept L,. Then, the system

‘comprising these components is a deterministic product system. By Proposition 2.27, this

system accepts L. Therefore, LIRSL&) C L{DPSg). This gives us the inclusion J’..".{FS.):.] <
L(DPSg)

Thus, deterministic product syvstems are sufficient to capture the class of regular

shuffie languages.

2.3.4 Product systems with global final states

n the light of Corollary 2.14, we know that the class of product systems capture L(RSLZ),

_.-

Henee, it motivates us to look at classes of systems that accept
richer classes of languages.

a small subclass of Regs.

A natural place to start the exploration is to take boolean
wlosure of L{RSL). It is shown in [Zie] (we illustrate this in the next section) that this

I8 also a strict subset of Regse. Nevertheless, we present the class of distributed systems

that characterize this class. Our purpose is te illustrate how structure conditions and rule

of product construction actually affects the behaviour of distributed svstems.



Boolean closure of regular shuffle languages

Definition 2.30 Fiz &. Let L(BRSLg) be the least set that contains L{RSLg) and is

closed under all the boolean operations.

The following class of distributed systems is intended to characterize £( BRSL:).

Definition 2.31 An Extended Product bf System(EPS) over © is a tuple
H‘: {ﬂ'fl, sa iy _ﬂfn. F}, T-I'-Ihﬁrﬂ

1 (My,..., M) is a distributed system over T,
2. FCIIL Q. and
3. the product automaton s (M, I), where M is the complete product TS of M.

Let EPS& stand for the class of extended product svstems over . The class of

languages accepted by EPSg is denoted as L{EPSg). Formally,
EI':EPS = {LC X" | there isa EPS M over . such that L = L(AT) ki

The following proposition is an immediate consequence of the defimition.

f}érﬂpﬂsitinn 2.32 For any distributed alphabet £, L(PS2) € L(E PS&).

Let DEPSE be the subelass of EPS's where the component processes are DFA's.

JL!*‘E:'im the case of product systems, we show that the following proposition holds.
ﬁmpnsitiml 2.33 £(HIE‘.5'L}:;} = ﬁ{ﬁpﬂ_ﬁj - EEDEP‘S‘E}'

Proof: Obviously, LIDEPSz) C L(EPS E:'j [t suffices to prove the following claims.

@Imm (1] L(EPSg) € L(BRS L),
Claim: [2] L(BRSLg) € L(DEPS;).

Proof of claim:[1] Let L € L(EPSg). Then there is an EPS M = (M, ..., M,, I} such

1“]-!

that L = L{ﬂ:’]' — L':rﬁ, F), where (fﬁ F) is the product of M. Since the pradieisiani
L F) = U LOTap)

Ter
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Now, since gy € 112,0,, it is of the form (4}.--+.q}). Consider the product sys-
tem M = (M~ M,, < {q}},n-,{q?} >). Then the product automaton of M is also
(M,q7). Hence, L(M,q7) € L(PSg) = L(RSLg). Therefore, by definition, L = L(3, F) e
,_C{BRSLE‘}.

Note that L is, in fact, a union of languages from L{RSLs). u

—d

Proof of claim:[2] (By induction on the structure of languages in L’{BRSLE ).

We need to show that if a given language L € L{RSLg), then L e L(DEPSE) and that
LIDEPSg) is closed under boolean operations.
Suppose L € L(RSLg). Then, by Ohservation 2.29 we have a deterministic product

svstem M= (Moo, My < Fy,. ... Fy >) accepting L. We construct the deterministic EPS
M = (M., My, T F),

Since the products of both M and A are same, L € L(DE P.‘i’i].

Suppose L € E[DEPS:;:}. Then there is a deterministic EPS A = 17 ST ' |
accepting L. Construct M = (My,oo0s M T @, — F). Then, M is a DEPS acrepting the
complement of L.

Suppose Ly, Ly € L{DEPSs). Then for i € {1,2}, there are deterministic EPSs
Jﬁ.l' = (M. . M. F*"), accepting Ll-_.am{ Lo respectively, We use the following construction
1o get a deterministic EPS accepting L, U L.

Given two FSA'S A4 = (5, —, 8", 8 and B = (T, —u . T, il we want 1o
gonstruct an [I'SA that accepts L(A) U L{B). then we can take the exclusive union of the
states and transitions and identify the initial states, But this gives us a nondeterministic
FA. In order to construet a deterministic FA accepting the union language, define the FA
A® B as follows, AR B =(SxTx{0,1,2} U{DEAD}, —, (5" 1°,0), F') where DEAD is
aspecial state, I = {(p.q.0) | p€ ST and g e Ty U{(p.g. 1) | p€ SO U {(p.q.2) | g TV}
and (py. s, 1) =g, g2, §) iff either

T8 D=l P rotty and ¢ = o = 0, or
2 p—g.pr=gqand i € {0,1},7 =1, or
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3. pr=1t, pp—rgz and i € {0,2},5 = 2.

For all other states (py,po, 1) and letters a € ¥, set (py,pa, 1)~ DEAD, The essential idea
is to take transitions on common actions as far as possible(thus avoiding non-determinisin)
and then taking the individual transitions. One verifies that —+ is a deterministic relation
and L(A®@ B) = L(A)U L(B).

Comstruct an EPS M = (M, ..., M,, F) with M, = M} @ ME, for all i. Each i-local
state is a triple (p, g, c) where p is a state of M}, ¢ a state of M} and ¢ € {0,1,2}. Hence
a global state is of the form ((p1, 1, e1), -, (Pn, @n, €0)). The set of final states is given as

F = {{(p.o,er)- - (pns s ca)) | (Rra 2 pa) € F) and for all e; € {0,1}, or
(g1« -, 4n) € Fy and for all 4 e; € §0,2)},
Intuitively, we keep the final states of the systems from getting mixed up.
Then M is a deterministic EPS since each M, is deterministic. One also verifies that

(M) = L[;ﬁl) U L(Ma) = L, U Ly. Hence, LyUly € LIDEFPS:). )

‘Corollary 2.34 LIDEPSG) ts closed under all boolean operations. Henee, so 15 L(EPSg),

'2.3.5 Union closure of L'(HSL-EH}

Consider the least ¢lass of languages that contains Efﬂf&'ﬂ{;] and is closed under only union.
o Call the class L(UURSLg). Tt is obvious that L(URSLz) € LIBHSLg). The proof of
| Claim (1) of Proposition 2.33 shows that L(EPSz) € L(URSLg), hence the inclusion

:.-'ﬁ{'BR'SLE:,] C LIITRSLg) also holds and we get the following result.
‘Theorem 2.35 L(URSLg) = L(BRSLg).

This theorem implies that the language ([able + [aabble)® over ¥ = ({e, e}, {b,¢}) is

notin L(BRSL:). The reason is as follows. By the previous theorem. if the given language

| .E: ([abe + |aabbe)* was in E{BRSLE] it could be written as a finite union of regular
.ql:tleﬂe languages L, -+, L;.

Note that two different strings = and y of L having seme number of ¢'s can not be in

asingle L;, because, in this case, x (resp. y) can be written as = uefabler (y = uclaabbler’).
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But then L does contain large strings where number of ¢'s is more than k. hence there
‘are more than & strings with same number of ¢’s. By pigeon-hole principle, some L; then
contains two different strings with same number of ¢'s and henee this leads to contradiction

‘as observed. Therefore, ([ab]c + [arbble)* is not in £(BRS L)
2.3.6 Syntax for L(BRS LE-}

i . e syntax proposed for L(BRS Li} 15 same as shuffle regular expressions(SREG) in the
':'-I}.‘ level. The only change is in the global level where we allow union(-+) over global

expressions (note that in light of Theorem 2.35, complementation is not necessary). The

xpressions are called BSRE Gﬁ{bﬂmlcan shuffle regular expressions over %),
BSREG; :=0|a € X [p+q|pq|p, where p.q € BSREG,.

’ BSREGE n=ory || v || v 7 € BSREG i =1, n
' |ty + Hs, R\, R, € BSREG .

u.'_‘"'-s'_;amanti{:s; is as usual, with [y + o] = [H] U [Ra),

The class of regular langnages generated by the BS REG & expressions is denoted

as L(BSR EGEJ. Formally,
LIBSREGZ) = {L C X" | there is an R € BSREG such that [ — (1] }.

Observe that using Proposition 2.33 and Theorem 2.35. one can prove a Kleene

theorem for the class of boolean closure of regular shufifle languagux[i’:(BRSL.}:}J_

Theorem 2.36 L(BRSL) = L(EPSe) = L(BSREG

3 5
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2.4 Other automata models for distributed systems

There are several other models based on finite state automata that model finite state dis-
tributed systems. The essence of every such model is that some global information(e.g.
global states or global transitions) is presented in a distributed manner. But as opposed to
the product systems we saw in the previous section, these are not local presentations because

gither they operate with global states or with global transitions and are not composed from

the local ones by some uniform construction.

2.4.1 Asynchronous transition systems

These are transition systems with an independence relation on trapsitions [Bed] . The idea
is that this models the spatial distribution of actions in the system and in a global behaviour
these independent transitions can oeeur in any order. We present a variant of these svstems
where independence of transitions is determined by their labels,

Formally, an asynchronous transition system(ATS) on a finite alphabet ¥ is a tuple
M= (Q.—. 4" 1, F) where (. —, 4"} is a transition system on . F isa set of [inal states
and I C £ is an irreflexive, symmetric relation. The transitions are required to satisfy what

Care called diamond conditions,

Let pog.r € @ and a.b € ¥ such that (a,b) € I, Then,

f 1 h , . b [
1, if p—+g and p—"57 then there is a unique & € ¢ such that g—s and r—s.

. ' ; ; b
2. if p—+q and g5 then there is a unigque r € ¢ such that p—r and r—2s5,
1

| ATS’s accept the class of regular consistent languages over © with [ as the inde-
pendence relation. But thev operate on global states, and there is no notion of COTPOTETTS
atall. It is not at all clear how to distribute the states and transitions of arbitrary ATS's,
Distribution of ATS's satistying special propertics have been studied in [WN, Muk|. But, as

Eiéi'i'Liua«tlT ATS’s are clearly not local presentations.
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2.4.2 Distributed transition systems

These are transition systems where the transitions are labelled by subsets of actions [LPRT].

The idea is that the actions in this subset are executed coneurrently.,

A distributed transition system (DTS) is a tuple M = (2. —+,¢", F') where, the

transition relation —» C @ x 2% x (@ satisfies:

p I pih;r ifl p=y,
42, if p—Z5g then 3 - 2F €2 such that

(a) A() = p,
(b) h(E) = ¢, and

(c) VE| C By C E, h{E,) =5 h(Ey).

The definition savs that every concurrent step can be “broken up” into sub-steps i
ry possible way. For instance, doing a.b and ¢ can be first done with a and b cone urrentlv
[ then ¢ or in the order b,e,a or . Note that in multiprocessor implementation of dis-
ed systems where we have n processes and £ processors with 2 < k < 1, such situations
nportant and interesting, and distinet from the mere statement that conenrrent steps
he executed in any order.

DTS's implicitly have a notion of sequential components in them, and the idea of
ns has been used in [NRT] to extract such components. But such studies are carried out
ggory theoretically and whether one can decompose finite state DTS's into comrmunicating
reserving language behaviour remains an open question. However, from the definition

I

it is clear that DTS's do not have explicit local presentation,

Zielonka automata

nka automaton [Zie] on ¥ with n processes is a tuple 4 = (A4;,.., A, A, F), where
i € Loe, A; = (2, B, Ay 8)) is the i-th automaton, Let () = iz o2 and let (J,
fetor(a) @i F C Q 15 the set of hnal states,
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The transition relation is A = {6, | e € £}, where 6, C (Qu X Q,). For each 4,
I__Iili_" *ie rl?ikl,] = ‘Eu{,ﬂijf .- "Pik}! with {1‘:1, - ,‘ik} = I_ﬂﬂ{ﬂ} |mp1]ES

for all i; € loc(a), (p;;, 0, q5,) € A,

is deterministic if Ya € ©, 4, is a function on Q,.

The behaviour of A is given via the associated global automaton A which is defined
:__._'-': (Q,=24, (57, ...,8%), F), where the transition relation =, is defined as:
(PreP2s - Pa) = alqny gue oo g O (Givs- -3 ,) € 8a(piy, -\ Pi)

here {i1,..., ik} = loc(a), and p; = g, for all j & loe(a).

This transition among the global states is extended to words over ©* in the natural

An immediate corollary of the transition on global states is the followin g

osition 2.37 If (a,b) € I then for all s, s € Q, =2 s iff 2 5" Consequently L{A )

ssed under ~,

‘The language accepted by A is defined as: L(A) = {r € ¥ | Js & F.eP=% n}.
om the above proposition, we know that L(A ) is consistent, Further, since the global
tonn A is an FSA, L{A) € RCLg. Zielonka’s theorem states that the converse is
ei.e., for every L € HULE there is a Zielonka antomaton A such that L = LA ):

e class of Zielonka automata over 3 characterize R L.
1 2.38 (Ziclonka)
Tor every Ziclonka automaton A, L(A) e RC L=,

very reqular consistent language L € RC L there exists a deterministic Zielonka

omaton A such that L = L{A ).

In Zielonka automata, global states are distributed and the transitions are also dis-
some extent in the sense that independent transitions take place asynchronously,
lobal transitions are not derived from the loeal transitions since the transitions de-
states of the participating agents. In a sense, there is a choice of global tran-

nd this choice is not given by any universal rule on the class of Ziclonka antomata;
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Figure 2.3: A Zielonka automaton for (ac+ be)* over < ¥, = {a, et X = {b,¢} >.
b

'au_ne they are not locally presented. For example, even if (p.a.pe) € &y (q0,0:) € As

it may happen that (g, q) & 8,(p.pa). In Fig. 2.3, we illustrate this through a Zielonka
automaton accepting the language (ac + be)® over the alphabet £, = {a. ¢}, Ty = {b, e}
mple 5See Fig. 2.3, The action ¢ 1s enabled at all the global states. But 4, =

{2 1), (1. a0)). ((p1og2) (ps@))}. Note, how choosing the right global transitions, it

easy to avoid spurious strings like ¢, nbe etc.

4 Local presentation for RCL’s

Asynchronons automata exactly characterize RCL[Zie]. Ochmanski's theorem|Och] provides
@ Kleene characterization for this class of languages. But as we saw neither are {hese au-
ata locally presented nor is the distributed nature of the system reflected in the svntax

1 for RCL's by Ochimanski’s theorem.

We saw that the product systems in this chapter provided local presentation for
e simple class of languages. We want to ask whether such presentation is possible for
"f‘% as well. In order to do so, we need to encode some global information in the local
es and give a rule for produet construction that filters out the extra transitions which
would result in i simple product. One such formulation is presented in Chapter 3. Though

tis is quite different from the main framework we offer in a later chapter, this is a first
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attempt at distribution of global behaviour and follows from easy intuition.

.5 Infinite behaviour and w-regular languages

erating systems, control systems, communication protocols, hardware systems{e.g. pro-
ssors) are examples of systems that are reactive [Pnu| in nature. Their purpose is not just

transformation of values but to maintain an on-going interaction with their environment.

r B, Given a TS M = (Q. —.4") on £, a run p on an infinite string @ = ayay . .. Starting
Py € Q is a sequence of transitions of the automaton : py—sp, - ... We denote b pli)

in g, that is,

Inf(p)={g| 3®i,1 = 0such that M) =g}
L run starting at the initial state ¢ is called a run of M on 2,

Automata over infinite words are essentially TS's over & with acceptance conditions
‘infinite runs. We call them collectively as w-automata, T hey are called determmistic

non-deterministic depending upon the nature of the transition relation of the underlving

35




w-automata were first studied by Biichi. Similar to the way finite automata aceept
strings which lead to a designated final state, these automata, which are again finite state
~machines, accept infinite strings which cause one or more of several designated states to be
visited infinitely often.
‘Biichi automaton A Biichi automaton over ¥ is a pair (M, B) where M = (Q, —,¢%) is
4TS over = and B C Q is called a Biichi condition. A run p of M on an infinite string v is

said to be accepting if Inf(p) N B # 0. In this case  is accepted by (M, B). We defline the

JE {1, k)

The class of Biichi automata with multiple conditions are no more powerful than that
with single condition in terms of languages acceptance. This can be shown by transforming
the former to one having a single acceptance condition. by maintaining a counter (alongwith

states) that cveles through each condition.
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-..'._2."5-2 Syntax and McNaughton’s theorem

Similar to regular languages over finite length strings, one can define a syntax for w-regular

zuages over infinite strings.

whegs uw= R:+S% R, 5S¢ Regs
] T| + T21 'TI = L;-‘REQ'E

The semantics of these elements are defined naturally. Similar to Kleene's theorem
in the finite case, McNaughton's theorem [Tho| establishes the correspondence between the

“automata and syntax for w-regular languages.

'dj;_'."earem 2.39 L{wRegy) s exactly characterized by non-deterministic Bichi automata

and deterministic Muller automata over .

position 2.4, we showed that every (finite)path of of M is simulated by a path of M.
same result can be proved for mfinite paths as well. Then, by suitable assignment of

Jageeptance conditions, M’ can exactly simulate the behavieur of M.
eep 3

P oposition 2.40 Let (M, B) and (M', B") are two Bichi automata such that AL simulates
M via © and B' = {p' € Q' | ©(p) € B}, Then L(M,B) = L(M", B).

Similar result also holds for simulation between Muller antomata.

Pro position 2.41 Let (M, T) and (M, T') are two Muller automata suech that M' simulates
M via © and for every F € T. there 1s F e T' such that F' = (e | 8y)e F}. Then
LALT) = L, T,
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2.5.4 FSDS’s and w-languages

It is possible to accept such behaviour by having acceptance conditions for both
ite and infinite behaviour, But the treatment then becomes messy without adding to
tion, Hence, in the following and in the rest of the thesis, by infinite behaviour, we
consider only those in which all the agents alse ezhibit infinite behaviour.

mally, given a distributed alphabet ¥,

¥ contains only those strings « such that for all i € Loe, +[i is

infinite.

We recall the definition of shuffle for finite strings. Let &, and Y5 be two alphabets
et 2; € 7. Then,

i‘tﬂﬂ-‘z =4% | $|i=18 i==15

f )

We extend this definition naturally to infinite strings.

As a natural extension of the notion of product svstems in the Gnite CAase, one
b ¥

efine a collection of Biichi automata over a given ¥. To simplify notation, assume

{1,2}. Let (M, F) and (N.G) be two Biichi automata over £, and Ty respectively.
As in the finite case, suppose the product is defined as [f_f’,?{j where € is the

ete product TS and H = (F = G), Then, we expect the following result, namely,

= L(M,F) | L(N,G). Unfortunately this is not the case.
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PRODUCT

Figure 2.4: Product of w-automata.

The first inclusion L{ﬁ,?{] C L{M.F) ﬁ L{N,G) is casy to prove, DBut we note

mmediately that the converse is not true, The following example illustrates this fact.

nple See Fig. 2.4, The local Biichi conditions are F = {p,} and G = {4} respectively,
'-"!'=-j|_j:-t & the Biichi condition for the product is H = {lpagi) ).

e
Let @ = (bac)”. Clearly, x € L(M,F) || LIN.G). But Inf(p) = {(pr.a1), (p1,qa),
. Hence, Inf(p) M H = 0. which implies that & ¢ L{[:?, H].

In the previous example, the problem seems to be in taking the product of the

ual Biichi conditions, because the states from individual Biichi conditions(ps and g
, though they oceur independently infinitely many times on the path for they do not
imultancously to give a state from the global Biichi condition. With this intuition.

a different aceeptance condition for the product. This is as follows:

Fix M = ((M.By) - (M, . B,)). where (AL, B,) are Biichi automata over ¥,. Let

(= (Q, —, ¢°) be the complete product TS of A,



ition 2.42 Let r € X¥. Given an infinite run ponzinM onz e X%, the set of

gioval states occurring mfinitely often in p is defined as

F i i L
Inf(p) ¥ {s€Q | 3j.p(j) = 5}.
The infinitely occurring i-local states in p is defined as:

Infi(p) ¥ {g € Q, | 35, p(§) = 5 and s[i] = ¢}.

nition 2.43 Given M = (M, By) -+, (M., B.)), and the complete TS M as above. M
iled o wProduct System with local Biichi condition when the product automaton

UEn a5 [ﬁ;f, < Byi-o o By >) and the acceplance condition is given as follows.

A siring x € £¥ s accepted of there is a run poon & oin M such that for all ¢ £

One sees that if we take (M, F) and (N, &) as components of a wProduet Svstem

cal Biichi condition the problematic case turns out to be true. Thus the shullle of

languages does have a local presentation as in the finite cise.
0of of L(O, < F.G >) 2 LIM,Fy || L(M,G):

Let € L{M,F) ﬂ L(M,G). Then, {1 & L{M, F). Thus there is an infinite run i
' M such that Inf(p) 1 F # 0. Similarly, we get an infinite p, on {2 in N such
flp) 16 # 0.

:_I_t,.iﬂ now easy to coustriuct a run g in the product O lor x inductively such thatr for

[i = pi, in which case, Tnf(p) = Inflp).

2.5.6 Other classes of infinite behaviour

milar to the classes of boolean closure of regular shuffle lansuages and the regular consistent

we could consider their counterparts over infinite strings. Bul our aim was nat to

43



: these languages in the present chapter except to introduce the concept of produet of

behaviour, We defer the analysis of these till Chapter 5 where we show that the local
ntation described there for finite behaviour smoothly extends to infinite behaviour, thus

us product(-like) systems for the mentioned behaviour.
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View-based presentation

s chapter we explore a way of distribution of global behaviour that pives us a local
tation for the class of regular consistent languages. The central idea comes from
1]. In the process models nnder our study, where a fixed finite number of processes
eed asynchronously and periodically exchange information between each other, the view
ystem's global state available to any process at any instant of time is necessarilv
l. Communication hetween processes is principally a mechanism for sharing system
and updating views based on information received,

For instance, consider a svstem of 4 processes Py, Py, Py, Py which manipulate local
T4y 2w orespectively (See Fig. 3.1). Suppose that the only local computations
are increment (by 1), which arc shown as horizontal rectangles, Suppose also that when the
es exchange information (denoted in the figure by horizontal lines with blols denoting
ipating agents in the exchange), they know about the values of the variables of the
i .__a.i‘_.'ing agents. Lastly, suppose that initial value of all variables are zero and all the
aeesses know this. Denote by W(F) the values of variables of which P has knowledae.
tially, K(F;) =< 0.0,0.0 > for all processes.

.g'{i'ter a period of local computations, P, and P interact through the action a;
aneously and independently, Py and Py interact via b, At this stage, actnal values of
are < wogzow >=< LA L0 = But since ) has no wav of knowing the value

g K(P) =< 1,0,0,0 >; because of the action a, K (/%) alsois < 1,0,0,0 >. Similarly,



:‘:I{Il L b 1 1
L |ci 1
= —"1
oo

Figure 3.1: Interacting processes.

=< 0,0,1,1 > and K{Py) =< 0,0.1,1 >. So. B has more recent information
‘about the value of z, and Py has better information about w than P,

Now suppose, /% and Py increment their local variables and then exchange infor-
1 via ¢. Sinece P oand Py do not participate in this action, their knowledge about the
ues remain same. But, now, K(Py) =< 1,1,2,1 = W Fy). Note that even if 2 never
interacted with Py, it gets the information about w indirectly throu gh 4 and hence

2

pdate its information about w. This sort of view updating is common in distributed
In [Raml|, distributed transition systems for such models were studied. These 1S

locally presented in our sense and reflected the ideas disenssed above. Informally.

stems are structured as follows:

® Local states of agents in the svstem describe their views of the svatem as o whaole,

hronization is the exchange of information whereby the syuchronizin g agents up-

their views so that they have identical views immediately after synchronization.

1E was shown in [Raml| that these transitions systems exactly described (in a cat-

ense) a class of labelled event structures called synehronization structures. Sinee
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event structures arise naturally from traces (a ld Mazurkiewicz) one would like to con-
e that similar finite state transition systems with some acceptance condition will accept
ar trace languages (or the RCL's of Chapter 2). Then this would give us a presentation

ce behaviour in terms of products of automata. In this chapter, we show that this is

ped the case.

View-based systems

fy,..., My be the component FSA's of a system M over the distributed alphabet &
M; = (€2:.0,,47). We observe that in the case of product systems of Chapter 2. we
2 i plicitly assumed that whenever { = 4,6 QJ # 0. Consider a situation when this is
e case, ie.. the local processes share some states. Below, we find some use for these
states. We will insist that whenever transition synchronizes some automata, in the

g global state, the local states of these antomata must be identical

ition 3.1 A global transition (p,. ..., Pe) = (G, ... qn) s swad to be a perfeet ox-

ff&?;j (= l!ﬂl‘.!{ﬂ} Sth = ;.

finition 3.2 A View-based System (VS) over Y is a tuple M = (Mo, M F), where
uct automaton s M = (M. F), such that M = {tf,,) —, (gt o0, qh)) is the complete

TS of M and each transition in —s is a perfect exchange.

kemark: Note that the global transitions now satisfy the asyuchrony condition sl are

exchanges as well. Thus,
Lps) =5 (@) i
’~ loe(a) = pr—:4s,

25 & loc(a) : p; = g, and

1 gJe‘; loc(a) : ¢y = g5




As usual, we extend the one step transition function — to words over *. Then
roduct accepts a string x € $° if there is a state ¢ in F such that (qf.- -, ¢%)==q and
guage accepted by M is given as LM)={ze¥ | zis accepted by M }.
The class of languages over ¥ accepted by view-based systems is denoted as £(175).
y, L(VS) = {L € £* | there is a VS M over T such that A7 accepts L}
p]e. In Figure 2, we have an example of a svstem over the distributed alphabet

40, et), whose product with final states {(s, ), (¢, ¢ accepts the language ([able +
il !

al state. This “preventive” mechanism crucially depends upon perfect exehange in
..
Fansitions on c.

Equivalence of £(VVS) and RCL over Y

est of this chapter we show that view-based svstems characterize regular consistent

. Formally, we prove the following theorem.

8.3 L(VS)==RCLz.

3
o right inclusion is easily seen from the following proposition,

tion 3.4 Let T be the independence relation associated with S If(a. b) e I then for

EQs2 s iffs B ¢ Henee, forall 2.y € 7, if x ey, x€ L(M) iff ye LIM).

In order to prove the second part, we refer to Zielonka's theorem. by which there
deterministic Zielonka antomaton A which accepts a regular consistent language L.
distribute the transitions of A to build a view-based svstemn M and show that A/

L too [MR1]. The following section is a preparation for such distribution.
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3.3 Views

As we noted in the introduction, associated with any computation on a string ¥ € £° of
-actions, each agent (or a group of agents) has only a partial view. One natural way to define
this partial view for an agent is to take the effect of only (and all) those actions such that
dither the agent participates in it or there is a causal chain from the action to some other
action in which the agent participates. This allows for the possibility that computation by
i;ﬁther agents may go on independently, of which the concerned agent does not have Any

information.

For example, take a distributed alphabet & = (£, Z

w
2y i

1y 54)s where £y = {a},
L, = {a.c,e}, Ty = {bed,e) and T, = {b.d}. A subscquence of a string is formed by
picking arbitrarily letters in the same order as in the given string. Hence, the subsequences

of abe are {e, a0, c.ab, be, ac, abe).

Call a string causally connected if conseentive actions in the string have a common
participating agent. For example, cdea is causally connected, since loc(c) M loc(d) = {3}.

E

loc(d) N loc(e) = {3}, loe(e) Mlocla) = {2}, Similarly, ae, ach and acd are all causally

onnected whereas ab and ad are not cansally-conneeted.

Now let = abedead, The computation associated with 2 is shown in Fig. 3.3,
Then the l-view (the view of agent L} is abedea. Note that even if 1 does not participate in
the second action b, there is a causally connected subsequence bedea at the end of which 1
participates in a. Hence this occurrence of & should be considered in the l-view. The last f

we

connected chain to some 1-action (actions from ). When we consider group views
nsider actions in which at least one in the group participates and the actions with causallv
ated chains to any action of the former kind. Then, in the example, we have {1.3}-view
is abedeab.  Reasoning along this line, we give some i-views and group-views for the

siring abedeah in the following table,

ol



Figure 3.3: Distributed computation on the string abedeab.

abedeal
I-VIEws group-views
Lview | abedea || {12} -view ahcdea
2-view | abedea || {2.3}-view abedeab

F-view | abedeb || {3.4}-view abedel

Jview ! abeded l 11,23 A} ~view | abedend

When we construct the view-based system for a given regular consistent language
L. the local states are constructed from the views associated with strings. The existence of
accepting L essentially means that these views can be captured by a finite number of
j_,{i:s. The exact correspondence between the view-based svstem and the language is then
blished by the connection between views and states of the Zielonka antomaton. In order
1o get this connection, we formalize our intunition about views. Since the group view is more
general than the individual view(which 15 a gronp with a single individual), we define group
ws in follows.

Given two strings » and y of £, is called a subseguence of . denoted = <y if
i= 1y . .. 0, and there exist strings &y, ... .o, € 7 such that y = rea,0000 - 52, Note

& iy A partial order on 20,



Let o € Locand u=a;...a, Forany j, 1 <j < n, a, is said to have an a-chain

i uif there is a sequence j =iy < 1) < #a < ... < iy < 1 such that
‘o loc(a;, ) Ne # 0, and
ok Dk <m, !ﬂ‘f-'(ﬂip,} M !GC{H,,'HI} # 0.

this case, a;a,a,, ... a;, is called an a-chain of .

Informally, an a-chain of u is a causally connected subsequence of u ending in an

tion(an action with a participant from the set of agents a.

In the previous example, if ¥ = cad, then a does not have a {4}-chain in u since
loc(a) and loc(a) N loc(d) = 0. On the other hand. b has a {4}-chain ed since loc(c) M
1{{} = {3} and 4 € loc(d).

For o € Locand w=a,...a, € T", u is said to be c-connected iff ¥j € {1.... n},
an a-chain in w. For the example distributed alphabet, cad is not 4-connected (o does
ot have any 4-chain) while caed is d-connected hecause now a has the 4-chain aed.

Let ,(x) denote the a-connected subscquences of x. Essentially, Cy(r) contains
| the causallv connected chaing that are candidates for the a-view of x. We observe that
2y then Co () C Caly). Alsoif e C 8, then Cofx) € Cyla).

The following definition is given in anticipation of the immediately following propo-

, which asserts that the a-connected subsequenees of ¢ have a maximum.

: (By induction on the length of x). For o =€, CL(x) = {e}, forall & © Loe. Then

maximum clement is e



To prove the induction step, assume that for all strings r of length k, for all & C Lor,
(x) has a <-maximum for all @. Now, let y = za and consider any o C Loc. By induction
hypothesis, there is a <-maximum z in C,(z). We want to show that Cy(ma) also has a

—maximun,

We consider the following two cases.

1. Case loc(a) N e = (. For this case, we show that C,(r) = Cu(za). Then, z is the

<-maximum in O, (xra),
By the observation above, if v < v, then Cy(u) C C,(v). Hence, Cu(z) C C,(za).

;in the other hand, if v € C,(za) then v < &, because any string va with ¢ < r is
‘ot a-connected under this case. Hence we also have C,(xa) C C, ().

ase loc(a) M a # 0. Let w stand for the <-maximum subsequence in € .0 (7).

‘Note that this exists by induction hvpothesis. By definition, w is (aloc(a))-connected.

‘Claim: Let loc(a) Mo £ 0. Then va is a-connected iff v is (o U locla))-connected.

U= va < wa. Thus we have shown that wa is the < -maximum subsequence in O (ra)

Cand the proposition is proved, pending the proof of claim.

since va is a-connected, for every a,, 1 < j < k, o, has an a-chain in ca, We have to
iat each a; has o U loc(a)-chain in v
iFix j. Let the a-chain for ¢, be w = a0, ...4,,. Il j,. < &k then w < ¢ and

) N # 0, hence loc(a;, ) N (oL loc(a)) # 0.
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If jm = k, then e;a;, ...a;, _, < v and loc(a;,,_, ) M loc(a) # 0. Then loc(a;, )N

aU loc(a)) # 0.

In either case a; has a a U loc(a)-chain in v. Since j was arbitrary, therefore, v is

U loc(a)-connected.

Foralla;, 1 <7 <k, a, has an aU loe(a)-chain, say w, in v. Then, from definition
of a-chain, w is either an a-chain of a; in v or w is a loc(a)-chain of a; in .

In the first case, w is also an a-chain of a; in va. In the second case, since loc(a) N
0, wa ig an a-chain of a, in va. Hence va is a-connected, proving the claim and the
|
In the proaf of above proposition, we observe two crucial properties of views which

use repeatedly later in the chapter:

1. When loc(a) Mo = @, the <-maximum a-connected subsequence of r is same as that

of za. In other words, « | oo = wa | e Lo particular, for 1 & locla),z L1 =20 | o

2. When loc(a) Ma # 0, if = is the <-maximum a-connected subsequence of x then
za is the € -maximum a-connected subsequence of wn, In other words, se | o =
[z | (e Uloc(a))) - a. lu particular. {or ¢ € loc{a), za | 1 = (2 | loc(a))  a.

X

1 Zielonka automaton and views

¢ connection between a given deterministic Zielonka antomaton A and i-views of a string
sed on a simple idea. We know that if @ ~ y then () 4 = (y) 4 e, both the strings
tﬁ the same state in A - We also observe that by commutation of independent actions
g string, we can faclor any string r into an ~-equivalent zy such that z is the i-view
and 1 does not take part in y. Then it 15 the case that the -state of a global state in
ched via @ depends only on the t-view of @ (namely, = | 7). For a pictorial idea, see

n 3. In the following, we make this idea precise.



Figure 3.4: Relating Zielonka automaton and i-views.

sition 3.7 For all z € ©°, i € Loc, {x) 4 [i] = (v L 4) 4 [1].

The following claim pins down the factoring of & into i-view and and -independent

im: For all z € ¥°, for all & € Loe, there is a y € £° such that # ~ (x| a)y and

me the claim and fix an ¢ € Loc. Then there is an y € L° such that x ~ (& | 1)y and
6 Hence, (1) 4 = ((= | 1)) 4 . from which we get:

()4 il = Uz LOw) 4 [1] = (= L) 4 [d].

;:lmm] Fix & C Loc, Let & = zgayxi0909. - Gaky such that = | o = ayas. . g,
Eforall 3, 0<j<n Take y= 2g2y -2y
Notice that for any « C Loe, x[e is a-connected. Hence, z[a € 2 | a. This

shows, from the construction of 3, that y{o = e



Now we show that for all i, 0 < ¢ < n, loc(z,) Nloc(a;yy ... a,) = 0. Suppose not.

Then there is an ¢, and b in x; such that loc(b) Nlec(a;) # 0 for some j,i+1 < j < n. But a,

By using this fact and by definition of ~, we know that

I = Egidqfigla .. dyTy
~ QBT ATy . G, T,  commuting g and o

~  dpTpT Tz ... 0,%,  commuting gz and ag

~ @yl TpXy - o T, commuting g - -, and a,
= (zlaly.

'his proves the claim and the proposition. o

3.4 View-based systems for regular consistent lan-

guages

lave seen that the languages accepted by view-based svstems are indeed regnlar and
ponsistent. Here we prove the converse, i.e., RCLg € L{V'S), Since the class of deterministic

lonka automata over X characterize RC' L. it suffices to prove the following thearem.

'j- 3.8 Let A be a determumstie Zielonka automaton. Then there erists o view-based

M such that L{A ) = L{M).

Proof: For all r € ¥°, ¢ € &, define the event associated with 2 as the last transition on

:.'r:- path for x in A

{ () 4 s le) g ) fx=e

event(r) = ()4 )
()4 (@) 4) ifz=ya

(Note that () 4 stands for the global state d(s°. x) in the deterministic Zielonka

automaton A ) We define by v(x) " (cvent(z | 1), <+, event(x | n)).

ab



Now we construct the VS M = (My,---, M,, F) where, for all i € Loe, M, =

(@, —, q") such that

o Qi={v(z L) |ze '}

o p—+,q iff there is some u € £* such that p = ~(u | i) and ¢ = v(ua | i), and

o FE {(y(z 1), 7(z {n)) |z € L(4)}.

(’}r[:JI-' V1), -+ 7(x § n)) and then the inclusion follows at once. This can be easily proved

induction on | x |, The crucial point to observe is that M never gets “stuck™ on i if A

When & = ¢, (ylz L 1)~ ,5(z Ln)) = (vle)- -, 3(e)) = (q).---.¢"). Hence the

]

e case is trivial. For the induction step, it suffices to show that (y(z L 1), ~v(r L n))
—+ (y(xa L 1),+ -, y{xa | n)) isin the product. We check that the conditions of asvnchrony

and perfect exchange holds for this transition implying thereby the transition is in the

fIL For all { & locla),za Li = L i, hence y(za L i) =~(z ] 1),
2 Forall i £ foela), v(0 L i) —Zv(xa L 1) by delinition of local transitions. and

, Lastly, for all i € locla), y(wa | ) = evend(ra | 1) = cvent{x | loe(a) + a). Hence. [or

all ¢, 7 € loc(n), v(xa l i) =v(za L j).

Let {qlin e '-"-Jrg]::rb{r;'l:‘fl 4 1}:: B T(y'l'l . 7""”- Then for avery i g Loe, {I}A [a’] =

Assume the claim. Let @ € L(M). Then there is a path (¢V, -, ¢%)==57 in

. M where § = (7(z L 1),-+ clz L n)), for some z € L(A ). By the clam,



Mi € Loc, () 4 [i] = (2) 4 [i] meaning thereby () 4 = (2) 4 . Since z € L(A ). x € L{A )

and we get the required inclusion.

Proof of claim: The proof is by induction on the length of . The base case is trivial. For

','_E.- induction step, assume the hypothesis for all x € £* such that | 2 | = k. Let y = za and

let the path in M for y = ra be

(y--+vah) = (w4 1) y(um dn)) = (v(z0 L 1), 02 (2a L)),

: induction hypothesis,

for all i € Loc, (x) 4 [1] = (9:) 4 [i]- (1)
. induction step, We want to show that

for all ¥ € Loc, (za) 4 [t} = (z) 4 [i]- (2)

Proposition 3.7: Forall r € 7 1 € Lo, l[:n}_A ] =l 'ﬂ.ﬁl [1]-

i ant € Loc. I & loe(a), v{w L 1) = v(z Li). By definition of v and cvent, we get
: }.A = (z L 1) 4 - So, in particular for 1, (y: L 1) 4 [{] = (=4 t) 4 [1]. Now. nsing

Proposition 3.7, we get
() 4 1] = (2 4 L. (3)

By the induction hypothesis (1), then, we get (1) 4 [i] = (2,) 4 [{]. But () 4 [i] =

80) 4 [i], since i & loc(a). So finally, we get (za) 4 [i] = (2) 4 [i] and we are done.

For i € locla), 4{y L 1)—=7(2 L 1). So by the construction of —+., for all i
.ﬁ},ﬂu, € ¥* such that

L oy L 1) =(n, L 1), and

@ o(uia | i) =v(z L1).
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'-:}w, from the first conjunct, using Proposition 3.7, we get for all ¢ € loc(a), (y) Al =

ﬂ{] 4 [i]. Combining with induction hypothesis (1), we have
for all i € loc(a), (x) 4 [1] = (u) 4 [i]- (4)

Similarly, from the second conjunct, we get

for all 1 € loc(a), () 4 [t] = (wa) 4 1] (5)

Since the transition is a perfect exchange, forall 3,k € loc(a), v(z; L 3) = v(z | k), hence,
for all j, k € loc(a), v(uja) = y(uea). From the definition of v and event, for all j, k € loc(a),

{4 lac(a)) 4 = (ux L loc(a)) 4 , and hence, in particular for k,
for all j, k € loc(a), (u;) 4 [k] = (ui) 4 [%]. (6)

v, by equations 4 and 6 above, for all k.4 € loc(a), (x) 4 [k] = (ue) 4 [K] = (ui) 4 [K]-
Then, by the property of Zielonka automaton, for all k € loela), (ra) 4 [k] = (wa) 4 [K]. In
ular, when & =4, (za) 4 [i] = (wa) 4 [i{]. Using equation 5 then we get (xa) 4 [z =

A [i]. This proves the claim and the theorem. =

jiews of the global computation, these svstems are essentially semantic in nature. Because of
this, it is difficult to code up programming intuition in these models and that is reflected in
fliculty in getting a corresponding nice syntax which could give us a Kleene's theoren.

Ihis is one of the motivations for a syntactic approach which we discuss in the next chapter.



Assumption and
commitment in automata

4,1 Perspective

Compositionality is a desired criterion for verification methodologies, particularly for de-

velopment and analysis of large systems. The idea is to decompose a svstem into smaller

gubsystems and then the specification for the svitem is verified with respect to its imple-

%
mentation using only the specifications of the subsystems without referring 6 thenr mternal

ieture. This idea is formalized in [Flo| where properties of a sequential program are de-
| from the properties of its atomic actions and in [Dij] which improves upon the forner
grarchical decomposition and verification of a given program.

|

1 Parallel programs and compositional reasoning

Compositional verilication of parallel programs, on the other hand, adds substantially many
lications, mainly becanse of the complex interaction of independently executing enti-
The first proof systems for parallel programs of the form Py || --+ || P were suggested
1] and [AFTR]. In the former, the central idea was that of interference freedom test
i the latter it was cooperation test. Both these needed to probe into the body of the
gmponent programs to verify these tests. In this sense, they were not compositional proof

s, [MC] provided the foundation for the much-studied assumption - commitment



framework( AC-framework) for compositional verification. The main idea is to specify a sys-
‘tem as a module such that if some assumptions about the external environment are satisfied
then it commits to some desired behaviour. When one has a number of such modules acting
together, then each module is effectively in the environment ereated by the other modules,
f this environment satisfies the assumptions then the module delivers the right behaviour,
‘Thus for the desired behaviour of the global system, assumptions and commitments of the
mponents must mutually satisfy cach other. This facilitates compositional reasoning: we
“can reason about the behaviour of each component separately, assuming that others maintain
mlevant properties and reason globally about their compatibility.

In [MCJ, in order to capture the assumptions of the environment and commitments
ol the modules, one has predicates over communication histories. Communication histories
encode the kind of interaction a module undergoes with the environment. Assumptions on
nunication histories are essentially constraints on the environment (in case of systems of
s running in parallel, they are constraints on the communication behaviour of other
es). But the framework itself is very general and can be applied in varions ways to

lobal system properties [ALL, AL2, BKP, Jon, PJ, QM].

Local reasoning

hesis, we consider a kind of reasoning for distributed systems that is somewhat dif-
spirit from the classical compositional reasoning mentioned above. Tn the latter,
nenl; i5 looked upon as a black-box that maintains some invariant when the envi
it guarantees some properties. Then. one hopes to derive system properties from the

ility of assumptions and commitments of components, without looking into internal

This black-box approach works very well as long as we are composing safety proper-
esystem [AL1, AL2, AAF. MP, OL]. On the other hand, it is generally agreed that
ig liveness is hard, This is because, in distributed systems, local-enabling of actions
10t ensure global-enabling. It depends crucially on the internal structure of components

stem. Therefore, for liveness it looks as if one needs to look o the black-boxes and
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keep some global information as part of local structures (either states or local transitions). If
¢ does this judiciously, then all necessary global information has been distributed so that
obal behaviour can be obtained by a product of component processes. Our thesis is that
‘global information can be distributed in the local structures by suitable assumptions
4- out other processes and commitments, Thus, a process does not have to know the detailed
structure of other processes in so far as it can make suitable assumptions about others, and

n the protocol to ensure that in the global execution these assumptions are met by the

mitments of other processes,

This kind of distribution through assumption and commitment is not novel. This
lappens routinely when one develops subsystems without having access to a global view
ﬁhe system, for example, when different groups develop parts of a large program. For
instance, suppose we are designing a receiver that receives a bit from a sender and PECLCRSES

it Then independent of the sender, the receiver can be designed as follows:

(Assume there is a bit in the channel)

Receive the bit;

] Process the bit.

The internal actions of components change their state or the state of the euviron-
ent. These effects can be said to be commitments of the components. Thus the components
L making assumptions about environments and make commitments as well, When sucl
iponents are put together, one gets compatible behaviours where, as intended, the as-
sumptions of a process are met by commitments of the other processes that constitute its

onment. Consider the design of the sender too.

Send the bit;

(Commit that a bit is in the channel)

When we put the sender and receiver together, we expect the normal sequence of
fer of the bit. Notice that the receiver cannot receive the bit before it is sent because
jen its assumption about the bit in the channel can not be met. Iu this way, causal

idence can be encoded by assumptions.
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(Sender) Send the bit;
(Receiver)Receive the bit;

(Receiver)Process the bit.

| this way of reasoning loeal reasoning since each component reasons “locally” about
he environment (other processes in the system) to make appropriate assumptions. Observe
this view is different from the compositionality principle since here one looks into the
mal design of components. Our concern is to model one aspect of system design that
115 in many situations, notably in distributed algorithms and program development. One
st note that this is also a notion of compositionality in the broader sense of the term.
.:?:'__ all, one has to compose subsystems and local reasoning should lead to properties of
global (compatible) behaviour,

Note that local reasoning in the sense described above is very different from what
rehers call modular reasoning, emploved in modular model checking [KV, Var| Iu
nodular reasoning there is no constraint at all on the environment of the module, This
s perfect sense because one is concerned about design of modules as open systems,
ems that can potentially be embedded in any environment. Ou the other hand, in local
ning we are interested in closed systems where the environment of a process is the set
ther processes in the system and the processes know the protocol of interaction. Thus,
environments here are very much constramed and the processes know a lot about the
nment. Therefore, while modular reasoning is hard [l{"v', PL. Var], one can expect

reasoning to be simpler.

AC-framework and automata theory

file a number of researchers seem to have studied the AC-framework in the context of
ramming methodology, process algebras or temporal logies, there seems to have been
effort in formulating it from an automata-theoretic viewpoint. Implicitly, these models
i

ssume each process to be a machine of some sort, but studying formally the implications

process being a finite-state machine is a different exercise altogether. There have
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been efforts in modular model checking [KV, Var], but the kind of complex interaction and

mpatibility that is reflected in the behaviour of parallel systems is not quite transparent,

Why should one look for an automata-theoretic account of the AC-framework? An
important reason is that these automata can serve as natural models for temporal logics
based on local reasoning (for instance the one in [Ram3]). Compositional model checking
s one of the major goals of computer-aided verification [AH], and we believe that local

oning with automata as the component processes (particularly over infinite words) may

scope of study is process models of finite state distributed systems. When one wants to
o compositional reasoning for these systems in an AC-framework. one specifies a process P
A > P < C > where A is the assumption on the environment and  is the commitment
rocess 7. For example, in [MC], every process is specified by a triple r|h|s where r and
¢ predicates over communication histories and & is the process. This triple is interpreted
ollows: s is true initially in & and if ¢ holds at all times prior to a communication then
lds at all times prior to and following that communication. If we represent the systems
i transition svstems, the assumption-commitment requirement asserts a svstem invariant:
P——+q be anv transition, then if A holds at p then € holds at q.

& On the other hand, in order to “Hocally reason” about the process model, we attach
mptions and commitments to local states and stipulate that only those global states
e system are valid where assumptions and commitments of local states are mutually
patible. A valid hehaviour of the system is determined only by compatible global states.
iscuss this i slightly more detail now. In the next chapter, we will formalize the

| 4
ituition and the necessary concepts.

In order to express the assumptions and commitments of local states of processes,
with o distributed alphabet of actions in the system, we have an alphabet we call

mit alphabel. It 35 a tuple € = ((C. =), -+ (Ch. =) where C's are nonempty
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For instance, in a system of two processes, P, and P, at a local state s of 1. the

assumption-commitment pair may be (A, Ay) and similarly (v,,7,) for process P in state

global state (s, t} is compatible iff Ay < 5, and v, < A, We may think of A, as a logical
sertion whose invariance is maintained by Pp-local states in all global states that map to
g for P,

Our formulation is partly inspived by knowledge-based programs |[FHMV]|, where
atomic statements of a process are of the form K, — ¢, These statements are called
knowledge statements and they are read as “if ¢ knows p then execute a” . The usual semantics

yis on Kripke models of global states: K,p is true at a global state ¢ if » holds at all

Lknowledge based on local states. In [Ram2] semantics of K, is given at local states of ¢
(i is true at an i-local state p if i holds at all the global states i considers possible at p,
le the connection is intuitive, we do not have a formal result relating knowledpe-based

srams with the automata studied here.
There is one relevant observation regarding the commit alphabet to be made here. Tt
it necessary that the commit alphabet be fixed universally for the syvstem. as we have done

ove. This is because different processes may have aceess to different variables of a process



ence Ltheir assumptions about the states of ¢ will vary from each other. We can define
process with its own n-tuple of assumption alphabets and subsequently ensure in the
nition of systems that for all i, j € Loe, the j™ assumption set of automaton ¢ is contained
e j% commit set of antomaton j. But such fine structure plays no technical role and
ers up notation considerably. Henee, we stick with the (more restricted) notation of a

y determined commit alphabet.

In the rest of the chapter, we discuss how one can incorporate assumption and

Assumption-commitment on transitions

retically simpler framework for assumption-commitiment in automata is when pro-
make assumptions only about those other processes that they communicate with.
naturally modelled by having assumption and commitment on synchronization tran-
5. Here an automaton A, may synchronize with another automaton As on an action
Az), 0 € By M Es where we see Ay as committing to A, provided Ay commits to Ay
trically, for such a synchronization to oceur, A must have a transition on ¢ where it

mmits to As. (In this case, A5 may not require the A commitment from 4,

A mutual exclusion example

T to motivate the kind of framework we are leading to. we give an example of a
two-process mutual exelusion problem. For siiuplicity, we abstract away the internal
tional states and assume that the processors are alwavs requesting for or executing
itical section. We maodel this as follows,

Each process § can either be in state W, (process i waiting to enter the critical
.:—.'uj in state C) (process ¢ is in the eritical section) state. In order to gain access to
section from the wail state, the proecesses do a joint action ¢ Actions ¢ and b

ns taken by processes in the eritical section. When an internal action is taken, the
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s in the critical section goes back to the waiting state.

‘The commitment alphabet is C =< C, = ({p1,npl}, %),Cs = ({p2,np2}, <) >.
i»1 = 1,2 denotes that process 1 is permitted access to eritical section and np; denotes

isnot permitted to enter the critical section. The commit alphabet is shown in Fig. 4.1,

The design of process 1 can then be as follows: when 1 is in the state W, it stays
¢ same state if it is not permitted entry to critical section. When it is permitted entry,
ming that process 2 is not permitted entry, it can go to the state ) denoting access
ritical section. Process 2 is designed in a symmetric way. Figure 4.1 shows the two
s and also the product showing the global behaviour. See that the assumptions at
e local transition W, —=+,C are (py,nps) and those at Wy—S5,0% are (npy, p2). These as-
umptions are not compatible because nps A5 po and np; 2, p;. Henee the global transition

J==({C\, ) is not possible; so that at no point both the processes can be in the

'section, thus satisfving the safety requirement.

An example class of systems

ested above, alongwith a distributed alphabet Y. we have an alphabet which we call

nitment alphabet. This iz a tuple & = ((Cy, =), -+ (Cyy, =, )) where

Moralli £, C,NC; = {.L}.

The element L is the null assumption {(or commitment). We call C =€, U ... UC,

e

gmmit sel. For o € X, we use the notation €, to denote the set U Ci.
telmcia)
We want to annotate each transition on g with assumptions about participating

Each such annotation gives an clement of C, for each agent ¢ participating in o

ge. foreach o € M. the annotations are from the set of fuoctions

3, © (& : locla) — C, | Vi € locla), oli) € C;).
ow extend the distributed alphabet so that we have actions of the form < a, ¢ > where

By, When ¢(z) = L for i € loc(a), we treat this as a “don’t care” condition.

07
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Figure 4.1: Two-processor mutual exclusion.
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Since we consider only finite state systems, we use only finitely many annotations

for local transitions. This implies that it is sufficient to have finite commitment alphabets

nition 4.1 Given a distributed alphabet, & = (21, ....5,) and a commit alphabet C,
we define extended alphabets as follows:
M cap> |ac and ¢ € B,}.

=l g del
L S-S b S N
v Lo

We now define AT-automata, the class of distributed systems which make assump-

and commitments on synchronized transitions. We first define individual automata

ien systems of such antomata.

nition 4.2 Consider the distributed alphabet 5 = (X1, 800, the commil alphabet

vand the assoctated extended alphabet S gwer the set of locations Loe. Leti€ {1,2, ... n).

I An AT-automaton over 8 s g tuple (M, fi) where

e M;=(Q,, —:q") isaT5, and

o fi:— =+ @ is such that for any transibion T = p—.q, fi{7) € b,.

A System of AT-automata(AT5) over the extended alphabet ©° is o tuple
M= (M, M, < fiooooy fo > F),

where each (M, f;) s an AT-automaton over 5, and F C () % ... % ().

The global behavionr of M is given below as that of the product automaton A/
ated with the svstem. Note that the system is then a finite state machine over ¥, thus
way assumptions and commitments as internal details, This fits with the intuition
I e behaviour of a distributed system is globally specified on ¥, and the machines in
_. em are programimed to achieve this, using internal coordination mechanisms like
onization and commitments among themselves. In the case of ATS's this is achieved

ng an extra compatibility condition on the transition of the prodoct TS,
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Definition 4.3 A global transition [phj}g,"',pn}'—ﬂ—}[:ql,fjg_.‘“‘,qﬂj s said to be compat-

1. for all j € locla), there exists 75 = p;—,q, such that f;(7;) = ¢; € &y, and
2. for all i,k € loc(a), d;(k) <i on(k)).

‘Definition 4.4 Given a system of AT-automate over ©°

M= (M, Ms, - My, < fiyeroy fu >0 F)

the product automaton associated with the system is given by (M, F), where

o M= {f’,}, —, (g0, -+, q%)) is the complete product TS of M, and

o cach transilion m —+ s compatible,

The class of languages over £ accepted by svstems of AT-automata is denoted as

=

..-;_;TS) & Formally,
EfﬂTS]‘f‘ =15EE 3C and an AT syshom M over T¢ such that L = L':iﬁj'q}}'

The class of languages accepted by such systems have been shown to be the same as
ar consistent languages in [MR2]. Thus these systems have the same expressive power
s view-based systems of Chapter 3. However, we omit the proof here as this will follow

a later result in Chapter 6.

heorem 4.5 £(ATS)= = LIRCLS):

[=7¢

We now present a simple example of these automata. Consider the familiar lanpuage
lable + [aabble)® over the distributed alphabet ¥ = 31, = {a,c}, By = {b,c}. In Chapter
noted that this can not be captured by product svstems as they would accept strings

be which are not in L. In Chapter 3, we gave a view-based svstem that accepts L.
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Figure 4.2: AT-system for the language ([able + [eabble)* ¥, = {a, 0}, Eo = {b. ¢}



Refer to Fig. 4.2, Here the commit alphabet is € =< €, = ({1a,2a}, %;),.Cs =
2b}, %5) = the orders <,,1 = 1,2 are as shown in the figure. la records that one ¢ has
seen and 2o records that two a's have been seen. Now, in Py, transition 7 = ps— p,
it {_ﬁ(r} = (la, 1b) says that the synchronization transition will be compatible only when
# c-transition in P commits to having recorded 1b. Such reasoning gives ns that only
)= (py.q1) and (pg, g3)——+(p1, 1) are compatible global transitions. Consider now a
r qabe. For this to be accepted by the system, the transition (py, g2)——(p1, ¢) should
the product. But fi(ps—,p;) = (2a,2b) and folga—4101) = (la, 1b) and 2b £, 1b
nd 1o 2, 2a. Hence the transition is not compatible. Thus all the “bad™ strings are filtered

- the compatibility condition in the product and we get the desired behaviour,

Assumption-commitment on states

eral, a process may make assumptions about other processes in the system even in the
e of any communication from them. This leads us to a type of systems where at a
ate a process makes assumptions about the states in which other processes may he,
the product only mutually compatible states are admissible. We call these svstems
tion-Compatible Systems(ACS),

In this section, we show how the formal model of assumption compatible systems
lns n reasoning about typical problems in distributed computing. For this we choose two

iple problems, namely, that of reliable bit transmission and sequence trans-

Bit transmission problem

on 4.1.2, we introduced the bit transmission system where there are two processes, a
der S and a recewer . Assume that thev communicate by asyvnchronous message passing
ossibly faulty channel. Further, we assume that message loss in the channel is the
of fault in the system and that the number of such faults is finite (but unbounded)

geution sequence,

=
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Figure 4.3: The sender,

The sender wants to send one bit (0 or 1) to the receiver. Since messages may get
, there is no guarantee that a message sent by either of the processes will be received.

[he problem is to ensure that till R receives the bit, S has to go on sending the bit to B .

Finite state solutions for the above problem are simple. The main idea is to let
d back an acknowledgment when it receives the bit. When § gets the acknowledg-
ment it stops sending the bit. We illustrate how the design can be done in an assumption-

mitment framework.

sender

(See Fig. 4.3). The alphabet ¥ of sender 5 is {s, g}, where
® 5 Ssends the bit to [ and
& g: S receives the acknowledgment.

S has three states. At the initial state(called po), it is et to send the bit and hence
knows that R cannot have received the bit, So it commits that it has not sent the bit and
that R is in a state where it has not received the bit, At the second state(called
sent a bit and is waiting for acknowledgment, Now that the bit is sent, S does not

ether Il has received the bit or not and if R has received the bit then whether it
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Figure 4.4: The receiver.

has sent any acknowledgment or not. In short, it can assume “nothing” about the states of
B but commits to having sent the bit and not having got any acknowledgment. At the third
state(called py), it commits that it has got an acknowledgment from the receiver. Further
is can happen only with the assumption that B has received the bit and has sent an

owledgment.

receiver

(See Fig. 4.4) The alphabet Yo of sender RV is {r,a}, where
# = R receives the bit from 8§, and

R sends the acknowledgment.

The receiver also has three states. At the initial state(called gy), it is vet to receive
L o b

t the second state(called ¢p) it has just received the bit and at the third state(called
sent acknowledgment to 5. At go, I commits (naturally) that it has not received
. Also, since it is vet to send back an acknowledgment., it assumes that S is in a state

"' + -

e it has not gol any acknowledgment. Note that at g, the receiver can not assume
about whether the sender has sent the hit or not, At g, B commits that it has
the bit and has not vet sent the acknowledgment, Clearly, the assumption is that

ady have sent the bit and that the latter has not vet got the acknowledgment,

7l



At g2, R commits to having received the bit and sent an acknowledgment. While it can not
assume that the sender has received this acknowledgment, R assumes that the bit has heen

sent(otherwise, R would not have sent any acknowledgment).

Commitment al phabet

The commitment alphabet of § can then be taken as (Cy, =) where C; is the boolean
(closure of the set of propositions {ack recd, bit_sent}, where the meaning of the propositions
(are obvious. Similarly, the commitment alphabet of S can, then be taken as (Ca, <) where
_hg is the boolean closure of the set of propositions {bit_rec, ack recd}, In both cases the
“orders <; are logical implication.

With this the assumptions and commitments of the sender at its states can he

summarized in the following table. (=bit_sent means “bit is not sent” ete.)

| Commitment Assumption
(S) | po | ~hit_sent and —ack _reed by § -t _recd hyv R
py | bit_sent and —ack _recd by S I may be in any state,
pe | bit_sent and ack_recd by 5 bl _reed and ack_sent by R

ilarly, the assumptions and commitments of the sender al its states are given in the

following tahle.

Commitment Assumption
I:R] gy | —bitorecd and —ack _sent by R —ack recd by 5'-
1_q| bit_recd and aeck_not sent by R It sent and —ack_reed v S
ifs e';-.f_#._rr'r'ri and nck_sent by It it _sent by 5

Product automaton and global behaviour

Fig. 4.4.1 gives the product automaton of the ACS consisting of S and R . Notice



g ':_PhQ‘ﬂ:'

Product

Figure 4.5: ACS for bit transmission

Then, we see from the product antomaton that with the final state £ = (p2:qa),the

behaviour of the ACS is sTrs'als + a)"ga’, which captures the desired behaviour of the
q P

44.2 Sequence transmission problem

n this section we study a slightly more involved protocol, namely the Sequence Transmis-
sion Problem and discuss how it can be modelled naturally in the assumption-commitment
ework. The problem is as follows.

As before, there is a sender § and a receiver R . The sender now wants to sefid
Lbit-stream to the receiver. For each message bit, the bit transmission protocol is nsed.
ntially, 5 goes on sending the i-th message bit till it receives an acknowledgment and
lien it starts sending the ¢ + 1-th bit and so on. On the other hand, R initially waits till
itgets the first bit. After this, for each bit (say it is the i-th bit), it goes on sending the
gnowledgment till it receives the 1+ 1-th bit. There are, of course, some other requirements

o the problem that makes the design slightly harder,

» Totality. All the bits of the stream are delivered,

Sequentialily. The bits are delivered in the order in which they oecur in the strean,
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o Non-duplication. A particular bit may be delivered many times over the channel be-
cause S might not have got any acknowledgment for the bit, but once K receives the

bit and sends acknowledgment, it does not receive the same bit from the channel.

From the description above, one can design the protocol as a series of bit transmission
protocols for each bit in the stream. For each bit, if we label the actions and also the
assumptions and commitments with the position of the bit, we get an infinite state protocol
which is given in Fig. 4.6 with the assumption and commitments from Fig. 4.7. (Note that
there are now infinite number of elements of the commitment alphabet; in the table a state
i denotes the i-th py state. In the figure it is given as the state p; with ¢ quotes.)

The produet shows that the requirements are actually satisfied, namely, for every
12 0, the action r; (receive bit 1) takes place (totality), it oceurs only once (non-duplication)
and v, occurs strictly before vy when § < & (sequentiality).

Now, we want to fold this protocol so that the sender and receiver actually have finite
.@Hmlmr of states, Since the states are determined by their assumptions and commitments
and the actions, this folding would have to bound the labels attached to the letters of the

commitment alphabet and also the actions.

At a first attempt, if we banish the labels altogether, we get a protocol as in Fig. 1.8

But immediately we see that this protocol does not satisfy the requirements.

e Since there is no distinction between consecutive messages, S might be sending the
i-th message even after it gets an acknowledement from B . But this is a minar diffi-
culty hecause we can always ensure that 5 moves Lo the 1 + 1-th hit after it gots an

acknowledgment for the i-th message. Henee, sequentiality is ensured.

o But one can see that in the product, betweon a rec_bit by R and rec.ack by S . there

are other recoack’s, which means duplication takes place.

o Also, there is loss of message bits in this design for the following reason: S receives an
ack and sends i-th message. K does not receive it and sends another ack corresponding

to (1 — 1)-th message, S reeetves this ack and assumes that this is an acknowledgment
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- Commitment Assumption
(S) | po | ~bitgsent and —ack,.recd by S =bity_recd by I

pii | batisent and —ack, _reed by S H may be in any state.
pai | bet,_sent and ack; recd by S bit; recd and ack; _sent by R
=bit;yy_sent and —ack;yrecd by S | —bitiyreed by R
(R) | qo | ~bitg_reed and —acky_sent by Rt —acky.recd by S
qit | bit;orecd and ack;_not_sent by R bit; _sent and —ack; recd by S
qai | bit;orecd and ack; _sent by R bit;_sent by §

—biti i recd and —ack;yy _sent by S | —bit,y reed by R

Figure 4.7: Infinitely many assumptions and commitments for the infinite state protocaol.
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Figure 1.8 An incorrect folding of the infinite state protocol for STP,

of the i-th message. Hence it then starts sending the (i1+)1-th message. Thus message
i 15 never received by [ . The problem arises because when S sends message (¢ + 1), it
assumes that I has already received message i but then in the protocol the assumption

and commitments do not reflect this

In order to remedy this deficiency, we have two-bits attached to the actions of sending
d receiving message and acknowledgments and also to the assumptions and commitments.
iis is essentially to distinguish between consecutive messages and acknowledgments, Thus,

e pet a protocol as in Fig, 4.10 with the assumptions and commitments as in the table
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Commitment - Assumption
(S) | po | ~bitg_sent and —acky_recd by S =hitg_recd by R

| bitg_sent and —acky_recd by S R may be in any state,

pa | bitg_sent and ackyrecd by § bitg_recd and acky_sent by R
-ty _sent and —ack| _recd by § —bity _recd by R

7 | bty _sent and —ack, recd by 5 R may be in any state. T

oy | ity _sent and ack, _recd by 5 bity —recd and ack,_sent by R

—ilntysent and —acky.recd by 5 —bity_recd by R
(R) | qo | ~bity_recd and —acky_sent by R —ackq recd by S

q1 | bitg_recd and —acky_sent by R bity _sent and —acky recd by S
gs | bity_recd and anekg_sent by R bity_sent by S

=ity _recd and —-ack, _sent by § -ty _reed by R
g | bity_recd and —ack; _sent by Il bit, _sent and —ack, recd by §
g | bity _reed and ack,_sent by R bity _sent by 5

=ity _reed and —acky _sent by S —hity_recd by R

;Ef"igure 4.9: Assumptions and commitments for a correct finite state protocol of Fig, 4.10,

Fig. 4.9 and the product shows that this satisfies all the requirements of sequence trans-
mission problem. This, in fact. is the Alternating Bit Protocol( ABP) for the sequence
transmission problem.

The above analysis does not give any clue as to why only two distinguishing sets of
states were sufficient for the sequence transmission problem. In fact it looks a bit like an
_:_::idem. that we hit upon the ABP. But, at the least, this guides us to have more states to
wapture relevant assumptions and to design the protocol correctly. In fact, the erucial point
to note in this illustration is that the discovery of the deficiency and the subsequent remedy
‘tan be done entirely locally for each of the sender and receiver without relerence to global
states. This only reiterates our stand on ease of component design in a distributed svstems

sing the assumption-commitment paradigm,
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Assumption-compatible
systems

a distributed alphabet S=(%, .-+ ¥.). As suggested in Section 4.3, we also have a
commitment alphabet

Er= Hﬂlrjl)*"'!{cu.’_{“”'

ecall that each C, i a nonempty set and for all § £ j, €;NC; = {L}. =, is an ordering

on ;. The element L is the null assumption (or commitment). We call € = ¢y U, Uy,

The difference is that mstead of assumption and commitment on transitions, we now

s assumption and commitments annotating local states, These annotations come [rom

& % {6 Loc—s C | Vi € Loe, (i) € C.}.



Note also that the orders =, are binary relations with no special properties, as per
the definition. Natural assumptions and commitments may require that these have more
structure. For example, if the commitment alphabet is constructed from boolean formulae
{as was done in the Chapter 4} with implication as the ordering, we get a partial order on the
alphabets. In fact, in all our figures of commitment alphabets, we treat them as pre-orders
(reflexive and transitive relations) for ease of drawing. But such structure on the orders are

not mandatory by definition.

Definition 5.1 Let i € {1,2,...,n}. An AC transition system(AC-1S) over (¥,,C) 13
o tuple (M,, fi) where M, = (Q,, —,q) ts a TS over T, and f, - Q; = © is called an

assumption map.

Atastate p e Qi fi(p) = & then ¢(¢) 15 the commitment of M, at pand o)), j # 1,

8 the assumption of M, about M atp

ition 5.2 An Assumption-compatible system(ACS) over (.C) s given by a

M= (My My My, < fifa, fa >0 F),

i for each 1 € Loc, (M, = (. —.qY), fi) s an AC-TS over {TJ,,(-T-], and F C (@, x

Global behaviour of M is given below as that of the product antomaton M associated
tem. Unlike in the earlier distributed svstems, the product TS is not over the
state space but over global states where assumptions and commitments of local

re mutually compatible.
1

£9.5 Given an ACS ‘l_:f = f-jfl t *Mr?-‘ iy - "luﬂ s f] 3 f21 by, f.'a =y F]' A _!;f“!ﬂzﬁ stafe
i) € Q is colled compatible off

foralli,j e Loc: fi(p)(3) =5 fi(p) ().

=23



Definition 5.4 The product automaton of M is defined to be (M, F) where

LM = {@T —, (gl ---,q)) is a product TS of M over & with {.::’ as the sel of all

compatible global states,
2 (q¥,--.q%) € Q, and

g FCh..

The class of langnages over £ accepted by ACS's is denoted as L{ACSg). Formally,
LIACSZ) = {L € X' | 3C and an ACS M over (£,C) such that L = L(}M, F)}.

Note that EHCSEJ need not be closed under ~. As an example, we describe an
ACS in Fig. 5.1 that accepts the language (ab)*, where ¥ = ({a}, {6}).
Example Let ¢ = (Cy,Ca) where the commit alphabet C; are as shown in Fig, 5.1. For
gase of reference, we have annotated the local states by the respective f{). We see that of
the possible 9 global states, only 6 are compatible. For example, the global state (po. qa) s
ompatible because at py, agent 1's assumption about agent 2 is fi(p2)(2) = vy, at g, agent
2's commitment is Solga)(2) = v and vy =5 1. Also, at g, agent 2's assumption about agent
118 folge) (1) = . agent U's commitment at pois fi(pa)(1) = pe and ps =, e, On the other

hiand the global state (py.gz) 18 not compatible because fi()(2) = v 2219 = flg)(2).

5.2 Closure properties of ACS’s

dn the following section, we prove that ACS's over X characterize all regular languages,

Far simplicity of notation, we restrict ourselves to the case when Loe = (1.2}, Fix

adistributed alphabet © and two commit alphabets € and D.
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Let M = (M, My, < fi, fo >, F) be an ACS over ¥ with C as the commit alphabet.

Let M; = (P, —., " fi) be the local AC-automata.,

Similarly, let N = (N;, N, < g1, g3 >, G) be an ACS over £ with P as the commit
I_"abet. Let N; = (@, —*. q";, 5;) be the local AC-automata,

Assume, w.lo.g, that the commit alphabets C and D are disjoint and so also are the
states of M and N. We have used the same “arrows” to denote transitions of both M and
N to aveid some extra notation. But the contexts disambiguate this overloading,

For convenience, let fy(p?) =< Al de =, fulpl) =< vy 10 >, ald)) =< s >
and ga(03) =< m,m >

It is immediate that M = (M, My. < fi, fo >, F), with F = Q \ F aceepts the

complement of L{M), so closure under complementation is proved.

52.1 ACS accepting union of L{M) and L{N).

': nstruct an ACS O over ¥ as follows.(Fig. 5.2)

Let the commit alphabet £ = ((£,, =), (£,, <2)) where for each local commitment
habet we introduce some new elements.

We define £, = &, WDy U (A v gy ), (o Aoy ) ), where the lub and glh are new
_menns. Similarly we define €5 = Co U Dy U {142V 1), (Ao A pa) }, where the lub and glb
'::_a.giiin new elements.

The orders in each £, 1s now the disjoint union of the orders of C, and D, plus

e natural relations induced by the new elements. For example, Let A be a new element

Among the new elements, the order is defined as (A A ) =0 (eavie) and (/) =
AV )
Let (2= (0, 0y, < hy, by >, H) be an ACS over & with & as the commit alphabet.

Lot 0, = (R, =, 1", h,) be the local AC-automata, where
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. -Re =P @ U {0}

= = —H"U—"
B, U (% ap) | p°i—ip}
L {{:Tnf:ﬂﬁ] | f;"ﬂ.'_u’iq}-

3. Foralli e {1,2} and r € P,uQ,,
filr) fre Py
alr) ifre@;
In addition, fi, (r?) =< (A V 1), (Aa A o) > and ha(rd) =< (g A, (2 Vo) >,

hi(r) =

4 H=FugG,

From the assumption maps, immediately we get that the initial state (r%), 0% is
compatible, since (14 Am) =0 (A Vo) and (A A pa) =2 (19 Vi),

Further, for any global state (r), rs) where p; # % .0 = 1,2, both r,'s are in P, or
rorm @,. otherwise they will be incompatible. This is because their assumptions and com-
mitinents are now from different commitment alphabets which are disjoint by assumption,

Since the initial state does not have any in-coming transitions, any string @ passes
through only global states that are also global states for either M or N. This leads to the

fact that P accepts the nnion of LM ) and L(N).

5.2.2 ACS’s with multiple initial states

A much simpler construction results if we extend the class of ACS’s to have multiple initial
states. Then the introduction of the special state and the special transitions 15 rendered
redundant: one just takes the component-wise disjoint union of the given ACS's,

An ACS with multiple initial states is given as M = (M, - M, < fi.--- fa =,

[.F) where the compatible product has the set of initial states I instead of a single initial

tate.



UNION OF M AND N

A
J'l-.f: |'1Ff'2
) 0
) )

AL M 1 Ma N

CONCATENATION OF M AND N

M
M .'"\'IJ
N ; [P‘ ) D:I
_="'|'r|

Figure 5.2; Union and concatenation of ACS's.
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5.2.3 ACS accepting concatenation of L(M) and L(N).

We consider the case when M has a single final state (p/,,p/,) and N has a single initial
e, Extension to multiple initial states and multiple final states in not difficult.

We construet the commitment alphabet exactly as we did in case of “union” above;
gxcept that in place of the initial state (p%,, p%,), we consider the final state (pf,, p/,).

Let the assumption map of the final states be as follows: [, (p{'] =< Ay Ae >
hind) =< v, > Also let ai(g]) =< ipe > and go(qd) =< m,me >. Then, the
mitment alphabet constructed is identical to that constructed above.

Let @ = (O, Qa, < hy, hy >, H) be an ACS over © with £ as the commit alphabet.

' 0; = (R, ==, " ) be the local AC-automata, where

Ho's

1. R, = PIU'Ql; L {“}:U']}

2 T'u, == pl:ll_
-, = _}IU iy
; 3. U A{lpea(p, 0) | p—=p’ )
U {(p0)oacg) | g%~}

4, Foralli € {1,2} and s € P, UQ,,
fils) ifse Py
als) ifseq,
Tn addition, hy(p,0) =< (A Vg ), (Ao A pg) > and ho(pa, 0) =< (1 A ), (s Vi) =,

hils) =

bl



The comstruction of transition relation for [ ensures that entry to N; is only through
the special states (p;, 0) and there are no transitions from N; back to M.

The special state tuple ((p1, 0), (p2, 0)) is compatible and hence it is in the compatible
product. Crucially, it acts as a synchronizing point. This is because any state (s,t) with
s€ Piandt € @, 1 # jand s # (pi,0),t # (py,0) are incompatible because they are
assigned assumptions from disjoint commitment alphabets € and D resp.

Hence any accepted string leads to ((py. 0), (12, 0)) through the global states of M
na.nd then goes through the global states of N. Since reaching ((py,0), (ps.0)) is equivalent to
reaching {p{, ;uf;} of M, one gets that if a string is accepted by P then it is a coneatenation
of strings from M and N,

On the other hand a string 2 which is a concatenation of string from L{M) and
l'L[N} will lead to {p‘:,pg] and then to a global final state of (7, henee @ will be aceepted by
P. Therefore, P accepts the concatenation of L{A) and L(N).

We summarize the hindings of preceding sections in the theorem below.

Theorem 5.5 (fven X, ACS's over ¥ are closed under all boolean operations and concate-

nation.

More importantly, from our observations about ACS's with multiple initial states,
depending upon a given situation, we may freely choose ACS's with either single or multiple

Jnitial states,

5.3 ACS’s and regular languages
The following theorem constitutes the central result of the chapter;
Theorem 5.6 L{ACS:) = Regs.

The inclusion L{ACSg) € Regy is casy and follows from the fact that the product
automata of ACS's are just finite state automata, The other inclusion, showing that every

regular langnage over ¥ is in L(ACSz). is (understandably) complicated because when we
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want to accept arbitrary regular languages we need the ability to *force’ specific interleavings.
For instance, when a and b are independent actions the language (ab)* specifies that « is
always preferred over b; coming np with product constructions on automata that achieve
such forcing systematically is the difficulty. Hence the problem here is different from that
in the construction of, say, asynchronous automata [Zie] or cellular asynchronous automata
IUMZ], where global states are decomposed preserving concurrency.

The proof is in two stages. Iirst, we construct an automaton for the given regular
l@nguag? where the states are distributed but the transitions are globally specified hence it is
not locally presented. From this automaton, we compute the assumptions and commitments
for the AC'S and distribute the transitions as well so that the product of the AC'S accepts

the same language.

5.3.1 Distributed state automaton

Distributed State Automaton(DSA) on £ is a tuple 4 = (4. ..., dn,— 4. &), where

1. for every 1 € Loc. A; = ((),, —+4,,57) is the i-th TS an ¥,

e

2, € = llicr.:02; is the state space of A,
3. (s, -+, s%) is the initial state,
4. F'C ) is the set of final states, and

b —=, (6 = X o= () satisties the following condition:
i ((Prope ooy (01 G2e -4 0n)) € — then
(a) forall ¢ € loela), (p,, o, q,) € —,4,, and

(b) for all j € locla),p, = gy

Notice that the transition relation — , satisfies only one half of the asvnchrony

andition, This is the crucial difference between DSA's and locally presented systems. In
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DSA’s global transitions are given a priori while in locally presented systems, global transi-
tions for the product are constructed by the asynchrony condition. We emphasize that DSA's
are intended only as intermediate representation for a given regular language. We believe
%_ha.t this gives some structure to both the construction of the ultimate locally presented
antomaton and the proofs needed to show language equivalence.

When (P, a,q) € — we write it as p— 4. A is deterministic if — ., is a deter-

inistic relation.

5.3.2 Properties of DSA

Fix a deterministic DSA A over . Recall the projection operator [: (2* x Loc) — 7

€ if =
zli=4 yli if r = ya and 1 & loc(a)
(yTi)a if r = ya and 1 € loc(a)
ecall also that for a non-empty string o« = ay -« - iy, last(r) def .
Now we define ) @ (327 % Loe) — E° as follows.
e ifzfi=c¢
Definition 5.7 = |} 1 & y such that Jue 0 cx = yu last(y) € B, and uli =
if 21 # €.
7|l ¢ gives the maximal prefix of r ending in an i-action, For example, let 5=
{{a,c}, {b.c}}. Then ab Y 1 = a, abeaa | 2 = wbe and abeane § 1 = abeaac,
Nate that this projection operator is different from the view-projection operator |
f Chapter 3. The notion of causality via locations in | is completely absent in Il Henee,
or example, ab } 2 = ab while ab | 2 = b
We make a couple of simple observations about |, Both of them [ollow from the

maximality of = I} ¢ in z.
1. Forall v € 1,7 € Loc, if 2 |} 1 isa prelix of = L 5 then = 4.4 = (x| f)l,

9. For all ¢ € ©*,i. ) € Loc, if v |} i = ya, then for all j € locla),x I} j == I} ¢ = ya.



-_Hemll that for all z € £°, {I)A e (g1, . 4s) € & such that

-{}5?,”-HSL,:_}:ﬁAI:;;l,---,f;ﬂ], Since A 15 deterministic, [T}A is well-defined.

Definition 5.8 The events assoctated with strings over ¥ are defined inductively as follows:
€) 4 € (£ if =
event(x) et (( A6l }A ) ;’
((y) g cailya) g ) fz=uya

An event, say event(z), is called an i-event if either s =corz =yoand a € £,. In

the DSA A there is a precedence relation among the events associated with strings. The

definition below says when an f-event precedes a j-event,

Definition 5.9 event(u) i-b-j cvent(v) iff there is an v € ©° sueh that v [l 1 15 a prefiz of

rlj, event{u) = event(r I 1) and event(n) = event({r I 7).

It is clear from this and definition of | that evernt(u) i->-j event(v) ifl there is an r €
such that v = r | §, event(v) = cvent(r) and event{u) = event(r | z).
| We prove certain properties of DSA's in terms of the definitions above. An imme-

diate corollary of the asvnchrony condition on 4 s the following,
Proposition 5.10 For all z € 27, (x i) 4 [i] = (&) 4 li].

Proposition 5.11 Lei . ] € loc(a). event(za) vo-) cvent(ya) implies (x) 4 = (1) 4 -

Proof: Suppose cvent(za) i-o-j event(ya) By definition, there exists an » € ©° such that
event(r ) 1) = event(xa) and event(r I 3) = event(ya) and r | { is a prefix of v I} §: (See
Fig. 5.3).

| . I
From the definition of event, we have

d (':-3‘3]_;1 o (ra) g )= {[-’J:'_A e (r'e) 4 ) where £ U = ', and
o (1) 4o (ya) g )= (") 4 d (") 4 ), where r ) j = r"d.

m these conditions, we get ¢ = o = . From the observation about |l we immediately
t that r i} ¢+ = r |l j, or. equivalently. r'a = r"a. This means ' = r” and therelore

) =(r'ty =0 =g =
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P— 7 vmplies for all i € loc(a), ple] # gli].

nformally, this means that transitions change the local states of all participating agents.

i :.-mpDSitiDn 5.13 Suppose A s stutter-frecs Let v w € X a e L, and &k € Loe: Then ot

s never the case that both event(ua) i-o-k cvent(w) and event(u Il 1) -k event(w).

.:t"l:rﬂf: Suppose that both event{uan) -0-k event{w) and event(u |l ¢) -0-k eventw),
Claim: [et ».y 2 € X, ik € Loc and suppose that hoth evenl{r) i-=-k event{z) and
puent(y) i~k event{z). Then, () 4 [t] = (¥) 4 [i].

Assume the claim, Then, (ua) 4 [i] = (vl 2) 4 [t} = (1) 4[], thus violating the
stutter-free condition. But A s given to be stutter-free, henee we get a contradiction, thus
proving the proposition.

Proof of claim: Suppose event(r) i--k event(z). Then, there is an r € £* such that

rll k, cvent(z) = event(r) and event(x) = event{r |l 1). Henee, from definition of

gyent, we have ('r']_l_d_ =(z) 4 and {z) 4 =(rl)y.
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Therefore, () 4 [{] = (r 1) 4 i] and using Proposition 5.10 we get (x) 4 [i] =
(r) 4 [i] = (2) 4 il
Arguing similarly, we have (y) 4 [f] = () 4 []. Therefore, (z) 4 [i] = (y) 4 [¢]. This

proves the claim and the proposition. =

Definition 5.14 A s four-alternation-free if for all i,k € Loc,a,c € ¥, \ Eu.b.d &
RE\NEiandre X, rlli=ra i lk=mb, rolli=ric, sk =rqd and iy b1 = rg)
implies (r5) 4 # (r) 4 -

The four in the definition is because i-transitions and k-transitions alternate four times in
the loop. (See Fig. 5.4).

This definition sayvs that a particular kind of “bad” loops are not present in a fonr-
alternation-free DSA. This characteristic of a DSA helps in syuthesizing a behaviour pre-

serving ACS as we will see in the next section.!

Proof: By definition of - | we have

=t

1. There is an r € X7 such that event{ua) = event(r |} 1), event(y) = event(r || k) and

rdiisa prefixof r il & Hence,
vk = {edl &), f_rm}A =(rl :]A ., and {y}A =(rli k). (1)

2, there is an " € X° such that event(y) = event(r' L &), event(u L ¢) = event(r" | i)

and ' || £ is a prefix of v |} 1. Hence,

rl k= (L lk (w) g =Lk gand(udbe) 4 =0 L) 4. (2)

We really do not have any intuition to offer as (o why anly “four” works. Vaguely, this seems to be
pnnected to some kind of minimal unfolding of the D5A necossary for the synthesis,
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Figure 5.1 When A is four-alternation-free, such loops are not present in A -
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r

Figure 5.5: The case u & # (v |} 1) I &.

Claim: w Il & 15 a prefix of v || 4.

Assume the claim. Then, w b &k = (w b #) I} & (recall the simple observation we

made about |}). Then,

(u) 4 [F] = {ud k)4 (K] from Proposition 5.7
={lulba) L k) 4 [k] by the claim
= (ud1)q [¥] from Proposition 5.7 again
= (r" |} 1) 4 [K] from (2) above
=((r" 4 1) b k) 4 [k} Proposition 3.7 yet again
={r" ) k) 4 [¥] from (2) above
= (1) 4 [¥] from {2) above

\nd thus we prove the proposition.
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Proof of claim: Suppose, v || £ is not a prefix of w L ¢. This implies (u |} 1) is a prefix of

wll & oor, i other words,
w3 = (wd kAl (3)
We show that this leads to a contradiction, See Fig. 5.5.

¢ Becanse of (3], u can be written as xcrqdiy, for some 2, € ¥ py € () 8,)", 15 €

(EV(EUEL)) where u b i =10 ¢ € By d € B \E5.

o Since v U} o = (r b k)i, we can write v L k as (r |} i) - 24d, for some 2, € (£ ¥;)" and
be A, by (1) above,

e Finally, since v |} & = (+' | i)k, we can write v’ |} { as (' J &) - 2se, for some x5 €

(2N B} and e & &, by (2) above.

(2y0) 4 = (1 d) i) A [rom item 1 above
= (r iy sinee event(u |} 1) = event (v |l )
= (r" Liksage) A from item 3 above,

}r (1) and (2) above, (rf k) 4 =(w Uk} g =(-" U k) 4 -

BTICE, W gE:"l'

[wie) g = (ridk-ase) 4 from inunediately preceding observation
= ((r 4 1= x4b) - x5e) 4 from item 2
= (({ua) xb)- T5C) 4 from (1) above

= (me- xod - Xan - 24l - w5c) 4 from item |

L ys = e and y = rye- rod - rge - ayb - se. Then what we have got here is

(W) 4 = (vs) 4 - (1)
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Also, one verifies that

Loylli=ae-aod-ogn-x4b - ose, since ¢ € ;. Let yy = 206 - 2ad - zga - 240 - 5.
2.y Y k=xi0 mpd - 35034, since b € Ty and 23 € (B\Ep)*. Let ys = myewad 250 14
3. ya 4 = mcxad - x3a, since a € E; and 24 € (EN\ E;)* Let y3 = 740 Tod - 13,
4wyl K =ay0-2ad, since d € Iy and 3 € (X \ E)". Let gy = 100 30,
5. Finallv, yy 4§ = 2ye = 5, since ¢ € &; and z; € () E;)".
But since A is four-alternation-free and gy and y; satisfy the assumptions of for

ﬂ}urualternatiml-fl'eeneais. (bl g # (4s) A - Hence, from (4) we get a contradiction. Thos we

settle the claim and hence the proposition. L]

5.3.3 From DSA to ACS

The idea belind introducing the properties of stutter-frecness and four-alternation-freeness is
t at DSA's with these properties [acilitate constraetion of equivalent ACS's. We demonstrate
this construction first. Then, given a regular language, we will show how to construct a
DSA with the above-mentioned properties, Thus we will get an ACS for the given regular
Janguage.

The following lemma establishes the required correspondence between DSA'S and

4CS’s over &,

Theorem 5.16 Lel A be a stutter-free and four-cllernation-free determomstic D5A on 2

Then, there emists an ACS M on' Y such that LA )= L{.-"ll_f }.

Proof: We first define some sets that will be used to construct the commit alphabet and

___ral states of the ACS

Definition 5.17 For £ Loe, 5, - {event(z) | € %2 J 1 = x}-
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The commit alphabet C is defined as follows: for all i € Loc, €; = 2° and A =; piff
\ D T8

Now we construct an ACS M = (M=o, Muy< fiyoo, fa > F) over {f, ) from
:.E DSA A as follows.

For each i € Loc, i-local TS M, = (0, =Y g') where
8.0=5,
o ¢° = event(c), and
o p—3;q iff there is a w € £° such that p = event(u |} 2) and g = event(ua | 1).
o Local assumption maps f; are defined as follows.
For every event(z) € @y, filevent(x))(J) = {evently I §) | event(y | ¢) = event(x) }

Lastly, the set of final states is defined to be
fi= {{event(z | 1),...,event(z L n)) | # € L(A )}

Let (M = (@, — (¢),--,¢%)), F) be the compatible product automaton of M

vhere () is the set of all compatible states. Since L{ﬂ} def L{.ﬁ, F), we show in the following

hat L(A ) = L(M, F),

Ve first observe some properties of the assumption maps.

1. Forall i € Loe. filevent(z))(1) = {cvent(z)}.

Proof: By construction, fi(event(2))(1) = {event(y I i) | event{y I 1) = event(w)} =

{event(r)}, because x |l i = x for event(r) € Q. ]

An immediate consequence is the following.
9, For all 4,5 € Loe, filevent{(z))(J) =, fi(event{y))(7) ifl event{y) € filevent(x})(1).

3, Forall i, j € Locand g € (),

filg) () = {p e @, | either p je-i g or g i-2-j p}.
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Proof: Let s € fi(g)(j). Then, there is an x € £ such that s = event(z || j) and
g = event(z | ¢). Since either = |} j < || 1 or vice-versa, we have either s j-b-i ¢ or

q 1--j s and hence s € RHS.

The other inclusion follows [rom the definition of assumption maps. ]
We now observe some properties of the compatible product.

1. Forall x € ¥, (event(z |} 1),...,event(x |} n)) is compatible.

Proof: We need to show that fi(event(z |} §))(7) =, filevent(z | j))(7) forall i, €
Loc. This is equivalent to showing event(x | j) € fi(event(z | 1))(j) (by the observa-

tion about assumption maps above).

By definition. fi(event(z |} 1))(J) = {event(y | j) | event(y | 1) = event{x |} 4)}.

Therefore, the property is proved by setting y to be T, =
2. Forallz € &, (event{z L 1),.. ., cevent(r I n))==(event(za { 1}, ..., cvent(za |} n)).

Proof: Notice first that the given states are compatible by the preceding result, One

just has to check that the asvochrony condition holds for the transition.

(a) For @ & locla), v bt = xa § ¢, hence, event(x ) 1) = event(xa | 1),

(b) From the definition of —, it directly follows that for all @ € lor{a),

cvent(x || 1) —event{xa |l 4). and we are done. m

In the light of the above, by a simple induction on the length of strings we get for
il z € B, (event(e), ... event(e)) == (event(z J 1), ... .cvent(x | n)).
These observations immediately give us the following lemma proving one direction

Theorem 5,10,
emma 5.18 L{A ) C L(M).

roof: Let v € L(A ). Then, (event(r |} 1),... event(r |l n)) € F by construction. Also.
im the observation above, event(e), ._.. coent(e)) == (event(x I 1), ... eventlr | n)).

nce, = € L(M).
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We now prove the more difficult direction, which uses the special properties of the given

DSA.
Lemma 5.19 L{M) C L(A ).

Proof: Let # € L(M)., Then there is a u € L(A ), such that there is a path
(event(e), .- ..event(e)) ==(event(u I} 1), ... event(u § n)).
Claim: ¥a € Y7, (evenit(e), ..., event(e))==>(event(z),. .. event(z,)) implies for all1 €
Loe, event(z) = event(x U i).

Assuming the elaim, for all i € Loc, event(x | 1) = event{u | ). This implies for
ali e Loe, (xbi)q4 = (ud1)q, and hence (x) g [f] = (u) 4 [l So (=) q = (u)a-
\This meaus that both = and u lead to the same state in A4 . Since u € L{A ), and A is
deterministic, (u) 4 € F' 4 . Therefore. (x) 4 € Fy which means x € L{A).
Proof of claim: The proof is by induction on |x|. The base case is trivial. Assume that
the claim holds for all strings of length & Take & = yo.

Suppose (event(e), .. .. event(e)) = (event(z,),. .., event(z,)). Then there is astate
_{ﬁumi{mj, oceventliy,)) € Q such that

(eventl(e), . ..cvent(e))==(event(m), ... cvent(y,)). and

(event(y ). .-, event{y,))——{event(z1), ... event{z, 1.

By induction hypothesis

event(y,) = event{y 4 1) for all 1 € Loc (5)
We have to show that event(z;) = event(ya |} i) for all ¢ € Loc.
Case 1: ¢ € loc(a). Then, event(z,) = event(y | 1), by asynchrony and induction hy pothe-
sis. Since event(y |l 1) = event(ya | i) for ¢ € loe(a), we are done.

Case 2: 1 © loc(a). Since ya il i = ya, we have to show event(z,) = event | ya).

[ ;
By asyvnchrony, for all § € loc(a), event(y;) 24, event(z). Hence, from the con-
ruction of ——, we have, for all j € loc(a) a u, € £* such that

cvent(y | j) = event(u; |} ), and (6)

=[
——

cvent(u;u) = ewvent(z;). {
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So it suffices to show that event(u;a) = event(ya). From the definition of event, it

suffices to show that (u;) 4 = (y) 4 or equivalently,

]_[m show) for all k € Lo, (i) 4 [F] = (4) 4 iﬁr]—l

We do this separately for two cases: k ¢ loe{n) and k € loc(a).

Let k € loc(a). Because the state {evem‘.[z;]....,mmn..!{z,l]} is compatible, event{z;) €
fi(event(z;))(1). Hence, by (7). event(w,a) € filevent(uga))(i).

From the property of assumption maps, it follows that either
event(wa) i-o-k event(uga) or event(upa) k-r-i event (wa).

In both the cases, from Prop. 5.11. (u) g = (ue) 4 - Hence (1) 4 [k] = (ux) 4 (K]

By (6) and using Proposition 5.7 we get, for all m € loc(a), () 4[] = (W) 4 [rml.
Therefore, (1,) 4 [K] = (1) 4 [k,
Now, let k & loe(a).

1. By compatibility of (event{z). cevent{za )V, event(z) € filevent(z)) 1)

Therefore, by Property of assumption maps,

[either eveni(z,) ook event(zi) orevent(zg) k=i event(z, ).

2. By compatibility of (event(y ... cevent(ua)), evently,) € Ffelevent(ye)) ().

Therefore. by Property of assumption maps

[either event(y,) i-b-k event(zy) or event{zg) k-t event{y)).

We consider the possible cases. Remember that we are considering the case when

i€ loc(a) and k &€ loc(a). Hence the following, event(z;) = eventlye).

Case event{zy) k-B-i event(z;) There is an # & 5 such that r 4.1 = event(s) =
Jgpent(r) and cvent{zg) = cuent(r | k).
From this and (7). we get event(ua) = event(z,) = cvent(r] and from asynchrony,

e pet cvent () = event{zg) = eventr k).
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Then

(g k] = Wi k) 4 [k] by Proposition 5.7
= () 4 K] by induction hypothesis (5)
= (ri k)4 [k] since event(yy) = event(r § k)
= (r) 4 [K] by Proposition 5.7

= (wa) 4 [K]  since cvent(uia) = event (1)

(ue) 4 [K] since k & loc(a),

which is the required result,

Case event(z;) i-b-k event(z;) and event(y,) i->-k event(z:):

By (7), evenit(z,) = event(u;a) and by (5) and (6) we get event(y,) = eventlu, U 1).

Hence, for this case, event (1a) i--k event(z,) and eventiu, I} i) i-b-k event{zy).
Then, since we assume that A s stutter-free, by Prop. 5.13 this case is not possible.
Case event|z;) i->-k event{z;) and event|z;) k-t-i event(y;)

Recall that for the case under consideration{namely, © € locla). k & locla)),
o cvent(z;) = event(uw,a)(from (7)),
o cventlz;) = cvent(yg )by asynchrony) and
o coently,) = cvent{u, L i)(from (5) and (6]).

Heneo, event(ia) i-0-k event(ye) and event(yy) le-s-i event{u; b 1), Then, since the
DSA A is four-alternation-free, from Proposition 5.15, we have () 4 [K] = () 4 [k]. Then,
from (5), applving Proposition 3.7, we finally get () 4 [F] =) 4 [k].

Thus we have proved that for all locations & € Loe, () 4 (K] = (W) 4 [kl Thereby
we prove the claim and the lemma. m

Lemmas 5.18 and 5.19 prove Theorem 5.16.

Theorem 5.16 Let A be o stulter-free and Jour-alternation-free determunistic DSA o B

Then, there exists an ACS M oon S such that LiA )= L(.-'l_f].
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5.3.4 Regular languages and DSA

Because of Theorem 5.16, in order to show that ACS's over 5 characterize the class of all

regular languages over X, it suffices to prove the following theorem.

Theorem 5.20 Let the class of determunistic DSA's over T that are stutter-free and four-

alternation-free be denoted as FDSA. Then L(FDSAg Regs-.

E) N
Proof: Since the global automaton of a DSA (hence that of an FDSA) is a finite state
automaton over ¥, languages accepted by DSA’s are regular over ¥, Thus we get the easy
direction.

For the other direction, let L € Regy. We construet a deterministic FDSA A 3

such that L{4A ) = L and 4 has the required properties.

Definition 5.21 (A labeling scheme) Let {1 X° — (Loc x Loc — {0,1,2}) be a labehng
function defined inductively as follows: I(r) W0 where C (i.4) = 0 for every i, j € Loc. Let
() = . Then [{za) W o where
C(t,7) Vi ¢ locia)
Cli)=1¢ 0 Yi, 4 € locl{a), and
(Cj. 1)+ 1) mod 3 Wi elocla), ) & lacia).

(When for some x € £, I(x) = €. we use the notation €, to denote C(é, 7)),

Note that, by definition, {(z){z.7) = 0 for all & and @ £ Loc.

- ; ] ; 0 0 0 1
Example Let © = {{a, e}, {b.e}}. Then, le) = Cla) = cidl{ee] =
00 Y
(0 1 0 n u o
JAlab) = Alaba) = ,Hlabab) =
0 0 20 20 1 0

Proposition 5.22 For all 7 € ¥*. 0,y € Loc, I{x)(z,7) = [z 4 1){e. j).

Proof: (by induction on |x})
When « = ¢, {{x)(i,5) = e)(e.4) = {a )i, 7). Suppose r = ya. By induction

hypothesis, for all 2, 3 € Loe, Uy}, 7) =y 4 2) (s, 5]
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Case o € £;:. £ = x |} i and hence the proposition holds.
Case a & ¥,;:. By definition of I, ({y)(,7) = Wya)(i,§) = Hx)(i,5). Since yhi=yal1=
r | 7, using induction hypothesis we have [(x) (4, 7) = Uy) (2, 7) = ((y 4 )i, 7) = Lz o) (2 7)-

]
Proposition 5.23 If z |l j is a proper prefiz of x b1 then {(x)(4. j) = l{x) (), 1) + 1 mod 3.

Proof: By the preceding result, {(x)(1, ) = ((x 4 9)(3,4) and [(x)(5,0) = l{z § i) i). By
the given condition, = i = (x Il j) ua, for some @ € (3X;\X;) and u € &* such that u [f=¢

Hence, o {7 = (x{} 7-u) Il 7. Then from previous observation we can derive:

Hax)(e,3) = Uz di)(e )
= [{x i j-u)(j, 1)+ 1 mod3
= (x4 j-u) Y j)i.z)+ 1 mod3
= Uz ¥ 50 4) +1 mod 3
= )} i) +1 mod 3
L
Let L e a regular language over ¥, We define the following relations on X" It can

be easily checked that these are equivalence relations of finite index.

el

i}eﬁnitiﬂn 5.24 Leta\L = {ye B |zy € L), Foralli € Loc, 2=y off 12 4 1) =y § i)
and (x b ONL =y i\ L

Lemma 5.25 If (for all v,y € ¥° and for all i € Loc, =) then \L = y\L.

%Proof: Case r = ¢ and y = e: Lemma holds trivially,

Lﬂase r=r¢and y# e Let j & loc(last(y)). Thenyl j =y Alsox 7 =€ = 2. By the
assumption of the lemma, r=,y. By definition of =;, ¥\L = y\ L.

ﬁ_ase o+ ¢ and y # ; Consider the following claim.

Claim: Let .y be non-cmpty strings over X such that for allk € Loca=y. Let last(x) = o

and last(y) = b. Then loc(a) N loc(b) # 0.



Assuming the claim, there is a & € Loc such that k € loc{last(x)) N loc(last(y)).
Hence, x  k = = and y 4 & = y. Then, since z=,y (by the antecedent of the lemma), by
definition of =;, then, #\L = ¢\ L.
Proof of claim: Suppose loc(a) M loc(h) = 0. Take 1 € loc(a) and j € loc(h). Then,
sdi=zand yllj=w Let x { j = and y |} + = ¢'. By our assumption, ='(resp y') is a
proper prefix of z{resp. y).

Since =y l(x) = Hx b i) = ly I 7) = Iy"). Let l{z) = € = [{y'). Then, by
‘Proposition 5.23, I(y) = €, where O, = Cy; + | mod 3.
Further, since r=;y.[(x") = {{z 4 j) = Uy U 7) = Hy). Now [(z') = C" = (y).
Again, by Proposition 5.23, Cy; = €, + 1 mod 3,
From the previous paragraph, we then get, Oy = Cy; + 2 mod 3, which is a contra-
diction. Thus we prove the claim and the lemima. =]

The labeling above is so designed as to construct a DSA that is four-alternation-free,

In order to ensure that the DSA is also stutter-free, we introduce an obvious notian as below.

Definition 5.26 (i-parity) Define (-parity: ©° — {0,1} as: for all v € ©°,

i-purity(z) o Le[E] mod 2.

For example, let ¥ = {{a.¢}. {b,e}}. Then, l-parity(a) = 1, 2-parity(bub) = 0 and
.':;: tity(abah) = (0,
The following proposition regarding ¢-parity of strings follows easily from the deti-

nition of 1L

_:pusitinn 5.27 For all x € £* und 1 € Loe, t-paritylx) = t-parily(x |l t). Therefore. for

all i ¢ loc(a). 1-partty(x) = 1-parity(ra).

Now we define, for cach 7 € Loe, equivalenee classes that are to be the local states

of the DSA.

Definition 5.28 For all o,y e £'0 € Locoa~y iff v=iy and i-parityle) = t-parity(y).
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Let [z]; denote the equivalence class under ~; containing .

The following results follow directly from definition of ~; and from Lemma 5.25

Corollary 5.29 1, [zal, = [z], for all i & loc{a).
2. If (for all z,y € £* and for all i € Loc, z~y) then 2\ L = y\L.

The local automata of the constructed DSA A are defined as A; = (Q,, — .4, 87).
where @, = {[o]s | = € £}, ¢ = ([d:,0) and —s; = {([el . |za)y) | = € £}, Finally,
A = (4,42, ... Ay, — a4, F), where
— = {(([2]1, [2]2, - - .o [2])s @, ([ady, [ma)s, . - ., [20]a)) | £ € £7} and

P~ (el b (o) | € L)

5.3.5 Properties of the constructed DSA A

1. We observe that by construction, — , is deterministic.
2. A is stutter-free.

Proof: Suppose p—,g. We need to show that for all ¢ € loc(a). pli] # glzl.

By our construction, there is an o € X° such that p = ([x]y, [x]s, ..., [z];) and
= ([za)y, [waly, . .., [xal,). Forall i € loc(a). i-parity(z) # i-paritv(ra), hence [z], # |zal,:
herefore, pli] # qlil: =

3. A is four-alternation-free,
Proof: Let r € X° be such that v} ¢ = o, vy bk =reb, g b2 = rze. iy bk = ryd and
it = r5 Further, let a,c € X, \Ep and b.d € B, \ X, We show that (r5) 4 # (r) 4
which shows A4 is four-alternation-free.

We show that [(r)(i. k) # 1{rs)(2, k), which gives us the result. Let {(rs)(e. &) =

cmod 3. We know that for all x € £*.4,5 € Loe, [{x)(1,7) = l{z L i)(z, ). We repeatedly
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nse this observation below,

Hra)(i k) =1ry 4 1)(5,K)

= {{rs) (1, k) assumption

= ¢ mod 3 say
U(rs)(kyi) = L(rs 4 k) (ky)

= [{ryd)(k, 1) assumption

= (Hra)(i, k) + 1) nod 3 since d € £\ &,
=(c+ 1) mod 3
(o) k) = s 4 D)3, )
= rac)(s, k) assumption
= (I{rs} (k) + 1) mod 3 since c€ X, \ g
= (c+2) mad 3
o)k a) =1 4 ) (k1)
= I{rab) (k. 1) assumption
= (Hra)(t, k) + 1) mod 3 since b e X\ X,
= ¢ mod
Hedick) =1r 41)(i, k)
= {{rya)(i. k) assumption
= ({{r)(k8)+ 1) mod 3 since o € X, By

=({e+ 1) mod 3

Hence, {{rs)(¢, k) # Hr)(i. k). as required. u

Lemma 5.30 ¥z € £ : (([e]1s 0): ([€2, 0)s s (e]ns O0)=2 2l ]y [2)os - - o [,

Proof: By the construction, — , is deterministic and by Corollary 5.29.1 — , satislies the

Lasynehrony property, Hence we get the result by induction on |r|. |

The following proposition now gives us the required conclusion.
Proposition 5.31 L(A ) = L.
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Proof: (2): Let x € L. Then, by the previous lemma

(elu leler - oo [en)=alleh oo [la) € F

Hence r € L(A ).
(C): Let = € L(A ). Then, ([z],.[z]z,...,[2]) € F". This implies

(lz]y. [= lT]n} = (ly]u: ()22 = [14]0)

for some y = L.
By Corollary 5.29.2, 2\L = y\L. Sosince y € L, r € L. ]

Example Let © = {{a},{b}}. In Fig. 5.6 we construct a DSA for the language (ab)*. The

i-equivalences are computed from the table.

@ ) [ l—parit}-'[.?'}l Y , I{y) | 2-parity(y)
0 | 00
r le) = ( _ ) 0 3 le) = ( j 0
0 u 0 o
( 1 ) ( n 1
fl Ha) = 1 al l{ab) = L
0 o 2
( 00 | , ( 00 )
aba [{aba) = ] (ab)® | {{{ab)) = ()
L 2 ﬁfl 1 1 /
E ( 0 2 \ , 2
{ab)e | H{{ab)*a) = 1 (ab)® | H{{ah)*) = 1
||\ 10 / {1
. ; (0 1) I
(ab)ta | {({ab)'a) = i (ab)* | H{{ab)t) = [l
|\ oou / 2 g
(0 0 _ 0
(ab)'a | {({ab)'a) = | (ab)™ | L{ab)®) = |
\ 2 0/ 0
: I ] . (n )
(ab)'n | H{{ab)"a) = 0 (ab)® | I{{ab)?) = ()
\ 1 (l
: ; [ l - {
(ab)'a | {((ab)a) = 1 (ab)™ | {({ab)") = I
\ 0 o 2
So, @1 = {[eli}w {[(ab)™a]; | m < 5}, and Qs = {[ea} U {|{nb e | m < 6}
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(le]ss [e]2)

(la]u. la]a) =—— ([(aB)"]s- [(aB)"2)
ll} T Iy
lﬂﬁlllﬂﬂ] {[(ﬂb}ﬁﬂhT[{ﬂf’}aﬂ]z}
([abaly, [aba]s) ([(a)®]1, [(ab)?]2)
b i
[m.mﬁ]l‘L [(eeh)*a) ([{ab)'a T{Enh )
([(ab)?a];, [(ab)?al,) ([(ab)']), [(ab)']s)
lb K

([(ab]®]y. [(ab)?]2) S SR ([(ab)Paly, [(ab)tal)

(aby™ L L= (ab)™ 'a
(ad)™ L2 = (ab)™
{ab)™a L1 = (ab)™a
(wb)™a |2 = (ab)™

Figure 5.6: A DSA for the language (ab)”.
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5.4 Compatible shuffle and Kleene’s theorem

A product operation on finite state automata corresponds to a shuffle operation on regular
languages. Thus we can ask, what manner of shuffle corresponds to the compatible product of
automata with assumption and commitment on states? We first answer this question below,
and then present a distributed version of Kleene's theorem. For this section, fix a distributed
alphabet £ = (¥,....%,) and a finite commit alphabet ¢. Recall that & %= {¢: Loc— C
| ¥i € Lo, (i) € C;}. Since each C, is finite, || is finite.

Note that in AC-transition systems local transitions are labelled by letters from the
local alphabet, but the product of these TS's crucially depends on the assumptions and
commitnients assigned to local states through assumption maps. Hence, if we want to have
a shuffle operation corresponding to the product, local languages must encode assumptions
and commitments, Then the shufle operation on these languages should generate strings

over ¥ from local ones by using this information.

5.4.1 Extending alphabets

In order to bring assnmptions and commitments into languages over distributed alphabets,
we extend any given alphabet using assumption maps so that we have actions of the form
< a.¢ > where ¢ € ¢, Notice that these definitions differ from similar-looking ones in case

of AT-syvstems of Chapter 4.

Definition 5.32 Guen a distributed alphabet, ¥ and o commit alphabet €. we define v
tended alphabets as follows:
e et

. ey ’ podef . . - . el —
i E e > | dE Ly g}, V= L& EByEr £ = U e

|+ 1 gy

=

5.4.2 Compatible shuffle of strings

We want to deline n-way shuffle for strings x,,+ -+, 2, where z;, € £°* i € Loc. By their
A L= Ly L e [ 1 T
structure, pach 7, has an assumption map at every point essentially denoting the assumptions

of the local state corresponding to ;. Hence, plobally, at every point one has n assumption
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maps, one for each string, denoting a global state, For a valid shuffle of the given strings,

the global states that occur at each point have to be compatible, In terms of strings, the

callection of Tocal assumption maps have to be compatible.
Let = denote the set of all possible assumption-commitment tuples for all the agents
in the system. Formally, = = {£ | § = Loc — ®}. For any i,j € Loc, £(1) is an assump-

tion map, and £(1})(3) € C; 15 s assumption about j. We speak of £ as an assurnption

prTOTLTienL,

Definition 5.33 Let £ € =. &£ s said to be feasible iff V i,j € Loc, €(1)(7) =5 E(7)(2).

Definition 5.34 ¥* ={<e > |a€X und € =}

We use 7, §,... to denote strings over Y= which, intuitively, stand for sequences of global
statos. Since our goal is to establish a correspondence hetween the global strings and the
mins of a compatible produet antomaton. Naturallv. the strings can not be arbitrary. They

have to somehow capture the compatibility condition internally. We call these strings good.

Formally,

Definition 5.35 Lel F =< a, & >< ap,8 =, -0 = ap, & >€ £ Then, T is good w.r.L.

an initial environment &y off
[ forall 1 <1<k, forall ) & loclar), Eqlf) = &l4), and

2 forall0 <! < ko & 15 feasible.

By this definition. ¢ is good w.r.t. some initial environment £ if £ is feasible.
Now we define the notion of when strings over local alphabets can generate global
strings. For this we will need two kinds of projection maps. The first is the commmt erasure
lef

map: o @ X0 — 37 defined as al(< @yt > -0 < g, 0 >) = a0 We nse o as a

commit erasure map on strings over £ as well since there is no scope of confusion here.




The second projection map is the component projection map: T: (E5* % Log) —+ X&'

defined by:
3 ite=-=¢
ETE == ETI' ff=g <af>andi g loc(a), and
(§Ti)- < a,€() > if #=F < a,&> and i € loc(a).

Recall that [ is the component projection map: [z {Bx Log) = £° defined as:

3 i =
efi=4 y[i ~ ifz=yeandig loc(a), and

(y[)-a Hz=y-aand1 € loc{a).

Definition 5.36 A siring T € X7 15 called @ witness for 2 € &' under { € = if & s good

wr.l. & and o(F) = 1.

Let @, € =7, 1€ {l,...n}. A string @ € * s said fo be generated by

(21,890 -1 Ln) under £ if there 15 a witness T for @ under £ such that for all i€ Loc,a; = E[1.

Notice that when @ € £* is generated by (iyoitingees B under & #[t = a{x, ). This

is hecause, alr) = o(F]i) = olz)[i = x[1.
We now define the compatible shuffle of languages over local extended alphabets

using the definition of generation.

Definition 5.37 For all 1 € Lo, let L, € B, and let £ € =  We define the n-ary

compatible shuffle of these languages wnder the assummplion environment £ by

(Lq|lLall - Ln)e o lw e B | x 18 generated by a tuple (2,22, cx,) under £,
where for all e, r, € L}
We are interested in the compatible shuflle of regular languages over the local al-
g B

habets. So we define the following rlass of langnages.
p o - 5

Definition 5.38 Let L(AC — shuf fle)g denole the least class that includes the set {L €

T | for some comanat alphabet C, there exist regular languages L, X8 such that

L=Ly||... || La} and is closed wnder union.
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5.4.3 ACS’s and commitment structure

There is a fairly obvious association between states and runs of an ACS and good strings
over £=, We make it explicit in the following. Let M= (M Mooy Mgy feyves o fa 80

be an ACS and M = (Q, —, < g}, - +.qf >.F) be the compatible product of A

Definition 5.39 Let (g, - .qn) € . Then, envi{g),- -, qa) f E, where £(1) = filg:), for
all ¢ € Loc,

Let (g1, ++,qn) be a compatible state and £ = env(q, -+, gn). Then £ is [easi-
ble. This is becanse of the following reason. Since (gy,- -+, ¢u) 15 compatible. for all .y €
Loe, fila)(5) =; filg;}(7). Then by the construction, for all 4.7 € Loec, £(i)(7) =; &7 (7).
This implies feasibility of £.

We can associate strings over £°° with runs of M in a canonical fashion, Fix
o= Hptipes stk A0A 2 200 = (0% 00 0?00 v en il Y soe % (GFnse-00) o0 210 M,
Define c{p) =< a1.& > ... < ap, & > D by: for 1< <k, & =envlgt, ... )

Note that when & = 0, that is, when © = ¢, ¢(p) = ¢. The initial environment

associated with the run is defined as env((gy.-+-, g, )). Note that envigy,---, ¢ ) 15 a feasible
assumption environment{because (g« -, g,) 15 compatible. )
Proposition 5.40 Let p be a runin (g ) —=(p1, -+ pa). Then, c(p) 15 a witness for

rounder envligy, - i)

Proof: By definition, af{e(p)) = r Hence it suffices to show that efp) is good wort.

ey, ).

Let the run pbe < gl --ooql = =5 (glooogl) oo =5 (gf oo gf)
Fix { such that | <! < k. For all 7 & foc(a), r;j_f = j by asvnchrony. Hence, by

definition of e(p), &-1(j) = f(a}™") = fi{a}) = &),
Also, since all the states on the run are compatible, as we have observed before,
the assigned assumption environments are feasible. This proves that o(p) is good w.rt.

ent{ gy, st »



The above propositions give us an important result regarding runs in the product

and their projections.

Proposition 5.41 Let p denote a run (ql,-f-,qnj:ﬂ»{pl, oo Pl T M. Then for all i €
Loc, there exist @; € TF7 such that qtzl.:-‘fp,- and T is generated by the tuple (x1, 24, Tn)

under em’[fjh ey

Proof: By the previous proposition e(p) is a witness for @ under env(gy,--.q,). Take

@ = cl:,r:-]TvZ: for all i € Loe. Then, r is generated by the tuple (@, a,-- 7,) under

envlgr. -+ . 4n). From the definition of [ and —=F, one can carry out an induction argument
I,

on the length of = to show that g;=—{p:- =

Proposition 5.42 Let ¥ =< a;,§ >< 03,8 >, < ag, £ >€ T be good wrt. & =

z{r _
env(gy, - gn) such that g=—>%p;. Then, &.(i) = fi(py). (Since &y is feasible this implies that

(pi. -+ pu) ts compatible. )

Proof: Let | be the last z-action in 2. [f{ = 0 (meaning #[7 is empty), then p, = g, and by

goodness of T, £(1) = Lul(1) = filp:).
¥ < apfli) > -

If { # 0, then there is an r; € @, such that ¢==5; —f p, where i =

yo < an&(t) > Henece, fi(p) = &li). By goodness of I, 1) = £ili). Therefore.

filp:) = Ex(i) and we are done. =

A : " T,
Proposition 5.43 Supposer € ¥° and for alli € Loc, there exst x;p € X7 such that g =7
g, and 15 generated by the tuple (o, za.--- 7y) under envigy - qn). Then (gy. -0yl

=5 (py.ooe o pa) 1N M.

Proof: (by induction on length of z) The assumptions of the claim are rephrased as follows:

b

I.I. bl
there exist @, € ¥°' such that ¢ =>¢ p; and there exists a witness ¥ € X5 of x uncder

envlqy, - o) such that 5[ = x;. We have to show that (gi.- - ga) === (pr, -+, pa). Note
that since ¥ is good wort, envlg, -+, ¢a). (g, ¢u) 15 compatible from the definition of
sooduess. From Proposition 542 (pp.-o-. pa) 18 also compatible. Hence both (g, 00)

and (py, -, py) are in A
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Let r = ¢. Then the witness ¥ must be € since o(Z) = x. This implies, for all 1 € Loc
r; = ¢. Hence, g; = p; for all i. Then, it is obvious that (g1, ---,44) = (p1,- -, ).

For the induction step, let © = ya. Then the witness T for = must be of the form
F=7 <a€ >, where a(fj) = y. Since T is a witness under env(qy, - - -, q,) it is good w.r.t,
envlg), --,qn). Hence, § must also be good w.r.t enw(g,---,q,). Therefore, j is a witness
of y under envlgy,---,g.). Let gﬁi = y; for all i € Loe. Then, i is generated by (- -, 1)

under enviqy, -+, ga ).

It is given that for all { € Loe, ETI' = r;. Hence for every i & loc(a), z, = E[i = ETa =

y; and for every ¢ € locla), =; = y- < a,E(1) >.

Iy i
It is also given that for all + € Loe, ¢;=={p;. Hence, for all i & loc(a), g,=-{p; and
, v <afi)>
for all © € locla), there is an r; € @, such that g;={r; —¢ p;. Therefore. fi(p;) = &(z).

Sinee we have:

¥
1. for all + & loc(a), gq=—ip; and
th
2. for all i € locla), =51y,
by induction hypothesis, (g1, ) ==>{5,, -, &), whete for i & loela), 5, = p, and for

& loela) & = .

il Ly

)
By asynchrony, from the fact that for i € locla), s, = r;, —% p,. it follows that

(51, sl —= (1, - -, pa). Therefore, finally, (g1, g )==>{p1, <= <. pu), as required. E

5.4.4 Equivalence of AC-Shuflle and AC-systems

In the following, we establish a correspondence between AC-shuffle of languages over %Y

T

and languages accepted by ACS’s, Note that the local automata are over .. How does

-1

one relate languages over XY and local automata over £,7 This is simple: since the states

are annotated with assumption maps from @, we take these into account(like in a Moore

machine) alongwith the labels of transition so that languages accepted by local antomata
+ y a s . RS . \

are actnally over £ For example, if go—,0: —272, o is the initial state and ¢, is the final

state, then we sayv that this is an accepting path for < ay, filgn) > - < wa, filgs) =

FET



Since the local automata are FSA's, languages thus accepted by these are regular
over B9, But, is the reverse true? In other words, for any regular language L over ¥7, is
there an AC-automaton over ¥, that accepts L7 We show in the following that this is indeed

the case.

We first define the language acceptance(in the above sense) of AC-automata. Let
(M; = (Q,.—,¢Y), fi) be an AC-transition system over X, We transform M, into a TS
M! = (@), —%,¢°°) over X¢ where, F = @,, ¢ = ¢ and —¢ T Qf x Tf x Qf is defined as

<A
follows: p—sSq iff p—+,¢ and ¢ = f;(g). This one step transition can be extended to —{

for strings from 2I°.

Then given an AC-automaton ((M,, f;), IV}, we define
LM f), Fo) & LM, F).

Proposition 5.44 L € Regve iff there is an AC-automaton (M, F) over X, such thot
=T
L = L (M, F).

Proof: One direction of the proof follows immediately from the defimtion ol L.
For the other direction, suppose L € Regse. Since L is regular over 25, there exist
! |
some FSA (A = (Q, —+,¢"), F) such that L = L{A, F).
Note that in this FSA, two transitions with different assumption maps may he
pointing to the same state. So we refine the states so that transitions that point to a state
have the same assumption map. This 15 possible beeause the number of assumption maps 15

finmite. We do this as follows.
Define the AC-automaton (M, f), () as follows. Let Af = (P, ==, p") where,
o P={¢"}u | {(g.a)| thereis a transition p 28 in Al

|J‘._Q

& I|IIP e [jl'“,

cy =g, ) ifl p'm—'ﬂ;q and @ = @, and

L
r—
=

]

for all states (p, o), f{(p.@)) = @.



Finally, G = {(p,d)|p € F}-

In order to check that L, ((M, f).G) = L, we transform M in to the following TS

(M* = (@°—*, g™, F¢) over £, where

o Q‘::Q!

s tjilj:.-l'l- s p{I:

Ll e
o (p.dy) —" (g, da) il (p, d1)==(q. d2) and & = f((g,¢2)) = 2.

e Finally, ¢ = G.

Since, by definition, L, (M, G) = L{M*, F9), it suffices to show that L{M, F7) =
L{A. F).

We note that M! simulates A via © where ©((p,¢)) = p and ©(g") = ¢ and
F' = {{p. &) | &(p.p)) = p € F}. Then by simulation theorem, we get the language equality
ated henee the proofl. o

We prove the following proposition which is used later to show that languages ob-

tained hv Al-systems and shuffie coincide,

Proposition 5.45 Suppese, for all 1 € Loc. L, = L ((M;, fi), £5). Take an AC-system

M= (M Moo oo Muo € fioooe fn 5 Wiz poe £5) wiith the wnitial state (g7, ---,q,). Let &

denote env(g, -+ ). Then L{AM) = (|| L))
| I

Proof: { D:) Let = € L(M). Then there is a final state (g ,-+-.q¢f) € Hepo B
such that (gf.- -, ¢2)== {q].---.t,r;fj. By Proposition 5,41, there exist @, & 557 such that
:;?—'f‘»;'f,l,f and ris generated by the tuple (&, 0, - -, 2,) under § = envlgy, - -, qb). Sinee

el {ﬁlr is in F, cach r; is in L,. Hence by definition of shuffle, » € (|| L,)g,. Therefove,

LMY € (|| Li)e

(2:) Let € (|| Li)e,- By definition, there exist @, € 97 such that x, € L, and r is

apnerated by the tuple (@, 20, - ) under &,
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Since x; € Ly, for all 1 € Loe, there is some q{ € I such that q?=1f:-fq;r. By Propo-
sition 5.43 we have (¢¥,---,¢®)==(fi;-. . fu) € icpocFi). Hence x € L{ﬁ] Therefore,
(I L)y € L{M). m

We state the main theorem connecting AC-shuffle and languages accepted by AC-

systems,
Theorem 5.46 L{AC-Shuf fleg) = Regr = L{ACSS).

Proof: Consider L € E[.LIC.S',;,], Then L = L[ﬂ_f] for some ACS M = (M, Mayoony My,

< fi,v+. fu > F). One can then write L as L = U E{ﬁ,?f} where _nﬁqr = (Moo Ma),
grEF
2 Fyese fu 2 lod ). Tet f = I[(_.r{,grir,_---Tq;'I] and L; = Lm({_-’tf”f,},{q;}}. By the

previous proposition there is an assumption environment & such that L(:ﬁq;] = (]| Lilgse
This places L{;ﬁq;] in E(.&l(.-*—.‘:‘h:ufﬂei], Then, since C{AC-Shuf fleg) is closed under
union, L also is placed in it. -

Let L = (|| Li)g,. We show that L € Rege. Since L;'s are regular over ¥ by
Proposition 5.44. there are AC-automata ((M,. f), F}) such that L, = L, ((M, i), ;). By
Proposition 5.45, the ACS M = (M- My < fiiooo fa = Higpeed')) accepts L. Since M
is an FA over ¥, L € Regy. Since any language in .-"U:‘—:;lmiilu,i is either an AC-shuffle or a

nnion of AC-shuffe languages, I:[:'\{'f-:-11111mu§,] C Rege. m

5.4.5 A syntax for ACS’s and a Kleene theorem

We now consider the question of syntax for languages in £{ACSz). The syntax is given i
two layers, one for “local’ expressions and another for parallel composition. Fix a distributed

alphabet ¥, a comimit alphabet C, and the associated extended alphabet.
4 1 |

ACGREG; = 0| <a.¢>€Xf |p+q | pg|p

ACREG = (|, )&t € ACREG;, £€Z

The semantics of these expressions is given as follows: for each 1 € Loc, we have a

map [|, : ACREG; — 9%y and globally a map [| ¢ ACREG -+ 2%, These maps are defined
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by structural induetion;

. [0]=0.

[<a,6 =], ={<ae=}

lp + al; = [p]; U lgl;
[pial; = [pl; - lal;-

] = (lpl)".

i

(R e S e (o P 2 P e N R P

|B) + Ry] = [Ri] U [Rsl.

Thus, the ACREG, expressions give languages over 5 and then ACREG expres-
sions are given semantics via AC-shuffle of these local languages and their umons.

The class of regular languages generated by the ACHEG expressions is denoted as
L{ACREG). Formally, L{ACREG)gs = {L T &*
an It € ACREG over ¢ such that Lu— [}

for some commit alphabet C, there is

Then. from the semanties and Theorem 5.46, we eel the following characterization.

Theorem 547 L(ACS)s = L{ACREG)s = Regr.

5.5 A different syntax

The svutax presented above is not entirely satisfactory, since every expression in the language
necessarily involves assumptions and commitments, Typically we wish to make assuniptions
only at some control points rather than at all control points, Moreover, the § parameter in
the parallel composition operator is awkward. As it turns out, these are not serious problents.
Eonsider the modified syntax (where FACREG stands for assumptions and commitments

aceurring “free’ within expressions):
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FACREG, :=0|ac X |o€®|p+q|pma|p
FACREG == || 72|l -+ || ra.ri € FACREG, | Ry + Ry, R; € FACREG

We wish to map FACREG; expressions via a function (}; to languages over ¥ so
that at the global level, FACREG expressions can be given semantics by AC-shuffle of local
languages as before.

Natural semantics of FACREG; (call the semantic function [],) expressions pive
regular languages over ¥ U @, We translate these langnages to languages over LY in some
svstematic way, preserving regularity.

We describe a translation scheme that uniformly translates each string of the given
language. We illustrate this with a running example to make the basic ideas clear. Let
T = @ daaagdaay € (EU D). The basic idea is to first convert every string over (LU Ui

to one where the letters and assumption maps alternate,

1. if there are consecutive letters we insert a | in between them. Thus we translate © 1o

fryary gt L 03Py,

9 if there are consecutive AssUmMprion maps then retain only the last one in the sequence.

Thus we get aydaay Lagdaiy.

3. ensure that there is an assumption map at the beginning and at the and. 1f there are

not anv, we put L. Thus, we get Lagdeag La; ity L.
} I 5 allg by 00y

4 from the first letter onwards, pair up consecutive letter and assumption map. hus,

finally, L+ < ap,0s >-<op L > < ayty >+ < agl >
For some other examples see that,
1, aydady 15 translated to L <@ey = - < flgthy >,
2 sy is translated to Lo <ap. L > - < thy, Gy =, and

3. oy as 15 translated to g < o =0 < gk S
il ) L Ry} e



[t should be clear that this translation is actually a function. call it i such that
hoe (B, @) — @Y Also following the steps described above, one can show that h can
be expressed as a composition of homomorphisms, hence ki is itself a homomaorphism.

Suppose L C (ZUd)* is regular, Then, L' = (L) is a regular language over @ UL}
Moreover, since for any string in L', only the first element is in ¢ and |[®]| is finite, L' can be
expressed as | | @ - L), where L, is regular over £f.

el

Definition 5.48 Let r € FACREG,. Then, {r), ¥ h([+],).

1 e

Consider the languages ¢, - L;, i € Loc. The shuffle of these languages is given as:
(L || ﬂ Loy, e which is the AC-shuffle of the L;'s with the initial environment
{'}1)11 Y r!II"HJll'

The FACREG expressions are now given semanties via AC-shufile.

Definition 5.49 Let R = {ri|- - FFTHJ € FACREG. Let also (r;}), = U thip L. Then,
e,

(R U g |7 T Lajidtory oo

_J,E['H!ELEN'.'
By the very definition, S(FACREGS) C L(ACREG &),

In order to show that the other inclusion also holds, we need to prove that for any
ACREG expression r. there is a FACREG expression r’ sucl that {r') = [rl,
From the wayv f s deseribed above, it is easy to see that the alphabetic homomaor-
phism o @ ¥ — (8, - @) defined as d(< a0 >) = ap suffices for the prool, because then
W -dir)) = ¢-x. We omit the monotonous technical details and summarize the result

Lielow,

Theorem 5.50 L(ACREG:) = LIFACREGS).



5.6 ACS’s for w-regular languages

Automata

Finite behaviour of ACS's is given via compatible product with a set of global final
states. A natural extension of this notion to capture infinite behaviour of ACS's is to have
a Muller acceptance condition with the compatible product.

Fix a distributed alphabet ST U E,) and a commit alphabet

C =% [Cyy =)y 7= (G =] >

Definition 5.51 An ACS with Muller condition(AC Sy, ) over I[L,{f} ts given by a tuple
_ﬁ - |:.'1|-Jr|. R .1'1L||rn, < fg,fg,‘ % ',fn :-'-‘,TL where

o for each i € Loe, (M;, fi) ts an AC-TS over ¥, C), and
o T C 9 where Q is the set of compatible globul states of M.

An infinite string x € ¥ 15 accepted by M if there ws an infiate run g one . al the

compatible product of M and @ set (G € T such that Inf{p) = G.

The class of languages accepted by these ACS’s is denoted as L{wAUSg).
Compatible shuffle of w-languages

The definitions of compatible shuffie of finite strings over ¢ (Section 5.4 directly
generalizes 1o those of infinite strings over 27 without any change whatsoever. Hence, we
use the same notation || to denote compatible shutfle of w-langnages over 5.

[hen L£{w-AC-shuffle) = denotes the least class that includes the set {L C ol
for some commit alphabet C. there exist w-regular languages L, C VY such that L =
Ly || o || L} and is closed ander union and complementation.

Syntax
The svntax is also a smooth generalization, wirroring the wav we construct ACREG

expressions. We now have three lavers:



ACREG; = ¢| <a,0>€ X5

| p+almaelp® pg€ ACREG,
WACREG; 1= peg¥ rs€ ACREG,

| Ry + Ry Ry, R; € wACREG,;
wACREG = (Ry||---|| Ra)e Ri€wACREG, and € € X1

| =X |Xi+X, X, Xi€ wACREG

Thus, at the local level, we have w-regular languages over extended alphabets and
at the global level we have parallel composition and their boolean combination. The seman-
tics for wACREG expressions is given by compatible shuffle of w-languages. The class of
languages accepted by ACREG expressions then is denoted as L(wACREG).

Discussion

The significant departure from the earlier svntax is that now we have a global
complementation operator. Lo the Anite case, we saw that the global union was only synbuctic
sugar and could be eliminated giving us only parallel compaosition at the global level. Even
the global complementation in that case conld be transformed into parallel composition. But
in the infinite case, such a transformation seems quite difficult. Thus, while the finite case
vielded to a completely local presentation (syntactically), this does not seem to be so in the

infinite case

Results

Since the definitions of automata, syntax and compatible shuffle generalize straight-
forwardly from the finite case, we now show that the results asserting their equivalence (in
terms of language acceptance) also generalize smoothly, We summarize the results i the

following, which essentially gives the lleene theorem for w-Regular languages.
Theorem 5.52 wRegy = LiwACSs) = L{w-A f-'-HJrIHﬁIti.]{_'. = L(wACREGS)-
5.6.1 Proof of the theorem

The proof of the theorem can be done in three stages as follows:
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1. whRegs = ﬁ{m.ﬁuGSf,}.

2. whRegy, = E{wiﬁﬂ—shufﬂe}\;.

L

3 E[Ldr.-”nf“-—ﬁhufﬁt'.}i == El:uu'-'LGHEGE}.

Lemma 5.53 wllegs = L(wACSs).

Proof: The inclusion E{;,'.%CSﬁJ C whegs follows easily because, if L is accepted by M
where M € ACS,y;., then L is af;tually accepted by the compatible product of M (which is
an FSA over ¥) with a Muller condition. Hence, L € wlegy.

For the other inclusion wffegs € E(u;_.h";C-S.’;;], let L € wlege, We know that there
15 a deterministic Muller automaton (N, T) such Ll;at. L= LN, T). We need to show that
there is a commit alphabet ¢ and an wACS on (fsif] such that it accepts L.

For this we use proof of Theorem 5.6 in Chapter 5 which essentially shows that there
isan ACS Af = (Moo Mo < fifa.ro oo fu =) such that the product M simulates N via
some ©. Lot @ be the ser of all compatible global states of AL

Using &, define T° = {F' C () | there exists £ € T such that ©(F") = F}. Then
by simulation theorem, L[_ﬁ,T'} = L(N,T) = L, Henee, the ACS M = (M, -+-, M,
< fiofaoooo fu =0 T aceepts L. This proves the inclusion and hence the lemma is proved.

|
Lemma 5.54 w-AC-shuflle C wlegy.

Proof: Let L & w-AC-shulfle and let L = (Ly || <=+ || La)er where L; are regular over Xf

3%
[t sufhices to show that L € wRege since wRegy is closed under boolean operations,

In the proof of Proposition 5:44 in Chapter 5. we showed that for a given L C© 257,
there s an AC-automaton (M, f) over &, such that L = L, ((M. ), F) for some set F ol
final states.

Wi observe that the construetion is, in fact, independent of acceptance conditions,
Henece, following that proof technigue, one can show here that for all L, € Y% there is an

S .

AC-automaton with Biichi condition ([M,, f,), B;) over £, such that L, = L.((M. ). 5,).
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For the proof of the lemma it is advantageous to have a slight variation of wACS’s.
This time we assign multiple Biichi conditions to the product. As observed in Section 2.5.1
of Chapter 2, automata with multiple Biichi conditions still accept only w regular languages.

We recall the definition as it applies to the compatible product of an ACS.

Definition 5.55 An ACS with multiple Biichi condition over (E,C) is given by a tuple
M= (M, =+, Mn, < f1, fa - Ju > {B1y- 1, Be}), where

1. for each i € Loe, (M, f;) ts an AC-TS over {E.,if}. and
2 B:CO,ie{l, -k}, where () is the set of compatible global states of M.

An infinite string © € ¥ is accepted by M if there is an infinite run p on x such

that for all i € {1,---,k}, Inf(p)n B; # 0.

Claim: Lot I, = LM B),i € {1,....n} where (M;, B;) are Biichi automata over
alphabets £F. Then, there is an ACS M with multiple Biichi conditions {G,,---. G, }such
that ( ]| Lide, = L{.-"i-j*. {Gy,-++,Gn}) = L, where & = env(g}.--+,g}).

Assuming the claim, we immediately get that L € wiegy and hence the lemma is
proved, pending the claim.
Proof of claim: Define M = (M, . M., < fisrooy fu =G, 5+, Gn}) where the global
Biichi conditions are G, = {{py, -+, pu) € Q | p, € B;}. Weshow that L = TN G o G0N

(2:) Let o € L{M). Then, there is a p on @ in the compatible product AT such thar

for all 1 € Loe, inf(p) NG, # W {

o

Recall how we assigned strings over ©= with runs of a product system in Section
- £ 1y % = A e | I i
543 Letaran p = (g%....¢%) = (g,-..,q)) .-« on some x € E* in M. Dehne

alp) =< a1 & B0 € T=W by: for 1 <1< k; & = enu(ghy .., a ).
Let =; = r'{;:}.i—-f, for all i & Loe. Then, each z; € L. It is obvious to see that
oli is a path on z, in M. With (8] it implies that i f{p,] N B, # . Therefore, for all

i e Loc.x; € L.
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Similar to the proof of Proposition 5.41, we can show that x is generated by

(1, -, 2n) under &. Hence, by definition of shuffle, x € ( || :L;)g,.

(C:) Let T € { ﬂ iLi)e,- By definition, for every i € Loc, there exist r, € ¢ such
that x; € L, and 7 is generated by (x,,---, x,) under &. Since z; € L;, for all 1 € Loe, there
is some path p, for x; in M, such that aef (p;) N B; # 0.

Then, one can construct a path p for = inductively from the set of paths py, -+, p,
in M such that p[i = p,. This construction is the same as in Proposition 5.43; it ensures
that il one starts from a compatible initial state, the very choice of x;’s ensure that one
steps through only compatible states and never gets stuck, But this implies that hence
inf(p) M G; £ 0 for all i € Loe. Hence x € L(M). Thus we prove the claim and the lemma.

m
Lemma 5.56 whqegy C w-AC-shuffle.

Proof: Let L € witegy. By Lemma 5.53, there is an ACS M with global Muller condilions
such that L = L{M. 7). Let the global Muller condition be T =< Fy,-- . Fr > where
F, C (). Then, one can rewrite the language accepted by A as a boolean combination
of wACSs each with a Biwehi condition. Further more, all the Biichi conditions are of

cardinality one,

Proposition 5.57 (McNaughton) Let (M. T) be an FSA with Muller condition T =
{Fy.- - Fy}. Then,

LIMT)= | (Mger LM {@}) N~ User, LM, {7}).
11k}

In the light of the above proposition, in order to express the given languages as
(boolean combination of ) compatible shuffle languages, it suffices to show that any language
accepted by an wACS with a Biichi condition of cardinality one can be expressed as a

compatible shuffle of infinite languages over Y.

For this we introduce the notion of ACSs with local Bichi conditions.
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An ACS with local Biichi condition(ACSyg) over (£,C) is given by a tuple M
= (M, My, < fiyforr oo Jo >, < Bio-o  Ba =), where

1. for all i € Loc, (M, fi) is an AC-TS over {Eh{f_} and

2. for all i € Loc, B; €T Q.

An infinite string » € ¢ is accepted by M if there is an infinite run p on x such that
for all i € Loc, Infi(p) N B; # 0, where Infi(p) = {g €@, | 3% plj) = s and &li] = q}.
Claim: Let L be accepted by an wACS with {(81,++, $q)} as the Bichi condition. Then,
there is an wACS with local Biichi condition M = (M, -+ Mp, < fiiforoifu =0 <

By, .-, By >), such that L = L(M).
Assuming the claim, from the proposition above, the lemma follows.

Proof of claim: To simplify the presentation, let n = 2. Let O = (ML N, < f.g =
{(#ar.5x])}), where

[ ] _'.Il-j = ([31 —}11}“1}'}

o N=(Q—¢"9)

Since we will not be using the transition relation very much, we use the same arrow

to denote the transitions of both M and N.

Clonstruct M' = (', —".p" , [') as follows. (Construction of N' from N is similar).
ot Poa

o () = (QU {spa}) = {0,1} where (spap, ) and (spy. 1) are “special™ local states

= {((p0)ea (. 0)) and ((p, 1), (g, 1)) | p—ra)
U {({p.0)a (spar0)) | p——3ar}
U {((spar. 0), 0, (g, 1)) | spe—>q}
U {1 (spar 1)) [ p—"vsar}

{{(spar, 1)oa(g.0)) | Sa—2g}
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The commitment alphabet €' is defined as: for all i € Loe,C, = C; x {0,1, T4, Ta}.
The order among elements of C! is defined as: (v, bit)) <!

L (i, bity) Aff 1 =5 v and either
(bity = bity) or (bit) € {0,1} and bity € {T,, Ta}).
The commitment maps are defined for the local states as follows.
For it € {0,1} and j € {1.2}.
(f(p)(i), bit)  when p # spy.

(f(sar)(7)s Toar) when p = spyy.
Construetion of M’ from M is shown pictorially in Fig. 5.7.

fiipbat)(y) =

Let O = (M, N'.< f'.q" =. < {(sps. 1)}, {(5px,1)} =) be an ACS with local
Biichi condition.

By virtue of the construction, the product has some special properties. We observe
these in the following. (When bit = 0 (resp. 1), bit = 1 (resp. 0)).

Consider any global state ({py, bily), (pa, bits)), I it is compatible, then it is one of

the following forms:

L. 1 # spar, pr 7 spyoand bit's are either all 0 or all 1. This is because in this case

Frn, bat) is (f(po), bit) and hence (py, bt} is incompatible with any other state (pg, bit),

2oy = spag, P = spyoand et s are either all 0 or all 1. This follows directly from the

new assuwmption map [

We show in the following that L(()') = L{(). This is done by showing that the
product of O denoted as O simulates the produet O aof ().
Define Gy o 2 — P as -
: po i p £ spa
Darlpit) =
sa il p=spy

Similarly define @4 : @' —+ Q. Then define © ; O —+ O as O(pr, ) = (a1 ). Onipa) )

For ¢ € {0,1}, denote by SP* the state ((spar, i) (spn.t))-
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Figure 5.7; Constructing M from A
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Let x € L((). Then there is an infinite run p on x in O such that (5a7. 5n) occurs
infinitely often. By simulation theorem, there is a run p' on  in O such that there exists
(8, 84) € O with O(sy, 82) = (spr 5x). In which case, (s, 82) can only be SP" or SFP*. Since
the only paths from SP% to S PY must pass through SP', both these states oceur infinitely of-
ten in p'. Hence, infa(p) = {(spar. 0), (spar, 1)}. Similarly, infx(p') = {(spn,0), (spa, 1)},
and hence = € L((O').

Let x € L((). Then there is a run p' in O such that infa(p) M {(spar. 1)} £ 0,
This implies (spas, 1) oceurs infinitely often in p. We show that this implies both §F" and
SP' oceur infinitely often on g/, By simulation theorem, there is an infinite Tun p on r in O
sueh that (s, sx) oceurs infinitely often on ©(p') which implies = € L(O).

Notice that whenever (spy, () (resp. (spas. 1)) occurs, at some point in the future
SPY (resp. SP') occurs. This ensures that the local automata necessarily synchronize
at these states. Informally, since these states actually simulate the given (single) Biichi
condition, we are ensured that even in the distributed nature of computation. the product
visits the Biichi condition infinitely often. Now, we give a proof of this claim in the following,

Suppose, p'(t)[1] = (spy. 0). Then p'(¢)[2] is either (spy,0) 1 which case we have
SPY or (gy,0) for some gy € €. At this point M can not move to the second copy because
then it will be in a state (pay. 1) and hence the global state will be incompatible. Neither
¢an M’ move into the first copy because by construction, there is no such transition. Henee,
A waits in the state (spy,0). Eventually, N' must come to (spy, () since it has to visit
the state (spy, 1) infinitely often and the only way to (spy. 1) from the first copy is through
{spry.0), Henee, eventually, SPY oceurs

By the argument above and the fact that (spa, 0){resp. {spag, 1)} occm infinitely
often, we get that both SPY and SP' occur infinitely often. This completes the proof of the

claim and the lemma. =
Lemma 5.58 L(w-AC-shuffle)s = L(wACREG)-

Proof: The right-to-left inclusion is trivial becanse the semantics of wACREG expressions 1s

given in terms of w-AC-shutfle and this class of languages is closed under boolean operations,
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by definition.

For the left-to-right inclusion, observe that by Lemma 5.54, w-AC-shuffle C wRegs..
By Lemma 5.53, for every L € wRegy. we can construet an wACS with Muller condition M
accepting L. Now, as in the proof of Lemma 5.56, L can be expressed as a boolean combi-
nation of languages in L{w-AC-shuffle) =. Since we have a global complementation operator

i

m the syntax, it suffices to find syntactic expressions for languages in L£{w-AC-shuflle)=.

The proof of the same lemma shows that each of these languages can he accepted by an
S oo s i : S .
wACS M with local Biichi conditions: Constructing an wACREG expression for M is now

straightforward. (This is where local Biichi conditions come of use). B

/
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Assumption-compatible
systems with restrictions

mo

|

In Chapters 2 and 3, we have described local presentations for synchronized shuffle of re gular
languages {#5L) and regular consistent languages (RCL) vespectively. In Chapter 5 we saw
that for any given distributed alphabet T, assumption-compatible systems can characterize
the class of all regular languages over ¥, The natural question to ask is: whether both BSL
and RCL can be locally presented via subelasses of ACS's. Tn the following we show that

indeed this s possible.

6.1 ACS’s for regular shuffle languages

We know that RSLa is characterized by the class of product systems PSe. Recall the

definition of product svstems.

Definition 6.1 A Product System over ¥ s a tupls
M= (Mo My Froeey By > where
1 foralli € Loc (M, F) is an FA over &

[, i

2, the product automaton of M is fl} F) where M is the complete product TS of M oand
F = I'_I:I-_".E ﬂ

The global states of product of M are all possible tuples of local states and the

global transition relation is derived completely from the local transitions.



Since non-trivial use of compatibility is to filter out global states and thereby control
global behaviour, for the case in hand, we really do not need to impose the notion. However,
if one insists, one may have a notion of compatibility which allows all the glabal states to be
compatible, This, perhaps, can be done by various means. We deseribe two ways in which

it can be done.

6.1.1 ACS’s with null assumption

Given T, take a commitment alphabet C where for all { € Loc, C; = {L}. Take the class of
ACS’s on (E,C). Call the class NACSz.

Then, if M = (Myy...i M F) is.an NACS, then for all 4,7 € Loc and g€ G
fitg)(i) = L. Thus the very nature of the commitment alphabet ensures that local automata
do not make any non-trivial assumptions about other's states. One immediately sees that

this allows all global states to he compatible. Hence, we get the following result

Theorem 6.2 L(NACSz) = RSLg

6.1.2 ACS’s with static assumption
Consider the following condition which is seemingly stronger.

Definition 6.3 A SACS M = (M, ... W, F) over (B.C) s an ACS, where for every

t € Loc, p—=y tmplies for all j € Loc, j # 1, fulp) (i) = fila)(h).

In other words, in SACS's the assumptions of an agent about others do not change
during local transitions. This way, any agent can only assume a fixed set of states possible for
another, Once we restriet our attention to only these states, all the global states generated
are compatible and hence 1t s equivalent to that of having null assumptions on all local

states. Henee we get the following theorem.

Theorem 6.4 L(5ACS:) = RSLg.
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6.2 ACS’s capturing regular consistent languages

The condition that we consider now is both on the commit alphabet and on the joint tran-

sitions in the product.

Definition 6.5 An ACS is ealled synchronizing if the product satisfies the following as-

sumption synchronization condition alongwith esynchrony.

(pr.pa, - ._;)h}z'ﬂ,»{q], g, -+, @y ) tmplies for all ¢, j € locla), filg) = filgy)-

Informally, immediately after an action has taken place, agents participating in the
action have complete knowledge of the commitments of other participating agents and have
the same assumption about the non-participating agents. This is very similar to the perfect
exchange condition of view-based svstems of Chapter 3 (except that in case of view-based
systems, the local states of participating agents were the same after a transition. )

We denote this class of ACSs as SyncACS's and the languages accepted by them
i denated as £(SyneACS). The asynchrony condition immediately gives us the easy inclu-
sion I:[:.‘w'yru'_-lﬂ.f?]{.. C RCLg. To show the other melusion, take a determimistic Zielonka

automaton A accepting L € RO Lg. Recall that, for all x € &*,

((e) 4 602 4) if =g,

event(z) =
((y) g a,(x) 4) ifz=ya

The commit alphabet € is taken as follows: C, = {event(x Li)|lr € 2} The
ordering =, is given by ecvent(x) =<, event(y) iff there exist w, v € X° u <& v and event{r] =

event(u) and event{y) = event(uv).
By this definition. event(x | i) =, event(re L 1) lor all i € Loce.
Let v(x) e (event(z L 1).-- -, cvent(x L n))
Define the SyncACS M = (My;+oe, My, F) ds llows.. For alli € Loe, M =
(Qi, —ivq), fi) where,
o (;={v(xli)|rek}
o 4 =y(e).
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e p—s,q if there is some u € £* such that p = v(u | ) and g = (ua).

e f.l¥(z)) = v{z)-

Set F=4{(v(zl1),--,v{zln))|ze L{Ad)}

Notice that except for the assumption maps, M is defined exactly the same way
as the view-based system in Chapter 3. Notice that the assumption maps and assumption
synchronization condition ensure the perfect exchange of transitions, which implies that

LMY C L{A).

For the other inclusion L(A ) © L{.-ﬁ]l.. it suflices 1o check that the assumption maps

cnsure the following.

1. Forall z € £°, (v{z ) 1}, -, v{z | n) is compatible.
2. (e L 1) -vooyle L n)) == (y(za | 1), -+;y(za | n)).

But these are easily proved from the definition of + and some simple properties of

views, Thus, we get the required characterization of O L's via Synel'S's

Theorem 6.6 L{SyncAC'S)s © ROLg,

6.3 ACS’s with a monotone condition

We see in the preceding sections that some familiar languages that we saw in earlier chapters
could be captured by subelasses of ACS's. In the following, lor any given . we give an
example of a class of languages different from RSL's and RCL's that ean be captured
by suitable condition on ACS’s. Perhaps neither this class of antomata, nor the class of
languages accepted, has any claim o intrinsic interest.  They are presented here only to

demonstrate the Hexibility of the assumption-commitment framework in automata.

We now define a class of ACS's where the assumptions of local states never decreast

Definition 6.7 A MonACS M = (M, ..., M, F) iz an ACS, where for every 1 € Loc,

;Ji:'f{jl irfr;r:fzrfs _,I"rn" all JE Lo, f,[}r]f_j} o k" _Jr,{fjllli__;r_].
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A ¢rucial consequence of the monotone condition is that along every path in A
assnmptions increase monotonically. Hence, for all @ € Loc, if p—iqand fi(p)(7) < filg)(i)
(a strict increase) then there is no path from g to p in M.

In the following we show that MoenACS's characterize a class of languages which

properly subsumes RSL’s but is different from the class of RCL's.

6.3.1 Languages

C'onsider the least elass of lanpuages BFCRSL (boolean combination of finite concatenation

of regular shuftfle languages) such that

1. BFCRSL includes all regular shuffle languages, and
9, if Ly, Lo are in BFCRSL then Ly - Ly and Ly U Ly also are in BFCRSL.

From the definition, it trivially follows that B5Lgs © L{BFCRSLg) and that the inclusion
is strict, | )

Now, take the language L = [abl[ed] on the distributed alphabet 2, = {a, ¢} and
V. = {b,d}. Since [ab] and [ed] are both R5L's over Y, L € BFCRSLY. But clearly, it
is ot elosed under ~ because, for example, while abed € L, acbd & L. Hence L & RCL&.
This shiows that HF(."H.'.“?L.;_- Z RC L. |

The other nou-inelusion RO Le € BFCRSLg also holds. But now the argument i
shightly involved. We have seen in Section 2.3.6 that union of B5L' do not give us RO LS.
Here we have to show that union of finite concatenations of BSL's also is not sullicient to
capture RCL's. We take the same example of the language L = (labje 4 |aabb]c)”

Let Ly = {x & L | x has k number of ¢’s }. In Section 2.3.7. we saw that if we
consider finite union of sets, since there are a large number of strings in Ly for a sufficiently
large k& we are forced us to put many different strings from Ly in some set, which entails that
this particular set can not be an K51

We argue that for some large enough &, this particular ser can not be expressed as

d concatenation of £55L's either:
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Since we can have only finite number of concatenations of RSL's, Ly = Ly L; (I
is the maximum number of concatenations we have.) and hence one has to divide any string
x € Ly into at most | pieces s.t. & = @y 2o --- 1. Let §(x;) denote the number of ¢'s in x;,

Suppose for some x,y € Ly, and 7,1 < 7 < [, i(x;) = Hy), T = wicugcus and
y = vicvactiy where g, ug, vy and vy do not have any ocenrrence of . Then, uy = vo. This is
because L; is an 5L and if wy # va, we could have bad strings in L; and henee in L, For
example if uy = abeab and v, = abeabab, L, will have strings like u,abeaabeus.

Define x = y iff forall j, 1 << j < [ 4(x;} = £(y,;). Since the number of equivalence
classes of = depend upon only & and {{where ! is lixed), one can inerease k& such that some
ecpnivalence class will have a large number of strings from L. Call this class 5.

Consequently, since for each & € S, 4{x;) is the same, il we have a large number
of strings in 5, there will be strings & and y such that & = wycuscus and ¢ = vyceacny but

uy # vy, This will imply that L, is not an RSL, a contradiction. =

6.3.2 MonACS’s and BFCRSL

In the following we show that MenACS's exactly characterize the class BFCRSL. In
Fig, 6.1 we draw a MonACS for the language L = [ab||cd] over the alphabet (2, = {a, ¢},
Fo.= {b,d}).

Theorem 6.8 C{MonACS)= BFOCRSL.

Proof: (C:) Let L € L{MonACS). Then there is an AC'S M satisfving the monotone

condition and L = LU_I ). Let M = {(;J'. — 4", F") be the product TS of M.

Definition 6.9 For all p.j € ), lel ‘L_f[ﬁ q) be a sub-T5 of M with 7 oas the mitial state, 7

wa the final state and having all the paths of M start ing from poand reaching q.

Definition 6.10 A transition p=—=7 15 called a cut-edge of AT if it 18 not a part of any

cyrlie path M
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Figure 6.1: MonACS for the language L = [ab][ed].
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Observation 6.11 1. Suppose for cvery state ¥ and 3 in the sub-TS 'I.?I:f:, g). filr) =
fi(s) for all ¢ € Loc, e, if there is no increase of assumptions for any automaton.
Then, it follows from the discussion about SACS s of section 6.1 that L{Jﬁ{f},ﬁ]} 18 in
HEL:

9. For any two states p and § in M, let p; = pli] and ¢; = gli).

If p=26q and for some t. 7, filpi)(J) <5 filg)(3), then the transition(p==7) is a cut-
edge of M since if there was a path from @ to B in the product (thus forming o cycle),

there would be a path from p; to g, My which would wolale monaetonety.

We prove the required inclusion by induction on the number of cut edges in the
product. It suffices to consider products having a single initial and a single linal state becanse
languages accepted by products with multiple initial and final states can be expressed as
union of languages accepted by products with single initial and final state.

Let ¢/ be the final state. Since 7 15 the initial state the language aceepted by M is
L= L(M(¢% q7)).

If there are no cut-edges, then it means that the assumptions are static throughont,
henee from observation G.11 (1), we know that L is in BS5L and henee in BFCRSL.

Suppose there are £(=> 1) cut edges in the product. This imphies every path from

the initial to the fnal node must pass through some cut edge. Take the set of cut-edges
S={p==q | forallze {l.-+-.1} .-I_ffq_':', 77) does not have any cut-edge |

Then, L(g° ¢f) = |J L. where L; = L(g®. ) - a; + L{G,q). Notice that L(g", ) is an
pef Lt}

RSL, {a,} is an HSL trivially and by induction hypothesis, since there is af least one less

cnt-edge. L{g;. gf) is in BFCRSL, Hence, L can be expressed as union of coneatenation of

BFCRSL's. This concludes the proof.

(D2:) Note that from the previous section, R5L's are accepted by SACS’s which are
a special case of MonAC'S, For the inclusion it suffices to show the closure of MonACS's

with respect 1o union and concatenation.
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Let Iy = L{M) and L; = L(N) where,

o M = (M, My, < fi, fa > F) be an ACS over Y with C as the commit alphabet. Let

M; = (Pi, —, p%,, fi) be the local AC-automata.

e N = (N, No,< g1, 62 >, G) be an ACS over ¥ with D as the commit alphabet. Let

N; = (@, —i. 4", gi) be the local AC-automata.,

Let fi(p}) =< Apde >, f(p)) =< v, >, aild)) = < pipe > and gofgy) =

< Th. T 2.
Proposition 6.12 L, Ly € L{MonACS) implies Ly U Ly € L(MonACS).

Proof:

Char goal is to show that there 1s a MonACS O = (O, 00, < by iy =, H) over £ as

the commit alphabet, where O, = (R,, =,.7", f;), that accepts the union Ly U La.

We could construct 0 as we did in Chapter 5. We recall that for this, we had
introduced a special state r%; for each local automaton P. Note that R, = P, uQ, u{r)'}
The assumption maps h; are defined on P, UG, as follows.

filr) fre Py
gilr) ifre .
In addition, fiy (79) =< (A V 1) (A A pa) >, and ha(r%) =< (i A ), (02 Vi) >

h,{'r'} ==

Unfortunately, the construction above for union does not work because the spe-
cial initial state introduced leads to nonmonotonicity of assumptions. This is because © if
rYo—Spapa and po # 9, then fip(r5) (1) = (i A ) and ha(p2)}(1) = ga(pa)(1) € € and they
can, in general, be unrelated in the ordering thus violating the monotonicity condition.

Henee, we resort to the class of MonACS's with multiple initial states. In this case
no special initial state is necessary, and one takes the (component-wise) disjoint union of the
two ACS’s maintaining the same assumption maps. Obviously, monotonicity of assumptions

is maintained and the simple construction [or union as mentioned above gives us the desired

result, " ]



Proposition 6.13 L, L, € L(MonACS) implies Ly - Ly € L{MonACS).

Proof: It suffices to consider the case when M has a single final state (pf, p’,) and N has
a single initial state, because then the concatenation in general can be expressed as union of

concatenation of ACS’s with single initial and single final state,

Again, as in Chapter 5, we ean construct () accepting L, - Ly. Recall the introduction
of a special state (p;, 0) for all i € Loc and the definition of the assumption maps h;.
filr) ifre Py
gilr) re@y
Also hy(pe, 0) =< (A V g )y (Aa A opag) =, and ho(pa, 0) =< (i A )y (2 V 1) >

hi(r) =

For the same reason as in the case of “union™, this construction also does not work
because for the states ¢ € @, such that (py, 0)==1q, h(g)(2) € D whereas hy(p;,0)(2) is a
new element and they may be unrelated.

To remedy this, we redefine iy as : fiy(g)(e) = bl 0)2) Vg lgl(e) for all g £ @
while keeping the assumption maps of P same as before, Now P is a monotone ACS hecause
bw assumption both M and N were monetone. We notice that states of N; are reachable
only via the special states (p;,0) and hence, internal states of M, and N, (i # j) never
form a reachable global state, hence the extra assumption acts only like a dummy and the
compatible states are the same as there were originally. Then, the proof that 7 accepts
Ly - La goes through. Thus the inclusion C(MenACS) 2 BFCRSL holds and the theorem

15 proved, =]
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Conclusion

B

7.1 Summary

[n this thesis, we have addressed the problem of how the behaviour of finite state distributed
svstems can be given local presentations. Recall that in Chapter 1, we suggested the [ollowing

notion as constituting local presentation:

a class of distributed systems is locally presented if it is modeled
as a set of components, one for cach process, and the global be-
haviour is completely defined by a fixed set of construction rules
universal to that class.

The model of distributed systems studied was that of finite state automata which
communicate by handshake synchronization. Behaviour was piven in terms of language ac-
ceptance, using finite words or infinite words, Products of automata provided the framework
by which the (global) system was built from ‘local specifications’. This meant that a syntax
for such svstems also reflect such “top level parallel’ behaviour.

In Chapter 2. we first observed that synchronized products of automata are ex-
pressively weak (Corollary 2.14 and Theorem 2.28), and raised the issue of obtaining richer
behaviour, namely that of regular consistent languages (Definition 2.19) m terms of prod-
nets. This was studied in Chapter 3. where view-based systems were proposed [Definition
3.2) and shown to characterize regular consistent languages (Theorem 3.3), The proof also

revealed the way processes in distributed systems update their partial views of global states



by exchanging view information during synchronization, However, no satisfactory syntax

could be provided for the systems.

(ziven that view based systems offered a way to store and update partial global
information in local states of processes, the next natural question was how much farther this
could be taken. Is there a way of capturing all regular behaviours in terms of products by
suitably enriching loeal state information 7 This led to the class of Assumption-Compatible
Systems studied in Chapter 5 (Definition 5.2). These systems are of independent interest,
coming from a paradigm extensively studied in the formal specification and verification of
distributed svstems, and we illustrated the use of the paradigm in Chapter 4.

In a sense, the central result of the thesis is Theorem 5.6, which asserts that every
regular language over a finite alphabet X can be given a local presentation over a specified
distributed alphabet 3 by choosing an appropriate structure of assumptions and commit-
ments between the n processes, This is further supported by Theorem 547, offering a
top-level parallel syntax, reflecting the distributed nature of the syvstems. We also showed
that the generalization of these results to infinite behaviours could be earried out smoothly.
(A caveat here is that the svntax for infinite behaviours required global complementation
operation, diminishing the distributed nature somewhat.)

Assumption-compatible systems are not only the most expressive local presentations,
bt subsume other candidate presentations in the thesis: in Chapter 6, we showed that
the other classes of behaviours studied in Chapters 2 and 3 could be obtained by simple
restrictions on commit alphabets. Moreover, other restrictions showed classes of langnapges
strictly between regular consistent langnages and the class of all regular languages (over an
alphabet ),

Having said this, we now turn to what has not been done in the thesis, but never-

theless i1s of interest in the context of local presentations for finite state distributed svstems.



7.2 Automata theoretic issues

Having chosen antomata theorv as the tool for this study, a number of questions are imme-

diately posed:

o We have studied systems in which the number of processes is fizred. This can be at once

generalized to open systems, where the number of agents is finite but unbounded. The

syntax lfor this class is obvious:
REGSYS i=r€ REGy | || ra

Since the semantics of || always gives a commutative and associative operation (the
way we have done throughout). we get a top-level parallel composition of (finite but
unboundedly many) regular expressions, the alphabet of each process being determined

by the letters in ¥ syntactically oceurring in it.

Generalizing assumption-commitment in an appropriate fashion for such open svstems
seeins feasible and interesting. In terms of the distribution problem, the constraint on
distribution must be lormulated differently: for instance. the size of each local alphabet

may be bounded by some number.

s A more challenging study is that of dynamic networks of processes. In terims of syntax,

this corresponds to || oceurring in the scope of other operators.
PREG i=a el |p+qglmalp | o m

However, the meaning of svnchronization is more complicated now, and several seman-
tie issues are involved [Old]. One semantic approach is to consider ry; (ry || 74) as a
forking of two processes in the style of Unix systems. An interesting issue is whether
there is any need of an iterated parallel operator, like “4" iterates over “ 7 [LW]. As in
the study of dot depth, we believe that parallel depth can shed interesting insight into

loeal presentations of behaviour,
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o A great strength of automata theory is in algebraic study of behaviour, In the spirit
of local presentations, we expect that ACS’s can be characterized using local right
congriuences of finite index and an associated global congriuence. Algebraic theories of

distributed decomposition are needed for a clear understanding of this subject.

7.3 Complexity

It is clear from the proof of Theorem 5.6 in Chapter 5 that given a linite state automaton over
. an equivalent ACS over T can be constructed effectively. However, we have not studied
the complexity of the construction, and particularly, issues of minimizing the number of
local states.

This immediately brings in succinctness questions; for a given finite behaviour what
is the best (in terms of least size of local antomata and commitment alphabet] distribution?
How does the distribution of the alphabet affect sizes of local automata? Are there minimal
local presentations? These questions are of paramount importance if one wants to use ACS's

Lo mode] finite state distributed systems.

7.4 Model-checking

In terms of applications, the most immediate relevance of the paradigm studied here is 1o
the area of automata-theoretie methods i verification, collected under the rubric of model-
checking [VW].

Briefly, we have a finite state svstem S, a property o, and ask whether it is the case
that every infinite run of S satisfies o, The property « is stated in a formal logic - say, the
propositional temporal logic of linear time. Models of o are again infinite sequences, those
that satisfy the property. 1t can be shown that given any such v, there is a Buchi antomaton
A, such that Models{a) = L.(A,). Now, when § is presented as a Biichi automaton.
we construet A, and check whether L,(5) M L,(A-.) is empty, The emptiness check

exactly corresponds to the verification problem we started out with, Such a model cliecking
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procedure runs in time O(m.2%), where m is the number of states in S and & is the length of

the formula o (since the size of the antomaton associated with o is exponential in the size

of e,

The main need of automatic model checking comes in the verification of systems
which exhibit nontrivial concurrency. For instance, in hardware, a chip is a system with
a few million parallel components, each of which can be comprehensively modelled as an
automaton with a small number of states, Here, each of the automata is easy to study, but
the global system cannot be studied manually at all. But then the verified svstem called S
above is the prodoct of these automata, and the size of the product is exponential in the

number of components. This is often referred to as the state explosion problem.

Now consider the situation when the system § 15 a locallv presented ACS with n
components. If the property o is shiimilarly structured, sav in the form, a, @1 A -2 A ot
{read o at 1 ete) (where a; includes specification of assurmptions that process i makes), one
can expect Lo generalize the methodology above for local model checking of components 5,
against a;, This may be a pragmatic approach to solving the state explosion prablems, at
least in situations where the property being verified lends itself to such distribution.

One place where the problem may manifest itself is in the construction of local
AC-automata. The construction in Chapter 5 clearly shows that what we are doing is a
kind of unfolding of the global antomaton and then taking projections to get local AC-
antomata. This suggests a strong relationship to the net-unfolding technigues proposed by
of MeMillan [Mem] and developed by Esparza [Espl, Esp2, ERV]. If one has to unfold
many times, then the constructed local AC-automata will be very large and obviously any
advantages of local model checking will be lost, Hence the question of how much unfolding

15 necessary for the decomposition is an important one.
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