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Chapter 1

Introduction

Low lattice dimensionality and frustration are known to produce interesting
effects in quantum antiferromagnets. Some important consequences of these.
features in magnetic systems are ground states exhibiting novel order. This
aspect of frustrated Heisenberg antiferromagnets has been the motivating fac-
tor of much work done in the field. In this thesis we study the ground states

and low lving excited states of some models exhibiting these features.

In the 1-D spin chain, due to low dimensionality, fluctuations destroy the
Neel order and the ground state is a spin singlet. In two dimensions there is
a strong tendency of fluctuations to drive the system to disorder. This can
be seen also in the nearest neighbour Heisenberg antiferromagnet on a square
lattice. Even for S = 1. the ground state possesses long range Neel order.
However as seen, for instance, in spin wave theory [1], the ordered moment
18 reduced by about 40 % indicating the tendency of the strong quantum
fluctuations to drive the system into a disordered phase, The S0(3) spin
symmetry is broken down to a symmetry of rotation about the axis picked out

by the order parameter which is the staggered magnetization vector. The low




lying excitations about this state are the two branches of gapless poldstone
modes with a linear dispersion. They indicate the breaking of the SO(3) spin
symmetry to an SO(2) symmetry of rotations about the axis picked out by

the magnetization vector,

Frustration alters this picture drastically, an example of which can be seen
in the case of the nearest neighbour Heisenberg antiferromagnet on the tri-
angular lattice (TLAF). The ground state spin configuration of the classical
model is no longer the collinear Neel state but is deformed into the 120 © pla-
nar spiral. The spin rotational symmetry is completely broken in this case
and the lowest lying excitations are the three branches of gapless spin wave
modes. The stiffnesses governing these excitations are different as indicated

by the spin wave velocities being different for the in plane and out of plane

fluctuations [2].

Naively, the inclusion of quantum effects can be expected to push this either
way. On the one hand fluctuations can act in order 1o relieve the frustration
and impose an order, or when very strong they can greatly reduce or even
destroy the classical order therehy favouring a state with no long range spin
order. In this picture, the effect of a large co-ordination number is generally
expected to suppress the effects of fluctuations. We look at the TLAF, which
has been studied widely in some now look at some aspects of the TLAF. This
system has been widely studied and is well understood and serves as a good

relerence point for a comparitive analvsis.



1.1 The Triangular lattice antiferromagnet.

The TLAF has been analysed in depth by semiclassical approaches, numerical
and exact diagonalization studies etc. One obvious choice for a good ordered
ground state of this model is the 3 sublattice 120° helical state also referred to
as the v/3 x /3 state. This is the type of order present in the ground state
of the classical TLAF. Among disordered states, the resonating valence bond
state[3], made up of resonating superpositions of pairwise singlet combinations

of the spins is one choice,

Of these, by now there is plenty of evidence from different approaches that
the v/3 x /3 state is the preferred choice. For instance, a variational estimate
of the upper bound to the ground state energy of the TLAF is found to he
Eg. < —.1789 J/bond [4] by Huse et al. They also show that the resonating
valence bond state exceeds this hound by a large amount. Following up on
this with a conventional spin wave analysis, Jolicoeur et al [2] conclude that
the /3 x /3 state which has By, = —.1769 J /bond is a good approximation to
the actual ground state. They also show that < §. >= 0.239 [or § = 1 which
constitutes a 60% reduction in the sublattice magnetization. The lowest lving
excitations .abuut this state are three branches of gapless spin wave modes.
The spin wave stiffnesses for these excitations are different for the in plane
and out of plane fluctuations as indicated by the corresponding spin wave
velocities. This survival of /3 x /3 long range order is reinstated by the
high temperature series expansion of Elstner and Young [5] and by Bernu et

al [6] who also arrive at this conclusion based on a computation of the exact



spectra of periodic samples.

Field theoretic techniques used in unfrustrated antiferromagnets is, such as
the nearest neighbour antiferromagnets on the square lattice can be extended
to frustrated models [7, 8] In the case of the TLAF the order parameter is an
element of the group SO(3) and the corresponding field theorv is the S50(31a =
S0(2)r non-linear & model[9, 10, 11). In this model the SO(3)x symmetry
group is the original spin rotational svinmetry. The S0(2)1, is a symmetry of

the low energy modes only and it is not present in the microscopic model.

For the TLAF the parameters of this theory have been derived starting
from the microscopic lattice model in [9]. A renormalization group analysis
of a model having the above symmetries [10] shows that there are 2 regimes
in parameter space, & strong coupling regime indicating a quantum disordered
phase with no long range spin order and a weak coupling regime with long
range order where the coupling constants and correlation functions are merely
renormalized from their classical values by quantum fluctuations, This is par-
allel to the spin-wave theory which predicts long range helical spin order with
a reduced moment even for the case of 5=£ where the quantum effects are

most pronounced,

The consensus from various approaches is that the ground state of the
TLAF, has /3 x /3 long range order, with an order parameter in SO(3) and
three gapless low lying modes corresponding to the complete breaking down

of the spin symmetry,

A much more complex picture is given by the hagome lattice antiferro-



magnetic model (KLAF). This is a system with a geometry very similar to the
TLAF but with a lower co-ordination number of 4. Before defining the various

problems associated with this model, we describe earlier known resuls.

1.2 The Kagome lattice antiferromagnetic model.

The Kagome lattice which is shown in figure 1.1 has a geomelry very similar
to the triangular lattice in the sense that it can be superposed exactly on a
triangular lattice of the same dimensions. It contains only ¥ the number of

points as the triangular parent. Further there are several new features in the
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Figure 1.1: The Kagome Lattice

KLAF compared to the TLAF some of which are described here. For instance
the huge degeneracy in the ground states of the classical model [12, 18], is a

major difference. This degeneracy arises as follows.
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1.2.1  Ground states of the classical KLAF
The nearest neighbour Heisenberg model is defined by the hamiltonian
H=%" §.§ (1.1)

Lo -

where, < 4,7 > implies that the sum js over all j that form nearest neighbours

to i. One of the first things that we notice about the KLAF is the huge ground

Figure 1.2: Small sections of the KL showing examples of coplanar (potts)
ground state configurations superposed on it.

state degeneracy[13]. Referring to figure 1.1 and equation for the Hamiltonian
(1.1) we notice that the energy described by (1.1) is minimised by any spin con-
figuration for which the sum of the spins on an elementary triangular plaquette
is zero. We also immediately notice that this leaves a huge degeneracy, even
apart from global spin rotations and other symmetry operations, which stems
from the different ways of fitting these units together, The different coplanar
states which are obtained by permutations of the three spin orientations can

be mapped on to the representations of the three state Potts model.
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Some of the coplanar configurations all of which satisfy the above condi-
tion but show, locally, very different structures are shown in figures 1.2 and
1.4. Besides these there are also non-coplanar configurations which with ref-
erence to figure 1.3 can be generated from some of the planar configurations

by introducing line defects which cost no energy. For instance a configura-

-
-1

|
>

Figure 1.3: Rotating the spins within the hexagon about the axis defined
beside the figure generates a degenerate non coplanar state

tion with a closed line connecting spins of one orientation can be deformed
by rotating the neighbouring spins about the axis defined by the first spin as
in figure 1.3. All non-coplanar configurations can be arrived at starting from

different coplanar configurations in this manner.

Caleulating the energy cost of small thermal fluctuations about the classical
configurations indicates that the states with the largest number of zero modes
are favoured at low temperatures. This is a preference of the coplanar states
with respect to the non-coplanar states. Further. among the planar states,

some special states which will be referred 1o in forthcoming sections are the so



called g =0 state and the +3 x /3 spiral state of the TLAF which are shown

in figure 1.4,

g=3 x/3 g=0

Figure 1.4: Two planar ground states of the KLAF possessing stagpered
chiral and chiral order respectively

These two states are also special in that they are characterized by different
order parameters which are now described. The subset of all coplanar ground
states is characterised by the Nematic order parameter [14, 13] which will be
described in detail in the following chapters. This is an order parameter tliat
is nsensitive to the chirality of the underlying spin configuration and there for
does not distinguish between the different coplanar configurations. The chiral
order parameter defines the chirality of each triangular plaquette and thus
distinguishes between the q = 0 state and the q = 3 x 3 state. So that
while the former is characterised by long range chiral order of the elementary

triangular plaquettes while the latter is characterised by long staggered chiral



ordering.

This can be seen from figure 1.4 in which the triangular plaquettes are
marked out by crosses. Thus v/3 % /3 order, for instance should show both
Nematic order and staggered chiral order while an arbitrary planar state would
not posses long range chiral order but would show long range Nematic order,
Therefore different candidate ground states of the KLAF may be distinguished

by these different order parameters.

1.2.2  Experimental results on the KLAF

The layered compound Sr Cry_, Gayy, Og contains antiferromagnetically in-
teracting Cr *t (S = 3 ) molecules on a Kagome Lattice [16]. Despite a large
Curie Weiss temperature of -492 K, long range magnetic order is not seen even
up to low temperatures indicating the high degree of frustration. Later specific
heat measurements and measurements of magnetic susceptibility indicate that
the material undergoes a spin glass transition around 5 K as indicated by the
branching of the susceptibility and the difference in the peaking temperatures
of the specific heat and susceptibility curves [17, 18]. The low temperature
specific heat hehaves as T2 which is unlike what is expected of a spin glass and
1s more like an indication of gapless magnons in 2-dimensions. This thereby is

a signal of a long range ordered state.

However this is contrary to estimates of the correlation length from neutron
scattering data. Neutron scattering experiments were performed [19] to probe

within the spin glass phase on samples with 80% occupancy of Cr molecules
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on the 12 K sites forming the Kagome planes. Elastic neutron scattering data
shows a broad peak at the wave vector Qg = 1.4 42, with the associated lowest
order superlattice spots falling on Q = [%,%] associated with /3 x /3 (3
sublattice) order. Fitting the Q dependent elastic scattering to a 2-dimensional

Lorentzian yields a correlation length £ ~ 7A® which is about twice the inter

Cr spacing.

In Deuteronium Jarosite (D30)Fes(S04),(0D)s [20] which is an S= &
Kagome antiferromagnet features similar to SCGO are seen. Susceptibility
measurements show strong in-plane antiferromagnetic exchange suggested by
Oy ~ —1500/" and a spin-glass transition at Ty = 138K, while the magnetic
contribution to the specific heat below Ty rises with T as T?, characteris-
tic of two-dimensional propagating modes. Neutron diffraction reveals short-

range magnetic correlations £ ~ 194 with a wave vector corresponding to the

V3 % /3 spin structure at 1.9 K,

On the other hand in the other family of Jarosite compounds containing
Chromium, KCry(OD)s(50,), [21]. which are spin 2 KLAF and in the Iron
Jarosites K Fes(OH Jo(XO,4 ), [22] which is a spin = (where X = § or Cr) long

range order of the g = 0 type is seen.

From the above observations, it appears that while some of the Kagome
compounds show long range order, it is tied to the q = 0 order whereas thase
" 3 e o 2 e
in which the /3 x 3 order is stabilized do not seem to favour long range
ordering. The experiments on componnds with short ranged /3 x /3 order

therefore indicate that the KLAF is either a spin glass with unconventional low
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lying excitations or there is long range order in the ground state due to an order
Ying g B
parameter insensitive to the neutrons, thereby leading to gapless excitations

and & 77 dependence of the specific heat.

1.2.3  Monte Carlo Analysis of 2-D classical KLAF

The classical KLAF at low temperatures has been studied by Chalker et al and
Reimers et al [13, 23]. Chalker et al find that both the spin spin correlations
and the Nematic correlation lengths fall by power laws with distance. The
Nematic correlation function seems to fall off more slowly than the spin spin

correlation function at a temperature of £.=3Fw 1073

Reimers and Berlinsky take up this study further and actually compute the
exponents associated with the correlation functions of all of the order param-
eters described above at a temperature of —‘; ~ 2 x 107%. They obtain different
exponents for the Nematic, the 3 state potts, and the /3 x V3 correlation
functions which are, ny.. = 0.09, e = 016, 15 = 093 for warming runs
from the /3 x /3 state and Maem = .71 ny = 042, 14 = 1.4 for cooling
runs. The Chiral order is short ranged. so the 3 x /3 state i« preferred over
the g = 0 state. Further the 3 = V3 order seems to be unstable towards the

formation of chiral domains, therefore within this framework the ground state

is described by large v/3 x /3 correlated regions separated by domain walls,



1.2.4 Other results on the KLAF

Several semi-classical approaches to the KLAF show evidence for long range
V3 % 3 order such as the High temperature series expansion of Harris et al
[24], the spin wave theary of Chubukov [25]. In contrast to this, the results of
exact diagonalization caleulations of, [26, 27, 28] indicite that the spin spin
correlations decay rapidly with distance. The Ising type series expansions of
Singh et al [29] indicate that the KLAF is disordered. The large N expansion
starting from an Sp(N) extension of the spin model by [30] also infer that the
KLAF is disordered whereas the SU(N) fermionic theory of [31] put forth the

idea that the ground state is a chiral spin liquid.

Recent results from exact diagonalization studies on finite sized Jy— Js
model on the Kagome lattice suggest that this mode] undergoes a transition
from a TLAF like phase with broken spin symmetry to a phase without long
range spin order. At the KLAF end there are a series of energy levels with a
small gap, approximately forming a continuum, which are expected to collapse
to the ground state for the latiice size N — oo. There is indication however
that the symmetry breaking mechanism is of not the kind seen in the TLAF.
This is a result that is relevant to this thesis as will become clear when we.

now, define our approach to this problem and describe briefly our results.

1.3 About the thesis.

The puzzle posed by the KLAF is that the interplay of quantum fluctnations

low dimensionality and frustration appear to create gapless bosonic low en-
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ergy excitations over a ground state wilth no long range spin order, This is
seen 1n the experiments of Deuteronium Jarosite and on SCGO. Both these
compounds show very short ranged V3 % /3 order as inferred from nentron
scattering data. The low temperature specific heat capacity behaves like T
which contrary to the indications of the neutron scattering data are reminiscent
of an underlying ordered state with gapless bosonic excitations. The natural
question to ask therefore is concerning the mechanism by which this gapless
mode comes into existence when there is no long range spin order. One pos-
sibility that have been put forth in this context is that it is a spin Nematic,

having long range order in the second rank nematic tensor order parameter,

In this thesis we approach the KLAF from the +/3 x 3 ordered state. [1
order to do this, we study a family of models that interpolate between the
KLAF and the TLAF for values of a parameter y. These models share the
V3 x /3 state as the unique minimum energy configuration. The KLAF of
course has in addition all the other degenerate ground states described above
and this is really an approach from the /3 x V3 end, with the TLAF itself
serving as a reference point where we formulate the renormalization group

theory and Lhe large N expansion.

We describe these models by §0(3)g = SO(2); nonlinear @ model field
theory and probe the ground state and low energy excitations of the models
within this description. We see that near the TLAF these models are described
by theories such as the ones studied in [10] where the dominant fields are the
three goldstone modes which arise due to the breaking of the spin rotational

symmetry. Near the KLAF there are in addition to the three goldstone maodes.
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two modes which are described by a unit vector field . The interaction
between them drives the system for a range of parameters into a phase where
the spin symmetry is completely restored but the S0(2), symmetry is broken
leading to ene gapless excitation. Thus the phase diagram of the model as the
parameter x is varied from 1 to 0 is that initiallv there is a state with long
range V3 x V3 order which gives way at intermediate y to a phase with all
symmetries unibroken and finally near y — 0 there is a novel phase with the
SO(3)r symmetry intact but with the SO(2); symmetry being broken. At
the level of microscopic model this is interpreted in terms of long range order
in the order parameter 51‘:3 % Hd, Further we see that the Nematic and the

Spin correlations are characterised by different length scales.

The break up of the problem which deseribes our approach is as lollows,

o In Chapter 2 we introduce the spin models that we plan to study and
identify the relevant low energy modes by making a Holstein - Primakoff

spin wave expansion about the classical ground state,

o In Chapter 3 we describe the derivation of the field theory from the
microscopic model of the sector close to the TLAF and analyse the theory

by a renormalization group calculation to probe the nature of the ground

state dominated by the goldstone modes.

o In Chapter 4 this analysis is repeated for models close to the KLAF and
we show that there exists a phase close to the KLAF where there is (e

breaking of the §0(2); symmetry in the spin disordered phiase,
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o Chapter 5 carrics the summary of our stiddy and here we interpret the

result of earlier chapters to form our conclusions about the ground state

of the KLAF which we have described above.




Chapter 2

From the Triangular to the Kagome Lattice

In this chapter, we describe the results of a semiclassical spin wave
analysis on a family of antiferromagnetic spin models which extra po-
late from the Kagome to the Triangular Lattice Models for values of 4
real parameter y varving from 0 to 1. This is also an approach to study-
ing large frustrating interactions on the /3 % V'3 state as described
i the introductory chapter. The relevant modes, which deseribe the
physics near the triangular lattice (TLAF) end are the three gapless
goldstone modes which correspond to the breakdown of the S0(3) spin
symmetry of the Hamiltonian. In a semiclassical picture, they repre-
sent rigid rotations of the spins on the unit cell. Near the KLA 3
we identify two other branches with a small gap which vanishes for
x = 0. Fluctuations in these modes are shown to become relevant
for small x by computing their contribution to the reduction in mag-
netization. The Staggered Chiral and The Nematic order parameters
are also studied in this approximation with a view to seeing if there
exists a regime where these types of order can exist in the absence

of Magnetization. In the last section, we derive a parametrisation for
these extra modes.

16



2.1  The Model and Classical Ground states

In this section we define a Heisenberg antiferromagnetic (HAF) spin model with
nearest neighbour interactions defined on a triangular lattice. The exchange
parameters .J,; are functions of a real parameter y so that when x = 0 the
model is geared to mimic the HAF on a Kagome Lattice (KLAF). When y =1
this model reproduces the TLAF. For arbitrary v, we call this the Deformed
Triangular Lattice Antiferromagnet (DTLAF) for brevity. This maodel has
also been studied by [24] we however study it only with a view to obtaining a

parametrisation of the relevant low lying modes. This model i given by the

Hamiltonian,
=T ol 6, (2.1)
e
Writing out J,; explicitly,
H=J( 3 §S+xy Y 8.5 (2.2)
CtaztAg L4 IS0

The labels i, j in the above expressions refer to the sites on a parent triangular
lattice of which ! are the non-Kagome points. The first term is a SUIM over
nearest neighours connected by Kagome bonds denoted by K'g and which are
indicated by solid lines in figure 2.1, and the second term involves a SUm over
those i and j which are connected by non-Kagome bonds, indicated by dotted
lines in the figure.

In this section we will be dealing only with the classical

spin model, therefore the spins 5, are classical veetors consirained to obey the

b

relation 5.5, = §2,

We determine the classical ground states of this model for VATIOUS ranges

of x. We begin with the parameter range (0 < \ < 2 where the total energy



Figure 2.1: The DTLAF : The Non-Kagome bonds are shown as dotted
lines and the Kagome bonds are shown in bold lines

a5,

of the system described by the Hamiltonian in equation (2.2} can be rewritten

E 1

7 5(“%)%(

3

S o i o ¥° SN 71+
q] +1y (ZSL) -E8 () oy
1 ] :

k

Ang

Where N is the total number of sites in the parent TL and the first ter is
summed over the spins belonging to those triangles Ay which are bounded hy

three solid lines and which lie on the KL points only and the second term is

summed over the triangles Ay y which are bounded by two dashed lines and

which lie on points not belonging to the KL..

In this range of v, the coefficients of the first two terms in equation (2.3)

are positive. Thus the energy is minimized by spin configurations that satisfy

18
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1
the condition that the net magnetization of every triangular plaquette, j.e

(51 + 524 55 ) is zero. For non-zero values of v lying in this range, the unique
solution of this constraint is, up to symmetry operations, the so called /3 » /3

stale.

Shown in figure 2.2, this is a structure made up of three sublattices, labelled

A, B and C, populated by the spins S4. S5 and Se respectively,

Figure 2.2; Ground State of the DTLAF for the ranpe ) < y < 2

One specific choice for this which we will use in following calculations is

given by,

gy = X5
. Lo V3.
bp = =X~ KIS



which fixes for us. 3,

(2.4)
Apart from global rotations and refléctions about the three component
spins .§A,.§5 and 5:[: this is the unique solution to the minimum energy
condition, However at y= (1, there are many other solutions which satisfy
the constraint 5, = 0 for each triangular plaguette. This results in the

huge degeneracy of the Ground states consisting of planar and non-planar

configurations that were described in section (1.4) .

The ground state energy in this range of y is given by ,

JINS? 11+ ¥
P ( 21)

—_

(=]
wn
o

The above range of y is the one that is relevant to ensuing discussions but

we present here the calculations for the Ground states of the DTLAT for ¥ >2

which also show interesting structure.

For instance in the range v > 2 we rewrite the energy as,

T

-

(2.6)

i 7 S\ 38N
= 2. 5 (f"w + Saw + ¢ 5.&.']&) = = (1 T )
B © :

where the sum is over all the non-Kagome triangles Ay made up of two

Kagome points and one non-Kagome point. 5,5 and S,5 are the spins al these

two Kagome sites and Sy is the spin at the non-Kagome site at the centre
of every hexagon.



In the range 2 < y < 4, the quantity fq]h + ._'1:"2_.{ + %.“:",\rh-] van be made
to be equal to zero on every triangle by a non-coplanar spin configuration
described below. We can define this state with respect to the 3 » /3 state of
Figure 2.2 as follows. Consider such a triangle in which the non-Kagome site
has the spin ._'::"c lying on it and let &, and .5'_;5 be the spins on the other two
Kagome sites. We can construct on this base the linear combination which

will minimise the energy equation, as follows.

Let -‘-"ﬂ K= Cos I'i'f.:?_q 4+ Ssind:
E_'"z K= cos 5“\13 + Ssinfz
o 2z =

and Swk = —— (-Hm + ﬁm‘)

oS {F‘.q’{‘ — 25 sin Ef)

I
|
——

This minimises the expression (2.6) when ¢ satisfies the equation

g = L (X 2.8
=111 = 1 1 |:."‘ -:I

for every triangle under consideration. Equation (2.8) always has a solution
in the parameter range 2 < y < 4. Thus the non-coplanar configuration

described in equations (2.7) is the stable ground state in this range of y. The

ground state energy in this range is given by,

ISAIN £
Bgig = -~ (1 + }7) (2.9)
3 =

At x= 4, we have f = 7/2. All the spins are then collinear, The spins on

the Kagome lattice point up and the others point down. Examining the energy

153
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as written in equation (2.6), it is clear that this state (# = 7 /2) will minimize

the energy in the range v > 4. The ground slate energy in this range being,

352N
Bpg=———p—s{y=1) (2.10)

In the range v > 2 the system has non-zero magnetization, The average

magnetization per site is given by,

= 33 X = 4 (2.11)

To summarize the above, we have defined Lhe DTLAF and derived expres-
sions for the classical ground states of this model. We find that the models

fall into three categories depending on the value of v as follows.

o The range 0 < y < 2 where the ground state is the planar spiral state

with spiral angle = 120 =, unique up to symmetry operations.

o The range 2 < y < 4 where the spins start lifting off the plane. The
spins on the Kagome sites having a 2 component which is anti parallel
to the 2 component of the spins on the non-Kagome sites. This state is

thus a combination of a spiral and ferrimagnetic state.

* At x=4 all the spins are collinear and the transition to the ferrimagnetic

state is complete. The ferrimagnetic state persists for all the values of

- ..
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2.2 Inclusion of Fluctuations: Linear Spin wave theory

In this section, we calculate the leading order corrections to the classical Neel
state due to quantum fluctuations in the linear spin wave approximation. In
this approximation the spin operators are mapped on to bosonic creation and
annihilation operators through the Holstein Primakoff transformation. This
mapping is exact in the limit of S— oo and for a finite S it is to be under-
stood that these operators act on a finite dimensional Hilbert space. First
applied to quantum antiferromagnets on bipartite lattices by Anderson ([,
this mapping is a good semiclassical approximation for z5 % 1. where 7 is the

co-ordination number of the lattice.

First we present the spin wave analysis of the DTLAF about the /3 x V3
classical configuration which has heen deseribed in the previous section. Re-
ferring again to figure (2.2) we see that the minimal unjt cell we can construct
that takes into account the periodicity of the ground state and that of the
Hamiltonian consists of 12 lattice points. Fach lattice point is labelled by 3
indices ( Lia), where [ is the vector associated with the particular unit cell
to which the point belongs and (i, o) label the points within each unit cell as
shown in figure 2.3 which shows one choice of the unit cell. With this notation
in mind, the classical ground state confipuration of figure 2.2, may be written

s, ‘:Eir = Sn,, where iy = (1,0.0),7, = {—%, Yfﬂ] and 715 = {—%.--*;E. (]



and the Hamiltonian can be written as

1 - L
H= 3 SJtiodsTr(S1aSu) (2.12)

flr:,.l'gfl' =

In the above expression the J;; have been rewritten suitably as the Matrix
Jriaa55- The explicit form of Jria;p 18 not given here but will be given along
with the calculation at a later stage. Here, in order to facilitate our caleulation,
we have rewritten the F.-_:;.-n as S, = .g;;D.F, where 7 are the Pauli matrices.

Including the effects of quantum fluctuations consjsts of rotating this spin

1.1} 2)

(R R T

11.2% 13m (200

Figure 2.3: Unit Cell with 12 lattice points labelled by (i, a ) as shown

from its classical value by a unitary transformation as follows,
S!Il:r =5 {'I-II:,-,n..{-'rfl:_n ij-]:;]
Where for small fluctuations the Ui can be expressed as,

iy & exp| ll,?u‘;,,, i [2.14)

Z‘r =



[
[uly |

- with the w representing fluctuations of the spins and being given by,
Wiin = Pliafa + Q’ffarﬂ {215}

Here, {fi,,€a,2} form an orthonormal set of basis vectors defined on each
sublattice, in terms of which we express the spins. The operators pria, giin
satisly the algebra [pr., qr.] = —ih. Equation (2.13) gives the mapping from
spin variables to bosonic variables and is equivalent to the Holstein Primakoff
transformation. This is apparent in the following expansion of Stia along the

basis vectors {fi,, €4, 2}, in which we have kept the terms up to order 1.

’ 1 .
Sh“ = S[?JO{I N E{P}?ln + {.Irft.::}} o p“ﬂTH —l- qﬁﬂfﬂl [zlﬁj

This is exactly the first order approximation to the Holstein Primakoff trans

formation adapted to fluctuations about the /3 % /3 configuration.

In this expansion. § sets the scale by which to make a perturbative order by
order calculation. Therefore substituting for Sy, in the hamiltonian with the
expression (2.16) we get the following expression for the fluctuations hamilto-

nian which contains quantum corrections of order -

T

=
3 ] g ] ]
H.= = > TraapTr]- Sellafa(Wha” +wys") — Swpanewang] (2.17)
T o, o
where,
J - 1} }‘ J r ra‘ ] r-ulr 9
Hagig = ﬂLJj,'._-,_JLI T a Z [ J.f—-!-ErJ.'{,I_;.,-j =+ ..F.I—E,l:J '::hj-’ﬂ] fvlvﬁ]l
Al =3

In the above expression the vectors £, connect the unit cell to corresponding
& = -
points on adjacent unit cells. £ = 2¢/3(0. 1,0}, £, = 2\;”33[%‘?, L0) and

Ey= —{E'L 1 I:J-J]n. The expressions for J° and J7 are given in Appendix A.



The spin wave co-ordinates Prio and gr, are defined as follows.

o e
Pla)riai = —mZp{qJ:m exp (—il. 1) (2.14)
VIV T

The sum is over the superlattice of veetors § and A are the corresponding

. reciprocal lattice vectors. Rewriting H in terms of these spin wave variables

we get,

J3 _ ; f
3 ¥ [P-ria M P + G- Kio Wia ja Gk i) (2.20)

Ko 8

Hi=

where the 12 x 12 matrices M~ and K are given in the appendix-A.

Since M~ and K do not commute for arbitrary v, we cannot diagonalise
the hamiltonian by a simple unitary transformation. Instead we obtain the set
of left and right eigenvectors of A% = M~'K and express the hamiltonian in

this basis to get the final diagonal form. First. we define the Py, as lollows.

PRia = Zq}?ﬁoPI\'nr

nr

Ihia = 3 OF Qnnr (2.21)

nr
The columns of the matrices P and BT are the g, {or ¥, ) which are
the Right {or Left respectively) eigenvectors of (12 and are given in appendix
b g g Pl
A2, The vectors 4 satisfy the following orthogonality relations,
i in’ r 3 .
l':'}f fi ,‘__-.;T = 4 byr {229
Yot WRia! = 808, . (2.23)
Using the transformation equations (2.21) we can sce that like the poand

the P s and the Q s obey the canonical commutation rules,

[Qh'rlr- -'”—.f-.'u’--‘! — -"J:'-rl,.-.""‘r_.’ (2.2
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Expressed in this basis, H takes the form,
[
H = Z E[E"WPEF T i‘:l:-n' rzir] {225]
We rescale the P, and Q,, to write this in a standard form as,
1 - .
#H = i %;Wﬂr{‘ﬂnrz + Qnrzjl {??6]
where
< 2 Yo n
lIiI—?:ur = fEE—— -.;-
id,
| ~ 2 ]“'::rl:r 2
| ne = Tl 2.27
| Q 1 e & |: :j

The eigenvalues and eigenvectors of the matrix 2%, which are given in the

appendix A.2, indicate that these modes fall into three categories which we call

the H-H, H-8, and the 5-§ modes as follows using the conventions of appendix
A to label the modes.

o The modes (0,0), (0,1, (0.2} are the soft modes, gapless for all v, which
we shall address as the 5-S modes.

e The modes (1.0). (L) (3,10, (1,2), (3.

-2), which are hard for non-zero

but become gapless for v = 0, will be referred to as the H-5 modes.

e The modes (2.0), (3.0). (2.1), (2.2), which remain hard for all v will be
|

referred to as the H-11 modes.
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Among the H-5 modes, there are two groups. The modes (1,0) | (1.1) and
(1,2}, are spurious degrees of freedom at y = () ay they decouple the hagome
points from the rest of the lattice at this point. The modes (3.1) and (3.2)

on the other hand, are the ones which truly soften and hecome gapless at v = 0.

2.3 Order Parameter reduction to order +

Now that we have a parametrisation of the soft and hard modes of t]e systemn,
we can define suitable order pé,rametr_*rs to characterize the ground state and
calculate the reduction in these order paranieters from their classical valyes
due to quantum fluctuations within the spin wave approximation. The various
order parameters that we study in this section are the staggered Magnetization
M, the staggered Chiral order parameter ¢ and the componernts of the Nematic

Tensor ¥2*. This reduction is used to get an estimate of 5., as that value of §

where the fluctuations destroy the order. OFf these order parameters the Neel
magnetization M is the most natural choice. the others that we have mentioned
above are interesting in the context of the KLAF It s been proposed in the
coutext of the KLAF that being a spin nematic. the system shows the long
range ordering of the second rank tensor ©

e

With a view to writing these o erators in our notation. we first define three
B P

orthogonal vectors, n* as follows,



& 1 : : P
o= X ST UL ) (2.28)
= Ly Trrt UL U (2.29)
ny o= —}‘_izl%w‘[s- Siii]} (2.30)
E t}di.vllﬁ - 9 (TR TS G

Of the above, n' is the same as the average Staggered Magnetization, M,
per unit cell, n® is perpendicular to it and n® is also known as the staggered
Chiral order parameter C;. The n® are 3 orthogonal vectors each of which
carries an index k. The right transformations SO(3)r act on the index a and
cause a mixing among these. The left rotations S0(2)p are transformations
that act on the index k. This additional symmetry SO(2); is a symmetry
present in the spin wave theory which makes the two spin. wave velocities
equal. Under the SO(2), transformations, n! and n? transform as doublets
and n? is invariant. A Symumetric rank 2 tensor that we can construct out of

these forms is the Nematic tensar which is defined as follows,
| ; .
E:’_‘_:-J = E rz‘,-‘ﬂ_f' — iy Z n:‘n:‘ (2.31)

Of these, Z* i5 generally referred to as the Nematic order parameter N,
This is a singlet under the S0(2)p transformations and has the quantum num
bers (2.0} associated with the action of SO(3)g. The correlations of MNyoare a
measure of the planarity of the spins of the ground state. For instance in the

classical /3 % /3 state this has the maximum value, normalised to be 1.

We have calculated the reduction of My, €y and Nt due to the inclusion of

quantum fluctuations to the background spiral state and find that the ordering
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is more strongly suppressed for Ny as compared to (') as compared to M. Ta

give the salient features of this caleulation,

Approximating M; to order :1— we have,

| ; ;
My = Z[T “'f: &Tl 93 whazT]] {23'”
|
l‘l and < M == ;‘”FI:] - = ﬂ M) (2.33)
s
\ where MY = S7! and AM, is in terms of the fourier modes wy;, .

1 8k

'I. BN = E[f S SR . 1] (2.34)

In order to see how they act in reducing the staggered magnetization for
different ranges of y we calculate separately the contributions of all the st
modes which are labelled by {n.r) = (0.0). (0.1} and (0.2). In the case of
the hard modes we approximate the dispersion relation by neglecting the k

dependence and in the case of the soft modes the dispersion is taken to he,

wnr = Vor K. These separate contributions are given by, below,

€, Vi A
& ,'1.'le1- = q:rﬂ.r q)rr 'l:u: ‘I}‘HT nr _‘1; o .2_3;-_-
l-_l ) { Ria ® R, m-]'nnqll + Lo *Lia 3{.‘“:’ ] 1} { - -:'.]
I'I For (n,r) = (0.0):
| JIL £ e
sy = { oo g s oo, ] <1} )

In the same way, we calculate separately the contribution to AM,; COIIng
from each of the hard modes (H-H and H-S) in which (n,r) take all values

except for the above three and this is given by,

"Where the fact that < Wi, tare = 18 nion-zero only when k= —y has been used

'|
|
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Figure 2.4: Reduction in staggered magnelization due to spin waves
plotted as a function of y showing separately the contributions of the
goldstone modes and the other modes,
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We do sec a difference in the behaviour of these modes at different ranges of
X as we expected. Thereby, separate contributions of the Hard and soft modes
to AM; are shown in figure 2.4 where we see that the dominant quantum
fluctuations near y = | are due to the 3-5 modes, but near v = U the contri-
bution from the H-S modes to AM increases considerably, This indicates that

the H-5 modes could become relevant degrees of freedom while deseribing the




maodels close to the KLAF.

We repeat the above caleulation for the Chiral order parameter (' and

the Nematic Tensor which has been defined in equation (2.31), in order to see

i the presence of the H-5 modes alters the ground state order by showing a

preference for any of these order parameters. The average value of €} in the
above approximation is given by the expression,
| d* iy
- s ol ) 22
e = (.J- {l—ﬁgz/?{ﬂhm Whingl =
2 ;
= a_.w;} (2.38)
, V3, _
where Cf = =672 (2.39)

The above expressions are plotted as a function of Y and we sec that the
behaviour is very similar to that of the staggered magnetization. This is be-
cause the first factor in equation (2.39) is proportional to AM | the coeflicient
is twice that for < M; > as-seen fram (2.33). Further the last term in {2.33)
is smaller in magnitude when compared to AM. which explains the similarity
in the shapes of the two curves shown in figure 2.4 and figure 2.5. We have

also caleulated the spin wave corrections to 1 and % and find a similar

behaviour and the ordering is even more strongly suppressed.

This completes the spin wave analysis of the DTLAF which has been mo-

tivated only by the desire to identify the relevant Huctuations for different




Figure 2.5: Reduction due to spin waves in Lhe classical value of the
Chiral order ' | the components Yz and

¥y of the Nematic Tensors
shown as a function of y.

values of y lying in the range 0 < v < 1. The cas

e of y ~ 1 is simple since
it Is not a singular point and we can make a straightforward e

xtension of this
representation to that end. We treat the y = 0 end with a

little more care and
derive an alternate representation of the H-S modes in the follow

ng section.
starting from a slightly different model,

2.4 Reparametrising the H-S modes

We introduce here another model whicl is relevant for our study,

which we dub
the J, - J; model, for convenience. In this model,

. bonds connecting nearest
neighbours on the KL have a strength J; and within cach

hexagon, every site

4
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. is ferromagnetically coupled to three other sites as shown in figure 2.6 with a

strength Ja. This model is equivalent to the DTLAF after integrating out the

central Non-Kagome Spin. The Hamiltonian which deseribes this model can

be written as follows.

H=0 } 8.5- 03 8.5 (2.40)
<Ly {1.3}
where the first term is the usual sum over the nearest neighbours on the KLAF

and the second term represents suns over pairs (i,j) connected by dashed lines

i figure 2.6.

. Figure 2.6 The I, - Ju Model on the WLAF - Figure showing the honds
within cach liexagon of strength J,

The spin wave theory of this model is done along the same lines as in the
preceding section so we do not present the details liere but merely write down

the eigenvectors, and indicate those which describe the H-8 modes.

The eigenvectors of the K =0 fluctuations hamiltonian are &, ; = ;K By,
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where
oy = ] {1.1,1)
vﬁ i T
= —(1,a,0%)
o = —(l,a,a
A vﬁ
oy = %{l,ag,a} (2.41)

Of these, the modes are Py and §,; havea gap g = 3J; (3J,+6 J,) which

vanishes for J, =0 and they correspond to the H-§ modes.

The labelling of spins on the unit cell which in this case consists of 9 points

is as in the case of the DTLAF and is shown in figure 2.7, Small fluctuations

(L) (2.2}
0y
(2.0 {0,1), (02) (LO)
(1.2} (a1

Figure 2.7: The unit cell for the Ji-.Jz Model on the KLAF - showing
the way the spins are labelled

of the classical ground state configuration due to the H-S modes can be written

using equation (2,13} as follows,

-S’I}lu = ‘E”u 5 'IIVK{'E{”Q?“-"JIIH:J [2.'12]
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where the w;,, defined here is that part of the fluctuations which contain only

those 1-5 modes Py, ®,, and Py @y, .

wrial = [PTOY + P! (2.43)

with P+ = (P ;=P =t

In the following expression, we write down the change in each spin, 45, and
choose the subset of states with 05, =0fori+a=10 (Mod 3) with reference

to figure 2.7. Putting this condition in, we get the value of the fluctuation in

the other spins to be,

V3A

355, = = ™ fori4oa=1 (2.44)

384a = _—VFETJ fori+a=2 {2.45)
5

From the above expressions we see that the 3" 5, = 0 for cach triangle. The
axis of rotation is however different for different triangles thereby creating non-
planar configurations. Therefore these modes also represent rigid rotations of
the spins on sites i + ¢ = 1 and i + o = 2 about the axis determined by the
spins 1 + @ = (. This gencrates non-planar configurations even starting fron &
planar configuration which increases the stiffnesses associated with the other

soldstone modes,

This also shows explicitly that for small Huctuations there is no cost of

energy due to these excitations, In Chapter (1). we map these modes on to

|| unit vector fields in order 1o incorporate large fluct uations and study the effects
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of the interaction between these modes and the zoldstone modes in determining

the ground state of the system,




Chapter 3

Field Theory of the DTLAF near |

In this Chapter we derive the effective fisld theory of the goldstone
modes of DTLAF in the low energy long wavelength approximation
starting from the microscopic model, Through a one loop Renormal-
1ization Group (R.G) caleulation we probe the parameter space near
the critical couplings to get the R.G. flow diagram of the model and
thereby estimate the phase boundary separating the ordered from the
disordered regimes. This is used to obtain the critical valye of spin
Seeit above which the system s ordered. We see that for models wiih
\ close to one. this value is about 0.028 thereby placing the models
well within the ordered phase even for S= | /2.

In the following sections we derive the field theory for the DTLAF close to

x = I which deseribes the role played by the goldstone modes in determining
the ground state. The TLAF end is already very well studied and our cal
culations in this end are done with a view of the TLAF as a reference point.

. Before presenting the caleulations on the TLAF we briefly describe here the
method of using the S17(2) coherent state basis to derive {he path integral

| i :
'. representation of any spin svstem.
|
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3.1 Lattice model to continuum Field Theory.

In order to go from the array of quantum spins to a semiclassical continuum
field theory we need to make a suitable choice of basis to represent the spins.
The spin coherent state basis forms a good representation that meets our nesds
[42]. In this section we describe this basis and the procedure by which to gO
from the microscopic lattice model to the continuum field theory. We first

present for completeness a treatment given by Fradkin [33] and later adapt it

to our specific model.

Firstly, the transformation from the basis in which 8% and $° are diagonal,
namely, | S, M ) to the coherent state basis |7t ) which are parametrised by the

unit vector @ is given by the following equation,

|7} =37 D¥(A)ps|S, M) (3.1)

Here, 7t takes values parametrised by points on S? the unit sphere and the

unitary matrices DUHi) satisfy the relations,

Dtﬂ{m]gfl’??{ﬁ?] - H:S}[ﬂ'g_]expm{”“""“’:'s"' (3.2)

Where, ®(n,, 12, n3) is the area of the spherical triangle drawn on the surface

of the sphere 5% and bounded by the points ny, ns, na. The different states

|n;i ) are not mutually orthogonal, but have a non-vanishing overlap given by

- I+ ripriy | ©
{n1]|n2) = exp®mnznol (—'——+ .;1[ nz) (3.3)

and the resolution of identity which is written as follows makes it possible to

use this set of (overcomplete) states as a continuous basis set to express the




A0
spin operators.
ff.f;.:{n}[ﬁ}{rﬂ =] (3.4)
where the measure is given by dp(n) = B Py g 1). The diagonal
matrix elements of the spin operator S in this basis is given by,

(7|S]a) = Sn (3.5)

The path integral for the evolution of one spin in time may be represented in
this basis by dividing the time axis into intervals of length §¢ and sandwiching
the identity operator of equation (3.4) at each point. Slicing up the partition

function into N, time intervals, we have,

4 = Tresp

Lim (ox;r“ L ) i (4.0

1M¥ede)—{oc 0]

Now introducing the resolution of ilentity at every intermediate stage we got
the required description of the path integral below,
N, A

Z = Lim {H[d’p[ﬁ}}Hl:m[fjﬂe:-:h'ﬂrﬂi' ln{t; + 1)) ] (3.7)

=1 =
|| {84 e oo )
.

\ This can be rewritten as follows

\ Z 5= L [ﬂﬁexp*f"{ﬂ} (3.8)

{ Ny )=o)




where 5(77) is given by the expression,

=1 =

=1

0 N I+ n( [E'.. ;
—S :I'I =y I':I‘Z’[D”U ﬂ: nf 141 +SZI ( }J :H”)
“Z () [ H |n(t;s)) (3.9)
The first term Q — ISE_T ¢ 'fP{nusu,J ¢y, ) is the solid angle subtended by

the three vectors i, which parametrise ¢ at the centre of the sphere. This is

the Berry’s phase associated with the evolution of the spin in time over the

time interval 0 to 3 which has been sliced up into intervals of duration §f

Q0 is the sum of the contributions such as @ of elementary areas bounded by
the points {IIU,H=J,H¢J+]} on the surface of the parameter space defined by the
sphere 5% and can be written as follows,

0 = Z{I’ ﬂ-ﬂ1nf ﬂ:.H:'

=1

= / d'.‘]ﬁdl; n(i_:r}.ﬂ:n(t_,'?} xﬂm[!_:'r]l (3.10)
0 0

where, n(f, 7} is an arbitrary extension of n{t) from its value on the boundary,

into the cap ¥ which is bounded by n(t}, subject to the conditions,
At 0) =qlt) it 1) =+, and n(lLr) =74, ) (3.11)
and t [0, J], re[0,1].

Before continuing to discuss equation (3.9) we switch to notations which

will be used in the following sections to rewrite Q in a different form. We

rewrite ® in terms of n = 7*.79 50 that the solid angle term is rewritten as,

1
/F flee'fu’ri_?"r [n[r‘..r]ﬂfnﬂhT}IEJ,H{LTJ] (3.12)
oo 24




The fluctuations of n about a classical value {nf}, can be expressed as,
n{t,7) = UM, 7 )01, 7) (3.13)

) can be written in terms of the fields [, = i8,UU as follows
a
e f f dtdrTrn (8.4, — a,)] (3.14)
a 0
In the above expression, we separate out U(t,7) as

U(t,7) = V{r)W(t) (3.15)

which meet the conditions (3.11) so that. Gily = 0., 8.8 = (VL VT where
Le =18 WWT and substituting this expression in equation (3.14) we get,
4
= ] dtTr[W e, W] (3.16)
To resume the exposition of the equation(3.9), the second term is seen to
vanish in the limit of N, — oo and 8t — 0 while the last term. in this limit

reduces to the diagonal matrix element of the Hamiltonian (n{t,) | # |m{t;) ).

| This formalism is trivially extended to the case of a two dimensional spin
|

. array. In this case, the 7 now carry an index 1 which labels the lattice site.
|

" The berry phase terms simply add up as indicated by a sum over the indes i.

the hamiltonian for the single spin has to be replaced by the Hamiltonian for
|

- the interacting spin model, Having made these changes, the expression for the

| ol
| action 1s,

a
S(i) = —iS 3 Q) +-fu At Y JS% ()0 (3.17)

Rt Y e
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This is the basic procedure to construct a Euelidean path integral starting from
a lattice spin system. It must be noted that this expression is still in terms
of the Lattice model. Our aim will be to present a coarse grained picture in

terms of slowly varying gapless modes of the theory which will be deseribed in

the next section.

3.2 Long Wavelength Low Energy Effective Action

In this section, we describe the procedure of obtaining the parameters of the
effective field theory of the DTLAF near x = L. In this section, we refer to
the notation that has been established in chapter (2) with respect to labelling

of lattice sites, the different low energy modes ete.

The modes which are relevant in this end, are the three gapless goldstone
modes, the 5-§ modes, therefore the theory is designed to allow for large flue-
tuations in these modes, while the H-H and the H-$ modes are integrated out

in a quadratic approximation. In order to make a distinction between these

different modes we rewrite the spins as follows.

Stio = SW} exp™ % n, exp £ W, (4.18)

Wiy
In the above expression, the e:-cp_'ﬂ'h contains the H-H and H-§ modes
and the W) contains the 5.8 modes alone, The energy cost of exciting the
modes parametrised by the wy, are down by an order 1 compared to the
goldstone modes, therefore we retain only terms guadratic in the w;,, which

will contribute to the effective action in this order.
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We then make a gradient expansion of the fields W, and retain out of
this expansion, terms involving up to two spatial derivatives only since we are

interested in the long wavelength limit.

The expression for the action at this stage contains terms that couple the
hard and soft modes. Integrating out the hard modes constitutes the final

stage in the construction of the effective action.

As described in the previous section, the action that we wish to estirnate

is given by,

¥ /dTZﬂ s 5 Hiada (3.19)

o T 3
where, £ 5., is the total solid angle subtended by the evolution of each spin

and this term is given in terms of the fields W by the following expression.

Q =iSUL n. 0.0, (3.20)

T

wi,
where, U/}, = exp % Wy, while the interaction part H is given by,

J§?
Hross =—— 3. Tr(nu.ngy (3.21)

R S R

Before we make a long wavelength expansion. we regroup the different terms

in the above expression and rewrite H as follows,

JEE_ l ;
Hf:'rl.,f_;-'.f = TI} { N [J[:m_—,-.".i EI_J = Serij‘ H}.|'|-E:,.J'

1
+ 5 ss ) 61,0 ] nyjs } (3.22)

where, the matrices J° count the bonds hetween sping in one unit cell and the

matrices J7 count the bands between spinscon unit eells L and [ + E,.. while




45

(377 a6 ) count the bonds between spins on unit cells indexed by land I - K,
as indicated by the associated Kronecker delta. The explicit expressions for

the matrices J are given in Appendix B.

The long wavelength expansion involves writing the associated Kronecker

deltas as follows,
1
dree, 0 =612 [1 +EfW, + ;EfEi?k?; (3.23)

where EFV, = 8, in terms of which the equation (3.22) is given by,

Js? . !
H = TTT‘{H“Q [J tagd +§
1

:j‘[']rinjﬁ - '[JFTiaJﬂ }J‘ar

I b
3w + 0T | mia} (321)

(I iass + (I T iaia )

We now expand the ny, as in equation (3.18) where the spins Sp,., are ex-
pressed in terms of the soft modes contained in W and the remaining degrees
of freedom wy,, and evaluate equation (3.24) rewriting gradients of W in terms

of the chiral fields L, = id,WW!, which reads as follows.
H = Hu.'u' + wa, + HI.L {3-25}

where H,,,, contains the part which is purely in terms of the hard modes anil

is given by,

Hyt-H,; = Z m_ PP I 1 ol ) (3.26)

TirT

as before and the H,; contains the overlap between the hard and the soft

maodes given by,

H,¢ = JSVS[CL P+ CLO, + hie] (3.27)
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where ("' are given in the appendix B. The last part s purely in terms of
the soft modes and comes from the last ter in equation 3.24. Performing the
Gaussian integral over the hard degrees of freedom P oand Q also gives terms

that add to Hy;..

To get the right expression for the Lagrangian density as we go from Lhe
Lattice to the continuum version, we have to divide by the volume of the
Brillouin zone, which is equal to the integral over the density of states and |s
given by the equation,

272

IJ"IlL2 T 3.28
= (3.25)

The final expression for § that we obtain after performing this integration
involves only the $-§ modes in the form of the matrix W but has parameters

that have incorporated the effects of the other hard fluctuations. This form of

the effective action reads as [ollows,

. 5 . :
S :j;lrerﬁ Z ;J“LFL” {3.29)

=0

e=1:3
The suffix A indicates that the action is defined with an upper eut off on
the wave vectors equal to A. This parameter is naturally imposed by the fact

that we do not allow for fluctuations at length scales smaller than the unit cell,

Drawing on the analogy of the above action with that for coupled rigid

ibodies, p2 = 1* gives the moment of nertia for rotations about the axis N in

pin space, and p? = give the corresponding spin wave stiffnesses. In terms

e
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of y the I* are,

I3 _-1__4_ {3_3{}

J9v3x(2— 1)

1 4 (347y)
I = e N AL 3.30
ToVAX(@ +x) L

and the p* are given by,

pPPo= ISNE(1+y)
2 — gsrg XX/ x(5 —x) 311
P BTy (3.31)

At this point we match our results with the calculation of the parameters of
the field theory describing the Triangular lattice by Dombre and Read [9]. In
order to compare with their expressions for the TLAF, we evaluate equations

(3.30 - 3.31) for the case \ = |. The action of Dombre and Read is given by

the expression,

: v"'-'?
5= [ ssf 2 s
A ! {Qv"_ A

Our values for the parameters I* and p* are as follows.

—LLE + 3 L’LJ} (3.32)

plt = JSN3
ot = JS83
Y- I 4
fres o }m (3.33)

We find that when the action of Dombre and Read is written in terms of the
fields L2 the action has the form given above and the parameters g and I match
CTTRE

well with the corresponding values from our derivation given here.
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3.3 Symmetries of the effective action near y =1

The original spin hamiltonian is invariant under the SO(3) spin rotations. This
corresponds to the spins 5y, transforming as follows,

Stio = ()3 SS,, (3.34)
Where Q5 isa SO(3) matrix, In terms of the matrices Sy, |

Sfm =% J‘rT‘S‘Iia-}; [335}
where X is the SU(2) representative of the matrix Qg This corresponds to
the transformation,

Wir) — Wir)x (3.36)
Ly and henee the action in equation (3-29) is invariant under this transforma-
tion. We refer ta this syimetry as the SO(3) 5 symmetry.
In addition the action is also invariant under the transformation

Wi(z) — YW(z) (3.37)
where ¥ ¢ S0O[2) and consists of matrices of the

form expifr®. We refer to
this symmetry as the SO(2)r symmetry. It acts on the spins as fallows

St = ()57, (3.38)
‘where £} is the SO(2) matrix corresponding to Y. This transformation is
ot a symmetry of the lattice model. It only arises in the continuum field
‘theory [11]. This symmetry 15 observed in the lattice spin wave hamiltonian
s a discrete 7, symmetry of rotation by [20°

followed by translation Ly a
it lattice vector, The full

[r

80(3)n % SO(2),..

internal symmetry group of the model js therefore
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3.4 Renormalization group analysis of the theory near y = |

In this section, we describe a one loop renormalization group analysis of the
SO(3)r % SO{2)1, non-linear ¢ model described in equation (3.29). A model
having this symmetry has been analyzed earlier by Azaria et al in [10]. We
perform this calculation on our model with the parameters relating to the DT-
LAT with a view to determining the phases described hy it and the variation of

the critical spin S, the physical value of the spin above which the parameters

lie in the ordered regime as a function of y.

The action that we have derived in the previous section incorporates the
effects of fluctuations at all length scales up Lo Ag. the cutofll wave vector.
But we are interested in describing the physics of the systemat k = 0. Ina
perturbative caleulation the higher k modes are directly integrated out at ane
step . The renormalization group program consists of integrating out the hard
fluctuation modes shell by shell so that at each stage the effects of the [aster

k modes after being integrated out, serve to merely renormalize the coupling

constants while giving an action having the same form as the bare actjon. This

action is in terms of the softer modes only,

In the action S given in equation (3.29), which we address as Sy... in the
following discussion the slow and fast degrees of freedom are separated by
rewriting W as exp™'" W, where W contains fluctuations with wave vectors
ranging from k = 0 to k = Ay — §A = Apexp™'. The = contain the fast

fluctuations with k lying in the momenium shell Ay — A to Agi

With this separation of the fast and slow variables. equation {3.29) reads as
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Bhave = Gb8 (3.34)
= — Lﬂ : 340
5, ﬂ L Z poLE L (3.10)
A
5 = . drrt (D™ 4 M) (3.41)
e

where §) contains the Auctuations at all scales up to Ag — §A and Sy contains
those lying within the momentum shell A to Ay — AL The matrices 1) and M
r occurring in the expressions for S, are

ab 1 ak ﬂ§ ey b
D = a0 = s

ﬂfu& — Cnbc{pf&_{pi_j_-p;“Lca ru:J. bdi(‘rd j.:l

“ i, LiLS (342

] ¥

Rescaling the measure sucl, that the cutoff wavelength is once again A in o

?;j_ﬁn (3.41), we get the effective action of the slower modes, as § = S 65
~ Here,

aA dA | d* ke
5= S = (14521
A

bl log (D + M) |k 3.43
Lo T (Il (D 4 A0 ey
Making use of the fact that log A may be written as log 4 = — [T B expd,
£ 6= 5. we express 65 s,
(3.44)




+3 (J"'I"{J'.‘-THI + 111131'1'!32) dl d‘]
i ds—d, TP TR TP TR

The cutofl ¢ is meant to take care of the large k divergences. Evaluating
these traces gives the final form for § in which the large momentum fuctuations
in the shell Ay Ayexp —! have been integrated out. The new S has the same
form as the old one, the only change being that the coupling constants have
been renormalized by the above operations. This process may be repeated shell
by shell to obtain the low k action or equivalently solve the equations governing
the flow of the coupling constants as larger length scales are approached. These
R.G equations are written in terms of g, = :??fm and ¢, = E. The equations

governing the behaviour of the g, are,

Ef:_[]; 23 o
2 o= gaagdla=®
dizs ailel + k) .
—— = gy A J:45
dl R E T (3:45)
The equations governing the flow of the ¢, are,
”1(_1 . E!ECI{{-‘H =]
dl gales +¢p)
dey gilch — i)
i o '-}l — E )
dl T k3:45)

Where A = & in which the first term comes from najve scaling of the action

and the second term is the one loop contribution coming from the trace,
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B

We find however, by studying the behaviour of {hese equations for oy —ey =
4o for small values of v, that they flow very quickly to © = 0 which for the
two ¢, equations is a fixed point. Therefore in the length scales that we are
looking at, for all practical purposes we can set € = ta.

For e, = ¢3 = ¢ the equations (3.45) reduce to,

dg

doy . . a B @
dl i 27 2 ga}
d3 Aai a
_I:_HI = =i = —zr Elql { :I

We rescale the g, such that g, = %y,, and then substitute g, = ~, exp~'.

with this the above equations may be re-writien as,

fj_‘ = ifa_ 1
dX 5% 3
dys
o T
(3.48)
with the variable | replaced by ¥ = | — exp™. These equations have the
solution
2
=yt — (3.49)
T3

The critical line in the g; — g3 plane is obtained by expressing the fact that
the final values are asymptotically approached as X goes to 1. For example in
equation 3.50, in which the equality defines for us the portion of the critical

line for I

oo |
j dys B 2§ (3.50)

x[18) [".f':f + f".".:'!



Solving the conditions for small a yields the following expressions [or the phase

boundary, for 4, > 3

1l
I
[
|
oy
e
=

{
3 ii—;siu{?t&n"l t)

1
T = !_z—i_l)

where t = \/75/(7] — 29).

Similarly for 4 < 73

o _ Llet
TS T
W= B-1) (3.51)

for £ = /(v —4§)/44.

For points lying on either sides of this critical surface, the equations have
been solved numerically and fig 3.1 shows the flow diagram which indicates

the way the coupling constants ¢ and gy evolve under renormalization.

In the Hgure the bare values at which we start off are indicated bv crosses.
For bare values g7 lying below the dashed curve the coupling constants How
to zero under this transformation. This i the renormalised classical phase in
which the ground state possesses long range order and the classical expressions
for the correlation lengths and coupling constants are merely renormalized by

the quantum Auctuations,

For gy lving above the curve, the parameters rapidly approach the Lorents
invariant g1 = gy fixed point and for these values the system is quantum

thsordered,
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Figure 3.1: Flow diagram in the g, — gu plane. with flow lines starting
from bare values indicated by crosses. The critical surface is represented
by the dashed line.

In the context of the DTLAF, il is more illustrative to translaie the de-
scription given here of the phase boundary into a relation between Dpreiind
x- We find that for the entire range 0 < v < 2 the values of g1 15 always
greater than gs. Therelore using the appropriate cquations {3.51), we generate
the curve of S, vs \ which is given in fig 3.2, In the figure we see that near
x =1 S is almost constant and equal to 0.028 approximately, However this
value is much smaller than we expect and the other effects could increase it

sizeably. Secondly we see that &, decreases near v = 0. However the R.G3

equations that we derive do nol hold good near this end as the ficld theory



itsell does not take into account all the relevant modes near this end. Even
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Figure 3.2: The dependence of Serivon Y for the PTLAF in the range
<1l

qualitativelv, we expect this picture to hold good only for models very close to

the TTLAF.

Lastly we have also checked if within the ordered phase, whether there
exists @ regime where gy and gy flow to zero witl their ratios .;’j remaining
finite. In such a regime the coupling canstants would flow to values g, g
which could characterise a Nematic phase, ‘This is because the stiffnesses being
different for in plane and out of plane fuctuations, there would be a preferred

planar configuration, which in turn has Nematic order. However there is o



such phase within this model.




Chapter 4

Phases in the DTLAF near y = 0

In this chapter, we propose a field theory to describe the DTLAF
close to the x = 0 end and possibly including the KLAF. The relevant
fields here are the Rotation matrices W and the unit vector field m
whith parametrise the S-S modes and the 11-§ modes respectively.
This model has the same symmetries as the theory near y = 1 namely
SQ(3)r % SO(2);. In the weak coupling regime, when there is long
range spin order the fields m' and m? have an equal and small gap.
In the spin disordered regime, the fuctuations in W drive the syvsten
into a phase where the 50(2), symmetry is broken and there is one
gapless mode and one gapped mode. We present this as a mechanism
that could be operative in the KLAF when approached through the
V3 % 3 state. A suitable order parameter that characterizes this

phase is the operator y = 5,,.5,, % S .

4.1  Relevant fields near y =0 and related symmetries

Referring to the classification of section (2.21 the relevant maodes near the
Y = 0 end are the 5-5 and the H-S modes. In thia section we describe one
way Lo parametrise the 2 H-S modes &,y and $4, of section (2.4) in terms of

quantities which are defined over ecach unit cell shown in figure 2.7, so that
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field theory of the large amplitude long wavelength fluctuations of these modes

can be written down. Such a param

etrisation is achieved and the Spills are

written in terms of a unitary matrix W oand a unit vector field 1.

Small fluetuations of the classical ground state configuration due to the

H-5 modes can be written using equation {2.13) as follows,

:.':"ﬁ,} = En.-_-, = ?:‘v'fg[ﬂan u'ﬁ:rj]

(4.1)
'whern? Wre which contains only the H-8 modes can be written as,
wiint = [PTo; 4 pmgidt (4.2)
with FT = {P ]' = 1”] — i'.j-l'_h
We parametrise these modes [or Targe amplityde fiuctnations by rewriting
the matrices 17, in terms of the fields ri; as follows.
: At = 1)pr® ey AL =28y
[T CXpt ; J expi—— :*xpf——}—r— (4.3)
2 B! 1
where ¢ = 2n/3 and m; = 7. This expression reproduces equation(4.])
exactly when i is slightly deviating from 2. Tlhis can be seen by substituting

L P NI S matching with equation (4.3) with the identification
) _I'—_%Pg ﬂIll’_I g = :%Pl.

The complete expression for Ui including the offects of the H-S, the H-1

and the 5-S modes can now be rewritten as,

;_I““ = l.:"_"_'{'li] —\;I,J;-:"- 1I..].| .H.-r [."l_lll'l

e the wy,, is expanded W terms of the B3 wodes atone. Yhe Vi

(RN

e RS of cquation (4.3} and the SUEZY matiy W as earlior. contains
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the 5-5 modes alone. As we can see from the expression (43) the amount by
which the Vi, deform each spin is dependent on the index 1. Therefore this
is a rotation which distorts the existing spin configuration within each unit
cell. The Wy on the other hand cause a rotation of all spins within a unit cell

without deforming their relative arientations.

We now examine the transformation properties of the new fields under the
symunetries of the theory. First consider the SO(3) g spin rotation symmet Iy
of the hamiltonian. The transformation of the spins as given in equation (3.35)

is obtained if W transforms as given in equation (3.36) and if

Ty —+ g (4.5)

The 502}, symmetry. as mentioned in seetion (3:3) is not a symmetry of the
spin system but is however i symmetry of the low energy. long wavelength field
theory near y = 1. We assume that this SYIUNetTy persists near y = () also.
Under the SO(2), transformations the fields W transform as before, given by
equations (3.37) and

iy — Yoy ! {1.6)
Equations (3.36), (3.37). (4.5]) and (4.6) then sprecify the L eanslormat ion prop-
erties of the fields under the SO(3)y, SO symmetry of the low energy

Lheary,
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4.2 The Effective Field theory for small \

We now motivate the form of the action that will effectively describe the phases

of the DTLAF for small y. We split up the action as,
S = Splm] + Si W, ) + Sy [W] (4.7}

As stated above, we assume that the [ull symmetry of the model to be SO(3) =
S0(2)y, in the continuum limit. Retaining terms quadratic in the derivatives,

the most general form of S,, compatible with this is,
|
S = | P2 Q' 4V (m) (4.8)
2

This action is trivially invariant under the SO(3)r symmetry since 1 is a
singlel under this symmetryv. We have taken the derivative terms to have no
XY asvmmetry and instead to be symmetric under the full S0(3), EZroup as
a simplifying assumption. From our earlier experience with the y = | field
theory, we do nol expect that this will make a qualitative change in the one-

loop approximation we will be working with.

Vi{m?) however is symmetric only under SO(2)r. At the classical level,
a model defined by S, has two phases. The disordered SO(2)p symmetric
phase which oceurs when Vim®) is minimised at m® = 41 and the ordered
S0(2)1, broken phase when it is miinimised at m? # 1. An explicit calculation
of the effective potential by following the method outlined in chapter 3 pives

the result,

270,

Vepglm®) = ——((m®)* — 1 — 4y )" [(4.9)
I 3



il

This potential shows a minimum at m® = |. We therefore use the same form

as above with general parameters Ay and 7y, with my = | at the KLAF eud.

V{ms} = %{I{ma]z—qﬁ}? (4.10)

Thus for 5 > 1, we have the symunetric phase (classically), there are two

modes with equal gaps which are equal to /g2 My(1y — 1}. This was seen in the

spin wave analysis itself, For m < 1, the S0(2); symmetry is broken. There

is one gapless goldstone mode and the other mode has a gap.

The general form of Sy that retains terms quadratic in the derivatives and

consistent with the svmmetries of the theory is given by equation (3.29). To
motivate the form of the interaction term. we note that the deviation of m*

fram +1 implies that the spin coufignration is non-planar. To see this, we
define vectors ) as

: g

Cr = BV ;[5},0. Stia 1] (4.11)

where as usnal (); = (1.7 C; is the: normal to the plane on which the 3

spins labelled by a particular value of § lie. Using equation (4.3) we have

(4.192)

It is clear that when m deviates from Z, the vectors ('), are non- coplanar, It

18 known that non-planarity of the background spin configuration makes the
gapless spin waves stiffer [13]. We therefore write down an interaction term of
the form,

- / A f(m®) L L (1.13)
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Where f(m?) increases as [in?| decreases. One convenient choice for f(m?) s,

fim?) = —a(m®)? with a > 0,

In the next section, we analyse this theory with a view to seeing, in par
ticular, if there is a phase in which the S0(2)p symmetry is broken and the
S0(3)g spin symmetry is unbroken. As we saw jn the previous chapters, at
values of y where the system is eflectively described by a field theory of form
given in equation (3.29), this does not happen. This is also described iy detail
in the references [34, 10, 11]. However, this does occur in the field theory given
in equation (4.7) at the classical level if 5 < 1. We have also argued that the
unrenormalised value of 5y is equal to 1. The potential V(m?) in equation

(4.10) will get modified by the fluctuations of both the W and the i fields.

We now formulate a large N expansion to study the phases. We see that
there are two phase transitions that take place. The first one takes the system
from the spin ordered to the spin disordered S0M2)p symmetric phase. In
the second transition, the Quctuations drive the model imto a phase with the

S0(2)y, symmetry being broken.,

4.3 Analysis of the y = 0 end of the DTLAF

In the following discussion we analyse the above theory in the strong coupling
(large g1 , g3) regime where the W correlations are shost ranged. In this
regime, a renormalization group analysis which is an expansion in powers of
the coupling constant is not applicable. One way of analvsing this model in

the strong coupling regime is through a + expansion. We do this by enlarging
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the SO(3)p symmetry of the theory to SO(N)y and then making a saddle

point calculation which is valid in the large N limit,

4.3.1  The spin disordered phase by a large N expansion.

We begin by rewriting the fields W in terms of three unit vector fields ¢ which

are given by the following relation,
; L FrEs
6 = STr[r" W] (4.14)

In the following analvsis we consider a corresponding theorv in which the richt
: E 3 P g 3 2

index ‘v’ which varies from 1 to N | with the N component veclors ¢! satisfying

the constraint

.

4 l . y

Dol = N|— — afm®)?|§" (4.15)
Ya

r=1

The interaction a{m®)* has heen absorbed into the constrainl equation. The

Yo dre given in terms of the old conpling constants o and ga by the expressions,

| il 1 1 2 I il
"—=2|:_ o __:I 1-_ -— —_+— [‘"1.1{1‘}
B [r . LA S

fora = 1.3

We impose the above constraint on the @ fields by introducing some ad.
ditional lagrange multiplier fields g™ and . This consteaint s tmposed by

rewriting d{¢fah — N{L8 — am?)) in the following way.

i why g b L ocak by ] o e F -
juycx;,-.f drea ol - N -5o0)) =fleve, — (N(— — am2)d™))  (4.17)
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With these corrections the action that we wish to analyse reads as in equation
(4.7}, with Sy + Si,, being given by &

N3
I ’
£ f DD DubiB.e8 + iu MGl — N(— — a(m?)25%) (4.18)

a=1r=1 Ta

Swm = 57 is as given by equation (4.8), We scale the coupling constants g, and
Ao by N so that this part of the action reads as follows,

N Ao

N 5
Sy = ]a‘a:r——c'i“m“r:i'“m“ - ((m?) — Ma ) (4.1
2

Where again the index a runs from 1 to 3, Integrating out the ¢ fields in this

action, we get

B

. o N Deab | voab 1 142
g = fdar—:"j-TrImg[—ﬂuﬁ + ' — 5 ; —afm’)*)
;/ 3_.]- Ay ‘!"D 352 il 9
4+ fd ig_vd“m dnm - ?{[?u 1" —1jg} (4.20)

At the saddle point the action § is stationary about the field configurations.

Therefare,
¢S5 _
= 4.5
o= (4.21)
45 0 {99
dn?)e aredl

Using these conditions, we pet the lollowing equations which are to he satisfied
by the lagrange multiplier fields pab and the fields /. First, applving the

condition {4.21) we get the following result,

| G | e 1 ;
— - merT ) = = .,f uh (1.23
(— = alm™?)in _f{ [ i) J

20 (283 K2+t



Applying the second condition (4.22) to the action we oot

21— (m®) 2 (Al (m¥)? - ml +iatr{n) =10 (4.24)

Now putting in for ip, the ansats, Ty = M2, we get,

1 a1 &Pk 1
—_— ri! —_ - I — 4L2r
% a(m’) 20 (22P K2 4 M? A2)

The other solution of the equations (4.21, 4.22) is M, = 0. Similiarly, for m?

the solution is either

3 2al?

My =1 — =

(4.26)

Ag
or it is m* = 0or 1. By examining energies, it is easy 1o see that if 4 non-zero
solution for M, exists, then it is the minimum energy solution. Similiarly if
m* # 1 is a solution to equation (4.26) it minimizes the energy and otherwise

the m® = 1 solution minimizes it. The solutions are obtained as follows.

AVl
1
— = 5= (4.27)
Ta Feret
where,
L :fcfaft L:_'L_ (1.28)
“ferit {2?]1 k2 2r?

Then, A, = 0 and w"* = 1 are the solutjons. This deseribes an SO(3)5
broken and S0O(2); symmeiric phase. The low lying excitations are the three

goldstone bosons.

B When

(4.249)

Ta o Yerit
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Then M, # 0 and SO(3) is unbroken. In this disordered regime, the fields

W have a finite correlation length which can be caleulated by solving equation

(4:25) to get M,.
Further if

Ty — aﬁf;a/\n z ] [*130}

Then SO(2);, is also unbroken.

(') The third pessibility is when

o —a My > 1 (4.31)

In this case, the SO(2), symimetry is broken and the o particle becomes mass-

less. The field #,, acquires a gap

Moving into the disordered resime is achieved in the DTLAF by redue-

ing \ and thereby increasing g,. Thus the above scenario can be translated

into a phase diagram on the y axis. For large v ~ 1 the ground state ex-

hibits v/3 % /3 order and the spin symmetry is broken. As y is decreased to

smaller values, the system disorders and we get into the second phase which is

completely disordered, Further decreasing y takes us into the S012); broken

phase.
We obtain the mass gap for the 8, fluctuations which we will refer to i

later sections. Rewriting the action S, in terms of the variables . and &,

we gel up to quadratic order in the fields,

. . o= . e J .'11'ng i
§ = ] &z 5i0* (0,0 )8u b Db + Dy 0, 0, + == (0 ) (4.32)
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This mass gap can be caleulated as follows. expanding S, about the aver-
age value of my = cosf given in equation (4.26) we obtain the mass pap for
excitations about # in 2 dimensions to be.

g B
MF = L sin®(op) (4.33)
4,

Substituting for ¢ from equation (4.26) in the expression for My we get,

. )'- 2&.-1»’;2
M= Zno(1 — ) — {1 — 2mp)] (4.34)
&2 iz

5o far the discussion has been restricted to a regime where the 7 fields are
approximated by their classical values. As we move into this SO(2), ordered
phase we must include the effects of Muctuations in the m and hence we still
need to ascertain that including fluctuations in i does not destroy the order

that has already been established.

4.3.2  Renormalization Group flows in the ordered phase.

Deep into the disordered phase the fluctuations of the @ have a gap and can be
integrated out. We will be left then with an action of the form of 5., in terms
of 7it alone. Within this model we study the stability of the S22 hroken

phase by a renormalization group analvsis of 5, .

[n this section, we investigate the effects of the lield fluctuations by a
renormalization group analysis of S,, similar to our treatment of the v~ |
theory. The one loop R.G equations can be computed using standard tecl-

nigues. These equations simplify in terms of new variables. ntoabed AL Thege
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variables are. in terms of the old ones.

Moo= 2n-1) (4.35)
; 2

s o ¥ g 4.36

i 1+l E )

(4.37)

The one loop renormalization group equations that govern their flow can be
computed using standard techniques, These are as follows,

ﬁgg

5 = et (4.35)
I |
(a—; = 3A(1—gq) (4.39)
o’ ,

a—r'; = Zp(y) (4.40)

These equations can be explicitly solved to get

Fan expl—1)
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9 l—g’gn[l —EXPI—F” { }
A= AG 11 = gaol 1 —exp{—1)))" exp(3) (4.42)
0 = (gl exp(—1}))~* (4.43)

When gan < o = 1, g2 flows to 0 and N flows to oo, Therefore, in this
range of g, The SO(2),; svmmetry will be broken if yisc) < 1 and will be
mtact otherwise. This indjeates that fluctuations tend 1o drive the system into
disorder, however there exists a pocket in parameter space where the order
is not destroyed completely. This is illustrated by the existence of a phase
boundary separating the ordered and disordered phases. This phase boundary

1s obtained by setting '_ = 1 in equation (4-43). This phase boundary is given

by the equation,

Hﬂ = (I —_U'm]z {4.44)
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For parameters 5, and gy lying below this curve the system is in the ordered

l phase and otherwise it is in the disordered phase.

4.4 Correlation functions in the S0(2)r. ordered phase.

In this section we describe the 50(2), broken phase by defining a suitable
order parameter in terms of the spins that acquires a long range order in this
phase. In this phase the fields @ are extremely short ranged since this is well
mnto the SO(3)y broken regime. In computing the correlation functions there
are Lherefore two types of averaging being done. First we average over the @
fields and then over the fields tn and ¢,.. For instance, consider the two point

function of some local operator O{‘uj made out of the spins

GIX,Y) =< O(X)O(Y) > (4.45)

This average involves an averaging over the @ fields and the + fields, We

denote that as follows,

G(X,Y) =<< O(X)O(Y) >g>. (4.46)

If we are in the & disordered phase and look at |X - ¥| > £ . where £a
is the correlation length of the o fields. then we have,

< OX)OY) 2gn~< O(X)g < OV g > (4.47)

At the mean ficld level in which we are working all the & averages can be

done using

I
DX )R (X) = —d24,, (4.48)

-‘IIH

-
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Since we are in the SO(3) unbroken phase, the @ average of any tensor
operator has to be equal to a spin singlet multiplied by a constant tensor. |

l.e a tensor made up of §"* and ¢"* ). Therefore we focus on operators which

are scalar products or scalar triple products of spins.

We now analyse the behaviour of some singlet operators which could pos-
sibly characterise the SO(2); symmetry broken phase. We consider operators
of the form Sria.gjfj and operators hke :{.-E,,.:i'.m ® ."';"k_, for various values of (i, o)
etc. Taking account of the fact that the correlation of ®? are averaged as given

above, we write down the expressions for the spin operator as,
= Y o
Sia= BPIMRT™ Y, (4.49)

where i, = exp(i2T%(i + a)) X Where in order to simplify calculations, the
P are set to be equal to one and in the following discussion they are assumed
to have been already integrated out. In the above expression, fi = exp( 22T

and M = exp{’%’rﬁ..’ 2

For any pair of spins S;, and Sia;

=

SiaiSig = al AT MT B MR-, (4.50)
In order to see the dependence of the above expression on f,, and &, we rewrite
s,
T = EXp ~‘r'i<,:'=T3ﬁ;'L,‘]’"oxp —igT™ (4.51)
We then have |

3 v T — =
Fromin = 0o o MY R Mmoo v (4.52)




where we define,

My = exp Frio.T

(4.53)

As ¢y is increased by 7 the above expression is invariant. This is a conse-
quence of the vectors n,; s being coplanar. This indicates that the dependence

of ¢ is as exp (ngy ) where n = 024 ..

All such scalar products which we may define are not mutually independent.
If referring to figure 2.7 we denote by T} the triangle with vertices (0,0), (1,1},

(2,2). Ty is the one with vertices {0,2), (1.0), (2.1), T3 is made up of (0,1)

{1,2), (2,0). Those products which are defined between pairs of spins from an

up triangle Ty in the unit cell is equivalent to that constructed from spins on

-

the triangles Ty and T5. This is because of the property, Siikack . S;pk ik =

Sia-Sip. Therefore for ¢ # j, it is sufficient to compute among all the above

pairs, those correlations that corres pond to A; = 5,85, 1i11 Also, for i = j the

r dependences cancel to give, Sta g = Tiy.fig

Among the scalar triple products, one simple operator which we evaluate

here is

o : .
Xij = Pjaedin ¥ .EIF'_,J' {4.54)
where, a # 3 £ 4 On substituting for the spins by the expression given in
equation (4,49} this becomes,

K

:‘fl} = —‘:—\'i;ﬂ?r-_i_ﬂl_] a"fTRJ_t Jﬂl.{z {"1-55]"

To obtain the actual expressions of these operators in terms of 8, and o,

1L 1s necessary to find the elements of the matrix fi = MJ RMy . This matrix is
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calculated and the entries are given in appendix C. We find that this has the
form cos( @y ) Fy(#)+sin{ ¢, 5 8) where &) = (y4+ 5 — 1]3:,;—T + @ Buitable linearp
combinations of these operators can be made which show a @ dependence of the
form expig. These operators expling) form irreducible representations of the
group SO(2), and yij is the lowest in the hierarchy af such operators labelled
by n. With reference to the figure of the unit cell{2.7) xij when constructed
out of three spins lying on a line such as (1,1}, (0,0), (0.2} has the above form
with n=1. For the set, (1,1),(1,2),(1,0) on the other hand n=0. From this
dependence of y on ¢,, we expect that in the 2 -1 classical limit. this operator

will exhibit a power law decay of its correlation function below the Kosterlitz

Thouless temperature.

4.4.1 Correlations of the Nematic order parameter.

We now make a comment on the hehaviour of the order parameter ¥V, studied
by Chalker et al and Berlinsky et al [13, 23] which is defined as fallows,

Nalz) = == lndlahnd(or) — 2] (4.56)

n® which is defined within a triangular plaquette is defined in equations (2.30).
One important point is that Nay differs from the spin 2 second rank pematice

tensor which has been defined in equation (2.31) by the inclusion of singlet
part N,y = %e’fng,{niﬂ'f_ — 1) which spoils the transformation properties. This
difference is important because of the following reason. When N, is defined

ou & planar spin configuration, the n' can be normalised to have unit length

at all points so that this difference vanishes. However when constructed out of
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plaquette spins which are non-coplanar this cannot be done simultaneously at
all points. When 1 £ 2, it creates non-coplanar configurations in which this

parl must be subtracted from the operator Naw to get the right expression for

vab

As mentioned in the introduction, one suggestion that has been put forth
i order to understand the Kagome lattice problem is that it is a Spin nematic,
The suggestion is that the existence of gapless excitations in the Kagome lattice
in the absence of long range spin order is due to long range order in the Nematic

order parameter.

With the inclusion of the H-§ modes non-planar configurations are excited
in the KLAF and the nematic order parameter contains the scalar part de-

scribed in the previous section. We first rewrite the nematic order parameter

as follows,

"""'r{'r}-'li'“ﬂl"r{y:lbn = Ef-‘:}nbs{yjab

4 ) . :
+ m[l = mileni(e)lll = ni(wnd(y)]  (4.57)

In this, the first part being a spin two tensor. is short ranged in the SO(3) 5
broken phase and in the following section we evaluate tle second part, which

15 the singlet part and find it to be dependent on #

Braa

< Ti‘a,ﬂa e ZZ-‘:"Irﬁ ~ .I':"‘J.-r'll_,_i_'..f'lljl'f o 'l;'l,;-+1."+i {435]‘

o 3.0

The derivation of g, dependance of the correlations < % 5 > is given in

the appendix C.1, where we evaluate it for two differend values of 8, . Since
p



|

it turns out to he independent of ¢, it will be short ranged. However The 8,

dependence is strong.

2 n® 5=1 4 Fi6) & const (4.59)
As a consequence, in the S0(2)y, broken phase we expect that the fields 0,,

having a finite mass, will have short range correlations with a correlation length

defined by My. This will be however longer ranged than the spin spin corre-

lations which are controlled by M,. This is perhaps the reason that the spin

spin correlations are found to decay much faster than the correlations of N,

Also the correlations

fall off after some time saturating a constant,



Chapter 5

Summary and Conelusions.

5.1 Summary of the thesis

Apart from being an interesting model in itself. the DTLAF which has Leen
deseribed in chapter (2) provides a means of approaching the KLAF from the
V3 x /3 ordered state. In this thesis, we propose and analyse a field the-
ory that describes the long wavelength fAluctuations about 4 V3 x V3 ordered
state. This is related to a microscapic spin model on a KL with next nearest

neighbour bonds which serve to stabilise this order.

In Chapter 2 we introduce the deformed triangular lattice antiferromagnet
defined in equation (2.2) as a model which interpolates between the triangular
and kagome lattices The classical ground state of this model throughout the
range 0 < y < 1, is independent of y and is equal to the /3 » /3 state shown
in figure (2.2). We perform a semiclassical, spin wave expansion about this
classical ground state using the Holstein Primakoff formalism. This analysis
tells us that the important low lving excitations are the gapless spin wave

modes which we call the 5-8 modes. These are three in number and represent
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rigid rotations of the spins in each unit cell. They correspond to the poldstone
modes arising from the complete breaking of the SO(3) spin symmetry of the
hamiltonian, Further there are two modes each with small and equal gaps

which become gapless at v = 0. We address these modes as the H-5 modes,

We calculate the individual contribution of these modes to the reduction
of magnetization by means of a spin wave analysis. This indicates that the
H-5 modes are relevant not only for X = 0, the KLAF, but also for small
non-zero values of y. Tigure 2.4 shows that this role of the H-5 modes in
reducing the local ordered moment becomes important below y ~ 0.4, The
DTLAF therefore seems to undergo a phase transition near y = 0.4, The
relevant modes for models with X 22> Yt ~ 0.4 are the three 5-5 modes and
below y..q the relevant fields are the three 5-5 modes and the two H-S modes,
Though the estimate of y.. may not be accurate, we expect that the small y

regime is a region that has a description different from the description of the

phases above y .

We then approach the low y regime through an alternate model which is
the KLAF with next 10 nearest neighbour couplings, This is described by the
hamiltenian of equation (2.40) which incorporates the effects of the weakening
coupling y in the DTLAF as y = 0 is approached. Ursing this maodel we obtain
@ parametrisation of the H-S modes for further study. From a calculation of
the deformation produced in the spin configuration for small fluctuations we

see that these modes generate non-planar configurations of spins,

We also caleulate the reduction of other order parameters such as the Ne-



matic and staggered Chiral order parameters in the spin wave approximation.
The chiral order parameter defined in equation (2,30} is sensitive to the chi-
rality of the underlying spin configuration, whereas the Nematic operator is
sensitive to the planarity of the same. In this approximation the reduction
in the higher rank tensor operators such as the Chiral and Nematic order
parameters, is found to be more that the reduction of the average staggered

magnetization as we see in section (2.3).

In chapter 3 we describe in detail the der; vation of the field theory of the §-
S modes, which is a valid description of the DTLAF for X = Xt The theory
is the SO(3)p x SO(2);. nonlinear sigma model, where SO(3)5 is the Spin sym-
metry of the hamiltonian and S0(2) is an extra svmmetry which is present in
the low energy effective action, This arises from the three sublattice structure
of the ground state about which this expansion is performed as discussed i1
section (3.3). The y dependance of the parameters of this field theory is given
in equations (3.30, 3.31). These equations are found to give results consistent

with the earlier derivation by Dombre and Read for the triangular lattice.

We analyse this theory through a renormalization group method and obtain
the flow diagram shown in figure 3.1 and dependance of the critical spin 5.,
on x. This tells us that the TLAF is well into the ordered phase even for the
most quantum case of S= % The actual value of S..,, obtained by this estimate

is expected to be higher than our estimate which indicates that while giving

a good qualitative picture, the parameters derived using this method are not

VETY accurate,
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We also investigate the possibility that the two coupling constants g, and
g1 will flow to zero with their ratio ﬁ*, # 1 thereby contributing differently
toward the reduction in nematic and spiral order but we find that this does

not happen for the derived range of parameters ¢, and g,

In chapter 4 we analyse the model in the small X region, which is within the
disordered regime of the W fields. Based on the results of spin wave analysis we
propose a field theoretical model in section 4.2 that should adequately describe

the KLAF and models in the DTLAF family close to it

This action is in terms of the fields W and 7 which parametrise the 5.5
and H-5 modes of section 2.9, The region that is of interest to us in this model

15 that for small x. Namely into the phase where the fields W are disordered.

Probing the spin disordered phase by means of a large N mean field cal-

culation gives interesting results, Initially within the strong coupling regime.
L]

the strong fluctuations in W drive the s¥stem into a phase where the Spins are
disordered. This phase has all the symmetries of the model intact. Further
moving into the disordered phase shows that fluctuations tend to decrease the
value of 5 and push the system into an SO(2); broken phase (4.3.1). 1n this
phase the symmet ry between the two degrees of freedom labelled 8. and ¢,

i5 broken as the ¢,, field fluctuations become imassless and the ., are massive,

‘ 3.2 Conclusions

\ As mentioned in the introduction, ene puzzle posed by experiments on the

KNagome lattice compounds, Deuteronium Jarosite and orlrsGay (g is that

F
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there are massless low energy bosonic excitations as seen by the fact that the
specific heat behaves as T2, This is puzzling because there are no indications
that the pround state has long range spin order taking into account the peu-

Lron scattering experiments, which indicate that there s very short ranged

V3 x 3 order.

In the field theory we have proposed to describe the next nearest neighbour
KLAF, we see interesting phases as we approach the KLAF end. In the regime
close to the critical value of parameters, the correlation length for spin Auctua-
tions is still large and in this phase al] the symmetries of the model are intact.
As we move more further into the disordered phase, or in this case, approach
the KLAL, the SO(2); symmetry breaks as described in the earlier chapter.
In this phase, the polar variables 0 and @, are the relevant variables. The
fluctuations of the ¢, are the gapless spin 0 excitations. This is characterised
by the appearance of long range order in the scalar operator v defined in
equation (4.55). The existence of the massless excitation in the low enerpy
spectrum of the KLAF could be due to the breaking of such a hidden SO(2);

symimetry in the low energy theory.

[t 15 not passible to conclude definitely from our calculation if the lattice
spin model actually works by this mechanism because the coupling constants
of the field theory cannot be caleulated meticulously. However evidence for
gapless low lving excitations in a state without V3% v/3 order in the KLAF
comes from an exact spectra analysis of the next to nearest neighbour KLAF
maodel [35]. In this work, the authors give a plot of all the low lving levels

in the spectrum which wonld collapse to the ground state as the number of
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lattice sites N —+ oo, If the ground stale should possess long range order
those levels that collapse fastest to the ground state should form irreducible

representations of the corresponding symmetry group, charactising that order.

In the TLAF, the nummber of lowest lying states is finite and this energy
gap is found to increase linearly with S{S+1) thereby farming a pisa tower
of states which is a signature of the symmetry broken ground state . On the
contrary at the KLAF there is a rapid proliferation of low lying states which
do not form this Pisa tower. This rapid proliferation of states and the absence
of a tower of states with the gaps mereasing linearly with S(S + 1) indicate

that the W3 % 3 erder i destroved at the KLAF end.

In order to study the phase transition. they also plot the index R, which is
an index of the fraction of those levels out of the set of all the low lying levels
which are consistent with v/3 % /3 order as a function of v = Lo/ Ji. In order
that the ground state should show 3 x /3 order. a large fraction of these
states should have the matching symmetry. They see that while this indey is
I for the TLAF it drops abruptly o about 0.6 as y is decreased indicating
that at the corresponding value of y = Yy the spins do disorder. What is of
interest to us is that as y is further decreased, there is another eritical value
of ¥ =\, where again the index R Jumps abruptly to zero indicating perhaps

another phase transition,

This therefore is consistent with our picture of there heing two phase transi-
tions on approaching the KLAF from the TLAF end, through the /3 = /3 ordered]]

state. A careful Monte Carlo simulation of the Jy — o KEAF. . witha view

.
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to 'ob'serving-thi's phase transition would passibly verify our theory. Taki.n_g
into account the different competing candidates groundstates of the KLAF,
we feel that this approach to the KLAF starting from another groundstate, for

instance the g = 0 could also open up very interesting in this context.




Appendix A

Spin Wave Theory of the DTLAF

A.1  The matrices M~' and K

._ 1
Mo = 3lAcio+2B"+ 8"+ B 44l

. |
Kiaii = E[Awﬁ@ Loy —(B"+ B' + B, 4]

The matrices A and B%'? can be written as 3 x 3 @4 x4 blocks as follows |

A 0 o 0 B BT
A= 0 A4 o Bo=31| BT o
0 0 A R BT (0

t I;| - E;

BitBi=1| B' o By




aned

y+2 0
(0 x+2
0 0
( 0

0 B

Bl'i'BZ':% B_If I}

By(K) =

where [7(K}) = exp'™

-

0 0
0 F{—K,)

0 0

| 0 A:F_{K]}

Byl Ry, Ky By ]

BolKi N Ky) = By(Ka Ky, K)

0 0
00 .
B,
x+2 0
0 3y
B |
B
D ol
u i
0 i

Fih:) yF(—hs5)

0 ()

=]

= Bi(As Ky, Ky)
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A.2 The Eigenvectors of Af)?

fr I | nrylnr 1
—-.75]‘ i

.r.:,r:r L v

P = R X

A.2.1 The vectors X¢

el A _
i (1,1,1)
1 (1., a7) |
2 (1,07, a)

with the & being given by, 8% =1

The following relations exist between the different U R
WM gpe20 W _ qye30
Wg = V" WP =43
31 _ w2} A1 =23}
Ve =0 Uy = g5

W =Wt W= g

Therefore we tabulate here only the necessary and independant eigenvectors.



A.2.2 The

vectors Wy and

(n.r) i i
- I_Tlr lllr?r
(0,0} e (v Ay 6= 5y
, 2 (1,110
[ (1.0 T (-1,-1,-1.3)
S (5% — 6,5y — 6,5y — 6, 3y )
(2,0} ?’-; (1.0.a% 0)
1 2
:;:,,: I:I,ﬁ.{_'l ﬂ;l
(0.1) 1 (1, 1.1, 1)
e (3X, 5% Ay, (6 =)
(1.1) (e (x— 6, v —6\ —6,15y)
B s (-1-1-13)
(2.1) =t {(l.a. . ()
1 .
75 (1. a0}




A.3  The eigenvalues of FASTLIN S o
[H,T:I Cn.r E1“ r u".;-:.r ‘,
ol 23—
(0.0} It ‘%{ﬁl ] i
l,ﬂ e xlE=-x
(1,0 i 2y -
(2.0) = o (3x)(2x43)
8
(3.0) X 2y {343 (2x+3)
! B
0,1 S (44
(0,1) 0 e 0
(1,1) 2x x(347x) x(3+7x)
- £ F]
{2.1) ‘*'1"—3 %11 {4323 +3)
&
(3.1} kY 'f-‘f;f:ii' xlx+3)
A 4
.2 Sx(d+y)
_{ : Y HTxF 3 0
(1,2) 2y !34;11 x[I+Ty)
1
(2,2) %3 _—;—_% (x+3){2x+3)
5
(3.2) 3 {x+3) x(x+3)
2 4

a6



Appendix B

Iutegration of the Hard modes to get the effective Lagrangian

The calculation of the effective action involves integration of the hard modes

which is described here, Using the notation of Chapter 3.2

H = H,.+ wa__ + H,;
H.. = H,+H,
IIlrlL . Hq.l'. + H]’JL

(B.1)

In the following text, we give the explicit forms of the above matrices. The

matrix Hy,, is given by the expression,

Hyp+ Hyy = 3 PoPom) + QL Ok (B.2)

i



p =]
o

Where the factors M7! and k., are given by,

rtnn ke | (r) | mg i 1
(1) | 2 0 [012) [ x(6+14y) | A0
(1,3) “ 0 sl KON 1 2x(3 — x}_
(2.2) (6 + 14y) I,-"E Il (2,3) I x(6+ 1dy) 1/2 |
G| 6ty | B2 laa | ey | am |

(33) | x+3) | X2 @ I (x +3) e
(4,2) b\ (x+3) | (4.3) \ (x +3) |

H*;I = Z{?I:T-Qnr

nr

, 9x(4 + v) N
= —J8VS { —,{—f—[qu.{f,f Faln) Fabl 13 =4l3
II ‘}' l"ll <

56 =~
+"m[f;nfﬁf +ily) + g (L] —iL3)]

~2V/3(2x + Dgua™(L3 +iL3) + g30( L3 — i13)

F2V3(x + 3)gma( L] +i13) + g507(L2 — i)} (B.3)

and Hy,, = S0 p, (B.4)

L.F



The €y can be simply tabulated as follows,

i) e, N
(0,0) | -ZE Lhek
(1,0) T = = Lef
(2,0) 2"-"‘,:— [LEIEE + Zrer” LEHE]
(3.0) | H* [Ljek—2ia Link ]
_

(L) | -=EHR [Lid 4 L5 + Lid))
(2,1) SR [(Lkek + aLkel + aLheb)

+ f_iz'{Lf'nf + alink 4 c:'Lf:;'ng}l]
(3.1) e [(Lie} +alfes + a + Lkek)

- 6i(Lin} + aLind 4 o~ Link) ]

The final action after performing this quadratic integration of the hard modes

and the momenta conjugate to the soft modes js given in chapter 3.2



Appendix C

Form of the Correlation functions

First we write down

the elements of the matrices AB.C from sectionsecne-

matic. To begin with, the matrices it are given by.

R= M RM, (C.1)

and the entries B, are given by,

f‘i‘n =

C.1 Correlations

. 9
—=+ =sin“ 8, cos” 8,
A L

2 8
.
=3 - 2 sin® 8,

Ny
o ::;{Ef*!in2 O c08* By — V/34(1 + cos?0,,)

3V3 . | ) N
__;r'*””zﬂm cos™ U + V31 + cos? 0,,) (C.2)

of the operator n'.n?

For the Triangle 7} after shuffling the indices 4 bit the above terms can be

rewritten as follows,

a [ .

< n .HE = ==

'-H‘I'f“qu :“I 'F'I|+11'+| "-HI,'+|.'+ L J ' { .._'{” -:"II” :l[ 'Hln-!- Trdd --q_l —1p=1 ]I { :-:”

Hu
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When the spins are expressed as functions of §,, and @,, N.; becomes.

<n’n®> = 34(A+B+C)
—2(A+ B+ C)-2(A*+ B+ %) (C.4)
‘r‘n’here, M= guu.g“.,ﬁ = .5‘-'11.§22, Cl .§22.§33

Putting in the expression for the 5;, in A ., B , G, we get the following expres-

sions,

A = nlMTREMRMRTn, (C.5)
B = aIMYRMR"n, ' (C.6)
C = nlMTRMR n, (C.7)

In order to calculate A, B and C we need to ealculate the elements,

With the understanding that &, = (2¢ + 1)120° and ¢ = (2i)120° we have,

g, g, = prcos(dy + éa) + py sinfay + ds)
+pacos(@r — ¢2) + pysin(oy — &) (C.8)
where,
s ; 9 . .
e = E sim° ﬂm 'EUHJ ﬁ.n — E Er]]'ldd ll:}:_-.-
V3, ., -
P.z = — ‘;II'_ Si“- 1‘.1," Et‘h‘iz {'Jm
1 B ‘ 9 3 .
gy = -—g -+ E S;H‘r ﬂm cos” ‘;’in; 8 ]_E H]”? HF’-‘?
3 ;
Py = "’_l}—i{] + cos® ) (C.9)

For 8, =0 (or 1 respectively) the values of py — py are.



8n=0| 6%
M 0 —1%
P2 0 0
pa 1 | %
s e | £

The exact form of this function may be written down, but all we need to know

to know is how it varies with ¢, and 8,,. That it is independant of Oy 15 clear,

Substituting for p, in the expressions for A,B,C and substituting in equation
(C.4) to get the value of < n®.n® > we see thatitis not a constant function and

15 of the form (1 + F(8,,)).
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