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ABSTRACT
Nonclassicality and Photon Number Distributions in Quantum Optics
by Mary Elizabeth Selvadoray

Thesis Supervisor: Prof, R. Simon

Gaussian states of the radiation field whose density operators are exponentials of
quadratics in the boson creation and annihilation operators are important in quantim
optics not only because special states like coherent states, squeezed states and thermal
stales are Gaussian, but also because it is possible to approximate the states generated
in many non-linear processes by a gaussian state. They have been studied by many
authors [1]. Further nonclassical gaussian states like squeezed states [2] have evoked
much interest and have been intensively studied for the last several vears. Thev have
also been produced experimentally.

The photon number distribution of a single mode squeezed coherent state shows
oscillations, and this phenomenon was explained usin g the concept of interference in
phase space [3]. These oscillations are taken to be a signature of nanclassicality, and
they have come to be known as nonclassical oscillations [5]. Recently Dutta et al.,
[4], in an exhaustive study of the single mode squeezed coherent state, showed that
the nonclassical oscillations in the photon number distribution exhibits collapses and
revivals similar to those exhibited in the Jaynes-Cummings model.

The above mentioned oscillations have been considered as a qualilative signature
i 24
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of nonclassicality, though there has been no rigorous proof of the same. Among the
quantitative conditions for nonclassicality are squeezing and sub-Poissonian statistics
which involve the lower order moments of the diagonal P-distribution. Higher order
squeezing criteria have been introduced by Hong and Mandel, and amplitude squared
squeezing was introduced by Hillery, Higher order generalization of the Mandel Q-
parameter was introduced by Agarwal and Tara.

In this thesis we study among other things nonclassicality as coded in the photon
number distribution p,. Our results show that the scope of the information regarding
nonclassicality coded in p, is considerably more than what seems to have been hitherto

appreciated.

Contents of Thesis

This thesis is organized into five Chapters. The first Chapter is introductory in
nature. In addition to placing the work in this thesis in perspective. some important
concepts central to the study in the rest of the thesis are brieflv summarized in this
Chapter.

In the second Chapter we study Gaussian States of the radiation field [6]. A com-
prehensive analysis of the characterization, spectral decomposition, and entropy for
general Gaussian states of a system with arbitrary finite number of bosonic degrees

of freedom N is presented. The unitary action of the symplectic group Sp(2N, R)
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on the Hilbert space of an N-mode system and a classic theorem due to Williamson
[7] on the normal forms of symmetric matrices under symplectic transformations are
exploited. The relationship between the real symmetric parameter-matrix character-
izing a Gaussian density operator and the noise matrix characterizing the associated
Wigner distribution is derived. This constitutes solution to the Wevl ardering prob-
lem [8], and exposes the manner in which the antisymmetric symplectic metric plays
the “role” of 1 = /=1. Spectral decomposition of the most general Gaussian den-
sity operator is constructed, and it is shown that the eigenvalue spectrum and the
entropy are fully determined by the N independent Sp(2N, R) invariants of the noise
matrix: the entropy equals the sum of the entropies of N noninteracting harmonic
oscillators, each in thermal equilibrium at independent temperatures determined by
the Sp(2V, ft) invariants of the noise matrix. We also discuss the Fock state repre-
sentation and photon number distribution of 4 general Gaussian state.

The third Chapter constitutes a thorongh analysis of nonclassicality of a state j as
coded in the photon number distribution p, = < n|j|n >. Techniques and results from
the classical Stieltjes moment problem are exploited for this purpese. A necessary and
sufficient condition on the sequence p, in order that the state is classical is derived.
[t turns out that oscillation in p, is not necessarily a signature of nonclassicality!
However, it is shown that oscillation in q,, where g, = nlp,. n=0,1.2... is a sure

signature of nonclassicality. The usual approach to nonclassicality of the photon
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number distribution is in terms of the normal ordered moments m, = tr{pa'™a").
Our approach is local in n in the sense that our conditions involve p, for three, five....
successive values of p, and hence is dual to the traditional approach in terms of
the moments of p,. Further, the result of Agarwal and Tara [10] is improved into a
necessary and sufficient condition. Finally, using the techniques of Laplace transform,
the complete equivalence between the present approach to nonclassicality in terms of
local conditions on p, and the traditional approach in terms of conditions on the
moments 1, 15 established.

The fourth Chapter of this thesis constitutes a study of the two-mode squeezed
coherent state with complex squeeze and displacement parameters [L1]. A similar
state with real parameters, was studied by Caves et al. [5]. In their paper they
display plots for the photon number distributions for ay = a, and ay = —ay. where
¢y and oy are real displacement parameters. The striking difference hetween the two
plots and the work of Dutta et al. [4] in the single mode case with complex squeeze
and displacement parameters form the motivation for the study of the two-mode
squeezed coherent state with complex parameters. In the above two cases ay, fig are
respectively in phase ( ez = a;) and out of phase (ay = —ea), and it is natural to ask
if the diametrically opposite behaviours at these two extremes smoothly interpolate
as a function of the relative phase between oy and a,.

The two-mode squeezed coherent state [12] is obtained by the application of the



two-mode squéeze operator S{z) = exp(zab— za™h7) on the two-mode coherent state,
which is got by the two-mode displacement operator D{ay, as) = D{ay ) Dias ), where
Diay) = exp[ctlﬂf —y*a) and D{en) = explazh’—as™b), acting on the two-mode vac-
uum. Using the symmetry inherent in the system, we find that the two-mode squeeze
operator 1s a rotated version of the product of reciprocal single-mode squeezings, We
then exploit an identity relating a sum over product of Hermite polynomials to the
associated Laguerre polynomials to get the probability amplitude in terms of a single
associated Laguerre polynomial. We find that the photon number distribution pos-
sesses a {/(1) » U(1) invariance and use it to argue that the distribution depends only
on a parficular linear combination y of the three phases (arising from the two dis-
placement parameters and one squeeze parameter) in the problem. Numerical studies
ol the distribution are presented and they are shown to exhibit collapses and revivals
similar to that in the single mode case. The structure of the distribution between the
two extreme cases considered by Caves et al. is studied, leading to a clear picture of
the evolution of the distribution from one extreme to the other. We also study the
second order coherence properties of the two-mode squeezed colierent state.

In the fifth Chapter the phase distribution and correlation functions associated
with the two-mode squeezed coherent state are studied [13], in continuation of the
study of the photon distribution for the two mode squeezed coherent state in the

previous chapter. We make use of the definition given by Agarwal [14] for the phase



distribution and then use the photon number matrix element caleulated in the previ-
ous chapter to obtain an expression lor the phase distribution. We also write down
the joint probability distribution for sum and difference phases restricted to a 2
range, following Barnett and Pegg [15]. We find that the phase distribution exhibits
phenomena analogous o the bifurcation phenomena predicted by Schleich et al [16]
i the phase distribution of a single mode coherent state. We also study the phase
distribution in terms of the relative phase y defined in the previous chapter. In the
case of correlations between the phases in the 1wo modes we find that the phase sum
correlation has the value 7% /3 for zero squeezing and zero displacement, which is char-
acteristic of random phase, and vanishes in the large squeezing limit. The variance in
the phase sum, on the other hand, is constant at 7*/3 for zero displacement, for any
value of the squeeze parameter. When the displacement is much greater than zero it

goes to the random phase variance in the large squeezing limit.
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Chapter 1

Introduction

Nonclassical light especially squeezed light [1] has attracted a greal deal of attention
in recent years in various contexts and many criteria characterizing a nonclassical
state have been put forth. This thesis introduces among other things a new set, of
criteria for characterizing a nonclassical state by obtaining classicality restrictions on
the photon number distribution. So as a prelude, we will discuss here a few of the
existing criteria for nonclassicality.

Nonclassicality of a state is reflected in the hehaviour of the diagonal coherent
stale quasi-probability distribution (which will be described below) associated with it.
There are many (quasi-)probability distributions associated with the density operator
which are used in quantum optics[2, 3, 5] and in the second chapter of this thesis,
we will be discussing the Wigner distribution for multimode Gaussian states. We
will therefore start by reviewing some relevant quasi-probability distributions before

proceeding with a discussion of the existing criteria for nonclassicality.



The densily operator g of a system can be written in the followin g form

- _T_I!I:T—rj"?

v(n) = tefpe i (1.1)

x(1) is called the characteristic function. This function can be written in normally

ordered and anti-normally ordered forms as

i) = t'r[ﬁﬁr'“l'e_r""-]r

_—rll-‘.lr_.TJl'J ] -

xaln) = telpe

If we use the relation

eAHE A B 48]

; (1.3)

when [A, B]is a e-number. we can write down relations between various characteristic

functions.

1
x(n) = xnln) exp(—cnl*) . (1.4)

The Fourier transforms of the above characteristic functions find several uses in Quan-
tum Optics. They are the well known quasi-probability distributions - the Wigner
function [5], the P-function and the Q-function.

The Wigner distribution was the first quasi-probability distribution to be intro-
duced, It is the Fourier transform of the symmetrically ordered characteristic function
x(n) -ie.

1
Wia) = ?r—gfﬁf?r;' exp(n o —na’) vin). (1.5)



In problems involving squeezing it is advantageous to use the Wigner distribution
because squeezing transformations act linearly on the arguments of the distribution.
The P-distribution is the Fourier transform of the normally ordered characteristic

function -

1 s |
Pla) = chh; eXp(n"e = HE V() - (1.6)

[n terms of this function, the density operator 5 can be written as

5 fd'*n Pla)la)al . (1.7)

| P(ea) is not a probability distribution in the general sense of the term. This is because
P(e) takes negative values or becomes singular for some states. For these states there
can be no classical description and they are called nonclassical states. The P-function
is very useful in evaluating normally ordered moments. The Wigner distribution can

also be written as a Gaussian convolution of the P-function as

5 .
Wia) = :]rf‘zﬁ P(8)exp(—2|3 —al*) .

il

I'he Fourier transform of the anti-normally ordered characteristic function is called

the Q-funetion -
l 2 - [ )
Qla) = — [rj noexpln e —na”)yaln) . {1.8)

In terms of the density operator p, Q(a) is.

(1.9)



Since the density operator is positive, ()(a} is positive and this is its advantage over
the Wigner and P [unctions. It is useful in evaulating anti-normally ordered moments.
Quantitative Characterizations of Nonclassicality

As we said earlier, nonclassical states are those for which the P distribution is not
a regular probability distribution. Among the characterizations of nonclassical light
are the degree of squeezing [4] and the Mandel’s @-parameter [6]. Generalizations of
these have been introduced - the higher order squeezing criteria by Hong and Mandel

[7] and a generalization of the Mandel ()-parameter by Agarwal and Tara [9]. The

Mandel €} parameter for a single mode field is given by

@ = ({a"™a®) — (a'a)?)/{a'a) , (1.10)

where, a” and a are the creation and annihilation operators. For a nonclassical state

(2 is negative and the field has sub-Poissonian statistics. The degree of squeezing S

is given by
S = {:(ae” +ale )2 ) — ((ae® + ate )2, (1.11)

When there is squeezing S is negative. A state can exhibit either sub-Poissonian
statistics or squeezing or both. A negative value of § or  implies that the P distri-
bution associated with the state cannot be a classical probability distribution. The
higher order squeezing criteria introduced by Hong and Mandel and the generaliza-

tion of the Mandel @) parameter introduced by Agarwal and Tara were prompted hy



the necessity of quantitatively characterizing nonclassical states for which neither @
nor 5 is negative.

Higher order squeezing eriteria of Hong and Mandel

Here, we give a briel deseription of the squeezing criteria given by Hong and Mandel.
We follow the procedure in reference [7]. Let £7F and £~ be the positive and negative
frequency parts of the electric field, where we expand £+ and £~ in the familiar

manner:

1% .
E*(r, 1) = ﬁ;L{fmfzfu}‘“akf‘”‘-m"f ; (1.12)
- J‘:

The commutator is given by

|

[E*, E7] = 'E;Z“ﬁwf?fﬂﬂ =T (1.13)
&

The Hermitian quadrature components of the field £; and £, are

By = Erelu=aly gi=g=iut=
E‘E = E'!‘cicu.'t—lfl—r"r'l]_;_E—t_—l:l:'&?f—":‘—-'.',lr':‘!] . []-1‘1-}

Here ¢ can be chosen to be any angle. The commutator of E, and F, is
[.EhEg} — 2!'":1 i {IIEIJ

and the uncertainty relation between them is

((AE Y (AE)Y = ¢* (1.16)



For the coherent state the equality sign holds and the value of the uncertainty in
each of the quadratures is equal and is equal to C. For a squeezed state though, the

uncertainty in one of the quadratures is less than that for a coherent state. If for

some phase angle ¢,

{{AE)Y < O, (1.17)

the state is said to be squeezed in the quadrature Ey. This is second order squeezing.
Higher order squeezing is defined as follows: If there exists a phase angle ¢ for which
((AE;)?™) is less than the value it has in a coherent state of the field, then the state
15 squeezed to the 2N — th order in £y, [t is sensible to define this only for even
moments, since for odd monents there can be squeezing without the state being
quantum-mechanical.

Amplitude-squared squeezing crilerion of Hillery

A criterion for nonclassicality related to the above is the amplitude-squared squeezing
criterion introduced by Hillery [8]. If @ and a! are the creation and annihilation

operators associated with the system then one can introduce operators analogous to

the standard quadrature operators as:

+a*)f2 .y = i(a®—a®)2 . (1.18)

They obey the commutation relations [y;. 2] = (2N +1) and satisfy the uncertainty

relation Ay Ayy = (N +1/2), where N is the number operator. Then, a state is



said to be squeezed in gy, if

(A} < (N+1/2) . (1.19)

Agarwal-Tara crilerion for nonclassicality

Let m,, given by
n, = (aMg") = jn"*m Ple)|al*™ . (1.20)

be the factarial moments of the distribution Pla). If one considers the quadratic

form F where

2
Fo= Y CICimyii (1.21)

1 =0
then, for a classical distribution F' should be positive or the 3 % 3 mateix m!® shown
below should be positive definite.

1 gy my

mi8

b
2
s

= | my o my (1.
Ty s T
The general form of the above statement for a distribution to be classical is that the

n > n matrix m!"! should be positive definite and m'™ is given by

[ \

l My Mz s Tig—q
Tty Tz ma RERER My
m L2
) (1.23)
k Ma_1 Ty Mgy o0 Mgp_2 ,JJ
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One can see that for n = 2 the above condition becomes the condition on the Man-
del (J-parameter. To obtain a quantity that is bounded by —1 the matrix pl™ is
introduced and it is defined through the quantity o, as follows:

oy = {I:HTH}”} {1.24)

and p'™ is constructed from m'™ by replacing m.'s by s, The quantity A, given

by

det 3
i = kil , (1.25)
det ¢ — det m(2

is then a measure of the nonclassicality of a state and is equal to 0 for a coherent state
and —1 for a Fock state and for other nonclassical states it will have a value between
0 and —1. Agarwal and Tara have demonstrated for a photon added thermal state
that the parameter A3 is negative in regions where the Mandel () parameter becomes

positive. In the third chapter of this thesis, we will demostrate that all photon added

states are nonclassical,



Chapter 2

Gaussian states for Multimode systems: Wigner distribution, Spectral

Decomposition, and Entropy

2.1 Introduction

In this chapter we study Gaussian states of the radiation field. We are interested in
these states because in the later chapters of this thesis we will be studying nonclassi-
cality and a specific nonclassical state, and nonclassical states like squeezed coherent
states are Gaussian. It is also true that other special states of light like the coher
ent state and thermal state are Gaussian and the field generated in a large class of
nonlinear eptical processes is Gaussian or can be approximated to be so [10, 11], Tor
example, Agarwal [69], has discussed that the correlated two-mode squeezed displaced
thermal state (characterized by a Gaussian Wigner distribution) describes lisht gen-
erated in a wide class of nonlinear optical processes such as four-wave mixers [70],
parametric amplifiers and down-converters [71, 7]. The correlated two-mode squeezed

coherent state corresponds to the case when losses in the medium are neglected.
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Wigner distributions are especially important in the context of squeczed states
since these states do not have a well defined P distribution. They are also convenient
to use in this context because squeezing transformations act linearly on the arguments
of this distribution [13, 18]. The Wigner distribution corresponding to Gaussian
states have Gaussian form. Further, many important quantum optical processes are
governed by effective Hamiltonians whicl are quadratic in the canonical operators.
But such Hamiltonians are generators of the symplectic group, and it is well known
that Gaussian states have a special status in the context of the sytnplectic group
(12, 13]: they are eigenstates of quadratic Hamiltonians which are in turn generators
of the symplectic group.

Several aspects of Gaussian states in quantum optics have been studied in the
past. These include photon distribution [L3], entropy and thermodynamic properties
[16, 17], noise characteristics [10], and others [18], We present in this chapter a
comprehensive analysis of multimade Gaussian states including their characterization,
spectral decomposition, entropy, and the concise expression that the Weyl ordering [2]
rule assumes for these states. We make powerful use of the fact that elements of the
symplectic group Sp(2N, R) act unitarily on the Hilbert space of an N-mode system
[12, 13, L8]. It turns out that given a Gaussian state, these unitary transformations

and the Weyl group of phase space displacements can be employed to transform it into

| a canonical Gaussian state whose properties are transparent and well known. The
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properties of the given Gaussian state will then follow from those of the canonical
(Gaussian state and the fact that some aspects of the Gaussian states are invariant and
others covariant under the Sp(2N, /) and Wey] groups of unitary transformations.

We give a brief description of the method of approach below. In Section 2 we
introduce a convenient compact notation, and recall for later reference some results
relating to the unitary action of Sp(2N, R) on the density operator and on the Wigner
distribution of an N-mode system. In Section 3. we study the single mode case in
some detail. In this case the Gaussian density operator is parametrized by a 2 % 2 real
matrix ( and the corresponding Wigner distribution by a 2 % 2 real variance(noise)
matrix V', so that the Weyl ordering rule is by definition equivalent to an appropri-
ate invertible relationship between & and V. Such a relationship is presented. The
canonical Gaussian state turns out to be the thermal state, so that all single mode
Gaussian states are displaced squeezed thermal states. Spectral decomposition for an
arbitrary Gaussian density operator shows that the spectrum and entropy of a Gaus-
sian state are fully determined by the determinant of the variance matrix. whereas
the eigenmodes are displaced squeezed Fock states. An explicit expression is given
for the complex squeeze parameter in terms of the variance matrix V.

The general N-mode case is analysed in Section 4. We find that while a Gaussian

distribution in the single mode phase space B* is a Wigner distribution if and only if

the variance matrix V' satisfies the uncertainty principle det 1V > 1/4, the correspond-
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ing statement constituting a complete set of uncertainty principles in the N-mode case
15 much richer [13, 19]. Similarly, while the & and V matrices are multiples of one
another in the single mode case, it will be shown that such a relationship is not valid
for the N-mode case with N > 2. This is related to the fact that every symmetric pos-
itive definite 2 x 2 real matrix is a multiple of an Sp(2, B) matrix, a result which does
not generalize to Sp(2N, ). We derive the precise relationship between the 2N = 2N
matrices (¢ and V' forming an expression of the Weyl ordering for N-mode Gaussian
states. This relationship turns out to be a concise matrix equation, and constitutes
a concrete instance where the standard (antisymmetric) metric underlying the sym-
plectic geometry [20] plays the role of i = /=1. Spectral decomposition for the
multimode Gaussian density operator shows that the eigenvalue spectrum depends
not ouly on det V., but also on the other N — 1 independent Sp(2N, R) invariants of
the noise matix V. The entropy for an arbitrary N-mode Gaussian state turns oul to
be the sum of entropies for N single modes, each mode being in thermal equilibrium
at an independent temperature determined by these N independent invariants. As in
the single mode case, while the spectrum and entropy are Sp(2N, &) invariant. the
eigenmodes of the Gaussian state are Sp(2N, R) covariant,

We discuss the physically important case N = 2, in section 5 and finish with &

discussion of the photon number distribution in Section 6.
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2.2 Wigner Distribution and the Symplectic Group

Consider an N-mode system described by boson operators a; = (g, + ip; )2,
J=1L2,...,N. Asis well known, it is often convenient to describe any (pure or
mixed) state of the system by the corresponding Wigner distribution [5] in the 2N-
dimensional phase space B*", It is also useful to arrange the phase space variables

Q1ye oo gN.P1 -, P 10to a real column vector £, In the same way we arrange the

hermitian canonical operators ;... 4y, py ... fx into a column £

[ ) ()

t}‘| r’f]
o q - r}]-.‘r ﬁ

g = = , B = (2.1
" P i p

\ Pv \ PN
| This allows us to express the canonical commutation relations in the compact notation

[12, 13, 18]

- -

(ool =% Qup, o, A=1,2,...2N |, (2.2)

where {} is the standard antisymmetric matrix or “metric” fundamental to the sym-

plectic geometry [20]:

Onvan  Iaww 0 1

.-.
T
[l
Il
s
[
b
et

—lwen Onun -1 0
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Note that 27 = Q7' = —Q. The Weyl group of unitary phase space displacement

operators and their action on the canonical operators can he expressed as
D(E) = expli(p.§ — q.p)] = exp( —iETQE) |
DO €, D(E) =€u + £, a=1,2,...,2N. (2.4)

Clearly, D{£)™" = D(~£) = D(£)!. Even the BCH formula takes an impressive form

in this compact notation:
D(E) DIE') = expl(~LE7Q €) DIt +€). (25
A special case of this relation is
D(€) = Diap) = exp(~ 5a.p) explip.a) exp(—ic.p). (2.6)

While coherent excitation is governed by the above displacement operators whose
generators (exponents) are linear in the canonical operators, squeezing problems
are governed by unitary operators generated by hermitian Hamiltonians which are

quadratic in £. That is, by unitary operators of the form
= exp{—H).

IN N -
i = z Z h-.'l."iftréﬁ s [ .
o=1 =1

I~
=1
S

where fi, 5 1s real symmetric. With every such unitary operator is associated a 2V x2.N

real matrix S defined through

Ul = SE,
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oo UVELU = Supfs @ a=12...2N. (:

[
o
—r

It follows from the invariance of the commutation relation (2.2} under (2.8) that 5 1s

an element of the symplectic group Sp(2N, R) [12, 13. 18]. That is.
S0 s = 0. (2.9)

Since U induces the symplectic transformation S, we will use S to label [7 as Lr(5).
Strictly speaking, these unitary operators do not form a representation of Spl2N, R)
but rather constitute a faithful representation of the metaplectic group Mp(2N, R),
the double cover of 5p(2n, R) [12]. But this does not affect our considerations in the
rest of the chapter. Note that S € Sp(2N, B) implies S71, 57 € Sp(2N, #). Further,
L € Sp(2N,R) and det § =1 for every § € Sp(2N, R).

Uneer the unitary evolution (7{5). the state vector [} changes as |[¢) — [&f) =
U(S) [} and hence the density operator p evolves as j — §' = ((S) p U(S)Y. Since
p can be written as a function of the canonical operators as 5(£). the above evolution

takes Lthe form

= A (U(S) E0(S)) = p (571, (2.10)

where we used (2.8) in the last step. The corresponding evolution of the Wigner

Distribution is given by [13, 18]

L(S): W(E) — W'(E) = W(Sste). (2.11)



|
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We will make effective use of (2.10) and (2.11) in our analysis in the subsequent
sections.

We define a 2V element column vector £ = SE€, then (2.11) can be rewritten in
the suggestive form W'(£') = W(E). Thus we can say following the language of field
theory, that the Wigner distribution transforms as a *scalar” field over B2Y under the
unitary action of Sp(2N, ). We note an important consequence [13, 18] of (2.9), the
defining relation of the symplectic group. For any 2V x 2N real symmetric matrix

G, and [or any & € Sp(2N, 1), lel
G'= 585G s (2.12)

Since 5 is not an orthogonal matrix, (2.12) does not constitute a similarity transfor-
mation, We will call 1t a symmetric fransformation. Right multiplying hoth sides of

(2.12) by Q, and making use of ST0 = 0571 which follows from (2,9}, we have
(' = SGSTN = SGORS-L. (2.13)

That is, as (7 undergoes a symmetric transformation (70 undergoes a similarity trans
formation. This can be traced to the fact that for any real symmetric matrix M. the
product M{) is a generator of the symplectic group and every generator is of this
form [12, 13]. We will make repeated use of this fact in Section 4.

Finally, the effects of the displacement operator D(£) on the density operator and

lon the Wigner distribution are easy to compute, and the results will be needed in




later sections. From (2.1} we have

D(&) pl€) D& = p (£ — &) (2.14)

li follows that under D{&;) the Wigner distribution changes as
W{E) — W) = W(E—&). (2.15)

That is, the Wigner distribution simply undergoes a rigid phase space displacement
under the unitary operator D{€). As will be seen in the subsequent sections the
evolution equations (2.14), (2.15) along with (2.10), (2.11} constitute the principal

tools of our analyvsis in this work,

2.3 Single mode Gaussian States

Consider a single mode system described by the boson annihilation operator @ =
(¢ + )/ V2. The relevant symplectic group is Sp(2, B). and in this case the defining
condition (2.9} with N = 1 becomes equivalent to the condition detS = 1. Thus.
Sp(2, R) consists of 2 x 2 real matrices of unit determinant. That is,

Sp(2, R) = SL(2, R).

We begin with a restricted class of Gaussian states. The thermal state density

operator of the single mode system is given by

o) = (1—e7) exp(—fa'a)

a0
= 2 sinhfg} exP[—;{*?‘-l-Pl}]
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I:-,,..'|k._;;_;

= 3 bIIlh[

B en
) expl-2été) (2.16)

where 3 = (kgT)" is the usual thermal parameter, £ is a two element column vector
with entries ¢, p and £ is the corresponding two-element row vector, The Wigner

distribution of the thermal state pi(£) is [5. 16, L7]

1 ; .

Wall) = - Lﬂﬂ]'lfg} exp[— tanh{-{;} £
= i ] - [ _1 Tf [ AT
= EER D me_—[*lﬁ-l- 0 EEL . (2.17)

where £ is a two-element column vector with entries g, p forming coordinates of a

point in our phase space R*. so that £76 = ¢* 4+ p?, and 7 i the mean number of

(thermal) photons in the state;

m=(e = 1)1 = are tanh(

b2 | T

1 .
]. (2.18)
27 + 1

Since the thermal state density operator jis is a function of @ta, it is diagonal in the

In} (Fock state) basis and hence has the spectral decomposition

pa=fr = Z ™™ In){n|
i | A
= 3 2.19
2 {]—i—n}( I-ﬁ) )] )
from which the entropy § = —kg tr(p In p) is readily computed as
il
Sa=kg 5= In{1 — rj]ll =k ((@+1) InfA+1)—7 Inn] . (2:20)
e

-
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To make further progress we rewrite our thermal state density operator and the
assoclated Wigner distribution in the following suggestive convenient form:

. 2 o ldet Go)E o
) = panl) = 2em[ LT Do Lergngy

: x I 1 st
Wal€) = Wiu(€) = goldet Wol=h exp(~5€T17'e] (2:21)
where
f ¢ 1 cnthf%] (0
Gio= vVo=| 7 7 . (2.22)
o 4 0 Leoth(d)

The physical significance of the 1}, matrix is that it is the noise matrix (matrix of
. x v — . 1
variances) of the given thermal state. Since 7 + L = (det 14)3, as can be seen from

(2.18), we can rewrite (2,19) and (2.20) in the form

x i 1 Vet ¥ — 3 &
pes = Y = ——= | |n){n|,
w=o (vdet Vo + 3) \det 15+ 2

- | 1 L ,
S, = kal(ydet Vo + ;jl:lf\#det Vo + 3} — (y/det Vg — a-}iu[\.-'tlct Vo —l}]] "
vdet V=

Now consider the transform of jg,(€) and Wi, (&) under the unitary evelution

coth{{det 2(7,)7%). (2.23)

Il | =

U(S) corresponding to the 2 % 2 real unimodular matrix S < Spi2, R). According
to (2.10), (2.11), the effect of U/(5) is to replace £ and £ respectively in the density

‘operator and the Wigner distribution by §'¢ and S=E. Thus under [7(5) we obtain

from (2.21)

anl) = U(S)pa(EU(S)
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o g F L rf:li.l[;‘—]i1 B i
== FG{E}:LSIHI'I[%! EKT_}J_EET{J ]E] ,

Wi (&) — W) = _}L"rfdet ‘-"]_%Exp[—%é‘“lf—lg]r

(2.24)

where
G =8GST, V=815 (2.25)
Note that det (7 = det Gy and det V = det V4, as a consequence of the fact

that det 5 = 1, and we have made use of this fact in (2.24). Both ¢ and 1 are
real symmetric positive semi-definite and finite, aud the noise matrix V' respects

the uncertainty principle det V = % The spectral decomposition of I&{;(E} and the

entropy of this state [ollow from (2.23):

pell) = U(8)pe,U(S)!

B Z 1 Videt V —
= V41

1 mn
2 n; Si(n:.
Vet 1f+33) I 5y 51
Iny §Y = LS} |m),
Sg = kg[(vdet V + é}ln[v‘det V+ é} —(vdet V — éjin(vdet V- %],

det V = émh ((det 267)77) (2.26)

Thus, the specirum, and lLence the entropy, does not change under the action of

U(5); only the eigenstates (modes) change from the Fock states |n) to the squeezed

Fock states [n;S) = U{S)|n). That is, the spectrum and the entropy are invariant

and the modes are covariant under Sp(2, £).



It is useful to write the relationship (2.23) between the parameter matrix (¢ of a
Gaussian density operator and the parameter matrix V of the associated Caussian
Wigner distribution in a convenient form. To this end note from (2.22) that the
matrices Gy and Vo are multiples of one another. and hence [rom (2.25) it follows
that the transformed real symmetric matrices ¢ and V' are multiples of one another
as well. That is,

(det G) T @ =(det V)TV . (2.27)

This is a property characteristic of single mode systems and it will be found in the
next section that it is not valid for multimode Gaussian states, In view of (2.26) we

can write this relationship in more detail as

v _ zcoth ((det EEJ]‘IE] -
(det G)~%

G. = [2{det 1""]'_135.!‘(‘. coth (det Elf’]"%]‘l (N (2.28)

We have thus obtained a complete characterization of Gaussian density operators and

the associated Wigner distribution obtained by the action of the unitary operators

U(S), 5 € Sp(2. 1), on zero-mean thermal states with {5) =0, Since G and V are the

parameter matrices associated with a Gaussian density operator and the associated
- Wigner distribution function. the expressions (2.28) can be rightly called the Weyl
ordering rule for Gaussian states [2].

Our approach can be described by the following commutative diagram:




-
)

N Weyl ordering :

peis(€) - = - Wi(e)

Eq. (2.28)
1(S) 5
(2.29)
i Wevl orderin .
pald) W)
- Eq. {2.258)

It turns out that cur results derived for Gaussian states related to the thermal

state actually apply to all zero-mean Gaussian states, for it is true thal every zero

mean Gaussian state can be obtained from an appropriate zero-mean thermal state

the action of [7(5) for some &

5 € Sp(2, R) in the above manner. To see this consider

an arbitrary zero-mean Gaussian state. Clearly it has to necessarily be of the form

(det G -3

pal€) = 2sinh| 2] t'xpl-——f Ge .

(2.30)
Hermiticity of p demands (& 10 be real symmetric, whereas positive semi-definiteness

and traceability ol p demands that (7 be positive semi-definite and finite. And the

prefactor of the exponential in (2.30) is fixed by the condition trp = 1. It is clear

from the basic rules of Weyl ordering [2] that a zero-mean Gaussian state should have

‘a zero-mean Wigner distribution of the form

| (det V)%

Wile) = 5= exp[- €TV

(2.31)

for some real symmetric positive definite 1V, with the condition det 17 > 1 to meet

he uncertainty principle. Now since V' is positive definite, (det V)77V is & real



23

symmetric matrix with unit determinant, and henee il is an element of Sp(2. R). So
also is the unique symmetric positive definite square root of (det Lf’)‘%]f’, That is

S=(det V=7 Vig Sp(2, R). This shows that V' is necessarily of the form

V = (det V)i8? = 35V,57,

(det V)7 0

Bt

0 (det V]

baf

S = ST ={(det V)i V" € Sp(2,R) . (2.32)

Comparison with (2.24) and (2.25) shows that our arbitrary zero-mean Gaussian-
ngner distribution (2.31) with parameter matrix V' is indeed the transform of a
thermal state Wigner distribution Wi (£) by the unitary evolution I7( S} with Vj and
S determined by (2.32). This proves that our results in this section including the
connection (2.28) between the parameter matrices 7, V' are true for arbitrary single
ﬁ'fii_ir'.‘-_der zero-mean GGaussian stales.

In terms of the commutative diagram (2.29), what we have now achieved is to.

w that this diagram can indeed be reversed:
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F}Gn{g] , Weyl ordering W (€)
Eq. (2.28)
U(s) s
W Wevl ordering
plé) - : . V(&) (2.33)
Eq. (2.28)

We now turn to an explicit computation and interpretation of [7(5), where S is

determined by {2.32) in terms of V. To this end note from (2.8) that the unitary
operator
U = U(S)=Ufz)=exp [ (a2 —a%29) ] .

I = r r-'zw'.

(2.34)

induces the Sp(2, H) transformation

coshr + sinh v cos 26 sinlyr sin 24
L‘!‘ _
b

(2.35)
sinhr sin 2 cosh+ — sinh r cos 2¢
To determine r, ¢ in terms of the noise matrix V' of the given CGaussian Wigner
Cdistribution we write V' as

Vin W )
V= v V=1 {2.36)
Now compare (2.36) with (2.32) which reads V = (det V)552, with § parametrized

as in (2.35). This leads to

1 L tr V' )
= AT COs —— :
2 del V
2¢ = arg(Viy — Via +2iVi. )
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These are the values of the parameters to be used in (2.34) to compute the unitary
operator [7{.5} which acting on the thermal state with variance matrix V, = (det V)3
realizes the given Gaussian state with variance matrix V. Sinee this [/(S) is the
familiar squeezing operator [22, 23], we deduce as one consequence that an arbitrary
zero-mean Gaussian state is a squeezed thermal state. As another consequence |n; 5)

iven in (2.26) to represent the eigen modes of the Gaussian states with variance
&

matrix 17 now have the detailed form

;. §) = U(8) |n) = exp [ (a6 — a%~2) ||n) (2,

[~
]
o
e

where r, ¢ are determined by V' through (2.37). Thus we find that the modes of an
arbitrary zevo-mean Gaussian slale are squeezed Fock stales,

The Gaussian states we have considered so far in this section are zero-mean states
with (£) = 0. But our analysis can be simply generalized 1o Gaussian states with
nonzero {£). Clearly, the most general such state is obtained from a zero-mean Gaus-

sian state by the action of the unitary displacement operator D& where € = (£}
feell) = D(&) palé) D)
. L, »
= 2sinhl(det G)78/2] exp [-5(E )G E—&)] . (239)

ﬁﬂ& the corresponding Wigner distribution is
I

Wy (€) = %ldﬂt V]'%'ﬂpré{f — &)V E-&)] (2.40)

ind this fact follows from (2.13).

= —————
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It is clear that nonzero value of {{) does not affect the eigenvalue spectrum, and

hence the entropy. It changes the modes in an obvious manner. and we have the

mode decomposition

2 : o 1 Vdet V — % g
% = — = T iy
g (€) ; [ aet V= ) (v’det 7 %) |rz 21 6a) | ol
| .
Iniziba) = |n;Sik) = DI&) exp [3(:({” — z"a?)] |n). (2.41)
with z = »r ¥ determined by V through (2.37). Thus, the modes are squeezed

displaced Fock states. The displacement is determined by & = (£ J, while the complex

squeeze parameler z is determined by the variance matrix. The relationship (2.28)
‘between (¢ and V' continue to be valid. and the spectrum and entropy are determined
Mully in terms of det V. We can summarize the principal results in this section in the
form of
Theorem 2.1: The density matrix of the most general Gaussian state of a single
- mode system is specified by (. &p) where G is a 2 x 2 real symmetric positive semi-
definite matrix and £ = {é}is a vector in phase space. The corresponding Wigner
distribution is a displaced Gaussian specified by (V, &) where V is the real synumetric

positive definite noise matrix with det V' > ]1 The matrices V' and 7 are related

through the Weyl ordering rule (2.28). The state is a squeezed displaced thermal
tate. The complex squeezing parameter = is determined by the variance matrix
through (2.37), while & equals {f} This state has the eigenmode decomposition

(2.26). The spectrum, and hence the entropy as seen from (2 26}, depends
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on det V' alone.

It should be emphasised in passing that det V" is the only invariant in our scheme.,
and there is quantum restriction only on this object in the form of the uncertainty
principle det V' = 1/4, The parameter & is free to be any point in K2,

Much of our detailed analysis in the present section has been carried out in such
a form in which it simply generalizes to the multimode case. For this reason our

analysis in this section was rather detailed, and for the same reason we can alford to

be relatively brief in our analysis of the multimode case in Section .

[t should be noted, however, that the single mode case governed by Sp(2. R) s
sPacia] in some aspects. [n this case every noise matrix is a constant times an Sp(2, R)
matrix. To be specilie, given a noise matrix V the matrix (det V)"1/2V ¢ Sp(2, R).
This property does not generalize to the multimode case in any obvious manner.
For example, (det V)='2Y V & Sp(aN R) for a general N-mode noise matrix V.
Another aspect which is special to the single mode case is the somewhat related fact
given in (2.28) which sayvs that the & matrix parametrizing the Gaussian density
operator and the V' matrix parametrizing the corresponding Wigner distribution are
multiples of one another for every single mode Gaussian state, Finally, in the single
ode case the uncertainty principle placed a restriction ouly on the determinant of

e noise matrix, whereas more subtle restrictions on the noise matrix are present in

he multimode case.
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=1

Figure 2.1: The entropy of single mode (Ganssian stales with the noise matrix
2 arametrized as in [?.-—11 I. The behaviour of enfropy as a function of e is shown
for 7o = 1,2. For each value of xq, the physicallvy allowed values of ;. &2 are re-
tricted by the uncertainty principle to the cireular region =¥ + 22 < 22 - 1/4.
Points on the boundary of this region correspond to pure Gaussian states.



K=

D=8

Figure 2.2: Same as figure 2.1, but for 24 = 4,8
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To conclude this section we present in Figs. 2.1 and 2.2 the entropy of a singlerode
saussian state. Recalling that the entropy in this case is fully determined by the

(determinant of the) noise matrix V', we parametrize V as [14]

1 v Ty + iy T2 (2.42)
&£y p — iy

" Then the uncertainty principle reads

det 17 = .'J%—.‘I.‘f—-‘i.‘:ﬁ = 1M, x>0, (2,43)

Finally, while we have tailored our analysis in this section in such a way that it

neralizes to the multimode case as already pointed out, the power of the present

sty

ge

approach can already be seen in the single mode case by comparing with Ref, [16].
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2.4 Multimode Gaussian States

Consider an N-mode system [25, 13, 18, 19] described by annihilation operators

Gy, Gy ... in and their adjoints al,al, .al, or equivalently by the 2N lLermitian

operators £ defined in (2.1) obeying the commutation relations (2.2). To hegin with

we consider the special N-mode Gaussian density operator

w

g=TT ')bmhl:ﬁ

i=1

expl~ 2063 + 2] (244)

This special state is important. for it will turn out that given anv N-mode Ganssian
state it can be reduced to this form by a unitary transformation [ ), for some
S € Sp(2N, R). For this reason we will call (2.44) the canonical Gaussian

density operator. In this state the N modes are individually in thermal equilibrium

with temperature parameters 9, oy ... By, with no coupling between the modes

The separable-product-Gaussian form of the canonical state (2.44) implies that
the corresponding Wigner distribution is separable as well, and we have

W ] .I
Wie)=T] (—Ltmh{-—-}ewp[— tanh[

1=l

)(g? + ) ])

The product form of {2.44) allows us to write down the spectral decomposition

-

[ )
3
1]
i

this multimode density operator simply from our result (2.19) for the single mode

e, and we have

;..r
B= Z (H{l —E_S-‘)r-_”’”f) 71y oo} (e, ey onpl. (2.46)
My, Ageemy =1
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‘where [, na,...nx) are the multimode Fock states with n; excitations in the j*

‘mode. These states span the N-mode Hilbert space, and the summation in (2.46)

is from 0 to oo independently for each ny. From (2.46) and our result {2.20) for

the single mode case the expression for the entropy associated with the state (2.44)

readily follows:

AR A'-H Z &J == 111{1 == e_'d«'] ;

l') i
s (2.47)
=1
Generalization of our construction used in the single mode case suggests that we

aeﬁne 2N 22N diagonal matrices Gy and 1} through

(B )
gyt
e
\ ay'/
\
3 coth(4x)
1 cothy %1]
3 coth( Eﬁ'i-} )

(2.48)
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so that the densily operator and the Wigner distribution can be rewritten as

Pﬁ-‘u{é] ==

2

[det(2sinh(GT/2)))3 exp{—%éTG‘a ']
Win(€) = [det(2r14)]F EIP[—%ET"L“E] ‘ (2.19)

where £ and ¢ are the 2N-element column vectors defined in (2.1). It should be

appreciated that GGy and 1§ have only N independent entries!

The expressions (2.19) are compact, but they are not vet in a form convenient for
the description of the evolition of the densily operator and the Wigner distribution
under the unitary operators {/(5) with § & Sp2N,R). To recast them into such a
convenient form we use the following

ima 1: Let M and & be m x m matrices such that o? = L, [a, M] = 0, and let

flz) and g(x) be any respectively odd and even functions possessing Taylor series

expansions about & =

0. Then f{Mea} =aof(M), and g{Ma) = g( M),

Proof of this assertion is elementary. Write f(Mo) as a power series in Me. and
then use the relations [o, M] = 0, and &* = 1. And similarly for g{Me).

‘To apply this result to our problem, note that the symplectic metric O defined in
(23) satisfies Q7' = QT = —Q. Let 0 =i and M = Gy. Clearly iQ and G satisfy

he hypothesis of the above lemma. Now consider an odd function like sinh (7y. We

sinh g = sinh( Gy (0 i0) = i) sinh(Gy Q) = Q7 sin(6, Q), (2.50)
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where we used the above lemma in the last but one step, and also the facts 07 = —0)

and sinh i = i sin 0 in the last step. By a similar argument we have

5 . o
mLh{%):ﬂf’ cot( ff} ) (2.51)

& . 1 ] -
panlf) = [det(2sin(Gg' Q2))]F expl- €G],

i'i"r'l.-'u(f:l == El’]ﬂl [QFF[VU”]':]? E:{IJ{_%{ETLE—lﬂ‘

(2.52)
Gy ¢
Vo = %n’f mtq;i’u—l . (2.53)

e exists an important reason for our choosing to write the connection hetween
and Vj of the canonical Gaussian density operator in the form (2.53) rather than

o = %mth[fg_—l}. This will become clear in what follows.

An observation may be made with respect {o the identities (2.50) and (2.51). To
'-'ﬂnd recall first of all the well known canonical procedure [20] by which a given
[ dimensional real vector space is converted into an N dimensional com plex vector
ace, with the antisymmetric symplectic metric Q playing the role of i. Now it is
nteresting to note that 0 plavs the role of  in (2.50) and (2.31) as well. Indeed,
fewtiting of these as sin G2 = Q sinh Gy and cot GoQ = O coth Gy renders their
-_i_iﬁ with sin 0 = i sinh@ and cot i = i coth# transparent. Further, an

rgument similar to the one leading to (2.30) leads Lo the identity cosh Gy = cos G2,
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which is analogous to cosh§ = cos i,
The only property of iy used in the derivation of these identities is the fact that
[Go, 9] = 0. Hence it follows that these identities apply to every matrix M which

commutes with . Clearly the most general form of sueh a matrix is

X Y
M= . (2.54)
-Y X
where X, Y are arbitrary N x N matrices. We have thus established the following.

mma 2: Let M be any matrix of the form (2.54). Then M respects the following
ities

cosh W = cos MO

simhM = Q7 sin M0

3

tanh M = 07 tan MQ . (2.55)

Having considered the canonical thermal state density operator in some detail, we

:'_lyr,-_-!;he normalization constant N((7) is determined from the requirement trjp = 1,

nd we have

NG = (tr ﬁxp{-é;f“"fr'”f] )

——

2.57)
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‘Ihe explicit form of N(G) will be determined later.

I
It is clear that the zero-mean Gaussian state (2.56) has a zero-mean (aussian

Wigner distribution of the form
- : p—L lr -1
WelE) = (2rdet V)~ 2 m_:p[—EE- V=], (2.58)
N % 2N real matrix V. The normalization condition
fﬁ%Wﬁhﬂ, (2.59)
which corresponds to trp = 1, requires V to be positive definite. But positivity alone is
not sufficient. The question of necessary and suflicient conditions on a real symmetric
positive definite 2V 2N matrix V so that W (£) defined by (2.58) represents a Wigner
stribution (i.e. so that the hermitian operator computed from the real Wi(Ey by
Lordering will be positive semi-definite) is a subtle one first raised by Litilejohn
yand subsequently answered in [13, 26], and it cortesponds to the com plete set of
uncertainty principles which the multimode noise matrix V has to respect.
END‘-‘F, the positive definiteness of V' allows us 1o take atlvantage of a classic theorem

due to Williamson [21, 13] which is as follows

Williamson’s Theorem: Given any positive definite real s ymmetric 2N x 2N matrix

there exists an § € Spl2N, R) such that

V=2515s"

(2.60)
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where 1y has the special diagonal (Williamson canonical) form

[ #1 \

p

=
o]
Il

(2.61)
H

\ oy,
HKg,...6n being strictly positive.

s assertion is nontrivial, for not every svmmetric matrix can be diagonalized by
isformation of the form (2.60), with 5 € Sp(2N, ). Note that the Williamson
ical form Vi has only N independent entries, and is identical in form to the
ical noise matrix (2.48). It should be further noted that #; are not the eigen-
f V, for (2.60) does not represent a similarity transformation. However, as

i (2.13), under the symmetric transformation (2.60) connecting 17 and V. the

ices Vi © and VQ are related by a similarity transformation
ViE=Wmas" (2.62)

follows that x§, #3,...x7 are the eigenvalues of —(VQ)* = VOV, This is so
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because the Williamson normal (canonical) form of V1) is

[ \

Ky

A

— Ky

-

quivalently, these are the eigenvalues of the manifestly svmmetric positive definite
vigvaTryt (recall that 2 = —@) which is obtained from the earlier one
ugh conjugation by Vi, As a consequence V and V' = SVST for any 5§ &

N, R) have the same set of #'s. In other words the #'s are symplectic invariants,
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Theorem 2.2: The parameter matrices (7 and V of a Gaussian density operator and
the associated Wigner distribution are related by

2

V= %nT cotf ). (2.64)

d {rom ﬁ{f) and its Wigner distribution W(£) simply by replacing £ and £ by
,'5 and 571 £ respectively. But from (2.56) and (2.58) we see that such a replace-

ment is equivalent to

G - ('=8G¢87

Vo= V=8V sT | (2.65)

That is the orbit of § is determined by one of the (equivalent) arbits (2.63) for the
rix &7 or V.
As the next step note that the relat ionship (2.64) is covariant under the symplectic

wolution (2.65):

QF cot(G'/2) = %n’f cat((S7H)T 71 S /2

e

= %ﬂ?" cot((S~)F G 0 §7/2)

SO (57 eot((G™! 0/2) ST
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ST cot((G7' Qf2) ST

I
i R

= SV &§h=wv (2.66)

My

points on the orbit or at no point at all.

[Further, since the variance matrix is positive definite, we know by Williamson's
orem that there exists a canonical point of the form (2.48) [i.e. of the form (2.61)]

ery orbit. Finally, since we have already proved in (2.53) that the relationship

4) is valid at this canonical point of the orbit, it is valid on the entire orbit. since

it 15 covariant, This completes the proof.
The relationship (2.64) is one of the principal results of this Section. We wish to
phasize that this compact expression constitutes a solution to the problem of Weyl]

ing (which by definition makes a one-to-one correspondence between density

tors and Wigner distributions) in the case of Gaussian N-mode states.

=

Next, to determine the normalization constant N((7), we use the umitary operator

U5), 5 € Sp(2N, R). which takes ¢ to its canonical form, and note that

NG = tr expl—3€7G14
= 1 (U(S) exp[-€7G5"E] U(S))
= trexp[—é.{fT[}'E]{]

= N{Go)™! (2.67)
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Lhat is, N((r) is constant over the orbit of G Therefore using | 2.52) we have
N(G) = N(Go) = [det (2sin(G5'Q2 /2))]F .

, from the relationship @ = SG3S7 we have

sin(G5'Q /2) = sin(0 8T G 542

=

= sin(ST 7' [F5) /o)

= 57 sin(G'0 f2)(87)!

(2.68)
Since det ST = det § = 1, for every & € Sp(2n, R), this implies
det (25in(G5'Q /2)) = det(2sin(G'Q [2)) |
and hence we have the final result
N(G) = [det (2sin(G'0 /2)]E (2.69)
can be rewritten in all details as
pel€) = [det (2sin{G'0} f:&}]#exp[—%f]"ﬂ“{‘] (2.70)

TS

his completes our discussion of the normalization constant N{(7)

e turn our attention now Lo the spectral decomposition of the general Gaussian
: ""Eﬁ-f ~operator pel€) in (2.70) corresponding to the Gaussian Wigner distribution
n (2.58), with 7 and V related as in (2.64). Let § & Sp(2N, K take V' o

amson canonical form Vi given in {2.61), which has the same structure as



—

12

our original canonical form (2.48). It follows from (2.64) that under S, pelé) also

over to the canonical form pe;, (€):

pe(€) = U(S)hc,(£) US)T (2.71)

ing that &, z,...xy are square roots of the Sp(2N. ) invariant eigenvalues

VQTV, and comparing the canonical forms (2.61) and (2.48) we deduce

|
E.-F'J s K 2
T g2
4 2
» 1
1—e™ = 5 (2.72)
h,_?-l-'z-

fius using (2.71) and the spectral decomposition (2.46) for P, we have

N ik

n,; p . g g
: s 1 e =) 1, ny.onn SY (ny, ng.ony: S
0 R T F=I h'.‘f + E h'..l- + E ) o 1 1 ,

[y, ng..onni§) = U(S) |ny. R np) . (2.73)

the product form of the eigenvalue spectrum in (2.73) can be exploited to write

the entropy by inspection. From (2.72) we have

o1
g = m(2ly |

H'._J—'E

{::-I.’J —l _ {HJ'_%:I_I

(2.74)
nd therefore using (2.72) and (2.74) in (2.47). and recalling that the spectrum in

as the product form, the expression for the entropy can be written as

: A I | 1 | :
\j._”,j' = E"’"B [(h‘]—l_;} [n{h:_’._}aj - I[H_,'—EII In {h‘j—a] ; f'.ﬂ.?ﬁ:]
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b
LT

in the single mode case, we find that the spectrum and entropy are invariani
i the modes are covariant under Sp(2N, R). That is, the spectrum and entropy
end only on the #,’s associated with the noise matrix V' of the given Gaussian
ner distribution. Since w;'s are symplectic invariants, we see that all Ganssian

s belonging to the same Sp(2N, R) orbit have the same eigenvalue spectrum, and

hence the same value for entropy.

our analysis above we made effective use of Williamson's theorem which asserts
ery zero-mean Gaussian density operator is unitarily equivalent to a canonieal
ssian. density operator of the form (2.44), with the 3,'s of the canonical form
mined by the Sp(2V. R) invariant x,’s of the noise matrix V of the given stale
{2?4) Thus, the invariance of the spectrum and entropy under unitary
mation allowed us to write the spectrum and entropy of a general zero-mean

ussian state invoking the results (2.46), (2.47) for the cananical state. Since k)
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density operator and the associated Wi gner distribution of such a state have the form

peel) = Di&) palf) Di&)

[det(2sin (G102 /2)))'/* m—p[—%{é - &Y GV (E—8)]. (277

WV.ED (E ]

(2m det V)™ expl—5 {6 — &) V! (€~ ). (2.78)

he relationship (2.64)between G and V' remains unaltered, as also the particular

LT
5 € Sp(2N, R) which takes the given ¢ and V to their Williamson canonical forms G,

qurther the Sp(2N, B) invariant &;'s are not affected by the unitary displacement

operator D(&y). Thus we have in view of (2.73) the speciral decomposition

_ A N 1 ko — L
Peell) = ) (1-.[ (=) ) [Rryee i S;6o) {naeenonng 536l

agy macatin N\ g=t o5 j:? Ky + %
[R1y ooy Si &) = D(&) U(S) |ny, e na) (2.79)
& does not enter the spectrum, we conclude that the entropy is given by (2.75).
mmarize the results in the following form.

rem 2.3: The most general Gaussian state of an N-mode system is determined

) where 17 is the 2N x 2N noise matrix which is real symmetric
ve definite and satisfies the Sp(2N, ?) invariant uncertainty principles {(2.63).
‘ ordering rule connecting (7 and V" is given by the Sp{2N, R) covariant

.64). This state has the spectral decomposition (2.79) and entropy {2.75).
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sspectrum and enfropy of the state depend only on the set (k2 x2,..., x%), the

2N, R} invariant eigenvalues of VQVOT. and hence they are constant over any
t of the semi-direct product of Sp(2N, R) and the N-mode Wey] group. Every
stan state is unitarily equivalent to a canonical state of the form (2.44), and is
ned from the latter by the action of an appropriate element of this semi-direct

duct group.

In the next Section we consider the special case of two-mode systems in some more

but it is useful to sketch the principle of our approach in the ceneral N-mode

in the form of a commutative diagram;

. . Weyl ordering .
PGI:“'E'H{.E] s . HJH}-EU [6]
Fq. (2.64)
U5 5
: : Wevl ordering L
PGeq (€] . W (€) (2.80)
Eq. (2.64) o

Clearly £y, 43,... kx5 are the only invariants, and there are quantum restrictions

them in the form of uncertainty principles. There are no restrictions on &g,

o can be any point in the N-mode phase space B2V
.5 Two-mode system as a special case

ie previous Section we presenied the characterization of a general Gaussian den-
erator and the associated Wigner distribution for an N-mode system. We also

licit expressions for the mode decomposition spectrum and for the entrapy
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general Gaussian state in terms of the Sp(2N, R} invariants Ky Ky oo iy of the

ciated noise matrix V. In the present Section we consider the special case of

wo-mode Gaussian states in some detail.

In the two-mode case governed by Sp(d, £), the Williamson normal form of the

i

fig

v SESPL R RyRa =12 (2.51)

Hy

\ "2
?ectrum and the entropy are [ully determined by (2.73) and (2.73) [rom a

edge of &, and x;. To determine the positve quantities sy and xs, or equivalently

2 and .-_c-g, note from (2.76) that we have the trace relations

2 (] + &3) = =tr(VQ)? |

(2.82)
2 (k] + &) = 4tV . (2.83)

e Sp(4, R) invariant in view of (2.13). Further, since det V' is Sp(4. R) invari-
have from (2.81)

ki fs = det 1V,

(2.84)
the above three equations are not independent, and any two of them will

determine #7, xf. Indeed we have the relation

8det V' + 2er(VQ)' — (te(VRP)F =0, (2.85)
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Jjust an Sp(4, R} invariant way of expressing the fact that
+ ]+ g) — 4{k] + w5 = 0. Choosing det V and tr{ VQ)? from the above

we have the following expressions for &7 and x2:
; 1 1 T 1/2
Ry = ¢ (VaveT) £ [(Gu(veven)y - rlct‘[’] : (2.86)

:Ij__t the fact that V' is positive semi-definite implies that (Ltr(VQVQT))? >
_'f-:I;}I_qw the uncertainty principle (2.63) simply reads that the smaller of e

_e'd from below by 1/4. That is

w(VOVRT) — J(te(VOVOT)? — 16detV > 1. (;

Bl
0F)
|
e

thich can be rewritten as
24(VOVAT) — 16detV <1, (2.88)

using the identity (2.85) the uncertainty principle can be cast in the following

it form in ferms of tr{ VQ)2, (e V)
8 tr(VQ) — 4(tr(VQ)* — 1/2)¥ <1, (2.84)

he uncertainty principle (2.88) or (2.89) subsumes the weaker condition det V <
hat the above inequalities saturate when the smaller of %y, xy equals half,
| that when &, = #, = 1/2 the state is necessarily a pure Gaussian state (ie. a

”-m::[_ueezed coherent state). We will be dealing with the photon statistics and

(=111
et

E_!;_'?l_'*l'.l:iution of this state in chapters 4 and 3.
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_" summarize, given a Gaussian real distribution in the four dimensional phase
e R, it is a bonafide Wigner distribution (i.e. the Hermitian operator computed
it by the Weyl rule is positive semi-definite) if and only if the 4 x 4 variance
x V' of the given Gaussian distribution respects the uncerfainty principle (2.85)
"ﬁiva.lentlj' {2.80})). Given such a bonafide Gaussian Wigner distribution. the
R) invariants sy, k2 are computed from the noise matrix V' through (2.586); the

m and the entropy associated with the Gaussian state are given by (2.73) and

\with j running over 1.2,

s section we discuss the Fock state matrix elements and give an expression for
ioton number distribution of the Gaussian density operator. As said earlier, the

slates [y g, my) form a basis for the N-mode Hilbert space. We would

to evaluate the quantity (o, .. nylfalnt nh, .0y, the representations of

ssian density operator jig in the Fock basis. It will be seen that this problemn

d as soon as we have the matrix element

<o |[U(S)ng, ny, ... 0y} of the metaplectic operator U(S). So let us start

ing

‘at these matrix elements.

nonsingular real matrix S has the well known Euler decomposition

IR, where 2 and R’ are rotation matrices and 7 is a diagonal positive
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| te matrix. Given 5, the Euler factors . [) and i are determined as follows:
the rotation malrix that diagonalizes SS7. BT is the rotation that diagonalizes
and the diagonal entries of [ are the positive square roots of the cigenvalues of
itive definite matrix SS7 or (578). What is particularly important for us in
is context is the [ollowing fact: if § € Sp(2N, R) then the Euler factors ft, B and
all elements of Sp(2N. f1). Now. it is clear from (2.9), that a pesitive definite

l matrix D s in Sp(2N. R) if and only if it is of the special form

( )

£
D[S],Sg, s .5;1,'] = P {ZQGJ

1

[
Sl = 1RV &

the above matrix has only N independent entries. The physical meaning
ent of Sp(2N, R} is clear: it scales ¢; down by the factor e and p, up by
.f_é_;?;tnr. In other words 12 corresponds to single mode squeezing in each mode
dent, amounts, with the same quadrature (i.e. the position quadrature)

in every single mode. Similarly it follows from (2.9) that a rotation matrix
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Re SO(2N) is in Sp(2NV, R) if and only if R has the special form

X =¥
R =

, S |
(X +iV)(X+¥) =1, (2.01)

Where the NV x N matrices XY are real. That is, rotations in phase space which

are also symplectic transformations are in one to one correspondence with elements

of the N? parameter unitary roup L(N):
n p g

SORN) N Sp(2N, R) ~ U(N) . (2.92)
rticular, not all rotations in phase space are canonical transformations. In

i :ng_ll_'l,", these are precisely the elements of Sp(2N, R) which commute with the

indamental antisymmetric matrix 0

SO(2N)N Sp(2N,R) = {S € Sp(2N,R) | §Q = QF} . (2.93)

revity, we will refer to these phase space rotations as canonical rotations and

trize them as (X, V), X +:Y € [7(N). One imporiant property of canonical

otations is that the corresponding metaplectic operators [/(R(X,Y)) preserve the

otal number of quanta in all the modes put together. This is an jmmediate cornse-

gence of the fact that these unitary operators are generated by Hamiltonians which
I

ar combinations of &}rh. (product of one creation and one annihilation opera-

1,2,..., N, That is, they can at most transfer quanta from one mode to



other. In particular we have,

N il

(s n2v e [U(R(XL Y )) 0y onhs o omfy) = 0, SEPTIE TS T (2.94)
i=1 =1

> evolutions are canonical rotations of a simple kind. In the case of two modes, a

lossless 50-50 beam splitter produces canonical rotations. This example is nontrivial,

U(D(s1,s1. .. vy ). where Disy,sq,...,8y) are the positive definite diagonal
nplectic matrices referred to earlier, do not mix modes but generate quanta in pairs

i cor espond to active elements, We have

i
U(D(si.s2:...,85)) = [] exp[éf‘;{&*“ = (2.95)
=1 =

fliat the Fock state matrix elements can be written as

N
j,i_n;»_?..,,n;.;|[,i’{ﬂ{s;,.c';1.,.,s,n;}]l|ni.ﬂ.'__,,...5nf-\,} = an;”ﬂ(ﬁj}._ (2.06)

i=1

I

l o3
Jupmal8;) = {n‘,-|exp[§s_,-{&”—Ez‘*}]|n;_} ; (2.97)

oted that Jiyulsi) = 0ifn; —nyp is an odd integer.
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from the above considerations and the fact that the Euler decomposition for §

es the following Fuler decomposition for {7(S);
S = B(XY D81 800 ian) RIXTYY

U(RIX Y NU(D(s1, 82,0083 ) )U(R(X, VY (2.98)

conyl U(S) Ingonh,. .. ndy) = {ng,naye e i U(CROX, Y D by D)

x{muy oz, mp [U(R(X.Y)) |nfand, oo nly)
Y
3 TL From, (85) (2.99)
=1
mmation over the repeated indices Iy, 6. ..., Iy and M. g, .. . A 18 1m-

the summation range is 0 to oc, for each index. As expected, the metaplectic

operator U/(5) for a generic § € Sp(2N, R) generates quanta as well as mixes
. What is really interesting about the structure of the above matrix el
the clear seperation between these two aspects: mixing of the modes is
fo the canonical rotation part, whereas generation of quanta is entrusted
ele mode squeezing part of {/(S).

(2.99) in (2.73) gives the Fock state matrix elements for the Gaussian

erator:

v AN Ba My, g, omy) =
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¥ l K=l
Z (H = ( 'T z}rJ{ni._n.g.,..~71,~.ri{-"{.5'}|!’1*|!'2 ..... i',n.;))

Ii,llz.,..-.ﬂﬁ_ J=

|
=LYy
-
=
[
-
ey
Y

S0 e VNN T | i 4 1T S O, In) - (2.100)

is the symplectic transformation which takes pg to its canonical form and K’
te the symplectic invariants assocaited with the state. The above universal form for
natrix elements applies to all Gaussian states. We recall here. the elean separation
en the aspects which are invariant and the aspects which are covariant under
he metaplectic unitary evolution of jg: the coefficients of the product of matrix
its on the right hand side are determined entirely by the invariant ;s and so
re the same for all Gaussian states in the same Sp(2N, R) orbit; the matrix
yon the right hand side chauge covariantly as one moves from one state to
in the same Sp(2N, R) orbit,

diagonal elements give the photon number distribution p(ny. ny

':ﬂiiﬁ_t}r of having n; photons in the j-th mode, j = 1.2, ... N:
L

plny g, ..o ny) = (myynay . x| palnine. . coony)

I (st

: e i
T e Ty K 3= Pt K i b

%l nges . onn U (S my g, my) 12 {2.101)
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Conclusion

ave presented in this chapter a comprehensive analysis of the most ceneral Gans-

tates of a system with an arbitrary finite number of degrees of [reedom. The
'i)al tools of our analysis have been the fact that the syniplectic group Sp(2N, R)

linear canonical transformations acts naturally and unitarily an the Hilbert

such a system., and a theorem due to Williamson on the normal forms of real
tric 2V x 2N matrices under symmetrie Sp(2N, ) transformations.

s N independent Sp(2N, R invariants wxq, ..., tn of the noise matrix have

a:sspecia,l role. On the one hand these invariants help to characterize the

of quantum mechanically allowed Gaussian states in terms of the complete

ucible set of uncertainty principles (4.20). On the other hand they fully

. The unitary action of Sp(2N, ) and the Williamson normal form jointly

i deducing, rather simply, the elegant matrix relation (4.21}) which is the

o the problem of Weyl ordering for multimode Gaussian states.

ction 4 we considered following (4.21) the orbit of a Gaussian siate under
tic group Sp(2N, R). Since #,,....ky are invariants over an orbit. they
“tn label the Sp(2N, R} orbits of Gaussian density operators, It should
| :that each of the Sp(2N, R) orbits we have thus construcied constitute

f Epiiﬁ,ﬂj generalized coherent states in the sense of Perelomov [27]



motwithstanding the fact that the fiducial Gaussian state and hence all the associ-
| generalized coherent states, can be mixed rather than pure states. When the
iducial state is a pure Gaussian stale then all the states in the corresponding family
t) of generalized coherent states are pure Gaussian states, and this corresponids
o =kn = 1/2. It is well known [27] that all the zero mean pure
sian states fall into a single orbit of Sp(2N. R). In other words, Sp(2N, B) acts
sitively on the family of zero-mean Gaussian pure states. Tt lollows that all the
s except this special orbit correspond to Tamilies of generalized coherent states

we mixed Gaussian states. Finally, our analysis may suggest that the present

could be profitably used to study evolution of mixed states in the confext

nic or SU(2) coherent states.



ditions for Nonclassicality

Introduction

apter we bring out all the information about the nonclassicality of a state
the photon number distribution. In Chapter 1, we discussed some TUETE
riteria characterizing a nonclassical state namely, the higher order squeezing
[ Hong and Mandel [7]. the related amplitude squared squeezing criterion
: ,E_]:'-and the Agarwal-Tara criteria [9]. The former were seneralizations of
squeezing (defined in Chapter 1) and the latter was a generalization of
';'_@;_-parameter (also defined in Chapter 1), Other than the quantitative
assicality, one comes across often in literature, & qualitative crite-
iclassicality. This concerns the photon number distribution of nonclassical
ezed states i.e, the photon number distribution of a squeezed state is

netion rather than a smooth one (as is the case with coherent states

It has been widely assumed that these oscillations are themselves a

oh




=1

[mi

‘the nonclassicality of the state [28, 30, 72| - indeed they have come to
s nonclassical oseillations [29]. This label, as we shall see, is a mislead-
ause, a manifestly classical state can also have oscillations in the ploton
stribution (PND). The virtue of the oscillation criterion is that it is local in
the Mandel ()-parameter and its generalizations are expressed in terms of
s of p,,, (where p, is the photon number distribution) and are therefore far
local in 1. In this chapter, we bring out all the information contained in
1 number distribution on the nenclassicality of a state. Some of the results

also serve to complete the work initiated by Agarwal and Tara [9].

assicality and the sequence {p, }

state of a single mode of radiation, described by the density matrix p.

e probability that there are n photons present in the mode, is given by

pa = tr{pln}{n|)

2
= ]ﬂpﬁa}e'ﬂ'ﬂa'u}“fn! G

m

is the Fock state of the mode with exactly n photons, and Pla) is the

si-probability distribution (the P-distribution):

i= ﬂm—;P{aHﬂ-}{M . (3.2)
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Po = 0 and 372, p, = 1. one interprets p, as a probability distribution over

I'}__discmte set 0,1,2, ... Let us define a “radial® marginal distribution Q) derived

2 .
I = k] dOP( 112y
2o

) = e,
j’n

n!

2 o fum dI)(1) (3.3)

‘LL ent state |ag) evolves through a nonlinear Kerr medium for a time interval f.

for a suitable value of 1 the state that results is the Yurke-Stoler state [31]

W) = %uau}ﬂ*'”ﬂ-au}}, (3.4)
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fiis, being the superposition of two coherent states, has a P (@) more singular than
tempered distribution; nevertheless, when angle-averaged it leads to the same 0Qfr

the coherent state |ag) © Q1) = 8(7 — |ag|?). The Hamiltonian of the Kerr

dium being a function of a'a leaves the diagonals (n|pln) unaffected. but changes
ie phase of the coherences (m|p|n). Thus, one is led to a three-fold classification
uantum states of a radiation mode: classical if P(a), and hence Q(71]. is a true
ility; semiclassical if P(a) is not, but Q(/) is a true probability; and strongly
sical if (/). and hence P(a), [ails to be a probability distribution. It is clear
urements of {p, }, as also measurements of any set of phase-insensitive quan-
volving only «'"a™, m = 0,1,2,... cannot distinguish between the classical

'4

iclassical cases. With such measurements one can at best conclude whether
state is strongly nonclassical or not.

we are interested only in the phase insensitive aspects here. we will refer to
i_:i_h’.*saica.l and semiclassical states as “classical” and the strongly nonclassical
_{;ﬁ_{:lassica,]“ That is, we will call a state 5 classical or nonclassical depend-

ther the associated angle averaged distribution (1) (equivalently 0/ 1) s

2 true probability distribution.

ugh it is clear that the sequence {p,} cannot possibly capture all the in-

contained in P(a) (i.e. contained in 4, for its definition involves only the

ents (n|pjn) and ignores all the coherences {(m|pjn), m £ n). one can



60

asily show that {pr} and Q1) determine each other uniquely

et us define the generating function A{K) through

sy = S W g

"

T ME )= - (3.5)

e = (=1)°

3 ﬂ(}'{ ) converges for all real values of K and is related to 0(1) through

AK) = 38 r}” D rffﬂl:f}ﬂ

n={}

[l

f dIU 1) Jo(2VTE) .
i

(3.6)
irier-Bessel transform can be inverted using the identity
f K (VTR (VTR) = 61— 1) (3.7)
0
a7y = f dRA(K) Jo2VTE) . (3.8)
i}

adial distribution not only determines, but also is determined. by Lhe

prominent among the signatures of nonclassicality of the PND is {he
on on the Mandel Q-parameter [6] which involves the lowest two mo-

afe is nonclassical (specifically, it exhibits sub-Poissonian statistics) if




fil

More recently Agarwal and Tara [9] formulated an infinite sequence ofsuccessive

ions, violation of any one of which will amount to the state 7 being nonclassi-

don, we rewrite il as

(} = {{nﬂ}—(ﬂ.}g—{n}}f{n}:

(n) = Z?:pﬂ = []Mdff![f}fff.

n=i

D = Youlp, = fmdfﬁif}e"f{f—'rl]:
0

(3.9)
=0
‘in mind the definition of nonclassicality with respect to the Mandel )
ber given in the introduction. One can see that there are (uncountably many)
r which @ is undefined, since either or both (n?) and {n) ean be divergent.
happens because (F involves p, lor afl i, and the rate of decrease of Pn A8 Tl — 00
t be fast enough to prevent the above mentioned quantities from hecoming
i
The factorial moments of the photon number distribution alse face the

lem: i.e. they involve P for all but a finite number of values of n. and are

[for the vast majority of states /i, as can be seen below,

m, = {(a"a")

!

=)

I
‘M‘-‘?

;e

C= ﬂ'!.urfll::f}ﬂ‘rfm,'if]=ﬂ,l.,27.,

]

{3.10)
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E_E_!]:J__EEE the Mandel ¢ parameter is

Q@ = (ma—mi)/m,
that [38] a classical PND implies:
!

My, < Mgl < (r?aznmr.-ﬂn}”ﬂ L e vl — 1 P s S

since {m,} also (like Q) invelve p, for all but a finite number of values of

ey are undefined for a majority of states 5.

H.].lf.}" and Local conditions on {p,}

"'1_1 we derive a set of necessary conditions on {p,} in order that the
te is classical. These conditions will tirn out to be local in n, as against

itions which are in terms of the moments of {p, } and hence are nonlocal

0 be convenient to define a sequence {g,} in the place of {p,} through
g, = filp, =012 . (3.11)

nian distribution {pa} is fully characterized by the fact that g, /qnp is

f . It follows from (3.3) that {g,} is simply the sequence of moments

sion (1) = 0(1)e:

R
- =fn dI(D™ = (1) . (3.12)
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uppose we are given a classical state so that /) > 0.0 < | < o, and consider

e

ihe polynomial f(I) = I"(I+ )% Since f(I} is manifestly nonnegative for any real

alue of z, nonnegativity of Q(7) implies

(f{-rj}f! = Izqﬂ e 2{;,1+1$ + 42 = 0

= 0, (3.13)
Meeal . That is,
@itz = Gagy (3.14)
en in terms of {p,}, this condition reads
ntl, g PO
PaPniz = [rf.—i-E:IP“H o 0 T (3.15)

e the local conditions to be satisfied by the photon distribution {p,} of any

state,

ﬁlbt in the following figures the quantity ('(n) = %%ﬂ[pﬂpnﬂfpiﬂj for the
al state, photon added thermal state and photon added coherent state,

ral interesting conclusions can be drawn from these local conditions, Firstl V.
is a geometric sequence for a Poissonian distribution, we see that, the local
ns are saturated by a Poissonian distribution, for every value of n. Thus we
et these conditions as saying that for any classical state the sequence {pnl

ally Poissonian or super-Poissonian at each n,

ndly, suppose that the given state is such that p,, = 0 (and hence g,, = 0)

Some integer ng > 0, and assume that the state is classical. The choice n = ng



25
Pholan rumber o
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e local condition implies that tne+1 = 0. Continuing this process we find that
—:!- implies g, = 0 for all n > ny. On the other hand the choice n + 2 = ny

-1 = 0, unless ng = 1.. Thus for a classical state either Py 12 nonzero for

ue of n, or p, = 0 for all » > 0. In other words, a classical state other than

acuum stale, cannot be orthogonal to any Fock state.

sicality of a class of states defined through

i o= Na™ppa™ (3.16)

is the thermal state with inverse temperature parameter 3 has been studied
[9]. In view of our local candition. the nonclassicality of these states for every

w manifest {rom its verv definition. for

B = (nlpln) = 0 , (3.17)

Indeed, we can arrive at a stronger conclusion: replace gy, on the right
of (3.16) by an arbitrary state p'; the resulting “photon added” state satisfios
‘hence is nonclassical. That is, all photon wdded states are nonclassical,
ity of photon added coherent states has already been studied in [32].

it is of interest to characterize the extent to which oscillations as a function

ur in the sequence {p,} of a classical state. Fver since the important

hleich and Wheeler (28] on interference in phase space, the statement that

5

sin {p, } are a signature of nonclassicality [30. 72, 40] has become a widely
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a a0 10g 1e0
photon number n

4i pn for an incoherent superposition of coherent states. The values of
ents are a® = 10.30,60,90, 130 and the corresponding values of the
parameter are A = 0.25,0.25,0.2.0.18,0.12.

e. Indeed oscillations in {p,} are known as nonclassical oscillations [24].
virtue of this characterization is that it is local in n as against the other
ons based on the moments of {p,}. We have shown in Fig. 3.4. the
1 a suitably chosen incoherent superposition of coherent states. The
Y construction, yet it exhibits oscillations in {p,} showing that
tion needs quantification while retaining its attractive feature

. Our local conditions can be viewed as a quantification of this

ty (3.14) says that {g,} for a classical state cannot have a local




it

4,
=
=
—T T

oa

photon number n

Figure 3.5: The four patterns allowed for ¢,

n (if it had a local maximum, the inequality will be violated by taking n 4 1
d to the maximum). Thus, for a classical state {4n} cannot exhibit any
n. In other words, oscillations in {g,} are a sure sign of nonclassicality.
"_._gﬂ} for a classical state is forbidden from having a local maxitnum, it can
st one local minimum. Thus there are only four generic patterns lor the
of {g,} as a function of n: monotone increasing, constant in 1, monotone
or a graph with one local minimum as shown in Fig. 3.5.

of the factor 22 on the right hand side of the inequality (3.15) coming from

als, it will appear that some amount of oscillation is allowed in {p,}, even



i

classical state. This is the kind of oscillation shown in Fig. 3.4. Note that the
oscillation (difference between the value of n at two, successive maxima of
ig. 3.4. is substantially greater than two as against the oscillation occurring
ezed state or cat state where the period is two. For period two oscillations
ty (3.15) places substantial restrictions on the amplitude. Indeed the next
__ local condition to be derived in Section 4 makes these restrictions even
ent, Further the factor :-“-1'—; approaches unity as n becomes large: thus the
1 the amplitude of the period two oscillation is stronger at higher values
e placing these restrictions on the amplitude of oscillations in the {petola
te, our local condition does not altogether forbid such “local™ oscillations

seen from Mig. 3.6.

apply our local condition to a state obtained as the superposition of two

ates:

W) = Nlao) + €| — ag)]

N = [2(1 4 cos fe=200)]-1/2 (3.18)

e relative phase (in the Pancharatnam sense [34]) between the two com-
:_:ga-'ﬁuperpusitiﬂn. The above superposition includes as special cases the

states [31] (with 0 = 47 /2) and the cat states (with # = 0, 7). We have

- 2 _ —ageg0500)" [L+ (=1)" cos 0]
Pn = [ = e U [1 + cos fe-2ogm] ° (3.19)

Tr.
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photon number o )

cal oscillations in the state A o] = 0.85)4+(1—),)|a2 = 4.2}, ), = 0.28,




T2

( tha

Grifnt2 (L4+(=1)"cos®)? N
G'ii T (=1 cos) fu(8) - (3.20)

Iy, fa(0) < 1 for odd values of n if —7/2 < # < 7/2, and f,(0) < 1 for even
nil =37/2 < 0 < —x /2. Thus, the state ¥} violates the local condition and
nonclassical for all values of 8 # 47 /2. For 8 = +7/2, the local conditions
ated for every value of n; and we have a Poissonian {p,}. It is well known
assicality of the Yurke-Stoler states can be exhibited only through phase
onsiderations.

| pure states other than the ccherent states are nonclassical at least at the

ve level is common knowledge [33]. What is really interesting is the fact

Central to the derivation of these local conditions was the appreciation
{ga} arve the moments of Q(I). Note that (7} is not normalized,

o problem for it can be normalized simply by multiplying it by ¢; %
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can be treated mathematically as though it were a probability distribution
0¢). In this section we exhibit the necessary and sufficient conditions on the
ice {gn} in order that the associated state j is classical.

construction of a probability distribution from its moment SECUENnCce Con-
e classical moment problem on which there exists enormous amount of
> [35]. When the probability distribution is over the semi-infinite real line
e calls it the Stieltjes moment problem. The Ham burger moment problem
ds to the case where the probability distribution is over the entire real line
and the Hansdorff or the fittle moment problem corresponds to the finite in-

. Since the argument of the “radial” quasi-probability ﬁ{ 1) is nonnegative,

m of deriving necessary and sufficient conditions on its moment sequence

[ rto ensure that (/) is a true probability distribution is indeed a Stieltjes

blem.

ion of this classical problem is well known. To exhibit this solution, we

moment sequence {g,} into two matrices L), LIV defined Ly

Lﬁi} = fapny D) = Gmingt 3 man=01,2,..N. (3.21)
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[ \
iy i1 iz R
Lm.a | ifa {3 R T
l\f}.ﬁ.’ fN+1 N2 i )
/
g] q:! i3 qh'-'l'l
R i k] i LA R
)= : [3.22}
\ N+l qN4s gnpa a1 /

A

.1: The necessary and sulficient condition on the photon number distri-

ence {g, = nlp, }.

y = jﬂ QNI = (I, | (3.23)

t the associated quasi-probability distribution ga "1 ) isa frue probability

over [0,00) is that these matrices be nounegative:

IO i IS N (3.24)

proof of the above theorem makes use of the fol lowing two facts. The
t a distribution (/) over the domain / € [0, nc) is nonnegative if and

nonnegative expectation values for everv polynomial S pointwise




tive over I € [0, 0o) [36]:

(F(D)g = [~ dINfI) > 0., Y70 > 0. (3.25)

nd fact is that any polynomial (7). nonnegative over [.2c), can be writien
of two square polynomials as [37]

JU) = [HDOF + L0 (3.26)

ove the necessity part of the theorem. suppose that Q(f) is nonnegative,

ider the polynomial fi({) = ¥~

n=n €n{ ", where ¢, are arbitrary real coefficients.

> have ([f1(Z)]*)q 2 0. That s,

N
{(ADPa = 3 enca(I™)g
m,n=I0
w
] = Y CinCalfmin
e n=(}
W
= ¥ due kM 5§ = (3.27)
i n=[
--.'-:-:'=:r-_.-'_ 0, for every N. Similarly, writing fo(f) = ¥V

= Pa=odnI" and taking

ctation of the nonnegative polynomial f[f5(7)]* we Lave. in view of (3.25)

TflDP)g = 3 dudy (17041,

=
Fid

Z dm dﬂ Grm +r41

. n=0

N
= ), dd, L = g,

mn=I{

Il

(3.28)

V)'> 0. for every N. Thus nonnegativity of Q(/) implies (3.24).




Assume, conversely that (3.24) is obeyed. Given any nonnegative polynomial
fl); writing f(7} in the form (3.26) we find that J))g = 0, for every nonnegative

o

olynomial. This implies. in view of the first fact stated at the beginning of the proof,

dy = det LY = g

dy = det '™ >0 . N=0.1.2.... (3.29)

'::.';e two possibilities. Either dy = 0. -:Ep.,- = 0for all N or dy = 0, u_’,-q =0

- iIE‘Ia‘ That is, L'Y) and L™ are (essentially) projection matrices. Thus
upport of (7) is finite LY (as also L)) is the sum of k projections,
0 contributes a projection ouly to the matrix L™ but not to L'™) one Las
g refinement: il support of (1) is of order & and { = 0 is contained in
s then dy > 0 (dy > 0) if and only if N < k (N < & — 1),

to remark that the first fact we have used in the proof of the theorem s

the three types of moment problems. What changes from one moment



e |
e |

to the other is the second fact dealing with the decomposition of notnegative
als in terms of square polynomials thus enabling us to write (3.25) as simple
¢ conditions. For instance, for the Hamburger moment problem on the entire
e, we have, in place of (3.26), the statement that every polynomial nonnegative
zeal line can be written as the sum of two square polynomials. Thus. in the

er case we have to deal only with the matrix £, and the condition (V) >0

N is both necessary and sufficient.
_'l .

immediate to relate our local condition to the above theorem. Nonnegativity
{N} demands as a necessary condition, nonnegativity of the determinant of
2 % 2 blocks of L™ LIV This is precisely what our local condition
is also clear why our local condition (3.14) is on] v a necessary condition:
‘the diaganal 2 x 2 blocks of L™, L™ does not capture in its entirity
of L) and L™) given in (3.24).

denve the next level of local conditions using our necessary and sufficient

ié}. Given the sequence {g,.} we define

'y e
e = fﬂg"“, n=thds By
qr:+l

(3.30)
st order local condition (3.14) which involves g, for three successive values
ds that =, > |, ¥n , for any classical state. As one may anticipate,

er local condition which we now derive involves ¢y lor hive successive

uivalently, i, [or three successive values of n.




-]
[,

_.%Lnecessa.r}f condition for the nonnegativity of LW, LIV is that their diagonal

blocks be nonnegative definite. That is

in Tu+1 Unt2

!'1-:1 = Gnt1 Qniz  Gnsd 2 D-r 'J’I:U,l_.?.,.... {331}

Gn42 Tz Gnia

Now define the positive diagonal matrix

gt 0 4]
g = 0 gMigzl (0 . (3.32)
00
1 1 I
B:: = SAHS = 1 Iq :I.';‘iIg " EEHSJ

it to the requirement that det B, = 0. But
det B, = 3[3%ilmh— V{maga = 1) —lanm =197 (3.34)

we conclude that for a classical state {z,} defined through (3.30) has to

satisfy

= Wz —1) 2 (BE T2y o 0405, (3.35)
Tniy
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e our second order local conditions on {g,} or, equivalently, on {p,}. They
three successive ,,’s and hence five successive Pos. Just like the first order
ns, these are only necessary eonditions for classicality.

[o close this section we present an interesting implication of these conditions.
ilready noted, if {p,} is Poissonian then the corresponding {g,} is a geometric
e saturating the first order local condition for every n. and rendering r, = 1

We now ask whether it is possible to have a classical state for which
— ‘Tnn-f—l for some values of n whereas gugnes > qr 41 for other values of n.

al states, if they exist, can be said to he locally Poissonian at these former

a classical state is locally Poissonian al some n — ng. That is; zs, =1,

o applications of (3.35), once with ng = n and then with tp = n + 2, shows

will cease to be classical unless 2, ., = 1 and Tug-1 = 1. Continuing

find that 2n, =1 for all n. Thus, there exists no classical state which

mian: A classical state is either Pojssonian (#n = 1 for all n) or is

}' super-Poissonian (z, > 1 for all ).
t of this result we ean now strengthen our first order condition (3.15)

i iquua]it}r:

For a classical state, either

4+ 1. . .
PaPntz = (':?-iE}PiH {Poissonian),




il

or

n¥l .,

PuPars > (T—=S0Pagy s m=0,12,0 (3.36)

tefinement of our first order local condition achieved in the light of the

rder condition,

51 approach based on tr(a!"a"j)

eetion we present an approach to nonclassicality of a state i hased on the

ered moments tr(a™a"5) i.e. the sequence {m.}. This approach will be

2 along the lines of Agarwal and Tara [9]. However. the conditions w

e derive

onclassicality are both necessary and sufficient.

se we have a stale § whose normal ordered moments (1.e. factorial moments

are known. Our problem is to find necessary and sufficient conditions on

ce {m,} in order that the state j is classical, Writing m, in terms of the

ion P(a), and writing o = /1/2¢%_ we have

. .
Mg = fﬂP{a}cr' a”

-

= fumdfﬂ[f]f" — (") (3.37)

s the moments sequence of O(7). in exactly the same manner in which

} was related to (1(7).

‘that our present problem, is again a Stieltjes moment problem

it problem in Section 3. The state 4 being classical is equivalent
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being a true probability distribution. With this identification the solution

ent problem is immediate. Form two matrices MY and NFIV) using the

quence {m, };

i Iy My T My

2 iy i s Mt
J.H-[J |- I:JJS}

\ IV TN Mings s Mgy }1

i mz nia LRSS

T iy Tty Ty Mwya
MM - (3.39)

\ My Mayga Mpygs

Hlaoniy )

i The necessary and sufficient condition that the state p with normal

it sequence {m,} given by (3.37) be classical is that

MM =, M >0, N= 0,1.2.... (3.10)

of this theorem is exactly parallel to the one in the previous section:

there is now played by (), that of {ga} by {m,}. and the role of
e matrices MY NfIN)

Vv Denoteo

| that the present theorem completes the work initiated by A garwal
oy

mproving their necessary condition (M > 0) for classicality into a
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necessary and sufficient condition. Thus, the constraints on the moments arising

from the requirement M'™ > 0 are the same as in their work: with N = 1 we

have mgm, > mi, which is the same as requiring the Mandel Q-parameter to he

nonegative; with NV = 2 we obtain the additional condition that det M2 > 0: and so
on. However the constraints on the moments arising from the positivity requirement
on M) are new: with N = 0 we have m; > 0, with N = 1 we have mym; = m3,
and so on.

To conclude this section we re-examine the class of superposition states |\, de-

fined in (3.18), within the present approach. The sequence of normal ordered moments

are easily calculated:

n, = (WlaMa" |l

= (ajep)" (Hlt]c;;iq_i::u) (3.41)
and we have
g 1 o \l
I o 1 e
& 1 e ows A (3.42)
I e 1 -
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a 1 o |1
1 o 1 e
MM =Bl o 1 & 1 . |B. (3.43)
l & 1 &
b /

The positive diagonal matrices 4, B are given by

A = diag(l, 000, (ajao). (afag)?, .....) .

B = diag((efao)'’?, (oge0)®2. (afa0)®/2....) |

(3.44)

and

N
1 —cosflg==2""

] L cosfle=2uta ° (3.45)

o =

It is clear that both M™) and M™) are matrices of rank = 2. Tt is further clear from
the structure of these matrices that MY > 1 if and only if ¢ < 1 and MWV} = 1if
and only if o = 1. Now, when —7/2 < 8 < w2 we have o < 1 and our superposition
state violates the nonclassicality condition M™) > 0 in (3.40) whereas for —3=/2 <
B < —7/2 we have ¢ > 1 and the state violates the condition M = 0. Thus.
the dual approach fully recovers the conclusions of the approach based on Q1) our

superposition state exhibits phase insensitive nonclassicality for all values of # other

than § = +x/2.

It is important to note again that the condition A > Uin (3.40) is needed over
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and above the condition M'™! > () to lorm a necessary and sulficient set of conditions
for classicality. This is ultimately due to the fact that our moment problem is a
Stieltjes problem: had it been a I amburger problem. the condition AUV = 0 would

have been both necessary and sufficient!

3.6  Connection between the two approaches

We have presented two approaches to the problem of phase-insensitive nonclassicality

of a state g one based on the sequence g, = nltr(pln){n|) which is the moment se.

quence of (], and a dual approach based on my = tr{a™a"5), the moment sequence

of (1), Tn each case we obtajned necessary and sufficient conditions for nonclassical-
ity. In both cases we exploited the fact that the un derlying problem was a moment
problem of the Stieltjes type. In this Section we bring out explicitly the connection
between these dual approaches and establish their equivalence, in the case when all

m, are defined.

The fact that Q(I) = Q(I)e! suggests the use of the Laplace transform. Let

D(s), ti>|[,qj be the Laplace transform of Q(I), Q1) respectively:

ffll{,\_;] = ./u% (”ﬁ{f}!”:_”

Bis) _[fdffl(f]f"*’ = ®(s+1) . (3.46)

We will now exploit the fact that the moments of a distribution are simply related to
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the derivatives of its Laplace transform evaluated at the ori gin:

e e r.f"'-'pl,'a'}
o= | AN = (=) -
7 [u 190N (=1) s ls<o
x . d" |
6 = [ = (-1 ff}h:a
'!I'ﬂ-
= (== LI/ (347)

Making two Taylor series expansions of ®(s), once about s = 0 and then about s = .

equating the two expansions. and making use of (3.47), we have

Z{—] *””‘ o Z{—] “?*{q_1 . (3.48)

The n'™ derivative of (3.48) at s =10 gives i, in terms of {g;},

- otk y
My = _ﬂ:"'“ \ (3.49)

=1}

whereas the n'® derivative evaluated at s = | gives the inverse relation

Z( et (3.50)

Writing the sequence {g,} as a column vector q and {r,} as the corresponding vector

m we have the matrix equations
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where
rf] 2 e LR )
TR IET
TR B
00 1 &
\ ©)
i
(12 4 2
- 0 1 3 4§ o -
5 = : (3.52)
0 0o 1 :1—1‘-
L‘: ; ; : C)

We have displayed S, 57! to exhibit the fact that the structure of these matrices is
unaffected if the first row and first column are deleted. We shall have oceasion lo
return to this important feature.

While q and m considered as (infinite-dimensional) column vectors are connected
by the matrix S, the corresponding infinite-dimensional matrices L= L and M =
M®) are connected through a symmetric transformation through %2 We have

. I .
1j2 H .

= 0 ,ilk<j:

e

| f2
(S )ik m |

ilk=>j
= 0 it k<y. (3.53)

“That 5'/? and §='/2 so defined are indeed inverses of one another simply follows from
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the familiar properties of binomial coefficients. Using the same properties it may be

verified that
M = SRSV, L = §7WMs V| (3.54)

This proves that M > (il and enly if L = 0,

Let q be the moment sequence derived from g by simply dropping ¢o. Clearly,
L = L™ isin the same relation to q as L is to g. Similarly, if we form m from the
sequence m by simply dropping myg, then M = M} will be seen to be in the same
relation to m as M is to m. Now recalling the fact that S, §='. SY2 S=1/% have
the interesting property that they are invariant under dropping of the first row and

first column. we conclude

=
Il
n
Nal)
g
I
o
L
S
B
n
o

It follows that
M = 5-1f2£[5-|f31'r ;L2 5--1;21.@{5_1;:]3" . (3.56)

This proves that M > 0if and only if L > 0. We have shown in (3.54) and (3.56) that
L=z0, M >0iland only if £ =0, M = 0, thus we have established the equivalence
ol the two approaches: the two approaches are dual to one another and, in particular.
theorem 3.1 is equivalent to theorem 3.2.

The above analysis shows that if we drop the first k terms from the moment se-

quence of a bonafide Stieltjes probability distribution {in the semi-infinite interval)
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the result is again a bonafide Stieltjes moment sequence (ol some other valid proba-
bility density). This is a distinguishing feature of the Stieltjes moment problem, It is
not difficult to see that the corresponding statement will be true for the Hamburger

moment problem (on the entire real line) only if even number of initial terms are

dropped from the moment sequence.

3.7 Conclusion

We have given here a quantitative treatment of oscillations in the photon number dis-
tribution. We have also given a complete analysis of phase insensitive measurements
of the single mode quantized radiation field and developed necessary and sufficient

conditions for nonclassicality of the field. We now go on to study a manifestly non-

classical state - the two-mode squeezed coherent state.




Chapter 4

A study of the Photon Statistics in Two-Mode Squeezed Coherent States

with Complex Displacement and Squeeze Parameters

4.1 Introduction

In the previous chapter we derived conditions on the sequence p, (the photon number
distribution ) [or a state to be classical. In this chapter we compute the photon number
distribution of a manifestly nonclassical state - the two-mode squeezed coherent state,
Photon number distributions of various nonclassical states of light have been studied
by several anthors{39, 15 Interest in such studies was triggered in part atleast by
the work of Schleich and Wheeler [28] which was mentioned in the previous chapter
in connection with oscillations in the photon number distribution being taken as a
signature of nonclassicality. More recently Dutta ef all40] studied the single mode
squeezed coherent state with compler squeeze and displacement parameters and found
that in addition to the oscillations found by Schleich and Wheeler, the photon number

distribution of the single mode squeezed coherent state exhibits collapses and revivals

89
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similar to the oscillations familiar from the Jaynes-Cummings model [41]. It is to be
noted that these oscillations materialise only when the parameters which are involved
are taken to be complex. The two-mode analogue of the above state was studied by
Caves ef al [20] [or real squeeze and displacement paramters and they found that the
distributions for oy = ay (parallel) and for a; = —a. (antiparallel) were strikingly
different. (Here oy and e are the displacements of the two modes). Motivated by the
results of Dutta et al where such a dramatic difference in the quality of vscillations
was found when the complex nature of the relevant parameters was taken into account
and by the work of Caves e al where the distributions for parallel and antiparallel

cases were entirely different, we study the two-mode squeezed colierent state with
complex squeeze and displacement parameters,

The contents of this chapter are organized as follows. In section 2 we develap
an expression for the photon number distribution in an arbitrary two-mode squeezed
coherent state with complex squeeze and displacement parameters. The analysis of
Caves ef alis based on normal ordering techniques. Qur approach is symmetry based:
we exploit the SU(2) dynamical symmetry nnderlying two-mode svstems. This al-
lows us to view the two-mode squeeze operalor as a rotated version of the product of
reciprocal single mode squeezings. Thus the probability amplitude for the photon dis-

tribution becomes a linear combination of the product of the well known single mode

Yuen matrix elements [22] given in terms of Hermite polynomials, the coefficients
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of the linear combination being determined by the matrix elements of a patticular
SU(2) rotation. Finally an identity relating associated Laguerre polynomials helps us
to write the probability amplitude in terms of a single associated Laguerre polvno-
mial. It is of interest to note that this identity itsell is an immediate consequence of
the SU(2) structure. Conformity of our final result with that of Caves ef al is noted.

In section 3 we bring ont the fact that this two-made photon distribution possesses
a U(1) = U{l) invariance property. As a consequence, even though our problem
has three phases (one each arising from the two displacement parameters and the
third from the squeeze parameter), the photon distribution depends only on one
U(1) = U{l)-invariant linear combination y of these phases. We bring out also a
Gouy phase [42] in the manner in which this invariant y influences the argument of
the associated Laguerre polynomial.

Some examples of photon distribution are studied numerically in Section 4. Our
principal alm is to bring out the sensitivity of the photon distribution to the [7(1) x
U{1) invariant y. It will be seen that while our results are in conformity with the
results of Claves et al for those values of y which correspond to their studies, there
are new interesting features for other values.

In Section 5 we study some properties which turn out to be invariant to the phases.

Second order coherence functions are brielly considered in Section 6, and it is shown

that they exhibit nonclassical behaviour in some range of y.




4.2 Photon Distribution

The general two mode squeezed coherent state is unitarily related to |vac) = |0.0).
the ground state of the two-mode system deseribed by annihilation operators ¢ and

b, in the following familiar manner:

|3:'31-.”2} = ﬂ{ﬂlr”‘ﬂ 5"[3}|ﬁfﬂ}
S(z) = explztab — :(:Tfai} o DMog,ag) = Diag) Dias)

Do) = explaga’ —ay"a) , Dlow) = explogb! — aa™h) . (4.1)

Here z is a complex two-mode squeeze parameter and o, oy are complex displacement
[ecoherent excitation) parameters. Detailed analysis of two-mode squeezed coherent
states has been made by several authors [43, 24]. In the above definition we have
allowed, (following Caves et al[29]), the squeeze operator to act on vacuum before
displacing the resulting two-mode squeezed vacuum. Sometimes it will be more con-
venient to order these operations the other wav in the definition of the squeezed

coherent state. Both definitions are equivalent, and we have the following identity:

lzian, an) = S(z) D6y, a)|0,0)
E;['—_ﬂ”i+ﬂ'-‘g.b’ . gzﬂgp-l"ﬂ‘]-l)

z=ve™ . p=coshr . v=e*Psinhr | (4.2)
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The photon distribution p{n;,n2) in the two-mode squeezed coherent state

|21 0y, 02} is given by

plrisng) = |elngng)?
clny,ng) = (m,nma|z e on) = (ny,na|S5(z2) ‘U{&l‘-&ﬂlﬂ‘ﬂ}' ' (43)

where [ny,ny) are the familiar Fock states of the two-mode system. We will compute
plni ng) in several steps.

As the [first step we exploit the dynamical SU(2) symmetry underlyving the two-
mode system. Two boson realization of the SU(2) symmetry is originally due to
Schwinger[44] and has more recently played an important role in quantum optics
[45, 46]. The basis of all these applications is the easily verified fact that the hermitian
operators Jy, Jz. Jy delined through

gy = M1 Sy = Hfﬂﬂhtfﬁ!‘ Jy = M (4.4)
satisfy the SU{2) algebra [Ji, Ji] = teqymdi. This fact becomes obvious if one notes
that J, = %ETJk.E. where £ is a two element column vector with entries a, b and o
are the Pauli matrices. With the help of these SU(2) generators, we can write our

two-mode squeeze operator S(z) as

Slz) =f.'xp{—-i§Jg_} Sl 2) Sp{—2) Exp[i%.h] " (4.5)

where 5,(z), Si(—=z) are the single mode squeeze operators

BiF= exp[%[z'az —za'?)),
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Si(—z) = exp{—%{r‘b‘* — 2b1)). (1.6)

Since expl—if.Jy] produces a T rotation in the mode space, the important identity

4.5) shows that our two-mode squeeze operator S(z2) is indeed a rotated version of
| &

product of single mode squeeze operators producing reciprocal squeezing,

When the identity (4.5) is used in (4.3) we abtain

elry, ng) = {7111T?.glﬂ_t%'}2 Sa(2) Sp(—z) el T D{cvy, 62)]0,0). (4.7)

Since

(1.8)

“-’-XP["’%JEJD{&L&E}Expt—igiﬂ =D (Ql Tt oy —f-h) 1

ViV

and since exp(i3J;) acls as identity operator on |0, 0%, we have the useful relation

P-%J:D(,_;m da ) [0, 0} =

{4.9)

) + e Gy — iy
VIR

This allows us to rewrite (4.7) as

: L G+ Gy Go— @
elnrana) = 37 {mumale ™% ny, no) x (nyymy|Sa(z) Sp(—2)| =z, 221y,

n ﬂ \ Vll{j
(4.10)

As the next step, we recognize that the matrix elements entering (4.10) are well
known from other contexts. The expression (ny,ngle™3%[n}, nh) are the Wigner

matrix elements [47] familiar from the quantum theory of angnlar momentum:

z

(nyomale™ F2nt ) = di, (S = b (~T) (4.11)

mm

2




where
J=(ny+ngl 2= (ny+n2)/2, m = (g —n2) 2, m' = (0} — b))/

Bl —=) = (— 1) ()

e ﬂ

] =

SO St W O ) T [ +m NG = m PG+ )l —m)]J2 IR
o gt ! G—m =G+ m+ o —m 4l

The other expression in (4.10] is the produet of the Yuen matrix elements of single
mode squeeze operators between coherent states and Fock states [22. 40]
5 Gy + a @y — aj
':”; rTF';|'qr4{3]'l'-"-'J[_:}| v,r;‘} ] \ﬁ )

. 1 + or
= {05 |8l =) ] :

T}{”’ﬂgﬂ'ﬁH—V@'—}

tn%lm%‘{%ﬁﬂf.i(m ) () 7]

by

- [—%ual + ) + T;r (@ + @) (113)

And {.":Hﬁ'r,(—z]l%{ég — &)} has an expression similar to (4.13) with (&, 4 a3)

replaced by (6p — &¢) and v by —u.

For our final step, we need the important identity [46, 48]

.Z:*{=_J “fuf;;; [E"J U = Fr"":l! {J = FT?.I}!]:-'TL fjJ'+m'|:-If} .-Ir'.nlrj—a:u‘{y:l
— |m))!,
EKP[_’E{EU —|m]) = {j —m)}] ['[J )

G+ )l
v f;rﬂ +y2}2|m| L'-:-[ri-lilnl{lﬂ +y?} EEi:m‘J‘ g

L=

(4.14)
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O, =T

m'mn m

). (4.15)

I |

The above identity has played an important role in constructing the normal mode
spectrum of the twisted Gaussian Schell model beam in classical optics [16]. Its
derivation is straightforward and brings out the power of viewing S5U(2) described in
(4.4) as the dynamical symmetry of the two dimensional isotropic oscillator in the z—y
plane. Figenstates of such an oscillator can be constructed by either diagonalizing
J» in which case the eigenstates will be products of Hermite polynomials in x and
y, or by diagonalizing J; which generates rotations in the & — y plane in which case
the eigenstates will be the rotationally covariant associated Laguerre polynomials
in 22 + 4% The identity (4.15) is a consequence of the fact that J and Ji are
related through conjugation by exp[—i3.5i]. In fact QF,,, are the matrix elements of
exp|—i3J;] and the factor im'=m iy the relationship (1.15) arises from the fact that
nxg}[—ngl] :Exp[ig,fg] E'}:]:[~1'2Jg] r‘.xp[—i%.h] (4.16)
It is important to appreciate that the identity {4.15} connecting the Hermite
polynomials and the associated Laguerre polynomialsis valid not only for real o,y but
also for complex values of z.y with p, @ delined, in either case, through = + iy = pe*
sothat p* =22 + % " = (2P —y* + 2ixy) (2% + y*)
Using the expressions (4.12) and (4.13) in (4.10) and making use of the identity

(4.15) we have our final expression

elnyme)=eli +m, ) —m)




07

(L]

oy ) — |m ) <
= f:xp[ni%u—hraﬂ] [%l [Gdn/ ()™ =t (wfpy

- - - AT |Ag2 o
® L;fl_rT,ln| (mﬂz) [f_'i:l"' nxp[ 6 5 62| ] exp [—u ﬂlnz] (4.17)

pr ) g It

The double sum over n}, n} in (4.10) reduced to a single sum over m' = (n} — n})/2

owing to the fact that the rotation matrix element {n,, nale™ 3 |nf 0t} in (4.10) is

nonzero only when ny + ny = nj 4+ ni, thus enabling us to use the identity (4.15).

To relate our final expression to that of Caves et al, we note thal p = j — [m] is
the smaller of ny, ny and g = j + |m| is the larger. Thus substituting for p.v from
{(4.2). we can rewrite (4.17) as

(tanh r}®

il
o =My =F =Tz—p

c(ny,ne) = (=1)F q_' &) il . {E:hn‘a}p
” oo 4, —{a]iq + osdg)
Li—F (_ M) 1 ¢ . 4.1
b P sinh 2r ‘ EXP[ 2eoshr (4:18)

[t 15 seen that (4.18) for real values of the parameters indeed reproduces eguation

(2.14) of Caves el al, since their p; = é&;/ cosh r.

4.3 (1) = U{l) Invariance and Gouy Effect

We have three complex parameters in the problem. These are z = |z]e??, o) =
| |e' ™ and oy = |ag]e'™. However syminetry considerations should convince one

that the phases ¢, , @2, ¢ will not enter the photon distribution independently. To

see this, let us write ¢(ny, nz) in more detail as

elmy na; 2iay, ) = (g, ne|z g, ag). (4.19)




Now note that
exp(iia’a) expl(iCb'h) ley @)= |1‘Ei“1+£1]: oy e, age'$?)
Projecting onto the Fock state |ny, na} we have
e(ny, gy ze'lOFGl), e, g’ ) =e""":”'“'*”:'z:'-::l:r?.t._n.g_: z; @y, )

We see that under the [7(1) » (1) transformations generated by exp(iCiata),
exp(1(2b'h). the probability amplitude e{ny, no: =i 0y, as) defined in (4.18) changes
only by a phase. Since the photon distribution is given by the square of the absolute

value of this amplitude, we see that it has U(1) x [/{1) invariance:

}_I”::Tlh 1t zt‘."{c’_‘-{l], o TS ; E}.Zt_f{-;} = p(n,,n9; 23 ay, n_.ﬂ [:L'.Bfl}

This /(1) = U/(1) invariance is analogeus to the [/{1) invariance in the single mode
case [40] and implies that our photon distribution will depend an the three phases
&y ¢2 and o only through the /(1) x U/(1)-invariant combination ¢, + ¢z — 2¢.

We can verify that the photon distribution described by the probability amplitude
given in (4.18) indeed possesses this {7(1) % /(1) invariance. To this end note that

under the transformation

o, = aet | oz zeilde) (4.21)

we have #; — 0, +(, , v — ve'@¥) and 26 — 26 4+ G + (& . Furtlier, it is clear from

(4.2) that &, — &,¢* under (4.21). Thus,

dT]_F &;T_P{rfilﬁ]ﬂ_‘_&’;l."}? ﬁS:—F‘ {ﬁiltﬁl)p etlmditnatz)
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To complete the verification we will now show that the arpument of the associated
Laguerre polynomial as well as the exponent in the last factor in (4.18) are functions
of only the /(1) < U/{1) invariant combination \ = ¢, 4@, —2¢. From (4.2) connecting

the a's to the &'s we have

Sy + b = (|og [P+ |exa|?) cosh » + 2|egag|sinh e cosy = i2|ayag|sinh e sin X -
(4.22)

We further deduce from (4.2)
fr1fiae " = G{lr’” I + |ewa|?) sinh 2r + 2|egaz|{cosh 2r cos y + ¢ siny) (4.23)

Thus, the expression (4.17) has the behaviour required by (4.20) under the {7(1) x
U(1) transformation (4.21). showing explicitly that our photon distribution is indeed
[7{1) = £7{1) invariant.

Having appreciated this fact we switch for brevity to use of p(rny, ns), rather than
plrying: ziag, ag). to denote the photon distribution.

Our analysis in the foregoing paragraphs shows that there are only two ways in
which y. the /(1) = {7{1) invariant combination of the phases of ay, e and =, enters
the photon number distribution: through the exponent as in (4,22}, and through the
associaled Laguerre polynomial as in (4.23). The lormer one is independent of ny.n.
and hence contributes to the overall amplitude of the distribution. That is. it just
ensures the fact that p(ny,ny) summed over ny,n; is normalized to unity. Thus it

need not be pursued any further, The role of y in the latter however. is nontrivial.
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We will see in the next section that the dependence of the arguiment of the asso-
ciated Laguerre polynomial on y leads to a sensitive y-dependance of plnyang). But
here we wish to note the interesting manner in which the phase of the argument of
the associated Laguerre polynomial depends on y. To this end let ® be the phase of

the argument of the associated Laguerre polvnomial in (4.18):

261 3 _ | 6y G
" 200183 5 i e O R
‘; i i } - I_I-" Pl -

(1

1 }

- - : 4,34
sinh 2r sinh 2 t { )

From {4.23) we see that

by crg| 810 ;
¢ = arctan | +— [0 #10. {4.25)

Lo |* + |oe|?) sinh 20 4 |0y as| cosh 20 cosy |

We show in figure 4.1. the behaviour of ® as a function ol y [or the case

ay| = sl
It is seen that while @ is linear in y for r=0, with increasing value of the squeeze
parameter 7. @ becomes a highly nonlinear function of \, This is the Gouy effect for
two-mode squeezed coherent states. Gouy effect for (focussed) light heams has been
known for a long time, [49, 50] and recently Gouy effect for single-mode saueeszed
light has also been studied [51].

We note in passing that if either a, or a. equals zero, then the argument of the

associated Laguerre polynomial becomes real positive irrespective of the phase of the

SqUeczEe parateter .
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Figure 4.1: The Gouy phase @ for different values of the (1) = U(1) in variant phase
x- Both & and y are in units of = and a; = a, = 7.
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4.4 Examples of Photon Distributions

We have given in (1.18) the probability amplitude ¢ ny, n2) for the two-mode squeezed
coherent state; square of the absolute value of this expression gives the photon dis-
tribution p{ng, n2). We are primarily interested in the effect of the pliases &, ¢, 20
of the complex parameters oy, oz, 2. We have already shown that these phases enter
the photon distribution only through the argument of the associated Laguerre poly-
nomial: and that too in the U/{1) »x /(1) invariant combination y = ¢; + d» — 26,
We give in figure 4.2 the distribution p(ny,ns) for fixed |a,| = |as| and fixed r, and
selected values of y in the range 0 < y < 7.

It should be appreciated that the effective range of v, as far as p(ny, ) in (1.18)
15 concerned, is 0 < y < & rather than the full 0 < y < 27, This comes about [rom
the fact that p(ry.n.) is invariant under v — 27 — y.

It s easy to see that Fig.lb and Fig.2b of Caves el al correspond to y = 0
and 7 respectively. And for these values of y our results in figure 4.2 are clearly
in agreement with theirs. But from y = 0 to v = = the distribution “evolves” in
an interesting manner. As y is increased from zero, the ripple perpendicular to the
diagonal starts breaking. With increasing value of y these breaks increase in number,
the period parallel to the diagonal increases and the distribution pulls itsell towards
(ny,m2) = (0,0). With further increase, the strength of the distribution falls rapidly

as one moves away from the diagonal so that when v = 180" is reached one is left
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Y= 1767

X =160°

I'igure 4.2: Photon number distribution plri.ng) as a function of ny and ny for
ay = ap = 7.00 and r=4.00. The distribution is concentrated along the diagonal
for x = 180° As \ decreases oscillations along and perpendicular to the diagonal
= 120%. Thereafter there is a gradual collapse of the
oscillations perpendicular to the diagonal which evolves with dec reasing y towards
the parabola like ripple structure at y = 00°,

pick up and saturate around y =
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with essentially a diagonal distribution. Thus, our figure 1.2 gives insight into the
manner in which the photon distribution interpolates between the two extreme limits
studied in [29],

To gain further understanding of the photon distribution, we probe the diagonal
distribution p(n, n) in some detail. In figure 4.3 we present p(n.n) for the same values
of ey = |ay| and r as figure 1.2, and {or various values of y. Collapses and revivals
in the ascillation may be noticed.

This result is reminiscent of the findings of Dutta ef af for the single mode case,
The major departure from the single mode case is that in the present case the collapses
and revivals are persistent for a wider range of the parameter y. In particular, Lhey
survive even in the limit y = 0°.

[t may be noticed that the oscillations in p(n,n) are most rapid at y = 0% and the
period of oscillation steadily increases as \ goes to the limit 180° where the diagonal
distribution becomes essentially a constant. The region near y = 180° is further
explored in figure 4.4,

[t is of interest to analyse the photon distribution in n, lor fixed na. Tlis corre-
sponds to state reduction which has received considerable interest recently [52]. In
figure 4.5, we show plny) = p(ny.ng) for constant ny (i.e. the distribution as a [une-

tion of n; for fixed ny) for the same values of parameters oy | = leva| and v, as in

figures 4.2-4.1 and for selected values of y. Again, collapses and revivals can be no-
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ticed. But the structure of this phenomenon is now quite different from the diagonal

case and mucl richer,

4.5 Properties Insensitive to Phase

We have shown in the preceding two sections that the photon distribution of the two-
mode squeezed coherent state |21 v, @2} i quite sensitive to the L1y =071 - invariant
combination of the phases of the squeeze and displacement parameters. Bul there
are properties of this state which are insensitive to the phases of these operators. We
present in this Section examples of two such propertics.

The first such property we consider is the total energy £ in the state |zt aopy ).
This is given by the expectation value of {a%a 4+ bh). The computation is straightfor-

ward:

E = {85, al {rﬂﬂ + {11:.’1] |ziery. )
= (vac|St(z) D(ay, az) (ala + ') Diay.e) Sz )vac) (4.26)
The contribution from the a'a term is
(vae | Stz [.—IT:—Q;} (a+ar) S(z) |vae)

= |m|* + (vac/ST{z) ala S(z)|vae)

= |a|* +sinhr | (4.27)
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where we make use of the fact

Sz) a S(z) = acoshr — e sinhyr | (4.28)

The expression (4.27) is similar to the one in the single mode case, but the sinh?
ferm comes from the expectation value of b%h. 1t is easy to see that the contribution
from the b'h term in (4.27) equals loa[* + sinh®*r. Hence, the energy of the state
|23 61, 12} is]29]

E =l + |aef

+ 2ainh® r. (4.29)

Thus the total energy content of |23 @, @3} is insensitive even to the invariant com-
bination y. even though the photon distribution itsell is phase sensitive! That is,
changing the value of y simply redistributes the photons in the various two-mode
Fock states without changing the total number of photons.

The next quantity we consider is the reduced density operator {or mode 1. Caves
et al compute this through the P-distribution. Our computation is based on the
equivalent two-mode Wigner Distribution W{&.&). The advantage of the Wigner
distribution over the P-distribution arises from the fact that squeezing transfor-
mations simply act as linear transformations on the arguments of this distribu-

tion. Displacement operators act as rigid translations as in the P-distribution case.

Using these facts and the fact that the Wigner distribution for |vae) is given by

W& &) = Zrexp[=2(|& > 4 |&)*)]. the Wigner distribution for the state EI T
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is easily computed to be

1 @ 2
Wig1. &) = exp[=2[(|6r — e [* + & — a3*) cosh 2r

+sinh 2r((& — a)(6y — ag)e ™ + (£ — a)(E — a3)e*?)] |. (4.30)

While the two-made squeezed coherent state |z cty.g) has such a nice Ganssian
Wigner distribution, it is well known that this state, being nonclassical, has no P-
distribution function in the familiar sense of the term function.

The single mode Wigner distribution corresponding to the reduced density op-
erator for mode 1 is now obtained by taking the marginal Td*EW (gL &) and we
have
(4.31]

; 216 —aq P
Wi(&) = fﬂrﬂ{z Wi, &) = —gl—n[']

meosh2r [ cosh 2r
which corresponds to a displaced, hut not squeezed, thermal state. We see that the
phase of the squeeze operator does not enter this reduced W igner distribution. In

fact the P—distribution corresponding to (4.31) can be written down by inspectiion,

We have

+ 2 - 5
msinh™r sinh” r

A [ [— ﬁ’lﬂdl (1.32)

which coincides with the result of Caves ef al. consistent with its insensitiveness to

phase.
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4.6 Second Order Coherence Function

[n the last Section, we considered examples of properties of |z; i, cea) which are
nsensitive to the phase of the squeeze parameter. We now turn bricfly to some
coherence properties which turn ont to be sensitive to the phase.

We consider the Glauber coherence funetions yi‘f]{ﬂ] anrl y},”(U]. These are defined

through

(iane) — (. ined
(0) = 14 Pafie) = (Ra) (i (4.33)
(0o} (Tia)
» =BV EE L a
S}‘;,E]':”J — 14 (A + 7)) — (g 4 .'J.,l.jl.,' (4.34)

{(Ra + 1))
Motivation for these definitions can be found in Gilles and Knight 1533]. Since these
functions depend only on the photon distribution, it is elear that they can depend on
the phases of 2. @y, o, atmost through the [7{1) x U/(1) invariant combination y.
Classical values of these funetions are bounded from below by unity.
It is seen from figure 4.6 and figure 4.7 that these coherence functions take non-

classical values for some range of values of # whenever y < 90°,

4.7 Conclusion

We have studied the photon distribution in two-mode squeezed colierent states with

complex squeeze and displacement parameters. The entire analysis was guided, often
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explicitly and sometimes implicitly, by an appreciation of the SU(2) structure under-
lying two-mode systems as a dynamical symmetry, Thus. realization of the fact that
the two-mode squeeze operator is essentiall y the product of two correlated (in fact, re-
ciprocal) single mode squeeze operators allowed us to write the probability amplitude
for photon distribution using the well known Yuen results for the matrix elements in
the single mode case, and the matrix elements of a particular SU(2) rotation, Finally,
the SU(2) identity given in (4.15) enabled us to write the photon distribution in the
compact closed form (1.18).

The U(1) = U/{1)-invariance of the photon distribution helped in simplifying the
analysis, particularly in the case of numerical studies. That 15, even thongh there were
three phases in the problem to begin with, it turned out that there js only one nontriv-
1al phase (the U7{1) = {7(1)-invariant linear combination v ) which we have to consider
as far as photon distribution is concerned. Our numerical analysis concentrated on
the effect of this phase on various properties.

In all our examples we have taken |ay| = [aa|. We will conclude with some general
observations on the situation when || # feval.

The defining relations (4.2} can be written as

t-t] — E‘”:r]”{n“f H |ﬂ2|!f:|t._h‘}‘

G2 = (gl + Joyvle ™), (1.33)

[t is now transparent that |aq| = |ay| implies |64] = |ay|. It may further be noted that
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g:pn (1.15) are invariant under interchange of ny and n,. Thus, it follows from (4.18)
that p{ri.n2) = plny.n) whenever |aq| = |ag|. That is, the photon distribution is
mvariant under reflection about the diagonal ny, = ny. This property is manifest in
figure 4.2.

IT Jay | # |as], then p(ny,ms) will be expected to become asymmetric with respect
to the diagonal. Irom (4.18) we see that the only source of asymmetry in ny, ng is
the factor |d, 2" -7 | g | 3in2=r)

Since

|_r}]]2 __ B (|ea]® = |ﬂ1E2],"rA
| aa|? = + (|az? = |oy [2)/A°

A = (Jay|* + |ay|?) cosh 2r + |ayay| cos y sinh 2, (4.36)

as can be seen {rom (1.35). one will expect the asvmmetry 1o become less and less

prominent with increasing value of the squeeze parameter r = |z|.




Chapter 5

A study of the Phase Statistics in Correlated Two-Mode Squeezed

Coherent States

5.1 Introduction

In this chapter we complete the study of the two-mode squeezed colerent state ini-
tiated in the previous chapter. by analyzing its phase properties. The study of the
phase properties of states of the radiation ficld exhibiting nonclassical behaviour has
attracted a great deal ol attention in recent years [54]-[60]. In particular effort has
been directed towards re-examining the phase properties of various states [rom the
point of view of a Hermitian phase operator defined by Pege and Barnett [55] in a
truncated Hilbert space. There has been a lot of work relating to what may be the
most correct description of the phase properties of light [61], [62]. The ‘operational®
(trigonometric) phase operators defined by Mandel and coworkers [63] appear to be
the only ones which agree with their particular experiments. This is not surprising

as these operators were formulated as a specific description of the quantity mea-

16
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sured by these experiments. However, this cannot be described by a llermitian phase
operator. To measure phase properties derived from the Hermitian phase operator
153], differently designed experiments are required. As expected, measurement of the
properties of the Hermitian phase operator shows good agreement hetween theory
and experiment [64].

Out of the various nonclassical states the correlated two-mode states are of partic-
ular interest - for example the pair coherent states [65]-[67] and the entangled states
[658] generated in two-photon down conversion. Another example of a correlated
two-mode state which has been studied quite extensively is the correlated two-mode
squeezed coherent state [13, 24),

In the previous chapter we studied [72] the photon distribution of the correlated
two-made squeezed coherent states exploiting a U/(1) % {/(1) invariance in the problem,
and brought out in detail the sensitive dependence of the photon distribution on the
L1} = U{1) - invariant relative phase between the complex squeeze and displacement
parameters. That was a generalization of the carlier results of Caves el al [29] which
were restricted to real squeeze and displacement parameters. Here we stud v the phase
statistics of the same state.

We lollow the approach of Agarwal ef al [60] and investigate the phase properties of
the correlated two-mode squeezed coherent states in teris of the phase distribution.

We also write down the joint probability distribution for sum and difference phases
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restricted to a 27 range, following Barnett and Pegg (73], Our aim is two-fold. Firstly
we would like to look for features in the phase distribution of the correlated two-mode
squeezed coherent state that may lie considered 1o be analogous to the bifurcation
phenomena predicted by Schleich et of [56] in the phase distribution of a single maode
squeezed coherent state for large squeezing, Secondly. we would like to study the
dependence of the phase distribution on the invariant relative phase between the
complex squeeze and displacement parameters.

The organization of the chapter is as follows: In Section 2 we recall the definition
of Lthe phase distribution given by Agarwal «f al [60]. We make use of the photon
nurmnber matrix element of the correlated two-mode squeezed coherent state caleulated
in the previous chapter to obtain an expression for the phase distribution. We then
write down the explicit formula for the probability distribution for sum and difference
phases restricted to a 27 range. In Section 3 we discuss some special cases of the phase
distribution. We discuss numerical results for the phase distributions for various
values of the complex squeeze and displacement paramelers. In particular we bring
oul the sensitive dependence of the phase distributions on the relative phase. In

Section 1 we study the correlations between the phases of the two modes.
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5.2 Phase distribution

We follow Agarwal ef al [60] and define the phase distribution of a state W) of a

two-mode field as

1 4
PlOL0:) = s (1, 02 )] =7 < 0,8, < = (5.1)

where the two-mode phase state |0y, 6,) is defined to be the eigenstate of the two-

mode Susskind-Glogower [74] phase operator ¢ = (1 4 afa)"'/* g (1481842
Thus
|H1~H?) = Z E.E[“Iﬁ]-lrnl‘.ﬂll |H-'|_,”2} , |{lr].2]|
ny =l

Note that the states |6, f2) are non-normalizable and non-orthogonal, However they

form a complete set. Thus

l 14 T
e f__fmlf doy By,02)(0:,85) = 1. (5.3)

The phase distribution is by definition positive. and is normalized:

[ fm.j" do, P0,,0,) = 1. (5.4)

It may be noted that the phase distribution calculated by (5.1) coincides with that
caleulated via the definition of a Hermitian phase operator in a truncated Hilbert
space [55].

The correlated two-mode squeezed coherent state is unitarily related to |vae) =

0,0}, the ground state of the two-mode system described by the annihilation opera-



120

tors @ and b in the following manner:

Tr
2
2
Il

Diev ) D es )51 2)[0, 03,
S(z) = explza'dt — z7ab),

Diey) = explega’ —oja), Diay) = explad! — alh). (5.5)

lere = is a complex two-mede squeeze parameter aud ey, 6, are complex displacement
(coherent excitation) parameters, Note that the S(z) we have here is equivalent to
5(—z) in the previous chapter. We have made this change to facilitale computation in
the numerical studies, later in this chapter. An alternative but equivalent definition
of the above state can he given where the order of the squeeze and displacement

operators is interchanged, Thus

|10, mg) = S{z2)D(d,)D(d2)|0,0) ;

G = ap — ol Gy = oapt— a1

I‘2:“.:- . 2

i = coshi, v = €

E=1

sinhr . (9.6)

Hence the phase distribution associated with the state (5.5) or (5.6) would be, ac-

cording to the definition (5.1),

I

(272

P8, 82) = }':‘531"5'2|f'~ﬂi1”"2}|2 ' GE

[}
=TI
s

The phase probability amplitude (#;,0;]z; @y. @;) can be expressed in terms of the
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photon number amplitudes:
Enct I
(0. 0]z 00, 0.) = z ct"[“‘”"""?“?”{m,'ug|z.;r.'r],rrg}. (5.8)
iy rea =1

The structure of the photon number matrix element (ny, na|z: oy, ) has been worked
out for real squeeze and displacement parameters by Caves et al [29] by using nor-
mal ordering techniques. The same for the general case of complex squeeze and
displacement parameters was caleulated in the previous chapter by using an identity
relating the two-mode squeeze operator S(z) to the product of single mode operators

producing reciprocal squeezing. This is given by

{n1, 2|70y, 00) = gt (M1 +nady) el ng,

| . il .
c{nyng) = wshE,E_%[ln’]ﬂl_rlmlﬂﬂ ﬁ[m}"s_ﬂ {pa)=7"

; ; i .
% (fanhp)Tete [N=n (_ﬂf—?u) .

tanh r
i1 = |ay| = |az| tanhr e** gy = |og| — |aq| tanhr e,
e .
X = ¢—glo+ ),
no= mn{ng,ng), N =mazr(ngn,). (5.9)
Here ¢y and ¢y are the phases of the displacement parameters, viz., a; = |a;|e',

ay = |agle™. Hence it follows from (5.7) and (5.8) that the phase distribution of the

two-mode squeezed coherent state will be given by

1 — -
L e in (=t I na (P —az)) e{ny,m)| . (5.10]

Pl ) = (2]’
ek ny.ria=0N

1




It is clear from the expression (3.9) for the photon number matrix element
{11, ma|z; . aq), that it depends, apart from the phase factor elfmt@rtnaee) only on
the invariant linear combination of the phases. viz., v = & — (&) + ¢2)/2. It may
be recalled that this property is what ensured the U(1) = {/{1) invariance {invariance
under free time evolution) of the photon distribution of the state |27 a, cry) discussed
in the previous chapter.

Now let us see what happens to the phase distribution (5.10) under free time
evolution. One can see that under free time evolution generated by the transformation
exp(—iwt ila—iwt b'h) the phase probability amplitude undergoes the transformation
(myamglziagag) — (0 —wil, Oy —wat|z; oy, a2,

Thus it can be seen from the above result and (5.10) that the phase distribution
undergoes a rigid translation in the (0;,8;) plane under free time evolution. So
if we look at the phase distribution in a frame where the origin is chasen to be
(D1(t) @alt)) = (@ + wit, ds + wal), then, as is manifest from the structure of the
phase distribution (5.10). FP(#;.8.) depends only on the invariant combination of
angles, viz., v = ¢ — %{U}l + d@2). With this understanding we will heneeforth take o,
and og te be real (i.e., ¢ = o, = 0) without loss of generality.

As has been pointed out by Barnett and Pegg [T3], though using a 47 range for
the sum and difference phases is legitimate, one encounters problems with interpre-

tation, Therefore, lollowing their recipe we write down an explicit formula for a joint
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probahility for the sum and difference phases, which is 2r-periodic in these phases.

To this end we define

ﬂﬂ._. == Ir}]_ :llj'g
| l
Igl = 3“].:. }-{',i :l ggfa[ﬂ+—ﬁ_:ﬂ
doyd, = %m do_: (5.11)
and
1 _ 1 e +0_ 0L —f_ "
.IP:I—{H{.H_} — Tp{lﬂ||'.|}£} == IP( 1 5 " i 3 ) [-‘:lZ:I

Clearly, the phase distribution Py, (f+,8_) is periodic with period 47 in 6, as well
as in f_, with fundamental region spanned by the interval [—27.2x] in both these
variables as indicated in figure 5.1 by the tilted square formed by dotted lines.

Recall that P(#;,0;) is 2r-periodic in #; as well as in #3, with the undotted square
in figure 5.1 as the fundamental domain. We may add that the distribution Py, (04, 0_)
does not take independent values at all points in the dotted square; for instance, it
takes identical values over the two solid triangles ABC and NOP.

In order to construct a 27 periodic phase distribution Py.(@,.0_) [rom the dx
periodic distribution Py, (0. 0_), we use the elementary fact that if f(z) s L periodic

(i.e. flz)= fle+ L) # fle+L/2)), then fx)+ fle =+ L/2) is L/2-periodic:

P':-_.._l;:lilli_,lg_\] — P1-fﬂ+ﬂ_lﬁ —+ P4,{9++2m_ﬂ_}

+ Fu(le,0_ +27) 4 Por(0y +27.0_ + 27). (9.13)




Figure 5.1: Showing the relationship between the variables (0.6,) and (f..0_) and
the [undamental domains associated with the distributions Pt 8y), Pi(0..0_) and

jII12:'[{{"':—*- b 1-'




In going from FPy-(8,,0_) to Ps-(04,8_), there is some loss of information as can be
seen from the fact that the square OABC in figure 5.1 is the fundamental domain
for Py (#,.8_). Using the 2% periodicity of the original P(f,0,) we obtain the final

expression for Py (04, 0_):

L+ 0, =0 - fa i ' .
Fo(8.8_) = ]T[P (ﬂ' +ﬂ—+—) +F (—*Tﬂ + . + —)] (5.14)

3 &

5.3 Examples of phase distributions

In this Section we consider some special cases of the distribution P(#,,8,) of a two-
mode squeezed coherent state. We discuss numerical results for the phase distribu-
tions for various values of the complex squeeze and displacement parameters.

For the case of » = 0, the phase distribution P(8,.4,) given by Eqgs. (5.9). (5.10)

reduces to that of a two-mode coherent state

o

o . ny ng |7
1 Z t_|-{.l:|n'3'|+?t:|;|2:|f_—%[rri+._|§] ¥y £¥q

% i IO P ATRRRVATEY.

P0,.0,) =

In the other extreme case when oy = a; = 0, the result (5.9). {5.10) for the phase

distribution reduces to a closed form expression

Plth.0;) = f"!i 2[msl‘l 2r —sinh 2r cos{fy + 8, — 2{.-‘:‘1]_’ ; (5.16)

corresponding to the two-mode squeezed vacunm, Note that in this case the phase
distribution depends only on the sum of the two phases #;,6,. Thus the sum of

the phases #, is locked to the phase of the complex squeeze parameter z. One may
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note here a similarity between this phase distribution and the phase distributions of
the pair coherent state and the entangled state, to the extent that in the latter two
cases as well P(6,6,) depends only on the phase sum 6. However the analytical
expressions for P(0),8;) corresponding to these states are entirely different [60].

An important feature of the phase distribution Pt 0:) given by Eqs.(5.9), (5.10)
15 that for & = ay. one has P(4,, ty) = P(0;.8,). This follows from the fact that under
the interchange of e and a4, e{nq, n1) in Eq. (5.9) — ¢(n,n1). So the distribution
is symmetric about a diagonal in the (#1,#2) plane. This point should be borne in
mind since in all the numerical results that we will discuss we have taken a; = oy,

In figure 5.2 we have plotted the phase distribution P{#;.6.) for a two-mode
coherent state given by (5.15). As one would expect [60] it has a Gaussian lorm
centred at the origin.

In figure 5.3(a) we plot the phase distribution of the two-mode squeczed stale
given by Eq. (5.16) for &y = as = 1 and the phase of the squeeze parameter ¢ = 0.
Note that the distribution is symmetric witl respect to the diagonals of the (8, 6,)
phase window. For a different value of ¢, as is elear from Eq. (5.16), the phase
distribution merely undergoes a translation in the (0. 0) plane. Hence, within the
phase window the distribution appears to be peaked along two straight lines parallel
to the main diagonal (see figure 5.3(1)).

In figure 5.4 we plot the phase distribution given by Eq.(5.16) as a function of
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the phase sum f; for various values of the strength of squeezing r. This amounts to
looking at the section of the full distribution in a plane perpendicular to the symmetry
axis. Note that the distribution in figure 5.4 becomes narrower as r ncreases.

[n figure 5.5 we illustrate the sensitive dependence of the phase distribution of the
two-mode squeezed coherent siate (given by Fas.(5.9-5.10)) on the invariant relative
phase y. For y = 0 the phase distribution is peaked along a diagonal in the (0y,02)
phase window. However as x increases the phase distribution undergoes dramatic
changes. For smaller values of ¥ (x = 10°, 30°), the distribution tends to bend
around the axis of symmetry. For larger values ol \ (Y = 70°. 90%), the distribution
shows some additional peaks, Tt 1s interesting to compare the figures corresponding to
relative phases y and 180° — x. Ascan be seen from figure 5.5 these are mirror images
of each other. This is a consequence of the fact that y appears in the expression for
P(0;,02) [Egs.(5.9), (5.10)} only in the form 2% For the same reason the distributions
for relative phases y and 1507 4y on the other hand will be identical.

The phase distributions shown in figure 5.2 and figure 5.3 should be viewed as two
extreme cases of the phase distribution of the general two-mode squeezed coherent
state |z: ay,az) shown in figure 5.5 The latter conld be thonght of as interpolating
between these two extreme cases. This situation may be compared with that in the
case of a single mode squeezed coherent state. As Schleich et af [36] have shown the

phase distribution P(0) of a single mode squeezed coherent state interpolates between
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Figure 5.5: Phase distribution of the correlated two-mode squeezed coherent state.
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the phase distribution of a coherent state (Gaussian centred at ¢ = 0) and a double-
peaked structure, the peaks centred at # = +7/2. We would like to point out that
the phenomenon of the phase distribution of the two-mode squeezed state P(#;,0,)
[igure (5.3) tending to peak along a diagonal in the (#y.#;) plane may be considered
to be analogous to the above mentioned “bifurcation’ that the phase distribution of
the single-mode squeezed state exhibits.

In figure 5.6 and figure 5.7 we have shown, for two different values of the relative
phase y. what happens to the distribution P(f,.0,) as the squeezing strength r in-
creases while keeping the other parameter values fixed. As can be seen from ligure
5.6 and figure 5.7 the distribution exhibits with increasing r. a tendency towards
becoming concentrated along the main diagonal in the (#.8;]) phase window. We
expect that as r increases further (i.e., v 3 ay.02) the phase distributions in figure

5,5 and ligure 5.6 approach that of the two-mode squeezed vacuum (5.16).

5.4 Correlations between the phases

In this Section we make use of the joint probability distribution P(#;,6:) to calculate

the correlation between the phases of the two modes. The correlation is defined by
Chy = {GIE’IE} - {91>wﬂ} : (5'”}

We saw in the previous chapter {(and also [29]) that the marginal Wigner distri-

bution corresponding to one of the modes obtained by tracing over the phase space
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coordinates of the other mode Las the structure of the Wigner distribution of a dis-

placed thermal state

Dl o el
Wig) = [Pew.e) M) ‘

= e == A.1%
(1 +2ﬁ)“f’( 1+ 20 (5:18)
where the mean photon number of the thermal state is 7 = sinh®», The phase

distribution associated with this mode is given by

2

= g8 )

1+

Ze w0 (| D ey Iy

n=0

(5.19)

where the matrix element of D(ay) in the number basis, which is well-known [25] is

given by

1
n| Do )|k = ui o A (P P L L ¢
“r #

|
- :1': o) LE (e [N #H P nck 15.20]

Since we have taken oy to be real, it can be seen from (3.19, 5.20) that P(0;) =

FP(—#). Hence it follows that (#) = 0. By a similar argument we have (03} = 0.

Hence the correlation €5 will be given by

Coo = [ doy [ 0. 0,0,P00,.0,) . (5.21)

where P(0;,8,) is given by (5.9, 5.10),
In figure 5.8 we plot the correlation ('3 as a function of the relative phase y for

various values of the squeezing strength r. It is interesting to note that ('j2 changes
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Figure 5.8: The phase correlation €, plotted as a function of the relative phase y
for various values of the squeezing strength r. Here a;=c;=1.0 and different plots
correspond to different values of the squeezing strength r =0, 0.05. 0.1 and 0.25.
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sign twice as \ is swept from (° to 180°. Further, as one wounld expect the correlation
15 zero in the absence of squeezing and as the squeezing strength r increases, the
magnitude of the correlation || also increases. It may be noted that 'y, becoming
negative in some parameter region is indicative of the nonclassical nature of light in
a two-mode squeezed coherent state.

It will be interesting also to Jook al the variances in the sum and difference of the

phases of the two modes. We can define

Cy = (004 02)%) — ({00) + (02))*

C_ = (0 —6a)?) — ({01) — (8))" . (5.22)

Infigures 5.9 and 5.10 we have plotted the variances €'y and C'_ as a function of the
squeezing strength r for various values of the displacement parameters a; = a2 and
for relative phase y = 0, using the 27 periodic distribution (5.14). One can see from
the figures that €. tends to zero, i.e., the phase sum becomes less and less uncertain
as either the displacement or the squeezing strength increases, In particular, for the
case oy = ay = (. it corresponds to figure 3 in Barnett and Pegg [73], whereas

2 x - .
tends to - as a tends to zero, consistent with their resulls.

5.5 Conclusion

We have studied the phase properties of the correlated two-mode squeezed coherent

stales. We have calculated and illustrated graphically the phase distribution, the
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squeeze parameter ‘r’

Figure 5.9: The variance C'y of the sum 0 of the phases ol the two modes plotted as
a function of the squeezing strength r for various values of ay=a; =0 (dotted line),
0.1 {dashed line). 0.5 (solid line). The value of the relative phase is y = 0.
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Figure 5.10: The variance C_ of the difference 0_ of the phases of the two modes
plotted as a function of the squeezing strength r for various values of ay=ms =0
(dotted line), 0.1 (dashed line), 0.5 (solid line). The value of the relative phase is
o=
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correlation between the phases of the two modes, as well as the variances in the
sum and difference of the phases of the two modes, The sensitive dependence of these
q_uantities on the relative phase between the squeeze and displacement parameters has
been brought ont. We have demonstrated that the phase distribution of a two-mode
squeezed coherent state exhibits phenomena analogous to the bifurcation phenomena
predicted by Schleich ef al [36] in the phase distribution of a single mode squeezed

colierent state.
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