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Abstract

Charged-particle beam optics, or the theory of transport of charged-particle
beams through electromagnetic systems, is traditionally dealt with using classical
mechanics. Though the classical treatment has been very successful, in designing
and working of numerous charged-particle optical devices, it is natural to look for
a deeper understanding based on the quantum theory, since any system is quantuim
mechanical at the fundamental level. With this motivation, the quantum theory
of charged-particle beam optics is being developed currently by Jagannathan el al.:
this formalism is specifically adapted to treat the problems of beam optics. The
present. thesis is an elaboration of this new formalism of the quantum theory of
charged-particle beam opties with illustrations of applications to several practically
important systems. The essential content of the thesis can be summarized hiriefly
as follows.

(uantum mechanics of the optics of charged-particle beams transported through
an electromagnetic lens or other such optical systems is analyzed, at the level of
single-particle dynamies, treating the electromagnetic fields as elassical and disre-
parding the radiation aspects, using essentially an algebraic approach.  The for-
malism is based on the basic equations of quantum mechanies appropriate Lo the
situations. For situations when either there is no spin or spin can be treated as a
spectator the scalar Klein-Gordon and Schrisdinger equations are used as the basic
equations for relativistic and nonrelativistic eases respectively. For 5|niu—% particles,
a treatment based on the Dirac equation is presented taking fully into account the
spinor character of the wavelunction. The underlying powerful algebraie machinery
of the formalism makes it possible to do computations to any degree of accuracy
in any situation from electron microscopy to accelerator optics. The power of the

formalism is demonstrated by working out the examples which inelude the axially
k g I A



symmetric magnetic round lens (of importance for electron microscopy and other
micro-electron-beam device technologies) and the magnetic quadrupole lens (of im-
portance for accelerator optics). It is found that the quantum theory at the scalar
(spin-less) level gives rise to interesting small additional contributions to the classical
paraxial and aberrating behaviours. These coutributions are directly proportional
to powers of the de Broglie wavelength. The Dirac theory further gives rise to spinor
contributions which are also directly proportional to powers of the de Broglie wave-
length.. Thus, it is clear that these quantum contributions are of significance only
at very low energies; this explains the grand success of the classical theory so far.
It is very intercsting to note that the quantum correction terms arising from the
Klein-Gordon theory and the scalar approximation of the Dirac theory do not coin-
cide and have some small differences between them. The classical, or geometrical,
charged-particle optics is obtained in the classical limit of the quantum Lheory as
should be,

The formalism based on the Dirac theory is further applied to the study of Lhe
spin-dynamics of a Dirac particle with anomalous magnetic moment heing, trans-
ported through a magnetic optical element. This naturally leads to a unified tread-
ment of both the orbital (the Lorentz and the Stern-Cerlach forees) and the spin
(Thomas-Bargmann-Michel-Telegdi equation) motions. This is illustrated by com-
puting, under the paraxial approximation, the transfer maps for the phase-space
and spin components in the cases of normal and skew magnetic quadrupole lenses.
The quantwin mechanics of the concept of spin-splitter devices, proposed recently
for achieving polarized beams, is also understood using our formalism.

An alternate approach to the quantum theory of charged-particle beam optics
based on the Wigner phase-space distribution function is also presented  brielly,
restricting to the example of magnetic round lens treated under the paraxial ap-

proximation. The possibility of extension of such an approach to the Dirac, or the

iv



spinor case, is also noted.

The concluding section lists some interesting observations and points out a few

directions for future research.
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Chapter 0

Introduction

Charged-particle beam optics, or the theory of transport of charged-particle beams
through electromagnetic systems, is traditionally dealt with using classical mechan-
ics. This is the case in electron and ion optics, electron microscopy, aceelerator
physics ete. (see, e.g., [1, 2, 3]). Though the classical treatment has been very sue-
cessful, in the designing and working of numerous optical components, it is natural
to look for a prescription based on quantum theory, since any physical system is
quantum mechanical at the fundamental level, Such a preseription can he believed
to provide a deeper understanding of the working of charged-particle heam deviees,

During 1930°s Glaser pioneered the development of the quantum theory of im-
ape formation in electron microscopy on the basis of the nonrelativistic Sehrddinger
equation (see Glaser’s classic work [4]). Details of Glaser's theory and consequent
developments in electron microscopy are available, with extensive bibliography and
historical notes, in the recently published third volume of the three-volime eneyelo-
pedie text book of Hawkes and Kasper [5).

It is curious to note that the use of the Dirac equation, the proper basic equation
of the electron, has not drawn adequately the attention of the researchers in electron
microscopy and other micro-electron-beam devices. After some preliminary studies
by Rubinowicz (1934), Durand (1953), and Phan-Van-Loe (1953) on the use of the

Dirac equation in electron optics (mostly the study of electron diffraction, see [5] for

)
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detailed bibliography), it was only in the last decade that Ferwerda el al. (1986) first
reopened the question of using the spinor wavefunction for understanding electron
optical images. Essentially, Ferwerda et al [6, 7] found after a thorough analysis
that the use of the scalar Klein-Gordon wavefunction in electron mieroscopy eould
be vindicated since a scalar approximation of the Dirac spinor theory would be
justifiable under the conditions obtaining in present day electron microscopes.

Subsequently, the development of the spinor electron optics is being pursued by
Jagannathan et al. [8], Jagannathan [9, 10], and Khan and Jagannathan [11, 12]
mainly due to a desire to understand how the Dirac equation, the equation for
electrons, explains electron ‘opties’. Of course, there is also the hope that any betier
understanding of the way the scalar theory becomes such an excellent approximation
of the spinor theory in electron microscopy may eventually be of some practical use
in certain situations. For spin-0 particles, or when the spin can be treated as a
spectator, sealar electron wave optics has also been developed based on the Klein-
Gordon equation and the Schrodinger equation corresponding to the relativistic and
nonrelativistic situations respectively |13, 14].

The formalism of Jagannathan ¢t al. was the frst one, to derive the focusing the-
ory for electron lenses, in particular for magnetic and electrostatic round lenses and
quadrupole lenses, from the Dirac equation. The formalism of Jagannathan ef al
gives a rigorous recipe based on quantum mechanics to caleulate the lens proper-
ties, inchuding aberrations, up to any degree of accuracy through a systematic series
method. The present thesis is an elaboration of this quantum mechanical formalism
and deals with applications to several physical systems such as free propagation
(diffraction), axially symmetric magnetic and electrostatic lenses and magnetic and
electrostatic quadrupole lenses. Throughout the thesis, electromagnetic fields are

treated as classical and radiation effects are neglected. Further, the treatment is at

the level of single-particle dynamics.

®
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The traditional geometrical charged-particle optics is obtained in the classical
limit of the quantum theory as should be. It is found that there are interesting
additional small contributions to the classical aberrations, arising from quantum
mechanics even at the scalar level. Of course, in the Dirac theory the spinor na-
ture of the wavefunction modifies further, though only minutely, the various opti-
cal characteristics of the system. In the classical limit the algebraic approach of
our theory tends to the Lie algebraic treatment of classical charged-particle beam
optics pioneered by Dragt et al. ([15]-[19]) (see also Forest and Hirata [20] and
Forest et al. [21]).

. Traditionally the main framework for studying the spin dynamics and beam po-
larization has been the well-known quasiclassical Thomas-Bargmann-Michel-Telegdi
(Thomas-BMT) equation (see,e.g., [22]). Application of the spinor heam optical for-
malism has been shown to lead [23] to a fully quantum mechanical understanding of
the dynamics of a spin-% particle with anomalous magnetic moment, including the
spin evolution, at the level'of single-particle dynamies. The general theory, presented
here for any magnetic optical element with straight axis, describes the quantum me-
chanics of the orbital dynamies, the Stern-Gerlach kicks and the Thomas-BMT spin
evolution, up to the paraxial approximation. To illustrate the general theory, the
first order transfer maps for the spin components and the transverse phase-space,
including the transverse Stern-Gerlach kicks, are computed for normal magnetic
quadrupole lens (see [23]) and skew magnetic quadrupole lens (see [24]). The longitu-
dinal Stern-Gerlach kick in a general inhomogeneons magnetic field is also disenssed
briefly. Stern-Gerlach kicks are the basic mechanisms in the spin-splitter devices
proposed recently as alternative methods for getting polarized beams (see [25] and

references therein).

A phase-space formalism of the quantum mechanics of charged-particle beam

optics using the Wigner distribution function is also presented based on some pre-

‘s
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liminary work in this direction by us [26]. Of course, there exist other works on this

topic [27] even going beyond the paraxial approximation; our work deals only with

the paraxial situation.

0.1 Thesis Layout

The thesis is broadly divided into six chapters with several appendices to supplement

the calculational details presented in the main body of the thesis. The contents of

the various chapters are as follows.

The present zeroth chapter, or the introductory chapter, briefly covers the his-
torical development of the quantum theory of charged-particle beam optics, and the

motivation for the research which has culminated into the present thesis.

The first chapter is devoted to the review of the classical theory of charged-
particle beam optics, closely following the Lie algebraic approach pioneered by
Dragt et al. This chapter starts with the standard relativistic classical Lagrangian
and Hamiltonian which are cast into beam-optical forms to study the evolution of

the beam along the optic axis.

Iu the second chapter the scalar quantum theory of charged-particle beam trins-
port through an electromagnetic lens system with a straight optics axis at the level
of single-particle dynamics is developed starting with the basic equations of quantum
mechanics appropriate to the situation under study. For situations when either there
is no spin or spin can be disregarded the Klein-Gordon and SclutGdinger equations

are used as the basic equations for relativistic and nonrelativistic cases respectively.

In the third chapter a spinor theory of charged-particle beam transport through
an electromagnetic lens system is developed appropriately based on the Dirac equa-

tion, the basic equation for the spin-} particles, taking fully into account the spinor

‘e
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character of the wavefunetion. The formalism is applied to the study of electron-
optical imaging which involves the magnetic round lens. Magnetic quadrupole and

electrostatic round and quadrupole lenses are also studied briefly.

The fourth chapter develops the quantum theoretic [ramework for studying the
spin dynamies and beam polarization in accelerator physics. Starting with the stan-
dard Dirac-Pauli equation for a spiu-% particle with anomalous magnetic moment
it is shown how to obtain a representation in which the effective ‘accelerator opti-
cal" Hamiltonian accounts, in a unified way, [or both the orbital (the Lorentz and
the Stern-Gerlach forces) and the spin (the Thomas-BMT equation) motions, The
general theory developed for any magnetic element with straight optic axis and up
to the lowest order (paraxial) approximation is illustrated by computing the trans-
fer maps for phase-space and spin components in the case of magnetic quadrupole

lenses, The quantum mechanics of Stern-Gerlach kicks is also discussed.

The filth chapter is devoted to the application of the Wigner phase-space dis-
tribution for studying the quantun mechanics of charged-particle beam transport
through a magnetic optical svstem. Such a study provides a natural link between
the classical and the quantum descriptions. In this context, the relation Botween
the transformation of the Wigner function of a charged particle optical system, cor-
responding to the associated sealar wavefunction, and the transformation of Lhe
classical phase-space of the svstem is studied. As an example, the magnetic round
lens is studied in the paraxial approximation. The focusing action of the lens and
the expressions of focal length, image rotation, ete., are understood using this lor-
malism. The chapter concludes with comments on the possibility of extension of the
phase-space formalism to the study of aberrating systems and the Dirae, or spinor,

charged-particle opties.

The sixth chapter is a collection of some concluding remarks and interesting

‘s
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ohservations.

The thesis ends with several appendices, supplementing the calculational details
presented in the main text, which include: the Magnus formula, the Feshbach-Villars
form of the Klein-Gordon equation, the Foldy-Wouthuysen representation of the
Dirac equation, and Green's function for a system with time-dependent Hamiltonian

quadratic in position and momentum.

Lastly, there is the bibliography.



Chapter 1

Review of the classical theory

1.1 Classical mechanics of charged-particle
beams in electromagnetic fields

The trajectories of a charged-particle of rest mass mq and charge q moving in pres-
ence of an electric field E (r, ) and a magnetic feld B (7, 1) are completely deserilyed

by the Lorentz force equation

p=fi( ’”“"'_):q:mma}, (1.1)
[¥

F :

Let the electric field E and the magnetic field B be derived from the electrie sealar

l

potential ¢ (r, 1) and the magnetic vector potential A (r, t):
E=—-—A-V¢, B=VxA. (1.2}

It is to be noted that even for systems with very simple geometries the potentials

can be expressed only through an infinite series.
The Lorentz force equation follows from the Lagrangian

Lir,vt)= —-H]‘uf.‘!JI - :Ej +g(v-Ar. i) —¢(r,t) (1.3)

according to the Euler-Lagrange equations of motion

i(af,)_@_:u >

o ll.ﬂv or
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derived from Hamilton's variational principle. The Hamiltonian is:

Hirp )= g—i ‘v —L(r, 7 t) = Jmict + |72 + qi(r, 1), (1.5)

where 7, the kinetic momentum, and P= %, the canonical momentum, are related

to each other as
T=p-qA. (1.6)
The corresponding Hamilton's equations of motion are:

dr _aH dp ol )
dt ~ ap ' dt —  or W

Let us now write the Hamilton's equations in the language of Poisson brackets,

Given two functions f(r,p) and g (r,p) in the (r, p)-phase-space of the system,

their Poisson bracket { | } is defined by

= df dq  af g
{II‘”_E“:(EE}I_"}I_’.‘E‘:) (1.8)

where 32, stands for sum over all components of # and p. Hamilton's equations ean

be now alternately written as

= e HY E?{:{p,”:-. (1.9)

In general, for any observable f (v, p,t) of the system the equation of motion is

df  Of
= = 7 A (1.10)

Hamilton's equations of motion are in general coupled and time-dependent making
their solutions difficult even in relatively simple situations. One often has to resort

to suitable approximation techniques or eventually use numerical et Lines,
I q ik

The situation described al;w: 1s very general. For a charged-pacticle beam de-

vice the problem is somewhaPsimplified by invoking the geometry of the system
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under study and suitable approximations to the extent permissilble. In many de-
viees the electromagnetic fields are static or can be reasonably assumed to be static.
This makes the potentials to be time-independent. In many such devices one can
further ignore the times of Mights which are either negligible or not of interest as the
emphasis is on the profiles of the trajectories. For such situations the first step lies
in transforming the above Lagrangian L (r,#,t) to a time-independent one. This is
done by eliminating # in preference to a variable say 5 which is the arc-length along
the design trajectory of the particle whose motion is being studied. For systems

with straight optic axis s will be the coordinate along the optics axis. The present

study mainly deals with systems with straight optic axis.

We shall choose the Cartesian coordinate system, assime the optic axis to be
situated along the z-direction and introduce the notation r = {r,y) where r and
y are the off-axis coordinates. In general, the subscript L will stand for the off-axis
quantities which could be the = and y components of the momentun, or the magnetic
vector potential, for itl.‘-il:ﬁllt'l". and for any transverse vector V, Vi = V2 4 VE,
And, for any quantity the prime (') will stand for differentiation with respect to =,

the coordinate along the optic axis,

Now, using the well-known Maupertuis principle of classical mechanics one ean
cast the time-dependent Lagrangian L into a new time-independent. heam-optieal
Lagrangian :

, arL 1 Iy .
Lryr2z)= = \—/-:”“—\h +r 2 g (AL, + AL . (1.11)

u?
2

The corresponding Euler-Lagrange equations are:

d (8L ocC |
E(F:TF,_‘)_E_”' (1.12)

For beam propagation |+ | < 1d in the paraxial case |/ | < 1. Having obtained

the beam-optical Lagrangian it is natural to derive the beam-optical Hamiltonian:
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one can show that

Jdr , ,
H{"1.1PJ_-1]' = —-rl-ﬂ{lrl.ri,z}

' §
ar’,

I 1 @ e P )
= == J{E — @) —mzet — w2 — g, (1.13)

where E is the total energy of the particle (including the rest energy); it must be
noted that for a system with stationary field the total energy is conserved, The
Hamiltonian # in (1.13) just corresponds to —p:, negative of the z-component
of canonical momentum, as seen by solving the relativistic expression for energy

E = \/mic' + *|m[? 4 g¢. Later on, we shall see in quantum theory that the corre-

sponding beam-optical Hamiltonian operator H would correspond to —p, = 1.&“ 50
that the z-evolution equation becomes ih %u’r[r to2) = Hyplr, z) in analogy with
the Schrodinger equation for temporal evolution, namely, Iﬁ—rf{r () = Hip(r ) I

the kinetic (= canonical) momentum of the particle in the field-free regions outside

the system, where ¢ = 0 and A = 0, is denoted by py then F = W it + etpks

Po s called the design wiomentum and for beam propagation p. = py > [p, | The

Hamilton’s equations for the transverse phase-space coordinates are:
dry  OM dp, M (L14)
d=  ip, dz  dr, '

Or, equivalently, written in the Poisson bracket form
¥

{ |
l_.r_l:{rj__'H}i fﬂ:{pl_'”}r “”—J]
dz iz

where, now,

(.4} = d_f i?g if ﬂ‘y R af dg af dg
o dzrdp,  Op, or = Oy dp,  dp, Oy

(1.16)
The beam-optical Lagrangian and the beam-optical Hamiltonian are the starting

points for the study of charged-particle beam devices.

To understand the uplitr;‘ehaviuur of any system the corresponding Lagrangian

L is expanded in a power series in the off-axis coordinates and their z-derivatives,
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Le., one writes
il
Llriri2) =3 Lylry, v, 2) (1.17)
1=0

where Ly (ry, 7', 2) is a homogeneous polynomial of tlegree ¢ in v and v/, By
retaining only terms up to 1 = 2 one gets the paraxial approximation. Then, the
corresponding differential cquations are linear and the system is easily deseribed
in terms of matrix theory, Some properties of the svstem can be deduced from the
symmetry of the system reflected in the form of Ly (o, 7', 2). Forinstance, when a
system possesses axial symmetry (to be discussed in detail later) all odd order terms

in (1.17), namely Ly, vanish. For such a system the first significant contribution

comes from L which governs the paraxial behavionr,

The non-paraxial contributions are treated perturbatively. In these studies there
are two well-known methods adopted: namely, the eikonal or characteristic funetion
method due to Glaser and Sturrock and the trajectory method due to Scherzer.

Details and references on these are available in [1].

Except in Chapter V, we shall be mostly using the Hamiltonian formalism. So

we expand the beam-optical Hamiltonian in (1.13) in a power series in the oll-axis

coordinates and canonical momenta as
&
H{"Ld’l-ﬂ=Z'Ht-i[7'1-111r3]- (1.18)
=0
where Hey (14, py, 2) is a homogeneous polynomial of degree tin vy and p . Note
that 1/py, where py is the design momentum, will serve as the EXPAnSion paramaol ey
a5 is easily seen by expanding the Hamiltonian in (1.13) corresponding to the pure
magnetic system for which ¢ = 0. In the expansion (1.18) the zeroth order term Hiny
15 a constant and hence can be ignored. the first-order term Hyyy is linear and results
in translations. Hence H;, can also be set aside. So, the first physically significant

term is Hy). By retaining terms up to 1 = 2 one gets the paraxial approximation;



CHANTER | Review of the elassical I.|||:ur_'.- 12

ie, the corresponding differential equations are linear and the svstem is deseribed

in terms of matrix theory. In general, we define the paraxial Hamiltonian as
Hy = Hpoy +Hpy + Hez) . (1.19)

The remaining terms in (1.18), giving rise to the nonlinear (aberrating) behaviour,

are denoted by the aberrating Hamiltonian

Ho =Hpy + Hyy + His) +--- (1.20)

some properties of the svstem can be deduced from the sytmmetry of the svstem
reflected in the form of My, (ri.py, =) For instance, in the ease of a system with
axial symmetry Mgy = 0. For such a svstem the lirst significant contribution

comes from Hyy which governs the paraxial behaviour. In general My, will be of the

form
H, = constant + linear terms
+apd + b} 4 el + o e 121
apy 4+ o) cli; Hr g -p| sew {,,}
where the z-dependent constants a, b, e, d, ... , ete., characterize the system andd [,

= Py — Yps is the z-component of angular momentum. For an axially symmetrie
system the Hamiltonian will contain only terms which are invariant nnder rotation
around the optic axis; such terms will have vanishing Poisson brackets with L. s0

that the Poisson bracket of the entire Hamiltonian with L. is zero.

4w

To illustrate the forgoing discussion on Hamiltonians, let us consider the ense of
the axially symmetric magnetic lens, or the round magnetic lens, which is eharae-

terized by the potentials

g(r) = 0 (1.9}

A = (—gﬂ{ri.zlfgn[rl,:},ﬂ), (1.23)
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wiLl
S . fb: I _J'"f . (2n), .
ez} = — rr.’{ri+l]!( 4) B

1, 1
= B{ZJ = ErfB’{zJ -+ @Téﬂmi(:} T

(1.24)
where B%(z) = B(z), B'(z) = &, pr(z) = £86) gy - L£8G) gy =
d—tf%fl,..., and, in general, B (z) = i::—:%‘f—] (for more details, see [1]), The

corresponding magnetic field, rotationally symmetric with respect to the optic axis

of the system (z-axis), is

1 1 2 e
B = —E(B'{zjmgrfﬂ {:]+...)rl
] 13 1 krrd
B, = B{z}—irf.ﬁ{:]-l ariﬂ (@) =iy (1.25)

as given by B = ¥V x A; it may be noted that the function I3 z) completely charac-
terizes the field. In general, we shall use the notation filz) = 5'{1.—;51, Tz = ﬂﬂ;{ﬂ,

il
o for any f(z).

The corresponding beam-optical Hamiltonian for the ronnd ma metie lens is riven
B 4

hy
H = ?{E“J + ?‘I’.;g] + H”] 2 SULICEN {T.Eﬁ}
Hiy = —pa, (1.27)
l :
H[g; = EI—JU i + %‘Jlizrf —”L,. [123}
o | 1 | * g | 'z{ }2
= —5P,— —oapiL,.— —a®(r, -
{4) Si’apl' EPE' Py 2P LPy
4 L " o .
+m;ﬂ'? (rf;ai) + 3 (rt - rirt"]) L.ri+ 3 (n' : rwr") ria
B
with o = 12(2) (1.29)
2P

From equations (1.26) to (1.29) we note that H, is the sum of —py and a homoge-

neous quadratic polynomial in (r,,p,) and the leading order contribution to #,

comes from Hyy,.
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1.2 Lie algebraic methods

Elegant Lie algebraic techniques have been developed, in the pioneering works of
Dragt et al., to analyse systematically the behaviour of beam optical devices Lreated
as classical systems. The present thesis contains an extension of these techniques to
the analysis of charged-particle beam optical devices treated as quantum mechanical
systems. In this section a briel exposition of the Lie algebraic methods, their use,
and some examples relevant to the thesis, will he given (for detailed accounts see

Dragt et al. ([15]-[19]), Forest and Hirata [20] and Forest ef al. [21]).

P/
itly, the row vector w” = (r,,p, /po) represents (=, pe /oty /o). Let awy, and

L’ ; ;
Let w = ( ) » & four-component column vector. Or, saying more explic-

Woy denote the initial and final values of w at the points i, and ., denoting the
coordinates of the optical system on its optic axis at the beginning and at the end
respectively, The basic problem on hand is: given the beam-optical Hamiltonian #
of the systetn what is the relation between w,,. and wy,, or vice vorsa 7. We seek

an optical transfer map of the form

Wow = (Muw), , (1.30)

for the given system. As is well-known, for a linear system, characterized by Lhe
paraxial Hamiltonian #,, such a map is a 4 % 4 symplectic matrix ealled the transfer
matrix. The Lie algebraie approach generalizes the matrix methods, which describe
the paraxial approximation, to operator methods suitable for deseribing linear and

nonlinear (abérrating) svstems.

To get an idea of the Lie techniques let us begin by defining a lew Lie algebraic

tools. Let F(w) (= F(ry,p,)) be some specified function. The Lie derivative
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operator associated with F(w) is defined by

aF o0

dF o '
S L (131)

and its action on some function g(w) (= g{rL,p )} results in the Poisson bracket
:Frg = {F.q}. (1.32)
It is straightforward to check that
:F:2g=1F::f:g={F.{F,y}}. (1.33)

Thus, we can define higher powers of : F : through the Poisson brackets. noting that

the zeroth power of : F : is the identity operator (T)

:Flg=g. (1.34)

Having defined the powers of the Lie operator : £ : we can define power series and
consequently functions of : F - In the present context we shall be interestod in the

exponentintion of the Lie operator

— 1
exp(: F:) =) = 2 (1.35)

n=0 """

and its action on the function g is
1
exp(: F:)g=g+{F g} s AFAF g+ (1.36)

The operator exp (2 F 1) in (1.36)) is called the Lie transformation associated with

F. The inverse Lie transformation €% is such that

Et._;r-:qu‘:_}'-} = E[.—J'-.].E,{ F) _ T. I:lErT]

Let us list some properties of the Lie transformation. With g and N as some

functions and a and b as some constants, we have the following:
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Linearity:
&%) (ag + bh) = aelF g + belF), (1.38)

Product preservation:

el:F) (gh) = (E{Z'F:]g) (E{:'F"]h) (1.39)

Poisson bracket preservation:

7 (g, h} = {Fg, el FIh) (1.40)
Composition:
el Fig (w) =g (Enr:}w) =g (Eﬁ.-f:}n_ﬂ:-fsz:) : (1.41)

These basic properties can be used to derive many results. We shall Just state a few
of those which will be used by us. Let M be a general map of the Torm, say, 07,

Then, for any G{w)
MR A1 = o F Al ol=F) — (e F0:) _ (omwy) (1.42)

The other property to be mentioned is that the commutator (denoted by | ]) of
two Lie operators is the Lie operator associated with the function obtained by taking

the Poisson bracket of the corresponding functions:
[:.'F:,;Q:]::f::g:—:g:.-f:z.-{.:f.g}:. {1.43)

Also note that if H,,) and My, are two homogeneous polynomials in (r,p,) of

degree moand n, respectively, then,

deg {H{ml ~7ftu}] =m+n—=2; (1.44)

We shall be making use of the above relations often.
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Now, we can write the Hamiltonian equation of motion in the language of Lie
transformations. For any observable [ without any explicit 2-dependence the Hamil-

ton's equation is

dif i
== =M. (1-45)

as seen from (1.15). Then, it follows that the transfer map M relating w,,, at z,,

to wy, at z;, is obtained by formal integration of this z-evolution equation (1.45):

the result is

= sl [

= nxp{—[w dzy = H{z):

L]
l Sput =

_hﬁ n'z,(/:'n'z:[: ?{{::}:-:H{:Zj :]

-
<im im

1 peem ] 3 )
~ dz; [:m iz, /: dza ([[: Hlz1) 0: Hz2) o) 0 Hiza) ]

[l Mlza) 2 0s Hlza) ] 32 ML) ) A }
= nxp{—[:hm. dzy - H{z):

LLi]

_% / d, / dzg : (H(z)) H(z)) :

I Zant Iy 29
_E‘,; N iz -/;... tlzy j:.,. izy (: “‘H{:I}-?”:z” : H[:I'}} :

+ o ({Hlza) Hlz)}  H(21)) ) } (146)
where: g denotes the path-ordered exponential, The explicit form of the relation
in (1.46) for writing the path-ordered integral is called the Magnus formula (see

Appendix A). I the commutators of : H - at different values of =, or equivalently

the Poisson brackets of H at different values of z, are Zero, L.,

[: H (z)) o s H (23) :|

I

AH (=)  H(z)}:

= 0, hrzh'-’:? E {zinrzﬂtlt;l ' “"'lT:I

then, the z-ordering in (1.46) is redundant and the transfer map reduces to the
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simple expression

M =exp (— [Enuifiz:H{z] ) (1.48)
I many physical sitnations the z-ordering may be ignored and M can be approxi-
mated as in (1.48). It is clear that a knowledge of the transfer map is equivalent to
the knowledge of the trajectories generated by the Hamiltonian . In the rest of the
section we shall be illustrating certain basic results which facilitate the computation
of the transfer maps, products of transfer maps and other related results, using the

Lie algebraic structure underlying the Hamiltonian mechanics as exhibited above.

Before going into the details of the computation let us look at the case of the free

particle. For a free particle ¢ = 0 and A = (0,0,0). Consequently the Hamiltonian

in (1.13) reduces to

Hr =~ -t (1.49)
and the transfer map in (1.46) becomes, for any Az

Me=exp|:Azypd -7 ). {(1.50)
L

It is straiphtforward to get the results

Piin
Piow = (Mpr ), =rin+di——m—me—
: 1 2 ]
vVPo— Pin
=Tt L'.L:p: e (paraxial approximation) (1.51)
M
and
Prown=Mep ) =PLin- (1.52)

The above relations for the paraxial case can be compactly written in the matrix

form as

i B ry (1 A=z r .
( p./m )ML =Mr (mg’ﬂu )in a ( 0 1 ) ( P/ ),“ ‘ (1.53)
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The above relation is immediately recognized as the relation for a drift through a
distance Az,

In the free particle case the computation can be done exactly. We shall resort to
the example of free particle case at times for guidance to build the formalism and at
other times to use it as the lirst example to demonstrate the formalism. In general
the transfer map is an infinite product of simpler maps and normally one uses a
suitable truncated expression. In order to understand this we necd the following
theorem obtained in the context of Hamiltonian mechanics in which the transfer

maps are symplectic preserving the Poisson brackets between = and p.

Theorem: (Dragt-Finn) [28] Suppose that M is any symplectic map that sends
the origin of the phase-space into itself. i.e., il w;, = o then w,, = o. Then, M

an be factored as a product of Lie transformations in the form

M

Il

MaMaMy oo My, -

I

exp(: Fai) exp(: Fa:) exp(: Fy:) -ooexp(c Fpy ) o (1.54)

where each F, is a homogeneous polynomial of degroe n in the components of w.
Moreover the map is symplectic for any set of polynomials, Finally if the produet

18 truncated at any stage the result is still a symplectic map.

In many a situation it is more convenienl to use a factorization in an order

opposite Lo that of the one given in the theorem above: ie

g

M = -cexp(:Gy:) <o exp(:Gy2) exp(: Gy Jexp(: Gy 2). (1.50)

It may be noted that in (1.55) the paraxial part of the map will not be affected
by the reverse order of factorization, i.e., G, = Fa: all the other Gy s are generally
different from the corresponding £, s. There are standard recipes available to switch

from one order of factorization to the other.



Cmarren | Review of the classical I.|mnr:,,- 20

Before proceeding further about the Lie algebraic translorms we consider a few

examples arising out of the general paraxial Hamiltonian H, given in (1.21).
Free Dvift: This corresponds to the simplest possible Lie transformation

Mp = exp(:Fp:)
Az ,

Frn = ——p i
o ?ﬁpii “‘ Jb:}

obtained from the paraxial approximation of Mg in (1.50). Then,

Az ~
TLout = E-M,I_:T'L}.m =Tlin + Epmn [l.r']?J
and
Plon= (MUPl :Im =Piin- {] TJB]I

The above relations can be compactly written in matrix form as

Fadfid - ™ N 1 Az T
( Py #r-i”" )nul B Af” ( -plrllrpu )m N ( 0 I ) ( F-l-fpn )irl - {li

The above relation is immediately recognized as the relation for a drift through a

=

9)

distnnee Az,

Stmple Thin Lens: For this system the Lie transformation is:

.a‘k-'h‘ = (‘:-:]1{:,.?'-;,:]
. !
Fi = _*i_j"i' (1.60)

This corresponds to the action of a thin lens with focal length [, Like in the previous

example we look at the action of the transformation map:

Pleuw= [MLrl]j“:rL,in “ﬁl}
and

Fo
Piowt = {Mﬂpl}in = _"'j."rj_ii.n +PJ_.;,1 . {_].BEJI
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The above relations can be compactly written in matrix form as

o | _ | B 1 0 T .
(P:f’f’n ) ek (mf:ﬂn ) ) ( = ) (plfpn ) \369)

The above relation is the familiar transfer matrix for a thin lens of focal length f.

Rotation m Magnetic Lenses: Image rotation in magnetic lenses correspond to the

Lie transformation
.-MR = EN[I[‘IFH::I
Fr = —BL.. (1.64)

The result of this transformation is easily seen to be

T o cosfl —sinf '3 -
()3 = (me ) (5), o
P Ps cosfl —sinf Ps i

= A =
( Py )m“ Mg ( Py )m ( sinf!  cosd ) ( Py )m “'hh}

describing the familiar relations for rotation by an angle @ around the z-axis.

Ly

sl

Imaging and Telescoping: Let us now consider the Lie transformation correspondin
iy gy i i

to the term v - p, of H,in (1.21). In this case

J‘nff”' = l'.\tll'[:}‘-”"]

Frr

*to(ry-p)). (1.67)

Then, one has

r, r, et 0 Ll ;
1 o = ; |.GH
( Py )n..; o ( P/ )in ( 0 e ) ( P/ )iu F

Such a system is hoth imaging and telescopic,

In the forgoing examples we have seen that the phase-space transfer maps cor-
responding to the key features (free drift, lens action, image rotation, and imag-

ing/telescoping property) of any paraxial optical system can be individually ex-

pressed through the transfer maps (Mp, Mg, Mg and Mp) represented as Lie
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transformations. Thus, one describes paraxial optics in terms of maps (say M, or
M) associated with the quadratic function (say F, or F2). From the traditional
matrix methods of paraxial opties we know that the net effect of combinations of
individual optical elements can be expressed by taking the product of the correspond-
ing transfer matrices. In the operator approach in terms of Lie transfortnations the
net effect of any optical system consisting of several parts is obtained by the product

of the corresponding transformation operators.

To illustrate the map corresponding to a complete paraxial Hamiltonian let us

consider the axially symmetric magnetic lens. In this case, the paraxial Hamiltonian

is

H, = =y + Hy + Hn

1 . o a
Ho = E_JMPi +- 2 .‘t?l'l (1.69)
Hp = -al.. (1.70)

as seen already ((1.26)-(1.29)). Noting that

{Ho, Hr} =0, (1.71)
we have
M, = MpMy, (1.72)
wlhere
4
My =exp (f dz : a(z)L. :) = exp(: 0z, 20) Ly 1) (1.73)

with 0(z,2.) = [ dza(z) as the angle by which the image is rotated around the

Z-AXIS,

From the carlier discussion we know that M, is given by

Zout J_ 7 pe
Moy=p {ux;> (-—/ dz : a_ﬂi + ‘%Du.[z]"rf_ )} ) (1.74)
]
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Cne can show that the effect of this Lie transformation can be written as

ri . L}
( FL;’[}JH )nut = ( pl‘fp" )u:
9(z) h(z) Ty i
( g(z) K(z) ) ( P /M ). (1.75)

where g(z) and h(z) are the two linearly independent solutions of the classical tra-

Jjectory equations subject to the initial conditions

9(zi) = K (2) =1
9'(zia) = h(zn) =0,
(1.76)

and the symplecticity condition
gl2)h'(z) = h(z)g'(2) =1, Mg (1.77)

The arguments leading to the above result are parallel to those to be presented in
the quantum case (with commutator brackets replacing the Poisson hrackets) later
where a series method for getting the solutions ¢(z) and hiz) will also emerge. For
the present it suffices to note that the above result is the basis for nnderstanding the
Gaussinn imaging by a magnetic lens from the point of view of classical mechanics,

or geometrical charged-particle optics.

So far we have examined only the paraxial case. Any meaningful system has
departures from the paraxial approximation and one has to deal with the Hamilto-
nian with more than quadratic terms in (r.,p,). To proceed further, we have to
make use of the interaction picture description introduced by Dragt ef al. in this
context adapting the well-known interaction picture of quantum dynamics to deal
with time-dependent perturbations. The basic relations required to obtain the in-

teraction picture are the factorization theorem, Magnus formula and BCH-formula.
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We just state them here. If A and B are two noncommuting operators, then,
A O ARSI R A[B AR (5[4 B)) 8 A (1.78)

where we we choose deg(B3) > deg(A) and €, is a commutator of rank n. If the

Hamiltonian of a system is given by
H=H,+H,, (L.79)
then, the corresponding transfer operator M has the form
M=MM, =exp(: F,)exp(: Fy 1) . (1.80)
Now, we can rewrite this equation as
M = (MMM M,

=exp (texp(: Fp:) Fot)exp(: Fp 0)

= exp (: Fi :) exp (: Fp 1) = MM, (1.81)

where the superseript I stands for interaction picture map. Explicitly writing

exp (: F! :) = ;J{r_'xp (—j:m“ dz = M (w, 2) )} : (1.82)

Tin
will

Hi(w, 2) = Ho(M,w, 2). (1.823)

Then, using the factorization theorem mentioned above one can write

M == M:"'Ml’
M! = exp (: Gl :) e BX] (: Gl :) exp (: Gy :) . (1.84)
where
! Toul !

Zin
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gl = = f d=ly, (2) - % f dz, f' dz {Hly (21)  Hly (22))
. f dsHly (2) + f:mdz. f dza { My (21)  Hlyy (22))
_%/“ ds: f iz ] dzs ({#y (z0) {Hly (z2) Ly (20}
+ {Hiy (z2)  {Hiy (20) 1y, {'z'}}})
g == :”‘ dzHl, ()  + multiple Poisson bracket torms. (1.85)

Expressions for G can be obtained up to any desired order of aceuracy. For the

present purpose we need only up ton = 4.

In the case of the magnetic round lens we have

|
! — —_ e 4
H (4;?3{ Pr

1 S |

+§];3 Kpi(pL-ry+rypy)
1 .

+—kp? L.
RIS

-+ ']—;l {rl. . _IJL]:'
a

1 2
+—a(ry-p) L,
Mo
1
2po
+Dr (ri . p"’l]

4

2.2
FT.L.P.!

+driL,
+!-_}J~Er'[') ; (1.86)
where
1 Taut g,
o = 5 il= {(r.r"‘ — r.m") ' 4+ 2a”R2K? + J':"'}
Bl
1 Toput -
K = 5 dz {(n" - nu") gh® + a®(gh)'hh' + _r}'h”}
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k = _[,:“' iz {(E—:n" - érr"') ht — %uhd}
1 Sout -

A = E./ dz {(n1 - rm"} G h? 4+ 2agg hb + g*h™? - q*‘}

i = flm dz {(%n” - na) qh — ng’h*}

) 1 i Tout - ’ ¥ r

Fo= 5[ s {(”1 _tmu) ¢*h? + a? (gzh'z +yrzhz) + g h? 2”.!}
1 o

P = 5[ i {(n" - -::mr") g'h+a’gg'(gh) + g"‘h’}

B zﬂu:l 1 o 1 3 2 1 Irz}

d = /;“ dz{(sn Eﬂ)g — g4
1 Tt

E = 5[ ™d:{(a'~aa") g* + 200%7 + ¢} (1.87)

2

The constants C, K k, A,a, F, D and d are the well-known aberration coeffi-
cients corresponding to spherical aberration, coma, anisotropic coma, astigmatism,
anisolropic astigmatism, curvature of feld, distortion and amsotropic distortion, re-
spectively, when 2, and 25y, represent the coordinates of the abject plane and the

image plane respectively. We shall discuss the aberrations in detail in Chapter 11

based on quantum mechanics.




Chapter 2

Scalar quantum theory of
charged-particle beam optics

2.1 Formalism

This chapter is devoted to the development of a general formalism of sealar quantuimn
theory of charged-particle beam optics, for situations when the spin is zero or can
be assumed to be just a spectator. To illustrate the general formalism we consider
its applications to the examples of free propagation (diffraction), round magnelic
lens (electron-optical imaging), magnetic quadrupole lens (accelerator opties) and
electrostatic round and quadrupole lenses. The starting point for sueh a formalism is
ol course the basic equations of scalar quantum mechanics namely, the Schrodinger
and Klein-Gordon equations for the nonrelativistic and relativistic cases respectively,
As i the case of the classical theory of charged-particle beam transport, where the
basic Hamiltonian of classical mechanics was cast into a beam-optical form, here too
the first step lies in casting the above basic equations into beam-optical forms, Tt will
be seen shortly that the beam-optical form of both Schridinger and Klein-Gordon
equations are identical except for the interpretation of the design momentum as

nonrelativistic or relativistic respectively.

The nonrelativistic Schridinger equation for a particle of charge g and mass i
q Be i
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moving in a static clectromagnetic field with potentials (¢(r), A(r)) is
iﬁa é | V(r.t) : T4 (r, 1) (2.1)
= - = =T . W u
dt a AL 2 &
with the usual notations

T=p—qA(r), p=-iV, F=il4+fl+7l.

LEJNE )

(2.2)

Since we are dealing with time-independent systems the wavefunctions of the parti-

cles constituting a monoenergetic beam take the form

U(r,t) =e B My(p) . (2.3)
Then equation (2.1) becomes

(7% = =) vi(r) =0, (2.4)

where |7| = \/2my (E — ) is the nonrelativistic value for the kinetic momentum.

Now, introducing the notation

. . i

and denoting by k(r) the wavenumber of the particle in accordance with the non-

relativistic de Broglie relation,

k(r) = || /h = \[2mq (E — qi(r)) /A, (2.6)
the stationary form of the Schridinger equation (2.4) takes the Helmholtz-like form
(D? + k¥ (r) }y(r) = 0. (2.7)

TheKlein-Gordon equation

(iﬁ% -~ q¢) Y(r,t) = {7+ mlc' P (r, 1) (2.8)
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can also be cast in the same Helmholtz-like form (2.7) with the only significant
difference that the expression for k(r) will be the relativistic one. Now, let us take
the form of the wavefunction of the particle of the monoenergetic beam to be of the

form

W (7, 1) = e Mo +ENM 1y (2.0)

where E is the dynamic (kinetic + potential) part of the total energy of the particle

with mye® being the rest energy. Then, the Klein-Gordon equation (2.8) takes the
stationary form

-
0

) E E .
{?T2 —2Emy (1 + Emﬂ.cz) + 2qmgd (1 + e —Fd’-——) } wir) =10 (2.10)

mge? 2mge?

which can be equivalently written as

{D* 4+ K (r)(r) =0, (2.11)

where
T B ( E)_ I 5igs
i r) = X 2Emg (1 + T 2qmod(r) [ 1 + ol v v (2.12)

consistent, with the relativistic Einstein-de Broglie relation
E = {0k (r) + n:,";n*}% — mge” + qd(r) . (2.13)

Thus it is shown that equation (2.11) based on the relativistic Klein-Gordon equation
has the same Helmholtz-like form as equation (2.7) based on the nonrelativistic

Schrddinger equation; the only difference is in the expressions for k(r) in the two

CASS,

Equation {2.11) is the basic equation to be used as the starting point to de-
velop a complete scalar quantum theory of charged-particle beam transport through

any optical system. It is to be emphasized that so far we have essentially cast
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the time-dependent Schradinger and Klein-Gordon equations for beams propagat-
ing with a single conserved energy (elastic scattering by stationary electromagnetic
field constituting the optical system) into a Helmholtz-like form by eliminating the
time-dependence, without making any assumption on the geometry of the svstem Lo
be studied. To proceed further, the system has to be chosen a bit more specifically.
So, we shall consider the system to have a straight optic axis along the z-axis of a
Cartesian coordinate frame and consider the monoenergetic charged-particle beam
to be quasiparaxial and moving close to the +z-direction. Let it be assumed that
the system is located between the zy-planes with the z-coordinates 2, and Zouts 1:€4,
the system field is practically zero in the “input’ region (z < z,) and the ‘ontput’
region (2 = z,..). By ‘input’ and ‘output’ regions we mean the regions outside the
system and close to it. The constant wavenumber of the incident particle in the

input region is given by

L1
Mriz<zin) =k = I}t
!
1 1 & i
L . * " 2 — :: T ¥ BY.
= h."\/Et:ﬁ + 2migce I,l 5 {EI iy (] -+ 2”;“.‘1“)} i {2 | |}

as is seen by putting é(r) = 0 in (2.12). After eclastic scattering by the system
the particle will emerge in the field-free output region with the same value of the
wavenumber, namely, ky ie., k(ry, 2z > z,,) also has the value k. Since the beam
i5 supposed to be monoenergetic, the wavevector kg of any particle of it will have

the same magnitude

kol = (k3. + K3, + a‘.ﬁl)i =ik (2.15)

hy

irrespective of its direction. Quasiparaxiality of the input beam implies that
kos + ko, = ko, € k3, (2.16)

Since we consider the optical system to be such that the input ‘beam’ emerges in
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the output region again as a ‘beam’, the relation
ke(r)* + ky(r)? = K () < ko(r)? (2.17)

will be assumed to hold throughout the propagation of the beam. Further, since
we are always concerned only with the forward propagating heam close to the +z2-
direction the beam wavefunction we consider, throughout the transport of the beam,
would be a packet, or linear combination, of only those plane waves corresponding

to wavevectors satislving the conditions
S k. > 0. (2,18)
Our aim is to relate the beam wavefunction in the field-free ontput region,

Vout(7) = ¥(ry,z > Zou), (2.19)

to the beam wavefunction in the field-free input region,

Ul'jn{r} = ul"{rl_ 25 Ern} ' {22[}}

s0 that the values of the observable beam characteristics in the output region can
be related to their values in the input region using the wavefunction. To Lhis el
the most desirable starting point would be an z-evolution equation for e, | =)
linear in } S0, first, we cast equation (2.12) in such a form using amethod similar
to the way in which the Klein-Gordon equation is written in the Feshbach-Villars
form (linear in &) [29], unlike the Klein-Gordon equation (quadratic in ) (sod

Appendix B for the Feshbach-Villars form of the Klein-Gordon equation.)

Let us examine the expression for k%(r) in (2.12), in some detail, It ean bhe

partitioned in the following way,

K r) = k=E(r)

i E
L3 = — 49k
Ko ﬁz{ Emg (Hzmﬁ: )}

(r) = hlz{?qnlué[r] (1 + -—£— - ""ﬁ{r})} . (2.21)

mpc= 2”’104‘32
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The first point to be noted is that &3 is constant, independent of the electric sealar
potential é(r), and depends only on the kinetic energy E of the incident beam-
particle, where as k?(r) depends on both the incident kinetic energy F oand the

potential ¢(r). For magnetic lenses ¢(r) is zero and consequently £2(r) = k-

Now equation (2.11) takes the form

(D + 42 — K (r)}p(r) = 0. (2.22)

As stated earlier the above equation is the starting point for the sealar quantum
theory of charged-particle heam optics. The first thing to be noted is that the above
Helmholtz-like form is quadratic in % where as the most desired form would be an 2-
evolution equation for the wavefunction linear in ; This is achioved by adopting a
method similar to the method in which the sealar Klein-Gordon equation (rquadratic
in £1) is written in the two-component Feshbach-Villars form (linear in 2), This
provides a Feshbach-Villars-like two-component form for the standard Klein-Gardon

equation, now with z, the coordinate along the optic axis playing the role of ¢, (seo

Appendix B for the Feshbach-Villars form of the Klein-Gordon equation. )

To this end, let

wir) \ _ (r) .
( Va(r) ) - ( i (& = paAu(r) v(r) ) - (2.23)

Then, equation (2.22) is equivalent to
i
liu,} q‘}-.
= q . Uy g

Next we make the transformation
" Uy ¥y L[y 44
—— = Af ~
(v) (v) ’ (n) z( i_%)
L [ =

M =

— p—

E. ) = 20 . (2.25)
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Consequently, equation (2.24) can be written as

ifd Yy
ko (ﬂz - ﬁij-4:) ( W )
pfd U
= == — — =04, .‘. .
ko (ﬂz ' "“) ”r( Yo )
i d 1 i
=Msi——|— = —gA.
‘ { Fa (az ﬁ“‘)} ( 2 )
= A o 1 't.-‘-r"‘l
= Elg{kg = kz + f_}i} ] '{.‘LI."E

V 0 LY [ 0
U\ B -F+DY) 0)f 8

N R G, . A

Rearranging the equation (2.26) we get

1 d I:IJ'+ o l.I'I'+ e
i{]a_z( s ) = ||( it ) . (2.27)

with

H = —g,4+£+0 (2.28)
2 fq T T

f= L ag_tipr_i 29
£ g 1= g (D1 — K)o, (2.29)
d = _:ﬂ:__;_;u}'i—&'-’}ny, (2.30)

where 1is the 2 x 2 identity matrix and o, and o. are, respectively, the y and z

components of the triplet of Pauli matrices

c=(m=(10) w=(? ) w=(s 2)) s

In order to understand equation (2.27) better, let us see what it means in the
case of propagation of the beam through free space. In free space, with ¢ = 0 and

A = (0,0,0), we have F[r} = () and

& B f = - .I v:i o I. v! :
1200 ) (T7E AR (0], o
!.Ur}z 1 lk:v_;__ 1+ Zk"*—;'vl W
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i 12 El ¥ i
where Vi = & 4 %;. A plane wave with a given ko = (Ko, ku,, kos ). namely,

1 :I-'I.n ‘l"

{mh (2.33)

Uk, (3) =

15 associated with

i
ket
ﬁm*:—i

i | =

( T'll.kp.-'r{r} )
llllirk{,.—{r} {illk _E_ iﬂk.n

1 _a.u
( 1 __I_ ) Pg, () (2.34)

It can be easily checked that this ( Ef ) satislies equation (2.32). For a quasi-

[l | i

paraxial beam moving close to the +z-direction, with ko > 0 and ky. = &y, il is
clear from (2.34) that vy > vv_. By extending this observation it can be seen casily

that for any wavepacket of the form

Pir) = ]nﬂku wiko)Up (), [ri:‘ku le(ko)l? =

“'it:ll ]kgl —_ b'lf“1 Jl'{.: = k[. ¥ ku; -2 [} i [2.35]‘

representing a monochromatic quasiparaxial beam moving close to the + z-direction.

(20) = L(4758)
v-(r) 2\ v+ 3
( [ d*koolko)ge, , (7) )
J fpkn?f-‘{ku]’ﬂkm (r)
with |ko| = ko, ko: = kg, ko: >0, (2.36)

is such that vy (r) > . (r). Thus, in general, in the representation of hs
tion (2.27) we should expect 47, to be large compared to yi_ for any monochromatic
quasiparaxial beam passing close to the +z-direction through the system supporting

beam propagation.

To summarize, we have transformed the time-dependent Klein-Cordon equation

- into a time-independent form linear in 2. Further H has been partitioned {apart
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[rom the leading term —a,), into an ‘even part' £ and an ‘odd part” . The even
part does not couple ¥, and ¥ and the odd part couples them. We also make note

of the algebraic property
[az,f] =0, and [.:r,,c';'] = 25,0, (2.37)

The motivation for following such a procedure comes from the Foldy-Wouthuvsen
technique originally developed for understanding the nonrelativistic limit of the
Dirac equation [30] (see also [32]-[34]; see [31] where the technique has been ap-
plied to the Feshbach-Villars form of the Klein-Gordon cquation). It will be shown
below how the Foldy-Wonthuysen technique can be adopted for the quantum theory
ol charged-particle beam optics, both in the sealar (in this chapter) and the spinor
case (Lo be covered in Chapter I11) respectively in order to understand the behaviour
of the optical elements in a systematic way starting with the paraxial approximation
and considering the aberrations of the various orders one after the other. With this

motivation let us first look at the Dirac equation

if _r'} Walr, t) ¢ valr, t) il
”!“rz ‘M ( 1.,[1‘{,._ li] ) e ”f! ( "l-"'i[l", ” : {Eiﬂ}
where
- U B L oe
I"I'-lcl = ( q’j ) ' "!I"[ = ( '-I'.| ) {“"ﬂ”
Hy = B+Ep+0p (2.40)
£ = ”':‘{’;} (2.41)
Mg
. 1
On = —a-mn, (2.42)
g

e = (trg, vy, o) and 3 are the 4 x 4 Dirac matrices given by

(e %) o=(a ) o=(53).  em

and W, and W are the upper and lower pairs of components of the Dirac spinor

wavefunction W. The Dirac Hamiltonian Hy has been partitioned (apart [rom the
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leading term ) into the ‘even part’ £ and an ‘odd part’ Op with the algebraic

property
[H,éﬂ:u, and  [3.0p] =250p. (2.44)

It is also well-known that for any positive energy Dirac ¥ in the nonrelativistic
sitnation (|w| < myc) the upper components (¥,) are large compared to the lower
compounents (). The Foldv-Wouthuysen technique expands the Dirac Hamilto-
nian into a power series with m%c as the expansion parameter. Each successive
approximation reduces the strength of the ‘odd operator’ by a factor of m% In
principle, one can reduece the strength of the odd operator to any desired degree
of acenracy, of course, with the computations becoming more involved for greater
degree of acenracy. Thus one obtains a systematic expansion of the Dirac equation
leading Lo its nonrelativistic approximation plus a sequence of relativistic correclions
(see Appendix C for a resumé of the Foldy-Wouthuysen representation of the Dirae

theory).

[n the present context let us first examine how the machinery of Foldy-
Wouthuysen transformation technigue becomes applicable to the Feshbach-Villars-
like form in (2.27). The striking analogy between equation (2.27) and the Dirae -
tion (2.38) follows from the correspondences: forward propagation of the bean elose
to the 4 z-direction «— positive energy Dirac particle, paraxial beam (| | < hk)
& nonrelativistic motion (|| < mye), deviation lrom paraxial condition (aberrat-
ing system) +— deviation from nonrelativistic situation (relativistic motion). We
further note the similarity in the algebraic properties of equation (2.37) and equa-
tion (2.44) with a. playing the role of 4. With the above correspondences we apply
the Foldy-Wouthuysen technique to equation (2.27) and obtain a representation in
which the strength of the odd operator would be as low as the system under study

would require. In this context the measure of the strength of the odd operator O
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is labeled by the expansion parameter ;‘; It is to be noted that the strength of O

in (2.30) is already ;', This is to be compared with the Dirac case {in Chapter 1)
L

where the starting O has the strength tln As the analogy indicates, this procedure

would lead us eventually to an expansion of (2.27) into its paraxial part followed by

the aberration parts as desired.

Now, following a Foldy-Wouthnysen-like procedure, let us define

wtl} & i - i =
( L1 ) a ( r.f.r+ ) T szl (2.45)

This transforms equation (2.27) into

i H} ; % " e = TJf,:r]
r— = —_—— 1 4 _I.SLH —i5) ( 9 )
by Oz ( u"m ) {.l ] ( ]F e ¢ } .|'"“]

R R . 1]
== {bm'”l'!_"q] = fﬂﬂ""la_i ([!_'Sl]} ( Ijll:_l:l )

{ )
H ( {,, ) , (2.46)

)

where
HY = —g, + D4 00 (2.47)
£ o _faﬂt 1_{i§(ﬂi k) ﬁ(!}i— i)"Y o
;zli. H(H E)‘[”i‘?’\' “?(m t% dft_L vl)]

4
‘} AR (2,49
i ﬁ " e X A

As expected, the strength of the odd part O in 0 is now . The next step
(8]

of transformation of the type in (2.45) with O replaced by O will give an [12)

containing an odd part O? of strength ! ii- An accuracy up to the order of @ is
1'.|'
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adequate to work out the third order aberrations, to be shown later in this chapter.

Hence dropping the odd term OV, we write
i 9 1.'.'“} [U

HY = —g, + £ (2.51)

with

nil)
Let us now look at ( ¥y 0 ) corresponding to the plane wave 1,f-kn{r} in [ree space,

We get
;,r,ii‘.l . B 1
? = ;_l_i-él T"'v’i--'n.-l- o F.‘_'h Vios rjku,}
“ 'L"Pku._ Llrlk“,—

it
Y
-
ah:J_ o
-]
=l
K,
<]
-t
e —
F S
€ <.
o
=
I e
e

ko: (1 _ ko) K
e 1 ]‘+l=q (1 :")E?g n"k . {2.52)
S Uh -

showing that l,.frm b "'f.lki. for a quasiparaxial beam. This result easily extends
to the wavepacket of the form in equation(2.35). Thus, in general, we ean take
P = ™ i (2.50) for the beam wavefunetions of interest to ns. We can OXPress

this property that U“} » iV , or essentially W 0 cotmpared Lo r“t ) as

) (1)
() =1 (% ) -

With this understanding equation (2.50) is further approximated by

i a oy TR %
e _ .
ko iz ( it H g (2.54)
with
1
( hky ™ 2k3 (P1-F)
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a A EFAL ﬂAj_
A oo Fobtier. TIPS Golsl 30
[ﬂL h rl i (T" Ya: 2 Vi
o =B e .
3 | B, = (F’ii + !.—*)] }) 1. (2.55)

Since we are interested in the z-evolution equation for i(r) (satisfying (2.22))

we retrace through the following transformations

00 N v e (V) 2.56
' Al Rl i (2:56)

JT
bearing in mind that 1y, = ¢ in ( :,i ) Then we get

A ML D (i) 8y i S
u{ﬁf [kﬂﬂz(ﬂ ) e SIH ]rlf}(#z)
{‘”*I |:|_.._—i-";T|H{I.'rFL':'1 _kl -:'-:. ‘] u*TL ] ﬁf} ( W )
0

=t ). (2.57)
2

where

! . | 5 i
H _— == 1 — -_— } '
¥ ( : .fh‘-“ :l 2;;'! (f )) .

=u ([D th] —{E (vi'%
(e kgl
1. 30] -4 o 8 30)

+ {.{'}ﬁ' ; a£ (rf!. + 12)”) l. (2.58)

Let us examine the expression for Fln in (2.58). It describes the z-evolution of

¥ and v, independently. We are interested only in the z-evolution of ¥, = i and
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hence we can write

(2.59)
with

+

T
o 8 e -

2 A2 4 T2
D5 e (ﬁz.h—l-h )]} : (2.60)

(2.61)

with

- = I - o
Ho = —py—qA, + ﬂ (H1 +p )
1 dA,
TF (["1 v G A ] + {:hq ( P, T
+ % pL) IhrfdA })
+L (ﬂ'? T +p
8 il
A dA | |
[ Ty QA ] +iq!¢( ik s p*)l

- [nl, :n; (q A2 4 p }]} (2.62)

Thus, we have obtained 7, which is the required beamn optical Hamiltonian cor-

responding to |.'iu—'1 or —p: (= — the canonical momentum in the z-direction as

|
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already pointed ont in Chapter 1). We note that H, is not hermitian. Physically
this is a reflection of the fact that [d*r|y:(r,2)[?, the probability of finding the
particle in the xy-plane at = need not be, in general, a constant along the z-axis;
only [dzd®r|y(r,2)|* the total probability for finding the particle somewhere in
the entire space (= 1) should be conserved at all times considering that the particle
cannot, just vanish in the absence of any annihilation-ereation mechanism. Conse-
quently, the z-evolution of #+(r . z), given by (2.61) is not necessarily unitary. First

let us write the above beam-optical Hamiltonian as
Ho = —po + H,, +H,, & H{2o) (2.67)

where py is the magnitude of the design momentum corresponding Lo the mean
kinetic energy with which a constituent particle of the quasimonoenergetic heam
enters the system, from the field-free input region, in a path close to the 42 diree-
tion, H,, is the hermitian paraxial Hamiltonian (in general a quadratic expression
in (ry.9, ), H,, is the hermitian aberration (or perturbation) Hamiltonian (a poly-
nomial of degree > 2in (r;,p ) and ?-I’L"“} 15 a sum of hermitian and antibiermitian
expressions with explicit Ag-dependence containing paraxial as well as nonparnxial
terms. I the geometrical optics limit (Ay —» 0) H) vanishes, unlike H,, and
l‘I,,‘,‘ whicli tend to the corresponding classical expressions in this limit. The effect
of the nonhermitian terms can be expected to be quite small and neghgible, Henee,
we can approximate H,, further, to a hermitian H,, by dropping the nonhermitian

terms (or, taking H,, = %{'H.. + HJ,}} Thus we write

i .
ihﬂ—"_ = H, ), (2.64)

with

H, = —py—qA. + 5:; (ﬂi +;'1!)
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g (1) - g (149

5 : . OA dA,
[rrf , q.—l,] +igh (pJ_ ~ ﬂ—’l . _EI-._L 'PL)]

- [‘i.iﬁ% (4243 ;5?)” : (2.65)

Having obtained the required basic beam-optical Hamiltonian operator M, we can

now proceed to gel the desired relation between vy, and 1, using the well-known

techniques of quantum mechanics.

The formal integration of (2.61) gives, as is well-known, for any pair of points

[(z[”, zm) |z“’ > z”’} on the z-axis,

o () = s, ) (5) (200

with

iﬂa—i-'f‘ (z_.z“:') =HT (3* z{”J T (zm, 2=

T (3”}. ;[H) =P {M;p (— -’ii j:::“ iz '?';‘:,.{z])}

12

= 9 ;
:I_ﬁ/,m dz Ha(z)

+ (_F:)E/“';” iz '/:”-:fzj?i’.n[z]ﬁu{f}

F(0) [ [ [ e e

o (2.67)

where I is the identity operator and o denotes the path-ordered exponential, Exeept
in a very few cases there is no closed form expression for T(:{”.z“}). For our

purpose the most convenient form of the expression for the z-evolution uperator

T(z®,2"), or the z-propagator, is

T(2,219) = exp {—;—l'f[zm,z[”}} : (2.68)
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with
T(z13, 20 N
:/::] 11’:?'_{0[::]
L) fr = [ [?f{.,fz ()]
S L
{[[# () i) )] ,Hu{z”-u]
+ [, 1ol 2] L Hul2)])
. (2.69)

as given by the Magnus formula (see Appendix A for details).

It is to be noted that when M, is hermitian (or when approximated to the

hermitian H,) T becomes hermitian and consequently 7 is unitary. In such a case

T and 7 will be denoted by T and U respectively. Then, equation (2.64) leads to

|I'h.(zm)> — 7 (.,r 2] m})] ,(_m)> 1 (2.70)

where

{ (:[”1 r“]) = t'xp{ —;!T (zm,:m)} ! (2.71)

with

i(:“”,:“‘)

; ( )/*“ “r”[ H,(z), 0,(2")]
113( ) fm 'fm,f;*/wdzr.

{{[[Ha2), Ba(z))] L 2 |
[ [Aa=), 1] L 2]}

(2.72)
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In order to understand the electron optical image formation we should work with

the coordinate representation in the Schridinger picture. So, we write (2.66), the

integral form of the optical Schrodinger equation (2.61), as

o (r,2®) = [ 06 (), 22,70, 20) g (rD), 20)

(2.73)
where the Green's function (r'f', #(2). rl‘,”Tz“]'J is given by
(8 (rf’,:m;ri’,zm)
= (r{f} (i (::2:‘ :“1‘) | rﬂ_”)
- f.ﬁa?- (ro =) 7 (22.2) 82 (r. - =) . (2.74)

This is ouly a formal expression for the Green's function as the matrix element of 7
and its computation is, generally, quite a difficult task beyond the case of paraxial
approximation,

When we want to relate the values of the quantum averages of the observables of
the beam at two different points along the axis of the system we can use the Heisen-
berg picture, The quantum average, or the expectation value, of any observable, sy

0, associated with the hermitian operator O is given as follows: for the state (=)

al the ay-plane at the point =z
: ((2)[0lv(2))
0 = Y
AN TRITTE) e

with the notations

(Y (2)|0](2))

/:l'zrn"'[rl1 2)Op(r,, z) (2.76)

W) = [ drur(ry, 2)uiry, ). (2.77)

Some times we shall denote (O)(2) by (O)(z) also. Now, in view of the relation
in (2.66G), we have

(0) (=)
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B <1!: (zf'-’-l) {:}l i (;iﬂ))

(¢ (z120) o (212))
B <v= (zm) 71 (z“l,zl”]df‘(zi'—’?,z“?”g- (z“]).}h
- (tﬂ[z{”}l"_f'f[EEEI.;{E}]T{3!211;¢I‘}}|uﬁ{ﬂl]}) ‘

(2.78)

leading to the required transfer map giving the expectation values of the ohservablos
in the plane at ) in terms of their values in the plane at 2V, 1t should be noted that
(0) (3{2}) is real even if the transfer operator 7 is nonunitary. We will be using
equations (2.73) and (2.74) to understand diffraction in the field-free space agd
electron optical image formation using the round magnetic lens. Equation (2.78)
will be the basis for our ynderstanding of the focusing properties of electron lenses.
Later, we shall see how this formalism, developed for the sealar wavelnnetion so far,
gets generalized to the case of the Dirac spinor wavefunction. Tn the classical limit,
equation (2.78) leads to the Lie algebraic treatment of geometrical charged-particle
optics pioneered by Dragt et al. (e.g., see ([15-[19]. and [20, 21]). The differential
form of (2.78) corresponds to the Heisenberg equation of motion for Lhe observables
and wonld lead to the trajectory equations of geometrical optics in the elassical limit

in accordance with the correspondence principle (Ehrenfest's theorem).

Finally, it may be noted that the formalism developed here shonld be suitable for
use in light optics also in certain situations, in the theory of graded index fibres, for
examples. In fact, wherever one studies single-frequency propagating rays making
small angles with the principal direction of propagation the above method could be

wsed: in ocean acoustics, for example (see e.q.. [35) and relerences therein).
.,
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2.2 Applications

2.2.1 Free Propagation: Diffraction

Let us first apply the above general formalism to the case of a monaenergetic quasi-
paraxial beam of particles moving in free space (¢(r) =0, A = (0,0,0)). Now, our
system is an infinite slab of free space situated perpendicular to the z-axis between
the coordinates z;, and z,,. From (2.63) the corresponding optical Hamiltonian is

i5 read as

1 1 g
'H—Hﬂw—jm-lr'E—M S"i (2.79)

which in the paraxial approximation simplifies further to

S 1
Ho=H,, = —pmo+ —pl. (2.80)
2py

Taking, '" = z, and 2/® = 2, equation (2.70) becomes

|TJ'I'11ul> = {_‘rﬂ,p [:nul- ‘Ein...I t'ﬂn} 5 {23 ”

with

‘r-'rﬂ‘.;r |[.L""“1. ¥ ziu] = exp { o %1‘.!"}! {:untr :m}}

nxp{—;—.l:l.l.w,}

= exp —;r_\ r+—l—i

= BX] h — o o Py

Bz = ot — Sin {2-82]

liere the subscripts p and D indicate, respectively, paraxial approximation and

ilt in free space. In coordinate representation

WP i Zen) = fd':’r'in Giap (Pt oty Zonin s 1L s Zia ) W (*Lins Zin) (2.83)

here

¥ .
GLJ‘.F {r_l_.ﬂuh Zouty T Lins z’jh]
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i |
= <r1_.nul eXp {_Hfﬁz (_H] e EPE) } L .in>

= glPdz/h <PJ_1M exp {-— i:‘_\z (;I’f)} L i,l> . (2.84)
h 2 '

exp {—%,ﬁ.z ﬁﬁlJH ﬁ_,m} is readily caleulated and is

The matrix element <r 1 st

just the well-known Green's funetion of a nonrelativistic free particle of mass py

moving in the ry-plane and corresponding to a time interval Az, (see Appendix D

for details of the caleulation). Then, we have

Gﬂ,p [rl,uuh Zouty T L in, zin‘,'
oo Po ip : ;
=omsit () e { B (s P} 289)

Now, equation (2.83) becomes

i {TJ_.m:h Lo }

— piPodz/h L)[ 1t
¢ (Errih:iz AR

I
exp {..”:;ﬁ I[rl..mu =T ,h1}|2} Y [7'1,I:1- Zin)
]
=3 gront f: iﬂd in
i.:\.ua":h:' - .

ik 2
oxp {._;Tﬂ_' [[-'rnul. = T }2 t {.Uuul = Min }_]} i {'I"| e :-'Im} {E-Hﬁ]

which is the well-known Fresnel diffraction formula: Ay is the de Broglie wavelength
2rh/po. Here, zi,-plane (the ry-plane at z = 2,) is the plane of the diffracting ohject
and zoy-plane (the zy-plane at 2z = z,,,) is the observation plane; (v i, 2] is
the wavefunction on the exit side of the diffracting object and [1 (71 g 2ow) | gives
the intensity distribution of the diffraction pattern at the observation plane, It is
clear that the approximation of H, as in (2.80), dropping terms of order higher
than second in p |, essentially corresponds to the traditional approximation used in
(deriving the Fresnel diffraction formula from the general Kirchhofl's result, We can

also recognize now that equations (2.66)-(2.69), (2.73) and (2.74), along with (2.62),
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represent, in operator form, the general theory of charged-particle diffraction in
presence: of electromagnetic fields (for more details on diffraction theory, see [5]
Chapters 59 and 60).

Actually, the free propagation case ean be treated exactly as noted already in
the classical theory. The expression for the Hamiltonian l:l., riven above, in (2.79),
is an approximation for the exact result, H, = —/15 — pi. obtained by quantizing
the classical expression for —p, for a particle of momentum py; this exact result
will be obtained in the infinite series form in our approach also il we continue e
Foldy-Wouthuysen transformation process up to all orders. Hence the exact form of
the Green's function is given by the matrix element of exp (i.&:\/,nﬁ —-_f_}’_J and it
can be shown that an explicit evaluation of this matrix element is possible leading

to the well-known exact scalar wave Green's funetion for the plane (see [15]),

Let us now work ont the transfer maps for the expectation values of the transverse
coordinates (r ) and tlw.ilr conjugate momenta (p ) in the case of free propagation,
Let a particle of the input beam be associated with a wavepacket (7, =) having
(ridw = (ro) (=) and (p ) = () (2in) as the average values of the transverse
coordinates and momenta at the zg-plane. In the geometrieal optics picture the
particle corresponds to a ray intersecting the z,-plane at the point r, = {71 Yin
with the gradient %* =p./p: = p/vo = (P )ia/po: paraxiality condition is seen
to be 9 < 1, % < 1. From the formula of (2.78), and using (2.71) and (2.72), we

gel

{TJ_}unt = (r J.} (Zout}
= <¢-,-,, exditey o-paH. t!!m) (2.87)
{PJ, }m:t = {FJ_} [-"-'.Jut}

<-,h,,. etsifles o-pashl, m) , (2.88)
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with H, as given in (2.79). Using the relation
I =N 1. .
e'Be A= B4 {4, B] + EI.-L (4, B]] + Ej_l['q* (A, [A, B]]] +. .. (2.89)
valid for any pair of operators (A, B), we have from equations (2.87) and (2.88)

{r;.}nm = (ri)ia+ Az

(
S (r+ m(—é’—i?)
= (

(

d—’:i> (2.90)

i o
Prlow = (Pin. or (%) =<%> ) (2.91)

confirming the rectilinear propagation law for the free ray. In matnix form, we have

(@)L-GNE). e

giving the familiar transfer matrix for free propagation in terms of the trachitional

ray variahles (rl. %*) Taking p. = py, we can write

{(ry) 1 Az (r) -
( (P /) ). N ( 0 1 ) ( (P, /1) ). .- (2.03)

ivitg the transfer matrix in terms of the canonical phase-space variables (¢, . p
~ [ [ l.sf 1

(see [36, 37], for a treatment of geometrical electron optics using the canonical

variables (v, p ).

2.2.2  Axially Symmetric Magnetic Lens: Electron Optical
Imaging

The axially symmetric magnetic lens, or the round magnetic lens, is the central

part of any electron microscope. In practice. the round magnetic lenses of electron
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microscopy are convergent lenses. The round magnetic lens is an axiall y symmetric

magnetic field completely characterized by the potentials

#(r) = 0 (2.94)

A = (-gn(n,z},gn(n,z},n), (2.95)

2

Hirisz) = g '{n+l}’( ?;) B (z)

= B{z) - grf_ﬂ"l:z}—f- 3 —riB"(z) —. ..

192
(2.96)
“The corresponding magnetic field is
l ! 1 2 e
B = —-(B[a]——rlﬂ {z}—i—,..)rl
1
B, = B(z)- r, 1Bz }+ & FeBM™ ) = s (2.97)

e to the axial symmetry of the system the potential has only terms of odd order
in r1. The lincar terms in the potential govern the paraxial Lehaviour, and the
l.'l'ﬁg_hnr ones give rise to aberrations of the corresponding order. So we retain terms
up to Lthird order in the potentials to get the third order aberrations. The procedure
which we will follow can be used to compute aberrations of any higher order. Thus,

e potential is approximated by

Hr) = 0 (2.98)
A = (—%yﬂ{ri,z}, imn{n,z;.n),

with (ry,2) = B(z) - rfﬂ‘"{z] (2.09)
» the beam-optical Hamiltonian (2.62) becomes

?:{n = I:In“-_. + ﬁu.{q} 0 8 ?':{EA'U‘! (2+1[}[I}
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Hoyy = =—po+ 2 (pf + l--f.HT{z'jr*:' - qﬂ{z}f-) (2.101)
S 2po 4 5 A
e LI T
(4] 8.”3 J. EP_E - Ef-'l} i 1
3 - a: i o s
+ﬁ”2 (pf_rf + r'f_pf) + E (n ''— <In1J Lzr'L
Fo
+—S- (ﬂf’ — ﬂ'l!"!”) i"}l_ .
with an= qu[z] . L= TPy — YP; (2.102)
2po
H) =y — dependent constant + H[m “{”‘i}} + _,1.5,\;] (2.103)
IjI{J'-o} A Bis\B' < 2 1
a.p = 647 2 5 l:“'] {3}':"1'PL+PL""J.} {2 G*”
o (Ae) A'I'.ltill e s = - E
Hoi = 256m2p2 2eqzzl (Blalri-p +p, -7y) (2.105)
‘" L
l;'tn y =
Ay = e (grfﬂ{z}ﬂ*iﬂrf —r:B(z}Lx) ; (2.106)

The reason for partitioning H, in the above manner will be clear as we proceed, Tt s
to be noted that py is the magnitude of the design momentum corresponding Lo the
mean kinetic energy with which a constituent particle of the quasimonoenergetic
beam enters the system, from the field-free input region, in a path close to the
t2 direction, H,, is the hermitian paraxial Hamiltonian (n quadratic expression
in(ri,p,), I-I:..m is the hermitian aberration (or perturbation) Mamiltonian (a
polynomial of degree 4 in (v, p, ) and HP is a sum of hermitian and antihermitian
expressions with explicit Ay-dependence containing paraxial as well as nonparaxial
terms. In the geometrical optics limit (A, —» 0) H) vanishes, unlike H,, and

o) Which tend to the corresponding classical expressions in this limit. The above

iltonian is to be compared with the classical counterpart discussed in Chapter [

he effect of the contributions from H{*) will be noted in separately

To summarize, we have obtained the beam-optical Hamiltonian in the quartic

oximation, adequate to describe the third order aberrations and also demor-
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strate the quantum contributions. To proceed further, we assume the lens to lie

between the two planes bounded by =z = 2 and = = z. That is, we assume the

magnetic ficlds outside the lens to be negligible and consequently B(z < z;) = () and
B(z > z) = 0. We shall be examining the system seqiientially, first the paraxial

part, then the aberrating part and finally the effect of the explicit Ag-dependent
contributions.

Note that L., the z-component of the angular momentum (r % $), commutes
~with the total Hamiltonian #, as a consequence of the axial symmetry of the system.
So we further partition the beam-optical Hamiltonian H, by rewriting the paraxial

part. Introducing the notations
|

oz = 1BC)

(2.107
2y )
: Bz
Flz) = a?=21712) (2.108)
Aps
I:I - a 't} 1 iz 2 106
Hop = 3oPL+ 5o (z)r{, (2.109)

Hop=—po—0(z)i. + H,,. (2.110)

expected, this will enable us to write the paraxial transfer operator as a produet
“of three transfer operators, as is done in the classical case, by writing the transfer
matrix as a product of simpler transfer matrices. The Hamiltoninn .l:ln... 15 like the
Hamiltonian of an 1sotropic two-dimensional harmonic oscillator (in the ry-plane)
_.t.h z playing the role of time and py plaving the role of the oscillator mass. A, the
carresponding z-dependent frequency is JF;:} . Thus, apart from the two terms,
the constant py responsible for a phase factor and the second term (-H‘{z}f,_.) re-

ponsible for image rotation, the beam-optical Hamiltonian governing the evolution

-:the beam along the z-axis is like the Hamiltonian of a two-dimensional harmonic
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oscillator with time-dependent frequency. This analogy between paraxial beam op-
ties and harmonic oscillator is well-known (e.g., see [38] in the context of light optics
and [39] in the context of charged-particle optics). Since H,, is hermitian the cor-

responding transfer operator will be unitary as in equations (2.71) and (2.72).

Let us now consider the transfer operator {}'F (2, 2,) for a general z > z, where
2, 15 the coordinate of the object plane. Later we shall determine it specifically at
the zi-plane, where the image is formed, and the corresponding 17, (2, z,). Since 7o

L. and H,, commute with each other, we can write

E:TF (2, 5.) = efm[’_‘“]eH{:‘:"}i’Qp (zi2s) 4 (2.111)
where
#(z.zojszf;ﬂ*{;} (2.112)
%
and
U, (2,2) = exp ( ;:t T, {z,z.,]) , (2.113)

the transfer operator corresponding to the Hamiltonian ﬂ.,_.u 15 to be computed

using (2.72) with H, replaced by l_'i‘,v,,. Theun,

PWir,z) = /rf:'r..ﬁr'p[r,,z; TigZo) W{rysiz.) (2.114)

with the Green's function

{:F {rlq 3T o z’tl] - (rl ir"rl" EzT ?'ﬁ}

TLF)

— paPolz=za) j.-f"‘r‘ (rL |r'*w=""‘]f"| f‘J_) (1_‘1_ |£‘:F (2, 20)

Pie). (2.115)

st, let us note that (rl lnﬁ“"-’"'i*lil>, the matrix element of the operator for

tion around the z-axis through an angle 8 (2, z,), is given by (see Appendix B

details)

(rl |[!'%H{:'I°JL' | 'F'J_> =& (r, (0(z,25)) = 7.) , (2.116)
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where

r(0(2,2) = (2(0(z,2)) , ¥(0(z2,2)))

x(0(z,2,)) B cosf (z,2,) —sinf (z, 2,) % .
( wif(z 2,)) ) a ( sinf (z,2,) cosf(z, z,) ) ( u ) ) (2.117)
Substituting the result of (2.116) in (2.115), we get

G (P Lz o Za) = eimi:_*"]’Qp (rulfizims))izmrue) (2.118)
where

Ep {TJ_ (H {2, Z“” 15T n. zu} — (rl {H {:1 sz} |Qp {21 En][TJ_.u> [2'11[]:]
;:'ih.the Green's function corresponding to the time-dependent-oscillator-like [Hamil-
tonian H,,.

In the classical case the paraxial transfer map could be neatly expressed in terms
of the two linearly independent solutions to the classical equations of motion gov-
erned by the paraxial Hamiltonian. Likewise it is possible to derive the exact ex-
pressions for the paraxial transfer operator and the Green's lunetion in this case
teo. This is possible due to a general result valid for any time-dependent quadratic
infinite series in (2.72) completely by summing it exactly. In the present case, note

that this is possible because of the Lie algebraic structure generated by the three

operator L:_fp (z,2,) and the Green's function Gplry(0(z,2)), z; T e 2g), Are given

'_ Appendix F. The results are

U, (2,2)

—oxnd L[ 2lzn) \[h(a) .,
- { h (Si"?(z,zn})[ 2y T+

] ; B .
+7 (0 (2020) = Wy (2,20)) (e - By 4+ By 7))
1
—5P0g) (2,2) rf]} (2:120)
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Qp (ro(0(z, Zo)) 2 1.5 26)
1 33
- i)tuflp {J-.'-. En} o {Auhp [21 Euj [ﬂp [f. 3::.] ri,u
10Ty (0(2,2)) -L—h._:_ [z,zﬂ}rf_} } .
if hy(z,2,) #0 (2.121)
E]? (rl {:H {31 Zb}} 15T Lo z’n]
s 1 o {ngp ["f u) }
Yo (z- Za) o J‘UF;- {* zﬂ}
xaz {TJ_,H —F) {g{‘”l "v]} (’lgp {31' Z:l”
iF hpdz2) =8, (2.122)
wherp
cosig (2, 2,) = —; (gpl:z.zn] + .-':;_ (z, z,.}) i (2.123)

with g, (2, 24) and hy, (2, 2,) as two linearly independent solutions of either (i or y)
component of the equation

ri(z) + Flz)r(z) =0,

(2.124)
satislying the initial conditions
r (200 20) = My (200 20) = 1, Ty (20, 20) = g, (20, 20) = 0, (2.125)
nd the relation
w22 By (2020) = My (2,20) 0 (2,20) = 1, forany 2> 2. (2.126)

Now, using the relations in (2.114)-(2.122), we get

1!:{rlr }

gl1lzal

o o) . 2
lluhp 2,2,) jri'2r., gl {.l.uhp (2, 20) [5"5t (2, 24)7 Lo




Ciarren 11 Sealar tfwu:ry of chargﬂtlvpnﬂivjc beam optics a6

—2ry -1y (0 (=, :u”] }ﬂ'-‘ (i)

h o
with v (z,2) = i—: [{z — Zp) 4+ M '2‘

2hy (=, 2;)
if hy{z,2,) £0 (2.127)
pivels.za)
Yiriz) = mﬂ" (ro(8(2,2)) Jgp(2 20) . 25) .
g 2o
with 5 (z,2) = — l(a — o) + fg’:.[;‘ z.,}ﬁ rf] .
if hy(z,2,) =0, (2.128)

tepresenting the well-known general law of propagation of the paraxial beam wave-

function in the case of a round magnetic lens [4, 41, 42]. Tt may just be mentioned
that equation (2.127) is the basis for the development of Fourier transform tech-
niques in the theory of electron optical imaging process (for details, see [1]).

IT by (2, z,) vanishes at, say, z = z,, i.e., My (2, 20) = 0, then, we can write

1
birgpa) = el (g (3)/M, 2)
with M =g,(2,25), 0 =0[z,2)
2'1 [ (] )
~a (2, 20) = ?_ [z — 20 4 o (zza) el /2M] (2020)

l (ry 2))* = M,_, e (e ()M, 2] (2.130)
his demonstrates that the plane at z;, where hy (2, 2,) vanishes, is the image plane
and the intensity distribution at the object plane is reproduced exactly at the image

plane with the magnification M = g, (2, z,) and the rotation throngh an angle

1

rr{:,-,z.,}:fx"'d:ﬂ'[:}
- 8 g, o
= !uf dz B(z) = oy f dz B(z). (2.141)

As is well-known, the general phenomenon of Larmor precession of any charpged-

particle in a magnetic field is responsible for this image rotation obtained in a single

gtage electron optical imaging using a round magnetic lens.
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Sinee Hy,;, is hermitian the corresponding transfer operator will be unitary, Con-
el g i 3

‘sequently, in this case, the total intensity of the beam at any plane 15 a conserved

: 1 .
[t = 5 [ @)/ )

Af?
17 -
= H'E /d‘riflj} ||;'r [rl—.i{ﬂ]fﬂlry ;,“”- .
1
= 7 ) o W (ria/Mz)P

- / Bro 10 (7o oz (2.132)

We shall assume the strength of the lens field, or the value of B(z), to be such that
he first zero of hy (z,2,) isat 2 = z; > z,. Then, as we shall see below, M is negative
should be in the case of a convergent lens forming a real inverted image,

S0 far, we have luoked al imaging by paraxial beam from the point of view of the
‘ rodinger picture. Let us now look at this single stage Gaussian imaging nsing

e Heisenberg picture, ie., through the transfer maps () (o) (P M (2)) —3

(ri) (2). (p.) (z)). Using primarily (2.78) we get,

(ri)(2)

= (W2} [0} (220 P10, (2020)] vr(20))

- <‘J’-'[3n] {...‘{pt (2, 2,) o7k Mezatley,
xﬂintr,rn!f.,ﬁp I:E. zn]l U’{;—.})

= (?HE.,} f"ia“""“‘”ﬁ; (z.2) 7y

x[1, (2, 25) ekl | (20))
= (W(zo) e KOs (g (3 2y,
iy (2, 20) P fpo) R0 )
= (¥(20) lgp (7, 20) T L(—0 (2, 2))
Fhy (2,20) P (—0(2)) /po] ¥(20))

= Op (2, 20) (T L(—0 (2, 2))) (25)
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+hy (2,20) (P (=0 (2, 20))) (20) /10 (2.133)
with
(ra(=0(2,2,)) (20)
= (cos# (z,2,) (z)(2,) + sind (z,2¢) {1)¥{25)
—sind (2, 20) () (z4) + €050 (=, 20) (4)(za))
(P (~(2.20))) (20)
= (cost (2, 20) (pz) (20) + sind (2, =) (1) (20)
—sinf (2, 2) (pe) (20) + 080 (2,20) (py) (20)) . (2.134)

Similarly, we have

() (2) = pogy (2, 20) (1(=0 (2, 2,))) (20)
+h, (2, 20) (P (=0 (2, 2,))) (20) - (2.135)

At the image plane at = = 2, where h, (5, 2,) = 0, the above transfer maps

{rﬂ{zi} = A {T‘_Ll:—'t'”} [En,}
P () = pogy (21 20) (ro(=0) (20) + (P (=) (za)/M,  (2.136)

)

7 is given in (2.131), M = g,(z,2,) and 1/M = (2, 25). The above

() = [ e e,z
1 ;
= 3 [ Ll e @)/M, )
= M [ drars o =9) 6 (rio20)P

= M(ry(-0)) (z)- (2.137)
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Let us now see how (ri)(z) and (p ) (z) evolve along the z-axis. Since

5:Up(22) = —2HU, (2,2)
a - % :
S0l (za) = éu; (2,2,) H, (2.138)
it follows that
d i 4 . : .
S r) () = %{wzﬂ] 10 (2, 2) [Fagy v ] O (2, 2) b(z))  (2.139)

d i : T I
2 P = 5 (Wla0) [OF (2, 20) [Fop 1] Oy (2020)| 0(20)) . (2.140)
Explicitly, these equations of motion (2.139) and (2.140), becorme

(z)(z) (r)(z)
o (W) (=) = 1(2) (1) (=)
dz | (p:) (2)/po (p:) (2)/mo

(m) (2) /1o (py) (2) /1o
7(2) = [2(z) + pl2)] (2.141)

0 0 10
B 0 0 0 1
2{z) = (-F{.:] 0 00 ]
| 0 -F(z) 0o 0
(2.142)

0 0z 0 0
I A 0 0 ,
nlz) = ( 0 0 0 ﬂ,{:}) S (2,143

0 0 —0(z) 0
Note that T(z) and p(z) commute with each other as a result of Lhe rotational
symmetry of the system about the z-axis. As a consequence, we can wrile Lhe

solution for (2.111) as

o s
” < . .y H Zn
{(vr}{z}fﬁ-] = Blzz) {P:}{zn}fpu)

{}’y} (z}/1o (Py}[zn]ffiu
Tol2,20) = Tz, 2)R(z2,) = Rz, 2e)T (2, 2) (2.144)

ER{Z' %) = pl2)R{(z.25), R(z, ) =1 (2.145)
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1
.:_;;‘ F{E‘:“‘:’ = E{E}Iptz'r zl"}T Iptzmzn] = Jrq {21"‘15]

and Tis the 4 % 4 identity matrix.

Equation (2.145) can be readily integrated to give

cosl (z,z,) sinf(z, z,) 0 ]
oy | —sinf(z,z) cosf(z, 2,) 0 i}
Rlz z) = 0 0 cosfl (z,z,) sinfl(z,z,) (2:14%)
0 0 —sinf (z,z,) cosf (z, z,)

Uf we now go Lo a rotated coordinate system such that we can write

G0y
¥z o (z) ‘
(p:) (2) J =R{z, z,) (Pe)(2) J : (2.148)
) (2) (Py)(2)

with (X, V) and (Py, Py) respectively as the components of position and momentum

Jin the new coordinate frame, then equation (2.144) takes the form

f{ﬂi?ﬂ (-T}{zu)}

W) | e o ..
(PxMz)m | T,z %) (Px}zo) /10 ) | o
{P'l'){:}fpﬂ {Ir‘r'}[:n]frf’ﬁ
Note that zyz and XYz frames coincide at the object plane (z = 2,). Then,

e equations: of motion for (Ri)(2) = ((¥)(=),(")(z)) and (PL)(s) =
Px’}{z}_, (M )(2)) become

i( Rk ):( o )( ek ) (2.150)
dz {Pl}{:}fpu —‘P[z} §] <PL} [::].l".”n . Ly

From (2.150) it follows that

& [ (Ry)(2) _( —F(z) 0 ) (R,)(2) .
z? ( (P} (z)/po ) "\ =F(2) -F(2) ( (P (2)/10 ) : (2.151)

(Ry)"(z) + F(2){Ru)(z) =0 (2.152)

C(PY(2) + FRRYE) + LR P @ =0 (215
P o
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pendent of (2.152) since it is just the consequence of the relation

d 1 =
E{R‘L}{z]=p_n{PlHZ} (2.154)

(see (2.150)), and a solution for (R.) (2) yields a solution for (P,)(z).

- Equation (2.150) suggests that, due to its linearity, we can write its solution, in
B8

( () (z) ) = ( gp (2, 20) hy (2, 25) ) ( (Ry)(z.) ) (2.155)
(P} (2)/po 9p (z:20) hy (2, 2,) (Pi)(z)/po ]

Wwhere, as already mentioned above, the second relation follows from the first as-

sumption in view of the first relation of (2.150), namely, LR (2) =(P}) (z)/po.
Substituting the first relation of (2.155) in (2.152) it follows from the independence

{Rﬂ (zo) and (P ) (z,) that

95 20) + Fl2)gp (2,22) =0, Wiz, 2) + F(2)hy (2, 5) = 0. (2.156)
Bince at z = z, the matrix in (2.155) should become identity we get the initial
gonditions for g, (z, 2,) and h, (z, 2,) as

Gl 2a: 20) = h:,f:.,. ) =1, Mz, %)= Go(Zay 24) = 0. (2.157)

I other words, g,(z,2,) and hy (2, 2,) are two linearly independent solutions of
tither (X or V') component of (2.152) subject to the initial conditions in (2.157).
from the constancy of the Wronskian of any pair of independent solutions of a

second order differential equation of the type in (2.152) we get

-UF {z? :‘3‘} h;l {:' zﬂ} = hp {31 :n} g;: [:! 2"_-,}
= p(20, 20 ) By (20, 20) — Pipl20s 20) 40200 20) = 1,

for any 2> z,. (2.158)

40 1A
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Thus, it is seen that the solutions of (2.124), 99 (2,20) and Ny, (z,2,), contained
in (2.120)-(2.122), (2.127) and (2.128) can be obtained by integrating (2.150). Note
that we can formally integrate (2.150) by applying the formula in (2.67) n view
:;;, the analogy between (2.60) and (2.150): the matrix in (2.155) can be obtained
using (2.67) by replacing (—i?{ﬂ) by the matrix in (2.150). The result obtained

BIVES g, (2, 2,) and hy, (2, 2,) as infinite series expressions in terms of F(z). Then,

g (2:2) 0 hy(zz) 0
T U Iplz %) 0 Iy, (2, %) .
Lyl ) = g;, Z,2,) 0 hi (24 2a) { ' (2.159)

0 9p(2,2,) 0 b, (2, 20)
d R(z,2,) as given by (2.147), (2.144) is seen to be the matrix form of (2.133)-

(2135). This establishes the correspondence between the transfor operators in the
Schridinger picture and the transfer matrices in the Heisenberg picture -

‘I,I;.I'ﬂf*-?h}i-r —y Rnazﬂ], ﬂp[z.zn] —F IF{ETE"}

U, (2,2,) = nini:.rn:f,.r_}r{:.%}__*?;{:rz"}
= Rz, z2)T,(2 20) = Tplz, 20)R(2, 20) (2.160)

Explicitly,

dp (2, 20)

f ] dzF(z)
f f dz, I l,’._:}lf rfz./ dzF(z) —...
{ ~1:|"j dzy 1/’" d2gsi- 2 F (205-9)

Ein—3 Fln—
/ tlzg, 3[ dzz,.- Jr{ﬁin 1)

f .rn.[ i F[z]} (2.161)

= (2 —z,) —jd[ dziF (z) (21 — 2,)
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+f: ilzy /:l dz3F (z3)

x/_::] dzs j:! dzyF (21) (zy —25) — ...

dn-| 'u:? 2
123, _ {29 3F (22 -3) . . .
X_/ f:uzL 2y 3 (22, _3)
B | 3
, x[ u.rzz[ dz.F{zl}[zl—zn}}+,,, (2.162)

E;"J {E! zﬁ]

== [[aF) + [ daF (2) [ dn [ derz)
= {[—1}"*I£rizgnF{Ez.:}

iZn Ein—1
xf rfam.._1j d2gn-2F (220-2) . ..

™ Ta

S
x / d:.fh rszl_::j} e (2.163)
he, (25 2,)
=1- j:; d28 {2,) (21 = 20)
+£'frsﬁf?{zﬂf: s f’ A2 P (20) (21 — 20) — ..
{1 [ dzan 1 F ()
x/:"_Irfzzu__;-jl:h"ri:g.. aF (Fn_a). ..
i r!':;[z,u':;f’[z;][':; < :t.]} — (2.164)

Lis casy Lo verify directly that these expressions for g, (2, 2,) and hy, (2, 2,) satisly

e equations (2.156) and (2.157).

_I ¢ transfer operator defined by (2.66)-(2.69) (or (2.70)- (2.72)) Is an ordered

oduct of the transfer operators for successive infinitesimal distances from the initial
point to the final point, an expression of the Huygens principle in operator form,

ence it can be written as an ordered product of transfer operators for successive

ite distances covering the entire distance from the initial point to the final point.
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Thus, we can write

'E:-'rp (2; znj == L:fJ'J'.p (= -3'::' {"TL,p [3“ EI} Efﬂ,;r [ZI 2a)

with 2,2 5, 2% = (2.165)

i ere D refers to the drift in the field-free space and L refers to the propagation

through the lens field. Consequently, one has

Urf[l"l.z:]
=fff2rrfdzflfd?r=:0ri.p {7‘1;3;?‘1;- )

XL (Pl Zei 100 2)

XGILF {?" LIy 2T oy '?:u:] y [rJ. o ;-'n] ! |:2 | (1'[5}

the direct product notation for inatrices,

by by
{\@ B = 1y ﬂm), 1" u)
A® (ﬂzl AL @ bay by
. iy apbe by ayzbya

by apbn by agahe 9167
- i ! I by | {2107
iyl gty by Az

myibyy  ag by amby  apby

e correspondence in (2.160) becomes, with =, < 2, 2 > 2,

{‘rp[315;::’ — p{z12|>}R{H{31‘7¢“=Ip[.3-3u:]R['”

. (lef'-'.-':..] hy (2, 24)

g (2,20) I (2, 2) ) @ 1) (2.168)

- wsd sind 5 ; .
e [T(10) = ( _{:;::ﬂ ?::: :_,J, ) v =0(z,2,) = 0(z,z). Since £(z) = 1) outside

lens region, we have, from cquations (2.161) (2.164),

. l 2 — 25 .
D5 (31i3) — Ipiftn‘-zu}?ﬂﬁ'ifl-*nﬂz(u B )m

EID.FEI,ETJ ==} Ip{z.zrjni:ﬂ[sz”:({]j 2—3;)@1
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‘with 1 as the 2 x 2 identity matrix. For the lens region

Upplzeiz) — Ty (20 2) R (0 (20, 2)) = T (26, 21) R(D)

= HF1L h#.L .IT 1} L8 s
(9:;11. ‘,I;IL)E\ (1], (2.170)

with Gp.l. = Up (zev 2}y hFrL = h‘.p (zr,21), g;;‘L = y; (z,2) |==z1_1 'FI:J,L — h;} {z,2) |:=:T .

Then, substituting equations (2.169)-(2.170) in (2.165) we get the identity

T (2, 2)
= ( n (2, 2) hF{E- o

gelzid) Mz

; ) ® R(1)

(2 _Eﬂ:'.‘?p,l.
Tp b+ [z . zr}!-’;r,j; +(z— z) [zl — ) ﬂ;.L
= Hhpr +(z—z) by, @ Ry, (2.171)

H;-.,L {21 — 2s) g::r.f.- + h;r.L

I -{zl Iy 5-:-} Gp.L + {3i _'3:] {2| B zu} H;:J, + hn.f- + {Ei N 2,} h:r,f_. =D. {EJTE}

[we now substitute

hle= ] ey
A=z =u-— FJ; 1 & — Ty =1 — .r."_";r‘;__. : [EIT.”
il Int
ien equation (2.172) becomes the familiar lens equation
l 1 1
w v J (2.174)
1Lk '__F_Im focal length [ given by
1
J Sy (2.175)
-qp..',

nation (2.173) shows that the principal planes from which the ohject distance

and the image distance (v) are to be measured in the case of a thick lens are
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P, = a+to— =g+ f(1-h,)
L
-1
& = Zl-ip'r'l'.—=zr_f“_ﬂp,l.} . (2.176)
p.1.

explicit expression for the focal length is now obtained from (2.163) and (2.175):

} = f:'sz[z}vj;:rring{zg]/::dz.jjicsz{z}—i—,..

= L ["a8:
4p3 2 z I‘lj

4
[ B ) [ [ e
mpgfz. dzy B (22}/1 da [ dz Ba)+....

I

(2.177)
understand the behaviour of the above expression (2.177) for the focal length,
et us consider the idealized model in which B(z) = B = constant in the lens region
-*ﬁ"qutsi(ln. Then 1/f = (qB/2ps) sin (qBw /2py) where w = (2, — %) is the width,
hickness, of the lens. This shows that the focal length is always nonnegative to
fart with and is then periodic with respect to the variation of the field strenghh.
[hus, the round magnetic lens is convergent up to a certain strength of the field
yond which it belongs to the class of divergent lenses though this terminology

never used due to the fact that the divergent character is really the result of

To(z,20) = ( —‘;“,‘ff 1;:” ) ® (1), M=-v/u, (2.178)

5 seen by simplifying (2.171) for z = z; using equations (2.172)(2.175). Note
our notation both u and v are positive and M is negative indicating the

ted nature of the image as should be in the ease of imaging by a convergent
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lens. Another observation is in order. When the object is moved to —oo, i.e

1w —+ oo, vis just f. Henee, the focus is situated at

zr=zp+ [ =2+ fopr- (2.179)

Now, with the object situated at any =, < z the transfer matrix from the object
plane to the back [ocal plane becomes

0
ez =( % !

_1 ) @ R(17), (2.180)
I

u
I
seen by substituting z = = in (2.171) and simplifving using (2.173). (2.175) and
"1_?9}. The corresponding wave transfer relation in (2.127) shows that, apart from
unimportant phase factor and constant multiplicative factor, the wavefunetion in the
.' focal plane is equal to an inverse Fourier transform of the object wavefunction
< 2 (see [5] for more details).

~ Let us now consider the lens field to be weak such that

f'fsz{;}-:gun-, W= — g (2.181)

Note that [z F7(z) has the dimension of reciprocal length and for the weak lens it
i considered to be very small compared to the reciprocal of the characteristic length
of the lens, namely, its width. In such a case, the formula for the focal length (2.177)

an be approximated to give

l o " o . Y 3
7 x/ dz F(z) = %‘-{ dz B*(z) = %}5 dz % (2) (2.182)
2 £ x ] — o

thich, first derived by Busch [43, 44], is known as Busch's formula for a thin axially
ymmetric magnetic lens (see [1], Chapters 16-17 for details on the classical theory
il paraxial, or Gaussian, optics of rotationally syiumetric electron lenses). A weak

ig said to Le thin since in this case

f>»uw (2.183)
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35 seen from equations (2.181) and (2.182).

For the thin lens the transfer matrix can be approximated as

Tolz: 20) = Tpre(2, %)

_ X e [Z“zﬂ} )
- ok —1le—2)z=2) | o pi)
< =3 (op - 20
1 z—:z 1 0 1 zp — za
=((a37) (4 3) (o 7i))ene
s with zp = -i (z1+2) . (2.184)

‘In this ease the two prineipal planes collapse into a single principal plane at the
er of the lens. If imaging oceurs at = = z for a given 2, then u = 2p - 2, and
U=z — zp satisfy the lens equation 1 + 1 = }-, and the transfer matrix from the

_'e{:t. plane to the image plane becomes

( _J:il"f l;lﬂj )@H{Tﬂf with M = —uv/u. {2135}

i the structure of the transfer matrix in (2.184) it is clear that apart from
totation and drifts through field-free regions in the front and back of the lens the

effect of a thin lens is essentially described by the transfer matrix

1 -0 g
( BT ) (2.186)

yhich, as seen from (2.128), corresponds to multiplication of the wavelunetion by
.'._ 3 o ! : _im i N . I .
e phase factor t.xp( ,x.,,r"'l] as is well-known.

o far we have discussed the application of our formalism to the paraxial case.

proximation. The beam-optical Hamiltonian in (2.62) is of order four in (ry,p,).
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The procedure we adopted to obtain (2.62) can be used to derive the beam-optical

Hamiltonian to any order of accuracy. Let #H, be the beam-optical Hamiltonian to

desired order of accuracy say, n. We write H,, as,

?'}:r:- - I:In,p‘i'ﬂﬂ,n

(2.187)

Hoa = H,,+ HM (2.188)

I:Ia:l'_.u. = z I:In.{m] [2139}
m=3

where ﬁ.,,,, governs the paraxial behaviour. H, o glves nise to deviations [rom the
paraxial behaviour. Ho is the hermitian Hamiltonian of order three or more. Ho),
'ii: general, is a sum of hermitian and antibermitian expressions with explicit Ag-
ﬂﬁpnndenk terms of all possible orders (up to n), including linear and parasial,
ﬂ, (m) are homogeneous polynomials of degree m in (v, p, ). We shall be treating
;__l nonparaxial terms as aberrations irrespective of their type. 1t is to be noted that
in the geometrical optics limit (Ag — 0) H\%) vanishes and H,,,,; reproduces the

classical counterpart ). As in the classical case we shall resort to the interaction

picture for studying the aberrations.

We are seeking the solutions of

Hol(2))

d
. i
ih - lu(z)

Ho = Hop+ Hoa, (2.190)

() = Tz 2)|¢(20)},

where T (z,,2,) =T (2.191)

iﬁ%’f’[z, z) = HT(z %) (2.192)
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and
g N
Iﬁ.af,p (i) = Wapl(zz) (2.193)
Let
(=) = Uy (2, 2) [¥"(2)) (2.194)
s0 that equation (2.190) becomes
RN I
iho-li(z)) = ih o {0 (2. 2,) |,;-,r[z}}}
o B
{(Jﬁa—;Up{z, zn}) + 0, (2, 20) 1-’1—} [ (2))
= {I:In,p'[;rp (z,20) + Up (2 20) ih; } Id’ria”
- - i
Ho, i (2)) + Uy (2, 2,) iha[w*{z}} . (2.195)

From (2.190) and (2.195), we get

D - f— W)
I-ﬁf}_z |*JIIJ'II{Z}} = HJI {31- En] (‘Hn o Hn.P) “Jl [zi ‘:n} ur'lil{z]}

M0 (2), (2.196)

Hoalz) = U3 (2,20) Hoal(2) Up (2, 20) (2.197)

where the superscript [ denotes the so-called interaction picture,

Integrating (2.196), we have

W' (2)) = T (21 20) 9" (20)) (2.198)

Fliaez)= p{e\p (—};f: n‘z?{iﬂ{a])} , (2.199)

Z:.-__'._.'u equations (2.194) and (2.198) we have

Tz %) = U} (2, 20) T2, 2) 0, (2, 20) (2.200)
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generalizing the paraxial law by including the aberrations. It is to be noted that

T'(2,2,) has to be evaluated to an order consistent with the evaluation of the beam-

optical Hamiltonian. To the desired order, the transfer maps become

(ri)(z) = (vf"f?i-,r; ,..J_{}p-j*l} (z.)
(p.) (2)

(2.201)

('f'”fﬁ!;‘:ﬂ;}.'f") (20) - (2.202)

Let us first consider the case of the magnetic round lens. We will approximate

beam-optical Hamiltonian by dropping the Ag-dependent terms, and retain on v

e leading order contributions to aberrations. Thus,

o B =N, 1R, (2.203)

and the corresponding transfer operator ‘f"{ 2, 2p) is now unitary
. i r* -
Ol (2,20) = ;J{P:{p ('I*If:. s PIMJ{;])} ,

- -,{-lf,m‘{’ ~}} to order four (2,204
= ‘etpy=z |y stz o order fonr (2.204)

re we have disregarded all the commutator terins in the formmla for {7 sines they
tad Lo polynomials of degree higher than four in (71, 0,).

Using the result

Ul R

I':“ ] |'_"|r if h ) iy
o e P =1 % 0 |@REO)| . 2.205
Uy (Pe/po) Uy ( g h (@) pe/ i (#:205)
U; (Py/10) L, Pyl o

Bee (2.133) (2.135)), with {1, = Up(z.20), g = op(z2), b= hy(z2,2), ¢

k2, 20), W' = I (z,2,) and 0 = 6(z2,2,), and (2.103) and (2.204), we find, after

pasiderable but straightforward algebra, that
%y it
Uiy lz:22) = exp _ET“] (2, 2o)

i1 .
= HP{LE [EC{sznjpi
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1
+—K(z,2,) {029, - -

7 | ‘ﬂ}{pl PyTt+ry Fi}

1 i
t 'Ektzf En}pJE_L:

P

1 . = 0
+EA{Z1 ) (B -Titr Py

1 _ o
+2—P-uﬂf3- %) (Py-7Py+71-p,) L,

3 ‘ ‘
o Fle ) (P2 +rip})

1 . . r
+ED[2" z) {pL S e o -pl,rf}
+dEZ, zh]rjz_i:

+%E{z. zu}rj]} ; (2.206)

where {A, ) = AB + BA and

Clz,2) = 2 ] dz {(o" ~ aa”) K* + 202W7H7 4 1)

"
l"l'Ii — xir

K(z,2,) = u':: gh + a®(gh)'hih' + y’h”}

)
{ )
e - f {(w—w) = o
(z,2) = r { )
=4
dz |
dz {

a’h? 4 2otgg'hlt’ + = w"’]
I
—a - n3) gh — r_t_q'h'}

ol — rm") g'h? + o? (y"’h’? + g""h”) Fogth™ 4 'E.nr“}

1

(
(HI — aa”
(
(

a' —aa") g'h + a’gy (al)' + o™ W ]

")
- i ) o)
b1 B 2
= 5/- : {(a* - aa") g' + 20g%" _r;“‘}. (2.207)
From (2.194) and (2.198), we have
|"-':-'{-’-]} - ﬂp L2: 20 {1} (2. 20) [¥1(2a)) (2.208)

lich represents the generalization of the paraxial propagation law in (2.127), cor-

sponding to the inclusion of the lowest order aberrations. Now, the transfor map
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becomes
(rd (2) = (UggOfr G0 (20) (2.209)
(pl }i-"] (2) = ( |[‘I-|;’r-Ir plf_‘fr,{']'{‘*_:o (2o} (2.2101)

;ﬁh ﬂ{r-i} = {:F{I-i} (z,20) and (.. Mz) = (¥(za)]...|¥(20)). The subseript (3) indi-

ates that the correction to the paraxial (or, first-order) result incorporated involves

ip o third order polynomials in (i py)- Explicitly,

AN

na(z) - g h
(px)mlz)/po | — (( g K ) @ ”Eﬁ})
(I’y){aﬂc‘-’],"’pu

éLHIUmg (%0)
>

U,ni{L )7 (Zo)
[{“f’r i1} (za)/pa
':rr"q:-” U:-n (20)/Po
{:r};,{z} (Ax)m(2)
_ (W)alz) 4 (Ay)ay (=)
Pe)pl2) /10 (Apz ) (2} po
(Py)p(2) /10 (Apy )i (2) /1

(2.211)

iere Lhe geometrical aberrations, or the deviations from the paraxial results, are

(Ax) (=)
(Ay)y(=) = a h
{‘ﬁI’r][ﬂj[EJhJ” - (( Hi h )E‘ H{ﬂ])
(Apy)ia(2)/po
( h ‘i-:-n )(Zn} \

|

[T o] e
(i [T 2] ) Corrm
(4 s,




(CuapTER 11 Sealar L||{!.ur5r of c]mrgml- partit:!e beam optics e

(2.212)

involving expectation values of homogeneous third order polynemials in (r,p,).
:":enl:e the subscript (3) for (Ax)(2), (Ay)m(2), ete., and the name third order
“aberrations. Note that, here, we are retaining only the single commutator terms in
the application of the formula in (1.78) to compute [}ta;::ﬂ[f”. f'.-"‘ﬂgy[‘a'{{,}. ete., since
the remaining multiple commutator terms lead to polynomials in (r . p ) which are
only of degree > 5 and are to be ignored in order to be consistent with the [act that
we have retained only terms up to fourth order in (r,p,) in the Hamiltonian and
. Aransfer operator [/,

1 '[j'b"."iﬂlisly._, the plane at which the influence of aberrations is to he known is the

image plane at z = 2, :

E'I;{a][f?i}
(=) - M 0 ?
e ()im | (( ~1/f 1M ) ® 1 ”)
{FH}EEJ{E-]!‘I‘L}
E.r;{zn] {vf:rjlr;”:;:,,_}
U za) 4 (du) il za) ——
)z | | Gpdmtza) i || B2
{Fv)[zt-”f‘[l [’if’uh.‘l][:u]'frﬂll

Br)m(z) = Co(pep?) (20)/m
+h‘<%{;},,j}_l-n_ Froopg)
+:—!{rrﬁf]>(2u];’vﬁ
tk ({e L) = 5 {u, 52)) Gk
+A (% {x,p,-7ri47y ~fu}> (o) /0
+n(%{:, L.}

—% {yiPy-ritrye fn}> (20) /Py
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+F<%{ Pz r1}>i )/ Pa

+D(:rrl>{zn]

—~d (yr?) (z)

(W) w(z) = C(pp?) (2)/p}
+I{<%{ﬁ,.ﬁi~n+fl‘f}ﬂ
+% {v, ﬁf}) (20)/p5
tk (B B} + 5 {2, 52)) (i
+A (G bt )Y G/
va(z{v. L)
-,1{:.iwl-n+n-iq'r>{:n}a’m
+J’*(I {py. 7 })(rnlfﬂu
+D (yr?) (z,)
b (ar) ()

(Bp)mlze) = —K (p:pl) (20)/p
~k (pyp? ) (20)/13
~A(5 ey by D)) () /g
—a(% {pe. L.}
+${,-5",;‘;L-rl+n*ﬁi}>hn}!m
P {54z 82)) ()
—D( {pe 11}
+§{r.ﬁl-fu +n-13l}>|:2u]

-—d({r, L,] + % {ﬁy ; rf]> (26)

T

(2.214)

(2.215)
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~Epo (zr}) (z) (2.216)

(P (20) = ~K (pp?) (20)/1}
+k (papl ) (=0)/ 1}
~A(3 4By Bue b pa)) (/o
~a <%{py A
b B ri B ) (o)
—FG {Lﬂ})(%)fﬂu
-(3{nr1)
+% {y.P-Ti+1) -de) (z0)

—ﬂ’({y. L.} - ; {p=. rf}> (20)

~Epo (ur) () (2.217)

{:".' E-'_'{"?‘ii‘?ll}l ".{ = ‘h::.:h :ﬂ]l k == k{zh :u}-

A

4‘1[:1,2..,,], = n‘{rh:u}r F = I'{%, %),

D = Nauz), d=dizz), E= E(z,z,)- (2.218)

With reference to the aberrations of position (see (2.214) and (2.215)) constants

i-»." k,A,a, F, D and d are known as the aberration coefficients corresponding, re-
pectively, to spherical aberration, coma, anisotropic coma, astigmatism, anisotropic
sligmatism, curvature of field, distortion and anisotropic distortion (see [1], for a
tailed picture of the effects of these geometrical aberrations on the quality of
8 image and the classical methods of computation of these aberrations; see Xi-
{S,t’i1 37 for a treatment of the classical theory of geometrical aberrations using
n, momentum and the Hamiltonian equations of motion). The gradient aber-

 (see (2.216) and (2.217)) do not affect the single-stage image but should be
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-1

= |

taken into account as the lput to the next stage when the leps forms a part of a

complex imaging system.

It is interesting to note the following symmetry of the nine aberration coeffi-

cients : under the exchange g +— h,

the coeflicients transform as C, +— E,

K D ko d, A +— F, and a remains invariant. To see the connection

A t— F we have to use the relation gh' — hg' = 1.

AIntroducing the notations

u=1zx+iy, v=(p:+1ip,) /pg, (2.219)
e above transfer maps can be written in a compact matrix form (see [1], Chap-

r 27, for the aberration matrices in the classical context) as follows:

(('f}m(zs]) : .--"'( Mo
(v (2) =y
wil -1 0 @ 2K 2 F
01 k=K ia-24 =4 id-p
D+id 24+ia —-a K 4+ ik
~-E =20 24 -F
[ (u)(z,) \
()(z0)
{l-‘l‘.’ll-'}[.:"J

(1v, u'v + o'y Mz)
:{L' ulv — u'u}){:“}
:_1!{[?___+ u1u}}[zu] : (2.22())

(' u)(z,)

({u, vhu +ulo}y(z,)
(fu, vlu — uty Hza)

o= s

s

|— i

-

\ o s{w vtz

et us now look at the wavelunetion in the image plane. We have

Ylriz) = fri“r.,fu[zr“’ (14|05 (21, 20) ry')

b 4 (1’“}_} |EI{J“ [Z'” zu}| rL,n} ul-'{ri.m zn]
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1 ir.rrF]"_J-
B Ve WY
% fd?rnfd?r“l&? (r = ro()/00)
< iy [f (4] (i, 2o)
| Ty 5
- M E"‘"( ,xﬂfﬂ..r)
fur ro (ros(0)/M 0 (21 20)| 70)

X1y 0 Z) - (2.221)

rJ_,n E"{"L,m zn}

v : P.]]

there are no aberrations < ry (9 /M ‘E‘._.-’{’,” (zi, zq)

rJ_,r|>

= 0" (10— r14(?/M) and hence one has the stigmatic imaging as seen earlier,

It is clear from 2.221 that when aberrations are present the resultant intensity dis-

Usually, l‘f{ﬂ} is approximated by keeping only the most dominant aberration
, namely, the spherical aberration term which is independent of the position
of the object-point, An important result to be recalled in this connection is the
Seherzer's theorem [45, 46) which shows that the spherieal aberration coefficiont C
18 always positive and cannot be reduced below some minimum value governed by

practical limitations,

By approximating H,, by (H,,,, + Hn“,J we have only included the leading order

gantributions from H) which are of order A We can believe that the effects of
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aberration cocficients. For example, the modified spherical aberration coefficient

turns out he

Ad
(& E[ dz { ﬂ — fuck )h —i— [urr VPN + 202K R —|—f1”} . (2.222)

Since the nonclassical \p-dependent contribution to €, is very small compared to the
dominant classical part Scherzer's theorem should not be affected though the above

mentioned minimum value may change a little from the quantum contributions.

2.2.3 Magnetic Quadrupole Lens

In this case, we have

B = {_fclm.!lrz_QrHT?n] 1
B constant in the lens region (z < z < z,) .
Qm = { 0 outside the lens region (2 < 2,z > %) (2.223)
torresponding to the vector potential
] —t 1 )y
e (u,n, 5@ (+ — )) | (2.224)

Since there is no electric field in the Jens region we can take ¢(r) = 0. Then,

from (2.62) the optical Hamiltonian 7, is obtained as

Ho = —potHoy+ Hyqy+ HW (2.225)
oy = 5t = 54@n (5 - 1) (2.226)
H,., ~ E;Iﬂ“ (2.227)
HM) =~ riz{";; (3” ;33) + AagC (zihz — upy) - (2.228)

47 pg

Since H,; is independent of z, the exact expression for the unitary paraxial transfer

perator can be immediately written down: with Az = (2

_-]
o =i

A . b s 1 ;
Uplz,2,) = phPod exp {_E (E};pi - E:;Qm&z (:r2 - yz]) } ; (2.229)
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Taking 2, < 2 and z > 2, we have

Uslziz) = Upylz, 2) 00 p( 2, 2) Dozt 20)
‘r:}'!}.p{:. Er} e, "‘J\"{z—z.](—m+m :)
ETI-'.pr,zr- II} s _::_H'(—P'.'l'* Tbﬂﬁi_%ll‘qrn[rz—y?}] . ap= {:r o ZIJ

Upplzi2) = “_‘“’( ot g ) (2.230)

analogous to (2.165) in the case of the round lens. The corresponding paraxial

transfer map for (r,.p,) becomes

(x}(2) . (x)(20)
)l | _ v (o) )
= : M za
(1) (2)/po 0 () (za) /10

Ty =Tple = 2)T0 Tplz — 2,)

Ty =Thn(z — 2)TTn(z — z,)
7, — {TEI'IH%I (\/Ii) ;,-Lh_ sinh (-J'Iu)
VI sinh (\J’P-. u') cosh (v"ﬁ ur)

T _'. 08 (v"?-fw) FIEH'EII (ﬁm)
W™ V'K sin (v"rfi: m) Cos (Jﬁ,'_ ur)

- 0n 0 y - 1 o - ’IEJru o
— (“ {] ) . T”[[” = (” |. ) 4 ."’!. _— {22“}

o

Itis readily seen from this map that the lens is divergent (convergent) in the rz-plane
and convergent. (divergent) in uz-plane when K > 0 (K < 0). In other words, a line
eus is produced by the quadrupole lens. In the weak field ease, when w? < /1]
‘that K has the dimension of (length) ?) the lens can be considered as 1 thin

.ifi-lu: with the focal lengths given by

1 1 ; P
fTi = _ﬁ;i = TTH {2,2»..':.3}

i":

idy of deviations from the ideal behaviour (2.231) due 1o H,, and H™) is straight-

biward using the same scheme employed above in the case of the magnetic rovnd

gns and we shall not consider it here.




Sealar l.lmury of chargcd-particlu beam aptics 81

In the field of electron optical technology, for particle energies in the range of

tens or hundreds of kilovolts up to a few megavolts, quadrupole lens are used, if

all, as components in aberration-correcting units for round lenses and in devices

‘required to produce a line focus. Quadrupole lenses are strong focusing

ot -

: their fields
force directly on the electrons, towards or away [rom the axis, whereas in

round magnetic lenses, the focusing force is more indirect, arising from the coupling

between B, and the azimuthal component of the electron velocity. So, it is mainly

igher energies, where round lenses are too weak, the strong focusing quadrupole

enses are exploited to provide the principal focusing field (see [1], for more details)
netic quadrupole lenses are the main components in beam transport systems in

particle accelerators (for details see, e.g., [17] and the recent text books, [3], [48]
‘and references therein).

Axially Symmetric Electrostatic Lens

An electrostatic round lens, with axis along the z-direction, comprises Lthe electric

jeld corresponding to the potential

o il
st = & Jn.,eﬂuﬁ”"*v—l s

#(z) - - .ﬁ"{ )ri+ —ra'"’{ Iri (2.233)

the lens region (2 < = < z,). Outside the lens ¢ = 0.

Using this value of
r)in (2.21) and (2.62), with A

= (0,0,0), the beam-optical Hamiltonian of the
ikes the form,

~po 4+ Hoy + Hy o + HM (2.234)
; 2pg (1 — pl2)) (=)

Jﬁ (142 (1= p(2)) (=)} 32
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1 .
+opo {1+ 2(n— plz)) p(2)) (20(2) — y) u"(2)r]

2
(2,235)
g 1 =
H,, = Q;J}
+—pu{[4 1y - 1] - 2nu(z) + 24u(z) ],u =)
i [r; + 2 r;r - 1] u(z) —6nu(z)* + Jl_ul[:}“l ;;“-’}ri
+—{’:: 2) = n)u'(2) (r2p] +pird) (2.236)
= 2
AP %{?ﬂ{z}—*H#"M{nq’n+fi._'n} (2.237)
E ] ' =
gt o @B (2.238)
tPo 2epy

“The unitary paraxial transfer operator U7, (z, z,) can be obtained as outlined in

Appendix F, in terms of I-I..,F. minus the first term (—pg) which contributes only a

-multiplicative phase factor to the wavelunction. In this case, unlike for the magnetic
tound lens, the coefficient of pt is seen to depend on z. The calculation is straight-
arward and the paraxial transfer map reproduces the well-known elassical results
(see [1]). Here we have just demonstrated that #H, can be brought to the general
for application of the general scheme of calenlation of aberrations employed in
he case of the magnetic round lens.

It may be noted that we have assumed the lens potential ¢(r | 2) to vanish

outside the lens region. In other words, we have considered the unipotential (cinzel)

of the potential on the image side in the definition of ¢(r,, 2).
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'_.:-2.5 Electrostatic Quadrupole Lens

Br) = 30 (),

_— constant in the lens region (2 <z < z,) r
Qe = { 0 outside the lens region (z < 2, z > z,) , (2.239)
nd A = (0,0,0)
Hy = ~To + l:lﬂJ’ + I:I-u.u (2.240)
: 1 1 -
HIJ,J."I' = 21’} I‘J_ -+ EPD??C (.r = ) {3_241]
H,, = ql1ll+ Pﬂ(’i' I){F ( )
Oy
1 i : ¥ SRR L
a1 {pt (= - ") + (= - %) 3} (2.242)
E 4 2 ( .
i Mgl . C= Gt 1 (2:243)
1 T

ing H,, in (2.241) with the H., of the magnetic quadrupole lens (2.226) it is

[ A
)

mmediately scon that a thin electrostatic quadrupole lens, of thickness 1 — Zy— %

=11

s focal lengths given by

I 1 wqQ. (F + mge®) D 914
flo i o pi (2:244)

igain, it is straightforward to study the deviations from the ideal behaviour using

our general scheme.




Chapter 3

Spinor theory of charged-particle

beam optics

.1 Formalism

i this chapter we study the transport of the spin-j particles throngh electromagnetic

» based on the Dirac equation, the basic equation for the spin- 2 particles, taking

ly into account the spinor character of the wavelunction. Such an approach based

| the Dirac equation has been initiated by Jagannathan et of ([8]-[13]). The

meral formalism of the spinor theory will be illustrated through the examples of

ee propagatiion and round and quadrupole magnetic lenses.

Disregarding the anomalous magnetic moment (Lo be taken into aceonnt in Chagp-

£ IV), the quantum mechanics of a particle of mass mg and charge ¢ moving in

static electromagnetic field with potentials (¢(r). A(r)) is governed by the time-

dent Dirac equation, written in the dimensionless form
|

i el ) =t
moc2 Ot \ Wy(r,e) | P (7, 1)
o "l" [T._f] : o lp!‘.[ri ”
Vulr, ) = ( Gar.) ) o Yilryt) = ( Wy (r, 1) )
go(r) -  a-w

HJ'J=.H',F Eu-l"j"[:, Ef_'l: 3t DJ‘J=
Mo LI &

(3.1)
(3.2)

(3.3)
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“:(: T:) ”j:(; _ﬂn)‘ ":'(:l} T)' (4)

where ¥, an ¥, are the upper and lower components of the of the four-component
Dirac spinor W, The Dirac Hamiltonian in the above notation can be seen Lo be

artitioned (apart from the leading term 3) into an ‘even part’ £ and an ‘odd part’

f with the algebraic property
[8.€b] =0, [8,0p] =280 (3.5)

As in the earlier chapters we shall follow the route of transforming the standard

itions (Dirac equation this time) into a beam-optical forn. As before, the study

‘We are studying the action of the electromagnetic lens (sitnated botween the

planes z = z) and z = z;) on an almost paraxial and quasimonoenergetic heam of
Dirac particles being transported along the +z-direction. Under these conditions

| spinor wavefunctions obeving the Dirac equation (3.1) take the form
W (r,t)
pot Ap i
= f dp (v, p)exp (— —E[p}f)
po—ap h
r=1Ipl, Ap<m

E(p) = +y/mict + ¢2p?

(3.6)
Pry, 2z < z;p)
! i
= Wj/rfp, dp, U(p) n:-:p{;r. (py -1y + p:z}}
Pl <p
e (pJ.--I'-' =ty - -”ﬁ.) (3.7)

Ulp) = a,(pluy(p) + a_(p)u_(p)
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( . (p) \
a_(p)
_ [Ew +mee? :
2E(p) clas LFJPE{:;:E:EPF —ipy ]
clos (Plip: +Hipy )—a_ (Pip:]

Eipi+mac? )]

2
[ @ (law@)F +la_(p)?) = 1. (3.8)
where {Hi{P} exp [i{p % E{p}!]]] are the standard positive-energy plane-wave
solutions of the free-particle Dirac equation. We are interested in obtaining a re-

lation for the wavelunctions at different planes along the z-axis. So, we assume a

:'_':‘_Ei tionship of the type
(ry, 2™ p)
=3 fd”r“‘ <,.Ifl |1;* (z“’.:“’;p”r{f}} el =)
k 5. 6=1,2:3.4., (3.9)

or Yi(r 1, z; p). Then we have

o (2.0)

Potap

- dp exp {-%E{_P}i‘} F (:['-'JI ,-.;{I};p) |n,"- (3[11;;a)>

po—dap

re T (2, 20 pg) |0 (250) ),
in the practically monoenergetic case (Ap = (1) . (. 10)

sinee we are taking the beam to be practically monoenergetic and assigning n mean

mtum py to the incident beam particle, the wavelunction takes the form

U(r,t) = e EY (ry, 2im) . (3.11)

his leads to the time-independent equation for ¥ (r |, 2;py) given by

{E (po) 7 - qi oy Ty

Mot Myt

1 i)
+—a; (iﬁi+qﬂ:)}¢l{rl,3;pu} z== 1) ; (3.12)
Moc dz
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Equal.iun (3.12) is already linear in % as desired.  The required z-propagator
T (zm, z\: pn) is to be obtained by integrating {3.12).

To proceed further, the time-independent Dirac equation (3.12) has to be cast

into a suitable optical form. To this end, we start by multiplying (3.12) by FILE .
throughout from the left and rearranging the terms. We get
ixy @ -
5o 5o (i zime) = A (ry, 2 ) (3.13)
. y 1
H=-—fxo,+ 2o, b —aidy -7 — LA, (3.14)
“Po o P
RS 0 _ 1 [ (E+2me®)1 o -
‘i_( o —E'i])_{fpu O —£1 I {Jldl

where E is the kinetic energy of the incident beam particle. The next and the crueial

step lies in making use of the transformation 18]
)

1 |
) — ' =My, M=—({4+va). M'=——(1 ) . 3.16
U v i /3 ( Xor:) 72 ( ALLFY ( )
where J is the 4 x 4 identity matrix. Then, ' satisfies
ia"i“ {?T.'l" . ) N
= A N iy = ' a.
ks (MAEM"') v = iy (3.17)
i = -f+E+0 (3.18)
! ; 1
f = g "un (3.19)
Clo M
. I
O = —ya,- -7 — mpgdye; 3.20)
po XL L= Mg (
E + mge? )
= (3.21)

L]

ation (3.17) is the desired beam-optical representation of the time-independent
* equation, with a striking similarity to the standard time-dependent Dirac
gquation: /' = —3 + an odd part + an even part . However it is to be pointed
ut that there is a difference that #' is not hermitian, unlike the standard Dirac
siltonian (3.3). Physically this means that Ele Jd*r (v, 2) %, the probabil-

wof finding the beam particle in the ry-plane need not be a constant, in general,




Ciuarten 111 Spinor theory of charged-particle beam aptics 58

-along the z-axis.. Only the total probability for the existence of the particle in the

entire space is conserved in the absence of any mechanism for particle creation and

“annihilation.

The next step lies in exploiting the above mentioned similarity. This is done by
_employing a Foldy-Wouthuysen-like transformation technique to expand the beam-
‘?]}tit&l Hamiltonian H' into the paraxial and aberrating terms, analogous to the way
l.he usual Foldy-Wouthuysen transformation expands the standard Dirac Hamilto-
nian into the nonrelativistic part and relativistic corrections part, and filtering out
the part of the z-evolution equation relevant for the beam propagating in the | 2-
._'i"ectinn. Then, nsing the standard techniques of quantum theory for studying the
time-evolution, the z-evolution of the spinor wavefunction of the forward propagat-

ng beam is studied up to any desired level of accuracy.

Note that we are dealing with an almost monoenergetic quasiparaxial ineident
with design momeéntum p = |p|, p. > 0, |p,| < p. and p, = \/;aﬁ — =y
also make note that the strength of the odd operator @ in 1’ s of the order of

., Using ;;-'u as Lhe expansion parameter the first transformation
L.

] j S h i ~ 0
nr. — ';,{]]' — l?.hl't;l' , 'Ell — §IHL} - {.].22}
to the result
I}L{] I'::’"III':Jjl TIAN NG o
A = g+ & +6, (3.24)

e
i
Iy
|
|
=
&)
¥
|
ool —
———
Q
—_
s
o
5
Sl i)
+
.-"_'a
m"’|5
™
L
(I —

+— 1 (3.25)

Oy %;i G,E] 228 (@)) - %G". (3.26)

o
|
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It is seen that the first transformation (3.22) has reduced the strength of the odd

‘operator Oy to the order of 5’; [t is also to be noted that the transformation in (3.22)
o :

15 not unitary.

To reduce the strength of the odd operator lurther we make a second transfor-

DYy @ = E.L':,;_.[H 8= %ﬁfﬁll ) (3.27)
Iuch gives
iAg A2 P e
o = HDy2) (3.28)
H? = _g4+&+0, (3.29)
£ = E(E6.0-0) (3.30)
O = O (E=E,0-0), (3.31)

Now, the strength of the odd operator Oy is of order ;11 After another such trans-
L1}

T R ) R M i ‘.;‘,-_1 s %Ii(ﬁw (3.32)
we have
’;E i}f;—” = [Ny (3.33)
HY = g4+ &+ 0, (3.34)
& = £ (66,0 0,) (3.35)
& = 0O, (Ef &y, O— c‘J-_,) : (3.36)

i

ith the odd operator Oy of the order of ;:'1“. Thus, having gone up to the required
der of accuracy, whicl is sufficient for working out the third order aberrations, we

fop from 7 the odd operator Oy and write

A SSEPOR F (EINNC) (3.37)



CHArTER 111 Spinur tlmnry of ctll.'.-.rgm}—|mrtit:|ﬂ beam optics 90

) s o X[ e e ik HE
H® = _f4+E--0?-_ |6 ~ = | =
bt 2'( 8 [L ' ([E) E] i3 2% \ flz

1 éﬁ{cﬁ* + ([L"?,é"] + ?—f (‘f)) } . (3.38)

Let us examine the the expression for H™ in (3.38). In general, it can always be

written in the form,

. Iil‘ o f-l 0 -F] -+ III- o
H3 = i & + 1 s = : = . A :
( o .h-| J 0 Jrlz 0 h| - h-z {3 39}

e also know that the lower components of 123 in (3.37) are small compared to the

:i'n

upper components. So we can write

At = pl3 (3.40)

ively speaking we can say that we can drop f from A written as in (3.39).

: O

With this approximation, equation (3.37) takes the form

H W3] j ]
l.-j.n c‘}_?f — == Hyt? H= it O : (3.41)
2r dz 0 fy + fy

It is to be noted that the expression obtained for H s in o Foldy-Wouthuysen
.-._;- esentation. In this chapter we are primarily interested in the problem of imaging,
-.tht:ll we need to know the wavefunction at the image plane correspond to the
wavefunction at the object plane. In order to enable a direct interpretation in terms
o the more familiar Dirac representation, we return back to the original Dirac

tation. To get back to the original Dirac representation we have to retrace

flirough the following transformations

)

—3 = Mgty o a‘l.""e""“fu'-”' (3.42)
: : . iispa. = L
S == S|+Sg+5‘3'-i([-511n_g]+[5|,3_1]

+ %, 5)) - ]I [[51i 8] 85 o (3.43)
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Retaining the tenns consistent to the same order of accuracy with which we are

working we finally get

""a%hmzn = Hly(2) (3.44)

Ho = M {E"S}!an"’_ rellierite (E‘S)} M

Il

= M-l{pﬂHJr 05 ls poH + — n@]
iz =
1 S

+3l, S, ls‘ [ pﬂmln@m }r. (3.45)

resulting beam-optical Hamiltonian of the Dirac particle can be written, in

general, in the following form:

H, = —po+ H,,+ H,, (3.46)

How = Moo+ 1 4 gfaic) (3.47)

. am Hup, o and H["'“’ are scalar terms (~ ) and H““"] i5s = 4 matrix term
Which also vanishes in the limit Ay —» 0, like HM) Now, the performance of the
ptical system under study, corresponding to the assumed values of the potentials

(r) and A(r), can be caleulated using the same scheme deseribed in detail in
"-':fw: II; the only difference is that in the Dirac case the Hamiltonian H, is a
-:__. matrix with operator entries and the wavefunction is a d-component column
or, The matrix term H%) can be clubbed with H,, and H%) as indicated
bove, and treated using the interaction picture. It is found that the beam-optical
Hamiltonians ('H.,) in the Klein-Gordon theory and the Dirac theory do uot differ
their classical parts (I;I,,I,, + "n,u)- Thus the Klein-Gordon theory without the
A and the Dirac theory without the terms HiM) and HP?) are identical,

:':_._,,_ vely, as seen below.
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Note that for an observable O of the Dirac particle, with the corresponding
hermitian operator O given in a 4 x 4 matrix form, the expectation value is defined

_ {wl2)10w(2))
O = HoweEn
i T (r L, 2) 05 (o, 2)

: - 348
Yot J gl (ry, 2)y(ry, 2) (5.48)
‘___EIICE, the map (0)(z,) — (O)(z) becomes
( }{ ]_ {Th "D”‘T-f{a LDIUT[E zD}lLI{"tl}}
(Wl20)| TH(z, 20) T (2, 20) ¥0(25))
s Shinicild ry(ry, )7, Jl{-’:- 26) Oty Tk (2, Zo) (T, 2}
j.m,k:] J- fle"l,ﬁ; [rl' :—‘“}?;E'H{z'r :ﬂ}':'i:ﬂk{zl ED.}Ii'I"k{r.L'l Zn}
(3.49)
For position and momentum operators (~ 1),
(ri)(z) = _
lj m k=1 r"fzrull;_{r 4y z“.]?;Im{:i 3,,:|T'J_ka{31 :n}ulrk{rll 3}
Lj,rn,k:ﬂ f "F”-'I‘_; trl " Zn]'j;t"{:* :fr}f;rlk{zr xu}’u'l'k “' (] :-L}
{:5.5“]
U }{z] = _
- _J'I'FI k=1 III‘ T [-FJ 1 "ﬁ} u|.E:"1 z:_:lﬁ]_rﬁnktzr 31,]?'}{?' L4 :]
j m k=1 I-.'F:I' t"rl {?" Ly -.-.] _[m{"' z"]?-ﬂlk{‘:! ‘:n]IJI"i.'{r I+ 311}
(3.51)

When the terms H{*) and H) are dropped from the Dirac optical Hamilto-
it becomes ~ [ and the corresponding transfer operator also becomes ~ I with
espect Lo the spinor index: ie., '?_';m[z‘ Lol = ']-"{.:1 2o )0, Then, though all the four
mponents of ¥, (¥, ¥, 1, ¥4 ), contribute to the averages of |, P, ete, as seen
gm the above definitions, one can think of them as due to a single component b,

".rer, since the contributions from the four conmponents cannot be identified

.'-'5‘-;:: in the final results. Thus, in this case, there would be no difference
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elween the ‘classical” transfer map for ((r)(2),(p,)(2)) ( (2.209)-(2.212)) and

the corresponding transfer map in the Dirac theory. In this sense, the Dirac theory

2 Applications

3.2.1 Free Propagation : Diffraction

i)lu !’ - . |
— = H'Y', = A-— ¥ 3.5
e 19", H ( I}”l_r_tj_ pl) , (3.52)
. R
(,-.,,n‘) = (,aﬁ, -pi) 1. (3.53)
| '___,puff* = —pof+xe g -p, can be identified with the classical optical Hamillonian

i = pi, for free propagation of a monoenergetic quasiparaxial beam, with the
ire root taken in the Dirac way. Though in the present case it mav look as il

g can take such a square root nsing only the three 2 x 2 Pauli o-matrices, it is

b 2-axis considered separate. It can be verified that for the paraxial plane-wave
dltitions of (3.52) corresponding to forward propagation in the +z direction, with
>0and |p,| < p. = po. the upper pair of components are large compared to the

et pair of components, analogous to the nonrelativistic positive-energy solutions

_ &ee—p:trticlc Dirac equation.
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In the same way as the free-particle Dirac Hamiltonian can be diagonalized by
a Foldy-Wouthuysen transformation (see Appendix C) the odd part in /' can be

completely removed by a transformation: with

P = o~ Pioy tanh 2|p, |# = M ) (3.54)
Po
“we have
: 9 it
Z\;: l:;,!r; = ff" I'.I.,'n {355}
’;{In — phxory Flﬂj-ffnﬂan'ﬁJ_g

- (r‘.nsh (10 — PXOL Py iﬁliﬂ) i

P,
vy - i
> (cush Ip |0 — Msinh Ip, |r‘?)
1Pl
1 .
= (vih-51) 8. (356)
Y

Now, invoking the fact that ¢ will have lower components very small compared to
Ahe upper components in the quasiparaxial situation, we ean write

i"'[! ':'iul-"“ 1 ( b 0 2) " . -

— = [ pe— N n . 3.07

2n dz I'n C ; ( )

Then, making the inverse transformation

g = M eSO By (3.58)
T’_al.inn (3.57) becomes

m?}—'*: = H.p (3.50)

H, = — (ﬁ'pﬁ - _ﬁf) 22 —pp + E:Tuﬁf + l-g?ljgﬁ'f N T (3.60)

gxactly as in the scalar case (see (2.79)) except for the [act that now ¢ has four
gomponents. Then, it is obvious that the diffraction pattern due to a quasiparaxial
irac-particle beam will be the superposition of the patterns due to the four individ-

il components (1, Vs, g, ty) of the spinor ¥ representing the beam : for a highly
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paraxial beam the intensity distribution of the diffraction pattern at the ri-plane

at z will be given by (see (2.8G))

4 "
1 q
II[I‘J ,Jf.':l et J_Z! ]—[drg{.i‘yu EH[.‘I{M%:} [{I = I"J_

2

+(u —-yuf]} i (o, ¥p: 20) (3.61)

where the plane of the diffracting object is at z,. It is clear that when the Presence
of a field makes H, acquire a matrix component (H{*e)) the transfer operator
T (2, 2,) would have a nontrivial matrix structure leading to an interference hetween
the diffracted amplitudes (v, Vs, 15, ¥y).

When the monoenergetic beam is not sufficiently paraxial to allow the approxi-

mations made above one can directly use the free z-evolution equation

Lo O o )
lh:f}_y_ = — {puBxer; +1i (Eepy — Zyps) } (3.62)

a 0
E::(D : ). (3.63)

obtained by setting ¢ = 0 and A = (0,0,0) in equations (3.13) (3.15). Integrat-
ing (3.62), we have

l(z))y = l‘xp{%.ﬁzhin”\ﬂ: Fi(Eepy, — L",,;i;]}} HEM Y

Az =(z—2,), (3.64)

the general law of propagation of the free Dirac wavefunction in the z-dlirection,

ghowing the subtle way in which the Dirac equation mixes up the spinor components

' some detailed studies on the optics of general free Dirac waves, in particular,
diffraction, see [50]-[60)])

3.2.2 Axially Symmetric Magnetic Lens

this case, following the procedure of obtaining H, as outlined above, we get

Ho = —pot+Hpp+Hu+ HM 4 Fom (3.65)
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1 ., 1 o
—p| = —alz)piL.

1 2
B;[.“{ 2) (P -7 1Py

+Eipnrr{z}2 (ﬁ:{rf + Tipi)
g (n"l[z} - 40{:]3) L.t
+i;n (:x{z} —afz }r_t"[z}) i

Pﬂ ﬁ( (Y En{z]rt"[z}) 37

I‘j '}L 1) ¥ [ e b
+IZDE;:? a’(z)! —a [a}u {z}) o (3.68)

<2 £ 2
{ L'Ii‘[:l ] = l }H\‘ ”[.‘.‘}I

i

o

(3.67)

&

32 32; 16n2
1‘}"2 wr 1“12 HI'
T (2)per i T ()z{pL-7T1
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+32mp ﬂ"tz} (pirt +rind)
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Ipuz.\u y

i n{zhﬁ’{nzy—ﬂnr}

ipodo o i"
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( T 51(z) + L9 nl)n{})
xxf (azy — ayz)r]

Fn.a.\ 1 et
+a_j\ﬁf -(En{ )'ri —E“{ z)a’"(2 }’f)
2
ﬁﬂ"l{ 1;’:‘ [nrf}y _— l"_[y.'ﬁ; .rf:I
n= i L mu{*' afz) = q'ﬂ{z} : (3.69)
Iy “J’F'J

Comparing with the scalar case it is seen that the difference in the scalar part
&) lies only in the Mg-dependent terim. Thus as already noted, even the sealar
pproximation of the Dirac theory is, in principle, different from the Klein-Gordon
lieory, though it is only a slight difference exhibited in the Ay-dependent terms. The
part in #H, in the Dirac theory, ') adds to the deviation from the Klein-
sordon theory, The computation of aberrations is exactly like in the sealar case
the interaction picture. Without further ado, let us just note that the position
berration (071 ), (20) gets additional contributions of every type from the matrix

art '_-HE“-"}'_ For example, the additional spherical-aberration-type contribution is:

C) (P P 20) /13
= ((_*E"‘“""f_nﬁ) {<L”|{-‘3n? lfhﬁﬂ W on]>
~ (alz0) |pp2| ¥a(z)) + (¥(20) P3| (20
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= <'|.'.Ir-‘4'[-"-n} 1]-:'J_I:"E| 'fr*tz"})]

A o
o) = lhﬁﬂ;] dz {6a’a"h' — " h*H + 1 h*H" )

(3.70)

where h is the ‘classical’ hy (2, 25). Obviously, such a contribution, with unequal

weights for the four spinor components, would depend on the nature of [1(z,)) with

Tespect Lo spin.

3.2.3 Magnetic Quadrupole Lens

ow, for the ideal magnetic quadrupole lens,

Hy = —po+ Aoy + o+ AN 4 A o) (3.71)
- . 1 ., 1 2 » .
}l"’ri' = L:.;_J”fil = EUQm (I — ¥ ) {:3[2]
sy
= —3P 3.73
Hnu. HM}FJ. { :]
J*?U'QE
{Aa) o= i m. .2 3.‘.4
o HEJT?;;;.FI ( )
- RITI( IASGCm S
1 {Apir) o~ g, __"_ i 1
l el SRR TR = (Py2is + Prliy)
A
i | U']‘Qm ﬁ\ {rnr N H”u]
dx
10090 m : ) :
+ :‘? Bx {(Pyore = peary) o (xpy + upe) } -

(3.75)

ain, it is seen that, the Ag-dependent scalar term, 'HE,J‘“] 15 dilferent from the

ponding one in the Klein-Gordon theory,




Chapter 4

Spin dynamics of the
Dirac-particle beam

4.1 Introduction

n the previous chapters we developed the Tormalism for the gquantum theory of

:#harge:1~;:artirln beam optics with applications mainly to the problem of imaging.

In this chapter we shall be more interested in the applications of the theory to accel-
erator optics, particularly polarized heams and taking into acconnt the anomalous
magnetic moment of the Dirac particle. Here we are concerned only with the changes
in the average values of the observables like, position, momenta and spin along the
-.'-_r axis. To this end, it is best to work with the two-component formalism which
8 obtained as a result of the Foldy-Wouthuysen-like transformations without going
¢ to the canonical Dirac representation as was done in the previous chapter to
enable the interpretation of the imaging in terms of the familiar four-component
wavefunction. Further, to study the spin dynamics of the beam particle one has
o define the spin in the rest frame of the particle as is usually done in aceelerator
_'ics. It may be noted that in electron optieal imaging we are not bothered about
of the particle; what we studied in the last chapter was the effect of the spin
._'_;_:.‘L optical characteristics of the system. In accelerator physics one is interested

I'the actual value of the spin so that the polarization of the beam can be main-
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tained at the desired level. The formalism of the present chapter, slightly different
from that of the previous chapter, for the reasons just mentioned, is developed to

suit the accelerator beam opties. This chapter will be almost self-consistent.

In accelerator physics it is customary to tre:%t the beam optics essentially in terms
(of classical mechanics. As is well-known, the main framework for studying the spin
“dynamics and beam polarization in accelerator physics is essentially based on the
-well-known quasiclassical Thomas-Bargmann-Michel-Telegdi (Thomas-BMT) equa-
tion ([61, 62])(see,e.g., [22] for a review). The other aspects, such as the quantum

fluctuations of the trajectory and the radiative polarization have been approached

using the quantized nature of radiation and solutions of the Dirac equation (see,

£.9., [63]-[67] and references therein). There have been several different approaches,

-

idependent of the beam optics, to understand the Thomas-BMT equation based
on the Dirac equation (see, e.g., [63, 68, 69] and references therein). Derbeney
and Kondratenko [70] derived a semiclassical theory to deseribe, in a unified way,
r‘_ﬂ orbital dynamics, polarization, and radiative processes, of a Dirac particle with
Jumniuus magnetic moment starting with the Dirac equation and employving the
.1d3'—1"h’r:r1lt.l|11}‘ﬁt-.|1 technigue (see also [67] where the same result is achieved using
the Pauli reduction of the Dirac equation; see [71] for a discussion of the Derbeney-
Kondratenko Hamiltonian within the context of classical theory of relativistic spin-

wrbit systems). The Derbenev-Kondratenko formalism has been the starting point

or the development of a completely classical treatment of beam opties including

plics has been achieved based on the Dirac equation by casting the Dirac equation
fitectly into an accelerator optical form with the aid of the Foldy-Wouthuysen-like

gchnique emploved in the previous chapters.
i
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Starting with the standard Dirac-Pauli equation for a spin-3 particle with anoma-
lous magnetic moment it is possible to obtain a representation in which the effective
‘accelerator optical’ Hamiltonian accounts, in a unified way, for both the arbital
(the Lorentz and the Stern-Gerlach forces) and the spin (the Thomas-BMT equa-
tion) motions. The general theory, developed for any magnetic clement with straight
optic axis and up to the lowest order (paraxial approximation), is illustrated by com-

puting the transfer maps for phase-space and spin components in the cases normal

etic quadrupole and skew magnetic quadrupole lenses. The quantum mechan-
ics of Stern-Gerlach kicks is also discussed. The formalism treats the heam optics at

e level of single particle dynamics, considers the electrom agnetic field as elassical

and disregards the radiation aspects.

4.2 Formalism

We are interested in studying the spin dynamics and optics of a monoenergetic
iparaxial Dirac-particle beam transported through a magnetic optical element with
aight axis comprising the static ficld B = curl A associated with a vector potentinl

Let us consider the Dirac particle to have mass myg, charge ¢ and anomalons

elic moment i, The beam propagation is governed by the stationary Dirae

Hp [vip) = E i) | (4.1)
where |||,n”} 15 the time-independent 4-component Dirac spinor, E is the energy of

lie beam particle and the Hamiltonian Hp, including the Pauli term is given by

Hy = Amec’ + ca-(-ihV - gA) — 8% - B,

= I o [ o @ (o o
v (o) e=(2%) ==(3 2)
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10 0 0 1 o
]]:([JI)' :(uu)‘ I=(uﬂ)‘

0 1 0 —i 1 0
”I:(ln)f”":(i D)'”:Z(u —1)' 42}

Note that we are dealing with the scattering states of the time-independent Hamil-

tonian Hp with conserved positive energy

E=+ymic*+ 5, po=|pol, (4.3)

where p; is the momentum of the beam particle entering the system from the feld-
free input region. We shall consider the beam to be paraxial and moving along the

positive z-direction such that for any constituent particle of the beam
pop: >0, |p:l €y Ipl €. (4.4)

We shall use the right handed Cartesian coordinate system with z pointing along
the design trajectory, y as the vertical coordinate and x as the horizontal transverse
coordinate. Note that in accelerator physics there are different conventions used for
the choice of the coordinate [rame.

Since we want to know the changes in the beam parameters along the optic axis
of the system (1.e., the 4 z-direction) we have to study the Dirae equation (4.1)
rewritten as

0 .

lha [¥in) = Hp lip) | (4.5)
ie.. we want to know how the Dirac wavelunction satisfying (4.1) evolves with z.
l"lm:' assume that for any constituent particle of the beam, scattered by the static
ield of the optical element, the probability of location at the transverse plane at
namely [d*r | }::‘21 IWepilry, z]|?, is almost a constant in the region of interest,
ien, one can consider (Yp(r,2), Ypa(re,2),¥palry, 2), ¥pe(ry, 2)), apart from
common normalization factor, as the components of a spinor wavefunction in the

rse plane at z, and regard z as a parameter evolving along the optic axis of
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the system. We multiply (4.1) from left by a./c and rearrange the terms to get the

desired form (1.5) : The result is that

?1'!;_, = —ppfixo: —qA ] va.a, -7 + (o /e)io. X - B,

Y = (5] o0 )= £ = E +mpc®

o —-¢'1 E — mge?’

7ty = (-hV, —qgd ) =(p, —qgA,). (4.6)

Next we make the transformation [8]:

I];'.'H) —_— IL'"') =M LI;J'D) . {"-1?}
Recollecting that,
M : (I + ) Y : (f } {1.8)
J = —— k. ). Pl = — — YXiks), b
'-.r'@ Xk, ﬁ Xk,
one has
M(Axa )M =4, (4.9)
This turns (4.5) into
' i i At 1 7 =Y = | 5 -
Ih?— |’.‘I’} =H I’..'I':' i H = Jl”l.”nj!nr = —]‘H]I} + E 4 LJ, {1“})
ilz

the matrix elements of £ and O given by

En = —gAd = (a/20){(E+€7") o LBy (€-€7")0.B.}
&y = f?'n =0,

bn = —qAd—(n/2){(6+€") o 1 B, - (£—€7")0.B.},

(4.11)
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On = €fo 1 71— (ua/20) {i (6~ €) (Beo, — Byos)
-(e+e) B},

On = &' o 170+ (naf20) {i (€= &) (Bro, — Byoy)
+(e+€) B.1}] . (4.12)

Recall that the transformation (4.7) is such that for a paraxial Dirac spinor
propagating in the +z-direction |1/'} is such that its lower spinor components are
very small compared to the upper spinor components. To see this, let us consider
the standard free Dirac plane-wave associated with positive energy E, namely,

T;“Fﬂl{rl . z}

84
Yrpa(ry,z) _ 1 &epo 5.
Prpa{ry, 2)  AYRE | {sop- 4 sap:}/Emo
Yrpa(ry, z) {sips —s_p.}/Epg

i
< expl s (pritpe)}

T, = [.‘IT, y} i l:h]l 4 ]ﬁr |2 =
Py = pPetipy, P- =p2—ipy. (4.13)
_l‘rl:.‘.a]:-lumlim;l:.f1
Tﬁ};,{r.,z] {H+[I"|‘P:> +sip I'!f'."u
YTy, 2) _ 1 [ Lepo {s_(p+p:) = s4p Mo
VEalry,2) W E | ~{silp—ps) — s-p_} /€
Vialry,2) {s_(p—p) + 50 HeEm
xexp{y porirpa)} (4.14)

and for a paraxial plane-wave moving in the positive z-direction, satisfying the
condition (4.4), the upper spinor components of [1") g, namely, [¢) - and [¢5) ., are
bviously very large compared to its lower spinor components [th3) p and [9) .

Like before, we shall follow the Foldy-Wouthuysen-like transformation technique

toexpand the beam-optical Hamiltonian in (4.10) into paraxial and aberrating parts.
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To this end, we substitute in (4.10)

.
T g it Wil
') = exp (Epnﬁlﬂ') [m ) : (4.15)

The resulting equation [or |uf-[”> is
o .
9 N = ) [t
i ) = 7|y,
5 ; T T ,
HI = exp (——;3‘0) H' exp (iﬂlﬂ')
2m 2pg

. 1 -\ g 1 ,
—ihexp | —— = la 2
ihexp ( gmﬁlﬂ) 3 {c‘xp (Epuﬁg)}
= —pfi+EN +OM

g o= g Lamry
2pyg

5 1 - ; P

oV = — & +ih- ;
2” [0.€] + ih=01 + (4.16)

As stated earlier we shall confine our study to the paraxial case. So we stop with

he above first step which corresponds to the paraxial approximation. Let us write

n explicitly, for later use, the 1l-block element of #(1 -

A = gt )

1., oh? Eh oy 2
= {—]Ju —fj'."l, 4 EH' = E{lﬁllrlﬂ], + ﬁp?i- (”I 1 Y f?:) I

—5 {lg4+e)B.S: +veB;-8,}
i
[

+ -
2pi

(Y(B.Sy 7+ 8, %,B,)—(By -7+ %, -B)S:),

] =+ ?r; e=2mgpufh, y=Efmget, 8= -heo .
(4.17)

Before proceeding further, let us find out the nature of |u’1m) by looking atl the

d-free case again. For [i), in (4.13)

1 o Yo
[p™), = exp (—Eﬁfml -pl) ')
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1 - '
(f - E*p;ﬁ.tﬁ.l. "PJ_) ") E

',“’ [7'1 z)
“’{n.a} 1] &epo
Miry2) | 7 aVaew'E
“}{TJ. z)
[ z ri I P\ P= N"I
sp it = tga- {145 5 ]
: oy p3 1
JoelrneE —a~+{(1+;%n %)
1 . lg AT S
_E[SJ’{I_‘%—EFJ'E}_FE 3 }]
1 . P} | -
'l.. E[L{l_&_iﬁ} 2%+ {(l Po a‘Jn] /

* cxp{é § I T +_n::.]} - (4.18)

‘showing clearly that the transformation (4.15) keeps the upper spinor components
of |r,|':“}> large compared to its lower spinor components.
) 1
Since the lower pair of components of l:,*-“}) (I:ﬁi“} and lr,“-,ﬁ ]>J are almost

. ; N e
panishing compared to the upper pair (|t.|i ]> and lr,:,i ’}) and the odd part of
:. (1) {5 negligible compared to its even part we can effectively introduce a Pauli-like
Wwo-component spinor formalism based on the representation (4.1G). Naming the

wo-component 5|tinur comprising the upper pair of components of ]u'..'“’} as lufl and

| )
ifl[‘;i? I,':'> = ?{ H}} . l!ff) = ) ,
| 2
R == (_Pﬂ = '?*"i: 27 iﬁf]
—i{{q-&-c]ﬂ,ﬁ', +veB, -8,}, (1.19)

jere // has been approximated by keeping only terms up to first order in 1/py

3:1'-’}}, consistent with the assumption of paraxiality condition (4.4) for the
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beam. Throughout this chapter we shall approximate the various expressions by
keeping only up to the lowest order nontrivial terms consistent with the paraxiality

condition for the beam and the approximation symbol (=) will usually imply this,

wherever relevant, even if not stated explicitly.

Up to now, all the observables, the field components, time, ele., are defined with

teference to the laboratory frame. But, as is well-known, in the covariant description
the spin of the Dirac particle has simple operator representation in terms of the Pauli
matrices only in a frame at which the particle is at rest. So, as is usual, we shall prefer

to define spin with reference to the instantaneous rest frame of the particle while
keeping the other observables, field components, time, etc., defined with reference

the laboratory frame. To this end, we transform the two-component |1,n7> to an

§ I_ﬂ)ﬂﬁlﬂ[’&tﬂr optics representation’ ]u‘!{‘“> defined by

|t|E'> = exp {ﬁ {-';l:”u . ':'ru”r]'} |f.l"'t'ﬂ> ' (4.20)

The reason for the choice of this transformation will become clear shortly, Now, the
evolution equation for [ is

#

ih_;_j t,i.',l_.‘l]) = HM] |l.“-‘{'“> ‘

oz
. I - T
_”'M] s (—}ﬂ—r.*'i! T —y ") -+ —_.f?"S.
! ! 2 : P

with 2, = ——1— {qH +e (Eu + "iBJ,)} .

(1.21)
"My

-

phere By and B are the components of B along the z-axis and perpendicular to

& When g = te we can write € = qa = glg — 2)/2 where g and a are, respectively,

formations we have made have resulted in this change and the hermiticity of

i)

A implies the approximate constancy of the total intensity of the beam in any
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transverse plane along the optic axis. It should be realized that the spin part of
H'Y corresponds to the beam optical and paraxial version of the Thomas-BMT
spin Hamillonian : note that By and B, in the usual Thomas-BMT vector £2,

refer to the parallel and the perpendicular components with respect to the instanta-
neous velocity of the particle whereas in 2, in (4.21) they refer to the parallel an

perpendicular components with respect to the predominant direction of propagation

of the particle. The Thomas-BMT part of H) is also valid up to first order in A,
To get higher order corrections, in terms of 71 /po and A, we have to g0 bevond the
first Foldy-Wonthuysen-like transformation (4.15). It may also be noted that fV
i§ the accelerator optical version of the Derbenev-Kondratenko Hamiltonian [70] Tor
the Dirac particle, under the paraxial approximation.

Since the z-evolution of Iu‘r"‘”) IS unitary we can associate the beam with a

wavefunction normalized in such a way that, at any =z,

(.,.-,-If“[;}];,.-sf--”;:}) - i ]:i"rl_ f,f.-j-'”(rl,.a;f =1, (4.22)
=1

When the beam is described by a 2 x 2 statistical (tlensity) matrix

A) Al
#*’h .'152
P = : (4.23)
1 (A
I’Ezl ﬂ‘n

With the normalization

£, (*”M]m) = i f‘F‘"L (7. [I*{M[-ﬁ]‘[ﬁ) =1,
=1

i (4.24)
lany z, the accelerator optical z-evolution equation is
J -
ih— pld) — (A} (4] 1 9r
il [u P ] . (4.25)

le beam can be described as a pure state we would have p = I:,-‘n‘"”} <a|.l'r{*”].
et us now define the average of any observable O at the transverse plane at z

bbe given by

(.{i":””‘>[z] = Tr(pt"”[z}(j’"”)
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= i /frf?ru_fzrl <n[n§;ln(;}lr1> (7‘1 [r}j:l] rL>,
1

1J=
(4.26)

where O is the operator representing O in the accelerator optical representation.
For any observable O, associated with the operator Op in the standard Dirac

representation (4.1) the corresponding O can be obtained as follows :

('Y = the hermitian part of the 11 — block element of

i
> —— (Faly — Ty dar

({5 5 50

1 . i 1 .
xexp | —=—p00 | MOpM "exp | =—— (0

2py 2py

b e : ia e
* D:{p{m{nrzr - FFL,}}) . (4.27)

':f.the Dirac representation the operator for the spin unit vector corresponding Lo

the spin as defined in the instantaneous rest frame of the particle (see [63]) is given

& =T T o PYLS
h 2ELE 4mnge”) E
=3 . (1.28)
. - i
% S £ Eﬂ' T 4T -0

PE{E 4+ mac?)

pproximation

o h
S é o (4.29)

|8 desired. In the Dirac representation the position operator in free space can
taken to be given by the mean position operator as indicated by the Foldy-
fouthuysen-theory (or what is same as the Newton-Wigner position operator), In
gsence of the magnetic field we can extend this position operator by the replace-
gt p —» 7 and symmetrization (to make it hermitian). Then, the operator for

fransverse position coordinate in the accelerator optical representation becomes
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just the canonical position operator v in the first order approximation. From these
considerations it is clear that in the accelerator optical evolution equation (4.21) §
represents the spin as defined in the instantaneous rest frame of the particle; the
ficld components and other operators are all defined with respect to the laboratory

frame. It should be noted that in this formalism, with z as Ehn evolution param-
eter (analogous to time t), —H'Y) corresponding to ~ihZ, will represent f., the
z-component of canonical momentum operator (analogous to the energy operator)
hence, the operator — (/4 + gA,) will represent 7. the z-component of the kinetic
momentin,

Il we now work out the equations of motion for the average values of v us-
ing (4.25), they have to be consistent, d la Ehrenfest, with the traditional trans-
fer map for the phase-space, including the transverse Stern-Gerlach kicks (see
e.g., [25], [74]-[80]), in the paraxial approximation. The transfer map for the av-

erages of spin components, in the lowest order approximation, has to be consistent

with the Thomas-BMT equation. This is confirmed easily by a preliminary analysis

a8 [ollows, From (4.25) and (1.26) we have, in general,

% (OWY (z) = —% (o™, 1)) (2) + <!%(}{.n> 2.

compare (4.30) with the time evolution of classical O we can use the correspon-

(4.30)

il p d
ey - (AN s f}“] ){'I:' A
d i <” ) . < ) ymy dz ({ > (4.31)
1
L — —_——— "-I'_ —_ .IIII' I;l .l
h "l'mu{ <) "H‘FI ( H g )
_ e 1 d m .
Coymg 2ymgpe <Tl> {ﬂ S — (4.32)
ien, for 7 we get
d i ; 1
s o {A) R
“ru) R (|ras HY]) (2) = (1), (4.33)
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and hence from (4.31).

)y m =B ([ry, BW]) () = —— (1), (1.34)

" h Ty Fiitg
identifving 7, as the transverse kinetic momentum. From (4.33) it is clear that (r )
and (7, ) /po ((p,)/po in the field-free regions) can be identified with the transverse

‘position and slope of the classical ray corresponding to the wavepacket represented

by p\Y, For 7, we have, with #. = py,

i i a
0 = ([ ”“}D‘q(aﬁ“‘)

L 3 B n T _

S pn<2[pr Bx:rr}l> = (Vi(£2,-8))

= f(%{ixﬂ—ﬂxﬁ]%

0
i
+p—u(‘Fl{[q+f}E=5=+{q+w]Bl-SJ}}, (4.35)

[ - q 1. B
E{:'ﬂ'].} = -IT‘II<E“T *-B—err}k>

g+ )BS. + (q+y)B, - S }) . (1.36)

under the Lorentz and Stern-Gerlach forces up to the approximations considered.

In the case of spin

d

T(8) = [3 AW)) = wimqs 90, 51}—"‘”'" (02, x Sy,  (4.37)
nd thus,

g

(S %:ff:—m([ H]]>_——(1.5* 12,-8)) = (2, x 5, (4.38)

should be expected from the Thomas-BMT equation, of course up to the approx-

mtion we are concerned with. The vector P characterizing the polarization of the
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beam is given by the relation
h i
() =5(e)=3P. (4.39)

To obtain the required maps for transfer of the averages ((r.), (7). (8)) across
an optical element we can employ the quantum mechanical version [12] of the tech-
nique developed by Dragt et al. (see [15]-21] and references therein) in the context
of classical accelerator optics. We shall explain this in the following sections through
the examples of quadrupolar magnetic lenses. Though we have taken (7.} == p in the
above preliminary analysis, following (4.32), to understand the small variations in
the longitudinal kinetic momentum, including the Stern-Gerlach kicks [25], a more
carelul analysis of the evolution of (7.)(z) along the z-axis is needed. We shall
discuss this in the next section by examining the case of a general inhomogencous
‘magnetic field,

Before closing this section let us note that the Pauli-like two-component spinor
formalisim developed above is valid for all values of py, [rom the nonrelativistic to

Ahe extreme relativistic case; it becomes Pauli's two-component formalism in the

nonrelativistic case when we can take py == JEIH“[H — mye?).

4.3 Applications

431 Normal Magnetic Quadrupole

First, let us consider an ideal normal magnetic quadrupole lens field given by

B = (-Qy, -Gx,0), (4.40)

ssociated with the vector potential

A= (n. [].%G(Iz - 3;?)) : (4.41)
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where (¢ is assumed to be a constant in the lens region and zero outside. Let the

zcoordinates of the zy-planes at the entrance and exit of the quadrupole magnet

of length £ be =, and z, (the subscripts *'n’ and 'x" denoting e'n’trance and e'x'it,

respectively, and £ = z, — z,). Throughout the present section we shall be working

with the accelerator optical representation and shall omit the superscript (A).
Now, the basic accelerator optical Hamiltonian of the system is

[ Hp=—po+ ﬁﬁi

for =<z, and z >z,

1

H(z) = Hp(z) = —po+ 5-PF — 30G (= — v?) + B2 (yo, + 70,) . (4:42)

for zo € 2 < 2, with n=(qg+ 7 )GEfR/2p:.

L

The subscripts F' and L indicate, respectively, the field-free and the lens regions,

Let us write [ as a core part i plus a perturbation part ff :

H(z) = M(z)+ H(z),

F o= 3
Hep=Hg, for z< 2z, amd 2z > 2,

|I.
.

H(z)
L H:.fz]' = —pat ;;;I_’f = ;l;f!f:{-rr = !J.J:' i loe gt gy

Hip=0, for t <z, and z > z,,

Hiz) = (4.43)

1 Hy(z) = R (yoe+x0y) , for z, <z < 2.

A formal integration of the basic z-evolution equation (4.25) for p leads, in

meral, 1o

plz) = U (Z:26) -”l.zuu-"ll kZ 20} 2%, ['LIH}
the unitary z-propagator [7 given by
0(2,2,) = p [uxp{—%[: dC f}[c]H _. (4.45)
1 Jzy

p indicates the path-ordering of the exponential. Further, I is such that

mgﬁumJ=mﬂﬂw%L Diwsin) =T, (4.46)
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where T is the identity operator.

Let us now compute p(z) wa the interaction picture, familiar to us, from the

earlier chapters. Defining

pe) =0 G2 o)l (2) . Daz) =o e [aCA O},

(4.47)
we have
iﬁ%pi = [Ff, v il H, = {f‘" (z,z) Hil (2,2} . (4.48)
Then, since p;(z,) = plz,),
il :1 ~ .‘..i'
PI{Z} = Llri {51 zr-} .l'-’l[zn}lr--r1 [2. zu] =U; {Z~ zu]' P'[Zr-]Ut [21 zn] 1
e 1 L _
Ui(zi20) = plesn{-; [acino]}] . (1.49)
Now, from (4.47) and (4.49), we see that
= - £ =1
H2) =T {2, 20) Uiz, 2) plza)U0, (2200 (55 25) © (1.50)

Hence, for the average of any observable () we have

" " = . = — =} = .
(U) (z) = Tr(p()0) = 1r<U{z, 20) Ui (2, 20) plzo)U; (20 20) T (2, 20) n>
=1 = | oy =

= “Tf <_n{a.,} {f.’i (z,25) U (2, 25) OU (2, 20) i (=, zu}}> g (4.51)
This equation (4.51) provides the general basic formula to compute the transfer map
[or (U> across the system as will be seen below in the ease of the present example.
Let us take z, and 2 to be respectively in the field-free input and output regions
if the quadrupole magnet : z, < z,, 2 > z,. Aflter some straightforward algebra

e get

9] (z:2:) = ffp[z,zx}ﬁdzx.zn)ﬁr{zm Za)'s
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Uilz,2) = Ui rlz, 2005 1 (2er 20 )i 6 (Z0r 20) = Usn{2e0 20)

- i 1 .
Uplz,z¢) = exp {%ﬁ:} (pu - ifi_upi)} , with Az, =z —2,,

= 1 1 . _l
U(zx, 2n) :EXP{EE [(F"D = ﬂ i) +EP‘DI{{I? — yzjl} -

with K = qG/py,

fTF{zn, 25) = exp { %r}.::‘f (pu - EZ?L’DPE)} . with Az, =2z, — 7,

-

Q;,L[‘.zm zn}

: sinh (ﬁ:f‘) cosh (\fif) - 1Y
=nx|1{—ﬁu[((T) Par 4+ ( i )pr) Ty

sin (v’rﬁ F) Cos (v"ﬁ f') -1
(o (=22

) are obtained as follows @ with Ay = h/pg, the de Broglie wavelength,

f' {m}[z] \I ||"'T1r1 sz'.! 0 0 \'I I’l( {J;H'zn:' \'I

{ﬁ:} [ENPD '1':11[ I"sz 0 0 {ﬁr:} {.ztr]'ffpﬂ
L e (u)(z0)

k{f-’y} {z”ml}. \ 0 0 1% Th \ {ny) (20)/ 0 )
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((=G572) @) ) )

Kf

- (2675 0) (z0)

B (cmivrﬁ"f!—t

77— ) (02} (20)

L - (255 ) ) )

+1

( T )
T Tx
1 Az cosh (VE£)  Lsinh(VE?) ) /1 Az
= ( n 1 ) VI sinh (v’ﬁf) cosh (v"ﬁ_f] . ] ( 0 1 )
T
[ )
( 1 Az ) oS (\fﬁf) = sin (v’ﬁf) ( 1 Az )
- n 1 — /K sin (\fﬁ F) Cos (\./K F) (I | :
(52} (2) = (S2) ()
Ay [ [ sinh (-.,f'ff) e
Ao (( \/Er ) (Lﬁr} {-n]

cosh (-/Rf) -1\
;i ) {FIH::} [zﬁ] '

Kipg

(Sy) (=) = (5y) (20) =

Ay [ [sin ((_ﬁ;f) '
Ao (( VK )(”"*“*n?

CO8 \fﬁ:f -1
B (_-(_f{f'_nﬂ) ) (PyS:) [?-n}) |

(S:) (2) = (S:) () -
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47y | [ sinh (JR !'] (£5.) (22)
Ao N N

sin (uﬁ‘f f)
- (__"J"ﬁf—) (¥Sy) (20)

cosh (v{f E) —1Y
+ I{-fPu ) {PtS:} {ID}

oS (JITE) —1 X
+ K ipo {pysy} ) (4.53)

Eﬁ, we have got a fully quantum mechanical derivation of the traditional transfer map

for the transverse phase-space, including the Stern-Gerlach effect (see [76]), in the
case of a spin—% particle beam propagating through a normal magnetic quadrupole
lens : the lens is focusing (defocusing) in the yz-plane and defocusing (focusing)
in the zz-plane when K > 0 (K < 0). The transverse Stern-Gerlach kicks to the
‘trajectory slope (8(p,)/po ~ 1) are seen to disappear at relativistic energies, varying
like ~ 1/7. At nonrelativistic energies, with 7 = 1, the kicks are ~ G /mov* where
i is the total magnetic moment. These results are in general agreement with the
gonclusions reached earlier [25, 76] based on semiclassical treatments. The spin map
pbtained above is seen to contain the paraxial Thomas-BMT map including the
lowest order terms depending on p /po. [t should be also noted that the polarization

ansfer map is linear in the polarization components only when there is no spin-

pace correlation, i.e., for the classical behaviour to result one should have (25.) =

e} (5.), (uS2) = () (S4), (aSs) = (B} (1), ete.
4.3.2 Skew Magnetic Quadrupole

a skew-magnetic-quadrupole lens the field is given by

B = (-G,y.G,x,0) (4.54)
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associated with the vector potential
A = (0,0,—-G,zy) (4.55)

where (G, is assumed to be a constant in the lens region and zero outside

The basic accelerator optical Hamiltonian of the system is

! H;: =—pg+ﬁﬁf, for z<z; and z.> 2,
H(z) = { Hi(2) = —po+ 5591 + 30G.xy — B2 (20, —yos) (4.56)
| for 2z, €2 <z, with 1, =(g+7€)Gh/2p5.
and

0.1z 2a)
o SO N T Ak s TR ok ) P L2 PPPUPOL Ll () o
_L’:"{ ) K 1ol Lo R oy L Y o I R

S~ () (et =2). Sh(Y) G=(E).

C* (2) = cos (\/Ft. z) + vosh (JIT, :)
8% (z) = sin (\/I, z) + sinh (\/}T, ::) (4.57)

Now, using (4.51) and (4.57) the transfer maps for () and (p ) (= (7)) are

btained as follows : with Ag = h/pg, the de Broglie wavelength,

(@E ) ([ @) )

(1) (2) /10 (P} (2) /o
(n(z) e (1)(z)
(#y) (2)/po k (y) (2)/mo
\ )\ )
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[ =€

(£)(mp)zal+ (€ (0)-2){as)(20)
e \)

}\:
NS
9 | =(CFif)-2)loy)ize) +€7 (Olo=}za) :
R, f

=S+ (£){oy){2a)+5~ (¢}{os)(za)

=5~ (){oy){za) St (Do )(5a)

\
T=MMM,,

{ C+ (£) 5+ (¢

—VES™(6) €' (f)

VL

c-@ )

s

—VEST () € ()

ﬂf—l
2l oo S oo 5P
\ —vIGSt () ¢ () VRS- () CF (0) )
I Az 00
0 l} 0 o
Mc=10 0 1 &z
=
g 0D 0 1

In the thin lens approximation the transfer matrix M simplifies to

M

1/

1 £ 0 0
- 01 —1/f 0
B 0 0 1 f
~1/f 0 0 1

= K,tL.

119

(4.58)

(4.59)

Along the diagonal the thin lens matrix blocks look like drift through space of

length € while the off-diagonal matrix blocks describe the focusing of the skew

quadrupole lens, in agreement with the well-known classical results [49],

For spin, the transfer map reads

(Sc) (2) = (Se) (20) +
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271, ST (6) ) - (f)
Ao {_(J_'f)<'r5:}["°} t (I'{- ){L‘ =) (20)

S~ (f) C*(€)-2
(\/__F){s.){ }J’(W)( 5}12:“1},

(Sy} (z) = {S].r} [zo] +

zz,,{ (a‘ {f}) dhe) +( "} ](p; ) (2)

(3{1,1—”3) yS:) (z) + ( ) Hw}}

(5:) () = (5:) (z)

(A
+(r

{7
(.

& (E
) {JTS,) )= ( It..fflﬁu]) {?-:'::5:} (za)
CH (&) -
) (uSe) (20) - ( h'{f}p., 2) Eﬁ_uSr}{zq}}

. CH O -2\, oo
h r) (£5,) () + (?) (55, (20)

){uﬁ"y:'{ ] + (;‘; { }) (I;rqu}{'fu}}}

(4.030)

.\ﬁn

T{RJJ.-‘

4.4 Stern-Gerlach Force

Using the general theory, let us now understand the longitudinal Stern-Gerlach
kicks [25] in a general inhomogeneons magnetic field. For #. = —(H!") 4 gA,) we
got, from (4.30),

Loy = (£ san, o))~ (2 (0 04)))

- Ly H;_Lﬂ-a
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= L iix B=B %7
e Pﬂ(g{rr:-:ﬂ Bxa'r}:)
1 [/ d :
+I_lu (E {(g+€)B.S: + (q + v¢) B, ‘SL}> - (4.61)

The first term on the r.hos. of (4.61) corresponds to the Lorentz force and the rest of
it_,.t:nrrespmuls to the Stern-Gerlach force due to the longitudinal gradient of the field

(te., gradient in the z-direction). This is easily recognized by multiplving both sides

together (4.35) and (4.61) we get for the z-evolution of ()
i 1
2

iz

(#) = i(HﬁxE-Bxﬁ})

4 (V{(g+OB.S: + (g+70)BL-S.)) . (4.62)

Fo

For any given field configuration B, with a specified A, the solution of this equa-

:.-.._1'|| v [4.62] is ]i__",i‘b’(?]'l IJ_‘.‘

(i)2) = Tr {plza)0' (2, 20) 70 (2, 20)) . for any z > 2z, (1.63)

d . § [ .
S(E) = E<§{:¢:¢B-—an}>
1

+——(V{¢B-8+e(B,S.+vB,-8,)})
g

i 1
- ﬁ(i‘*"ﬁ—ﬂi“*l)—{?iﬂ,ﬁ}% (4.64)

ich the first term represents the Lorentz force and the second term represents

n-Gerlach force. This equation (4.64) for orbital motion of a Dirac particle

ing predominantly along the z-direction is seen to account, under the paraxial
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approximation, for both the Lorentz and the Stern-Gerlach forces. It may be noted
that our formalism facilitates the computation of the transfer maps for the beam
observables over any interval (z,.z) along the axis by the use of direct z-evolution
formulae, like in (4.63). and we are considering the time evolution equations such
as (4.64) only for the sake of comparison with the classical equations of motion. In
the instantaneous rest frame of the particle with v = 1 the second term in (4.64) is

seen to correspond to the familiar Stern-Gerlach force
Fsg=-VU, U=-po - B, (4.65)

where g is the total magnetic moment of the particle; note that in (4.65), apart
from the spin, the field components, the coordinates, ete., are also defined in the
rest [rame of the particle.

It is of interest to know the relative merits and demerits of spin-splitter devices
employing the transverse and longitudinal Stern-Gerlach kicks, When the fields
B in such devices are known explicitly one can directly use the formula (4.63) for
such a study, But, to have an idea of the situation in a general context, one can
use the standard classical relativistic dynamics {81, 82] starting with the form of
the Stern-Gerlach foree (4.65) which has been understood on the basis of the Dirac
equation; the result has to agree with the classical limit of the quantum mechanical
computation. Such a study [25] based on classical relativistic dynamics seems to
sugegest Lhat, at high energics, devices employing the longitudinal kick are more
favourable than those employing the transverse kick. To be more precise, with G,
denoting the longitudinal magnetic gradient "‘—:{* active over a region of length Loin
a device emnploving the longitudinal kick, the fractional increase in the longitudinal
monentui, ﬁp:fp(.,; turns out to be G.puL /fmgv®, which becomes alimost independent

of energy as + increases (see [25] for details of the calculation). In the case of a device

employing the transverse kick, the fractional increase in the transverse momentum
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varies like ~ 1/ and thus decreases as 4 increases, as we have seen above in the
example of the quadrupolar magnetic field (sce [25] for details of the caleulation
based on classical relativistic dynamics). Thus, one can conclude generally that at
high energies a spin splitter with longitudinal kick should be more favourable than
one with transverse kick, leaving aside all technical details such as the practical
realization of the required longitudinal magnetic gradient and the way of exploiting

the attained spin-dependent energy spread. At lower energies, the kicks are larger

in both the cases.

In sumimary, we have demonstrated how one can obtain a fully quantum mechan-
ical understanding of the accelerator beam optics for a spin-3 particle, with anoma-
lous magnetic moment, starting ab inifio from the Dirac-Pauli equation. To this end,
we have used a heam optical representation of the Dirac theory, following [8]-[12],
and have shown that such an approach, in the lowest order approximation, leads
naturally to a picture of orbital and spin dynamics based on the Lorentz force, the
Stern-Gerlach foree and the Thomas-BMT equation for spin evolution, as is to be
expected. Only the lowest order (paraxial) approximation has been considered in
detail, To illustrate the general theory we have considered the computation of the
transfer maps for the spin components and the transverse phase-space, including
the transverse Stern-Gerlach kicks, in the case of a normal magnetic quadrupole
lens, and a briel understanding of the longitudinal Stern-Gerlach kicks in a gen-
eral inhomogeneons magnetic field. It is found that the above theory supports the
spin-splitter concepts based on transverse and longitudinal Stern-Gerlach kicks [Trll—
[80],[25]. It is clear from the general theory, presented briefly here, that the approach
15 suitable to handle any magnetic optical element with straight axis and compu-
tions can be carried out to any order of accuracy desired by easily extending the

er of approximation. In fact, even the lowest order approximation reveals the
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nature of deviations [rom the classical behaviour for spin evolution, namely, the

dependence on differences (£S.) — () (S.), (0S:) — (9) (S:), (p:S:) — (pe) (S.), ete..

The suggestion for using the Stern-Gerlach kicks to produce high energy polarized
beams ({25] and references therein) has aroused much interest in the exact form of
the Stern-Gerlach force in the relativistic region; there has been ambiguities about
it in the literature. This question is being thoroughly analysed recently ([71] and
references therein). From the exhaustive analysis presented in [71] it seems that this
question, which also involves the problem of proper choice of the position operator

in the context of relativistic quantum theory. can be settled only throngh suitable

experimentation.




Chapter 5

Phase-space formalism of the
quantum theory of
charged-particle beam optics

In this chapter we indicate an alternate approach to the quantum theory of charged-
particle beam transport based on the Wigner phase-space distributions. Such an
approach would provide a link between classical and quantum deseriptions [26] (see
also |5, 27] and [83]-[86] Tor works related to the use of Wigner distribution in
charged-particle opties). The present chapter is confined to the sealar case in parax-
ial approximation. The possibility of extending the phase-space formalism to the
study of aberrating systems and the Dirac, or spinor, charged-particle beam optics
is also briefly noted.

We start with the beam-optical form of the Schridinger/Klein-Gordon equa-

tion (2.64) for the z-evolution of the paraxial beam wavefunction W (r,, z);

(il i
in— = H, ¥,
iz
- | - B
H, = —-p—qgA.+ — (:r]_ + p‘) (5.1)

zl.i'u

We shall cite the example of the axially symumetric magnetic lens or the magnetic
i Y s B

round lens to illustrate the use of Wigner functions in charged-particle opties. The
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round lens in paraxial approximation is described by the vector potential

A= (~éyﬁ[z}1 %z:B['z] . ﬁ) ; (5.2)

After dropping the constant py, equation (5.1) becomes

1 z : “
E (pzl + pﬁuzri) —(z) ] :] Ur,, z) - (5.3)

" am{riv z,}
p 2N by &)
S =

where a0 = 9%}51 and L, is the z-component of the angular momentum. Since

equation (5.3) is invariant under rotation around the z-axis, we can make a trans-
formation of the wavefunction ¥ to another, say (r z), referred to the rotating

coordinate system along the z-axis. To this end, we let

V(ry.z) = exp (%ﬂ[z}f;,) U(ry,z), (5.4)

where #(z) = [} a(z). Then,for the paraxial beam wavefunction r, z), referred

to the rotating coordinate system along the z-axis, we obtain the Glaser equation [4].

g (T, 2) 1 i i
= "=[Efﬂ.i.+ﬂﬁﬂﬂr‘i)] W(ry, z). (5.

£n
on
—

As we shall see soon, this equation explains the focusing of the beam along both
the = and y directions; the disappearance of the [.-term from (5.3) under the
i

ransformation in (5.4) explains the quantum mechanics of the imnage rotation as

‘dependence one can solve the harmonic oscillator problem analytically or otherwise,

l length, in terms of the design parameters, py, B(z), ete. To this end, we require
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the z-propagator for (5.5) to obtain the relation

Iul" EzuulD = (j {z'n'uh -3 [*-“ {:mj} y {ﬁ-ﬁ}

connecting the states of the beam in the input (z < z,) and the output (= > Zout)

field-free regions of the lens system. More explicitly, we want the relation

t,fr {rj_.ouh znul] — / dzrj_.in G {r..l_.ﬂl'.it! Zouts T L ing z‘in} TIP [rL,iEh Ein} s {5?}

with & ET.J_.GIJ[T Zout: T L outs zin} = (T'J.,mu ‘G {Enm- Zin)

rl;m). To obtain the required

Green’s function G we can utilize the well-known result (see, e.g., [40]) that the
time-evolution operator, or the Feynman propagator, for the most general time-
dependent quadratic Hamiltonian, can he be elegantly expressed in a closed form in
terms of two linearly independent solutions to the classical equations of motion (see

also [4] for the pioneering related work of Glaser in the context of electron optics).

Now, our equations of motion are the trajectory equations
ri(z) +a(z)'r (2) =0, (5.8)

Let the two linearly independent solutions of (5.8), identical for r;, = = or y, be

é_!_.akun, as is usual, to be fi(z) and g(z) with the initial conditions

9(zin) = W(zin) =1,  g'(zia) = M(z1) = 0- (5.9)

Ihen the required Green's function is given by

G (71 onts 20063 7 L iy Zin) = G (Zours Zouts Tins 2in) G (Yours Zouts Yins Zin) + (5.10)
th, for ry =z and y,

- . i Mo 1Py Al ' - S )
.._{rl,z, Tyt T ) o= i—__h?srh{z} exp {2-—1”1[:} [yb.}r Lin + R (2)r] zrlrL.,,l]}.

(5.11)

At this stage we introduce the Wigner function, to obtain the transfer maps.
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The Wigner phase-space distribution funetion [87] associated with a quantum
mechanical wavefunction ¥(g) is given by
Welg.pe) = ﬁ/ da " (rf — %) i (q + %) exp (—i%) (5.12)
where we have considered the one dimensional case and denoted by Py the momentum
canonically conjugate to g. Wigner functions are always real but not necessarily pos-
itive. The Wigner, and other phase-space distributions later considered, have been
extensively studied and applied (see, e.g., [88] and [89]-[94]). Here, we shall recall a
few relevant properties. If O (q,7,) is the quantum mechanical operator associated

with the classical observable O (q,p,), in accordance with the Wey| correspondence

rile, then

(qﬁ |CJ[ 1,.“) = [ f dq dp, Wy (9, 74) O (9. pg) f [ dgdp, Wig.p,) =1, (5.13)

as if the Wigner function is a classical phase-space probability distribution function

which it is not. Further, as should be expected,

j "".ﬂq Wi, [‘?r.”q} = |"r""[‘:|‘”2 ' / dg W, {‘?1.”'5'} - I (f’ql'ﬂ'"} |2 1 {5.14)

where (pg|y) is the wavelunction in the momentium(p,) representation.
It is clear that one can express the Wigner [unction Wout{oury Pg.ow) it the
output plane in terms of the Wigner function Wi, (gin, Pgis) in the input plane by

combining (5.7) and (5.12) (see, e.g., [95]). Thus one can write

Wmu{fj‘nuuﬂ ,:iul:' ey f f‘”l‘fill "F.”*i'.in K E'fuul--f’li.uuﬁ "fim.”q.tn} 1’“11[‘1’1:.!.”*‘!.I-1|} ' {5-15}

where the function K (Gou, Pgouts Gins Pgin) 15 completely determined by the system,

according to the relation giving the Wigner transform of G(q, z, iy, zin: p):

K {fh Pai Ging Pq,in} = wﬂ'[@: Pgi Jiny .ﬂt;r.m}
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- I : . = 3 . Tin 1 51 Tin
 2xh /]dﬂdﬂ"'ﬂ (q g i ™ T) v ("I k g Tin = T)
i
XX [_E (pgo — I-'q.in”iu]]
0 g — h'(2)q + h(2)pe/pl 8 [poin + pd'(2)g — 9(2)p4)

= 8 [gin — Dg+ Bpy] 6 [pgin + Cq — Ap,| . (5.16)

The function K (q,p,: g, Pein) is the ray spread function corresponding to
the response of the system in the space-momentum domain to the input signal
Win(Gin, Pgn) and defines the input-output relationship in the phase-space. The
four real constants, A, B,C and D, such that AD — BC = 1. constitute the ray-
transfer matrix, 7. This result obtained for the magnetic lens is a general feature

of any first-order system: any first-order system can be specified through such a

ray-transfer matrix, or an ABCD-matrix,

A B
Tz(c IJ)‘ AD-BC=1, TeSL2R), (5.17)

an element of the symplectic group of transformations:

f 0 1 0 1 i
T( -1 U)T=(_1 {}). (5.18)

(In general, the transformation of the d-dimensional phase-space (r, ey, p,) will
be deseribed by an SL(4,R) matrix for a linear system). We have considered the
case of a single degree of freedom. Hence, it is clear from (5.15) and (5.16) that,

for first-order charged-particle optical systems, the Wigner distribution function lias

the elegant property that

W ((4,P0): 2) = Wia (0.9 T3 20n) (5.19)

when the motion in the r and y planes are decoupled. (This is completely analogons
to the similar result in the (photon) optical case (see, e.g., [96] and [95]).

The explicit mput-output relation in the phase-space is seen to be

T - ry _{ g(z) h(z) " . »
P/ )nm = ( P./po )in - ( g'(z) h(z) )um ( 1 /o )in (5.20)
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Only at this stage we need the specific solutions, g(z) and h(z), for the classical
trajectory equations (5.8), in order to compute (A, B,C, D). For the problem at
hand one may obtain the two solutions of (5.8) by a method that daes not destroy
the required symplecticity inherent in the transfer matrix 7. As before we can use
the series method deseribed in detail in Chapter 11 (see 2.161 2.164) or equivalently
we may use the method of Picard and Lindel6f [97]. For a thin lens, to a required

degree of approximation, one gets

L ) - S E'?l (zuut — Zin = 5‘“}‘:'“) ( T )
piim ), = 14 o Pl ),

L Zaut I 0 1 —z T
- (D 1 )("% I)(D ll )(P.Ij_}?n)mr{&zl]

1

P f dz afz)? (5.22)

Then, it is straightforward to see that the svstem behaves as a convergent lens with
‘the focal length f; the thin lens approximation implies 2, — 2, < f. The focal
III_B.nth thus derived under the paraxial approximation coincides with the classical
ormula due to Busch ( [43, 44]). So, we have a quantum mechanieal derivation of
the focal length of a thin magnetic lens for a paraxial charged-particle beam. 1t may
be noted that in the ficld-free regions outside the lens system there is no difference
between the kinetic momentum and the canonical momentum.

An alternative way of understanding the result in (5.19) is to use an operator
a proach (see references [92]-[94] and [98]-[100], for the related aspects) by which
ne has

Walq.p,) = %Tl‘ [ﬂﬁﬂ-m?ﬂ;.m ; (5.23)
ghere /i is the density operator of the system, P is the parity operator (see, 93]

[98]- [100] for more details) m}(i

‘f)'!ﬁ = exp [_;:EQ:PQ}( fll ITj )(];i ).‘ .
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‘We have considered above the pure states (= [¢) (1]). From (5.6) it is clear that

Powt = G (Zours Zia) ﬁ'mf"r (Zouts 2in) - {5.25)
‘Then, in general,
e pa zem e
W = =Tt |GG Doy PDL, |
= _Tr PG Dy, GGIPGG D], G (5.26)

Et_we G is unitary in the present case; integrating (5.5), formally, we have

o) = pow [ [ d (57 6 +) )
i [En;rut = 31':1} i o _E)I .

= exp [—E (qu + ﬂ-q lﬁ?f}

where p stands for the z-ordering of the exponential. Note that this & commules

'.-j_;_i_- the parity operation. Thus we get
Wew = < |Gl D,y GPGIDY, G ;

Pour — ; I‘[p—m T (R ¥ g ~ gy r] 2 {-I?ﬂ}
jow let us note that, under the approximation considered,

wf @ NaA (A B[ g r
“(a)o=(c2)(4) 6

In view of the symplecticity of T, we get

LE. .2 i 0 1 ]
G'Dy; G = nx:*[--ﬁ(w-m}?’ '( -1 u)(;:{, )N '

GDL,G = (G'DeC)'. (5.30)

Il

tloli et al. [101] using their formalism based on a Schrédinger-like equation. Ac-

Iy in (5.26) we have the transformation law of the Wigner function in the general
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situation when the paraxial and thin lens approximations may not be strictly valid.
In such a case 7 will contain terms of higher power of (4, Pq) corresponding to the
wvarious aberrations. Very recently we learned about the work by Fedele et al.,[27]

where they have used the Wigner functions beyond the paraxial approximation.

In the classical (geometrical electron optics) limit (A — 1) the map in (5.29)
becomes the classical Lie map in the phase-space of the system (see [15]- [21] for

the pioneering development of Lie algebraic tools for classical charged-particle optics

0 .'-,_the beam Wigner function along the beam optical axis of the system would lead

b o Az - P Po 2
Ll gl H= Ty s - = {Zo Zint 4 .l
G~ exp [-i57H). et EANT,  AF= (), (531

hiere H is similar to the Hamiltonian of a two dimensional harmonie oscillabor of
a8 py and cirenlar frequeney w = \/I?E” The Green's function required is just

T3 o |G{z.,ut1 zi..}lr,””,) which may be expressed as

<rJ_,nu.l

f" {:nulv z]ll}l r l-qill)
z z (r L ouny, ”:."} <”1- iz |(' (Faus 2in)

{npnz} {my,my)

I

m, mz> (g, |1y )

= T (i) exp [‘“"'“'”” “H umlriw) (532
(n1m3)

{¥ny naln1,m2 = 1,2,- -} are the two-dimensional harmonic oscillator elgen-

ms. This expression gives the required propagator equivalent to (5.11) as
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can be verified directly by summing the above expression leading to the well-known
propagator for the harmonie oscillator. The aberrations, in fact even the higher or-
der corrections to the above result, say, in the case of thick lenses, can be treated as
perturbations to the above oscillator-like Hamiltonian and using the standard tech-
niques of the time-independent perturbation theory (replacing the Wnyna S above by
the perturbed eigenfunctions and the ‘(n; 4 ny +1)hw’s by the corresponding eigen-
values) it should, in principle, be possible to obtain the required propagators for
the aberrating systems. Thus the understanding of the performance of a charged-
particle optical system is a straightforward affair in quantum theory. How such an
understanding would help practical computation and design is to be seen. I1 is en-
couraging to see that it should be possible to use the Wigner function approach to
deal with aberrating charged-particle optical systems also as has been demonstrated
recently in [27].

The second remark we would like to add is regarding the extension of the Wigner
function formalisin to electron oplies with spinor wavelunctions. To this end, we
shall consider the formalism developed recently [102]. Then, to a Dirac spinor we

can associate a 4 » 4 matrix Wigner function given by

1 P bl crt)w.(_g!)
}v.iﬁif‘.P}i:I:Wff G exp | =P t?]l,?,“ (r-f--énl plr=5ut) s

o, §=1,2,3,4- (5.33)

in the field-free region { ie., A = (0,0,0)). Since we are interested in relating the
Wigner functions in field-free input and output regions of an electron optical system
we adopt the above definition. For us, at any z-plane in the field-free regions the

corresponding Wigner function matrix 1s

1

i
wnlﬁ{rllpl!z} = W[&TULEKP [-——}Epl-al]
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2 . LK ]
KL'!"H (ri + '5_1'3) trt-',{I (rl . ??3) +

o, f=1,2,34. (5.34)

In spinor electron opties the relation between the output and the input spinor wave-

functions is given by

4
d’a ETJ_,uuh zuul.] = f dirl_.in z Gn.ﬂ' [rJ_,mlthuI; T 1in: ziﬂ} AT {Tlfim ziu] {535}
=1

from which there should follow a relation between Wislzouw) and Woa(zi,) generaliz-
ing (5.15). In this connection let us also note the existence of an alternative operator
formalism [103] for the Wigner function which also has a natural gauge-covariant
extension to the relativistic case; further, this formalism admits a str;ﬁightl'nl'ward
second quantization leading directly to a manybody treatment. It should be inter-
esting to explore the consequences of adopting this approach to the quantum theory
of charged-particle opties in both the nonrelativistic and relativistic situations.

To summarize, we have studied the transformation properties of the Wigner
function in the quantum theory of charged-particle opties in the sealar case, using
the example of round magnetic lens under the paraxial approximation, and noted
the possibility of the extension of the formalism to the case of spinor electron optics.

It may also be noted that there exists a path integral approach to spinor electron

optics [104].




Chapter 6

Concluding remarks

1In this chapter we briefly summarize the contents of the thesis. We recall some

significant points and lastly list some jdeas/directions for future research in the

(guantum theory of charged-particle beam dynamics,

In Chapter 1 we briefly reviewed the classical theory of charged-particle beam
‘optics, particularly the Lie algebraic formulation, pioneered by Dragt et al, in the

context of the charged-particle beam opties.

Firstly, there are the explicit Ag-dependent contributions to the paraxial be-

ur and aberration coefficients (of all order aberrations), which have no ana-
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logues in the classical treatment. For instance, we worked out the explicit Ap-
dependent corrections to the spherical aberration. It is seen that the effects of such

quantum corrections can be of any significance only at low energies.

Secondly, we find that the aberrations depend not only on the quantum mechanical
averages of vy and p, but also on their higher order central momenis corresponding
to the wave packets. An immediate consequence of this fact is that contrary to

the classical wisdom, coma, astigmatism, etc., cannot vanish for the abject point

situated on the optic axis.

To understand the above result as revealed by the quantum theory in contrast
to the classical theory, let us examine the expressions for the observables in quan-
tum mechanics. In quantum mechanics, for anv observable O, (w If ({})l r,f.') =
f ((rj' |U]| t.!'1>) only when the state |¢0) is an eigenstate of O and, in general for any
two observables, say Oy and Oz, only when the state 1) is a simultaneous eigen-
state of both Oy and (25 can we have (u"' |f ((},, ”")l :,-'=-> =.f ((r,.f- |f'}1| n'.') . (!,f- I{};| u'->).
This means that we cannot replace (p.pf), ({pe. P -ve + ro-po ), (92,
ele., respectively, by (p,) ({p,}z t {;.‘ru}z), 4 ({J‘} (pe)? + () (pz) (), 2 ({I} ((_n,_):
| (py}z)), etc. . As an illustration, consider the term ~ ({r,pi})(z,), one
of the terms contributing to coma which, being linear in position, is the domi-
nant aberration next to the spherical aberration. The corresponding classical term,
((%‘E]é + (gf)i) ri at z,, vanishes obviously for an object-point on the axis. Bul,
for & quantum wavepacket with (rp) (z,) = (0,0) the value of ({r,p?}) (25) need
not be zero since it is not linear in (ry) (z,). More explicitly, we can write, with

rL=1r; — (rl}lmui dp, =p,—{p.),

({rupi}) (z) = ({(ro)+or., (o) + 6p.)
+[{f"y} + Eﬁuf}} (o)
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= ({tro) +0rs ()2 + (p,)?
+(8p:)" + (8p,)°
+2((p:)0p= + (po)3P,) 1) (20)
= 2ry)(z)(py)(2)°

+2(r 1) (20) ((99:)° + (55,)°) (20)

+ ({07 (82) + (85,)°} ) (20)

+2 ({81, 8p:}) (z0) (p=) (%)

+2({6r 1,85, }) (o) (py) (), (6.1)
showing clearly that this coma term is not necessarily zero for an object point on the
axis, i.e., when (r;) (z,) = (0,0). Equation 6.1 also shows how this coma term for
off-axis points ({r ) (z,) # (0,0)) depends also on the higher order central moments
hesides the position ((r;)(z,)) and the slope ((p)(z,)/pe) of the corresponding clas-

sical tay,  When an aperture is introduced in the path of the beam to limit the

transverse momentum spread one will be introducing uncertainties in position coor-

dinates (Ar =/{(62)?) , Ay = 1,"([5}1}7}] and hence the corresponding momentium
uncertainties (Ap, = J{{ﬁh}”}. Ap, = ,f{{ﬁ;‘:,}"}), in accordance with Heisenberg's

uncertainty principle, and this would influence the aberrations.

It is to be seen how the above result would affect the scheme of correction of
aberrations, though minutely. That is because the leading order Ag-independent
expressions for the aberration coefficients turn out to be same as the classical ox-
pressions, and the correction schemes depend on the matching of the aberration
coeflicients. So, the correction schemes are affected only by the Ag-dependent. terms,
which are anyway very small compared to the leading order Ay-independent terms,

That is for the scalar theory.

In Chapter III we discussed the spinor theory of charged-particle beam opties

with the examples of the magnetic round lens and the magnetic quadrupole lens,
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The main feature to be noted is that the scalar approzimation of the Dirac spinor
theory differs from the Klem-Gordon theory, but the difference is only in the \-
dependent parts. The leading Ap-independent parts are identical. The other point to
be noted is that the spinor contributions to the paraxial and aberration behaviour
are proportional to the powers of Ay, As an illustration, we have explicitly worked
out the spherical-aberration-type contribution in the case of the magnetic round lens.

We can expect such contributions to be relevant only in the case of applications like
low energy electron microscopy (LEEM) where the electron energies are only in the

range 1-100 eV [105]. Of course, in such nonrelativistic situations one can use our

beam-optical version of the [our-component Dirac formalism simply taking the two

lower components of the Dirac spinor wavefunction to be zero,

In the fourth chapter, we have demonstrated how one can obtain a fully quantum
mechanical understanding of the accelerator beam optics for a spin-3 particle, with
anomalous magnetic moment, starting ab inifio from the Dirac-Pauli equation. To
this end, we have used a beam optical representation of the Dirac theory, and have
shown that such an approach, in the lowest order approximation, leads naturally to
a picture of orbital and spin dynamics based on the Lorentz foree, the Stern-Gerlach
[oree and the Thomas-BMT equation for spin evolution. It is further shown that
even in the lowest order approximations of the theory there are deviations from the
classical behaviour for spin evolution, namely, the dependence on differences (25.) —
() (S:), (wS:) = () (S:), (p2S2) — (p2) (S2), ete.. To illustrate the general theory
we have considered the computation of the transfer maps for the spin components
and the transverse phase-space, including the transverse Stern-Gerlach kicks, in
the case of the normal and skew magnetic quadrupole lenses. It is found that our
study supports le-épin—spliuer concepts based on transverse and longitudinal Stern-
Gerlach kicks ([25], [74)-[80]). It would be worthwhile to extend the study initiated

in the fourth chapter beyond the paraxial approximation to get higher order effects,
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which is sure to enrich our understanding of the polarized beam devices.

In the fifth chapter we presented an alternate approach to the quantum theory
of charged-particle beam optics, by using the phase-space Wigner distribution fune-
tion. The alternate formalism was demonstrated by working out the example of the
magnetic round lens in the paraxial approximation. We also noted how the study
can be extended to the spinor and aberrating case. It looks like that the formalism
initiated in our study should be suitable for generalization in order to take into
account the manybody effects also.

We suggest that the quantum theory of charged-particle beam dynamics may
provide opportunities to test experimentally the various proposals for the choice
of the position operator in relativistic quantum theory in view of the problem of
localization [106] (for a discussion of this problem see, e.g., [107]). This follows from
the analysis in [71] where it has been found that different choices for the relativistic
position operator, like following Newton-Wigner [106] or following Pryee [32], seem
Lo give rise to dillerent phase-space transfer maps for the Dirac particle beam passing
through electromagnetic optical elements, in particular in the Stern-Gerlach sector,

Throughout the thesis we have confined our study Lo systems with straight optic
axis. It would be interesting and practically useful to extend the study to systems
with curved optic axis such as bending magnets, for example, which are essential
components of charged-particle beam devices. Such a study would be useful for a
better understanding of circular accelerators and storage rings. In these cases, the
coordinate system used will have to be naturally the one adapted to the geometry,
or the classical design orbit, of the system. Then, in the scalar theory one has
to start with the _I{leimGurduu equation written in the suitably chosen curvilinear
coordinate system -and the two-component form of the wavefunction will have to be

mtroduced in such a way that one component describes the beam propagating in

the forward direction along the curved optic axis and the other component describes
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the beam moving in the backward direction. Starting with such a two-component
representation one can follow exactly the same approach, as used in the thesis,
using the Foldy-Wouthuysen technique, to filter out the needed equation for the
forward propagating beam. The rest of the analvsis will follow the same scheme of
calculations described in detail in the thesis. Similarly, for the Dirac theory we can
start with the Dirac equation written using the chosen set of curvilinear coordinates
following the method of construction of the Dirac equation in a generally covariant
formn (see, e.g., [108]). Then, the treatment of the given system follows in the same
way, via the Foldy-Wouthnysen transformations, as discussed earlier. The work in
this direction initiated by Jagannathan [8] needs to be earried out to generalize the
present study to cover the systems with curved optic axis.

It may also be pointed out that a deeper understanding of electron optics from
the point of view quantum mechanics should be necessary to tackle the problems of
cohierence in applications like electron holography.

Throughout the thesis we have also restricted ourselves to the treatment of Propa-
gation of a monoenergetic paraxial beam throngh a single optical block with a static
magnetic field and straight axis. Thus, it is obvious that there are several open
problems related to the issues concerning the extension of the present formalism to
more complicated situations. Leaving aside the problems of including the cffects
of multiparticle dynamics, quantum nature of the electromagnetic lield, interaction
with radiation, ete., for the present, the immediate concern should be about (he
extension of the formalism taking into aceount the chromatic effects, curvature of
the optic axis, global analysis of svstems like storage rings, and time-dependence of
fields.

When the beam entering the time-independent system from the field-free in-

put region is not monochromatic, as is in general, the wavelunction of the beam

propagating throngh the system in the +z-direction can be written, in the Dirac
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representation, as

po+iap ) .
Pplr,t)= Ll dpyp(rip) exp (Z1E(p)t/h) , Ap <y, (6.2)
2

where py is the design momentum and

1
Yo(riz < zaip) = oy [ [ dpedpyten(rizp), Ipul <p, (63

with 1pp(ry, 2;p) obtained from (4.13) by replacing the constants (sy,s_) by the
functions (5. (p), s_(p)). Now, the z-evolution of each Fourier component (1p(r; p))
of Wp(r,t) will have to be traced according the above formalism for monochromatic
beam and the results will have to be integrated to get the z-evolution of the time-
dependent W (7, 1); generalization is straightforward in the case of description using
density matrices. Using such a procedure it should be possible to account for the
chromatic effects of static optical elements. First, one should be able to derive in
this way the well known classical results on chromatic effects (see, e.g., [1,.3, 5]) in
the lowest order approximation. Note that in the monoenergetic case, with Ap = 0,
the phase factor exp (—iE(po)t/I) drops out of the formalism making time simply
spectator,

Analysis of global systems, like storage rings, should be possible by learning to
pateh together the quantum transfer maps for individual, or local, optical blocks to
produce the quantum one-turn map (see [20] and references therein for help from
classical beam dynamics),

Finally, the question of time-dependent fields : The present formalism can lead
only to a relationship among the wavefunctions at transverse planes situated along
the design orbit gl.lxidud by static fields. To take into account time-dependent effects,
radiation, ete., ::um;_ will have to use only the traditional quantum dynamical time
evolution equation, The present formalism is mainly intended to study effectively

the static optical characteristics of the system. We believe that a hybrid approach
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to beam dynamics obtained by integrating the present formalism, suited for static
characteristics of beam optics, with the traditional methods of quantum dynamics

for studying the time-dependent aspects should be profitable.



Appendix A
The Magnus Formula

The Magnus formula is the continuous analogue of the famous Baker-Campbell-

Hausdorff (BCH) formula

pAof — A+B+ LA+ L {[IAALB) 4 (A8 A }+. 1 (A1)

Let it be required to solve the differential equation
9 uft) = A(nyu(t) \2
) = 1 (A2)

to get u(T) at T' > 1y, given the value of ulty): the operator A ean ropresent any

linear operation. For an inhinitesimal Af, we can write
it I:ﬂ] - ;r‘:‘"”'ﬂ‘u[tu}. (A3)
Iterating this solution we have

11“3"'_2'&” . Eﬂ!.-i.[fn+ﬁlical,i{tg}u“n}

u(ty + 3AL) = Ea_rfiua+m¢}ﬂmjp..mr:emﬂ.un}u“"]

and g0 on. (Ad)

HT =15+ NAt we would have

w(T) = {hﬂl e.‘l!.—il,lu-!—u&tj} ulty) . (A5)

n=>0
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Thus, u(T') is given by computing the product in (A5) using successively the BCH-
formula (A1) and considering the limit At —s 0, N — oo such that NAt = T —1,.

The resulting expression is the Magnus formula (Magnus, [109]) :
u(T) = T(T te)u(te)
: 1T
TAT, ts) = exp {f' diy A(ly)
+-;—LTdtg[= dty [A(ta), A(ty)]
+é L "ty f; "ty jl" dty ([[A(ta), A(2)], A(t1)]
+[[;i(c.},.ai(tﬂ].ai{ta}]) + } . (AG)

To see how the equation (A6) is obtained let us substitute the assumed form of

the solution, u(t) = T (t,1o) u (fa), in (A2). Then, it is seen that T(¢,y) obeys the

equation
a . . " .
ET{L '!ﬂ} = A{t]T[t: fD}? T“ﬂl tﬂ] =1. {A?}

Introducing an iteration parameter A in (A7), let

Il

%’I" (f,to; A) AAOT (t to; A) )

TltoteiN) = I, Tltte:1) =Tt ta). (AY)
Assume a solution of (A8) to be of the form
T (L, to; A) = eMttaid) ~(ALD)
with
01, tg; A) = i AMAL(T tg), An(te tg) =0 Tforall n. (ALl)
n=1

Now, using the identity (se Wilcox, [110])

d

Eﬁilll.m;i} _ {ful dsem”"’“”%ﬂ{i,in;a"-]E_"”"'““} PR - {1'5;12}
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oue has
1 .
f tf.se’““"“"”%ﬂ{!. tg; AJe 0N — A A1) . (A13)
0

Substituting in (A13) the series expression for Q{t, £5; A) (A11), expanding the left
hand side using the first identity in (C8), integrating and equating the coetlicients

of M on both sides, we pet, recursively, the equations for Ay(t, ta), Aalt. te), ... .

ete. Forj=1
%a.u,:ﬂ:fiu}, As(to te) =0 (A14)
and henee
H -
Ailtto) = [ dtiA(h). (AL5)
to
For j =2
Ea{ffniau}ﬁau =0 Aalto, ts) =0 AL
g D2t ta) + 5 |{-1u7m (L to)| =0, 2ty 1a) = (A1G)
and hence
1 rt 1y i z
Aot to) = zf. dt, l dty [At), )] (A17)
Similarly,
'l I iy ty - . =
Baltite) = & h;u./m drzL it {[[.-m;j. .-'.u-;)] L A(ty)]
+[[Al) s Alta)] L A)]} (A18)

Then, the Magnus formula in (AG) follows from (A9)-(A1L). Equation 2.69 we have,
in the context of z-evolution follows from the above discussion with the identification
t—z, 8 — 2, T'— 2@ and A(t) — —:—.?L[:}.

For more details on the exponential solutions of linear differential equations, re-
lated operator techniques and applications to physical problems the reader is referred

to Wilcox [110], Bellman and Vasudevan [111], Dattoli et al. [39], and references

therein,




Appendix B

The Feshbach-Villars Form of the
Klein-Gordon Equation

The method we have followed to cast the time-independent Klein-Gordon equation
into a beam optical form linear in ‘_5_3;' suitable for a systematic study, through suc-
cessive approximations, using the Foldy-Wouthuysen-like transformation technique
borrowed from the Dirac theory, is similar to the way the time-dependent Klein-
Gordon equation is transformed (Feshbach and Villars, [29]) to the Schri-dinger
form, containing only first-order time derivative, in order to study its nonrelativistic
limit using the Foldy-Wouthuysen technigue (see, e g, Bjorken and Drell, [31]).
Defining
il
iy = E_H.'I.[J' , (131)

the free particle Klein-Gordon equation is written as

. 2.4
.f;g &= (E.:'?z B Ey__",_) o (132)

Introducing the linear combinations

i1 .
U=+ (qr 4 ”.,q:) - (w - -”—r‘—.ﬂv) (B3)
2 s 2 mige?

the Klein-Gordon gquation is seen to be equivalent to a pair of of coupled differential

eouations:

i hig?2

ihaw... = - Sric (T, +9_) + mnﬂz‘l"J,
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0 h'v?
h—o_ = _) = met ¥,
“ﬂ!q’ e (W +¥_) — mge™ ¥ (B34)

Equation (B4) can be written in a two-component language as

ng(we )= (3 5

with the Feshbach-Villars Hamiltonian for the free particle, HFY given by

3 =3
I}I{l _ (mnf.'z + E’% ﬁ - )

e (B6)

For a free nonrelativistic particle with kinetic energy < m,e? it is seen that U, is

large compared to ¥ _.

In presence of an electromagnetic field, the interaction is introduced through the

minimal coupling

o 8 D
pP—a=p—gA, lr’tﬁ — Ih-ﬂ_! — qib. (B7)

The corresponding Feshbach-Villars form of the Klein-Gordon equation becomes

- E q"+ = iy li".+
lﬁm( " ) = H oy

W, [V e (i - a0) v
= E r
v W L (ihd — o) W
HFY = moc o + E+O
. #* T . .
= q¢+ mﬂu G"I'z';ﬁ_n”y- (38)

As in the free-particle case, in the nonrelativistic situation W, is large compared
to W_. The even term € does not couple W, and W_ whereas @ is odd which
couples W, and ¥_. Starting from (B8), the nonrelativistic limit of the Klein-
Gordon equation, with various correction terms, can be understood using the Foldy-

Wouthuysen technique (see, ¢.g., Bjorken and Drell, [31]).
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It is clear from the above that we have just adopted the above technique for
studying the z-evolution of the Klein-Gordon wavefunction of a charged-particle
beam in an optical system comprising a static electromagnetic field. The additional
feature of our formalism is the extra approximation of dropping o. in an intermediate
stage to take into account the fact that we are interested only in the forward-

propagating beam along the z-direction.




Appendix C

The Foldy-Wouthuysen

Representation of the Dirac
Equation

The main framework of the formalism of charged-particle wave optics, used here for
both the scalar theory and the spinor theory, is based on the transformation tech-
nique of the Foldy-Wouthuysen theory which casts the Dirac equation in a form dis-
playing the different interaction terms between the Dirac particle and and an applied
eclectromagnetic field in a nonrelativistic and easily interpretable form (Foldy and
Wouthuysen, [30]; see also Pryce, [32], Tani, [33]; see Acharya and Sudarshan, [34],
for a general discussion of the role of Foldy-Wouthuysen-type transformations in pa-
ticle interpretation of relativistic wave equations). In the Foldy-Wouthuysen theory
the Dirac equation is decoupled throngh a canonical transformation into two two-
component equations: one reduces to the Pauli equation in the nonrelativistic limit
and the other describes the negative-energy states. Analogously, in the optical for-
malism the aim has been to filter out from the nonrelativistic Sehridinger equation,
or the Klein-Gordon equation, or the Dirac equation, the part which deseribes the
evolution of the charged-particle beam along the axis of an optical system comprising
a stationary electromagnetic field, using the Foldy-Wouthuysen techniqgue.,

Let us describe here briefly the standard Foldy-Wouthuysen theory so that the
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way it has been adopted for the purposes of the above studies in charged-particle

wave optics will be clear, The Dirac equation in presence of an electromaguetie field

is
iﬁé—iﬂ![r, ) = Hp¥(r,t) (C1)
Hp = mgcB+qd +ca - 7
= myPf+E40, (C2)

with € = g¢ and @ = ca - #. In the nonrelativistic situation the upper pair of
components of the Dirac Spinor ¥ are large compared to the lower pair of compo-
nents. The operator € which does not couple the large and small components of

W is called ‘even' and @ is called an ‘odd’ operator which couples the large to the

small components. Note that

BO =-08, pE=E3. (C3)
Now, the search is for a unitary transformation, ¥ = ¥ —s UW, such that the

equation for W' does not contain any odd operator.

In the free particle case (with ¢ = 0 and 7 = p) such a Foldy-Wouthuysen

Lransformation is given by

W — = Up

. tan2|p|f = Pl : (C4)
Mot

Up = o — A0 o

This transformation eliminates the odd part completely from the free particle Dirae

Hamiltonian reducing it to the diagonal form:

ih%!{" = ¢ (T'-‘Lut‘?ﬂ +cox - ;&] e Sy

= (-::us plo+ 2 Tﬁ.i Pgin [;aw) (mec + ca - p)

x ({:us Bl — %’Ifsin ]1':|H) W
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= (muczms 2|p|f + ¢|plsin 2|ﬁ|3) A’

- (JW) A (C5)

In the general case, when the electron is in a time-dependent electromagnetic
field it is not possible to construet an exp(iS) which removes the odd operators
[rom the transformed Hamiltonian completely. Therefore, one has to be content
with a nonrelativistic expansion of the transformed Hamiltonian in a power series
in 1/mye* keeping through any desired order. Note that in the nonrelativistic case,
when |p| < ingc, the transformation operator Up = exp(iS) with S = —ig@/2myc?,
where @ = cax - p is the odd part of the free Hamiltonian. So, in the general case

we can start with the transformation

(1) _ i:‘;‘ {;‘ . l,gcj o _hi,ﬁﬂ"ﬁ' -
¥ e ; 2mipc? Qge 6]
Then, the equation for ¥ js
d o O & r.ia a i
2 Qm — a9 b = Y (s £ fon @
ih o ihs (1) =i (o) W e (mmxzr)
= _’hﬁ (1) 4 H,;.] W
= [, @ iS5y —is W81 17 —i% (19
= .:ﬂa—l(n D e g et et
= ['.i";.‘f}ﬂt'._lg' - iﬁf_‘"‘;'ﬂ ((,"’_L:F') Wt
I it
HY e (CT)

where we have used the identity ﬁ (E‘;') e~ 4 ¢ e‘iﬁ (E“’i) = ﬁ.j =

Now, using the identities

EAHE A B-I—[;L, H] + EIAI l‘i! 'H]I * Ef['qviﬁil'*i'r B]” + ..

{%"{m E% (E—:i{tj)

= (1 + A(t) + %.-il:t}2 i %A{L}:’ : )
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dJ .2 -
ar( — A+ A{t] — %A{t]gn-)
s (1 + A + -—;-1“.}"‘ + l.xi{:f . )

dA(t) A1)
"( o ""z!{

Alt) + A[a‘.}a 35”}

QAW) 2+ DA
37{ 5 4{#] +AU}TA“]

A{r]“axn} )

AA() 1 a_»!.m
~at @ |40 }

1] dA(t)
=3 [f’.[t} A(t), TH

1| - . AA() :
= [.-1{!]. 'A[t}f A1), 5t H : (C8)

with A = if;'.. we find

Y = i Itai+:[‘:1,.’fp-g%?

it
1 has
o [S‘ [S| H;J-ETEI‘ jl

N R (. hos
~5 [.5'.. [S.. [3., Hiyi= -lfa—astim . (C9)

Substituting in (C9), Hp = mee*§ + £ + O, simplifying the right hand side using

the relations 4O = —OfF and A€ = £/ and collecting everything together, we liave

I}H} = mec? B4+ E + O

e e ¥ a1 T fimiary 80
b = E+2muezﬂﬂ 8mac! [m*([ﬂ'f]_‘_m ﬁt)]

1 &
Ul!
Emur_jﬂ
~ - U .l = .
O, = zm.,r:? ([G €] +in— )— T (C10)

with £ and O, obeying the relations BO, = -0,8 and €, = £, exactly like E

and @. It is seen that while the term O in Hp is of order zero with respect to



Arresn The Fu]c[}r-Wm:thuyﬂen Representation of the Dirac qumtiun 153

the expansion parameter 1/mye* (ie, O = O ({1,’111@” ]") the odd part of [} ]T
namely @y, contains only terms of order 1 fmgc® and higher powers of 1/mge? (ie.,
Oy = O((1/mqe?)).

To reduce the strength of the odd terms further in the transformed Hamiltonian

a second Foldy-Wouthuysen transformation is applied with the same preseription:

O = gl
. B0y
% = 2mye?
3 [ B 90\ 1
= - E — e P |,
2mpe? | 2mge? ([G I Hi ﬂt) 311]%(:"@]
(C11)
After this transformation,
2 g2 720 (2) 7(2) 2 : .
Iﬁa.‘;' = Hp'W, Hp' =wmec’+ &+ O,
B : g 3 70,
=~ e ""'"_ ¥
Ea : £, O, e ([lﬂl 51] + i = )
(C12)
where, now, O, = O ({lfmurj]zj. After the third transformation
= i yp(2) R 180, Cl:
W e ; S S (C13)
we have
o 0 1) A3y rrla) 2 ; s
Irla"p hru \r ¥ Hﬂ. = Mg ﬁ+£’_‘]+ﬂ;]
o . F ) 8O,
&y = =&, Oy= Emuc’ ([U:T )-
(C14)

where Oy = O ({l,frr:urg]la). So, neglecting O,

ﬁg” = mge JEZ|'+.:‘3'+—,Eill'}'2
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' N S a0
] ;8 ’ fh,
Bing e v ([G E] R )]
-
.Smﬂcﬁ 20" o)

It may be noted that starting with the second transformation successive (£, Q) pairs

can be obtained recursively using the rule

Ej = é; (é—}fj,_h@—'.'éj_|)
l-jj = {f"] (é—}gj_.hé—'? @J_]) . Pl [CIG}
and retaining only the relevant terms of desired order at each step.

With £ = g¢ and O = ca - &, the final reduced Hamiltonian (C15) is, to the

order calculated,

) -3 -4 h
9 = ﬁ(nmrf’+-’f—— & ) tap— 5 —BE -B

2mg  Bmdcs Tyt
igh® qh
- Y -eurll E - Y -Ex
Smic? : dmic? ¥
h? ) ,
- Hm._,rzllef (C17)
(1]

with the individual terms having direct physical interpretations. The terms in the
first parenthesis result from the expansion of Jr_nﬁr:" Feta? showing the effect of
the relativistic mass increase. The second and third terms are the electrostatic amd
magnetic dipole energies. The next two terms, taken together (for hermiticity),
contain the spin-orbit interaction. The last term, the so-called Darwin term, is
attributed to the zitterbewegung (trembling motion) of the Dirac particle: hecause
of the rapid coordinate fluctuations over distances of the order of the Compton
wavelength (2nh/mge) the particle sees a somewhat smeared out electrie potential.

It is clear that the Foldy-Wouthuysen transformation technique expands the
Dirac Hamiltonian as a power series in the parameter 1/mpe? enabling the use of a
systematic approximation procedure for studying the deviations from the nonrela-

tivistic situation. Noting the analogy between the nonrelativistic particle dynamics
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and paraxial opties, the idea of Foldy-Wouthuysen form of the Dirac theory has
been adopted to study the paraxial opties and deviations from it by [lirst casting
the relevant wave equation in a beam optical form resembling exactly the Dirac
equation ((C1)-(C2)) in all respects (i.e., a multicomponent W having the upper
half of its components large compared to the lower components and the Hamilto-
nian having an even part (£ }, an odd part [('3'}, a suitable expansion parameter
characterizing the dominant forward propagation and a leading term with a j3-like
coefficient commuting with £ and anticommuting with E'j_], The additional feature
of our formalism is to return finally to the original representation after making an
extra approximation, dropping 3 from the final reduced optical Hamiltonian, taking

into account the fact that we are interested only in the forward-propagating beam,



Appendix D

Green’s Function for the
Nonrelativistic Free Particle

For a nonrelativistic free particle of mass m moving in one dimension the Schri-

dinger equation is

mﬁwh:y—ﬁw:u J?—Ei (1)
it T T o 2m

The corresponding Green's function, or the propagator, given by
Gt t) = (2o AT |5y — (oA ”m| r) (132)

is such that
wﬂﬂszGWImﬂwnw (D)3)
The expression for G(a', 1, z, 1) in (D2) can be evaluated easily using the momentum
representation. The explicit caleulation is as follows: with (1 — ) = At,
P
(@'le- totfE 1)

3
= [ [ dv'dp (') o/ 4455 1) o)

ot e
-—ffﬂ'_n dp (\;m) e ﬁ'j"?rﬂ'{ﬁ - p) (;{_)
= ."/ﬂ.'” P\cp{g(p[r r}—ﬁf—)}

_mie =)\’
i At

1 f i 14t
=— [ dpe —
2xh P EXP 2mh
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_ mia! — )
(At)?

_ 1 { im(z' — 1)? }

2nh o2

; iAt [, mfa’ —x) g
. ,/ i exp { 2mh (p At
1 im(z' — : i pr
= 2nh Exp{ 2hAL }fdp { mh }

mo o\ im(z! — z)?
= (EHiﬁd}.!) "'x”{ AL } 4]

We have used the two-dimensional generalization of this result. Since the variables

z and y are separable for the free motion in the zy-plane, it follows that

. p ]
G[rltt,;rJ_?t] = ( ‘Tﬂ )Ex’p {M}' (D5}

2mihait 2hAL




Appendix E

Matrix element of the Rotation
Operator

The required matrix element of the rotation operator around the z-axis through
an angle ¢, (r J_!eﬁ"j'*h" 1), can be easily ealculated using the cylindrical coordinate
system x = pcostl, y = psinf, z = z. Then,

erflegh(ry,z) = AP wBely(r, 2) = " Ry(p,6,2)

= Yo, 0+10,2) = Y(r.(9),2), (E1)
where v () = (xcosd — ysind, zsind + ycosid). Using this result, we get

AT LV G O AT P LT
= [dr6 (r = )8 (i) — 70)
8 (r',(0) - 1) . (E2)

Hence we get 2.116:

(F'eR0ela iy = 6 (1 (0 (2, 20)) — 7,) - (E3)



Appendix F

Green’s Function for a

Time-Dependent Quadratic
Hamiltonian

Let it be required to compute the Green's function for a system in one dimension

obeying the Schrodinger equation
g - ;
mm]ﬂ:m} = H(D)|¥(t)), (F1)
with a time-dependent Hamiltonian of the form
H(t) = AP + B(t) {zp; + pex} + C(1) 22, (F2)

where A(f), B(t) and C(t) are real functions of t. Using the Magnus formula (AG))
We can write

() = U, ) |y(t')) (1'3)
with
ut,t')
- { . ;r f‘f dty F (1)
(;,';) YRR

-_3

1 ¢ I3 iz
(_H) _[1' l'ﬂ_'! /;.- FH-}_—/; ﬂrh

_|_

_|_

| == o] —
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{[[A), 8], ()]

+{[Am), H(t)] ,I?{!;,}]}...} , (F4)
and the required Green's function is given by
Gla.t: ', t') = (z|U(t. ') |") (F5)
such tﬁat
D, t) = f dz Gz, t;2', ) (2', ) . (F6)

From the fact that the operators (2, p7, {2p; + p.x}) are closed under commutation,

leading to the Lie algebra,
[ %) = 2 (o )
[+, {ap: + pex}] = diha?
[{aps +pez) 2] = dinpd, (F7)
it is clear that U{f., (') in (F4) can be written in the form
Uit,t") = exp {—% [ﬂ{t, t')it 4
bit, ) e + o} + et )]} (F8)

where a(t, '), b(t,1') and ¢(t, (') are infinite series expressions in terms of A(t), B(t)
and C(1). The precise form of (F8) can be obtained as follows. Substituting the

relation
(1)) = U (L, ) (t') ) (F9)

in (F1) it is seen that
o B i 3 % i ey gl g f
ARz UL = RO Y, U, =1. (F10)
This implies that

. d i Hy =2
tﬁ-a (exp{-ﬁ a(t, t')p.+
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b(t, ) (e + ) + (1)) )
= (A2 + B(t) {zp= + pez} + C(1)2?)
a3
x (EX[]{ h a(t, t')pz+
b(t, ) {xps + P} + cft, )] }) . (F11)
The algebra in (F7) can now be used to to relate a, b and ¢ with A, B and C.

Following Wolf [40], we shall spell out these relations as follows: with the parame-

terization
- e ,_vla-d) o
2sing ' 4sing ' 2sinp
cua:p:%[n-!—ﬁ], (F12)

it is seen that aft, 2'), A(t, 1), v(t,t') and §(t, t') satisfy the equations
A — A+ [1A(AC — BY) = 24B + 2AB]a =0
aft' ') =1, a(t',t') = 2B(t') (F13)
aff — fia—24=0

A, )y=0, B, 1') =2A(t) (I"14)

a  ol} s
Y= ﬂ — T “‘ 11]}
ad—fy=1, (F16)

where [ = ﬂ'; and f = :I—':{-. It is thus clear that, given A(t), B(t) and C'(f) in ff[t},
equations (F13)-(F16) provide a(t, t'), A(t,t'), v(t,t) and (¢, 4") through (F12).

Hence, we can wrile
Ut t')
e i el t) s
s {_E (?sin:p[t,!"]) [ﬁ(t’t )P
+3 (0t ) = 8(6,0)) (e + Bz} (1,657

(F17)
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where @, 3, 7,6 satisfy (F13)-(F16) and cose = $(a+ §). With A, B and C being
real it is seen that a, 3,7, 0 and ¢ are real implying that U is unitary.
To find the Green’s function (F5), the following observation helps: [/(t,t') gen-

erates a real linear canonical transformation of the conjugate pair (x, p;) as

( Ut (e, )zl (t, 1) ) N ( alt,t') Bt 1) ( T ) (F18)
OMe p:U () )~ \ Aty o) J\ b ) |
In other words,

Ut ) ) = Ulalt, i)z + At 1)5:) )

pU )W) = U (y(t, ) + 8(t,t')p:) [¥), (F19)

for any |4). Writing out (F19) explicitly in terms of matrix elements it is possible to
solve for G(x, t;2',t') = (z|U(t, ')]2") up to a multiplicative constant phase factor

(see Woll, [40], [112], for details of the solution) : The result is

Gz, t; 2 t')
1

1 ry Ll
= e oxp { ———— |a(¢, ')z
J2mina(, ) o { 2hj3(t, 1) [“{ I

~257' + ﬁ{t,!'}:ﬂgl} .

if Aty #0 (17200)

and

(%)
.—_.E{I' - x;ﬁ{tl t'}] ¢

oalt, )

Gz, t;2', 1)

if Bt =0, (F21)

where (2" — z/a) is Dirac delta function. In the two dimensional case, if the Hamil-

tonian is of the form

H=A(t)p} + B(t) {ro-py + P, v} +C(Or?, (F22)
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then, because of the independence of the corresponding = and y motions leading
to the separation of the variables r and y, the above results are extended in a

straightforward manner corresponding to the replacements r* — r?, p2 — p?,

{2p: + Pz} — {ro-p, +p, -7}

In the case of the round magnetic lens taking (¢,¢') as (z, z,), one has in H

Hap
A(z) = 1/2py, B(z) =0, C(z) = %qu{z}. (F23)

Then, taking
oz 20) = g (2.20) « Bl2,70) = hy (2,20) /7o, (F24)

equations (F13)-(F16) become

@ (2,20) + F(2)gp (2, 20) = 0
gplz0i2) =1, g(202) =0 (F25)

hy (2, %) + F(2)hy (2,2) =0

Rafzsiz) =10, W(z,2)=1 (1'26)
(2 20) = pogy (2, 20) (F27)
8(2,20) = (14 My (2, 20) 0} (2, 20)) [ (2, 20) (F28)

showing that g, (2, 2,) and h, (2, z,) are two linearly independent solutions of the
paraxial equation (2.124) with the initial conditions (2.125) as required. Since
9p (2, 2,) and hy (2, 2,) are a pair of solutions of the same second order differential
equation (see (F25) and (F26)) it follows [rom the Wronskian relation, gh' — hy' = 1,
that 8(z, z,) = hy, (2, 2,). Substituting in (F17) a = g,, 8= hy/pe, 7= Patly, 0 = I,
and cosp = (g, + ) /2 we get (2.120). With 2k = Agpo (2.121) and (2.122) follow
obviously from (F20) and (F21) since G(r.,v') = G(z,2')G(y, v') where G(y, ') is

obtained from G(x, ') by just replacing = and 2’ by y and y' respectively.
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