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Abstract

In the recent decades, squeezed light, which exhibits statistics that cannot be
associated with any classical stochastic process, has been experimentally generated
by a number of groups in a variety of configurations. Of particular interest is the class
of squeezed states known as the amplitude sqneezed states, which are characterized
by their photon number fluctuations being smaller than that of a coherent state.
The technological implications of these states in fields such as telecommunications
has been clearly demonstrated, apart from their immense importance in the field
of pure physics. These states of the radiation field show many inter-related non-
classical properties such as sub-poissonian statistics in photon counting experiments,
noise reduction below shot-noise level in direct detection, and photen antibunching
in Hanbury-Brown-"Twiss type of intensity-intensity correlation experiments.

In this thesis, we propose a combination of quadratic and quartic non-linearities,
viz, evolving a quadrature squeezed state throngh a Kerr medium, which results in
a variety of states with different properties. Of great interest are the states which
show substantial amplitude squeezing and whose photon number uctuations ean
be minimized to a value {{Afi)?) < (7). With the existing technology this is
one of the proposals which seem experimentally viable. We have also studied other
amplitude squeezed states produced by the evolution of quadrature squeezed states
in the Kerr medium which even if experimentally more difficult to achieve at this
time are nevertheless interesting.

These proposals have stemmed from a deeper understanding of the dependence

of amplitude squeezing upon the curvature of the quasi probability distributions



(QPD) such as the @Q-function. The usual quadrature squeezed state, for a very
high squeezing, has a QPD which is concentrated along a straight line segment in
phase space. Oun the other hand for a Fock state, which has a vanishing photon
number uncertainty, the QPD is concentrated along a circle centered at the origin of
phase space. Hence states having curved QPD, such as those produced by evolving a
coherent state or a quadrature squeezed state through a Kerr medium, should show
reduced photon number uncertainty after a suitable displacement Lo an appropriate
position in phase space. Simpler states with a curved QPD are superpositions of
two coherent states such as |2 )+ €| — 2 ). We have shown that the angle f1, called
Lhe relative phase, plays a crucial role in imparting a curvature to the quasi proba-
bility distribution. Hence this relative phase is lundamental in the nnderstanding of
amplitude squeezing, as any state can be expressed as a superposition of coherent
states, and since the behavior of such superpositions can be understood and buill
in terms of pairwise superpositions.

This thesis is arranged into six chapters. The introductory chapter quickly re-
counts the tools required to pursue the subject. Quantization of the radiation feld
and the different representations of the quantum field are briefly presented. The
coherent state representations are discussed giving a short account of the various
quasi-probability distributions, The quantum noise of the electromagnetic field and
the tools necessary to quanlify and study it are also recollected along the way, The
quadrature squeezed states are then introduced from a more conceptual point of
view, Finally, the Kerr medium with its quartic inbura;ﬂ.iun term and its eflect on a

coherent state evolving through it are presented briefly.

In the second chapter, the role of relative phase, in the sense of Pancharatnam’s
¥ i
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classic work, is explored in the context of superposition of coherent states. In par-
ticular, it is demonstrated that one of the effects of the relative phase is to produce
a curvature in the QPD. For later convenience a canonical form of the sUperposi-
tion of two coherent states is given. We study in detail the effect of the relative
phase on the QPD of the canonical form. The noise matrix for the canonical form is
then calculated and the presence of various kinds of squeezing for different relative
phases are studied. A general superposition of two colierent states is then studied
by reducing and relating it to the canonical form,

In the third chapter, the relationship between amplitude squeezing and relative
phase is analyzed using the superposition of two colicrent states. We show that one
can optimize the amplitude squeezing by displacing the superposition with a given
relative phase to a proper position in phase space. The real role the relative phase
plays in producing amplitude squeezing is then studied by fixing a superposition
of two coherent states at a given distance from the origin and varving the relative
phase between the component states. We also show that for small squeezing Lthe
quadrature squeezed state, whose QPD is nol eurved, is equivalent to a in-phase
superposition of two coherent states,

The fourth chapter studies the evolulion of a quadrature squeezed state in a

—

-

Kerr medium. The caleulations involving this are considerably simplified if one
—_—— ~

expresses the quadrature squeezed stale as a superposition of coherent states. The
e e — —— —— ¥ sy =

pictorial representation of this evolution is given using the €)-function, which is then
compared with that of the coherent state case. The expectation values of various
field quantities are then calenlated to assess Lhe noise properties of the field and

cerfain interesting limiting cases are pointed out.
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The fifth chapter presents the study of amplitude squeezing in the superposition
of quadrature squeezed states. The evolution in a Kerr medium can give rise to
Yurke-Stoler type of superposition of quadrature squeczed states, and such a state
shows considerable amplitude squeezing when displaced to a proper position in phase
space. The photon number properties of these displaced states are then studied.
One particular case of getting amplitude squeezed states from a Yurke-Stoler type
of superposition of phase squeezed states is then studied in detail and it is shown
analytically that {{AR)*) < {ﬁ}”" in this ease. Finally, the leasibility of getting
amplitude squeezed states from other Yurke-Stoler type superpositions is briefly
considered,

The sixth chapter proposes a scheme for getting highly amplitude squeezed states
through the evalution of a quadrature squeezed state in a Kerr medium. The scheme
is first outlined and the photon number fluctuation of the out-coming beam is then
caleulated. The photon number fuctuation is then minimized first by optimizing the
scaled time of evolution inside the Kerr medium for a given quadrature squeezing.
The presence of a minimum here enables one to optimize the initial quadrature
squeezing too. After this complete optimization of the parameters involved, the
photon number fluctuation is shown to go as {AR)) < (7)Y which is two orders
of magnitude smaller than those obtained in previous similar schemes. Finally, the
experimental feasibility of this scheme, and its potential as a candidate for getting
experimentally the smallest photon number luctuation as of date, are discussed.

Parts of the research work leading lo this thesis have been published, some of

which (") are not included in this thesis.
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Introduction

In this introductory chapter, we brielly summarize the concepts and
techniques needed to pursue our study. We first recollect the usual
way in which the electromagnetic field is quantized. The usual repre-
sentations of the quantized electromagnetic field in terms of the Fock
states and coherent states are then briefly summarized. Along the
way, we introduce the quantum noise of the electromagnetic field and
the tools needed to quantily this noise. We briefly discuss the density
operator and the various quasi-probability distributions. The quacdra-
ture squeezed state is then introduced from a more conceptual point of
view and its properties listed. Finally, the Kerr medium, which gives
rise to another kind of squeezing in which ithe noise in the photon
number is squeezed, is reviewed, and its effect on a coherent state is

summarized,

1.1 Quantization of the Electromagnetic field

The quantum theory of light grew ont of Max Planck’s [1] proposal that the electro-
magnetic radiation is made up of discrete lumps of energy, where the energy of each
lump is postulated to be proportional to the frequency of radiation. Planck made
this proposal al that time to explain the experimentally observed spectral energy

distribution of a radiating black body, which was inexplicable in terms of the classical




theories. This proposal was consequently used to explain the phenomenon of photo-
electric-current, first observed by Hertz in 1877 and further studies of which were
conducted by Lenard between 1899 - 1902, It was experimentally observed that in
the phenomenon of photo-electric-current, the energy carried off by the electrons is
independent of the intensity and, morcover, this carried off energy was proportional
to the frequency of the radiation, which was in contradiction to the predictions of
classical theory of radiation. Starting from Planck’s hypothesis, Einstein explained
the nature of photo-electric current and introduced the term photon (2, 3] to mean
the discrete lump of energy of the radiation field. He and others extended the same
treatment to other undulatory phenomena such as sound waves in a solid [4, 5, 6],

which resulted in the solution to the long standing problem of specific heat of solids,

Around this time, the field of spectroscopy [7] had matured enough to identify
the signature of the atoms in line spectra. Even the existence of a mathematical
relationship between the lines had been recognized [8, 9]. The evidence of the
planetary model of an atom, due to the investigations of Rutherford [10], could not
explain the structure of the line spectra on the basis of classical electromagnetic
theory. Once again, the quantum hypothesis was used successfully to explain the
spectra of (at least the simplest) atoms [11]. The adhoe ‘quantum’ conditions used
in the above process were refined by Sommerfeld [12]. This paved way for a more
analytical approach based on the earlier work by Hamilton, and Heisenberg [13],
and Born and Jordan [14], among themselves [15] developed the theory further
into what was then known as Matrix mechanics. In parallel, De Broglie's proposal
that all matter must also have a wave counterpart [18], led to the development of

a mechanics for this ‘waves’ by Schridinger [19]. Dirac took the work on Matrix



mechanics to a more abstract level in this period [16, 17], which finally led him to
the formulation of quantum mechanics in a unified way [20] that we use now. In
1928, Dirac developed the relativistic quantum theory of electron [21], which was

soon followed by attempts to quantize other fields [22].

In 1909, Einstein proposed a phenomenological theory of radiation [72], in which
he introduced the concept of stimulated emission of photons apart from the sponta-
neous emission. It could be said that the quantum theory of absorption and emission
of photons was first formulated when Dirac [73] in 1927 could obtain the A and B
coefficients earlier introduced by Einstein. Al present we use a similar but non-
covariant formulation [23, 24], to quautize the radiation field. The starting point
[23, 24, 25, 26, 27, 28] is the Maxwell's equation for the clectromagnetic field, which
itself was the result of earlier work by Coulomb, Ampére, Farad ay and Biot. These
equations give the relationship between the electromagnetic field vectors F and ,
and their sources, namely the charge density p and the current density J. If one
knows the scalar field p and the vector Reld J at every point in a given domain,
then the Maxwell’s equations in principle provides one with the solution of the po-

lar vector field £, and the axial vector field . The Maxwell’s equalion themselves

are given by

vV.-E = £ (Gauss Law)
k,fﬂ
V-B =0 (No Magnetic Monopoles)
5 o 05
VRE = ~5F (Faraday’s Law)
e e = "ekm i}lﬂj . .
VxB = kittad?+ ﬁ?%}? (Modified Ampere’s Law), (1.1)

where ¢ is the velocity of light in vacuum, and ey, p1g are the permitiivity and per-



meability of vacuum. k. and k,, are relative permittivity and relative permeability
of the medium. The modification of the Ampere’s law to include the displacement
current was the contribution of Maxwell, which led to the completion of the theory,

and to identifly Light as an electromagnetic field.

The source Lterms p/ and J7 stand for the free charge and [ree current, which does
notinclude the bound charges of the medium[30, 31]. The electromagnetic properties
of the medium due to the existence of the bound charges are generally incorporated
into the relative permittivity and relative permeability of the medium. In linear
anisotropic media , k. and k,, are represented by second rank tensors 29, 31], as
the direction of the induced field may be different from that of the inducing field.
In very strong fields, such as those produced by a laser, k. and k,, are interpreted
as functions of £ and B respectively to take into account the non-linearities [32]

exhibited by the medium at such strong fields.

We consider as an illustration to the method of quantizing the radiation field,
the quantization of radiation in a source free region (pf = 0, J/ = 0). In the source
[ree region, which we will call as the cavity, the firsl and second of the Maxwell's

equations will be identically satisfied il one takes

f_i" = ﬁxfl.
4 A4 -
B = —f[,]—t—w : (1.2)

where A is the vector potential and V, the scalar potential. Since the Maxwell’s
equations are gauge invariant, and since one mainly works in the non-relativistic
regime in quantum optics, one usually chooses the Coulomb gauge [23], described

by the conditions V- A = 0 and V = 0, and which implies that both E and 5 are



determined by the transverse vector potential A alone. Substituting for the electric
and magnetic field in terms of the potentials, and incorporating the Coulomb gauge
condition, we get a wave equation for the vector polential, the solutions of which

are the solutions of the Maxwell’s equation.

The total encrgy contained in the field inside the cavity is the hamiltonian, given

by
H = flqu.f?' Bt Bydv | (1.3)

2 fto

where dV is the volume element, and the integration is done over the entire volume
of the cavity. The electric and the magnetic fields at each point inside Lhe cavity
are specified by giving values to the components of A at each point in the cavity, If
one treats these as the variables describing the field, then it is obvious that these
are infinite and continuons, One can make this countably infinite, by assuming that
the cavity is of finite size L7, and by finding the entire set of functions that salisly
the wave equation for some given boundary condition. One can then express A as a
superposition of these functions, and use the coefficients as the dynamical variables
describing the field. Thus, the static aspects of the problem such as the boundary
conditions are included in the solutions, and the dynamic aspects such as the time
variation ol the fields are built into the coefficients. Hence one can make an ansatz

for the solution of the wave equation as

A ) = —= 5 gu(0)in(®) (1.4)
\/ﬁ i

where the constant outside the sum is for normalization purposes. The functions

i, (7) can be chosen to be orthonormal. The coefficients, or amplitudes q,,, satisfy

s |



a differential equation analogous to that of the simple harmonic oscillator. FEach

function i, of the orthonormal set is called a mode.

One set of orthonormal functions which are solutions to the wave equation are the
cosine or the sine functions, depending on the boundary conditions. But note that
these solutions are standing wave solutions and one is often interested in Lravelling
waves. The usual procedure to get travelling waves is to require periodic boundary
condition at the walls of the cavity. One may also get travelling waves by observing
the fact that a standing wave can be made up of a superposition of two travelling
waves, travelling in opposite directions. Hence one can choose a set of complex
mode functions, which in the simplest case can be plane waves, in which case the
amplitudes too become complex and are denoted by a,, and ay.. Introducing the

polarizations also into the mode funclions, we can have

b Xk - F)

T . (1.5)

One can now write the veclor potential in terms of these as

IT'Eln:-t.-r |:l_'} -

2

AF =33

moa=]

h

’ e I
mﬂma (ﬂ,,mﬂ i3 St - ﬂmﬂ,ﬁlwm e ,) i (lﬁ]
m't0

It is obvious that each term in the series is a solulion to the wave equalion if

= . (1.7)

The coulomb gauge condition V- A =0 imposes that

Eing + e = 0 ’ {IB]

which is called the transversality condition. Here the direction of ke 18 the direction

of propagation of the plane wave. Hence we see that A, and hence F (since £ is the



time derivative of ff], are perpendicular to the direction of propagation. Note also

i —
that the summations now run over —eo to oo, and k_,, = —k,, and w_,, = w,,.

Now, il one sets a,,, exp(—iwyt) = tma(l), we can write the electric and the -

magnetic fields as

i : .I'r“"'m 5 ik - SR
E(ft) = 1 zcnvﬁma (uﬂm[t]n + a;,.(t)e )

= i z hi l:gl-'rn.a = 'Em} Ty ] — ik
B = it . L el e p TR . ,
08 = Vo T (e + i, (0e75) , (19)

where we have done a little bit of vector algebra. The hamiltonian of the Reld given

in Eq. (1.3) can now be written as

H

1
£l w
5 z 'r;'-‘-'-:'m (“Trm”nw + Doppg f""T]I

[TE

= % E (I’ffil'l' _E- Lr-‘EII"I'ﬁm) ¥ { I ] [']:]

mr

where we have used

l :
JT [wﬂl. rfu:ﬂ + IIJ"LH‘} [ [ qu I}

and its complex conjugate. The details of this derivation can be found in many

g =

books (See in particular, appendix B of [27]) and hence is not reproduced here.

We have shown that the problem of the radiation field in vacuum can be reduced
lo a problem of infinitely many non-interacting harmonic oscillators. Since one is
familiar with the quantum mechanics of simple harmonic oscillators, all one has to
do is to promote the complex amplitudes o, o to non-hermitian operators i and af,
Since it is experimentally known that photouns are bosons, one promotes pu,, gmes b0
hermitian operators obeying the boson commutation relations. These operators fiy,,

and g, are called the quadrature operators, since one can express the electric and



the magnetic fields directly in terms of them. The bosonic commutation relations for
the quadrature operators imply that the non-hermitian operators for the amplitudes

Ame and there complex conjugate satisfy

4_

e t
[" THRET ﬂ-mi;_rf] = arrtm ! 5-’1':1"

-

[Guias i) = 0 =1[al,.al..] | (1.12)

which again implies that the radiation oscillators for all modes are independent of
each other, and the annihilation and creation operators for different modes commute.

Hence the hamiltonian for the quantized radiation field can be written as

— 1

H = E Z IiliL"-"m (ﬁLmama -+ ﬁTrm‘:I.I,m) = z 'ﬁ“v’m (aimamw + %) . “]:ﬂ

L L)

In this section we have summarized the method for quantizing the radiation
field in vacuum. What has been done here is but a trivial example of quantization.
There is an extensive literature on quantizing some non-trivial configurations. One
can quantize a box filled with uniform dielectric [33] and also a box filled with two
uniform media with different permittivities [34], the natural extension of which will
be to consider a cavity with output coupling [35]. There are more general theories
of light propagation, in linear media [36] and in inhomogeneous media (37, 38].
There are recent works on the complete theory of general dispersive inhomogencous
nonlinear media by Drummond [39] and by Glauber [40]. Work lias also been done
on non-linear time dependent media [41]. Recently cavities wilh moving walls has
attracted attention [42] in relation to squeezed state generation [142]. The direct
consequence of quantizing the radiation field is the foree felt by two parallel plates,

which was discussed by Casimir [43], and an excellent account of which is given in



e

the appendix of Power's book [25], and as such the method can be used to calculate
the Casimir force even when one assumes squeezed states of the radiation field. A
recent review of Casimir force is available in the context of QED [44]. In the conlext
of Quantum Optlics one calculates this as radiation pressure [45], a briel account of

which is given in relation to squeezed states in [91].

We have recollected the bare basics to quantize the radiation field. After the
calculation of the Einstein coefficients [72] by Dirac [73] using the quanium theory
of the radiation field, there was an altempt to understand many a problem related
to radiation [74, 23]. Attempls to get the rate equation in the quantized form
[78], led to the invention of maser [75] and the laser [76], which in turn led to the
expansion of many fields such as holography [77]. It took many more years to gel
the full quantum theory of laser, since ane had to include the losses in a quantum
mechanical way, This was finally done and the complete quantum theory of laser
was established by Haken [79, 80], Fleck [81], Lax [82] and Scully and Lamb [83],
using various approaches such as quantum stochastic and density operator methods.
With this, we now turn to the solutions of the radiation field hamiltonian, and a

suitable way of representing the quantized radiation field.

1.2 Representations of the Electromagnetic field

In this section, we will consider the representations of the quantized electromagnelic
field. These representations can be in terms of Fock states, coherent states or some
suitable quasi probability distribution function. The complete state vector of the

quantized radiation field can be written in terms of products of the state vectors

9



of each mode making up the field, as these modes are independent ol each other.
Hence we look more closely at the single mode field for each of these basis states.

In what [ollows we briefly summarize the properties of these basis states.

Fock Stat.es

We have earlier said that the single mode of the quantized radiation field is a simple

harmonic oscillator. The hamiltonian of the single mode is written as
_ |
i (ETFH-;) . (1.14)

One can solve the Schridinger equation for this hamiltonian, and one finds that these
state vectors can be denoted by an abstract ket which is labeled by an integer. These
eigen kets which are labeled by an integer n, are the normalized hermite polynomials
of order n in the coordinate representation, apart from a gaussian factor which is

independent of n. These are usually called the single mode Fock states or number

slates.

We briefly summarize the properties of these energy eigen kets |n). The action

of the annihilation and creation operators on Lhese kets are specified by

aln) = Vu|n-1)
alln) = Vit 1) |n+1) . (1.15)

Hence @|0) = 0, where |0) is the vacuum state and the annililation operator
completely annihilates the vacuum to a vector of vanishing norm. Due to the way

they act on the number states they are also called the ladder operators. The number

10



states are the eigen states of the hamiltonian and hence of the operator 7 = i'a,

which is called the number operator, since its action on the Fock siate

in) =n|n)

: (1.16)

gives the occupation number of the state. The number states are orthonormal, and

one can have the resolution of the Identity operator in terms of them as given below

Em ) = i

I = [y (n] . (1.17)

n=

Also, the photon number operator can be resolved in terms of the Fock states as

Bi= inhn}{nl : (1.18)
n=n

An arbitrary state of a single mode can be expressed as a superposition of number

states, given by
l¥)=3"Caln) Co=(n|v) . (1.19)
1=0

One uses these Fock states extensively in calculations even though ideal Fock
states have not been produced in the laboratory. The radiation field in a Fock
state implies that each mode has a precisely fixed number of photon, whereas in
real sources (as of date) they fluctuate. Since an arbitrary quantum state of a
single mode can be expressed as a superposition of number states, the probability
amplitude of getting n photons in such a state is trivially found by projecting that

state to the n photon fock state, and the probability is just the modulus square of

11



this amplitude. It is given by

Puw=(n |¥) (¢ |n) , Y Pa=1 . (1.20)

The general matrix element

Pow=1{m [ ) (o [} (1.21)

is also often used. Note thal the extension of these definitions for the multi-mode
case is quile straight forward. P, is usually called the photon number distribution of
the mode, since it gives the probabilities for observing different number of photons
in a mode specified by a given quantum state. The mean of the photon number

operator for a given state is the weighted sum of the photon number distribution

P, 5ince

e
=

o
|

(17 ])

= (] (iuh:}{n[) [}

n={
— z ”ﬂm 3 {122:]
n=i0

where we have used the resolution of the number operator in terms of the number
states, and Lhe definition of P,,,. To quantify the magnitude of deviations [rom this
mean one usually considers the photon number uncertainty, which is the expectation
value of the operator (Afi)?, in the given state, and where Afi is defined as Afi =
n— (7). Note that for a fock state this photon number uncertainty is zero. It is
a usual practice to consider the photon number uncertainty of a state normalized
with respect to its mean, and this normalized photon number uncertainty is known

as the Fano factor. This is related to the Q-parameter introduced by Mandel [234],

and this relationship is given by Q@ = f, — 1.



Gn]lerent Stntcs

An equally often used other representation of the quantized radiation field is in
lerms of the colierent states. These states were first considered by Schrodinger in
1926 [53]. Like the photon number, the electric and the magnetic fields also have
an associated quantum noise and both these cannot be specified simultaneously
with unlimited accuracy. One can get unique quantum states, by demanding the
uncertainties to be the minimum possible value allowed by quantum mechanics for
both these quadratures [54, 55], and such states are defined to be the colierent
states. These states are introduced in quantum optics [56, 57, 64] as a neat way
of solving various problems. At present there are various approaches to coherent
states [64, 65, 66]. An excellent overview of coherent ﬁ‘.laLE:S can be had from Ref.
[68]. There are some recent review articles too [69]. Here we briefly summarize the
properties of coherent states. The coherent states can also be defined as the eigen

states of the non-hermitian annihilation operator,

ilo) =ala) (a|d' = (a|a” | (1.23)

and hence are essentially indexed by a complex number a. The colierent states are

expanded in terms of the number stales as

|e) =f.-F“|“f?f %ln) . (1.24)

Hence the photon number distribution of the colierent states is given by

_|r_-,|7 a!ﬂ.

‘U:m:{” |{'t}l:|ft I”}=E _;'- 1 {125}
HH

which is a Poissonian. The photon number uncertainty of the coherent states is

given by

{maf) = lof = (#) (1.26)



Hence the Fano factor for any coherent state takes the value unity. On the other
hand, the Fock state has zero photon number uncertainty and hence the Fano factor
takes the value zero. The Fano factor is a very convenient quantity to characterize
the photon number properties of a quantum state, since a value of Fano factor in

the range 0 < f,, < 1 implies amplitude squeezing.

The coherent states are not orthogonal and their inner product is given by
(B |a) = el HoP) 2+as" (1.27)

Nevertheless, colierent states form a complete set, and indeed an over-complete sel,

[64]. Hence one can write the resolution of the Identity operator as

f—f|n n|-— , (1.28)
where if @ = = + iy = re?, then d’a = drdy = rdrdf. One could write the
quadrature operators in terms of the boson annibilalion and creation operators,

which in the single mode case is given by

7= s (a +a) (1.29)

2

o= f\/%(af—a) : (1.30)

As mentioned eatlier, the electric and the magnetic fields have quantum noise which
are reflected in these quadrature operators, since one can write the electric and
magnetic fields in terms of these operators (in the way we have done, I in terms of
p, and B in terms of q). The noise is again quantified by taking the second moment

of these operators, and for a coherent stale these are given by

((Bip) = ~
fie

((aa) = = (1.31)

&
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and the product of the uncertainlies is given by

p
.ﬁq-ap=§* : (1.32)

where Ag = /{(A7)?) and Ap = /((Ap)?). This is the minimum possible value for

two conjugate variables (here § and j), and the one which saturates the Hei senberg

uncertainty relation.

The colerent state has a symmetric noise and hence this uncertainty relation is
sufficient. But for states having an asymmetric noise like the quadrature squeezed
states (which are minimum uncertainty states again, even though they have different

noises in different quadratures), one defines a noise matrix [233], which is given by

o ad?) <%{aa,am>) .
M_(G{&FL&E?}} () ) ek

and defines the uncertainty relation as (det M) < hf2. The ofl-diagonal element
is the expectation value of the anticommutator of A and Ap. In the simple case,
such as in the coherent states, the off-diagonal elements are zero. In a quadrature

squeezed state with an arbitrary direction of squeezing, the ofl-diagonal elements

are Nnon-zeaero,

The colerent states can also be defined as those states that are got by rigidly
displacing the vacuum in phase space[60, 62]. By rigid displacement one means that
one changes only the first moment or the mean and none of the higher moments.
There is a simple operator, called the displacement operator, to do that, and in

terms of this, the colierent state is given by

@) = D(a)|0) = ™'="3]0) | (1.34)



The action of the displacement operator on a coherent state results in another co-
herent state. One can use the simple version [27] of the general Baker-Campbell-

Hausdorff (BCH) formula [270, 271, 272, 273, 274, 275], to get
D(a)|B) = D(a)D(8)|0) = eloF*=="0)2 | o 4 B} (1.35)
The action of displacement on the annihilation operator is given by [27]

DHa)aD(a)=d+a |, (1.36)

from which the action on any other operator ean be discerned. Also, the normal

ordered form of the displacement operator is casy to find, and is given by

Dia) = eo#'-a"d = ool f2goat ad (1.37)

Another facet of the colierent states is the colierence properties [60, 62, 63] of
these states. In general, the correlation function is defined as the correlation befween
the fields at different space time points. If » = (7, 1) and ' = (7, '), then the nth

order correlation function between the fields at these points is defined as
GO (ary oy 74,y 1)) = Tr [FE ) B ) B () W ()] (1.38)

where p is the density operator which will be discussed shortly, The E) is the
field operator (not necessarily the electric field) for the positive frequency part and

is given by

l fpe
! "-‘-’:rl‘.]énm'Euwﬂl{km-r_wml} i 1.39
A .I'VS

ma

EI-PJ{E} = ,_“:;H]{,—.; 1) =

Here, I{w) is some simple function of frequency (for the electric field f{w) =

i(hw/260)'/?) and it depends on which field vector is being expanded. The field
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operator for the negative frequency is given by the hermitian conjugate of the posi-
tive frequency operator, If for a given quantum state of the system, the nth order

correlation function factories into
Gy, mnily oy 2h) = €)oo (@ )ED(@)EW(L) |, (1.40)

Llien the system is said to posses nth order coherence. It could be immediately seen
that if the system is in a coherent state, then from the definition of tle feld operator,
the above factorization does take place for any order, since the coherent states are the
right eigen states of the E'H']{;r.} operator. Note that G1)(z, z) gives the intensity of
the field at the space-time point r. The second and higher order correlation functions

are measured in Hanbury-Twiss type of intensity-intensity correlation cxperiments.

Densi by Operator and wasi-Probability Distributions
| 3

Apart from the quantum state vector representation, an alternate way of repre-
senting the field is through the density operator j, which is defined as the outer
product of the state vector in the simplest case. A quantum mechanical system can

be completely specified in terms of its density operator 7, which is given by,

=2 i) (el Y=l 0<p<l (1.41)

where | 9; }'s are the possible state vectors of the system, and p;'s are the probability
that the system is in the state |4 ). Given a density operator, if one can factorise

it to an outer product of state veclors, as

p=19) () (1.42)
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then such a system is said to be in a pure state. For a pure state one has
Tra*=Tra=1 . (1.43)

Conversely the above equation implies that the system having such a density opera-
tor is in a pure state, and one can factorise such a density operator. For a statistical
ensemble, we can tell only the probabilities with which the system might be in

different states |1;) and in which case we always Lave,

Trpt <1 . (1.44)

Such a density operalor cannot be factorised, and such systems are said to be in a

inired slale.

The expectation values of operators representing physical observables, say [,

can be obtlained using the density operator as,

(FYy=Tr(pF) . (1.45)

Note that if the system is in a pure state, then j = | ) (1] and T'r (5F) reduces to
the usual definition (1| 7 |4 ). One can expyess any operator as a function of the
boson annihilation and creation operators. Finding the expectation values in many

cases 1s simplified if we can cast ( F) in the form,

(7Y =Tr(5F) =jff'ﬂrwta;|f{n} . (1.46)

The *weight function” W(a) in the classical sense of the above equation can be
called the probabilily distribution function, but since here W(a) doesn’t satisly all

the requirements of such a function, such as taking nou-positive values, it is called



a quasi-probability distribution function. Since the coherent states are minimum
uncertainty states, they are the closest to the classical states. Hence one can define
quasi-phase spaces in terms of these, and such a approach will simplify many cal-
culations. One of the earliest quasi-probability distribution functions is the Wigner
function [58], a review of which can be found in Rel. [59]. Another problem is in
associating,

F(aa"y — fla,a) |, (1.47)
since for any given F(a,a'), such as, say, the number operator, all the forms a'a
(normal ordering) or @d' (antinormal ordering) or ${a,a'} (symmetric or Weyl or-
dering) can be associated with aa. Hence for each such ordering one has to have a

dilferent weight function.

It is possible to write a s-parameterized quasi probability distribution function

[70, 71] given by

W(a,s) = %]rﬁ;’?'r [t ~Eratslef /2] logt—a%e) (1.48)

which when s = 41 corresponds to normal ordering of (i, a!) before associating
it with f(e, @) and W(a,+1) corresponds to the P-function, P(a) [60, 61]. The
5 = 0 case corresponds to symmetric ordering of F(a,a') and Wi, 0) is the Wigner
function W(a). The s = —1 case corresponds to anti-normal ordering and W(a, —1)
is called the @-function (J(a). There is an infinity of quasi-probability distribution

functions for different values of 5 in the range —1 < s <1,

Note that W(a, s) is a well behaved function when Re(s) < 0. When s = —1 it

corresponds to the ¢ function given by,

@)=~ (alpla) (1.49)
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where [a) is the coherent stale. As we can see, the ¢ function is always positive,
well behaved and is normalisable. In that sense, the ¢ function is the smoothest,
of all the quasi-probability distribution functions, The problem here is that there
are operators F'(d,a!) for which the anti-normally ordered counter part is highly
singular. On the other hand, in the case of the P-function, normally ordered counter
part exists for every Fi(a,at), but P(a) is singular for most p operators. The Wigner

function, which corresponds o the association of symmetrically ordered operators

to c-numbers, can be written for all 5, and is given in integral form as,

. 1 Foo o
I-i-{a}:m[m iz <q—:-5

ﬁ‘q + % > e'refi (1.50)

These quasi-probability distribution functions can also be used as a visual aid
to discern certain properties of quantum states. The @ function is usually well

suited for this purpose and the reason might well be the extreme smoothness of the

projection operator |a){a|. P(a) is good when we are considering /i operator's
that represent classical-like states, like highly cliaotic systems and thermal states,
whose behavior can be well approximated by classical methods. On the other hand,
. for non-classical states the P-function becomes highly singular, and the Wigner
function becomes extremely oscillatory, obscuring the essentials. But in this limit
* the Q-Tunction is quite well snited. The Wigner function can be used when we need
some of the subtleties of the interference to be exhibited. We went to lengths to
compare these functions, even though they give the same information, because when
used as a visual aid some are more descriptive then others. Thus our commparison

should be taken in a heuristic sense.
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We conclude his section by pointing out somme other representations of the ra-
diation field. We have seen earlier that the quadrature operalors are canonically
conjugate. But the operator canonically conjugate to the number operator called
the phase operator, is ill-defined [73]. Attempts were being made to construct phase
operators [46], many of which turn out to be non-hermitian. A review and com-
parison ol various phase operators that were considered up to 1968 can be found

m [19]. Recently, an hermitian phase operalor has been successiully constructed

[50, 51], using the techniques of discrete-time Fourier transforms [52]. Here one
does the calculations in a finite s-dimensional fock space, and finally takes the limit
s — co. But still there is a controversy regarding whether this s measurable, or
whether this is what one measures in a lab. Otlier schemes have been introduced
[47, 48] and different schemes are now being compared. Ience the advantages that
might exist in using a phase eigen state representation of the radiation field are yel
- lo materialize. In passing, we wish to note thal one might also use the quadrature
squeezed stales as a basis to represent the radiation field. With this, we turn now
. toa briel summary of the quadrature squeezed states and the Kerr states, which we

will be using throughout this thesis.

1.3  Quadrature squeezed states

The quadrature squeezed stales in the form that is now prevalent in the literature
of quantum optics was first introduced by Stoler [85, 86] in the seventies, even
though these states were studied as early as the fifties, beginning with the work

of K. Husimi [84]. These states arc usually defined in the single mode case as the

21




minimum uncertainty states associated with the generalized Heisenberg inequality
[95, 96, 97, 98], which is equivalent to the two-photon state definition [89]. The

generalization to the multi-mode case is quite straightforward [99, 100].

The first experimental observation of squeezing was made in 1985 in the AT&T
Bell Labs [104]. They used a four-wave mixing scheme in sodium vapor, and were
able to get noise reductions up to 10% below the shol noise level. The four wave
mixing is a non-linear process [101, 102] involving the x* non-linearity, in which
squeezing had been predicted [103] eatlier. In four-wave mixing, two intense beams
of the same frequency w (degenerate case) are used to excite the non-linear medium
to get a signal and idler beams at [requencies wy and wy, where the conservation
law 2w = wy; 4wy is obeyed. The interaction hamiltonian is essentially of the form

xWatala ., where s, i, e stands for the signal, idler and the exciting beam's photons.

Quadrature squeezed light can also be generated using a parametric down con-
version process. Here, an intense beam of frequency w is used to excite a x@
non-linear medium, which produces two beams called the signal and the idler whose
frequencies match the condition w = wi+w,. Unlke the case of four-wave mixing the
frequencies of these beams are quite different from each other. The degenerate case
corresponds to the signal and idler photon having the same frequency. The process
of spontaneous parametric down conversion was known right from the early sixties.
References to these early works can be found in [105, 106]. Extensive theoretical
work has been done in this field [107, 108, 109, 110, 111]. It had been shown that
quadrature squeezed light could be generated using the parametric oscillator oper-
ating in the sub-threshold regime [112, 113, 114]. The non-linearity and hence the

squeezing is enhanced if the medium is placed inside a cavity [115, 116]. A system
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using x'*) non-linearity of the LINLHO, inside a cavity and pumped by a single-mode

YAG laser can reduce the quantum noise of one of the quadratures by as much as

64% [117].

The basic phenomena in parametric generation is the annihilation of a single
exciting beam’s photon to create two signal photons at the same time. This pair
emission gives specific correlation between the photons of the two signal beam and
the associated statistical fealures for any combined measurement made on hoth
the beams [118, 119]. The twin photons emerge simultaneously with no more time
lag than 100 ps [120]. The two beams have noise which are copies of each other
and hence the difference should show substantial squeezing. Usually the difference
of the intensities of the twin beams show squeezing due to the pair correlation of

photons [121]. Noise reduction up to 75% below the standard quantum noise has

been observed [IEE],

On the other hand, quadrature squeezed light can be produced nsing Second-
| harmonic generation[127], where a non-linear v material is excited at [requency wy
to generate a signal at 2wy, The Second-harmonic generalion was one of the oldest
. examples [123, 124] of the use of non-linear media and has a well established theory
- [125, 126]. The Second-harmonic as well as the field at the fundamental frequency
are squeezed al the output of the non-linear medium and if the non-linear material
is inside a cavity that is resonant for both the pump and the signal fields, then the
same amount of squeezing results in both the modes [128, 196]. Experiments using
- MgO-doped LiNbOy have demonstrated squeezing in the fundamental mode [129],

|
\ as well as in the up-converted mode [130].

|
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Squeezing can also be produced in the short cavity limit. One has a short cavity
limit when the decay rates of atomie polarization matches with those of the cavity
modes. The theory of the short cavity limit in connection with optical bistability can
be found in Ref. [131]. This theory can now be thoroughly done without using any
adiabatic elimination[132, 133, 134]. These experiments are difficull Lo perform since
the cavily has to be very small in length. Around 30% squeezing has been achieved
using sodium vapor [135, 136]. Even without a cavity, broad band squeezed light
can be achieved by using a pulsed laser. The pulsed laser concentrates the encrgy
in pulses, which is enough in some non-linear materials to give rise to a squeezed
signal. An optimum squeezing of 13% unsing K'TiOPO, (KTP) [137] and 24% using
Ba;NaNbs;Oy5 (BNN) [138] has been obtained using pulsed laser beams to pump

these crystals.

The Optical fibers exhibit a certain amount of X' non-linearity which has been
utilized to produce quadrature squeezed light [139]. This can be modelled as a
Kerr medium, and the self-phase modulation of this medinm [175, 174, 176, 177,
178, 179] is used to shape the field fluctuations. Even though the Kerr medinm
produces a different kind of squeezing, for very low nou-linearities it is quite similar
to quadrature squeezing, and there are many proposals for generating quadrature
squeezed light using this [140, 141]. We will see more about the Kerr medium in
the next section. In the present section we only brief] y summarize the properties of

the quadrature squeezed states, since there are a number of excellent review articles

- [90, 96, 91, 92, 93, 94] describing this.

The coherent states that we have seen in the last section form a particular class
: I

1 of minimum uncertainty states, in the sense that the noise of the conjugate variables
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are equal. The minimum uncertainty states themselves, as defined earlier, are a class
of quantum states for which the product of the noise in a given pair of conjugate
variables is minimum. Hence there can be minimum uncertainty states whose noise
in a particular quadrature may be smaller than the coherent state value at the
expense of increased noise in the other quadrature. Let us assume that their is
an operator S(r), which when acting on a coherent state changes the quadrature
noises. Let us further assume that the expectation values of the second moment of

the quadrature operators § and i taken in the state S(r) |ev) have the form

(al $1)(7V5() o) = Tz
(o] §10) (A58 |a) = %”EJ(—} 1 (1.51)

where Z(r) is some real function of a real parameter ». This could be simply achieved

if the quadrature operators § and j transform as

r

SN aS(r) = G2(r)

SRSt = P . (1.52)

Now since the quadrature operators are expressed in terms of the sum and difference
of the boson annihilation and creation operators, this function should be a sum of
two other functions, whose difference is the inverse of this function. Since Zir)
is real, one can immediately assign the exponential function for Z(r). To stay in
accordance with convention we choose Z(r) = ¢". These would imply that the

annihilation operator itself should transform as

SHr)aS(r) = @cosh(r) — @' sinh(r) . (1.53)




Whether the form of §(r) could be obtained directly from the above transformation,
assuming that S is an operator function of the boson annihilation and creation
operators, is a question to ponder over, Nevertheless, the form of the right hand

side of the equation is well known in many areas of physics [232], and one could have

judged the form of §(r).

The above operator only squeezes along the ¢ or the p quadrature and one can
easily go over to a general squeeze operator which squeezes along any direction
in phase space by using a rotation matrix whose effect is to make the parameter

complex. The usual way in which the squeeze operator is written [85, 86, 87, 88, 89,

145, 146] is given by

S:EE:J — E[:ﬁl?";-ﬁ?}f‘z ; [154}

where z is taken to be a complex number 2 = re?”. Before we proceed further, we
wish to point out that we have chosen to take 20 as the argument rather than f, since
as we will see, squeezing has a symmetry in the sense that z and —= correspond to
the same squeezing. This means that the argument of = in an half-period completes
all the squeezing directions. Hence, if one visualize this in phase space the angle
subtended by the major axis of the uncertainty ellipse with the g quadrature is half
the argument of z. Hence our choice of putting the factor 2 in defining =z is more
satisfactory since § will now directly correspond to the angle subtended by the major
axis of the uncertainty ellipse with the positive ¢ direction. Also, squeezin g along a

particular direction, say along @ is the same as squeezing along the 7+ direction in

our convention, which is ideal. Under this unitary operator the full transformation

of the annihilation operator is given by

g*[?‘ejm}ﬁﬁ{re“ﬂ] = dcosh(r) — alsinh(r)e~2¢ " (1.55)
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and that of the creation operator can be obtained by complex conjugation of the

above equation.

We had started by considering a squeeze operator acting on a colerent state
[Eq. (1.51)], which is akin to the two-photon colerent state [89]. On the other
hand one could have squeezed the vacuum and displaced the resulting state, which
is sometimes called in the literature as ideal squeezed state [146]. If the squeeze

operator acting on a coherent state is given by
l1.) = S(2)|a’) = §(z)D() |0) (1.56)

and the displacement of the squeezed vacuum is given by e,z = ﬁ[ajﬁ[z}][j),

then these two are connected by [237]
o' = acosh(r) — o sinh(r)e~" | (1.57)
One generally specifies the quadrature squeezed states by

la,z) = D(e)S(z)|0) | (1.58)
and we follow this convention throughout the thesis,

Expressing a given quantum state as a superposition of some other quantum state
whose properties are well known, often simplifies many calculations apart from pro-
viding insight and connectivity. The squeeze operator has been applied to the num-
ber states [239], and the squeezed number states thus obtained can be expressed as
a superposition of displaced number states[252]. Similarly, the quadrature squeezed
state can be expressed as a superposition of coherent states [246, 247, 248, 219],

which was based on the observation that a continuous superposition of coherent
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states along a straight line [245] leads Lo squeezing of the perpendicular quadrature,
We will see how the quadrature squeezed state can be expressed as a continuous
superposilion of coherent states in greater detail in Chapter 4, but we just state the

resull here :

le,2) = D(a=pe®)5(z =re?)|0)

= [2?1- si"hh.}]‘—%f dy E—%fl‘.nth[r]—I}j.r'i—iﬂynin{ﬂ‘—q‘a} Fﬂiq’r 2 yﬂiﬂ} i£15g}

Zpa oo

The @ function for the quadrature squeezed state can be written easily using this

integral representation, and we have

1
cosh(r)

Qs(f = ke'") =

E“kz—P?'HﬂFIMJ'J[I‘ cos{ =}k eas(f—)]4 2kp cos{ d=1) ) (i E{}]

The mean photon number of the quadrature squeezed state is given hy
() =(a,z|fi |oy2) = |a]® + sinh?(r), (1.61)
and the photon number uncertainty by
<|[.&ﬁ}2> = sinh*(r) [1 + sinhi(20)] + p? sinh(2r) [1 4 cos(20 — 2¢)] . (1.62)

Here we have parameterized z as z = re?® and the displacement a as o = pe', 1t
is obvious from the above equation that the ploton number uncertainty depends on
the angle between the squeezing direction and the direction of coherent excitation.
The expression goes to a minimum when f — ¢ = 7/2, where the direction of
squeezing is along the direction of excilation. We clhoose to call such a state as
an amplitude squeezed coherent state, whose () function is illustrated in Fig. (1.1b),

The expression is maximum when ¢ — 7 = 0 which happens when the direction of
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squeezing is perpendicular to the direction of excitation, We call these states as
phase squeezed coherent stales, since these are squeezed in Lhe phase sector. The
function for this state is illustrated in Fig. (1.1c), and one can see that the noise in -

the phase is smaller than in a colierent state. For comparison we have also piven the

0 2 4 6 0 2 4 6
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(a) r=0.0 1 r (b) f—¢=90° -
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Re(B)

Fig. 1.1. Plot of the Contours of  function for different directions of squeezing.

@Q function of a colierent state [[ig. (1.1a)] and a squeezed state with an arbitrary

direction of squeezing [Fig. 1.1d].

The squeeze operator can be normal ordered by identifying the a?, 42 and ata

s SU(1,1) operators. In fact a general exponential quadratic iu the boson creation
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and annihilation operators can be normal ‘ordered [276, 277]. We give here only the

normal ordered squeeze operator without going through the derivation :

S(z — ?.eziﬂ} — ﬁﬂﬁh-i{!'] E%rzm tanhifr)al? E—In[coﬁ]l{f”;'; E-i

2P fanh(r)a?

(1.63)

The squeezed state itsell was proposed to increase the sensitivity of the inter-
ferometers used in the detection of gravitational waves [85, 86, 145]. The amount
of effort put in understanding and generating these states of the radiation field is
justified by the practical importance of these states. Numerous applications have

been envisaged where the squeezed light would be of greal use. Here we restrict our-

selves to those class of applications which are either directly or indirectly connected

with interferometry. Injection of the squeezed vacuum inlo the emply port of Lhe
Michelson type of interferometers [146] used in the gravitational wave detection [147]
would considerably increase the sensitivity of these and also enable them to work
at lower optical powers. There are other praoposals for increasing the sensitivity of
instruments measuring the phase using quadrature squeezed light [148, 149], some

of which have been experimentally attempted [150]. In addition, the interferometers

can be described in a natural way using the formalism used for squeezed states,

and hence, as the squeezed light is used Lo increase the sensitivity of the interfer-

ometer, the interferometer can in turn be used to measure the degree of squeezing

[151]. There are many gedanken experiments proposed in connection with the con-

ceptual foundations of quantum mechanies, that can now be tested in Lhe lab using

squeezed light. In this connection the generalized Horne-Shimony-Zeilinger two pho-

ton momentum-position interferometer had been proposed [152] and experimentally

“implemented [153]. There are proposals for a similar three particle version too [154].
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Two particle gedanken interferometers that use the interference between two possi-
ble states, each of which belongs to a different emission time have been proposed

[155], and were later experimentally realized [156, 157].

A time honored paradox, which was put forward by Einstein, Podolsky and
Rosen[162], has occupied much attention of people concerned with the foundations of
quantum mechanics[163]. There are alternative formulations of quantum mechanics,
such as the hidden variable theories with a more classical philosophy. Experimental
ubse;:vatiun of the difference between these formulations has been made possible by
the Bell type of inequalities [164], an excellent review of which can be found in Ref.
[166]. These earlier experiments aud their modern counterparts [167, 168, 169] were
based on using light from atomic cascade decays. But for many Lhis had not Leen
a compelling test of Bell's inequality since one can alway argue that the pholons
detected were not correlated. In parametric down conversion, we have seen that the
signal and idler photon are emitted simultaneously and hence are highly correlated.
In fact the quantum states of these are highly entangled[165], and can be used Lo test
the inequalities[170, 171]. It has also been shown that multi-photon correlations can
lead to an exponential increase in the violation of Bell type inequalities [160, 161].
It is realized now that multi-photon correlations can lead to much more quadrature
squeezing [158] and anti-bunching [159]. With this, we will now turn to the non-

linear Kerr medium, which gives rise to another kind of squeczing in the noise of

the radiation field, and which is different from the quadrature squeezing,
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1.4 Non-linear Kerr medium

A Kerr medium is an isotropic, third order non-linear medium which belongs to a
class of non-linear media where the self-action effects of strong beams are dominant.
Unlike the more well known non-linear media, where coupling of photons at differ-
ent frequencies is more dominant, the self-action process exhibits quasimenochro-
maticity. There are many self-action effects which had been studied earlier in the
literature, such as self-focusing [172], sell-trapping [173] and sell-phase modulation

[174]. The Kerr medium in particular is mainly a sell-phase modulating medinm.

In Photonics, the use of Kerr medium is well known. Apart from optical fibers
which exhibit this non-linearity being used in propagating optical pulses which do
not spread — known in the literature as optical solitons [180, 181] and quantum
solitons [182], there are media which exhibit optical bistability [183], which can find
many important applications where this property can be used, as in optical switches,
logical gates, and memory elements[184]. The Kerr effect can be used to do optical
non-demolition measurements [185, 186, 187]. Most important of all is that, the Kerr
medium can be used to generate non-classical states, such as amplitude squeezed
stales [191, 192, 193, 218, 219]. It can also be used in the detection ol non-classical

states [220, 221].

In quantum optics, the Kerr medium is usnally treated in thé single mode case
‘as a third order nonlinear oscillator{ 194, 195, 196, 197]. The statistical properties of
this oscillator were studied by Drummond [194]. If one neglects losses, the system
1 be solved exactly[194, 195, 197]. For many proposals involving the generation

of amplitude squeezed light [191, 218, 219], a coherent beam evolves for a very small
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duration of time in the Kerr medium, and hence one can neglect the loss and the
associated noise due to it. The effect of loss can be easily included in the calenlations
and had been done so for a reservoir at zero tem perature[198, 199], even for a general
initial state [200]. Recently, calculations involving the bath at finite temperature
has been done for both an initial coherent state [201], and a general initial state

[202, 203] ﬂvol.ving through a Kerr medium. In this thesis and in the proposals that
we make for the generation of amplitude squeezed light we have neglected the losses
and the associated quantum noise, since in our opinion these can be incorporated

quite readily, and such inclusions might obscure more fundamental issues.

In this section we recollect the main results of the caleulations involving the Kerr
medium, and we restrict ourselves to giving only references for treatments involving
losses. If one assumes thal the optical wave travelling through the Kerr medium
is plane polarized and monochromatic, and if this travelling wave is treated as a
sequence of localized wave packets [175], then each wave packet, corresponds to a

single mode quantized field given by

i
Z h z m
E(zt) =1 [g] a(z)etthewol) 4 e (1.64)

where wy is the frequency, k = wy/v is-Lhe propagation constant, v = ¢/ny is the
wvelocity of the packet in the medium, and ng is the linear reflractive index of the
.fmedimn. The dielectric constant is given by ¢ = naea, where g is the dielectric
constant of the vacuum. The quantization volume is given by V = AL, where A is

_.he cross-sectionl area of the beam, and L is the length traversed by the beam.

The hamiltonian for tle single mode radiation field in the Kerr medium is given
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H = hwald + hyngat®a® | (1.65)

where yyy, is the non-linearity experienced by the field in the medium. It should
be observed that this is the effective hamiltonian for the field in the Kerr medium
‘and the physical process which gives rise to this effective hamiltonian for (he field
is generally considered to belong to the purview of condensed matier physies. Note
that the interaction part of the hamiltonian commutes with the free evolution part,
and hence the solution to the problem of any state evolution through the Kerr

medinm can he found.

In a slightly different way of looking at this hamiltonian, yxy is the anhormonic-
ily parameter. The parameler xng is proportional to the third-order nonlinear
susceplibility x® [185). In terms of the nonlinear refractive index ny of the Kerr

‘medium, we have

hewing
XN = e
2eeqnp At

(1.66)
In fact the eflect of the Kerr medium can be visualized in terms of the intensity-
dependent refractive index [176], which is given by n(|E7) = ng+(1/2)n, |€]*, where
|€] is the complex field amplitude as defined through E(z,1) = (1/2) [E(z, )] exp(s
.f:z—wnt:l}+c,{:.. In the quantum case, this will be given by the mean field strength.
The above hamiltonian is valid ouly when there is a large detuning from any tran-
sition level that may be present in the Kerr medium around the incident light’s
Iquﬂnc}r wp [179]. Also there are saturation effects and of course Lhe losses which

L have neglected.

The time evolution of any state inside the Kerr medium is usually given in terms



of the spatial length L transversed inside the Kerr medium [175]. We assume Lhat
this length L can always be mapped into a Lime-like parameler ¢ and hence the
outpul state of the Kerr medium can be written as
1 o

[#(t)) = Urc(t) |9i) (1.67)
where [ ) is the quantum state of the radiation field incident on the Kerr medium.

The unitary operator (7(1) is the time evolution operator and is given by

U(t) = et = chxwnits (1.68)

neglecting the free evolution part. We could do this since the free evolution part
commutes with the interaction part. A closed form can be found for the annihilation

operator conjugated with the above unitary operalor as follows

0'1al(y) = e NG 376-
il A i _-Jﬁlﬂﬁ rﬂr‘ﬁﬁa
= 4ty — = _ .

E;T;E | (1.69)

‘We will look into the evolution of a colierent state inside the Kerr medium. The
pectation value of the annihilation operator for a coherent state tlal has evolved

rough the Kerr medium is given by
l::."r | HTE[} |(‘|-} - nﬂ-dij? .-:iu?[-,,.f?}cilnhnhq?;iu’r ) EIT{”

Q [unction for this state f:’;;{ﬂ |} can be calculated to be

E:_Iﬁ,;r_|l|3|1 o rpfden
Q{ﬁ]z = zﬂ [-12“{"_”{ fﬂ) {1?1}




Even though the photon number uncertainty and the photon number properties of a
state evolving through a Kerr medinm remains unchanged, the Kerr medinm changes
the state in a subtle way as can be seen from Lhe plot of the @ function given in
Fig. (1.2). Here, we have plotted the Q-function against the real and imaginary parts
ofits argument, for different v values. This figure can be taken as the visualizalion

of the evolution of the state inside the Kerr medium. The mean |a|® remains at

0
Re(pB)

_ Fig. 1.2. Plot of the contours of the (-Tunction of the evolution of a colierent state
§jr =0)in a Kerr medium. The different v values are indicated in the figure. The
mean |o® is fixed at 16, and the arrows connect the phase space origin and the
maximum of the @-Tunction. The contours are drawn at 0.2, L4, 0.6, and 0.8 times
the maximum value.
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16, and the contours are drawn at 0.2, 0.4, 0.6, and 0.8 times the maximum of the
Q-Tunction, for four values of 4. The arrows connect the maximum of Lhese to the
origin of phase space. It can be seen from the figure that the state that is evolving

through a Kerr medium has a very different (2 Tunction compared to a colierent

state. Also, there is a larger spread in the phase, and the crescent seems Lo be thin

in the middle. But still the ploton number properties doesn’t change because the

crescent is slightly rotated about its center so that the radius of curvature of Lhis

crescent is not along the line joining the center of the distribution Lo phase space
origin.

The reason the @ function shears in this way can be easily understood. The
hamiltonian giving rise to this state has a intensity dependent term 72, which means
that areas of the plase space at different radial distances [rom the origin evalve
with different angular velocity. DPoints farther way from the origin move [aster.

Considerable squeezing can be got by slightly displacing this state, in which case
the photon number uncertainty goes as the cube root of Lhe mean pholon number

[191]. Our contention is that if ane takes an initial state with a gaussian distribution

having a lesser radial spread than the colierent state, the photon number nneertainty

might be much lower. In fact the amplitude squeezed coherent state fullills exactly

iis, and we will see thal when this state evolves through a Kerr medium, one can

chieve photon number uncertainties that go as the fifth root of the mean

ber [218].

photon

=

The amplitude squeezed state has a wide range of applications, both in technol-

and pure physics, an excellent review of which can be found in Rel. [188]. A

> recent review about the Kerr medinm itsell, its properties and applications
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can be found in Ref. [180].

To conclude this chapter, we wish to point out that these are not (e only

schemes
wlhere one can pel squeezing of noise, whether il is along some

quadrature or in the
photon number. There are considerations which show Lhat a cavity

with a moving
wall [42] can give rise to squeezed states [142]. It has also been show

n that there
is squeezing in harmonic oscillators with time-dependent frequencies [143, 144]. Tt

is known that by making the noise of the pumping currenl sub-poissonian,

one canl
gel amplitude squeezed light in a semi-conductor laser [206]. Tn general

il one could
make the noise of the pump sub-poissonian, one ¢

an gel amplitude squeezed light
:_{E:UE, 207, 209]. It can be done by using anothe

v sub-poissonian light as the putnp, or
by using electronics to get pulses whose noise is suli-poissonian.

There had also heen
proposals for getting amplitude squeezed states using

a combination of quantum

non-demolition measurement of photon number and negative leedback [210]. Sub-
Poissonian photon statistics has heen observed in negativ

e feedback semiconductor
'_'g;star& with a destructive photon detector [211].

There were proposals [or getling
tnore amplitude squeezing [190, 191, 216], which have varying degree

of experimental
leasibility. This thesis is in facl concerned

about one such proposal we hiave made Lo

generate highly amplitude squeezed states of the radiation field [218, 219],

and which
seems Lo be experimentally feasible witl existing Lechnology, The

re have been other
ecent proposals [217], some of which are more concerner with Fock state generalion
ﬁ,"EIT] rather than an amplitude squeezed state. Nole that in a Fock stale the
information is completely lost, whereas in an amplitude squeczed st

ate, the
e information is only less precise than in a coherent state,

There is also a related concept of amplilying a squeezed state. In particular,
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whether one could achieve a plioton number amplifier [222], which preserves the

number-phase noise of the original state is an intrigning problem which Lias received

only moderate attention [223, 224].

Apart from these there are other types of squeezing too, which at present have

not been attempted experimentally, Tlhe amplitude squared squeezing inlroduced

by Hillery [226, 243], has been rebuilt in terms of (e properties of the SU{1,1) group
as SU(1,1) squeezing [225, 227]). Tlhe representations of this can be used to sludy

higher order squeezing [228, 229, 230]. There is also dilference squeezing introduced
ji_gga'in by Hillery [231], which corresponds to the SU(2) group. In fact many of the

states also shiow higher order squeczing in the sense of Hong and Mandel [235, 236],

and some states which do not show squeezing or sub-poissonian statistics can still

annihilation operators, since such operators are not unitary. This is because Lhe

mean that a state got by acting

with the exponential of this operator on a state in the Hilbert space will lie outside

lhe Hilbert space. Hence the jnner product of such & stale with any state in the

space will diverge. But it should be noted that this study was done only for

he above combination of operators, It would he maore froitful if it could be done

or combination of quadrature operators q and p.

In this chapter, we have briefly presented the usual way in which the

electromagnetic field is quantized. We then gave some considerations



mio the representations of the quantized field in terms of Fock states
and coherent states. We have mentioned abont the noise jn the quan-
tum field, which is quantum mechanical in origin, and the various
tools required to quantify this noise. A brief review of the quadratire
squeezed states, and the Kerr medinnm which gives rise to a different
kind of squeezing, was then made. With this background material,
we move on to the next chapter where we concern ourselfs with the
relative phase between quantinn states, whose presence gives rise to a
curved quasi-probability distribution, and which in turn is responsible

for amplitude squeezing.
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Clla,pter 2

Relative phase in superposition of coherent

states

‘Iu this chapter, the concept of relative phase is formulated. The rel-
ative phase first defined in Pancharatnam’s classic work is adopled
ere (o the superposition of two coherent states. For later conve-
ience a canonical form of the superposition of two coherent states is
consiructed. We study in detail the effect of the relative phase on the
QPD for the canonical form. The noise matrix for the canonical form
§  then calculated and the presence of various kinds of noise sieesz-
ig for different relative phases is studied. A general superposition of

coherent states is then studied by reducing and refating it to the
canonical forin.

2.1 Definition of relative phase

 overall phase of a quantum state generally doesn’t rellect in the caleulated
sical observables. But there are com paratively many cases where the dillerence
tween the phases of individual quantum states, called the relative phase, enters

ulated quantities. One such instance is the superposition of guanlum states.

Fone considers two states €™ |1y ) and e |4, )

y where xy and yy are phases of
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‘quantum states [ ) and [wy), then one can construct a superposition

hl.r,):Meix:[le}+ﬁt‘tx:—x:}|¢,z:}} . (2.1)

‘where AV is the normalization constant. From the way the superposition is written,

it is clear that even those quantities which are unaffected by the overall phase e

will involve the relative phase gitxa—x:),

In this context, the Pancharatnam [263) way of defining the relative phase is very
appropriate, since it is based on the inner product between the states and lience
deep mathematical consequences [266, 267]. Paucharatnam ori ginally used it in
;_;ila.riza,ticn states, but its connection to Berry phase [258, 259] has been pointed out

.._'lI'lBl]}' people [260, 261, 262]. The Berry-Pancharatnam phase is now heing used

vanishing relative phase in the sense of . {2.2), which will happen when their

inner product is real positive. One should also carefully nole the non-transitivity

property, in the sense Lhat if two quantum stales |4 ) and |45 ) are in-phase and

se with |15 ). Henee, ‘being in phase’ is not an equivalence relation. Note that

he 1 'j_iﬁt-ive phase between two orthogonal states is not defined by Eq. (2.2).

The way the coherent states are defined [64, 65], one is free to choose an arbitrary

Il phase for each coherent state. But by convention, the phases are so cliosen

e
[ €
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that their inner product with the vacuum stale is real. The usual expansion of
coherent states in terms of the Fock states [62, 63],
e T
— g b2y @ -
o) =g — |1 , 2.3
o) = ek 55 S ) (23
has this convention built into it. Using the definition of relative phase, the relative

phase of a colierent state | ) with respect to another colerent stale |a) is given by,

Phap(I8)) = Argl(e |8)] = Im(a’g) . (2.4)

ny colierent state |a ), as noted earlier, has (0 |e) real and henee every coherent,
state |a) is in-phase with the vacuum state [0}. It can also be immediately seen
t all coherent states lying along a straight line passing through the origin of phase
space, which can be parameterized as lr_,—e‘""} are in-phase with one another. This

0, since for two states [r'lﬂf"') and ]rge""" >, we have
<r1£’.¢ |?‘26£¢> = e N 2Hnn _ =t (2.5)

ch is real. We can generalize this to colierent states lying on any straight line in

hase space, which we will do fow.

wo coherent states | oy ) and |ay ) can be made in-phase by choosing an overall
for one of the states. Thus |a,) and e~timlajoe) |era ) will have no relative
hase. Note that the argument can not be extended to three or more colerent
] in general, since il we choose another coherent state | s} which we waut to
8 in-phase with |oy ), we have to consider the state o—ilmlojoa) [c). Bub then
":g__e,neml case e "Mi72) | ay ) will not be in-phase with e-ilm(ojaa) | ). The

testion that immediately arises is, when can one choose these stafes |ev1 ), | e ),
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|az), to be in-phase with each other? It is obvious that these states can be

I-j-;'e;-hase with each other if and only if

In{afag) -+ Im{ejag) + Im(ajey) =0, (2.6)

‘That this is so can easily be checked by noting the condition required to make

I ilm(ofaa) |aa )} and e~ Imlion) | oy ) in-phase.

If one parameterizes o as a; = crEIJ + 1 n,@” ! the above relalion reduces to

(n%’x] N n{;:l) ﬂ,'i!r.'! + (ﬁ'i:} _ 1_I_:E:I.;;’:!'-':I) qﬁ” 3 (“{;’-] . &EI]) “5!-'] = (2.7)
‘We can see that Lhis relation is readily satisfied if one chooses

aE"] = rrn.n‘:rs,Ij +& (2.8)

simplies that the ay's must lie on a straight line in phase space whose slope is m
and ‘whose intercept with the imaginary axis is at C. IHence we have shown that the
rent states lying along any straight line in phase space can be made in-phase

and vice-versa. It is easy to see that this argument can be extended fo any number

To elucidate the concept of relative phase between colierent stafes further, let

us look at a more geometrical picture. One can represent the coherent states | )

A coherent state | o ) can be represented by a point (a!®), al®)) iy (he complex

plane, where o = al®) 4 al¥), The origin of the complex plane is clhiosen Lo be the

acuum state [0). Let us consider two colierent states |ovy ) and |an ). These are

resented in the complex plane by the points [air],aﬁy}} and (0¥, ad"), These

14




two points are connected to the origin by arrows as shown in Fig. (2.1). The relalive
phase of |ay ) with respect Lo [ay ) is given by Phija, pllen}) = Arg({oy |ay)) =
tag) = (alPal? - n{l”:'::r'[;}}. But note that this is jusl twice the area enclosed
in the triangle formed by the states |0}, |1 ) and | ) in the parameter space, as

Jindicated in the figure by the shaded area. The geometric phase is precisely defined

! Im()

|oe,>

Re (GS

Fig. 2.1. The Colierent states [o), [e) and |3} are represented in the
complex-a plane.

Bligo: ) (102 )) + Pha, p(l0a)) + Phgayy(lar)) = geometric phase

= 2 x (area enclosed).  (2.9)




Oune should note the analogy with vector cross product, since if one denotes the

‘quantum state |o;) as a three dimensional vector (o™, a, 0), then we can define

-

Phia, y(laa)) = (& x &) - & (2.10)

‘where £ is the unit vector perpendicular to the plane containing & and &,. In fact,
it is obvious from vector algebra and the way we have defined these vectors that
[&1 X G + g X G + 3 X ) - ke will give twice the area enclosed by the veclors ap,
(G and d3, which is consistent with what we said earlier, It is also obvious from the
etric phase concept that three quantum states |}y [ e ), and [aq ) cannot be

-made in-phase with each other since they enclose an area, unless they happen lo lie

We have discussed the concept of relative phase in quantium states in general aned

coherent states in particular. We will use (his knowledge in introducing the relative

2.2 Relative phase in superposition of two coherent
states — canonical form

der the superposition of two coherent states of the form

[#) =N(la)+18)) | (2.11)

N is the normalization constant. From {he considerations of the previous
tis clear that |a) and | #) are not in-phase in the general case. In fact the
f | 8) with respect to [ ) is given by Phyjay(|#)) = Im{a"A). it is not obvi-

the way the superposition is written above that there is this relative phase
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lv)=D(y)0) | (2.12)

D(q) = ' (2.13)

The displacement operator is unitary since D' = 1 = DD Iy the above super-

Phigiyian(D0)18)) = (] D)D) 18) = (a 18) = Phap(lB)) . (2.14)

‘argument can be easily extended to a superposition of many colierent slates.
fhe relative phase between auy two component states in such a superposition is
ved on displacement. Note that the above argument is essentially based on
itarity property and as such holds for any unitary operator provided that it
the same way on all the component states. Hence, even if one applies a

erator [85, 86, 89] to a superposition of colierent states, the relative phiase
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?:.Ibet.ween the now squeezed component states will be the same as (he relative phase

‘between the component colierent states of the initial superposition,

The superposition given above in Fq. (2.11) can hence be a displaced version
‘of some superposition where the relative phase is apparent. This could be done if

‘one chooses a superposition whose component states are on a straight line passing

i Im(c)

lle=B)2> .~
z .ﬂa-[3|f2>

HoBI2> [\ ' Re(©)
[—-(a—B)/2>

Fig. 2.2. The way the superposition of colierent stales vy and |3) ob-
i-'ta.iﬂed from the canonical form is illustrated.

h the origin. Such a scheme can be readily achieved if one visualizes [Fig. 2.2]
0 the complex c-plane introduced earlier. The mid-point of the line joining
ts representing the states [a) and | #) must be moved to the origin of phase

nce a displacement operator acting on the superposition with its mid-point
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- phase space origin will be able to move it back to Lje carlier position. [l can

k3

itten as

= N(le)+18))
= werimenp (240) (552) )+ emeerm | (2)}] - e

be seen that the states | (o — #)/2) and | —(a — 8)/2) are aloug & straight
sing through the origin and are in-phase with each other. The relative phase
} between the component states of the original superposition is now manifest,
1it would be better to bring these states on Lhe real axis of the complex o-

ie. One could do that using the operator B(r) which is defined as

R(i)y=erie (2.16)

A(r)|a) =|acT) | (217)

it rotates the state to a new position in phase space. Since this operator is also

t preserves the relative phase between the com ponent states in a superpo-

) = Ne i DD () R(r) (| =) + €% | 2) | (2.18)

x = lm(a"g) . (2.19)
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;’]The component states now lie along the real axis. The parameter z is called the
half-separation and y is called the relative phase, v the displacement, and 1 the
orientation. These four quantities form the basic parameters of any superposition
of two coherent states. The original superposition is specilied by Tour real num-
bers, whereas if the displacement is taken as a complex quantity there are now five

 numbers. But note that the displacement oceurs in a fixed direction and the

ent of v is related to the angle 7.

- There are many benefits of casting the superposition in this way, since rotation

d displacement act “trivially”; if one knows the quantities of interest for the state

|ﬁrc}=ﬂ(|—nr}+cix|;r:}) : (2.20)

1
ﬂﬂ:‘l[l—l—e—h”msx} ’ iat)

~one can easily write down the quantities corresponding to any superposition
coherent states. We wish to call the state |4 ) as the ecanonical state. Note
one cannot do the above were it not for the presence of the relalive phase in the

ical state. This relative phase plays a crucial role in many of Lhe properties of

d hence in any superposition.

2.3 Effect of relative phase on the quasi probability
distribution

ction we would like to visualize the effect of relative phase in a superposition

coherent states. We do it by plotting the contours of the (J-quasi probability



:ﬂi_stributiun, We have earlier seen that it is the smoothest of the quasi probability

distributions and never goes singular [70, 71]. The @ Tunction of an arbitrary state

_ g!v} is caleulated using the definition

1
QB =18 10 (222
h re |f) is a coherent state. In the case of a superposition of two coherent states
in the canonical form [Eq. (2.20)], the @ function is given by

C-"'{'?J'i']‘-'i'l':z]
— . 3“ (e w1, ¥ ; v
QlB) = e ey (€0%h (20) + cos (x + 20p)) (2:23)

It can be seen from the above equation that (}(3) is oscillatory with respect Lo

nd p, with a heavy damping factor in the front. Hence, essentially what we observe

only be the first oscillation in p. In the q variable, the cosh(2xq) implies that

e will be two peaks symmetrically situated abont the origin of phase space. In

absence of X, the first oscillation in p has a peak at p=10. Hence we would expect,

asi-probability distribution to be like an clongated ellipse with its major axis

the g-direction if the half-separation = is small, or as two separate peaks along
irection if z is large. Wlhen y is non-zero, the p-oscillation peak is shifled

the positive p-direction, the shifl in turn depending on the g-value. Hence we
I.i.-a.ii:TEﬁEE!llt shaped € function if the hall-separation z is small enough, In
reme case of x = 7, Lhe crescent expands into a cirele centered al the origin
se space — the mid-point of the line joining the two superposed states. or

e process is repeated, but with the crescent now iy the negative p-direction.

the @ Munction for this superposition has a symmetry with respect to y, in



the sense that x and 2r — y correspond to mirror refllections about the g-axis - the

line joining the two component states,
We wish to first discern the effect of the (hall-)separation of the states on the

Q function before we proceed to study in detail the effect of the relative phase.

In Fig. (2.3, 2.4, 2.5), we plot the @ function for different half-separation, for three

different values of the relative phase. In Fig. (2.3), we have plotted the (2 lunction of

fg:ii_ile superposition for the relative phase y = 0°, which is called as the even-coherent

state [243] in the literature. Starting from the hall-separation value of = = 0.1, we
ave plotted the @ function for this value of X for half-separations Lhat are in steps

of 0.3. Tt could be seen that when the half-separation is very small (+ = 0.1), the

) function resembles that of a colierent state. As the = value increases there is

squeezing in the direction perpendicular to the line joining the component states.
s squeezing is maximum around the hall-separation value of » = 0.7, When the

half-separation is increased further, the individual coherent states start separaling,

the figure when 2 = 1.0, and one can see the consequent increase in Lhe nojse

e

along the perpendicular direction. Further increase in x leads to a decrease in the

""!'a__.__ﬂ between the two states. When » = L6, for all practical purpose the

erposition is rather like a statistical mixture of two colierent states,

In Fig, (2.4), we have fixed the relative phase at X =90% This state corresponds

 the Yurke-Stoler state [241, 197, 198] and has similar characteristics as that of a

nl state. It shows no squeezing, but still its Q Tunction is very dillerent from
the coherent state. It would show very different photon number characteris-

1s displaced to a proper position in phase space [242]. We will come to this

ipter 3. Here too, it may be seen thal the ideal half-separation is around the
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value » = 0.7,

In Fig (2.5), we plot the @ function for the superposition of two coherent states

with a relative phase fixed at X = 180°, called the odd-colerent state [243]. Here

it is obvious that if the half-separation is small enough, then the superposition is

very different [rom a coherent stale, Actually, we will see later (Chapter 3] that

i}"appruﬂ.ches the Fock state [1). As the half-separation imereases, Lhe interference

hetween the component stales weakens, and as in the previous cases when r > I

e states are separated enough to behave as a statistical mixture. Henre we can

summarize thal as far as the strength of the inlerference js concerned, the half-

separation between the states plays a crucial role and it seems fo be more or less

same for any relative phase. For small hall-separations, where the inlerference

ween the states is quite high, the relative phase plays an jimportant role, and the

function and many otlier properties crucially de yend on it
i AER | I

We now wish to give the Q function for a superposition of two coherent states for
| us values of Lthe relative phase for a given half- separation. We do so iu Fig. (2.6),
where we Lave plotted the ) function for a superposition of iwo colierent states with
-separalion (arbitrarily chosen near the optimum half-separation) of # = 0.7,
different values of relative phase. There are 24 plots in Lhe fignre (Pages 57 —
for different relative plase values in steps of 157, in the range 0 < y < 2.

e from the figures thal when the relative phase x = 0, the @ lunction of the
uperposition is linear[247], in the sense that it is along a straight line joining the

ent states in phase space. Also one can visually Judge that it is quadrature

din the perpendicular direction [243, 247] to the line joining the component

v
Les

tes. This squeezing arises because of the way the compenent states interfere in

b
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phase space [253, 254]. Its center of distribution is al the origin of phase space. The

distinetive feature one notices from these plots as one increases Lhe relalive phase is

that the @ function acquires a curved shape. For this value of the hall-separation

1t. can be seen thal with increasing relative phase in the range 0 < y < 2r/3,

center of the distribution starts moving along the positive Imaginary axis. It

relurns back to the origin al ¥ = 7 and moves along the negalive Imaginary axis

o X > m and then returns back to the origin at X =2m. We also see thal al y ==

itis elliptical in shape. For smaller hall-separations #, it will hecome more circular.

-5
can expect photon number squeezing here, since as seen in Chapter 1, the Fock
es have a circular @ function centered at the origin of phase space. In [act one

expect photon nuinber squeezing as soon as the € function takes a curved

ie. We will discuss Lhis in detail in Chapter 3. As stated earlier, there is a

symmetry in the relative phase, in the sense that x and 2r — v are mirror rellections

wout the line joinin g the two component states. We will 1iow t urn onr attention to

culation of noise properties of this canonical from of thie superposition of two

nt slales.

2.4 Noise matrix of the Canonical form

ve seen in Chapler 1 that the uncertainty matrix [233] of any state is given by

_ (@) (3agam) ;
‘(Hma‘,am} ((57)?) ) ‘ e

and p are called the quadrature operators, and {;i, B} is the anticommutator

perators A and B. The operators ¢ and j are given in terms of the usual

fil




“boson operators by the relations

(@' -a) , (2.25)

(aay) = ‘

(@9*)

(aayy + (al

< 1 =44
((aaly)+(ala) - (at)

=0

+ 5 (i) +

1 =g
-z ((@a7)

Il

BZ ] b D] =
b | =

We calculate first the expectation valites of the needed powers of Lhe annihilation

alion operalors in the canonical state. Thus we have
T,
(@) : e sin y
a) = ap -
I +e 2 casy

| — g2 COs Y
=1 - LS, ) 2.27
<‘ a) B (l o4 g—2s* COS Y (2.27)

= <E>. and (ﬁ”} = <Ez>., Hence we see that

([aai}f _ <(M}>? _ [1 T e 1]

2.28
(1 4 e~ cos y)? (62%)
--.--:_:.q__p in the quadrature operators is then given by

| |

A7) = = +242 :
<( 7) > 2 . I{l + e—2? cas_?(]l}

1 2 [€7% cos K +e

T A2 E 2.29

2 = [ (14 e cos )2 (2:29)




‘We now look into these set of expressions in more detail. The mean value of the
annihilation operator, as we have seen earlier, gives an estimate of the center of the

ibution of the state, in the g-p phase space. The (2 Tunction we have plotted

ses the real and imaginary parts of its arguiment. The g-p phase space is got from

0.6 T T T T 1 T T ¥ T T t T T

()l

2.7. Plot of the magnitude of the mean value of Lle annihilation operator with
to the hall-separation z for various values of the relative phase y indicated

gure. Note that for ¥ = 0 and vy = # the mean valye s zero for any
x.

.._'ing each point by a factor of V2 [See Eq. (2.25)]. It is obvious from the
n plots [Fig. (2.6)] and the equation for the mean value of the annihilation

or i?hst equation of Lq. (2.27)] that the center of the distribution moves

i



: the imaginary axis. Note that for ¥ = 0,7 the mean (@) is zero and the

r coincides with the origin of phase space, For large values of o, the maximum

} isat ¥ = 7/2, whereas when X = m, even though hoth the numerator and the
ominator tends to zero, the limiting value of (@) is zero. In Fig. (2.7), we have

ed the magnitude of the mean of the annihilation operalor as a lunction of the

eparation z, for various values of the relatjve phase y. It can be seen in the

that the above arguments are substantiated. For the valies of hall-separation

choose to plot Fig. (2.6) (# = 0.7), the shift of the center of the distribution

-Hle relative phase can be correlated with this figure.

The uncertainties in the quadrature operators ¢ and i can be betler studied

the squeeze parameter introduced in Chapter 1. The mth order squeeze

ter for any operator A is defined [235, 236] for any quantum state [ )

1'. 5!-!"} = ([ﬂ,ji}"' >|r.'-} .y

= : 2.30
* T {eAr) o

s nothing but the difference of the mth order variance of

i3

the operator in the

d quantum state and in the coherent stale, normalized with the mth order

of the operator in the colierent state, Henee, for a coherent state, the m th

eeze parameter ol any operalor is zero, and it serves as a referéence. If
eze parameter lakes negative values Lhen the operator and the observable
nts has a squeezed noise in thal state, compared to the colierent state. We

he 2nd order squeeze parameter for the quadrature operators § and 7.

dir?

1 + e=22% s X

2%~ (cos x + ¢’} (2.31)
(14 e~ cos y)* ' ‘




be immediately seen that the 2nd order squeeze parameter for the quadrature

erator ¢ is always positive. Hence its noise is greater than that of the coherent slate

pective of the half-separation and the relative phase, On the other hand, there
are re ions of the half-separation and the relative phase where the 2nd order squeeze
eter of the p-quadrature operator ji hecomes negalive, This implies that in
regions of Lthe parameter space the superposition state shows squeezing of noise
is operator. It should be noted that the line Joining the component states of
erposition is along the g-quadrature and the nojse along this direction in
pace is always greater than the coherent state. On the other hand the noise
he perpendicular direction to the line joiming the component states, which in

e is the p-quadrature, is squeezed at least in some regimes of the parameter

ig. (2.8), a ploL of the 2ud order squeeze parameter SEE} Vs, the half-
ration is given for various relative phase values for the canonical form of the

tion of two coherent states, It can be seen that the AKX Sqieczing

iwhen the relative plase is zero. Note {liat [IFig. (2.6)] at this value of relative
';ﬁ’Q_ function is not curved and has its major axis along the ¢-quadrature.
ative phase is increased [rom 0 to 7, we see that the noise in this quadrature
For values of relative phase y not equal to 7 there is a region of small
ation where there is some squeezing, as can be seen from the figure. This is
even though the presence of relative phase makes its distribution cn rved,
all half-separation z, the distribution itself is quite compact and doesn’t

h along the p direction in phase space. To end this discussion we will

 the 4th order squeeze parameler [or this superposition state,




B, Plot of the second order squeeze parameter SY for the pquadrature op-

. the half-separation z for different values of the relatjve phase y
gure,

indicated]

ve here the 4th order squeeze parameters of the quadrature operators for

€SS

1622 cos y — Uate 4 cos X
o 3(1 -+ e~2* cos x)
8z%e " gin? v [l + 82 + (1 — 42?2 cos xl
A1+ e cos )
4818 sin! %
B I+ e~ cos y )1

clt) _
S;’;‘ =

_I.,

G5



{4) = IEIE -+ 24.1‘2
S'F I+ e cosy) k%42)

‘be seen that the 4th order squeeze parameter of the 7 quadrature operator is
ive for all values of half-separation x, and relative phase y. This is so hecause,

mponent states of the superposition are along the q axis of the phase space,

Plot of the fourth order squeeze parameter S for the p quadrature op-

- the half-separation z for different values of the relative phase y indicated
re,

":_ue.s of half-separation = and relative phase x for which the 4th order




‘squeeze parameter for the p quadrature operator is squeezed.

In Fig. (2.9), we plot the fourth order squeeze parameter for Lthe 7 quadrature

ator against the half-separation , for various values of the relaljve phase y. It

..
i

can be seen from the figure that there are regions of the lLall-separation = above

‘ot below which the noise in the p quadrature is squeezed, excepl when y = /2.

Finally we wish to write the noise matrix of the canonical form, since we will
using it later. Since the anticommutator {AG, Ap} has a vanishing expectation

in the canonical state, one can write the entire nojse matrix as

1 4 241 ] 0
—_ L [1'|"?'_:'F Enﬁx:] N
g~ ! 252(“_:"? ms\;+t_h_zl ' [23‘3}
G T [ “+I.'_TI? |'.'.'-:l.1_\_]:|‘

this knowledge of the canonical form of the superposition, we will now turn

general superposition of Lwo coherent stales.




2.5  General superposition of two coherent states

general superposition of two coherent states, as mentioned earlier, is oot from

e

the canonical form by

W) = D()R(r) o) (2.34)

) = N(|=z)+ex]e))
ﬁ(“] = HD;F-:\';

= |
iTE'a

(i) = ¢ : (2.35)

properties of this general superposition can be easily caleulated from those of

@A) = 2B 1) = |81 Bla) i) 1)
- % Jeles™=e072 (g — | (e 135
= Q((B—w)e) | (2.36)

here (). is the @ function of the canonical form, given in Eq. (2.23). Thus, the @
on of a general superposition is obtained from the € function of the canon-
gal form by a rigid translation o and rotation r in phase space. Since we have
computed Lhe ¢} lunction of the canonical form, we can get the €) function

af any general superposition of two colerent states. We now wish to calculate the




noise properties of the general superposition of Lwo coherent states from the noise

properties of the canonical form.

It has been pointed out in Chapter 1 that the displacement moves only Lhe mean
f the distribution without affecting the shape. It means that only the first moment

of the distribution is changed, while all the higher moments remain intact under the

ibion of the displacement operator. Hence the noise of the quantum state is
inaffected by the action of the displacement. Hence we Lave to bother only about
ofation operator. This can be easily figured oul, since Lhe rotation operator
dly rotates the distribution as a whole in phase space. Hence one simply goes to

iled phase space after the action of the rolation operator. So Lthe noise malrix

e general superposition of colierent state can be written as,
M, = RN (7)MR(r) | (2.37)

M. is the noise matrix of the canonical state as given in q. (2.33) and where

:m the corresponding rotalion matrix given by

COST ST o
Rir) = ( B A —— ) . (2.48)

one can easily calculate the noise matrix and the noise properties of the

uperposition. The noise matrix M is defined modnlo a displacement, which

iy Schleich [250). We will caleulate the noise properties of this state using

atrix of the canonical form. It can be noticed in Fig. (2.10) that the




component states of this superposition are ‘ne‘*””} and Im-:"'“’-“ >, which are super-

d without any other ‘additional’ relative pl

ase. Let us denote this superposition

Mm(Q)

__-Fig.. 2.10. The superposition of coherent states introduced by Schleich

[25[!] The two colierent states sublends an angle i in the origin and are
placed symmetrically about the g axis of phase space.

I\EIS} :.N'( |ﬂﬂiw.i'2>+

-‘:m_t"'“”) )

(2.30)
relative phase between the component states is given by

Y= f’krg[( e~ el |t:nuez""rllz >] = |a|*sin()

(2.40)
actually the relative phase of |ms:"qpfr 2> with respect to

e~ vel? > . The
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Ih_—-sepa.ra.tiun between the states is given by

= |a|sin(yp/2) (2.41)

be figured out from Fig. (2.10). Hence the basic or the canonical form that

should be chosen for this state is

[96) = N (|~ lafsin(p/2)) + ¢+ | | sin(p/2)) ) . (2.42)

Since the relative phase in the exponential comes along with the coherent state

rotation angle and the displacement are
r= w2
£ = |a|cos(ip/2) . (2.43)

Hence the Schleich state is given by

s} = D{la] cos(ie/2)] R(x/2) |14) . (2.44)

:'hce the displacement doesn’t affect the noise matrix the noise matrix of the

Schleich state can be immediately written down as

M;(??)Mﬁ(_‘}lé) : (2.45)

Ihe action of this rotation is to switch the diagonal elements of the noise matrix of

anonical form in Eq. (2.33), which means the noise in the ¢ and p quadrature

72



are exchanged. Hence for the Schleich state we have

((aq7) =
N i I
(fﬂpF) - §+z£ [[I +E-ZI?EDS]:}}
z = |a|sin(e/2)

g2 e= 27 cosy + et
(1 4+ e %" cos y)? !

e 1

x = |a|*sin(y) (2.46)

effectiveness of the above method should be compared with the straightforward

1od used in Ref. [250].

We have elucidated in this chapter the concept of relative phase be-
tween two quantum states. Starting from Pancharatnam’s phase, we
defined the relative phase and elaborated it using the coherent states
as an example. We then introduced the relative phase in two coherent
superposition, which enabled us to choose a canonical form from which
one can get any general two coherent superposition by ‘trivial actions
of displacement and rotation, We then studied the canonical form of
the superposition and had illustrated the effect of relative phase in
the @ function. The noise properties of the ecanonical form are then
studied and the various kinds of squeezing shown by the two colierent
superposition for different values of the relative phase are described.
Finally, we considered the quantum state introduced by Schleich, and
illustrated the ease with which one could get this superposition’s noise

properties from those of the canonical form, as an example. Having

T3




seen that the relative phase produces a curved () function, we will
study the relationship between this curved @ function and the photon

number noise properties of a quantum state in the next chapter.
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O]lapter 3

Amplitude squeezing and superposition of

coherent states

chapter the relationship between amplitude sq ueezing and rel-
phase in the superposition of coherent states is analyzed. Firsi,
mplitude squeezing of the canonical form of the superposition of
colierent states introduced in the last chapter is studied in detail.
then study the change in the amplitude squeezing as this state

laced in phase space. This leads to an understanding of the
ionship between the positioning of the state in phase space and
litude squeczing. The real role the relative phase plays in produe-
litude squeezing is then studied by fixing a superposition of

ent states al a given distance from the origin of phase space
ing the relative phase between the component states,

3.1 Amplitude squeezing in superposition of two
coherent states

squeezing, as we have already seen in Chapter 1, is characterized by the
olon number uncertainty of a quantum state being smaller than its mean photon
In this section, we will concentrate on the photon number properties of
mical form of superposition of two coherent states introduced in the last

e have studied the (quadrature) noise properties of the canonical form in




eral, but we will now concentrate on the noise in photon number. More attention

will be paid to describe the way in which the relative phase changes this noise,

The mean photen number of the canonical form

Itb:}:N(]—:c}-{-c""l;r}) , (3.1)

2z?

{'i}:(ﬁf&‘):a:“(l_ﬂ_ ”’”) + (3.2)

L+ e~ %% cos y

-.;-::-!_i. expression it is obvious that when y = 7/2, the mean photon number of
'i;p.fusil:inn is the same as that of a colerent state. Indeed with this special
=:.'-_-'—._='i the entire photon number distribution of this non-classical state is identical
of a colerent state. For any other relative phase, the superposition is still
ehave like a coherent state for large hall-separation . However for a small
iration the mean is greater than the coherent state value when rf2<y <,

maller than the colierent state value for 0 < X < w2,

ectation value of (E”E?> for the canonical form of the two coherent

osition is calculated to be

(%) =21 | (3.3)

ependent of the relative phase x. The photon number uncertainty for

aperposition is given by

(o) = () (5
= (") + (') - (a'a)’

dz'e™ " cos y + 2?(1 — e~ ¢os? x)
(1 + e cos y)?

(3.4)




1t is usual practice Lo consider the normalized photon mumber uncertainty, which is

‘called in the literature as the Fano factor. This normalization is with respect Lo the

ean photon number and hence the Fano factor is given by

f. = _{L&?;E_}, (1.5)

d which when calculated for the canonical form gives

4722 cog y
Lhi=l4— :

I — e=17" cos? y

(3.6)

We have seen earlier that the Fano factor takes the value of one for a colierent

nd zero for a Fock state. Hence the Fano factor is bounded from below by

he value of zero. One way of characterizing amplitude squeezing is to say that the

) factor has a value in the range 0 < f, < 1. A poissonian pholon statisties

5 associated with the Fano factor value of one. The photon statistics is super-

nian if f, > 1 and sub-poissonian if f, < 1. It is seen [rom [Sq. (3.6), that in
e 0 < x < /2, the Fano factor f, > 1, and hence the superposition stale is
issonian. It is not amplitude squeezed in this range, and its photon number
grealer than that of a colierent state, On the olher hand, when y = 7/2, we

= 1. This means that the superposition stale at this value of Lle relative

lase is the same as that of a coherent state as far as its photon number noise is

cerned. This state is called the Yurke-Stoler state [241] in the literature, and we

ier seen that this state can be produced in a Kert medium. For y values

e T2 < x < w, wesee that [, < I, and lience the canonical form of the

ition of two colierent states is amplitude squeezed for Lhis range of values




~ These results can be understood in a simple way, Il one looks at the mean photon

tiumber, il is obvious thatl as a [uncltion of yx the mean increases as y increases [rom

.' to m. When 0 < x < #/2, the mean is smaller than in a coherent state. At
& = 7/2, the mean photon number of Lhe superposition equals thal of the coherent
;.:.;a In the range 7/2 < x < m, the mean is larger than in a coherenl state.

| fact, the mean photon number of the superposition is largest when ¥y = =, On

il
|

‘the other hand, the [Jllﬂtﬂ-]l number uncertainty also keeps decreasing slightly as y

i eases from 0 to = when the hall-separation is small. This change comes about
.'.'_ﬂ'le z term in the numerator of Eq. (3.4). But this is more or less compensated
I; J::,_]ie decreasing value of the denominator and hence the decrease in Lthe photon
pumber uncerlainty is quite small. Hence we can say thal the Fano factor decreases
‘ coverall way for small 2 with x is in the range 7/2 < v < 7, maiuly due to the

increase of the mean.

,1!1 Fig. (3.1), we plot the mean photon number as a function of the half-separation
various values of the relative phase. Note that we have normalized the mean
on number by dividing it with x?, which is the mean of the coherent state.
nce this normalized mean, when it takes the value of one signifies that the state
erned behaves like a coherent state as far as the mean is concerned. It could be

i

seent i Fig. (3.1) thal when the relative phase is v = 7/2, the mean for all values

separations, as can be seen in the figure. For values of the relalive phase in
lie range 7/2 < y < m, again we see that the mean photon number is larger than

herent state value. The value of mean for this range of relative phase when



_ﬁle hall-separation approaches zero is quite large to be included in the figure. But
they are all finite except when x = m, which corresponds to the odd-coherent state

..4:3]. We will later return to this quite exceptional hehavior of the photon number

all-separation x for different values of relative phase indicated in the figure, The
mean photon number plotted here is normalized by dividing it by 2.

"_g. (3.2), we have plotied the photon number uncertainty of the superposition




the half-separalion 2 = 0, the photon number uncertainly equals its mean for all

=

values of the relative phase except when y = 7. Moreover, this normalized photon

-
th

((An)?)/x?

0.5

3.2, Plot of the photon number uncertainty of the superposition state as a
ction of half-separation x for different values of relative phase indicated in the
re. The photon number uncertainty plotted here is normalized by dividing it by

80




e has a larger uncertainly than the colerent state. This implies that they will
' super-poissonian statistics. On the other hand for those states with relative

e in the range 7/2 < [y < 7, there is a range of half-separation where the
nncer

tainty is smaller than the colerent state. These also have the mean photon
ber greater than the coherent state value in the same range of r, and hence are
amplitude squeezed. One can expect that their photon number distribution will be

oissonian in this range. Note that the photon number uncertainty goes to zero

the relative phase is 7, whereas the mean blows up in this limit.

.Elg (3.3), the plot of the Fano factor for the superposition stale is given as a
action of hall-separation, for different values of the relative phase. The Fano factor
tioned earlier is defined as the ratio of the photon number uncertainty to the
':l:iutcm number of the state under consideration. It had also been mentioted
I

al the Fano factor for colierent states takes the value one, and on the other

for Fock states it takes the value zero. lence one way of delining amplitude

|18
Lty

is to demand thal the Fano factor of the quantum state has a value Lhat

L

rthan one. It can be seen from the figure that for large half-separations the
ition behaves like a coherent state. This can be readily understood sinee at
“separations there is very little interference in phase space [253, 254], and
it state looks more like a statistical mixture of coherent states. The case
:—'..3-._.- which is the Yurke-Stoler state [241], behaves like a colierent state for
of the half-separation. One could say that this is rather accidental, since
that this state has a curved quasi-probability distribution and may

i ude squeezing when displaced to a proper position in phase space [242].

e seen that for the values of relative phase in the range w/2 < y < w,

sl
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.3, Plot of the Fano factor of the superposition state as a function of half.
ation z for different values of relative phase indicated in the figure.

rposition state has a Fano factor less than one for small x, and hence is

squeezed in this range,

ticular interest is the quantum state when the relative phase is ¥ = .

':..-;.':'5-‘}:" well known in tle literalure as the odd coherent stale [243], When

ders such a quantum state and takes the limit 2 — 0, it can be seen that

- Ano

factor goes Lo zero. But on the other hand, at the quantum state level,
gets is superposition of two vacua with a phase difference r. Dut we do

the properties of a state superposed with itself are Lhe same. The above




erposition is not even the vacuum but a null vector in the Hilbert space. But
shill, the limiting process seems Lo indicate that it goes over to Fock state |1 )l The
0 obvious error is the inclusion of the point x = 0. Before ending this section

sh to explore this limit in a more careful way. The superposition state when

relalive phase is @, when written in terms of the Fock states, looks as

[¥a) = N(l-2)—|z))
";3‘(2 o zunva"

——|2n+1) . (3.7)
4 Vi—e H.ZEI W2+ 1)
that only the odd Fock states are involved since the even ones gel cancelled

negative sign before the second ket. Note that this means that there is no

[, ) is more like the Fock stale | 1), since

I pT 2 m i.-nﬂ
oy —% 21r—|-[
V) S AT \/ﬁ

=t | Do . (3.8)

er terms drop oul as they conlain non-vanishing powers of = in the munerator

cal point to note is thal Lwo coherent states with vanishing amplitudes when

ed out of phase will give rise to a Fock state | 1).

3.2 Effect of displacement on amplitude squeezing

tion, we wish to study the ellect of displacement on amplitude squeezing

cal state is displaced in phase space by applying a displacement operator

it. The effect of direction and magnitude of displacement on amplitude



squeezing is then studied. The displaced state can be writlen as

lba) = D(E) ) (3.9)

where the canonical form of the superposition of two coherent states is given by
le) =N (|—2) + ™ |2)) . (3.10)

splacement operator acting on another coherent state can be found by using

;';Ieform [27] of the BCH formula [270, 271, 272, 273, 274, 275], and is given hy

D()|a) = D(B)D(a)]|0)

= e[ﬁ;r'ﬁ'ﬁ‘“:'_“'a]‘mﬁ{ﬂ +a}|0)

= cm“"ﬁ'"”"ilﬁ+ﬂ) {3.11} k

e the displaced superposition takes the form

|¢d} == (IE a I) i i[x+2zk sin(8)] |€ + .r:l) ’ (3.12)

we have parameterized £ as £ = ke and lhave neglected the overall phase,

d be observed that the relative phase of eflxt2eksins)] | €+ 2) with respect

—x) is still x, as can be checked easily. The displacement operator preserves
tive phase between the states of the superposition by introducing a term in

B e

ponent which exactly cancels the additional relative phase introduced by Lhe

1ean photon mumber of the displaced superposition is calculated to be

R 2 b (K —a?)e ™ cosy + 2uke 2 sin §sin Y ‘
) = - =, (3.13)
(] 1 4+ ¢e72% cos y




Since the photon number uncertainty is given by

" (aap) = (@ay)-(atay

= (@) +(a'a) - (ata)’ (3.11)
we need the expectation value (ETQEE ), which is caleulated to he
(ﬁﬂq > (k£ + 2%)? 4 422k cos? § + [{.fr.” — ) — 4a?sin? :5] e cosy
vala ==

14+ e 2 cos y
drk(k? — e~ gin v
X

915
+ 1+ g2t COS Y (d | }
- e Fano [actor defined as
_ An)?)
f" - {ﬁ}
()
= 14 {]Tﬁ} —(ﬂ'ﬂ} ; (3.16)

18 calculated for the displaced superposition as

1l

i [z* — k? cos® § — k?sin® 8] cos y — 2k sin §sin x — ke sin?6 .
k? + 22 4 (k2 — 2?)e~2" cos y + 2ak(E)e™* gin fsin v

4 2, =2r
oot 3.17)
(1 &% cosy)

cement. To this end, we choose an arbitrary magnitude of displacement and
lot the variation of Fano factor with the direction of displacement &, in Iig. (3.4).
he magnitude of displacement is chosen to be k = 2.0. The half-separation
e superposition is * = 0.7. Diferent curves are plotted for superpositions
lerent relative phases, which are indicated in Lhe figure itsell. Since the

erposition is made up of coherent states lying along Lhe g-axis of the phase
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ce, one would expect that the displacement along the perpendicular ditection will
rease Lthe amplitude squeezing. From Fig. (3.4) we see that this is what happens
all relative phases, and the Fano factor takes its lowest values at § = /2 and

= 37/2. When the superposition is symmetric about (he q-axis, the minima at

25

u||||||IIIl|;II||||||-J.||-|||I|Il||

0 a0 180

0

270 a0

' ,34 Plot of the Fano factor of the displaced superposition state as a function
"L_‘:'l,'_li'ﬁplﬂ-{:ﬂllll?ﬂt angle &, where the displacement magnitude is k = 2.0. The

aration of the state is fixed at z = 0.7,
 values of § are equal, as in the case of the relatjve phase being equal Lo 0 or

1 other values of the relative phase y there is no reflection synunelry about

sand hence as [ar as amplitude squeezing is concerned Lhe displacement

he positive p-axis of phase space is more favourable, since the center of




ature would be towards the origin, and henee the the ¢ function resembles

lly the @ function of the Fock states. It can be seen that when the distribution

ljghf.i}r curved due to a small relative phase between the superposed states, the

0 factor has a lower value than for the state with zero relaijve phase and whose

ribution is not curved. This can be seen in Lhe ligure even for this arbitrarily

sen magnitude of displacement.

To elucidate this further, we plot the € function of the displaced superposition,

Ly

'._4: en the displacement magnitude is fixed at £ = 4.0 [ig. (3.5). The Q Tunction
of the displaced state can be obtained from the @ function of the canonical form, Ly
y shifting the argument. This is so since the displacement operator acts on Lhe

ent state from the left and hence Qu(f) = Q.(F—£). Here the contours al the

er are the contours of the ¢ Tunction for the undisplaced state, viz, the canonical

The small arrow from the origin points to the center of Llis distribution. The
Hacement operator simply shifts the center of this distribution to a new position
ise space which is illustrated in the figure by Lhe other arrows representing the
! iacement. Apart from the canonical state'’s ) Tunction at

the center, we have

d the @ function of four displaced states with various displacement angles §
icated in the figure, The magnitude of the displacement as said earlier is lixed at
in all the four displaced states. The half-separation between the component
[ the superposition is # = 0.7 and we have chosen a relative phase y = 7/2 1o
e the point we are trying to make. The dotted circles filling the background
#the maxima of the ) functions of different Fock states. It is obvious Lt Lhe
hat are displaced along the g-axis of phase space for 6 = 0, 7 will have more

on number uncertainty since they cut more number of Fock circles for a given
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~radial distance of the center of {he distribution from the origin of phase space. On

":ﬂ_:ie other hand, when it is displaced aloug the p axis for 6 = m 2,37 /2 it cuts less

number of Fock circles. In the case of § = 7 /2 when it is displaced along the positive

‘axis the curvature of the distribution locally matches with the curvature of the

Re(g)

Fig. 3.5. Plot of the ) function of the displaced superposition state, for different
displacement angles, when the displacement magnitude is fixed al & = 4.0, The
ows indicate the displacement of the center of the distribution. The b
ed with the maxima of dilferent Fock states as dotted circles, The Iy
i fixed at z = 0.7 and the relative phase at x = 90°,

ackground is
all-separation

ircles, enabling it to cut a lesser number of Fock circles. Hence one can predict

the state which is displaced along the positive p-axis of phase space will have

it maximum amplitude squeezing. This prediction is quite justified as one could
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in Fig. (3.4), where the Fano factor goes to a minimum at. § = 7/2. But as noted
lier, too much curvature of the distribution due to a large relative phase between
e superposed states will make the distribution cul more Fock circles and hence
1 be worse than the case when the relative phase is zero and where there is no
curvature in the distribution. Hence, we conclude by observing that the amplitude
Ieezing gU:ES to a maximum when the distribution is displaced along the direction

i which its curvature can locall y match those of the Fock circles.

We now turn our attention to the effect of the magnitude of displacement on
litude squeezing. Since we have seen that § = 7/2 is Lthe favoured direction,
fix & at this value and plot the variation of the Fano [actor as a function
e magnitude of displacement k. In Fig. (3.6) we do this. The half-separation
veen the superposed states is fixed at @ = 0.7. The different curves are for
ent states with dillerent relative phases, which are indicated in the figure itself.
negalive & values correspond Lo the displacement in the opposite divection, i.e.
'-1.‘.%:}:; = 3w /2. Since both the states with the relative phases v = 0,7, have a
out which there is a refllection symmetry, the curves corresponding to these
mlues of the relative phase Lave the same structure for & < 0 or & > 0. Since
tribution of the superposition stale when v = 0 is a bivariate (iaussian, as
-'--:1.""1 this state further from the origin in phase space, the more it locally
s the curvature of the Fock circles, as can be anticipated since a line can
cbured as a circle with an infinite radius, Butl al increasing distances from the
ie density of Fock cireles increases and hence the Fano factor will salurate at

ue, as can be seen in the figure, On the other hand, if there is a curvature

stribution, then there is an ideal value of the magnitude of displacement at
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which the Fano factor will be minimum. For v = # this ideal value is zero. With

asing relative phase, this ideal value increases and it becomes infinite for y = 0

3.6. Plot of the Fano factor of the displaced superposition state as a function of
agnitude of displacement k for different values of the relative phase indicated in the
The half-separation is fixed at & = 0.7. The direction of displacement is along the
ive p-axis of the phase space.

the maximum amplitude squeezing occurs only around a narrow range of values

We have seen how the displacement affeets the amplitude squeezing of a quantum



state. In the next section we wish to see Lhe effect of relative phase in the amplitude

squeezing of a displaced superposition of coherent states in more direct way.

3.3  The role of relative phase in amplitude squeez-
ing

We have seen that the elfect of the relative phase in a superposition is to make the
I

distribution curved. We have also seen that il this curved distributbion is displaced

it a proper direction then there is an ideal distance at which the curvature of this

distribution locally matches the curvature of {he Fock circles, and consequently at

ich distance the amplitude squeezing is maximum. In this section we will study

2 effect of the relative phase in the superposition state more directly and later on

npare it with a quadrature squeezed state. This is done by fixing the magnitude

of displacement at a particular value and varying the relative phase between the

nponent stales. Such a study will elarify the dependence of amplitude squeezing

i the curvature of the quantum state’s distribution more ellectively,

In Fig. (3.7), we plot the Fano factor lor the displaced superposition as a lune-
of the relative phase y between the component states, wl

lisplacement is fixed at b = 2.0, and when the direction of displacement

wen the magnitude of

is along the
}wp—axis of phase space. The half-separation between the component slates is
‘at 7 = 0.7 again. The minima and the maxima of the curve are demarcated
awing a dotted line parallel to the ordinate. When studying the effect of the

ve phase it should be remembered that the half-separation is quite small and

than one. Hence the effects of the curvature due to a relative phase are quite




small comparatively. In Fig (3.7), it could be seen that as one scans the range of

x values there is a minimum and a maximum. This would be true for all values of

values of & very dilferent from the ideal value the extrema will

N N B T B A L T N T T B N S I i | T T T T T T
a - x=0.7 ; =4
k=2.0 .

o P T AT 0T N WO ROT O T T AO

o a0 180

X

270 360




ead of the distribution along the p direction in phase space ocours when y = 7
jut as can be observed in the figure the maxima of the Mano factor does not lie at
=7, but rather at a higher value. As we have pointed out earlier, values of relative
se x which are equally separated from 7 on either side will their distributions as
or reflections of one another about the line joining the component states, Hence
distribulion of the state when say, y = 210°, is the same as for the state when
= 150" except that they are mirror rellections aboul the line joining the states.
obviously the Fano factor is not the same at these values but is larger when
.:'.I[_I_“, precisely for Lhe reason that Lhe distribution is enrved in the wrong way.
argument, can be extended to the nminimum of the Fano factor which in this

fase occurs around y = 70° and nol around y = =70°.

o illustrate the point further, we plot the @ function of the displaced states for
ues of relative phase in Fig. (3.8). Here too, the half-separation is fixed at

T and the magnitude of displacement at £ = 2.0. The contours (level curves)
- ' function are [D_r 0.05,0.2,0.4,0.6,0.8 times that of the maximum value.
kground is filled with the maxima of the @ funetion of the Fock states
lines. It should be observed that this is nol a very good visualization

nario since the hall-separation here, as said earlier, is too small. But
st be so for a strong interference in phase space. Unfortunately at Lhese
rations the effect of the relative phase, even though present, is not very
These effects could be observed in a much better way il one has a
jon of many coherent states with relative phase between them and by

dulating the superposition amplitudes. Here'it is nol so and hence the

hat pronounced. But still one can discern these effects in the ligure.
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In the plot where the relative phase X = 0, one can see thal the distribution is

straight and as the y value is increased the distribution gels more and more hent.

At ¥ = T72.5% it can be seen that the bending of the distribution suits the position it

Jis sitting, in that, it is streamlined with the Fock circles, and it cuts a less number

R T e
Leae ™05 % "y g

-2

Re () Re(g)

Fig. 3.8. Plot of the @ function of the superposition state. The
filled with the maxima of different Fock states as dotted circles. The magnitude of
displacement is fixed at k = 2.0, and the half-separation

al = = 1.7, The plats are
or different relative phases which are indicated in the figure.

background is

ol e

of them (here only one or two less),

We have seen that a quantum state with a curved () function is better suited as

‘amplitude squeezing is concerned. We wish to show now that the quadrature




squeezed state, for a very small value of squeezing can be represented as a super-

;j_l__nsition of two coherent states with no relative phase. Since the absence of relative
huse makes the distribution not curved, il is apparent that quadrature squeezed
state is not that suitable when it comes to amplitude squeezing. In fact interactions

which can produce quantum states with a curved  funclion are betler in the gl

eration of amplitude squeezed light. We will now show that for small squeezing the

‘quadrature squeezed stale given by [85, 86, 89],

la,z) = D(a)5(2)|0) (3.18)

can be represented as a superposition of two coherent states which are in-phase with

We first represent Lhe squeezed vacuum in a convenient, way as

[2) = 5(z=re’)|0)

= cosh™%(r) et anlra!? | 0y
I
= mﬁh_%[?'} (1 + §E2'01a1111[ rjat? 4 2131 0 panh?(r)att )IU} (3.19)

we had used the normal ordered form of the squeeze operator [276, 277) given

g. (1.63).

The other two exponents of the normal ordered operator do not

ontribute since they are acting on the vacunm state.

On the other hand, an in-phase superposition of two coherent states in the canon-

sal form can be written as

[#e) = Nl-z)+]z}))

N (D(=x) + D()) |0)



Using the normal ordered displacement operator [27] given in Eq.(1.37), we have,

I

Pe) = ———— (e 4! )
| cosh(z?) ( ) |
= cosh™3(a?) (1 + Eliz?a“ + % RS ) : (3.21)

s can be immediately compared with the squeezed state |z} for small values of

zand r (x < 1,7 < 1). One can see that for small values of r, tanh(r) = » and

lience one can write the squeezed state as

|2) = RO) (|-v7) +| 7)) (3.22)

'E{:ting terms containing higher powers of r (» < 1). The operator i is the
totation operator given by fi(r) = exp(irala), and this automatically gives the

torrect 0 coefficient for each Fock state (even when r is not small).

Hence the general squeezed state for small values of the srjueezing magnitude r

be written as

lo2) = D(a) R(0) (| -7 ) + Vi) . (3.23)

ier the displacement operator nor the rotation operator changes the relative
etween the states in Lhe superposition as we lLave seen earlier. I'he general
d state for small squeezing magnitudes can hence be represented by an in-
ase superposition of two coherent states. But we have seen that a quantim state,
has curved @ distribulion, such as those got [rom a superposition with a
lative phase between the component states is better from Lhe point of view of am-

squeezing. We conclude this chapter by pointing out that interactions whicl




produce quantum states with a curved @ [unction are more suitable for produc-

amplitude squeezed light than the usual two photon interaction which produce

tates whose () functions are not curved.

In this chapter, we have considered the role the relative phase plays
in amplitude squeezing, by using the two colierent state superposi-
tion to illustrate our arguments. We have first studied the canonical
form’s photon number uncertainty. Since the photon number proper-
ties, unlike the quadrature noise property, are not invariant under the
displacement operation, the displaced version of the canonical form is
studied in detail, to discern the eflect the positioning of the state in
phase space has on amplitude squeezing. We have made this study
both with respect to the direction and magnitude of the displacement.
We have then illustrated the real role of the relative phase in ampli-
tude squeezing in a more direct way, by considering a superposition of
two coherent states at a fixed displacement and varyving the relative
phase between them. By this we have shown that the states with a
curved () lunction, when positioned properly show better amplitude
squeezing than those states whose () function is not curved. Finally,
we have analytically shown that for very small squeezing, the quadra-
ture squeezed state can be represented as an in-phase superposition
of two coherent states, and hence is not very suitable when it comes
to amplitude squeezing. Our conclusion is that one should look for

interactions which gives rise to curved ) functions if one is looking for



higher amplitude squeezing. We proceed to look at the effect of such

an interaction on the quadrature squeezed state in the next chapter.



G]lapter /

Evolution of quadrature squeezed state in a

non-linear Kerr medium

This chapter studies the evolution of a quadrature squeezed state in a
Kerr medium. We use the understan ding gained in the previous chap-
ters in this study. The caleulations in volving this evolution are consid-
erably simplified if one expresses the initial quadrature squeczed state
‘as a superposition of coherent states. The pictorial representalion of
this evolution is presented using the Q-function, which at appropriate
places is compared with the coherent state case. The expectation val-
of field quantities which will be needed in the forth coming chapters

ate then calculated, Finally some interesting limiting cases of these
general expressions are pointed out.

4.1 Quadrature squeezed state as superposition of
coherent states

The single mode quadralure squeeze operator is given by [85, 86, 87, 88, 89]
o I ol 1 e
Slak= cxp(iza —57a Y (4.1)

- we had parameterized (Section 1.4) = as 2

= rexp(2:0) to rellect the un-

ing symmetry, so that the squeezed states correspouding to € and # + 7 are

fied. We have also seen that when 0 = 0,7, the operator S(z) squeezes along




the p-quadrature, and when 0 = 72,372, it squeezes along the a-quadrature in
phase space, and that Lhe angle § is the angle subtended by the major axis of the
uncertainty ellipse with z-axis in the z-p phase space. The aim of this section is to

write the squeezed state as a superposition of colierent states [246, 247, 248]. This

facilitate calculations inveolving the squeezed state to a considerable extent [219].

The process of expressing a general squeezed states |, 2z} = E(rx}g{z} |0) as a
superposition of colierent state is simplified if one first writes the squeezed vacuum
ined by S(z) |O) as a coherent state superposition. This is so, since if §(z)|0)
pressed as a superposition of colierent states, then E{n) has Lo act only on the
i‘mf‘: coherent states in the superposition. Hence our first task will be to write

squeezed vacuum as a superposition of coherent states.

ﬁ&xpres&l the squeezed vacuum as a superposition of colerent stales, we observe
ie squeezed vacuum should be a superposition of coherent states along the 0
on in phase space. Again one can reason this. A squeezed vacuum specified
i rand 0 has the major axis of its uncertainty ellipse along the 0 direction, and
isqueezed in the direction perpendicular to this. For example, a squeezed vacuum
ed in the p-quadrature will have # = 0 and its major axis will be along
quadrature. Now in Chapter 2, we have seen that an in-phase superposition
1";__3[11: states lying along a certain line will have squeezing in the quadrature
dicular to that direction. Hence one has to choose the coherent states along

@ direction perpendicular to the direction of squeezing which, in our case is along

rection. Hence we choose coherent states of the form |ycm> to make the

erposition.
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One can try to build the squeezed vacnum as a discrete superposition by choosing

coherent states |_1,r1e3"“’l } FECER ’y"e"” > Such a discrete superposition will be of the form

Dl 2

Une'? >, where k is some arbitrary integer. The form of y,, will be nz where
z is a small unit of length in phase space. Note that the .'s can be chosen to be real
since we are dealing with an in-phase superposition of colierent states. One would
also expect €, to be a function of the squeezing magnitude . On the other hand

it is possible to build a continuous superposition of the form I dy ¢y, r) |yc"’>. It

is better to use the continuous superposition since it is not only mathematically

convenient bul is also more smootls.

The squeezed vacuum for a given magnitude of squeezing v, will have the same
properties for both @ or 0 £ 7. But if the limits of the integral are different this
ot be true, since Lthe upper limit gives the extension of the superposition along
the 0 directions and the lower limit along the f + = direction. Hence one expects
the upper and lower limits of the integral to be the same in magnitude, hut differing
::E_'. insign. For simplicity we take that Lthe superposition extends to inlinity, hoping

the coefficient will turn out to be a Gaussian, which we show to be the case.

These imply that the superposition will be of tle form

§(z = re?|0) = f; dyCy,r) [ye) (4.2)

re |ye‘ﬂ> is a coherent state as noted earlier.

tor [276, 277], only certain factors will act non-trivially on the vacuum. We



proceed to do this first. Normal ordering the squeeze operator, we have

§{z — rcm} - -::ush‘%{r} E*:I-'Emu,:r];r! E-mmi.[r}]m; E_%,_m tanhi(r)a?

(4.3)
Here, both the right most exponent and the middle one will not contribute when

acting on the vacuum state. Ouly the exponent containing the a*? will give rise to

a series, given by

§{z =re®)|0) = cﬂshh%{?'j ¥ Soiny

(4.4)
n=I)
where
Sy ={ for odd n
&80 ganh ¥ (r gt 4.5
A : ]j;;ﬁ“ 2 ) o evemn n . (4.5)

Note that we have rearranged the coellicients so that the summation runs over all n.
We would like to have it in this way since it makes the comparison with the other

series oblained by expanding the coherent stales in Eq. (4.2) casier.

Expanding the coherent siates Iyﬂ"*?) in Eq. 4.2 in terms of the Fock states |n)

we have

== 1ol
S(z = re®) | 0) =fw dy Cly,7) > i [n)

|
n=(l "n.

(4.6)

The order of summation and integration can be interchanged in the above equation,
due to its convergent nature in the sense thal the expectation value of the photon

number is always a finite number. Comparing this with Eq. 4.4, and by noting the

fact that a Gamma integral of the form
fm dyﬁny’ym ["1?}
vanishes for odd m, one could judge Cly,r) to be

Cly,r) =27 Einh[r}]"% e gleothir)=1)y?



Note that the determination of C(y,r) gives oiily the squeezed vacuum state as

a superposition of colerent stales, and not the squeeze operator as an integral

over the displacement operators. This is so because the way we determined C(y, )

involved only one Tock state, namely the vacuum state. If it had been any other

fock state, then the other exponents in the normal ordered squeeze operator would

have contributed. This relationship can be taken as an operator identity only if it

holds for all the states of the Hilbert space. Here it is not so and hence is not an

operator identity.

The squeezed vacuum can hence be written as a superposition of coherenl states

iﬁi"imn by

S‘F{z — rc'z.‘ﬂ:l ],D-} = [E;rr si“]:[;r-:]]_% [W dye” Licotlfr)—1)y? ]yﬂiﬁ' > ‘ (43:]

The general quadrature squeezed colierent state |, z) can be obtained from the

ezed vacuum g[z}]{j} by applying the displacement operator Dia) to it, as

noted earlier. This operator acts directly on the individual coherent states. Note

erator ﬁ{crj can be written as

D(a)|8) = D(a)D(B)|0) = elof™-="miz| 4 4 gy (4.10)
the BCH formula [270, 271, 272, 273, 274, 275], which is quite simple in this

[27). Hence the general quadrature squeezed coherent state, aflter some minor

algebra can be written as a superposition of colerent states given hy
la,z) = D(o=pe®)S(z = re®®) | 0)

12?1- Eil‘lh{l‘n_%fﬁﬁ d'y e-%ﬂmlh{r:l—I}y?_.:'pyr.iu{ﬂwq‘r} pnir.ﬁ _I_ynz'ﬂ }ruh{d'll}




Equipped with this integral representation of Lhe quadrature squeezed state, we

now turn our attention to the action of a non-linear Kerr medinm on a squeezed

colierenl state.

4.2 Evolution in a Kerr medium

In this section, we study the effect of a Kerr medium on a squeezed coherent state.
Barlier, numerical attempts have been made by Banerjee [215]. Our purpose here
is to find analytically the state that has E‘-I'I:ll‘v’ﬂd for a given time inside the Kerr
medium, when the initial stale is a squeezed colierent state. By this we mean that
one should be able to find analytically the expectation value of various operators
for this state. Inside the Kerr medinm, the Hamiltonidn for the field in the rotating

‘wave approximation is given by [194, 195, 178, 196, 185, 197],

Hy = hwa'd + hy,, a!%a?

(4.12)

‘where the anharmonicity parameter y ,, is real, and is proportional to the third order
non-linear susceptibility [185], and @', @ are field boson creation and annihilation

operators. This Hamiltoniau is valid under the conditions that there is no saturation

and no loss, and that there is a large detuning from the transition levels [179].

We have already seen (Section 1.5) that the photon number operator 7, is a

ant of motion since

[a, H] =0 (4.13)

_-_yuu]d immediately suggest that the photon number properties of any state that

yolves through a Kerr medium will remain unchanged. Fven so the stale changes



in a subtle way, as we will demonstrate shortly. As we have already seen the unitary

operalor [?{T] corresponding to the evolution inside the Kerr medium can be readily
found, and is given by
Uk(y) = edmt?a? _ i4nfn-1)

; (4.14)

where

2xX o L

= (4.15)
:.Il'ere L is the length of the Kerr medium and v is the velocity of light in the Kerr
medium. We have left, out the free evolution part and in a sense we are working
ﬁu‘-'the interaction picture. Note that the free evolution part commutes with the

interaction part and hence the interaction and the Schréedinger pictures coincide in

iﬁs case [191].

!

The state that evolves out of the Kerr medium, when the initial state is a

‘squeezed coherent state, is given hy

[ ) = U(y) |y 2) (4.16)

I:]_;jhre 7 is defined earlier and is akin to the scaled time. As noted earlier Lhe photon
ber properties of the state |15 ) will be the same as in the state |,z ). This

neans both the photon number uncertainty and the photon number distribution

sected since the interaction Hamiltonian commules with the phioton number
perator. But still the state changes in a subtle way, and this can be understood if

oks at the physical picture of what happens in the Kerr medium.



As briefly mentioned earlier (Section 1.5), the action of this interaction Hamil-
tonian can be understood if one looks at the quasi probability in phase space [191].
Under the influence of this interaction, regions of the quasi probability distribution
of an initial state at different radial distances [rom the origin moves with different
angular velocities. Regions that are farther away move slower than those regions
that are near the origin. These, and other factors makes the initial distribution to
get sheared. This shearing occurs in such a way that the photon number uncertainty
temains preserved. On the other hand the phase uncertainty definitely increases.
Note that such a shearing will produce a curved distribution. As noted earlier, one
can expect amplitude squeezing with such a curved distribution by a suitable dis-
:_1_ﬁmmeul. in phase space. Aflter a small duration of evolution in the Kerr medium,
3 '_eu.'e exists a Ltime al which one can get an optimal amplitude squeezing by dis-
placing this distribution to a proper position in phase space. For an initial cohierent
8 ‘*_a.te this results in a diminished photon number uncertainty whicl goes only as the
."'_'E, rool of the mean photon number [191]. It should be remembered that this

a huge reduction in noise since the initial coherent state has a photon number

rtainty which goes as the mean photon number itsell.

i bhe case of the quadrature squeezed states such a possibility of having a lesser
in the radial direction exists when the direction of squeczing is along the
on of coherent excitation. This is the prime motive of studying the

evolution

adrature squeezed state inside a non-linear Kerr medium [219].




The above argument at its best is only heuristic and even then is valid only for a
very small duration of time. One cannot take the above argument too seriously since
the assumption that regions at different radial distances move with different an gular
velocities cannot be established rigorously for any quasi probability distribution.
Moreover after some evolution in the Kerr medium, the distribution is not symmetric
over the radial line passing through the mean. These imply that many more issues
are involved in the evolution. Some of these can be seen by visualizing the state

using the Q-function as it evolves through the Kerr medium, We proceed to do this

in the next section,

4.3 A pictorial representation of the evolution

The first task in this section will be to caleulate the G-Tunction for the quadrature

squeezed state that has evolved through a Kerr medium. From the definition of the

g-function, we have
Qu(p) = LA I )

where |3} is a colierent state. Ience the Q-Tunction involves only the projection

of the state |1k ) on the colierent state. Since | ) = Efn‘{’f”l’!.-‘-’} and since we

iave expressed the quadrature squeezed state |, z) as a superposition of colerent

tates, (8 |1y ) will only involve the matrix elements of the the operator Ujc(v) in
'_:'._a'-.mherent states basis. We have seen this already in Section 1.5

3, using which we
an write Q () as

-8
= 3 leoth{z) = 1)y® —ipy sin(0—-¢) ——IPE"‘-&M
Q) [Eﬂ";m ()] .[ dyers




o T 1 ity |2
xz ﬁf%!l{ﬂ—l}{ﬁ] {Pelﬁ—'_yc } )

|
n=0 TEs

(4.18)

Interchanging the summation and integration, and doing the integral over y, we

obtain the Q-function for the state | ) alter some algebra and it is given by

—p¥ =]

§ o n
b7 anh(r =0 SN idane) ey

n=i

Qx(f) =

7 cosh(r)

] . n—2m 2
/2] [.ﬂ“"‘f'“’l = Ptanh{r‘]e'i?“-vﬁ]] o 1 L
(n —2m)!m! [5 tanh(r)e™ ] (4.19)

m=0

where [1/2] denotes the largest iuteger less than or equal to nf2. In all our plots
of this Q-function, which we have computed numerically, we have taken a small
mean photon number (|a|® + sinh?(r) = 1G). Sinece the interaction Hamiltonian
commutes with the photen number aperator, the mean photon number of the initial
state doesn™t change under the evolution in the Kerr medinm, and in our numerical
cevaluation of the above function, we have ferminated the infinite series at a large
(compared to the initial mean photon number), but finite n. We have considered
in most of the figures, an initial mean photon number of 16, and the infinite series
was terminated al n = 64, The termination error involved is negligible due to the
relatively large value of n compared to the initial mean photon number. In passing
‘we note that taking very large value of n in the above expression will cause numerical

_problems,

We are more interested in the amplitude squeezed states that are produced by
this evolution in the Kerr medinm [218, 219, 256]. As argued in the last section, we
wish to first consider the evolution of a quadrature squeezed state whose direction

of squeezing is along the direction of excitation. We have called such a quadrature
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squeezed state as amplitude squeezed coherent state [219]. In Fig (4.1), we plot the

contours of the @-function against Lhe real and imaginary parts of its argument, of

0
Re(B)

Fig. 4.1. Plot of the contours of (-function of the evolution of the amplitude
squeezed colierent state in a Kerr medinm. The dillerent v values are indicated in
the figure. The magnitude of squeezing is fixed at r = 0.45 and the valuos of Pt
chosen such that the mean remains at 16. The arrows connect the phase space origin

and the maximum of the -function. The contours are drawn at 0.2, 0.4, 0.6, and
(.8 times the maximum value,

an amplitude squeezed coherent state evolving through a Kerr medinm, far different
f values. This figure can be taken as the visualization of the state evolution inside
the Kerr medium. Here we have chosen the magnitude of squeezing Lo be r» = 0.45,

and the p? value is so chosen that the mean remains at 16. The contours are af, 0.2,
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0.4, 0.6, and 0.8 times the maximum ol the Q-function. The figure contains contours
of the @-function for four values of 4. The arrows connect the maximum of these to
the origin of phase space, For comparison, we have repeated [IMig. 1.2] in Fig. (4.2),
which gives the evolution of a coherent stale (r = 0) inside a Kerr medium, for an

identical set of parameter values.

0
Re(p)

- Fig. 4.2, Plot of the contours of the Q-function of the evalution of a colerent state
[r=0)in a Kerr medinm. All other parameters are as in the earlier fignre.

It can be seen from Fig. (4.2) thal in the case of the evolution of a colierent state

ugh a Kerr medium, the erescent becomes more strongly curved with increasing



4. Moreover the tails of these are not symmetric. The increase in Lhe squeezing
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Fig. 4.3. Plot of the contours of the Q-function for the quadrature squeezed state
evolved through a Kerr medinm, Here the v value is fixed at 0.26 for all the figures.

The magnitude of squeezing is indicated in the figure itsell. The contours are at the
same level as in the previous figures.

magnitude r has the effect of fattening this distribution and al an appropriate
valie the tails are rather symmetric. To illustrate this point [urther, we plot the
contours of the Q-function for various values of the magnitude of squeezing ¢ oin
Fig. (4.3). Here the 4 value is fixed al 0.26 in all the figures. As in the previons

.':

es, the mean photon number is fixed at 16. The contours are plotted at the



same values as in the previous figures. It can be clearly seen in this figure that as r

increases the distribution flattens and at a particular value of r (here al r = 0.45),

&
the tails are nearly symmetric. We will show later that this is indeed the optimum

value for this mean photon number at which the photon number uncertainty goes

to an absolute minimum under a proper displacement [218, 219].
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Fig. 4.4. Plot of the contours of Q-lunction of the evolulion of the plinse squeezed
erent state in a Kerr medium, The dilferent ¥ values are indicated in the fignure.
e magnitude of squeezing is fixed at v = 1.0 and the values of p* sa chosen
that the mean remains al 16. The arrows connect e phase space origin and the
mum of the Q-function. The contours are drawn al 0.2, 04, 0.6, and 0.8 times
aximum value,

evolution in the small 4 limit of an initial phase squeezed colerent state is

in Fig. (4.4). Here it can be seen that since the spread in the photon number



is higher than in the coherent states, the tail of the quasi probability distribution
becomes extremely asymmetric. For comparison we also give Lthe quasi probability
distribution of a quadrature squeezed state whose angle of squeezing is inclined to

the angle of excitation by 45" in IMig. (4.5).
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Fig. 4.5, Plot of the contours of (J-Tunclion of the evolution of the gquadrature
squeezed coherent state in a Kerr medinm whose angle of squeczing is inclined to
the angle of excitation by 457, All the other parameters are same as in the previous

figure.

‘We have been discussing until now the low 5 limit. Even though experimentally

eult. to realize, the large v regime is nevertheless interesting. Ior the sake of



completeness and Lo gain a better understanding of this evolution, we plot the
complete evolution in a Kerr medium for an amplitude squeezed coherent state
in Fig. (4.6) (Pages 115 — 120). We have to content ourselves with Lhis particular
choice of quadrature squeezed slate, since it will not be possible to give such detailed
plots for other cases due to space constraints. One could in principle al least guess
from these plots the evolution of any other case with a different initial state. Here
the individual plots are for 4 values which are in steps of 7/36. The first plot is
for v = 7/36, the second plot is for ¥ = 2x/36 and so on. Note that =/36 is
approximately 0.09, and we have given the 5 values rounded up to the first two
decimal places in the plots. The initial stale is the same as in Fig. (4.1). It is
a quadrature squeezed state whose direction of squeezing is along the direction of
excitation (0 — ¢ = 7/2). The magnitude of the squeezing v is taken Lo be 0.45,
The initial state with 5 = 0.0 is not given here, but can be found in Fig. (1.1). The
first three plots coincide (approximalely) wilth the three contour plots at 4 = (.09,
4= 0.18 and v = 0.26 of Fig. (4.1). The remaining 33 plots are, as said earlier, for
different v values in steps of 7/36, up to v = #. The evolution from 7 to 27 is the

repetition of the evolution from 0 to 7, but in the reverse order and with the upper

and lower hall plane interchanged by a mirror reflection aliout the z-axis of phase

It can be seen from these figures that there are many values of 4 at which
recursion oceurs. To elaborate, al these values of 4, the initial state seems Lo have

Ived into a superposition of states. The component states are made up of copies of
-
the

:’Enitial state placed at different points in phase space. Note that these component

s are located at the same radial distauce as the initial state. Moreover one can
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n Fig. (4.1).
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are as in Fig. (4.1).

118




6 -4 -2 0 2 4 66 -4 -2 0 2 4 6

'5:11||:||[:|1|||||||r|||: :||r||r1||1|||r1|ir1|rrl 6
4 ( 4 F 4
— = 1 N C ' ]
Q. 2 1. B 12
5 ne@mmm@ -------------- 1 HY i
= 2 =5 B 2.5
: | g E =
4 b v=2.18 ] [ @-271'4
-6 sHEARETEATRIER VA TR AU T =l Rl AW NETd e N e r e s -6
E._IIIIITIIITI]II[]ITIIIII_ BERE RS RARSRRRRRRANE 1B
4F 1 F 4
~ - 3 E ]
Q. 25 2 & ':E
i3 1 E VEN
e -E;- —; ;— - -2
< T 1 E ~z44_' 4
-6 Cooaloanboaalonabunelyes Fillllll!ltlllltllltllll -6
B:J||[|iT||:||1|r'[||:||||: :"'I'“|"'|"'l'"|'”:E
a4 1F 14
_ = H . - A
Q. 2? '; ? - q#
“‘é’ 0 3 —Z = 38
.H-ag 'l‘ 1E =[P
4_ I -253__ 3 262 1 ¢
-.-E 11|I|||!||| |||i|||||r| |Il|tll|l|||l||l|||||l! _E,

6 4 2 0 2 4 66 4 2 0 4 6

Re(B) RE(B)

hg 4.6. (Cont.) Plot of the contours of the (-function of the evolution of an am-

ide squeezed coherent state (r = 0.45) in a Kerr medium. All other parameters
vas in Fig. (4.1).



6 -4 -2 0 2 4 6-6 4 -2 0 2 4 8
6_IIlI]IIllIIIiTIIlIbIIII_ [(TTTTrT[TrT IFTIIiI]lI-I_ﬁ
4 F = - 4

o~ C 1 F ]
Q. 2:— 9 F 2
T oF = o0
— -2 F "E :‘- = [
4 ] | 1 y=2.71 1 3 Zo79 474
-6 Ll rllllil IIl!!JIIl!I l].]ll[lll Illlllllrll —ﬁ
E:IIII'[III'I:IT'IIIIlIIIII-II: :FIIETIII'T'I'I LIILIlIIIII:E
4 F = 4

— = 1 F - ]
Q 2F 4 F : 2
= of H o]
< 3 | y=288 ] [ —2ov {74
—6 ]lll]lllll! IIIIIIIl'II_]_ |II1I|I|III|!]_11|_||I:!|[ -B
6:IIIIIJII['II'IIII:TlTlI'l'{II: :1IIIIII]I[IiIIl]IIIlIIF:E
4 : i F 14

~ - : qd E : :
Q. 2 5 ': = ,I = 2
E D :—----"-i ........ ._..; ;_ ....‘.:.-.... _: D
— 2 F 4 Ik : 2
4 F P =305 1 F y=3.14 {4
& Cooalaa s bevelwee s aluasd b bree Liaoobves v b v B

6 4 -2 0 2 4 66 -4 -2 0 2 4 6

Re(B) Re(B)

Fig. 4.6. {Cont.) Plot of the contours of the Q-function of the evolution of an am-
tude squeezed coherent state (v = 0.45) in a Kerr medium. All other parameters
re as in Fig. (4.1).

120



see that these components are distributed along the vertices of a regular polygon
centered al the origin of phase space. One such superposition at v = Tr when the
initial state is a coherent state, is well known in the literature [241] as the Yurke-
Stoler state. These superpositions oceur irrespective of the initial state and are the
property of the Kerr medium itsell. Thus if one takes the initial state as a coherent
state then one will get the same superpositions, which will now be made of colierent
stales. To the best of the author’s knowledge, the other superpositions have not been
studied in detail. This is one of the reasons why Lthe complete evolution is pictorially

presented here. We will look at these superposition in a little more detail,

The most striking superpositions seem Lo oceur at 5 = #/3, which involve six
ccomponents, al v = 7/2 which involve four components, and at v = 27 /3 which
involve three components. Of course al v = 7 there is a superposition which involves
two components. There are other values of v al which the state appears to be close
to a superposition and these happen at the values 7= /18, 297 /36 to name a few.
There is a regularity, and we can perceive a general trend from the figures. 1L seems
that the superpositions at 5 = 2wy volve q components. These compouents are
placed at the vertices of a regular polygon centered al the origin of phase space, If
g 15 odd then one of the components is the original state itsell, and il ¢ is even the
coriginal stale is nol present in Lthe components. The crux of the problem reduces Lo

finding the phases y's in the expansion

|
GATER I!Z ﬂix:ﬂ?’q—“H t=1 when g odd (4.20)
) t=m/q when qeven

iis work 1s being carried on and it will appear elsewhere [249].

We will now compute the expectation values of the various field quantities when
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an initial quadrature squeezed state evolves through the Kerr medium. Our expres-
sions are purposefully general, and we will be considering particular cases of these

in the later chapters.

4.4 Expectation values of the field operators

‘We will first calculate the expectation value of the annihilation operator @ for the

state |y ). This is given by

(A} = (b |a i)

= (a,z| UY(y)all(y) la,2) . (4.21)

But the action of the Kerr medium on the annihilation operator can be found in a

closed form, and is given by

O)al(y) = e T ENgelian-n
Tiﬁﬂ{} ;'r],-3ﬁ3ﬁ

2l 3l
= &™g . (4.22)

= @+ iy —

Hence, using Eq. (4.11) for | e, 2 ), the expectation value of the annihilation operator

:-_:i_:a]cuIa,ted to be [219]
(@) =pe? N73(2) 84 (7)™ (4.23)
where A, S and P are functions of 7, which are given by

N(y) = cosh®(r) —e*7sinh’(r)

Ply) = —p*(1—€T)S(1)/N ()
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S:I:{'Tj = 1% [1 i ei-r] [siuh![r} - é Bitlhl:ﬁl"]ﬂﬂi{ﬂ_“

S(v) = SJ’(T};S*(T] : (4.24)

The expectation values of the other off-diagonal combinations of the creation

and annihilation operators of degree less than four are given by

(E‘; >r Zis E*TN'%{ET}'EF{?"&}I [PE ﬂiiq‘lsitz_r,] — % sir1]1(2r}fa3f‘];if'{27}]
i
{Eiﬁ'z >ﬂ_ = ﬂeidei‘r_&r—%{-ﬂﬂphl [P'ZS? {TJS_. [‘T} A Eﬂh Eillll?h']l._q_‘_{'r}_.'\,r[-r}

= % siull{w}e"'“‘"-‘”s_[-,f]ﬂuf'h-}] . (4.25)

il

Note that < at >I{ = (@)} and similarly ( at? >;{ = (@)} and < ala >H = < ala? ):,,

where * denotes complex conjugation. It can be seen [rom Eq. (4.24) that the

complex conjugate of N'(7) is given by N*(v) = N(—~). Similarly, we have P* () =
P(—7) and S*(7) = S(—7), but S§i(v) = Sz(—7). The expectation values of the

“diagonal combinations of the creation and annihilation operators up to the fourth

. degree are given by

{ ald >K = p* +sinh’(r)
<ETF‘!E?>H = p' 4 sinh?(r) l? sinh?(r) coshql[r}]

+p* [ sinh?(r) + cos(20 — 2) sinh(2r)] . (4.26)

When v = 0, which corresponds to Lhe absence of the Kerr medium we see from

B, (4.24) that Ny =0) =1 =8.(y = 0) and hence it follows that P(y =0) = 1.

;can be seen that in this limit, the expectation values of the off-diagonal combina-

lions given in Eq. (4.23),(4.25) correspond to the usual quadrature squeezed state.

-'expectal;iou values of the diagonal combinations are unaffected by the presence



of the Kerr medium and are independent of 4, as can be seen from Eq. (4.26). On

the other hand when 9 = 7 we have again A'(y =)= 1. But

Si(y=w) = cosh(2r) — " sinh(2r)

S{y=w) = cosh(2r) — cos(20 — 2¢)sinh(2r) |, (4.27)

and hence

Py =7) = —=2p” [cosh(2r) — cos(20 — 2¢) sinh(21)] (4.28)
The limit v = = can be independently checked in the following way. The unitary
operator in Eq. (4.14) acting on a coherent state |} for v = 7 pives,

vl,i (1i¢) +e™*|—ig)) . (4.29)

Since we have written the quadrature squeezed state as a coherent state superposi-

tion (Eq. 4.11), the quadrature squeezed state | o, z ) evolves oul of the Kerr medium

for 4 = 7 as,

|k }_,=,, = [2n sillh[:‘.r*:}]'%f dy =3 leoth(r)~1)y?

x\%ﬁ( ‘ ipe'® + iye’ >rr.|. +em I —ipe’® — iy '1'”?}.,-“&.) « )

Rewriting in terms of the quadrature squeezed states, we have

l‘x‘rf'K }"r=rr = v%( |1'a’, —z}+ il | —r, —z2 :} ) . (4.31)

The first ket has the same relative angle between the squeezing direction and the
excitation direction (@ — ¢) as the original quadrature squeezed state, whereas the
second ket has a relative angle differing by 7. T'his means thal both these states are

pies of the original quadrature squeezed state, with the second one displaced in



phase space in direction opposite to that of the first one. Using this quantum state,
which involves only superposition of quadrature squeezed stales, one can calculate
the mean values of the off-diagonal combinations and check that it agrees with the
‘expressions got in the limiting case of the more general expressions in Eq. (4.23),

(4.25), by substituting Eq.(4.27,4.28) and N(y = 7) = 1 into them.

We also see thal for the evolution in a Kerr medium the Fano factor, defined as
((AR)?) ) /(1) , remains unchanged, since it involves only the expectation values
of diagonal combinations of the annihilation and creation operators. Similarly the
photon number distribution defined by P, = |(n | )]* will not change in the
evolution through the Kerr medium, since this evolution will only introduce a n-

~dependent, phase in (n |y ).

We have applied the insights got in the earlier chapters to study
the evolution of the quadrature squeezed state in a non-linear Kerr
medium. Consistent with our expectations, we find that the evolution
of an amplitude squeezed coherent state in a Kerr medium results in
a quasi probability distribution which is more suitable for producing
a highly amplitude squeezed state, the further study of which we take
up in Chapter 6. We have also seen that the evolution gives rize to su-
perposition of quadrature squeezed states, some of which possess very
interesting symmetries. In the next chapter, we will study in greater
detail a particular type of superposition of quadrature squeezed states,
called as the Y-5 type superposition, which results from the Kerr

medium evolution (when « = ), from the point of view of amplitude

squeezing.
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C]lapter )

Amplitude squeezing in quadrature squeezed

state superpositions

We formulate and consider a general superposition of quadrature
squeezed states and reduce it Lo the particular class of superpositions
that we are interested in. We call this particular class of superposi-
tions as Yurke-Stoler type of superpositions, following the terminology
‘currently vogue in the coherent state case. We then describe a scheme
to generale such a superposition of quadrature squeezed states. Since
we are interested in amplitude squeezing, we consider the photon num-
ber properties of these states and their displaced versions. Finally, we
show that a superposition of phase squeezed colerent states, when
displaced to a proper position in phase space, is amplitude squeezed,

and analytically prove that its photon number uncertainty is smaller
than (7)),

5.1 General superposition of quadrature squeezed
states

In this chapter, we consider a class of superpositions of quadrature squeezed states
which show amplitude squeezing. To consider this restricted class in a proper per-
spective, we first consider a general superposition of two quadrature squeezed states.

The purpose of this section is to restrict such a general superposition to the desired
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class thal we are interested in. This is done in a systematic and step by step
way. Less detailed studies have been carried oul in the case of the superposition
of squeezed states when compared to superposition of coherent states. Diflerent
superpositions of coherent states have been introduced [241, 243, 250, 251], and >
superpositions of finite number of Fock slates have also been studied [240]. Only
recently there have been some studies regarding the superposition of quadrature
squeezed stales [255]. Hence our desire to formmlate and consider a general super-

position of quadrature squeezed states, and then reduce it to the class of states we

are interested in.

A general superposition of two quadrature squeezed states can he written as,
|1,n’;g}z..'\."(|u|,z1:}-+- jie'™ |nr-;,zg}) . (5.1)

where a; = pie"® and z; = r;e%%, The relative amplitude between Lhe component
states is denoted by g and the relative phase by y'. We have seen in Chapter 2
that the relative amplitude p plays a very little role in the qualitative features of

the state |1, ), except for the extreme values of p. Hence we may assume that the

states are superposed with equal amplitudes without much qualitative loss. Hence

we can consider the superposition

cu ik
19") = M (e 21) + € oz, 24)) (5.2)
which preserves mosl of the qualitative leatures of the earlier one.

The above superposition as it stands is still quite cumbersome, especially if
one wishes to understand the fundamental features of such superpositions. One

drawback is that the coherent excitations of the component slates are in arbitrary
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directions and moreover the squeezing direction and magnitude are also arbitrary.

In the coherent state case, we had considered a canonical form from which any

superposition of two coherent states can be obtained by simple operations of rotation

and displacement. In the superposition given in Lq. (2) such a preseription doesn’t

seem to sufliciently simple. From the point of view of understanding the features

of the superposition of quadrature squeezed stales, it is better if we only consider

those superpositions whose individual components have the same angle between the

direction of squeezing and the direction of coherent excitation. To elaborate, we

wish to only consider superposition of two phase squeezed states or two am plitude

squeezed states and so on. Note that if such is the case, the angle between the

squeezing direction and the direction of excitation should be the same irrespective

of where the state is situaled in phase space. What we are saying amounts to the

superposition in Eq.(2) with the additional condition =0 =y — 0.

Again, choosing two states with different amounts of squeezing will lead to a less

clear situation because of the presence of an additional parameter, Moreover, the

magnitude of squeezing of one of Lhe components differing from the other doesn't

offer many new insights, and one could Judge the effect of this difference from the

leatures of a superposition in which both components have the same magnitude of

ueezing. Hence we choose the superposition

[1h") = N(|ﬂr1,rez"ﬂ‘ ) + e'x' [ﬂ'g, re?i ))

¢ — b = ¢y — 0, . (5.3)

It should be carefully noted at this stage thal the above superposition is different

the squeezed operator actin £ on a superposition of coherent states, as is ohvious



by laoking at the direction of squeezing of the two component state which are still
different, the only condition being that ¢, — 6, = ¢5 — 6. This superposition can
now be reduced to a canonical form from which all such superpositions in this class

can be oblained. The reduced or the canonical form can be writien as

|¢’c}=M(|_T:z}+Eixl‘t12}) ' (5.4)

since, fixing ¢1 = ¢, immediately fixes 0, = 6, and where we have used = = re?_ip
accordance with our earlier convention. Note that, as belore, by applying a rotalion

and displacement operator, one can get the whole elass of superpositions given by

Eq. (3).

Al this stage, one can say that the above reduced form is got by applying the

squeeze operator to the original coherent state case canonical form

[the) = S(2) e - (

o
ik
S

Hence, the class of quadrature squeezed states that we are concerned witly are given
by
l¥) = D(BYR(7)S(=) | ) (5.6)

where the operation of ﬁ{ﬁ]ﬁ(r} were explained earlier in Chapter 2.

We restrict ourselves to this form because it gives a clear picture of what the
inclusion of squeezing does to a superpasition. This is especially so, since we lLave
studied in detail the coherent state case, and we can clearly hope Lo see Lhe effect of
the inclusion of squeezing on that. Moreover, from the knowledge gained by studying
lis superposition state [, ), one can in principle at least qualitatively predict the

features of a general superposition of Lwo quadrature siqueezed states.  Another




important point is that a general superposition of Lwo quadrature squeezed states
has little feasibility of being experimentally realized at the current juncture, even in
principle. But the form that we choose to study has a feasibility for experimental

generalion [257, 219, 256], at least in principle, for particular values of y.

5.2 The Yurke-Stoler type superpositions

We have seen several times in the earlier chapters that a state evolving through a
Kerr medium with the scaled time of evolution v = 7 results in a superposition of the
initial states with a relative phase x = 7 /2[197]. We have mentioned that this state
i5 called a Yurke-Stoler (Y-5) [241] state when the initial state is a coherent state.
We have also seen that a Y-S state on displacement shows amplitude squeezing[242],
The problem there was that there exists a specific magnitude of displacement for

awhich the amplitude squeezing is maximum. Any further displacement will reduce

Ahe amount of amplitude squeezing. This is so since the Y-S state Lias a curved quasi

[ probability distribution and beyond the oplimum displacement this distribution euts

hoton regime. The ideal way of improving this optimum displacement will
to reduce the curvature of the initial state. As seen in Chapter 2, this can be
e by choosing a relative phase smaller than 7 /2. Bul there is no known way
h one can generate a superposition with a arbitrary relative phase, in the

regime. The other alternative will be to try to use the quadrature squeezed
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stale to get a Y-S type of superposition, with the expectation thal with a proper
choice of direction of squeezing of the initial state, one can get a superposition state,
the effective curvature of whose quasi probability distribution is small. This can be
done since the Kerr medium produces a Cat state irrespective of the initial state,

as it is the property of the Kerr medium evolution itsell, as mention in Chapter 4.

Hence, in this chapter we wish to consider only the Y-8 type of superposition of
quadrature squeeczed states, which is realisable experimentally, at least in principle

[219, 256]. This Y-S type of superposition can be written as,

1 i
| ) = ﬁ(jn,z} 4+ '3 |—Lr,z})

The only two additional parameters here than in the usual Y-§ state is the magnitude

(5.7)

of squeezing r and the relative angle 0 — ¢ between the direction of squeezing and
the direction of coherent excitation. As usual o = pe™ and = = e, Qur interest
J;;tﬂ show that on displacing such a Y-S lype superposition of quadrature squeezed
states, one can get amplitude squeezed light with high intensity. The experimental
scheme for achieving these states is given in Fig. (5.1). One can starl with the output

of a ring laser generating light at two frequencies w and 2w which are orthogonally

polarized, is split into two beams at the polarizer I'y. The high [requency component

e

s used to pump the Optical Parametric Oscillator (OPQ). The signal that comes
aut of the OPO is at a frequency w[]lﬁ]. This signal is then passed through a
medium of predetermined length. The technical difficulty will be to pet a
ir medium with a high enough non-linearity to produce an evolution till Y=
n an acceptable time of passage through the Kerr medivin. Longer times will

sentially introduce losses and the associated noise due to it. In fact, al present
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it is precisely this problem which makes {he experimental generation of this state

difficult. The local oscillator beam at frequency w forms the other arm of a Mach-

Zehnder interferometer which also contains a time delay 8. This beam and the signal

il forO}—{ ],

Fig. 1

Fig. 5.1. Schematic of the proposed scheme. The dotted and
represent light at frequencies 2w and w res
B is a highly reflective beam splitter.
into the reference beam.

solid lines
pectively. I'y,Py are polarizers and
& indicates the phase shift introduced

i]:e&m are recombined at the beam splitter B which las a high reflectivity. The lLigh

reflectivity prevents the signal from being contaminated by the local oscillator, But
ab the same time, for a lLigh intensity of the lacal oscill

ator beam, the effect of
this beam splitter is to produce a displacement in pl

ase space for the signal beam

[191]. The angle of this displacement can be adjusted by varying the time delay

and the magnitude by adjusting the strength of the reference beam. Typically

lle OPO operates in the sub-threshold regime{112, 113, 114], and when acting as




an amplifier generates Phase Squeezed Coherent States, and Amplitude Squeezed

Coherent States when actling as a deamplifier.

We begin the analysis by rewriting the Hamiltonian for the radiation field in the

rotating wave approximation inside the Kerr medium, which is given by{197],
Hyg = hwa'a 4y, al%a? (5.8)

where the anharmonicity parameter y ., is real and is proportional to the third order

non-linear susceptibility. The time evolution operator is written as,
i ot XLt -
Uk(r) = nxp[—}l—HT}: exp(—iwi'ar) expiuzTrL ala'a — 1)) . (5.9)
:
As seen earlier, this unitary operator acting on a coherent state | 3) gives,

B Caa  ma g ) .
I,BpT> — E_l'ﬂl J2 E—:wu1u.1- Z r‘r_lﬁ—lxh.hn{ﬂ—l}-fﬁ I”‘> . [5,1[}]

=0 n
If one chooses the physical dimensions of the Kerr medium in such a way Lhat
the beam spends a time 7¢ = fir /2y, inside the Kerr medium, the state of the

radiation field that emerges out of the Kerr medium is given by[241]

I i i :
E(Izﬁbﬂ | -ig)) (5.11)
where we have ignored the [ree evolution part.

Since we have written the quadrature squeezed state as a coherenl state super-
position (Eq. 4.11) [246, 247, 248, 219], the quadrature squeezed stale | v,z ), after

pending a time 75 (7 = 7) evolves out of the Kerr medinm as,
|

|'4'I)K)»,=, = l?#sinh[r]]_% fm dy = leoth(r)=1)y?

=

T;‘ﬁ( |£PEM +iye! >mh +e'"/2 ] —ipe? — jye'? }mh ) . (5.12)
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Rewriting in terms of the quadrature squeezed states, we have

|k )y = %(Iim —z) +e"? | —ia, —z}) . (5.13)

The first ket has the same relative angle belween the squeezing direction and the
excitation direction (f — ¢) as the original quadrature squeezed state, whereas the
second ket has a relative angle differing by 7 as compared to the first ket. This
means that both stales are the same quadrature squeezed states as the original
quadrature squeezed state, but with second one displaced in the opposite direction
to that of the first one in phase space. Using this quantum stale, which involves
only superposition of quadrature squeezed states, one can readily calenlate the mean

values of the various field quantities. The beam that comes out of the final beam

splitter will be in the quantum state

lvha) = D) |nc) (5.14)

where £ is parameterized as ne'. We now proceed to caleulate the photon number

uncertainty of the state | ).

The photon number uncertainty can be described in terms of the Fano lactor,

(@) _,, (@) - (ata)’
() (a7a)

The Fano factor is just the normalized variance which gives the deviation from the

defined as

fu= (5.15)

%Puissmﬁnn photon distribution. The value of f, = 1 rorresponds to poissonian
istribution, and f, < 1 to the sub-poissonian and f, > I to the super-poissonian
I"'g;!._ribution, It is related to the oft quoted Mandel Q parameted234) by Q = f, — 1.

he Fano factor in our case can be wrilten as

. Po -+ panp + pary?
=1+ %
£ilm) G (5.16)
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where
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= {

nl
=
=
ey
=3
B3
M
=
|
———
-.--'
t.—_l
{‘\
-""'1
n..,_,_.l
-+
[
T
2
=
'-.._..--'
[
P e

at) (@)x]

G = -1;(&*&); .

f1 =

e
=1
—
=
=
&
oW
——
=
e

(5.17)

In this form, one can immediately minimize the Fano factor with respect Lo g, the

magnitude of £, and the optimized value of Lthe Fano factor is then given by

fu = L) (5.18)

Similarly, the photon number distribution of the displaced state can be calculated

using the definition,

[(m [ )P

= |tnl D) 1| (5.19)

But the action of the displacement operalor on the Fock state on the leflt can be

e—1lef (n| ﬂﬁﬁle‘“{.ﬁ

n i
=L
SLDY 4 "

=5 = |
oo Y (= m)!

= (=€) n—m 4 k)
jgut .El} { {1'1'-—':1}!) (n—m+k|

(5.20)



Using this and the integral representation of the quadrature squeezed state as a

coberent stale superposition in Eq. (4.11), we have

! 2 D) (—f'}k
P, = — e~ HEP)| o4 tanh(r)p?ee=) "
cosh(r) kz_:_ﬂ k!
4 i [n—m k
" iHnmb)nemthot) —f*'z b e—mk)!
= ml(n —m)! = (n—m+k—2s)ls!

[ﬂm tzﬂh[f'}r {pe™ ¥t — ¥ tanlu{r)]}“_m.k-h 2

(5.21)

With this general result for the superposition of quadrature squeezed stales in the
canonical form, we now turn our attenlion to particular cases of # — ¢, which show

amplitude squeezing.

5.3 Amplitude squeezed states from superposition
of phase squeezed coherent states

In this seclion, we study the state Lhat comes oul of the scheme described in the
previous section when the initial state is a phase squeezed coherent state. For a
phase squeezed coherent state we have 0 — ¢ = 0, which means that the direction

of squeezing is perpendicular to the direction of coherent excitation. As pointed

out earlier, the usual Y-5 state has a limited scope when it comes to gelting an
intense amplitude squeezed light. This is because the state can be displaced to a
farther position only if the separation between them is large. But a large separation
between the states results in very low interference of the states in phase space, and
uch a state would look more like a statistical mixture of coherent states. Bui
ne can avold this if one is to consider an initial phase squeezed state. Here, one

separate the centers farther away and at the same time keep the interference
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between the states at the desired level by increasing the magnitude of squeezing.
Hence one can envisage the situation in which one can always find a suitable value

of the magnitude of squeezing after which the state will behave like a superposition

irrespective of the actual separation between the stales.
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Fig. 5.2. Plot of the contours of the Q-function of an initial phase squeezed coherent
state that has evolved through the Kerr medium for ¥ = 7. The contours are at
0.05, 0.25, 0.5, and 0.75 times the maximum value. The value of the magnitude of
squeezing is indicated in the figure itself, and in all the figures p = 2

4

=

‘We plot the Q-function of this state to demonstrate the above argument pictori-
. In Fig.(5.2), we plot the contours of the € function for a phase squeezed state

{ has evolved through a Kerr medinm to form a macroscopic superposition. The
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initial magnitude of displacement p is chosen to be 2 in all cases. Here we draw at-
tention to the change in the @-function as one increases the value of the magnitude
of squeezing r. The value of the magnitude of squeezing r is indicated in the figure.
Note that when r = 0 the initial state is a coherent state and the final state is a Y-8
state. The contours in all the figures are at 0,05, 0.25, 0.5, and 0.75 of the maximum
value. In all the figures except Fig. (5.2a) we have taken a phase squeezed colierent
state (f —¢ = 0), with the same mean for different values of squeezing r, by choosing
an appropriate value for p?. It can be scen that with the increase in the magnitude
of squeezing there is a strong interference which results in a slightly curved distri-
‘bution as in Fig. (5.2c). Further increase in squeezing magnitude straightens this

compleLely, and the resultant state looks more like a quadrature squeezed vacuum

Cas in Fig. (5.2d).

From the figures it is possible to deduce that the ideal direction of displacement
f_ur getting the maximum squeezing will be along the z-axis of phase space. llence we

have A = 0. With this Choice of A, the coeflicients of the powers of kin Eq. (5.17)

can be written as

py = sinhz(r} cosh(2r) + et —1)

o= Feuﬂpﬂc_ﬂr (_dp'.![ﬂ—ﬁr + c—?,‘r} o 2{6_4" _ E—Er))

=L 3 R [Py P |
P o= E‘Ir‘_l__ll_piedpf e-“'T

go = sinb’(r)+p* ,  q=2pe T (5.22)

hese values are substituted in Eq. (5.16), and the optimized value of the magnitude

displacement 1, thus obtained, is used in calculating the optimized Fano factor
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given by [, = [.(n,).

In Fig. (5.3), the logarithm of the optimized Fano factor [, is plotted along
with the logarithm of the optimum magnitude of displacement Nay for various values
of the separation p indicated in the figure. We call the initial displacement of
the phase squeezed coherent state p as the separation, since the separation of the
superposed states has to depend on p. The state with the quadrature squeezing + = ()

corresponds to a Yurke-Stoler state. In Fig, (5.3), one sees that the Fano factor in
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Fig. 5.3. Plot of the logarithm of the optimized Fano factor (Solid line) along with

the logarithm of the optimum magnitude of displacement (Dashed line) as indicated in
the figure, as a function of quadrature squeezing v for varions values of separation p.
.- -_]:!.fE_SE values are for the state |y ) with an initial phase squeezed colierent state that
1as evolved through a Kerr medium for 4 = #.
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this limil goes to one, since the separations are far too large for two coherent states
to have any substantial interference in phase space. Hence, at these separations they
are more like a statistical mixture of colerent states. On the other hand for very
small quadrature squeezing there is a very weak interference and hence one has to
displace such a stale lo a very large distance in phase space to minimize the Fano
factor. Hence one sees that n, rather blows up for small squeezing, especially for
large values of the separation p [Fig. (5.3¢,d)]. This can be judged from the nature
of the state [ ) in this regime, by looking at the Q-function given in Fig. (5.2h).
Since the squeezing is not large, even though there is interference, it is nol effective
enough. On the other hand, at very large squeezing, the state |4 ) is more like an
- amplitude squeczed coherent state, as can be seen from the behavior of the Fano
factor in Fig, (5.3) and the shape of the Q-Tunction of |x ) in Fig. (5.2d). In
between there exists an ideal squeezing value for a given separation p, at which the
'_-phuton number uncertainty goes to a minimum. In the scale of Fig. (5.3) this just

‘appears as a saddle point in the Fano factor.

On the other hand, if one plots the logarithm of the photon number uncertainty,
‘along with the logarithm of the mean photon number, as is done in Fig, (5.4}, then
it is obvious that the Fano factor goes to a minimum. Since the Fano factor is
defined as the ratio of the photon number uncertainty to the mean photon number,
for low quadrature squeezing, one can see that the two curves nearly coineide and
iis implies that the Fano factor is close to its coherent state value of unity. With
.j:rea.sing r, both the mean and the number uncertainty decrease after the initial

increase and then increases steadily for large values of r. But it can be seen that as

afinction of r, the mean photon number starts to inerease while the photon number
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Fig. 5.4. Plot of the logarithm of photon number uncertainty (Solid line) along

with the plot of the mean photon number (Dotted line). The other details are same
as in the previous figure.

uncertainty is still decreasing, and it is at this region that the Fano factor goes to a

In Fig. (5.5), the logarithm of the absolute minimum value of the Fano factor
5 plotted as [unction of the quadrature squeezing r. Here, for each value of r,
e whole range of Lhe separation p is scanned numerically and the separation p,
rresponding to the minimum value of the Fano factor among these is found. The

ano factor corresponding to this value of p, for a given v is the absolute minimum

e for this given value of squeezing. It can now be seen that the Yurke-Stoler



state, which corresponds to » = 0 shows amplitude squeezing. In fact this is the
maximum amplitude squeezing that can be got from a Yurke-Stoler state. We see

that for small values of r and for + = 0 (Y-S state), the optimum value of separation

15 smaller than unity (p, < 1) [whereas in F ig. (5.3) the p values are chosen larger

f — J
-2 - =l .
|l 1 k i i 1 i \ i 1 | 1 L L 1‘“:‘ = L
0 1 2 3
r

Fig. 5.5. Plot of the logarithin of the absolute minimum of the Fano factor which
is got by optimizing the separation p. The logarithm of the optimum separation Pa
for a given value of squeezing is also plotted. The logarithm of the photon number
uncertainty and the mean photon number corresponding to the Fano factor obtained
in the above way is also plotted.

ian one). It can also be seen that this absolute minimum of the Fano factor for a

value of r, does not show a minimum as a funcltion of r. In this respect the

e hbg}, which 1s a superposition of phase squeezed coherent states behaves more
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like an amplitude squeezed coherent state. To elaborate furlher, the slope of the

curve corresponding to the Fano factor as a function of r tends to a constant value.

The logarithm of the photon number uncertainty and the mean photon number,

whose ratio gives the Fano [actor is also plotted in the same figure.

In Fig. (5.6}, the photon number distribution P, is plotted for different values of »

o8

; r=0.0 {BJ r=0.1

(b))

Fig. 5.6. Plot of the photon number distribution Iy Vs, n for different values of
squeezing r. For each value ol r the optimumm separation Po is numerically estimated
and the Py, for the corresponding state is plotted (Solid line with Solid circles). For
"gi;mparisﬂn the photon number distribution of an am plitude squeezed colierent state

[Dashed line with solid triangles) and a coherent state (Long dashed line with Solid
squares) with the same mean is plotted.

ihe state |1 ), which is in a superposition of phase squeezed colierent states. For



each value of », the optimum value of the separation p, is estimated numerically [see
Iig. (5.5)], al which the Fano factor gaes to an absolute minimum, and the photon
number distribution P,, which is given in Eq. (5.21), corresponding to these values is
plotted (Solid line with circles). For comparison the photon number distribution of
an amplitude squeezed colierent state with the same mean photon number (Dashed
line with triangles) and a coherent state with Lhe same mean photon number (Long
dashed lines with squares) are also plotted. It can be seen from these figures that

this state |14 ) is slightly more sub-poissonian than the amplitude squeezed colierent
E

state.

In fact one can analytically show that the photon number uncertainty of this
state [1f4) is ((AR)?), < ﬂﬁ.}i"iz, which is smaller than that for the amplitude
squeezed coherent state. We have mentioned earlier, that for a given separation il
the squeezing is increased beyond a certain limit, the resulting state looks more like
the squeezed vacuum [Fig. (5.2d)]. If one displaces this state along the direction of
squeezing one should get just an amplitude squeezed state, whose photon number
uncertainty is bounded from below by {ﬁ}!ﬁl"]_ But as noticed in [Fig. (5.2¢)],
there is an intermediate squeezing value where the superposition state has a slight
curvature. Il is exactly for this eurved state that the photon number uncertainty
falls below the amplitude squeezed coberent state value. Saying it the other way
around, for each given magnitude of squeezing r, Uhere exists a certain range of values
{ur p at which the photon number uncertainty falls below the amplitude squeezed

herent state value.

To illustrate, in Fig. 5.7, a plot of the logarithm of the optimized Fano factor

o for various values of squeezing v is given. The abscissa is proportional to the
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separation of the states in phase space and is the phase squeezed coherent, state’s
magnitude of displacement p. It should be noted {hat # = 0 represents the usual am-
plitude squeezed coherent state got by displacing the quadrature sq-ucczed VACIHLIT
along the direction of squeezing. When the squeezing r = 0 it corresponds to the

Yurke-Stoler state. It can be seen from the figure that f, is more or less a constant
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L r=0.0 o
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£ I
a2 G s =
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Fig. 5.7. Plot of the logarithm of the optimized Fano factor fu Vs, the separation
p for various values of squeezing r indicated in the figure. The curve for r = 0 gives
the Fano factor for the Yurke-Stoler state. Note that p = 0 corresponds to the usual
amplitude squeezed coherent state,

d equals the value for the amplitude squeezed coherent state for large values of

), for a given value of r. In this respect this state dilfers from the Yurke-Stoler
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state for which [, tends to the coherent state value for large p. The dip that occurs
for various values of squeezing shows Lhe range of p values at which the interfer-
ence between the constituent states of the macroscopic superposition is maximum.
In Fig. 5.8 a plot of the logarithm of Ju(n) against the logarithm of 5 is siven for
two representative values of p at different squeezing. It shows thal for the 7 values

beyond the optimal value, the Fano factor levels off to a constant, and hence the

T I T T T T L] T
p=0.0 i
""" T>r=1.0
p=1,5 -
p=0.0 ’
>r=3.0
p=12.0 |
__4 i (] L i ‘I i 1 i | 1 1 1 | 1 i i I 1 i il ]
4] 2 4 B 8 10
log,,(k)

Fig. 5.8. Plot of the logarithm of the Fano factor f/ Vs. the magnitude of displace-
ment 5 for two values of squeezing indicated in the figure. For each value of squeezing
the dotted line corresponds to the tisual am plitude squeezed coherent state and the

solid line corresponds to the displaced superposition around the optimal separation
indicated in the figure.

-

~photon number uncertainty beyond this 5y value increases with increasing 3. The
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value chosen for p here is close to the optimal value, which is the value at which the
dip occurs in I'ig. 5.7. One can see that at the optimal value of 17, the Fano factor for
the quantum state |1z ) is lower than the amplitude squeezed coherent state value.
This leads one to suspect the { (Af)?* ) falls below (71 )%, We now analytically show

that this indeed is the case.

Going back to Eq. (5.22), we see that qo, ¢y and py are always positive and the
dip in Fig. 5.7 occurs when p; and p; are maximum negative. But note that the way
in which p enters p; and p, forbids any drastic change. The dip occurs when pis
approximately in the range ¢"/2 < p < e"/v/2. For small values of r the minimum
of f! occurs around p ~ c’f\fﬁ. But even for moderate values of + the minimum
of [ occurs around p =~ €"/2. Hence we assume p ~ ¢ /2. Considering only those

terms which are significant when » > 1, the Fano [actor can be written as,

(5.23)

Extremising the above equation with respect to + we find that the extremum occurs

when

=12

(=) > (=)' (5.24)

where we have used (=) > to denote that e is slightly greater than the ri ght hand

side. This means that the Fano lactor

fi{=) < y~33 (5.25)

Since the mean photon number is of the order of (7 ) & 5%, we have

((AR)?) (=) < (R)® (5.26)
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which shows that around the optimal value of p for a given amount, of squeezing, the

photon number uncertainty is smaller than in the usual amplitude squeezed coherent

state.

There are many more exciting possibilities, when one considers the superposition
of quadrature squeezed states. Much work can be done in this area. ven Lhough
experimentally difficult to achieve, superpositions are nevertheless studied to again
a deeper insights into the various aspects of the problem, which might lead to a

better way of generating more amplitude squeezed states of the radiation field.

In this chapier, we have formulated a general superposition of quadra-
ture squeezed states and then reduced it to the class of superposi-
tions of the Yurke-Stoler type. We then studied the motivations for
believing that such superpositions when displaced could show bet-
ter amplitude squeezing. A scheme was proposed to generate a dis-
placed Yurke-Stoler type of macroscopic superposition of quadrature
squeezed coherent states. A particular case, in which a superposition
of phase squeezed coherent states was used to generate an amplitude
squeezed state, was studied in detail. We have shown analytically
that the photon number uncertainty of the displaced superposition of
phase squeezed colierent states is smaller than in the usual am plitude

squeezed colerent states,
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Chapter 0

Highly amplitude squeezed states of the

_ radiation field

In this chapter we study the highly amplitude squeezed states that
can be got by evolving an amplitude squeezed coherent state through
a Kerr medium and then displacing it to a proper position in phase
space. We first describe the scheme with which one can achieve these
states, and then calculate the Fano facior and the photon number
distribution of the beam coming out of this scheme. We optimize
the various parameters involved so as to find the maximum amplitude
squeezing that is possible within this scheme. We show that at the
maximum paossible amplitude squeezing, one can gel a state whose
photon number uncertainty goes as the fifth root of the mean pho-
ton number. We also exhibit the photon number distribution at this
maximum amplitude squeezing.

6.1 The proposed scheme

Amplitude squeezed states of the radiation field are characterized by their pho-
ton number uncertainty being smaller than their mean photon number. Extensive
efforts are being made to generate these states of the radiation field [204, 185,
211, 191, 210, 205, 206, 216, 212, 213, 214]. These states show many inter-related

non-classical properties such as sub-poissonian statistics in photon counting, noise
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reduction below the shot noise level in direct detection, and photon anti-bunching
in Hanbury-Brown-Twiss type of intensity correlation experiments. The quadra-
ture squeezed coherent states do show amplitude squeezing when the direction of
squeezing is along the direction of excitation, But the minimum pholon number
uncertainty that can be obtained is restricted by ((A#)?) < (7)Y Barlier an-
other type of interaction involving the non-linear Kerr medium had been introduced
[175, 176, 177, 178, 179], and it was shown that by evolving a coherent state through
a Kerr medium, one could generate amplitude squeezed states by the self-phase mod-
ulating action of the Kerr medium[174, 190, 185, 197, 241, 191, 139, 140, 193, 141).
In fact the minimum photon number uncertainty that could be got in this way was
less than and of the order of {7 )" [191]. In this chapter, we propose a quantum
state got by evolving a quadrature squeezed colierent state through a Kerr medinm,
whose photon number uncertainty is smaller than the fifth root of the mean photon
number [218]. There were earlier proposals for getting much S]I;a”l?.!' photon number
uncertainties [216], but they are experimentally diflicult to achieve compared to the

one Lhat is proposed here and in Rel. [191].

In this chapter, we show that a amplilude squeezed colierent state, when al-
lowed to evolve through a non-linear Kerr medium for a small amount of time,
shows considerable amplitude squeezing when it is displaced to a proper position in
phase space. We have already seen the evolution of an amplitude squeezed coler-
ent state in the Kerr medium in Chapter 4. We have shown there that the Kerr
medium interaction term commutes with the photon number operator and hence it
leaves the photon number properties unchanged. But we have also seen that the

@Q-function undergoes quite a change, and compared to the coherent state that has



evolved through the Kerr medium, the quasi probability distribution of the ampli-

tude squeezed coherent state that has evolved through the Kerr medium for the
same duration of time is a little flat and is more symmetric. As pointed oul earlier
and as can be seen from Fig.(4.1) the QPD is silualed in such a way that photon
number properties remain unchanged on evolution throngh the Kerr medium. Ilence
one has to displace such a state to a proper position in phase space to see the effect
of the Kerr medium on the amplitnde squeezing. Here we do this, and study the

effect of the various parameters involved on the amount of amplitude squeezing of

the output state.

I
. b5

lo, 2>
—

Kerr
: G Medium

Fig. 1

Fig. 6.1. Schematic. G is the quadrature squeezed light generator, § is the
time delay and B is the final beam splitter.

The schematics of the setup to generate this quantum state is given in Fig. (6.1).
Here a coherent light beam is split into two by a beam splitler to make a Mach-

Zehnder interferometer configuration. One arm of the interferometer contains a



quadrature squeezed light generator, which is indicated in the figure as G. This
generator G ocan be typically an optical parametric oscillalor (OPO) operating in
the sub-threshold regime as a deamplifier [214] to generate the amplitude squeezed
coherent state. This squeczed state is made to evolve through a Kerr medinm for a
predetermined small duration of time. The other arm of the interferometer contains
a time delay depicted in the figure as 8. These beams are recombined in the final
beam splitter B. This beam splitter B has very high reflectivity, which prevents the
signal beam from being contaminated with the noise of the reference heam. At the
same time this produces a classical displacement of the signal beam’s quantum stale
in phase space [191], when the intensily of the reference heam is high. The angle
and the magnitude of this displacement can he adjusted by varying the time delay
and the strength of the re[ercﬁcc beam respectively. We present in this chapler, the
theoretical analysis of this scheme, and caleulate the photon number uncertainty
and the photon number distribution of the beam coming out of the beam splitter

B. Finally, we show that the absolute minimum of the pholon number uncertainty

is smaller than (7 )'® [218].

6.2 The displaced state

In this section, we calculate the field quantities needed to access Lhe photon number
properties of the beam that comes out of the scheme. The state of the radiation
field as it enters the generator G is in a coherent state |a'). The operation of the

generator G is o squeeze this initial coherent state, and the quantum state of the
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field that comes out of G is given by

S(z) ) = 8(z)D(e’) |O) (6.1)

where S(z) = exp(3(2a™ — 27@%)) is the quadrature squeeze operator [85, 86, 89,
and D(a') = exp(a‘a! —a'*@) is the displacement operator [62, 63]. The operators i,
il are the usual boson annihilation and creation operators. It would he convenient
if one can rewrite §(zjﬁ{a’} |0 ), which is usually called the two-photon coherent
state [89], as D(a)8(z)|0). This state D(a)3(2)|0) is called the ideal squeesed
state [146], because of its simple properties. These two forms are related [237], and

one can go from one to the other by conjugating the displacement operator with the

squeeze operalor as

5(2)D(') |0) = §(2)D()§!(2) §(2)|0) = D(w)§(2) | 0) (6.2)
where
a = a cosh(r) + o' sinh(r) ™ | (6.3)

llere we have parameterized z in the usual way as z = re* and o as o = ped
From now on, we represent the quadrature squeezed coherent states that evolve out

of G as |a,2) = ﬁ[ﬂ}g'{z] |©), and work with this state.

This state |a,z) is to be evalved through a Kerr medium. The state of the

quantum field al the output of the Kerr medium will be

|'ﬁf{ } = ﬂ['f} Iﬂi z} 1 (6*4]

where

Uk (v) = Sitalias
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We had studied this state in great detail in Chapter 4. This state |4y ) undergoes
a final displacement in the beam splitter and hence the radiation field thal emerges

is in the quantum state
|a) = D(€) [thec) (6.6)
As pointed oul earlier, the magnitude of the displacement £ can be adjusted by

changing the intensity of the local oscillator beam and the argument by introducing

a time delay.
We find it convenient to re-parameterize the displacement as,

£ = qpeD (6.7)

where
Q=arg[(d)y] (6.8)
and 7 is a real parameter, and p = |a| is the magnitude of the initial displacement

ol the quadrature squeezed state o,z ). The relative angle of displacement § will

be so chosen as to minimize the photon number uncertainty.

The mean photon number of the displaced state is given by

(f)g = (ulftha)
= (x| D'ERDE) | )
= (a%a) +¢€(a'), +& (@) +1° (6.9)
where the expectation value of the operators with respect to the state |1y ) were

calculated earlier in Chapter 4. These and the olher expectation values are given in

Eq.(4.23-4.26). Using the re-parameterization for £, we have

-

()g=(a'a), +2up|(a);lcos(s) +u%0" . (6.10) .



Similarly the photon number uncertainty in the displaced state is given by

(aay), = (ata),+(ama), - (a'a),
= (@), + (@), (@),
+2,”,{ —i{1146) [(*12>H (ﬁ’i) ﬁ.}h.]+D,U,}

ot (o000 (), - (@] 4

+2%" [(a'a), — (@ )K(E?K] = (6.11)

K

where the expectation values (-} are given in Eq. (4.25,4.26). Hence the Fano

factor can be writlen as

po -+ ooy + pany?
go+ @+

aln)=14 (6.12)

where the coeflicients of the various powers of 5 are functions of the expectation

values of the field operators in the state |t ), and these are given by

Y AR
n = 2o (aa), - (@), @] +00)
m o= {emma (), (@3] £ Cchre (), - (@), ]

1 P
i zta
fo = F ﬂu>f\' 1
2,
@ = ;[(ﬂ)ﬁlms{ﬁ} : (6.13)

In this form, one can immediately minimize the Fano factor with respect to 5, and

the optimized 5 value is given by

_ —(p2go —po) + V(1290 = po)? — (P10 — Po) (20 — 1) (6.14)
L (P21 — 1) ' '




The 5 optimized value of the Fano factor is then given by

So = Tina) (6.15)

The primary task of this chapter is to find the optimumn values of the other pa-
rameters, such as the scaled duration ~ of evolution in the Kerr medium, and the
magnitude of squeezing r, ete., which will give the absolute minimum of the Fano
factor. But before going into this, we will calculate the photon number distribution
and the ()-function of the displaced state. We will be using the QJ-function to illus-

trate the reasoning that we employ in choosing a value of § that will minimize the

photon number luctuations.

The photon number distribution of this displaced state can be caleulated using

the definition,
Po = |{n |1,."rd}|2
= |(n1 D@ 1) . (6.16)

But the action of the displacement operator on the Fock state on the left can be

calculated to he

(n|D(E) = e 3k (n]e'em

= e3P mz_:n §* (i Tl n.—mj'

xzf‘ E}kif\tl—-m-{-k] (n—m4+Fk] . (617)

(n—m)!

Using this and the integral representation of the quadrature squeezed state in

Eq. (4.11), we have

I N
cmh[r}
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oo ek = "
— Y B cemcuan i
2 rine E Y E if(n—r Jin—m )

) CHED: m[[n - m}!'E
n—m+k )
X | i | (n—m+k)! il tanh(r) T
= (n—m+k— 2s)ls] 9

n—tr+k—Tn 2

% {ﬂﬂ-m [em . ta.nh{r}l}

(6.18)

We will come back to this expression after we have found the parameter values al

which the maximum number squeezing occurs.

The (J-quasi probability distribution function for the displaced state can also be

easily calculated, using the fact that

1 2 = '
Q) = —I8 o)l = ~|(B1 D(e) | )|
= % el =emr2 (g — ¢ |y )|
= Qi(f - ¢ (6.19)

where we have used D(€) = D'(—£) and where Q is the Q-function for the state

|5 ), which is given in Eq. (4.19).

Having calculated these quantities, we now turn to the optimization of the Fano

factor.

6.3 Fano factor optimization

We will first reason oul the value of & that will lead to the maximum amplitude
squeezing, after which we optimize the remaining two more parameters v and r. We
have earlier seen that the Q-function of the amplitude squeezed colierent state, as it

evolves through a Kerr medium becomes crescent shaped [Fig. (4.1)], and the effect
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of the initial squeezing is to flatten this crescent a little bit, and to make the tails

rather symmetric [Fig. (4.3)]. But we have mentioned before that even though the

E ' T T T T ! T T T T

T 1

0
Re(B)

Iig. 6.2, Plot of the contours of the @-function for the state |y ) (thin lines) and
lor the state |t ) (thick lines) under the optimum magnitude of displacement n,
along the proper direction in phase space. QVis the argument of {a Jico 6, the relative
angle of displacement is chosen to be —71 /2. The displacement is represented by a
thick arrow and is translated to the origin to show the angle of displacement. The
contours are at (1.2, 0.4, 0.6 and 0.8 times the maximum value. The maximum value
is connected to the origin by an arrow. The dotted circle is for visual enhancement.

@-distribution function is curved, the plioton number properties remain unchanged
because this curved distribution is slightly rotated, and its cenler of curvature is not

in the direction of the phase space origin. This implies that the displacement £ should
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be along the tangent to a circle that is centered at the origin of phase space, and
which passes through the center of the distribution. We find that § = —7 /2 is Lhe
proper choice for the relative angle of displacement. In Fig. (6.2}, we convey this idea
pictorially. Here, the contours of the @-function for the stale |3y ), when » = 0.45
and 5 = 0.26, are drawn as thin lines. With the relative angle of displacement
6 = —m /2, the optimum magnitude of displacement 5, is found. The Q-function for
the displaced state |13} with the above value of displacement is computed using
[q. (6.19), and its contours are plotted as thick lines in the figure. The contours
are at 0.2, 0.4, 0.6, 0.8 times the maximum value. The maximum in each case is
connecled Lo the origin by an arrow. The action of the displacement in moving the
center of the distribution is indicaled by a heavy arrow. This is translated to the
origin of phase space to show the angle of displacement. The dotted circle cenlered
at the phase space origin is drawn to show that this displacement is tangential to the
circle passing through the center of the distribution. This dotted circle also serves

the purpose of being a visual guide.

With this value of the relative angle of displacement & = —x /2, the mean photon

number of the displaced state goes over to
(d), = (a'a) +9%p’
= (144%)p* +sinh’(r) . (6.20)

The optimized Fano factor [, is calculated using Eq. (6.12-6.15). Note that the

coeflicient q; will be zero [or this choice of 4.

In Fig. (6.3), we have plotted the logarithm of the optimized Fano factor (Solid

line) as a function of the logarithm of 5 with a squeezing value r = 3.4, for the
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initial photon number |a|* = p? = 10°. We have also plotted the logarithm of the

optimum value of the displacement magnitude e (Dotled line), in the same figure,

For comparison, we have plotted for an initial coherent state with the same initial

log,o(7)

Fig. 6.3. Plot of the logarithm of the optimized Fano factor for the state | 4y ) (Solid
line} for r = 3.4 Vs, logarithm of 7. The logarithm of the optimized magnitude
ol displacement 7, is also plotted (Dotted line) along with. For comparison the
logarithm of the Fano factor (Dashed line) and the optimum displacement { Dash-
Dotted line) for a colerent state is also plotted.

mean photon number, the logarithm of the optimized Fano factor (Dashed line) and
the logarithm of the optimum displacement (Dash-Dotted line) [191]. Tt can be seen

that the Fano factor for an initial amplitude squeezed colierent state is an’ order

of magnitude smaller than for an initial coherent state. Moreover, it could also be
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seen that the required non-linearity of the Kerr medium for the maximum amount

of amplitude squeezing at a given initial mean photon number is only an order of

magnitude higher for an initial amplitude squeezed coherent state. One can see that
for a fixed value of p and r, the optimized Fano faclor as a function of v has a

minimum. Hence, one can optimize 4 value for a given initial p and ».

Y ] i

o
- e SR

- log,qin,)

Fig. 6.4. Plot of the logarithm of the minimum of the optimized Fano factor
Vs, the squeezing r for various values of the initial displacement p, whose value
is indicated in the figure. The logarithm of the optimum value of the magnitude
of displacement and the logarithm of the optimum non-linearity 7, at which for a
given r and p the Fano factor goes to a minimum, is also plotted.

In Fig. (6.4) we do this, where we plot the logarithm of the minimmm value of

the Fano factor that can be obtained for a given value of p? and r, as a function of
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7 for various values of p?. Here, for each value of r, the v value range is scanned
numerically, and for each v value, the optimized Fano factor value is computed.
Among Lhese, the v value al which the Fano factor is minimum is called here as
7. and its logarithm is also plc:tted in the figures. The logarithm of the oplimized
magnitude of displacement corresponding to this 4, value is also plotted. The value
al v = 0 corresponds Lo the minimum possible value that can be obtained for a
coherent state that has evolved through a Kerr medinm and suitably displaced. It
can be seen from the figures that for each value of p? there is again a particular value
of + at which the Fano factor becomes minimum. This implies that the Fano factor
can be absolutely minimized with respect to n, 7 and r. This absolute minimum
of the Fano factor is seen to accur at higher values of squeezing v for larger initial

displacement. But apart from that, the strueture of the curves remain the same in

all the Ggures.

In Fig. (6.4), one can see that the absolute minimum of the Fano factor is approx-
imately f{® = 107*97, which occurs when the squeeze parameter value is around
r = 2.19, for an initial photon number of 10°. As can be seen from Eq. (6.20), the
mean photon number (7}, of the output beam is well approximated by the mean
photon number of the input coherent beam, which is [af* = p? = 10°. Since the
Fano factor is defined as the ratio of the photon number uncertainty to the mean
photon number, the photon number uncertainty goes as ( (AR)* ), = fi0)p? = 10193,
This is slightly greater than, and of the order of, the sixth root of the mean. But
one can easily see that ((An)?), < {fl{]“}”“" = l{J”}. Hence we conclude that the

minimum photon number uncertainty that the output beam can show is in the range

(A))° < ((AR)?) <(a)y* . (6.21)
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One can check this in Fig. (6.4) for the input photon number of 107, Here, the
absolute minimum of the Fano factor is around 1 = 10" which occurs when
r = 3.33. Hence, the photon number uncertainty goes as ((An)?), = 107 <

{{ AR lﬂl‘“}, since the mean photon number here is p? = 107, In fact, for low

mean photon numbers the output beam’s photon number uncertainly goes as the

sixth root of the mean.

We would like to look al the behavior of the pholon number uncertainty and
the photon number distribution of the output beam, when the parameters involved

are so optimized thal the quantum state of Lthis beam has the maximum amplitude

squeezing.

6.4 Properties of the state at the maximum possi-
ble amplitude squeezing

We have seen in the last section that the Fano factor can be absolulely minimized
with respect to all the parameters involved. Even though we have done the 5 and
r optimization numerically, we have done it in a step by step manner to show the
robustness of the procedure. We wish now to plot the absolute minimum of the
I'ano factor as a function of the input photon number to see its behavior globally.
We will then study the photon number distribution of the state which is optimized

for the maximum amplitude squeezing in comparison with the other known states.

The absolute minimum of the Fano factor thal can be oblained for a given
initial displacement p* is computed numerically by minimizing the optimized Fano

factor f, with respect to 4 and r. It should be remembered that what we call

163



as the optimized Fano factor f, is by itsell got by algebraically optimizing the g
variable. The values of the scaled duration of evolution in the Kerr medium and

the quadrature squeezing magnitude at which the absolute minimum oceurs are

4 6
2
log,,(lal?)
Fig. fi.5. Plat of the logarithm of the absolute minimam of the Fano lactor for a
given initial displacement |a|? = p? is plotted Vs, the logarithm of p®. The optimum
values 7o, Yo, and 7, at which this absolute minimum occurs is also plotted. (See
text)

respectively denoted by r, and 5,. The logarithms of these are plotted in Fig. (6.5)
as a function D.f the logarithm of p?. The Fano factor corresponding lo these r, and
jo values is the absolute minimum possible for a given p?, and its logarithm is also
ed in the same figure. The associaled optimum displacement », is also plotied.

he seen that the logarithms of 5, 5, and f, are all linear decreasing function
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of log;y(p?). One can estimate the behavior of the photon number uncertainty in
term of the mean photon number from this figure. It can be seen from the figure
that logyo(fu) as a function of logy,(p?) is linear for large values ;}f p%, with a slope
which is slightly greater than —(4/5). Taking this approximation, the linearized line

on extrapolation will have an intercept with the ordinate at about —0.3. Hence ope

could write

4
logg(fa) = "Elﬂgm{p!]-—ﬂﬁ

logio(fa) <~ loguols?) (5.22)

4 ;
logo(fn) = ~E I“EIUEPZ} — .3

l':'EluUrl-} = "glugmiﬂzj . {5-23}

[

But looking at Eq. (6.20), the mean photon number at large p goes as p* itself, and

in this region of large p, (7 ), = p®. Hence

4
logyo(fu) < 5 logio({7},;) (6.24)

which implies that

((an)?) <(a)y® . (6.25)

Having demonstrated the behavior of photon number uncertainty, we now turn
to the photon number distribution of the state which has been optimized to have
- the highest amplitude squeezing. In Fig, (6.6), we have plotted the photon number
distribution for the state |14 ). Here we have fixed the mean (1) al 16, We choose
a value of p? and optimize the squeezing magnitude and Kerr medium non-linearity

such that the Fano factor goes to the absolute minimum. Then we check the mean



photon number given by (7 ), = (1 + 5?)p? + sinh?*(r) and vary p? till (n),is 16

within the numerical precision available to us. We then use Eq. (6.18) with these

Fig. 6.6. Plot of the photon number distribution (Solid line with Solid Cireles) of
the state |43 ) when the mean is fixed at 16 and the Fano factor is at the absolute
minimum (See text and the previous figure). For comparison the photon number
distribution of a coherent state that has evolved through the Kerr medium and
displaced to a proper position in phase space (Dashed line with Salid Triangles)
with the mean photon number fixed at 16 is also plotted. Again for comparison
an amplitude squeczed coherent state (Long Dashed line with Open Circles) and
a coherent state (Dotted lines with Open Squares) with the same mean photon
number is also plotted.

values of ;12, Moy Toy and 44, and compute the photon number distribution, which is
plotted in this figure (Solid line with Solid Circles). We have also plotted the photon

number distribution (Dashed line with Solid Triangles) when the initial state is a
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coherent state, again using Eq. (6.18) with » = 0, for computation. Here too we
have fixed the mean photon number at 16 and have used the parameler values at
which the Fano factor goes to an absolute minimum. Again for comparison, the
photon number distribution of an amplitude squeezed coherent, state (Long Dashed
line with Open Circles) and a coherent state (Dotted lines with Open Squares) are
plotted for the same mean photon number. It can be seen from the figure that the
state [1e) 1s more sub-poissonian than the other states. In [act when the mean
photon number is 16, the photon number uncertainty for the state |1, ), which goes
as 16'/% is of the order of ane, which is only slightly smaller than the corresponding
value 16'/? for an initial coherent state (r = 0) that has evolved through the same
Kerr medium. But on the other hand, for large mean photon numbers, say with
{71} = 10", the photon number uncertainty is of the GI':lt’!I' of 50 photons for the
state [1by ), which is two orders of magnitude smaller than the corresponding value

of 10* for an initial coherent state.

We have presented in this chapter a scheme for generating highly amplitude
squeezed states of the radiation field [218]. We have proposed and analyzed the
scheme and optimized various parameters involved to oblain maximum amplitude
squeezing. This state with the maximum amplitude squeezing is shown to have a
photon number uncertainty which goes as ((A#)*) < (7 )'". We have also shown
that this state’s photon number distribution is much more sub-poissonian than that
of other known states. We wish to poinl out that this scheme has the potential
to be experimentally feasible with the existing technology. The availability of Kerr

medium with sufficient non-linearity is enough to see the scheme through. A more

complete theory which includes the noise and dissipation in the Kerr medium is
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desirable. But if sufficiently high non-linearities are available then this only source
of noise and loss is minimized and our analysis which doesn’t include dissipation and
the associated noise will hold. The second point is to treat the output beam splitter
in a complete way, rather then the approximate way in which we have done. This
too will introduce additional noise but that can be safely neglected. Nevertheless a

complete analysis with all the losses and the associated noise 15 needed. Even with
all this, we expect that if this experiment is earried ont, the amplitude squeezing

that can be got will still be the experimental maximum as of date.

We have in this thesis started with a simple system of superposition
of two coherent states in Chapter 2, where we have shown that the
refative phase in the Pancharatnam sense between the components
of the superposition plays a crucial role in producing a curved quasi
probability distribution. In Chapter 3 we have shown the eflect of
this curvature on amplitude squeezing. Using the insight thus gained,
we have proposed a scheme in which an amplitude squeezed coherent
state is made to evolve through a Kerr medium, which we believed
would result in a quantum state with a highly squeezed photon number
fluctuation. We have studied the evolution of a quadrature squeezed
coherent stale inside a Kerr medium in Chapter 4. After studying
some interesting superpositions ol quadrature squeezed states that
arise in this evolution related to amplitude squeezing in Chapter 5, we
moved on to the scheme for getting highly amplitude squeezed states

of the radiation field in Chapter 6. Our understanding enables us to
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expect much higher amplitude squeezing in some other cases, whose
study is currently being undertaken. Much work is also being done
on generating highly non-classical light from various semi-conductor
devices. It may be expected that the day for getiing a Fock state
experimentally, and engineering the generation of quantum states with
given noise properties, is not very far off. It is this aspect of relatively
immediale experimental realization which makes this ever growing

field of quantum optics quite excifing and interesting.
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