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Abstract

In this thesis we make a systematic study of the S0O(3) lattice gauge theory at fi-
nite temperature. Unlike the group SU(2), the group SO(3) has a trivial center
subgroup. The center of SU(2) (Z(2)) plays an important role in determining the
finite temperature properties of the SU(2) lattice gauge theory. Nevertheless, the
universality of lattice gauge theory actions suggests that the SO(3) and SU(2) lat-
tice gauge theories (LGTs) have the same continuum limit. Therefore, the study
of the SO(3) LGT is important in understanding the implications of lattice gauge
theories for the Ligh temperature phase of the S5U(2) Yang-Mills theory. A compli-
cation present in the SO(3) theory is the existence of a first order bulk transition at
zerd temperature, which can influence its finite temperature beliaviour. A further
complication is the presence of a local syminetry, which requires us to use a different
set of observables to study its properties. We maiuly use the Wilson-Polvakov line
in the adjoint representation of SU(2) to make our studies. The role of the Z(2)
monopoles in determining the various phases is also cousiderod. We find that the
adjoint Wilson line displays an unusual behaviour at low high temperatures.
On the other hand, the fundamental Wilson line is always zero in this model, We
analyze Lhe high temperature phase of the theory by looking at the single site his-
tograms for the fundamental and adjoint Wilson lines. We mterpret this phase,
and draw comparisons with the high temperature phase of the SU(2) LGT theory.
We show that the high temperature phase of the SO(3) LOT is like the deconfined
phase of the SU/(2) LGT theory, though there is no breaking of any symmetry as in
the SU7(2) theory. We also notice an interference of the bulk transition in the finite

temperature theory, as observed in recent studies with mixed action LGTs. One of
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the transitions that we observe is a continuation of the zero temperature bulk transi-
tion. We study how this transition shifts, as the temperature is increased. We then
present evidence for a new phase transition, whicl is in the region of relevance for
the continunm theory. This transition is shown to occur at very low temperatures
for the lattices and couplings that we are using. We supgest that this transition
Is probably a weak first order transition. We then present our coujectured phase
diagram for the SO(3) LGT theory at finite temperature and contrast it with that
of the SU(2) LGT theory. Finally, we discuss the implications of our results for the
high temperature phase of the SU(2) Yang-Mills theory, and argue that it is in the

Higgs phase,
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Chapter |

Introduction

Gauge theories are expected to pass over into new phases at high temperatures.
Lnantum Cliromodynamics (QCD), which is a non-abelinng gauge theory of econ-
fined quarks and glhions having SU(3) symmetry, may possess a high temperature
deconfining phase, in which quarks and gluons can exist as free particles. Apart from
its intrinsic theoretical interest, the high temperature properties of QCD nmay prove
useful i explaining several astrophysical and cosmological phenomena, where very
high temperatures are known to oceur, Recent experiments in heavy ion colliders|[1]
make it also possible to create these igh temperature phases in the laboratory and
confront theoretical predictions with experiment. Some of the issues of interest sur

rounding the Ligh temperature phase are the nature of it's clementary excitations,

it’s confining or non-confining properties and it's static and dynamic properties.

Though asymptotic freedom [2] requires that the effective coupling constant
diminish in strength at high temperatures [, and therefore makes a perturbative
approach possible, infraved divergences appearing at high orders cause the perturba-
tive expansion to diverge[4] and prevent it from heing useful in calenlating properties
dependent on long distance behaviour like the spectrum awd the elementary exei-

tations. This requires us to consider non-perturbative methods to study the high

temperature phase of QCD. A powerful approach to investigate non-perturbative
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phenomena in QCD is to study its properties on a euclidean space time lattice, Lat-
tice gauge theories [5] are finite and defined non-perturbatively at the very outset.
Since enclidean field theories can also be regarded as statistical mechanical Systems,
enclidean lattice gauge theories (LGTs) bear a striking resemblance to statistical
mechanical models and allow many known techniques to be used in analyzing their
properties. These include series expansions, duality trausformations, renormaliza-
tion group methods and numerical Monte-Carlo methods. Among thewn, the Monte-
Carlo simulation method [6], which has been so effectively used in statistical and

condensed matter physics, has proved to be the most versatile.

If lattice gauge theories are to make any predictions for continuam physics, the
zero lattice spacing limit must be taken in a sensible way, soas to regain QCD. For
asymptotically free pange theories like QCD, the zero lattice spacing limit is taken
i the weak conpling region, Monte-Carlo sinulations allow us to approach the weak

coupling limit, and hence make predictions for the continuum theory.

Polyakov s Susskind 7] studied the high temperature proporties of the pure
SU(2) LGT fu the strong coupling limit, and showed the existence of 4 deconfin-
ing phase in which static quarks are Debye screened, vathor than being confined.
In this limit, they showed that the partition function of the SU(2) LGT can be
rewritten as a spin model having a global center (Z(2) for 517(2)) syvinmetry, which
18 spontancously hroken in the high temperature (deconfining) phase. Monte Carlo
simulation techniques [8], which can go beyond the the stiong conpling limit, also
indicate a pliase transition into a Debye screened phase. Yaffe and Svetitsky [9]
suggested that the eritical properties of this transition e sinilar to those seen in
three dimensional spin models having this center(Z(2) for S(7(2)) as the symmetry.

There are also some rigorous results [10] for LGTs, which show the existence of i



deconfining phase at high temperatures. Despite these advances, the nature of the

high temperature phase of pure gauge theories remains unclear, This is because the

magnetic sector 1s non-perturbative in nature [11]. Though static (quarks are Debye

sereened, the area law behaviour of spatial Wilson loops [12] indicates the prosence

of non perturbative effects, which prevents the high temperature plase from being

considered as an ideal gas of gluons. The elementary excitations of this phase are
not known with any certainty,
Muost Monte-Carlo studies of LGTs at finite temperatire have focused on the

Wilson action in their stmulations, thongh mixed actions hive also beey considered

for the ST7(2) [13], SU(3) [14] and SU(4) [15] theories. These mixed action L.GTs

have the samne classical continuum limit as LGTs defined using the Wilson action and
5

hence their study can be used to draw conclusions about the featires present in the

continuum theory, However, mixed action LGTs have several phase transitions at

Zero temperature, which complicate the study of their finite temperature properties,
I I P

Since these transitions can often mimic and mask the finite temperature Lransitions,

a careful disentangling of the two is NECessary.

Gaval et al [13] considered the finjte temperature properties of a mived action
| p ]

SU(2) LGT, whose action is the sum of the plaquettes in the fundamental and

adjoint representations. They studied the Bhanot-Creatz model [16], which is defined

an

e Bwee N i
5= -_:- L e U (n; pv) -+ % Z TroU(n; pws),

= Tje Yo

Here Try and T'r, respectively denote the trace of the plaquette variable U{n; p)

in the fundamental and adjoint representations, respectively.




They found that the deconfinement transition in this model apparently joined the
bulk transition, and were unable to discern any separation between the two. Studies
with mixed actions for the group SU(3) [14], have shown a similar merging of the
bulk and finite temperature transitions. Various scenarios [ 13] have been proposed
Lo accommodate these features. If the transitions do indeed merge, the entire line of
transitions is either a result of only bulk effects, or only finite temperature effects.
It 1s difficult to reconcile hotl these possibilities with eitlier theoretical arguiments
or simmulation results, Moreover, it is also possible that the merging is not exact, and
that a clear separation between the two transitions occurs only on larger lattices,

This would imply the existence of two separate transitions with different properties.

In this thesis, we try to clarify these issues by making a eareful study of the
linite temperature properties of the Bhanot-Creuts model in the g = 0 limit, which
is like studying an SO(3) LGT. Unlike the group SU/(2), the graup SO(3) has a
trivial center subgroup. The center of SU(2) (Z£(2)) plays an important role in the
SU(2) deconlinement transition. Nevertheless, by the universality of lattice gange
theory actions, SU{2) and S0O(3) LGTs have the same continuum limit. Hence,
one be wonders i the arguments based on the existence of o centop symietry, have
any role to play in the continmum limit, Another complication present in the SO(3)
LGT is the existence of a zero temperature transition [17], which can possibly effect
its finite temperature behaviour. Tn order to study the finite temperatnre properties
of the SO(3) LGT. we have to consider observables difforent from the ones s
in the study of the SU/(2) theory. We mainly consider 1l Wilson line defined in
the adjoint representation of S5U(2). By studying its behaviaur, we observe phase
transitions to a ligh temperature deconfining phase, We study these transitions

and the nature of the high temperature phase. The role of Z(2) monopoles in



determining the phase structure is also studied. We interpret our observations as

evidence for the existence of a new phase transition, which is separated from the
bulk transition. We then present our conjectured phase diagram for the SO(3) LGT

al non zero temperature. Based on our observations, we present a scenario for the

high temperature plase and argue that it is in the Higgs phase.

The contents of this thesis are arranged as follows. The second chapter col-

lects together some of the concepts and techniques which we have found useful in

examining the aforementioned issues. The third chapter discusses some theoreti-

cal properties of order parameters in finite temperature gauge theories, The fourth

chapter contains our analysis of the finite temperature properties of the SO(3) LGT.
-
In the final chapter, we discuss our conclusions, and present a scenario for the high

temperature phase.



Clmpter 2

Basic Concepts

In this chapter we collect together some concepts and technigues which have proved

useful in examining the questions raised in this thesis. A brief outline of the finite
temperature formalism for non-abelian gauge theories is presented. This is followed

by a fairly detailed account of lattice say e theories, as wi have made our studjes
L 3 B

within that frimmework. The strong coupling ealenlation of Polyakoy and Susskind,
where the existence of o high wemperature deconfining phase was first demonstrated,

i also presented. The Monte-Carlo technique, along with some of its important,

results is discussed.  Finally, we mention the recent work o mixed lattice gauge

theories and their implications for the ‘ang-Mills theory.

2.1  Finite Temperature Field Theory Formalism

The action for an SU(2) invariant non abelian gauge theory i

—1
5= T\[d4$:g1r[ﬂ1u($} F‘HI!J{I]}.‘

where F, (@) are the fiekd strengths defined by

Fuo(r) = 8,4, (x) — 8,4, () + g[Au(2). 1, (2)] (2.2)

The vector potentials 4, (x) take values in the Lie algebrie of SU(2), and they

are expressed as A (r) = lﬂ(?]% The Pauli matrices s satisfy the SU(2)

—_



commutation relations

(742,77 [2] = ie*P777 /2 (2.3)
and are normahized as

Tr(rerf) = 2624, (2.4)

The vector potentials and field strengths respectively transtorm under local S17(2)

gauge transfornations as

\ A (z) = T"{:J:].-‘-lp{:{:}l"_}fﬂr} - é{f}#i-’{:n}]i" Hrx). (2.5)
I| Fuo(@) = V(2)Fp (2)V (), (2.6)

where 17(r) is an SU(2) matrix,

It is convenient to pass over to the Hamiltonian in the Ag

= 1) pauge, where it
Liakes the [orm

1 ¢
| H =5 / d*z(B2(F)EXT) + B (F)B (). (2.7)
|
I| The field B(F) is the non abelian magnetic field and is defined by
BT = esdi AR () + g AN (@) 47 (), (28)

and Ef(F) is the non abelian electric field, which is the conjugate of A2(F),

The quantization of this theory proceeds by imposing the canonical commutation

\ relations for the conjugate variables EX(7) and AY(F),

(BF(Z), AJ(F)] = —i6,;6°8(3 — &), (2.9)

The Hamiltonian is invariant under time independent gauge trauslfornmations Vi(Z),

which can be parametrized by V(F) =

exp IA(F) and A(#) = A"(#)7°/2. These

gauge transformations are generated by the operator

Urisy = exp (i j B\ (F) D E(T)), (2.10)

]



where the covariant derivative of E%(F) has been defined 1 be
DENT) = OB} () + g™ A7 (D) 7 (7). (2.11)

Since the Gauss law emerges as a constraint in the quantization process, the physical

states must satisfy

DiER(E)|) = 0. (2.12)
The finite temperature properties are calenlated from the partition function
Z =Tr'(exp(-5H)), (2.13)

where the prime indicates that the trace is taken only over the physical (gange
nvariant) stales. The operator projecting the states into e phivsical sector is
=F s ~ p LN b L e /

P fﬂﬁ.“{ijﬂ?{p(:[d wA(F) DES(1)), (2.14)
where DAY(F) is the SU(2) Haar measure. The partition function in the |A%(F))
basis s

z:/_u_-r* F)AS(#)| P exp (—BH)| AV (7). (2.15)
The projection aperator 2 ensures that only the physical states appear in the par-
tition function calenlation, The partition fanetion can he expressed as a Euclidean
path integral propagating in imaginary time =y (xy = i) {or a duration Ty = if.

Dividing the nterval 4 into N slices of length G/N, the exponential can be written

elH
exp(—GH)P = [exp(-AH/N)P]¥. (2.16)
For N large
exp{—BH[N) = exp((—8/2N) f B () B (F))

exp((—3/2N) [ BB () B (). (2.17)



luserting a complete set of states |A$ ()} (A ()| and | B ) (B (x)] for each time
shice, we obtain

Z = f DX (#) DA (2) DE? ()
plie
o . 1 _ 1
E-.xp(-/ :f.eqfdaj.‘{i Ef (x)Af(x) — {ﬁEf‘{:::}h"-“{.rJ A B;*(:::}H:"l:x]}}lj
u i
i
4 } . o oveep CEMR L
m]J(a [I iy f:e’ A (2) D; ;i*{.b]). (2.18)
\ Since we are taking the trace, the Af(z) fields in the patli iutegral are periodic in
:| time with period @ (this is indicated by the subscript phe). Integration over the
I|, Ef(x) fields pives
\ Z = | DXz)DA2(z)
plic

—1 :
q:x[r(T]fu ri:a:_lfda;l:{{.-i?[z:] — DA™ (%)) ¢ B{"(.aﬁ}ﬂﬁ"[ﬁ:}]) (2.19)

The integration is over fields periodic in the time direction with period 3. Renaming

the A%(x) field as A% (z), the partition function becomes
|

Z= /Pbc[r'l-'l“]uxp{—ﬁgj,

where 5 is the Euclidean Yang-Mills action,
|

—
b2

20)

Se = 5 [ @ rde T (Fyula) Fu(a). (2.21)

Therefore, the partition function calenlation reduces to the Euclidean path integral

over all field configurations which are periodic in time with period .

| The periodicity in the time direction allows us to define the gange invariant
|
\observable called the Wilson-Polyakov line. It is defined as
\ - T s 'ﬂ i 3
Li(z)=Tr Pexp(ﬂgfn cfz:,,_.—lf{z,:z:.ﬂﬂ‘f‘i)r (2.22)

|



where [ denotes the trace in the fundamental representation of SU({2), It can be

regarded as measuring the amplitude for a static quark (defined in the fundamental
representation of SU(2}) to propagate in a heat batl of temperature 3. The

expectation value of this observable is given by

where Z|L(7)] is

Z|Li(F)] = /[J):IH] exp(—Sg) Tr Pexp (iy fuﬁ dry A (7, ;54]?“;"2) . (2.24)

It can be given a physical interpretation by writing Z and Z[L(7)] as the exponen-

tial of a free eoergy, Z = exp(—g8F(0)) and ZILp(£)] = exp{—F (). The Wilson

line expectation value can be written as

(Ly(%)) = exp(—pFy (&) — F(0)]), (2.25)

Written in this way, it measures the difference in free encrgy of a single quark state
{at ) and the vacuum, in a heat bath of temperature ', The correlation function

between two Wilson lines can e similarly expressed as

(LA (EVLy () = exp(—BIF; (3 — §) - F(0)]). (2.26)
It measures the diflerence in free energy of a static quark anti-quark pair located
al the points @ and §, and the vacuum. This free energy is nothing but the quark-

antiquark potential {including sell energy effects) in a heat bath of temperature 3

Under SU7(2) gange transformations, the Wilson-Polyakov line (Lenceforth called

the Wilson line) transforms as

i
LilZ) = 1'r (1'{55,{]} P exp l:'ifa’_/. dpg AJ (T )" f2) V{7, _J}) . (2.27)
0

10



where V'(x) is an SU(2) matrix. Hence, Lp(z) is invariant under periodic gauge

transformations V(F, 5) = V(0, 8).

The finite temperature enclidean path integral has a larger symumetry, owing
to the periodic houndary conditions in the time direction. Gaupe transformations
which are periodic up to an element of the center of the gronp, are also symimetries
of the action [9]. Let

ViZ os + B) = 2V{Z, zy), (2.28)
where 7 is an element of the center of SU(2). The center of SU(2) consists of
the elements +1 and —1, sinee these are the only elements which commute with
all the members of the group. These gauge transformations leave the gauge fields
unchanged, as can be seen from Eq. 2.5 and the Fact tli ZAi(z)Z7" = A=),
Hence, they are additional symmetries of the action. Loeal ubservables are invariant

under these aperiodic gange transformations, but the Wilson line transforms as

L&) — ZL,(%). (2.29)

| Nevertheless, the correlation functjon of Wilson lines is invariant under this trans-

formation.

I {Lg () # 0, then this center symmetry is spontaneously broken and P(Lg(3))

is finite (see Eq. 2.25), This implies that static quarks have finite energy and the

theory is in the decoufined phase. The center symumetry unplies that the Wilson line
will take two values related by a Z(2) transformation, The correlation functions in
this phase bhehave as

(LY@ Ly (0)) = KL O) (1 + g2 SR ey (2.30)

JI.-E.'].I.I
giving a short range potential (see Eq. 2.26) between quarks. In the absence of

spontancous symmetry breaking, (L;(#)}) = 0 and from Eq. 2258 F(Ly(T)) = oo

1

11




mmplying confinement of static quarks. The correlation [inetions in the unbroken

phase decay exponentially as

(LY(F)L4(0)) = exp(—oB)F)), (2.31)

yielding a linear confining potential (see Eq. 2.26) between static quarks, with a

string tension o.

The hehaviour of the Wilson line distinguishes the confining and deconfining
phases, and hence it can serve as an order parameter to study the phase transition
al high temperatures. We note that the low temperature confining phase corre-
sponds to the disordering of the Wilson lines (sinee (Ly(7)) = 0), while the high
temperature deconfining phase corresponds to the ordering of the Wilson lines (since
(Le(F)) # 0). This is in contrast to the situation familiar in stutistical nechani-
cal systemns, where the ordering is present at low temperatures and disappears at
high temperatures. Thus, Ly (Z) is like a disorder variable ruther than an order

paramaeter.,

Anather observable whase behaviour can be studied across the transition is Lhe

spatial Wilson loop. However, it is not very sensitive to tle phase transition and

(it} [|!J]

wt LS ol /

12




displays an area law behaviour at all temperatures. It is natural to expect an area
law behaviour at low temperatures, since the zero temperature theory is confining,

That the same also holds true at high temperatures can be seen by the following

cualitative argnment

0. The figure (a) above shows a spatial Wilson loop at some
large temperature 31 By relabelling the time axis as 4 space axis and one of
the space axes as the time axis, it can equally well be considered as a tempaoral
Wilson loop at zero temperature, but in a volume which is finite in one direction
(see (b]} with periodic boundary conditions. Temporal Wilson loops have an area
law behavionr at low temperatures beeause the zero Lemperature theory is confining,
and enclosing them in finite volumes does not alter this property. This results in
an area law hebaviour at all temperatures. There are also Higorous arguments [27)

which arrive at the same conelusion.

Since the spatial degrees of freedom are unaffected by the transition, they ean
be integrated out o get an effective three dimensional theory of Wilson lines. This
elfective three dimensional theory resembles some well known spin models, which
also have the same global center symmetry. Svetitsky and Yaffe [9] sugpested that
the critical properties of the transition could be understood as a consequence of the
fixed point behaviour of these three dimensional spin models. [lepending on the
manner it which (L; (7)) changes from its zero value in the confining phase to its
non zero value in the deconfining phase, the transition is of fvst, second or higher

order,

Asymptotic freedom decrees that the effective coupling coustant (7)) — 0 at
high temperatures[3]. Nevertheless, this does not allow a perturbative caleulation of
- thermodynamic quantities at high temperatures, because of the infraved divergences

- which start appearing at higher orders [4]. In arder to get a complete understanding

13



of the properties of the high temperature phase, we Lhave to resort to non perturbative

methods of analysis. In the next section we deseribe the lattice approach to studying

the high temperature properties of non abelian gauge theories,

2.2 Gauge Theories on the Lattice

Lattice gauge theories (5] offer a non-perturbative definition of gange theories and

provide a powerful framework for studying their properties. In this section we

present the rudiments of lattice gauge theories and explain how they can be re-

lated to Yang-Mills theories.

The space time continuum is replaced by a four dimensional hypercubic enclidean

lattice, with sone lattice spacing a. Gauge fields are delined an the links of this

lattice. Every link is labelled by one of its ends n and a direction o The site index n

denotes a four dimensional vector with spatial components 11, n2, nd and temporal
component -l (7; ) labels a link beginning from n and pointing in the p direction

while (n+ 0 ) labels the same link but with apposite orientation. On every link,
one places a unitary matrix U/ belonging to the gauge group (in our case SU(2)) in

question. The varialiles defined for the two orientations of a single link are related

by
Uln; p) = Ul (n + p; - e (2.32)
These link variables transform under gauge transformations as
Uns i) = V() (n; 1)V (n + ). (2.33)

where 1'(n) is an SU(2) matrix. The form of the action o the lattice is chosen such

that it is pange invariant and reproduces the Yang-Mills action when the lattice

14




spacing a goes to zero. Wilson considered the following action for the pure gauge

theory

_B
&= N i) 294
= ; rel(n; ur), (2.34)

where U7(n; ) are plaquette variables defined by
i ) = Ul iU (n + U (o + gl (e 1) (2.35)

and the subscript [ denotes the trace in the fundamental representation of SU(2),
The swmmation is over all plaquette variables. The plaguette variables Uln; p)
are so called because they are formed by taking a product of link variables over
an elementary square or plaguette.  Under gauge translonnations, the plaguette

variables translor as

Uln; pv) — V(n)U (n; )V (), (2.36)

By the cyclicity of the trace. the action is gauge invariant, One recovers the contin-
¥ 3 A ' B

wiin Yang-Mills action by taking the lattice spacing a to zero. To see this, define
Uln;p) = exp(:’&gr“.ﬁix{n}fﬂ) (2.37)

where AS{n) are the continuum gauge fields and g is the coupling constant, The

plaquetie variables can be written in terms of these fields s

Ulnipe) = expliagr® AS(n)/2) expliagr® A7 (n + ) /2)

exp(—iagT® A% (n + ) /2) exp( dugTt AT () /2). (2.38)
Using the Baker-Camphell-Hausdorff (BCH) formula

exp Aexp B = exp(4A + B) + 1/2[4, B] + 112([A, B], B + ... |, (2.39)

15




we liave

U pv) rrx;l(ing’r“ﬁ{.—‘lz{u] +ad, A (n) + A (0} + (:.!f{u"?)})
[.'xp(—E{I{;T‘*,"Z{:’.ﬂ{n} +ad,Ay(n) + A%(n) U[uz]}) (2.40)

Again using the BOI formula for combining the exponentials, we oe

(7 ) = o x[rCm a7 2(0, A% (n) — AL (n) +.:Jrf“"'f".J1;f[nJ.il (1) + O n) ) {2.41)

where the plaguette variables are seen to Le directly related to the field strengths
s

(g pr) = exp (ie® groFLL () /2 4+ Ofat)). (2.42)

In the limit of zero lattice spacing

Uln; pv) = 1 +ia®grF8 (n) /2 — a*¢?/2(r° Fo () 2)(T° 2. (n) /2) + (2.43)

and the action becomoes

el "f - 2
_t:r Z Tr Uln; ) = E.JFEH_ /d'I,T Tr(Fu(t)F (). (2.44)
I P TP

The further factor of half comes from the antisymmetry of £, (x),

The summation
over all plaquettes has been replaced by an integral as

42 fd]

(2.45)
T

and the terms of higher order in a vanish in the zero lattice spacing limit. Choosing

0 = 4/g* we regain the (Euclidean) Yang-Mills action

5‘ B =

B | =

[ d'sTr(F,,(2) F,, (2)) (2.46)

The above method of taking the zero lattice spacing limit 15 called the classical (or
aive) continuum limit, because it ignores the effect of quantum corrections
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The gange invariant observables of the lattice theory are traces of product of link

variables over closed loops on the lattice, and they are defined as

We)y=Tr[[UW). (2.47)
lec
The bebaviour of these Wilson loaps is indicative of the various phases of this model.

For example, an area law behaviour

Wi{C) = exp(—a4), (2.48)

where A is the area enclosed by the Wilson loop, implies confinement of statie quarks

with @ as the string tension. A perimeter law behaviour

W(C) =exp(—al), (2.49)

where L is the perimoter of the Wilson loop, indicates a Conlomb o Higgs phase.

For lattice gauge theories to make any predictions about continuum physics, one

must be able to take the zero lattice spacing limit and obtain finite and meaningful

results. Lhis vequires us to also vary By as we take a — 00, so that physical quantities

like the string tension (o) remain finite, The string tension on the lattice has the

form

1

T =—
a2

flg). (2.50)
For o to remain finite as a — 0, the function flg) must also approach zero. This
requires us Lo also vary g, so that f(g) tends to zero. The joint variation of g and

a to yield a finite o, leads to the following renormalization group equation for f

of _

_ / 0, (2.51
fla)+ Ay P ; (2.51)
| where the beta function d(g) has been defined as
g
o) = ===, P
ig) O (2.52)
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For non abelian gauge theories, the perturbative resull valid for wealk coupling is
#Ha) = —fog® — Big® + O47), (2.53)

with Jy and 3, as the leading coeflicients of the beta function. The uegative sign of

the beta function forees gla) — 0 as ¢ —+ 0. This means that the contituum limit

of non abelian lattice gange theories is in the region ¢ =0 (¥ = o0). On salving

the renormalization group equation, the form of f(g) turns ont to be

- .
flg) = const g % exp fm}'[l‘l'fﬂyﬂ- (2.54)

The function f(g) fixes the fmetional form of the observables which remnain finite in

the continunin limit, It is also called the scaling function |21} because it determines

how physical gquantities must behave as a function of g (ur dp) so that they attain

finite values in the continuum limit,

The lattice action is not unique, because severs) gauge variant constructions

can be made which reduee to the Yang-Mills theory in the naive zero lattice spacing
limit, Hence we can consider generalizations of the Wilson action, and study their
properties. An example which will be relevant for this thesis is the adjoint Wilson

aclion. This is defined as

8= —3-3 ST Tr Uln; ), (2.53)
nj
where U(n; uv) are the usual plaquette variables and tle subseript a denotes the

trace in the adjoint representation of SU(2). The trace in the adjoint representation

b . ;
is related to the trace in the fundamental representation by

TraUl = (Tr U - 1. (2.56)
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We can take the naive continnum limit of this model as we did for the fundamental

Wilson action. Proceeding as before, and using Fg. 2.56 we get

s

Trll{ pw) = (2 = (@' /2 Fa )/ Fa(m)/2) + . ) ~ 1. (@57)

The action becomes

i
éu S Tr U(n; ) =

TLfels

a@ 2
DT [ o Te (B ) B, (2.58)

after neglecting terms of higher order in a. Comparing Eq. 2.58 and Eq. 2.44 we get,

the relation
— a1,

Ay 3

(2.59)
This relation holds true only in the naive zero lattice spacing limit, The issue of the
continuui limit can also be addressed for this action, as we did for the fundamental

Wilson action. It is an important matter to decide whether the two actions lead to

the same continumn theory,

The lattice formulation can readily be applied to study sange theories at finite
| temperatiure. The temporal extent of the lattice is chosen 10 be finite, and periodic
I ' . s - - - I .
 boundary conditions are mnposed in the time direction. [ practice, one works on

a lattice whose spatial extent N, is much larger than its temporal extent N:. The
! 124 I

lattice temperature is determined by

|| = Na (2.60)
|

| & " = ' .
Note that the lattice temperature can be ineroased by decreasing N at a fixed

|

lattice spacing e or decreasing a at a fixed N, The lattice spacing a can be increased
(decreased) by decreasing (increasing) B;. This follows from the form of the function

foand Eq. 2.50. In our studies, we will use botl these methods of changing the
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temperature on the lattice. The Wilson line can be exprossed in terms of the link

variables ag

Ny -
Lg(it) =Try T] UR + nyd; ). (2.61)

ni=0

Tt v— ’ | J ’

R —

The global center symunetry is the invariance of the action nuder pauge transforma-
tions whicl are periodic up to a center element. This is cquivalent to multiplying
all the thme like links timanating from some time slice by a center clement as shown

above. Under this transformation, the Wilson line picks up a center element
Le() = ZLs(7). (2.62)

The continnmm limit of finite temperature lattice gange theories would also
require the physical temperature to remain finite, This entails taking the limit
N: — oo in addition to @ — 0. The physical temperature Joys 18 piven by

n'gphys = ll_l:.[{;l JI.“IFTH. [263}

Ny bz

Using Eq. 2.50 and Eq. 2.54 to ex ress the lattice spacing us a function of ,we et
g L I I I S q =

1

B T S
V)= o)

(2.64)

The continuim limit of the lattice theory is achieved by varying g as above and
taking N, — o0, Since the limit N, — oo cannot be taken in practice, one studies

the behaviour of quantities as a function of N..
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2.3 Strong Coupling Limit

It is also possille to have a Hamiltonian formulation for lattice pange theories,
Since the caleulation of Polyakov and Susskind was performed in this formulation,

we deseribe it in some detail. We will use this later ou in this thesis,

The lattice Hamiltonian is a diseretized version of the continmm one, and in the
Ay = 0 gange has the form
H = (g*/2a) ¥~ E°(ii 1) E*(7i i) + (1/2g°) > (Tr U(i;i )+ Tr Uiz ), (2.65)

i 7 i

where E°(ii i) are the non-abelian electric fluxes and Ui 77) are the plaguette
variables. At the ends of each link, we define the operators (i 1) and E? (i 1)
which generate left and right gauge transformations on the link varialles Ur(i; ).
The degrees of frvedom of an SU(2) LGT are similar 1o those of an assembly of
coupled rotators[20], E*(ii i) and EL(i 1) are like the angular momentum aperators
of & spherical top in the space fixed and body fixed axes respectively. The first
term in the [Tamillonian is the kinetic energy of the tops, which is the same when

expressed in the space fixed or body fixed reference frames,
E2 (1) B2 (il i) = ES(A ) EL (1) = B (i1 ) E*(# i), (2.66)

while the second term describes the interactions between the different tops. The

operators obey the SU(2) commutation relations

(BB D) = B ), (2.67)
[B2(74), B2(ii4)] = M ET(i7 ), (2.68)
(B §)B® (i 1), B2 §)] = o, (2.69)
[E° (i §) E* (7 1), E2(7 4)] = 0. (2.70)
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A gauge invariant basis for the Hamiltonian is labelled by the simultaneous eigen-
vectors of E*(id )£ (d i), E%(7 ) and E% (i 1) of all the links, and is written as

li{ &) (i 1) m!(i7 i), where

ESEjmm') = j(j+4 D m '), (2.71)
Etfimm) = ml|jmm), (2.72)
ESljmm'y = m'|j mm"), (2.73)

The physical states of the theory are those which satisfy the Gauss law constraint

il

(E E2n i) + Z EZ(i—1 i}) |1} = 1), (2.74)
¥ 1
whiclh enforeey conservation of electric flux at every site.

We now present the strong coupling caleulation of Polvakov amd Susskind [7],
where the existence of a high temperature deconfining pliase was first demonstrated.
I this limit, the partition function for the SU(2) Yang-Mills theory can be rewritten
as that of a spin system having a global center (Z(2)) svinmetry, Tn the strong
coupling limit (g — 00), the kinetic term dominates over (he potential term and the

Hamiltonian is simply

2
H =50 B (@ i) B 1) (2.75)
2a 3
The partition function is
Z =Ty expl—dH), EET'E}

where the prime indicates that the trace is to be carried oul only aver the physical
states satislying the Gauss law constraint. The projection operator which imposes

this constraint at every site is
Pii) = fffrexp (ii“‘ {Z{Ef{ﬁ' i)+ ES(id—i 1’}]-|) : (2.77)
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where ol is the SU(2) Haar measure.

The partition function is

Z=Tr]exp ((—Bg?/2a) E“(ii i) E° (i © ) T1 Pi). (2.78)

It can be rewritten as

Z= Ta'j.(ﬂ' (1) TT exp (—ﬁﬂ—;—}- — {(A).E_(7i §) — il(7i + i).E (& i}) L (2.79)

it
where we have nsed the vector notation for 1, E® (7 §) awl ES(i 1). Caleulating
the trace with respect to the basis states at i particular link, we have
e :
> {jia;b| exp | —J— — B 4l E Wotsies b, (2.80)
2
R

Using L. 2.71-2.73 this becomes

= G655 + 1)

> EXP{—L‘—%——J (O, (2-81)
where the sumination is over all half integral values of y. \, () = T uxp{if?}-] and
15 given by the formula

sin{(j + 1/2)1 .
ull) = sin(l/2) ' (282)

where { is the magnitude of the vector I ! takes values from 0 to 27, The sum over

a single link can be written as

sinl m}l““ (/2 Zoxp :szf_ﬂ]sin{(j + 120 sm((+1/2)0).  (2.83)

Here ! and ¢ are the angular variables at the two ends ol o link. This summation

can be performed nsing

o

¥ (!){p{—f:Eﬂ.-f-fﬂE} = (g) exp — (i) ; (2.84)

E=—png
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where the periodic Gaussian function is delined as

exp(—79°) = ¥ exp —y(o + 2mm)*. (2.85)

The partition funetion is a product of such terms over all links and can be written

s

7 = j: ];[:H{-fi] sin? (”_fl) Ty 200 + U7 + ), 07) ~ it +1‘.}j)

— - 2.86
i sin (—(—l‘f ) Ei]l(l—L;ﬂ ( )
and the function Fis defined as
; I+ r\E i f— Y2
P L o Ir]' e o ‘-.- i' =2 E-.- L e I 21
Fll+ 151 =) = —ezp 2,!392( 5 ) | +esp z,ﬁﬂz( : ) | (2.87)

The function (14 ;1 — {') has the following properties. It is periodic in [ +1" and
L= 1" with period 47 and iy antisymmetric under exchange of 4+ witl | — ', Tt is
mvariant under the transformation | — 27 — | and I' = 27 — ' Sinee the measure
also has the same invariance, it is a symmetry of the partition function, This is
precisely the glohal conter symmetry present in the Lagrangian formulation, Hence,

the partition function in the strong coupling limit resembles that of a SpIn systern

with a global Z(2) symmetry with a rather complicated looking interaction between

the spins.
At low temperatares, the spins are disordered with
{cns(ﬁ)} =0 (2.88)
S 2.

and this corresponds to the phase of confined quarks in whicl the Wilson-Polyakoy

line has a zero expectation value., The correlation fanetion falls exponentially at

large distances as

f_":_}) ) = exp(—plii — i), (2.89)

24




giving a linear confining potential between quarks.

At high temperatures, the spins of the model get aligned giving
(i)
{cns(—g—)} # 0, (2.90)
This state clearly breaks the global center invariance present in the partition function
and corvesponds to the phase of deconfined quarks in which the Wilson-Polyakov
line has a non zero expectation value. The correlation function declines gradually

as

{{‘Oh(f%J cos(ﬂz—])} = M*(1 + cexp(—plii — i |)), (2.91)

giving a serecned potential between quarks.

Since the above caleulation was done in the strong conpling limit, it is natural
to ask il the result will be valid for weak coupling (g —+ 0), which is the region
of physical interest, There are some rigorous proofs for |he existence of a high
temperature deconfining phase [10], which indicate that tlie result will also hold in

the weak coupling limit. In the next section, we describe the Monte-Carlg method

which enables us to handle the weak coupling region.

2.4 The Monte-Carlo Method

Lattice gauge theories in general are not amenable to exact analysis. However, their
resemblance to statistical mechanical systems allows the application of several well
known techniques like series and character expansions, duality transformations ete in
their study. Despite the sucecess of these methods in elucidating their properties, they

are of limited applicability. Numerical Monte Carlo methods |6] on the other hand,

are sufliciently general and can be employed with great effectiveness in addressing
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a variety of issues. Their remarkable success in statistical and condensed matter
physics makes them a promising tool in the study of lattice gange theories. Since

we have emploved this method extensively in this thesis, we explain it here in some

detail,

Expectation values in lattice gange theories are given iy

oy _ 18U (g 1) |O[U] exp(—3S(0)) S
O = o i exp 8] R

where O[U] is some observable expressed in terms of the link variables Uln; pi), The
Monte-Carlo method evaluates this quantity by taking a statistical average of €
over & large nmber of ensembles which are distributed according to the Boltzmann
factor exp(—/1S(07)) present in the above mtegral. These cusemibles are generated

by using a dynamical probabilistic algorithm, by a process of continuons iteratio,

Let K\, Ko..Kn be a sequence of ensembles of the link variables, which are

distributed according to the Boltzmann law. The expectation value of O is approx-

imated by

{2 PR % S0, (2.93)
=N

where (i) is the value of the operator  in the ith ensemble. Tle error i Lhis
measurement. 15 of the order of MEF—F-, where N is the number of ensembles
generated. The algorithm which generates these ensembles, is designed to produce
an equilibrinm distribntion corresponding to a temperature 4, Two commonly used
oues are the heat bath and the Metropolis algorithms, They operate by starting
from some arbitrary confi guration and generating a sequence of configurations which
wltimately converges to the Boltzmann distribution. We Lriefly explain these two

ﬁfﬁg{}ﬁthms, [ this thesis we have used only the Metropulis method to make our

simulations since it is easier to implement than the heat bath,
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1.Heat Bath

In this method, a link variable U{n; ) in a particular confignration is replaced by

U'(n; i) which is chosen with a probability density proportional to the Boltzmann
factor

dP(U) = exp(—FS(U))dL. (2.94)

where S(L7) is the action of the background links whicl interact with this link.

The process is repeated for all the links in a particular configuration, Clearly, this

algorithi will lead to a thermal equilibrium.

2 Metropolis

In this method, a link variable U{n; 1) is replaced by new variable chosen at random

Jnd the chiange in the action (AS) i computed. If the action is lowered, the change

s aceepted unconditionally, otherwise, it is accepred with probability exp(—AS).
This is accomplished by generating a random number z between zero and one, and
Ahe change is aceepted if exp(—AS) > z. It is evident that after u large mumber of

iterations, the Metropolis method will reduce to the heat Lath methaod,

2.5 DMonte-Carlo Results

In this section we hriefly present some Monte-Carlo results which will be usefyl to

us in our ensning studies, Monte-Carlo simulations of the SU{2) [8] and SU(3)

[18] LGTs indicate a phase transition to a high temperature deconfining phase.

The Wilson line in the fundamental representation is an order parameter for this

transition and becomes non zero at high temperatures while it remains zero at low

temperatures. The global center symmetry is spontaneously broken in the high

temperature phase. The nature of this transition is also well known. In the SIJ (2)
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theory, the transition is of second order and has the same critical behaviour as the

three dimensional Ising model [23]. The SU(3) theory o the other hand. has a

first order phase transition as in three dimensional Z(3) spin maodels [18]. These

observations are in conformity with the arguments presentid by Svelitsky and Yaffe

[9], who pointed out several common features between finite temperature phase

transitions in pgange theories and those in spin models.  There is also evidence

25] that sugpests that Lhese transitions will survive in the continunm limit, though

scaling relations like Fe. 2.54 have not been completely established. The evidence

from the behaviour of the Wilson lines, points to a high temperature deconfining

phase. On the other hand, the area law behavionr of spatinl Wilson loops [12], and

the deviations [26] from ideal gas like behaviour at high temperatnres, indicates the

presence of non perturbative effects.

Monte-Carlo simulations of mixed action LGTs have also been performed. These

LGTs have the same continmum limit as those defined using the fundamental Wilson

action. However, LGTs defined with the fundamental Wilson action have a rich

phase structure even at zero temperature. Recently, Gavai et al [13] studied the

ligh temperature properties of an SU(2) LGT, whose action [16] is the swin of the

trace of the plaguetie variables in the fundamental and adjoint representations, The

action they studied is defined by

i3 3,.1 S 4F.
= T‘F Z Trel(n; pv) + % Z Tr U ). (2.95)

=N Tegiee

Thev found thai the SU(2) deconfinement transition (for @, = 0), which is of

second urder, apparently joined the bulk phase transition in this model. which is of

first order. Their observations are displayed in Fig 2.1, A sinilar m erging of bulk and

finite temperature transitions is seen in the phase diagram of the mixed action LGT
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Fig. 2.1 The phase diagram of the Blianot-Crenty model i zerer and finite tem-
perature. The bulk transition is shown by an unbroken fine, while the dashed line is
the finite temperature transition seen by Gavai et al.

F

for the group SU(3) [14]. Various interpretations [13] have been proposed to explain
these features, Taking the merging of the two transitions to be exact, the anthors
[13] have considered the possibility of there being only bulk or finite temperature
transitions in the mixed action LGT. Tf the transitions are all bulk transitions, then
it wouldl mean the absence of any finite temperature transition in this madel, On
the other hand, if the transitions are all finite temperature transitions, this would
mean that the transitions seen on symietric lattices are all small volume effects of
finite temperature transitions. Both these scenarios are diflicult to reconcile with

theoretical arguments and simulation results. The strong coupling approximation
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and Monte-Cuarlo results for the pure gauge theory hoth indicate a finite temperature
transition. The first order nature of the transitions seen on symmetric lattices makes
it difficult to consider them as nite femperature transitions since this would iz
against the notion of universality. A milder possibility is that the merging of the

transitions is not exact [13, H]. This would mean that there are two transitions

with different propertios,

In the next chapters, we make a systematic study of the SO(3) LGT and try to

clarify these issues,




Clla;ptelr 3

Properties of the Wilson Line Variable

In this chapter we consider some properties of the Wilson line variable [ 7(Z), which

are useful in nnderstanding its behaviour. 1t i defined as

i
Li(#) =Tr P exp(ig f diy AT (%, 2474 /2), (3.1)
1k

where the subscript f indicates that the trace is taken in the fundamental represen-
tation of SU(2). The %5 are the Payl matrices, We will then consider the Wilson

line variable defined in the adjoint representation.

In the Hamiltonian formulation, the partition function is
Z=Tr'exp(—3H), (3.2)

where the prime on the trace denotes that it is taken over the physical (Eange
invariant) states. These states satisfy the Gauss law constraint, which can formally

be written as
DiEXE) =10 (3.3)
i the absence ol matter fields. In the strong coupling caleulation of Z for the Str(2)

LGTT], this constraint is implemented by using a Lagrange multiplier,

The partition fuuction for the continuum theory in the inaginary time formula-

tion 15

Z= ]p DA, ::x|1(—% fjm [ &z Te(@,4, - 0,4, + (A, AN, (3.4)
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where g1 = 1,2.3,4 and , is the imaginary time. The sullix pbe indicates that the

field configurations are periodic in T4 with period 3. Linearizing the quadratic term

in Af(«) and introducing the auxiliary field Ef(z), the partition function becomes

8
Z = / DAY DE®DA® exp(fn dz.;/dﬁ‘:c [EE;’{::][I.JE,-{,‘,'(;E} — a A ()
o plir
]' 1 ' [i3 ]
~ (GEA@EN () + S BN () B 2))]).  (35)
Integrating over A% (), gives the Gauss law constraint in Eq.3.3. Using the Fe

YIman

time slicing procedure, B2 (z) and Af(x) are recopnized to Le canonically conjugate,

amd the partition function can be written as

7 =Tr exp(~8H) [[8(D.EX()). (3.6)
Lo
where
H =5 [ @a(B@ B + B @) Bo (7)) (3.7)

This clarifies the connection with the Hamiltonian formalism.

3.1 The Wilson line in the fundamental represen-
tation.

We now consider the meaning of the correlations

{Lf{flef{fﬂf}"LfffnJ} [38}

of the Wilson line variable defined in the fundamental representation. Using a

fermionic representation [32], L;(#) can be expressed as the path integral

Lil#) = [ dn@ wa)dif@, e)a(@, B)n(, 0)

exp( / daai(E,2:)(0h — ig A (&, 1) 7 /) (7, 1)), (3.9)
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where the (r)s are Grassmann variables defined in the fundamental representation

of SU(2). In this representation, the Wilson line is the amplitude for the Grassmann
variables (1., 7), 9(Z, 7)) coupled minimally to the gauge field and moving along the

world line (7, v). The Grassmann variables satisfy antiperiodic boundary conditions

(4, B) = —n(#,0),

?](.‘f,ﬁ} —] —-ﬁ{f,.ﬂ].

Substituting i Eq. 3.5, and integrating over Af(x) one obtains the constraints

DiBE) = gn(@) (7 /2)n(%). (3.10)

The Gauss law i mavdified at the spatial location of the W

tson line, by a fermionic

source in the appropriate representation. Thercfore we Lave

(Lr(FO Ly (Fa). Ly(Z0)) = exp( — BIF(2), B, . 5,) - F(0)])

: "g'_re F(%,,7,..7,) is the free energy of static sources located at 7, Ty Ty and £7(0)

;,il;he free energy in the absence of any static sources,

In[28] it is claimed that (L(F)Ly(0)) correlations are related (o the free EHETgies

- of the static quark-antiquark pair in both the colour singlet and colour triplet con-

| urations. Our derivation above shows that only the colour singlet configuration

ontributes.

Note that we have the freedom of using just one Lagrange multi plier (for each
=

I,_fin Eq. 3.6 and Fo. 3.2, instead of one at each zy of the Feynman time slicing,

provided by -14(7, ry), These two choices are equivaleut, since the Gauss law

constraint comummntes with (he Hamiltonian, and its impasition at one &y requires it

e preserved for all 1y, Tn the Lagrangian formalism this is reflected (see Eq. 3.5)
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as follows, By a local gauge transformation one may almost, bul not quite, make

A (E, 2y) = 0. 1F w(F) # 1, where

d
w(f}) = Pexp (-ig[n drg AT (Z, :::4}7”{’2), (3.11)

then A (¥, £y) can be gauge transformed to zero everywhere except in an arbitrarily

short interval. Equivalently, 42(# zy) can be made to be o constant Af(x), which

18 independent of x; sucll that

u(F) = f:xp[igﬁzlff(f}'r“f?). (3.12)

All this amomnts to saying that the entire gauge invariant content of AY(F, xy) is
contalned in the group element u(#). We can write

u(E) = E}_cp(iqﬁ“{f]-r“f‘.?), (3.13)

where ¢ parametrizes the elements of the group SU(2). I is this variable which

enters as the Lagrange multiplier field in the analysis of the strong conpling limit

of the SU7(2) LGT [7]. To impose the d-function constraint in Fog. 3.6, we have to

integrate over ¢ wsing the SU(2) Haar measure 4(sin? b1/ 2)ed|p|d .

Let us imagine integrating over the Af(x) and E () variables, to express Z

in terms of Af(x) only (as is done in the strong coupling limit). «(7) transforms

homogeneously under local gauge transformations as

ul®) = V(& 0u(@Vz,0) (3.14)

becanse of the periodicity in the g direction. Therefore, only the eigenvalues of

u(Z) enter in the expression for the partition function, Z. In case of SU(2), this

means that Z is expressible in terms of |${:E:'}| only. Z has the global Z(2) invariance
4] = 27 — |4] (3.15)
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for all Z. The high temperature phase is characterized by & spontaneous breaking

of this global symmetry, Thus |q§[ is a disorder parameter for this transition.

Naively, it would appear that one could simply consider the expectation value

Ly(E)) in the fandamental representation. This would directly give exp(—0AF
f 1 :

where AF is the free encrgy of a static quark immersed in the heat bath of ghions,

IF (L (7)) is zero for T < 1., an isolated quark has infinite frec energy, implying

confinement. It has been noted in literature [24] that the fiee energy interpretation

for (L;(Z)) requires exp(—FAF) and therefore (Lg(F)) to e positive definite. But

the high temperature phase has two equivalent ground states, in one of whicl (L )

is negative, Thus one has a contradiction.

This contradiction ecan be resolved by noting that {L;(£]) is ientically zero at

any temperature. There are simply no states satisfying the Gauss law constraint to

the trace in Eq. 3.6, The Gauss law requires a string of half integer electric fiux to

start from &, There is no way of satisfying the source frec Gauss law at the other

end of the string.

On the other Land, (Ly(F)Lg(0)) does not suffer from this problem. Now the

string starting at ¥ can end at 0 and so there are physical slates contributing to the

‘trace in Eq. 3.6. This quantity is positive definite and there is no contradiction with

the [ree energy interpretation,

This sitnation can be contrasted with that of a conventional spin system, for e.g,

f_ﬂ_le Ising model. There, the expectation value (S{F)} of a single spin is identically

zero in any finite volume. The reason is however different. ln a finite volume there

can be no spontaneous symmetry breaking, since there is always tunnelling between

figurations with opposite signs of S(Z) to give (S(L)) = 0. Only in an infinite
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volume system (or at T = (), can we get (S(F)) # 0 with all the spins aligned
in a single direction. In contrast, even in an infinite volume, (Ly(Z)) = 0 simply
because there ave no states satisfying the Gauss law. We can arrange the other end

of the string to be at infinity, but this amounts to introducin g a static anti-quark at

infinity.
1 T 1 T L
0.5 |- lw —
'--_ih_
- |
E e Py i ST ST TN [ S P O S Y o R

100 200 300 400 500
nsweeps, 10
Fig. 3.1 (Lj{£)) plotted as a function of number of sweeps for the SU(2) theory
al high temperatures,

Apart from the above difference, the signal for spontancous symmetry hreakin g
(s the same in both systems. If linggy oo (L (T)Lp(0)) = [{L(0))]* # 0, then the
2} symmetry is spontancously broken. Though this variable directly does not

show that there are two degenerate ground states, the 2(2) symmetry assures us

i

that if there is a gronnd state with (Lg(F)) configurations predominantly having a

nmon sign everywhere, then there is another ground state with (L¢(7)) having

dominantly the opposite sign.

It is not difficult to see the degenerate ground states in simulations, Fver though
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there is no phase transition possible in the finite systems used in simulations, there
15 always tunnelling between possibly degenerate states in a finite volume V, with

probability exp(—al’), where a is a positive constant. This lifts the degeneracy

between the ground states, and the symmetry gets restored.  However, even in

systerns of small size, this probability is so small that the system remains trapped in
a single ground state long enough for it to be considered as an equilibrivm ground
state in the simulations. In the Ising model, the average value of a spin at a given

site, will settle into one of equal but opposite non zero values,

The situation is no different for {Lg(Z)) in the SU(2} LGT. Even though we
have avgued that (L;(#)) is strictly zero due to the Gauss liw, the average value of

(Lg(&]) behaves like S(#) in the Ising model at high temperntures, Fig 3.1 illustrates

tlis behavionr,

In recent simulations, {|L;(#)]) is almost always used to probe the system, but
(|Ls(Z)]) is never zero, and hence not an order parameter in the strict sense. How-
ever, it is more instructive and not more difficult to use (Le(E)) (averaged over a

certain number of sweeps). In addition to being a true order parameter, it provides

more information about the system.

3.2 The Wilson line in the adjoint representation.

We will now consider L,(#), i.e the Wilson line variable in the adjoint representation

of SU(2). This plays a crucial role in this thesis. It is defined as

a
Ly(#) =Tr P exp(ig L duy A (E, 24)T*), (3.16)
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where the subscript e indicates that the trace is taken in the adjoint representation

of SU(2). The Ts are matrices in the adjoint representation of SU(2).

We should not expect (L,(F)) to be identically zero Lecause of the inability of
states to satisy the Gauss law. A static quark in the adjoint representation of SU(2)

can form a colour singlet bound state with a gluon, and therefore satisfy the Gauss
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by

Fig, 3.2 (L) for the SU(2) theory on a 7 3 luttice

law. In the Hamiltonian formulation of LGT, this corresponds to a loop of electric
flux ( of either 1/2 or 1 unit ) starting and ending at the static quark. At 7= 0 in
the strong coupling expansion, the leading contribution is due to a loop spanning
one plaquette, and the energy is AE = k@p + O(8%). This gives a contribution
exp(—k33}) to {Ly(#)). We remark here that for the lattices 4 nd conplings used in

mimerical simulations, this is very small,

The observable (L,(#)) is invariant under the Z(2) transformation because the

adjoint representation of SU(2) has center charge zero. This means that (L,(f)) will
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Iha.v& the same value for the two degenerate ground states of the high temperature

phase of the SI/ (2) theory, Thus, probing the system using (L, ()}, we can detect

1]]& finite temperature transition by a jump in (L,(#)). But, neither is (La(E))

(strictly zero in the low temperature phase, nor do we see a donble valuedness in its

value in the high temperature phase. Nonetheless, (La(¥)}) is s0 small in the low

temperature phase, that it is zero within errors in the simulation (Fig, 3.2). Also,

Q{La[f}} becomes non-zero at the same value as (Ly(E)) (3 = 2.2 on a 7% 3 lattice).

(In Fig. 3.2 we have plotted the value of La(f1) averaged over all lattice sites. which
X

we have denoted by L) Hence it seems to be an equally good observable to locate

the finite temperature transition in the SU(2) LGT. In the next chapter, we shall

use (Lo (F)) 1o study the high temperature phase of the SO(3) LGT.

The properties of (L, () in the high temperature phase of the SU7 (2) LGT have

been studied [20]. Tt is also noted there that in the SU(2) LGT, the adjoint Wilson

]ine. becomes non zero at the same temperature as the fundamental Wilson line,

The Wilson line defined in higher representations [30] has

| imilar studics have also been performed for the group 507(3) [31].

also been studied recently,
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Chapter 4

Study of the SO(3) lattice gauge theory.

In this chapter, we study the finite temperature properties of the adjoint SU(2)

LGT, whose action is defined by

S = %‘-‘ S TrolU(ng juv). (4.1)

UTTTY
The subscript a denotes the trace in the adjoint representation of S0(2).

of an SU(2)

The trace
group element in the adjoint representation is related to that in the

fundamental representation by

Trgl = (TrU) =1 . (4.2)

Unlike the fundamental Wilson action
B = .
N = E Z T?‘f[f I:H, ,uu], (-1.3}
L
which defines the SU(2) LGT, the adjoint action deseribes the S0O(3) LGT, since

the SU(2) link variables U (n; ) and =U(n; 1) have the sae weight. Bven though

the link variables are SU(2) matrices and the measure in tle path integral is the

SU(2)

Haar measure, the adjoint action is equivalent to the § ((3) LGT which uses

SO(3) matrices as its fundamental variables. It has the s classical continuum

limit as the Wilson action. In this limit, the couplings of the two theories are related

by (see Eiq, 2.50)

Jﬁf _— g,ﬁw [44:]
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The zero temperature properties of the SO(3) LGT are well known [17, 19]. It
has & first order transition at 8, = 2.6, which is driven by a condensation of Z (2)
monopoles[19]. The Z(2) monopoles are configurations which carry a Z(2) magnetic
flux inside a three dimensional cube. The Z(2) monopole density in a 3 dimensional

cube is debne] as

ple) = 5(1 = sgn( [T V(o). (1.5)

pEdc

This transition is a confinement to confinement transition. Since it oceurs at a finite

value of {,, it is irrelevant for the continuum limit (which is at 3, = oc).

We are interested in the finite temperature properties of the SO(3) LGT for
many reasons. Firstly, the group SO(3) has a trivial contor subgroup. The center of
SU(2) (£(2)) plays an important role in the deconfinemen transition in the SU7(2)
LGT[9]. Since the SU(2) and SO(3) theories are expected to have the same contin-
unm limit, it wonld be interesting to see how the SO(3) theory reproduces the same
features as the SU(2) theory. Secondly, the SO(3) theory has a phase transition
at zero temperature, which is well understood [19] to be w result of Z(2) monopole
condensation, and may perhaps be useful in explaining its linite temperature prop-
erties. We wonld also like to clarify the situation regarding the mixing of the bulk
and finite temperature transitions, which is seen in mixed action LGTs [13, 14]. As

we will see, SO(3) LGT is the simplest model exhibiting the mixing of bulk and

finite temperature effects.

The finite temperature properties of this model are caleulated from the partition

function

B j U (n; E},p( > Tral(n; uv)). (4.6)

Ty

We first note that the global Z(2) symmetry present in the Wilson action iS5 now




promoted to a local symmetry in the adjoint action. This is because the transfor-

mation
Uit d) = Z(A)U(ii; 1) (4.7)

15 a svimetry of the action, where Z(i) = +1 and can now depend on the spa-
tial position . In the Hamiltonian formalism, the strong coupling limit yields a
spin model with a Jocal Z(2) invariance (see Appendix B), Under the local Z(2)

transformation, the Wilson line transforing as

Elitzur’s theorem [22] dictates that such local symmetries can never be broken and

therefore
(Ly(i)) = 0. (4.9)
The Wilson line expectation value is always zero, and hence it cannot be used as an

order parameter to study the finite temperature transition in this model. Even the

correlation function between two Wilson lines

(Lp(M) Ly (i) = 0 (4.10)

at all temperatures, because a non zero value will break the local 2 (2) symmetry.

For any observable to have a non zero expectation value, it must be invariant
under the local center transformation in Bq. 4.7, A possible candidate is L, (i), the

Wilson line in the adjoint representation. It is defined as
i
Ly(#)=Tr P exp(ig / dy A3 (F,2,)T), (4.11)
0

where s are the matrices in the adjoint representation of SU({2). It has the physical

interpretation of measuring the free energy (F,(7)) of a statie adjoint quark when
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written as
(La(i0)) = exp(~BlF.(7) — F(0))). (4.12)

For the group SU(2), L, (i) and Ly (i) are related by

La(ii) = L3(7) — 1. (1.13)

The trace of the Wilson lines in the fundamental and adjoint representations can
be written as L (i) = Etuﬁ{@] and Ly (i) = 1+ 2cos(0(i1)) respectively, where

exp[i&;’} ave the eigenvalues of the Wilson line. The ¢ il)s are gauge invariant

observables, HmJ‘t]m center transformation on them is
B(i) — 27 — Oli). (4.14)

This changes the sign of L,(ii) but leaves Lo(fT) unchanged. Hence Lo(il) is an
imteresting observable, which can be studied to see if it displays any characteristic
behaviour. However, there is no reason to expect (L, (7)) to be zero even at low
temperatures, since an adjoint quark can always form a colour singlet bound state

with a ghion,

We now make a numerical study of the SO(3) LGT (see Appendix A for more
details of the simulation ). We consider the behaviour of the adjoint Wilson line, the
Z(2) monopole density, and the energy density which is defined as J = 1— sTrU(p)

for every plaguette. We measure the spatial averages of these variables, which are

defined as

(1.15)

(4.16)

(4.17)




In the above definitions, N,, Ny and N, are the number of sites, plaquettes and three

dimensional cubes respectively. We have measured (La) on a 7* 3 lattice and find
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Fig. 4.1 The behaviour of (a) {L,), (b) Energy density () and (¢) Z(2) monopole
density(p) on a 7° 3 lattice.

that it is very small (Fig. 4.1a) in the low temperature plase (small 4,), though
there is no reason for it to be exactly zero. This behaviour can be understood from

the strong coupling expansion. The strong coupling expansion gives
(La) 2% (B4 8)4Nx, (4.18)

which is very small for the couplings and lattices we are considering. This is presum-
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ably the reason for the smallness of (L,) at low temperatures. At high temperatures
(Ja large), (L.) # 0 and it jumps abruptly across some critical value (3, s228).
Thus it is an observable which can detect a transition, like any other order param-
eter. Fig 4.1a shows the variation of (L,) with 8, on a 7 3 lattice. The variation

of the encrgy density (P) and the Z(2) monopole density {p) are also shown (see

P S L dz &0 i oz LhbL LAl o g b ek %
2 ity SRR I S PP A e

[

it syt e A A B i
™ e T =8
nsweeps,/ 10

Fig. 4.2 L, plotted against the number of Monte-Carlo sweeps ona 70 3 lattice with

a hot start (nnbroken lines) and a cold start (broken lines). The value of 8, = 3.5.
Fig. 4.1b and Fig. 4.1¢). The rapid fall in the energy density at 4, = 2.6 indi-
cates a first order transition. This transition is driven by a decondensation of Z(2)

monopoles since their density drops drastically for 8, > 2.6.

An unexpected feature is that (L,) takes two possible values at high tempera-
tures, one of which is positive, while the other is negative. The value of (Lg) attained
in the high temperature phase seems to depend on the initial configuration in the
Monte-Carlo simulation. We find that a random configuration (hot start) settles

down to either a positive or negative value of (La), while an ordered configuration
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(cold start) always prefers the (L,) positive value (Fig 4.2). Since the system spends
a very long time in each of these states (we have not seen any tunnelling events till
100000 sweeps), we can make meaningful measurements of various quantities. We
have measured the energies of these two states, and find that they are very close to
eacl other, though the state with (La) positive seems Lo have a marginally lower
energy. Since there is no symmetry requiring the presence of degenerate ground
states, we expect that their energies are different, if only by a small amount. In that
case, the energy gap between the two states will increase as the thermodynamic
limit 15 reached, and the state with {Ly) positive will be the equilibrium phase. We
will return to the question of the energy difference between these two states later
o in this chapter. The Z(2) monopole density is very small at high temperatures
in hoth these states. Tn the plots shown in Fig. 4.1, the points showing the values of

the energy density and Z(2) monopole density for the two states, almost coincide.

We would like to understand the nature of this transition and the structure
of the high temperature phase. In order to muke a closer study of the two high
Lemperature states, we have obtained the single site histoprams for L,(7) at low
and high temperatures. The histogram for L,() at low (emperatures (Fig. 4.3b)
shows that the conligurations are peaked around La(ii) = - 1, though there are also
significant contributions from configurations with positive Lo(ii). The net effect
is a very small value of (L) (almost zero), At high temperatures, the histogram
shows o peaking of configurations at positive values for the state witl (La) positive

(g db) and at —1 for the state with (L,) negative (Fig. 1.90).

We will now show that the state with (Lg) positive is like the high temperature
deconfining phase of the SU(2) theory. We present similar histograms for the SU7(2)

theory in the low and Ligh temperature phases (Fig. 4.5 and Fig. 4.6). In the SU(2)
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theory, (Ly) is non zero and degenerate at high temperatures. The two degenerate
~values of (Ly) are related by a global Z(2) transformation. In the last chapter, we

-showed that (L.} is also non zero at high temperatures and takes the same value for

L.f W
Fig. 4.3 Distribution of (a) Ly(5i) and (b) L,(#i) in the low temperature phase of
the SO(3) theory. This is ona 7 3 lattice with 8, = 2.0.
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Fig. 4.4 Distribution of (a) Ly(f) and (b) Ly(ii) in the SO(3) theory at high
temperatures for the (L,) positive state. This is on a 7 3 lattice with 5, = 3.5.

either of the Z(2) related values of {Ly). At low temperatures, both (Ly) and (L,)

are very small. Note the similarity in the histograms for L,(7) in the (L,) positive




state of the SO(3) theory and the high temperature phase of the SU(2) theory. Both
‘these histograms show a peaking of configurations in the positive region of Ly (7).

After comparing them, we ean conclude that the state with (L,) positive in the
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Fig. 4.5 Distribution of (a) Ly(i) and (b) La(i) in the low temperature phase of
the S0/(2) theory. This is on a 7 3 lattice with §; = 1.5,
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Fig. 4.6 Distribution of (a) L;(f) and (b) Ly (7) in the high temperature phase of
the SU/(2) theory. The value of 8; = 3.5.

SO(3) theory is like the high temperature phase of the SU(2) theory. A comparison

of the numerical values of (L,) in this state with those in the high temperature
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phase of the SU(2) LGT at related couplings (see Eq. 4.4), shows a good agreement

which improves at larger values of 8; ( 4, ) (Fig 4.7h). Since the energy density is
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Fig. 4.7 Comparison of (a) P and (b){L,) for the SU(2) (clused points) and S0(3)
{open points) theories at corresponding values of g roand /.
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Fig. 4.8 Behaviour of L, as a function of Monte-Carlo sweeps on a sytmetric (74)
lattice at [}, = 3.5 for (a) hot start and (b) eold start.

defined differently in the two theories (P =1 — %T‘I‘_ﬁ.:’{p} in the SU(2) theory and
P =1-3Tr0/(p) in the SO(3) theory), we cannot compare them directly. Instead,

we can compare the values of an observable which is defined in the same way for
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both theories, e.g. (T U(p))®. Tts values (shown as P in Fig. 4.7a) in the high
temperature phase of the SU(2) theory and the (L,) positive state of the S0(3)
theory {at couplings related as in Eq. 4.4) are shown 1o approach the same value.
The Z(2) monopole density is also very small (almost zero) in both cases. These
observations provide further evidence that the hi gh temperature phase of the SU( 2)

theory and the {L,) positive state of the 50(3) theory are the sane.

The corresponding Ly () histograms are also showi. At low temperatures,
they are peaked around zero in both the SU(2) and SO(3) theories (Fig. 4.5a and
Fig, 4.3a). At high temperatures, the L¢(7i) histogram for the SO(3) theory in the
(Ly) positive state is a double peak distributed symmetrically about zero (Fig. 4.4a).
This is expected from local Z(2) invariance. The Ly(#) histogram for the SU(2)
theory shows a peaking at positive or negative values, depending on the Z(2) sector

it gets trapped into (Fig, 4.6a).

The state with (L,) negative is absent in the SU(2) model, and we must seek
elsewhere for an explanation. We will show that this is the hulk phase of the SO(3)
theory (at large 4,), at high temperatures. To see this, let us study the behaviour
of {L,) on a symmetric lattice, in the S0O(3) theory. In the thermodynamic limit,
this would correspond to the zero temperature situation. At zero temperature, (L,)
is expected to be zero, but on finite lattices it will not be zero, We have mea-
sured (L,) on a symmetric 7' lattice and find that it too has an unusual behaviour.
Depending on the initial Monte-Carlo configuration, L, settles down to a negative
value (Fig. 4.84) for a hot start or oscillates between negative and positive values
without settling down to any particular value (Fig. 4.8h) for a cold start. This be-
havionr persists for a very large number (100000) of Monte-Carlo sweeps. Since the

state reached by the hot start is the one more likely to be the true ground state,
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we regard this as reasonable evidence for the (L,) negative state to be the ground

state. We have also obtained the single site histograms for L 7i7i) and L, () in this
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Fig, 4.9 Distribution of (a) L(#) and (b) L,(77) at high temperatures in the SO(3)
theory for the (L.} negative state. This is on a 7° 3 lattice with [, = 3.5.
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Fig. 4.10 Distribution of (a) Ly(fi) and (b) Ly(7i) in the S(}(3) theary on a sym-
metric 71 lattice at 3, = 3.5.

state (Fig. 4.10). Note the close similarity between thent and the ones for the LLay
negative state on a asymmetric lattice (compare Fig, 4.9 and Fig. 4.10). Thus the

(La) megative state seen on asymmetric lattices (e.g 7° 3 in Fig. 4.1a) is the bulk
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phase at non zero temperature. Since the energies of the (L,) positive and (L,)
negative states are almost equal, we see both these states in sitnulations. This is the
reason why we see the bulk phase even on asymmetric lattices. Also, on asymmetric
lattices we observe only the state with (Lo} positive appearing immediately after the

transition, while the state with {La) negative starts appearing only at larger values

of 4,

As we remarked earlier, the state with (L.) positive has a lower ENETgY 0N ASym-
metric lattices and corresponds to the true ground state. On the other hand, on
symuietric lattices, we never see the state with (L.} positive and the system always
prefers the (L) negative state (for a hot start). The inability of the cold start to
settle into the (L,) negative state on a symmetric lattice (see IMig. 4.8b), may be due
Lo its correlated nature, It seems to be causing some kind of tunnelling behaviour
between the bulk ((L,) negative) and finite temperature ((Lq) positive) states. We
will have more to say about this behaviour shortly, We Lave measured the Crergy
difference hetween the (L,) negative and {(Lu) positive states, as a function of tem-
perature. This was done by fixing 8, and varying N, Two values of 4,, 3, = 3.0 and
e = 5.0 were chosen. As N is decreased (increasing temperature), we notice that
the energy differcuce between the (La) positive and (L,) negative states increases
with temperature. The energy of the state with (L) positive becomes smaller and
smaller than that of the (L,) negative state. This difference i strikingly brought
out at 3, = 5.0 (Fig. 4.11). On the symmetric lattice (N, = N, ), there is only the
{L.) negative state, while the (L.) positive state starts appearing at some N, < N,
(non zero temperature). We have not been able to locate the precise value at which
the high temperature phase appears, because even on a 7° 6 lattice (very low tem-

perature), the state with (L,) positive has a lower energy than the (L,) negative
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Fig. 4.11 The cnergies of the (L,) positive (solid points) and (L.} negative (open
points) states as o function of N, for 8, = 5.0. The (La) positive states have a lower
cnergy,
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state. Note that there is only the (L,) negative state on the 7' lattice. For 8, = 3.0,
we again see the lowering in energy of the (L,) positive state on increasing the tem-
perature, though the difference does not decrease as much (Fig. 4.12). For this value
of conpling, we do not see the {L,) positive state at N, = 6 as we did for g, = 5.0.
The {L,) positive state starts appearing only at N, = 5 and has a lower energy than
the (L,) negative state. Also, at Np =1 (very high temperature) there is only the
(L4} positive state, From the ahove observations, we conclude that the transition
is from the low temperature confining phase ((L,) negative) to the high tempera-
ture deconfining phase ((L,) positive), at a temperature whicl is very small on the
lattices and conplings we are using. Moreover, the value of the critical temperature
though very small, seems to be slightly higher for g, = 3.0 than for {4, = 5.0. Since
the eritical temperature is likely to be higher at smaller values of 4, we have con-
sidered 3, = 2.7, which is very close to the transition point on the 74 3 lattice. For
this coupling, the phase with (L,) positive still does not appear for N, = 6. We
show in Fig. 1.13b, the histogram for L, on this lattice. This was got after studying
the configurations from a cold start. Note the double peak structure in this his-
togram, The peak at positive values of L, is higher than the one at negative values,
There is also a significant density at L, = 0. The single site histogram for Lj(r)
(Fig, 4.13a) 1s also shown, The single peak centered about zero as in Fig, 4.10a is
Also seen o be breaking up into two peaks. Such double peaks are often seen in the
phase coexistence regon of first order phase transitions. 1he energy density on the
other Land does not show a double peak structure, We shiow similar histograms for
N, = 5 at 4, = 27 (Fig. 4.14). Here the double peaks have w wakened and the
systent is spending minch more time in the (Lg) positive phiase. We also present the

single site histograms  for Lg(f) on the Ny = 6 and N, =5 luttices (Fig. 4.15).
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Note the slight change in the distribution of L,(7) on these two lattices. On the
N, = d lattice, the svstem has completely moved into the {Ly) positive phase and
the histograms show a single phase structure (Fig. 1.16 and Fig. 4.17). All the above
mentioned histograms were obtained after performing 100000 Monte-Carlo SWEEPS.

We interpret these histograms as arising out of tunnelling of configurations between
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! MGy ]
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Fig, 4.17 Distribution of L, () for the N, = 4 lattice at /4, = 2.7

the (L,) negative and {L,) positive states. This is because we are somewhere near,
if not exactly al the transition temperature. We offer this as further evidence for

the existence of a transition at very low temperature.

Let us briefly sumimarize what we have done. For large villues of 3,, we observed a
transition fron a bulk phase (the state with {L,) negative on a symmetric lattice) to
a high temperature phase (the state with (L,) positive on a asymmetric lattice). We
were unable to locate the transition precisely on the lattices that we were using. This

is because by varying N, we change the temperature only in discrete steps. Across
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Fig. 4.18 The behaviour of (a) {L,), (b) Energy density (£) and (c) 2(2) monopole
density ona 74 2 lattice,
this transition, (L,) changed from a negative value to a positive value. Despite this
discontinuous jump in (La), other quantities like the energy density changed quite
smoothly (see Fig. 4.11 and Fig, 4.12). Since we are not even able to locate the
transition with precision, we cannot make any concrete statement about its order.
However, the smooth behaviour of the energy density across it suggests a weak first

order transition.

At small 4, the high temperature properties can be understood from the be-
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Fig. 4.19 The behaviour of (a) (L,), (b) Energy density (#) and (¢) Z(2) monopole
density on a 7 1 lattice,

haviour of the zero temperature bulk transition. We already mentioned that the
S50(3) LGT has a transition at zero temperature, which is driven by the decon-
densation of Z(2) monopoles at 8, = 2.6. This is known to be a coufinement to
confinement transition. As the temperature increases, the Z(2) monopoles decon-
dense at a smaller value of 4,, due to the thermal fluctuations. The transition seen
on the 7 3 lattice at 8, ~ 2.6 is precisely this bulk transition, though the critical

f, has not shifted much from its zero temperature value. At higher temperatures

59



(lattices of smaller temporal extent), the eritical /4, keeps decrensing. This shift
in the eritical value of /1, is clearly seen by studying the monopole density or the
eergy density on 7 2 (Fig, 4.18) and 7° 1 (Fig. 4.19) lattices. Another feature seen
on these lattices is the appearance of the (L,) negative states only at larger values
of ,. This is hecanse these lattices correspond to higher temperatures, and a larger

value of 4, i required to see the bulk phase.

Now we present our conjectured phase diagram for the SO(3) LGT at finite
temperature (Fig. 4.20). The small 4, phase at zero temperature is a condensate of
Z(2) monopoles. The large phase has a very low density of Z(2) monopoles. Both
these phases are confining phases. Both of them undergo transitions to a conmmon
high temperature phase, althongh at different temperatures. This high temperature
phase is characterized by a non zero and positive value for {L.). As we showed, this
phase is like the deconfined phase of the SU(2) theory. In the large 8, region, the
fransition is from the (L,) negative phase to the (La) positive phase, while in the
small [, region, it is due to a decondensation of Z(2) monopoles. In the small 3,
region, we show the shifl in the eritical coupling causing monopole decondensation.
In the large {4, region, we indicate the expected transitions by a dotted line, For
large d,, the datied line would fall off to zero in a manner consistent with asymptotie
freedom, just as in the SU(2) t.her:rr-}r. As a consequence of asymptotic freedom, this
line is very flat [or large 3,. At smaller M, it would rise and join the line of bulk
transitions (shown by a solid line). The point of contact is very close to the T =0
axis. This is beeause as we have already seen, the crifical lemperature is very small
on the lattices we are using. An explanation for this is provided by the relation
between the conplings of the SU(2) and SO(3) theories in the classical limit in

Eq. 4.4. To see a transition in the S0O(3) theory for 4, > 2.6, one would have to he
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in the region gy > 5.76 of the corresponding SU(2) theory. This requires lattices
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Fig, .20 The finite temperature phase diagram for the S0H3) LG'T. The solid

line indicates the bulk transition while the dotted line is the finite temperature
trausition. Here T = -

ol large temporal extent, Note that f§7 = 2.76 on a N, = 16 lattice [25], which
corresponds to a very low temperature at a fixed value of 3,. The phase diagram
of the 50(3) LGT can be contrasted with that of the S17(2) theory. In the S{7(2)
theory, the line of finite temperature transitions rises mueli faster (at small ;) than
in the SO(3) theory, For N; = 3 (T = 0.33 in lattice units) it will be at By=12%
which is much above the line in the SO(3) theory. This dilference in behaviour at
small 37 (/3,) in the two theories is because of the Z(2) monopoles, which are copious

in the SO(3) theory while they are sparse in the SU(2) theory,

Finally, we mention that the positivity of the free encrgy of an adjoint quark
requires (L,) to be always positive. But we have observed a negative value for (L,).
We suggest that as the lattice size is increased in all directions, the absolute value

’;ﬁé};—:ﬁ
A aL§>

: ‘f"/'ﬁ“ﬂ& b
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of (L) will decrease and probably become small and positive in the thermodynamic

limit,




Appendix A

In this appendix we present some details about the simulation procedure which
we adopted in order to obtain our results. We used the Metropolis algorithm in
generating successive Monte-Carlo configurations. A new configuration for a link
variable was generated by multiplying the old link varial.le Ly an SU(2) matrix,
which was chosen at random from a table of 100 such elements. In order Lo satisfy
the principle of detailed balancing, the table contained the inverse of every element
present in it This table was generated afresh after all the links in the lattice were
updated once. Our simulations were usually for 10000 swieps and measurements
were made al every tenth sweep. The autocorrelation function was (uite mﬁall
after ten sweeps so that we could regard configurations separated by ten sweeps as
independent ones, In some cases, we performed simulations u pLo 100000 sweeps as
indicated in the appropriate places. The errors were estimatod by simply calenlating

the square root of the variance of the data.
Appendix B

Here we show that the SO(3) LGT in the strong conupling limit can be rewritten
das i spin model with a local Z(2) symmetry, Our caleulation is performed in the
Hamiltonian formalism. The caleulation for the SO(3) theory closely parallels that
of the SU(2) theory except that while caleulating the trace, only integer angular
momentum representations are summed over. We depart from the caleulation of
[7] while sumiuing over the representations of SU(2). In the SU(2) theory, the

contribution to the partition function at a particular link is given by

i Etxp{_—ﬁg—z‘iﬁi] sin[(7 + 1/2)1] sin|(j + 1/2)! (4.19)
F=0,172
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In the SO(3) case, this summation has to be performed only over integral values of
J. Writing the product of sine functions in terms of cosines. we get

Hg* —fq?

L“l[.ll{— Zl“{[)( J ]l(_:+1,.r‘2 )[ﬂﬂb ((F+1/2)(L =) — cos((7 + 1/2)(t + )],

(4.20)
where we have also completed j(j + 1) to a square. Relabelling the summation by

=27+ 1, we got

ig?, &, — gt [T L4+ 1
%uxp[iﬁ-}f%aexp{ ][::i.:ﬁ[j"(T}] —cos( ' ——;—}Il] (4.21)

Since j takes only integer values, j* takes only odd values. In the case of 5U(2),
the summation would have been over all values of 3 since j takes all half integral

values, The respective snmmations for SU(2) and 50(3) are

L osnt22 3 S~ ot =By ettt =P osp it R Y
5 expl( 7 ] lezt.ap[ % Yeas(j'( 5 )} — cos(j'( ——}]l] {4.22)
F i’ e
—l\].l : }l Z exp(— -~H —— 1)) — cos( /' T (4.23)
B =13 = =

Under the transforiation | — 27 — L and £ — 20 — ', Lot Eq. 1,22 and Eq. 4.23
are: unchanged. This is the global Z(2) symmetry which is present in both models.
However, only Eq. 4.23 is invariant under | — 27 — [ and ' — ', This is because
under this transformation, the terms in Eq. 4.23 just get rearranged. Eq. 4.22 is
clearly not invariant under this transformation because odd | terms are unchanged,
while the even ' terms pick up an overall sign. Thus the effective spin model for
the SO(3) theory in the strong coupling limit has a local Z(2) invariance. Using

this property, the partition function for the S0O(3) theory can be written as

L= ] Hrﬂ[u}bm ( 7 }) 11 Fi() +”ﬁj—ﬂ' ) — b7 +1)) (4.24)

i Ei]'l[g';—j:]hjl{““ II]‘
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and

Fl+ 00— 1) =

Bl e

(FA+150=0)+ Pr—1+ 127 — L =) (4.25)

where F'({ +1";1 —!') is the function otcurfin_g n the SU(2) theory (see Chapter 2).
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Chapter )

Conclusions.

L this thesis we made a study of the SO(3) LGT at finite temperature. We mainly
considered the properties of the Wilson-Polyakov line delined in the adjoint repre-
sentation of SU(2). The behaviour of the Z(2) monopole density in determining
the various phases of the theory was also considered. \We showed that the high
temperature phase of the SO(3) LGT is like the deconfiye phase of the SU(2)
LGT. Unlike in the SU/(2) theory, there is na breaking of any symmetry in the high
temperature phase. Since the SU(2) and SO(3) theories are expected to have the
same continuum limit, this casts doubt on the relevance of the center symmetry for
the continunm limit, Sinece the S0(3) LGT has a zero temperature transition, we
noticed an interference of the bulk phase in the finite temperature system. We were
able to trace the behaviour of the bulk transition with temperature. This transition
is of first order and is caused by the decondensation of Z(2) monopoles, just as in
the zero temperature theory. In addition, we presented :."rilrleum: for a new phase
transition in the large 4, region, which is the region of relevance for the continuum
theory. Though we were not able o locate the transition precisely, we showed that
the energy density changed smoothly across the transition. The adjoint Wilson line
on the other hand, changed discontinuously across the transition. Based on this
hehaviour, we suggested that the transition was weakly of first order. Since a sec-

ond order transition is required to take the continuum it we suggest that this
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transition will weaken as we approach the continunm limit. We then presented our
conjectured phase diagram for the SO(3) LGT at finite temperature. We would
now like to discuss some of the implications of our vesults for the high tempera-
ture phase of the SU(2) Yang-Mills theory. The single site histograms for L)
show that the confipurations in the high temperature phase are mainly clustered
around positive values of Ly(if). Since the trace of the Wilson line in the adjoint
representation can be written as Ly(d) = 1+ 2cos(8(r)). this implies that 0(f) is
peaking at cortain values, But #(i) is nothing but the phase of the Wilson line
variable. Tt is the 4.1, (F) field of the continuum theory in a particular gauge. This
indicates that the A, (F) field is getting a non zero expectation value in the high
temperature phase. Unlike the 0(i1) field, which is gauge mwvariant, A4(T) is not a
gauge invariant observable. Hence, at high temperatures the theory s in the Higes
phase. We can define the Higgs phase in terms of a gauge nvariant object like #(r)
or in terms of a gauge variant object like A4(Z). Studies of the effective potential of
A (%) [33] have suggested that the SU(2) Yang-Mills theory is in the Higgs phase
at Ligh temperatures. Arguments based on the dimensional reduction of the SU(2)
Yang-Mills theory at high temperatures into the SU/(2) adjoint Higgs model, have
also considered the possibility of a Higes phase at high tewperatures [31]. [t would
he interesting to study the properties of the high temperature phase using the Higgs
deseription. It is also important to determine the exact nature of the transition

that we observed in the SO(3) LGT and see how it behaves as we approach the

continnnm limit. We hope to address these issues in the future.
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