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Abstract

In this thesis, we undertake a theoretical study of the interlayer pair hopping mech-
anism of high temperature superconductivity. Any theory claiming to explain high
transition temperatures in the Cu-O based compounds has to acconnt for the anoma-
lous normal state observed experimentally in these materials, Accordingly, in chap-
ter 1, we review a few well known experimental facts and argue these can be recon-
ciled with the assumptions that (a) the low energy excitations in the normal state
are spin-chiarge decoupled and (1) the conducting state above T. is two dimensional.
We then review observed T, systematics in the Bi family of high T, superconductors
and show how interlayer hopping can account for this. In chapter 2, we review some
basic notions of RVB theory. Our main resulls are presented in chapters 3, 4, 5 and
6. Chapter 3 concerns the origins of the pair hopping mechanism. In this chapter,
we present a simple microscopic derivation of the effective hamiltonian describing
pair hopping. We examine how a system of noninteracting spinons and holons re-
sponds Lo a weak interlayer coupling £ and show thal physical processes involving
holon pair hopping (between the coupled layers) are generaled. In chapter 4, we
discuss the limitations of working with the effective hamiltonian for the holons. We
present a model hamiltonian for pair hopping and obtain a gap equation which is
different from Lhe BUS equation. We study the momentum and temperature de-
pendence of the gap in detail. We see that the gap remains constant almost upto
T. and then falls steeply. To illustrate this peculiar beliaviour, we calculate the
Josephson current between two superconductors and obtain resulls in good agree-

ment with experiment. Chapter 5 contains some exact results for finite size clusters,
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We show that in].:lsl.m‘ H1I|]l:'1'l‘”|1r]1]!'| ing correlalions are established and enhanced h}r
the interlayer coupling ¢, We also show that il the constraint on donble aecupancy
(arising from the large 1F) is relaxed, these correlations decrease with £, These
results demonstrate the importance of strong correlation vis a wis pair hopping. We
address this issue again in chapter 6 where we show if single electron hopping be-
lween the layers were not blocked, T, would actually decrease with £, Finally, we
discuss how single electron hopping (between the coupled Cu-0 layers) acls as a

pair breaking mechanism and examine its elfect on the supercondueting gap.
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Chapter 1

Introduction

The phenomenon of high temperature superconductivity ohseved in Cu-Q hased
compounds continues to be one of the oultstanding problems in condeused matter
physics. The primary reason for this is that any candidate theory claiming to {*.-xplnin
high transition temperatures has necessarily to aceount for the anomalous normal
state of these compounds. Since the discovery of these compounds, a variety of
experiments have been done to study the normal state. From these experimental
results, it is becoming increasingly evident that the normal state of the ceramic
superconductors is nof a Fermi liquid and the physics can well be deseribed by a
one band large U Hubbard model [1]. This has been the mainstay of the Resonating
Valence Bond (RVB) theory developed by Anderson and collaborators (2], [3]. Hence
it is desirable to study the mechanism of high temperature superconduetivity within
the framework of the RVDB theory, The first step in this direction was taken by
Wheatley, Hsu and Anderson (WHA) [4] who proposed the interlayer pair hopping
mechanismn of high temperature superconduetivity,

In this thesis, we study the origins and some consequences of this mechanism.
sinee the large 17 Hubbard model {in two dimensions) is vel to be solved, we cannot

claim to have a complete theory of Lhe superconducting state. Our aim is to show



that the WHA mechanism is consistent, both with our understanding of the large
U Hubbard model as well as many experimental results, if not complete.

The WHA mechanisin proposes that superconductivity in the enprates is due to
the coupling between Cu-O layers. The interlayer coupling canses pairs of electrons
to hop between the coupled layers and this, in turn, canses (hree dimensional su-
perconducting order. This mechanisimn is peculiar to the cuprate superconductors,
Le., it cannol be envisaged in materials that helave like conventional Fermi lquids.
More precisely, the WHA mechanism is an extension of the physics of a large-1I
Hubbard model. Indeed, the most attractive feature of the RVB scenario is that the
anomalous normal stale, superconductivity and high transition temperatures are all
mtimately related Lo one another.

The idea of interlayer pair hopping as a mechanism of superconductivity is built

on the following important nolions:
o The normal stale of the cuprate superconductors is a non Fermi Liquid.
o Single electron hopping between the Cu-O layers is suppressed.
o 7. is governed primarily, il not solely, by the interlayer coupling.

In this introductory chapter, we argue that most of the available experimental results

can be reconciled with these notions.

1.1 The normal state

The very need fo formulate a theory of superconductivity which is different from

the conventional BCS theory arises from the experimentally observed normal slale



propertics of the cuprate superconductors. 'This is because the BCS theory of super-
conductivity presupposes that the normal state is a Fermi liquid, i.e., one in which
the quasiparticles have the same quantum numbers as electrons. Therefore, Lhe non-
interacting Fermi system is a good zeroth order approximation of the normal state
and interactions can be analysed by perturbation theory. The quasiparticle excita-
lion is related to the bare electron by the wave Tunction renormalization constant

Zi, which is defined by

g | I — i ReX{k,w) |_1
Jw

r; LY T |

[

where Lk, w) is the sell energy of the interacting system and J3), is the quasiparticle
energy. Zi 15 directly related lo the strength of the quasiparticle peak as can be

seen from Lhe expression for the single particle Green's funetion

- Ldh b e
ﬂr(ﬂ,w} = ,{_._;I—.d—[Ek_ﬂ}

+ ineoherent part.

(21 is the [raction of amplitude in, say, photoemission spectroscopy that appears in
the peak associated with the quasiparticle. Anotlier measure of 7, is the disconti-
nuity observed in ocenpancy ny at the Fermi level ky. 1T 2 is zero, the quasiparticle
picture is inadequate to describe the physies and Fermi liquid theory fails.) Super-
conductivity is caused by some mechanism (nol necessarily due to phonons) that
causes an allractive force between these quasiparticles. This leads Lo pair condensa-
tion al low temperatures, However, in Lhe cuprate superconductors, there is strong
experimental evidence to snggest thal the normal state is not a Fermi liquid. This

then invalidates the basis of the standard BCS theory and necessitales a different

formalism. 5o we now review some of the well established facts.



1.1.1  Planar resistivity

One of the most striking features of the normal state of the Cn-0 superconductors is
the inplane resistivity, po. It is linearly dependent on temperature from fairly high
temperatures ( 700 K) dowi to the superconducling transition lemperature, T.. This
15 5o even when T, ~ 10 K (in the Bi 2201 compound). This behavior is generic and
material independent. (See [5] for a review.) This then implies thal the Lransport
relaxation rale (i.e.; the lifetime of charge carriers), 7, is proportional to T-1. T
being the temperature, This fact is further confirmed by infrared conductivity [6]
studies. Such a resull is inconsistent with the normal state being a Fermi liquid for
which r oc 7% in three dimensions and (7?10 7)1 in two dimensions. Recall that =
is the lifelime due to electron-electron scattering, Electron-phonon seatiering does
. . 2. Pp ;
canse 7 oo 171 bul this happens only at temperatures 7' > i where i is the
Debye temperature. There is no known mechanism by which, in a Fermi liquid, the
lifetime can be oc T In fact it can be shown theoretically [7] that if 7 T-!, then
the system is nol a Fermi Bguid in the precise technical sense. The wave Tunelion
renormalisation Z; become zero al the Fermi surface. Planar resistivity therefore
constitutes one of the strongest indications that the normal state is not a Fermi
liguid. This was first noted by Anderson and Zou [8] who showed thal the linear
temperature dependence arises naturally i the low energy quasiparticles are spinons
and holons rather than electrons. The electron (not being a stable quasiparticle)
decays into a spinou and holon. This lifetime tnrns out Lo he inversely proportional

Lo temperature giving rise to linear resistivity.



1.1.2  Hall ellTect

The Hall effect in the cuprate superconductors is another experiment which indi-
cates the breakdown of conventional Fermi liquid theory. In these materials, the Hall
coefficient 1y is strongly temperature dependent. Iy is observed to be inversely
proportional to temperature while in a Fermi liqnid il is independent of tempera-
fure. The non Fermi liguid aspect of ’;.hi.&- resull is most clearly bronght out by the
experimental results on the Hall angle 0.

Let z be the direction of the applied magnetic field 2 and let & be the direction
along which the current is passed. (The Hall field is then along the i direction.) We

then have (Ohm's law)

! Pre fay I
En Pyz Puy "r?.r
where pi; is measured directly and ay; caleulated from the relation
i Orr Ouy .
Jy CTye Oy Iy,

. In the steady state, J, = 0 (no Hall current) and J, = .J. Then in the weak field

Wy B - Py |
limit —7 < 1, il is easy Lo show that Ory = —— aldl O = 0y = — =g
e Pra iy s
:Lrj? ® fpr—1 T Al Wb IR
where ¢ = ——7,. As we saw earlier, 7; o 1! (giving linear resistivity)., The
m

4 . I 2 .
Hall angle @y is defined as tan 8 = 22X, For reasons that will become ohvious, we

jqjtr
introduce, following Anderson, a second lifetime 75 (in addition to 7 ) and write the
. i . g ue
off-diagonal component o, as rw.y where w, = ——. From the definition of the Hall
TR

~angle, it follows that the measurement of the [Tall angle is actnally a measurement

of 7 (the 7, dependence is lost because o cancels ont). Experimentally, it is found




that tan @y ~ 1% as shown in fig. (L1). [9]. Therefore 75y ~ T2, i, the
lifetime associated with the Hall effect 77 is not the same as that associated with
resistivity (7). In a Fermi liquid these two lifetimes have identical temperature
dependences and there is only one transport lifetime 7. The emergence ol Lwo
lifetimes is extremely suggestive of two types of quasiparticles— the spinons and
holons. An external electric field causes transitions from momenti states b to &
where k I i and the relevant lifelime is that of the decay time of the electron into a
spinon and holon. On the other hand, an external magnetic field canses transitions
from k to &' where & L . Tt has been argued thal the lifetime associaled with
this scaltering is just the spinon-spinon scattering rate [10] which gives rise to the

observed temperature dependence of the Hall angle.
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Fig. L1 Temperature dependence of the Hall angle.



1.1.3 NMR. relaxation

This is yet another “anomalous” experiment. The relaxation time for the Cu nuelei

T can be fitted well with the following expression : = a + 1", as shown

il
T

in fig. (1.2). This is quite remarkable because of the nonzero a. This implies that
there is, in principle, a finite relaxation time even at zero temperature (assuming the
normal state to persist Lill zero Lemperature). The quantity a is strongly dependent

; : i 1 1 i i
on the doping concentration. This behaviour of e has heen studied by Sardar
1

and Baskaran [11]. Their idea is based on the fact that the spin lip operator acting
on an RVB ground siate produces a physical state whose overlap with a two-spinon
state is nonzero. Thus, the nuclear spin can relax even al zero temperature. As we

move away from half filling, the phase coherence hetween spinon pairs is lost due to

the motion of the holons. This causes the constant a to vanish.
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Fig. 1.2 Temperature dependence of the NMR relaxation time.
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1.1.4 Conductivity in the c-direction

The phenomenon of spin-charge deconpling leads to the very interesting possibility
that the coupling between Cu-O layers, {1, becomes inoperative. This is because
Ly transports electrons across the layers and owing lo spin-charge deconpling, there
are no electron-like quasiparlicles al the Fermi level . This effect has been dubbed
“confinement”. An obvious consequence is thal the c-axis resistivity will be in-
ordinately high. This is a fact which is well established experimentally [6). The
experimentally observed c-axis conductivity is very often proportional Lo tempera-
ture (when T'is close to T.) and is always much smaller than the in-plane condue-
tivity, The anisolropy ratio ub 0 300 Lo 1000, o s much smaller than Mott’s
C
limit for minimum metallic conductivity, i.e., the mean free path of the electrons
along the c-direction is much smaller than the dimensions of the unit cell. Hence,
there is no dispersion in the c-divection which means there is no metallic conduc-
fion perpendicular to the Cu-O layers. A direct way of checking this is to obtain
reflectivity fabsorption specira along the c-axis. This is a very diflicnll, measure-
ment but there has been some recent progress. Infrared reflectivity measurements
on high quality single crystals of Las_.Sr.CuOy have been obtained by Tamasaku
et al. [12]. They find the reflectivity spectrum (with the electrie field polarized
along the c-axis) to be absolutely featureless. On the other hand, reflectivity spec-
fra parallel to the Cu-O planes are characterized by an edge at ~ 6000 cm~" and
high reflectivity in the low energy region. These results are shown in fig. (1.3).
The c-axis conductivity o.(w) (as in de conductivity) is mueh smaller than Mott’s
minimum metallic conductivity, They also find that o.(w) remains very small even

for very high frequencies of the order of 150 cm=". These qualitative features of the



spectrum do not change appreciably when the sample is cooled from ~ 300 K to
lemperatures just above T (~ 30 K). This rules oul the possibility that the charge
carriers in the planes are localized because of disorder, phonons ete., and provides
direct evidence for the two dimensionality of the conducting state above T. (viz..
“confinement” ). A dramatic change in the c-axis spectrum is seen when the sample
becomes superconducting. A sharp reflectivity edge appears in the [requency range
20-50 em™'. The edge [eature becomes sharper as the Lemperature is lowered and

the edge frequency does not scale with 7. (In fact, the edge energy w, is mueh
fiws,,
kgT.

the reflectivity edge is not associated with the gap but is determined hy the density

smaller than the BCS weak coupling limit. Typically, ~ |.} The energy of
of superconducling carriers. Below T, the conductivity is rapidly depressed and is

dominated by thermally generated quasiparticles.
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Fig. 1.3 IR Reflectivity in the 2-1-4 componnd.
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The observed temperature dependence of the quasiparticle scatlering rate , v(7),
is similar Lo that observed along the @ — b plane in the Bi 2212 and YBCO materials.
A rapid decrease ol 5 below T, is seen and this is a demonstration of the fact that
coherent transport along the c-axis is restored below T.. Henee, the superconducting
transition restores three dimensionality.

A host of other experiments probing the normal state can be cited in addition
to the ones we have discussed above. (For a comprelensive review, soo [1]) All of

them can be reconciled with the following assumptions:
o The normal state of the cuprate snperconductors is not a Fermi liguid,
o The low lying excitalions are spin-charge decoupled,

o Coherent transport of clectrons across the Cu-O layers is possible only when

1350

We shall be using these notions repeatedly in obtaining our results.
g ] N A

1.2 7. systematics

We now turn to observed T, systematics and see il it suggests the mechanism of
superconductivity. First, we note thal for every material, there is an optimum degree
of doping thal produces the maximum T.. At this optimal doping concenbration,
.’ here is very little difference in the normal state properties of compounds belonging

diverse families. In this context, it is instructive to note Batloge’s observation

on the universality of linear resistivity [13]. This is reproduced in fig. (1.4). We

e that while T, varies from ~ 5 IX to ~ 100 K, there is not mueh difference in the

10
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value of T I is natural to ask why there should be such a large variation in 7.
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Fig. 1.4 Universality of linear resistivity.

This motivated WIHA fo postulate that the 7. variation is due to the difference
in the number of coupled Cu-O layers in a unit cell of each compound, The Bi
[amily BigSryCa,,y Cuy Oy provides the best example. The n = | compound has one
lﬁp-{} plane sandwiched by two BiO layers. The T, of this compound is ~ 10 K.
The n = 2 compound has two Cu-0 planes sandwiched by the BiO layers and its T,
Jis ~ 80 K. (See fig.(1.5)) The n = 3 compound having three Cn-0) closely conpled
laneﬁ has a T, ~ 120 K. Based on their idea that T. is governed by Lhe interlayer
"pling, WHA caleulated 7). as a [unction of n [14], These results can be oblained

most simply by constructing the following free energy functional

i b
= / rfz?_"[u{T—Tr'_["]'] |W3? + ﬁ V52 + §|"-FJ-|" - MWW, 4+ he) |-

i+
(1.1)



Here W is the macroscopic wave function in the layer ;. T is the T, of an isolated
layer, i.e., it is the T, in the absence of Josephson coupling between the layers. A
is the strength of the Josephson coupling between the layers. It is clear that this
conpling can raise the 7. of a layer 1o a nonzero value even when T is zero. If, for
instance, we make the simple assumption ¥; = ¥ V 7 and neglect the gradient term,
we find (on differentiating w.r.t. %) that 7. is fixed by the equation aTe — A = 0,
e, T. = % This simple example illustrates how the interlayer coupling enhances
T.. Indeed, for the case of two coupled layers, we expect this result since Lhe Lwo

layers are equivalent and ¥, = ¥, = W.

s Bi

a [_:u

@ Sr - ] [ ‘;I
}

e Ca

Lz
i

Fig. 1.5 BSCCO compounds with one and two Cu-O layers in a unit cell,
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Here W is Lhe macroscopic wave function in the layer 7. T8 s the T, of an isolated
layer, i.e., it is the T, in the absence of Josephson coupling between the layers. A
is the strength of the Josephson coupling between the layers. It is clear that this
coupling can raise the T, of & layer to a nonzero value even when T is zevo, I, for
instance, we make the simple assumption ¥; = W ¥ j and neglect the gradient term,
we lind (on differentiating wor.b, 7)) that 7% is fixed by the equation aT, — A = 0,
Lei .= - This simple example illustrates how the interlayer coupling enhances

T.. ludeed, for the case of two coupled layers, we expect this result since the two
I + |

layers are equivalent and ¥, = W, = 0.

Fig. 1.5 BSCCO compounds with one and two Co-O layers in a unit cell,

|
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This can be seen casily on diagonalizing the free energy functional (at 7' = T0)

F=[ & 3 [al' [P = A (W9, + he)].

i=1,2
On the other hand, if there are three coupled layers, then the middle one is inequiv-

alent. We have
| 3
.'F:j PF Y [al (W2 — A (Wi + W30 4 he) ]
=1

Obtaining 7% is tantamount to diagonalizing the matrix

al” =A 0
—A al —A
0 —-A aTl
. . L AVR
On doing this, we get for the case of three coupled layers, T. = ——. Thercfore,
i
have the simple result ddn =) : I I, for V coupled | it is
we e 12 S1IMple ros e T —— Ty Il gencrat, or Ol aAYers, M 1s
e e g S el
easily shown that 1, = — cos N:— I This in turn implies that for a system with
i
. 2N ; .
ifinitely many layers, T, — £ liose restlls can easily be gencralized Lo the case
il

of TI* being non zero. When Lhis is the case, we gel the result

2A iy
!II _— |{ﬂ} el Y ;
- ff 4 = Cos N1l

(1.2)

Let us first discuss T, systemalics [15] in the Bi family of superconductors, For the
compound 2201, T_ ~ 10 K [16]. Since this compound has only one (n-0Q layer per
unit cell and since these unit cells are ~ 25 A® apart, il is very likely that an intra
layer mechanism operates to give the observed 7. This motivates us in lixing 7%
= 10 K. The ratio E can be fixed by comparing the caleulated and observed 7. 's

fI

of the two-layer compound Bi 2212, The observed T, of this compound [16] is 85 K.

13




A A
So we get the result T8 + — = 85. This fixes — to be 75 K. We ean use this result
it a

to predict the T, of Lthe three layer compound Bi 2223. In this case, we have

Tin=3) = V2 % + 70
giving us a value of 116 K for the T.. This is in good agreement with the observed
T, [16] of 110 K. A similar procedure can be adopted for the ‘Tl family of supercon-
ductors. We show results for the Bi family in fig. (1.6). In the same figure, we also
show how T. saturates when n is increased. The T1 family of superconductars alse
shows a similar variation of 7). 's but the n = | compound has a T, ~ 75 K. This
may be construed as a direct picce of evidence against the idea that high T. s are

because ol interlayer interaclions.

T G o = v
150 ]
100 =]

e i

50 ]
0 PR S N TN T TN A O OO |
15 20 25

Fig. 1.6 7. systematics for the BSCCO family from the WITA mechanism.
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However, the following points are to be noted. (a) The 7, of the n = 1 compound
can be made as small as 10 K [17]. (b) These compounds are not well characterized,
The amount of oxygen concentration in the planes is still a mystery. It might be
that the TIO and the CuQ bands are strongly hybridized providing a large value of
ty, the one electron hopping matrix element between the Cu-0 layers. More work
needs to be done in this area. 1t would he especially interesting o see il the normal

state properties of the n=1 compound with 7. ~ 10 K are the same as those with

1.~ 75 K.



Chapter 2

Basic notions of RVB theory

In this chapter, we introduce some basic notions of RVB theory. This subject has
been studied extensively ever since Auderson proposed it in the context of high
temperature superconductivity [1]. We shall nol attempt to review all the available
results here. Instead, we focus on the contral theme of RVB theory, viz., spin-charge
decoupling and describe certain fundamental ideas. In section 2.1, we examine the
nature of spin excitations in an RVB state and explain the concept of the pseudo
Fermi surface. In section 2.2, we give a brief description of the slave hoson approach
to model charge and spin excitations in the lavge {7 Tubbard model and discnss the
limitations of such an approach. In section 2.3, we discuss the nature of low energy
excilations in the one dimensional Hubbard model for which an exact solution is
'
available. Finally, in section 2.4, we introduce Anderson’s two dimensional Laultinger
liquid and describe the arguments he has advanced for spin-charge decoupling in two

dimensions.

2.1 Spinons and the pseudo Fermi surface

In this section, we introduce the notion of spinon excitations and the pseudo Fermi

surface [20]. Our starting point is the § = 1/2 Heisenberg antiferromagnet with

L6




nearest neighbor interactions,

Y 5.8 (2.1)
(i)

It is well known that in one dimension, there can be no long range magnetic order
arising from the Heisenberg interaction and the ground stale is a colierent superposi-
tion of valence bond states. This valence bond character of the ground state suggests
the possibility of novel spin excitations, In two dimensions, there is no conclusive

theoretical result that the ground state is magnetlically ordered, llowever, there

seems to be a consensus amongst theorists thal the ground stale is magnetically
ordered (Neel order) and low lying excitations can he well described by conventional
spin wave theory. Experimental resulls oblained from neutron scatiering in the in-

sulating compounds, La;CuOy and YBayCusOgs also favor this view point

But

the long range order gels suppressed very quickly on doping the parent compounds

and it is likely that the RVB or the quantum spin liguid state gets stabilized. So it

is nob entirely irrelevant Lo introduce the notion of spinons in the two dimensional
Heisenberg antiferromagnet. lu fact, it may be more meaningful to discuss the Neel

state as a density wave state of an RVB spin hquid [21].

We begin by rewriting I in Lerms of electron operators. This is easily done by

substituling

s,
|5']' = ("Ll-n Tap Cidy

where @ are Lthe Pauli matrices. The Tact that /] deseribes an insulator is reflected

in the constraint on double occupancy ny; + n; = 1. We now deline the creation

operator of a valence bond belween sites ¢ and j,

- ? (chel —chely.



It is easy to show that I can be written in terms of these operators as

H=-236 ;.

{1}

We are thus liberated from using spin variables. The above hamiltonian is reminis-
cent of the pairing term in the BCS hamiltonian

=3 Vi by by

k!

where by = e_y) ey, However, there are two important differences between I and
the BCS pairing term. The first is the absence of the kinetic energy term and the
second 15 the local constraint nip -+ g = 1. This local constraint is actually the
result of a local U(1) symmelry. Apart from this symmetry, I is also invariant
under rotations in spin space. Since we are in search of & quantum spin liequid state,
it is not desirable to break the rotational symmetry. On the other hand, it is quite
tempting to break the local (1) symmetry and exploit the analogy hetween I and

the BCS hamillonian. Accordingly, we do a simple Hartree-Fock Tactorization

f;j;. .I;I-J = IrJL {L’.‘j} 4+ {E"j_r} h'j- i I{ht'.i:}fz '

and define the RVB order parameter (b;) = A, which will be obtained sell consis-
tently. The resulting mean field hamiltonian can be diagonalized in the usual way
by defining appropriate Bogolinbov transforms and il is easy to see that the ground
state wave function can be writlen as
v i
IGYmr = H (uk + T"»“"IE[“—F;I |{]:}.

J

This mean field ground state has the same lorm as a BOS wave function. However,

it should be noted that we started with an insulating magnet! The crucial ingredient
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missing here is the constraint on occupancy which we sacrificed when we did the
Hartree-Fock factorization. This local constraint, can be recovered by making two
modifications to the mean field ground state. As a first step, we put N/2 valence

bond states in Lhe zero momentim state. This is done by defining

i
z
Py |Ghr = (Zﬂkﬁt[“iu) 0) -
ﬁ'

This can be rewritten in real space as

il

G = (Z:L;j hL) [y .

5]

The next step is to project out all double oceupancies by Gutzwiller projection, viz.,
.”(_; Ff?}hr = H El — M| Ty } |G>ﬁ,r .
'

This state has all the syminetries of the hamiltonian /f and is the definition of the
RVE stale. The RVB state in real space can be writien in terms of the valence bond

aperators as

*

N
IRVB) = £ (Zu,-l,- hjj) 1)
]
where a;; is the valence hond wave function. Most of the well known RVB states
like the extended-s, s4id, ele., can be characterized by varions choices of a;;.
Having defined the RVE stale, we now examine the nature of low lying exeita-
tions. To do this, we first nole that the quasiparticle energy (obtained from the

mean field theory we outlined) is given by
Er = J A (cosk, + cos S
5o we see that there is a surface of zero energy defined by

cosky +oosk, =0 .
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This is called the pseudo Fermi surface and shonld nol be mistaken for the Fermi
surface of electrons, As we shall see, the low lying excitations are not the usual
particle-hole excitations and hence the prefix “pseudo”.
We now write the ground state in momentum space as
G =TT el 10),
|l <kpo
where kg is the Fermi wave vector. Qur first guess for an excited stale would
be CL. |7} or ek |G). Bul this takes us away from the redoced Hilbert space
(rorresponding to no double occupancies). Obviously, these are high energy charge
excitations. Therefore, we are led to consider the choice CI,,{"i.-'n* |5} e, where &' < ke
and k> kp. This is a particle-hole excitation but again, it disturbs the spin and
charge distributions in the ground state. The single occupancy constraint does not

favor any local charge fluctuations. Therefore, we Gutzwiller project our trial state
and remove local charge flucinations. The resulting stale is
o
| f il
Pe ¢ oo |Ghn = Pa Cka Ck'a’ Z”-‘i '!’i_:' 0)
]
which deseribes ouly local spin fluctnations. Il is instruetive Lo write this in real

space. Lel us consider
¢

Py r‘jﬂ Lot Z i f;;i_,- [0} .
17

Clearly, we are left with two unpaired spins o and —o’ at sites [ and m respectively.

These are defined as the spinon excitations in an RVB state, viz.,
el el L IRVB) = Pocf, cnrlCn

where ff are the spinon creation operators. The analogous definition in momentum
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space is given by

EI” ;‘L_nr II{V[“} = PI".' r..ltrr f.J,,"r,r" |{1"}N =

It is obvious that spinons cannot be crealed singly, bul two of them can be crealed
and well separated in space like a pair of domain walls,

Thus we see that the local constraint on double oceupaney plays a erucial role in
determining the nature of the low lying excitations. It is clear thal this will persist
when we work with a large {/ Hubbard model instead of the Heisenberg hamiltonian.,
In this case, it would be natural to look for novel charge exeitations in addition to the
spinon excitations we discussed so far. We now review a formalism that illustrates

these ideas to a cerlain extent.

2.2 The slave boson formalism and its limitations

In this section, we give a briel description of the slave boson formalism which is
used to model spin-charge decoupling in the large [/ Hubbard model. We begin by
writing the Hubbard hamiltonian
H=-1) c:jﬂc_,-,,. Fhoe + U ngmyg —p > r::rar*,-,, . (2.2)
{i1}e i i
where the chemical potential ji determines the carrier concentration. At any site i,
there are four possible physical states, 03, | 1), | |} and | T1}). Therefore we have

the following completeness relation [22]

OO+ 1D T+ T+ TI(TL =1

Since Lthese four states form a complete set, any local operator can be written in terms

of projection operators formed out of these states. The algebra of Lthe projection
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operators can be mimicked by a combined boson-Termion theory. Thus the electron

operator is expressed as

r'j;, = r.;sin i d;sj_{, ; (2.3)

where ¢; 's and d; s are boson operators and s; 's are fermions, The 4 sign corre-
sponds to o being an up or a down spin label. 1t is easily checked Lhat ci, as defined

above satisfies the usnal anticommutation relations provided
E"_I- £y -I- i (L + L ."\'_I:n_!_:"" = I
8

This constraint corresponds to Uhe completeness relation we wrote down earlier,
Physically, rj corresponds Lo creating an emply site and rf.-t corresponds to creating
a doubly oecupied site, Therelore, el and df have opposite charges (+e and
respectively). Clearly, we can then treal s:r_, as crealing a neutral particle, 11 is
easy to check thal this choice is consistent by a direct calculation of the current.
However, it should be noled thal this choice is not unigue, We have only made
i choice that is physically more plansible and the final physical results should be
independent of this assignment.

Since we are interested in the hamillonian (2.2) in the limit of large {7, we nse
equation (2.3) in (2.2) and do a canonical transformation to eliminate terms of the
ovder of ;}- We also set d = 0 since double oceupancies cost an energy {7, (Any
self consistent theory would always give d = 0) On doing this we get the effective
hamiltonian [23]

Hepp = —1 Z e; r m B¢ — JZF} i+ j{ ([‘j{!l- — ]) . (2.4)

{ig}e fi1) i
P

where .J = T and bi; are the valence bond operators delined in the previous section.
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The constraint on double occupancy now becomes
ﬂ,—iﬁ; -I—ZSI,S;,, =3] ., (2.5)
o

The major difficulty in the study of H, sy is in satislying the constraint (2.5). Explicit
calculations can be done only by making mean field approximations that violate the
constraint. The mean field theories have two order parameters, & = (b;) and
TS (s:rdﬁj,,} that are obtained sell consistently. In the simplest mean field theory,
the local constraint is replaced by a global constraint and the mean field hamiltonian

is given by

ff:"f{ - _f'z E,‘E-I: = j -"",iu-ﬁju -+ h.e. .

This mean field hamiltonian implies condensation of loles in the ground state which
violates the local U(1) symumetry [18]. Nevertheless, it is still possible te enforce the
constraint by appropriately modifying the mean field ground state as we did in the
case of the Heisenberg model. The mean field gronnd state is given by
wo) = ra(ed) " T1 sk ),
ke kper
where Ny, is the number of holes. This is analogous Lo the RVB state delined in the
previous section, It is clear that we can create two types of excitations [19]. One
corresponds to crealing a pair of spinons leaving the hole condensate untonched,

Vig.,
i AT 4 f
|"]" i } =i ("r!) Sqe Sq'e! H Lo |ﬂ} '

in.'".‘..‘.!;.'ﬂ'

and the other Lype of excitation involves creation of a holon-antiholon pair, viz.,

[0:q) = Fe E-,! co (ﬂi)m 11 SL 0) .

k<hpa
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These two states can be consirued to be variational ground stales J‘m.' spinon and
holon excitations as the constraint on double occupancy has heen taken care of
by Gutzwiller projection. However, Lhis is easier said thau done since calculations
involving Gulzwiller projected wave lunctions are seldom tractable, Consequently
most calculations with slave bosons do away with the local constraint and are there.
fore unreliable. The classic difficulty with this approach arises when we try to
calculate electron occupancy ng. A discontinuily in ny at kepe would signal the pres-
ence of a Fermi surface. The presence of a Fermi surface in Lhe high temperature
superconductors has been ‘conclusively demonstrated by ARPES and positron anni-
hilation experiments but calculations using slave hoson mean field theories do not
repraduce this feature [24]. This is because of the following reason. In the slave
boson approach, the electron Green’s function is obtained by convoluting the spinon
and holon components. Thus the single electron Green's function G (k,w) is given
by
ok w) = Z (g, €}) GME+q, fil.'+q:l .
T

where ¢ and ¢ are spinon and lolon energies respectively. Thongh there is a Fermi
surface corresponding to the spinons, the convolution with the holon part wipes
this feature out and as a result no discontinuity is seen in g al ke (However, it
15 quite surprising that many normal state transport properties can be explained
qualitatively by the convolution given above. We liave nol understoo:d why this is
50. )

Therefore, it is clear thal we have Lo go beyond the slave boson mean field
theory to give a satisfactory description of spin-charge decoupling. We are forced to

do a mean field theory only becanse an exaet solution is not available. But in ane
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dimension, the Hubbard model hias heen solved exactly by Lieh and Wu, 1t would
therefore be more appropriate Lo first study the nature of low lying excitations in
the one dimensional Hubbard model and then come back to the two dimensional

Case.

2.3 The one dimensional Hubbard model

In this section, we discuss spin-charge decoupling in the one dimensional Hubbard
model. Though the exact solution of this model was written down 20 years ago by
Lieb and Wu [25], it is only now that the nature of low lying excitations, correlation
functions, etc., are being understood [26]. We first write down the Lich-Wu solution
and follow Ogata and Shiba [27] to illustrate spin-charge separation in the IJ — oo
limit. We then sumiarize Anderson’s results obtained from an analysis of the Lieh-
Wu solution showing the failure of Fermi liquid theory. This analysis also illustrates
the shorteomings of the slave hoson formalism. Finally, we also mention some results
obtained from bosonization methods,

The Lieb-Wu solution has the Bethe ansalz form

N
Wy cigmgy) = Z[C;L ") nxpiz kp,wg,
P i=1

where P, = (P, ..., Pn) and @Q; = (Qy, ..., (Jn) are permmtation labels of momenta
and coordinates respectively, Here, N is the number of electrons of which M are
electrons with up spin. It is understood that N < Ny and 20 < N, where N, is the
number of latlice sites. The solution to the problem is contained in the equations

determining the N! x NI coeflicients (@, P). These coeflicients are obtained by
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solving the following set of coupled equations for the quantum numbers k; and A,

ﬁ-r",I.1J- = Ewrfj -+ ﬂl{ﬂﬁiilkj—ﬁn]

N N
D020 —2sink;) = 2wd. — D 0(Aa—Ap) , (2.6)
A=1

i=1
where oo = L., M and j = 1,..., N. [; ’s are integers (half integers) for N — M odd

(even). 0(ir) is defined by the lollowing relation,

e = bt ()

The total momentum and energy of the system are given by

pit 25
J=1
N
B = —ﬂZmﬂﬁ!j ; (2.7)
i=1

It is very instructive to sludy Lhe ground state wave Tunction in the Timit of I — oo
as was first done by Ogata and Shiba [27]. (There is no loss of generality in doing
this as the one dimensional Hubbard maodel has only two fixed points, I/ = 0 and
[l = co. Therefore, the results for 17 — o will be connected smoothly to those for

small [7.) Tn this limit, the ground state wave function can be written as [27]
WEr gy ey B Wi tint) = del| expikir; | d(yry..ntar)

where y; s label the positions of electrons wilh down spin. The wave lunction is
a product of a Slater determinant of noninteracting spinless fermions (describing
charge degrees of freedom) and a Bethe solution of an one dimensional eisen-
berg antiferromagnet with reduced number of spins (describing the spin degrees of
freedom). As [ar as the spin degrees of freedom are concerned, we see that their

dynamics is still governed by the Heisenberg hamillonian, albeit on a “squeezed”
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lattice, ie., a lattice in which the hele degrees of [reedom are squeezed oul. Based
on the discussion of the Heisenberg hamiltonian in section 2.1, we anticipate neutral
spinon excitations at kp (the pseudo Permi “surface™). The charge degrees of free-
dom are described by a Slater determinant of spinless fermions. ence we expect,
charge excitations al 2kg, rather than at kp. These features can be seen on writing

equation (2.6) in the I/ — oo limil, We now have
) 2r
.!"'I'rur{n.'_;' = 2‘3'1'.!;_] + Fg.j‘n
27 i
EZJ,. = —%szm,j : (2.8)

The creation of a spinon exeitation (called Lype 1 excitation in the Lieh-Wu scheme)
corresponds to adding or removing one J, value. On the other hand, when we
add one [; value, the A, 's do not change. We simply add one more k; to the
Slater determinant. This corresponds to an antiholon excitation at 2k (called
fype IT excitations in the Lieh-Wu scheme). From this, we might be tempted to
conclude that an electron excitation is a simple product of a spinon and an antiholon
excitalion as in the slave boson scheme. However, as pointed out by Anderson [26]
there is a subtlety which canuol be ignored. While the A, s are determined by the
c_'urrlzspnnding Jo 's, the &y 7s are determined by all the J, ’s through a sum. The
addition of an electron with momentum kg corresponds to adding one /; and one
Jo value. From equation (2.8), it is clear that this will shift all the k; 's. The shift
in k; will be
2rM Mo

§= Nobhy = 55 = 5

This phase shifl leads to the ollowing orthogonality velation [26].

=4 log IV

| (Engnslel W) 1~ exp =
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This result implies the failure of Fermi liquid theory, for the overlap caleulated above
is nothing but the wave lunction renormalization constant 7y defined in the previous
chapter. That the ground state is not a Fermi liquid can also be seen on writing the

electron Green's [unetion which is given by [26]

exp (thpr)

oz, t) ~
(4) {,’c—u,i}%{;rr — ) (kv t)T

where v, and v, are the group velocities of the spin and charge excitations respec-
tively. Written in momentum space, the Green's function would have a branch ent
{indicating multiparticle excitations) instead of a quasiparticle pole. This is a generie
hehaviour seen in interacting one dimensional systems that have been characterized
by Haldane [28] as Luttinger liquids.

The expressions for one electron Green's function, correlation functions ete., can
also be derived without taking recourse to the Lieh-Wu solution. Weng and co-
workers have used bosonization methods to study the one dimeusional Hubbard
model [29]. In this method, the spin quantization axis is defined along the spin
direction al each site. In the new reference frame, each spin will be polarized along
the z-axis by a fictitious magnelic field. Such a “symmetry bhroken” fictitious field
plays the same role as in the SDW theories. The SDW gap here is nothing but
the Mott-Hubbard gap 7. The local spin direction is determined sell consistently
through its coupling with the charge carriers in the lower Hubbard band only, to a
certain order in {7 5 that the resulting effective hamiltonian retains only terms of

\ 2
the order of J'—.’ The end result is thal one can write down a hamillonian lor the
spin and charge degrees of freedom separately withonl having to remember the all

important constraint in the slave boson formalisim. The hamiltonian for the holons
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is given by

Hy = =t Y (& by +he)

- 1T § . i :
where h; = exp( 5 ) hi. The holons behave like [ree spinless fermions with the
{1
dispersion ¢f = —2{ cos ka. The Fermi velocily is given by v, = 2asinmé at the
o : ™ : . :
holon Fermi momentum kp = —. (Here, & is the doping concentration.) The
u

effective hamiltonian for the spinons is given by

H; = Zfi { fr'.,Ll dia 4+ hie :l ;
3

where the summation is over the reduced Brillonin zone correponding to a sublattice
A. The spinon dispersion is given by ¢} r< J sin ka, where

. sin2w (1 — &)

J=J{1 =46 [ - —m——

{ ) 2 (1 — &) i

is the effective superexchange coupling. The bare electron operator ¢, is then given

hy

Cig e h:[ Sin EJ{]HE% Zhj hy

I

5o we see Lhat unlike in slave boson theories where the electron is just a product of
holon and spinon operators, theve is an additional nonlocal string field. This string
field is related to the nonlocal phase shifl of the quantum mumbers k; that we saw
in the Lieb-Wu solution.

To conclude this section, we see Lhal spin-cliarge separation in the one dimen-
sional Hubbard model is a subtle feature and the slave boson approach cannot give
an adequate description of this phenomenon. We now move on to the more inter-
esting case of the two dimensional MTubbard model. Though an exact solution is
not available, there has heen some progress in recent limes and we review these

developments now.
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2.4  Anderson’s two dimensional Luttinger liquid

In the previons section, we discussed Lhe physies of the one dimensional Hubbard
model. We discussed the nature of spinon and holou excitations and showed how the
electron can be thought of as a compaosite object made out of Lhese two excitations.
In this section, we are concerned with the two dimensional Hubbard model which
is of immediate relevance to the high temperatnre superconductors, We ask, in
particular, il these nontrivial features of the one dimensional Hubbard model carry
over to two dimensions. In a series of remarkable papers, Anderson has argued that
they do [30]. The central theme in Anderson’s arguments is that in two dimensions,
as in one, forward scattering of eleclrons with opposite spin is singular and hence
Fermi liquid theory fails. The fixed point of the doped Hubbard model in two
dimensions is a Luttinger liquid, The chain of reasoning behind this assertion can
be broken into three essential steps. The first step is to caleulate the phase shift
due to forward scattering in two dimensions and show this is finite. The next step is
to establish the connection hetween this phase shiflt and the Landan parameter for
forward scattering in a Fermi liquid. The linal step is to argue for the failure of Fermi
liquid theory from the singular nature of forward scatfering. We now summarize
these results.

The importance of scaltering between electrons carrying opposite spin in a Hub-
bard model can be seen even al the level of the two particle problem [31]. Let us
consider ouly the spin singlel stale since this is the state that is affected by the on

site repulsion term. The eigen funclion for the orbital part can be written as
1
P(ni,ma) = exp (“.2—[”1 £ Hz}) Pl —ng)
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where /U is the center of mass momentum of the pair and @(ny — ny) is.the relative

coordinate wave function. The Schrodinger equation for ¢y — nz) is given by
—t [dn—=1)+dn+1)] + 8,0 d(n) = E d(n) ,

where n = ny—rny, When /=0, the spectrum is continuous and extends from —{ + ¢
to t + € where € is the center of mass energy. However when U7 > (0, a single state
splits off at the top of Lthis continuum, This state has no overlap with the continuum
of scattering states and is called an “antibonund™ state. The most important feature

here is that even an infinitesimal {7 causes this orthogonality, i.e.,

3 (U =0) ¢p(n, U >0) = 0,

1

for £ = —{ + ¢ and any [7 > 0. The above result tells us thal the two particle
state is made orthogonal even by an infinitesimal /. It is reasonable Lo expect this
phenomenon to manifest in the case of finitely many particles. For instance, lel us
imagine adding an extra particle to a free Fermi gas and switehing on the Hulbard
{7 only between this test particle and the rest of the electrons. The analysis of the
two particle problem suggests that the scattering experienced by the test particle
wonld lead Lo an orthogonality of the many body wave [unction, This is the crux of
Anderson’s arpuments.

To demonstrate the failure of Fermi liquid theory in two dimensions, Anderson
has used a very unconventional approach based on scailering theory, He has ealen-
lated the phase shift & arising from scatlering of electrons carrving opposite spins
and shown that,

1

4 . 2.9
= log kpa + [N(0)U]7" 7 (29)

31



where N(0) is the density of states at the Fermi level and a is the lattice spacing.
It should be noted that § vanishes for U=0. The above result for § is important
because of ils relation Lo the scatlering length o, Perturbation theory presupposes

a finite scatiering length o which is related to § by

§d = Qao.

Now [rom equation (2.9), it is clear that for large 7 and high densities, § will be
a finite fraction of m. Therefore; for low energy processes, e, @ — 0, & — oo
to ensure finiteness of &, thus signalling a breakdown of perturbation theory. This
result has very interesting consequences for the Landau parameter [y in Fermi
liquid theory, Recall thal in Fermi liquid theory, the excitation energy £ of a
quasiparticle can be expanded as
E — Ey = ) etgg + D Siktonr Mho et
[ kektaal

where 1, is Lhe quasiparticle density and [fip,.0 are the Landau parameters thal are
proportional te the forward scattering amplitndes. Using equation (2.9), Anderson
has obtained the following form lor [,

P (- E)

Shwr o —|E—E'P

(2.10)

Clearly, fia is singular for & = F. This tells us that no two eclectrons carrying
opposite spins like to occupy the same momentum state. Thus, the effect of the
Hubbard {7 is to enforce a “lractional exclusion principle” for parlicles carrying
opposite spins.

The breakdown of Fermi liquid theory in the presence of a singular inleraction

(2.10) has been established by Stamp [32] who has shown that a hievarchy of singular
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Lerts arise in Lhe one particle self energy and on summing these sellconsistently,
the quasiparticle pole vanishes. i.e., the wave function renormalization Zp(w) — 0

when w — 0 as
pd?

o (270

where p is the density of electrons and wy 15 an upper cutoll in encrgy.

These results then indicate the breakdown of conventional Fermi liguid theory
for the large 7 Hubbard meodel in two dimensions. The natural question thal arises
is, what is the alternative? The analysis of Stamp [32] only establishes the failure of
Fermi liquid theory but does not specify the alternative. Bul in order to calculate
physical quantities, we need a zeroth order Hamiltonian that caplures the essential
features we discussed so far. To see what this could be, let us look al the interaction
Jii as given by equation (2.10) near the singular point k=Fk by putling =y 7

where |g] << |k, |F|. We then have

cos (..

gl

‘P Sewr

where O 15 the angle hetween i and i, Thus, the singularily is strongesl when i
is parallel to k'. This motivated Anderson to postulate that the appropriate zeroth
order hamiltonian should be a sum of decoupled one dimensional Hubbard hamil-
tonians, the decoupling being done in momentum space. The effective hamiltonian

Hy would be written as
Hy = Z He(8Y) (2.11)
0

where k, {0 are the polar coordinates of k and I(f2) is the one dimensional Hub-
bard model with & being the momentum. Thus, in contrast with Fermi liquid

lheory where the zeroth order hamiltonian is the noninteracting system with all
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the k- modes decoupled, the interactions between F-modes in the same direction
cannot be ignored even in the lowest order now. The hamiltonian (2.11) is called
a “Tomographic Luttinger liquid™ for obvious reasons. This hamiltonian exhibits
spin-charge decoupling since in each direction §2, the physics is governed by the one
dimensional Hubbard model which, as we saw in the previous section has spinon
and holon excitations. This is the way spin-charge separation has been envisagedl
in the cuprate superconductors. This is only a hypothesis and more work is needed
to prove it. However, this model has been used with snecess by Anderson and Ren
[33] to explain the Fermi surface seen in photoemission spectra. Thus this model
can explain both the anomalous transport propertics and the existence of a Fermi
sutface. This model has also been used by Anderson [10] to explain the anomalons
lemperature dependence of the Hall angle and by Baskaran and Sardar [11] to ex-
plain the temperature dependence of the NMR relaxation time in the normal state

of the high temperature superconductors.

2.5 Summary

To summarize, we have reviewed some basic idens of RVB theory in this chapter.
We have introduced the concepl of a spin liquid state and neatral spinon excitations.
We Lhen reviewed the slave boson formalism and its limitations. The main dificulty
with this approach is its failure to reconcile the existence of a Fermi surface with
the anomalous normal state transport properties. Our search for aceeptable holons
then led us to the one dimensional Hubbard model, where we examined the nature
of spinon and holon excitations with the help of the exact solution available. Finally,

we summarized Anderson's arguments for the failure of Fermi liquid theory in two
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dimensions and introduced his concept of the Tomographic Lutlinger liquid. Clearly,
the RVB theory has come a long way since its beginnings and there is very little
technical resemblance belween the early results and the present ones. [owever, the
central ideas Liave remained very much the same. The last word in the theory of
high temperature superconductivity is yet to be said, but we believe there is enough

experimental evidence Lo justily the RVB poinl of view.



Chapter 3

The Mechanism : Microscopic derivation of the eflective hamiltonian

In the introductory chapler we saw that the anomalous normal state properties of
the cuprate superconductors can be reconciled with the assnmption that the low
energy excitations in the Cu-0O planes are spin-charge decoupled. In this chapter,
we examine how such a normal state responds to a weak interlayer coupling. In
particular, we show that il two systems that exhibil spin-charge separation are
weakly coupled, then superconductivity 1s an inevitable consequence. The central
result in this chapter is the derivation of the WHA hamiltonian for holons which is
presented in section 3.1 where we show explicitly how the interlayer coupling leads
lo processes that involve hopping of pairs of holons between Lwo coupled Cu-0 layers
[34]. This leads to a superconducting instability in the system. In section 3.2, we

give a simple quantum mechanical picture of holon pair hopping between the layers.

3.1 Derivation of the WHA hamiltonian

We use the slave boson decomposition which we discussed in Lhe previous section lo

madel spin-charge deconpling. The bare electron operators are expressed as

{:iﬂ' — E‘f‘gfn'l
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with the constraint that there are no doubly occupied sites, via.,

I".jﬂi + Z.‘?,—”F[ﬂ = ol
o
Physically, e,j corresponds Lo the creation of an empty site ¢ (the holon excitation)

and s;, creates a neutral spin hall particle (the spinon). We use a simple effective

hamillonian for the normal stale

Ho=) wyel e, + 3 (ex—p) sk, sea —d Y (b s;‘_., .qf_,,.[ + h.e.).
i ke k

Ha is nothing but the mean field £ hamiltonian written in the slave boson scheme.
The holon dispersion is given by w, = tq® and ¢, = {{cos k. + cos k) is the spinon
dispersion. { is the effective bandwidth of the spinons and by is the BZA[3] order
parameler {sLs'_H} for spinon pairing. My is the simplest hamiltonian which can be
used Lo describe the physics of spin-charge decoupling. The following comments are
in order. Mirst note that we assume the spinons are paired. This is characteristic
of an RVB ground state. In fact, it will hecome clear that in the absence of spinon
pairing, the pair hopping mechanism cannol operale. The holons are assumed to be
free bosons. This is, of conrse, unrealistic. Therefore, the above modelling would
be inadequate Lo obtain physical quantities like the superconducting gap, 7., etc.
Nevertheless, it is still possible to illustrate the origing of the pair hopping mechanism
with this simplistic approach.

Let us now introdnce a coupling between 2 adjacent Cu-O layers | and m
it
Hiw = 1y z ¢y G + e
i
as a perturbation. M, can be rewritten in the slave bogon scheme as

i _mt N
i Z e; ¢ f S 80 F hee

T
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We go over to momentum space and wrile
H' = | [ mi " Pt hip
- ﬁzz €q Ch_kitq Skta Ske + N
gk

The full hamiltonian is given by

H = ;”u'!‘l'J_L”

!
= D w E:T '5; + D (e — F:ISJL-L Sko — z (b *"‘i—l1 -“E.I:,—i + h.e.)
g beet k

4l —m

! it H
+ﬁ Z Z I'f‘.:‘ ﬂk-lk‘-tq ‘th’n She o= "r‘*n* {31}
g kkt

As mentioned in the introductory chapter, we assume that the first order process
caused by the interlayer coupling, viz., one electron hopping between the layers,
is suppressed (“confinement”). We now show that the second order processes are
“deconfining” and canse superconductivity. To see Lhis, we treat the interlayer
coupling as a perturbation and obtain an effective hamiltonian to order #3. Before
proceeding o do this, let us examine the various energy scales involved. Since
the spinon dispersion is related to the time scale of singlet fMluctuations, il will be
governed by an energy scale ~ J. On the other hand, the holon dispersion will he
related to £. 14 can be estimaled from c-axis superexchange integrals or from band
structure calculations. These estimates suggest ¢, ~ 0.14. So, the three relevant
energy scales in the Cu-0 superconductors are t ~ 0.4 eV, J ~ 0.13 eV and 1, ~
0.05 eV. In the parameter range ¢, < J < {, therefore, we are justified in treating
ty as a small parameler and using perturbation theory.

We now have

(0) = Iy + %fi f_"m dt[ (), H(0))]. (3.2)
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(The H's are now written in the Interaction picture).

The commutator in the above equation would invelve spinon and holon operators
in our case. After evaluating the commutator, we trace over the spinons and obtain
an eflective hamiltonian for the holons. The procedure we adopt is not unlike the
BCS case where one derives Lhe reduced BCS hamiltonian from an eleclron-phoneon
interaction by laking the trace over the ground state of the phonons. We could, in
principle, trace over Lhe holon ground state and obtain an elflective hamiltonian for
the spinons. However, since we are interested in deseribing superconductivity and it
is the holon part of the hamiltonian that carries the appropriate quantum numbers,
we derive an elfective hamiltonian for the holons.

We proceed Lo evaluate the commutator [H}(1), I1}{0)] with

Hi(t) = ;"qurﬁ (t) e I'fkl,ﬂ, f) {.BH( s (t) + sy () sB(D)} + hee.
Let us first consider only a parl of the [ull commutator viz.
22 2ole(t) et () ity (1) ST (1) + sy (1) sE(O Vb et Ll spi + sy s3]
kk'q pp'r

The holons are assumed Lo be free and the spinons are BZA paired. So, we have
the following expressions for the time evolution of the spinon and holon operators.
e,(t) = e "ate, el sep(t) = 25u()sey + z;k{ﬂ}sf_ﬂ anid
31-1;1“] = z;k[”““r—kl — 25 (1) skp;

where zi(t) = e=iBaty2 i E‘L“tuk o zak(l) = 2iupvg sin Bl

and uf , v} = 3(1+ L‘L"—l) with [, = \/{{; — )4 JA2

Here, A7 denotes the spinon gap.
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Substituling the above in the commutator to be evaluated we got

+ o | I!II|1' ! mt
Ekk"qr GHI”-'[*L’k—J.-’-H _':"'I*I'Jh'q Eh—kiga Cr Ukralye

x[shy shay Z5u(t) zuelt) — shy sL gy Zie(t) za(t) ] .
Since we have assumed the spinons to be paired, both Lerms in the above expression
will be non-zero on tracing over the spinon ground stale. (It should be noted that
we are actually tracing over the spinon-paired or the singlel ground state.) This

gives us Lhe following expression:

. A mf | m
Erkrgr XD (Whtopg —wodl € €y, €0 el 1y

X[ 230 () zin(t) we v — 23 () zaa(t) wpr vpe ]
Substitutling for the commulator in equation (3.2) and doing the integral over t,we

gel the following effective interaction for the holons,

'i'.J-2 {Ek + E’rk‘,] i mi [ _ant
N Z um:;‘.ukrukr{wk_kh” S B R R T €o Chkity € Curlpys (3.3)

b0, what we have generaled as the effective hamiltonian for holons involves an-
nihilation of two holons in one layer and their creation in the other layer. Since the
quantum numbers of a pair of holons are the same as those of a Cooper pair (in
a spin singlel state), we see thal Lhe interlayer coupling generales snperconducling
fluctuations. The expression (3.3) is the holon pair hopping hamiltonian which was

postulated by WHA.

3.2 Quantum mechanical picture

We now give a simple quantum mechanical picture of the pair tunneling process (See

fig. 3.1). We wish to know the matrix element Vi of the holon-helon interaction
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between an initial state |[I) where two holons are in the plane wave states g and
—q and a final state [I") where the holons are in states ¢' and —¢'. The energy of
the initial state 1, = 2w, and that of the final state Ep = 2wy, There are two
intermediate states |¢) allowed by momentum conservalion:

(i) The interlayer coupling term ¢, |::£i c;' causes a transition to an intermediate state
where the holon in layer I with momentum q is annihilated and a spinon (k 1) is
created in layer I The matrix element £; transports this object (now an electron!) to
layer m where a holon with momentum g— &+ & is ereated together wilh annihilation
of a spinon (&' T). Since the layers can support spinon pair lluctuations, the layer m
has an unpaired spinon (=&" |). (At a later instant of Lime, the holon in layer I with
momentum —q gels across o layer m by creating and annihilating, respectively, the
partners of the unpaired spinons in each layer.) The intermediate state |14) then
describes a holon in layer m with momentum ¢ = ¢ — &+ &, a holon in layer |
with momentum —q, a spinon (& 1) in layer { and a spinon (=& |) in layer m. The

energy associaled wilth this intermediate state is I, = wy 4w, + E + By,

q -—— g-K+k'

™ S -q+k-k'

IYig. 3.1 Holon pair hopping hetween layers { and m
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(ii) Similarly the second intermediate state is given hy |r;) : a holon in layer m
with momentum —q’, a holon in layer { with momentum g, a spinon (&' 1) in layer m
and a spinon (=% |) in layer L. The energy associaled with this intermediate stale
PR DI
The second order matrix element coupling the states |I) and |7} is given by

1 | |
= FlH =S ;i
2 %: (F|Hiuelrr) (EF' — L, f e 'H) (| 1| )

Since we assume Lhal spinon pairs can be created or annihilated spontanecusly in
the layers, we have to introduce the spinon pair condensation amplitudes wpvgupng
in the above expression. On doing this and after some simplification, we gel

2 (Ek + Ek‘] : 3 r 1‘..1
11 =3 wvpupvg . IE,rr:T el ™
LN E (g — w2 — (By+EBp)? 7 ¢ 2 C—g

This is precisely the reduced WHA hamiltonian as given by (3.3). Note the analogy
with Lthe reduced BCS hamiltonian. Instead of phonons mediating the interaction be-
tween eleclrons, we have spinon pairs mediating the interaction between the holons.
What makes il all the more interesting is the fact that the perturbation actually
acls as a source (sink) of electrons rather than that of holons or spinons. The factor
gt 18 the condensalion amplitude for spinon pairs. When this is zero, i.e. if
the spinons are not paired, then expression (3.3) becomes zero. It is obvious now

that spinon pairing is cssential for the WHA mechanism.

3.3 Discussion and summary

To estimate the energy denominator in expression (3.3), note that the energy of the

spinons £y ~ .J. The relevant wave vectors for the holons (being modelled as free

bosons) is temperature dependent and ~ e T being the temperature. Therefore, if
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we consider scattering belween holons whose momenta are cutoll by T, the pairing

vertex ~ —n—jj-“-, The spinon condensation amplitudes are numbers of the order of
unity. So if we neglect their k-dependence, we recover the WHA hamiltonian as
originally proposed.

The pair hopping mechanism has several unique features that we mention be-
low. Tirst it is easy to check that the sign of the holon pairing vertex need not
necessarily be negative to obtain superconductivity. i.e., self consistent solutions
can be obtained even il the vertex has a posilive sign since this sign can be absorbed
by suitably altering the relative phase belween the order parameter in the different
layers. Next, we discuss the issue of Coulomb repulsion. Pair hopping of holons will
be suppressed by the Coulomb repulsion to the extent that two holons cannot come
arbitrarily close to each other. However, it is well known from BCS theory that
a pairing interaction which is retarded in time can overcome a stronger repulsive

interaction which is instantaneous. Similar resulls have been derived for Lhe ease of

paired holons [36]. In this case, the effective pairing vertex A/ is given by

i

A = A -

1

i

I +uln—

J

where u is the instantaneons Coulomb repulsion and J is the characteristic spinon

energy scale. This result is analogons to the BCS case where J is replaced by the
phonon energy scale, fiwp.

In this model for superconductivity, the inplane coherence length £, is actually

the distance between the two holons that hop between layers and, bhecause of the very

nature of the process, is also the size of the spinon pair. lHence, il is clear that a gap

in the spinon spectrum would suppress pair hopping. With our medel hamiltonian
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for the spinons, il is easy to check that £,, would be of the order of a lattice spacing
because of the gap in the spinon spectrum which is of the order of J. Experiments
midicate £, ~ 20 A°. We believe that this discrepancy is more an artifact of our
mean field treatment since a large spinon gap wonld also be inconsistent with other
experiments like NMR and neutron scattering. Since holon pairing necessitates
spinon pairing, what we need is the non-vanishing of the spinon pair order parameter
without a spinon gap, Oune possibility is thal the spinon gap vanishes at the Fermi
surface. This can happen if the spinon pair wave lunction changes sign across
the Fermi surface as il dees in the hall filled limit. TFrom our derivation of the
WHA hamiltonian, it is also clear that the symmetry of the holon pairing (or the
superconducting) order parameter will be the same as that of the spinon pair order
parameter. This is analogous to the BCS case where the symmetry of the electron—
phonon interaction decides that of the superconducting order parameter. However,
as we shall see in the next chapter, any inplane interaction aecting in addition to
the pair hopping mechanism will also play a role in deciding Lhe symmetry of the
superconducting order parameter.

Finally, we consider the part of the commutator [[7{(1), [}(0)] which we have

neglected so far viz.

it ' i
Ekk'q Epp'r [Frq{f] ﬂ;:jk‘-r-rf“'} {'ﬂk’l“] .qm(r'} + SLT"]“) "‘;.n] {f] }:
" I EE) |
EI':—FH'F I:rl {S;I‘r SJ.IJ1 + S;:Ii: SPJJ }].
A similar procedure as nsed hefore leads to a pairing hetween holons in different

layers. We obtain a non-pair hopping term of the form

E_Ei {"':.l.'f' Ek'} = ( Fy .—Ekr}
N kelrgr ("-‘JJ:—J:'+|; = Wy }l = {Ek ~f E.lc":]‘ {mk—k'+q e -;Jz = [Ek = E.'c*':]2
X uei vh; “:‘.r!k_k'*'11"-{;"}?—1:4:‘- (3.4)
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This term correlates two holons in different layers. Using similar arguments as
before, this interaction can also be shown to be atiractive with the pairing vertex of
the same order of magnitude as in the pair hopping case. IHowever we believe this
would no longer be true il one takes into account the Coulomb repulsion between
holons in different, layers. As pointed out earlier, the pair hopping processes do not
compete with Coulomb repulsion whereas from the operator structure in expression
(3.4), it is seen thal the non pair hopping terms would have to overcome Coulomb
scattering. Owing Lo this reason, we snggest that the non-pair hopping processes
would be suppressed. An obvious consequence is that the holon pair size would be
much smaller in the c-direction than in the ab-plane. ie. £, > E.. Experiments
show that & ~ 2.5 A°, a length much smaller than the interlayer separation.

To eonclude Lhis chapter, we have presented a simple microscopic derivation of
the pair hopping mechanism assuming spin-charge decoupling in the normal state.
The interlayer coupling causes coherent transport of pairs of holons between the
layers. It is clear that this mechanism has to operale in the quasi one-dimensional
(organic) superconductors, where it is known that there is spin-charge separation
[37]. As pointed oul in the beginning, our approach is rather simplistic since the
single occupancy constraint has not been enforced exactly, But this derivation clar-
ifies the nature of the pairing mechanism which operates when there is spin-charge
decoupling. To go beyond these limitations and obtain expressions for physical
quantities will be our next task. Accordingly, in the next chapter, we shall discuss

gap equations for holon pairing, superconducting T}, etc.



Chapter 4

A Model : Gap Equation, T, and ecalculation of Josephson current

In the previous chapter, we obtained the response of a system of noninteracting
spinons and liolons to the interlayer coupling , t,. We saw that £, generates pro-
cesses thal involve pair hopping of holons between layers. Since this process carries
the right quantum numbers required to describe superconducting fluctuations, we
identified the basic mechanism of superconductivity with the WHA hamiltonian for
holons. In this chapter, we deseribe some attempts at obtaining gap equations for
superconductivity, In section 4.1, we discuss briefly the early allempts of WHA. We
then show that a pairing interaction for holons which is nonlocal in k-space (like in
the BCS case, for instance) can only give low 1. 's. We argue, ollowing Anderson

that interlayer pair hopping leads to an interaction that is local in k-space, the con-

sequences of which are studied in sections 4.2 and 4.3, where we present our main

results. In section 4.2, we set up a model hamiltonian describing interlayer pair

tunneling and obtain the gap equation. We analyse the momentum and tempera-
ture dependences of the gap in detail and compare them with experimental results.

In section 4.3, we use the gap equation to calculate the Josephson current between
two superconductors. Our calculation is in good agreement with experimental re-

sults available for the Bi 2212 compound. Finally, we study how the presence of an
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additional intralayer interaction modifies the gap equation.

4.1 The WHA gap equation

Motivated by the results in section 3.1, we begin onr discussion of the gap equalions
by considering the pair hopping term given in equation (3.3). This term causes

holon pair condensation. The hamillonian is given by

H=>3 (e —p) F‘Li - 22{';‘1‘ cr__tk il B )
ke kq

Here, k labels the momenta parallel to the layers. [ and m are layer indices. We

first consider the case of holons being free bosons. In this case, the holon dispersion

ek is given by ¢ = th* and A = ii pt1s the chemical potential that has to be

J
solved for. Note the following two assumptions: (i) the holons are noninteracting
and (i1) we have ignored any momentum dependence of the holon-holon vertex. For
this system, WHA obtained expressions for T., Ap and g, They found that though
the free holons bose condense at T =0 (i.e., {e) #£ 0 at 7' = 0), there is a finite T.
below which temperature < ee >+ 0. This corresponds to a holon pair condensate.
To model the interactions between the holons, WHA postulated a large density of
states at the bottom of the holon band. This automatically ensures that there is no

macroscopic occupation of the & = 0 state, The large density of states is obtained

by postulating a k-space psendopotential of the form
L
A—==|k]* k< 2k
1 = &
0 otherwise

A

where ky = — and ng is the occupation number of the k = 0 state. § is the
T

doping concentration. Will this pseudopotential, the mean field T. turns oul to

47



be of the order of Ad. The introduction of the holon pseudopotential is only a

phenomenological attempt to mimic the long range forces between holons (arising
[rom the single oceupancy constraint). The difliculty with this approach is that il is
not clear if the above assumption is consistent with the physics of the normal state.
As we have emphasized in the introductory chapier, this consistency is required
in any meaningful attempt. So we now turn our allention to the Tomographic
Luttinger Liquid picture of the normal state developed by Anderson and Ren (cf.
Section 2.4) [33] and see if it can be extended to the snperconducting state by
invoking the idea of interlayer pair hopping. Tn this piclure, it is assumed that the
zeroth order hamiltonian for the two dimensional Hubbard model is a collection
of decoupled one dimensional Hubbard chains (the decoupling being in momentum
space). The results in one dimension are used for each direction in k-space direction
in two dimensions; hence the two dimensional model is reduced {o a sum of decoupled

one dimensional models. The spinon dispersion is given by

f;m = nalﬂ:{fﬁ} = .’\'pl[!'i”,

- .
- SI;_N;—I("——]_ 6}61) 1s Lhe spinon velocity. Similarly, the holon

dispersion relation is given by

where v, = J(1 —4) (l

by = valk(0) — 2kp(D)],

where vy, = 2tsinaé is the holon velocity. Ilere 0 is the unil vector tangential to
k. Let us now assume there is a pairing interaction ¥V between holons in a shell

in momentum space about 2kr. The interaction V is taken to be a constant in

the shell. The gap equations are obtained in the usual manner by lirearizing the



following hamiltonian
lf.f =Z{,l, {FJEL I:|i|1I !rrl 1:‘2!_, T HI. _+. Iii'..lf.‘..
j;

Since the layers are inside a bulk superconductor, we can assume
( |I ﬂ} o { Tri Tri
E€_Ler) = \E_pEL .

The holon gap parameter & is defined by the relation & = V ¥ {e_,e,) and is deter-

mined sell consistently.

We get the familiar expression for the gap

V fanh E£x

l=—::3— —}'--1- where By = \fef? + A?

k

; : i —Uh ; : ey e W
It is easily verified that T, =2 exp —= 7 In particnlar, il the pairing interaction is
identified with the pair tunneling process and we put V' = A, then we find the T to be
exponentially small. Clearly, any pairing interaction which is nonlocal in k-space will
give the same result. It is here that interlayer hopping plays an important role. The
interaction caused by pair hopping is actually local in k-space and this changes the
form of the gap equation. We lost this feature in deriving expression (3.3) because
of the following reason, In Chapler 2, we advocaled a very naive decoupling of an
electron into holon and spinon excitations, We then did a perturbative caleulation
(treating the interlayer coupling as the perturbation) and traced over the ground
state of the spinons. However, the effective hamiltonian for the holons misses a very
crucial aspect of the interlayer coupling, viz., single electron hopping between the
layers conserves momentum. This becomes clear when we compare the interlayer

coupling term for electrons with the same term for spinons and holons. While for



I . +
electrons we have —1 ¥, rrki:,,c’,::, + h.e., in Lterms of the spinons and holons we have

|
= l_zz Cq c;:LTk'{,, 8 L Spy + e

qm ki’

Note that as far as the electrons are concerned, the in-plane momentum k is con-
served by the hopping process. But this is not so [or the holons. 1f we were to work
with an effective hamiltonian for holons, we musl ensure this aspect is not lost. This
would in turn imply that in expression (3.3) for the holon pairing term we retain
only those terms with & = . The effective hamiltonian for the holons is then

2
Hc”-uf-——u-ZI:c e! f"”T "'t-t hoe )
J N

kg

This feature went unnoficed by WHA in their original work, This is one of the
disadvantages of working with slave boson theories. Therefore, it might be better
to work in terms of elecirons though it is easier to visualize the mechanism of
pair hopping in terms of spin-charge decoupling. It has also been pointed out [38]
that though spin-charge decoupling may exist above T, there is a restoration of
quasiparticle (electron like) character in the superconducting state. This is another
reason why we prefer to work with electrons. Therefore, we write down Lhe [ollowing

hamiltonian

H = Z.f;; "";W Gy Fleam) — J"th‘H r',ﬂ eny efy + he (4.1)

2
where A ~ jl and we assume £ = v|k — kp| anticipating quasiparticle excitations

below T.. At first glance, it might seem that the above hamiltonian [ is inconsistent
with our assertions that the normal slate is not a Fermi liquid, For in the limit of
A — 0, the hamiltonian [{ deseribes a Fermi liquid in the layers [ and m. This is a

valid objection and we now give two reasons why working with /f is not meaningless.
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The first is to note that though we have a Fermi liquid in eacl layer, there is no
term that transports a single electron between the layers, i.e., we have suppressed
single electron hopping between the layers by hand. There i§ no reason why this
term should be absent in the case of Fermi liquids. 1t is not as though the matrix
element for c-axis hopping, t, is very small. ¢, as was mentioned in the previous
chapter has been estimated to be < 0.15¢. (In Chapter 6, we show that the presence
of the single electron hopping term actually inhibits superconductivity.) Therefore,
the suppression of c-axis hopping is a nontrivial feature. The second reason for
working with I is the unique form of the pairing termn. Note the difference between
the pairing term in {1 and the BCS pairing term which would be of the form
PITATACIR v

Rkt

This difference, as we pointed out is because of the momentum conserving nature
of the pairing interaction. It is hrought out clearly in fig.(1.1) where we have shown
the difference between the elementary vertex of electron-phonon scallering and in-

terlayer Lunneling,

kg P

Fig. 4.1 Electron-Phonon seattering and interlayer tunneling.
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Owing to this dilference, the individual momenta of a pair of electrons being
scaltered are conserved, whereas in the electron-phonon case, only the center of
mass momentum is conserved.

The results we present in the next section show that these lwo features, viz.,
suppression of c-axis hopping and the novel pairing term in the hamiltonian occuring
because of interlayer tunneling are enough to obtain high 7. 's, i.e., high 7. s do not
arise because of any enhanced pairing susceptibility latent in the anomalous normal
state but is the result of these Lwo features. In this sense, we believe that if somehow

a Fermi liquid could be made to exhibit “confinement”, high T. s should result.

4.2 Gap equation for high 7. ’s

We now diagonalize the hamiltonian (4.1) in the usual way, The pairing term of the

mean field hamiltonian is of the form

A e el (e ey + hec.
ke

where il should be noted, only one k value is being summed. The gap equation in

this case becomes

ALy ,
TR Lanl o (4.2)

where [ = (/&8 + A} and Ay is to be determined from the above equation. The

Fermi wave vector kp is fixed by the concentration of holes. For simplicity, we
assume a circular Fermi surface. This gives us the following condition which fixes
.IE.‘F.

Lg%
B Ju, R T 8



We have, for purpeses of illustration, chosen A = 0.05 eV, v = 0.7 eV and & = 0.25
(which fixes kp=1.296).
Let us first consider the gap al zero temperature. In this limit, the gap Ay is

given by Lhe simple expression

ﬁ?
&;.' S T—{k?. ['1&3}

The gap is isotropic but depends strongly on |k —kp|. It becomes smaller as |k — kg |
mereases. The cutolf momentum &, is fixed by the condition &_= —. The maximum
value of the gap al zero temperature is also the same as the cutoll energy. So, only
those states that have energies less than the superconducting gap are involved in
pairing. This feature persists al finite temperatures and is in contrast with the BCS
case where all electron states having energies less than the Debye temperature are

paired up at all temperatures less than 7.

0.025 |- =
0.02 [ =

. 0.015 | =
2 B =
0.01 F =
0.005 [ -
0k =

Fig. 4.2 Temperature dependence of the WITA gap.




We have solved the gap equation (4.2) numerically at finite temperatures. We
obtain 7. = 120 K. with our choice of parameters. The temperature dependence of
the gap is shown in fig.(4.2). Note that there is no difference between the magnitude
of gaps at 5 and 25 K and very little difference between Lhose at 5 and 50 K. Thisisa
peculiar feature of the gap arising from (4.2). One reason for this is the temperature
dependence of the eutofl energy & . We have shown this temperature dependence
of the cutoll energy (normalized Lo ils zero temperature value) in lig.(4.3). It is seen
that the cutoll falls very steeply at T' ~ T.. The resulling anomalous temperature
dependence of Lhe gap is seen clearly if we plot the k-averaged gap as a function of
temperature. This is shown in fig.(4.4). The gap remains constanl almost upto T...

This anomalous temperature dependence has been observed in many experiments.
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Fig. 4.3 Temperature dependence of the cutofl.




For instance, tunneling experiments [39] on YBCO show thal the position of
the density of states peak (corresponding Lo the position of maximum gap) remains
almosl unchanged as temperature increases. Similar resulls have also been reported
for the Bi 2212 malterial. High resolution electron energy resolution spectroscopy
[40] and Raman spectroscopy [41] have been used to determine the Lemperature
dependence of the superconducting gap in Bi 2212. These results again show that
the gap develops sharply for T' < T.. There have been attempts to fit the anomalous
temperature dependence of the gap to BCS theory in the strong coupling regime.
There has also been a suggestion Lhat this peculiar temperature dependence is due
to dynamical pair breaking [42]. The pair breaking is assumed due to single magnon

scattering and this canses the gap to vanish al temperatures lower than the actual
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Fig. 4.4 Temperature dependence of the k-averaged gap.
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However, in our approach this temperature dependence follows quite naturally

from equation (4.2). i.e. we have not used any parameter fil to obtain the observed

témperaturc dependence of the gap.

4.3 Josephson current

The results in the previous section indicale that the gap equation (4.2) caplures
many features of the gap observed in the cuprate superconductors. We now use
equation (4.2) to calculate the Josephson current between two superconductors de-
scribed by the hamiltonian H (4.1). The motivation for doing this is as follows.

Josephson current between the Cu-O bilayers in Bi 2212 has been observed experi-

mentally [43].
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Fig. 4.5 Josephson current between Cu-O bilayers in Bi 2212, Solid line is the BCS

prediction.



If the pair hopping mechanism operates belween the Cu-O planes lorming a bi-

layer, then Bi 2212 ilsell can be thought of as an array of Josephson junctions with
cach Cu-0 bilayer forming a WHA superconductor, If this is true, we would expect
the Josephson current J.(T') as calculated using equation (4.2) Lo agree with exper-
imental results. Experimental results for J.(7") show that if a BCS-like temperature
dependence for the gap is assumed, then the calenlated and observed resulls agree
only at low temperatures. There is a significant discrepancy al temperatures close
to T. as shown in lig.(4.5). To compare Lhe expernimental results with theory, the

Ambegaokar-Baratoll relation [44]

¥ A(T)
JR, = t
‘ 2A(T) anh op T

is used. (lere, f,; is the junction resistance in the normal state.) Furthermore, it is
also claimed [43] that if the Ambegaokar-Baratoll relation is inverled to oblain the
gap that gives the best [t for J, with experiment, il is seen that the gap remains
almost constant up to T.. The BCS gap does not show this fealure and this causes
the discrepancy belween ealenlated and observed J.. In the previous section, we saw
that the gap as determined by equation (4.2) increases very sharply for T' = T, and
is almost constant at temperatu ra.as away from T.. Therefore, we expect our results
to give a better fit.

We use the standard tunneling hamiltonian formalism to calculate the Josephson
current. The idea here is to write a tunueling hamiltonian ffy which transfers

electrons across a lunnel junction

Hy = ET’-‘F‘ ( ;:L, enrp + e ),
kp

where L and 11 denote the left and right sides of the junction. This tunneling
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hamiltonian is used Lo derive a correlation function for electron tunneling currents.
This correlation function gives the tunneling current as a function of voltage [45].
The tunneling current has two components—one coming {rom single particle tunnel-

ing and the other from pair (Josephson) tunneling. The Josephson current can be

calculated by evaluating the correlation funclion

A
‘I}{iw} =i z Z TkPT-F-"FJ _[ dr exp ot {TT{.IH[T}("P-"(T]ri'n'f‘p’ﬂ’}s
Eper k' ptat 0

and making the analytical continuation iw — eV 4 i8. The final result for the

Josephson current J(eV) is

| 1
eV+E,—F eV—E+ EJ:]

H1 = np(E,) = np(B))( | l ) } : (4.4)

DS ,
J(eV) = 4¢|TPY Fi FF{[T?.FI:E,,:I-—H.F{E;,]]{
j‘p o JF

eVt Bpt Br &V —B,— B,

where B = /62 + A? ele, and np is the Fermi function. The matrix elements
T}, are assumed to be independent of momentum. Ay is obtained from the gap
equation (4.2) and substituted in the above expression for Josephson current. Our
results (normalized to the value at T=0) are shown in fig. (4.6). There is a good
agreement between the theoretical and experimental resulls at temperatures close
to T.. Again it should be noled that we have nol used any parameter fil to produce
this result.

Thus we see that the gap resulting from interlayer tunneling has very unusual
features. We now examine how the gap parameter as given by equation (4.2) changes
in the presence of an additional intralayer interaction. These results may be relevant
for the Bi 2201 material. This compound has enly one Cu-0 layer in each unit cell,
The Cu-0 layers in different unit cells are ~ 25 A apart. Henee, it is quite likely that

an intralayer mechanism operates in conjunction with a weak interlayer mechanism



to give observed T, 's ~ 10 K. The results we mention below also indicate that the
strong k dependence of the gap we oblained [rom equation (4.3) gets modified and
it becomes closer Lo the conventional k independent gap if there is an additional
BCS like interaction.

We add te the hamiltonian I given by equation (4.1}, a BCS like term
—VZ(.{E CI-TH 4.’.‘{_,” ”f;l oL~ m
ki

For purposes of illustration, we choose N(0)V = 0.3 (a typical BCS value) and

hwp ~ 250 K. This gives us an intralayer 7. ~ 10 K.
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I'ig. 4.6 Josephson current between Cu-O bilayers in Bi 2212, 5Solid hine s as

caleulated [rom gap equation (4.2).




The gap equation (4.3) al zero temperature now becomes

Rk A
B = + vV 1 5
k= e -~ 9F, (A3

We solve this equation self consistenily. The resulls are shown in fig.(4.7). In
contrast to the case when there is no BCS like mechanism operating in the layers,
the zero tcml"_nerature gap does nol vanish anywhere in the region of interest. Also,
since the cutofl in the BCS mechanism is temperature independent, the steep [all
of the gap we saw earlier in fig.(4.4) is no longer likely, S0 we see that the unique
features of the WHA gap get “blurred” by the presence of an additional intralayer
mechanism. This effect will, of course, depend on the relative strengths of the two

mechanisms.
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Fig. 4.7 Bffect of a BCS-like intralayer interaction on the WITA gap at T=0.
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For instance, with our choice of parameters, we see that Lhe zero lemperature

gap al the cutoff value of & is 0.01 eV in the presence of V' while it was zero when
V' =0. The remnant gap is entirely due to the intralayer interaction. So, the gap
resorts Lo more conventional behaviour when V' is switched on. We believe that
a similar analysis will go through if we add an intralayer interaction with d-wave

symmetry and the resulting gap will show d-wave like features also as snggested by

Anderson [16].
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Chapter 5

Exact diagonalization

In obtaining the results we presented in the last two chapters, we made several
assumptions whose validity may be questioned. Tn particular, we argued that pair
tunneling is inevitable in the presence of spin-charge decoupling and “confinement”
of electrons within the Cu-O plane. Despite the enormous amount of work done
on this subject, these two issues remain conlentions, at best. Therefore, there are
only two ways to check if the WHA mechanism operates in the presence of strong
correlations.  One way is to formulate a macroscopic (Ginzburg-Landau) theory
based on the ideas of WITA and see if the results so ohitained are consistent with
experiment. The other way is to obtain exacl results for finite size systems. Of the
two approaches, the [ormer is too general for our purpose. Indeed, the macroscopic
theory corresponding to the WHA mechanism would be akin to the usnal Lawrence-
Doniach theory [47] for layered superconductors. As we mentioned in chapter 1, the
results for T, systematics derived by WHA can be got from a Lawrence-Doniach
theory for coupled Cu-O planes. Results for the orbital upper eritical fields, the
anisotropy ratio in the superconducting stale ete., for the YBCO, 2-1-4 and BSCCO
compounds have heen obtained [48] using the free energy functional (1.1). However,

these results are not unique to the assumption that the hamiltonian deseribing the
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normal state is the large U Hubbard model. Therefore, we take recourse to Lhe
second approach ' we mentioned, viz., a study of finite size clusters.

Eiver since Anderson’s proposal that the physics of the high 1. superconductors
is contained in the one band Hubbard hamiltonian, the large U Hubbard model
and its derivative, the {-J model have been the subject of several numerical studies,
I"inite size clusters of these models have also been analyzed extensively [49] by exact
diagonalization and Variational Monte Carlo techniques. These studies indicate Lthat
several of the anomalous normal state properties of the Cu-0 superconductors could
be accounted for by the t-J hamiltonian. However in these numerical studies, there
are no robust signals of a superconducting phase in either the Hubbard or the £-J

model [50]. Given the results we have presented so far, this is hardly surprising.

5.1 Coupled {-/ planes

If superconductivity in the cuprate materials is a result of strong correlation, then
it is the interlayer coupling t; which drives the transition to the superconducting
state. With this in mind, we have performed exact diagonalization [51] studies on
444, 545 and 6+ 6 site clusters. 444, for instance, denotes two (-] planes having

4 sites each. The two planes are coupled by the {1, term
I ™
—Jr.J_ ZCJ I’_'.-; -4 h.c.
i

The in-plane hamiltonian is the {-J hamiltonian with the constraint on double oecu-
pancy being enforced eractly. We use periodic boundary conditions. In addition we

use two different geometries for the 6 4+ 6 case:(a) for a closed ehain and (b) a grid.

"The results presented in this chapter were abtained in collalioration with M., Arjunwadkar, G,
Baskaran and 11, Basu,
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We have presented results only for the grid geometry since the resulls for the closed
chain are qualitatively similar. We have chosen, on a scale of |t| = 1, J = 0.31, and
varied [t,| from 0 to 0.9. Our results are therefore of direct relevance to the Cu-0
compounds in the region of small ¢;. To illustrate Lthe eflect of ¢ in the absence
of U, we have also diagonalized a 4 + 4 cluster with two holes after relaxing the
constraint on double occupancy,

To look for superconductivity we compute the extended -singlet correlation fune-
tion as defined by Hirsch [50] which we explain below,

Let
1
by = —leaci — e,
where (7, j) are nearest neighbor sites in a plane. Then the exlended-singlet pairing
correlation (SPX) is defined as

*

x=5 X (th) (5.1)

<ig><kl>

where (---) represents the expectation value in the ground stale, Here N is the
number of sites in the plane. I y scales as N, then the resull suggests a supercon-
ducting instability in the thermodynamic limit. This criterion is a special case of

the usual requirement of ODLRO. i.e., il there is superconducting order in a system,

we expect,

o | b
Jim g > {ely €| Cignl Cign) = const,
i
N being the number of sites. In onr case, we have restricted ourselves to electron

pairs of the size of a latlice spacing. We also look only for s-wave pairing. It should

be noted that we are studying inplane superconducting correlations as a function of

the interplane conpling 1.
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5.2 Results

The results of the above computation show several interesting features that are
size-independent (see fig. 5.1, 5.2 and 5.3). First, we note that for the case of two
holes, the SPX always increases with ¢;. For cluster sizes 4 +4, 545 and 646, this
corresponds to a doping of ~ 25%, 20% and 16% respectively. As soon as we add two
more holes, we enter a region of large doping. The results with four holes therefore
show a qualitatively different behavior. The SPX in this case is not affected much

by 1, and the results resemble those of the nunconstrained #-J model.
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Fig. 5.1 SPX Jor the 444 cluster. The dashed line represents the behaviour of SPX

when the constraint on double occupancy is relaxed.



The same behavior persists for larger lole concentrations. In this sense, we
suggest that we have crossed over from a non-Fermi liquid phase (which is sensitive
to £, ) to a phase which is less of a non—Fermi liquid.

Next we consider the limit ¢ — 0. In this limit with two holes in the system, the
ground stale has one hole in each layer on an average. Therefore the contribution to
SPX is dominated by terms of the form (0,,01,), {{'}”O;n}. Such essentially on—site
correlations are not related to superconducting order in the thermodynamic limit.,
This can be seen easily from the definilion of y in equation (5.1). The summation
in (5.1) consists of N* terms, of which terms of the form {G;gﬂh} are N in number.

These terms can be written in terms of spin-spin operators.
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Fig. 5.2 SPX for the 545 cluster.
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There are 2N terms of the form (0130L,) and these terms can be written in

terms of spin-hole operators. Clearly, il ¥ has to scale as N, it must be terms of

the form (O;,0L) that contribute to the sum in (5.1). Such terms are the long

range correlations. In previous studies [49] of the {-J model, it was noticed that
these terms do not contribule to the SPX. This led to the conclusion there are no

incipient long range (superconducting) correlations in the -7 model. Cur results

for t; = 0 also reflect Lhis.

However as {) increases, the long range correlations increase rapidly. In fact, it

is this behavior of the long range correlations that causes

total SPX with £,

Lhe enhancement of the
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Fig. 5.3 5PX for the 646 cluster,
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To show this, we have subtracted in the expression for SPX, those terms with
none of the indices < ¢, >, < k[ > in equation (5.1) equal i.e. terms wherein
bonds < 1,7 > and < k,{ > neither overlap nor touch, and examined the resulting
behavior of SPX with {4 for 646 with two holes. The resulls are shown in fig. (5.4).
The figure demonstrates the dramatic increase of the “long range™ part of the pair
susceptibility by a factor of 30. A similar increase is noticed for the 4 4+ 4 and 5+ 5
cases. We have also observed similar results for a large {7 Hubbard model where Lthe

enhancement of pair susceptibility due Lo interlayer tunneling is clearly visible.
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5.3 Discussion and summary

First, we address the question of finite size scaling. Comparison of our data for the
4 +4 and 6 + 6 cases shows a scaling which is slightly smaller than N. From our
results it is also clear that 545 is quantitatively different. This we believe to be an
even—odd [eature. Since we have not diagonalized larger clusters, we are aware that
these results are nol conclusive with regard to scaling, Ilowever, recent work on 848
clusters show similar results [52]. There has also been a report that Monte Carlo
studies of coupled Hubbard clusters show that inplane superconducting correlations
become nonzero when there is an interlayer coupling [53]. Therelore we believe that
these results are independent of size and point in the right direction towards further
numerical studies. For il is clear [rom the definition of the SPX and our criterion
for superconductivity that any instability in the thermodynamie limit has to come
[rom these long range correlations. In our study, we find that the contribution to
the SPX (for a given ¢; # 0) from long range correlalions increases with size. This
suggests the presence of a superconducting phase in the thermodynamic limit.

Another limitation we have faced is in varying the number of holes, The crossover
from small doping to the overdoped case needs more carelul scrutiny. But again our
results suggest that the feature indeed exists.

One can also question whether the small systems we have investigated can exhibit
the physics of spin-charge deconpling. It is difficult to answer this question (uan-
titatively. However the recent numerical work by Jagla and co-workers [54] clearly
demonstrates the phenomenon of spin-charge decoupling in a finite size system.

Before we conclude, we note that for the case of 4 + 4 sites with two holes, the

SPX decreases with £ il the single occupancy constraint is not enforced. This result
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Chapter 6

Single electron tunneling

In this last chapter, we describe two important resulls concerning single electron
tunneling between the Cu-O planes. In section 6.1, we demonstrate why “confine-
ment” is a sine qua non for pair tunneling to operate. In section 6.2, we use a toy

model to analyse the effect of single particle tunneling on the WHA gap equation.

6.1 Importance of “confinement”

In chapter 4, we saw how the pair funneling mechanism leads to high 7. 's. Interlayer
hopping conserves the individual momenta of electrons that tunnel between coupled
layers. This leads to a pairing term in the hamiltonian which is different from the
usual BCS pairing term in that only one k-value is summed. The gap equation
which results is different from the BCS gap equation and gives rise ta high T. ’s.
Since pair tunneling is nothing but Josephson coupling between the Cu-O layers,
it is natural to ask why this mechanism cannot operate in conventional materials
giving rise to high 7% *s. It is here that the role of “confinement” of electrons in a

plane becomes crucial. To see this, let us consider the lollowing hamiltonian .

1L TTE | 11 n
Hy = Z‘fk{fguci-a -+ “k:ﬁm} + Z ka{rﬂif‘jmﬂ"qj“ﬁ + h.c.). (6.1)
ka kq
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Hy is a toy model describing a two layer (I and m are layer indices) system where

superconductivity arises from a pair hopping term. Vi, is assumed to have the usual

BCS form,
~V <0 ep— hwe < |Gl 16l < e + fiwe
0 otherwise

(All energies £ are measured relative to the Fermi energy.)

If the electrons are not confined to the plane, viz., single electron tunneling
between layers | and m is not blocked, then there is another term that has to be
added to Hy. This term is of the form —f oo (eih e + hoe.). (1L might be pointed
out that the pairing term in the hamiltonian Hy is not the WHA term. Recall that
in the WHA term, only one k-value is summed. The effect of single electron hopping
between layers on the WIIA gap equation is discussed in the next section. Here,
we only want to demonstrate that the presence of single electron hopping inhibits
supc:rcnnd'uﬂtivil;}n This is a resull that is independent of the actual mechanism

of superconductivity.) With this extra term, we rediagonalize Hy and obfain the

following gap equation

D
tanh —& I Eanh 22

|
o BT 2
Vv 2 Zk: 2B} +3 E,‘: 2E; (6:2)

where Ef = \/[Ek 1, )2+ AL

It is easy to see that T. is given by

T 1
I:HT[." 4 ﬁ.zwf = f.ﬁ_ E?{]J—[:NEU}I;:].

N(0) is the density of states at the Fermi level. In fig. (6.1), we have plotted

jll-:B‘T::'.[tl.}
ksT:(0)

It is clear that T. decreases with £, or is insensitive fo il depending on the magnitude

with fiw, chosen to be 0.1 eV (keeping in mind typical phonon energies).
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of fiw, (the eutoff). This behaviour is in complete contrast with the WHA mechanism
where T, increases with 1. The reason behind this becomes clear when we look at

the zero temperature gap equation

2 i =1 fth.l'c-- I'.J_ . = ri'.u.'l,;—l- fJ_
NV = sinh (W) + sinh 1(W)

The single electron tunneling term acts as a pair breaking mechanism and destroys
superconduclivity. i.e., the condensation energy gained can be compensaled by the
kinetic energy associated with c-axis tunneling. For purposes of illustration, we
choose N(0)V = 0.3 and hw, = 0.025¢V. The results for A(0) as a function of ¢,
are plotted in fig. (6.2). These results show how single electron hopping between

layers inhibit superconductivity.
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Fig. 6.1 T, as a [unction of 1, in the absence of “confinement”.
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They are especially important in the context of the cuprate superconductors,
where t; < 0.15¢ and ¢ ~ 0.3 eV. So, il the notion of conlinement is not invoked,
there is no reason why 1. should be enhanced by t;. This means the notion of pair
hopping without confinement is inconsistent, which is why mean field theories of the
|i t-J model (where the notion of confinement is absent) show a decrease of T, with
t[55]. 1t is for the same reason that the inplane superconducting correlations were

found to decrease with 1, in our finite size study when the constramt on double

occupancy was removed (ef. fig. 5.1).
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Fig. 6.2 Zero temperature gap

74



6.2 Dynamical pair breaking

In this section, we examine the effect of single electron hopping (belween layers) on
the gap equation (4.2). The correct way to do this is to write down the Hubbard
hamiltonian for the layers wilh a c-axis hopping term coupling the layers and treat
the latter perturbatively. This is a difficult problem and we do not know how io
solve it. Instead, we adopt the following approach.

In the previous section, we saw thal single electron hopping acts as a pair break-
ing mechanism. So we analyze how the WHA gap changes in the presence of pair
breaking. To model this effect, we follow the early work of Owen and Scalapino [57]
who considered the effect of dynamical pair breaking on the superconducting state.
In this model, the ratio of the number of paired to unpaired electrons is specified
artificially instead of being determined by temperature as is usual, The system is
considered to be in thermal equilibrium though the paired and unpaired electrons
are not in chemical equilibrium. Since the extra unpaired clectrons depress the gap
and raise the [ree energy of the superconducting state, superconductivity disappears
al temperatures lower than the actual T, of the system.

In the problem that we are interested in, pair breaking is expected because of
single electron hopping between the Cu-0 layers. It is also reasonable to assume that
this can happen only at finite temperatures, since at ‘I'=0, we believe Lhere can be
no conduction along the c-axis owing to “confinement”. At this point, it is pertinent
to recall the results of IR reflectivity studies that we discussed in Chapter 1. This
experiment shows there is virtually no conductivity along the c-axis for frequencies
w ~100 em™", This suggests that c-axis hopping can operate at temperatures ~ 100

IX. This causes the number of unpaired electrons to increase and the gap decreases,
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Once the gap decreases it becomes easier to break pairs and the mechanism feeds
on itsell. This canses the gap Lo fall steeply [56]. (As mentioned in Chapter 4 | the
gap in the cuprate superconductors does fall steeply at the observed T, and there
hias been some speculation that this is because of pair breaking.)

We now calculate the gap Ay as a function of temperature and Lhe excess number
of unpaired electrons Ny. N, is fixed by the condition 3, (TJLT;;-,,} = N, where -
are the usual quasiparticle operators. The ellect of the additional constraint is to
introduce another chemieal polential p* in the gap equation (4.2) and the meodified

gap equation is
Bl — 1)

I = 3%, tanh 5 ; (6.3)
where ;i is fixed by the condition
> : T
v exp(A(Ey — p*)) +1 2
The above equation can be rewritten as
= gl —2m ) (6.4
= —[1 = 2n(p ;
2E; kLY 1 3
here mic) ‘
where ng(p*) = .
ST (BB — ) +
When p* = 0, we have the original gap equation which we wrile as
70
1 = %Lauh ﬁfk (6.5)

(where E correponds to the case p* = 0),

From equation (6.4), we obtain the expression for the excess quasiparticle number

B — Ey
A

e =ne(p”)—me(0) =

b




The gap at any temperature, A (T) can now be expressed in terims of 7y as

0 -

2 02 - [ AE
AL = O+ Aay | Ap — tanh —=
For small ng, we have the general result
AR =080~ alT),

where the temperature dependence of e will also be governed by that of n. Note
that a will also depend on £ 1. The addition of the temperature dependent term o T')
to the gap will cause disappearance of superconductivity at temperatures below the
“real” T, of the material. At any given temperature, it is also clear that an increase
in fig will lead to a decrease in Ay until it falls to zero. This result should be
compared with Anderson’s arguments [46] based on entropy considerations that
Ay = A — T2 1L should also be recalled that the gap equation (4.2) by itself
leads to an anomalous temperature dependence of the gap which we discussed in
Chapter 4. A more comprehensive theory is needed to discern which of these effects
is the mosi important.

To summarize the resulls in this chapter, we discussed the role of single eleciron
hopping in the context of the pair tunneling mechanism. We showed that if c-
axis hopping is not blocked, then T, is a decreasing function of the hopping matrix
element, ¢;. We also showed how single electron hopping at finite femperatures can
act as a dynamical pair breaking mechanism and argued this might make the WA

gap [all steeply near T..
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