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INTRODUCTION

CONTENTS

Background
Motivation

Organisation of thesis

Nuclear physics arose with the knowledge that the nucleus of an atom is com-
posed of particles with half-integral spin, protons and neutrons, collectively
called nucleons. Successive discoveries of more and more elementary structures
of matter led to an understanding of the underlying sub-structure of these nu-
cleons, These constituents of the nucleon, labeled collectively as partons were
shown to account for several of the nucleonic properties. Inspite of the great
advances made in the understanding of the nucleonic structure, little is known
about the distribution of the “spin™ of the nucleon in terms of the spin of its
constituents. An investigation into this problem forms the subject matter of
this thesis.

In this chapter, we put these discoveries, both theoretical as well as exXper-
imental, regarding the structure of the nucleou in a historical perspective. We

then use this to provide motivation as well as background for this study.

1.0 Background

Early parton ideas like the Quark Model of Gell-Mann [1] viewed quarks simply
as theoretical constructs, obeying certain symumetry principles which enabled
them to make predictions about some static hadronic properties. Quarks were
postulated to be particles with fractional charges and half-integer spin. This
simple quark model ran into problems [2] immediately when attempting to
define the wave function for the proton and neutron. Since these are the light-

est baryons, their spatial wave function was assumed to be symmetric, in the
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spirit of quark models. However, the observed ratio of the magnetic moments
of the neutron and proton indicated that their wave functions were also sym-
metric in spin-isospin space. This fully symmetric wave function contradicted
the nation that the wave function of a system of fermions should be fully an-
tisymmetric under particle exchanges. In order to preserve the spin-statisti. -
connection, a new internal degree of freedom called colour [3] was postulated:
quarks came in three colours such that the hadronic wave function was explic-
itly antisymmetric in colour space, thus restoring the desired antisymmetry of
the wave function.

Although quarks are coloured, the multiplicity of the observed hadrons
exactly matched the counting based simply on the number of charge states
allowed. This implied that hadrons were colour singlets and eventually led to
the idea of colour confinement with no coloured hadrons occuring in nature.
The quark model a la Gell-Mann gave a reasonable explanation of the static
properties of hadrons; however, it still lacked a knowledge of the underlying
dynamics.

In the late '60s, results on deep inclastic scattering (DIS) of high energy
electrons off protons at the Stanford Linear Accelerator Centre (SLAC) pro-
vided a first look into the deep interior of the nucleon. They established what
1s now known as scaling behaviour: the cross-section for such a process can
be expressed as a product of kinematical factors and unknown structure fune-
tions. These structure functions were found, to a very good approximation,
to be independent of dimensional quantities like the momentum transfer and
energy transfer in the experiment, [4] but to depend only on a dimensionless
combination of these. This scaling behaviour was surprising in view of the

fact that the elastic electron-proton cross-sections fall off very rapidly with

the squared momentum transfer, Q* (approximately as (1/Q?%)* for large mo-
mentum transfers); hence, the inelastic cross-section was expected to be very
small. However, scaling had actually been predicted by Bjorken [5] using Cur-

rent Algebra techniques. It was realised that such behaviour is consistent with
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a picture of electrons scattering incoherently off point-like, almost free parti-
cles within the nucleon; these were called partons and this idea of point-like
structures within the nucleon was incorporated into the parton model [6]. The
angular distribution of scattered electrons in DIS indicated that these partons,
relevant to the understanding of DIS, were spin-half fermions and could, in
fact, be identified as the quarks that were discussed earlier. Scaling appears
naturally in the parton model as a consequence of the absence of a mass scale
(partons are massless) in the theory. The parton model was very successful not
only in deseribing DIS phenomena but a host of other experiments involving
hadrons at high energies and momentum transfers.

In the meanwhile, great advances were made in the area of non-abelian
gauge theories. With that emerged the so-called Standard Model [7] of par-
ticle physics. The standard model, as it stands today, is a non-abelian gauge
theory based on the group SU(3)e x SU(2) x U(1) . This theory, in principle,
15 supposed Lo reproduce all known strong, electromagnetic and weak interac-
tion physics. The theory of strong interactions, Quantum Chromodynamics
(QCD), [8] forms an integral part of the Standard Model. It is a non-abelian,
renormalisable theory with the colour gauge group SU(3)c . It is an asymp-
totically free theory which implies that the renormalised coupling constant
vanishes (logarithmically) as the momentum scale, Q% tends to infinity. The
theory also prescribes how corrections can be calculated order by order in the
perturbation, with the renormalised coupling constant being the expansion pa-
rameter. At low or intermediate energies (with respect to energies involved in
nuclear interactions), typically of the order of the nucleon mass, the coupling
constant is large and is no longer a good expausion parameter. Hence calcula-
tions are reliable only at short distances or at large Q* and not in the so—called
nonperturbative domain. Nevertheless, there are indications (especially from
lattice calculations) that the interquark potential increases with the distance
of separation. This is often interpreted as colour confinement and may lead

to the occurence of colour singlet bound states (of baryons and mesons) as
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is observed in nature. Hence, QCD is considered to be a perfectly valid the-
ory of strong interactions — it postulates that hadronic matter is made up
of coloured, spin-half quarks and the interaction between them is mediated
by the coloured spin-one gluons, both of which are confined and are therefore
unobservable.

Asymptotic freedom in QCD provides a natural justification for the success
of the naive parton model as applied to various DIS processes. In addition,
QCD provides a systematic method for caleulating corrections at finite mo-
mentum scales, atleast perturbatively. Calculations in the case of DIS indi-
cated that,in fact, scale invariance of structure functions is approached only
asymptotically. Leading corrections, which were called “scaling violations”,
are logarithmic. These logarithmic violations of scaling predicted by QCD
were actually observed and were a triumph for the theory [9].

The leading order results in QCD for the structure functions have a sim-
ple interpretation in the parton model frame-work [10]. Scaling violations
as predicted by QCD are incorporated into a parton model of an interacting
field theory, where the interactions between partons destroy scaling logarith-
mically. All these predictions compare reasonably well with data from various

experiments [] 1].

1.1 Motivation

Early experiments in the study of spin dependent lepton-proton DIS were also
begun by the SLAC collaboration [12] in the mid '70s. This process requires
both the beam as well as the target to be polarised and so is technically
harder to achieve. It was only a few years ago that data in this sector became
amenable to a rigorous examination. Hence, current interest in polarised DIS
plenomena dates from this time, i.e., with the availability of more data from
the European Muon Collaboration (EMC) [13] . To understand why their
result stimulated so much controversy and discussion, we first specify in more

detail, what exactly they measured.

] T
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| 1.1.1 Formalism of DIS experiments

The process studied is highly inelastic lepton—proton collisions,
{p— (X, (1.1)

where the arrows on the initial state lepton and proton indicate that they are
longitudinally polarised with respect to the beam direction and X is the (un-
observed) debris. The break-up of the proton in the electromagnetic collision

process 1s shown in Fig. (1.1} .

Fig. 1.1 Illustration of the DIS process and the break-up of the proton due to

the collision.

B
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The kinematics of this process is dealt with in detail in Appendix C (both
for the polarised as well as the unpolarised case). Here, it suffices for us to note
that there are two independent kinematical variables in this process and we

choose them to be ¢* and v . Here, ¢* is the square of the momentum transfer

from the lepton to the hadron-photon vertes (i.e., ¢ is the momentum of the
virtual photon), ¢* = (k—&)? and v = p.q, where p is the proton momentum.
The lepton-photon vertex is elementary and well-known, while the photon—
hadron vertex is not. The latter is parametrised in terms of unknown structure
, Junctions which can be determined from experiment. The number of indepen-
dent structure functions is fixed by the number of non-vanishing, independent
helicity amplitudes for forward virtual compton scattering (remembering that
the process is parity and time-reversal invariant). There are two unpolarised
and two polarised structure functions in this case, labeled W, and W, in the
unpolarised case and (7 and Gy for the polarised case. (Again, see Appendix C
for details,)
The cross-section combinations that were measured by the EMC and SLAC

EUOUDS wWere

e o
87a’ £ (1:3)

I

A (11 +11)

TP {2Wysin®(0/2) + Wacos?(0/2)} .

Q' E
Here, the arrows indicate the configuration when the lepton and proton are
palarised parallel (17) and antiparallel (1]) to each other. The laboratory
lepton scattering angle is 0 while £ and £’ are the initial and final lepton lab
energies; (J° = —g* and a, as usual, is the fine structure constant.

Scaling implies that the structure functions appearing in the expression for
the cross-section are not separately functions of ¢* and », but rather of their
ratio. In fact, they are dimensionless functions of a single Bjorken scaling

variable, z, defined in the scaling limit as

-z

@1ELEL 0 (1.2)
P 2V

E TR
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Specifically, in the above limit, the scaling behaviour is as follows:

MWi(g%v) = FRi(z) s (v/M,)W; — Fy(z) ;

1

MovGi(g®,v) = gi1(x) ; {yil.r'f"lrfp]lgg — gafz) .

Here, M, is the mass of the nucleon. The cross-section for the process can then
be expressed in terms of these scaling structure functions, Fi(z) and gi(z).

Since the sum and difference of the different spin-configured cross-sections
have common kinematical factors, what was measured was the polarisation
asymmetry, so that errors due to over-all normalisation factors were reduced.
This asymmetry can be expressed as

qup = 42 (1l —11)
Tde(TL+TD)

where the cross-sections are differential with respect to Q* and » as shown in

(1.4)

eq. (1.3). The cross-sections can be reéxpressed, using the optical theorem, in
terms of the photoabsorption cross-section into states with J. = J = 1/2,3/2,
denoted as o, where the “massive” photon cau be either transverse (helicity
= +1) or scalar (helicity = 0) and J denotes the total angular momentum of
the photon-nucleon system. In fact, the asymmetry can be written in terms

of the transverse asymmetry for absorption of transverse photons, A,, given

by -r
_ Ay~ U;Z}-; _ w6 - QG
Typ2 T Tay !
a3
AFP =D A, (1.6)

where D is a depolarisation factor of the virtual photou.

In writing eq. (1.6), various approximations (kinematical as well as parton
model based) have been used; for details refer Appendix C. We just add that
the structure function of interest is given in terms of the scaling structure

functions by
a"ing
2e(l1+ )’

] T

gilz) = Ay(z) Fi(z) = (1.7)
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| while gy is zero in the parton model [14] . Here, R is the ratio of longitudinal
to transverse unpolarised photoabsorption cross-sections which vanishes in the
scaling limit.
Problems started when the data for A;, supplemented with the known data
for Fi(z) in that region was compared with the parton model expression [15]

for gy(x), written in terms of quark distribution functions:

Ly erir(z) ;
2ot ﬂfr‘?f':z} -

| niz) =

(1.8)
' Fi(z) =

:\:_In....- lq_n

Within the parton model, the Bjorken variable, z, has the interpretation of
being the fraction of momentum of the parent hadron that the parton car-
ries. The sum runs over quark and antiquark flavours; ey is the charge of the
f—Havour quark. Here ¢ is the sum and § the difference of the positive and

negative helicity quark distribution functions:

irlz) = aj(e) - g5 (e) ;
gr(x) = qf(z)+q7(c) .
Here, g7 () is interpreted as the number of f-favour quarks with momentum
fraction between r and (2+dz) of the parent proton, whose spin is aligned with
that of the parent proton, while 77 (z) is the number in the same momentum
interval whose spins are opposed to that of the parent hadron,
The expression in eq. (1.8) for g; follows from angular momentum conser-

vation: a spin-half parton can only absorb a photon of opposite helicity,

gl =gt

| Hence, within the parton model, the photoabsorption eross-section, @12, which
gets contributions only from the antiparallel configuration shown above, is pro-
portional to the number of positive helicity quarks, while @379 15 proportional
to the number of negative helicity quarks. Hence,
g ¥ 4q

| AI=ZE}E'|FI{I}1
> efap(x)

] T

(1.9)
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We complete this list of definitions by introducing the n-th moment of the

structure function, g,
1
G, E/ dr 2" gy (z) . (1.10)
0
There exist sum rules for the first moment of the proton and neutron spin

dependent structure functions. One of these is the Bjorken Sum Rule [16]:

[} 42 (60() — () = g0a (1~ /s | (1.11)

where g, is the ratio of the axial vector to vector coupling constants in nucleon
beta-decay. Later, Ellis and Jaffe [17] assumed exact SU(3) flavour symmetry
as well as a net zero strange quark polarisation in the sea to obtain separate
sum rules for the moments of g and g in terms of F and D, the antisymmetric

and symmetric SU(3) couplings (see Appendix C for details).

1.1.2 The EMC results

In the EMC experiment, polarised positive muons produced from pion decay
were accelerated and scattered off a polarised ammonia target with a large
number of free protons in a fixed target set-up. Target polarisation of about
75-80% and beam polarisation of nearly 80% was achieved. (Polarisation was
defined with respect to the beam direction as the relerence z2—axis), Data was
taken in the kinematical range 0.01 < x < 0.7 and 2.5 < Q¥ GeV?) < 80D .
Scaling (constant value over the Q% range measured) was indeed observed.
several precautions were taken to ensure the accuracy of data [13] which was

extrapolated using the assumptions (18],

r—]
f'!.[ =t ]

Ay 2

1

The first moment of the combination 3=, §(z) is the helicity content of the
quark and so should be finite. The integrability condition on this leads to the
second result above,

This yielded gi(z) at a mean (Q*) = 10.7GeV? with F; taken from unpo-

larised data [19]. Their result is reproduced in Fig. (1.2). The convergence of
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the data for small-z was also well-tested, i.e., the assumption, A;(0) — 0 (See

Fig. (1.3)) . After such suitable checks, the moment of gj(z) was quoted to be

(combined with the SLAC data [20], [12])

1
L j dz g (x) = 0.126 + 0.010(stat) £ 0.015(syst) .
(1]

The first ervor is statistical, while the second is due to systematic errors coming

from uncertainties in R, A; (see Appendix C), the fraction of free protons

interacting in the experiment, ete.

0.8

0.6

g'i(x)
0.4

0.2

] O
b + i
L | ~ %
L] \ég
_.-__——-.-_.___—_-._.u__.___-_——.-.—.__.&"‘_—.-
1 : 1 15 1 1 1 1
0.01 0.02 0.05 0.1 0.2 0.5

Fig. 1.2 The structure function, g7(x), is plotted as a function of the Bjorken

variable, = .

Solid dots represent the EMC [13] data, while the SLAC

data is represented by open cireles (ref. [20]) and diamonds (ref. [12]).

B T

1.0
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(%]

Q?l X )dx

£m

009 -

0.06

0.03}

0.01

0.02

0.05

0.1 0.2 0.5

Fig. 1.3 ﬂm dzgl(z) is plotted versus r, Lo show convergence of the data.
Solid and open circles refer to EMC and SLAC data respectively. The
point (0, 0.174) marked with a cross is the Ellis-Jaffe prediction [17] for

the first moment of this structure function.

B
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1.1.3 Discussion of results in the Parton Model

In general, GY can be expressed in terms of the (proton) matrix elements of

the axial-vector operators,

- . A .
A:le!b"fpf?ﬁ?"‘rb: 1=!H--!81 {1’121]

where ); are the generators of the flavour group SU (3) . (The analogous
expressions for the spin independent case involve the corresponding vector

operators). Their matrix elements can be expressed as
{P1 '9|A:1|I’1 S) = 211fp{¢il5ljl~

where 5% is the proton spin vector and the a; are unknown factors which may
be related to the F and D coupling constants using SU(3) symmetry. In fact,
(Y can be expressed in terms of only the diagonal elements, ¢z, ag and ag. The
last corresponds to the singlet current contribution, with A; being replaced by
unity in eq. (1.12), while the first two are non-singlet contributions having the
following form using SU(3) symmetry:

s =g4 = F+ D 4e5:‘ﬁ=;%[3f7—ﬂj. [1.13}

There is no prediction for the singlet contribution, ag .

In terms of these, the first moment of ¢7 in the parton model can be written

1 ag o, 2 33 —8f a,
JrP= . d .2 ey _
=5 ("“Jruﬁ) (' w) r \/;"D(l :i:i—'Zf.—r) ’

where the singlet (ag) and non-singlet contributions have different leading
order (Ofa,)) QCD corrections, as they obey different ()* evolution equations
[10] . Note that the «, correction to the singlet piece is also dependent on the
number of Havours, f.

Now, g4 and gs and hence a; and ag can be measured from the beta-decay
of nucleons and hyperons [21]. However, ag is not known. Hence, Ellis and

Jaffe [17] assumed that the contribution from strange quarks was zero, or,
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ap = 2ag. With this assumption, their prediction for (F is, with a,(Q? =

10.7GeV?) = 0.27 £ 0.02 ,
GP™ = 0.174 £0.005 .

This number is indicated in Fig. (1.3) and is seen to be inconsistent with the
measured value. This was the first surprising result coming from the EMC,
The unknown ag can be extracted, knowing the value of GY from this

experiment. This yields
ag = 0.09 £ 0.076 £+ 0.113 .

This result is fairly insensitive to the value of ag which is not very well mea-
sured, especially as SU(3) flavour symmetry is not exact [22]. The EMC claim
that “any uncertainty from possible magnitude of SU(3)y symmetry breaking
effects is much smaller than experimental errors.”

To proceed further, we invoke parton model results. The a;, t = 0,3,8,

can be written in terms of the quark spin contributions. Define

l i
Agy =fu de [77(x) + Tyz)| (1.14)
to be the spin contribution to the proton of the f-flavour quark and antiquark.
For the case of three flavours, we Lave

as = Au—A47Ad;

ay = "}—{ [Au+ Ad — 24As8] ;

ay = E[ﬂ.u + &d + As| .
Note that the Ellis-Jafle assumption is equivalent to the statement As = 0 |
Using the values of ag, az and ay listed above, we can solve for the Ag; |
or equivalently, for the mean z—component of the spin carried by each quark

flavour in a polarised proton with {S.), = +1/2 . We get
(S:hu = 0.391 £0.016 + 0.023 ;

(S.)y = —0.236 4 0.016 +0.023 -
(S:)s = —0.095 % 0.016 £ 0.023 ,
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where (5.); = Ag/2, so that the contribution to the proton spin is

1

L E"/gﬂg = %[.ﬁu + Ad + As) = 0.060 £ 0.047 £ 0.069 . (1.15)

The naive quark model, with three quarks bound into a proton predicts that
the entire spin of the proton is carried by these three quarks. This idea is
incorporated into the parton model containing infinite number of quarks and
antiquarks by stating that there is an excess of three quarks over the antiquarks
in a nucleon and hence the difference of moments of the quark and antiquark
distributions (which gives the difference in number of quarks and antiquarks)

is three, i.e,,
Z jd;r; (qf —E}') = Z f{[mqv{:r} =3
! f

and these are identified as the quarks of the quark model. Henece, (gr — ;)
gives the valence distribution in a nucleon. The corresponding parton model
expectation is then that these valence quarks carry most of the proton spin.
With this in mind, the result of eq. (1.15) is indeed surprising: the u-quarks are
indeed mostly positively polarised as expected, but the net quark contribution
to the spin of the proton is only (12 £ 9 4 14)%, i.e., nearly vanishing. Thus,
the valence contribution is almost exactly canceled by the sea contribution,

[t is true that corresponding results in unpolarised DIS indicates that the
gluon carries no charge, but about half the momentum of the proton. This,
however, is not surprising as, in a sense, the gluons also have to move, in order
to “keep up” with the proton! However, spin can be thought of as a static
property of the proton. In view of the phenomenal success of the static quark
model in describing properties of the nucleon such as the ratio of proton and
neutron magnetic moments by assuming that the entive spin of the nucleon
is carried by the valence quarks, this result, that the sea quarks carry non—
negligible spin, forces a critical reéxamination of the assumptions in these
models.

These two unexpected results of the EMC, namely

L. the observed violation of the Ellis-Jaffe Sum Rule implying As # 0 and
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2. vanishing quark contribution to the proton spin, implying possibly large

contributions from the gluons and/er orbital angular momentum, as op-

posed to naive expectations

have variously been described as a “proton-spin crisis.”

1.1.4 Consequences of the EMC results

Several explanations of the EMC results and the apparent failure of the parton
model have been proposed. These include Skyrme model analyses, where the
proton spin is accounted for mostly by the orbital angular momentum [23]
of the quarks; the veracity of the data has also been questioned [24] as well
as the dropping of the term involving the ga(z) structure function [25] in the
expression for the asymmetry. This data has also been cited as being evidence
against QCD [25]. A calculation using the QCD Sum Rule technique, however,
seemns to satisfactorily account for [26] the measured value of GF,

One of the earliest analyses indicating that the total spin contribution
of quarks practically vanishes was due to Gliick and Reya [27]. Unlike the
unpolarised case where only quarks and gluons contribute to the momentum
of the proton, in the polarised case, there is the added complication of the
orbital angular momentum, L., of the partons. Hence, a priori, the simplicity
of the parton model desription of the unpolarised sector is not present in the
polarised case. Since the total contribution to the proton spin can come from
its constituents as well as their relative orbital angular momentum, we have

the sum rule,

= (Sa)p - (1.16)

bl | v

1
Ezjjﬂw+ﬂﬂ+£==,

Thus, the EMC result allows for a large gluon contribution to the proton spin.

Apart from the need for obtaining data with improved statistics over a
larger kinematical region, it seems important to sort out theoretical ambigu-
ities by carefully defining the various structure functions and parton distri-

: butions involved. This would enable us to probe the nucleon spin content

\ |
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through other processes. This becomes specially important as many difficul-
- ties in understanding the spin structure of the proton arise from the fact that a
measurement of g7 (z) alone cannot completely determine all the parton distri-
butions. As in the case of unpolarised densities, other experiments are needed
in order to determine the various unkunown quantities to sufficient accuracy
in order to make definite statements regarding the different spin dependent
quark distributions.

Several calculations [28] have pointed out that the gluon contribution to
the first moment of ¢{(z) (to leading order) through a “triangle-diagram axial-
anomaly”-like diagram. Further, the Altarelli-Parisi evolution equations [10]
in ()% indicate that, to first order in a,, the quantity a,Ayg is conserved (where
Ag is the moment of the spin dependent gluon distribution and is the con-
tribution of the gluons to the spin of the proton, analogous to eq. (1.14) for
the quarks); hence, Ag can be large at the QF ranges accessed in the EMC
experiment and so the gluon contribution to the DIS asymmetry may be non-
negligible. Because of the nature of definition of the structure functions [29],
[15], which we shall deal with in more detail in the next chapter, this im-
plies that what was measured was not just the quark contribution to G7, but
also the (large) gluonic contribution appearing through the singlet (sea) quark
contribution. To put it simply, next-to-leading order corrections to the spin
dependent structure function are large and cannot be ignored. This is possibly
why the naive parton model failed to explain the EMC result.

Since Aq does not evolve in Q7 [10], £. must decrease with Q? exactly
as Ag increases with it, in order to satisfy eq. (1.16), as its RHS is trivially
conserved. lence, al the intermediate (@ ranges of the experiment, £, can
also be large. That a,Ag is constant to leading order is a QCD result; hence,
the statements about large Ag and L. hold even lLere. However, the claim
that this implies a redefinition of G} in terms of Ag and Ag [30], as

S | 2 ¥,
, G = EZI: € [ﬂ.q - i;-:’ly]

.
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is made strictly within the parton model. Furthermore, this result is also
scheme-dependent [31].

There have been several results for evaluating G7 in different renormalisa-
tion schemes; Bodwin and Qiu [32] were the first to discuss the question of
interpretation and definition of the quark distribution functions in different
ultraviolet-regularisation schemes in view of the EMC result. Later, it was
found, using other techniques like OPE, factorisation, etc., [33], [34], [35], LILELIJL-
the gluonic correction to the first moment of gf(z) either vanished or agreed

with the Altarelli result, depending on the renormalisation scheme used. The

most important conclusions drawn were:

1. Parton distributions defined beyond the leading order are not unique.
Provided the same set of definitions are used in both the polarised and
the unpolarised sector, meaningful parton densities can still be con-

structed, within a given renormalisation scheme, in a given model [32).

2. More data is required in order to study the distribution of the nucleon
spin in terms of its constituents; specifically, measurements of combina-

tions of parton densities, other than what was measured by the EMC,

are needed in order to settle this question.
With these two points in mind, we now begin a presentation of cur work.

1.2 Organisation of the thesis

The thesis is organised in two parts. The first part, titled “Parton Model
Phenomenology™ deals with, as the title indicates, a study of polarisation
asymmetries which, we show, will shed more light on the spin content of the
proton. Specifically, what is presented is a complete set of processes that yield
information on the spin dependent valence quark, gluon and sea quark dis-
tributions within the proton. A parametrisation of these densities, consistent
with corresponding unpelarised densities as well as currently available data

and other theoretical inputs, has been developed in Chapter 2. This is later
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used in order to demonstrate the dependence of these asymmetries on the vari-
ous spin dependent densities. [ue to reasons presented earlier (which we again
discuss in more detail in the next chapter), the parton densities themselves are
defined upto next-to-leading order (of order O(a, = g2 /47)) where required.
Chapter 3 discusses extraction of the spin dependent valence quark densities
in semi-inclusive DIS process, while Chapters 4-6 deal with extraction of the
gluon and sea quark spin dependent densities in polarised pp collision pro-
cesses. All cross-sections are computed in leading order QCD with massless
partons. Conclusions common to all chapters are drawn at the end of this
part.

The second part deals with a study of the nucleon spin dependent structure
functions, gi{z) and ga(x), as well as their moments. Chapter T discusses the
higher moments of the spin dependent structure function, g{(z), using the
OPE technique. It is shown that a mass scale typical of the quark model
scale emerges from the ratios of these moments. Support for results obtained
is provided in a non-perturbative Bag Model. 1n Chapter 8, we attempt to
evaluate the nucleon structure functions, g {x) and gz(x), within the Sum Rule
[36] approach. Here, the aim is to try to evaluate the z-dependent structure
function itself in a kinematical range that is experimentally accessible and
theoretically viable.

Everywhere, appendicos have been used in order to keep the thesis self-
contained as much as possible, even when the contents of the appendices are
well-known text-book material. We have endeavoured to fill in pertinent de-
tails in these appendices where-ever possible, rather than interrupt the con-
tinuity of presentation. Certain ideas/facts which appear only once and are
not directly germane to the core ol the thesis have been merely presented with
appropriate references, but have not been derived.

The contents of this thesis have appeared in the references [37], [38], [39],

[40], [41], [42] and [43].
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PART I

PARTON MODEL

PHENOMENOLOGY




At the outset, we wish to emplasise that the cross-sections (both spin de-
pendent as well as spin independent) for the processes we shall consider, have
all been calculated and are well-known. The role of this section is then to
demonstrate that these processes possess various properties that will help in
understanding the spin composition of the nucleon, within the confines of the
parton model. To do that, it is necessary to understand why we confine our-
selves so and also to put into perspective, historically relevant details regarding
the parton densities.

Having accepted that the najve parton model fails to explain the EMC
data, it is a foregone conclusion that we must now go beyond the leading
order. The complication that arises with this step is two-fold. First of all,
when we go beyond the naive parton model, we no longer have a picture of
zero-mass partons with zero-momentum-component transverse to that of the
parent proton. In other words, the helicity representation of the states is not
a good representation. Thougl this can be largely ignored, the other, more
important problem at finite Q% is that of the definition of the parton densities
and their relation to the structure functions. The fact is that there exists 2o
unique definition of the parton densities beyond the leading order. In fact,
they become prescription-dependent. To first order in a,, the splitting func-
tions that appear in the Q*-evolution equations [1] for the parton densities are
renormalisation-scheme independent. However, the corresponding quantity of
order a, that appears in the )*-dependent expression for the parton densi-
ties/structure functions is not just the splitting function, but also contains
constant (()*-independent) pieces which are renormalisation-scheme depen-
dent. The choice of definition of the parton densities then becomes one of
convenience; this was pointed out by Altarelli et el [2]. Strictly speaking, this
means that different approaches — say parton model and OPE — need not
have a one-to-one correspondence at the level of identification of the densities,

but only need mateh in the case of ohservables like the structure functions.

However, within a given approach, the densities must be consistently defined.

24




Introduction to Part | 25

This means, for instance, that the definition of the quark densities should be

consistent with the following identification:

glz) = ¢ (x)+q7(z);
i(z) = q¥(z)—q(z),

and so also for the gluon.

Having defined a consistent set of polarised and unpolarised densities, we
can then go on to a study of various processes in order to extract more infor-
mation about the manner in which these partonic constituents contribute to
the spin of the nucleon.

We have preferred the above verbose description of the problem at hand
over a mathematical one for two reasons. Firstly, to specifically exhibit the Q?
dependence of the parton densities/structure functions in various models and
renormalisation schemes will take us far away from the discussion at hand; it
is more in keeping as part of a review or book. Secondly, with the specific
choice of the quark parton model in which we will work, we shall specify these
Q* dependences of the densities along with their parametrisations in the next
chapter. This, we hope, is sufficient to illustrate our statements.

We begin the next chapter with a discussion of the expressious for the next-
to-leading order structure functions — both polarised and unpolarised. We
shall specifically concentrate on the quark parton model and comment on other
approaches appropriately. After defining the densities and their parametrisa-
tion, we use them to analyse, in succeeding chapters, various other processes

that sensitively depend on the spin dependent parton densities.
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Chapter 2
PARAMETRISATION OF DENSITIES

CONTENTS

Preliminaries
The Constraints

Choice of Parametrisations

In this chapter, we set up typical parametrisations of the (unknown) spin
dependent parton densities, consistent with the known spin independent ones.
To do this, we use the EMC result [1] for ¢7(x) and its first moment as well as
several theoretical constraints on various density combinations, We find that,
by combining all constraints; there are still several [ree parameters, an which
bounds can be placed. We shall use different values of these parameters to
study the z-dependence of the various densities.

From Chapter 3 onward, we present asymmetries in several processes in-
volving polarised beam-polarised target scattering. Using the parametrisa-
tions developed here, we will be able to establish which spin dependent den-
sity(ies) these asymmetries are sensitive Lo and which they will thus be able
to probe. The parametrisations thus enable us to quantify the dependences of

the asymmetries on these densities.

2.0 Preliminaries

We construct the parametrisations in the limit of nearly free, massless par-
tons. Hence gluons have only two helicity states due to transverse polarisation.
(There are anyway only two helicity states for the spin-lalf quarks). In the
parton model, the momenta of the partons are assumed to lie entirely in the
direction of the parent momentum with negligible transverse momentum. In

this limit, the Bjorken variable, z, has the interpretation of being the fraction

| ’
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of the parent hadron momentum that the parton carries, The distribution in
r of the number of quarks, q{z), can then be interpreted as the probability of
finding a quark with momentum fraction between z and (r + dz). An analo-
gous definition holds for the gluon distribution. Since we are interested in the
spin or the helicity parton distributions, we define g7 () to be the density of
positive helicity quarks of flavour f, with momentum fraction between z and
(z+dr) and q7 {x} to be that of the negative helicity quarks. Here, by positive
helicity we mean that the spin of the quark is aligned with that of the parent
hadron (See Fig. (2.1)). There are two well-defined density combinations:

grlx) = qj(x) +q7(z), the spin independent density and

(2.1)

grle) = qfl(x) = q7(x), thespin dependent one.

A similar definition holds for antiquarks and gluons. Clearly, g(z) (or g(z))
gives the number density of quarks (or gluons) in the momentum range = and
(z 4+ d}, while @) (or Fx)) is the difference of helicity densities and thus
defines the helicity or spin dependent density. The contribution of these to

the proton spin involves the moments of these densities; we define them to be

Agy = /Ll-l‘ (ffj":-r] F ﬁf{lj) i (2.2)
Ag = f:lmjliﬂ]~ “I

A\ A\
¢ 9

Helicity =+1 Helicity =-1

Fig. 2.1 This illustrates our notation for parton helicities.
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Then Agy/2 is the contribution of the f-flavour quark to the hadron spin and

Ag is the corresponding gluonic contribution.
In the spin independent sector, the quark and antiquark density for every

flavour 1s parametrised as
¢ =d+qli T=4ql, [=uds,

where qv is the valence contribution and g, is the sea contribution. The
valence contribution is defined to be the difference in quark and antiquark
distributions, as discussed in Chapter 1. An analogous equation holds in the

spin-dependent sector, where we define §/ and :’“}"r as
| 7=w+dl; ¥=¢ [=uds.

The * dependence of these densities is theoretically well-studied [2]. The
form of the spin-independent densities that we use are from Eichten et al. [3].

| Similar results are also obtained upon using the parametrisation of Sloan et

- al 4]

. 2.1 The Constraints

We first state all the constraints on the spin dependent densities:

l. The densities should reproduce the EMC result [1] for the first moment

of the spin-dependent proton structure function, ¢f(z), i.e

@= [ul gi(z)dx = 0.126£0.010(stat)£0.015(syst); {Q%) = 10.7 GeV?,

h (2.3)
In view of the large (approximately 20%) errors in this result, we shall
ignore (Q*—dependence of the densities and assume an average (2 of

around 10 GeV?,

2. The Bjorken Sum Rule [5]: This relates the difference in the moments of
the proton and neutron spin-dependent structure functions to the axial

vector coupling constant, g4.

! i
|} de(el(z) - gi@)) = 2 (1 — ag/m).

] e
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Assuming lsospin invariance [6], this translates to Au — Ad = g, in

terms of parton densities.

3. We assume the validity of the Carlitz-Kaur parametrisation [7] which
relates the spin-dependent valence densities, ity and dy, to the spin-
independent densities uy, dy via a spin dilution function, cos2¢(z),

which involves a single parameter, 7. [See Table 2.1]

4. In addition, the following constraints exist independent of any specific

models or assumptions used:

* The spin-dependent densities should be integrable, as their first
moments are interpreted as the finite contributions to the proton

SplIL.

o Define a parton asymmetry,

A% = Q(x)/Q(x); Q = 47,74 9.

Then, |A?] < 1 for all ¢ as the helicity dependent densities are

positive definite (See the definitions of the densities in eq. (2.1}) .

o Further, from the definition of the densities in eq. (2.1), @ and Q
must vanish, at large—z, at the same rate, i.e.,  and C’ should fall

off as the same power of (1 —x) as ¢ — 1.

2.2 Choice of Parametrisations

With the constraints listed above, the most obvious forms of parametrisations

are those listed in Table 2.1 (See [8]). _
Use of both the Bjorken Sum Rule and Carlitz-Kaur parametrisation fixes

not only the moments Auy and Ady (see eq. (2.2)), but also iy and dy

individually, as cos 2¢ is a known l-parameter function. This leads to an in-

teresting observation on SU(3)—symmetric models. SU(3) symmetry implies

the existence of the constraint (on the other non-singlet combination)

Au+Ad—-2As=g3 = Auy+ Ady =gg ,
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since the moments of the sea quark densities are equal, i.e., Au, = Ad, = As, .

Here gs is an SU(3) octet coupling constant, measured in hyperon beta decay.

This, along with the Bjorken Sum Rule implies

&“V=§A;ga¥ ﬁﬂ’v-_—ﬁ;m-

Using the currently known values [9] for g4 and gg, we find that it is impossible

to satisfy both of the above equations for a single value of the parameter, 4.

The Spin Independent Densities

EHLD) set: Sloan set:
Q* =5GeV? A =200 MeV Q* = 15CeV? A = 90 MeV

zuy(z) = L18295(1 — 22515 | zup(z) = 2.7529558(1 — )29
ady(z) = 0.67294(1 — 2¥51)45 | zdy(z) = 8.53299(1 — )
ruy(z) = 0.182(1 — £)>54 ruy(z) = 0.229(1 — )

e L) = 2ulle) ey = it
zsy(x) = qruy(e); n=0.445 zs5(x) = grusfz); 9 =105

rg(z) = 2.62(1 +3.5z)(1 — ) zglz) = 4.548(1 —z)™*

The Spin Dependent Densities

zuy(z) = (1.‘111,--{;5} - ?’::r:rfy{z}) cos 2¢( )
IEE:[I‘} = —:-lf zdy(x) cos2¢(x)

cos 2d(z) = {l + l:'::u_l <) }

2, (z) = Ngz? (1 — )% ziig(x) = Ngz? (1 — z)"8

zd,(z) = 210, (z) zd,(z) = z,(x)
x5, (z) = nziy(z); n=0445 | zd(z)=nziu(z); =05
z§(z) = Ngz® (1 +az) (1 -z | wj(z) = Nyz® (1 —2)"*
a, A>0 «, >0

Table 2.1 The set of spin independent and spin dependent densities for the

two sets of parametrisations due to EHLQ [3] and Sloan [4].

F s
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Hence, il we retain the Carlitz-Kaur parametrisation, we must give up the gs
equation, i.e., SU(3) symmetry (See ref. [8]).

Ofcourse, one could equally well give up the Carlitz-Kaur parametrisation,
but in view of the fact that SU(3) symmetry is known to be broken in the
spin-independent sector (the momentuin fraction carried by the strange quarks
is half that carried by the up-type quarks in the sea), we prefer to retain the
former.

To proceed, the value of v in Table 2.1 is chosen to satisfy the Bjorken Sum
Rule, but not the gs equation. The valence sector is thus completely fixed,
with no free parameter. (There is no valence strange quark distribution). The
spin dependent valence u- and d- quark distributions are shown as functions
of x in Fig. (2.2) for both sets of unpolarised density parametrisations (due to
EHLQ as well as Sloan). We have also plotted the EMC data for comparison
with the valence contribution to gi(z). We see that at large x values, the
structure function value is saturated by the valence contribution.

The magnitudes of &, and §, can at most be as large as u, and s, (since
the partonic asymmetries are all bounded by unity). This means that, in the
sea sector, the SU(3) symmetry breaking parameter is al most as large as the

spin independent one; we assume them to be equal, i.e., we use
i =i, Sy T 12

Hence, there are in general, only four unknown spin dependent densities (v,
Eﬁ;, i and §) . Since use of the Carlitz-Kaur preseription fixes the valence
sector, Au,, which is a measure of Lthe sea polarisation, can be fixed using
the EMC result for G} . In order to invoke this result, we need Lo express
g} in terms of parton densities. This depends on the exact definition of the

structure function in terms of the parton densities.
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0.4 - =

Fig. 22 The spin dependent valence densities are plotted as a function of
z for EHLQ (dotted line) and Sloan (dashed line) parametrisations.
The solid and dot-dash line represent the pure valence contribution of

the two sets to zg) (z) for which the EMC data is also shown.
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As seen in Chapter 1, the new interpretation includes an ‘anomaly-like’

contribution [10] to G coming from the gluons:

1

This is because the leading order (J* evolution equations for the spin dependent

Ze? (ﬂq;— %&g)} - (2.4)

£

parton densities [11] states that

d d al
m&Ezﬂ \ d_ftn:ﬁﬂ}_?&g 5

where AY is the sum of the flavour spin contributions and ¢ = In(Q?*/u?),
with g the subtraction scale. lu other words, o,Ag is conserved to first order
in the running coupling constant, e, . Ewven to second order in a,, a,Ag is
approximately conserved as the EMC experiment indicates AY is vanishing.

Now, a, at one-loop level vanishes logarithmically with % as

1%

T (33 -2 /) In(QF/AT)

where A is defined for f flavours through

@, (Q7) (2.5)

bo,(0) In(p®/A*)=1; b= % .

This implies that Ag increases (also logarithmically) with %, Hence, though
the gluonic contribution to the spin dependent structure function, gf(z), is
of higher order in &, than the quark contribution, there are potentially large
‘gluonic contributions to the first moment of this structure function. This may
explain the unexpected results of the EMC [10] and was the motivation behind
the redefinition,

r
Ag— &' = - Ag
'

with Ag’ being identified as the “true” quark contribution in eq. (2.4) .
This means that GY yields an estimate of Au, only in the case where the
(first) moment of the gluonic contribution to the structure function, g7(x),

vanishes, Otherwise; since Agy and Ag both appear in the same expression
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for G7, eq. (2.4) only relates these quantities but does not separately determine
their values. (The valence sector is completely defined; the only unknowns in
this equation are Au, and Ag). On the other hand, since AX is conserved, a
large Ag value implies also a correspondingly large value of the orbital angular
momentum, £, in order to satisfy the “proton spin sum rule” in eq. (1.16),
where the sum over (5.),/2 is identified as AY . This means that we have
already lost sight of the naive parton model picture with zero net orbital
angular momentum. Hence, the EMC result seems to imply that not only are
the sea quark and gluon spin dependent densities possibly larger than expected,
but the orbital angular momentum also may be large. Evidently it becomes
important to separately establish the valence, sea and gluon contributions.

Consequently, we see now the importance of including terms that a priert
seem to contribute only atl sub-leading level, i.e., at O(a,) to the moment of
gy - However, such a procedure presents its own difficulties. The Ofa,) con-
tributions to the structure functions are scheme-dependent, as stated earlier;
we, however, need a definition of parton densities that is “process indepen-
dent.” Since the definition of parton densities beyond the leading order is not
unique, we are, in essence, free to choose them in such a way that the gluon
contribution to gl () is either vanishing or non-vanishing.

The expression for ¢{ () within the parton model is [2]

| s frdy o : _ T i N . T
n(z, Q) = ;Zﬁjf - (rﬂy.Q‘J [5(1 = —f’li—}] +y{y,Q*JHf—]) ;
==l r U y i y
(2.6)
where the parton densities already include the @*~dependent splitting function
factors. The Q*-independent (a,) corrections to the quark and gluon terms

are given by A and I respectively:
Al =z = N z 4 1 = 2.7
(5)= 52 (faalz) = 30 +2) | (2:7a)

where

4 T 21+ 2%) 27
fg.2{2}=§(1+-5:——£“_z}+- r= lnz—Tr‘Hl-—z} (2.75)

E T
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where the + prescription in the term 1 /{1 — z); indicates that the pole con-
tribution at z = 1 must be removed:

fflz —“JT?J_I_ Efcl::—ﬂz]:] = J{1) :

=i

Note that the leading behaviour of gi{x) and the spin independent structure
function, Fi(x), is the same. Also, the infrared (1R) singularities coming from
a parton collinearly emitting another parton have been removed by taking the
quarks off-shell and suitably regularising the expressions. (See refs. [2], [12]).

The gluon term is given in the QCD-corrected parton model by

B(z) = g—’-u —2z)(1 +1Inz) . (2.8)

This result is also obtained via the OFPE in the momentum subtraction scheme
(MOM), while the M S scheme gives a result [13]

Bis)= 2 ({1 — 9= I (—) +3 —4:) , (2.9)

T | ==

Note that the sum in eq. (2.6) is over quarks and antiquarks; hence, the total
gluonic contribution to gf(x) is twice that given in either eqs. (2.8) or (2.9).
Furthermore, the gluon contribution starts at Q(ea,), but we have seen that
this can still contribute significantly to 7§ . Gluons contribute an amount
[—a,/27)Ag to the moment of ¢f because of eq. (2.8) so that eq. (2.4) is sat-
isfied; eq. (2.9), though, yields a vamishing gluon contribution to the moment
of gf which corresponds to the naive parton model expectation (i.e., without
the gluon term in eq. (2.4)) .

Finally, we emphasise that it is the asymmetry, A7 that is finiteas z — 0 ;
the only constraint on g{(z) is that it should be integrable and satisfy the
constraints listed above. We point this out in view of the fact that the EMC
[1] has fitted a form of g{(z) that seems to vanish at small-z, which need not
be the case [14].

Hence, the EMC result for 7 only relates Au, and Ag and does not

determine them individually when using eq (2.8) but actually fixes Awu, [15]

E s
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when we use eq. (2.9) . Without showing a preference for either case, we
parametrise the densities both ways. We refer to the former as parametrisation
Type 1 and the latter as parametrisation Type 2. We begin with the Type 1

parametrisation.

2.2.1 Parametrisation Type 1
Here, eq. (2.4) applies. For the EHLQ set of unpolarised density distributions,
we have v = 0.2468 (see Table 2.2). Hence,

Auy = 1.021; Ady = —0.240

satisfying the Bjorken Sum Rule. Then using eq. (2.4) and the EMC result
for G} in eq (2.3), we get

da,
2 Ag — (10 +27)Au, = 1.576. (2.10)
T

We evaluate a, at @* = 5GeV? and Agep = 200MeV, at which the unpo-

larised densities are parametrised, using eq. (2.5) for a, . We choose to fix Ag
by setting Au, as a free parameter, Hence, in the sea-sector, there are two free
parameters, .fr"n'hr, and 3 (see Table 2.1). Now, from the form of parametrisation

of the densities shown in Table 2.1 , we have
Mu, = -/:E_sﬁjl:,:] = :"I.T: BB, £+ 1),

where £ = 8.54 is the (common) exponent of (1 — z) in the expressions for u,
and ii,; B stands for the beta-function. We can trade Au, for N,; hence, the
two free parameters in the sea sector are J and Au,.

Once Au, is fixed, Ag gets fixed from eq. (2.10). Now, Ag has three free

parameters, ﬁ":,, i and o (see Table 2.1):

zijlx) = ;;r?y;r:f"l:f + )l — x)*
rglz) = N1+ az)(l —z)*

where the spin independent density, g, is known. Also, Ag is given by

i o

= N. I ————s
&.":-‘ 'FB{HQ-F_}[-FQ-!-J:-I-].
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Hence N, gets fixed, leaving only two free parameters, @ and «. It is more

convenient to use o and A?(1), which is the gluon asymmetry, /g at = = 1.

Parametrisation Type 1: EHLQ
v = (L.2468; hence, Auy = 1.021, Ady = —0.240

Parameter values

Resulting Spin Contributions

Set (a)

Au, = —0.2, 8 = 0.3622,
@ = 0.50571, A%(1) = —1

Au = 0.62, Ad = —0.64,
As = —0.178, Ag = —2.18

Set (b)

a = 1.0767, 4%(1) =1

Au, = —0.133, § = 0.4476,

Au = 0.75, Ad = —0.51,
As = —0.118, Ag = 0.46

Set (c)

Au, = —0.1, § = 0.5135,
a = 0.5688, A9(1) =1

Au=0.82, Ad = —0.44,
As = —0.089, Ag = —1.76

Set (d)

Au, = —0.05, § = 0.6938,
o = 0.36744, A%(1) =1

Au =092, Ad = —0.34,
As = —0.045, Ag = 3.73

Set (e)

Au, = +0.05, 4 = 0.6958,
a = 0.2262, A2(1) =1

Au=1.12, Ad=—0.14,
Ha = 0,045, Ag = T7.68

Parametrisation Type 1t Sloan

v = 0.2539: hence, Auy = 1.007, Ady = —0.254

Parameter values Resulting Spin Contributions
Set (f) | Auy = —0.2, = 0.3706, | Au=0.61, Ad = —0,65,

o = (.4223 As=-0.2, Ay =-1.92
Set (g) | Au, = —0.1, 4 = 0.5075, Au = 0.81, Ad = —0.45,

a = 0.5515 Ag = =0.1, 85 =2.29
Set (h) | Au, = —0.05, 3 = 0.6667, | Au=0.91, &Ad = —0.35,

o = (1.3558 As = =0.05, &g = 5.39

Table 2.2 The actual values of parameters that we will use are listed for both

EHLQ and Sloan sets for Type 1 parametrisation. These results have

been obtained withou! using the z-dependent form of the structure func-

tion, gy, but only its moment.
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This is related to a by
N,(1 +a
A%(1) = Ne(l+a)
Ny(1+a)
This is useful when we make sure that we satisfy the constraint, |A7(z)| < 1.

So, altogether there are four free parameters, Au,, #, o and A7(1) . These

are to be chiosen to satisfy the constraints
A%z)| <1 forallz; A9=Q(2)/Qx); Q@=4¢.g,

as well as the EMC data for the structure function and its expression in
eqs. (2.6)-(2.5) .

Hence the task is to use the expression in eq. (2.6) for gi(x), write it in
terms of the four free parameters and use the data points to best-fit them.
The most important constraint is that the parton asymmetries are all < 1 .

The logic required to check for this is as follows:

o The sea density case

It is straightforward to check that |A9(x)] < 1 for all £ . The sea quark

asymmetry is defined as

Allr) =

N,z"
N,

and is an increasing function of x. Hence, provided |A*(x = 1)| < 1, the

constraint is always satisfied. So, the requirement is that

Mu,
B(B,£E+1)

for the choice of @ and Awu, to be acceptable.

N, <Ny or ‘ |£N,

o The gluon density case

The situation is slightly more complicated in the gluon sector, because

of larger number of parameters. We have

= N,z*(1 + ax)
N1 +ax)

A?(x)
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To make sure that [A9(x)| < 1 always, we have to find the extrema of |A9]

and check that these values are < 1. There are two extrema satisfying

gAT

Hr Y

which are the solutions of

pr* gz +r =10

p=aix, ¢=idla+l)+ala-1), r=a

Let us call these solutions wy., and z,,,. Recall A(z = 0) =0, by

definition. The procedure is as follows:

— Check if x5, lies within the range [0,1]. If so, check if the asym-

metry at that value, A%(z.,), has a modulus < 1. If so,

— Check if r,,,- lies within the range [0,1}. If so, check if the asym-
metry at that value, A%(z,...), has a modulus < 1. If both these

conditions are valid, the choice of parameters is allowed.

— If either {or both) solution(s) lies outside the valid interval, or else
15 complex, the value of the asymmetry at that point is irrelevant.
For example, if both solutions lie outside the interval [0,1], then
that choice of parameters is always allowed, provided, ofcourse, that

Atz =1)| <1.

For the case of the Sloan parametrisation, the entire procedure goes through
a5 above, except that the spin dependent gluon parametrisation (which is sim-
ilar to the sea quark parametrisation), is easier to handle, Hence, there are
four free parameters in the EHLQ case (#, e, Au, and A#(1)), while there are
only three in the Sloan case (as A“(1) is known once Au, and o are fixed).
Typical parameter values for both cases have been listed in Table 2.2 . The

limits on these parameters are shown in Fig. (2.3). Note that Ag can be both

positive or negative. The sea quark spin dependent densities have been plotted

a function of ¢ in Figs. (2.4a) and (2.4h) for the different parametrisation
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sets of Table 2.2 for the EHLQ and Sloan parametrisation of the unpolarised

densities.
1 ':lrlllilillIITI]IL||_
C - GV

0.8 B ,' \-. ]
i ¥ .

u'ﬁ :'_ # % __
5 A n . _

0.4 = A ‘ﬂ_\:-!

02 Allowed -

D _| 18 1 | 1111 | I | | -1 [ ]
-0.2 -0A41 0 01 0.2
Au,

1,5 _I T | T 11T | T T T1 | T T |_
A € ]
v "] au=-0.2]

1 ==

0.5 - Allowed |

0IIII|LII]III[[1I|1I

0.8

0.6

0.4

0.2

- 1 1 l N |

4 05 0 05 1
Af(x=1)

TG

0.5

1 dlll[lll'llllilbll]llll
[ (b) 7
[ 1 =]
- H -
= 5 ]
- :
£ s |
— Allowed T A

U_||||||||1|||||||||:_

-0.2 -0.1 0 01 0.2

Ay,
_] T TTITLIT '| T T T '| T T l_
i (d) -
5 Au,=—0.05-

1 | —
i e
— Allowed o

D | B sl 1 | l I | Al e | ll LI |

-1 -05 0 05 1

Af(x=1)

Fig. 2.3 Limits on the various free parameters for parametrisation type l.

Fig. (a) shows the allowed region of Au, and 7 for the EHLQ (x) and

Sloan (o) sets of unpolarised densities. Fig. (L) shows the limits on

& in the Sloan case. Figs. (c¢) and (d) show the behaviour of the two

parameters, & and A?(x = 1) for the EHLQ set of unpolarised densities.
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G .Dz ! I ! ] '|' T T T I '|' T T T T l I T T T I T L] | T

-0.04

Flg 2.4a Curves marked (a) to (e) show z i, as a function of z for EHLQ

Type | parametrisations. See Table 2.2 for details.
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R =
-t /J
e
- o Fit :
ﬂ‘.— 1 1 1 | 1 1 1 | L ] L I 1 | l 1 L [l | | 1 1 | 1
0.1 0.2 0.3 0.4 0.5

es marked (f) to (h) show i as a function of z for Sloan Type

isations. These are similar to the EHLQ sets. See Table 2.2
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f[:'l:rc corresponding spin depend‘ent gluon densities have been plotted in
5. (2.5a) and (2.5b). We see that the Sloan set has very similar behaviour

to the EHLQ one and so we shall use the latter set alone in what follows.

Ui

The same as Fig. 2.4a, but for 27 .



0.2 0.4 0.6

: same as Fig. 2.4, but for 2§ .
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Finally, xgi(z) has been plotted in Fig. (2.6) where the solid curve 1s the
EMC fit to the data, which has also been shown. We see that curve (e) corre-
sponding to very large Ag or equivalently positive Au, does not fit the data for
any choice of parameters. This indicates that positive sea or strange quark spin
contributions are unfavoured. Here, we have neglected O(a,) corrections to
the quark contribution. Furthermore, the spin independent structure function
was evaluated only to leading order as this is sufficient to fit the unpolarised

data well [16].

ﬂ_DB1irr1| T T T T T TT] T T e R R R |

0.06

0.04 —

0.02 -

-._Dzjlrllt L | i ot i gt L | [ R
0.01 0.1 1

X

Fig. 2.6 x g} is shown for the EHLQ parametrisation sets (a) to {e) of Table 2.2
as a function of = . The EMC data is shown for comparison. Curve (e)

does not it Lthe data.
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2.2.2 Parametrisation Type 2

I-Iere, the valence sector remains the same as in the type | case; only the sea
md gluon sectors are changed. If we use the naive parton model interpretation
of the moment of the structure function in terms of the parton densities, then

‘the equation
|
Gri= [ ) =125 el by, f=wd,s,
f

xes Au, as Auy and Ady are known. Hence, unlike in the case of the type
1 parametrisation, Au, is not a variable. However, there is no way to directly
'ﬁxﬂg : we have to appeal to the proton spin sum rule {eq. (1.16)) ; if we
choose L. to be zero, Ag comes out to be around half. However, different
choices of Ag, again both positive and negative, are allowed. Once Ag is
n, everything else proceeds as in parametrisation type 1. In either case,
Nnd Au, = —0.14 for EHL() as well as Sloan parametrisation sets, so that
D . The choice £. = 0 with no gluon contribution to G7 has been

citly mentioned as it corresponds to the naive expectation. Otherwise,

yrefer the former (Type | parametrisation) as it separately contains the
on contribution to the first moment of ¢f(z) , which we know to be large,
hile the latter (Type 2 parametrisation) includes this potentially large gluon

tion in the definition of the spin dependent sea densities.

th this, we conclude our description of the parametrisation of the spin

sendent densities. We see from the fligures that the Sloan and EHLQ
etrisations yield similar results; we therelore choose the EHLQ set and
_.:j_iﬁfaiﬁlle:tr_isa.l.iun Type 1 with which to discuss the asymmetries in forth-

ng chapters.



2. Density Parametrisation 47

Nucl. Phys. B328 (1989) 1

[2] V. Gupta, S.M. Paranjape and H.S. Mani, Pramana 14 (1980) 119; see

also [12] for the corresponding spin independent quantities
[3] Eichten et al. EHLQ, Rev. Mod. Phys. 56 (1934) 579.
[4] T. Sloan, G. Smadja and R. Voss, Phys. Rep. 162 (1988) 45
[5] J.D. Bjorken, Phys. Rev. 148 (1966) 1467; Phys. Rev. D1 (1970) 1376

[6] Recently isospin violation was observed through a measurement of the
Gottfried Sum Rule; the consequent possible isospin violation of the sea
has been ignored here as it is small compared to the errors in this ex-

periment. Later parametrisations must however incorporate this as the

quality of DIS data improves.

[7] R. Carlitz and J. Kaur, Plys. Rev. Lett. 38 (1977) 673.

J. Kaur, Nucl. Phys. B128 (1977) 219.

[8] 5. Gupta, J. Pasupathy and J. Szwed, Z. Phys. (46 (1990) 111.

D. Indumathi, M.V.N. Murthy and V. Ravindran, 2-jet production in
polarised pp collisions, preprint, IMSc/91/31

[9] Particle Data Group, Phys. Lett. B239 (1990),

The values we use, based on nucleon and £ decay data, are g4 = 1.261 +
0.004 and gg = 0.584 £0.018; if one includes data from A" decay, the value
of gz decreases somewhat, but is still consistent, within error-bars, with

what we have used.
ﬂ] $jee the references in Chapter 1
'—I} G. Altarelli and G. Parisi, Nucl. Pliys. B126 (1977) 298

2] G. Altarelli, R.K. Ellis and G. Martinelli, Nucl. Phys, B143 (1978) 521




Density Parametrisation 48

D. Bass, B.L. loffe, N.N. Nikolaev and A.W. Thomas, preprint DFTT-
7/91 (1991)

ee also U. Ellwanger referenced in Chapter |
\E. Close and R.G. Roberts, Phys. Rev. Lett. 60 (1988) 1471
;ﬁiis where we differ from [8] the first TY;{E"E"L'L'-’- @ [5]

his needs careful handling; a redefinition of the spin dependent densities

he expression for gi(x) forces a corresponding redefinition of the spin

_éin_g the difference of the helicity densities holds. However, any such

-ty

nitions affect the result for ) only at next-to-leading order and so
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Chapter §
THE VALENCE DENSITIES

iNTS

The p—p semi-inclusive process
ipter | we studied the polarised j-§ DIS process and corresponding data
MC and SLAC experiments, We will now look at different processes
t more information can be gathered.

atural extension of the electromagnetic inclusive, polarised pp DIS

‘we have semi-inclusive hadroproduction [1]. This is represented by
g — ph* X

arrows on the initial state particles denote longitudinal polarisation
and h is a (charged) hadron; charged rather than neutral so that
t;u ntal identification is easier. This process is an exact analogue of
T‘grg DIS experiment, with a single particle being tagged in the final
yris: Some preliminary data is already available from the EMC. The

polarisations are not detected as usual; it is enough if any two

lved in the process are polarised. We consider the following three

(3.2)



1 tf[’hﬁ‘ Valence Densities h

P 42 de(rl =11
=do(r+ )’

it the cross-sections appearing in this expression are no longer just particle

(3.1)

uction cross-sections, but combinations of them such that a measurement

secifically, differences in rates of production of charge conjugates, i.e.,
d h~, are sensitive to the valence densities in the proton. Once such an

nent is performed, therefore, the valence part will be fixed; it will then

S process directly gives information on the sea densities [2]; however,
iments are difficult to perform due to problems with obtaining mono-
ic ¥ beams. (Hence errors are larger in such experiments.)

he difference in cross-section between the production of At and A~ fac-

Formalism

: &eﬂtmn for the processes listed in eq.(3.2) is related to the cross-
 fo a,;a.up,arton I:t.ha.t scatters off the polarised muon in the subprocess) to
*'*ﬁ;g. hadron. Hence, the semi inclusive process is again represented
< level by

g — iy



e this constraint, in the parton model, we intreduce a fragmenta-
on, D;‘[z]. Quarks have colour and are confined; hence, they must

ent into hadrons with unit probability. That is,

fﬂ‘:[z}dzzl :

 to the interpretation of the fragmentation function as a probability
m—the probability that a parton, ¢, with momentum &, *fragments”

ron, h, with momentum, z k. This is depicted in Fig. (3.1).

lustrates Ladroproduction in semi-inclusive DIS processes.
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(a)

o

ig. (a) corresponds to Target [ragmentation, Fig. (¢) to Current
ientation and Fig. (b) is the total inclusive cross-section (see text
tails). The figure is reproduced from An Introduction te Quarks
ous, '.E. Close, Academic Press, London, 1979.
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neral, the hadron momentum may have some transverse components

spect to the momentum of the parton from which it was produced.

Pam P
Pucf

is the initial nucleon momentum. There are two possible sources of

=

: (3.3)

n. One is in the target debris, and the other, the struck qﬁa.rk. In

__I.ii'a've the three-momentum of the hadron, h. This 1s because, in
; I:B;CB factor, 5

| oy

dQ = Z {*z—rjg,‘lz—é— (3.4)
egrated out all but the i = h momenta, When pg is also integrated
ult corresponds to the inclusive DIS cross-section.

g Ph in terms of its longitudinal and transverse components, (=,

mi-inclusive cross-section is differential with respect to four vari-

d'e
de(ip — phX) = ——— .
R ) de dy dz dpg
st, the photon incoherently interacts with a nearly-free quark—this
ds to the usual DIS process with variables & and y. Theun, this struck
h now has a large momentum due to the large momentum transfer
and is therefore well separated from the nucleon fragments)

hadron, h, of momentum [raction, =. The assumption made in

N odel is that the parton fragmentation proceeds independently

¥
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o4

IS process, i.e., independently of @ and y and is represented by the

y density (fragmentation function), D;‘, which 1s a function of the
mentum alone:

D} = Dy(2,p7)

pendent of the target used. In what follows, we assume D? to be
f;.-‘ alone, as the fragmentation functions are expected to be fairly
ive to the small pr picked up during the hadronisation process. (Recall
ie transverse component of the hadron momentum with respect to

entum of the parent parton; the hadron is part of the debris which is

ined to a narrow cone around the parton’s momentum direction. )
ly, we have the constraint,

bds
b

' Z_[ dzz DMz} =14 9=4,F (3.5)
i

momentum conservation relation due to the constraints that

k has to hadronise with probability one and

omenta of the hadrons it goes into should add up to its own mo-
mentum.

ns of these fragmentation functions, the crass-section for the process,

, is given by

(up— phtX) = zq;dgﬁy(,up_w;-:; [Dk(2)]

3.6
=AY ayla) D), Y
h

udes kinematical factors and the squared matrix elements and
over both quark and antiquark flavours. Notice that ¢'s refer

densities inside the proton which interacts in the process

s information on the final state hadron.

interested in polarised pp scattering, we define the cross-

da"(17) and de™(1]) .
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“corresponds to deep inelastic hadroproduction when both the ini-
'@,_._:__sr:e longitudinally polarised parallel to each other (say, along the
he beam direction) and the latter corresponds to an antiparallel

ey

ation. We now have to express q(z) and D!(z) suitably, to acco-
pin dependence.
llsi?eﬁ';ﬁ' DIS, we define the spin independent and spin dependent

v combinations, g;(z) and g7(x). Consider first, the production

1.e., spinless meson production, Obviously,
DM(z) = Dh(z)= Dizy; h=m K. (3.7)

es that the probability for a pusitive helicily parton to produce

HrH;Ez{TU = A?“Jﬂr‘i’f(rlﬂ?[-ﬂ;

(3.8)
e = AT €ja7(a) D)

tion is the same as in inclusive DIS, where (T1) and (17) refer to
nd parallel beam-target polarisation configurations respectively
refer to positive and negative helicity quarks whose spins are re-

igned and opposed to that of the parent hadron, When integrated

earlier, eq. (3.8) corresponds exactly to polarised, inclusive

. we define the combinations:

&";.h s da”

f
Tzdydz b — W{TT);

drt = )+ i)
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de” = A}, e}ﬁj{.r} ﬂj‘{z} s
do* = AT, el qplx) Di(z) .

sight, it seems, from eq. (3.9), that we have gained no further

(3.9)

he parton contributions to the nucleon spin; in fact, we seem

: off than before as we do not know the fragmentation functions.

entation functions are independent of the polarisation config-

uration of the initial state

Iso the only quantities that carry information on the produced

nbination

+ —
de’ — dot

qr DY (2) — gy DV (=),

have not displayed charge factors for the sake of clarity. Since h*

Di ()= Hj_:_{zj , (3.10)

ﬁiution to (:16“ = clcrh_) of quarks and antiquarks of a given

ks R

- = (9r—7) [Dj;*{zj - D;“{zj] ; (3.11)
= av(a) [Df (2) - DI (2)]

used eq. (3.10). Hence, the r:'.:;nl'nl:niI‘J'.a.i..im‘l1 de™ — de®™ iy pro-

ys Lo the valence quark densities weighted, ofcourse, by charge
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ce, if we set up the asymmetry for the cross-section combinations
ANt = dot = det™,
=l e
AN = de —=de |

st dot* or do™”, the result will be proportional to the valence

alone. Since there is no sea quark contribution, gluons also

n functions using charge conjugation and isospin invariance, such
g expression for the asymmetry 1s mdependent of these un-

' ian functiuns, We begin with N —production.

ﬁragmentatiun functions for the At They are
v Rt Rt QKPR Rt
D;T 'I‘DE 1D.-£ TDE TD;_ 1D3 '

- six for the A'—. Charge conjugation symmetry relates them

D_‘;"f[z] = D;"’_{z] = Df(z).

s sactions can be written in terms of these. Then, according
e cross-section combinations of interest to us are as follows:

= do —dot”

= 4 14 (u—1) [D— Do + (¢~ 1) [Da - Dy 3.12

‘-r.1.ﬂ.'r : o o o d + {* b :J
. (s—3) [D, - D]} ;

%) [Du — Del + (E_f?) (Di— D4+  (3.13)



ence Densities

58

ndences on & and = of the densities and the fragmentation func-
ely as well as the superscript, &, in the fragmentation functions
j:imssed’for convenience. Notice that the strange quark contri-
es as the valence combinations, (s — 3) and (§ —3) , are zero in
also use the approximation of equality of unfavoured frag-
case, this implies that

Dj(z) = Dg (2) .

are present only through dd pairs in the sea of the K* which
¢ uark bound state, this is a reasonable assumption. Then,

3.13) reduce to

ANK = 4 {duy (Dy— Dg)

AN' = 4 {4mw (Do - D)},

etry, defined analogous to eq. (3.1) as

(3.14)

vendent of the unknown fragmentation functions; in fact, it

u—quark valence density alone. Since the unpolarised u—quark

rectly gives the spin dependent w—quark valence density.
epdurf: for the case of m—production gives

" = 4 Ly (D — Dg)+dy (Da— Do) b

= 4 4y (D. - Da) +dv (Da - D),

ript on Dy(z) should now be r. Since w and d are in

y we cannol drop either of them as we did in the case of



owever, isospin symmetry between =% and 7= gives us
[t o : A
Du = Dd 1 ‘Dd - Du 1

- with eq. (3.10) that states charge conjugation invariance, yields

elations between the various fragmentation functions:

Lpy £ Dr" | which we denote by D7 and

= (3.15)
D2 £ Df , which we denote by DZ.

icate charge conjugation and isospin operations respec-

ANt = g { ur —dv) (0. - )}
{17 -&) (0. - Do)}

&
=
Il

metry in the pion case, which is the ratio of AN and ANT,

4iv(x) — dy(x)
Juy () — dy(e)

Az, z) = (3.16)

at the fragmentation [unctions, i.e., the z—dependence can-
directly measurable in /¥ —production, polarised DIS 71—
yield information on dy. Since dy is positive (it is a proba-
1 d E; is expected to be negative over most of the r—range,
umerator and smaller denominator than AM and so A7 will
A® . Hence, the relative magnitudes of A% and A7 can also
of the spin dependent valence d—quark contribution.

than uy at all x, (recall dy is suppressed by a factor (1 —z)
rewrite the asymmetry in terms of the ratios,

dy (i _up(x) B dv(z)
"‘lu’p"{m]‘ Pu= llv{.‘]‘i}1 Pa = tf'|.-'[:.£} '

(3.17)
i;};ti&'s are less than unity. We have

Aﬂﬁﬂp‘f’(ﬂu—#dj {.III——[_.IFE]| t {318}
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e retained terms upto order f? only, as f is small, Since AY in

A" — AN ~ f (py — pa) .

dron detected in the final state is a proton, the fragmentation
 be carefully defined as protons carry spin of half a unit (f/2).
o note here is that the final state polarisation is not detected,
over the proton spin must be carried out.

cess, the polarised inital state quark interacts with the photon

fric

0 '-f:__l'g_:fm-ion helicity conservation at the photon-fermion vertex,

D -~
tark of definite helicity then fragments into the proton, Let
probability for a positive helicity quark to fragment into a
on (neglecting its mass for the moment ) with a momentum
"'__t_'_l_y,; q" can fragment into p~. Since the proton polarisation

> have to sum the probability that this ¢* fragments into pt

Diy(z) = D3 (2) + DI (=),

y defined by replacing ¢t by ¢~ in the above equation. How-
f a g% [ragmenting into an unpolarised proton with spin

ﬁ!f‘_.-?'fﬁ.ﬁm'ﬂ as that of ¢~ producing p!, by definition, i.e
DFI s Drl : ﬂpl _ DpF

R e S
he following relations:

e el Pl = el
Dy = DY+ D5L =07 .



-
F
i g
. L . |1 W LF R | pil 'El

Oy, =P + Do =D},

_I#g_"ﬁugi state proton spin directions is equivalent to a sum
rer b_-:;uark helicities. Hence, we define
i

Dhilz) = D (z)=D%(2)

TN = Di(s),

@‘“‘fma.n unpolarised quark, ¢, to fragment into a proton of
on is just the probability that it fragments into that proton at

D_(2) = Di)(=),
[]I.

- duy (D — D)+ dv (Dy— Dy)

(3.19)

on that [3]

I
(Du — Dg) = (Dy— Dy)

é;ﬁ;ﬁﬁhﬂrisaﬁml of the fragmentation functions as before

A (i, 2) o 4ty () + dy(x)

dup(e) + dy ()

y pu and py as defined in eq. (3.17), we lave

A, — (pu — pd) (S - 1),

tained terms upto order f? only, as [ is small. We

AT A = 2p, 4 [ (py— pa)

L (3.20)
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roproduction yield information on the spin dependent valence
etry arguments were used to cancel the z—dependence of

vhich appear as ratios of lragmentation functions. This was

‘Since very little is known about these fragmentation

d also test that that our results are not spoilt by possible

on. Since we are constructing asymmetries involving the

rticle-antiparticle production cross-sections, it is likely that

Lt}}g-.]iaralnﬂll'isa.tiﬂlls of Chapter 2 for the valence densities

itude and sign of these asymmetries.

ametrised the spin dependent valence densities in terms of a
function, cos2¢. The asymmetries constructed in the

expressed in terms of this “spin dilution factor™ as

= cos29(z) (1 - § f(z));

= cos2¢(z) (1- % f(x) - I ) (3.21)
= cos26(x) (1 - fle)+ | /(e)).

nmetry is positive. Further, the fit to cos 2¢ oblained from

ds Iarge values for these asymmetries over most of the
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Densities

(et

ng final state hadron detection. Use of a single set-up to
etries in inclusive as well as semi-inclusive DIS will cut down
systematic errors and will thus allow the sea densities (on

e results of the two experiments) to be extracted more reliably.

rk and antiquark fragmentation functions was used initially to
v fragmentation functions. Later, sum rules were derived [1]

—integrated DIS m—production cross-sections in neutron

tation functions and their z—dependence has recently been

idependent DIS hadroproduction [4]. This reinforces the

jally in view of the fact that in the following Chapters, we

pp collision experiments which are harder to perform.

tion to the Nuclear EMC Effect

of the technique described in section (3.1), we discuss the
_ effect [8]. Although not central to this thesis, this topic
tion of the analysis presented above. The EMC effect
first made by the European Muon Collaboration [3] that
nction of a nucleon found in a nuclens of mass number A and
ucleon are nontrivially different. This is shown in Fig. (3.4),
_I_ﬁﬁh_u{:l'ear (Fe and Cuj and nueleon (Deuteron) structure

. Iﬁﬁjatte(l as a [unction of r.
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bined data from EMC, SLAC and BCDMS collaborations on the
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| understood. Although there is no consensus explanation for

e of the structure functions, the field has narrowed to two

is studied on individual parton densities. Hadroprodue-

toal with which to study the “valence EMC effect.”

nmetry is the ratio of nuclear and nucleon cross-sections.

ection for muon-nucleon/nuclear scattering

(N A) = ph X

(kN A= ph X) = ALY (2,2)
icludes kinematical variables and £* is given by

: ‘,Cm,.prwi Ze;q Na) Dj(z) .

b
entation [unctions are independent of the target. This

he scattering — the latter is an r—dependent process;

qndent one. Effectively, this means that the hadronisa-

lat the struck parton does not interact with the target

on of the A—independence of the fragmentation func-

hat the procedure applied earlier in this section also



lo :
5 i c 3 - X
:z:[ Bt 2 da dy dz[‘u )
: (# joh™ X) ] Etl ] ( i )
4y AN s ™ il TR
Ldy oz F d

both AA and AN depend on valence densities alone
o {nrn using charge conjugation and isospin invariance)
 of the z—dependent fragmentation functions. For an

mass, A, and the denteron, D, isospin invariance implies

uf(z)=d"{z) .

s—5=0 and Dy=D;
nr f{—production,
= ALy () (0. - D2)) 5

= 4 {4 (wd+ad) (Du=De)}
ation is for an isoscalar target of mass number, A. Then
or [ —production is

A K A
AA ’“v*"fv = AEMO _ AEM@

-&N-H- us.r + H[

and p production are the same as for K —production as
Ecz__:_s_;&ala.r target; hence, Lhe only combination of densities
soscalar one, namely, (u+d). We have chosen this combi-
'Laf.;.wﬁa.t 15 experimentally measured. Hence, the u- and d-

ccannot be separated. However, on comparison with the

2o

o Y e5aflx)
pEMC = 21 _ f—
s F; Z 'Efff; {f}

!
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AEME ab large-x, where

st match the valence asynumetry,
le. This will be a test of the assumed A—independence
functions. Once this is established, comparison of the
_ ﬁifﬁrma.timt on ¢ (z). That AFMC measures only the

ination is true for all z—values. Define
V =uy 4+ ifp i

1 of the parametrisation of the parton densities suggested

L =

ssuming that it holds for nuclear targets as well), we have

e .
Me # _ —
'E‘E .—-m.l '{—lelllrl_'?

refer to nucleus and nucleon targets and o is the sea

L,.u-l

is expressed in terms of known quantities; hence, a

-I-:.'_ {l + xﬂ:‘v} ey, AEJ‘JC‘ + Hi .

AEME will yield infor-

metry in semi-inclusive DIS,
dowing is & small-x phenomenon, it will also throw

of this effect.
X i b X

fﬁ‘t‘a&eut a briel discussion of semi-inclusive hadroproduc-

eutrino-proton polarised DIS,
w(@) g — = X

der to perform. We redefine the polarisation asymme-

do(11) +da(ll) - de(1]) —da(iT)
do(11) +do(Ll) + da(T]) + da(iT)
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first arrow refers to the (longitwdinal) polarisation of v and the

__._‘._t_hé proton. (v represents an antineutrine.) Then, define
n production rates of 7+ and 7~ to be

do =de™ —de™™ .

ibbo angle to be zero, the corresponding asymmetry is

v (=)' @ (z) — dy(e)
T =y ur(z) - dv(e)

ntation functions cancel, exactly as in 7§ scattering. The

on account of the nontrivial angular dependence of the

viidal and Y. Zarmi, Nucl. Phys. B51 (1973) 611

ucl. Phys. B374 (1992) 300
sing this approximation rather than 0, — Do =2(Dy—

e percent; see references [4] and [7] below,
MG‘, Nucl. Phys. B321 (1989) 541
on of this effect was made by

: EMC, Phys. Lett. B123 (1983) 275; for later data,

£ I-..

-P. Bickerstalf and A, W. Thomas, J. Phys. G15 (1989)

of

VLN, Murthy, Mod. Phys. Lett A4 (1989) 11

umathi and M.V.N. Murthy, Z. Phys. C47 (1990) 227

N. Murthy, Extended Abstract, DAE Symposium,




ark and gluon densities can be extracted from hard scat-
s with polarised beam and targets, or by measuring final
j [1] Extracting spin dependent densities through exper-
al state angular distribution is difficult in fixed target
can be seen, for example, from recent measurements of
ion of muon pairs in unpolarised Drell-Yan process [2].
dy gﬁia dependences in experiments with polarised beams
‘have just discussed the role of polarised DIS processes in

 dependent parton densities. In the remainder of this Parton

LLLE 'n"l:il'

1?:';&1_3.1', large-pr phenomena, One of the most important
| ng'ﬁhe proton spin puzzle 15 Lthe extent of gluon polari-
ston.. pp collisions provide an important tool to extract
dent density. Unlike in DIS, where the gluon contribu-
ion to the basic process, here the diagrams involving
.'i.z_zg order. These large pp processes are most easily
al states, which are tagged in the experiment, are well sepa-
the forward-moving components of the bheam which did

ision. The processes Lhat we consider, therefore, are those

}- causes the final state particle to have large transverse

er two protons colliding and so both the interaction ver-

unlike in 7 g DIS where the electron-photon vertex is an

the cross-section for the process “factors” into the product

Tu



nitial partons, i.e.,

e
dzy doy dW

da},
dw

(4.0.1)

Z Gl[;1}¢'1{¢f2]

sses are all of the type with two particles interacting in the

rried by one interacting parton and z, is the momentum
belonging to the other proton. Note, however, that z,
vables, although we sometimes refer to them as Bjorken
Ve shall discuss this aspect in greater detail later on. A
bprocess is a function of the single Mandelstam variable,
, while a 2 — 3 subprocess (as occurs in the Drell Yan
ends on more, These dependences are represented as W

L

s on variables indicate that they are subprocess variables.

 be 7, ¢ or g. The processes involving production of (1

ed direct photon production processes as Lhe photon is

w5, For these pp collision processes, the asymmetry is
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us to eq. (1.4) as
_ de(1l) = do(TT)
A= S do(T) M

(1) and anti-parallel (7)) configurations refer to proton

stead of to pp as in eq. (1.4) and the cross-sections are as

ribution of a given subprocess. This is the differential
cross-section, d& multiplied by the probalility distribution
] e are four parton lhelicity combinalions, wmz., (4++),

-). Recall that a * + 7 helicity parton has its spin aligned

rent hadron, wlile a * — ™ helicity has its spin opposed.

arent proton polarisation direction is flipped, a ¥ + 7
— " parton and vice versa, by definition. However, in

relative spin directions of the two partons remains the

helicity was not flipped. (What we have is essentially a

er words, the subprocess cross-sections are the same for

da{++) = dol——);

(++) ==} (4.03)
do(+—) = da(—+),
5 cross-sections are differential with respect to the set of

will be explicitly defined for each process. This implies

= gy g7 do(++) + 4 g7 do(+-)
+ay 3 do(—+) + g7 g7 da(—=) ,

 flipping the sign on the second parton density, t.e.,

= 47 g2 do(++) + ¢f ¢f do(+-)
+07 @3 A6 (—+) + o7 qf do(—-) .
the subscript (12) on dé as well as the argument z; of g,

ice. Using eq. (4.0.3), the difference in cross-sections
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da(1n) = (of - i) (aF —qz) (46(+~) ~ do(++))
= G@) @) &b

1) = (o +a7) (of +07) (do(+-) +do(++))
= qler) g2(z2) dé
ator of the asymmetry is related to the spin dependent parton

; -';a;n'r;_i the spin dependent subprocess cross-section:
dé = do(+—) — dé(++)

tor is related to the spin independent density and the spin

: "__.;_:;mss-smtinn:
dd = da(+=) + do(++) .

cally true for py scattering where the concerned subpro-
eraction of two particles in the initial state, Hence, the
attering can be symbolically written as

3 Gila) fales) de
Y ailz) qo(xa) di

over all possible contributing subprocesses.

A=

(4.0.4)

finition of the densities that we lave used in earlier chapters
inition of cross-sectious i eq. (4.0.4) . With the QCD
odel definition of densities with both quarks and gluons

structure function gf  as defined in eq. (2.6), namely,
ldy (___ G [ ® o ] " i3 T )
— |l Q) |5l — =)+ A(=)| + glu, Q)B(=) ] ,

f, y (1@ 801 =2)+AC)] +3(y, Q%) B(7)

o / - . .
s ineq. (4.0.4) is precisely the subprocess cross-section as

we use the naive definition of g} involving only quarks,




Liﬂiﬁﬂlrﬂﬁun T4

b | =

ﬂl'[:"'!'.: QZ} = Z ﬁj’-ﬁ("c: EJJ} '
!

0 H R >
5 ‘“ erence in the Q":' independent pieces between Drell Yan

it displaying the actual expressions involved, if the defini-

dent quark density to Oa,) is
g=N{1+a,FP)

appears in DY is N(1 + o, /) , then we can identify this

= Nl4+oa,Pll+af=P)+...)

= q(l +o,(R—P))+ Ole?) .

d in the O(a,) process (the leading order DY process has
____‘u;” dé , occuring in this case would be the quantity
::ﬁi'.dr.l',.l,he usual DY cross-section with a corresponding
DIS cross-section (at that order) subtracted out. Here,
ns of parton densities such that the sub-process cross-
: to be used as they are, without corrections being
l_‘-_l;i;.ﬂ;éﬂnitiml of the densities that nmltiply them in
a.rlrnmc cross-sechion.  We Lave just used the above

 that care must be taken in defining and using densities
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.__E order. We shall not discuss this in any more detail. A
n as well as the next-to-leading order expressions in the case
production has been provided by Altarelli, Martinelli and

The polarised case has recently been studied by Prakash

on approach.

that provided we use a proper definition of parton

15 asymmetry 1 eq. (4.0.4) for various spin dependent

how that the one-photon and Drell-Yan as well as the
rocesses are all sensitive to the spin dependent gluon
larger values of Bjorken x (either ry or ry), and the
On the other hand, the two-photon process is
| as sea densities. Knowing the spin dependent gluon
will enable the sea density to be extracted from the
. An experimental complication is that the luminosities
aller than those obtained with unpolarised beams. As
rement are likely to be higher. This can be seen in

P

DIS itself, where the crrors are around 25%. Results on
| examined with this in mind.

processes in detail. We begin with direct photon and
arge Lrausverse momentum in polarised g as well

onclusions as well as references are provided at the

an, e, after Chapter 6.



Chapter 4

- THE GLUON DENSITIES:
INTERMEDIATE-X REGION

'hoton and Drell Yan processes

ses we consider here both produce final states at large transverse

P+ —7+iet+ X (Direct Photon) ,

i — (]u‘{' ,u_) +jet + X (Drell Yan) ,

called the Drell-Yan (DY) process, proceeds just as the

—

(D7) production process, but with the production of
t goes into a di-muon pair. In both cases, the large
L of the photon (or the di-muon pair) is balanced by a
As usual, X corresponds to the (unobserved) debris. We
that both these processes are sensitive to the spin dependent
can thus be used to study this crucial density. This is essen-
: the different parton contributions to the proton spin.
sions for the asymmetries and later use the parametrisa-
‘ené-]enl. densities set up in Chapter 2 to substantiate our

al simulations of Lthese asymmetries,

T
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photon production (D) at large pr . We are interested
metry [5] corresponding to eq. (4.0.3) for this process.

here are two subprocesses; they are

qgg —+7q; and
qq — 74 -

+Cross

(a)

+Cross
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Both are of the 2 — 2 type and hence the subprocess cross-sections are differ-
ential with respect to the single Mandelstam variable, t (see Appendix A for
‘details of kinematics).
From the discussion in the introduction to this pp collisions section, we
that we are interested in the computation of the subprocess cross-
. .'%(hh"], (h, " = 4,—), where k and &' are the helicities of the
e partons. The helicities of the final state partons are not observed
therefore summed over. We outline the details of the computation
case of the Compton process shown in Fig. (4.1). Our convention is
initial particles of mementum p; and py scatler into the final particles
ntum py and py. All fermion helicities are denoted by A and boson

by h. Then, the compton process can be represented as
q(p1s A) + glpan b) = 3(pa, 1), +alpa, A)

‘and A ultimately swmmed over. We use the identities and relations
en in Appendix B and obtain
da O Xy

E{mmptunj =5 ? f} )

e matrix element is a sum of the contributions of the direct and crossed

M = —ifiy(py) (f"' 5 fh o B ’}Ff"') ur(p)

Sz ()t (=T =(p-m): a=0=(p—p)?

usual Mandelstam variables, satisfying the relation,
+i+a=0,

ve neglected the parton masses. Then, the matrix element squared

cpressed as

M =TT e

i
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I
1 (P AY) S + < {A+A’} s |

s symmetric piece of H .. is given by

with Hyie ==

Svpa = Tr{ﬁ'l[ ].ﬂn il o)
and the antisymmetric part by

-"l;r.up::r =Tr {']"5 ﬁ‘l[ ].F:-l #1[ ]VU} 1

+

[ ] _ndn  w T
ah z E

h s Ko wp
TN = & ;
h! — o -
Tﬂd = Epy €
Jsing the formulae of Appendix B for evaluating T's, we get, on summing

the final state polarisations,

Yo IMPP==2(1 +Ah) (?Jri)-:-uhi.
5 &

ARt
As expected, the cross-section depends only on the product of the initial state

cities. Introducing the colour factor (Cp = L/6), we get, for the compton

16 3 ¥ [
T W q“’;;-{—[1+M}(E+i)+-zm-’;}_ (4.1)

i 5 3

lote that we Liave dropped the summation over initial quark flavours weighted
e quark charges. We will include this with the density dependent part,
piilar calculation for the annibilation diagram of Fig. (4.1) gives (with a

ir factor of Cp = 4/9),

et o, ST
S (AN = “’S.’ {{1—}4)(”4——.)}‘ (4.2)

t

s most easily obtained by retaining the A dependence in the previous
jon (complon case) and using crossing symmetry (s« f, u — u,

BN — X, R =, b e h').
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§its lgttjr, we need to evaluate the combinations d& and
ence and sum of the helicity cross-sections,
111%:.[-]——} and %[++]

'.;;:..a;nd (++) refer to Ak in the gg process and A A" in
re listed in Table 4.1 .
ve that the interacting partons could have come from
cor projectile) and so we have to sum over both configu-
tzl ++ @) effectively mterchanges { and . Then, the

on, i.e., the denominator of the asymmetry can be written

B ()

dr; dzsdt (4.4)
d&A + |:I:-’III {."[.'1 ] 1!?';} d&L + G'I{I'h """1:] dé‘rC" 1
i de® ;
) £++J); a=A,C,C (45)

ons listed in Table 4.1 and the structure function

(0 (@0) T w2) + 7 (1) 0 (22))
Lyt (WPE-’H} + () =297 (1) Ff () |

) = 2 FT(x,) g7 (22) -
(4.6)

cles) collision process under consideration here, but
of jp which we shall discuss later. The labels, target
c convenient means of distinguishing the two protons
s discussion is restricted to the case of fixed-target

is also valid for collider beams,
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v, by including the partonic charge factors in the structure function
15, we have obtained a nice form for the compton contribution. Ev-

[ indicates a sum over quark flavours, u, d, s, only and not over

f]z d.’l:;di“‘l'} dx; dz; cli{T”

Ho(z1,22) 46 ¢ + G (21, 22) 46 ¢€ + Galey, ) d6° €
(4.7)

| Ilr?_ﬂubprucess Direct Photon Drell-Yan
() da®
16 (u® 4 ¢ 16 (w24 9M%s
A g ( i a7 T
C _% (52 t* __% 32—!-12{-#‘2.-1*?21:
7 & i 5
2 (&4 2 (s 4+ u® 4 2M?
¢’ -3 (q HFH ) -9 : +”u_i:' :
(ax) ¢
A I 1
o _(si—ﬂ"’) (st oM (s — 1)
s+t 5 A5 IM%y
o _(,;'3_7;2) B o u® — 2M3 (s —u)
P TR s2 4wt 4 2ME

Subprocess cross-sections for complon and annihilation diagrams in
cand DY processes. The Dy cross-section is expressed in terms of

(Ef.;h) I (‘I‘T (+=)+ dg: [—H—)) where e = A, C, ', and in

5

S o ﬁ2f1 )_] ( o™ dé” ) a
0= (#3) (Fhnt+ i) - ¢
ined in eq. (4.8) . Carets on the Mandelstam variables have been

d for the sake of clarity.
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artonic cross-section is given by

(gu-}— Len) i azace gy

1. The structure function factors are analogous to the

ressed now in terms of spin dependent quantities:

(@ @) T @) + T (2) T ()
1) Oy € (77 (22) + T (22)) =27 T(21) gl (22)

221) = 2g] (21) 7 7 (22) -
(4.9)

ween the expressions in eq. (4.9) and corresponding
4] are merely because the asymmetry is defined with
wo cases.

metric as well as the spin-antisymmetric cases, dé? =
ition diagram is symumetric in { and @ as can be seen
'."a_!.r'e clubbed the two contributions together. As in the
ricture function factor for the compton contribution
?1_5-,. in fact, directly proportional to the spin dependent
gi(x), of the proton.

. rell-Yan (DY) process. The underlying subprocesses

wse for the Dy process, with the final state photon

s, M, being the invariant mass squared of the dilepton

Mz = (pe+ + pe- Jz =~ Lpet  Pe-

iction factors for the DY process are identical to those
ngeven the subprocess cross-secltions differ. This is
ally, there are now three particles in the final state (see
cess can be described in terms of two invariants and two

¢ D). To visualise this simply, each of the DY subprocesses
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gan be expressed as a combination of two processes, viz,,

1 I:I} Pk — 1" ks ;
(2) = 9w the,
ormer is a 2 — 2 process, while the latter isa | — 2 decay process. The
order DY process also shown in Fig, (4.2), is the 2 — 2 annihilation

with only leptons in the final state. However, such a process has no

t pr and we ignore such contributions,

. +Cross
"

\{DJ |

.

' The leading order contributions to the Drell Yan process; (a) Comp-

(b) Amnililation. Alsu shown is the lowest order (zero pr) anuihi-

lation graph.
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intermediate state in the three body process can be

neans of the identity,

s,
| e Wi
J“d"p‘, 64y — pre —pg-) ﬁ(p_zr - MEJ .

X D). Then, the 2 — 2 process has, as we know,

variable, £ (= (ky — pyo)? = (ks — k2)?) and depends

(= (k1 + k2)?), of the process and the masses in the
The decay of the massive photon of variable mass
terms of the solid angle of either of the leptons, say,

nce, the cross-sections for the DY subprocesses are

s, namely, 1, M?, cos 0+ and e, 1.€., we have

dé
p= ¥ il B W -
= didM*doy,

smature for this process is the presence of a large pr
1t~ ) with a balancing jet, we shall integrate out
ss-section on the angular codrdinates of the lepton
pressions for

do / Dy

e = | e

dtdm®

s well as the complon subprocesses. Kinematical
rames in which the caleulation is carried out, are
e that the colour factors are identical to those in the

lie compton process of Fig, (4.2),

; 2 M2 i)
—.§1;+A.&j( + = : + ‘{M “) +2J~h(—l

m of Fig. (4.2), we have

- s 7 9 .
(1= AN (é A "’)} L (412)
il f i
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£

nic (:ifia.rge.[m:tor, namely, :3?, and the sum over quark flavours
d into the structure function factor definitions.

) and (4.12), we obtain the quantities of interest
L df(+-), do°(++); a=A,C,C"

difference. These are listed in Table 4.1 along with the

Euﬁiﬂun to compute the asymmetry,

i .

> | (4.13)
can be Dy or DY. We can evaluate eq. (4.13) using the
oped earlier for the spin dependent parton densities and
-tions listed in Table 4.1. If we do so, we shall certainly
 the Dy and the DY processes sensitively depend on
on density.

parametrising both the (unknown) spin dependent
the spin dependent sea quark density, we can choose
ce regions where the sea contribution is negligible. From
. (2.1) in Chapter 2, we know that &(x) and § (or
th = at the same rate as ¢ and ¢ (or F;) — hence,

some parts of phase space, then we can also neglect

all assume that the compton contribution dominates
: _.ff.l‘!e'-numerat{)r as well as the denominator of the
_'-st."-appmximatiou, we shall ignore the contribution
-'%-ﬁi;ﬁgtams. We later estimate errors due to this as
e for which this approximation is valid. Then
zeroth order form:

2)0°d6° + 21 (22)3(2:)67 A5
21)g(22)d6° + 2Fy (22)g(1)d6

(4.14)
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e observation that the compton subprocess structure function factor
1ple expression in terms of the proton structure functions, g, and F,
th ﬂrnppiug the annihilation contribution) results in an expression
asymmetry that involves only one unknown quantity, namely, the spin
, gluon density, §(z). Hence, a measurement of the asymmetry in

LY processes provides a direct measurement of §(z).

Elzr simplification occurs when we choose ¢, = 24 = x, which corre-

ta the configuration with the photon and jet being back-to-back in the

M frame (as well as, ofcourse, in the parton CM frame, where they

uld); the parton densities factorise out and the asymmetry becomes

L, e g
M) = HEi e ﬁ?ciﬂ&é‘r” |

= A*M(2) A%(z) &

(4.15)

om eq. (4.15) that the leading order asymmetry in these processes

a product of the gluon asymmetry, A% = G(x)/g(z), the DIS asym-

3 (which has been directly measured by the EMC) and a parton-level
, (which is calculable in QCD). Hence, in the region of phase
vhere our approximation is valid, Ag is a measure of the spin dependent
a5 stated before. This result is independent of the interpreta-
MC resull. By this we mean that, given a definition of the spin
oton structure function, gy, within (say) the parton model, as we
Chapter 2, that same quantity appears in the expression for the
asymmetry in the processes under consideration.

e choice 7y = w3 = x is possible for a fixed M? only at a given
d not throughout phase space. If we vary =, M? also changes
= ay = r. In the special configuration of 90° scattering (in

. - C 5 Gt . .
5), when dé™ = da™ | the expression for the asymmetry in

e for all x for both DY and Dy production. Further, the asym-

wton production, AP is independent of the beam direction

le it depends only on the ratio, 7 (= M?/s), in Drell-Yan.
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or the sake of clarity /simplicity, choose this configuration

ons here-after and comment on other configurations

‘corrections to Ag in eq. (4.14) from annihilation

d Hy in terms of F} (or g1) and & (or &) as

(£2) + 20(21) Fa(22) — Bo(z)o(zs)

) : (4.16
(22) + 26 (21 )91 (22) — $35(21)5(22) )

0 =u, =d, = 5,/ and we have used 5y = 1/2 [§],

oduction of Hy in the expression for the asymmetry

@y = 73 =z and 90° scattering, the corrections

nihilation terms can be written in powers of an

g= 5% o) * (4.17)
.___il:'l those phase space regions where 3§ < 1 (i.e.,
mall compared to the compton terms). Since 8
wu-'spin independent densities, it can be evalu-

hilation terms, then, the denominator of the total

I gde® [1 + 4 (1 - i—;)] ;

15 :.=_.|:';rl‘.|1_er multiplied by the factor # which is also

Then the total ASYIMetry is

g da? ¢4

1474 [ g de” cﬁc] ’
termis containing 7/77 just as we dropped the corre-

term. Retaining terms upto O(3), we have

=Ao— BA® {4745 — A" ¢*}. (4.18)
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us to A7,
h the inclusion of the annihilation terms, it is still
s§-section (or asymmetry) in terms of the DIS asym-
‘and sea quark asymmetries, A% and A”. We see
':qud expansion parameter: since every asymmetry
oefficients of the power series in # are bounded and
hd where 8 is small.
nfiguration of z; = z; = x allows a neat factorisa-
casymmetries, whicl are then expressible in terms
i.¢., they do not explicitly depend on the individual
and g. In this sense, the asymmetry, as we have
hase space constraints) clearly exhibits its depen-
a quark densities, without needing to resort to the
[ the parametrisation we developed in Chapter 2 .
merical analysis of these two processes, we need to
rvables. So far, we have been using the (indepen-
| for Dy and 2y, x4, { and M? or 7 for DY. Although
hoice, these are not the quantities that are observed
a configuration where (say) the two particles are
the protons), the observed quantities are the (dif-
_"ﬁﬂ_uﬁ--phgtm: (or lepton pair) and balancing jet, as
transverse momenta. Remember that the photon and
ck only in the CM of the partons. Their pr in both
balance each other. We therefore transform to the
&), which are an equally valid set. Here, 3 and
Tlﬁtpn and jet and 7 = 2pr/./s, where pr is the
a7 < 1. (For details regarding the definition of
dix D). Such a transformation involves a Jacobean
another and uniformly affects both the sum, da, as

7, of cross-sections. Hence, the expression, eq. (4.13),
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I 5 dﬂr
—I S ——— ]
M 2 T dr, dz, di

Il

e (d:rj" d!ﬂ dyg} - t_ls'_.f'{d:c; dIg df]
“do/(dzr dy,; dy,) do/(dz; dagdi)

ther differential with respect to M? for DY. The

1 corresponds to

I (27 coshy; + Treoshy,) ;

. _t;,thz —9—+— tanhy; .

=zp+4r; T=Ms.

0. Hence, 7y = 73 = yy = —yy = g, i.c., the

back in the CM of hadrons as well. In principle,

process, we have M = 3, i.e., T = 1y = 22,
vation in the subprocess. So, in the (z-7) phase

unphysical. In the special case where y, = y2 =10

tisation developed in Chapter 2 for the EHLQ
ies. These are the parametrisation sets (a)-(d). The
ot fit the EMC DIS data for ¢](x) and so we ignore
umetrisations of the spin dependent as well as spin

order to quantify the dependence of the D+ and DY
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fbt‘eas and study the region in which our APProX-
' in eq. (4.14) is valid. In Fig. (4.3) we plot the
function of # for Dy in the configuration where
-of-mass angle, ¢, varies between 30° and 90°. We
small (< 0.1) for large ¢ for small z-values, eg., for

reases with decreasing ¢. However, recall that the

e larger at smaller scattering angles.

'-'.--.'-_::._'
"""-:- '-.-"__':__“‘
I 1 | 1 ] 1 — e
0.4 0.6 0.8

e ,5', as a function of x in Dy process in Pp

\j?,l-'csca'.tl;ering angles, ¢ = 30°-90° in steps of







Intermediate-x 02

e order as ymmetry on the gluon parametrisa-
m Fig. (4.5), where it is seen that for different

numnetry drastically varies between positive and

ymmetry in pp D7y process plotted as a function of

dependent parametrisations type (a)-(d).

a -
_:-.'.*-..___‘ ) i
T B s _
""H-._‘_- 1-""-.,,_
H“'"‘-.._H_ “"*-.__x ‘-.h@ B
"""--.__‘_H_HH"»,H_ - a
R e A
W MR
d === ™~
i ] I | \ i i | i
0.4 0.6
Xr
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: ﬂ'l'th'e_ parton asymmetry ¢ are the same for all
;__‘_'-r_.h_e curves in Fig. (4.5) show differences only due
refore be sensitive to this quantity. This also fixes
he gluon polarisation us being the negative of the
. This is important as the sign of § and Ag has not

€T, in our parametrisation we have used a simple

= ENz(1 + az)(l — x)¢

Ny(1 + az)(1 — z)¢ .

ymmetry A?(z) = g/g hasavalue £l at x = 1 for
This is why the curves (b)-{d) in Fig. (4.5) tend
ue of the parton asymmetry, ¢, equal to 0.6 in
1) tends to —¢). Choice of a different £ — 1
wvery different large-z behaviour in Fig. (4.5),
nation is gained. See for example Fig. (4.6), where

A%(1) = 1/2 for the same value of Ag as curve

it the zero-order asymmetry which is so sensitive
] 'ﬂens'ity is a good approximation to tle total
tecked in Fig. (4.7) where the f-order asymmetry
on with the zero-order asymmetry as well as
. The B order asymmetry is seen to equal the total

a-region and matches the zero order asymmetry

al) asymmetry that would be measured in an ex-
L observed, The computation is for 800 GeV fixed
clions appearing in the asymmetry equation
with respect to wq and # and we choose y; = 0)

-
over. In order to perform the integration, we
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in the transformation from the set of variables

T T T T T T T T
a u
'h-..ﬂ'h___ .-‘-“‘-‘_‘ g
. e “
B~ qq_":_h"‘?"--a.,ﬁh__
-H'h..ﬁ' """,‘_‘ ERg - b Tt
-"‘h-,_‘-‘ T %
e T e =)
T ™ Tl
- H“_C “_'_‘
TR
“‘-.._‘_‘__ -
- S
1 I I I | | i | L
0.4 0.6
X

vith an extra spin dependent parametrisation

* () demonstrating the effect of changing
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| L | faw i | R I I T 1T 1 i
i :
1 | I [ | I Lol il [ | I | ]
g2 04 0.6 0.8
Xr
] e | I | FCE e b | | ]
| RO | I S LS | | Je=te —) I i 1 1
g2 04 0.6 0.8
Xr

."finmet.ry (dashed curves) plotted as a function
der result (solid curves). The zero order result is
over most of the w-range. The lower figure shows

yimetry, which corvesponds so closely that it
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We define the semi-integrated asymmetry as

fl.lr.mu E ‘T,;—
{ —_—
A'E,.D"f — *Wmun 3 dITdyldyz
- -/’Ii'mu: 1 da‘ L/
E —
Vinin ¥ d:‘:'1"‘-{?1!]'1 dIf!
where do and do are defined in eqs. (4.4) and (4.7) and the limits on y; are

=In((2 — zr)/er) < y2 € In((2 — z¢)/27) . We find that A2 is also very

sensitive to the spin dependent gluon parametrisation (see IMig. (4.8)).

(4.19)

4.8 The total semi-integrated Dy asymmetry, A207_ s plotted as a funec-

tion of zp for different parametrisation types,
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;__]"-ﬁs means that a fixed target experiment (where the jet is difficult to de-
should also be able to extract the spin dependent gluon densities. This is
ful as these experiments are easier to perform than the collider experiments;
ct FermiLab [10] has already aunounced preliminary results for polarised
n antiproton scattering. We see tlut the semi-integrated asymmetries
tleast as large as the uniutegrated ones and Lave similar form.
We now go on to an analysis of the Drell-Yau asymmetries. This follows
long the lines of the direct photon case, The ¢ belhaviour is the same
‘ do not reproduce the graph for the ¢ dependence of the asymmetry.
sin with Fig. (4.9) for 4 in order to decide the allowed kinematical region
space). The approximation r; = ¢y = r that we have used in order
. ve the factorisation of the asymmetry in eq. (4.14) is possible for a
“only at a given value of r and not throughout phase space, In the
case when yy = y2 = U, that is, when the jet and virtual plioton come
to-back at 7 /2 to the beam direction, the asymmetry in eq. (4.15) is
all z-values. (This is also true in direct photon production.) In this
ion, as stated before, the asymmetry depends only on the variable

on the beam energy. We therefore clioose alwavs, 3y, = y» = 0 for

‘We see 3 < (L1 in most of this physically allowed region.

the leading order asymumetry is sulliciently accurate (as corrections
symmetry are sinall when d is small). Again this asymmetry depends
e spin dependent gluon density and is independent of the spin de-
quark distribution. Hence, the DY process is also a good place in
iy the gluon polarisation. We then plot the F-order asymmetry
e o = (0 — 7/u)) in Fig. (4.10) where the zero-order asymmetry
ed for comparison. (As in Dy, the 4 asymmetry equals the total
) tr.b‘d. very good approximation over a large kinematical range.) We

zero order asynnnetry is a good approximation to the total DY
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etry for = = 0.5 whicl corresponds to xy = 003 .

Unphysical =

B<0.1

19 The physically allowed region in -7 space is shown {or the DY process

in pp collisions for rf: =90 The region where # < 0.1 is indicated,
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aller values of o the correction due to the (negative) spin dependent
¥ . . #
sities in the F-order asymmetry causes it to differ from the zero-order

T T I T T T
7=0.1 -
- = = j
o =}
e =
-
-
-
-~
. i}
-
e
-
..‘*h
T,
k T
= Il
e T
e T
e
H""u-. £y b ki
"
d
1 1 I [] 1 | |
0.6 0.7

zero order asynunetry (dashed curves) in pp DY process is
for parametrisation types (a)-(d) as a function of ¢ = &, = z, for
id 7= 0.1. Also shown for comparison are the corresponding

asynmumetries (solid lines).
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n
Finally, we plot the semi-integrated asymmetry in Fig. (4.11) just as in

{4.8) for the Dy case. The cross-sections involved in this asymmetry are
| as in eq. (4.19) but are further differential with respect to the physical
ble, 7. The limits on yy are now % In((2 — ¥7)/zr) and we have chosen

fi=0and 7 =0.1.

|| T T I o ] I 1 I 1 1 I T T
5 da
PPTH K B
T=0.1 1
ria. o (. B
""":"'x._‘*-q,__‘_ T
Sellem
=l =
o b
—>~_C
""‘m..__‘_‘:: - e
d =T
e
i 1 ] I ] 1 1 1 1 1 L 1 L
0.4 0.5 0.6
Xr

The total semi-integrated DY asynmmetry, ARPY g plotted as a

'=.'.';: of wp for dillerent parametrisation types for yy = 0 and 7 = 0.1.

e ——
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Again, we see that the semi-integrated asvmmetry which now contains no
nation on the balancing jet, is sensitive to differences in gluon parametri-
. We emphasise that the quantity plotted in Fig. {(4.11) is the total
etry and not the zero-order one.

“This concludes our numerical analysis of the asymmetries in Dy and DY

ction in polarised pp collisions.

 The pp collision process
Iy, we deal with polarised pF collisions. The experiments are harder
orm in this case; however, the subprocess cross-sections, dé™; a = C, A,

the same as in the pp case. The structure function factors are different;

them using the following definitions of the parton densities in an

@) = 7z

~ (4.20)
7(z) = g,
1
d using charge conjugation symmetry. Since ) and G, in eq, (4.6) are
cin g and 7, they remain unaffected by this recefinition, while the

for Hy becomes

HE = Yy e} [q"{.ﬂ:ljﬁgfrﬂ - Epl:x'l}r,ri'-[.rzjl

(4.21)
= Ty et o) ¢ (ea) + 77(2) 72 (22)]

densities are with refercnce to a proton in the latter equation. Unlike
eof pp collisions, H)™ can be written in terms of structure functions
lensities only under some assumption about Lhe relation between
quark densities for different flavours. To begin with, we assume that

vour independent, ie.,
up(e) =2V(z); dviz)= V(z),
lie relationship between the sea densities as before (uy =dy 1 8, = nu,).

(10 + 2%)

28 () = V{e)+ m

air)
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for V() in eq. (4.21) we find an expression for HEP in terms of

= %&Ff{m}ﬂp{xg] — '-28‘112 (Fi(z1) o(22) + o(x1) Fi(x2)) +
%%%U{II}U{IQ} :

(4.22)

corresponding spin dependent term turns out to be

= F i) i) - FE (01001 7(22) + 5(21) g1 (22)) +
£2L 5 () 5(2a) .

(4.23)
ng term of Hy (or E] 1s proportional to the product of two
ensities, we expect it to dominate over the compton terms.
‘write the asymmetry for pp collisions, neglecting the compton
the valid region of plase space later (just as we did in the pp
'riﬁﬁﬂlilatiun term was neglecled instead).
ting the sea densities in comparison with the valence ones, we find
and DY, the asymmetry is

"‘y'{m')yl{h}"ﬁ-{ _ AHP[. BB A .
Bile) Fi(z)da? ) A=) 97 (4.24)

oth Dy and DY equals one. We stress that the factorisation
i terms of A" does nol require 2 = x5 = = (unlike the pp

ly one term in the leading contribution.

now be estimated. We follow the same proce-

:E_iﬂér phase space regions wlere y; = iz = 0. Then

g, = 9 45° glz)
17 a6 B

'E'+‘ﬂ.‘4 APP(z) {A”{I} qb{-‘ — AM() d‘,A} . [4.25}
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Again, since all the quantities multiplying powers of 34 are bounded by unity,
~our approximation is good if g, is small. Further, 4, depends anly on unpo-
larised quantities and can be estimated from known data.

Finally, corrections due to flavour differences between u- and d-valence

ﬁ‘jmrk- distributions are checked by writing
uv(e) =2 f(z)dv(z); av(z) =2 flz)dy(a) .

ecting the complon term and sea densities, we get

(1652 4 1) (85 +1)? A
(167 +1) (87+1)" ™ "

APP =

Al | previous computations are therefore seen to be valid not only for the case
the z- dependence of the different flavour densities are the same (f = [ =
ut whenever [ = f, no matter what values Lhey assume. Since (v, )
ty,t._f-,‘.aj must (at large r) go as the same power of (1 — &) as discussed in
ter 2, this is not an unreasonable requirement. In fact, lavour corrections

ub-dominant com pared to gluonic corrections and can be ipnored.,

.1 Numerics

al, we begin by displaying the region where our aproximation for the
ymmetry holds: we indicate the region where B4 < 0.1 in a plot of T vs.
=23 =z in Fig. (4.12). The x-axis where v = 0 corresponds to the result

Dy case. We see that our approximation of negecling the compton

: configuration with 4, = yp = 0. Although the dependence on
density is weaker than in the case of pp collisions (for example the

pis always positive, whether or not the gluon polarisation is posilive




4. The gluon densities: Iutermediate-z 104

or negative for a given parametrisation) in the intermediate z1 region it may
still be able to distinguish the various parametrisation types. In the past, it
has been assumed that the pp Dy process is dominated Ly the annihilation
channel. We find therefore, that this is not true. In fact, in the regions where
the annihilation term dominates (large z¢), the EMC experiment can already

fix the asymmetry as this is just dependent on the EMC DIS asymmetry.

0-5 1 1 ! T T T T
. PP
04
0.3
0.2 - Unphysical
04 S
i ~<
\,
i s
0 l__..—+-—""'"T_f£ 1 | I i I | i i I I 1 \u\ i
0 0.2 0.4 0.6 0.8

ig. 4.12 The physically allowed region in -7 space is shown for the DY
process in pP collisions for ¢ = 90°. The region where § < (.1 is

indicated.
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.13 The total D asymmetry in p7 collisions is plotted asa function of

zr for different parametrisation types.
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On the other hand, in the DY process where §4 is small over a larger region,
‘we expect the asymmetry to be largely independent of the spin dependent
gluon density. We find this to be true, as evidenced by Fig. (4.14) where the
asymmetry for y; = y2 = 0 and 7 = 0.2 for all parametrisation types are
1 to be very close to each other over the entire z region. (Again, z =z, = x4
an _'_'_mT' =z — 7/z). However, for smaller 7 values where the correction terms
cannot be ignored (as §, is large), the asymmetry does depend on the gluon

ty, just as in the D+ case. This is shown in the inset in Fig. (4.14).

;||1||trr||||||||||]||||

-__u+5||'|-'i|l||| L . T O L o i
7=0.01 7=0.2 |

-ﬂ_l ot e [ e T el v (0 TN 0 | I L P
0.2 0.3 0.4 0.5 0.6 e
<7 ADY o
-
P i
£ o —faa ]
=
?‘ - |
I I | 1 1 1 1 I 1 1 ] 1 | 1 1 1 1 I 1 L 1 |
0.5 0.6 0.7 0.8 0.9

4.14 The total DY asymunetry in pP collisions is plotted as a function of
zr for different parametrisation types for 7 = 0.2. The corresponding

curves for 7 = 0.01 is shown in the inset,




4. The gluon densities: Intermediate-z 107

In general, in phase space regions where 7 is large, the asymmetry can be
approximated by the square of the DIS asymmetry, while in regions of smaller
7, this approximation is not valid and the asymmetry depends on the value of
the spin dependent gluon density. The reason for the importance of gluonic
corrections in these regions is not hard to find: although the gluon density falls
off with z as (1 — z)5, while Iy goes as (1 — z)?, the value of the (unpolarised)
gluon density at z = 0 is so much larger that its faster fall with z does not
reduce the ratio g/F) significantly till z = 0.7 or so. However the ratio of
parton cross-sections for large 7 helps in reducing the value of §4. Finally we
recall that the factorisation of the asymmetry in eq. (4.24) did not require the
‘choice 7y = z, unlike in the pp case; we used this for the sake of simplicity when
displaying our numerical results. Even without this assumption, therefore, the
Y asymmetry at large 7 is given entirely in terms of the DIS asymmetry
‘measured by the EMC. This can therefore be used as a check on the EMC
pasurement. The same experiment, in different kinematical regions can also
information on g{x). This would help reduce overall normalisation errors
n extracting the two quantities. We must remember, however, that it may
e a while before data obtained from such processes are sufficiently accurate.
‘The direct plioton process, especially, has been studied by several; see, for

ance, the references listed in [11].



Chapter 5

THE GLUON DENSISITES:
THE SMALL-X REGION

The 2—jet production processes

resent here an analysis of 2-jet production in polarised gy scattering. We
that this process provides a way of measuring the spin dependent gluon
lensity in the experimentally accessible region of z7 < 0.6 , and especially in
mall-z region [12]. Further, being a strongly interacting process (where
s not identified as being either a quark or a gluon jet), this process has
- cross-section than any others suggested so far using polarised proton
like direct photon production. As in the Dy and DY cases, the spin
ent quark and gluon densities appear, in the leading order, at the same
n o, so that (unlike in the EMC experiment) the gluon contribution 1s
ressed by an a, factor when compared to the quark contribution. In
subprocesses, whether ¢q, qg or gg scatlering, appear at the same
rin as. Since Ag and (as/27) Ag are of the same order according to the
ion equations (see Chapter 2), we expect that the gluons will play
important role in this process.

ierefore expect that this is a good process with which to study the
pin-dependent density. Further, as is well-known, quark densities dom-
large-z values; lLence the large-r asymmetries will be largely inde-

_ﬁ[ the gluon density or its parametrisation. However, at small and

108
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intermediate & values, the cross-sections and asymmetries will depend sensi-
tively on the gluon density and, this, anyway, is the experimentally accessible
kinematic region. We will show that these results complement those of D~
and DY production which, as we have seen, are sensitive to the spin depen-
dent gluon density in regions where 7 > 0.2

We begin with a description of the term jet. In a collision process with
large momentum transfer, a struck parton (g or g) is ejected from the nucleon
with great momentum. Over distances greater than about a fermi (typical
proton sizes) the colour interactions between this parton and the others in the
nucleon become very strong (equivalently, a, becomes large) and these strong,
attractive forces cause the parton to decelerate rapidly. The parton therefore
radiates hadrons in a shower—hadron bremsstrahlung occurs. These jefs are
emitted in a harrow cone in the same direction as the original parton. The jets

narrow out with increasing @, but this narrowing is logarithmic, not linear

iscuss the process
P jel + jel + X, (5.1

Cindicates a longitudinally polarised proton beam/target. As usual,
onic cross-section is expressed as a sum of contributions from various
sub-processes. The contributions, in the leading order, to this process
hown in Fig. (5.1). Quark-quark (qq), quark-gluon (g g) and gluon-gluon
cesses all contribute, The quantity of interest is the asymmetry, A,

fined in eq, (4.0.4) in terms of the differential cross-sections for the
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process. These cross-sections are expressed as a sum over the cross-sections
for the various sub-processes, multiplied by corresponding parton density dis-

tributions.
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We see that all the subprocesses are of the 2 — 2 type. With =z, and z; defined
as the momentum fractions of the incident partons with respect to their parent
hadrons, the cross-section is differential with respect to the variables (z,, z3, ),
just as in direct photon scattering.

Then the numerator of the asymmetry can be written as

& = de(il) o(11)

d;c1d.1:1d£ clxll:l:t:zdt

dcr, i

= ZQ (21)Q;l 3«‘2) (5.2)
where (; stands for any parton, §i; 7, i = u,d, s or .
‘The denominator of the asymmetry is
* o = Lolil) | Eo(ll)
T deydzadt T dxgdagdt
clcr.
= ZQ x)0Q5( Fz} ek (5.3)

As usual, carets refer to sub-process variables.

~ Again, the numerator depends exclusively on the spin-dependent densities

while the denominator depends on the spin-independent ones. This fact is true

i general for asymmetries as defined in eq. (4.0.3) for 2 — 2 processes [3].
The sub-process cross-sections in eqs. (5.2) and (5.3) are as usual given by

o déo{+—) _dErI:++}
di df

; (5-4)

da(+-) & da(++)
di i

where the signs refer to the incident parton helicities.

il

O
il

:':'NE have not given details of cross-section calculations for the several sub-
processes; the calculations follow along the lines of the demonstrated ones
or DY) with the help of the feynman rules listed in Appendix B. [14],
and have been listed in Table 5.1 for both the spin-independent and the

pin-dependent case.
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‘Again, the physical observables in this process are zr (= 2pr/ /s where
he transverse momentum of either of the jets and /5 is the energy in
IM..GE the hadrons), y; and yz (the rapidities of the two jets in the C.M.
= hadrons). However, reéxpressing the cross-sections in terms of these
es just gives a Jacobean factor,
d*o i dio

cancels in the asymmetry, exactly as in the Dy or DY case.

> cross-sections in Table (5.1) have been expressed in terms of the vari-
jﬂﬁ, a la Combridge and Maxwell [15]. These cross-sections have been

s a sum of two terms—a ‘leading contribution’ and a ‘correction’ term.

: 1 1 A
FEx]=xz+x+l+;+-x—g::-:=ﬂff-

idge and Maxwell in their pioneering work took advantage of this fact

the spin-independent cross-section as
)

Lig = 793 pla ) Plas) aF(x) (5.6)

—do =
2

o

is defined in eq. (5.5) and «a is a coustant. Here, P(x) is the generic

nsity function, defined for three flavours by

Al

P(s) = 4(e) + phole) Ca=3, Cr=14/3. (5.7)
F

‘that the correction terms were negligible and hence the 2—jet
gross-section can be parametrised in terms of a single density com-
, which can be ‘measured’ in this process. This is a remarkable
xing the number of diagrams that contribute: the complicated
é']:gﬂndmce of the cross-section is reduced to dependence on a
¢p rton density to a very good approximation. This form of do
A

wsed to experimentally confirm the vector nature of the gluon. In

risation is not possible if the gluon were a scalar boson.
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Subprocess da;

gig; — Gigj, | 2F(x) + 0
G = ¢i4;

— a | 2Pty) — 2 94 L
Gi G — i G xX)-Fixt+2+y

X
B _ 2 l-i-x"\'
Wl — 6T | 2P0+ {F (x-1+5) + : }

)
o . 21 + y?
5q; = qg |0+ { :' }

(1+x)
67— 99 ﬂ+% x+31;—%l+ﬂﬂ;l}
g9 —q9, | R2F(x) + {x+3+]
49— 44
9999 W 2F(x) + h? {4—“—?@1}
99 = 47 U+ﬁr;{‘2(x+%]—2—?l(tr—?]’;l}
Subprocess a5

g = qiq, | —20(x) + 0
3 q; = i
Gai—ae | 2600+ & {x+2+3}
0l — i g, | —2G(x) + {72;.' (

X
_ _ 21 + x°
GG = 4T |0+ {—E[I——}:l}

+ )

_ N A(1 + »*
Qi 99 U+ﬁ{x+%——z(u_—é‘zl}
a9 — a0, | —h26(x) - {x+1+ %}
qg— 14

._.2" i ey S 2 L 2
99— 99 h? 2G(x) h{x+x+“—fx—};}

voar |0+ ffa(c+ §) - B2

L+ x)

Table 5.1 Subprocess cross-sections, da;; and :E:',-_,- in 2-jet production in po-
larised §F scattering in units of awa? /3. Here, « = 4CE/N,, h =

Ca/Cr, N =3 and Ng=8.
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* We see from Table (5.1) that such a factorisation is possible in the spin-
{:[épﬂndent case also. The corresponding y—dependent [unction that factorises
~out here is

1
Glx)=x+1+-
X

50 that the spin-dependent cross-section approximates to

¥

3z = T8 P(z,) P(a2)aCl(x) 5:5)

o] —

Here, analogous to the spin-independent case, we may define

o o B

P(z) = i(z) + 5> 4(z) (2:9)
F

as the “generic spin dependent parton density” such that the ¢iq; — ¢iq;

Ple) = () + (G2 + 3) 962) (5.10)

better approximation as can be seen from Table (5.2), as the correction
to the qg term also becomes zero in this case. The approximation is not
t good for the ¢; ¢;, process and, in fact, quite bad for the ¢ subprocess.
This is because the spin-dependent cross-sections (i.e., G(x)) are very much
ller than the spin-independent ones (F(x)) for all y so the correction terms
ar to be relatively large in the former case. However, the approximation
holds since the ¢7 contribution is greatly reduced on multiplying the
nrocess cross-section with appropriate densities. In fact, gluon terms are
ted to dominate the cross-section. We shall explicitly demonstrate this
..B.t_EI' section. We stress here that this factorisation of the cross-seclion

o Combridge and Maxwell is not at all obvious in the spin dependent case

nd is a remarkable feature of the 2-jet production mechanism.

g

) Numerics

plicity, we have chosen the configuration in which the jets are back-to-
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1 = 0 (90° scattering) so that #; = x; = xp. The parametrisations of the

densities are as discussed in Chapter 2 .

¢ | Leading | qgz | mm | oy 19 99

(@) | (&) | (a) | (b)
The Spin Independent Subprocess Cross sections
60 23.90 23.90 | 20.74 | 32.07 | 26.40 | 21.60 | 27.38 | 18.33
65 17.96 17.96 | 15.08 | 24.83 | 20.28 | 16.59 | 21.36 | 14.30
70 14.10 14,10 | 11.41 | 20.01 | 16.28 | 13.32 | 17.43 | 11.67
75| 11.59 | 11.59 | 9.05 | 16.82 | 13.68 | 11.19 | 14.87 | 9.96
80 | 10.02 |10.02| 7.58 | 14.81 | 12.05 | 9.86 | 13.27 | 8.88
85| 9.16 9.16 | 6.77 [ 13.69 | 11.15 | 9.12 | 12.39 | 830
90 | 8.89 8.80 | 6.52 |13.33 | 10.86 | 8.89 | 12.12 | 8.11

The Spin Dependent Subprocess Cross sections
60 -7.70 -7.70 | -4.54 | 0.47 | -9.42 | -7.70 | -13.71 | -9.18
65| -6.88 |-6.88 |-3.99 | -0.02 | -8.41 | -6.88 | -12.14 | -8.13
70| -6.28 | -6.28 | -3.59 | -0.36 | -7.67 | -6.28 | -11.00 | -7.36
75 -3.84 -5.84 | <3430 | -0.61 | -7.14 | -5.84 | -10.18 | -6.82
80| -5.55 -5.55 | -3.11 | -0.97 | -6.79 | -5.55 | -9.63 | -6.45
85 -5.39 -5.39 | -3.00 | -0.86 | -6.59 | -5.39 | -9.32 | -6.24
90 -5.33 -5.33 | -2.86 | -0.89 | -6.52 | -5.43 | -9.22 | -6.17

ble 5.2 The subprocess cross-sections of Table 5.1 evaluated for different
scattering angles, ¢ (y = cot?(¢/2)) in comparison with the Combridge
Maxwell approximation, 2 F(x) (spin-independent) and 2G(x) (spin-
dependent). Column (a) of the ¢g term is the cross-section with the
quantity (('4/Cr) factored out, while (b) has (Ca4/Cr + 1/2) factored
out. The squares of these quantities have been factored out of the cor-

responding expressions in the g g case,
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Fig. (5.2) shows the various contributions to the spin dependent hadronic
cross-section, do , Figures labeled (a)-(d) correspond to parametrisation types
(a)(d) for the spin dependent densities, as parametrised in Chapter 2. We

see that the g g contribution in Figs. (5.2a), (5.2¢) and (5.2d) is fairly large.

-

15k (&) - -3 (b)
-0 - -2
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?1g 5.2 The total spin-dependent cross-section, #% de, in units of (r o?/5?),
and the contributions to it are plotted as a function of @g. The graphs
(a)-(d) correspond to the parametrisation type (a)-(d) for the spin de-
pendent densities. The labels on the curves correspond to (1): total (2):

qq, (3): ¢, (4): qg and (3): ¢ g contributions.




5. The Gluon Densities: Small-x 117

_iiharmure, the sum of the ¢ g and g g terms approximately equals the total
s-section as the g g and g contributions (curves (2) and (3)) are negligibly
ll. Also, do remains mostly positive aver the entire a7 region even for
ive Ag since the g g contribution is always positive. Fig. (5.3) shows the

ponding spin independent cross-section, do, which is much larger than

hie spin-dependent cross-section.
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Fig. (5.4) shows the same spin-dependent cross-section, de, but this time
in comparison with the approximations discussed in Section 5.1 . Fig. (5.5)

DWe the same for the spin independent cross-section.
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This will therefore simplify the job of extracting the spin-dependent gluon
densities from such a measurement, Note that for small values of Ag as is the
case in parametrisation type (b), both eqs. (5.9) and (5.10) provide a good fit.
However such a cross-section can be identified through its small magnitude in
comparison with the other parametrisation sets. At this point, we note that,
according to our definition of the parton densities, §{x) automatically carries
along with it an order O(a,) gluonic correction; this is usually refered to as a

reinterpretation of the spin content of the quarks [16]:
f e
Mg = Mg = hoiad Ag
2r

where Aq’ and not Ag is the true quark spin contribution. However, such a
‘correction will not affect the jet results. This is because the gluon term from
this redefinition will just be a next-to-leading order correction to the gg or g g
terms and will be small. This is the big advantage of using 2-jet production
to study the gluon spin-dependent density.

In Fig. (5.6), we plot the total asymmetry, A = do/de as a function of z7
for the different parametrisations, Notice the tremendous difference between
the various curves. Also, though the asymmetries themselves are not very
different in magnitude from the Dy or DY ones, recall that the cross-sections
are much larger in the 2-jel process.

We see that the large-r asymmetries tend to equalise. This is because the
cross-sections are mostly determined by the quark densities which are about
the same for all the parametrisations at large—x values (where the valence
densities dominate) and are thus independent of the gluon and sea densities
which have become negligible in this region.

The asymmetry in the intermediate—r region, however, varies cousiderably
}'_:_Epﬂudlng on the type of parametrisation. For types (b), (¢) and (d), which
ave a positive Ag, we see that the larger the Ag, the larger is the asymmetry.
Hence, large asymmetries in this o region in 2-jet production experiments

ypically indicate the presence of a large ‘anomaly-like’ contribution in the
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expression for GY. Type (a), on the other hand, with a negative Ag, depends
on the magnitude of Ag. The g — g term always dominates upto r¢ ~ 0.2,
In this region, a small-Ag parametrisation resembles Type (b), while a large-
Ag resembles Type (c). However, for larger z values, the ¢ — g term begins
to compete with 1le g — g term and the asymmetry becomes very small on
account of their opposing signs. IHere, although the asymmetry may become

negative, it never becomes large.

Fig. 5.6 The total asymmetry in 2-jet production is plotted vs z1 for different
parametrisations as set up in Chapter 2. The curves labeled (a)-(d) refer

to Type (a)-(d) parametrisations respectively.
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from the truc curve.
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In Fig. (5.7), we have plotted the total asymmetry as well as the approx-
imations due to Combridge-Maxwell and its variations (see Table 5.1). As
expected, the fit is good in the intermediate z¢ region upto 7 ~ 0.6, after

which, the poorness of the approximation for the g — g case causes it to deviate
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Fig. 5.7 The Combridge Maxwell approximations [or the asymmetry in 2-jet
production for different parametrisation of the densities. Notice that
this holds only in the region, o < 0.6. The labels are the same as in

Fig. 5.5, where curve (1) is the total asymmetry.
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To sum up, a large, positive asymmelry in the experimentally accessible
region upto zr ~ 0.6 constitutes a clear, unambiguous signal for the existence
of a large gluon polarisation. A small value of the asymmetry (< 0.1) cannot
distinguish the two cases, while a negative asymmetry anywhere in the z7
domain indicates that Ag is negative but may not be able to fix the magnit nde
of Ag or provide any information on the gluon spin-dependent parametrisation.
In any case, the 2-jet production asymmetry can be expected to be mostly
positive, or, if negative, small in magnitude.

Hence the asymumetry in 2-jet production can yield information on the
gluon spin-dependent density. We also have extended the work of Combridge
and Maxwell to the spin-dependent sector; applying this, we see that this
process yields a measurement of the generic spin dependent parton density,
P{:r:j = qla)+{Ca/Cr+1/2)§(x), to a good approximation. This is especially
true in the small-r region, x7 < 0.3 where § dominates and thus complements
the results of the previous chapter,

We however stress that these parametrisations and corresponding conclu-
sions are only indicative of the character of the problem; the result that the
gluon contribution forms a significant part of the 2-jet production cross-section
is true, mdependent of the specific form of parametrisation.

At this point, we note that 2-jet production in polarised pp collisions has
recently been discussed by several others [17]. However, nane of them discusses
the crucial issue of actually extracting the gluon densities [rom such an ex-
periment. By demonstrating that a Combridge-Maxwell type of factorisation
holds in the spin dependent case also, we pin down a specific combination, viz.,
that in eq. (5.8), that is effectively measured to a good accuracy in this exper-
;_fi_menl;. If such a factorisation is not assumed, there exist so many significant
‘conributions in different kinematical regions that disentangling of the various
terms and extraction of the gluonic (or any other) density is an almost hopeless
task. Since vne does not a priord know the magnitude of the gluon density,

lere is no justification for arbitrarily ignoring terms coming from quark-quark
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or quark-gluon interactions. The point that really needs to be emphasised is
that the gluonic terms not only appear at the same order in a, as the quark
terms (unlike in the DIS experiment of the EMC), but alsa that Ag and a,Ag
are comparable in magnitude. Ramsey, Richard and Sivers in ref [18] do use
the Combridge Maxwell technique of reéxpressing the cross-section in terms of
the universal densities; unfortunately, as the EMC data was not yet available,

they did not consider the possibility of a large gluon contribution.
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6.0 The Direct Diphoton process

In this Chapter, we study the process of direct double photon production
at large transverse momentum in polarised pp collisions. The spin-averaged
cross-section for this process is much smaller than for the corresponding single
photon process. Nevertheless, this process has already been observed and
studied in the unpolarised case [19] . There are potentially large backgrounds
o this process coming from bremsstrahlung off quarks involved in the single
fpﬁotun process, [lere, we assume that these corrrections can be made and that
the relevant hard-scattering cross-section can be extracted. We demonstrate
that [4], atleast in some kinematic domains, this process is capable of providing

information on the spin dependent sea quark densities.

6.1 Formalism

Ve are interested in the hadronic 2-photon production process,

— —_ 1{

Prp—=7+y+ A

he contributing subprocesses are shown in Fig. (6.1) . These are

qF = 77

g9 — 17 -
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Again, both processes are of the 2 — 2 type and the entire procedure developed
in Chapter 4 can be carried through here. We see that the former (annihilation)
subprocess is identical to that in single photon production with the gluon being
replaced by a photon in the final state. Hence the cross-section for this process

is the same, apart from charge and colour factors.

|

+ Cross

e

(a)

+ permutations

Fig. 6.1 This shows the leading order large-py subiprocesses contributing to

the direct diphioton proeess.
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Putting in the right charge (¢}) and colour (Cp = 3) factors gives the

) , (61)

where A and A’ are the helicities of the quark and antiquark and §, t and 1 are

annihilation contribution to the diphoton (v 7) process:

ils; A 7
o {}.A]“ZgIE%[]—}n}n“} (‘?‘Jr
i

=t ML

the subprocess Mandelstam variables

As usual, we are interested in the combinations

ds® = r!cr+ ]+rfﬂ'{++]

B = fg(+ ) - d”[++]

for the subprocesses, « = A, (. These are listed in Table 6.1 .

(6:2)

The second contribution comes from the “box diagram” and is somewhat

more complicated owing to the fermion loop-integration required.

R —
da® da

1 t 4 t
A 33 3 (#+1)
[g (A2 4 A2+ AL) + 1 (At [— L(A?—AZ-AL) -} (A-

s 2
Hﬂ+r1gr}l+%,— I:Ag-}-:“l%.«}-l—i‘l J‘Jlg—/digrzl-l-—r,r{* {fij“i‘.fdlﬁi:}“

where

Ap = Az ([t & u)
Ay = Azt = u).

Table 6.1 The cross-sections, dé” and dé, as defined in eq. (6.2) for the
processes o = A, G . The cross-sections are expressed in units of o’ /&
for @ = A and in units of (I, e4)*(a’a?/4rd?) for @ = G and f runs
over the Havours wu, d, s, ¢ of the virtual quark in the loop. Carets on the

subprocess variables have been dropped lor clarity.
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There are six contributing diagrams (permutations of Fig. (6.1b)) con-

tributing to this cross-section, which can be expressed as

e 2.4 a b2 2
do - [ﬁiﬁ,l [Tr-g-"ﬁ-] & [Ty el] M. (6.3)

The first factor in square brackets is the usual kinematical factor for a 2 — 2
process, the second is the colour factor which evaluates to 2 | a factor (1/8)
is included for each gluon in the initial state (colour averaging) and the last
quantity in square brackets is the flavour factor. Finally, the matrix element,
M, for different helicity combinations, (h, h'), of the initial state gluons (with

final state Lelicities summed over) is given by [20]

M2, = MI+3IMI;
M. = Mj+M}+2M3,
where
P - po ey w2 . !
M, = =4 2+2'!"I"Tuln%"+t 5_“ {ltriz(i‘)-!-'h'j}] :
& J : ~2 g ] 2
- prsictu ) s
R g g D :
yoin [t 4 58 0 (S5)] (6.30)
1L iU ‘J
My = M, (fha);
.E"r’fg = 8.

Within the approximation used, the g g cross-section seems to diverge as {, 1 —
0. This is because we have neglected the parton masses. However, this is a
problem only at ¢ — 0°, 180°, which does not come under the purview of “large
pr processes;” this, in fact, corresponds to forward (or backward) scattering.
Hence, we shall not worry about regulating this cross-section.

We should point out that the box diagram is “down” by a factor of of
compared to the g7 contribution. There is a similar diagram, g g — g7, that
can contribute to the single photon cross-section, and which is also down by
a factor of o when compared to the diagraims we have considered for this
case. However, we neglected this contribution to the single photon case as

the total cross-section includes a folding over with the incident parton density
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distributions. This results in an expression which is like a, (a, % g)? for the 3-
gluon box diagram and is like (e, x g]* for the 2-gluon box diagram. Since the
evolution equations for the spin dependent densities evolve such that a, Agis
approximately constant, the 3-gluon cross-section is seen to be further down
by a factor of e, and we feel justified in dropping it. Strictly speaking, however,
we are discussing density distributions and not their moments for which the
above statement is valid, but even if we do a naive a, count, this diagram still
remains sub-dominant.

Coming back to the process of interest, namely, the 2-gluon box diagram,
again, we are interested in the sum and difference cross-sections, d&% and Frl

These are listed in Table 6.1 .

Finally, we put in the structure function factors:

Ho(zi,e2) = Ty eb (¢7(21) 7 (22) + 77 (1) 7 (22)) 5
Glzy,22) = g%(21) g7 (22)

The corresponding spin dependent quantities are

Ho(zr,x2) = Ty ef (7207 (22) +F (21) 7 (22)) 5

Gley, o) = §7(21) 57 (21) .
Notice that the cross term which appeared in the Dy and DY processes dis-
ccussed in Chapter 4 (for the compton diagram) does not appear here as the
structure function factors are the suime: d&® is symmetric with respect to

it u. We can now write down the asymmetry in this process,

Tr

_ Heds +CB°
© Hyde® + G da®

(6.4)

As before, we study the back-to-back geometry in order to simplify the kine-
matics. We restrict ourselves to the central rapidity region (3, = y2 = 0),
"'_i".:lmn ry = xy = 2wy = . [n this configuration, the structure function lactors

can be re-written as

Holz) = -é‘!—l [(16uy +dy) o+ (17 +4%) a?]
& (16uy (2) + dv(2)) o(x)

I¢



fi. The Sea Densilies 130

if we neglect squares of the sea densities, while the structure function factor

for the box diagram is

G(z) = g*(z) .
While the annihilation subprocess cross-section for the unpolarised case (which
is half of d&") is much larger than that of the box diagram due to kinemati-
cal factors, it was observed [21], [20] that the parton densities compensate a

great deal for this difference in the overall hadronic cross-section, i.e., the box

diagram cannot be neglected in comparison with the annihilation graph. Asa

result, no single diagram dominates the unpolarised cross-section.

In the asymmetry in eq. (6.4)), § appears as a square, §'(z); hence the
asymmetry is insensitive to the sign of §{z). Even when z; # z3, since the
spin dependent gluon density §(z) for a given parametrisation type has the
same sign for all x, the quantity G(zy, 23) = §(z1)§(z2) is always positive. On
the other hand, fy contains a product of an overwhelmingly positive valence
density and the spin dependent sea quark density. Since tﬁ'—ra 15 negative,
while EEFA is positive in sign, the asymmetry has effectively a difference of
annihilation and box diagrams in the numerator. If both contributions are of
the same order (as the unpolarised case seems to indicate) then the asymmetry
will be extremely sensitive to the sign as well as the magnitude of the spin

dependent sea quark contribution as we can write

wy @ — x4

AT A v 0.

u, T 4+ xqq '

If & is positive, the asymmetry will be small (nearly zero if the two terms are
of the same order) while it will be large and negative if & is negative. We shall

study this more careflully in the next section,

6.2 Numerics
We again use the parametrisations for the spin dependent densities developed
in Chapter 2 in order to quantify the statements we have made about the

asymmetry in direct diphoton production in pp collisions. We use the EHLQ
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parametrisation for the spin independent densities and Type 1 parametrisa-
tion for the spin dependent ones (see Chapter 2 for details). We first show the
unpolarised (hall the spin independent) subprocess cross-sections for the an-
nihilation and box diagrams in Fig. (6.2) as a function of the scattering angle

¢ in the CM of the partons. (These are independent of the parton densities).

1000 g [ [ I E
SR L qa/gg ’
tog T T T E
10 £ E
1E E
01 £ e . sfs 3

0.01 | | I | |
30 40 50 60 70 80 90

Fig. 6.2 The unpolarised annihilation and box subprocess cross-sections and

their ratio are plotted as a function of the scattering angle ¢.
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The annihilation cross-section is about two hundred times the gluonic cross-
ion for all angles. However, the contributions to the hadronic diphoton
production cross-section of these subprocesses involves a folding over of the
process cross-sections with corresponding parton densities. The ratio of
e contributions in the spin independent case is plotted as a function of
2y =z = x7 for different ¢ in Fig. (6.3). (What is plotted is the ratio of

annihilation terms).

0.4 0.6 0.8

X=X, =¥

6.3 The ratio of the box to the annililation contribution to the unpo-
arised hadronic diphoton production cross-section is plotted as a func-

tion of @ for different scattering angles from 30° to 90° in steps of 15 .
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We see that the inclusion of parton densities with the subprocess cross-
sections completely changes the result as now, in fact, the gluonic term is
larger, although they are of the same order of magnitude. Hence it is not
possible to ignore either term in the asymmetry equation. Retaining both

terms, the total asymmetry is plotted as a function of zr for = 90° in
Fig. (6.4).

Fig. 6.4 The total asymmetry in pp v process is plotted as a function of T
for ¢ = 90° for spin dependent parametrisation types (a)-(e). Recall
that {e) corresponds to positive spin dependent sea density while the

rest have negative sea density.
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We notice the following interesting behaviour: for the same (negative) sign for
the spin dependent sea density, i;, parametrisations corresponding to a larger
| Ag| result in larger magnitudes for the asymmetry, while a flip in the sign of
to positive causes a sharp fall in the asymmetry to nearly zero (even for large
Ag, as seen in curve (e)). Hence small asymmetries in diphoton production
signal positive sea quark polarisation. Furthermare, curves (a) and (d) which
correspond to parametrisations with large gluon polarisation of opposite signs
result in the same value for the asymmetry; this indicates that this asymmetry
is insensitive to the sign of the gluon polarisation.

In short, large negative asymmetries in diphoton production indicate large
negative sea polarisation and large gluon polarisation of either sign. Knowing
the spin dependent gluon density from other experiments such as direct photon
and 2-jet production will then enable the spin dependent sea quark density to

be extracted from a measurement of the asynunetry in diphoton production.

6.3 The pp collision process

We complete this Chapter by discussing diphoton production in polarised pp
scattering. The subprocess crass-sections remain the same: but the density
factors are different, We use chiarge conjugation symmetry to relate the den-
sities in an antiproton to those in a proton, using eq. (4.20). As in the case

of single plhoton or Drell-Yan production, the only change i3 in the expression

for Hy . We get

Holx) ~ :;-I- {(fﬁiu'f, + d'f,) + 2 (16uy —|—:f1r]lcr} ;

;
where we have dropped terms containing #? as in Chapter 4. The corre-
sponding spin dependent structure function factor, Hy, is given by replacing

spin independent densities by corresponding spin dependent ones in the above

equation:
— l ey =12 : s Ed
Hﬂl-f'} o o {(”.Htpj +dy ) + (1ﬁ‘ily + r:fv) cr} 7
31
The annibilation term dominates here due to the presence of the valence den-

sities. Hence, the asymmetry can be approximated as the ratio E’E;’Hg to a
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good accuracy, especially at larger-x values. (Here we have used 2, = 25 = ¢ .

As in the case of Direct Photon and Drell Yan processes, we point out that

the approximation to the asymmetry holds without making this choice.) The

total asymmetry is plotted as a function of a7 in Fig. (6.5).

Fig. 6.5 The total asymmetry in pp 4y process is plotted as a function of zyp

for ¢ = 40° for spin dependent parametrisations type {a)—(e).
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The asymmetry is seen to be insensitive to either the sea or the gluon
spin dependent parametrisations and is completely dominated by the valence
densities over most of the kinematical region. Hence it is a good measure of
the spin dependent valence density, especially of the spin dependent valence

u-quark density as its contribution is enhanced by a large charge factor (el).

This concludes our discussion of polarised pp and pp collision processes,
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We have studied the cross-sections and the asymmetry in various processes
in polarised proton-polarised proton collisions. Recently, FermiLab [10] has
measured the asymmetry for 7° production in such 5 and 53 collisions in
fixed-target experiments. Hence we believe that these experiments can be
performed in the near future. Though the kinematical region is limited, (un-
like in collider experiments, which are, however, difficult to perform), they
will certainly be able to probe the intermediate-zy region, wherein all the
interesting physics lies,

Chapter 3 demonstrated that spin dependent valence quark densities can
be extracted from semi-inclusive DIS experiments. This then enabled us to
select processes which were sensitive to the gluon and sea densities, without
the valence densities clouding the issue. Chapters 4-6 were devoted to such
a study. All processes that were discussed here are seen to occur in polarised
pp and pp collisions. In particular, the asymmetry in direct photon and the
Drell-Yan process sliows a peculiar factorisation in certain highly accessible
kinematical regions which directly allows extraction of the spin dependent
gluon density, without need for the specific forms of either the valence or the
sea quark densities. The inclusive 2-jet production process is equally sensitive
to the spin dependent gluon density, though in a different kinematical region.
Finally there is the ambivalent di-photon process, which is seusitive to the
gluon as well as sea quark densities, although it is more seusitive to the sea
quark density.

Experimentally, all these processes have been very well studied in unpo-
larised pp collisions. We wish to empliasise at this point that a great deal more
information is required before results in the spin dependent sector match those
i the spin independent sector. Hopefully, the processes listed above will go

a long way in deciding some issues like convenient definition of densities at

147
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next-to-leading order and the réle of gluons in a polarised proton. The sea
quark densities will be harder to fix accurately, especially in view of the fact
that the only process (direct diphoton production) which is sensitive to it in
the leading order is still not entirely dependent on the sea quark alone. In-
fact, determination of the spin dependent sea quark densities is likely to pose
the maximum amount of problem in any scheme of complete determination
of polarised parton densities. An alternative process, namely, v p DIS has a
cross-section that is directly proportional to the singlet quark density: unfor-
tunately, it is very difficult to obtain mono-energetic neutrino beams so that
data from these experiments will have large error bars even though the prob-
lems involved in polarising proton beams do not apply here. This is true even
in the spin independent case.

We have thus demonstrated a set of processes which, when taken together,
will throw more light on the controversies in polarised DIS experiments as
well as on the spin content of the nucleon. Although we have used lowest
order perturbative QCD cross-sections in this analysis, the results are unlikely
to undergo large modifications at higher order. This is because higher order
corrections for the unpolarised processes are small at central rapidity 23] (v =
0) . We expect a similar behaviour for the polarised case also.

Preliminary data in polarised p7 fixed target experiments Las recentl y been
obtained by the FermiLab Collaboration. This leads us to believe that all the
experiments involving pp collision processes that we have considered here can
be performed shortly.

Finally, we note that apart from the processes we have considered here in
order to probe the spin content of the nucleon, other experiments that have
been suggested are J/t production via both photoproduction [23] as well as
leptoproduction [24]. In the former, photon—gluon fusion occurs witl the for-
mation of a heavy quark-antiquark pair. The subprocess that contributes is

exactly the order O(a,) gluonic contribution to the spin dependent structure

function, gi(z). Since this is the troublesome quantity in the anaysis of the
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EMC result, such an experiment would directly probe this quantity and settle
once and for all its contribution to the structure function. Note however, that
the step from the quark pair production to J/4 formation is model dependent.
Both the suggested J/y experiments will be sensitive to the spin dependent
gluon density. So also is the charmonium production process recently sug-
gested in ref. [25]. Another process involving gluons is jet production in DIS

processes rather than in pp processes. This has been studied in ref. [26].
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Chapter 7

OPE APPROACH TO THE MOMENTS OF
THE SPIN DEPENDENT STRUCTURE FUNCTION

CONTENTS

The Operator Product Formalism
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Numerical Estimates of Mg

Model Calculation of Matrix Elements

Conclusions

In this Chapter, we briefly discuss the moments of the spin dependent proton
structure function, g{(x), in the operator product expansion (OPE) approach.
We find that ratios of successive moments can be expressed so that they are
independent of the unknown hadronic matrix elements involved and are there-
fore calculable. Details of this work can be found in refs. [1], [2], [3].

The operator product expansion predicts logarithmic violations of scaling,
which is clearly supported by experiments. In particular, the Q2 evolution of
the moments of the structure functions computed in this framework involve
products of hadronic matrix elements of gauge invariant, local operators of
well-defined twist and their coefficient functions. While the latter are com-
puted perturbatively in QCD, predictions for the nonperturbative matrix ele-
ments do not exist. Consider the two lowest moments of the structure function

qi(z), in e(p) p scattering. Their measured values (without including errors)

are [4]

¢, Ejdm:yl{x]f: 0.126:  (y ;f[:m*g.{z}f:n,ml; (Q%) =10 GeV?

In fact, in botl the polarised as well as the unpolarised case, the ratio of sue-

cessive moments is around 0.1, We show that the ratios of successive moments

L43
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can be written as mgﬂ.mfg, where M, is the proton mass and m g is some dy-
namically generated quark mass. Substituting the relevant numbers, we find
this mass to be of the order of 300 MeV, which is very close to the constituent

quark mass. We support our statements using a simple bag model.

7.1 The OPE Formalism

We start with the expression for the hadronic tensor that we have defined
earlier:

Wi = oo [ 4970, S | (o), 50 | 2, )

= W5+ Wi

e *

(7.1)

Here p and S are the momentum and spin of the proton, ¢ is the momen-
turn transfer at the hadronic vertex and j, is the electromagnetic current.
Using Wilson’s OPE, the nonlocal product of two electromagnetic currents
can be expanded near the light cone (y* ~ 0) leading to separation of the
perturbatively calculable *Wilson coefficient” functions and unknown, renor-
malised operators in the theory. Hence, the matrix element in eq. (7.1) can
be expressed in terms of singular, calculable coefficients and nonperturbative
matrix elements of local operators in the theory, We are interested in the mo-
ments of the spin dependent structure function that appears in the expression
for W2

o (see Appendix C). These moments, which are taken with respect to

the Bjorken variable, defined as & = (Q*%/2v) , are expressed in the OPE as
) NS . 1 ] T, WA 1
@) = [ (e,@Y) = 5 T BN @Y )

Gi@*) = f dm"“y?‘{m@*l=%Zui;551‘;f(@“,g)~. nodd |

where the superseripts NS and 5 (which have different behaviour under Q®
evolution) refer to the non-singlet and singlet contributions respectively [5].
We have not outlined the details of calculation of this result. For our purposes
it suffices to know that the £ are the calculable perturbative coefficient func-

tions (of % and the QUD coupling constant g). The hadronic matrix elements

are contained in the a,; for different relevant local operators in the theory, of
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correct dimension and twist. Furthermore, in the asymptotic limit,
Jim Ep{@%e=0)=1,

so that in the leading order, the combined singlet and non-singlet moment is
L 3 :
0, = fd.‘l:I“-],{i"'i[I] = :jzﬂiﬂu.i{f-‘ )i t=u,d,s . [?-2}
i=1
The matrix elements of the local operators which are renormalised at the scale

u* are defined as follows:
(18 1 Fias (79D .. D) |, S) = —ab (S ), (1.9)

where ({...}) implies symmetrisation over the enclosed indices and D* is the
gauge covariant derivative. In eq. (7.3) we have neglected less divergent terms
containing operators like g"'#?, etc., as their contribution will be suppressed
in the scaling limit. Using eq. (7.3), we obtain lor the Arst two moments of g

(i.e., Gy and G5 for n=1,3),

1 i v T , .
G = 3 Tl S [ Pasnbi | p,S)
o | L _ (7.4)
Gy = s Tid (0,5 | 935 (1, D24 DD+ Dy D) | p,S)]
= p
In obtaining eq. (7.4) we have made use of the fact that p* = M? and 5-p =0,

where M, is the proton mass.

7.2 Effective equation of Motion
Our aim is to obtain the ratios of moments. We do not, at this stage, know
how to compute the hadronic matrix elements in eq. (7.4). In order to proceed,

we introduce the effective equation of motion,

(i 9 —migli)) v = s (U* + [m;;[{#“ﬂﬂ) i =0, (7.5)

wlere -.rn.;ﬁ{;:z} is the effective mass of the i-th quark evaluated at the same

scale i at which the operator in the hadronic matrix element is renormalised.

We henceforth replace the covariant derivatives by ordinary derivatives. We
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assume that at this scale all effects of interactions may be included in M- In
taking this step, we are guided by the spirit of quark model calculations with
“constituent quarks.” In fact, the Mg appearing in this equation hides our
ignorance or inability to calculate the soft gluon contributions which probably
dominate the non-perturbative matrix elements. We thus anticipate that this
e Will be of the order of the dynamical quark mass, rather than the current
quark mass, just as in the case of the spontaneous chiral symmetry breaking

of the QCD vacuum [6].

We now put this equation of motion, eq. (7.5), back in the moments

eq. (7.4). We see that
" g ¥
Gy = —g%"ﬂrzi:ﬂf (mszl.-':i": S yrsraibilp, S)

+2mag (p S | Pivsida | p, 5}) -

Notice that the first term in Gy, apart from mass factors, is very similar to (7,

(7.6)

in eq. (7.4). Equations (7.4) and (7.6) form the basic set of equations. In the
next section, we numerically estimate g i as model independent a way as

possible and later check our caleulations in a bag model with massive quarks.

7.3 Numerical estimates of Mff

As poiuted out before, the matrix element appearing in the first term of (74
in eq. (7.6) is the same as that in eq. (7.4) for &), apart from mass factors.
The second term typically gets contributions from the transverse momentum
of the quarks and may be expected to be small in comparison with the first
term. We shall therefore ignore this term for the moment and justify this
step later. Then, we immediately see that the moments of nlz) satisly the

following relation:

T 2 2
iy gl

Re = -—?TJ = {'”{; } ' (?'T]
T M ;

where we have used the assumption that all favours have equal mass. The
measured gy(x) is positive everywhere for 0.01 < z < (.7 [4]. The quoted

value of (7 is

Gy = 0120 4 0.010 (stat) £ 0.015 (syst) . (7.8)
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To consistently obtain both &) and (75 from the same set of parametrisations,

we use the parametrisations in refs. [4], [7] which yield
Gy =025  and G2 =0.011. (7.9)

Hence,

Rg — 0.091 or equivalently, m,g= 283 MeV. (7.10)

This is close to the constituent quark mass. However, caution should be ex-
ercised in interpreting this result, as the approximation we have made in the
expression for (73 can only be justified in a model dependent way. The fact
that the EMC result yields a positive value for Gy already indicates that m g
is of the order of the constituent quark mass rather than the current quark
mass. (If current quark masses were used in eq. (7.14) for the third moment,
the strange quark contribution would dominate as its (current) mass is the
largest, Since this is believed to be a negative quantity (As < 0), it would
make (3 negative rather than positive as obtained from the EMC measure-
ment ).

The result is completely parametrisation independent and only depends on
the (reasonable) assumption that all flavours have equal masses. Furthermore,
this 15 a leading order result, as we have dropped Ola,) terms in the Wilson
coefficients; the resulting error in the estimates is not more than 10% to 15%
for the varions moments, In order to include perturbative Q* corrections in
the Wilson coefficients, we need to know the individual spin dependent parton
densities as the non-singlet and singlet densities evolve differently in Q% these
are unfortunately, as yet unknown. If we assume that the nonsinglet terms

dominate the moments, and correct Ry for finite Q?, we have

PN
. %) n (F) N mzﬁr:ju?}
Q’) |(F_1) I
by

where % and ' are related to the anomalous dimensions for the non-singlet

terms in the third and first moment of g () and A 1s the QCD scale parameter.
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Using the kuown values for d' and &® [8] for )% ~ 10 CGeV? (corresponding
to the EMC central value), we find that e = 318 MeV (up from 283 MeV
without €)% corrections). In general, finite Q? corrections tend to increase the

effective mass. More importantly, this mass lies in the range of the constituent

quark mass.

7.4 Model Calculation of Matrix Elements
In the previous section, we have seen that the relation between the hadronic
matrix elements obtained using a simple assumption regarding the effective
mass of quarks can be made consistent with deep inelastic scattering data on
moments. However, we were unable to calculate the moments themselves. We
may now ask whether these matrix elements can be calculated in a2 model
which admits an equation of motion similar to eq. (7.5). The simplest model
we can use is the MIT bag model with massive, non-strange quarks which is
& modification of the original model and is due to Golowich {9].

We quickly review the main results of the model. The quarks of mass m
satisly the equation

(t @ —mph(z) =0 (7.11)

inside the bag and the following boundary conditions on the surface:

in-yiPa(z) = Walz)

Yan-d {Ea{;r}m“(;r]l 9 G (7.12)

The normal, n, = (0, =7}, points into the bag at the surface and B is the bag
pressure.

We are interested in solutions corresponding to the proton {ground state)
which is completely symmetric in spin, isospin and spatial indices, while being
completely antisymmetric in the colour index. These solutions are functions
of the three model parameters, namely, the quark mass, m, the bag radius,
R, and w, the mode [requency (lere that of the quark ground state). These
parameters ave constrained by the linear boundary condition in eq. (7.12). The

model thus requires two input parameters to consistently determine m, f and
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w. We choose these to be the (known) nucleon axial vector coupling constant,
ga aud the charge square radius of the proton, (+*),. (See ref. [9] for details
of the calculation of g4 and (r*), within the model).

It suffices for us to state that, given the input g4 and using the linear
boundary condition in eq. (7.12), the parameter w and the product mR are
fixed. The input (r*), then separately determines m and R, so that the three
parameters are uniquely fixed for a given g4 and (r?),. In Fig. (7.1) we show
the variation of the mass (the parameter of interest) with the input parameters
ga and (r%),. We see that for a given g4, the effective quark mass decreases
with increasing (r?),.

We now evaluate the matrix elements occuring in the OPE which are re-
quired in the model calculation. We need to evaluate two different matrix
elements, namely S*(p, S |E’yﬂ,,uﬁ | p,5) which occurs in G, as well as in Gy

and S*(p, S | ¥ysd,0 | p, §) which oceurs in G alone. The first of these is

given by

g
bt 2 — Qo+ mR 7.23)

where we have identified ) as the (charge weighted) sum of the - and d-

. b (?wz 4 dm Ao — Emﬁ)
Gl = — .

quark contributions as this is a model with non-strange quarks:

.

G, =
TS

(4Au + Ad) .

Since (7y depends on w and the product m R alone, the value of g, is sufficient
to evaluate it. Then, using eq. (7.4), the first term in (7 is

]'J'l

M =
M}

Lo ] (7.14)

The second term of (75 can be written as

G = m ZE Uy [fll o(x }Tslda‘ﬁ*[ﬂ]

— m m o w —mR?
54;‘1-I§ R o —2w+mi’

(7.15)

where g, = 4/3 and g4 = —1/3. The ratio of the second and first terms in (5
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is then given by

e g 2

w? — m*R?

mure input in order to evalute the terms in G,

% G‘EJ = "mR 207 + 4mRw — 3mR

which is fixed by the value of g4 alone, just as is G

(7.16)

. We however need one

300

Mgy tM eV)

200

1.24
Ea

1.26

1.28

Fig. 7.1 This shows the variation of quark mass with the input parameters
in the bag model. g4 is plotted along the z-axis, while labels (a) to (e)

correspond to (r*), values from (.25 to 0.65 in steps of 0.1.
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The behaviour of Gy 1s shown in Fig. (7.2). We see that @, is a slowly
varying function of g4. For g4 = 1.26, which is the experimental value, Gy =~

0.21 . We discuss the significance of this value later.

I T T I I T T T i T T T -l | 1 | ! ] T T I T
0.25 - -
a 0.2 _
& i ]
0.15 i
[}.1 1 | 1 | | J_ I I I ] | | ] I | | | | (] | | | 1
1.24 1.26 1.28 1.3 1.32 1.34

Ea

Fig. 7.2 G, is plotted as a function of g4 in the bag model.
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The ratio of the two terms of the third moment, (75, however, varies rapidly

with g4 as can be seen from Fig, (7.3). The second term is always smaller than

the first term, so that Rj is always less than one; for g4 = 1.26, the second

term is less than half the first. To obtain the actual values of these terms

requires one more input—we choose (#*)%% = 0.5 fin.

T | I I I ] ! T T T T [ I ] ] T l ] I ]
-0.6 =
04 J
02 |- 2
D | | [— L 1 [ | | | | | 1 | | 1 ]. | |
1.25 1.3 1.35 1.4 1.45 1.5
Ea

Fig. 7.3 The ratio, Ry, of the two terms ol 5 is plotted as a Tunction of g4

in the bag model.
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Although this is smaller than the measured value of 0.83 fm for the proton
charge radius, we prefer this choice as it results in a mass of about 300 MeV
when g4 is close to its experimentally measured value of 1.26. The behaviour
of the two terms of Gy for this choice of parameters is shown in Fig. (7.4). For

large mass values, the first term dominates the nearly constant second term.

CLDE T | T 1 1 | | T T T T | T T T [

- <r®»%8=05 fm

0.04

Ga

0.02

Mo for a constant r.am.s. charge radius of 0.5 fm.

1.34

Fig. 7.4 The two terms of (7y are plotted as a function of g4 {or equivalently
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Hence, we feel justified in ignoring the second term in our analysis. At g, =
1.26, the total third moment is G5 =2 0.01, which is close to that obtained from
parametrisation of the data.

We now return to a dicussion of the bag model value obtained for G,

which is very different from the value Gy = 0.126 quoted by the EMC. The
reason for the discrepancy in Gy is not hard to find, especially when we notice

that the leading order Ellis-Jaffe Sum Rule [10] gave a strikingly similar result:
G] ~ .19 .

(The difference between this and the value quoted in Chapter 1 is that a,
corrections have not been incorporated lere since the entire calculation is a
leading order one). Recall that this value was predicated upon the assumption
that the strange quark contribution was zero and using SU(3) Current Algebra,
The singlet piece in the first moment of gi(x), which includes the sea (and
hence the strange) quark and gluon contributions, cannot be handled within
the bag model. Hence, the bag model reproduces the Ellis Jaffe result rather
than the observed value. A large value of this singlet contribution may explain
why the experimental value of (7) deviates so sharply from the Ellis Jaffe result.
If this is true, and, indeed, such is expected to be the solutiou Lo the “proton
spin puzzle,” then the contribution of the singlet ternt to the higher moments
of gi{x) must be small. This is because the singlet contribution is a small-r
effect. On the other hand, by taking higher moments of g,(z), the small-
z contributions naturally get suppressed; hence, we would expect the value
of the third moment of g(x) vbtained in the bag model to be closer to the
experimental value than the first moment is to its corresponding measured
value. We find this to be indeed the case, with Gy approaching =~ 0.010, as
mentioned before.

Hence, our simple model with massive non-strange quarks already reflects
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(albeit somewhat crudely) the complicated nature of the contribution to the
small-z region of g,(z).

It would seem that the failure of the bag model to predict correctly the
first moment of the spin dependent structure function g,(z), while providing
reasonable estimates for the third moment, combined with the knowledge that
gluonic effects are not included in this model, points to the inclusion of the
gluon contribution as being a prime candidate to the resolution of the dis-
crepancy. It also seems reasonable to expect a generic quark model, or, in
fact, any nonperturbative model capable of evaluating the moments of gi(z),

to give fairly accurate predictions for the third moment and to reproduce the

Ellis Jaffe result for the first moment.

7.5 Conclusions

We have analysed the moments of the (experimentally) known proton struc-
ture function, gi(z), via the operator product expansion, An effective quark
mass, mgr(p?), is introduced through an equation of motion, where p? is the
scale at which the operators whose matrix elements occur in the operator
product expansion are renormalised. Being nonperturbative matrix elements,
we expect that the corvesponding mass occuring in these is of the order of
the constituent quark mass rather than the current quark mass. We set up
ratios of the various moments and evaluate this mass, which turns out to be
around 300 MeV, thus reinforcing our expectation. Certain approximations
are made which are justified within a bag model with massive, non-strange
quarks. We also evaluate the absolute values of the moments themselves in
this bag model. The first moment, (), reproduces the value calculated by
Ellis and Jaffe, while the third moment is consistent (within errors) with the
measured one. We can understand the discrepancy in the first moment as
due to the absence of gluon terms in the bag model. Since this is basically a
small-z contribution, this conclusion is consistent with the fuct that the third
moment comes out alright, as higher moments suppress small-z contributions.

Hence our analysis gives credence to the view that a bag model with massive
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quarks is probably closer to reality.

We add that the corresponding spin independent calculation has also been
done [2], [3], where even moments of the spin independent structure function,
Fi(z), are defined analogous to eq. (7.2). Here, the bag model fits both the
second and fourth moment quite well. Furthermore, there is only one term
in the expressions for both the moments so that the expression analogous to
eq. (7.7) is exact in the spin independent sector. Hence, the extraction of a
mass scale (which also turns out to be around 300 MeV) from the ratio of

these moments is more reliable.
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THE SPIN DEPENDENT STRUCTURE FUNCTIONS:
QCD SUM RULE APPROACH

NTENT S

The Sum Rule
Calculation of Im 7, via the OPE

Conclusions

The QCD Sum Rule technique was first proposed and applied to the study of
meson properties by Shifman, Vainshtein and Zakharov [1]. The Sum Rule ap-
proach attempts to incorporate nonperturbative corrections into perturbative

caleulations in QCD. The Sum Rule itself may be simply written as
LHS=KHE"

The right hand side (RH5) of the S5um Rule involves calculating a time-ordered
product of currents and use of Wilson's operator product expansion (OPE) in
order to evaluate the matrix elements of this time-ordered product. This
results in separating the long-distance and short-distance effects. The lat-
ter, viz., the Wilson coefficients, are caleulated perturbatively while the long-
distance part, which is unknown, involves non-vanishing expectation values
of quark and gluon operators such as (0]g7|0) and (0]G3,G5%,]0), which van-
ish i standard perturbation theory. Here g is the quark field and G}, is the
gluon field strength tensor. These local operators all have different dimen-
sions, hence the OFPE consists in writing an expansion in terms of operators
of increasing dimension such that their (perturbatively caleulable) coefficients

increase as the inverse power of () the momentum squared, when Q7 is large.

The most dominant (lowest dimension) operator thus has the most singular
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coeflicient. This being an asymptotic expansion, we do not expect it to be
convergent, but rather we expect that the first few terms yield a reasonable
approximation to the RHS. We therefore have a result for the matrix element
of the time-ordered product of currents hétwmn vacuum states (also called
the correlation function) in terms of quark and gluon degrees of freedom.

On the other hand side (left hand side or LHS), this correlation function
can be computed as an integral over its absorptive part, using a dispersion
relation. In general, the dispersion relation can be written as

ImII(s)
s+QF

where ImI1(s) is proportional to measurable cross-sections involving physical

(@) = jd

quantities like mass, coupling constant, etc. Equating the QCD-based pertur-
bative OPE calculation of the correlator with its dispersed form yields the re-
quired Sum Rule, from which the required hadronic property (mass, coupling,
ete.) can be extracted. The validity of this method needs some justification,
which we shall not attempt to provide here, but merely refer to existing work
in refs. [1],[2].

As a simple example, consider the p-meson current, written in terms of

quark fields as
1

15 = 5 (Eﬁrﬂu - E’}'Fff) :
The correlator of interest is the fourier transform of the time ordered product:
o = i [dee (0] T(u(2)5.00) | 0)

(9 — ¢* 000 ) 112( %)
where ¢* = —Q? is large and negative. Using the OPE and the definition of
35, T17(g*) can be related to the vacuum matrix elements of relevant operators
like &, (7q), (G5,G0,), ete., with perturbiatively caleulable coefficients. This
forms the RHS. On the other hand, sinee [17 is seen to have a pole at g* =0,
it satisties the once—subtracted dispersion relation,

| | O H(s
II"‘{Q}} = 17(0) - 1'_:,‘Jrr] fds":{‘q -|[:_ (}?2] |
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where R is related to the imaginary part of 117

I o(ete” — hadrons)
ur(e,'['ﬂ" —
whp)
m

= I —m?
127 Efﬁ[.s )

in the resonance approximation. Comparison of the dispersed form of 17 with

its OPE evaluation yields an expression for the p meson coupling constant [1],

2
2—#:2.3,

[

T kD

)

o
=

and this result improves to 2,41 when continuum corrections to R are included.
As a technical point, we note that the two sides of the Sum Rule are usually
Borel-transfomed to supress excited state contributions.

The method is less accurate in the case of nucleon calculations, but has
still met with considerable success in computing the masses and coupling con-
stants of low-lying hadron states [1], including the mass of the nucleon (3], [4]
and its octet partners as well as the isobar and the decimet members. This
was later extended [5], [6] to a computation of the magnetic moments of the
proton and neutron to ~ 10% accuracy, This was done by considering the
correlation Tunction of the baryon current in an external magnetic field, Fl.
By caleulating the term linear in I, in the current correlation function, they
were able to calculate the magnetic moments. This idea was used to compute
[7] the nucleon axial vector coupling coustant, ga, by looking at the propaga-
tion of the baryon current in an external axial vactor field, Z,, and evaluating
the terms linear in Z, in the correlator. A similar calculation was done in the
case of hyperons. This technique was put to good use when the controversial
result for the proton spin dependent structure function was announced by the
EMC: the calenlation was extended to include a computation of the 1suscalar
axial vector renormalisation constant, g,. Using the experimentally known

value for the other non-singlet coupling constant, gs, and the results for g4

and g, from the QCD Sum Rule method, the authors (8] obtained a result for
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the first moment of this structure flunction,
Gl = j-:tng{m} =~ 0.135 ,

which is compatible, within errors, with the EMC measurement of 0.126, Fur-
thermore, they obtained a value of g, = 0.35, while gg = 0.6. The difference
between these two can be understood on one hand as being due to large gluon
contributions and on the other, as the strange quark matrix element acquiring
nonzero value through loop corrections. (Although there is no direct use of
the axial anomaly in the analysis, the phenomenological value of the chiral
symmetry breaking condensate, (gq) that is used, arises from the anomaly in
instanton-based models of the QCD vacuum [9], [10]. This can be thought
to be the cause of the large gluon contribution in the first moment of the
structure function).

With these successes of the technique in mind, we now address the question
of computation of, not just the moment, but the x dependent structure func-
tions themselves. Calculation of the structure function at individual z (the
Bjorken scaling variable) is a much harder task. This was done for the spin
independent case by Belyaev and loffe [2]. The extension to the spin depen-
dent case was first done by Singh and Pasupathy [11] where they considered
chiral-odd structures contributing to the sum rule. Later, a similar calcula-
tion was performed by Belyaev and loffe [12] for the chiral-even structures.
Here, we will discuss these features—that of the choice of nucleon current and
gauge invariance properties of the four-point function—and the inter-relation

between them [13] for the chiral-even case.

8.1 The Sum Rule

The physical quantity of interest is the antisymmetric part of the forward

virtual Compton scattering amplitude:

TA(peg, §) = i fﬂ.l"’,r RS T !T{jp{;r}jp,{ﬂj }"'l,th_ 5, (8.1)
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where j,(x) is the electromagnetic current, given in terms of the quark fields
by

. B e o

iul®) = 5 (Fehpu(z) - 5 (Az)yd(z) |
and p, g are the four-momenta of the (on-shell) nucleon and the virtual photon;
My and § are the mass and spin of the nucleon with §2 = —1, . p =0 and
v = p-q . The absorptive part of T is related to the spin-dependent part
of the deep inelastic lepton-proton scattering cross-section and lLence, to the

spin-dependent structure functions. We have [14]

ImTs(p,q,5) = Fu(p,S) [ { palvt]l = Bl + p-al, %)} Gile? v)
*F

{fha['fmﬂ'r] — ffu[']’pu lﬂ + qihm ‘J’u] } Gz{qg, u}‘l u(p, S)
(8.2)

where the nucleon spinor is normalised according to
u(p, S)ulp,S) = 2My.

The two structure functions exhibit scaling behaviour in the Bjorken limit,

(My ») Gilg?v) — ailz) ,
T =
—q"l.i".'u: = finite
(2 /My ) Galg*, v) — glr) . (8.3)

Following Belyaev and loffe, to comnpute Im T4

Jade

we start with the antisym-

metric part of the four-point function,

Taa) =~ fats dty 'z b9+ 0= 0] 7 ()i 0T) | [0)
(8.4)

where the nucleon current, y(y), is taken to be [2]

w() = ¢ (@) () Crad'(v) ] 157" (w) (8:5)

for the neutron, with the interchange of d and u (isospin symmetry) for the
proton. Here, T stands for transpose and O for the charge conjugation op-

erator. The current has a coupling strength, Ay to the nucleon state defined
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by
O1n(p) | V) = Anul(p, My) - (8.6)
We are interested in the imaginary part of 7, calculated in the Mandelstam

variable, s = (p + ¢)*, the centre of mass energy squared. The divergence of

the four-point function is given by

P = [diratydts creretm gu {01 (n(y)ju@)i(0)7())]0) } ;
where 0" = /0, and we have

{017 (n()iu(2)i0Ni(2))10)} = (O|T {n(85.)5.7 + 6(zo)n o, 3] 7
+8(z0 — ya) [jo, 1] 77
+8(z0 = zo)n Lo, 7] }[0) .
The first term vanishes as d*j, = 0 ; the second term anyway has no imaginary

part. To evaluate the remaining terms, we use the equal time commutation

relations:
Do)y n(¥)]eyeyy = —ennly) &(F—7) ;
[jIDI:I:L ﬂ-‘,f:']r.,:yﬂ

where ¢, 15 the charge of 5 . Hence,

e y) O3(F — i)

T = € [ At dly [ePe=it= _grnsin] (0|7 (4(z)(0)7(y) )|0) ,

(8.7)
and is therefore proportional to the charge of y . Hence, it 1s zero for the
charge-neutral neutron. For the proton, liowever, it is, in general, different
from zerao.

The spin-dependent structure functions are obtained from the four-point
function in eq. (8.4) by inserting a complete set of physical intermediate states
of which the nucleon, of course, has the lowest mass and by making use of
eqs. (8.6) and (8.1). The term of interest (see Appendix E for details), is

A'-'!

e o S [ [tz et 2 S |7 (3u2)0n(0))*] . 9)] 3, 5)

= ﬁﬂ—mﬁ:&_}g [ {?}1[‘:“'+ FrI‘;w,ﬁ} (’ri + {fﬂ—‘pyff'i" F{Ppyﬁ} G?] 1

(8.8)




8. QCD Swmn Rule Approach to Structure Functions 163

where I'y, = (7 d1e — 7o #7) and we have made use of eqs.(8.1) and (8.2) .
Hence, on using the dispersion, the imaginary part of the four-point function,
s 15 related to the the imaginary part of the two-point function, T, . While
the divergence of the four-point function need not be zero, g, Im T, as defined
in eq.(8.1) is always zero as it ouly has terms corresponding to the first two
terms of eq.(8.6). Hence, the presence of time ordering induces nontrivial
changes with respect to gauge invariance, when going from 2-point to 4-point
functions. In the next section, we shall evaluate ImT,, via the OPE and
explicitly show that g, Im 7, is not zero for the proton case. Here, we shall
proceed to set up the Sum Rule for the neutron, as it is well defined.

Im 7, evaluated using the Wilson OPE approach, consists of various ten-
sor structures in accordance with Lorentz invariance, gauge invariance, CP
invariance, ete. The most general gauge invariant expression for Im7T,, in

terms of the tensor structures appearing in eq, (8.8) are

[im TJ:: =A% pro.p+ Al F]ruu +C' Pl d + CFE R

For later convenience, we write this as

I T = Ay By Ag Bais -0 B+ Ca B (8.9)

e
where

B = %':le‘ua‘{' Plucd) &+ Baw = Pl

Byw = Pl v Bie = dTwd.
Matching eqgs. (8.8) and (8.9) at the proten pole thus yields the required Sum
Rule. In eq. (8.8), there are only two independent coeflicients, &y and Gy .
We can identify A’ with G} and (C'; = C') with & when we set up the
Sum Rule at the proton pole, where we have the condition, p* = M} . Note
however, that f # My as we do not have spinors in T, . We have

Trﬂ!ﬁ'}‘z’ 1 = A G
G- My T A
Nﬂf,\r;\z

2“’- = ..'IHN:I {12 = f.-: =f_--_;_| .
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Im 7, also contains excited state contributions [rom (proton + resonance)

and (resonance + resonance) pui&s‘ hence, the coefficients A;, C; pick out not

l
anly terms proportional to > M AL but also to 7= M) = M) and
& ]4"‘.'!" ik To suppress these excited state contributions, the usual proce-
— M

dure 15 to Dorel transform both the LHS and Lhe RHS. The Borel transform
is defined as
. ) _ptyndd {1 1
BUGY) =  lim =2V (—E) 7).

—p? n—ee n! LI}J
—p fn— M2 finite

The procedure for the RHS of the Sum Rule is now clear: evaluate the Wilson
coefficients of the various operators in the OPE for the four-point function,
Im7,, and identify in them the tensor structures B; defined earlier. Their
coefficients, which correspond to the structure functions we are seeking to
compute, are then Borel trausformed and equated to the Borel transform of
corresponding terms in the LHS. The LHS is the dispersed form of the four-
point function, where the lowest lying state (proten) contribution is expressed
in terms of the structure functions we are interested in evaluating and some
excited state contributions which the Borel transform suppresses. This gives

the Sum Rule for these structure functions.

8.2 Calculation of 7, via the OPE

The LHS of the Sum Rule has a pole at p* = M¥ . Hence, we perform the
calculations at a large, negative p* and later, do an analytic continuation to
time-like p* . (This, in fact, is accomplished by the Borel transformation).
The leading contribution to the RHS of the Sum Rule (for the chiral-even
case that we are considering) comes from the coefficient of the Identity oper-
ator, while the next-to-leading order contribution is from the {g7)* operator.
The (7q) term contributes to the chival-add Sum Rule). We calculate terms
which are singular in —p* for p* large and negative such that |¢°] >> |p?|
>> |1/ 7], where /s the conlinement radius [2], These are the terms that

survive the Borel transformation, when —p? is replaced by the Borel variable,
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M?. The two sides of the Sum Rule are then matched at M? ~ M} . The
leading u-quark contribution to the neutron structure function, Gy ,(Q* v), is
shown in Fig. (8.1). Using the form of the neutron current given in eq. (8.5),

the contribution of Fig. (8.1) to the antisymmetric part of Im T, is given by

o
~ rpcapetecne [ SEA Bk + qPS(8(p — k= € {T [Pra= = Pl ¢

il
5% #h'#{ j‘-“l‘ f”']"r.- =i .#+ H}Tﬂj .ET&T-E} ;
(8.10)

Fig. 8.1 This shows the diagram contributing to lm7,, where the w-quark

interacts with the (virual) photon.
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The f-integration can be done by going to a frame where the three-momenta
goand ¢ are back-to-back. This introduees a function 0(p — k)?, with which

constraint the k—integration is performed (see Appendix E). The result is

p 2 i
ImT = T[Tji‘r_]q {j—ln[—pz) { By e [4[] —x)*1 +2z) + gtt-i—l[l —z)%

(1 — 6z —42* + 1-5.::‘]] — By, (1 — 2)(4 + 4z — 227)
(BJ,HJFHW}Q— (L—2)(1 42— 8 }} ;
(8.11)
Note that the coefficients 4 and A'y are not equal. In that case the coefficient
of By, which does not contribute to either of the structure functions, would

have been zero. Using eq. (8.9), we lave

(A = —W-"—tn —p" )41 — )31 4 22) ,
(Cy = Cy)* = ——);'r?L,m{ Pl —2)(1 + 2 — 8x*) (8.12)

where we have ignored non-singular pieces (in p*) as they will vanish on Borel
transforming. Theu, to this order, the QCD Sum Rule for the w-quark contri-

bution to the neutron structure function is (after Borel transforming)

3 it 2 e F
Myw G "2 i) = %wa'{m: L — )1 +22)+ & ;
i
Tu sealin " ‘\ 5 b LT “
iy G vl = —“—TJ 1;,;1 MM — )1 + 2 —82?) 4+ £,

(8.13)
where Ay = (32r'A%5, ) and £ stands for the excited state contributions. The
d-quark contribution to the neutron spin dependent strncture lunction coming

from Fig. (8.2) can be similarly evaluated. We get

InTad = ?i-}; },— In{ =} }{ By . [4(1 — Pl —4x) 4 g,jﬁ{x —~ &) %
(1= 182+ 5002 = 360%) | + B (1 — 2)(2 - 4o — 422)
=By + Byyw) 5‘;{1 —a)(T4 28 + 162?)
—4* (e P — 2 ) v E3(1 — PJI} :

(8.14)
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Fig. 8.2 This shows the diagrams contributing to Im7,, where the d-quark

interacts with the (virual) photon.

) I
> >
|
Fig. 8.3 This shows the “cross” diagrams contributing to Im7,, where the

d-quark that absorhs the (virual) photon is not the same as the d-quark

Lhisl emits it
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Henee,

(A = —‘L-;I—ln (1 = 2)*{1 — 4x) ,
(Cy = (u)! = _m%m{—p 1 —2)(7T—292 4+ 162%) . (8.15)

Gy s ul wrder Q(p? /1) while Gy is of order O(p*/p*). This is to be contrasted
with the spin-independent Sum Rule where both Fy(z), Fi(z) are of the same
order, O(p*/v) .

We notice an extra structure in the expression for the d-quark contribution

to Im 7., which 15 absent in the w-quark term. This structure, namely,

By iy = ffz 7 o A ) (8.16)

contributes at Q{p*/r) and survives in the scaling limit. In fact, it corresponds
to the third tensor structure contributing to G in eq. (8.2). What i1s more, this
15 not a gauge invariant structure as its product with g, is non-zero. Eq. (8.7)
demands that such structures do not contribute to Im7,, for the neutron.
Obviously, we have not exhausted the list of contributing diagrams, There
exist “cross-diagrams™ wherein the quark that absorbs the virtual ploton is
not the same as the quark that emits it. One such set of diagrams that adds to
the d-quark contribution of Im T, is shown in Fig. (8.3} above. These “cross-
diggrams” were shown to vanish in the scaling limit in the spin independent
case [2]. 1 is possible that inclusion of these diagrams in the spin dependent
case may lead to a cancellation of the non gauge invariant terms of Fig. (8.2).

We lind the term of nterest to be

i lm T:;‘}_[l‘"ig.l[ﬁ..'ij] = —% !ti{ ") ¢ [ Fre — 1o ﬁ*‘rpj (1 — z)?
= :;FIIHTH’,’;[E' ig. (8.2)] #£0.
(8:17)
This reinforces, rather than cancels the non gauge nvariant pieces in eq. (8.14).
similarly evaluating the corresponding tensor structure for the remaining set

of cross diagrams shown in Fig. (8.4), we T the result to be the same as

eq. (8.17) with the charge factor ef being replaced by e, ey . However, we
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emplasise that the requirement of gauge invariance is on the total Im7,,,
not on individual contributions., We immediately see that the divergence of

Im T3 vanishes, as it should,

| w

h LN

\%

|
I w

e ll.{dl LY
@
|

Fig. 8.4 This shows the “cross™ diagrams contributing to lin7,, where the
quark that absorbs the (virual) photon does not have the same flavour

as the quark that emits it.
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This is because Im 777" is the sum of the contributions from Figs. (8.1)-
(8.4). Siuce Fig, (8.1) is gauge invariant and the gauge noninvariant pieces
of Figs. (8.2)—(8.4) are the same apart from charge factors, the derivative of

Im7jP " is proportional to

(062 +ef+ef+egeq) =eq(2eg+e,)=0. (8.18)

However, ¢, Im T 2" (which is obtained by interchanging e, and ey in the

neutron computation) is proportional to

eu(2e, + eq) x Eproton #0. (8.19)

With this, we exhaust the list of possible diagrams contributing to the
identity coefficient of the Sum Rule. To summarise our results so far, the
u-quark structure is gauge invariant, but the d-quark structure is not. Fur-
ther, the “cross diagrams” involving terms proportional to e} as well as to
ey g are also not gauge invariant. Also, all gauge non nvariant structures
appear at (p* /1) and hence survive in the scaling limit. Taken together,
the diagrams are gauge invariant, by which we mean that they satisfy the
condition in eq. (8.7). Explicitly, this means that while the derivative of the
neutron correlator in the RHS vanishes, that for the proton does not. It 1s
proportional 1o egeaten a8 required by eq. (8.7); however, the dispersed form
of the proton correlator (LHS) involves the two-point function, T, with zero
divergence. We also point out here that this situation does not occur in any
meson calculation.

We now ask whether there exists any other nucleon current that yields a
divergence-{ree result for the proton caleulation to O(p*/v?*) . There are only
two independent, local currents without dervivatives with quantum numbers of

the nucleon [15]. Denoting them as O(y) and Oz(y) we have, for the proton,

Oyly) = et (I:::"}T[.'ff") YPsU©
Oaly) = et ()" Crad®) uc . (8.20)
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Let us consider, for the proton current, a generalised linear combination:

n(y) = Oi(y) +tOaly) . (8.21)

The current, 5(y), defined in eq.(8.5), is

1(y) =2(0:(y) = Oaly)) - (8.22)

We shall ouly calculate the four-divergence, g,Im7,, using the current 7 as
we are interested here in its gauge invariance properties. Specifically, we wish

to see if there exists a (real) value of ¢ that satisfies the condition,
el =0

However, it is more convenient to evaluate the trace of Im Th* with v £ .

Hence we shall clieck for the condition,

4 Tr(ys SlmTLA) = 0. (8.23)
This has terms of the form

A+ B+1(C+ D),

where A, B, C and D are the contributions from the 0,04, 0,04, 0,04 and
0,0 terms respectively. Further, each of these terms gets contributions from
each of the diagrams in Figs. (8.1)-(8.4). However, many of these terms are

equal; in particular, we have

and further, for each term, the contributions of Figs. (8.2) and (8.3) are equal,
while that of Fig. (8.4) equals the sum of the contributions of Figs. (8.1) and
(8.2). With this, we obtain,

0Tt [1s BImTLY = 2 1 + eweu k1 + €2 111
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where
I = 2{(1+tHhA:+20C,} ,
1= {[(1+ ) Az + 210 + [(1 + t2) A, + 2tC1))
HI = 2{(1+A+2tC,} . (8.24)

Here, the subscripts 1 and 2 stand for the contributions to the terms A and €

coming from the Figs. (8.1) and (8.2). These evaluate to

Ay =3 X, : Ci=3X,; A =-9X,; Ga= 23X,
; 4

where X, = m 3:—} In(=p*)2(1 — 2)? g, €uura P15, -

Substituting in eq. {8.24), we have

I = =209 4 6t+9)X, ,
I = —6(1+t)X, .
Il = 3({P+2+1X, . (8.25)

Hence, for the proton, we get

g I |95 8 Im‘i':i"] =3X [l:i"i + 1) (ef — 2e,eq — 6e2) + 2t (el — Eei]] .
(8.26)
We see at once that t = —1 is a unique solution to the condition /] = {0 for
the d-quark contribution in eq.(8.25), while there does not exist any real ¢ that
satisfies [/, 111 = 0 for either the €2 or the e, ey contributions. This is true for
the neutron case also, since this just involves an imterchange of e, and e;. We
see from eq, (8.20) that no real value of t in eq. (8.26) can satisfy the condition
in eq. (8.23). However, we know from our earlier analysis that the solution for
the charge-neutral neutron should necessarily satisfy eq. (8.23). Interestingly,
we see that (on interchanging e, and ey to obtain the neutron solution using
isospin symmietry), in eq.(8.26)), there exists exactly one value of t, namely, { =
—1, that does this. Hence, the condition of gauge invariance in the caleulation
of the neutron structure functions implies the existence of exactly one valid

form of nucleon current, which is the one displayed in e, (8.5). Also, the
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“cross-diagrams” are essential in obtaining a gauge invariant result. However,
the problem of different nature of divergence of the RHS and LHS in the proton
case persists.

It is interesting at this point to do a similar analysis of the unpolarised case.
This can be done by computing the (ur) symmetric terms of these diagrams,
ie, TS. Atorder O(p?/v) (at which both Fy and F, get contributions), the

corresponding results are
A=B=C=0=0

i.e., every arbitrary combination of Oy and Oy for both the neutron and proton
yvields a gauge invariant result in the spin-independent sector! In fact, every
diagram is gauge invariant by itsell, so that there is no restriction on the
value of ¢t from the spin independent sector. Furthermore, every contribution
is divergence-free. We conclude that the form of nucleon current specified in
eq.(2.5) is most suitable as it satisfies the requirement of gauge invariance for
the nucleon, both proton aud neutron, for both the spin independent and spin

dependent cases.

8.3 Conclusion

We have attempted to discuss some of the problems and techmicalities involved
in applying the QCD Sum Rule technique to evaluate nucleon spin dependent
structure functions. We first show the conditions under which the two sides
(of the Sum Rule can be matched. The condition of gauge invariance severely
Crestricts the choice of nucleon current and in fact, makes it unique. Such a

‘gonstraint cannot come from a study of the spin independent case where all

while the spin independent caleulation is indifferent to the tensor structure of
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7 . The spin dependent calculation of the nucleon structure function therefore
provides a convincing argument for the choice of current shown in eq. (8.5),

namely,
1"(y) = € [(@)T(1)Crad(v) ] w77u(y) |

as claimed by loffe in [15].
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2 — 2 KINEMATICS
CONTENTS

Introduction
The Cross-section

Mandelstam Variables

A.0 Introduction
We discuss here, the kinematics of the scattering of two particles of d-momenta
pi and pa,

mEp Pt P

in their centre-of-mass (CM) frame. All results are well known and have been
presented for the sake of completeness. Let E; and pi, : = 1,...,4, denote
the energy and 3-momentum (vector) of the particles respectively. Then there
are 16 variables in the problem, but not all are independent. There are four
constraints coming from the mass—shell condition on the four external line
momenta, L€,

pl=M,

where M, is the mass of the i-th particle. Overall energy-momentum conser-

vation eliminates four more variables as

prEp=ps=patpas

where p; s the 4-momentum of the intermediate off-shell state; this condi-
tion typically eliminates the variables corresponding to one of the final state

particles, say, py . In the CM of py and py
P = = - (A.1)

176
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This eliminates three more variables. Freedom of choice of the codrdinate axes

eliminates two more variables. We choose them to be

M. = .p.zk =[]

or equivalently, # = ¢ = 0 in spherical coordinates, where an arbitrary mo-

mentum is represented as
k= (E,|k|(sin 0 cos ¢,sin O sin ¢, cosd)) .

The interaction vertex is the origin of the codrdinate system. Finally, eq. (A.1)

implies that

Ps = —P1 .
Hence, the process is planar (with the interaction plane defined by the two
vectors iy and #;) and is invariant under rotation of the plane of interaction
about the interaction vertex. In other words, the final state azimuthal angle,
¢y , is irrelevant.
These 15 constraints leave only one variable in 2 — 2 processes, namely,
fly (= 04— 180° = 0). Note that the total initial energy in the interaction,

L]

s=(m+m),

is [ixed.

We can now write down the various momenta explicitly:

m = (Ei0.0:p);

pr = (£2,0,0,-p),

ps = (B4, p'(s5in0,0,c088)) ,
(E£y, =p' (s 0,0, cos8)) ,

)
where we have used ¢ = 0. py and py are completely fixed in terms of (known)
quanitities, s, Mf and .I'l'f% as follows:

sk, = st MEF M,
2 _ S (M - M)

= s
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and

8+ (M3 = M2
! 03 '
so that # is the only unknown quantity, once /s is fixed.

In the limit of massless particles, which we shall most often use, the specific

forms for the various momenta are

m = @(1!{]1011};

P2 = 3'2@{1,0,[#,—1};

(A-2)
pa = é{l,ﬂ,sinﬂ,ms ) ;
5 .
oy o= %[l,ﬂ,—snﬁ?,—cusﬂ'} :
A.1 The Cross-section
The differential cross-section for the process is symbolically written as
2
der s %‘— d@ , ((A.3)

where |M|? is the square of the invariant amplitude for the process to occur, £/
is the incident flux and dQ is the Lorentz invariant phase space factor, |M|? is
process dependent while the flux is & measure of the number of beam and target
particles interacting per unit time so that the cross-section is independent of
the number of particles in beam or target. For the 2 — 2 process under
consideration, the flux in the lab, frame is given by the product of the density
of target particles and the density of beam particles traversing a unit area
perpendicular to the beam direction per unit time. More generally, the flux is

given by the manifestly Lorentz invariant quantity,

12

F =4 ((p ) — M} M) (A4)

Finally, d is & measure of the number of available final states and is given
by {the Lorentz invariant quantity)

d’ps _ d'm ..
'.'ﬁi‘l'}:s 2B, E?ﬂ]a.z% il '

d@Q) = (2r)! 51 (1 + p2— pa— ) {
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where the energy momentum conservation coudition is expressed by means
of the é-function. Eqs. (A.4) and (A.5) ensure that the expression for the
cross-section in eq. (A.3) is Lorentz invariant.

We will now evaluate eq. (A.3) for the 2 — 2 process in the CM frame.

Use

Pp  _ AP g B
@ FoE = @ap’ @ M)

where  §*(p? — M*) = &(p* — M) 0(py) ,
(obtained by performing the integration over ) to eliminate py . Then, we

have

1Q = — dS‘”"'ﬁ({ AN
C = [2n)f 28, ptp—m) - M)

It 1s straight-forward to show that in the CM frame,

6 (EL = (By + By~ By)") = 5pb(Br + By = By — Ea)

We now need to simplify
dPpa = pdp'did .
We know that p' is not an independent variable and so we can integrate it ont,

We use the mass—shell condition which gives

_— , | 1
d{ B + Eq) = p'dp! (EJFI_:) -

On changing variables from p' to (E£s + £4), we can use the §-function to

perform the integration. This yields

O
1) = — —di}, ;
a0 mﬂ_zﬂ‘ (4.6)

where we have used (£) + E3) = /s .

The flux factor in the CM frame is similarly evaluated Lo be
F=d4ps. (A.T)

Hence, the differential cross-section in the CM frame is

da l

Py
decosl  3ilms p M1 (A.8)

where we have used ) = deos 0 dg and have performed the (trivial) ¢ inte-

gration.
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A.2 Mandelstam variables

[t 1s more convenient to compute the cross-section in terms of Lorentz invariant

variables. These are defined as

s=(p+p2)ty t={p1—p3]2; u=(p—ps)?.

Since there are only two independent variables in a 2 — 2 scattering process,

only two of these are independent. The constraint equation is

4
s+itu = 3 M}, or

i=1

s+t+u = 0 in the massless case.

For the massless case, in the CM frame,

t = ~5(l—cosd),
u = —5(1+cosd),
s = 4p°,

where pis fixed for a given experimental setup.

For more details, see Quarks and Leptons: An Introductory Course in Modern
Particle Physies by I, Halzen and A.D. Martin, New York, Wiley, 1984 and
An Introduction to Quarks and Partons by F.E. Close, London, Academic
Press, 1979,
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Some Colour Traces and Identities

Feynman Rules for QCD

B.0 The QCD Lagrangian

Quantum Chromodynamics (QCD) is a renormalisable quantum field theory
of strong interactions. The fundamental fermionic fields of spin half and frac-
tional charge are called quarks and possess the SU(3) quantum number called
colour, which is gauged, as well as flavour. The mediators of the colour
(strong) interactions, called gluons, are spin-1 massless particles with zero
electric charge and no flavour which also undergo self-interactions.

Let gf(x) denote a quark field of colour o and flavour [, o = 1,2,3 and
[ =u,ds,.... Typically, we shall assume three flavours for the purpose of
our calculations. Let B} denote the gauge fields, a = 1,...,8 (in the adjoint
representation of 5U(3)) where u is the Lorentz index.

The Lagrangian deusity can be expressed as

| N i
L= ET{‘ FY e+ EQITFD“{”{I} ; (B.1)

where the covariant derivative, D" given by

o = bapd* — igT2y B (=) (B.2)

181
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is introduced in order to make the Lagrangian density invariant under local
gauge (colour) transformation:

15'(2) = Gaa(e) f(e) = (e70T0E)) gyz) (B.3)
Here 8,(x) are real, space-time dependent functions, g is a real dimension-
less coupling constant and T, are the generators of the SU(3) algebra in its

fundamental representation. Denote

B z) = igT.Bi(x)
D¢ = [g* — B*(z),

(B.4)

where B* and D* are now N x N (here 3 x 3) matrices. Introduce the

antisymmetric field strength tensor,
Felz) = T, Fv(z) = - [D¥, D]
= 9B(a) - 0" B(x) — [B¥(z), B*(x)]
where () = 8*BY(x) — 0 BY(z) + gfu By (v) Bl () .

The last term reflects the non-abelian character of SU(3). In general, the

Lagrangian density in eq. (B.1) can be expressed as
L = Lgauge + Ly + Loy + Ly (B.5)

where Ly and L, are the kinetic term for the gluon and quark fields given
Ly

= 1 A m i
bowar = GpTrEiE)Eudsl (8.6)

Ly = agyla)y Oy (x) — mygile)qiiz) .
and are invariant under local gange transformations. A mass term for the

quark field does not break this invariance, but one for the gluons will. The qg

interaction piece is given by

( - .
Loy = ?—jﬁf"}'{-r}i!ig'r..rrf{r}B.’,‘[I} : L=, (B.7)

while the gluon self-interaction is described by

H'.t

Lug = =% fusc (0 B — 0" BY) B BY(2) — %= fuscSuae B BY Bl (x) B (=) . (B.8)
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The equations of motion are

(¢ 2 —mg)gs(z) = 0; P=Dn*
[D* vEuw(z)] = —ig'T, 2t ﬁj[‘r}":fv{?ﬂ:xj .

B.1 Definitions and normalisation conventions

(5.9)

The Lagrangian density is invariant with respect to various symmetries and
conservation laws; in particular, it satisfies Lorentz and translational invari-
ance, F, is the energy-momentum operator and is the infinitesimal generator
of translations, while J,, is the angular momentum operator and is the in-
finitesimal generator of Lorentz transformations.

From these can be constructed the two invariant Casimirs, P? and W? |
where W, is the Pauli-Lubanski vector given by

1
LVI-I = _EE;.LM;JJ J‘JPPE’ . {B]ﬂ}

Since P? =m? | W? takes only values of the form W2 = —m? S(5+1) where
S denotes the spin (integer or half-integer) of the particle. For both the Dirac
as well as Klein-Gordan field, P, = —id, so P* = —9? = m? . For the Dirac
case we are interested in, Jy.., as we have said, is the (infinitesimal) generator

of Lorentz transformations:
= Am,
W) = S(AW(s),

where da¥ /™ = {ﬁ‘IJ}’

L

and 5 is constrained to satisfy
S{AISTHA) = (A1) (B.11)

i order that both ¢ as well as the transformed ¢ satisfy the Dirac equation.

A proper transformation mayv be written as
prop 3
C———— ¥
ﬂv - f-lr:a- + """‘1:.-

with wf being an infinitesimal antisymmetric matrix. Hence, S(A) can be

expanded as

S(A) =1 = 20" w4+
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where the matrices o¥ are also antisymmetric and a choice of them that satisfies

the constraint eq. (B.11) is

P
af = 2 T 1?:” -
In terms of this matrix, the transformation can be expressed as
V()= (1= §T0w) P(a) = (I-fouw) (e —wia)
= (1= douwh +z,000,) $(z)

from which we deduce

1 L
J,ur.-' = E'ﬂ-ph +3 {Ip:dp - Ipau] .

Hence, we have

1 1 71 :
WF:HI’EEMM o ki i p W"I:—a (E‘l‘l)ﬂ'il . (B*IEB

We see that W, has no orbital contribution so that it corresponds to intrinsic
angular momentum and that it describes spin-half particles.
I'he positive energy Dirac spinor with momentum p and mass m, satisfying

(p—m)u(p) = 0 is normalised according to
T (p)u(p)” = 2mbyg (B.13)

while the negative energy one (corresponding to an antipartiele) is normalised
according to

T (pu(p)? = —2méb.g (£.13)

where a, # = 1,2 are polarisation indices while the projectors are given by

Aelp) = Sow(p) @ (p) = (F+m).

(B.14)
A-(p) = S v*(p) @T(p) = (- f+m).

The states are normalised according to

(p, Sl &) = 8 2EQRr Y (F=F') , E=\Jljl2+m?. (B.15)
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2

Given a space-like normalised four-vector, n,n* = —1, orthogonal to the

momentum p , we can write the projection of W, in eq. (B.12), as

1 ; 1
W.n= = 3 Suvee n“ptaf’ = —37% ny. (B.16)
Hence, in the rest frame, p = [m,ﬁ} 4
Wo=0; W=Zyty=1%8, (B.17)

where ¥ is the matrix diag(#,&) where & are the Pauli matrices.

To define states of definite polarisation, which is the quantity of central in-
terest in the thesis, we construct the projection operators along the z-direction.
In this case, we choose n along the z-axis, n = (0, 1) so that the Dirac spinors
are eigen states of the operator —(W . n)/m with eigen values £1/2 . In
general,

Pln) = %(1 + 75 1/) (B.18)
projects onto the state which has a spin (- n)/2 = 1/2 for a positive energy
solution and —1/2 for a uegative energy one, thus removing the degeneracy
between the two solutions. With the particular choice of n such that @ 1s
proportional to the momentum p, the polarisation is called helicity and is such

that
.7

P(n)As(p) = (fﬂ: B ) As(p)

so that P(n) projects vver positive energy, positive helicity and negative en-

ergy, negative helicity states. The spin of the particle, 5* can be identi-
fied with the vector n. When n is along the z-axis, in the nonrelativistic
limit, P« = (1 +a.) /2, while in the extreme relativistic limit, m/py — 0,

S# — p* [, the projections yield

P(xS)y+ m)

L5 g/ m)
s l—q]_.ziﬁuf{—m]; =5 5

The eigen states of P(S) with A = £1 (i.e., with spin along or opposed to

(B.19)

the momentum direction) are known as positive and negative helicity eigen
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states. Helieity is defined as the component of spin along the J-momentum,
generalising the case of Dirae particles and the notion extends to massless
particles. This immediately implies tliat the matrix element for a right handed

fermion denoted by

(42

to scatter into a left handed one, denoted by

up(p,S) =

u(n§) = (52 up, )

2

with interaction 7" (electromaguetic) is zero. Hence fermion helicity is con-
served in electromagnetic processes at the photon-fermion vertex.

A spin-one space-like gluon (or photon) has three polarisation vectors,
the transverse, €*(+) with helicity £1 and the longitudinal (or scalar) one,
¢*(0), with zero helicity. These and the momentum vector of the boson are
orthagonal to one another and satisly the condition guef =0, ford = £1,0 .

An example of such a basis for ¢* < 0 is

(1) = F=(0,1,£6,0)

e[d] = ﬁ“iﬂ,& 0, qu)

In particular, this veetor can be re-written i terms of Dirac spinors as

(o

1 —
Wu_\{qh““lhjj

eulu) =
wlere p is an arbitrary time-like vector such that g -p # 0 and p* = 0. In
fact, p can be chosen to be any vector in tlie problem, especially external
line momenta which are on-shell and therefore satisfy Lthe requirements on p .
Note that the arbitrariness allowed in the choice of p s equivalent to the gauge
Freedom we have and is @ choice of gauge. Matrix elements, when computed,

will be independent of p. Henee, the polarisation tensor,

T.\ 2= '-.!_.\"
B = Ep B




B. Usefu! Formulae 187

cail be writlen as

T = g, 4 el T Gl A
R 2q+p 2q - p

P
Crvpr ]

where we have used the relations for u{p)i(p) as given earlier and traced over
the v matrices us prescribed in the next section. Here A denotes the helicity
of the boson. When we sum over the polarisation states, we obtain

Z ?11::-' = —fuv + M

% iTi-p
as in the axial gauge where the antisymmetric piece has dropped out of the
expression. This form of T, is useful when we consider scattering of definite

helicity gluons.

B.2 v-matrix algebra
The metric is defined as ¢** = diag(l,=1,=1,=1) . The gamma matrices
satisfy

A =g

A 15 hermitian while the 5% are antibermitian and

Ny = 0t
— |!. - FI I Lo e
= _T[‘_—;:Lrpn'r}' T
with
v =1 and f4s Y} =0
Here €,,,0 is the totally antisymmetric Levi-Civita tensor with % = 41

We have the following useful relations:

kel = il
P17 = —wl=—
Gl = T
OpC) = T
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where (' stands for the Charge conjugation matrix and T for transpose. Note

C=-C"'"=-C'=-CT,C* = ~1. Finally, we have
Tt = 4
Tyt = =29
WY = 49"

Furthermore, we can express the product of three y-matrices in terms of its

symmetric and antisymmetric components as

YuVoTo = GupYe + GusTu = Gup] — 1€upm Y5 Ty -

Traces of odd numbers of v matrices vanish. Traces of even number of 5
matrices or traces of ¥5 and an even number of ¥ matrices can be evaluated

using standard relations; we show a few below:

Trl:'}lll‘:"i-"} = 49,

A duwor + GusGup — Gupfes)

—dgerved

rFT{TMTHTDT-‘HJ

Trlrs ooy )

B.3 Some Colour Traces and Identities
There are N* — | generators in SU(N), T, = A\, /2,a = 1,...,N* — I, which

close a Lie algebira:

[}‘u'lj'ﬂ'] s Eifnbc*lc;
(Ao h) = Rl + 2dasede

The dype are real and symmetric while the [, are real and totally antisym-
metric and satisfy

.llrubn:fn.l'bn: == JI"flléu.lf .

The gluon fields transform as its adjoint representation; then

{Tn.}bv.‘: — _Efubc' +
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The quark fields transform under SU(3) as the fundamental representation

and here T, = Ay/2. The A, are traceless liermitian matrices such that

1

(j‘u}nﬂ(}'n}-ﬁ =2 {{Enﬁé-ﬁ-y = —:5&;;5.,5} .

Some useful colour traces are

N

Tr(As) 0,
Tr(AsAs) 28,4
TT(}iu)'ub}l._-] = 2 (dub: “+ tlfab::}

For N = 3, the diagonal A, are A3 = diag(l,—1,0), As = diag(1,1,-2)/v3 .

Explicit values of the f's and d's are listed in the references given at the end.

B.4 Feynman Rules for QCD

Quark Propagator s > J’p L5

Gluon Propagator

Fermion Gluon Vertex

Fermion Photon ke )
—iee, 1"
Verlex

Triple Gluon Vertex =10 fute [0 (P — §)at

fow [ff - rJ'u + f-"tf.u[r = PJH]

_92 {.lruﬁefrnf: {ﬂua Hup — Eup.'?w]

Quariir GhlUIl 1'\4"!'!'1-&".':( 'I'Jru.:z.lrbnit {H}luﬂap — ﬂunﬂl_w}

+ fudde Sebe (G Gup — ﬂ#PﬂFFI}I
v, b T c
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Propagators are attached to each internal line while spinovs (u or v] are at-
tached to every external quark or antiquark line and the polarisation vector
{Eﬂ} to every external gluon line. Finally, overall momentum conservation is
represented by the d-function.

For details, see the books on
Quantum Ficld Theory by (. Ttzykson and J-B. Zuber, McGraw-Hill, 1980 and
Lecture Notes in Fflysicrs Vol. 194, QCD: Renormalisation for the practitioner

by P. Pascual and R. Tarracl, Springer-Verlag 1984,
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C.0 Introduction

Consider deep inelastic electromagnetic scattering' (DIS) of muons (or any

leptons) on protons. In this process, which can be represented as
fp—LX |

the high energy lepton probe causes the proton to break-up and so probes the
structure of the proton. Here Y is the hadron debris which remains experi-
mentally unobserved.

The momenta are indicated in Fig. (C.1). The initial lepton of momentum
& and spin s scatters into the final state lepton of momentum &' and spin &'
while the nucleon of momentum p and spin S breaks up into a number of final

states, p; , of spin 5 (i =1,..., N, with invariant mass, W, given by
Wi=(p+k-kV=(p+q)= M} +2044°

where g = (k = £') 1s the momentum llowing into the hadronic vertex (the

momentum of the virtual intermediate state photon), v = p - g and M, is the

'We do not consider weakly mteracting DIS processes here

L1
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siteleon miass, This is no longer just a 2 — 2 process as there are a number of

final states.

Fig. C.1 This illustrates the DIS process and the break-up of the proton due to

the collision.

—————
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However, of these, only the lepton s detected. This means that we need to
inteprate out the p; . Then, i the CM of p and p, we choose the momenta as

follows:
ko= E[11D1Dr1]1 P = El:]'lﬂ'lﬂf_]']'l

B == BNELH) s n = (sinf,0,cosd),
where we have chosen the azimuthal scattering angle to be zero and have
neglected the masses 6f the lepton as well as the proton in comparisen with
the mcident bt‘ﬂﬂ!'ﬂl}&tg}". Hence E = \/s/2 | s is the Mandelstam variable,
not to be confused with spin.

In the lab. frame, the kinematical invariants are

q* —4EE sin®(0/2)
and » = p-g=M,(E-FE") ,

where (! 1s the lab. scattering angle. Hence there are two independent variables,
(E',8) or equivalently, (¢*, v) in DIS. Note that q* = —Q? is negative for this ¢-
channel DIS process but will be positive for, say, the e™ e™ annihilation process.
The phase space factor is given by

! A py
“z_f_?’ L 2n2E:

d@ = (2x)%8 (h—}-p—ﬁ—zp

L‘...x_____,..r-

E'dE A5y
We shall denote  df) = ———— [le‘]l Y W
Then from eq. (A3}, we have

|M?
F

da =

clr.‘.",}I : (€.2)

where we have included the hadronic phase space factors in |M|?*, viz.

== _ ) 1%,
M2 = (2x)'6° (#': +p—K - Zpg) H m |M|?

¥

where M s the matrix element as usaal and the flux, =25 . The Mandel-
stam variable, s, is the (Lorentz invariant) CM energy squared (= 4M,E in

the lab frame with the proton at rest).
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The lepton—-photon vertex is an elementary one characterised by 7., while
the interaction of the photon with the composite praton is non-trivial and

LlIlkl'lU‘Nll.. Lt".L 1t t'..‘{])I'CSS tht"' Illilt['i!( E_‘.tElI'!Ellt- ils
i =TS (i) ulk,s) = (01 (i) i 50
iy

where j# is the electromagnetic current and ulk, s) is the lepton spinor, We
can then separate out the lepton and hadron dependent parts:

4
[+

|MP = — Lo M"Y, (C.3)

)
where £, represents the kuown leptonic part and the hadronic part, M** ,
will be expressed in terms of structure functions. We begin with a discussion

of the leptonic tensor.

C.1 The Leptonic Tensor, o

The leptonic term can be expressed as

I: L k! ;8 ZT! T ('H' jw'rlslf{kru'gj” ¥ {{:"4]

where
Solhe, s) = ulk, sk, s)
i known (see App. B). The helicity contributions o L,, can be expressed in

terms of the symmetric and antisyuimetyic combinations:

g T (C.5)

o iy H

The spin independent plece is given by the terms symmetric in the indices

(pv). Negleeting mass Lernis, W lrave
S _IT If: — RL: J!\. ) I 1
Lw—grmwmfww{ﬂy+ua—mﬁw} (C6)

where the last step comes from using (Le identities in App. B. The piece that

is antisymmetric in the indices (pwr) is linear in the lepton spin:

,x
LA === Tr(ym b ') = — A Cupa ks . (C.7)
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Here, we have used the relativistic limit of Se(k, s) as given in eqs. (B.14) and

(B.19):

(1 Zs)

)'f 5
Selkys) = =2+ m) (L+ Aexs)

W)

where \; = &1 represents the helicity state of the particle.

C.2 The Hadronic Tensor, W#¥

The hadronic tensor is

M™ = 3 (p, Slialpi 5 (i, S')slp, ) | (C8)
Si

where the sum is over intermediate state spins, S' and j* is the usual electro-

magnelic current given by

“ =Py, (C.9)

where # is the proton wave function. As in eq. (C.2), we shall include the

hadronic phase space factors with M** and define a new quantity,

B Qe E ] . ; l‘_ e ; A
W e ”;I I:_[ f {;} JgE (2 ) ' (p+gq ;E? 1M (C.10)

where p; runs over all possible allowed physical intermediate states. Then,
analogous to eq. (C.3), we can write

4

— & )
|MPP = — £, WH (C.11)
u
Performing the sum over the complete set of final states, we have

P = TF'I‘;T f dhe e (p, S|3*(x)§(0)[p, 5)

: . . (C.12)
= grar; [ dee (p 812, O) 1 S)

where we have used the completeness property,

>/ {}"}F’)L ppl = DI =1.

We are able to mtroduce the current commmutator in the definition for WY

because the 3.7, term (which is the extra piece added in, in the last step
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of eq. (C.12)) is physically disallowed and identically vanishes. However, ex-
pressing W#" as a current commutator enables it to be written in terms of the

imaginary part of the forward (virtual) photon-proton scattering amplitude,

T defined by

TH = f dz e (p, SIT (5% (2)5°(0)) [, S (€C.13)

where T stands for the time-ordered product of the currents. Using the optical

theorem, we have

W = %Im?"“’ ' (C.14)

The hadronic tensor also has components which are both symmetric as well

as antisymmetric with respect to the interchange of indices (uv),
W = S s

Then the symmetric part of L., contracts with the symmetric part of W
to yield the spin independent cross-section and the antisymmetric part of L,
contracts with the antisymmetric part of W* to give the spin dependent cross-
section, The usual procedure is as follows: the hadronic tensor is unknown
and is expressed in its most general form in terms of the available vectors and
tensors of the theory. These are the metric, ¢** ; p*, ¢*, the Lwo independent
momenta occuring at the hadron vertex and S*, the proton spin (axial) vector.
W must satisfy constraints due to Lorentz invariance, hermiticity (11V7# =
Wersy and gauge invariance (q, W = g, W** =0, which is a consequence of
current conservation, @, j* = 0}. Furthermore, W# must respect parity and
time reversal symmetry., (Note that parity can be violated in weak-DIS. In
fact, gauge invariance also does not hald), All these constraints together yield

the following form for the spin-synunetrie part of the hadronie tensor:
S— 2o (0t Waldhe) A (P O (O L 9P
EI‘V‘ = lfifl{r;‘i, .’.’J ('q—i =z y" +-““‘T{_}'T£'_ }J“ = q—zrﬁ P= '{‘;_?'I? "

In other words, the unknown nature of the hadronic vertex is paramelrised in

terms of the unknown strueture functions. There are two structure functions
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in the spin independent case, Wi and W, which are both functions of ¢* and
v . However, we are more interested in the spin dependent or antisymmetric

piece,

Wend = e gy {S (M Ghlg* v) + —“—GE(‘? ""’)) WSPdG‘J{fI ’-"}}
(C.16)

(; and (7, are the two spin dependent structure functions.

C.3 The Cross-section

Combining the results in eqs. (C.6) and (C.7) for the leptonic tensor and
in eqs. (C.15) and (C.16) for the hadronic tensor, we can write the differential
DIS cross-section using eqs. (C.1) and (C.3) in terms of the two independent
variables, E' and 0 . The symmetric contribution is independent of either
the lepton or proton spin and is also twice the total unpolarised cross-section,

e., the cross-section for the scattering of unpolarised leptons off unpolarised
protons. This is because the symmetric term is the sum over the possible
initial spin orientations which can be represented as

ot

4 £ sin'(0/2)

dﬂ_lnh

mﬁl +17) = [

] {2W, sin*(0/2) + Wi cos?(8/2)} .

(C.17)
where a = e/(4x) is the fine structure constant. The arrows denote that the
relative longitudinal polarisations of the initial lepton and proion are parallel
(11) or antiparallel (T1). Halfl the above sum indicates a spin average rather
than a spin sum and so corresponds to the spiu averaged (unpolarised) cross-
section.

The quantity shown in square brackets 1s twice the Mott cross-section and
has a typical (1/sin?(0/2)) behaviour as in the classic scattering of o particles
off (gold) nuclei.

Experimentally, it is observed that the cross-section does not separately de-

pend on ¢ and v, but rather on the single Bjorken variable, r = — g2y B

< 1. The W, are said to seale in the variable ¢ and dimensionless sealing
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structure functions are defined in the hmit,

1

lim
T T
==

= z, constant, (C.18)

(v/M,) Walr,g®) — Fi(z) (dimensionless) ; (C.19)
M Wi(v,q*) — Fi(z) (dimensionless) . ‘

In terms of the invariants, s, ¢t and u defined in Appendix A, we have

de 8ra® 1 5
L) = FoP {(s+w) ez} —usFy(z)} . (C20)

A third expression in terms of the dimensionless variables, x and y = v/( M, E)
15

da 4re’s

d_md—ynl +17) = IE

{zy*Fi(z) + (1 —y) Fa(2)} . (C:21)

x = | corresponds to elastic £p scattering. Since experimentally sin®(0/2) <
1, it is hard to extract Wi. However, the F; satisfy the Callan-Gross relation,
from which F| can be extracted.

We now consider the spin dependent case. Such a contribution can be
measured in polarised DS processes. Tle kinematics of the polarised process
is the same as that for the unpolarised case, except that the initial state
particles are both longitudinally polarised along a reference axis (here, the

beam direction or the z—axis):
g — X

and cross-sections are measured when their spins are parallel as well as an-
tiparallel to each other. Eq. (C.17) still holds for the sum of the two polar-
isation configurations, while the spin dependent cross-section is obtained by
evaluating the difference in the cross-section when the spins are parallel and
antiparallel with respect to each other. The result can be simply obtained
by contracting the antisymmetric part of £, with the antisymmetric part of
W . Hence, probing the spin dependent piece is equivalent to selecting the

() antisymmetric piece. Note also that both the initial particles need to
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be polarised in order to obtain information on the proton spin, as otherwise
the cross-section vanishes. (Equivalently, it is possible to have a single initial
particle polarised, but we need to maintain information on the polarisation of

atleast one of the final state particles). We abtain

o ' 2 2 2
m} {EE +E EDSE}MFGI(E]' ,1-"} +q Gz{:q ,U)} .
(C.22)

Notice that the symmetric combination in eq. (C.17) involves only the spin

dglab

dnidEi{TJ’ - TT} = [

independent structure functions, £, while the antisymmetric combination in
eq. (C.22) depends only on the spin dependent functions ;2 . Again in the
scaling limit defined in eq. (C.18), the spin dependent structure functions can

be written in terms of the dimensionless scaling structure functions,

My .1{1" J’f. ) gi(z) (dimensionless) (€.23)
(v /M) Ga(vo®) —  galz) (dimensionless).

It is useful to express these cross-sections (or W*) in terms of helicity
amplitudes in polarised virtual photo-absorption using the optical theorem.
Keeping in mind parity and time reversal invariance, there are four such inde-

pendent helicity amplitudes, W, .. 0 for the process
TEN{G) = NG

where ¢ and j are spin projections of the photon and nucleon. The independent
amplhitudes are

i= l'Vl,ll.fz-.i.u-z_ , b= 1”11—1,-"2;1.—1,-"2 )

e = Woapawape s d=Wiipoag -
In terms of these amplitudes, we can write the varions structure functions as

follows:
Wi=4(b+a) ~ ol p+al,;
We=(1+ gf';:—;,—-slif'r’z -Wi=Ae ~ ofy;
i = Q=B b=) ~ o=l

VT (MG + 3Gh) = Ad ~ alf; .
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Here, A = K/(47*a) where K is the photon flux factor and ¢ are the photo-
absorption cross-sections into states with J. = 1/2,3/2 and with transverse
(T, helicity = +1) or scalar (L, helicity = 0) photons. In terms of these

photo-absorption cross-sections, the DIS cross-section can be written as
o (1L+11) = (ol +0fy) L +eRIT;

e L= [("?fz—":ﬂz) ! I’f}+ﬂm{@f” r,

I

(C.23)
where we have introduced the quantities,
-1
£ = —g—; I._an“[ﬂ,n"'.&]] and _
[ ( M;d ) (C.26)

g1

(1 —¢)

B =

t{__\jﬂ

Note that € is small as it has a 1/» behaviour which vanishes in the scaling
limit. The final form of the cross-sections given in eq. (C.25) is what we need

Lo use.

C.4 The Asymmetry

This is the quantity that is actually measured in experiments. It is defined

is
ArpDIS) — da(TL = T7)
de(T1+11)°

where the cross-section can be differential with respect to any convenient set

(C.27)

of independent variables. The asymmetry is independent of the photon flux

factor and can be put into the form
A = DA 49 Ag) (C.28)

where the depolarisation factor, D, is of order unity and is given by

| —eE'E

P= | +¢H

R=cbeT | (C.29)

where o’ = .:rf“ + u:’;;,ﬂ . The transverse asymmetry, A;, is given by

s " l
S (. Y 2a My 730
A= L‘-'?:u"'ggf‘z T Filx) (ﬂt[,:,} Egax) (€.30)
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in terms of the scaling structure functions while

I‘I:—E—EE’

and

_ 9 _ Mp\/Q? (gi(2) + galz)) _

S v Fi(z)

There exist bounds, [A;| < 1 and |A:] < R on these asymmetries. Since R —

0, A; vanishes in the scaling limit. Furthermore, 5, which is the coelficient of
A in the equation for the asymmetry, A** | (eq. (C.28)), is also small. Hence,
the EMC has used, in the analysis of its polarised DIS data, the approximation,
AP DA,{I}EDM . (G.31)

Fi(z)

This neglect of A7 is equivalent to the assumption go(z) = 0, which is expected

to hold in the parton model.

C.5 Parton Model Interpretation

Historically, scaling behaviour was anticipated by Bjorken and Feynman
and was later experimentally observed, This suggests an interpretation of the
scattering target in terms of ;:uinL—_I’l]{(‘., nearly nen-interacting constituents,
most of which have spin-1/2 . This idea is incorporated into the parton
model, which is formulated in the infinite momentum | .une where the masses
of both proton as well as parton are ignored in comparison with the (large)
F-momentum of the proton, Within the parton model, the structure functions
are expressed in terms of the density distributions, f*(z), of the partons, where
r is now interpreted to be the fraction of the parent proton momentum that
is carried by the parton. Specifically, f*(x) is the probability of finding, in a
proton with its spin polarised along a specified direction, a parton of flavour
f with momentum fraction betweeen x and (& + dz) and with its spin aligned

(+) or epposed (—) to that of the parent hadron. The combination

qy(z) = [*(x) + [ (=)
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is identified as the number density corresponding to flavour type, [, while the
difference
Tie) = I*(2) - I(2)

is the net positive helicity or spin density of f-flavour quarks along the proton
spin direction.

The structure function, Fy, is then defined as a (charge weighted) sum of
the momentum fractions, x q,(z), of partons of various flavours:

Flr) = ; eft zqy(x) (C.32)

and the Callan-Gross relation is expressed as
wf=F: R=2t=g0. (C.33)

Hence, DIS is pictured as incoherent elastic scattering of the lepton off the
constituent quarks so that the total cross-section is a sum over individual

cross-sections, not over individual amplitudes. The parton model predicts

da 3 47t

(TL+17) = . 8 {1 +(1 = y}j} Z E'.fr xrqplx) . (C.34)
!

[]Itly

If quarks had zero spin, the scaling behaviour of the structure functions would
still hold, but B would tend to infinity rather than zero. This is not the
observation and lends support to the parton model hypothesis of spin-half
charged quarks. The parton model predictions are identical to the lowest
order QCD result: they are however, modified at the next order.

Analogously, for the spin dependent case, we have
1 s 5
qilx) = 5 ch grle) and  glz)=10. (C.33)
=7

The expression for the asymmetry is

Z_ pf,q}[.a}
qu'l i .|F|-Jr

" Y egyla) Alz=0)=0; Alz=1)=1.
I
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The last (A(l) = 1) is an assumption, implying that as + — 1, when all the
momentum of the proton is carried by a single quark, the entire spin is also
carried by that same quark.

The Bjorken Sum Rule [1] is derived from current algebra considerations; it
states that assuming isospin symmei vy, the proton and neutron spin dependent
structure functions are related to the axial vector coupling constant as follows:

[ (62@) ~ g de = za (1= as/n) | (c.36)

where the expression has been corrected up to first arder in QCD. The Ellis-
Jatfe Sum Rule [2] makes the stronger assumption of SU(3); symmetry as well
as that of zero strange quark polarisation to obtain individual expressions for

the moments of the proton and neutron spin dependent structure functions:

p[n:l 0a {2 13F D SJII-
fﬂ ]I‘lz[il(l“_)+?F+D{5 (1+43—2f) H
(C.37)

where ' and D) are the antisymmetric and symmetric SU(3) couplings, related

to the observed octet coupling constants by
y_4:F+D, _djﬁ=:If'T—£J

and [ 1s the number of quark flavours. Eq. ((L37) has also been QCD-corrected
to Do, ) ; note that the corrections Lo the two terms are different because
of different (* dependence of the nonsinglet (first term) and singlet (second
term) contributions. If we use the central values for g4 and gg as given in the
text: ga = L2061, gs = (L5384 and o,(Q* = 10.7GeV?) = 0.27, we get a value
[dzgl(x) = 0.174 using the Ellis-Jafle result, which is very different from
the EMC result of 0.126. Furthermore, the moment of the neutron structure
function comes out to be —0.018 and is very sensitive to the choice of g .
We have just provided the basic equations for DIS scattering; details can
be had from several standard text books, including that of Halzen and Martin

and Close veferenced in Appendix A,
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D.0 Variables in pp processes

The hadronic pp collision process, as we have seen, can be expressed as a sum
over all possible contributing partonic subprocesses. Consider Drell-Yan (DY)
or Direct Photon (Dv) production. We shall present the variables in the centre

af mass of hadrons (CMH), in DY, for example,

Prpz — -?."5{'1
ey I,u"“,u_

as well as in the centre of mass of partons (CMp):

Mgz — Y q¢a

— T .

All CMp variables are distinguished by carets; we have

5 = {Ij|"i'fj3:|2 = 2y -y
i = —p )t = ME =B
(21— av) 71+ 4 (D.1)
i = (q—p) = 200
§4i+0 = M.

The partous, ¢ 1 = 1,...,3, have been assumed to be massless while the
off-shell photon has a “mass™ M?. Furthermore, M* = 0 for Dy . We shall
consider the DY case in general; unless otherwise specified, corresponding

results for D4 are obtained by simply setting M* =10,

205
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g1 and gy carry a fraction of momentum, x; and x,, of their parent hadron
momeuta, py and py . Hence, the Mandelstam variables in the CMp and CMH

are related by

§ = TyT95 f:mff%;j[l—custﬁ]; ﬁ:%——j—l{l—kcus&], (0.2)

where ¢ is the CMp scattering angle (= ¢, = ¢y — 1807) .

There are four independent variables in DY: 2, 23, cos and 7 = M?*/s
in the CM of partons, in terms of which we have expressed the cross-section
in Chapter 4 . These are not the physically observed variables in the CM of
hadrons (or the lab frame). One such set of observables is (xr vy 42 ,7) .
z7 is a dimensionless measure of the transverse momentum picked up by the

final state particles in the collision process:

Ep;— - (T1x2—7)

Iy = b[IItI) A | B2 i (£.3)
1..! Lydy)

Note that since the initial states had no transverse momentum, zr (or pp) is

the same in either the CMp or CMH (as they are related by a boost along the
longitudinal direction). The rapidities of the photon and Jet, iy and yz , are

defined by

1 E; + I B+ |p] cos &
i==ln|———|=-In——"""" :
LT (E, - P, 2 L — |p|eos 0, (D4)

where £ | pg are the energy and longitudinal momentu | z-component) and #;
are the scattering angles in the hadron CM. Rapidities are preferred to angles
as they obey an additive law under Lorentz transformations, unlike velocities

or angles. In the CMp, we have

\ 1 E + |5 cos ¢,
Ulf.fjfp hd§ 5 P |P4| [

(D.5)

27 B - |jilcos g
Since tﬁi; = 180° + ¢y , we Lave y,r‘"”” = J,ri Me 1n other words, the 4 and

Jet are always back-to-back in the parton CM, This is not so in the hadronic
CM, where
oM l (E M2 (3 — 1‘1"1‘2] COs I;J}!) 1 Ti
T ~ iyt 2 . 2 A e e
& fs + M= (=M ) cos q.":;) < iy

T G S R TP
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obtained by boosting eq. (D.5) to the CMH, and

5 1 1 —cos cfr. 1
yz=y§;‘,””=—ln———( ,)+;-|n—'.
2 (I + oy qﬂa,-) 2 13

Define, for convenience,
TT = ap+dr .
Then the variables z;, x4, { or equivalently m:s:;"r and M? can be written in

terms of the physical set of variables ¢, ¥, y2 and 7 as

o o= F(@S orel?) 1wy = L (zEeV 4 are)

Trsinh(ys —ys) = M%/s -
;;T+ﬁcr:rsh[y1—yﬂ‘ s '!51

cos b

while the Mandelstamn variables defined in eq. (D.2) can be reéxpressed more

conveniently in terms of the mixed set of variables as

= —Swarelz = M- S Fre U, )
5 2 (D.8)
i = —Frrre ¥ = M- SeaFrell

Furthermore, 4+ {4+ a = M? implies that M?

mar = 8 = Iyrys or the physically
allowed region is T.; = iy . The corresponding results for Dy are obtained
by setting M* =10,

In the special case when ry = r3 = v, we have y, = —y, and ; and &, (the
CMP and CMH scattering angles) collapse to the same angle. So although &

15 not a physically observed variable, the choice é = 90° in this special frame

implies 90° scattering in the lab (CMH) also. With this choice, we abtain

r = g(ercoshy, + FFeoshy) ;

hats T sinde 1
where I = _J:Tm )

Then the cross-section for the Dy process is differential with respect to either

talf—

of the sets of variables and the two are related by

da _ 7 (IL.I.&,E) de : (D.9)
*]-"‘Tﬂlmdl.fz [i: .Tn.y-:]' r.iJ:de;-;r[.!

where the Jacobean factor is given by

7 (JJ| g, i-J

Lo
=% D.10
(trepnoys) 2 { )
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for both direct photon as well as the Drell Yan process. For the DY process,
there is an additional derivative with respect to r (or M*). The kinematics
of direct diphoton production and 2-jet production are exactly like in D~ as

both final state particles are massless here.

D.1 Cross-section for 2 — 3 processes

The cross-section for the subprocesses contributing to the direct photon
process can be simply evaluated using the equations for 2 — 2 processes given
in Appendix A. The Drell Yan process, however, being a 2 — 3 process, is a
little more complicated, It can be thought of as a combination of a 2 — 2
collision process producing a large-pr (off-shell) photon and a balancing jet,
followed by a 1 — 2 decay process in which the photon goes into a lepton pair;
i the CMp frame, we have

fg: — 743,
—4 .“+ m o

In general, any 2 — 3 process

Pa T = pr+p2tp
can be decomposed in this manner:

Patp — pr+pa;
Paa = patpa .
The corresponding differential cross-section is given by

2
d:::"*}’i' Ry, (D.11)

where I is the flux factor which can be expressed in terms of the Mandelstam
invariant, s, as ' = 2s . (This is the same as in the 2 — 2 process as the
flux factor depends on the number of initial states which is the same in both
cases.) The matrix element M, is calculable from the theory, while the phase
space factor 1s given by

d*py d?py d*py

15 (2r ) 6 pa+po —pr—pa— ) . (D.12)

= J (2n)P2E, (27)2E; (27)°2E,
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All the py, i = 1, 0.0, 3 are not independent: for such a process there are four
independent variables (the delta function removes four variables of the nine
variables and the rotation of the system about the beam axis is trivial). Note
that the three final state particles lie in a plane called the production plane. If
we introduce the intermediate state explicitly, there are two variables describ-
ing each—the collision and the decay—process. To see this, we introduce the
intermediate state mathematically into eq. (D.12) by using the identity

d3p. 5
| = /:Lﬁf{z ?jﬂﬂﬂ [}‘Jz.‘j —-pr =), (D.13)

where s3 = (p2 + p2)* = M? can be thought of as the Mandelstam s variable
for the decay process. Hence we can write

s .
Hils) = / ﬁﬁﬁg[a; mi; sa) fy(sg;md;md) (D.14)

We therefore have a convolution of two processes, the first a collision process
characterised by the Mandelstam variable s where the intermediate state (23),
s produced from a collision of particles @ and & and the second when this
state decays to the particles 2 and 3 characterised by the variable, s which
15 the mass squared of the intermediate state. The integral over s, implies
that all possible masses of the intermediate state satisfying the delta-function
i eq. (D13} are allowed. Hence, we can nse the procedure developed for
2 — 2 processes to evaluate K, for the collision process; on litegrating out
the dependent variables, we know that this is a function of a single variable,

t=(ps—pm ). We get

Ra(s;mi;ay) = D.13)

s
4/ sP ]

where £ is the 3-momentum of either of the initial particles (a or b) in their
CM frame. The phase space factor coming from the decay process is best
evaluated in the rest frame of the intermediate state (23), which evaluates to

,.fm

f(sy;md;mi) = dGiRs, (D.16)

-
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where (R23) denotes the rest frame of (23) and P, is the magnitude of the
J-momentum of the second (or the third) particle in this frame. Use of

eqs. (D.15) and (D.16) in the expression for A5 in eq. (D.14) and setting

]

93 | 2y 12
P = 5 (3-; - J‘nnf)

where my is the mass of the lepton, yields

| i
Ry(s) = m]dtdﬂf’dﬁf“ , (D.17)

where we have used s; = M? and dropped terms of the order of O(mi/M?)
as the lepton mass is small in comparison with the large momentum-square of
the photon.

Hence, the cross-section for the Drell Yan process is

il - \/m
didM? (27)'64°

f AR A2 (D.18)

where the matrix element can be calculated for the various contributing sub-

Processes,

D.2 Choice of Reference Frame

In order to evaluate the integral over the solid angle, 0, in the rest frame of
the massive intermediate photon, we have to specify a choice of co-ordinates.
We choose arbitrarily, but for later simplicity, py to be the z-axis and let p; lie

in the (¢ = z) plane. Then in the rest frame of the photon, wiz.,
poy = (M, 0); or Pat =10,
Wi i:l"i'll"'li'“: FTl = ,ﬁ:l. -+ }?!l

or p, is fixed. Then the components of the various momenta in this frame are

as follows:
o= Ey(L0,0,1),

mio= Eillsinty,U;c0s8,)

Pa = (B Esin 0,5, cosl; — E)
P = E(lLA),

py = BT=AY,

S R N R Ry Y L
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and we use the mass shell conditions on the particles Lo obtain

B o= M4
a W‘:
~ . Mi*_y
..b —_— '1!_: 5
. 3
E:] - 5 I—-J_.f‘f :
; _ su— M2
smh o= T MR
E = M

The unit vector, it = (sin# cos ¢,sin @ sin ¢, cos #) denotes the arbitrary orien-
tation of @, (or ) in the rest frame of (23) where (0, 4) are to be mtegrated

over. In terms of these variables, the solid angle is given by
d!'E.i'z""-’ =dcostde .

Hence, there are four variables (t, M* 0, é) with respect to which the cross-
section for the 2 — 3 process is differential; in the expressions given in Chap-
ter 4 for Drell Yan subprocesses, we have integrated out the angular variables
and retained only (£, M*). The total hadronic cross-section is then differential
with respect to these subprocess variables as well the boost variables to the
hadron CM, namely, & and »ry. Everywhere we have assumed the leptons to

Lie massless,
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SOME DETAILS OF THE SUM RULE METHOD
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The LHS
The RHS
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E.1 The LHS

We discuss here, some details of the dispersion relation satisfied by the four-

4. defined as the antisymmetric part of

point function, T2,

T(pq) = =i [da dty d's 02 FPU=2)] 01 7 [n(y)jule)in(0)7(2) ] 10)
(E.1)
where y(y) is the uncleon current and j, is the electromagnetic current.

We now make use the identity

I=Y|X)(X],
X

which is expressed in momentum space as

d'p
(2m)"

[]'5;1 3 3
I = e = [ R =

PR
(27 )" 2po

wé(pt — ME)0(m) lpx)px| . (E.2)

Here X runs over the complete set of physically allowed states. The insertions
of unity as expressed in eq. (£.2) in the matrix element in eq. (E.1) are at the

positions marked by the arrows:
{D”. n ﬂ'ju.lr-h' -ﬂﬁl[}} :
We then use eq. (E.2) as well as the translation property:

ply) = et V) e PV Py =0,

212
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where P is the momentum operator, and perform the integrals over y and
- as the matrix element no lenger contains any y, 2 dependence. lgnoring
the z-integral, summations and various §-functions for the sake of clarity, the

codrdinate space matrix element can be written as

(O (0)|X) % (Xne(@)3A0)Y) x (YF(0)]0) - (£.3)

We now use the fact that  couples to the nucleon state with a strength given
b.l.'f' AN 5 §.E.y
(OO N) = Awulp, Mn) , (E.4)

where u is the proton spinor. We see that for X = Y = N, that is, for the

ground state nucleon, eq. (E.3) can be written as a product of three terms,

Anulp) % (p|Tiudulp) x TpJAN

Putting back the z-dependent factors and defining

T =i [ d'aet 2pIT55elp) |

we get

2
il state "Ib'-N' —
T, = —— 2 lm [u(p)T,.u(p)] .
s {I”.d _ -"I'fllir}i [ (3] i (JT }] :
which is the result obtained in‘eq. (8.8). The second expression in eq. (8.8) is

obtained by using eq. (8.2) for ImT,, and using u =p+ My .

E.2 The RHS

We now outline the caleulation for the result of Fig. (8.1) shown in eq. (8.11).
We use the identities for y-matrices as well as colour traces as set up in Ap-
pendix B. For the w-quark diagram corresponding to the calculation with the

neutron current, namely,

n(y) = € [lff"}Tf-"rc.fib] Yy U
we gel

P =qylyigl0) = g abe e ey {'*gﬁ,.S'ﬂbr'mC[Sl‘;”‘]T(}] *fr,-h,.'f':':fr'm'rﬁ - 1Eis

e
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where S, is the quark propagator and the factor 2 appears as the two possible
contractions yield identical contributions. The quark propagator correspond-

g to the quark which interacts with the ploton is given by
22 e
e, 0
S K+ E.G
u kll{k+qjl [ETHLP‘ g’JTV ﬁ} ] |: }
where the momenta are as indicated in Fig. (8.1) and + matrices are the vertex
functions. The other quark propagators are simple ones and have been given

in Appendix B 1.¢.,

S = hpe,
gest 1 ] '[;-‘5— #_ ﬂébb" . {E'T}
N Rk
Then the contribution to T, of this diagram is
E o d
TA = f (82l .
He (27)* (27)* (5.8)

Taking the imaginary part of this correlation function involves putting the
“eut™ lines in Fig. (8.1) on mass—shell as per the Cutkosky rules. In other
words, for every quark line with momentum, g, that is put on—shell, we make
the replacement,

1 Nep
— — (=2me)é(q7) ,
U

as we have made the assumption of massless quarks. Hence, on substituting
the propagators in eqs. (E.6) and (E.7) in eq. (E.5), the product of momenta
that appears in the denominator, namely,

1 I ]
Py —k— 07 (k+q)?

is replaced by the é-functions,

(=2m1i 8(£2)6(p — bk — )2 6(k + q)* .

Putting together all these results, the expression for Im7,, from Fig. (8.1) for

the neutron is as shown in eq. (8.10):
2‘-’1 abe _abc Il”‘\' 4g & 2 2 2
_mgf 3 ,/_ﬂ:‘i-d ES(E+ gl () é(p— k= 1) {Tr [Fa(p— F— Dyg] %

167% FlnB f) = w4 f)7) Eafs)
(E.9)
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The trace can be computed using the identities in Appendix B. The & and ¢
integrations can be performed using the ldentities listed in the next sectiomn.
The result of such a computation is shown in eq, (8.11). Calculations for the

other diagrams in Chapter 8 (Figs. (8.2)-(8.5)) follow similarly.

E.3 List of Integrals

We present, without details, the list of integrals that we have used in the com-
putation of the various terms in the Sum Rule calculation. Note that only the
terms singular in p* have been listed. The integrals also have terms constant
in p°, but we ignore them as these vanish on taking the Borel transformation.

We begin with a list of the f-integrals (see Section 8.2).

Table of Integrals of the -4 Type

[aes(@)sp— k-2, = F(p—k), 0(p - k)
[ —k-oten = Bk, p-b),

—(p— k) g} O(p - k)?

Jaus@sw—k -0 -k-0x = F{2-h), -h),

+(p = k)2gpn) 6(p— k)2

[ate@sm-k-ef e p-k-0 = F{p-17}op- k)

Table of Integrals of the -0 Type

We list results for integrals of the form

‘.i'lk % i3 . ™
1";” = F é‘{k + rlr}- ﬂl:P = 'i"}j {'{‘1#1 '{".r-'u s 'I!':Pm} — [{Amﬂ {pmp.ﬁ‘l gl 'Pﬂm]
+ A [FoiPpp + < Pﬂm]:_{ o A [rfﬂ:‘f#.z -y }

+ { H.Trr:‘z [Hmr?zfﬁu?}iri s .i”Pr-.l,\_.' + H::s [ﬂpmz‘fmpm o -Pﬂm],-_:;

R
R & H::;:Iﬂ. [yﬂ1ﬂ2‘iﬂ.'lnqﬁi Sk qﬁ'm;.ﬂ' } + T Z"L] !'”' (%‘.}r)_) 1
(E.10)
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for n = 1,2, Here [ |s implies symmetrisation over enclosed indices, with

" = [Hl'-"lmgpupi oo -Er:..,_.m..]ﬁ ™ for m even (E.11)
Zm = [gmgm By RO D e D qpm}]s for m odd
When n = 0, the resulting integral is nonsingular:
Tei= f d*k8(k + ¢)*0(p — k)* = nonsingular .
We begin with the case when n = 1, The basic result for m = 0 is
_pdk 4 Tp? plx . —zp*
= ?ﬁ{k—i-q] Blp k)= Uy l—ur— E{l — 2z} | In( 5, Y5

For the case when m # 0, we present results for the coefficients, A, B, -- -, as

defined 1 eqs. (E.10) and (E.11). We have

Aly = %—If; (::(1 - )+ .Hi:ﬁlil — B +5$2})]
r__d
Al = _ﬁ.%f{] —z)(1 - .'_Lr]]

s g
A = Th], (1'2“ it 1 K E‘%x""{.‘i— ]l;r-F-Ei'.r!})]
Fizod
.a'!..::] = -;‘V. J‘|{| — g}{] — }:|
Al = [0+ 0(p%/7)]
) =gy i
Bf-} = — [T{% ol — .:.':I}']

‘ 2

A = [I{;— (::3{1 —z) 4 &6 - 19z + |.-:1-’-*])]
q

Ay = [ﬁﬁ’—, £ = 2)(3 - rmj]

AL, = [04 0@ v?)

Ay = [04+00°/v*)

A
B = = [ﬁ% (1 _I}'-’]

By, = [04 00" /v7)]
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For the case where n= 2 and m = 0 , we liave

d”‘ : —zp
I} = :5(I.—I—q] dp—k)? = —--;l—_}:r-r;ln{—.)u—j—é][ —,r—L)— 1 —2z)

J“‘I ; ;
—{1-;;[1 — 4z + 6z° ]]

Notice that the leading order term in this case is of O(1/v) rather than of
O(p*[v) as in the case when n = 1. As in the earlier case, the m # 0 results

for n = 2 are

Alg = — [ L ({1 —z)+ {1% (1 — 6z + bx*) — ;"}5;2{1 —41?—1—11:9:1)]
Al = [%B; (1 —z¥ {l’;(:l — 13z + 1241*})]

L&

=

Al = _[th ( U‘f'}-f**u—c{]—lur-l—l)z]-[-f—x{]_
1412 —.zuf})]
Asy = —[%—5:; (I[i—,a}[l—h:}r{ P [l—lLu:+4Lr — 3027 ])]
- S 3?}'1'_1_ _ o ]
Az = [m!::i (1 =)l -ii]
By = [T'::!r_ ([1 — )+ }T:U — 10& + 21x* — 12;3:’])]
2,03 . i
Ay = — [-1% (J'IIH — &)+ P—.H;i—l[ﬂ — B + 20z*) + 41—‘1?1'1[15
— 155z + 338z — Elﬁz:’})]
Y ] J - -
A, = - [;: ( (1 =z )1 —22)+ Lﬁ;[{} — 49z + 10122 UUIJ])]
g’
A = —[ﬁf}—;[l—.r][l—tir—l—lﬂﬁ‘}]

s"l-;a = |_ +{_"}{3hjp i
G = [% (I“ — o)t 4 %{] — fir + 102* - -ﬁr'-i:')]

4

¢ = [Eh (1 -=r0- 1))

e

Hl-




E. Details of the Suin Rule Caleulation

I
p—
oo

Al = []T-_, SO RS ‘-”J

2
ut

AL = [EH;- (1 —x)(3 - "}:|

Ay =
Ay = [0+ 00° /v
Ay = [0+ 0G5

B:;-: s [ﬁ‘ J:
B..ll:i = [;}VE
Bl = [0+ O(p/v!)]

4
BV = =

231 _3.}2]
(5 —sx}]

%rl{l - z)?

- R (1) (3 - 0x 4 2 )|

Finally, we pomt out that there exist several recursion relations between the

set of = 1 and the set of n = 2 integrals. These were used to verify many of

these integrals. In particular, we have

JP:P:I |:.|ﬂl.1,|n ]
U _'I_, ':.I”le*’.i.ﬂ.-jjl

Hay oy Izl {F[ v e P J

and can be easily obtained from eq. (E.10).

I,
Iaj {F;-:,"
T{ (pas pa)

Ty



