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INTRODUCTION

This thesis deals with a reformulation of lattice gauge theory in a new
language. This reformulation seems to be suitable for further analytical and
numerical analysis. The basis for this reformulation is the fact that the
physical subspace of the Hilbert space of pure lattice gauge theory can be
explicitly labelled using certain gauge invariant local operators(t).

In 241 dimensions in the SU{2) pure lattice gauge theories the Gauss
law is explicitly solved®). This leads to a basis for physical states which is
given by all triangulations with half integer sides with coordination number
six. This arises from the fact that the solution of the Gauss law is related
to the Clebsch-Gordan formula for rewriting the direct product of two Lie
group representations as a direct sum. For SU(2) this is just the triangle
rule. Next the pure SU(2) theory on a square lattice is shown to be exactly
equivalent to an Abelian gauge theory on a Kagome lattice.

In order to do the same for other groups the equivalent of the triangle rule
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needs to be found. This is carried out. The starting point is the Little wood -
Richardson rule for the Clebsch-Gordon series. There is for SU(3) however a
better algorithm. This is what is used and extended for SU(N). This helps us
to obtain color invariant fluxes for SU(3). Pure SU(3) lattice gauge theory on
a square lattice is shown to be equivalent to a certain abelian gauge theory
with a [7(1) x U(1) local gauge invariance on a Kagome lattice. Further,
degrees of freedom which generate a Y-type string interaction emerge'®.

The ideas are not restructed to SU(2) and SU(3) only. The solution of
the Little wood - Richardson rule in the SU(N) case in favour ol certain
random variables makes possible the generalization of the triangle rule to all
SU(N)™.

Thus color-invariant ﬂ1ux description of all pure lattice gauge theories is
carried out, This could lead to better numerical and analytical understanding
of the large N limit of lattice gauge theories and the confinement phase in

particular.
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CHAPTER 1

The analysis carried out in this thesis is based on the Hamiltonian ap-
proach to lattice gauge theory"). Kogut and Susskind work with a discrete
space lattice but with time continuous. They work in the gauge Ao = 0 and
are able to define a Hamiltonian for the gauge degrees of freedom. In this ap-
proach one deals with a quantum mechanics with a well-defined Hmnill.m-:nn

operator. The advantages of this will be seen as we go along

Consider the partition function approach to field theory. Here a lattice is

used to regularize the theory, The continuum theory has Lagrangian

|
= 1 WF:LJJI

To go over Lo a lattice gauge theory with lattice spacing a one has to make

a formal replacement given by

f FoFg = Tchzp[lgC f AS d::"] —

4TrUUUU.
qla

(1)



To go over to the Hamiltonian theory the t direction is placed on a special
footing. Further the temporal gauge Ao = 0 is chosen. It must be noted that

in this case gauge invariance is imposed as a constraint on the Hilbert space

of states. This is the Gauss law
Ga(™')/phys >=0

where G, (77) is the generator of local rotations in color space at the lattice

site labelled by 7.

Consider plaquettes with t in them. For these the formal replacement

made in equation (1) simplifiedto
TrUY (i )U () + H.C = =Tr[U (L) = UM ()] x [U(tigr) = U(t;)] + const.

This makes it possible to construct the velocity term in the Lagrangian. The

plaquettes with ¢ in them contribute

_4;“! Tr U+{£.-+;]ﬂt— U+{!;]] [U(giﬂ]ﬂ‘_ U[!,-]}

where a; is the lattice spacing in the ¢ direction. Taking the continuum limit
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in the t direction and noting that the [ d°z goes over to T a® the conventional

quantum mechanics picture of lattice gauge theory is got.

L=Y ZT0t0+ Y

1
—TrUUUU + H.C.
links 397 plag dag?

The Hamiltonian is next formed by going from velocity to momentum

variables by the canonial procedures.

H = 5% n:},r;a—i,%ﬂ}ﬁflﬁ]-:z

= Eh'ﬂh $T’.H+H = EPI‘W #{TT’U{I{IU -+ .“'CT:I

This is a system which consists of coupled tops. To go over to the quan-
tized form and for future convenience the U are eliminated and the generators

of local gauge transformations are used. Let E2(7',1) be the quantum gen-

erator of the transformation

U(Rti) = (1 +ie%) U(R i)
Here t labels the direction of the link coming from site m'. The commutation

relations which are obeyed are given as

[B2(n.1), U(m, )] = 50U (m )8

G




[B2(n,i), B2 (m ,5)] = ~ie®® B (n,1)8i56um
Now U+ and U are got rid of in favour of the infinitesimal generators £

It is noted that E” generates a local gauge rotation which is a symmetry of

L. So it follows that

B = 3 (150),+ &% (H50),

2 ij

= i% (TrU*5U-HC) .

To compute E®E® certain identities have to be used. These are

Ut =1 OYU+ U0 =0

an

ﬂ“ﬂ".t = J&ﬂﬁ}k = la‘lj'ﬁll

This gives
: e
E“E°=“—‘TTU+U.
29

Thus the final form of the hamiltonian in terms of the £* and U variables is

obtained.

H = 2 E"E"'——E(TrUUUU-&-HC]
ag



The physical states are defined as those annihilated by generators of local

rotations at each site. This is given by

Y. E*(n,j)/phys >=0.

This summarizes the Kogut-Susskind approach to achieve a Hamiltonian
for pure lattice gauge theory.

We now specialize the case of SU(2) and 241 dimensional theory. The
physics of the Hamiltonian is given by the physics of coupled symmetric tops.
We now proceed to show that the Gauss's law constraint can be explicitly
and locally solved to get a basis for gauge invariant states(®),

The Hamiltonian is

H=YEmi)P—K Y TrUni)U(n+i,j)U* (n + j,d)U(n,§) + H.C.

na>j
n is a label for sites of the lattice whereas 1 labels the i** direction. Each link
(n1) is associated with an SU(2) symmetric top whose configuration is given

by an SU(2) matrix: this is the rotation matrix from space fixed to body




fixed axes.

To understand the gauge degree of freedom on a single link, it is sufficient
to understand the quantum mechanics of a rigid rotator. To specify the
configuration of the rigid rotator the rotation from body fixed to space fixed

axes needs to be specified. The rotation may be represented in the form.
e s |
Us=-ezplvT ;51

Here Tio(or = 1,2,3) are representation matrices of the generators of the
rotation group for angular momentum j. Introduce a notation for matrices
in which lower components refer to space axes and upper components to
body axes, If Vi are components of a vector in space fixed frame, then in the
body fixed frame the corresponding components are given by (U )iVi = V',

The body and space axes for the rigid rotator bear the same relationship
as the indices on the two ends of a link in SU(2) Yang-Mills theory., The
action of a rotation of space axes on U is given by left multiplication by the

matrix V' and the rotation of body axes relative to the body is given by right

9




multiplication. The statement of local gauge invariance in Yang Mills theory

translates into invariance under separate body rotations and space rotations.
This makes us consider the spherical rotator as only this case has invariance
under rotations of the body axes.

The s rotator has angular velocity vector given by
d —
e 0
s dt

The generator of space rotations, that is the angular momentum is given by
I'@" where [ is the moment of inertia of the rigid rotator. The Hamiltonian
15 given by

e g e
Efu-zfﬂ+

g2
H=m—=
21
The system has moment of inertia tensor diagonal, thus the Hamiltonian

15 invariant under individual body and space rotations as should be true if

gauge invariance is to hold. The Hamiltonian can also be written as

Jﬂ

=T

10




¢

— e .
where J = U, J is the generator of body rotations.

To define the quantum mechanics of the spherical rotator the eigenvectors

are classified as simultaneous eigenvectors of the operators J2,J.,J7?, J..

Further J? = J” so to label states it suffices to use quantum numbers J? =

J?,J. and J!. To summarize, there is a correspondence between the rigid

rotator and SU(2) Yang-Mills theory:

global color rotation k.

local gauge transformation —
final end of link —

beginning end of link —

simultaneous body and space rotation.
separate body and space rotations.
body index.

space index.

The body fixed and space fixed angular momenta correspond to the gen-

erators of gauge transformations which rotate one end of the link and leave

unaffected the other end.

To return to the lattice gauge theory, the angular momenta with respect

11



to space fixed and body fixed axes are E;(ni) and E_(n + i,1) respectively.

These are the generators of left and right SU(2) rotations on {/(ni). From the
analysis of the rotator and looking at the analogy to SU(2) Yang-Mills theory,
it follows that E.(n1) and E_(n+1,1) commute with each other and further
that By (ni)* = E_(n+1,1)% This says that the total angular momentum is
the same in both frames and is denoted as E(ni)* in the Hamiltonian. The
z-components of the angular momentum in the body and space fixed frames
need to be also specified. Denote these eigenvalues of EY(ni) and £ (n41,1)
by my(nt) and m_(n +1,1). So the labels corresponding to J* = J?  J! and
J: are j(ni) ,my(ni) and m_(n+ 1,1).

Thus the basis for the Hilbert space is | {j(ni),my(ni),m_(n+1i,1)} >
where j ,m, and m_ are a;]l integral multiples u[% with j(ni) 2| my(nt) | and
J(ni) 2| m_(n +1,1) |. This is before the implementation of the Gauss-law
constraint.

The non-abelian Gauss's law giving the physical states is ¥;[E.(ni) +

12




E_(ni)] = 0 at each site. This says the physical states are invariant under

local gauge transformations. The advantage of using the basis where £ (ni)
and E2(ni) are diagonal is that Gauss's law can be explicitly and locally
solved to get a basis for gauge-invariant states.

To solve the Gauss’s law constraint a change of basis is made where the

following operators involving sums of angular momenta are diagonal,
{E@1), Em2),[Ey(n)) + E+(n2)]),
[B-(n1) + E_(n2)", [E3(n1) + E}(n2)], [E2(m1) + B2 (n2)]}
Next a change of basis is again made
{EM1)?, E(n2)?,[Eq(n]) + E4(n2),[E_(n]) + E_(n2))?,
[E4(nl) + E4(n2) + E_(nl) + E_(n2)]?,
[E3(n1) + EL(n2) + E2(n1) + E*(n2))} .

The gauge invariant states are those where for each n, the last two oper-

alors of the above set have zero eigenvalues. This makes the eigenvalues of

13




[E¢(nl) + E4(n2)]? and [E_(n1) + E_(n2)]? equal and a single label j(n12)

can be used. Thus the basis for gauge invariant states is

| {i(n1),3(n2),j(n12)} >

Thus three half integers are associated with each site. This tallies with
the number of physical degrees of freedom for gluons. Such counting also
holds also for higher dimensions and other gauge groups also.

The basis | {j(nl),7(n2),5(n12)} > has the following property: the
labels are not mutually independent. j(112) can be obtained in two possible
ways by adding angular momenta j(n1) and j(n2) or j(n —1,1) and j(n —
2,2). The labels satisly the triangle inequalities, This property can be used
to develop a geometric representation. The constraints can be conviently
represented on the dual lattice. Associate j(ni)(i = 1,2) with the link dual
to (ni) and j(n12) with the diagonal completing the corresponding dual links
into a triangle. So a half-integer is associated with each link of the dual lattice

where one set of diagonals is drawn. This means a basis for gauge invariant

14



states is given by all triangulations with half-integer sides and coordination
number six,

In this gauge invariant subspace the gauge invariant local dynamics can
be written down. FE(ni)® when acting on the basis of the form given by
| {7(n1),3(n2),7(n12)} > gives simply j(ni)[j(ni) + 1]. The plaquette term
with the U’s has the effect of changing the lengths of the six lines ema-
nating from the corresponding dual site by +1. By applying the Wigner-
Eckart theorem repeatedly the transition - matrix elements from the lengths
{714J2,J3, 74 115, J30) to the corresponding primed values can be computed.
The matrix element depends on the lengths of the edges of the hexagon
J14,J23, )54 J6 y Jo, J1o through these do not change under the action of the
plagquette centered at the t;ormponding dual site. Refer Fig 1 and Fig 2.

The matrix element is given by




<M }2{114 i Jd}{h:i J2 ia}{.fs h .'.'.15}){

Y g i B el s
U 0 I e (o U R TS

x{{“ _f: _f_u.}{is J3 J'aﬂ}{.f:u J4 ian}x
3 Jis 1Jl\3 ¥ 3 2 Jw J4

X\/E,ﬁ + ]Jﬂjz + l‘/ﬂj;; + 1\/2}‘4 + IJE.I.H; + l\/'z_fasl + 1

X2+ 1y/235 4 1255 + 1250+ 1250 + 1\/255 + 1

x(-1 ]J't +Hintin-n-tetintih-ii—h+i

There is a 6-j symbol denoted by {...} associated with each of the six
triangles of the hexagon. The angular momenta involved in each 6-j sym-
bol are the original and new lengths of the two arms of the corresponding

triangle denoted by j and j' respectively, the edge of the hexagon and L
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corresponding to the tensorial property of the operator /. Thus we see that
the time-evolution of the system has been mapped to local fluctuations of
the triangulated surface.

To repeat the Gauss’s law constraint for non-abelian lattice gauge theary
has been solved locally and ezplicitly and the dynamics on the physical states
obtained. The dynamics is local and is related to a quantum theory of a
discretized membrane.

To make progress, the constraint coming from the Gauss's law can be
solved in a different way: now an algebraic solution of the constraints in
contrast to the geometric solution outlines earlier is implemented®. This
makes it possible to rewrite the SU(2) theory on a square lattice as an abelian
gauge theory on a Kagome [;.I'.Licc, thus getting rid of the non-abelian algebra.
To do this new dynamical variables, which create or annihilate a unit of an
additive color electric flux without reference to color content, are introduced.

Using these new dynamical variables it is possible to obtain a complete basis




for gauge invariant states in the loop space without all the complications that

the collection of all Wilson loops have. This also shows in a precise sense
how a U(1) gauge theory is relevant for the confinement mechanism in SU(2)
gauge theory. Thus ‘t Hoofts’ conjecture that a gauge theory of the abelian
subgroup is relevant for the confinement mechanism is established.

Given any triangle with half-integer sides j; ,j; and ja corresponding to

the addition of angular momenta the combinations
Ny = -
Nr = jatjp—n
Na = n+5—-i

are always integers and non negative, Infact three arbitrary independent

non-negative integers

M20, N;20 & Ny=20

uniquely generate all such triangles. These integers are associated with the
sides of an inscribed triangle as in Fig 3. The inscribed triangle is for figu-

rative purposes only and does not satisfy the triangle inequality constraints

18




in general.

This gives us an alternate way of characterizing all triangulations. The
j's have been associated (Fig 2) with the links of a triangular lattice obtained
by drawing one set of diagonals on the lattice dual to the original lattice. For
convenience of representation this lattice is deformed to a regular triangular
lattice (Fig 3). In addition equilateral triangles are inscribed in each triangle
of this dual lattice. These inscribed triangles form a Kagome lattice. The
integers Ny, Ny and N; are associated with the links of this Kagome lattice.
For any inscribed triangle, the sum of Ny on any two sides gives twice the j
on the link of the triangular lattice on which they impinge. Since each dual

link is common to two inscribed triangles, a constraint exists (Fig 3) such as
Ni+ Ny= N+ N

That is the sum of the weights on the two sides of any triangle of the Kagome
lattice should equal the sum on the two sides of the other triangle meeting

at the common vertex. An alternative way for specifying a basis for the

19




physical states is now available. This is done by assigning arbitrary non-
negative integers to the links of the Kagome lattice, subject to the constraint
at every vertex, which generates all triangulations uniquely.

The next step is to describe the dynamics in this new basis. The effect
of a plaquette operator is to independently change by +1 the j's associated
with the six links of the triangular lattice incident on the vertex dual to the
plaquette. This corresponds to change by +1 of certain N's on a ‘star’ of this
Kagome lattice centered on this dual vertex. The links on which N increases
are denoted by a solid line and those on which N decreases by a jagged line.
The plaquette operator corresponds to the diagrams of Fig 4. Several other
diagrams have to be included. These are got by rotating these diagrams by
multiples of 60° and/or by i;lterchanging the solid and jagged lines. All these
result in distinct diagrams.

The matrix elements for the amplitudes of various processes can be writ-

ten down. These amplitudes have a six fold symmetry corresponding to the

20



notations of the ‘star’ by multiples of 60°, This is in the representation where
the 2 axis is inclined to the I axis at 60°. This is inspite of the fact that the
links, on which the sum of the color sp:iﬂs on the 1 and 2 links are represented
are altogether on a different footing. The other term in the Hamiltonian
which corresponds to the electric field does not respect this symmetry.

To represent the Hamiltonian in this basis, we associate a harmonic os-
cillator creation operator a* and an annihilation operator a with each link of
| the Kagome lattice. The eigenvalue of the corresponding number operator is

related to the weight Ny on the link. The conservation law at every vertex
is interpreted as the Gauss law constraint associated with a U(1) local gauge
invaraince in the following way. The triangles of the Kagome lattice can be
consistently assigned positive (+) or negative (-) signatures alternately de-

pending on whether they point ‘up’ or ‘down’. This signature is also ascribed
to the links which correspond to the sides of the triangles. A local charge

of +1 or -1 is associated with both ends of a link depending on whether

21




the signature of the link is positive or negative respectively. This gives a
U(1) gauge theory on the Kagome lattice. There are differences with the
usual U(1) gauge theory in the following ways. On each link the variable
is an oscillator instead of a planar rotator, the U(1) charge depends on the
signature of the link and the possible gauge invariant interactions appear

with very specific amplitudes. The additive constraints at the vertices can

be solved by using closed loops as is done in the usual U(1) lattice gauge
theory!". Consider a closed loop of the Kagome lattice which everywhere

goes straight or takes 60° turns. To assign N = 1 for the links of this loop
is consistent with the constraints. Such a loop is called an allowed loop. As
the values of N are only allowed to be positive these loops are not assigned

any orientation. All the allowed configurations can be generated by an ar-

bitrary collection of such allowed loops. The N for the link is given by the
total number of transits along that particular link. In case of loops which

intersect or overlap either partially or completely different ways of forming

22



closed loops are not distinguished. All this differs from the usual U(1) lattice
gauge theory. This procedure gives a complete basis for physical states in
the loop space without the redundancies and constraints that the set of all
Wilson loops have.

An allowed loop increases j on the links of the dual lattice it intersects
by 1. Thus the total color flux on the links of a closed loop of the original
lattice is increased by 1. This differs from the usual Wilson loop operator
which has a more complicated action. Thus these allowed loops are more
fundamental entities.

Although the theory differs from usual U(1) lattice gauge theory, most
of the concepts and techniques can be taken over. The operators u = aN~—}
and ut = N-3a* are am;lugs of the usual U(1) link variables [/ = ¢* and
Ut = ¢, Further the number operator N is the analog of the electric field
E. In the phase where the compactness of the link variable, or equivalently

the discreteness of the conjugate variable, is irrelevant, there are massless

23



vector bosons. This can be seen by ignoring the fact that the spectrum of #
is compact and of N is discrete can considering quadratic fluctuations about
their expectation values. The calculation is very complicated as instead of
the U U U U -term now a set of terms involving products of upto twelve u
variables with coefficients depending on the conjugate varaibles N is involved.
Because of the Kagome lattice and the specific interactions involved even
though there is one kind of link variable u, there can be three massless
excitations of the SU(2) gauge theory. The effects of compactness of # can
‘be interpreted in terms of the monopole degrees of freedom. Confinement is
a consequence of the monopoles forming a condensate.

Thus the non-abelian lattice gauge theory is mapped exactly into an
abelian gauge theory on a.; Kagome lattice. New dynamical variables create
or annihilate a unit of an additive color invariant electric flux. These give a
complete basis for physical states in the form of non-oriented allowed closed

Ilunps of unit flux. The conjecture of ‘t Hooft that topological excitation of the



abelian subgroup of SU(N) determine the confinement mechanism of SU(N)
gauge theory is thereby placed on a firm footing!®). Thus now numerical and
analytic techniques can be developed to understand gauge theories on a new

footing.
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CHAPTER 2

In the first Chapter the SU(2) lattice gauge theory on a square lattice
was shown to be exactly equivalent to a U(1) gauge theory on a Kagome
Jg.tt,icg. Further new dynamical variables which create or annihilate a unit
of an additive color invariant electric flux are introduced. In this Chapter it
is shown that the concepts used in the SU(2) can be extended to the SU(3)
case. Here it is shown that SU(3) lattice gauge theory on a square lattice can
!lu rewritten as a certain abelian gauge theory which has U(1) x U(1) local
(gauge invariance. This is the precise realization of 1" Hoofts' conjecture that
ﬁ v confinement a U(1)¥=' gauge theory is relevant in the SU(N) case. lere
I the SU(3) certain novel features appear which do not exist in the SU(2)

For example a Y-type string interaction which is needed for holding a
aryon together emerges from the analysis in a natural way.

The key idea in the reformulation is that the physical subspace of the

iibr.':rt space of lattice gauge theories can be explicitly labelled using certain
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gauge invariant local operators. In the SU(2) case in 2+1 diemensions it
was seen that the basis for the physical states is given by triangulations
with half-integer sides. This arises from the triangle rule in the addition of
angular momentum. Such triangle inequality constraints are solved in favour
of certain non-negative integers. This gives a certain abelian gauge theory.

To extend the results from SU(2) to SU(3) involves tackling a group
theoretical problem. The problem is to get an analog of the triangle rule
for addition of angular momenta. The SU(3) case differs from SU(2) in the
following ways: firstly the representations are not real and secondly in the
decomposition of the direct product of two irreducible representations as a
direct sum (the Clebsch-Gordan series) the same irreducible representation
may appear more than oncel. The Clebsch-Gordan series is usually derived
by using the machinery of Young tableaux and the Littlewood-Richardson
‘rule, but this does not prove useful for our purposes. A closed formula

for the Clebsch-Gordan series is needed. To do this for the SU(3) case a

27




better algorithm exists. This has been developed by several groups!M. This
algorithm is not very widely known. This algorithm is now described. Then
the algorithm is translated into a form and language suitable for this work

and later we apply the results to lattice gauge theroy.

The method has two main steps, In the first stage the direct product of
two irreducible representations is written as the direct sum of certain special
reducible representations. In the next stage the special reducible representa-

tions are decomposed to the direct sum of irreducible representations,

It is well known that the irreducible representations of SU(3) are charac-

terised as the transformations induced on irreducible tensorial sets by unitary
unimodular transformations of a three dimensional complex vector space.
Denote by (n,m) the irreducible representation with basis the set of tensors
‘with n upper indices and m lower indices, which are completely symmet-
tic in upper indices, completely symmetric in lower indices and traceless,

enote by (n,n’;m,m’) the representation with basis the set of all tensors

28




with n 4+ n' upper indices, and m + m’ lower indices, which are completely

symmetric among the first n upper indices, completely symmetric among
the last n’ upper indices, completely symmetric among the first m lower in-
dices, completely symmetric among the last m' lower indices and traceless.
(7,m';m,m') can be throught of as the direct product of (n,m) and (n',m’)
with all traces removed but without any symmetrization.

To decompose the direct product of irreducible representations into these
special reducible representalions is the first stage. This is done by separating
out all tensors that can be obtained by contracting, in all possible ways,
indices from the sel of n with indices from the set of m', and indices from

the set of n' with indices from the set of m.

Iﬂil‘l{n.m*] min(n’,m)
(n,m)® (n',m') = z Z (n—i,m—jn' —jm —i)
i=0 §=0

where the summation indicates a direct sum.
The next stage is to decompose an arbitrary tensor from the basis of

(n,m;n',m') into a sum of linear combinations of completely symmetric

29



traceless tensors. Take for example the tensor which is the basis of (nymyn',m')
PEHL § IPTE R = (S CPC - : o !
denoted by 7' ' ittt i, Takea pair of upper indices, say 1,
Nees Jmdmdtcee Jmdmt
and 1,4y without any loss of generality. This tensor can be decomposed as a

symmetric and antisymmetric tensor under interchange of 4, and 4,.4,. Using

the € tensor the antisymmetric part can be written as a tensor of lower rank.

R A 15% 1075 AU i .  HEON
.. kz_ n 1f+‘1 ‘n-l-n =Eki|£"+| T _1 .|1+u
Jeae Jmdmal oo Jmdm! J1eeo Fadm!

This tensor is already completely symmetric in its lower indices. The

proof is as follows. Take, say, 7; and j,,4.

Er.ﬁjm-}v] 5‘ L Iﬂ-}—u‘
Jm-l—m'

T ] s i'll-l—ﬂ.'

=E"JI! .fm+1 !
J1ees Tmgmt

Ekl'if..+1

= (G181 8imst — 617, 6imt1 + cyelic) T 1ot

gl tngl F15%5 Tyt

; = O(from tracelessness of T)

So it follows that the tensor is symmetric under interchange of j; and j

as its contraclion with the € tensor is zero.
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To decompose the special reducible representation follows as a conse-
quence. The tensors are symmetrized as follows: remove a pair of upper
indices and add a lower index ; or remove a pair of lower indices and add an
upper index. The process terminates when one runs out of indices. In the

basis space of the representation the process is written as

(n,nim,m') = (n+n',m+4+m)

mingn n')

i Z {n.-i-n"—ii,m-l—m"-l-i}

=1
N {m ,m')

e E {:n—l—n"+j,m+m'u~2j].

i=1

In order to use this it is convenient to first restate the results. An irre-
ducible representation of SU(3) may be conveniently labelled by an ordered
pair (57, j%) of two arbitrary non-negative integers which represent the num-
ber of 2-column and 1-column boxes in the corresponding Young’s tableaux.
The Casimirs can be expressed in terms of j= and j*. The algorithm derived

in the preceding paragraphs can be reinterpreted in the following way. The
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two stage process given above can be now interpreted as follows.

Let the irreducible representation (j;,7F) have j; boxes labelled ‘1
and ji boxes labelled *+1. Similarly the irreducible representation (73 +3%)
consists of j; boxes labelled -2" and j} boxes lebelled ‘42", Remove some
1" boxes and an equal number of ‘42’ boxes. Denote this number as N (2010,
Remove also some 1" boxes and an equal number of -2" boxes. Denote this
number by N*(2,1). Of the remaining boxes (i) either remove a number say
| L] of “-1’ boxes and an equal number of -2' boxes and introduce | L] number
of new boxes Ibelled “+3". (i) or remove a number say |L] of ‘+1' hoxes
and an equal number of ‘42 boxes and introduce |L| number of new boxes
labelled *-3’. The differentiate between the two possibilities (i) and (ii) a sign
is attached to L. Denote tl;e number of £1 boxes left over after the removal

by N*(3,1) and the +2 boxes remaining are denoted by N*(3,2).
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This means

JE = N(2,1) + N£(3,1) + |L|8(%L)

(1)
i = N*(1,2) 4+ N%(3,2) + |L|0(£L).

By definition N*(i,7) = N¥(j,1) and 6(L) is defined as
L) = +1 L>0
= 0 L=0.

The above operations are connected with one irreducible representation
in the Clebsch-Gordan series. To get a consistent notation the complex
conjugate of this irreducible representation is labelled by (77 ,77). This
is given by the total number of ' and ‘4" boxes, including ‘£ 3’ hoxes

remaining. Therefore

g5 = N¥(1,3) + N*(2,3) + |L|0(£L). (2)

All possible irreducible representations are got by carrying out the pro-
cedure given above in all possible ways. The notations are chosen to get a
uniform formula for all the ji , 75 and j¥. In all six arbitrary non-negative

integers N*(1,2), N*(2,3) and N*(3,1) and one integer L carrying a sign
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uniquely label the representations resulting from the decomposition. How-
ever these integers are subject to the constraints (1). This means that for
given initial n:pmsﬁtil.at‘iuns (55 ,77) and (jF,j7) three remaining integers
label the irreducible representations of the decomposition. This means that
there is a label in addition to (jF,j~) available. This extra integer distin-
suishes the repeating irreducible representations.

The equations (1) and (2) are analogs of the triangle rule satisfied in the
addition of angular momenta. This is seen as follows. Lel a non-negative
integer j represent an irreducible representation of SU(2). j is twice the
angular momentum J. If j3 is an irreducible representation in the Clebsch-

Gordan series for the direct product of j; and j3, by the triangle rule,
Ny = Miz4+ja—5)
Ny = (fa+i—Ja2) (3)
Ny = %[.’-‘1 + j2 — Ja)

are all non-negative integers.
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Moreover if we rewrite these equations as

1= Ny + Ny J2 = Ny + Ny ja= N+ N (4)

all non-negative integers Nj, Na, N3 subject to the constraints (4) give all
the irreducible representations in the decomposition uniquely. Comparing
equations (1) and (2) with equation (4), we can see that an analog of the
triangle rule is now available for SU(3).

In the SU(2) case in Chapter I, the j's are represented as sides of a trian-
gle,, and the N's on the sides of an inscribed triangle. For the SU(3) case, in
a similar way, each pair (57,77 ), (7 ,J3) and (75,77 ) are represented on a
side of a triangle and cach pair N*(i, j) on the side of an inscribed triange.
ji is obtained by adding up, N*(...,7) on the two sides of the inscribed fri-
angle which impinge on side i and also | L | if L is positive. j~ is obtained by
adding up N=(...,7) on the two sides of the inscribed triangle which impinge
on the side i and also | L | if L is negative. Refer Fig T R

To apply these results to lattice gauge theory is the next task. Consider
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the subspace of the Hilbert space of 241, pure SU(3) lattice gauge theory

satisfying Gauss’' law constraint. This may be described as follows. To
every link of a 2-d square laltice is associated an irreducible representation
(57 ,47) of SU(3). This is represented on the corresponding dual link as in
the SU(2) case. Also, at every site, with the pairs of links in +1 and +2
directions is associated any irreducible representation (j3; ,74,) which is an
element in the Clebsch-Gordan series of athe direct product of the irreducible
representations on the two links. In a similar way with the pair of links in
—1 and —2 directions at the site an irreducible representation (j,75) is
associated which is in the Clebsch-Gordan series of the direct product of
irreducible representations on the two links. To satisfy the Gauss law the
two irreducible representatic.:-ns associated with the pairs of links at each site
must be conjugates of each other. If this is satisfied, that is if it = ik,
they can be combined into the identity representation. It is convenient to

represent (jiy,Ji2) on Lhe diagonal of the dual lattice. This is indicated in
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the Figure 3. There is a clliffﬁrﬂllce with the SU(2) case, in the SU(2) case
Lhe representations are real in the SU(3) case they are complex. Now which
of the two conjugale irreducible representations is on the diagonal has to be
specified.

We now have pairs of non-negative integers associated with the links of
a triangular lattice. Thse pairs of integers satisly certain constraints arising
{rom group theory. These constraints are given by the equations (1) and
(2) given. As in Chapter 1 a triangle is inscribed into each triangle of the
lattice. These inscribed triangles form a Kagome lattice. With the sides of
the triangle are associated the variables N*(7,J) = NF(J,1). With the face
of the triangle the variable L is associated. The equations (1) and (2) given
(5= ,i%) in terms of N* a.nd: L. Each link of the triangular lattice on which
(77 ,77F) is represented is common to two triangles of the Kagome lattice.
This gives a pair of conservation laws at each vertex.

Next, two oscillators are associated with each link of the Kagome lattice,
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NE on the link are identified with the eigenvlaues of the number operators of
the two oscillators. Further a planar rotator is associated with each triangle
of the Kagome lattice. L for the triangle is identified with the planar angular
momentum of this rotator. The two conservation laws are regarded as the
Gauss’ law constraints arising from a U(1) x U(1) local gauge invariance. The
generators of the two transformations involve N* and L operators and hence
commute with each other. However, the oscillator and the rotator variables
carry charges of both gauge groups in an intricate fashion as seen below.
The conservation law matches j*(j~) an one side with 37(j7 ) on the other
al a diagonal link of the triangular lattice, whereas j*(j~) is matched with
j*(57) at the other links. In order to get a uniform version of the conservation
law at every vertex, we p;‘oceed as follows. We give up the identification
N i(.f‘, J) = N¥(I,J). lnstead we temporarily associate a favoured direction
for each link of the Kagome lattice as shown in Figure 4. Now N* are defined

to be N¥(1,J) with I — J in the favoured direction. We now express the
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conservation law in terms of ‘allowed’ loops as in Chapter 1.
An allowed loop is one which at any vertex of the Kagome laltice passes

on to a side of the other triangle at the vertex instead of turning back into the
same triangle. Now it is easily checked that for any allowed loop, the following
assignment of the weights satisfies the conservation laws. Nt = 1 for the
links of any one straight seclion of the allowed loop, after a bend N— =1 for
the links of the next straight section, N* = 1 again on the following straight
section and so on. Interchanging N* and N~ in the assignment given above
again satisfies the conservation laws. In these case L = 0 for the triangles
touched by the loop. If L = £1 at a triangle, the conservation law requires
three allowed loops Lo emanate from this triangle, one along each of the three
triangles touching this Lrian.gie. This is a novel feature not present in the
SU(2) case. This can be traced back to the singlet that can be formed from
three triplets of SU(3). This reminds one of the Y-type string interactions

for holding quarks together within a baryon. Thus, even in a pure gauge
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theory, in SU(3), thre are color invariant degrees of freedom associated with

the faces of triangles which behave like the Y-type source of color invariant
flux.

Let L = +1 on a triangle. We now specify the rule for the N* weights to
satisfy the conservation law. Imagine a clock hand centered at the triangle.
Then for each of the three triangles touching this triangle, either N* =1 for
the link which is first touched by the clock hand, or N= = 1 for the other
link which is touched alter, If L = -1 the assignments of Nt and N~ have
to be interchanged.

The rest of the analysis is same as the SU(2) case. Thus in this Chapter
the SU(3) lattice gauge theory on a square lattice has been analysed and
shown equivalenl to a cerﬁan abelian theory with a U(1) x U(1) symme-
try on a Kagome lattice. Degrees of freedom which generate Y-type siring

interaction emergel?),
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CHAPTER 3

The main result of this Chapter is embodied in Eqn(34) below. This
can be looked at as a generalization to SU(N) groups of the triangle rule for
addition of angular momenta and its extension to SU(3) as given in Chapter
2. Consider the decomposition into irreducible representations (IR) of the

direct product of two IR's g and v of a group G.

p®r=3C)A (1)
A

4, the Littlewood-Richardson coefficients!")| are natural numbers and con-
vey which IR’s A appear in the decomposition and the number of times they
appear. They are of relevance to other branches of mathematics!?) also.

There are different kinds of algorithms for C3, (in case of compact Lie

groups). Well known examples are,

(i) Steinberg’s rule which uses weight lattice and Weyl group.

(ii) Littlewood-Richardson’s (L-R) rule, codified into an operation
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on the Young tableaux for the IR’s.

As yet, in the general case, there is no explicit algebraic formula or a geomet-
ric rule for €', . It is only in the case of SU(2) that the solution is well known
and expressed as the triangle rule. There are modified algorithms®M":{%) for
SU(3), which can be formulated as an algebraic formula and interpreted as
a variant of the triangle rule. One of these was used in Chapter 2.

Here we obtain an algebraic formula for €', for any SU(N). Our solution
is, as in the case of N = 2 or 3, in terms of some random integers which are
subject only to linear constraints by the given IR's, g and p. Our techniques

can be readily extended to other groups.

Different approaches to our problem are possible, as in the SU(3) case;

(i) Use of irreducible tensors(3),
(ii) L-R rule(®),

(iii) Method of invariants(®),

Of these, the L-R rule is already halfway to the solution and moreover reduces

43



the problem to jugglery with inequalities. Therefore we adopt this approach.

The other approaches, though more difficult, would give a deeper explanation
of our formulae.

The L-R rule is algorithmic. To carry out derivation of a generalized
triangle rule we make an algebraic formulation of the L-R rule.

The L-R rule for SU(N) involves the following steps!).
(1) The IR’s are uniquely represented by Young tableaux having not more
than (N-1) rows. The tableaux is left-justified and any row does not extend

beyond the previous row. Let the i-th row extend beyond (i+1)-th row by

j; number of boxes. (jy_; means the number of boxes in (N-1)-th row.)
Thus every IR is uniquely labelled by an ordered set (ji,jz,... ,Jn-1) of
independent natural numh.ers. The Casimirs for the IR can be computed
using these j;'s.

(2) Lable all boxes of the first IR, p,, by ‘o’. We denote j; for this IR

alternately by n;,. For the second IR, v,, label all boxes of the first row by

44




‘17, second row by ‘2" and so on, for all the (N-1) rows.

(3) Choose a number n;; of 1-boxes and append them to the right end of the
i-throw,i = 1,2,...(N—1) of the first tableau v, Use the remaining boxes,
npy in number, (ny, = 0), to start the N-th row. To this resulting tableau,
repeat the process, appending n;; number of 2-boxes to the i-th row and,
again appending all remaining boxes to the N-th row. Repeat the process
sequentially with 3-, 4- ... (N-1) - boxes, until all boxes of the second IR are
exhausted. Of such tableaux, only those that satisly the following constraints
are kept.

(4) The Right Rule: Count the boxes successively from the first row onwards,
always from the right end to the left end in each row. At any stage of this
process, the total number Inl' (i+1) - boxes counted shouldnot exceed the
total ;@ber of i-boxes. This means, in particular, that the first row can

have only 1-boxes, the second row, only 1-and 2-boxes and so on. i-th row

(¢=1,2,...N — 1), cannot have any (i+1) -, (i+2) -, ... (N-1) - boxes. Also

45



there are no N-boxes in the N-th row. Therefore,

nii =0 unless £29; A=12..N

(2)

3=1,2,... . (N=1)
This rule further gives a set of inequalities for these n;;. Maximal constraints
from this rule are obtained by requiring the number of j - boxes upto the i-th
row be atleast equal to the number of (j+1) - boxes upto the (i 4+ 1)** row.
(Here and henceforth, by the word ‘upto’ we mean ‘upto and including’.) We
write these constraints as a set of equalities by using slack variables §;; which

are non-negative integers. Each f; is equal to difference between the larger

and the smaller side of an inequality. We label the equations so obtained as

;.
i i+1
Rij i) ngg = Y ngjp + By (3)
he=j k=3+1
with |
i 20 (4)

The last equation of this sequence requires that the number of (N-2) - boxes

upto the (N-1)-th row is atleast equal to the number of (N-1)-boxes upto the
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N-th row. Thus the range of the indices in these equations is,

P2 i=1,2 0 (N= 1),
(5)
§=1,2,.,(N—2),

(5) The Left Rule : The j-boxes in the (i+1)-th row should stop short of the
first j-box in the previous, i.e. the i-th row. Again we write these constraints
as equalities using slack variables a;;, which are non-negative integers and la-
bel the equations as L,;. Remembering that n;, corresponds to the extension

of the i-th row beyond (i+1)-th row of the IR g,

3=1 1

Lij = 3 mie =) nigp + oy (6)
b E=1

=]

iy

i =0 (7)
We have j-boxes in (i+1)-th row only if § < i 4 1, so that we have the
above equations only in such cases. The last equation of the sequence (6)

corresponds to the (N-1)-boxes in the N-th row falling short of the first (N-

1)-box in (N-1)th row. Thus the range of indices are,
ikl S0 i (N—1)

_ ®)
1 =12,.. (N_ 1)
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Having made the formulation of the L-R rule algebraic we now analyse

the equations (3) and (6) to clarify all the constraints.

The elements a;;y; above the main diagonal in the o;; matrix are not

independent objects, Infact from

. esi =5
Liiy1 ¢ Tieotie = XDy Migie + 06 i1
. il i
Lii bRk = Dopey Wipr oo
i R = Nipriv + P

we see that

g1 = @ + Gyt = L2, (N =2).

(9)

which gives o ;49 as a sum of two other non-negative integers. This means

the inequality corresponding to L; ;i simply follows from L and f;; in-

equalities, and may be ignored.

Also the equations,

f.rn P Te = Mg -+ Cl!g-“t' = ],2, aey (N — ]]

R ni = nigaip + Bii = 1,2, ..., (N = 2)
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present n;, and nj; as sums of other non-negative integers, and may be ig-
nored.
Note that ny_; nv_; is still an independent variable.
N1, P

We may use Liyq; in Liyy 41 to get

it — Mtz 41 = Higj41 — Oiprj (12]

For each i = 1,2, ..., (N-2) the last equation in this chain corresponds to j =

i (as we are not using L;i1 equation). Therefore the range of indices are,

t 2 J,

1,7 =1,2,i,(N=2) (13)

Similarly we may use I;; in R, to get,

Mit1s — Nirzger = Pipr; — By (14)
Now for each i = 1,2, ..., (N-2), the last equation in this chain has j = i.

Therefore the range of indices is again as in (13),

The chain of equations (12) and (14) may be compactly combined into,

f.-j = Ni414 —Mi42 541
— ' & - * r
= Oijrg+r — iy (15)
= Py =P
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The range of indices is as in (13). Thus I; is a lower triangular (N-2) x (N-2)
matrix.

Loss of information in the chain of substitutions (12) and (14) could only
be in the very first in each chain i.e. L; or R;;. But we have already decided
that these are not independent equations. Therefore the set (15) contains all
the constraints following from the L-R rule. This means that if we regard
li; as independent random variables (taking both positive or negative integer
values) and compute n;;, oy; and [ using equations (15), then the L-R
rule is automatically satisfied - provided the values so computed are non-
negative. Iu each chain of these difference equations, a boundary condition
has to be specified for an unique solution. However, we have to choose
boundary conditions very different from initial value problems. Otherwise
we are not guaranteed non-negative solutions for ngj, a;; and f;; because
li's are not given to be non-negative. In the following section, we obtain a

general solution for such a chain, parametrized by a random variable. Such



parameters together with the set [ are the random variables in terms of
which the L-R rule is solved.

Consider the chain of equations,
g —ﬂ'.f=l::,1:= I,E‘...,N {15]

where the n;’s are required to be non-negative integers, but [’s given are
positive or negalive integers. In order to write a general solution, valid for
arbitrary ;'s, we proceed as follows.

Equations (16) may be rewritten as,
Ny — 1y = prj-:ﬁ,:i,..q{f\"-{- 1). (17)
r=1

Denote the least of the n;’s by n, a non-negative integer. We have,

n— ;11 mm ( Z 4 ) (18)

where the argument zero on the r.h.s.l corresponds to the situation where ny,

is the least of the n;’s. From (17) and (18), we get,

=1

n,—n—]—Zf —rnm (U Zf),i=l,2,...,[ﬁ—l—l]. (19)
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In this solution, the second term on the r.h.s. is taken to be zero for i = 1

case.,

It turns out that the first (i.e. n;) and the last (i.e. npyyq) variables in

the chain (15) are of special interest. We have,

q
n =n— mz'n:‘:ﬂ (D, 5 E'F) (20)

r=1

Also,
Ny = N1 + Efzi !IJF =5 II."I?:?il'j,;ll‘“rzl (u! Zi:r EFJ

= 1t + T]’].HI::LI ( le Er,.' Zs;; E‘F = E:‘:‘ F:;)

so Lhat,

N
Nygp =1+ mﬂ:nf:] (U. ¥ ﬂ.) (21)

:1=q

where the argument zero corresponds to the ¢ = N case.
We may now apply this technique to our chains of equations(15). The
first chain in (15) connects n;;’s along lines parallel to the diagonal. The

second chain connects ay;'s along a row and the third chain, ;;'s along a



column, We get,

N
ity = Paisj — D90 bojipy +maxgs ™ (ﬂ~§::=| bisivin)
e = @ +E,,"1 T e minft‘:', (ﬂ,}:ﬁ:l E;_l_p) (22)

Bii = Rj + E::r--ll bpj — m'nq-J (['-* p=i & )

In these equations, it is to be understood that a 3~ or a min operation on

the r.h.s. yields zero if it is over a forbidden range. This convention gives,

nyr = Py
¥y - Ql [23]
N1 N-1 = Py_awnar= RByarg

(where ny_y x_q has been relabelled as Brn-1.w-1). This is just a renaming of
the variables on the Lh.s of the eqns. (23). Note that these variables are not
connected by the chain of equations (15), bul are nevertheless independent

variables. Thus the range of indices in (22) may be taken to be,

i2i, id=1,2...,(N=1) (24)

Now the sel (22) expresses all variables of the L-R rule in terms of certain

random variables

(i) Pi,Qi, R, i=1,2,:00 (N —=1) (25)
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which are non-negative integers and
(i), o 2gkg=1c2, L IN=9) (26)

which can be positive or negative inlegers.

Our main objects of inlerest are the ji's for the given IR’s and for the
IR’s in the decomposition. Let j2 label the two initial TR’s for a = 1,2 and
an IR in the decomposition for a = 3, We may express them in terms of the
variables ny; , ay; and f§; and hence in terms of P, Q;, R; and li; variables.

We have,

and using (10),
3= niga + o (27)
Also,

i n
-?.-'2 = Z“ki o= Z Mg 41
k=1

k=i4+1

because all i-boxes of the second IR are distributed among the i—, (i +
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1)—,...N — th rows of the resulting young tableau. Now using Ry_; ; in
(3), we get,

3E = nyi + Py_1i (28)

This equation is valid as it is only for i = 1,2,... (N —=2). Fori = (N —1),
TNt = "N N1+ =1 N=1,

so Lhat with our relabelling of ny_y y_1 by fn_1 n_1 (see eqn.(23)), eqn(28)
isvalid forall: =1,2,... , (N =1).

Further,

S e i+1

3P = Xh=oMik — Ly Mid1 k
€t i1

using Ly ;4 in (6). Further using (9),
7=+ B (29)
Again, as it is, this is valid for: = 1,2,...,(N —2). Fori=N -1,

N-1 N-1

.3 LY

N = Z N-1.k — Z TENE
k=0 k=1
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because these are no N-boxes. Now we may use Ly_; vy and again with
ny-1 N-1 = fIv-1,n-1 we see Lthat eqn.(29) is valid for all i = 1,2,... (N —
i)

We notice that the variables on the r.h.s. of eqns.(27),(28) and (29) are
either the first or the last in the three chains of eqns.(15). Therefore we may
apply the solutions (20) and (21). We get,

2= P Qe+ maxdist (0,80 Giipp)
(30a)

= ulin;".:'. (ﬂ i Elc}:. fi—l,li:l)

N-2 i1
Je=Py i Rt zlm}c:?;f (U, X f,,i) — mini—} (U S FN_1_5+F,,1) (300)

p=1 p=q

p=i

3} = Qi+ R; + maxiz} (Ui f-._l.p) — min};? (ﬂ,ii’pi) (30¢)

p=q
These equations give the solution of the L-R rule in terms of the random
variah_vles given in (25) and (26). Given any two IR’s, one has to obtain all
values of these random variables which when used in eqns.(30 a) and (30 b)
give the corresponding numbers {j}} and {;j?}. Then, for each set of values

of these random variables, there is an IR {;?} in the CG series, given by the

56



sel of eqns. (30 ¢). Thus our random variables not only give the allowed
IR’s of the decomposition as many times as its multiplicity, but also serve to
label this multiplicity(®,

Equations (30) may be interpreted as an analogue of the triangle rule for
the addition of angular momenta. For N = 2 and N = 3, these equations
reduce to triangle rules considered in Chapter 1 and Chapter 2. Infact,
the rule for a general N is similar to the N = 3 case. Notice that the set
{58 3208 v dkoivdh iy 7% i)} for a given i involve only a subset of the random
variables, viz., {F;,Q:, R;, Pv_i , On_: fiy_i} and only the f-type variables
in the (z —1)— and (N — ¢ — 1)— rows, i— and (N — i)— columns and along
the diagonals, i —th and (N —1) —th from the main diagonal. This suggests a
relabelling of the variahles; in close analogy with the N = 3 case, as follows:
(i) The solution is symmetric in the three IR’s if the complex conjugate of
the third IR is used. This is to be expected, because, we are symmetrically

treating all the three IR’s on an equal footing in building a singlet. Thus,



we use,
I = T =5 2 (N = 1) (31)

in place of 7 in our formulae.

(ii) Define

Qi = n®(N —i), (32)

H: = m*i)

in analogy with the SU(3) case.
(i) Relabel the variables £;; (which were displayed as a lower triangular

malrix) using three coordinates,

LK), T+J4K=(N=2) (33)

Here the position of the variable in the triangle is characterized in a sym-
metric way by specifying its distance as counted from the sides 1.2 and 3
(Figs.). Distance I from side 1 is just the column index j, distance J from
side 2 is the row index i. Distance K from side 3 is as measured along a row

or a column and is therefore Il = N —2 — I — J. Ofcourse, it is sufficient to



specify just two of the coordinates, as the third can be obtained from (33),

Using the new labels, the solution of the L-R rule is:

jl.' - n”[i} 4 n"“(N —1)+ 11:&1}(;:"“1{!], Zf_’{;r, —,1))

n=1

q
—minZ4 (0, 3" 8(p, N —i,-))
r=1
r=q

N-2
i =nBE) (N -+ maxi 2 (0, Y b, p, =)
p=q

i1
—miu,';;'l{l]. Z f(—,p, N =1))
=4

N—i-1
=t ) BN = 1) -+ mnxf:f‘l{[}, z f—,1,p)
r=q
7
—mingTy (0, 3 4N —i,—,p)) (34)
p=N =y

These formulae can be represented diagrammatically as in Fig.1 (The Figure

may be deformed into an equilateral triangle for displaying manifest symme-

try in 1,2 and 3 lables).
It can be noticed that the SU(N) case has striking similarity with the

SU(3) case. To apply the result to lattice gauge theory one follows the




arguments as given in Chapter 2 for the SU(3) case. The N* and L variables
in the SU(3) case now go over to the n(i) and £ variables respectively.
However there is a major obstacle to the program, To calculate the
Hamiltonian in the new basis one needs more understanding of the analogues
of 3-j, 6-j, 9-j symbols in the general SU(N) case. The color invariant fluxes
however can be easily constructed. One can also see that the (N-1) variables
n(i) give a UETI_' theory and the £ variables lead to a interaction of the same
sort as in the SU(3) case. This is in accordance with t'Hooft’s conjecture.
It is extremely important to complete the program initiated in this thesis
as one hopes that the N' — oo limit of SU(N) gauge theories can be under-

stood. This is being carried out and will be published in the near future.
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