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ORGANIZATION OF THE THESIS X%

The thesis |s organized as follows:

In the first chapter we give a brief summary of the earller
works on Monopoles and Dyons. The purpose and motivation for this
chapter are very llmited.It (s not to present a detailed review on
the subfect but to hilghlight and analyze the origin of the
numerous problems assoclated with tha earlisr attempts to
construct a8 @Quantum Fleld Theory of Dyons.The most serlous
problems with these theorles were:

.The absence of Manlifest Lorentz Covarlance and / or Manifest
Locality.

The orlgin for this and the various other problems (to be
discussed later In the thesls) |s the presence of 0Dirac String at
the level of dynamics.Thls aspect can be appreclated even at the
level of Classical Mechanics / Quantum Mechanics . Hence In the
flrst chapter we analyze the above problems startlng from
Classical and Guantum Mechanlcs of Monopoles / Dyons before golng

to the Fleld Theory of these particles g

In the second chapter we glve the path Integral formulation

of our theory of Dyons. We show that It s possible to construct a



——_

GQuantum Fleld Theory of these particles evading the need of Dirac

string completely at the level of partition function. Hence all

| the problems mentioned above are also evaded. We also show that
i the dynamlcs iIn this theory Is governed by certaln " gauge

symmetry " g

In the third chapter we discuss the Hamiltonlan formulation

of our theory. Some of the aspects, llke the role of the Dirac

strings In our formulation, become more transparent In this

language g

In the last chapter, we start with a careful analysis of the

various subtle aspects of the theory. We also discuss a couple

of related problems which are yet to be addressed.

Finally we conclude the thesls with a simple analogy and a

flow chart |llustrating the basic Idea Involved In our

formulation a

The various Ideas and techniques which are not directly

essentlal for the continulty of our discusslon but otherwlse

i important for getting a global perspective of our theory are

glven In the appendices.

VI



CHAPTER 1

" MONOPOLES  DIRAC STRINGS & ALL THAT .

In 1931 Dirac‘'™’ showed that magnetic monopoles fit
naturally Into the framework of quantum mechanics and lead to a

connectlon between electric charges (e) and magnetic charges (g),

eg = 2n % Integer.

Therefore the exlstence of even a single monopole of strength
g would Imply quantization of all electric charges In the nature,
In units of {Emi’gu]. This In a sense s a purely quantum
mechanlcal phenomenon since classically Maxwell's equations and
Lorentz force equations are consistent with all known physical
principles for any values of electrlc and magnetic charges. After
Dirac’s work there were ‘“successful' attempts to write down

hon-relativistic quantum mechanics' !’ and non-guantized

relativistic particle thEﬂr}rtE] with (non-local terms) of these

particles. But a conslstent relativistic quantum fleld theory of

these particles appeared to be difficult to the extent that some

— Y .



people thought that the concept of a monopole was not compatible

with the ldeas of quantum mechanics and relativity tc:gather.tg'gl

Meanwhile there were a number of attempts to construct a
quantum fleld theory of monopoles'®’. In 1966 Schwinger‘®™™’
constructed a quantum fleld theory of these particles. This
formulation was not manifestly local and manlfestly Lorentz

covariant. He explicltly verlfled that the theory was Lorentz

Invarlant provided

eg = 4n % Integer

This condltlon Is more restrictive than the one proposed by Dirac.
It was not until 1971, 40 years after Dirac's first paper on

monopoles appeared that Zwanzlgerlj"'-“’

was able to construct a
local actlon formulation of these particles. Thils theory could be
extended to quantum fleld theory. He showed that the Dirac
guantization condltion Is necesegary even for the consistency of
quantum fleld theory. Although this formulation avelded the
problem of non-locallty present In the previous theorles by
Introducing two wvector potentlals, It was still not manlfestly

Lorentz covarlant. The theory explicitly Involved an arbltrary

unit vector associated with the Dirac string.

In this thesls we construct a manifestly Lorentz covariant,




local quantum fleld theory of Dyons using only one vector
ﬂﬂ-tEﬂﬂalH]. We show that the principle of minimal coupling
along with the dual symmetry of Maxwell's equatlions uniquely lead
to this theory and this turns out to be a gauge theory. This is In
contrast wlth the earller theories where by Inverting one of the
Maxwell's equatlons (In terms of a vector potential), attempts
were made to formulate an actlon soc as to reproduce the other
Maxwell's equations by a wvariational princliple. In the presence
of both electric and magnetlc sources , thls procedure Involves
integration of one of these along & llne (the Dirac string).This
led to the problems of Lorentz covarlance , non-locallty ,slngular

gauge transformations etc.




1.1] CLASSICAL MECHANICS

The classical mechanlcs of a system of magnetic monopoles and

glectrlc charges particles Is described by the generallzed

Maxwell's equations,

a‘uF““ = J“ (1.1-a)
a;inu = Ku (1.1-b}
and the Lorentz force equation,
dzx é 1 g o i ﬁx;
m 3 -[-E = [E F”u{?f.u} + g F[IU[KLI]] % (1.1.-c)

for the 1" particle which carrles an electric charge e and a
magnetic charge g, A particle which has both electric and
magnetic charge Is called a 'dyon’. In the above equations F

Is the electromagnetic fleld strength '['Fﬂi = Ei ls the electric

fleld and 1‘=quF = E”_‘ Ek |z the dual of the magnetic fleld),(T)




s the proper time and x‘pm (I= 1,2,--N) Is the world line of
the (1'") particle carrylng the electric and magnetic charges e

~::ji respectively. JP & K” are the electric and magnetic currents,

N
- i 4 " ] _
i = T e, | dax;, 8% 0% o) (1.1.-d)
. i 4 |
. 5 (x- e
K00 E! g, Idx“ (x-X,(¥) (1.1.-8)

These equations are Invariant under the 'duallty transformations’,

Fuu - Cos 8 Fuu + 8in 6 F;m (1.2-a)
Fuu — — SIln 8 F_.u- + Cos @ F““ (1.2-b)
J C BJ + Sln 8 K 1. 2=0
i — 0s u n i ( ]

I'{I—! —SInBJﬁ+ Cos 8 K

; (1.2-d)

L]

Thesé symmetry transformations at (8 = n/2) wlll be cruclal

In our formulation.

These equatlons ((1.1-a)-{1.1-e}) are manifestly Lorentz

covariant, local and Internally conslstent. So at the level of




classical equatlons

of motlon, electric charges and maanetic

charges can co-exlst for any values of {e) and (q).




1.2 QUANTUM MECHANICS

One can Immediately see that the quantizatlon of this system

will not be stralghtforwurdt“. The reason Is that In guantum
mechanlcs, the electron sees the vector potential A“. rather than

the electric or magnetic flelds, where A,u ls deflned by :

RV =gt aY - 3P AP (1.3)

In the presence of magnetic charges, ( a“ F;m #0), It s

not possible to deflne the wvector potential A“ as In (1.3).
Dirac's prescription for deflnlng a quantum theory In the presence

of magnetic charges Is to use an AF which Is singular along a line

in Ru}. emanating from the monopole and golng to Infinlty along

an arblitrary llne (£). In fact the magnetic fleld of a monopole

of strength g can be written as [Flg.-1],

M =9x2 (Z2,r) + RED (1.4)

Monopole SOLEHOID

Here 2 Is a string directed away from the monopole and golhg

to @ In any arbltrary chosen direction. A is the vector
Solenold

potential for an Infinltely thin solenold (carrylng g unlt of flux



+ 3 3

towards the monopole) lylng along £ h&,r) Is the Dirac string
_}

along 2 and carries g unlt of flux from monopole to o In the

directlon of ® (Fig-1-a).

Explicitly,

A2 r =g I ax 5°(F-¥) . (1.5)
-

Where the Integration Is done along 2

BN e B it

L L - B | [ * +
/ \ ./\ gl(-2) ot (?)
- o {o} ()
(9] [a]
HONOPOLE = SOLENOID + DIRAC STRING

{Flg.1-a]: pefining the vecilor potentisl far the monopole.The
solencld and Lhe Dirac strlng carry g unite of flux along (-$)and
{i] respectlively.

To describe the motlon of an electrically charged particle
In the fleld of a monopole, thls vector potentlal of the solenold
(1.4) Is used for the minimal coupling. The singular magnetic
fleld assoclated with this vector potential along the string # Is

made unobservable to the electron by demanding that the magnetic



flux (g) along this string should not glve rise to Aharanov-Bohm

effect. This leads to Dirac guantlzation condltion:

eg = 2n{Integer) (1.6)

The magnetic fleld of the monopole then differs from that of
the Infinitely thin solenold used to deflne the wvector potentlal
by an unobservable Dilrac string. Stlll one has to show that the
theory does not depend on the locatlon of the solenold along (-%).

To show thls, we conslder another string ?ﬂl agaln running
from the monopole to @ In some different direction {?.J ).
Let ¢ denote the curve[—i'} followed by {i}. We may treat thils
as a closed curve elther by making sultable assumptions about what
happens at = or by assuming that 2 differs from ?rnnly In a finite

-5
reglon Flg(2). Let £ be a particular surface spanned by ¢ and Q{F}

[P]

[Figq 2]' The 111 defined gauge Lronafermation.

(A = gszam O)



be the solid angle subtended at point * by this particular

surface. Varlous cholces of spanning T will lead to values of @

-3
differing by 4m but will yleld the same value of V Q, except on i"
_}
Iteelf where 0 & %0 are |Ill deflned. We consider a gauge
transformation
A 5 R = 2 - g/an ¥ (1.7)

This transformation Is everywhere smooth except on the

_’
surface ¥ where It Is singular. To see the singularity structure
an T., we apply Stoke's theorem to a small loop enclosing ¢t Using

the fact that the solld angle ﬁﬁ"] has discontinuity of 4n across
_,

the surface E, we get,

3 x {K’ [f’}ﬁm—iti}sm} - RE,r) - BEor).

ar ﬁ = 3 X KSGLEE’?] + ﬁ{i,_l'!}

Hoenopol e

- IxR @ H+REDH (8

Hence the two strings ? and £ are connected by the gauge

transformation A(r), which Is singular and multivalued. Since It

10



Is defined modulo g, the single valuedness of the wave function
again Implles the Dirac quantization condltion. Thus to
Incorporate strings In this formulation one has to deal with
singular and multivalued gauge transformations

The formulation of Wu & vYang''™®' copletely avolds the
problem of singularities assoclated with Dirac's prescription by
using different vector potentlals In different reglons of space.
In the common reglon these vector potentials are connected by a
gauge transformations A(r) whlch are agaln multivalued as AMr) s
Identifled with [A(r) + (Integer) gl. Requlring the wave
functlon to be single valued agaln leads to Dirac aquantization
condltion.

Moreover the prescriptions described above do not fix the
Dirac quantization conditlon unlquely. To appreclate this, we
consider, e.g., a symmetrical solenold carrying (%/2) unit of
magnetic flux towards the monopole from two opposlte directions
{;} and (- ;] [Fig. 1-b].

Now demanding the absence of Aharanov-Bohm effect due to the
Infinlte magnetic fleld along the symmetrical solenald (carrylng

(972) unit of flux) requires

E':'Z—g = 2 n (Integer)

1B



/ lglel{g} (g/2) .[—i}
3} B 1) 1—":_:_} + + +
- P} . [P]
(- s i (#
(g/2a) (gr2)t
G tm) (€3
[g]
HONOPOLE = A SYMMETIRICAL SOLEHOID + DIRAC STRING

[Fig. 1"'b] : Hen-unlqueness of Dilrac Quanlizatlen Conditlon.

This was essentially the reason for the extra factor of two

appearing In the Schwinger's fleld theory formulation of the

monopoles.

So we find that even In the context of quantum mechanlcs, due

to the Dirac string, there are problems of manifest rotatlonal

covariance non-uniqueness of the Dirac  quantization

condltion,singular gauge transformations etc.. In the Wu & Yang

formulation though the latter Is avolded, the other problems still

persist. It Is exactly the relativistlc version of these problems

which showed up In the previous attempts of constructing fleld

theory of monopoles.

Before golng to the fleld theory, we elaborate on these

problems In the domaln of classical relativistic particle

12



‘mechanics, where Dlrac quantization conditlon manifests Itself In

‘the form of the action not belng single valued.'? 9’




1.3] ACTION FORMULATION AND NONLOCALITY :

The classlcal action formulation of monopoles In the presence
of electrically charged pearticles follows from a number of

different looking but actually equivalent actlon

{2:n,3-d,3-h)

principles For  example the action glven by

Schwlngerm'h]rs essentlally

1= - g m, j dx + ]' d'x [1!4 Ffw - 1/2F BAA),
Py
-+
- JP A” - Kp B”{h] ] {1.9-a)
Here,
E‘u{_ﬁ} = (n.a) " n.F;U{xJ (1.9-b)

and n“ |l= some arbltrary unilt vector. A A B = A”E“—AUE“ for any

four vectors A“ and Elt and F. = 1/2 ¢

i p Hpo' po’

[rmi’r:!‘1 Is the Integral operator with the kernel,

o0

[n.a};; = I ds [Eifx—y—ns}] (1.9-¢)

o

14



and E“{n} can be thought of as the magnetic vector potential,

The equation of motion for F glves the correct field strength

tensor -

F =23aa aa -g*

p [T v [ (1.10-a)

with

- _‘ — —
Guu = (n.3d}) {n“Kn HPKH} (1.10-h)

Gw{xl describes the electric and magnetic flelds of a string
lying along the curve h'”[s} = nfs [s:0 to w) carrylng g unlts of
flux along |t. Varying the trajectories of the particles, one

gets the Lorentz force equation

e I
¥ dxu
= [ei[aﬁ.ﬁ.p-a”ﬁ.ﬁ] + gj{ﬂuEu—&“BH]] T (1.11)

=

dr

So thls formallsm leads to the correct equations of motion
only If the trajectories of the charges never Intersact the Dirac
string of any other particles l.e the “the Dirac Veto". This In

some sense ls the classical analogue of demanding the absence of

15



Aharanov Bohm effect In guantum mechanics. Brandt and Primack hRsied
showed that |t |s possible to avold the problem of the Dirac Veto

completely by modifylng the minimal coupling term

I A dx,
r

whenever the tralectory {Fe} of the electric charge hits thes Dirac

string of a monopole.

To show the string {np} Independence of the theory, conslder

n”—; n b followed by a gauge transformation A —» 'ﬁ',u+au A. The
invariance of the action under the comblned transformation Implies

¢ ¥ d
afhNaxr = {[{n 8) ' n - (na)! n] A K} (1.12)

Uslng Stoke's theorem, we find the equation Is satisfled

provided % has a d1écnntlnulty of + 95 across the surface,
Ej = X(x)e {s'n'@ sn:0xss's m}

for each |. Here Kjl:t] Is the trajectory of the j"h monopole

with T as It’s proper time [Fig.3].

16



Flg.3] : The gauge

Lranafoermatlens changlng n Lo f

discontinuocus on acroas Lthe surface L.

Now the contributlon IJpAud‘x to the actlon changes by }
! 1]
II F-I”(ejgj—ejg]}. where Mlj ls the number of times (+ve, -ve or

| zero) that xl Intersects EJ {or equlvalently KJ Intersects En,]'
|
Therefore, the actlon ls Invarlant modulo [elgi—ngI] under the

change of the strings.

The following remarks regarding these and the other

equlvalent formulatlons glven by others (Including Dirac's) are In

order :

1) This actlon can be trivially generallzed to field theory

of mohopoles/dyons If we replace J“ L !':I by the corresponding

l fleld currents and modify the actlon accordingly.

17



2)

this Invariance explicitly, one has to deal

transformations.

18

The theory |ls not manifestly Lorentz covariant.

To show

wlth slngular gauge



1.4] FIELD THEORY

As mentioned above the action (1.9) can be generalized to
fleld theory by replacing Jp and Kp by the correspanding fleld

currents and modifying the kinetlc energy term accordingly. This

apparently non-local formulation proposed by 3

Schwinger

Involves only one vector potentlal and |Is not manifestly Lorentz

cavariant. The problem of non-locallty was avolded by

Iwanztgerm'd]' by Introducing an extra (magnetic) vector potentlal

along with the electric vector potentlal as follows.

The equations (1.1.-a,b) Imply

F==@AB)"+ (na)" (nAJ). (1.13-a)

F'=-@A A+ (na)" (n A K. (1.13-b)

Here np Is an arbitrary unlt vector assoclated with the

Irection of the Dirac string.  Both these expresslons for F are

on-local. To make them local we use the Identlty

19



T {[n A (n.F}] = [n A tn.F“}]d} (1.14-a)

From (1.13-a,b)

n.F

n.(a A A) (1.14-b)

n.F n(a@ A B) (1.14-¢)

Using (1.14-a,b,c) we get a local expresslon for F:

F = {n A n.(a A M]} - {n A [n.(a A BJ]J} (1.15)

Substituting thls back In the Maxwell's equations we get
local fleld equations for electric and magnetlc vector potentials
A% B:

(n.3)(n.8) A ~(n.3) 3,(n.A) = n ( n.d) A n“a“{n.m

b r -
- ( n.a) €pn, #'s" = J, (1.16-a)

and

2
(n.a8}(n.a) Bu -[n.ﬁ‘}ap[n,B] - n”{ n.a)a,B) + nnﬁl (n.B)

20
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ER T ik
= { n.d) E“pkl n g A = K“ (1.16-b)
Obviously these local equations follow from a local
action®"*’, which Is glven by,
I{n) = -1/2 Id“x {[n.{a A ALIn.(@ A B)] + [n.(8 A AP
+ (A B, B 4 - A}} (1.17)
Starting from this actlon In the functional Integral

formulation, Zwanziger was able to demonstrate that all gauge
Invarlant Green functions are Independent of the Dirac string

provided the generallzed Dirac-Schwinger-Zwanzlger condltion

eg -eg

9, 19 = 4n % (Integer) {1.18-a)

| holds. This Is the quantization condition for dyons that CAarry

both electric and magnetic charges.

This theory suffers from the followlng drawbacks -
11  The theory does not have manifest Lorentz covariance.

2] The quantization conditlon (1.18-a) follows from the use

of the symmetric kernel for the operator (n.d) ',

21

N i e i il




{n.a};: = % ‘[ds [B"tx-y—n 5) - 5*{)(-'}"'?!1 s]]

but we also have the cholce of choosing an asymmetric Dirac string

corresponding to

(n.a).! = [ 8*(x-y-ns) ds.
®y
This leads to the weaker quantization condltion

I{Eig - ejgi} = 2n x (Integer) (1.18-b)

J

Hence the fictitious object, the Dirac string, affects the
final physical consequences of the theory. This arbltrariness In
the quantlizatlon conditlon Is the relativistlc version of the
arbltrariness discussed In sec.(1.2) In the context of quantum
mechanics (Fig. 1-a, 1-b).

So the baslc reason for the wvarlous problems assoclated with
the previous formulations was essentially the presence of an
unphysical object, the Dirac string. 1In other words the dynamics
was described by choosing the 'Wrong Dynamlcal Varlables' leading

to varlous artificial problems. MNow we show that just by using

22



the dual symmetry (1.2) of Maxwell's equations along with the
principle of minimal actlon one Is led to the cholce of
appropriate varlables which evade tha need of the Dirac string
completely. Hence the problems of non-locallty , Lorentz
covariance, etc, automatically get resolved. Moreover, the
resulting theory Is a gauge theory of moncopoles/dyons and the

Dirac quantization conditlon turns out to be a consequence of

this gauge Invarlance g

23



CHAPTER II

" A THEORY WITHOUT STRINGS ATTACHED "

In thls and the next chapter we describe our formulation of

a theory of dynna“'m.

As mentloned earller we will be
essentially deallng with the cholce of correct dynamlcal variables
to construct a theory of monopoles (dyons). We wlll show that the
pr[nclple.of minimal coupling along with the dual symmetry of
Maxwell’'s equatlons In the presence of magnetic charges , the two
well known princlples of physlcs, unlquely lead to this cholce.
Having found them we wlll describe thelr dynamical and kinematical
aspects In detall. We find that thelr dynamlcs Is governed by a
certain "gauge symmetry”. This gauge symmetry Is the origin of
the Dirac quantization conditlon. This should be centrasted wlth
the earller appmanhesm‘ where the physlcal Dirac quantization
condition was a consequence of a flctitious object - the Dirac
string. Introduction of thls unphyslcal string In all the earller
theorles further led to a serles of serlous but artificlal
problems Iike non-locality, loss of manifest Lorentz covarlance

etc. QOur formulatlon In terms of "dual dynamical warlables"

completely evades the very need of the Dirac string at the level

24




of dynamics. Hence all the problems assoﬁlated with the earller
! attempts automatically get resolved. Wwe demonstrate our Ideas
using spin zero flelds.

Throughout this chapter we use the functional Integral
formulation. The Hamlltonian description will be glven In the
next chapter. We wlll often appeal to the U(1) lattice gauge
theory frame work, which not only provides a natural ultraviolet
cut off for our theory and puts our “"dual variables” on a much
firmer footing, but also provides valuable Inslghts regarding the
non-perturbative phase structure of the theory [Appendix.-E]. 1In
fact, we have been motivated by extensive hints contalned In the
literature on compact U(1) lattice gauge theorles, where monopoles
arlse due to compactness of the dynamlcal variablas [Appendix cl.

In  formulating the theory, we exploit certain “"dual

wi9)
transformations”'

on the scalar and vector flelds along with the
principle of minimal coupling. Now we describe each of these
|deas separately before putting them together to develop a local

manifestly Lorentz co-varlant theory of dyons.

25




I14-1] DUAL SYMMETRY OF MAXWELL'S EQUATIONS

The Maxwell's equations (1.1) In the presence of electric and

magnetlc charges,

B.u th = Jp
and (1.1)
a.u F;w = K,
have the dual Invariance,
Fpu i— Fpu i J” i — K.u (1.2)

This Invarlance essentlally Implies that a system containing

only electric charges [a” F“u = Ju ; a” F“u = 0 } can not be

distinguished from the one which contalns only magnetic charges.

[a“ FFp = Ku ; 3” FI!L’ = -:ZI]. Definlng the electric and magnetic
vectar potentlals by Fpu = aﬂ Au— ap nu and F;m = a“ Ep 7 Hu E”
In the above two cases respectively , It Is clear that the dual

Invariance of Maxwell's equations corresponds to

A = B and J & K
1" u 1 H

26



Hence, If electric charges couple to electric vecltor
potential A“ by minimal coupling, the magnetic charges will couple
to B“, the magnetic vector potential, by minlmal coupling. This

wlll be the starting polnt of our theory (equation 2.13).
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ITA-2] DUAL TRANSFORMATION ON SCALAR FIELD :

For simpliclty we start with a real free massless scalar

fleld 8(x). The Euclldean functlional Integral s
- . 4
z = ] do exp J{a”m{aﬁﬂ} d'x (2.1)

We llnearize € In the actlon by Introducing an auxlllary

| vector fleld -::p,

2

B
- - -
Z l de cu::p exp J{+iape c.u + X (2.2)

Integration over 8 glves a constralnt over C“,

| ac =0. (2.3)

The solutlon Is

G.=a8.H (2.4)
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Here Huu Is an antisymmetrlc tensor fleld & H#p =12 E.IJ'UPUH{-"U

FPutting thls solution back In (2.2) we gat,

_ = o 2 .4
2 = [ dH,,, exp _[{aun} d*x. (2.5)

Therefore a theory of a massless real scalar Is equivalent to
that of a massless antisymmetric (real) tensor. '™’
Having Introduced extra degrees of freedom (Appendix-B), we

have a local gauge Invariance,

H —H +a4d hu—auh

- o (2.6)

u

The corresponding Hamlltonlan formulation and the exact
matching ni‘ degrees of freedom In the Initlal and final theory has
been worked out by Witten & Deser. We describe It briefly In
Appendix B.

By Introducing sources for {8“91. It can be easlly checked
that the @Green functions for {a”a; get transformed to the Green

functlons for :':1“H”u In the flnal theory, l.e,.
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L Bpﬁ‘{l} EIUEFE} e > = £ apHi!PU} f’.‘lﬂHwJ{E]...:> (2.7)

Later in thls chapter we generallze this technigue to a
complex masslve scalar field coupled to the U({1) gauge fleld A“.
We call the transformatlon such as (2.7) which transforms the

scalar fleld ¢ to the antisymmetric tensor fleld HJIU the duallty

transformation on matter.

30



ITA-3] DUAL TRANSFORMATION ON VECTOR POTENTIAL :

In Maxwell’'s theory, In the absence of sources, the fleld
strength tensor Fuu can be expressed In elther of the following

ways :

[a]

n

Fpu HHAH— auﬁ'u

~

1

[b] (a Bp—&uﬂp]

Fw = (9

Here A.U Is the electrlc vector potentlal and Bp Is the
magnetic  vector potential. In the functional integrai
formulation one can transform A.u to BJJI as follows.

We start with the functional Integral for pure quantum
electrodynamlcs written In terms of the electric vector potentlal

A,
L

-~ _ _ 2 4
7 = Jdnu exp 1!4[{-3” A, — 8, A)? d'x (2.8)

Agaln we linearlze In the A” fleld by Introducing an

a




auxlllary antlsymmetric tensor field G

o N 4
e jdAﬁ Jdaﬁu exp .[P{aphu EDAPJG 9. ]d X

(2.9)
| Integratlon over A“ Implies,
~p“ =0. (2.10)
The solutlon of this constralint Is
| G_uu = ap Eiw--.':\‘p Ep (2.11)

Agaln, Introducing sources for lI.E!'J A= a“ AH}, we find that
thelr Green functlons get mapped onto that of e

i (apeﬂ BUB ).
| Hence the vector fleld B

obtalned In (2.11) Is Indeed the
magnetic vector potentlal.

| Now we Introduce minlmal coupling of the electric current J%!
| to the photon described In

terms of the electric vector potantial
A,
u

The partition function Is
ol 4

A -3 =
| Z[J] Jdpaxp J'{ @, A} Ap}dx
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Repeating the above procedura we find that the dual theory In

terms of the magnetic vector potentlal E.” has a non local coupling

el
to J“ , Le,

E[Jnl] i [ﬁﬂp exp _ﬂ[[apau_auaujﬂ +(n.a)™ (an”—anH}]z

(2.12)
Electric Maagnet| ¢ Vector
currant, Potentlal.
I B,
iy -1 z
[(8AB) +(n.8) '(nAJ)]
Minimal Minimal
coupl I ng coupling
4 4
[Jﬁ.hpd X II{“.B“ﬁ X
|
| a @)% (n.a) ' (nan))?
| K
T ]
| Electric Magnetlc
vector potentlal current
| Figd-] The non-local l:.ﬁ.”— K“.'! il BF‘ ],IJ] Intoractlons invelving

Lhe Dlrac sblring.
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Here nlu |s an arbltrary unit 4 vector and

(na)* = 5 [ds [5‘{x~n g) = &'(x#n s}]
4]

As expected, the magnetic vector potentlal couples to the
glectric current non-locally wvla the “ Dlrac string n“".
Simllarly the magnetic current Kﬁ couples locally (l.e. minimal

coupling) to Ep but non locally to Aﬂ. These Interactions are

described In [Flg-4].




FORMULATION OF THE THEORY

Having equipped ourselves wlth the basic Ideas to be used In

_?-:-f-fprmurntlon we write down the partition function of a scalar

monopole ¢ minimally coupled to Bu,

7 = [y |1 " z -
Z = an DB, exp Iz [4{'3;;5.; 9,8,)° + (3,9% ~ 1g B p¥)

(ﬂup + Ig Eﬂp} + v{p*np}] (2.13)

Here _[ In the exponent stands for the Integration over gAY
As stressed ea:ter, If at thls stage we convert B." to AH, the
‘n 'ﬁ]_:;ff__!lhg of g% ap o with hp will not only be non local but we will
also lose the manifest Lorentz covarlance due to the presence of
the Dirac string n”{FIg.M. Essentially, this had been the

approach of most of the earller attempts.
|

He rewrite (2.13) using radlal and phase degrees of freedom

,}[= R(x) exp l8(x)],




. N
7= Inn D6 DB, exp J' [Ergaﬂla.p apoJ + R3(x) (3,0 + g B ]

+ (apn{xf + vm"’}] (2.14)

The ultra local Jacoblan coming from (ultra-local) the point
transformation Is absorbed In the deflnitlon of the measure. MNow

;_1:._!_1& actlon can be linearized In EP and 9 by Introducing the

auxlllary flelds C d G :
auxlllary flelds y 3d 6,

= -a
[DH DO DB, DG, DC, exp -| [ € pot®,8,78,8,) Gy

L=

,uu
2 2 2
+ Z2IR(x) [apﬂlx} + g BP{KJ}CH + C” + {&HH} + V(R }]

(2.15)

Formally Integrating over B” & 6, we get tha functional

&-functlons Implylng the mnstralnts,{#”

(#1) Here to begin with we have taken the range of 0 to be

[, 4e] ﬂhd not [0,2n].We will take the periodicity property of 0

Inrc account more carefully later.




e

=0 , aa  + c. =0, 2.16
aumcp] O Y 29RC, (2.16)

Here Q@ 1 G la the dual of G;_:u' The flrst

W= £
Hw 2 pupo o
constraint also follows as a self-consistency condltion of the
ol

‘second. These constraints are solved In the form :
= j

PRC = -8 H ; Q= (apap—a A +gH (2.17)

v uu}

Thus we can formally rewrlte the functlonal Integral (1) as

B 11 _ 2
2= IDH ]DHpu [Dﬁp exp j[4 @A, 70,4, + 9 H,)

1 ~

¥ o+ (AR + vmzm] (2.18)
4R Y H

K

Hence, If we Inslst on describlng spin zero magnetically

_aghar_ged matter In the conventlonal way by a scalar fleld ¢, It's
___u_pllng to the usual vector potentlal Ap Is non-local. Instead
'_A'I_g-describa It by a real antisymmetric tensor Huu and the radlal

fleld R. In this description we completely evade the need of the

ar




Dirac string to describe the Interactions of monopoles with
electric vector potentlal AF . Hence even the questlons regarding
the problems of non-locality and the loss of Lorentz co-varlance
do not arise.

One also comes across these specific Interactions of
a ‘antisymmetric  tensor Hpu of our theory In Supergravity,

and Compact Lattlce Quantum Electrodynamlcs

At thls stage coupling the electrlic current JrJI to the photon

’!‘,u can be trivially done by minimal coupling J‘J“A”d"x . But

before we do this and obtain the Dirac quantization condition, we
describe some Interesting features of the duallty tansformations

performed above.
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I118-1]} Features of Duality Transformations -

Al

Having Introduced some redundant degrees of freedom In

1 to describe the magnetic matter, the dual theory has a blgger

local gauge Invariance,
|

+
Aﬁ — Ap ghu

(2.19-a)

Hm, — HW + a'u/iIJ - au.-’tp ; (2.19-b)

These transformations form a local R'Y’
i =) k

gauge group. Here,
gt

Is the contlnuous group of 4-tuples of real numbers under
Ir':.

{?_Eipn. We will refer to this as "m-type” gauge Invarianceas It

clated with the magnetic matter H”u. Writing .-".” as the sum

ngitudinal and transverse parts:

o T
h“-ap;’-. + hp

(2.19-¢)
we notice that Hpu Is sensitive only to transverse part of A,
";;} (with au’\:, " 0) and It removes the redundant degress of

; T
of HIH»* (Appendix B ). Having fixed hp
dinal part of hil'

3

this way, the
{5 BPA reduces the three polarization
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|-'.mtors of Au to two tran‘sversa polarization vectors.
Under m-type gauge transformations, the matter Hpu plays the
role of the gauge fleld (It transforms with a derivative) and the

transformation of electromagnetic potential Ap {A.u 2 A +g np} Is

u
analogous to that of 6(x) under U(1) gauge transformation

FIJfo'} — 8(x) - g a(x)). Hence the roles of the gauge flelds and
‘the matter flelds get Interchanged. The MHNoether currents
{'rraspnndlng to (2.19) are now FW[A,H], the full field strength
m_r of the dual theory glven by,

F iﬂ’{ AH)= apA p-ap.u. i +gH ™ (2.20-a)

~ The conservation of this Noether current Fﬁu follows from the

‘equatlons of motion of Ap.

Bu Fﬁp{A,H} = 0 (2.20-b)

This Is the Maxwell’'s equations In the absence of electric

Eﬁﬂngas.

This conservation can also be looked upon as a conslstency

dition for the equation of motion of H :

ap Hpup = g va (2.20-c)

40
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Here,

1 L

= — |2 + +4a .20~
Hp'up - [“pr ﬂ” Hp“ b Huu] (2.20-d)

Is the fleld strength tensor assoclated with the antisymmetric
tensor fleld H,: These two ways of looking at the conservatlon
laws of Noether current FW{A,HJ Are quite analogous to that of
p;_-[;pp, the Noether current of the Initlal theory. The latter
~again can be looked upon elther as s consequence of the equation
of motlon of the matter fleld 9 or as the conslstency conditlon of
the equation of motlon for the gauge fleld E”. This comparison
makes the Interchange of roles of the matter and the gauge degreas

of freedom even more transparent . The Blanchi Identity of the

dual theory takes the form,

au F B 3 H (2.20-e)

"Implylng a non-zero magnetic current which |s trivially conserved.

3
[B] Introducing sources for the Moether currant, g qu; and

the topological currents, Epupﬂ{apﬂa_aagp}’ we find that thelr
correlation  functions get  mapped into  the correlation

unctlons of the topologlcal current, au”;m and the HNoether

GUrrent, Fpu respectively,
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*{—} ‘H = -
< ¢ DP‘ ¢(1) ¢° D, #(2)— > = « apH_up“} 3 H, (2)--- >
(2.21-a)
£ Euupu{apag = ang}“}_"_ » im £ FMU{A.H]H}—"" >
(2.21-b)

Hence, under the duallty transformations, not only the roles

matter and the gauge degrees of freedom get Interchanged, but
‘the Noesther and topologlcal currents also change thelr roles. The

—

equlvalence of gk D 9 and @ H Implles that the In-fleld

u v

operators of monopoles In the Initlal and dual theorles are
related by non-local transformations. Thls non-local relatlonshlp
:?Eatwaan the Inltlal and the final dual variables removes the Dirac

éﬁgl‘ﬁgs of previous formulations from the dynamics. This

‘model In (141) dimenslon''*’,

We elaborate on thls In the third

C] . In the presence of many magnetically charged spln zero
flelds (FIP,H;;H}. p=12..,N with magnetic charges g" the

Interaction term generalizes to [FH”(A,H"]]E. where,

42
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(ﬁ,H"l = [BPA,,—B A i g” H”t,] . (2.22)

p=1

now have a separate m-type gauge Invariance for each of the H”

B P | P "
Hi, & Hi, 3, A -3, A (2.23-a)
H P P
A Y A + [ A 23—
i 7 ngg 4 (2.23-b)

43



118-2] The Spactrum

Having dlscussed the properties of duality transformations In
» It Is Interesting to translate the spectrum of the theory
Ibed by (2.13) Into the language of the dual theory
sponding to (2.18). It Is easler and more frultful to do

. first for the case of spontaneously broken U(1) symmetry

aj Higg's Phase

In this case we have Higg's mechanism with Ap "eating up" the
lone boson @ to glve a masslve boson described by {A”wﬁaj.
 there Is a masslve real scalar, the Higgs, described by
Moreover, consldering configurations which are

ependent of one of the dimensions (let us say x__i], we also have

ot

T

k23 g o8 -

N = J d'IF ‘—&T{X‘]J_a} = E‘g $ 3.31 F
i




(2.24-a)

Here 3 Is the magnetic vector potentlal and the line Intearal
|s over the boundary of the (x,y) plane, p Is the azlmuthal angle
"1j the x-y plane. Using Stokes’ theorem, the line Integral In

24-a) can also be written as a surface Integral ovaer tha{xl,xz}

4+ 4 9 4 9
3y _ -
N -EEI{?EB}.ds-E%jE.ds

(2.24-b)
) -
Here E Is the electric fleld. Hence, for each of the three

‘planes we have a conserved topologlcal charge N''’(i=1,2,3).

In the corresponding dual theory, the antisymmetric tensor
! A” to glve a theory of massive HHI-" equivalent to a
'_tfva vector boson [Appendix-B]l. The MNoether current In the

1 . 1
iEe = = d ; .g. =
theory Is glven by Ff-ﬂ*{ o s H”up] Choosing (e.g.) v = 3,

conservation law Impllies,

ating this over the (xy) plane we get,
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Idxi dxz auFua = de:dxz [alF!I:l ¥ aze'a] ki

Hence for each plane we have a conserved “Moether charge” N''’,
PHE R 2T
N0=1,2,3) = [ €' ds (2.24-c)

This Is agaln the net electric flux across each of the thres
planes In the dual theory. Moreover It Is conserved beacause of
quations of motlon and not because of topologlcal reasons.

Thus once agaln we find that the topological and the Noether
ertles of the theory get Interchanged under duallty

formatlons.

b] The Coulomb Phase

\'I we conslder the coulomb phase <p> = 0. 1In (B”,p}
ge the spectrum has massless photons described by B“ and

jed spin-0 particles and antiparticles described by ¢ and p*.
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consequence of the 1,.1"H2 coefflclent In —;(au_l-lw]'z term In
it R
thara are no excitatlons directly corresponding to the

s H & R. The charged particles ¢ correspond to certaln

comblnations of H#” & R. This Is analogous to the

(14}

(1 +1) dimenslon Sine Gordon Thirring model This

¥
e

ance |s best described In lattice gauge theory In the
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I18-3]  Gauge Invariance & The Dirac Quantization Condition

Tl now we have been discussing the theory with fields
carryl g only magnetic charges. We now proceed to construct the
.;Hlth many dyon flelds and show how the Dirac quantization
tio arises.

As mentioned earller having got a local manifestly Lorentz
ant actlon for magnetic charges coupled to the usual
vector potentlal A“, we can trivially couple electrically
‘tif matter (2°9,9%) [with electric charges e%g=1...M)] to
n by minlmal coupling. Agaln we have the option of
g electrically charged spin zero matter 97 by It's radial
F freedom p? and the antisymmetric tensor quu' In the
resentation we have the following two advantages :

Magnetic charges (RY, H:p} and electric charges (p7 , K:U}
2d on equal footing and hence the dual symmetry of

s equations |s comparatively more transparent.

 We can trivially get a theory of dyons Just by

: P q P q
ng corresponding R with p"and Hpu with Kpu.
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Henceforth we stick to this antisymmetric tensor description
pin zero flelds. Agaln, because of Introducing redundant
s of freedom to describe electric matter In the form of

= 1....M) we have ancther sacred gauge Invariance,

E_;p 2 K:ru + 8, W= 3, 1; , pTa p? (2.25-a)
] P : P P P s
L Wy RP 2 RS As A (2.25-b)

Belng assoclated with electric charges K L refer to these
[#2]

pe” gauge transformatlons This Invariance Is purely

kinematical reasons. Hence the gauge flelds A” and
. r::.ﬁnrge flelds {H,Hpu} remaln Invarlant. Moreover the
 of ﬁ” under e-type gauge transformations also follows
._ ct that m type gauge transformation already reduce the
- of freedom of A to two physical (transverse

i
ns) degrees of freedom.

?EH-"_'HE differ from the nomenclature used In the reference

where the original U(1) gauge transformation was called the

e" gauge transformation.
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| photon .Ap by minlmal coupling In Its dual form l.e.

i;.#""?ﬁ“]' This coupling Is e-type gauge Invariant. Under

e gauge transformations,
i

ﬁ[la ﬁ,u BUEHP] =leg J'k:; avEpu

this coupling Is sensltlve only to the transverse part of
pe gauge transformation (2.19-c). It appears that there
ay to make it m-type gauge Invariant. To resolve this
;;j.:l_l'ncrapancy we conslder the regulated form of this theory
@ and show that the problem resolves Itself by ylelding
guantization condlition. This regularization Is most
In our formulation because It automatically takes

ity of @ varlable In the original theory Into account. we

k to this point later. The part of the lattice action

2
L 1 P P
5= - - 7 {[ﬁ a(n)-A a(n)+) g h {n]]
4 n:.urv p " g I“I P Hu
. " .
- }E e E €wpo Kup(n)Bga (n) bgnp[n}]} (2.28)
' (HUpO)
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where n labels the sites of a hypercublic lattice In four
islons and jLu,p,0 (=1,2,3,4) label the unit vectors along the
sponding directlons.  The connectlon between the lattice
es (lower case latin letters) and the contlnuum flelds
case latln letters) Is In an evident notation. We have
 lattice fields (by the lattice spacing a) sultably to make
dimenslonless. Because the bare charges e & g In the
jum theory are dimenslonless they are not scaled relative to
definition. It Is the last term In (2.25) which Is not m
auge Invariant. This non Invariance can be traced to the
.-.ﬂult, w_h‘ile maklng duallty transformatlon on the compact
lable 6 [0:2r], Its range was taken to ba [-»,4=]. Hence, In

al theory, the range of the dynamical varlables |s more than
asponds to the scalar fleld theory we started with. We
remove these discrepancles In Hpuiﬁw] and the gauge
atlons, hu[lu} by regulating the theory on lattice. This
» analogous to compact lattice quantum electrodynamics
] or x-y mndeI{E} (In 2 dimension), where the periodic
- the dynamlical varlables Involved |s Incorporated by
lattice cut-off. The resultant Hw [Kw] and  gauge
rg.a'.ﬁu {1#] turn out to be Integer valued flelds. In the

I__nlta_!gral formulatlon on lattice It Is easy to see that

ty of 6(n) at every lattice slite (n) will make H, (n)

Integer valued [Appendix- C]. Hence the transverse
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the m type (e type) gauge transformation AT {n] (T {n)}
nteger values.

ing handled these discrepancles In the dual theory » the

: tnmsvarse Ppart of m type (e type) gauge group

9-c) gets reduced to a local z“ gauge group for each

(electric) matter. Herg 2 the discrete group of 4

~Integers under addition. Hence this theory has to ba

t under the followlng two Independent gauge groups :

Corresponding to the transverse m-type gauge

Invariance, (M

flelds).

Is the # of magnetic matter

Currespandlng to the transversa e-type gauge

Invariance (N Is the # of electric matter

flelds).
|

:_-h___g_i;_tud!nn! part of the m type (e type) gauge

lons stlll  take values on the real line and form a
& ((R “’} ) under addition. The theory |s trivially

under these longitudinal  gauge groups. From

:___'It Is clear that {Ft{”}" reduces the three

N vectors of A to two transverse polarizations, The

"part of e type dauge transformations (R ”]}"
Ny role In the theory.

do
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partition function of the theory Is also Invariant under
"-'g'ju;._,.éauga groups (ZJ“’]", (z“’}" except for the last
(2.26). This term Is not Invariant under tz“’}” gauge
‘Demanding Invariance of the partition function under this

Dirac quantization condition. This can be easlly seen as

range magnetic and electric charges In Increasing

[gn ¢ g'? v g'® . ¢ gu-n]

[en T T .= Ecu!]

articular gauge transformation
hPt#nl : 0 for P = 1,...M

gu[ar site (n). Invariance of the partition function

Implles,

e g = 2n x(Integer)
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5 ol = [2n/g ] (Integer) (2.27-a)

 electric charges get quantized In the units of

's minimum possible value e, =2n/g].

"~'magn_aﬂc charge quantization, we conslder the tarm

nimum charged fleld K° and make a gauge

o
e

e’ag” = 2n Integer

a2 gP = gu{lnteger]

all magnetic charges get quantized In terms of a
um  un t (g ). The resulting electric and magnetic charge

‘a rectangular arld [Flg.5-a)l.

il




Magnetlc
charges

In unlts
of 9,
: 1

w

3]

! b
k 2 1 r B

Electric charges —»
(In units of zn.f‘gn}

{without 8 term)

Thus the m type gauge Invarlance Is truly a quantum

wce. It Is the Invariance of the partition functlon and

of the classlcal actlon. This Is analogous to the gauge

8|l T £.mFf M (2.28)
[ﬂ,ﬂ,l’lm’ K
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fpu{n] = [ .&” Bop = A, T hn,p'u ]

Ilflald strength tensor. This term Is Invariant under
type gauge transformations. Though this Is analogous

erm, It Is not a surface term due to the presence of

3y considering equatlons of motlon for ap{n] we find that

lc charges (dyons) carrying charges g" get (additional)

p (7}

harge 6 g Hence the modified electric charges are

» [Flg.5-b],

g = e' + Egl % (2.29)

o

‘Magnetlc
Charges . P
[ In unlts] = 7
ot -

|
|

..‘[

Electrlc charges —
(In units of 2n/g )

-é.h]_: The Laltice of allowed Electrlec and Magnetic charges.

twith B term)
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atlon (2.29) Implles a weaker quantization condlition,
a,9, - q

ng = 2n Z” (2.30)

. are sets of |Integers. This conditlon Is the Dirac

quantization condition.

"f e (e,g) grid Is now obllque (Flgh-b) with angle of

__u"-ilan from the original g axis
« = tan” 6. (2.31)

In the next chapter we describe the Hamlltonlan formulation

of this theory e
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lity trnnsfnrmnt[ons performed In the prevlous sectlons

& the understanding of certaln subtie aspects, llke

with the Hamlltonlan formulation of the duality
on the complex scalar fleld and the vector fields
and then comblne these Ideas together to construct
an formulation of our theory of Dyons. We also show
Eﬁgrgad particles ¢ and ¢" correspond to certain
I combinations of M, and R, analogous to the Mandelstam

n of the fermlon flelds from the bosons In (1+1)
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DUAL TRANSFORMATION ON SCALAR FIELD

lan for a complex scalar fleld ¢ on the lattice

= [l s et em | (a1

u X Et [w"tn} p(n+l) + 9" (n+) np(n}] + V(p“p)
n,

scaled the flalds sultably and x Is the hopping
Is the conjugate momentum of p*(n) with the
cor ,:T:.'u'“ atlon relatlons

i

L '] = -t = [, etm]

(3.2)

[ﬁthi : n"{nl] 6= [¢*{n1, w{nl]

rg reatlon, anhllation operators

B9



altn) = 1 [w’tﬁ} - ﬂtn}] . btme 1 [w(n} . n*(n]]
/2 y'2
{3.3-a)
an) = 1 [w(nl N ﬂ"th)] . By 4 [w*{n} i) |
/2 /2
(3.3-b)
[th this the equation (3.2) Impllas,
[s,81 = 1 = [bb"]
(3.4)
[a,b] = 0 = [a,b"]

The Hamiltonlan In terms of these operators Is glven by

) [a+{n} a(n) + b'(n) b{n}] ) [a+(n} a(nH) +
n n,l

(3.5)
' tmb’(n+) + b(n) a(n+l) + b(n) b (n#l) + h.c ]+ V(a,a',b,b™)

The particle and antl-particle number operators, which
ute with this Hamiltonlan are N_ (=a’(n)a(n)), Ny (=b'(n)b(n)

With elgenvalues na{n} and nb{n} respectively.

Instead of characterizing the states In the Hilbert space
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) np(n) >, we characterize them by | £(n) , n.(n) »,
&qu-a{n}'-.-nh(n} Is the elgevalue of the charge operator
r};ﬂb_{n] and n_(n) Is the elgenvalue of the operator

--'--'{n},Nb["”- Here MIn(NE,Nb] Is the the operator with

't elgenvalue. The operatos N(n) and L(n) have Integer
s With the ranges (0,0) and (-o,®) respectively. The
resentation | {(n},nc(n] > deflned this way , has the

of belng charecterized by two Integers independent of
LA
‘number operator N can also be written as

Nin) = c'(n) an) (3.6)

and C are the new creatlon and anhllation operators

ec = 1; el =etely = o (3.7)

operators are explicitly constructed In terms of the

ors L(n) = N (n) - N (n) and N = N (n) + N.(n) has

e constralnt,

N +L=2N 20 I e,

B rﬂlﬂf EATHEH;; Sy
AV ALY C-:" 2
BT “ T
= IPRAR v N\
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al operators later In this sectlon.

3 :t}'a'-qparatar L is analogous to the angular momentum operator
wo dlmensional rotor. We denote the ralsing and the
Ing operators for L by o*10 respectively. This construction

sponds to golng from (g, fp*} variatles to the radial

s (R,0) In the previous chapter.

-:'ﬁnd the correspondence between the new operators (L,N)

and  the original operators (a,b), we start with  the

|Nﬂ'”b} u l”ﬂ = Min [”ﬂ'Nb} , L om Na_Nb >

(3.8)

his we find,

N 1nc, £41 >

= €(n_-n ) |na+ >+ e(n,-n ) |na,nb—1>

(n) Is the step function

e(n) = 1 neon

n
o
=3
-~
o |

g2




€(N -N ) €(N, -N )
-aiﬂ' a b a+ 3 b 'a b
/] a ' Nb

(3.9-a)

-:-", the relations bstween the other new operators and

original operators are

N = Mina'a b*b) , L =a'a-b"b (2.9-b)
© =ea’s = b'h) bt + éb'h-atayat  (d8ee)
o= E(a+a - h+b} b + E{h+b - u+a} a (3.9-d)

the same technique ,we find the Inverse relatlonships

a = /NFL exp (16) €(L) + c* exp(I6) €(-L) (3.10-a)

a = €(L) exp(i8) y N*L + €(-L) C exp(-18) (3.10-b)

b = e(L) ct exp(-18) + €(-L) Y N-L exp(l8) (3.10-c)
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- exp(18) C (L) + exp(-18) /Y N-L €(-L) (3.10-d)

t step Is to formulate this theory In terms of the

tensor operators. For thls we define tha dual fleld

3 -+
£(n) =7 ‘E‘l h,(n) (3.11)

he lattice difference operator:
ﬂiF{n} = F{n+l) - F(n) (3.12-a)

ry function F(n). For later use, we define another

arator Ei on the lattice :
ﬁIF(n} m F(n) - F(n-|) (3.12-b)

on (3.11) defining hi(n) Is the lattice Hamiltonian

e functlonal Integral correspondence (2.21-a) wlth

-+
h(n) = HDI{n} (3.13)
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‘__151',?:: It is clear that the h(n) operators llving on
are real and Integer valued with range[-w,+x].
arge operator In the equatlon (3.11) is Invariant

dual gauge transformation
3 =+ - 3
hl{n}—> hl{n) + (v x Mn])l (3.14)

A(n) Is the gauge parameter and |s Integer wvalued. This
arlance corresponds to the m-type gauge Invariance
) In the path Integral formulation.

we characterize the Hilbert space by the eigenvaluas of

d N operators with the Identification,

a
JLLN > = | T ah(n), N > (3.15)
=1

equation (3.14) Implies that for the physlcal states we

_l

& = -+
Ih(n) . NER) > [hy(n) + (7 x A) |, N(n) >

-+
rting the relation (3.11) along & fixed line £ In the

ctlon speclfied by an arbltrary unit vector r [Fig. 6],
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£a1 (£)
) @
h=1|h=1|h=1|ha1 (To @)

IF]Q. 5]: zhn Duslity Tranefarmatian an Lattline.The Siring

¥ can be rotated randemly by Lhe dual gnuge

tranaformatlion.

hy(n) = ;’ T &n+rm)

] =t (3.16)
w w

= ): {n+a] (n + rm) +E (b* b) (n + F_m}

ma(l m=l '

m takes Integer values.

Let xltn] be the conjJugate wvariable to hlfn]. To find
relatlanshlp_ between xt{n} and 8(n), we consider the

n;m of the ralsing operator on a state | £(m) , n_(m) >

M) m) , n_(m) > 2| £m) 5, n(m)>. (3.17)

This Implles that In the dual description one has to create
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inta along a llne starting from the point(n) and golng to

et

3
ong an arbitrary direction € [Fig.6]. Therefore,

o ~
exp (18(n)) = M exp [ X (n + rm] (3.18)
!

ubscript | on x(n) specifies the direction of r.

along with (3.10) glves the creation and the anhilation

j'-.ara related by non-local transformations. Later In this
- we show that the non-local matrix elements of the
n H describing the dynamics of a spin zero monopole In
escription turn out to be local In latter representation

rized by ( hltn], N ) operators.

67




.'*E'HLE} DUAL TRANSFORMATION OF VECTOR POTENTIAL

We start with pure U(1) Lattice Hamlltonlan

" 5 on) -1/a° ] Cos [9|{"1 * 0y(ntl) = 8)(n) - G)(nt)) }
ni n,l,J

(3.20)

--.-'.El(n} are the angular varlables on lattice links and el[n}
are the corresponding conjugate momenta to be associated with the
lc vector potentlal and the electric fleld respectively.

rgument of the last term

Bl{n] + BJ(nH] - E}{n] - Ei{n+j] J

s the lattice fleld strength tensor assoclated with the plaguette

I,]) at the lattice site (n). (Appendix-A)

commutation relatlons are analogous to that of a planar rotor,

[elfn} 3 Bl{m}] = - Snm Elj : (3.21)

Thus the electric fields belng conjugate to the angular

les have Integer elgenvalues.

68




nalve continuum limlit of (3.20) corresponds to the
8,(n)
I

(2.8) with the Identification, An) = —

Is Invarlant under the gauge

8,(n) — 6,(n) + 4 An) (3.22-a)

El{n} — Elin) (3.22-b)

), the gauge parameter |s also an angular varlable. We

difference operators deflned In the previous

21) Implies,

Gy oy o o 1 5[5 ) ]

=8,(n) + & Aln) (3.23)

? [ﬁl al[n}] Is the generator of the gauge
L .

f{ia.azle Thus the physical states should satisfy
law constralnt




7 [EI el[n]]l Physlcal State > = 0 (3.24)
[

‘at every lattice site (n). This constraint should be Identified
with the equatlon (2.10) In the corresponding functlonal Integral
formulatlon. ©On the lattlce, It means that the algebralc sum of
the electric flelds along the links meeting at every vertex (n) Is
zero.

The Blanchl Identity on the lattice Is

exp | E E”[ﬂ]' s 1 (3.25)
pcC

Here the sum In the exponent ls over the plaguattes belonging
to a cube C with the orlentations glven by the outward normal

(Fig 7-a).

i / Flg.7-al: The Bisnohl identily
/ and orlented plaguottian
/ // belonging to a cubs €. I1i

corresponds Lo Lhe Gauan

law of the original theory.




To solve the Gauss law constraint, we assoclate the "dual

antisymmetric plaquette varlables® -f;”{n} to the electric fields

BI{n} i AJ L”{n} (3.26-a)

The equation (3.21) Implies that on the gauge Invarlant

states nﬁ” also form a planar rotor algebra wlith 8, as It's
conjugate varlable, le.,

[Blj{n}, Lkl(m]] = =1 Enm( 5||< 6 -8

i 1 5]k ) (3.28-b)

In terms of these dual varlables L”(n} the Gauss law s
trivially satisfled.

To get a Dbetter geometrical plcture of the duality
transformations, Gauss law and Blanchl Identity, we go to the dual

The dual lattice Is deflned as : The set of points

] belonging to the centers of the unit cells on the original



[Flg_B] : The dual lattlce in 2 dimenasions.

» B Dual lattlce sites (n) ;1 ® Original Ilattice sltes (n).

The dual wvarlables {.”{n} belng antlsymmetric tensors In

three dimensions can be assoclated with the link vectors Ei{ﬁ} on

‘the dual lattice as follows.

e

{”{n} - € ak{ﬁ} (3.27)

‘Here (n) denotes the dual lattice sltes.

In three dimenslons the equation (3.27) assoclates a dual
link varlable El[ﬁ] perpendicular to every plaquette term i.u{n}
on the original lattice.

The solutlon of the Gauss law constraint (3.24) now looks

i!_ke

eltn} = Eljk aj Ek{n} (3.28)
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T

Thls equation defines the magnetic vector potentlal e;{n] and

Is the Hamlltonlan verslon of the equation (2.11) In the
corresponding path Integral formulation. The equation (3.27)
Implles that on the dual lattice, the orlginal Gauss law
corresponds to the Blanchl Identity of the dual theory [Fig.7-b].

Thus under the duality transformatlons the roles of the

Gausslaw and the Blanchi Identity get Interchanged.

_/ // Flg.7-b]: The Bianchi identity
i //‘ of the dual theory corresponds

teo the Gaves Jaw of the origlnal

o

~ theory.
6”(11] IS § //
[C] /'

In terms of the dual varlables the Hamlltonlan (3.18) Is

- 2
M= §° {ﬁ £, ,(n) bt | gt (n) + £ .(n) (3.29)
(it a® 1] 1]
'I_.;_-: ITJ{n} = exp % | (ﬂu{n]] are the ralsing and lowering
operators for the planar rotors [Jti J}.

Compared to (3.20),In the transformed Hamiltonian above, the

roles of the terms without coupling and with couplings to the

13




[ __mﬁ_nngad, The coupling constant g has also

features assoclated with  any duallty

14



[I1-3] THE LOCAL DYNAMICS

.Tl":sl, sectlon we descrlbe the lattice Hamlltonian

of our theory of dyons discussed In the functional

anguage In Chapter 1I. Essentlally we will be combining
Iscussed In the flrst two sectlons of this Chapter.
The Hamiltonlan describlng the dynamlcs of a spln  zaro

ietlc monopole ¢ with photon Is

H=H +H +H (3.30)

= X [I“U‘*'—'l2 5 lwtrﬂlz] + V(]p|®) (3.30a)

i 2 s e “ it

bs[n]} -n’);.j Dns[ﬂitn} +Bj(n+l] & Bj[n) - E!i[nﬂj]
(3.30b)

“‘l =x ¥ [o¥(n) U, (n) p(n+l) + 9 (n4) .UT{H} w{n]] (3.30¢c)
n,l

b
b’[n] s the Integer valued magnetic fleld with
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a_n_gular variable ;1("} as It's conjugate momenta which
‘_:__d be Identifled with the magnetic vector potential.
—expl g Ej{n} and g Is the coupling constant.

In writing down the Hamiltonlan (3.30), we have exploited the

Invariance of the Maxwell’s theory. It Is basically the

~actlon In the presence of spin zero electric charges ¢

1 the correspondence

9 ¢, e (n) e b(n) &6 (n) e b (n).

B - + "
Here e, & b are the electric and magnstic fields. 6. (n), 8, (n)

are the electric and magnetic vector potentials respectively.

The above Hamiltonian has the local U(1) gauge Invarlance :

p*(n) — (exp 1 g An)) 9™(n) (3.31a)

p(n) — (exp | g A(n)) p(n) (3.31b)

Ut[n] —+ [axp-lgh{n]] U‘(n] [exp lg .-"l.{n+l}] (3.31¢c)

The Hamlltonlan (3.30) corresponds to the path Integral

16




[2.13).
We characterize all the states In the Hilbert space by the

J 3 3
‘elgenvalues of bl{n} g Na and Nh : N, N, bs{n].‘r. Out of

a b
-+

‘these, the physical states IH'. Hb 3 b{:’FhY””] are those which

satisfy the Gauss Law constraint In the presence of matter

T o
E[ﬂ' b, (n) I Nu r Hh r b’[ﬁ} >Ph3rulcnl

=
= [Nu':n} B Nh{n]]l Na 2 Nl:n ? bl[“:‘I >thllnal

.._l
= £(n)| N_, N, » b (n) Yoksdian (3.32)

at every lattice site (n). Here N_-Hh Is the magnetic charge
operator In the units of g and we have used the notations of
sectlon (I11.1,2).

This Gauss law can be solved non-locally In terms of the

-+
electric vector potentlal Ll{n],

-+ 3 o A
b (n) = € B LM+ T Lnirm) (3.33)

m=0

Here the summation Is done along a string starting from the




lce site (n), the location of the magnetic charge, and golng

) __pj_ng any arbitrary direction r. Thils is the Dirac string

| the Hamlltonlan formulation [Fig.9].

£31 {0 SO @)
(n)

F18.9]: The Dirac String In the laltice Hamiltonfan formulation,

aln has local U(1) gauge invariance.

¢(n) — (exp | g A(n)) ¢(n) (3.34a)

= exp | (g {.h{nJ} —+ [axp -lg l[n}]ﬁl{n][{axp + g 1[n]]
(3.34b)

The equation (3.32) clearly Implies that the representation
B -

Qi".- -tklﬁh. In the presence of monopoles will lead to a
ocal dynamics Involving the Dirac string (3.30b,3.33). This

s the orlgin of the numerous problems assoclated with the

i8




previous attempts to construct a theory of monopoles dyons.

In our formulation, Instead of the standard iNa[n},Nh(nb
.g;:. we chose the dual ihltn},nc(nb representatian for the spin
2610 monopoles (IT1.1).

Now we show that the matrix elements of the Hamlltonian
3.30) In this new representation |h1{n},nc{n], }-l{n]:‘: completely
gvade the need of the Dirac string and hence the dynamics In this
dual Hilbert space |h_l[n] " na[n], El{n}> Is local. Moreover,
f} naive continuum lmit of this theory corresponds to the
'enry described by (2.18) and hence Is manifestly Lorentz

covariant.

wWe redefine the magnetic fleld (3.33) In terms of the dual
+ -
variable hlin} and the electric vector potential ath{n} as :

) -3
bin) = € , nj f.k{n} + hI{n) (3.35)

h (n) =H (3.13)

The definlng relations (3.35) and (3.11) for the electric

.-.l
vector potential Li{n] and the spin zero matter In It’s dual form
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n) are Invariant under the combined transformations

4 -+ -
£ (n) — iltn} +h1(n} (3.36a)

3 - 3
hI{n] P hi{n] = ﬁj h*{n} ; (3.36b)

This Is the Hamliltonian version of the “"m-type" gauge
*;fgrlunca (2.19a) and (2.19b) assoclated with the magnetic
matter., Therefore all the states |:‘[n},nﬂ{n],zl{n]> related by
(3.36-a,b) are physically egulvalent. The Gauss law constralnt

for the dual theory Is
exp | [E [le{ﬂ]] +8 {n}]] = 9 (2.37)

As already discussed In the sections [II-A.2,A.3], [111.1,2]
H (3.30-a,b) have local matrix elements In this dual
Now we show that the effect of the Interactlon part of the

_jj’lt_on!an (3.30¢) Is also Independent of the Dirac string and

,.+
hence local In the dual basis |h|(n},nn[n},tf{nj 5.



The interaction Hamlltonian In the [Ha,Nb} number basis can

be written as

Hige =% I { a’(n) U, (n) a(n+l) + a'(n) u,(n) b (n+) +
n, |

b(n) U (n) a(n+l) + b(n) u,(n) b¥(n+1) } + h.C (3.38)

This Interaction Hamlltonlan acting on the basis

']Hﬂ[n},Nh{n].bll.'nD basls has the following effects:

Each of the first four terms In (3.28)

a] Increases the magnetic field on the ™ link at the
lattice slte (n) by one unit.
-3

& bi{n] = +1 (3.39a)

bl Increases the magnetic charge £(n) at the site (n), by

one unlt

& &Ln) =41, (3.39b)

c] decreases the magnetic charge at site (n+), E.{n-l-l}, by

gne unlt.
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5 E(n+l) = -1, (3.39¢c)

n ]N_, Nh, L!E(n}}* representation, these local changes are
mnslstent wlth the Gauss Law constralnt (3.32) only If the
rlc vector potential .tltn} changes non-locally resulting In

non-local dynamics (Flg.10).

(o) (m)
belg Sba1
ba1 fb=1
ba1 The eflfTect Eh-l
—
(n) |La1 (net) L=t

ef hepplng

(HNON-LOCAL)

origlinal Theory

LOCAL CHANGE ?:I kol
{-1 x -

Dual Theory
1.
;]g.“]] The changes due Lo the hopping Lerme In the original and

:"? dual theory.

az



= >
presentation |h (n), n_(n), £(n)> all the

b,c) can be taken care of by a local change

th

‘h (n) on the | link at the lattice site

& hitn} — s ik (3.40)

; also compatible with the Gauss law.




v.1] THE BASIC IDEA ON A FLOW CHART :
U(1) Gaugelnvarlant
_.I..,:-EPIN ZERO " Minimal cupling MAGNETIC VECTOR
MAGNETIC MATTER. |° 2 POTENTIAL.
.B d B
[ ¢ ] [ JKp-B e ] Py |
*
p(x) 2 p(x) Bptx]+Aﬁlx]
Non-local Coupllings |
ELECTRIC VECTOR
p = R(x)axplB(x) |¢ Involvig s SRR
Dirac Strings. [ A” ]
R(x) = R(x) .
8(x) +H , (x) Ap(x)3 A, (x)
SPIN  ZERO tocal Couplings. [ g gcrric vECTOR
MAGNETIC MATTER | ’ POTENTIAL.
;[ B, HH# ] No Dlrac Strings. [ A” 1
Gauge Invariance:z'*’s u(1)

| SPIN ZERO
ELECTRIC MATTER |
e . K, ] a

Invar

eg

Minimal Coupling ELECTRIC VECTOR
i POTENTIAL.
auge Invarlance:U(1) [ ﬁp ]
(4}

<Z

lant Under Z“l I ff

2 n (Integer)



Iv-2] DISCUSSION

In this sectlon we analyze the varlous subtle features of our

formulation.

We start with the question of the perturbative
renormalizability of the theory. From the equation (2.18), It
appears that even the q:" theory In the dual formulation l.e.,
In terms of Hpu and R Is not perturbatively renormalizable.
However, the dual theory |s obtalned slmply by a change of
variables In the functional Integral of the Inltial theory.
Therefore If the continuum limit of the latter exists so should

that of the former I

As explalned In Chapter II & 1II, the lattlce regularization
Is the most natural regularization for our formulation. The
Integer valuedness of the dual flelds Hpu[x} Is a consequence of
the original angular field @(x) belng compact and this Is most
transparent on the lattlce. This aspect Is also reflected by the
nature of the quantization of charges. 1In the Inltlal theory ,as

a consequence of quantization, the charge operator,

Q= e_[ d?x (n"p - npY)

a5




has only Integer elgenvalues In units of e. In the dual theory,

the corresponding Integer valuedness of the dual (topological)

charge operator,

- u

3
B = Eldx&iHui

Is seen on the lattice as a consequence of the Integer valuedness
of H themselves.

=

Integer valuedness of Hpu lattice flelds need not be regarded
85 unacceptable In fleld theory. The continuum np‘ theory, for

(15)

Instance, can be obtalned by the Ising model, where the

variables take only £+ 1 values. The continuum fleld Is rather
related to the average wvalue of the lattice fleld In a
block."'®? 4

Non-perturbative studles )

suggest that QED might not exist
as an Interacting continuum theory. From thls point of view It |s
Important to study this question when magnetic charges are also

present. This can drastically alter the critical behavior of the

It Is well known that when both electrie and magnetic charge

are present, perturbation theory Is not of any use. This Is a

consequence of the Dirac quantization due to which couplings e and

Bg




| appear in the action. Our formulation on lattice Is

to non-perturbatively analysls, for e.g. by Monte-Carlo

mulation are quite simllar to Interactions In  certaln

(6)

vity models. The experience galned here might throw

light on the questions regarding the spectrum,

rmallzabllity, phase structure etc. of these models -

a7



1v-3] PROBLEMS YET TO BE ADDRESSED :

a] A New Representation For Fermlons !

A relatively more Interesting problem Is to find
out the "natural wvarlables" for for spln half particles with
-magnetic charges. For spln zero particles the results regarding
the antlsymmetric representation were partly knnwn{m. For
fermlons, to our knowledge such representation does not exlst In
the llterature. This new representation might turn out to be

useful even outside the context of monopoles and dyons.

b] "A Self-Dual Theory Of Dyons"” !

The present theory Involves only the electric
vector potential Ap. Therefore, In a sense, we have not treated
the electric and magnetic charges on an equal footing. It will be
Interesting to construct a manifestly Lorentz covarlant

(3-d,e)

formulatlon of Zwanzlger’s theory Involving electric as

well as magnetic vector potentlals. Such a theory, unlike the

present one, wlll be manifestly Invarlant and hence self dual

under the duality transformations [sectlon (II-A.1)] which leave




the Maxwell's equatlons Invariant. This formulation will have the

following two additional advantages :

a] One may expect that It suffices to use @ and ¢"
fields, which are directly related to the spactrum of the

theory, for describing both electric and magnetic charges.

bl It will be possible to have a manifestly Lorentz
covariant and local formulation of particle mechanics Involving

both electric and magnetic charges without the Dirac string at the

level of dynamics.

Moreover, In such a formulation, It will be extremely

Interesting to analyze the origln of the Dirac quantization

condlition.




Iv.4] CONCLUSION WITH A SIMPLE ANALOGY

We conclude that the natural varlables to describe the
dynamics of spln zero monopoles are the antisymmetric tensor fleld
pr{x] along with the radlal field R(x) and not the conventional
flelds ¢, ¢ describing the physical degrees of freedom of
monopoles and antl-monopoles. Thus by Intreducing some redundant
degrees of freedom In the dynamics, we are able to formulate a
manifestly Lorentz covariant, local gauge theory of
monopoles / dyons.

This sltuation Is exactly analogous to a theory of (say) free
photons  written Just In terms two physical transverse
polarizations. In such a theory » one Is bound to encounter
precisely the same problems which were present In the earller
theorles of monopoles. By glving two extra components to photons
we not only recover manifestly Lorentz covariant & local
Interactions, but also get a U(1) gauge Invarlant theory of
photons. An Important difference Is that In the case of

141

monopoles  the 7 gauge Invarlance Is truly a quantum

Invariance . It Is the Invarlance of the partition function

and not of the action, thus Implylng Dirac  quantization




APPENDIX - A

U(1) GAUGE THEORY ON LATTICE :

In thls appendix we glve a brlef Introduction of lattice

formulatlon of U(1) gauge thenrym].

We start with a discussion on
the non-compact verslon of the lattice Q.E.D. and then go over to
describe the corresponding compact formulation.

The most dlrect procedure for going from continuum to lattice .
formulation is to replace derivative In the actlon by difference
operators as was done'ln the sectlon 11 ,l.e, EIH » A, Here A Is
the lattice difference operator deflned In the section (IIL1)
The range of the photon field Is [-x,+x] as In the continuum

fomulation. The term describlng the Interaction of the photon with

the (spln zero) matter fileld p(n) Is

[w*{nl[exp | e a”{n}]w{nﬂ!) + h.c] (A-1)

In the nalve contlnuum lImit thls coupling glves the standard

Imal * ; = 3 -
minlmal coupling {Dp'p}[ U'ﬁl) Here Dﬁ { % |EA“] ls the

covariant derivative with the Iidentiflcation AH- au{n];‘a and a is

=R




the lattice spacing. In thls non-compact formulation, unlike the

kinetlc energy term for the photon,the matter coupling (A.1) Is

sitlve to only EA” modulo 2rn. This formulatlon has non-compact

gauge Invarlance,

ﬂ‘u[n] —_— ap{n] + ﬁp Aln) (A-2a)

p(n) — exp I[e A (n)] o(n) (A-2b)

?ier& Aln) Is the gauge parameter defined on the lattice sites (n)
ith the range [-o,+x] and ﬂp Is the lattlce difference operator In

the Lu}”’ directlon. This verslon of the

lattice Q.E.D. has been

However In the non-abellan gauge theorles, because of the

modified Llebnitz rule on the lattice, this procedure glves rise to
a Lagranglan density which Is not gauge Invariant. The lattice

action which respects the local gauge Invariance and has the

correct continuum |lmit was constructed by wiison'®7"1.

This
construction for the U(1) case Is described below.
We define |Ink wvarlables.
UF[n} = oexp | ( Bp{n} (A-3)

where Uu{n] and Bp{n} are deflned on lattice links of unit length




with the Identiflication E”{n} = - B_H{nm] and H,u{n] belng the

angular variable Ep{n} = Eu{n} + 2n.  The actlon Is defined by

-1 -1

1

8 = — ¥ Ha[1 U (n) U (n+y) [U (n+v) ] [U {n}] ]
e’ (n,um H ¢ H o

(A-4)

The product of four U”(n} link varlables In [A-2] can be

thought of as circulating In a counter - clockwlse sense around a

plaguette [Flg.11].

8 (n+utv)
(n+v) ~H (n+p+v)

[U”;fnw]]"

6_,(n+v) 1 [, (n)]"" U, (n+i) 6, ()
U
p{n]
] » [}
(n) 8 (n) (nep)
i
¢49.1f3: An orlented plaguette on Lhe Iaillies and the GQ.E.D.

plaguette mction.




The gauge transformations can be directly written In terms of

=:t_ha link varlables,

Uun) = V() U, (n) (V(nw)~" (A-5)

The gauge transformation functlons V(n) are defined at the lattice

sltes and they are elements of the group U(1) le.
-1 +
[V[ﬂ]] = Vin) (A-6)

Here + denotes Hermltlan conjugate. By It's definition It Is clear

that

- 5 ﬂ”{n}s n (A-T)

low both the gauge group and the gauge fleld Ep{n] have become

ompact. Defining continuum gauge fleld Ap[x] by

8 (n)
Ax) = —+ (A-8)

there x = na. The range of A”{x] Is
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-nw/ as Apfx]s n/a (A-9)

Hence In the continuum limit & — 0 It's range becomes Infinite and

the action simplifles to

s=1f¢e“[[ap

g 4
#u—apﬁ.p] d %

corresponding to standard quantum electrodynamics actlon In the

contlnuum.The lattice Q.E.D action (A-2) can also be written as

gi= (1 £ e°) 1 - Cos 8 (n) (A-10)
Ll 1O ]
1147

Here E”u{n] = a” Eu{n] - &4

plagutte (pr). We wlill come back to this form of the GQ.E.D actlon

5 Elp{n} is deflned over a

In Appendix C.

So, In the compact formulation of the lattice Q.E.D.,the
photon and the gauge flelds both belng compact, all the charges get
quantized with respect to each other. In contrast in the

non-compact formulation, any arbltrary values of the electric

charges are allowed.




APPENDIX - B

THE DUAL REPRESENTATIONS OF SPIN ZERO MATTER

In this appendlx we summarize the work of Deser & wWitten'?’
on the dynamical content of the antisymmetric representation of a
real massless scalar fleld q. Their motivatlon to study this
equlvalence was quite different from ours. It was regarding the
gauge hlerarchy problem In the grand unifled theorles. In the end

of this appendix we brlefly discuss thelr motivation.

Al MASSLESS CASE

We start with the actlon of a free massless antisymmetric

tensor fleld H
pw

' 2
S = I d'x [au H”u] . (B-1)

This actlon has gauge Invariance.

A-a A (B-2)

p e N

H”u—r H;_-'u + B”




- i
Definlng “electric fields" and "magnetic flelds” by 33] = Hd

1
_}
8 E: = Hu; respectlvely and after some algebra we can rewrlte
(B-1) as
i 3 & 42 + -3 + 42
szdx[[?‘m]+[$—?)(!]] © (B-3)
+ 9

We decompose B & B Into longlitudinal and transverse parts.

e -+ + 93 -+
£=% +8 , !5=EIL+.‘ET (B-4)
with
+ -+ —;2 1-:4 3 - —12 : + 3
EL=?[{?}' ?-s] srzvx[[v]‘ {?xEJ]
(B-5)
L 3 -)z s 3 -5 * < 9
5L=v[[v)' v_m] ST:vx[[?]'1{?x$}:|

"
Using the fact that I d*x E!L.EET = 0, we can rewrite (B-2) as

.-*
Hence the longltudinal part of electric fleld EL decouples
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from the dynamics completely. (In the presence of gauge couplings

It can be gauged away using one degree of freedom of a"'u”'.l. From

(B-6) It Is clear that the transverse part of electric fleld Er
does not have any dynamlcal content and can be eliminated In terms
of ;r and ;T In turn can be gauged away using the transverse part
of h“. This way we are Just left with nnl: one longltudinal
degree of freedom of the magnetic fleld ® and the gauge

parameter h“. The later Is used to ellminate the longltudinal

polarization of photon. Identifylng

* 2,-1

B =v(V°) o . (B-7)
We recover the free scalar fleld action.

4
S = I 39 a“p d'x . (B-8)

The motivation of Deser & Witten to study thls equivalence
was a search for a formallsm for spin zero fleld In which bare
mass would be Impossible leading to a possible solution of gauge
hierarchy problem. 1t Is clear that the gauge Invariance of the
~dual theory [B-2] prohlbits such mass terms for real spln zero

_matter. For complex spln zero matter In the dual theory the mass
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term for scalar fleld Is m? R® where R Is the radlal degree of
freedom for the scalar fleld ¢. This mass term s not protected
by any symmetry of the theory.Therefore by the dual description,

one can not protect the masses of the complex spln zero matter.

B] MASSIVE CASE

In this sectlon we explicltly demonstrate the equivalence of
masslve antisymmetric theory with massive spin one theory. This
coresspondence was used In our formulation (chapter-2) to show the
equlvalence of the spectrums of the Initlal and the final (dual)
theorles In the broken Higg's phase.

In the presence of a mass term for the antlsymmetric tensor

field H we have
i

. 2
5§ = j d'x {[ap HW] + B H;p} (B-9)

Here B Is the mass parameter. Agaln using B(5) It can be

rewritten as




-+

-
Here EL and ET being auxlllary flelds, can be ellminated In
_’

terms of the magnetic fleld &

-+
E = 0 (B-11)
L
2

e ' :
B =-[va+p3] [vxm ] (B-12)

T T

Using the identity
- 2 3
‘ - o
Jd % sT.[ vx & ] .0 (B-13)

and after some algebra




(B-14)
This corresponds In general to three massive degrees of

freedom ( € Er )defined according to

b -+ g -}2 =1/2

.';E.L = ?.._ v } EL (B-15)

3 r ?2 r2 "

f.ET = 1+ — e (B-18)
| B

with
= 2
[Mass] =m° =pB (B-17)

22 ! 2 o) 2
E !:T + e [? —m] £, (B-18)

This Is the actlon for massive spin one particle.




APPENDIX - C

ON LATTICE MONOPOLES

Magnetlc monopoles also arise In the context of pure compact
U(1) lattice gauge theorles. They represent certaln topological
degrees of freedom, which show up because of the compact nature of
the dynamical varlables. These degrees of freedom are known to
play a cruclal role for the confinement mechanism In U(1) gauge
theorles and can be extracted out by making certain “"duality

transformatlnns“.m'm’”} In pure U(1) lattice gauge theorles

they lead to a confining phase above a critical mu;rllng““"”.

In
this appendix we brlefly discuss these duallty transformations In
the context of pure lattice Q.E.D and show that the kinematical
aspects of these lattice monopoles are quite similar to those of
spln zero monopoles we have talked about In the thesis.

As mentioned earller lattice monopoles arise due 1o
periodicity of dynamical varlables. Hence they do not have any

dynamlcal content. To see the origin of these topological degrees

of freedom, we start with the partition functlon of pure compact

U(1) lattice gauge theory (A-10),




2n

7 = j Al 0, (n) exp — S | (c-1)
[4]
with
S = 1/6> ¥ (1-cos 8_(n)) (c-2)
q.e.d T e
TR

Ew{n] Is deflned over a plaquette and e Is the electric charge
and B,uu{"] Is the plaquette term In the actlon defined In the
Appendlx (A).

The Interactions described by (C-1) are non-polynomlal In the
nature and therefore extremely difficult to handle. The
exponentlal In (C-1) belng a periodic function of the plagquette

variable Epu{”]’ can be approximated by a Gausslan functlonal

Integral,

Z:J"F[ de (n) ?

+m
M -
n,u hpu n)=-a

2
2

exp -1/2 e Y [Ewtni -2m h“u(n}]
n,u,u
L

(C-3)

Here hw(n} are the Integer valued antisymmetric tensor flelds.
The partition function (C-3) retains the perlodicity property

[&H["] = B“[n} +2n Z,Z € Integers] and Invarlances of compact

Q.E.D. described by (C-1,2) and we can take the range of Butn} In

(C-3) to be non-compact [-o,4x]. Moreover both the models have




slmllar Gaussian behaviour around thelr Minima Bpu{n} = 2n Z.
Therefore we may expect this approximated Gaussian model Is in the
same unlversallty class as the orlglnal one and to have the same
physical content near the critlcal polnts. This defines the
Villain approximation for lattice Q.E.D..

The partition functien In this Villain / Gaussian form (C-3)
clearly shows the orlgln and the slgnificance of the hiﬂ’ degrees
of freedom. Thelr role Is to retaln the perlodicity properties of
the dynamical varlable E'Fl{n} in the corresponding Gaussian model
(C-3)which Is much easler to solve.

These degrees of freedom also show that the pure compact
Q.E.D descrlbed by (C-1,2) Is an Interacting theory and not a
free theory of photons as Indicated by Its nalve continuum limit.
In fact the partitlon function (C-3) Is qulte simllar to the
actlon of our theory (2.26). This shows that h”u flelds are
assoclated with monopole degrees of freedom with magnetic charge
(1/e). Hence compact Q.E.D. described by (C-1,2) Is a theory of
monopoles Interacting vla photons. As mentloned earller, It Is
these degrees of freedom which become relevant above a critical
coupling e_ leading to a conflnlng phase In compact g, F18x 110

These lattice monopoles differ from the ones described In
this thesls In the sense that they do not have the kinetic energy
term In the actlon.

The Maxwell equations from (C-3):
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ﬂqu{n =20

ﬂp F“p{n} = 2n/e A, hw(nl = (2n/e) Kp{n] :

Imply that the Dirac quantization conditlon for lattice monopoles

automatically follows.
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APPENDIX - D

THE MONOPOLE - ELECTRIC CHARGE INTERACTIONS

AND

GEOMETRICAL INTERPRETATION

In this sectlon we demonstrate that In our theory the
magnetlc monopole electric charge Interactions have an elegant
geometrical Interpretation, which agaln leads to Dirac
quantlzation condltion.

In the absence of 6 term Intégrntlun over photon In (2.18)

glves

Z= Y e lwa g° Y K. (R) G(R-R’) K (R")
ot e i 1
nop

2ll.s
[ - ] ¥ JP[R] G(R-R") JFI(H )

&
a ER

X
2

+ ls R.ﬁ;n, K,(R) @ (R-R") J,(R") (D-1)




Here we have lgnored all self Interactlons of electric and

magnetic matter and consldered only terms Involving  thelr

couplings to photon. (s) Is a scale In the theory which fixes the

magnitude of minimum electric charge (e ) In terms of minimum

magnetic charge (g ) I.e.

(D-2)

G(|R'-R"|) Is the Green function of the Euclidean Laplacian operator

In four dimensions and Is equal to [T—lTE]
R-R’

M my
- P =)
K(R) = F‘):“1 m_ 3, HEL(R) (D-3)
: o
J(R) = q}_:, N, 4 KR (D-4)
® ., (R-R') = 2n €wre U 8 a (JRR|) (D-5)

Here u“ ls an arbitrary four vector to be Identified with

Dirac string., (u.8)"' Is the kernel of (u.d) operator and we

choose It to be
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s 1]
(o =1 [ds[a‘m ~us)-8"(R +us) ] (D-6)
o

The first two terms In (D-1) are the standard coulomb
Interactions of electrlc and magnetic charges among themselves,
The last term describes the non-local Interaction between electric
and magnet|c charges. The geometrical Interpretation of this term
Is transparent |f Wwe replace the conservad currents K & J by

H H
Integrals over closed particle loops

KR = Tm § dxt &' (x-p) (D-7)
P P

R = TnT§ ayt & (y-m) (D-8)
q q

With this (D-1) can be written as

Z= 7 oexp [— % g: m m- § dx”§ dxH G(x-x%)

loopa P p
1 (2n )? T SH -
-5 [_EDS] nqn; i’: dy iﬁ dy G[Y"}"J‘]
q 9

Here
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< 7 v -1 L 5
q. = 3‘3 dx fF dy” € 10 Un(U-D)" 8 G(x-y) (D-10)
P q

Using Stoke's theorem and Identitles of the € symbols

L up f M et | " =
Q. = f da §dy [up{u.:’i,’! 8'(x-y) + 8 a(x y}] (D-11)
P

Here o"P Is the surface enclosed by the loop {p) and we have used
8%a(x-y) = 8 (x-y).

This effective form of our theory after Integration over
photon and replacing fleld currents by loop currents, exactly
matches with the effective action of Zwanzlger formulation. This
glves the Indlcation that the physical content of these two, a
priorl completely different looking theorles, may not be
different. So from here onwards for the sake of completeness we
will be essentlally repeating the work of Zwanziger'?"*®) which
led him to Dirac quantization condition.

From (D-11) we flnd that all the string dependence Is hldden
In the filrst term. Using the kernel (D-6) for (u.3)' operator,

thls term can be explicltly written as
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%f u’ds j .:13;;‘ f dyH [a‘{x—y-usj y 5*{x—y+usz]
p q

Thls term has a value Z(u)/2 where Z(u) Is a topological
winding number that counts the number of times the cylinder along
u erected on the loop and intersects the surface bounded by the

loop p. Using the fact that I)M :—ﬂqp, we get the charge

quantization condlition
- s t D-
[qup epgq nxin eger] (D-12)

Instead of the symmetrical string (D-6), If we had chosen to

work with an asymmetrical string, we would have got (2n) In the

above quantlzation conditlon. This arbltrariness Is uniquely fixed

In our formulatlon as a consequence of the gauge Invariance,
As mentloned In Chapter (2), the presence of 8 term modifles

the electric current JH to .Jﬁ + 6/2n K . So the @ term does not

affect the last term In (D-1) and hence, unllke our formulation,
thls procedure for obtalning the quantizatlon condltion Is

Insensitive to the 8 term. In fact, the gauge Invariance (2.19)

and (2.25), In the absence of tha @ term, puts more severe
constralnt on the electric and magnetic charges In our theory

(2.27) compared to Zwanzlger's formulation (D-12).
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APPENDIX - E

YET ANOTHER DUALITY IN OUR DUAL THEORY

In this appendix we show that In the Hlgg's phase where the
radlal degrees of freedom of electrlc and magnetic matter are
frozen and large, our theory reduces to 2z(s) gauge theory . Here
(s) Is the scale which fixes the magnltude of the minimum electric
charge In the unlt of ( Enfgﬂ,‘l (D-2). The phase structure of
Z(s) lattlce gauge theorles has been extensively studled by

Cardy et al’!?’,

They show that the Invariances of this theory
(Including self-duality) completely  fix It's phase structure.For
the sake of completeness, we wlll briefly summarize their results
in this appendix.

In the Higg's phase mentloned above, Ignoring the radial

degrees of freedoms of the electric and magnetic matter(2.26)

7 = J‘da'”[n] y exp - {n ¥ —;— (ﬂ”au{n}—ﬁ”ﬂ“hﬂ + gohpu{ﬂ]]

[hw*kﬁu] i, P
1l [Eﬁ]ts}a{n:n[a k tnl]} (E-1)
n,;E;.u g Thd Y
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with

(E-2)

=
Eﬂ'-h
3
St
"
(it
=
E=|
=
-
—
o
o

Here rr.p and n are Integers denoting sltes on the electric and
q

magnetic charge lattice [Fig -5]. Rescaling a” by En;’gu, we can

rewrite [E-1] as

2

9. 2
7= Idapfn] Ep:xp = {n.g.v 1—;5 [ “au[n]-ﬁuap{n} + 2n hw{n}J
(112
+ | 5 a(n) [ﬂ k fn}J} E-3
H.E,U' i v K (E-3)

In tth functional integral the Integer wvalued electric
current ;_t.u kpu belng traced over, the effect of the last term |s to

discretize a”{n} In the unjts of 2n/s.

Hence In this particular

Hlga's phase our theory reduces to Z(s) gauge theory.
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E.a] Invarfances and Self Duality

The effective theory (In the presence of 6 term) after

Integration over photon can be written In a compact notation.

2= ¥ exp [- _2“_5*_ { E-E* K.U{n] G(|n-n]) K“l’n‘]
(1 %) (E-+E™)

#,

; - %1 - ,
+ 'j.u':"} G(]n-n"|) Jp{n ) + I(E"-E) Jp[n] G(|n-n"]) K”I{n }}

+18 Kﬁfn] 8 pu(]n—n* 1) Ju{n']} (E-4)

Here G(|n-n’|)is the Green function of the Euclidean Laplaclan

nperatnr.JH and K” are the electric and magnetic currents

respectively,

. ons | o

(E=5)
E
2nsg 2n

o N

or Inverting these relations
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9, =N (E+EX) &0 =n(ex - ) (E-6)

The effective action (E-4) has the followlng Invariances

Al  Duallty [D] :

E — ¢!
K” —3 J_u (E-7)
J.FJ —) = K_H
Bl  Perlodlcity [A] :
£ = Bkl
K — K (E-R)

7 B
J - K
TR TRl ¥

Cl] Time Reversal [T_] :

E — Ex

KH — Kp {E-9)

Jp — = JH
Under all these symmetry transformations the theory gets

mapped Into ltself. Hence the theory Is self dual under [E-7],

[E-8] & [E-9].These Invarlances completely fix the phase structure

of the theory”z‘m.
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E.b] The Phase Dlagram

As shown by cCardy 2(s) theories have a wvery rich phase
structure depending on the values of (s), {gﬂ} & 8. This structure
can be completely determined uslhg the above symmetry
transformations. Instead we will briefly give cardy's free energy

arguments'12-2?

here to give a qualltative plcture of the phase
structure. This latter approach although approximate glves an
Intultive understanding of the varlous phases of Z(s) gauge theory
and wlll be useful even ﬁhan some of the symmetries mentloned In

the previous section are not exact.
We conslder a large loop of length L, carrylng electric and

magnetic charge [N + 2—3 M,M]. Approximating It's energy by self

energy In (E-4) l.e. n = n°*.

2 2

Energy = [ngE + 3 8? [ ? ] [N + 2 H] ] Glo)L (E-10)
o

On the other hand, It's entropy ls roughly L £n(7),slnce at
each step the loop can choose seven different directions. The loop
wWlll condense In the vacuum provided It's free energy |s negatlve

l.e.
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2 2
[ (s 2w ] o< o (e-11)
Here
_ 2ns _ £&n7
L o ¢ C =Gt
a

The criterlon [E-11] deflnes the Interlor of an ellipse In the

plane of electric charge and madnetic charge coupling Fla[12].

Hagnetie Chargeas
&

FI1g.12): The allowed values of the electric and magnellc charges.

An eollipse for particular values of gD'. end B 1o shown. Charges

within the &11lpse con condense,
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When 6 = 0 & s < C, for large T magnetic charges will condense
and for small T electric charges wlll condense In the vacuum. This
Is also Intultively obvlous. These are the well known conflning
(l.e. monopole condensation) and the Higg's phases (l.e. electric
charge condensation) of U(1) lattice gauge theory. As the
value of (s) Increases (s>C) there are Intermediate values of T
where [E-(11)] Is not satlsfled and no charges condense. This

corresponds to the Coulomb phase [Fig.13].

HIGGS. CDULDH&CGNHHEHENT.CDULOH&.DEJQUE.COULDHE.CDNE

R —
2
T = EHngn

FIQ.131 - Typical phaase diagram oaf our theory with the radial
degroes of froadom froezen..The number of shllique canfinament phaaca

depends on B and coulomb phases are nhsent for small =,

For nonzero values of @ and at large T dyons with nonzero
values of electric and magnetic charges condensea (obliqua
confinement). For small T It Is the electric charges which
minimize the energy of the wvacuum Implylng Higg's phase. For

Intermedlate values of T, depending on the relative values of C

17




and s, there are Coulomb and Hlgg's phases (Flg.13). These
features of Z(s) gauge theories are analyzed In detall In the

excellent papers of Cardy et al.
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