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Summary

Studying finite cuto↵ CFT holds much importance in both Condensed Matter Physics and

AdS/CFT conjecture. As lattice systems always have an inherent scale, it is important to

devise a theory that will be valid for all energy scales. On the other hand, the scheme of

Holographic RG requires the study of ERG in boundary CFT.

In this thesis, we apply Exact RG to study a fixed point action and composite operators

in finite cuto↵ O(N) model. In Exact RG the higher energy modes of a theory are integrated

out with help of an analytic function resulting in no loss of information as one flows down to

the lower energy. This method gives us the most general expression of an action or composite

operators which is/are valid at all energy scales.

The main component of our work is Polchinski’s ERG equation. In the first part of our

work, we have constructed Wilson action at Wilson-Fisher(WF) fixed point in 4� ✏ dimensions

for �4 interaction. This has been done upto the subleading order. At this order, 6-pt vertex

appears in the action, which contributes to subleading order terms in 2 and 4-pt vertex. The

terms in the action have interpretations in terms of the Feynman diagram which eases the

procedure of calculation.

When one has a fixed point action at hand, it is important to find the corresponding irrele-

vant and relevant operators. Because irrelevant operators define a critical surface, and relevant

direction defines directions away from the critical surface. From the AdS/CFT perspective

also studying perturbations around the boundary CFT is important, because they give rise to

di↵erent bulk dual fields.

In the second part of our work we have constructed two important composite operators

near the WF fixed point-�2 and �4. In continuum theory, the composite operators mix with

the same dimension operators. Here expressions are more general, composite operators mixes

with all operators which are allowed in the theory. As we are nearby the fixed point, we have

i



calculated the anomalous dimensions of these operators too. In continuum limit our result

matches with results found from the Dimensional Regularization. Also our method of finding

composite operators is independent of choice of cuto↵ functions. This makes it useful for the

Holographic RG purpose. However, to find the anomalous dimensions of these operators we

have used a specific cuto↵ function for ease of calculation.
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Chapter 1

Introduction

The Renormalization Group technique was constructed to solve two di↵erent problems in

physics. One, to understand renormalization which is required to remove the UV divergences

in the correlators. Two, in Statistical Mechanics to study critical phenomena. In the first case,

why the process of cancelling divergences by adding counterterms in the Lagrangian results in

a renormalizable theory was di�cult to understand initially. But when one tries to apply RG

techniques to the systems of large but finite number of degrees of freedom, a more physical pic-

ture emerges. This insight has led to better understanding of renormalization and the problem

of UV divergences.

Critical phenomena is observed during second order phase transition where correlation

lengths of di↵erent order parameters of the system diverges but nearby the phase transition

point their behavior is universal. Kadano↵ came with his famous block spin formalism to ex-

plain the critical point in ferromagnetism [1]. The main idea is to divide the whole system into

blocks of a certain size and replace the spins in one block with an e↵ective spin. In next step

one has to repeat the same procedure with the new e↵ective spins. This process is continued

until the size of block becomes the size of correlation length. In this way one can explain both

diverging thermodynamic quantities such as specific heat at the critical point and the universal

character of the critical exponents[13, 15].

This opens up a new way of looking at RG- as a process of change of scale of a theory.

The bare theory has scale of ⇤0, and when we integrate out the momenta from ⇤0 to ⇤, an

e↵ective theory of lower energy ⇤ emerges. If one want the continuum theory one can simply

take ⇤0 ! 1. In taking ⇤0 ! 1, it is important to tune a finite number of parameters to
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special values. This is idea of renormalizability of a theory.

The Exact Renormalization Group is just a smart way of performing the job of integrating

out the higher energy modes. Instead of sharply cutting the momentum at higher energies,

one can take resort to a smooth analytic function, so that no nonlocal interactions appear in

the new e↵ective action in position space [14]. Added benefit to that is the new low energy

correlator can always give back the old bare correlator, hence no loss of physics [52]. Using

ERG one can show that the theory at the fixed point does not depend on the bare theory

chosen, hence the universality of critical exponents arises. In QFT side also this paves a way

for proof of perturabtive renormalizability. It was shown for �4 theory in 4 dimensions, that the

irrelavant terms in an action gets supressed in continuum limit, hence resulting in a correlator

which can be tuned with finite number of renormalizable parameters [16].

On the other hand, study of Conformal Field Theory has become of much importance in the

last few decades. It was argued long back that the theories at the critical point are conformally

invariant [3, 58]. The idea of bootstrap was also introduced soon after, which allowed further

non perturbative constraints to be placed on the system [4]. Particularly in two dimensions

these ideas have been very fruitful [5] and have applications in the world sheet description of

string theory. Reviews of later developments and references are given in [6, 7].

The AdS/CFT correpondence [8, 9, 10, 11] or “holography” between a boundary CFT and

a bulk gravity theory gives strong motivation for studying CFT’s 1. There is a large amount

of literature on this. See, for example, [12] for a review.

ERG allows us to deal with a CFT with finite UV cuto↵. In condensed matter systems

there is always an underlying lattice structure that provides a natural ultraviolet cuto↵. At

the critical point the correlation length being much larger than the lattice spacing, one can

for many purposes treat it as a continuum theory, much as is done in high energy physics.

Nonetheless one shoule be able to construct a theory which is valid at every energy scale . So

it is important to understand CFTs with a finite cuto↵.2

Another motivation for studying finite cuto↵ CFT using ERG comes from AdS/CFT conjec-

ture. According to this conjecture the radial coordinate of AdS can be interpreted as momentum

1
It also opens up the amazing possibility of rewriting quantum gravity as a quantum field theory in flat

space.
2
If one speculates as for instance in [61] that space time itself in string theory is dicrete, then that is additional

motivation for studying such theories.
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scale of the boundary CFT. This scheme comes under the name of ‘Holographic RG’. In order

to understand this Holographic RG in details it is necesary to study the structure and proper-

ties of a fixed point theory in the presence of a finite cuto↵, because the cuto↵ represents the

radial coordinate of the (asymptotically) AdS space and one needs to know what the theory

looks like as it evolves under RG flow in the radial direction.

Recently it has been shown that one can obtain the Holographic RG equation starting

from a ERG equation of the boundary theory[40, 41]. Further evidence for this has been

obtained by studying the O(N) model at it’s fixed points in [39] where the RG flow of a scalar

composite operator was studied. If one starts with a conformally invariant fixed point action in

D dimensions and perturbs it, then an ERG describes the evolution of these perturbations. It

was shown in [37, 38, 39] that the evolution operator of this ERG can be written as a functional

integral of a field theory in AdSD+1 space. The boundary values of these fields are typically

sources for the perturbing operators, though other interpretations are also possible. It has also

been shown recently that gauge fields and metric perturbations in AdS can be obtained from

ERG in the boundary[51].

This motivated us to study O(N) model using ERG. O(N) model is a much explored model

(see [68, 69] for nice review) in the field theory. From Holographic RG side also, the bulk dual

of O(N) model has been found in many forms [63, 64, 65].

In our work, as a first step, we construct a fixed-point Wilson action for this theory to order

✏2. It is at this order that the anomalous dimension first shows up. The action is obtained

by solving the fixed-point ERG equation perturbatively. The fixed-point equation imposes the

constraint of scale invariance. This theory is also conformally invariant. This follows from

the tracelessness of the energy momentum tensor [46, 47, 48, 58]. However in our work it has

been shown that the EM tensor at zero momentum satisfies traceless condition [43]. Traceless

condition of zero momentum EM tensor denotes the theory is scale invariant. In order to

prove conformal invaraince one have to find EM tensor at general external momentum which

is beyond scope of this thesis.

Next we concentrated on the construction of the “composite” operators in ERG. In contin-

uum field theory these operators have to be renormalized so that Green’s functions involving

these are finite. This is an interesting problem in its own right. This is described in many

3



textbooks such as [45]. The renormalization of these operators in �4 theory in four dimensions

is described in detail in [48, 49]. Analogous study of �3 theory in six dimensions has also been

done [50]. In presence of interactions, an operator mixes with other operators of the same

dimension or less even in continuum field theory. In finite cuto↵, one can expect this to mix

with higher dimension operators such as
R
x
�4,
R
x
�6, ....

We are interested in those composite operators that maintain their form as they evolve.

They should obey the usual properties of operators with definite scaling dimension in a CFT.

The eigenvector equation, which is the ERG equation, can be solved perturbatively in powers

of � the coupling constant. This is also related to ✏ since � ⇡ O(✏). It involves making a fairly

general (momentum dependent) ansatz for the eigen operators and solving for the momentum

dependence order by order. We do this up to O(�2) . For the simplest case which is the leading

order relevant operator, we construct the local operator i.e. �2(x) or in momentum space �2(q)

with q 6= 0. In all other cases, for reasons of computational simplicity, especially at second

order, we have focused on the integrated operators
R
x
�2(x) and

R
x
�4(x). This amounts to

imposing
P

i
pi = q = 0. The unintegrated operator can be extracted from this modulo total

derivative terms. The scaling dimensions are also calculated and agree with the literature to this

order. It is worthy to note that the expression of action or composite opetaors do not depend

on the form of the cuto↵ function, hence our method of calculation can be accommodated in

Holographic RG works mentioned above [37, 38, 39] . But to obtain the anomalous dimension

we have used a specific form of cuto↵ function for ease of calculation.

Construction of the local operators enables us to do other analysis. Important one among

them is to find whether these composite operators are primary or not. This has to be done by

checking whether the correponding correlation function satisfy the Conformal Ward Identity.

However, we did not pursue that in this thesis.

The plan of the thesis as follows:

Chapter 2 gives some background regarding our work. Here we will explain basic procedure

of ERG, then state the ERG equation and it’s modification in order to find the fixed point

action. Then We will talk about the composite operators in continuum theory and ERG.

Chapter 3 gives the construction of the Wilson Action for the O(N) model at the Wilson-

Fisher fixed point. Chapter 4 gives the construction of two composite operators. Chapter 3

4



and 4 constitute the work done for the thesis. Finally, Chapter 5 gives some conclusions and

outlook of our work.

5
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Chapter 2

Background

In this chapter, we will provide the necessary background for our work. First, we will talk about

the basic procedure of ERG. Next, we will state the ERG equation which governs the change

of e↵ective action w.r.t scale of the theory. Then we will customize the equation to facilitate

the calculation of the IR limit of a critical theory or fixed point theory. This is material for the

chapter 3.

To provide background for the chapter 4, next we have elaborated about the composite

operators. First we have given details about composite operator in continuum theory. After

giving some simple explanation of the meaning of composite operator in Wilsonian RG or ERG,

we have stated the definitions and boundary conditions. In the end, we have demonstrated two

simple examples of calculating comsposite operators using ERG.

The discussion in this chapter is mainly based on [52, 53].

2.1 Exact Renormalization Group

Renormalization means essentially going from a scale ⇤0 to a lower scale ⇤, where the initial

scale ⇤0 is typically called a bare scale. One will want to see how physics changes with scale.

What do we mean by physics at ⇤0? It means our theory will not be sensitive to momentum

p > ⇤0. This can be done by following the procedure below:

7



The partition function of the full theory is given by

Z =

Z
D� e�S[�]

where

S =

Z

p

1

2
�(p)p2�(�p) + SI [�]

To make it a partition function at scale ⇤0 we will try to suppress the kinetic energy term for

⇤0 < p < 1. To execute this we will put a smooth cuto↵ in the kinetic energy term to obtain

the bare action

SB[�] ⌘
1

2

Z

p

�
p2

K(p2/⇤2
0)
�+ SI,B[�] (2.1.1)

and the bare partition function

ZB ⌘

Z
D� e�SB [�] (2.1.2)

We will choose the cuto↵ function to follow the condition K(0) = 1 and K(1) = 0. In

general cuto↵ functions satisfy stronger properties , but that will not a↵ect the fixed point

values of the couplings [62].

Now we want to go to a lower scale ⇤. For that, observe the following identity

Z
D� exp


�
1

2

Z

p

�(�p)
1

A(p) + B(p)
�(p)� SI,B[�]

�

=

Z
D�1D�2 exp


�
1

2

Z

p

1

A(p)
�1(�p)�1(p)�

1

2

Z

p

1

B(p)
�2(�p)�2(p)� SI,B[�1 + �2]

�

Where a multiplicative constant has been ignored on RHS. Using this we can write

ZB =

Z
D�lD�h exp

⇢
�

1

2

Z

p

p2

K(p2/⇤2)
�l(�p)�l(p)

�
1

2

Z

p

p2

K(p2/⇤2
0)�K(p2/⇤2)

�h(�p)�h(p)� SI,B[�l + �h]

�

We can e↵ectively call �l(�h) as low(high) energy field as it is propagated by low(high) mo-

8



mentum propagator �l(�h) defined below

�l =
K(p2/⇤2)

p2
, �h =

K(p2/⇤2
0)�K(p2/⇤2)

p2
(2.1.3)

So we can write

ZB =

Z
D�l exp


�
1

2

Z

p

�l�
�1
l
�l

� Z
D�h exp


�
1

2

Z

p

�h�
�1
h
�h � SI,B[�l + �h]

�

=

Z
D�l exp


�
1

2

Z

p

�l�
�1
l
�l

�
exp{�SI,⇤[�l]}

where

exp{�SI,⇤[�l]} ⌘

Z
D�h exp

⇢
�

1

2

Z

p

�h�
�1
h
�h � SI,B[�l + �h]

�
(2.1.4)

SI,⇤ is the interaction part of an e↵ective low energy field theory with a UV cuto↵ ⇤.

Let

S⇤[�] ⌘
1

2

Z

p

�l�
�1
l
�l + SI,⇤[�l] (2.1.5)

be the whole action so that

ZB =

Z
D�l e

�S⇤[�l] (2.1.6)

Using (2.1.4), we obtain

e�S⇤[�] =

Z
D' exp


�SB['] +

1

2

Z

p

p2

K(p/⇤0)
'(p)'(�p)�

1

2

Z

p

p2

K(p/⇤)
�(p)�(�p)

�
1

2

Z

p

p2

K(p/⇤0)�K(p/⇤)
('(p)� �(p)) ('(�p)� �(�p))

�
(2.1.7)

where we have written �l as � and �h as ' � �. This will be useful later. It is to be noted

that one can always go back to the bare partition function. For this reason, this scheme is

called “exact”, i.e. we lose no physical information by varying the scale. It is easy to see this
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explicitly. Using (2.1.7), we can calculate the generating functional of SB using S⇤ as

Z
D� exp

✓
�SB[�]�

Z

p

J(�p)�(p)

◆

= exp

"
1

2

Z

p

J(p)J(�p)
1

p2

(
K(p/⇤0) (1�K(p/⇤0))�

✓
K(p/⇤0)

K(p/⇤)

◆2

K(p/⇤) (1�K(p/⇤))

)#

⇥

Z
D� exp

✓
�S⇤[�]�

Z

p

J(�p)
K(p/⇤0)

K(p/⇤)
�(p)

◆
(2.1.8)

We observe that the correlation functions of SB are the same as those of S⇤ up to the trivial

(short-distance) contribution to the two-point function and up to the momentum-dependent

rescaling of the field by K(p/⇤0)
K(p/⇤) [53]. If we ignore the small corrections to the two-point functions

(which are disconnected pieces proportional to �(pi + pj)), we can write

nY

i=1

1

K(pi/⇤)
h�(p1) · · ·�(pn)iS⇤

=
nY

i=1

1

K(pi/⇤0)
h�(p1) · · ·�(pn)iS⇤0 (2.1.9)

2.2 How to find the fixed point action?

When one flow along the energy scale we may hit a fixed point (more on this in next chapter)

i.e. a point where S⇤ does not change with scale. It is scale invariant in the sense that there is

only one scale in the theory at that point, that is given by RG scale ⇤. So at the fixed point

if one writes every quantity in dimensionless variables. Those dimensionless variables will be

unchanged even if you change the scale. In addition to this one also needs to adjust the scaling

dimension of the field in order to keep the standard form of kinetic energy term.

So to find the fixed point action one needs to find how an action S⇤ changes with scale

⇤. This is given by Polchinski’s equation (see next subsection). Then one has to modify it as

stated above. After all these steps if one puts �⇤ @S

@⇤ = 0, one obtains the fixed point action.

2.2.1 Polchinski’s ERG equation

We have given an integral formula (2.1.4) for SI,⇤ and (2.1.7) for S⇤. It is easy to derive

di↵erential equations from these. From (2.1.4), we obtain Polchinski’s ERG equation

� ⇤
@SI,⇤[�]

@⇤
=

Z

p

(�)
dK(p/⇤)

dp2

✓
�
�SI,⇤[�]

��(p)

�SI,⇤[�]

��(�p)
+

�2SI,⇤[�]

��(p)��(�p)

◆
(2.2.1)
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for SI,⇤. From (2.1.7) we obtain

�⇤
@S⇤[�]

@⇤
=

Z

p


�2p2

d lnK(p/⇤)

dp2
�(p)

�S⇤

��(p)
+

dK(p/⇤)

dp2

✓
�
�S⇤

��(p)

�S⇤

��(�p)
+

�2S⇤

��(p)��(�p)

◆�

(2.2.2)

for the entire Wilson action.

The limit ⇤ ! 0+

In the limit ⇤ ! 0+ we expect S⇤[�] approaches something related to the partition function.

If we substitute

lim
⇤!0+

K(p/⇤) = 0 (2.2.3)

into (2.1.7), we get

lim
⇤!0+

e�S⇤[�]+
1
2

R
p

p2

K(p/⇤)�(p)�(�p) = lim
⇤!0+

e�SI,⇤[�]

= e�
1
2

R
p

p2

K(p/⇤0)
�(p)�(�p)

Z
D' exp


�SB['] +

Z

p

p2

K(p/⇤0)
'(p)�(�p)

�
(2.2.4)

Hence, rewriting �(p) by K(p/⇤0)
p2

J(p), we obtain the generating functional of the bare theory

as the ⇤ ! 0+ limit of SI,⇤:

ZB[J ] ⌘

Z
D' exp


�SB[']�

Z

p

'(p)J(�p)

�

= e
� 1

2

R
p J(p)J(�p)

K(p/⇤0)

p2 lim
⇤!0+

exp

✓
�SI,⇤


K(p/⇤0)

p2
J(p)

�◆
(2.2.5)

IR limit of a critical theory

For the bare theory at criticality, we expect that the correlation functions

h'(p1) · · ·'(pn)iB ⌘

Z
D''(p1) · · ·'(pn) e

�SB ['] (2.2.6)

to become scale invariant in the IR limit, i.e., for small momenta compared to ⇤0. To be more

precise, we can define the limit

C(p1, · · · , pn) ⌘ lim
t!1

e
n
2 (�(D+2)+⌘)t

⌦
'(p1e

�t) · · ·'(pne
�t)
↵
B

(2.2.7)
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where ⌘

2 is the anomalous dimension.

What does this mean for S⇤ in the limit ⇤ ! 0+? As we have seen above, the interaction

part SI,⇤ becomes the generating functional of the bare theory in this limit. Since the IR limit

of the correlation functions are scale invariant, only the low momentum part of lim⇤!0+ SI,⇤

corresponds to the scale invariant theory defined by the IR limit (2.2.7).

To understand the IR limit better, we follow Wilson [13] and reformulate the ERG trans-

formation in two steps:

1. Introduction of an anomalous dimension (section 2.2.1) — the anomalous dimension is

an important ingredient of the IR limit. We need to introduce an anomalous dimension

of the field within ERG.

2. Introduction of a dimensionless framework (section 2.2.1) — each time we lower the cuto↵

⇤ we have to rescale space-time to restore the same momentum cuto↵. This is necessary

to realize scale invariance within ERG.

Anomalous dimension in ERG

The cuto↵ dependent Wilson action S⇤[�] has two parts:

S⇤[�] =
1

2

Z

p

p2

K(p/⇤)
�(p)�(�p) + SI,⇤[�] (2.2.8)

The first term is not the only kinetic term; part of the interaction quadratic in �’s also contains

the kinetic term. The normalization of � has no physical meaning, and it is natural to normalize

the field so that SI,⇤ contains no kinetic term.

To do this, we modify the ERG di↵erential equation (2.2.2) by adding a number operator

[52, 62]:

�⇤@⇤S⇤[�] =

Z

p

✓
�2p2

d

dp2
lnK(p/⇤)�(p)

�S⇤

��(p)
�

d

dp2
K(p/⇤)

⇢
�2S⇤

��(p)��(�p)
�

�S⇤

��(p)

�S⇤

��(�p)

�◆

�
⌘⇤
2
N⇤[�] (2.2.9)
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where the number operator N⇤[�] is defined by

N⇤[�] ⌘

Z

p


�(p)

�S⇤

��(p)
+

K(p/⇤) (1�K(p/⇤))

p2

⇢
�2S⇤

��(p)��(�p)
�

�S⇤

��(p)

�S⇤

��(�p)

��
(2.2.10)

This counts the number of fields:

hN⇤[�]�(p1) · · ·�(pn)iS⇤
= n h�(p1) · · ·�(pn)iS⇤

(2.2.11)

(Again we are ignoring small corrections to the two-point functions as mentioned before (2.1.9).)

Under (2.2.9) the correlation function changes as

nY

i=1

1

K(pi/⇤)
h�(p1) · · ·�(pn)iS⇤

=

✓
Z⇤

Z⇤0

◆n
2

nY

i=1

1

K(pi/⇤0)
h�(p1) · · ·�(pn)iS⇤0 (2.2.12)

where Z⇤ is the solution of

� ⇤
@

@⇤
Z⇤ = ⌘⇤ Z⇤ (2.2.13)

satisfying the initial condition

Z⇤0 = 1 (2.2.14)

We can choose ⌘⇤ so that S⇤ has the same kinetic term independent of ⇤. For (2.2.9), the

integral formula (2.1.7) must be changed to [53],

eS⇤[�] =

Z
D' eS0[']

⇥ exp

"
�
1

2

Z

p

p2

1�K(p/⇤)
Z⇤K(p/⇤) �

1�K(p/⇤0)
K(p/⇤0)

✓
'(p)

K(p/⇤0)
�

�(p)
p
Z⇤ K(p/⇤)

◆✓
'(�p)

K(p/⇤0)
�

�(�p)
p
Z⇤ K(p/⇤)

◆#

(2.2.15)

This reduces to (2.1.7) for Z⇤ = 1.

Dimensionless framework

To reach the IR limit (2.2.7) we must look at smaller and smaller momenta as we lower the

cuto↵ ⇤. We can do this by measuring the momenta in units of the cuto↵ ⇤. At the same

time, we render all the dimensionful quantities such as �(p) dimensionless by using appropriate

13



powers of ⇤.

We introduce a dimensionless parameter t by

⇤ = µ e�t (2.2.16)

where µ is an arbitary fixed momentum scale. We then define the dimensionless field with

dimensionless momentum by

�̄(p) ⌘ ⇤
D+2
2 �(p⇤) (2.2.17)

and define a Wilson action parametrized by t:

S̄t[�̄] ⌘ S⇤[�] (2.2.18)

We can now rewrite (2.2.9) for S̄t:

@tS̄t[�̄] =

Z

p

✓
�2p2

d

dp2
lnK(p) + p · @p +

D + 2

2

◆
�̄(p) ·

�S̄t[�̄]

��̄(p)

+

Z

p

(�)
d

dp2
K(p)

⇢
�2S̄t

��̄(p)��̄(�p)
�

�S̄t

��̄(p)

�S̄t

��̄(�p)

�
�
⌘t
2
Nt[�̄] (2.2.19)

where we have replaced ⌘⇤ by ⌘t, and

Nt[�̄] ⌘

Z

p

�̄(p)
�S̄t[�̄]

��̄(p)
+

Z

p

K(p) (1�K(p))

p2

✓
�2S̄t

��̄(p)��̄(�p)
�

�S̄t

��̄(p)

�S̄t

��̄(�p)

◆
(2.2.20)

is the number operator for S̄t.

Rewriting (2.2.12) in terms of dimensionless fields, we obtain

nY

i=1

1

K(pi)

⌦
�̄(p1) · · · �̄(pn)

↵
S̄t

=

✓
Zt

Zt0

◆n
2

e�
n
2 (D�2)(t�t

0)
nY

i=1

1

K(pie�(t�t0))

D
�̄(p1e

�(t�t
0)) · · · �̄(pne

�(t�t
0))
E

S̄t0
(2.2.21)

where Zt satisfies

@tZt = ⌘t Zt (2.2.22)

(The corrections to the two-point functions are ignored.) Comparing (2.2.21) with (2.2.7), the
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existence of the IR limit implies that

lim
t!1

⌘t = ⌘ (2.2.23)

and

lim
t!1

nY

i=1

1

K(pi)

⌦
�̄(p1) · · · �̄

↵
S̄t

= C(p1, · · · , pn) (2.2.24)

In other words S̄t approaches a limit as t ! +1:

lim
t!+1

S̄t = S̄1 (2.2.25)

We call S̄1 a fixed point because the right-hand side of (2.2.19) vanishes for it:

0 =

Z

p

✓
�2p2

d

dp2
lnK(p) + p · @p +

D + 2

2

◆
�̄(p) ·

�S̄1[�̄]

��̄(p)

+

Z

p

(�)
d

dp2
K(p)

⇢
�2S̄1

��̄(p)��̄(�p)
�

�S̄1

��̄(p)

�S̄1

��̄(�p)

�
�
⌘

2
N1[�̄] (2.2.26)

Fixed-point equation

Instead of choosing ⌘ dependent on t, we may choose ⌘ as a constant so that there is a non-

trivial fixed-point solution S̄1 for which the right-hand side of (2.2.19) vanishes. With a

constant anomalous dimension, the dimensionless ERG equation is given by,

@tS̄t[�̄] =

Z

p

✓
�2p2

d

dp2
lnK(p) +

D + 2

2
�
⌘

2
+ p · @p

◆
�̄(p) ·

�S̄t[�̄]

��̄(p)

+

Z

p

✓
�2

d

dp2
K(p)� ⌘

K(p) (1�K(p))

p2

◆
1

2

✓
�2S̄t[�̄]

��̄(p)��̄(�p)
�
�S̄t[�̄]

��̄(p)

�S̄t[�̄]

��̄(�p)

◆

(2.2.27)

For the O(N) model with N fields �i (i = 1, · · · , N), the ERG equation becomes

@tS̄t[�̄] =

Z

p

✓
�2p2

d

dp2
lnK(p) +

D + 2

2
�
⌘

2
+ p · @p

◆
�̄i(p) ·

�S̄t[�̄]

��̄i(p)

+

Z

p

✓
�2

d

dp2
K(p)� ⌘

K(p) (1�K(p))

p2

◆
1

2

✓
�2S̄t[�̄]

��̄i(p)��̄i(�p)
�
�S̄t[�̄]

��̄i(p)

�S̄t[�̄]

��̄i(�p)

◆

(2.2.28)
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where the repeated indices i are summed over.

This is the equation that we will solve in chapter 3.

2.3 Composite Operators

Composite operator in the field theory is simply a product of two or more operators in the

same or di↵erent space-time points. Let us consider two local operators O(x1) and O(x2). In

general, this product has singularity as x ! y. In free scalar field theory just by subtracting

the vacuum expectation value, a well-defined operator product can be constructed i.e.

: O2(x) := lim
x!y

{O(x)O(y)� hO(x)O(y)i}

Things become complex when one adds interaction. Wilson made a hypothesis to deal with

this by writing the product in a series of the following form:-

O1(x+ ⇠)O2(x� ⇠) ⌘
1X

i=1

Ei(⇠)Oj(x)

Singularity of the product of operators as ⇠ ! 0 is captured by coe�cients of Ei(⇠). The

above scheme is called Operator Product Expansion. How to define composite operators at

the same space-time point? Those operators themselves will be divergent when put inside a

Green’s function. E.g. consider the following 2-pt Green’s function with a composite operator

�2(x) in �4 interaction in 4� ✏ dimensions.

h�2(x)�(y)�(z)i

In free theory all that needs to be done is to reproduce �2 by : �2(x) : . But in an interacting

theory, one needs to make it finite at every order of perturbation.

At tree level,

h�2(k)�(p)�(q)i = 2.
i

p2
i

q2

The 1-PI one-loop correction to this is,
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=
i

p2
i

q2

Z
ddr

(2⇡)d
(�i�)

i

r2
i

(k + r)2

=
i

p2
i

q2

"
�

�

(4⇡)2
�(2� d

2)

�2� d
2

#
(2.3.1)

Where � is a function of external momenta. For on-shell condition, one can add a suitable

counterterm in the Lagrangian to cancel this divergent 1-loop contribution. That results in an

anomalous dimension of the value

��2 =
�

16⇡2

In general the process of adding counterterms can be encapsulated in the following expres-

sion,

OB(p) = ZO(�, D)[O](p) (2.3.2)

Where OB(p) and [O](p) denote bare and renormalized composite operators respectively.

Define an insertion of a composite operator at momentum k in a renormalized Green’s

function.

G(p1, p2, ...pn; k) = h�(p1)�(p2)....�(pn)[O](k)i

which is related to Green’s function of the bare theory by

G(p1, p2, ...pn; k) = Z�D/2Z�1
O

h�(p1)�(p2)....�(pn)O(k)iB (2.3.3)

Where Z is the usual wavefunction renormalization factor comes with a fundamental field.

From the above expression, one finds that Green’s functions with a composite operator obey
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the Callen-Symanzik equation


µ
@

@µ
+ �(�)

@

@�
+D�(�) + �O(�)

�
G(p1, p2, ...pn; k) = 0

Where �(�),�(�),�O are the beta function, anomalous dimension of the fundamental field, and

dimension of the operator O respectively. µ is the arbitrary scale of the theory. � and �O is

defined as

� =
1

2
µ
@

@µ
logZ

�O = µ
@

@µ
logZO

In a theory where there exists several operators with the same engineering dimension, the

relation (2.3.2) becomes

Oi

B
= Zij

O
Oj (2.3.4)

So the anomalous dimension function in the Callen-Symanzik equation also gets generalized

to a matrix

�ij
O
= [Z�1

O
]ikµ

@

@µ
[ZO]

kj

Renormalization of composite operators in continuum theory is described in many field

theory textbooks (for eg [45]). A careful analysis of the composite operators is described in

[48, 49] for �4 theory in four dimensions using dimensional regularization , in [45] for �3 theory in

six dimensions. In particular, the composite energy- momentum tensor operator is constructed

there. A similar analysis has been done recently for the �3 theory in six dimensions [50].

In contrast, in the Wilsonian RG, one studies the evolution of an operator as longer and

longer wavelength modes are integrated out. This is done by requiring that �S obey the

Wilsonian RG equation linearized about a fixed point. This leads to the definition of a composite

operator in ERG given below. In this thesis, we will calculate the composite operators using

ERG.
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2.4 Composite operator in ERG

2.4.1 Toy example

In free field theory, at D = 4, the scalar field � has engineering dimension one. The composite

�n thus has dimension n. Thus we consider a term in the action �S2 =
1
2

R
m2�2. Let the UV

cuto↵ be ⇤. We write this action in terms of dimensionless fields and coordinates. Define

� = ⇤�̄, x =
x̄

⇤

Then

�S2 =
1

2

Z
d4x̄

m2

⇤2
�̄2 =

1

2

Z
d4x̄ r�̄2

Here r is dimensionless. On coarse graining, ⇤ decreases, so for fixed m2, r increases. Thus if

we write ⇤ = ⇤0e�t we see that

d�S2

dt
⌘ dm�S2 = 2�S2

and we call it relevant. dm is the overall length scaling dimension of �S2 (not counting the

parameter m2, which is included to make the whole thing have dimension zero).

If we add a term

�S4 =

Z
d4x u�4

one immediately sees that u is already dimensionless and

d�S4

dt
⌘ dm�S4 = 0

and we call it marginal.

But this is not the whole story even in a free theory. The operation d/dt refers not to just

changing ⇤ that was introduced here to make things dimensionless, but it refers to the whole

process of integrating out modes between ⇤ and ⇤(1�dt). This physical coarse graining process

fixes the ⇤ dependence of the action. It introduces an extra ⇤ dependence over and above what

is required for writing everything in terms of dimensionless variables.

We illustrate this with a simple calculation. Write � = �h + �l. We assume that �h are
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modes between ⇤,⇤0 and are integrated out. Thus

�4 = �4
l
+ 6�2

l
�2
h
+ �4

h

Integrating out �h in the second term gives

Z

x

6�2
l

1

(4⇡)2

Z ⇤2
0

⇤2

dp2p2
1

p2
=

6

(4⇡)2
[⇤2

0 � ⇤2]

Z

x

�2
l

If we take ⇤ and ⇤(1� dt) instead of ⇤0 and ⇤ we get

d�S4

dt
=

6u

(4⇡)2
[2⇤2]

Z

x

�2
l

(2.4.1)

Thus we see that �̇S4 6= 0 even in a free theory. One must add �S2 with r0 = �
6u

(4⇡)2 . So

in dimensionless variables

�S =
1

4!

Z
d4x̄ u�̄4 +

1

2

Z
d4x̄ r0�̄

2 (2.4.2)

satisfies �̇S = 0 and has dm = 0. This is the usual ”quadratic” divergence in scalar field theory

in another guise.

The simple calculation above is in the spirit of the Wilsonian RG and is described further in

the next section below. The above simple calculation also indicates the need to renormalize the

operators when taking the continuum limit. In the interacting case, the ⇤ dependence will be

more complicated. There will in general be mixing among all operators of a given dimension.

2.4.2 Formal definition

Composite Operators of definite scaling dimension using the ERG were discussed in [13]. A

good discussion of composite operators is given in [52] and some of it is summarized in this

section below. Many other aspects of composite operators in �4 field theory are discussed

in [54, 55, 56, 57]. In particular, few works on energy-momentum tensor and corresponding

correlators have been done [59, 60].

A Composite operator in ERG is defined as the operator obtained by the evolution of a

bare operator under ERG flow. Consider an operator OB in the bare theory. Define the low
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energy propagator as

�l =
K(p)

p2

where K(p) is a smooth momentum cuto↵ function. For eg.

K(p) = e�
p2

⇤2

and

K0(p) = e
� p2

⇤2
0

We also define

�h(p) =
K0(p)�K(p)

p2

the high energy propagator. It propagates modes mainly between ⇤0,⇤. The full propagator

of the bare theory is � = �l +�h.

Define the Wilson Action S⇤ and the interacting part of the Wilson Action SI,⇤ by

Z
D�he

�SB [�l+�h] =

Z
D�he

� 1
2

R
�l�

�1
l �l� 1

2

R
�h�

�1
h �h�SI,B [�l+�h] = e

1
2

R
�l�

�1
l �l�SI,⇤[�l] = e�S⇤

(2.4.3)

where SI,B is the interacting part of the bare action. The first equality in this can be proved

[52]. The rest are definitions. This defines an ERG flow from ⇤0 to ⇤.

S⇤ is a theory where ⇤ is a UV cuto↵. It may be obtained as above by integrating out

modes in a bare theory defined at a higher scale. From the point of view of this bare theory,

⇤ is an IR cuto↵ during the integration process. Nevertheless, a fixed point Wilson action S⇤

defined as a stationary solution of the ERG equation has an existence in its own right without

reference to a bare theory from which it is derived. In this viewpoint, ⇤ is indeed a UV cuto↵.

We take this viewpoint in this paper.

We give below some equivalent ways of defining a composite operator in ERG:

Definition I

The composite operator of this operator at scale ⇤, O⇤ is defined as:
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Z
D�hOB[�l + �h]e

� 1
2

R
�h�

�1
h �h�SI,B [�l+�h] = O⇤[�l]e

�SI,⇤[�l]

The composite operator defined as above has the useful property: [52]

hOB(p)�(p1)�(p2)..�(pn)i⇤0 =
nY

i=1

K0(pi)

K(pi)
h[O]⇤(p)�(p1)�(p2)...�(pn)i⇤

Definition II

A useful way to think about composite operators in ERG is in terms of evolution operators.

Define an ERG evolution operator U(f, i) from theory of scale ⇤i to ⇤f by

e�S⇤[�f ] = U(f, i)e�SB [�i]

Then

O⇤[�f ]U(f, i)e�SB [�i] = U(f, i)OB[�i]e
�SB [�i]

Thus formally one can write this as

O⇤[�f ] = U(f, i)OB[�i][U(f, i)]�1 (2.4.4)

Definition III

We can also think of perturbing SB with a term of order ✏ and calculate the change in S⇤

to order ✏:

Z
D�he

� 1
2

R
�h�

�1
h �h�SB,I [�l+�h]+✏OB [�l+�h] = e�SI,⇤[�l]+✏O⇤[�l] (2.4.5)

This definition leads to a functional di↵erential equation and is also a convenient way of

defining O⇤. In this thesis, we use this approach. This equation is in fact the linearized ERG

equation for a perturbation �S obtained from (2.2.1).
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@�S

@t
=

Z

p

⇢
(�K 0(p2))[

�2�S

��(p)��(�p)| {z }
1

�2
�S

��(p)

��S

��(�p)| {z }
2

]�2
p2K 0

K
�(p)

��S

��(p)| {z }
3

+

+
�⌘

2

K(p2)(1�K(p2)

p2
[

�2�S

��(p)��(�p)
� 2

�S

��(p)

��S

��(�p)
] +

�⌘

2
�(p)

��S

��(p)

�

+ [(1�
D

2
)N� +D �Np]�S (2.4.6)

where t = � log ⇤
⇤0

and all the variables are dimensionless.

This equation defines the ⇤ or t dependence, given some starting operator at the initial

time. Eigen-operators are defined by the property that

@�S

@t
= dm�S + �(�)

@�S

@�
(2.4.7)

i.e. under RG evolution at a fixed point they just scale as edmt where dm is the (length)

scaling dimension.The second term �(�) is zero at the fixed point. Actually this is true for

operators integrated over all space. In most places in our work �S is chosen to be of the form

gi
R
x
Oi(x), i.e. integrated over space and thus correspond to some coupling constant in the

action. From the integrated form one can determine O(x) up to total derivatives. Thus O(x)

and O(x)+@µOµ(x) will give the same �S. To determine O(x) unambiguously one would have

to make gi(x) space dependent. This complicates the (already involved) algebra, especially at

two loops and is not attempted in our work. 1

2.4.3 Boundary Conditions on Composite Operators:

In the first two definitions, it is evident that there is a boundary condition for O⇤[�], namely

that at ⇤ = ⇤0 it becomes equal to OB[�]. Similarly, while solving the eigenvalue equation at

the Wisher-Fisher fixed point in our work we put the initial condition that at ⇤ = ⇤0 O⇤[�]

1
Just as an illustration, the leading order result for the relevant unintegrated operator �2

is given in Section

3.1
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reduces to OB[�]. We choose OB as in the Gaussian theory, namely

O2 = �2 at ⇤ = ⇤0 (2.4.8a)

O4 = �4 at ⇤ = ⇤0 (2.4.8b)

Correction to this will be evaluated in a perturbation series as powers of �. Thus �S(� = 0)

will be equal to corresponding operator in Gaussian theory ( which is given in subsection 4.3.1

). The corrections will be chosen to be in terms of the high energy propagator,which vanishes

when ⇤ = ⇤0. All the correction terms thus vanish at ⇤ = ⇤0. This implements the required

boundary condition. In continuum limit one may have to add further counterterms in order to

keep the operators finite which will modify the corresponding boundary conditions.

Many aspects of these local operators are discussed in [54, 55, 56, 57]. Some scaling prop-

erties are described in Appendix B.1.

It is to be noted that the concept of scaling dimension makes sense only if the theory has

scale invariance. Thus S must correspond to a fixed point action that obeys

@S

@t
= 0

But in general, one can solve a more general equation by putting

@S

@t
=
X

i

�i(�i)
@S

@�i

where �i and �i(�i) are the various coupling constants and the beta functions of the theory.

In fact, the expression of action which is a solution of this equation is easier to write down [43],

hence we will be using this action in our work.

2.4.4 Simple examples

In our work, we will use definition III, so here to give a feeling of how to calculate a composite

operator using the other two definitions we will give two instances.
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Calculation of [�(p)]

We start with insertion of �(p) in bare theory,

Z
D� � e�SB [�]+J�

Then decompose � as �l + �h to obtain,

Z
D�le

� 1
2�l

1
�l

�l+J�l

Z
D�h (�l + �h)e

� 1
2�h

1
�h

�h�SI,B [�l+�h]+J�h

Keeping aside e
� 1

2�l
1
�l

�l+J�l part

=

Z
D�h (�l + �h)e

� 1
2�h

1
�h

�h�SI,B [�l+�h]+J�h

=

Z
D�h (�l +

�

�J
)e

� 1
2�h

1
�h

�h�SI,B [�l+�h]+J�h

Redefining �0 = �h ��hJ we get

=

Z
D�0(�l +

�

�J
)e

� 1
2�

0 1
�h

�
0�SI,B [�l+�

0+�hJ ]+
1
2J�hJ

= (�l +
�

�J
)e�SI,⇤[�l+�hJ ]+

1
2J�hJ

So we can write,

Z
D��e�SB [�]+J�

|J=0=

Z
D�le

� 1
2�l

1
�l

�l+J�l(�l ��h

�SI,⇤

��l

)e�SI,⇤[�l+�hJ ]+
1
2J�hJ |J=0

Hence from the definition I we get,

[�] = �l ��h

�SI,⇤

��l

where �h(p2) =
K0(p2)�K(p2)

p2
.

Note that if one considers ��4 theory,

�4 = (�l + �h)
4 = �4

l
+ 4�h�

3
l
+ ...
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So,

[�] ⇡ �l + �h�h�hi�
3
l

(2.4.9)

Diagram wise it looks like

Calculation of N (p)

We will use definition II in order to find N (p), i.e. composite operator corresponding to number

operator � �S

��
. We need the evolution operator U(f, i) of Polchinski’s equation. For simplicity

let’s consider a field theory in zero dimension. The zero-dimensional field is denoted by x. Note

that in zero dimensional system both fundamental field x and cut-o↵ function K depends on

only scale t as there is no momenta. The Polchinski’s equation in zero dimension (from (2.2.2))

stands as

@ (x, t)

@t
= �

1

2
K̇(t)

@

@x

✓
@

@x
+ 2K�1(t)x

◆
 (x, t)

where  (x, t) = e�S[�], t = � log ⇤
⇤0
.

Let’s change variable (x, t) ! (y, ⌧). Where y(t) = x(t)p
K(t)

and ⌧ = t. After that define

g(⌧) = � logK(⌧). Finally we get,

@ 

@g
=

1

2


@2 

@y2
+ y

@ 

@y

�

So evolution operator U(f, i) corresponding to the change from initial scale ti to final scale

tf is,
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U = e
R g
gi

dg
1
2

h
@2

@y2
+y

@
@y

i

= e
(g�gi)

1
2

@2

@y2
+(g�gi)

1
2y

@
@y (2.4.10)

where g|ti = gi = � logK(⌧0) = � logK0.

From definition II the composite operator N is to be found from the following expression

eaNU(f, i) = U(f, i)eax
@
@x

It can be shown

eaN = e
a

h
K(K0�K)

K0

@2

@x2
+x

@
@x

i

(2.4.11)

Note that in higher dimensional QFT x gets replaced by �(p), hence taking the form of

(2.2.10) which has been used in Polchinski’s equation.

This finishes our discussion about the background of both the next two chapters.
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Chapter 3

Wilson action for O(N) model

We will find the fixed-point Wilson action by putting @S̄t
@t

= 0 in (2.2.28). As we will work

mostly with dimensionless variables we will remove the bar sign from the dimensionless variables

unless otherwise mentioned. Also t dependence of actions and fields being readily implied, the

subscript t will be omitted too. We give the fixed point action S in the following form:

S = S2 + S4 + S6

where S2 and S4 are given by

S2 =

Z
dDp

(2⇡)D
U2(p)

1

2
�I(p)�I(�p) (3.0.1)

S4 =
1

2

3Y

i=1

Z
dDpi
(2⇡)D

U4(p1, p2; p3, p4)
1

2
�I(p1)�

I(p2)
1

2
�J(p3)�

J(p4) (3.0.2)

where p1 + p2 + p3 + p4 = 0 is implied. Instead of putting an explicit delta function and

integrating over p4 we will simply impose momentum conservation at every stage. Accordingly

S6 is given by

S6 =
1

3!

5Y

i=1

Z
dDpi
(2⇡)D

U6(p1, p2; p3, p4; p5, p6)
1

2
�I(p1)�

I(p2)
1

2
�J(p3)�

J(p4)
1

2
�K(p5)�

K(p6)

(3.0.3)
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3.1 Result

The main result of this section is Wilson action at Wilson-Fisher fixed point which is stated

below. (we have put D=4 for O(✏2) terms),

U2(p) =
p2

K(p2)
� �

N + 2

2

Z
dDp

(2⇡)D
K0(p2) + Ũ2(p) (3.1.1)

The expression for Ũ2(p) is given as

Ũ2(p1) = �
�2

(16⇡2)2
(N + 2)2

4
h(p1) �

(N + 2)2

4

�2

(16⇡2)2

+p2
1

Z p2
1

p2=0

dp2

R
dDq

(2⇡)D

n
� 6�2(N + 2)(�K0(q2))F (p + q)

o
� ⌘ p2

2p4
(3.1.2)

U4(p1, p2; p3, p4) =(4 � D)
16⇡2

N + 8
+

(N + 2)

2

�2

16⇡2

4X

j=1

h(pj)

��2


(N + 4)F (p1 + p2) + 2F (p1 + p3) + 2F (p1 + p4)

�
(3.1.3)

where

F (p) =
1

2

Z
dDp

(2⇡)D
h(q)


h(p+ q)� h(q)

�

and

h(p) =
K(0)�K(p2)

p2
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U6(p1, p2; p3, p4; p5, p6) = ��2

⇢
h(p1 + p2 + p3) + h(p1 + p2 + p4) + h(p1 + p2 + p5)

+h(p1 + p2 + p6) + h(p1 + p3 + p4) + h(p2 + p3 + p4)

�

(3.1.4)

and the anomalous dimension is given by

⌘

2
= �2N + 2

4

1

(16⇡2)2
=

N + 2

(N + 8)2
✏2

4
(3.1.5)

To evaluate the integrals we have put D = 4 and used a specific form of K(p2) = e�p
2
.

3.2 Details of the calculation

When one puts the ansatz (3.0.1) and (3.0.3) in the eq.(2.2.28) one gets the equations for the

vertices U2, U4 and U6. In this section we will state this procedure. As a corollary, we also got

the fixed point value of the coupling constant �. We have also found the anomalous dimension

of the field by considering U2 vertex equation in the subleading order.

3.2.1 Equations for the vertices

Equation for U2

0 =

Z
dDp

(2⇡)D

(✓
�⌘

2

K(1�K)

p2
�K 0(p2)

◆
1

8


4NU4(p1,�p1; p,�p) + 8U4(p1, p;�p1,�p)

�

�
1

2!
2U2(p)U2(p)�

D(p� p1)

)
+

✓
�⌘

2
+ 1� 2

p21
K(p21)

K 0(p21)

◆
U2(p1)�

1

2!
p1
dU2(p1)

dp1

(3.2.1)
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Equation for U4

0 =

Z
dDp

(2⇡)D

✓
�⌘

2

K(1�K)

p2
�K 0(p2)

◆
1

48

⇥

⇢
6NU6(p1, p2; p3, p4; p,�p) + 12U6(p1, p; p2,�p; p3, p4) + 12U6(p1, p2; p3, p; p4,�p)

�

�

4X

j=1

✓
�⌘

2

K(1�K)

p2
j

�K 0(p2
j
)

◆
U2(pj)

2

8
U4(p1, p2; p3, p4)

+
4X

j=1

✓
�⌘

2
� 2

p2

K(p2
j
)
K 0(p2

j
)

◆
1

8
U4(p1, p2; p3, p4)

+


4�D �

4X

i=1

pi
d

dpi

�
1

8
U4(p1, p2; p3, p4) (3.2.2)

Here p = pa + pb + pn = �(pi + pj + pm).

Equation for U6

0 =
2

48

X

6 perm of (m,n)

✓
�⌘

2

K(1�K)

(pi + pj + pm)2)
�K 0((pi + pj + pm)

2)

◆
U4(pi, pj; pm, p)U4(pa, pb; pn,�p)

+
6X

j=1

✓
K 0(p2

j
)�

�⌘

2

K(1�K)

p2
j

◆
U2(pj)

2

48
U6(p1, p2; p3, p4; p5, p6)

+
6X

j=1

✓
�⌘

2
� 2

p2

K(p2
j
)
K 0(p2

j
)

◆
1

48
U6(p1, p2; p3, p4; p5, p6) +


6� 2D �

6X

i=1

pi
d

dpi

�
1

48
U6(p1, p2; p3, p4; p5, p6)

(3.2.3)

3.2.2 Solving the Equations

We know that U4 ⇡ O(✏) and U6 ⇡ O(✏2) and ⌘ ⇡ O(✏2), where ✏ = 4�D.

O(1): Retrieving Gaussian theory

We start with (3.2.1) for U2. Neglecting U4 and ⌘ and collecting coe�cients of �2 we get

0 = K 0(p2)U2(p)U2(p) +

✓
1� 2

p2

K(p2)
K 0(p2)

◆
U2(p)� p2

dU2(p)

dp2
(3.2.4)

U2(p) =
p
2

K(p2) solves this equation. This is expected since the Gaussian theory is expected to

be a fixed point - and this ERG was obtained from Polchinski’s ERG by adding on the kinetic
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term 1
2

R
d
D
p

(2⇡)D�(p)
p
2

K(p2)�(�p). Thus our solution can be written as

U2(p) =
p2

K(p2)
+ U (1)

2 (p)| {z }
O(✏)

+O(✏2) (3.2.5)

O(✏): Correction to mass term

We go back to (3.2.1) and keep U4 which is O(✏) but drop ⌘ which is O(✏2).

0 =

Z
dDp

(2⇡)D

✓
�⌘

2

K(1�K)

p2
�K 0(p2)

◆
⇥

⇢
1

8

h
4NU4(p1, p2; p,�p) + 8U4(p1, p;�p,�p1)

i
�

1

2!
2U2(p)U2(p)�

D(p� p1)

�

+

✓
�⌘

2
+ 1� 2

p21
K(p21)

K 0(p21)

◆
U2(p1)�

1

2!
p1
dU2(p1)

dp1

(3.2.6)

We use (3.2.5) in the above equation and look at the terms of order ✏. To leading order we set

U4 = �, which is O(✏). The equation for U (1)
2 is given by

0 = ��
4N + 8

8

Z
dDp

(2⇡)D
K 0(p2) + 2

p21
K(p21)

U (1)
2

✓
p1)K

0(p21) + (1� 2
p21

K(p21)
K 0(p21)

◆
U (1)
2 (p1)� p21

dU (1)
2 (p1)

dp21

To leading order this equation is solved by a constant U (1)
2 , i.e.

0 = ��
4N + 8

8

Z
dDp

(2⇡)D
K 0(p2) + U (1)

2 (3.2.7)

Thus

U (1)
2 = �

N + 2

2

Z
dDp

(2⇡)D
K 0(p2) (3.2.8)

Here
Z

dDp

(2⇡)D
=

1

2D⇡D/2�(D/2)

Z
(p2)

D�2
2 dp2

To get leading results we can set D = 4:

U (1)
2 = �

4N + 8

8

1

(4⇡)2

Z 1

0

dp2p2K 0(p2) = ��
4N + 8

8

1

(4⇡)2

Z 1

0

dp2K(p2) (3.2.9)
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We have used K(0) = 1, K(1) = 0. This gives the fixed point value of the dimensionless mass

parameter:

U (1)
2 = m2

?
= ��

N + 2

2

1

(4⇡)2

Z 1

0

dp2K(p2) (3.2.10)

To evaluate the integral explicitly we need a specific form for K. We use K(p2) = e�p
2
. Then

the integral is equal to 1.

O(✏2): Expression for the six-point vertex

Let us turn to (3.2.3) reproduced below:

0 = �
2

48

X

6 perm of (i,j,m)

✓
�⌘

2

K(1�K)

(pi + pj + pm)2
�K 0((pi + pj + pm)

2)

◆
U4(pi, pj; pm, p)U4(pa, pb; pn,�p)

+
6X

j=1

⇢✓
K 0(p2

j
)�

�⌘

2

K(1�K)

p2
j

◆
2U2(pj) +

✓
�⌘

2
� 2

p2

K(p2
j
)
K 0(p2

j
)

◆�
1

48
U6(p1, p2; p3, p4; p5, p6)

+


6� 2D �

6X

i=1

pi
d

dpi

�
1

48
U6(p1, p2; p3, p4; p5, p6) (3.2.11)

where p = pa + pb + pn = �(pi + pj + pm).

In this equation we keep terms of O(✏2). Since ⌘ is O(✏2), and multiplies terms of O(✏2), it

contributes only at O(✏4) in this equation, so it can be dropped here. Furthermore then, if we

use the leading order solution for U2 =
p
2

K(p2) , the second and third terms cancel each other. So

we are left with

0 = �
2

48

X

6 perm (i,j,m)

K 0�(pi + pj + pm)
2
�
U4(pi, pj; pn, p)U4(pa, pb; pn,�p)

+


(6� 2D �

6X

i=1

pi
d

dpi
)

�
1

48
U6(p1, p2; p3, p4; p5, p6) (3.2.12)

Since U4 = � to this order, we obtain

0 = �2
2

48

X

6 perm (i,j,m)

K 0((pi+pj+pm)
2)+


6�2D�

6X

i=1

pi
d

dpi

�
1

48
U6(p1, p2; p3, p4; p5, p6) (3.2.13)
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The solution for one permutation is

U6(p1, p2; p3, p4; p5, p6) = �2
K((p1 + p2 + p3)2)�K(0)

(p1 + p2 + p3)2

The full solution is given by

U6(p1, p2; p3, p4; p5, p6) = ��2
�
h(p1 + p2 + p3) + h(p1 + p2 + p4) + h(p1 + p2 + p5)

+h(p1 + p2 + p6) + h(p1 + p3 + p4) + h(p2 + p3 + p4)
 

(3.2.14)

where h(x) = K(0)�K(x)
x2 .

Fixed Point value of �: Solution for U4 at O(✏)

The U4 equation is given by (3.2.2). In this equation, ⌘ can be neglected as �⌘ ⇡ O(✏2) . Also,

we put the value of U2 up to order of ✏ found above. There is a cancellation between the second

and third terms on the R.H.S and we obtain

✓
4�D �

4X

i=1

pi
d

dpi

◆
�

4X

j=1

2K 0(p2
j
)
�

16⇡2

N + 2

2

�
1

8
U4(p1, p2; p3, p4)

=

Z
dDp

(2⇡)D
K 0(p2)

1
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⇢
6NU6(p1, p2; p3, p4; p,�p) + 12U6(p1, p; p2,�p; p3, p4) + 12U6(p1, p2; p3, p; p4,�p)

�

(3.2.15)

The solution is given in the Appendix (A.1.1). The fixed point value �⇤ given below solves the

above equation:

�⇤ = (4�D)
16⇡2

N + 8
(3.2.16)

3.2.3 Determining Anomalous Dimension

U2 equation at O(✏2)

0 =

Z ⇢
dDp

(2⇡)D

✓
�⌘

2

K(1�K)

p2
�K 0(p2)

◆
�2S4

��I(p)��̄I(�p)
�

�S2

��I(p)

�S2

��I(�p)

��

+

⇢
�
⌘

2
� 2

p2

K(p2)
K 0(p2)

�
�(p).

�S

��(p)
+ G

c

dil
S2
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where we plug in:

U4(p1, p2; p3, p4) = �+ Ũ4(p1, p2; p3, p4)| {z }
O(✏2)

U2(p) =
p2

K
� �

N + 2

2

Z
dDp

(2⇡)D
K 0(p2) + Ũ2(p)| {z }

O(✏2)

(3.2.17)

and keep only O(✏2) terms in the above equation to get

0 =

Z
dDp

(2⇡)D

✓
�⌘

2

K(1�K)

p2
�K 0(p2)

◆
⇥

⇢
1

8


4NŨ4(p1,�p1; p,�p) + 8Ũ4(p1, p;�p,�p1)

�
�

1

2!
2U2(p)U2(p)�

D(p� p1)]

�

+

✓
�⌘

2
+ 1� 2

p21
K(p21)

K 0(p21)

◆
U2(p1)� p21

dU2(p1)

dp21
(3.2.18)

On simplification it gives

�
�⌘

2

(1�K)

K
p21�

Z
dDp

(2⇡)D
K 0(p2)

1

8


4NŨ4(p1,�p1; p,�p)+8Ũ4(p1, p1;�p,�p1)

�
+K 0(p21)U2(p1)U2(p1)

+
�⌘

2

p21
K

+ Ũ2(p1)� p21
dŨ2(p1)

dp21
= 0 (3.2.19)

In the L.H.S the third term will cancel with part of the second term (shown in A.1.3). Also

the raison d’etre for introducing ⌘ is to ensure that U2 = p2 +O(p4). So we let Ũ2 = O(p4). So

The anomalous dimension is given by

⌘

2
= �

d

dp2
1

Z
dDp

(2⇡)D
K0(p2)

1

8


4NŨ II

4 (p1,�p1; p,�p) + 8Ũ II
4 (p1, p;�p1,�p)

� �����
p2
1=0

(3.2.20)

Here the superscript II is explained in Appendix A and refers to a class of Feynman diagrams.

Ũ4 is determined by solving (3.2.15). So using (3.2.20) and (A.1.19) one can determine ⌘.

This is done in the Appendix (A.1.4). The result is of course well known [13]:

⌘

2
= �2

N + 2

4

1

(16⇡2)2
=

N + 2

(N + 8)2
✏2

4
(3.2.21)
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Chapter 4

Composite Operator

In chapter 2 we have studied the definitions and simple computations of composite operators.

We will choose �4 and �2 operators in a bare O(1) theory with quartic interaction at 4-✏

dimensions and calculate the corresponding composite operators at the Wilson-Fisher fixed

point. Then we will calculate those operators with their scaling dimension up to O(✏2).

4.1 Operators near fixed point

The velocities of the RG trajectories at the critical surface is non-zero everywhere except at

the fixed point. So any theory on the critical surface ends up in the fixed point (point P1

in Fig. 4.1). Hence it is important to study the basis of the critical surface. This surface is

spanned by irrelevant or marginally irrelevant operators. Irrelevant operators are the negative

mass dimension operators, hence as expected will get suppressed by negative powers of ⇤
⇤0
. A

typical example of irrelevant operators in �4 theory is �6, �8,.... etc(curve E in Fig. 4.1). A

dimension zero operator in bare theory can become irrelevant near the fixed point for example

here it is �4 operator ( section 4.3).

On the other hand, as velocity is zero at the fixed point, the way out of the critical surface

to high temperature fixed point (point P0 in Fig. 4.1) can be only through the fixed point P1.

These directions are described by the positive mass dimension or relevant operators. Studying

these directions is also important because critical exponents bear proof of universality. �4

theory has only one relevant direction that is �2 (curve G in Fig. 4.1).
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Figure 4.1: Curves nearby the critical surface and fixed point intersecting surfaces of di↵erent
correlation lengths ⇠. Curve G is the only route to be out from the critical surface. Any point
E on the critical surface ends up at P1. The curve D spends an infinite amount of time near
the fixed point. Trajectories with finite ⇠ end up at P0.

4.2 Problem

We want to find the anomalous dimension of two important composite operators upto O(✏2)

at the Wilson-Fisher fixed point of O(1) model with quartic interaction -1) Relevant operator

�2 whose dimension is always positive, 2)Marginally Irrelevant operator �4 whose dimension is

zero at the bare theory but becomes negative near the fixed point. The same dimensions in

leading order have been found out in [13]. We find agreement with our result. For subleading

order, the expected value of the anomalous dimension using dimensional regularization has been

stated. In limit ⇤0 ! 1, we recover them from our ERG analysis. So, using (2.4.6), (2.4.7) and

the W-F action found in the previous chapter we set to find the anomalous dimension of the

above bare operators at the W-F fixed point of the O(1) model. In this process, the respective

composite operators automatically come out.

The Action

We give the action S in the form:

S = S2 + S4 + S6

S2 and S4 are given by

S2 =

Z
dDp

(2⇡)D
U2(p)

1

2
�I(p)�I(�p) (4.2.1)

S4 =
1

2

3Y

i=1

Z
dDpi
(2⇡)D

U4(p1, p2; p3, p4)
1

2
�I(p1)�

I(p2)
1

2
�J(p3)�

J(p4) (4.2.2)
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where p1 + p2 + p3 + p4 = 0 is implied. Instead of putting an explicit delta function and

integrating over p4 we will simply impose momentum conservation at every stage. Accordingly,

we write

S6 =
1

3!

5Y

i=1

Z
dDpi
(2⇡)D

U6(p1, p2; p3, p4; p5, p6)
1

2
�I(p1)�

I(p2)
1

2
�J(p3)�

J(p4)
1

2
�K(p5)�

K(p6)

(4.2.3)

The expression of the action which satisfies (2.2.19) is given in section 3.1 . But note that

the value of 2-pt vertex U2(p) at O(✏2) is complicated. Hence we solve a more general equation

where the LHS of (2.2.19) is not set to zero but to @S

@t
= �J

@S

@�J
. The parameters can be chosen

so that the beta functions are zero. This has the e↵ect that the equations are modifed at each

order by terms of higher order. The advantage is that the solutions are easier to write down.

The vertices in this set-up have been found in[43],

U2(p) = ��(N + 2)v2 � �2
�
3(N + 2)G(p) + (N + 2)2 (v2)

2 h(p)
�

(4.2.4a)

U4(p1, p2; p3, p4) = ��2
⇣
(N + 4)F (p1 + p2) + 2F (p1 + p3) + 2F (p1 + p4)

�(N + 2)v2

4X

i=1

h(pi)
⌘

(4.2.4b)

U6(p1, p2; p3, p4; p5, p6) = ��2 (h(p1 + p2 + p3) + h(p1 + p2 + p4) + h(p1 + p2 + p5)

+h(p1 + p2 + p6) + h(p3 + p4 + p1) + h(p3 + p4 + p2))

(4.2.4c)

where

f(p) = �2K 0(p2); h(p) =
K(0)�K(p2)

p2

and

v2 =
1

2 � ✏

1

2

Z
dDp

(2⇡)D
f(p) (4.2.5)

If we take the limit ✏! 0 and K(p2) = e�p
2
we get

v2 =
1

2

Z
d4p

(2⇡)4
e�p

2
=

1

2

1

16⇡2
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F (p) =
1

2

Z
dDp

(2⇡)D
h(q)

h
h(p+ q)� h(q)

i

The coupling constant � is given, to order ✏ = 4�D, as

� =
✏

��(1)
N

=
(4⇡)2

N + 8
✏ (4.2.6)

The anomalous dimension is given, to order ✏2, as

⌘ =
N + 2

2(N + 8)2
✏2 (4.2.7)

4.2.1 Anomalous Dimension-what to expect

As we will calculate the anomalous dimension of the composite operators at the Wilson-Fisher

fixed point, let us do some simple calculation to understand what to expect as the anomalous

dimensions. Consider a bare action at scale ⇤0 and evolve to ⇤ which is close to ⇤0.

S⇤0 =

Z

x


1

2
@µ�@

µ�+
1

2
m2

0�
2 + �0

�4

4!

�
(4.2.8)

The operator �
4

4! is the marginal operator of the bare theory. Later it will turn out to be

irrelavnt operator for D < 4 when one will consider higher order contributions. If one see the

term �4 as perturbation, the bare operator �4 can be interpreted as a composite operator at

scale ⇤0 (see (2.4.5)) and can be defined as:-

@S⇤0

@�0
=

Z

x

@L⇤0

@�0
=

Z

x

�4

4!
(4.2.9)

Similarly, the relevant operator 1
2�

2 is defined as

@S⇤0

@m2
0

=

Z

x

@L�0

@�0
=

Z

x

�2

2
(4.2.10)

S⇤ is obtained by evolving down from ⇤0 to ⇤ i.e. by integrating modes ⇤ < p < ⇤0.
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If we apply Definition III ((2.4.5)) of the composite operators given in the previous chapter,

@S⇤
@�0

is a composite operator and defines in fact what we call [�4]/4!.

@S⇤

@�0
⌘

Z

x

[�4]⇤
4!

(4.2.11)

We can expect S⇤ to look like the following:

S⇤ =

Z

x

[(1� �Z(t))
1

2
@µ�@

µ�+
1

2
(m2

0 + �m0(t)
2)�2 + (�0 + ��0(t))

�4

4!
+O(1/⇤)] (4.2.12)

Here �Z is the correction to the kinetic term coming from the two loop diagram at O(�2),

�m2
0 ⇡ O(�) and ��0 ⇡ O(�2) are the corrections starting at one loop.

Adding and subtracting terms we can write S⇤ as:

=

Z

x

[
1

2
@µ�@

µ�+
1

2
(m2

0 + �m0(t)
2 + �Zm2

0)�
2 + (�0 + ��0(t) + 2�Z�0| {z }

�̄�0(t)

)
�4

4!
+O(1/⇤)]

��Z[
1

2
@µ�@

µ�+
1

2
m2

0�
2 + 2�0

�4

4!
]

The beta function is defined by

��0 ⇡ �(�0)t (4.2.13)

and

�Z ⇡ �
⌘

2
t

with
⌘

2
=

�20
(16⇡2)2

1

12
(4.2.14)

The mass anomalous dimension is defined by,

�m0(t) ⇡ �mt (4.2.15)

We write 1
2@µ�@

µ� = �
1
2�2� and then use

��Z[
1

2
@µ�@

µ�+
1

2
m2

0�
2 + 2�0

�4

4!
] = ��Z

1

2
�
�S

��
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� �S

��
is called as the equation of motion operator. 1

N = �

Z

p

Ke+S⇤
�

��
([�]⇤e

�S⇤) ⇡

Z

p

�
�S

��
(4.2.16)

S⇤ =

Z

x

[
1

2
@µ�@

µ�+
1

2
(m2

0 +m2
0�mt)�

2 + (�0 + �(�0)t)
�4

4!
+O(1/⇤)]

+
⌘

2
t

Z

x

1

2
�

�S

��(x)
(4.2.17)

According to (4.2.11)

@S⇤

@�0
⌘

Z

x

[�4]⇤
4!

= (1 +
@�(�0)

@�0
t)
�4

4!
+m2

0

@�m(�0)

@�0
t
1

2
�2 +

1

2

@⌘(�0)

@�0
tN +O(1/⇤)] (4.2.18)

So,
@

@t

Z

x

[�4]⇤
4!

= (
@�(�0)

@�0
)
�4

4!
+m2

0

@�m(�0)

@�0

1

2
�2 +

1

2

@⌘(�0)

@�0
N +O(1/⇤)] (4.2.19)

From chapter 11 of [67, 69]2, we get �(�0) in our convention as,

�(�0) = �0(✏�
1

16⇡2
3�0 +

1

(16⇡2)2
17

3
�20) (4.2.20)

In the critical theory, we can set m2
0 = 0. So if we collect the coe�cient of �4 we get what we

have defined above as dm in the ERG evolution. We denote anomalous dimension of irrelevant

operator as d4 and that of relevant operator as d2.

d4 = ✏�
1

16⇡2
6�0 +

1

(16⇡2)2
17�20 +

4

(16⇡2)2
2�20
12

= ✏�
1

16⇡2
6�0 +

1

(16⇡2)2
53�20
3

(4.2.21)

1
More correctly at higher orders it should include the change in measure and becomes the “number operator”.

Here [�] is the “composite operator” corresponding to � and is defined by [52]

[�]⇤(p) =
K0

K
�(p) +

K0 �K

p2
�S⇤

��(�p)

2
The coupling constants in the relevant equations in these two books di↵er by a factor of 2
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For the relevant operator �2, analogously one can define it as

@S⇤

@m2
0

=

Z

x

[�2]⇤
2

(4.2.22)

So applying this to (4.2.17)

@

@t

Z

x

[�2]⇤
2

= �m

Z

x

[�2]⇤
2

(4.2.23)

From [67, 69]3 we get for the two-loop anomalous dimension

�m =
�0
16⇡2

�
1

(16⇡2)2
5

6
�20 (4.2.24)

So length scaling dimension d2 (in our notation) of the relevant operator
R
x
�2 is given by,

d2 = 2�
�0
16⇡2

+
1

(16⇡2)2
5

6
�20 (4.2.25)

Note that the results of [67, 69] are obtained using the mass-independent dimensional renor-

malization scheme or “minimal subtraction”. The scheme used in this paper is also mass in-

dependent. In mass-independent schemes the first two orders in the power series expansion of

the beta function are well known to be scheme independent. The proof is given below:

Let

�(�) =
d�

dt
= b2�

2 + b3�
3

Let

�0 = �+ a�2

and

�0(�0) =
d�0

dt
= b02�

02 + b03�
03 = b02(�+ a�2)2 + b03(�+ a�2)3 = b02�

2 + (b03 + 2ab02)�
3 + ...

But also

d�0

dt
= �(�) + a2��(�) = b2�

2 + b3�
3 + 2a�(b2�

2 + b3�
3) = b2�

2 + (b3 + 2ab2)�
3

3
There is a factor of two in the definition of dm
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Comparing, we see that b2 = b02 and b3 = b03.

Thus, upto and including O(�3), the beta functions in the ERG calculation and in dimen-

sional regularization MS scheme are identical. This also means that at the fixed point (given

by vanishing of beta function) the expresions relating ✏ and � are scheme independent to the

same order. Now, at the fixed point, the dimensions of operators expressed in terms of ✏ are

eigenvalues of the dilatation operator of the CFT and thus universal (to any order in ✏). These

universal expressions in powers of ✏, when re-expressed in terms of �, will thus have to match

to the lowest two orders in any mass-independent scheme. Thus the expressions obtained for

d2, d4 in the ERG scheme must agree with the expressions given above. These expectations will

be confirmed in this chapter.
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4.2.2 Result

Leading Order

The anomalous dimension at the leading order we get as,

d2 =2� �F

d4 =✏� 6F�

(4.2.26a)

(4.2.26b)

The corresponding eigenvectors are given by,

O2(q) =
1

2

Z

p1,p2

�(p1 + p2 � q)[1 + �
F

2
(h(p1 � q) + h(p2 � q)) + �F(q)] �(p1)�(p2)

�
1

4!

Z

p1,p2,p3

�(p1 + p2 + p3 + p4 � q)�
4X

i=1

h(pi � q)�(p1)�(p2)�(p3)�(p4)

(4.2.27a)

O4(0) = �
1

6!

Z

p1,p2,p3,p4,p5

X

10 perm (i,j,k)

2�h(pi + pj + pk)�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

+
1

4!

Z

p1,p2,p3

2

4
4X

i=1

F�h(pi)�
X

3 perm (i,j)

2�F(pi + pj)

3

5�(p1)�(p2)�(p3)�(p4)

+
1

2

Z

p1

F

d4 � 2
�(p1)�(p2) (4.2.28a)

Subleading order

The anomalous dimensions in subleading order are found to be as,

d4 =
53

3
�2F 2

d2 =
5

6
�2F 2

(4.2.29a)

(4.2.29b)

The corresponding eigenoperators are given by,
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O4(0) =

Z

p1,..p7

�2

8!
�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)�(p7)�(p8)

X

28 perm (i,j,k)

X

10 perm (m,n)

3 h(pi + pj + pk)h(pi + pj + pk + pm + pn)

+

Z

p1,..p5

�2

6!
�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

✓
3

X

10 perm (i,j,k)

X

3 perm (↵,�)

Z

p

�
h(pi + pj + pk)[h(p↵ + p� + p)h(p)� h(p)h(p)]

 

+
�3F

2

X

10 perm (i,j,k)

h(pi + pj + pk)h(pi + pj + pk) +
�3F

2

6X

l=1

X

10 perm (i,j,k)

h(pl)h(pi + pj + pk)

+
1

2

Z

p

X

15 perm (i,j)

X

6 perm (↵,�)

⇢
h(pi + pj + p)h(pi + pj + p↵ + p� + p)h(p)

�◆

+

Z

p1,p2,p3

1

4!
�(p1)�(p2)�(p3)�(p4)

✓
�

6�2F

4

4X

l=1

�
h(pl)

 X

3 perm (i,j)

F(pi + pj)�
3�2F

2

X

3 perm (i,j)

H̄3(pi + pj)

+
3

4
�2F 2

4X

l=1

�
h(pl)h(pl)

 
+

3

8

�2F 2

4!

X

i 6=j

h(pi)h(pj) +
F�✏

2

4X

i=1

h(pi)�
3F 2�2

2

4X

i=1

h(pi)

+
3�2

4

X

6 perm (i,j)

{I4(pi + pj; pi) + I4(pi + pj; pj)}

� 12�2
X

3 perm (i,j)

Z

p,q

{h(pi + pj + p+ q)h(p+ q)h(q)h(p)� h(q)h(p)h(p+ q)h(p+ q)}

+ 6�2
X

3 perm (i,j)

Z

p,q

{h(pi + pj + q)h(p+ q)h(q)h(p)� h(q)h(p+ q)h(q)h(p)}

+ 6�2
X

3 perm (i,j)

Z

p,q

{h(pi + pj + p)h(p+ q)h(q)h(p)� h(p)h(p+ q)h(q)h(p)}

+
�2

2

4X

i=1

h(pi)F3(pi) + 3�2
4X

i=1

h(pi)

Z

q

f(q)F(q) + 3�2
X

3 perm (i,j)

F(pi + pj)F(pi + pj)

+
4X

i=1

⌘

2✏
p2
i
h(pi) + 9F�2

X

3 perm (i,j)

Z 1

⇤

Z

q̄

d⇤0

⇤0

⇢
h

✓
pi
⇤0 +

pj
⇤0 + q̄

◆
h (q̄)� h (q̄)h (q̄)

�◆

+
1

2
�

Z

p

✓
2F 2

2� ✏
�

2

3
F3(p)�

Z

q

f(q)h(q)�
F 2

2
h(p)

◆
�(p)�(�p) (4.2.30a)
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O2(0) =
�2

6!

Z

p1,..p5

�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

+

✓ X

10 perm (i,j,k)

h(pi + pj + pk)h(pi + pj + pk) +
X

10 perm (i,j,k)

h(pi + pj + pk)
6X

l=1

h(pl)

◆

+
�2

4!

Z

p1,p2,p3

�(p1)�(p2)�(p3)�(p4)

✓ X

3 perm (i,j)

H̄3(pi + pj) +
4X

l=1

h(pl)
X

3 perm (i,j)

F(pi + pj)� F
�1
2

X

i 6=j

h(pi)h(pj) +
4X

l=1

h2(pl)
 ◆

+
1

2

Z

p

�(p)�(�p)

✓
�
�2

3

Z

q,k

�
h(p+ q + k)h(p)h(q)h(k)� h(q)h(q + k)h(k)

 

�
�2

2

Z

q,k

�
h(p+ q + k)h(q)h(q)h(k)� h(q + k)h(q)h(q)h(k)

 

� �2F 2h(p) +
✏�

2
h(p) +

3

4
F 2�2h2(p)� �2h(p)

Z

q

f(q)F(q) +
⌘

✏
p2h(p)

◆
(4.2.31a)

Where all the functions have been defined in Appendix (B.6). As mentioned in the previous

section here also we did not find the 2-pt vertex to second order. The leading order 2-pt vertex

is enough to find the next order anomalous diemsnion.

4.3 Details of Calculation

The procedure of calculation is straightforward. We need to solve the eigenvalue equation

(2.4.7) for two composite operators �2 and �4. We need to use a suitable ansatz consistent with

the boundary condition mentioned above in (2.4.8). As a warm-up calculation, we perform this

calculation for the Gaussian fixed point action.

4.3.1 Gaussian Theory ERG

As mentioned above, one fixed point action is the free scalar field theory in four (or any other)

dimensions. As a warm-up exercise let us solve the eigenvalue equation (2.4.7) for the two bare

operators, �2 and �4.

As discussed in subsection (2.4.3) the composite operators found here will be the � ! 0
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limit of the composite operators at the Wilson-Fisher fixed point.

The action we take to be

S =
1

2

Z
dDp

(2⇡)D
�(p)

p2

K(p)
�(�p) (4.3.1)

It obeys Polchinski equation:

@S

@t
=

Z

p

{�K 0(p2)}[
�2S

��(p)��(�p)
�

�S

��(p)

�S

��(�p)
]� 2

p2K 0

K
�(p)

�S

��(p)
+

+ [(1�
D

2
)N� +D �Np]S (4.3.2)

and is also a fixed point solution, i.e.
@S

@t
= 0 (4.3.3)

(Anomalous dimension ⌘

2 , beta function �(�) has been set to zero since it is a Gaussian

fixed point.)

Let �S(q) be a local composite operator of momentum q with definite dimension - added

to the action. So as a composite operator it obeys the linearized equation

@�S(q)

@t
=

Z

p

{�K 0(p2)}[
�2�S(q)

��(p)��(�p)
� 2

�S

��(p)

��S(q)

��(�p)
]� 2

p2K 0

K
�(p)

��S(q)

��(p)
+

+ [(1�
D

2
)N� �Np]

| {z }
Gc
dil

�S(q) = (dm + q
d

dq
)�S(q) (4.3.4)

Here dm is the length dimension.

The expression Np in G
c

dil
in (4.3.4) stands for

P
i
pi

@

@pi
.

Take

�S(q) =
1

2

Z

p1

Z

p2

A(p1, p2, q)�(p1)�(p2) (4.3.5)

The second and third terms in (4.3.4) cancel (and the first term is field-independent), so we

get
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(set D = 4� ✏)

(dm + q
d

dq
)A(p1, p2, q) = (2�D �

2X

i=1

pi
@

@pi
)A(p1, p2, q) (4.3.6)

1. From (B.1.4) we see that

A(p1, p2, q) = �(p1 + p2 � q)

satisfies this equation. Note that dx
�
= D

2 � 1 so dm = �2dx
�
+D = 2. This is the (length)

dimension of
R
p
�(p)�(q � p) as mentioned earlier.

2. Take A(p1, p2, q) = p1.p2 �(p1 + p2 � q). We get

(dm + q
d

dq
)A(p1, p2, q) = (2�D �

2X

i=1

pi
@

@pi
)A(p1, p2, q) (4.3.7)

From (B.1.7) and the subsequent discussion we see that dm = 0.

3. Now we consider higher-dimensional operators:

Take

�S(q) =
1

4!

Z

p1,p2,p3,p4

B(p1, p2, p3, p4, q)�(p1)�(p2)�(p3)�(p4)

+
1

2

Z

p1

Z

p2

A(p1, p2, q)�(p1)�(p2) (4.3.8)

Assume once again that this operator has definite momentum q. We get
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(dm + q
d

dq
)

⇥

⇢
1

4!

Z

p1,p2,p3,p4

B(p1, p2, p3, p4, q)�(p1)�(p2)�(p3)�(p4)

+
1

2

Z

p1

Z

p2

A(p1, p2, q)�(p1)�(p2)

�

= �
1

2

Z

p

K 0(p2)

Z

p1,p2

B(p1, p2, p,�p, q)�(p1)�(p2)

+ [(1�
D

2
)2�

X

i

pi
@

@pi
]
1

2

Z

p1

Z

p2

A(p1, p2, q)�(p1)�(p2))

+ [(1�
D

2
)4�

X

i

pi
@

@pi
]
1

4!

Z

p1,p2,p3,p4

B(p1, p2, p3, p4, q)�(p1)�(p2)�(p3)�(p4)

We see that a quartic term cannot be an eigen-operator by itself - need a quadratic piece.

For simplicity, we take

B(p1, p2, p3, p4, q) = �(p1 + p2 + p3 + p4 � q)

A(p1, p2, q) = A�(p1 + p2 � q)

we find (D = 4� ✏) using (B.1.6) and its generalization:

4X

i=1

pi
@

@pi
�(

4X

j=1

pj � q) = �D�(
4X

j=1

pj � q) + q
d

dq
�(

4X

j=1

pj � q)

from the �4 term:

dm � (4� 2D) +D = 0 =) dm = ✏ (4.3.9)

This operator is relevant in the Gaussian theory in D < 4 as is also obvious from simple

dimensional analysis.

From the quadratic term, we get an equation for A

�(
2X

j=1

pj�q)[
1

2
F+(2�D)

A

2
+D

A

2
]+q

d

dq

A

2
�(

2X

j=1

pj�q) = (✏+q
d

dq
)
A

2
�(

2X

j=1

pj�q) (4.3.10)
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where

F =

Z

p

(�K 0(p2)) =
1

16⇡2

Since dm = ✏, A = �
F

2�✏
. Thus our operator is

�S =
1

4!

Z

p1,p2,p3

�(p1)�(p2)�(p3)�(�p1 � p2 � p3 + q)�
F

2� ✏

1

2

Z

p

�(p)�(q � p) (4.3.11)

which agrees with (2.4.2) if we take u = 1
4! for q = 0 and ✏ = 0.

4.3.2 Wilson-Fisher fixed point theory at leading order

In this section we will construct, for the Wilson-Fisher fixed point theory for O(1) model, the

two lowest dimension composite operators that were studied in the last section for the Gausian

fixed point theory namely �2 and �4. �2 is a relevant operator at both fixed points. �4, which

was relevant at the Gaussian fixed point in D = 4� ✏ (and marginal in D = 4) turns out to be

irrelevant at the W-F fixed point. We use perturbation theory in �. In principle one can also

do perturbation in ✏. At the W-F fixed point � ⇡ ✏ and there is not much di↵erence. However

even in the Gaussian theory in D = 4�✏, we have seen that ✏ shows up in the dimension so it is

clear that the two expansions are in principle di↵erent. The relevant and irrelevant operator for

W-F fixed point is denoted by O2(q) and O4(q). Though for simplicity we have taken external

momentum q = 0 for all the calculation except while finding O
(1)
2 (q). In this calculation, in

principle one can put the fixed point condition right in the begining itself to interpret O(�n)

terms as O(✏n), but there is a subtlety there - ideally all the momentum integrations are to be

done in D = 4 � ✏ dimensions. So there are implicit factors of ✏ hidden in there. It therefore

makes sense to keep track of ✏ and � separately and to take the fixed point condition � = O(✏)

in the end. Our expressions are in general true for general D = 4 � ✏, but while calculating

the anomalous dimension, in order to compare with known results for �4 in D = 4 [67, 69] that

have been obtained using dimensional regularization, we have performed the final integrals in

four dimensions.
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The Ansatz We make the following general ansatz for both O2(q) and O4(q) as :

�S(q) =
1

2

Z

p1

Z

p2

A(p1, p2)�(p1)�(p2)

+
1

4!

Z

p1,p2,p3,p4

B(p1, p2, p3, p4)�(p1)�(p2)�(p3)�(p4)

+
1

6!

Z

p1,...p5,p6

D(p1, ..., p6)�(p1)...�(p6) + O(�8) + ... (4.3.12)

We will assume an ansatz of the form:

A(p1, p2) = �(p1 + p2 � q)[A(0) + A(1)(p1, p2, q) + ...]

B(p1, p2, p3, p4) = �(p1 + p2 + p3 + p4 � q)[B(0) +B(1)(p1, p2, p3, p4, q) + ...]

D(p1, p2, p3, p4, p5, p6) = �(p1 + p2 + p3 + p4 + p5 + p6 � q)[D(1)(p1, p2, p3, p4, p5, p6, q) + ...]

(4.3.13)

Further, we will write each term as a sum of several terms with di↵erent momentum struc-

tures. For instance, B(1) will turn out to be:

B(1)(p1, p2, p3, p4, q) = �
4X

i=1

BI(pi, q) + �
1

2

X

i,j=1,2,3,4| {z }
6 perm

BII(pi + pj, q) + ... (4.3.14)

For the irrelevant operator, O4(q), our starting approximation will be to take B(0) = 1.

Thus

B(p1, .., p4) = �(p1 + p2 + p3 + p4 � q)[1 +O(�)] (4.3.15)

Since even in the Gaussian theory this is accompanied by a �2 term it is clear that A(0) also

starts at O(1). Thus

A(p1, p2) = �(p1 + p2 � q)[
F

✏� 2
+O(�)] (4.3.16)

Everything else is O(�) or higher.
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On the other hand for the relevant operator , O2(q) we start with

A(p1, p2) = �(p1 + p2 � q)[1 +O(�)] (4.3.17)

and everything else is higher order in �.

The strategy will be to take these as the starting inputs and solve the linearized ERG

equation (4.3.18) order by order in �. Typically, at each order the coe�cient of a new higher

dimensional irrelevant operator enters the equation.

The Wilson-Fisher action We write the WF fixed point action uptoO(✏) as given in section

(4.2).

S =
1

2

Z

p

✓
p2

K
+ U2(p)

◆
�(p)�(�p) +

1

4!

Z

p1,p2,p3

(�+ U4)�(p1)�(p2)�(p3)�(p4)

p4 = �p1 � p2 � p3

+
1

6!

Z

p1,...p5

V6�(p1)...�(p6)

p6 = �p1 � ...� p5

U2 = ��
1

2� ✏

Z

p

(�K 0(p2))

| {z }
F

+O(�2)

V6 = ��2
X

10 perm i,j,k

h(pi + pj + pk)

h(p) ⌘
1�K(p2)

p2

U4 ⇡ O(�2)

We number the Polchinski’s equation (the terms with the anomalous dimension is not re-

quired at this order since ⌘ ⇡ O(�2)) in the following way:

53



@�S(q)

@t
=

Z

p

�K 0(p2)[
�2�S

��(p)��(�p)| {z }
(1)

�2
�S

�(p)

��S

�(�p)| {z }
(2)

]�2
p2K 0

K
�(p)

��S

�(p)| {z }
(3)

+ [(1�
D

2
)N� +D �Np]

| {z }
Gc
dil=(4a)

�S

= (dm + q
d

dq
)�S(q) (4.3.18)

The second equality is the requirement that �(q) be a scaling operator of length dimension

dm. Note that we donot have to include the term �(�)@�S

@�
in this order. We have calculated

di↵erent parts of (4.3.18) in Appendix B.2.

The Relevant Operator

We start with A = 1 and d2 ⇡ 2.

A(p1, p2) = �(p1 + p2 � q)[1 + A(1)(p1, p2, q) + ...

B(p1, p2, p3, p4) = �(p1 + p2 + p3 + p4 � q)[
4X

i=1

B(1)
I
(pi, q) +

1

2

X

6 perm (i,j)

B(1)
II
(pi + pj, q)...]

D(p1, p2, p3, p4, p5, p6) = �(p1 + p2 + p3 + p4 + p5 + p6 � q)[D(1)(p1, p2, p3, p4, p5, p6, q) + ...]

d2 = 2 + d(1)2 + ...

(4.3.19)

It turns out that in the leading order we can set B(1)
II
(pI+pj, q) = D(1)(p1, p2, p3, p4, p5, p6, q) = 0.

O(�) Equation for �4

�
2�

4!

4X

i=1

�K 0((pi � q)2)�(
X

pi � q) +
1

4!
((4�D) + q

d

dq
)�(
X

pi � q)(
4X

i=1

B(1)
I
(pi, q))

�
1

4!
�(
X

pi � q)(
X

i

pi
@

@pi
+ q

d

dq
)

4X

i=1

B(1)
I
(pi, q) = (d2 + q

d

dq
)�(
X

pi � q)(
4X

i=1

B(1)
I
(pi, q))

Canceling terms and dropping O(✏�) or O(�2) terms we get

�2�(�K 0((pi � q)2))� (
X

i

pi
@

@pi
+ q

d

dq
)B(1)

I
(pi, q) = 2B(1)

I
(pi, q)
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This is solved by

B(1)
I
(pi, q) = ��h(pi � q) (4.3.20)

The �2 terms in the equation are:

F

2
�(p1 + p2 � q)(BI(p1, q) + BI(p2, q)) +

1

2

Z

p

(�K 0(p2))(BI(p, q) + BI(�p, q))�(p1 + p2 � q)

+
�F

2� ✏

X

i

�K 0(p2
i
)�(p1 + p2 � q)

+
1

2
(2�D+D+q

d

dq
)�(p1+p2�q)(1+A(1)(p1, p2, q))�

1

2
�(p1+p2�q)(

X

i

pi
@

@pi
+q

d

dq
)A(1)(p1, p2, q)

= (d2 + q
d

dq
)�(p1 + p2 � q)

1

2
(1 + A(1)(p1, p2, q))

O(1)

The O(1) part of this equation (after canceling terms) gives

d(0)2 = 2 (4.3.21)

O(�)

We substitute (4.3.20) in the O(�) part to get

�F

2
[�h(p1 � q)� h(p2 � q)] + �

1

2

Z

p

(�K 0(p2))[�h(p� q)� h(p+ q)]

+
�F

2� ✏
[�K 0((p1 � q)2)�K 0((p2 � q)2)]

+A(1)(p1, p2, q)�
1

2
(
X

i

pi
@

@pi
+ q

d

dq
)A(1)(p1, p2, q)

= d(1)2

1

2
+ A(1)(p1, p2, q)

The second term of the first line can be rewritten as

1

2
�

Z

p

(�K 0(p2))[(h(p)� h(p� q)) + (h(p)� h(p+ q))] +
1

2
�

Z

p

(�K 0(p2))[�2h(p)] (4.3.22)
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The q independent term evaluates to �F and we thus get

d(1)2 = ��F ⇡ �
✏

3
(4.3.23)

The first term in (4.3.22) which is independent of pi can be canceled by choosing

A(1)(p1, p2, q) =
1

2
�(F(q) + F(�q)) = �F(q) (4.3.24)

F(q) is defined in Appendix F. Note that F(0) = 0.

The remaining equation is satisfied by setting

A(1)(p1, p2, q) =
�F

2
(h(p1 � q) + h(p2 � q)) (4.3.25)

A(1)(p) looks like first diagram in Fig4.2.

This gives d(1)2 = ��F = �
✏

3 . The value of d(1)2 is coming from the second diagram in

Fig. 4.2. As expected the origin of the anomalous dimension is the logarithmically divergent

diagram.

Thus the relevant eigen-operator and its dimension are given as:

d2 = 2� �F

O2(q) =
1

2

Z

p1,p2

�(p1 + p2 � q)[1 + �
F

2
(h(p1 � q) + h(p2 � q)) + �F(q)] �(p1)�(p2)

�(p) h(p� q) �(q � p)

�2(q)

�(p) �(q � p)

h(q � p) {�K 0(p)}

�2(q)

Figure 4.2: The left diagram is for the the relevant operator A(1)(p). The right one is the

diagrammatic representation of the term contributing to the anomalous dimension d(1)2 . Note
that the right diagram is a loagarithmically divergent diagram made finite by replacing the
propagator h(p) by �K 0(p2). It is the q independent part that gives d(1)2 .
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�
1

4!

Z

p1,p2,p3

�(p1 + p2 + p3 + p4 � q)�
4X

i=1

h(pi � q)�(p1)�(p2)�(p3)�(p4)

Note that the value of the anomalous dimension agrees with (4.2.25) to this order.

The Irrelevant Operator

For simplicity we set q = 0. The ansatz simplifies to (momentum conservation is implicit, i.e.
P

i
pi = 0):

A(p) = A(0) + A(1)(p) + ...

B(p1, p2, p3, p4) = B(0)(p1, p2, p3, p4) + B(1)
I
(p1, p2, p3, p4) + B(2)

II
(p1, p2, p3, p4)

=
4X

i=1

B(0)(pi) +
4X

i=1

B(1)
I
(pi) +

X

3 perm (i,j)

B(1)
II
(pi + pj)

D(p1, p2, p3, p4, p5, p6) = D(1)(p1, p2, p3, p4, p5, p6)

d4 = d(1)4 + ...

Below we are writing �2, �4, and �6 terms separately to obtain di↵erent quantities.

Equation for �2 : O(1)

Di↵erent parts of (4.3.18) gives,

(1)

Z

q

�
�K 0(q2)

 
{B(0)(q) + B(1)

I
(q)}+ F{B(0)(p) + B(1)(p)}+

1

2
F�BII(0)

�
1

2

Z

q

K 0(q2)�[BII(p+ q) + BII(p� q)]

(2)+(3)

�2(�K 0(p2))U2(p)A
(0)(p)

(4a)
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A(0)
� p2

d

dp2
A(0)

Collecting terms of O(1):

A(0)(p)� p2
d

dp2
A(0)(p) +

1

2
F (4B = 1) = d4

A(0)(p)

2

Assuming that A(0)(p) is a constant and O(1) we obtain (neglecting O(�) terms)

A(0) =
F

d4 � 2
⇡ �

1

2
F (4.3.26)

d4 is expected to be of O(✏) since �4 is marginal in D = 4.

Equation for �6: O(�)

Now we turn to the �6 equation:

�
4

6!

Z

p1,..p5

X

10 perm

�K 0((pi + pj + pk)
2)�(4B = 1)�(p1)...�(p6)

+
1

6!

Z

p1...p5

(6� 2D � 2
X

i

2p2
i

d

dp2
i

)
X

10 perm

D(1)(pi + pj + pk)�(p1)...�(p6)

=
dm
6!

Z

p1,..p5

X

10 perm

D(1)(pi + pj + pk)�(p1)...�(p6)

At order � the equation is

(1 + p2
d

dp2
)D(1)(p) = 2�K 0(p2)

considering (B.6.1) we see that

D(1)(p) = �2�h(p) (4.3.27)
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Equation for �4

Now we turn to the �4 equation:

(1)

1

4!

Z

p

{�K 0(p2)}

Z

p1,p2,p3

⇥
D(1)(p1) +D(1)(p2) +D(1)(p3) +D(1)(p4)

⇤
�(p1)...�(p4) ( “type 1”)

+
1

4!

Z

p

{�K 0(p2)}

Z

p1,p2,p3

[D(1)(p+ p1 + p2) +D(1)(p+ p1 + p3) +D(1)(p+ p1 + p4)

+D(1)(p� p1 � p2) +D(1)(p� p1 � p3) +D(1)(p� p1 � p4)]�(p1)...�(p4) (“type 2”)

We have written the expression in the first line as type 1 because we will see below that

quadratically divergent 4-pt vertex will be obtained from these expressions, while from type 2

expressions logarithmically divergent 4-pt vertex will be obtained. We will see the contribution

from type 1 diagram will be canceled and those from the type 2 diagram will contribute to the

anomalous dimension.

(2)+(3)

(�2)

"
1

4!

Z

p1,p2,p3

[
X

i

{�K 0(p2
i
))A(pi}]�+

1

4!

Z

p1,p2,p3

[
X

i

{�K 0(p2
i
)}U2(pi)][1 + ...]

#
�(p1)...�(p4)

(4a)

1

4!

Z

p1,p2,p3

(4�D � 2
X

i

p2
i

d

dp2
i

)[1 +
4X

i=1

B(1)
I
(pi) +

X

3 perm(i,j)

B(1)
II
(pi + pj)]�(p1)..�(p4)

Collect type 1 terms and (2)+(3) part above, we get,

Z

p

{�K 0(p2)}[D(1)(p1)+D(1)(p2)+D(1)(p3)+D(1)(p4)]+2[
X

i

(K 0(p2
i
))A(pi)]�+2[

X

i

(K 0(p2
i
))U2(pi)]
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+(4�D � 2
X

i

p2
i

d

dp2
i

)[1 +
4X

i=1

B(1)
I
(pi)] = d4

4X

i=1

B(1)
I
(pi)

Ignoring O(✏�) or O(�2) terms from (B.6.1) we get,

B(1)
I
(p) = �Fh(p) (4.3.28)

Where h(p) = K0�K

p2
. It looks like first diagram in Fig.4.3.

The leftover terms on LHS is

(4�D)� d4

4X

i=1

B(1)
I
(pi)

We will keep a record of all leftover terms in LHS as we need those in sub-leading order

calculation.

Now we collect type 2 terms and the rest of the equation, we have put D(p) = �2�h(p).

4�

Z

p

K 0(p2)[h(p+ p1 + p2) + h(p+ p1 + p3) + h(p+ p1 + p4)]

+(4�D �

4X

l=1

pl.
d

dpl
)[B(1)

II
(p1 + p2) + B(1)

II
(p1 + p3) + B(1)

II
(p1 + p4)] = d4

Considering (B.6.2), if we add and subtract 6F� as momentum independent term we get,

�

�

�

�

h(p4)

p2

p3

p1

p4

�4(0)

�

�
h(pi + pj + q)

h(q)

�4(0)pj

pi

Figure 4.3: The left diagram represents Type-I diagram corresponding to BI(p), while the
right one represents type-II diagram representing BII(pi+pj). Anomalous dimension is coming
from the process of making the latter diagram zero at zero external momenta. Note that the
BII(pi + pj) is nothing but the usual logarithmic divergent diagram made finite by adding a
counterterm.
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B(1)
II
(p) = �2�F(p) (4.3.29)

which looks like second diagram in Fig.4.3. Here F(p) = 1
2

R
q
{h(p+ q)h(q)� h(q)h(q)}, it

is defined in (B.6.2) in Appendix B.6.

While the Leftover terms in the L.H.S are:

(4�D)� d4

4X

i=1

B(1)(pi)� 6F�

Keeping only �1 and ✏1 terms and equating with R.H.S we get,

4�D � 6F� = d4

4X

i=1

B(0)(pi)

so we get the anomalous dimension at the leading order as,

d(1)4 = ✏� 6F� (4.3.30)

in agreement with (4.2.21) at this order.

At F� = ✏

3 we get,

d(1)4 = �✏

It is to be noted the origin of the anomalous dimension is the Type-II diagram (second

diagram in Fig.4.3). It is expected as anomalous dimension should come from the process of

logarithmic divergent digram finite as it happens in the continuum field theory.

So the irrelevant eigen-operator and its anomalous dimension are given as:

d4 = ✏� 6F�

O4(0) = �
1

6!

Z

p1,p2,p3,p4,p5

X

10 perm (i,j,k)

2�h(pi + pj + pk)�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)
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+
1

4!

Z

p1,p2,p3

2

4
4X

i=1

F�h(pi)�
X

3 perm (i,j)

2�F(pi + pj)

3

5�(p1)�(p2)�(p3)�(p4)

+
1

2

Z

p1

F

d4 � 2
�(p1)�(p2)

Where F = 1
16⇡2 . Thus at the fixed point, we get a composite operator with a dimension

�✏ which is (just a little) irrelevant in contrast with the Gaussian case. 4

Wilson-Fisher Composite operator at the subleading order

The Polchinski’s equation Now we turn to find the irrelevant and relevant operators with

their respective anomalous dimensions at the order ✏2. We set q = 0 for simplicity. At this

order we have to include anomalous dimension ⌘

2 in Polchinski’s equation i.e.

@�S

@t
=

Z

p

⇢
(�K 0(p2))[

�2�S

��(p)��(�p)
� 2

�S

��(p)

�S

��(�p)
]� 2

p2K 0

K
�(p)

��S

��(p)
+ [(1�

D

2
)N� +D �Np]�S

�
⌘

2

K(p2)(1�K(p2)

p2
[

�2�S

��(p)��(�p)
� 2

�S

��(p)

��S

��(�p)
] +

�⌘

2
�(p)

��S

��(p)

�
= dm�S + �(�)

@�S

@�

(4.3.31)

The action S up to O(✏2) as given in section (4.2),

S =

Z

p

⇢
(�F�)

2� ✏
�

1

2
�2G(p) +

1

2

(��F 2)

4
h(p)

�
�(p)�(�p)

+
1

4!

Z

p1,p2,p3

⇢
�� �2[F(p1 + p2) + F(p1 + p3) + F(p1 + p4)] +

F�2

2

4X

i=1

h(pi)

�
�(p1)�(p2)�(p3)�(p4)

+
1

6!

Z

p1,p2,p3,p4,p5,p6

(��2)
X

10 perm (i,j,k)

h(pi + pj + pk)�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

Where

4
This also agrees with Kogut and Wilson (page 109)[13] to this order.
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G(p) =
1

3

Z

q,k

h(q)

2
[h(p+ q + k)h(k)� h(k)h(k)]�

1

3

Z

q

h(q)

2
[h(q + k)h(k)� h(k)h(k)]

+
⌘p2

2✏
�

1

2� 2✏

⇢
2

3
�(1)v(1)2 +

Z

q

f(q)F(q)

�

Where

�(1) = �

Z

q

f(q)h(q) !✏!0 �F ; v(1)2 = �

Z

q

f(q)h(q) !✏!0 �
F

2

and

F(pi + pj) =
1

2

Z

q

⇢
h(pi + pj + q)h(q)� h(q)h(q)

�

F(p) is defined by eq.(B.6.2).

h(p) =
K0 �K

p2
; f(q) = �2K 0(q)

�(�) = ✏�+ �(1)
1 (�); �(1)

1 (�) = �3F�2

The Irrelevant Operator, O
(2)
4 (0) The form of the irrelevant operator in the subleading

order is given below. Note that at this order, we need to include 8-pt vertex which is of O(✏2).

We have just given the expressions of O4(0) in this section. Equations to find them are given

in Appendix B.3.

O4(0) = �S2 +�S4 +�S6 +�S8

=
1

2!

Z

p

⇢
F

d4 � 2
+ A(1)(p)

�
�(p)�(�p)

+
1

4!

Z

p1,p2,p3

⇢
1 + F�

4X

l=1

h(pl)� �

Z

k

X

3 perm (i,j)

[h(pi + pj + k)h(k)� h(k)h(k)]

+B(2)(p1, p2, p3, p4)

�
�(p1)�(p2)�(p3)�(p4)

+
1

6!

Z

p1,p2,p3,p4,p5

⇢
� 2�

6X

10 perm (i,j,k)

h(pi + pj + pk) +D(2)(p1, p2, p3, p4, p5, p6)

�
�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

+
1

8!

Z

p1,p2,p3,p4,p5,p6,p7

E(2)(p1, p2, p3, p4, p5, p6, p7, p8)�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)�(p7)�(p8)
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with

d4 = ✏� 6F�+ d(2)4 + ...

�8 equation-Determination of �S(2)
8

The 8-pt vertex is found by solving the �8 equation at O(�2). The �8 equation is obtained as:

�2

Z
(�K 0(p2))

⇢
�

��(p)

�

4!
�(p1)�(p2)�(p3)�(p4)

�
⇥

⇢
�

��(�p)

X

10perm(i,j,k)

D(1)(pi + pj + pk)

6!
�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

�
(4.3.32)

�2

Z
(�K 0(p2))

⇢
�

��(p)

4X

i=1

1

4!
B(0)(pi)�(p1)�(p2)�(p3)�(p4)

�
⇥

⇢
�

��(�p)

X

10perm(i,j,k)

V (2)(pi + pj + pk)

6!
�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

�

+
1

8!

⇢
8� 3D �

8X

i=1

pi.
d

dpi

�
E(2)(p1, p2, p3, p4, p5, p6, p7, p8) = 0

(4.3.33)

The solution is given by:

E(2)(p1, p2, p3, p4, p5, p6, p7, p8) =
X

28 perm (i,j,k)

X

10 perm (m,n)

3�2 h(pi + pj + pk)h(pi + pj + pk + pm + pn)

(4.3.34)

pj h(pi + pj + pk) h(pa + pb + pc) pb

pi

pk

pm
pn pa

pc

�4(0)

Figure 4.4: The diagram for E(2)(p1, p2, p3, p4, p5, p6, p7, p8)

64



�6 equation - Determination of �S(2)
6

Solving �6 equation we get four kinds of solutions for 6-pt vertex at order O(�2) based on their

tensor structure (see B.3.1 for details)

D(2)
I
(p1, p2..., p6) = 3�2

X

10 perm (i,j,k)

X

3 perm (↵,�)

Z

p

�
h(pi + pj + pk)[h(p↵ + p� + p)h(p)� h(p)h(p)]

 

(4.3.35a)

D(2)
II
(p1, p2, p3, p4, p5, p6) =

�3�2F

2

X

10 perm (i,j,k)

h(pi + pj + pk)h(pi + pj + pk) (4.3.35b)

D(2)
III

(p1, p2, p3, p4, p5, p6) =
�3�2F

2

6X

l=1

X

10 perm (i,j,k)

h(pl)h(pi + pj + pk) (4.3.35c)

D(2)
IV
(p1, p2, p3, p4, p5, p6) =

�2

2

Z

p

X

15 perm (i,j)

X

6 perm (↵,�)

⇢
h(pi + pj + p)h(pi + pj + p↵ + p� + p)h(p)

�

(4.3.35d)

�2 equation at O(✏): Determination of A(1)(p)

The �2 equation at order �1 is given below (Note that we do not have to consider �(�)@�S

@�
part

because we want to find A(p) at order ✏1 or �1 only):

Z

q

(�K 0(q2))B(1)
I
(q) + FB(1)

I
(p) +

1

2
FB(1)

II
(0)�

1

2

Z

q

K 0(q2)[B(1)
II
(p+ q) + B(1)

II
(p� q)]

� 2(�K 0(q2))U (1)
2 (p)A(0)(p) + A(1)(p)�

1

2
p.

d

dp
A(1)(p) = d(1)

m

A(1)(p)

2
(4.3.36)

Solving the �2 equation we found the A(0)(p) and three kinds of 2-pt vertices based on their

tensor structure.

A(1)
I
(p) =

2F 2�

2� ✏
(4.3.37a)

A(1)
II
(p) = �

2�

3
F3(p)� �

Z

q

f(q)h(q) (4.3.37b)

A(1)
III

(p) = �
F 2�

2
h(p) (4.3.37c)
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From (4.3.26) we get,

A(0) = �
F

2
�

F ✏

4

Where F̄3(p) =
R
q,k

h(p + q + k)h(q)h(k), F3(p) = F̄3(p) � F̄3(0) =
R
q
2h(q) [F(p+ q)� F(q)].

They are defined by (B.6.3) and (B.6.4).
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�4 equation-Determination of B(2)(p1, p2, p3, p4)

Solving the �4 equation we get total of nine kinds of 4-pt vertices based on their tensor structure

(see Appendix B.3.2 for more details).

1

4!
B(2)

I
(p1, p2, p3, p4) = �

6�2

4

F

4!

4X

l=1

�
h(pl)

 X

3 perm (i,j)

F(pi + pj) (4.3.38a)

1

4!
B(2)

II
(p1, p2, p3, p4) = �

1

4!

3�2F

2

X

3 perm (i,j)

H̄3(pi + pj) (4.3.38b)

1

4!
BIII(p1, p2, p3, p4) =

3

4

�2F 2

4!

4X

l=1

�
h(pl)h(pl)

 
+

3

8

�2F 2

4!

X

i 6=j

h(pi)h(pj) (4.3.38c)

B(2)
IV
(p1, p2,3 , p4) =

F�✏

2

4X

i=1

h(pi)�
3F 2�2

2

4X

i=1

h(pi) (4.3.38d)

1

4!
B(2)

V
(p1, p2, p3, p4) =

1

4!

3�2

4

X

6 perm (i,j)

{I4(pi + pj; pi) + I4(pi + pj; pj)} (4.3.38e)

1

4!
B(2)

V I
(p1, p2, p3, p4)

= �
�2

2

X

3 perm (i,j)

Z

p,q

{h(pi + pj + p+ q)h(p+ q)h(q)h(p)� h(q)h(p)h(p+ q)h(p+ q)}

(4.3.38f)

+
�2

4

X

3 perm (i,j)

Z

p,q

{h(pi + pj + q)h(p+ q)h(q)h(p)� h(q)h(p+ q)h(q)h(p)}

+
�2

4

X

3 perm (i,j)

Z

p,q

{h(pi + pj + p)h(p+ q)h(q)h(p)� h(p)h(p+ q)h(q)h(p)}

1

4!
BV II(p1, p2, p3, p4)

=
1

4!
B(2)

V II
(p1, p2, p3, p4)|1 +

1

4!
B(2)

V II
(p1, p2, p3, p4)|2

=
1

4!

�2

2

4X

i=1

h(pi)F3(pi) +
1

4!
3�2

4X

i=1

h(pi)

Z

q

f(q)F(q) (4.3.38g)

1

4!
B(2)

V III
(p1, p2, p3, p4) =

3�2

4!

X

3 perm (i,j)

F(pi + pj)F(pi + pj) (4.3.38h)

1

4!
BIX(p1, p2, p3, p4) =

1

4!

4X

i=1

⌘

2✏
p2
i
h(pi) (4.3.38i)

1

4!
B(2)

X
(
p1
⇤
,
p2
⇤
,
p3
⇤
,
p4
⇤
) =

9F�2

4!

X

3 perm (i,j)

Z 1

⇤

Z

q̄

d⇤0

⇤0

⇢
h

✓
pi
⇤0 +

pj
⇤0 + q̄

◆
h (q̄)� h (q̄)h (q̄)

�

(4.3.38j)
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Where F̄3(p) =
R
q,k

h(p+q+k)h(q)h(k), F3(p) = F̄3(p)�F̄3(0) =
R
q
2h(q) [F(p+ q)� F(q)].

They are defined by (B.6.3) and (B.6.4).

Also

H̄3(p) =

Z

q

h(p+ q)h(q)h(q)

and

I4(pi + pj; pi) =Ī4(pi + pj; pi)� Ī4(0; 0)

=
X

6 perm (i,j)

Z

p,q

�
h(pi + pj + q)h(p+ q + pi)h(p)h(q)� h(p+ q)h(p)h(q)h(q)

 

(4.3.39)

H̄3(p) and I4(pi + pj; pi) are defined by (B.6.5) and (B.6.6) respectively.

Equation for B(2)
IV
(p1, p2, p3, p4) and BV (p1, p2, p3, p4)

We will show one sample calculation here to explain how we have used the Feynman diagram

as a guide in the calculations.

Taking (B.3.8b), (B.3.11b) and (B.3.11c), we get

3�2

4!

Z

p,q

�
�K 0(p2)

 X

6 perm (i,j)

�
h(pi + pj + p)[h(p+ q + pj) + h(p+ q + pi)� 2h(q)]h(q)

 

+
2�2

4!

Z

p

Z

q

�
�K 0(p2)

 X

6 perm (i,j)

�
h(pi + pj + q)[h(p+ q + pi) + h(p+ q + pj)]h(q)

 

+
�2

4!

Z

q

Z

p

�
�K 0(p2)

 4X

l=1

X

3 perm (i,j)

�
h(pl + p+ q)h(pl + pi + pj + p+ q)h(q)

 

+
�
4�D �

4X

i=1

pi.
d

dpi

 1
4!
B(2)

IV
(p1, p2, p3, p4) = 0
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pi h(q) pj

K 0(p) h(pi + pj + p)

h(pi + p+ q)

�4(0)

pi + pj

pi K 0(p) pj

h(q) h(pi + pj + q)

h(pi + p+ q)

�4(0)

pi + pj

pi

⇤ h( q

⇤)
pj

⇤

h( p

⇤) h(pi⇤ + pj

⇤ + p

⇤)

h(pi⇤ + p

⇤ + q

⇤)

�4(0)

pi

⇤ + pj

⇤

Figure 4.5: Application of ⇤ d

d⇤ on the diagram at the bottom gives the two diagrams at the
top

We aim to solve

3�2

4!

Z

p,q

{�K 0(p2)}
X

6 perm (i,j)

h(pi + pj + p)
�
[h(p+ q + pj) + h(p+ q + pi)]h(q)� 2h(p+ q)h(q)

 

+
2�2

4!

Z

p

Z

q

�
�K 0(p2)

 X

6 perm (i,j)

h(pi + pj + q)
�
[h(p+ q + pi) + h(p+ q + pj)]h(q)� 2h(p+ q)h(q)

 

+
�2

4!

Z

q

Z

p

�
�K 0(p2)

 4X

l=1

X

3 perm (i,j)

h(pl + p+ q)h(pl + pi + pj + p+ q)h(q)

+
�2

6

Z

p,q

�
K 0(p2)

 X

3 perm (i,j)

h(p+ q)h(pi + pj + p+ q)h(q)

+
�
� 2(4�D)�

4X

i=1

pi.
d

dpi

 1
4!
B(2)

IV
(p1, p2, p3, p4) = 0 (4.3.40)

To solve this equation first note that the second and third term on the LHS are equal. The

first and second term is represented by the first and second diagram respectively on the top of

Fig.4.3.40. Now observe we are basically trying to find �S such that �⇤ d

d⇤�S / �S, so if we

write ⇤ explicitly i.e. pi !
pi

⇤ we get,

pi.
d

dpi
= �⇤

d

d⇤
(4.3.41)

Now if we consider the third diagram at the bottom of Fig 4.3.40 and apply ⇤ d

d⇤ we get back
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terms corresponding to the other two diagrams i.e.

⇤
d

d⇤

"Z

p
⇤ ,

q
⇤

h

✓
pi + pj + p

⇤

◆
h
⇣ p
⇤

⌘
h

✓
pi + p+ q

⇤

◆
h
⇣ q
⇤

⌘#

=4

Z

p
⇤ ,

q
⇤

K 0
⇣ p
⇤

⌘
h

✓
pi + pj + p

⇤

◆
h
⇣ q
⇤

⌘
h

✓
pi + p+ q

⇤

◆

+ 4

Z

p
⇤ ,

q
⇤

K 0
⇣ q
⇤

⌘
h

✓
(pi + pj + p)

⇤

◆
h
⇣ q
⇤

⌘
h

✓
pi + p+ q

⇤

◆

We can expect BIV (p1, p2, p3, p4) to be of the form
R

p
⇤ ,

q
⇤
h
�
pi+pj+p

⇤

�
h
�
p

⇤

�
h
�
pi+p+q

⇤

�
h
�
q

⇤

�
. So

we use (B.6.6) and get the solution as:

1

4!
B(2)

IV
(p1, p2, p3, p4)

=
1

4!

3

4
�2
Z

p,q

X

6 perm (i,j)

�
h(pi + pj + q)

X

a=i,j

h(p+ q + pa)h(p)h(q)� 2h(p+ q)h(p)h(q)h(q)
 

=
1

4!

3�2

4

X

6 perm (i,j)

[I4(pi + pj; pi) + I4(pi + pj; pj)] (4.3.42)

In the L.H.S of (B.3.7) we are left with

1

4!
3(4�D)B(2)

IV
(p1, p2, p3, p4)

+
�2

2

�
�K 0(p2)

 X

3 perm (i,j)

h(pi + pj + p)

⇢
h(p+ q)h(q)� h(q)h(q)

�

+
�2

3

�
�K 0(p2)

 X

3 perm (i,j)

h(pi + pj + q)h(p+ q)h(q)

+
�2

6

�
�K 0(p2)

 X

3 perm (i,j)

h(pi + pj + p+ q)h(p+ q)h(q) (4.3.43)
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Ignoring O(✏3) term and aiming to solve the following equation from the left over terms:

+
�2

2

�
�K 0(p2)

 X

3 perm (i,j)

⇥
h(pi + pj + p)

�
h(p+ q)h(q)� h(q)h(q)

 
� h(p)

�
h(p+ q)h(q)� h(q)h(q)

 ⇤

+
�2

3

�
�K 0(p2)

 X

3 perm (i,j)

[h(pi + pj + q)h(p+ q)h(q)� h(q)h(p+ q)h(q)]

+
�2

6

�
�K 0(p2)

 X

3 perm (i,j)

[h(pi + pj + p+ q)h(p+ q)h(q)� h(p+ q)h(p+ q)h(q)]

+

(
�2(4�D)�

4X

i=1

pi.
@

@pi

)
1

4!
B(2)

V
(p1, p2, p3, p4) = 0 (4.3.44)

We can write a solution symmetric in variables p and q.

1

4!
B(2)

V
(p1, p2, p3, p4) = �

�2

2

X

3 perm (i,j)

{h(pi + pj + p+ q)h(p+ q)h(q)h(p)� h(p)h(q)h(p+ q)h(p+ q)}

+
�2

4

X

3 perm (i,j)

{h(pi + pj + q)h(p+ q)h(q)h(p)� h(q)h(p+ q)h(q)h(p)}

+
�2

4

X

3 perm (i,j)

{h(pi + pj + p)h(p+ q)h(q)h(p)� h(p)h(p+ q)h(q)h(p)} (4.3.45)

And on LHS of (B.3.7) we are left with

1

4!
3(4�D)B(2)

V
(p1, p2, p3, p4)

+

Z

p,q

⇢
3�2

2

�
K 0(p2)

 
h(p) [h(p+ q)h(q)� h(q)h(q)] + �2

�
K 0(p2)

 
h(q)h(p+ q)h(q)

+
�2

2

�
K 0(p2)

 
h(p+ q)h(p+ q)h(q)

�
(4.3.46)

Following this procedure, we can solve all the equations given in B.3.2 to get the 4-point

composite operator vertices given above.
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Calculation of Anomalous Dimension

To get the anomalous dimension we collect the leftover terms which remain unused- (4.3.46)and

(B.3.14) in the LHS. All other left over terms are either cancelled or of O(✏�2) or O(✏3).

Z

p,q

⇢
3�2

2

�
�K 0(p2)

 
h(p) [h(p+ q)h(q)� h(q)h(q)] + �2

�
�K 0(p2)

 
h(q)h(p+ q)h(q)

+
�2

2

�
�K 0(p2)

 
h(p+ q)h((p+ q)h(q)

�
�

4

4!

⌘

2

4X

i=1

B(0)(pi) =
dm
4!

� 4X

i=1

B(0)(pi)
 

(4.3.47)

The first three terms on the LHS can be written as:

3�2

2

Z

p,q

�
�K 0(p2)

 
h(p)h(p+ q)h(q) +

�
�K 0(p2)

 
h(q)h(p+ q)h(q)

�

�
3�2

2

Z

p,q

�
�K 0(p2)

 
h(p)h(q)h(q)

= �
1

4

3�2

2
⇤
@

@⇤

Z

p
⇤ ,

q
⇤

h
⇣ p
⇤

⌘
h
⇣ p
⇤

⌘
h

✓
p+ q

⇤

◆
h
⇣ q
⇤

⌘
+

3�2

2

Z

p,q

�
K 0(p2)

 
h(p)h(q)h(q)

(4.3.48)

Where in the second line we have rewritten the integral in terms of dimensionful momenta

and written ⇤ explicitly. This gives a convenient way of doing the integrals. It also reveals

the relation with log divergences in Feynman diagrams. While evaluating the integral we have

taken h(p/⇤) as K(p/⇤0)�K(p/⇤)
p2/⇤2 instead of 1�K(p/⇤)

p2/⇤2 . We keep ⇤0 finite initially to make all the

integrals finite and well defined and take ⇤0 ! 1 at the end.

Now we note the Feynman diagrams of the above terms. The first(second)term in the first

line of (4.3.48) represent the first(second) diagram at the top of Fig.4.3.40 (if we make all

external momenta as zero). Similarly, the first term on the second line represents the diagram

at the bottom of the same figure. As written above we will find this integral of the second line

of (4.3.48) and then apply �
1
4⇤

@

@⇤ to get our desired integral (see Appendix B.4).

The value of the integrals in the limit of ⇤0 ! 1 is listed below.

a.

Z

p,q

⇥�
�K 0(p2)

 
h(p)h(p+ q)h(q) +

�
�K 0(p2)

 
h(q)h(p+ q)h(q)

⇤

= F 2

✓
1

2
� log 2 +

1

2
log

⇤2
0

⇤2

◆
(4.3.49)
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and similarly one can calculate using method shown in Appendix B.4:

b.

Z

p,q

�
K 0(p2)

 
h(p)h(q)h(q) = �F 2

⇢
� log 2 +

1

2
log⇤2

0 +
1

2
log⇤2 + log

✓
1

⇤2
+

1

⇤2
0

◆�

(4.3.50)

So in (4.3.47) we use B(0)(pi) = 1
4 , combine (4.3.49) and (4.3.50) to get the anomalous

dimension. Note that the logarithmic divergences gets exactly cancelled so the (4.3.50) is in

fact originated from a counterterm.

1

4!
d4 =

3

4
�2F 2

�
4

4!

⌘

2
=

1

4!

53

3
�2F 2

Where ⌘

2 = �
2
F

2

12 at the fixed point and F = 1
16⇡2 . This value matches with (4.2.21).

The Relevant Operator, O(2)
2 (0) The form of the relevant composite operator O2(0) in the

subleading order is assumed as.

O2(0) = �S2 +�S4 +�S6

=
1

2!

Z

p

⇢
1 + A(1)(p)

�
�(p)�(�p)

+
1

4!

Z

p1,p2,p3

⇢
1� �

4X

l=1

h(pl) + B(2)(p1, p2, p3, p4)

�
�(p1)�(p2)�(p3)�(p4)

+
1

6!

Z

p1,p2,p3,p4,p5

⇢
D(2)(p1, p2, p3, p4, p5, p6)

�
�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

with

d2 = 2� F�+ d(2)2

In this section, we have written the final expressions of �S. The details are given in Appendix

B.4.
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Determination of D(2)(p1, p2, p3, p4, p5, p6) from �6 equation

There are two kinds of 6-pt vertices distinguished according to their tensor structure (see B.4.1

for details).

D(2)
I
(p1, p2, p3, p4, p5, p6) = �2

X

10 perm (i,j,k)

h(pi + pj + pk)h(pi + pj + pk) (4.3.51a)

D(2)
II
(p1, p2, p3, p4, p5, p6) = �2

X

10 perm (i,j,k)

h(pi + pj + pk)
6X

l=1

h(pl) (4.3.51b)

Determination of B(2)(p1, p2, p3, p4) from �4 equation

Similarly there are 3 kinds of 4-pt vertices (see B.4.2 for details).

B(2)
I
(p1, p2, p3, p4) = �2

X

3 perm (i,j)

H̄3(pi + pj) (4.3.52a)

B(2)
II
(p1, p2, p3, p4) = �2

4X

l=1

h(pl)
X

3 perm (i,j)

F(pi + pj) (4.3.52b)

B(2)
III

(p1, p2, p3, p4) = �F�2
�1
2

X

i 6=j

h(pi)h(pj) +
4X

l=1

h2(pl)
 

(4.3.52c)

H̄3(p) and F(p) is defined in (B.6.5) and (B.6.2) respectively.

Determination of A(1)(p) from �2 equation

This �2 equation is solved by six kinds of A(2)s according to di↵erent tensor structures (see

B.4.3 for details).

A(2)
I
(p) = �

�2

3

Z

q,k

�
h(p+ q + k)h(p)h(q)h(k)� h(q)h(q + k)h(k)

 
(4.3.53a)

A(2)
II
(p) = �

�2

2

Z

q,k

�
h(p+ q + k)h(q)h(q)h(k)� h(q + k)h(q)h(q)h(k)

 
(4.3.53b)

A(2)
III

(p) = ��2F 2h(p) +
✏�

2
h(p) (4.3.53c)

A(2)
IV
(p) =

3

4
F 2�2h2(p) (4.3.53d)

A(2)
V
(p) = ��2h(p)

Z

q

f(q)F(q) (4.3.53e)

A(2)
V I
(p) =

⌘

✏
p2h(p) (4.3.53f)
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Anomalous dimension

We collect the unused leftover terms as we did in the previous subsection to get the anomalous

dimension:

�2
Z

q,k

�
�K 0(q)

 
h(q + k)h(k)h(k) + �2

Z

q,k

�
�K 0(q)h(q)

 �
h(q + k)h(k)� h(k)h(k)

 

+
3

2

Z

q

K 0(q)h2(q) + �2
1

2

Z

k

h(k)h(k)h(k)�
⌘

2
A(0)(p) = d2

1

2
A(0)(p) (4.3.54)

Like we have seen in the calculation of anomalous dimension of the irrelevant operator here also

the anomalous dimension is coming from a diagram as shown in Fig.4.6 which is logarithmically

divergent but made finite by adding a counterterm.

Evaluation of Integrals

a.

Z

q

K 0(q)h2(q) = 2 log 2� log 3

b.

Z

k

h(k)h(k)h(k) = 3 log 3� 6 log 2

So the third and fourth terms on LHS of (4.3.54) cancels among each other. The rest of the

integrals in the LHS we know from the previous subsection. So in the limit of ⇤0 ! 1 we

obtain the anomalous dimension as,

d2 = 2

✓
�2F 2

2
�
⌘

2

◆
=

5

6
�2F 2

Where F = 1
16⇡2 and ⌘

2 = �
2
F

2

12 . This agrees with (4.2.25).

h(q/⇤)

h(p/⇤) h(p/⇤)

h(p/⇤+ q/⇤)

�2(0)

Figure 4.6: Diagram contributing to d(2)2 for the relevant operator
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Chapter 5

Conclusion

In this thesis, we have studied some aspects of the O(N) model using the Exact RG formalism.

We have done two things:

1) We have constructed the Wilson action for the O(N) model at the Wilson-Fisher fixed

point in 4� ✏ dimensions up to order ✏2. This is done by solving the fixed point equation, order

by order in ✏.

2) Using the above action we have also constructed two composite operators in the �4 scalar

field theory at the Wilson-Fisher fixed point in D = 4� ✏ dimension. The composite operators

and their anomalous dimensions are listed in (4.2.26),(4.2), (4.3), (4.2.29), (4.2.30) and (4.6).

Dimension of an operator is a well-defined concept only if the underlying theory is scale-

invariant (at least in some approximation). The fixed point condition of the ERG equation is

a condition for scale invariance of the action. This was solved to O(✏2) in [43]. The energy-

momentum tensor was also shown to be traceless, thus verifying that this theory is also con-

formal invariant - as expected on general grounds. Thus the operators constructed in this

theory should correspond to primary operators of this CFT. However this needs to be verified

by checking the Conformal Ward Identities, which requires a local operator, i.e. O2(q),O4(q)

with q 6= 0. We leave this for the future.

As mentioned in the introduction, one of the motivations for this construction is to use the

ideas in [40, 41] and construct the AdS action corresponding to this CFT. A related problem

is to construct the AdS action for sources for composite operators such as �i�i. Even more

interesting would be to study the massless spin 2 field that would be the source for the energy-
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momentum tensor. This would give dynamical gravity in the bulk as a consequence of Exact

RG in the boundary by a direct change of variables similar to what was done for the scalar

field in [40, 41].

The main point of our work is that the UV cuto↵ is kept finite throughout. Thus both the

fixed point action and the composite operators constructed here are valid at all length scales.

In particular, scale and conformal invariance of the action is not an approximate statement

valid at energies p << ⇤ but is valid for all p. In the same way, the expressions for the

composite operators in terms of fundamental fields are valid even when the internal momentum

circulating is arbitrarily large. (Note that because of the analytic form of the cuto↵ function,

loop momenta are not restricted to be less than ⇤.)

CFTs and more generally field theories with a finite UV cuto↵ are conceptually interesting

and generalize the notion of scale invariance in the presence of a UV cuto↵. These could have

applications in condensed matter physics and critical phenomena because these systems always

have an underlying short distance cuto↵.

The results of our work are also relevant for a better understanding of holography. The bulk

AdS dual of the O(N) model has been studied. The connection between ERG and Holographic

RG has also been studied recently and in these approaches, a finite cuto↵ plays a crucial role

[40, 41, 42]. In fact, as we have used a very general cut-o↵ in our work, the cuto↵ functions

used in [40, 41, 42] can be accommodated.

There are several other open questions. One is to understand the precise role of the irrelevant

terms in the Wilson Action when constructing the bulk AdS-dual. It would also be interesting

to have more examples of such constructions in other CFTs and in other dimensions where a

Lagrangian description is available, for eg., Wess-Zumino-Witten models and O(N) models in

3 dimensions.

Finally and perhaps most important is the inclusion of gravity in these theories and the

connection with string theory. If one were to speculate (as for instance in [61]) that underlying

space-time in string theory is not a continuum then it may also be necessary to understand

properties of theories with finite cuto↵ where the underlying “lattice” is dynamical.
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Appendix A

Wilson Action

A.1 Fixed point action

A.1.1 Evaluation of U4

We need to solve

✓
4�D �

4X

i=1

pi
d

dpi

◆
+

4X

j=1

2K 0(p2
j
)U (1)

2 (pj)

�
1

8
U4(p1, p2; p3, p4)

=

Z
dDp

(2⇡)D
K 0(p2))

1

48

⇢
6NU6(p1, p2; p3, p4; p,�p) + 12U6(p1, p; p2,�p; p3, p4) + 12U6(p1, p2; p3, p; p4,�p)

�

=

Z
dDp

(2⇡)D
K 0(p2))

⇢
�

(N + 2)

8

✓
h(p1) + h(p2) + h(p3) + h(p4)

◆

�
(N + 4)

4

✓
h(p+ p1 + p2) + 2h(p+ p1 + p3) + 2h(p+ p1 + p4)

◆�
(A.1.1)

where Z
dDp

(2⇡)D
K 0(p2))

⇢
�

(N + 2)

8

✓
h(p1) + h(p2) + h(p3) + h(p4)

◆�
(A.1.2)

corresponds to the kind of diagrams shown in A.1. Here the external loop does not involve

momenta pi + pj. We will call it type I diagrams. Considering only leading order terms in p2
j

the contribution from type I diagram in (A.1.1) is

= �
N + 2

8

�2

16⇡2
4K 0(p2

j
)

����
pj=0

(A.1.3)
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Now consider the second term in L.H.S of (A.1.1). In the limit of small external momenta after

putting the value of U (1)
2 (p) = �

N+2
2

�

16⇡2 ( as we are considering terms of O(✏2) we have put

D=4 to find U (1)
2 ) we get

�

4X

j=1

2K 0(p2
j
)

����
pj!0

�

16⇡2

N + 2

2

1

8
V4(p1, p2; p3, p4)

=� 4K 0(p2
j
)

����
pj!0

�2

16⇡2

N + 2

8
(A.1.4)

This cancels exactly with (A.1.3).

Similarly in (A.1.1) the term

Z
dDp

(2⇡)D
K 0(p2)

⇢
�

(N + 4)

4

✓
h(p+ p1 + p2) + 2h(p+ p1 + p3) + 2h(p+ p1 + p4)

◆�
(A.1.5)

corresponds to the kind of diagram shown in A.2. We will call it Type II diagram. In the

limit pi ! 0 the above term becomes

�2
(N + 8)

4

1

16⇡2

Z 1

0

dp2K 0(p2)
⇣
K(p2)�K(0)

⌘

=�2
(N + 8)

4

1

16⇡2

Z 1

0

dp2
⇢
1

2

d(K2)

dp2
�K(0)K 0(p2)

�

Using K(1) = 0 and K(0) = 1, this integral gives 1
2 . Equating this contribution with ✏ �4! from

L.H.S of (A.1.1) we obtain
1

8
(4�D)� =

N + 8

8

�2

(4⇡)2

�I

�J

�J

�I

p
p2

p3

p1

p4

�p

Figure A.1: Type I diagram
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�I

�J�J

�I

�K

�J�K

p �p

p1 p3

p2 p4

Figure A.2: Type II diagram

Thus in addition to the trivial fixed point � = 0, we have a non trivial fixed point:

� = (4�D)
16⇡2

N + 8
(A.1.6)

A.1.2 Solving for Ũ4

Ũ4 will have contribution from both type I and II diagram explained above. We write

Ũ4 = Ũ I

4 + Ũ II

4

according to contributions from type I(II) diagrams.

(We shall set D = 4 while evaluating integrations in those terms that are already of O(✏2).)

Type I diagram In (A.1.1) the first term on the LHS and the first terms on the RHS (Type

I) cancel only in leading order. In general, their di↵erence is

�2
N + 2

8
⇥

1

(4⇡)2

Z 1

0

dp2K 0(p2)

"
X

j

K(p2
j
)�K(0)

p2
j

�K 0(p2
j
)

#

Taylor expanding we find

�2
N + 2

8
⇥

1

(4⇡)2

Z
dp2K 0(p2)K 00(0)

1

2

X

j

p2
j
⌘ c

X

j

p2
j

This is a contribution to Ũ4(p1, p2; p3, p4) that we can call �U I

4 (p1, p2; p3, p4). Consider a type I

graph where the line at one end has p1 and lines with momenta p2, p3, p4 are at the other end.
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This corresponds to the term

�2
N + 2

8
⇥

1

(4⇡)2

Z
dp2K 0(p2)K 00(0)

1

2
p21 ⌘ cp21

when contracted in a loop in order to contribute to Ũ2, so that say p3 = �p4, we have p2 = �p1.

It contributes to Ũ2(p21) an amount

Z
dp2K 0(p2)

1

2
�U I

4 (p1,�p1, p,�p) =

Z
dp2K 0(p2)

1

2
c(p21) =

h
c

Z
dp2K 0(p2)

i
p21 ⌘ Ap21

This is just a simple wave function renormalization that does not depend on p1. There is no

contribution to the mass. The same argument applies to all the other permutations of the type

I terms. A simple wave function renormalization �02 = (1+A)�2 can ensure the normalization

of the kinetic term. They do not a↵ect the physics or contribute to ⌘. However, type I term

contributes to sub-leading order term of m2 or U2.

Ũ I

4 satisfies the following equation:

�

4X

i=1

pi
d

dpi

1

8
Ũ I

4 (p1, p2; p3, p4) = �2
N + 2

8
⇥

1

(4⇡)2

Z 1

0

dp2K 0(p2)

"
X

j

K(p2
j
)�K(0)

p2
j

�K 0(p2
j
)

#

The solution is

Ũ I

4 (p1, p2; p3, p4) =� �2
(N + 2)

2

1

16⇡2

4X

j=1

K(p2
j
)�K(0)

p2
j

(A.1.7a)

=�2
(N + 2)

2

1

16⇡2

4X

j=1

h(pj) (A.1.7b)

where K(p) = e�p
2
is assumed.

Type II Diagram In (A.1.1) if we keep terms upto O(✏2),

1

8

 4X

j=1

pj
d

dpj

�
Ũ II

4 (p1, p2; p3, p4)

=
�2

4

Z
dDp

(2⇡)D
K 0(p2)

⇢
(N + 4)h(p+ p1 + p2) + 2h(p+ p1 + p3) + 2h(p+ p1 + p4)� (N + 8)h(p)

�

(A.1.8)
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where h(p) = K(0)�K(p)
p2

. It is to be noted in the momentum independent part �✏ �4! we have

written ✏ in terms of � using the fixed-point value of �.

The solution at O(✏2), analytic at zero external momenta, is given by

Ũ II

4 (p1, p2; p3, p4)

=�
�2

2

Z
dDp

(2⇡)D
h(p)

h
(N + 4)h(p1 + p2 + p) + 2h(p+ p1 + p3) + 2h(p+ p1 + p4)� (N + 8)h(p)

i

(A.1.9a)

=� �2
h
(N + 4)F (p1 + p2) + 2F (p1 + p3) + 2F (p1 + p4)

i
(A.1.9b)

where F (q) = 1
2

R
d
D
p

(2⇡)Dh(p)
⇣
h(p+ q)� h(p)

⌘
.

A.1.3 Equation for Ũ2

From (3.2.19) we get

0 =

Z
dDp

(2⇡)D

⇣
�K 0(p2)

⌘
⇥

⇢
1

8

h
4NŨ I

4 (p1,�p1; p,�p) + 4NŨ II

4 (p1,�p1; p,�p) + 8Ũ I

4 (p1, p;�p1,�p) + 8Ũ II

4 (p1, p;�p1,�p)
i

�v(1)2 (p)v(1)2 (p)�D(p� p1)

�
�
⌘

2
p21 + Ũ2(p1)� p21

dŨ2(p1)

dp21
(A.1.10)

From(A.1.7a)

1

8

⇢
4NŨ I

4 (p1,�p1; p,�p) + 8Ũ I

4 (p1, p;�p,�p1)

�

=
1

2
(N + 2)2

�2

16⇡2

⇢
h(p) + h(p1)

�
(A.1.11)

and from (A.1.9a)

1

8

⇢
4NŨ II

4 (p1,�p1; p,�p) + 8Ũ II

4 (p1, p;�p,�p1)

�

=�
3�2

2
(N + 2)

Z

r

⇢
h(r)

h
h(r + p1 + p)� h(r)

i�
(A.1.12)

If we decompose Ũ2 in two parts namely Ũ I

2 and Ũ II

2 respectively, in the following way,
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1.

Ũ I

2 (p1)� p21
dŨ I

2 (p1)

dp21
=

Z
dDp

(2⇡)D
K 0(p2)

1

2
(N + 2)2

�2

16⇡2
h(p1)�

�
U (1)
2

�2
K 0(p21) (A.1.13)

which gives

Ũ I

2 (p1) = �
�2

(16⇡2)2
(N + 2)2

4
h(p1) (A.1.14)

2.

� 2Ũ II

2 (p1) + 2p21
dŨ II

2 (p1)

dp21

=� 6�2(N + 2)

Z
dDp

(2⇡)D

⇣
�K 0(p2)

⌘
F (p1 + p) + (N + 2)2

�2

16⇡2

Z
dDp

(2⇡)D

⇣
�K 0(p2)

⌘
h(p)� ⌘ p21

(A.1.15)

which gives

Ũ II

2 (p1) = p21

Z
p
2
1

p2=0

dp2

R
d
D
q

(2⇡)D

n
� 6�2(N + 2)(�K 0(q2))F (p+ q)

o
� ⌘ p2

2p4
�

(N + 2)2

4

�2

(16⇡2)2

(A.1.16)

The second term in the expression of Ũ II

4 is evaluated using K(p) = e�p
2
.

Hence The full expression of Ũ2(p1) is given by

Ũ2(p1) = �
�2

(16⇡2)2
(N + 2)2

4
h(p1)

+p21

Z
p
2
1

p2=0

dp2

R
d
D
q

(2⇡)D

n
� 6�2(N + 2)(�K 0(q2))F (p+ q)

o
� ⌘ p2

2p4
�

(N + 2)2

4

�2

(16⇡2)2
(A.1.17)

A.1.4 Expression for ⌘

Only Type II diagrams contribute to ⌘. Because we need the external momentum to flow

through the loop - to get a momentum dependence in U2. This can happen only in Type

II terms and that too for certain contractions. (Calculation of this section requires us to

go back to bar denoted variable as a dimensionless variable. So p’s from the last section are
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replaced with p̄). From (3.2.20) we have

⌘

2
= �

1

8

d

dr̄2

Z

q̄

K 0(q̄2)

⇢
4NŨ II

4 (q̄,�q̄; r̄,�r̄) + 8Ũ II

4 (q̄, r̄;�r̄,�q̄)

� �����
r̄2=0

(A.1.18)

We can convert di↵erentiation w.r.t pj into that w.r.t ⇤ , i.e.

�

4X

j=1

p̄j
d

dp̄j
= ⇤

d

d⇤

So (A.1.8) gives following expression for Ũ II

4 :

1

8
Ũ II

4 (
p1
⇤
,
p2
⇤
;
p3
⇤
,
p4
⇤
)

=
�2

4

Z ln⇤

0

d ln⇤0
Z

p̄

K 0(p̄2)


(N + 4)h(p̄+

p1
⇤0 +

p2
⇤0 ) + 2h(p̄+

p1
⇤0 +

p3
⇤0 ) + 2h(p̄+

p1
⇤0 +

p4
⇤0 )� (N + 8)h(p̄)

�

(A.1.19)

Hence

1

8

⇢
4NŨ II

4 (q̄,�q̄; r̄,�r̄) + 8Ũ II

4 (q̄, r̄;�r̄,�q̄)

�

=
�2

4

Z ln⇤

0

d ln⇤0
Z

p̄,r̄

K 0(p̄2)

⇢
(12N + 48)h(p̄+

q

⇤0 +
r

⇤0 ) + (12N + 48)h(p̄+
q

⇤0 �
r

⇤0 )� 24(N + 2)h(p̄)

�

(A.1.20)

So we need to find the coe�cient of r̄2 in
h
h(p̄+ q

⇤0 +
r
0

⇤0 ) + h(p̄+ q

⇤0 �
r
0

⇤0 )
i
which is calculated

as

1

2

rµr⌫

⇤02
d2

dr0µdr0⌫

h
h(p̄+

q

⇤0 +
r0

⇤0 ) + h(p̄+
q

⇤0 �
r0

⇤0 )
i�����

r0=0

=�
r̄2

4

d2

dr̄µdr̄µ

K(r̄2)� 1

r̄2

�����
r̄=p̄+ q

⇤0

=r̄2K 00((p̄+
q

⇤0 )
2) (A.1.21)

where we have used the facts: in 4 dimensions ( d

dpµ

1
p2
) = �4(p) and K(0) = 1.
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From (A.1.18),(A.1.20) and (A.1.21) we get

⌘

2
= 3�2(N + 2)

Z

q̄

K 0(q̄2)

Z ln⇤

0

d ln⇤0 (
⇤

⇤0 )
2

Z

p̄

K 0(p̄2)K 00((p̄+
q

⇤0 )
2) (A.1.22)

Evaluation of integral: Let us use q̄0 = q

⇤0 and ⇤0 as variables of integration, rather than

q̄ = q

⇤ and ⇤0. So change variables:

q̄ = q̄0
⇤0

⇤
; q̄2 = q̄02

⇣⇤0

⇤

⌘2
;

Z
d4q̄ =

Z
d4q̄
⇣⇤0

⇤

⌘4

to get

⌘

2
= �3�2(N + 2)

Z ln⇤

0

d ln⇤0
Z

q̄0

⇣⇤0

⇤

⌘�2

K 0(q̄02)
⇣⇤0

⇤

⌘2 Z

p̄

K 0(p̄2)K 00((p̄+
q

⇤0 )
2)

Using K 0(q̄02) = dK

d⇤0
d⇤0

dq̄02 = �
⇤0

2q̄02
dK

d⇤0 we get

⌘

2
= �3�2(N + 2)

Z ⇤

0

d⇤0 dK

d⇤0

Z

q̄0

1

2q̄02

Z

p̄

K 0(p̄2)K 00((p̄+ q̄0)2)

Since q̄0 is an independent variable we can write this as

⌘

2
= �3�2(N + 2)

Z

q̄0

Z ⇤

0

d⇤0 dK

d⇤0
1

2q̄02

Z

p̄

K 0(p̄2)K 00((p̄+ q̄0)2)

The integral over p̄ is a function of q̄0 and not ⇤0. So we can do the ⇤0 integral easily. Using

K(1) = 0 we get

⌘

2
= �

3�2

2
(N + 2)

Z

q̄0
K(q̄02)

1

q̄02

Z

p̄

K 0(p̄2)K 00((p̄+ q̄0)2)

| {z }
� ⇡4

6(2⇡)8

=
1

4
�2(N + 2)

1

(16⇡2)2

The integral underbraced above is calculated to give �
⇡
4

6(2⇡)8 for K(x) = e�x. But it can be

shown to give identical result for any smooth K(x) [66]. Using � = 16⇡2

N+8✏ we can write the

anomalous dimension as:

⌘

2
=

1

4
�2(N + 2)

1

(16⇡2)2
=

N + 2

(N + 8)2
✏2

4
(A.1.23)
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A.2 Asymptotic behaviors of F (p) and G(p)

The function F (p) is defined by

(p · @p + ✏)F (p) =

Z

q

f(q)
⇣
h(q + p)� h(q)

⌘
(A.2.1)

For large p, we obtain an equation satisfied by the asymptotic form Fasymp(p):

(p · @p + ✏)Fasymp(p) = �

Z

q

f(q)h(q) = �
1

(4⇡)2
+O(✏) (A.2.2)

This implies

Fasymp(p) = �
1

✏

Z

q

f(q)h(q) + CF (✏)p
�✏ (A.2.3)

where CF (✏) is independent of p. Since F (p) is finite in the limit ✏! 0+, we must find

CF (✏) =
1

✏

1

(4⇡)2
+ · · · (A.2.4)

Hence, expanding in ✏, we obtain

Fasymp(p) = �
1

(4⇡)2
ln p+ const + O(✏) (A.2.5)

We next consider G(p) satisfying

(p · @p � 2 + 2✏)G(p) =

Z

q

f(q)F (q + p) + 2v2

Z

q

f(q)h(q) + ⌘(2)p2 (A.2.6)

where

⌘(2) = �
d

dp2

Z

q

f(q)F (q + p)
���
p=0

=
1

6(4⇡)4
+O(✏) (A.2.7)

The asymptotic form Gasymp(p) satisfies

(p · @p � 2 + 2✏)Gasymp(p) = ⌘(2)p2 (A.2.8)

This gives

Gasymp(p) =
1

2✏
⌘(2)p2 + CG(✏)p

2�2✏ (A.2.9)
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Since G(p) is finite as ✏! 0+, we obtain

CG(✏) = �
1

✏

1

12(4⇡)4
+ · · · (A.2.10)

Hence,

Gasymp(p) = p2
✓

1

6(4⇡)4
ln p+ const

◆
+O(✏) (A.2.11)
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Appendix B

Composite Operators

B.1 Local Operators

Under a scale transformation

x̄ = �x , p̄ =
p

�
(B.1.1)

�̄(p̄) = ��d
p
��(p)

Here dx
O
is the scaling dimension of any operator O(x) and dp

O
= dx

O
�D is the scaling dimension

of O(p). Let � = e�t and p̄ = pet.

�̄(pet) = ed
p
�t�(p)

e�d
p
�t�̄(pet) = �(p)

We hold p fixed and change t:

@�(p)

@t
= (�dp

�
+ p

d

dp
)�(p)

and more generally for any operator with mass scaling dimension dp
O
:

@O(p)

@t
= (�dp

O
+ p

d

dp
)O(p) (B.1.2)

One can also call �dp
O
the length scaling dimension.
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Let us consider operators of the form

�S =

Z

q

B(q)O(q) (B.1.3)

Then the change under scaling can be written as

@�S

@t
=

Z

q

B(q)(�dq
O
+ q

d

dq
)O(q)

=

Z

q

[(�dp
O
�D � q

d

dq
)B(q)]O(q) =

Z

q

[(�dx
O
� q

d

dq
)B(q)]O(q)

This gives the action on the coe�cient functions in the composite operator.

Thus if we have

O =

Z

p1

Z

p2

A(p1, p2)�(p1)�(p2)

Then
@O

@t
=

Z

p1

Z

p2

[(�p1
d

dp1
� p2

d

dp2
� 2dx

�
)A(p1, p2)]�(p1)�(p2) (B.1.4)

The operator acting on the coe�cient functions A has been called G
c

dil
in the literature. The

superscript c denotes that it is the contribution to scaling due to the classical or engineering

dimensions. (see for eg.[18, 19]).

Let us consider some simple examples that will be used.

1.

A(p1, p2) = �(p1 + p2 � q) (B.1.5)

Then using

(p1
d

dp1
+ p2

d

dp2
+ q

d

dq
)�(p1 + p2 � q) = �D�(p1 + p2 � q) (B.1.6)

we obtain
@O

@t
=

Z

p1

Z

p2

(�2dx
�
+D + q

d

dq
)�(p1 + p2 � q)�(p1)�(p2)

@O

@t
= (�dp

O
+ q

d

dq
)

Z

p1

Z

p2

�(p1 + p2 � q)�(p1)�(p2)

as required.
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2. More generally

A(p1, p2) = �(p1 + p2 � q)B(p1, p2, q) (B.1.7)

Then going through the same steps one obtains

@O

@t
=
⇣
(�2dx

�
+D + q

d

dq
)

Z

p1

Z

p2

�(p1 + p2 � q)B(p1, p2, q)

+

Z

p1

Z

p2

�(p1 + p2 � q)(�p1
d

dp1
� p2

d

dp2
� q

d

dq
)B(p1, p2, q)

⌘
�(p1)�(p2)

If B(p1, p2, q) has a well defined scaling dimension it adds to dp
�
. For eg if B(p1, p2, q) =

p1.p2 the operator is just the kinetic term and we get �2dx
�
+ D � 2 = 0, which is the

dimension of
R
p
(p.(q � p))�(p)�(q � p).

B.2 Composite operators at the leading order

In this appendix we have calculated di↵erent parts of (4.3.18) upto �1. Note that we have

marked di↵erent parts as (1), (2),(3) and (4a) respectively. As we have considered only the

leading order terms we remove the superscript (1) from 4 and 6-pt vertices BI , BII and D.

(1)

Z

p

{�K 0(p2)}
�2�S

��(p)��(�p)

=

Z

p

{�K 0(p2)}
1

2

Z

p1,p2

�(p1 + p2 � q)
⇣
B(0) + (BI(p1, q) + BI(p2, q) + BI(p, q) + BI(�p, q))+

+
1

2
[BII(p1+p2, q)+BII(p1+p, q)+BII(p1�p, q)+BII(p2+p, q)+BII(p2�p, q)+BII(0, q)]

⌘
�(p1)�(p2)

+
1

4!

Z

p

{�K 0(p2)}
1

2

Z

p1,p2,p3,p4

�(p1+ p2+ p3+ p4� q)[(D(p1, q)+D(p2, q)+D(p3, q)+D(p4, q)+

+D(p1 + p2 + p3, q) +D(p1 + p2 + p4, q) +D(p1 + p3 + p4, q) +D(p2 + p3 + p4, q))+

+(D(p1+p2+p, q)+D(p1+p3+p, q)+D(p1+p4+p, q)+D(p3+p2+p, q)+D(p4+p2+p, q)+D(p3+p4+p, q))+

+(D(p1+p2�p, q)+D(p1+p3�p, q)+D(p1+p4�p, q)+D(p3+p2�p, q)+D(p4+p2�p, q)+D(p3+p4�p, q))]

�(p1)�(p2)�(p3)�(p4)
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If we set q = 0 in the above things simplify considerably:

Z

p

{�K 0(p2)}
�2�S

��(p)��(�p)
=

Z

p

{�K 0(p2)}BI(p)

Z

q

�(q)�(�q) + F

Z

q

BI(q)�(q)�(�q)+

1

2
FBII(0)

Z

q

�(q)�(�q) +
1

2

Z

p

{�K 0(p2)}

Z

q

[BII(p+ q) + BII(p� q)]�(q)�(�q)

+
1

4!

Z

p

{�K 0(p2)}

Z

p1,p2,p3

[D(p1) +D(p2) +D(p3) +D(p4)

+D(p+ p3 + p4) +D(p+ p3 + p2) +D(p+ p3 + p1)

+D(p� p3 � p4) +D(p� p3 � p2) +D(p� p3 � p1)]

�(p1)...�(p4) p4 = �p3 � p2 � p1

(2)+(3)

�2

Z

p

{�K 0(p2)}
�S

��(p)

��S

��(�p)
�

Z

p

2
p2K 0

K
�(p)

��S

��(p)
=

�

Z

p1,p2

X

i

{�K 0(p2
i
)}U2(pi)�(p1 + p2 � q)[A(0) + A(1)(p1, p2, q)]�(p1)�(p2)+

�
2

4!
�

Z

p1,p2,p3,p4

�(p1+p2+p3+p4�q)
4X

i=1

{�K 0((pi�q)2)}[A(0)+A(1)(pi, pj+pk+pl)]�(p1)�(p2)�(p3)�(p4)

�
2

4!

Z

p1,p2,p3,p4

�(p1+p2+p3+p4�q)
X

i

{�K 0(p2
i
)}U2(pi)

⇣
B(0)+(BI(p1)+BI(p2)+BI(p3)+BI(p4)

+BII(p1 + p2, q) + BII(p1 + p3, q) + BII(p1 + p4, q)+

+BII(p2 + p3, q) + BII(p2 + p4, q) + BII(p3 + p4, q))
⌘
�(p1)�(p2)�(p3)�(p4)

Once again if we set q = 0 the result is simpler:

�2

Z

p

{�K 0(p2)}
�S

��(p)

��S

��(�p)
�

Z

p

2
p2K 0

K
�(p)

��S

��(p)
= �2

h Z

p

{�K 0(p2)}U2(p)A(p)�(p)�(�p)

+
1

3!

Z

p

{�K 0(p2)}A(p)

Z

p2,p3

(�+ U4(p, p2, p3, p4))�(�p)�(p2)�(p3)�(p4) ; p = p2 + p3 + p4
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+
1

3!

Z

p

{�K 0(p2)}U2(p)

Z

q2,q3

[BI(p)+BI(q2)+BI(q3)+BI(q4)+BII(p+q2)+BII(p+q3)+BII(p+q4)]

�(p)�(q2)�(q3)�(q4)
i

;�p = q2 + q3 + q4

Rename p� > p1 and then symmetrize:

= �2
h Z

p

{�K 0(p2)}U2(p)A(p)�(p)�(�p)

+
1

4!

Z

p1,p2,p3

(
4X

i=1

{�K 0(p2
i
)}A(pi))(�+ U4(p1, p2, p3, p4))�(p1)�(p2)�(p3)�(p4)

+
1

4!

Z

p1,p2,p3

(
4X

i=1

{�K 0(p2
i
)}U2(pi))[BI(p)+BI(q2)+BI(q3)+BI(q4)+BII(p+q2)+BII(p+q3)+BII(p+q4)]

�(p)�(q2)�(q3)�(q4)
i

; p4 = �(p1 + p2 + p3)

We write the �6 terms separately (we set q = 0 here since these terms are not required for

the relevant operator at leading order):

�
4

6!

Z

p1,...p5

X

10 perm i,j,k

{�K 0((pi + pj + pk)
2)}[�+ U4(p, pi, pj, pk)]

[BI(p) + BI(pa) + BI(pb) + BI(pc) + BII(p+ pa) + BII(p+ pb) + BII(p+ pc)]�(p1)....�(p6)

+
2

6!

Z

p1,...p5

[
X

i

{{�K 0(p2
i
)}}U2(pi)][

X

10 perm i,j,k

D(pi + pj + pk)]�(p1)....�(p6)

+
2

6!

Z

p1,...p5

[
X

i

�K 0(p2
i
)A(pi)][V6(p1, ...p6)]�(p1)....�(p6)

p = pi + pj + pk = �(pa + pb + pc)

(4a)

The general form of the action of Gc

dil
is given by

G
c

dil
�(
X

pi � q)X(p1, .., pN) = ((1�
D

2
)N �

X
pi
@

@pi
)�(
X

pi � q)X(p1, .., pN)

= ((1�
D

2
)N +D + q

d

dq
)�(
X

pi � q)X(p1, .., pN)�

�(
X

pi � q)(
X

pi
@

@pi
+ q

d

dq
)X(p1, .., pN) (B.2.1)
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When q = 0 we get:

G
c

dil

1

2

Z

p

A(p)�(p)�(�p) =

Z

p

(A(p)� p2
d

dp2
A(p))�(p)�(�p)

G
c

dil

1

4!

Z

p1,p2,p3

[
X

i

{B(0)(pi)+BI(pi)}+(BII(p1+p2)+BII(p1+p3)+BII(p1+p4))]�(p1)...�(p4) =

1

4!

Z

p1,p2,p3

[(4�D�

X

i

pi
d

dpi
)[
X

i

{B(0)(pi)+B(1)
I
(pi)}+(BII(p1+p2)+BII(p1+p3)+BII(p1+p4))]�(p1)...�(p4)

G
c

dil

1

6!

Z

p1,...p5

X

10 perm i,j,k

D(pi + pj + pk)�(p1)...�(p6)

=
1

6!

Z

p1,...p5

(6� 2D �

X

i

pi
d

dpi
)

X

10 perm i,j,k

D(pi + pj + pk)�(p1)...�(p6)

p6 = �p1...� p5

B.3 Irrelevant Operator at subleading order

B.3.1 The �6 equation

Z

p

{�K 0(p2)}
�2�S(2)

8 (0)

��(p)��(�p)
�

4

6!

X

10 perm (i,j,k)

�
�K 0(pi + pj + pk)

 �
�+ U (2)

4 (p, pi, pj, pk)
 

�
B(0)(p) + B(0)(pa) + B(0)(pb) + B(0)(pc) + B(1)

I
(p) + B(1)

I
(pa) + B(1)

I
(pb) + B(1)

I
(pc)

+B(1)
II
(p+ pa) + B(1)

II
(p+ pb) + B(1)

II
(p+ pc)

 

�
2

6!

� 6X

l=1

(�K(p2
l
))U (1)

2 (pl)D
(1)(p1, p2, p3, p4, p5, p6)

 
�

2

6!

� 6X

l=1

(�K(p2
l
))A(0)(pl)V

(2)
6 (p1, p2, p3, p4, p5, p6)

 

+
1

6!

�
6� 2D �

6X

i=1

pi.
d

dpi

 
D(2)(p1, p2, p3, p4, p5, p6) +

1

6!
(2✏)

�
D(1)(p1, p2, p3, p4, p5, p6)

=
1

6!
{✏� 6F�}D(1)(p1, p2, p3, p4, p5, p6) +

1

6!
{✏�+ �(1)

1 (�)}
@

@�
D(1)(p1, p2, p3, p4, p5, p6) (B.3.1)

The last term on LHS comes from putting D = 4� ✏ in (6� 2D)D(1) term. Where

�(1)
1 (�) = �3F�2

94



So the first and 3rd term combined in RHS cancels the last term in LHS.

U (2)
4 (p, pi, pj, pk)

= ��2
�
F(p+ pi) + F(p+ pj) + F(p+ pk)

 
| {z }

UI
4

+
F�2

2

4X

i=1

h(pi)

| {z }
UII
4

(B.3.2)

Where F(p) = 1
2

R
k

�
h(p+ k)h(k)� h(k)h(k)

 
.

�
2�S

(2)
8 (0)

��(p)��(�p) in �6 equation

�2�S(2)
8 (0)

��(p)��(�p)

=
28⇥ 3�2

8!

⇢ X

10 perm (1,j,k)

6X

l=1

h(pl)h(pi + pj + pk) + 4
X

10 perm (i,j,k)

X

3 perm (↵,�)

h(pi + pj + pk)h(p↵ + p� + p)

+56
X

10 perm (i,j,k)

h(pi + pj + pk)h(pi + pj + pk) + 28
6X

l=1

X

10 perm (i,j,k)

h(pl)h(pi + pj + pk)

+112
X

10 perm (i,j,k)

h(pi + pj + pk)
X

3 perm (↵,�)

h(p↵ + p� + p)

+56
X

15 perm (i,j)

X

6 perm (↵,�)

h(pi + pj + p)h(pi + pj + p↵ + p� + p)

�
�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

(B.3.3)
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Equation for D(2)
I
(p1, p2, p3, p4, p5, p6)

We take 2nd and 5th term of R.H.S of (B.3.3), Note that the coe�cients ✏D(1) terms cancel,

now considering all terms in RHS we get:

⇢
6� 2D � 2

6X

l=1

pi.
d

dpi

�
D(2)

I
(p1, p2, p3, p4, p5, p6)

+
12�2

6!

Z

p

�
�K 0(p2)

� X

10 perm (i,j,k)

X

3 perm (↵,�)

h(pi + pj + pk)

⇢
h(p↵ + p� + p)� h(p)

�

+
4

6!

X

10 perm (i,j,k)

K 0(pi + pj + pk)U
I

4 (p, pi, pj, pk)
4X

l=1

B(0)(pl)

+
4

6!

X

10 perm (i,j,k)

�K 0(pi + pj + pk)

⇢
B(1)

II
(p+ pa) + B(1)

II
(p+ pb) + B(1)

II
(p+ pc)

�
= 0

(B.3.4)

Equation for D(2)
II
(p1, p2, p3, p4, p5, p6) and D(2)

III
(p1, p2, p3, p4, p5, p6)

We take 1st, 3rd and 4th term from (B.3.3) and remaining all terms in (B.3.1):

4

6!

X

10 perm (i,j,k)

✓�
K 0(pi + pj + pk)

 �
�
 �

B(1)
I
(p)

| {z }
1

+B(1)
I
(pa) + B(1)

I
(pb) + B(1)

I
(pc)

 

+
�
K 0(pi + pj + pk)

 �
B(0)(p) + B(0)(pa) + B(0)(pb) + B(0)(pc)

 F�2

2

⇢
h(p)|{z}

1

+h(pi) + h(pj) + h(pk)

�

| {z }
UII
4

◆

�
2

6!

6X

l=1

⇢
�K 0(p2

l
)U (1)

2 (pl)

�⇢
D(1)(p1, p2, p3, p4, p5, p6)

�

�
2

6!

6X

l=1

⇢
�K 0(p2

l
)A(0)(pl)

�⇢
V (2)
6 (p1, p2, p3, p4, p5, p6)

�

+
3�2

6!

6X

l=1

X

10 perm (i,j,k)

Fh(pl)h(pi + pj + pk)

+

Z

p

�
�K 0(p2)

�3�2

6!

X

10 perm (i,j,k)

⇢
h(pi + pj + pk)h(pi + pj + pk)

�

+
1

6!

✓
6� 2D �

X

i

pi.
d

dpi

◆⇢
D(2)

II
(p1, p2, p3, p4, p5, p6)| {z }

1

+D(2)
III

(p1, p2, p3, p4, p5, p6)

�
= 0

(B.3.5)
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Let’s take collect all terms marked with ”1” marked and the 6 th term on LHS,

4

6!

X

10 perm (i,j,k)

�
K 0(pi + pj + pk)

 �
�
 
B(1)

I
(p)

+
4

6!

X

10 perm (i,j,k)

�
K 0(pi + pj + pk)

 �
B(0)(p) + B(0)(pa) + B(0)(pb) + B(0)(pc)

 F�2

2
h(p)

+

Z

p

�
�K 0(p2)

�3�2

6!

X

10 perm (i,j,k)

⇢
h(pi + pj + pk)h(pi + pj + pk)

�

+
1

6!

✓
6� 2D �

X

i

pi.
d

dpi

◆
D(2)

II
(p1, p2, p3, p4, p5, p6) = 0

Collecting other terms in (B.3.5) we get equation to solve D(2)
III

(p1, p2, p3, p4, p5, p6).

Equation for D(2)
IV
(p1, p2, p3, p4, p5, p6)

At last, only term remains in (B.3.3) is the 6 th term. So the equation for

D(2)
IV
(p1, p2, p3, p4, p5, p6)

3�2

6!

X

15 perm (i,j)

X

6 perm (↵,�)

Z

p

�
�K 0(p2)

 
h(pi + pj + p)h(pi + pj + p↵ + p� + p)

+
�
6� 2D � pi.

d

dpi

� 1
6!
D(2)

IV
(p1, p2, p3, p4, p5, p6) = 0 (B.3.6)

B.3.2 The �4 equation to determine B(2)(p1, p2, p3, p4)

Now we will write �4 contribution in (4.3.31). We recall that while calculating 4-pt ver-

tex of leading order there were two left over terms (4 � D)B(1)
I
(p1, p2, p3, p4) and 2(4 �

D)B(1)
II
(p1, p2, p3, p4). We have added those terms in LHS of the equation below.
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Az }| {Z

p

K 0(p2)
�

��(p)

�

��(�p)
D(2)(p1, p2, p3, p4, p5, p6)

�

Bz }| {
2

4!

4X

i=1

�
�K 0(p2

i
)
 �

A(0)(pi) + A(1)(pi)
 �
�+ U (2)

4 (p1, p2, p3, p4)
 

�

Cz }| {
2

4!

4X

i=1

�
�K 0(p2

i
)
 �

U (1)
2 (pi) + U (2)

2 (pi)
 � 4X

i=1

B(0)(pi) +
4X

i=1

B(1)
I
(pi) + B(1)

II
(p1, p2, p3, p4)

 

Dz }| {

�
⌘

2

⇢ 4X

i=1

4

4!
B(0)(pi)

�
+

1

4!
⌘

4X

i=1

p2
i
h(pi)

+

Ez }| {
1

4!

�
(4�D)� pi.

d

dpi

 �
B(2)(p1, p2, p3, p4)

 
+ 2(4�D)B(1)

II
(p1, p2, p3, p4) + (4�D)B(1)

I
(p1, p2, p3, p4)

=
✏� 6F�

4!

�
B(1)

I
(p1, p2, p3, p4) + B(1)

II
(p1, p2, p3, p4) + B(2)(p1, p2, p3, p4)

 
+

d(2)4

4!

� 4X

i=1

B(0)(pi)
 

+
1

4!
{✏�+ �(1)

1 (�)}
@

@�
{B(1)

I
(p1, p2, p3, p4) + B(1)

II
(p1, p2, p3, p4)} (B.3.7)

Where B(1)
I
(p1, p2, p3, p4) = �

P4
i=1 h(pi) and B(1)

II
(p1, p2, p3, p4) = �2�

P
3 perm (i,j) F(pi + pj).

�(1)
1 (�) = �3F�2

U1
2 (p) = �

�F

2� ✏
; U (2)

2 (p) = ��2G(p)�
�2F 2

4
h(p)

Where

G(p) =
1

3

Z

q,k

h(q)

2
[h(p+ q + k)h(k)� h(k)h(k)]�

1

3

Z

q

h(q)

2
[h(q + k)h(k)� h(k)h(k)]

+
⌘p2

2✏
�

1

2� 2✏

⇢
2

3
�(1)v(1)2 +

Z

q

f(q)F(q)

�

�(1) = �

Z

q

f(q)h(q) !✏!0 �F ; v(1)2 = �

Z

q

f(q)h(q) !✏!0 �
F

2
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Di↵erent parts of (B.3.7)

In the LHS, A. Calculation of �
2

��(p)��(�p)D
(2)(p1, p2, p3, p4, p5, p6)

1.

Z

p

�
�K 0(p2)

 �2

��(p)��(�p)
D(2)

I
(p1, p2, p3, p4)�(p1)�(p2�(p3)�(p4)�(p5)�(p6)

=

Z

p

�
�K 0(p2)

 �2

��(p)��(�p)
⇢
3�2

6!

X

10 perm (i,j,k)

X

3 perm (↵,�)

Z

q

h(pi + pj + pk)[h(p↵ + p� + q)h(q)� h(q)h(q)]

�

⇥ �(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

=

Z

q

1

4!

3�2F

2

⇢ X

3 perm (i,j)

4X

l=1

h(pl)[h(pi + pj + q)h(q)� h(q)h(q)]

�
�(p1)�(p2)�(p3)�(p4)

(B.3.8a)

+
3�2

4!

Z

p,q

�
�K 0(p2)

 ⇢ X

6 perm (i,j)

h(pi + pj + p)[
X

a=i,j

h(p+ q + pa)� 2h(q)h(q)]

�
�(p1)�(p2)�(p3)�(p4)

(B.3.8b)

+

Z

p,q

6�2

4!

�
�K 0(p2)

 X

3 perm (i,j)

h(pi + pj + p)
�
h(pi + pj + q)h(q)� h(q)h(q)

 
�(p1)�(p2)�(p3)�(p4)

(B.3.8c)

+

Z

p,q

�
�K 0(p2)

 3�2

4!

4X

i=1

h(pi)
�
h(pi + p+ q)h(q)� h(q)h(q)

 
�(p1)�(p2)�(p3)�(p4) (B.3.8d)

2.

Z

p

�
�K 0(p2

 �2

��(p)��(�p)
D(2)

II
(p1, p2, p3, p4)�(p1)�(p2�(p3)�(p4)�(p5)�(p6)

=

Z

p

�
�K 0(p2

 �2

��(p)��(�p)

1

6!

�3�2F

2

6X

l=1

X

10 perm (i,j,k)

h(pl)h(pi + pj + pk)�(p1)�(p2)...�(p5)�(p6)
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gives

+
�3

2

�2F

4!

Z

p

�
�K 0(p2)

 �
2h(p)

 4X

l=1

�
h(pl)

 
�(p1)�(p2)�(p3)�(p4) (B.3.9a)

+
�3

2

�2F

4!

Z

p

�
�K 0(p2)

 � 4X

l=1

h(pl)h(pl) +
X

i 6=j

h(pi)h(pj)
 
�(p1)�(p2)�(p3)�(p4) (B.3.9b)

+
�3�2F

4!

Z

p

�
�K 0(p2)

 �
2h(p)

 X

3 perm (i,j)

�
h(pi + pj + p)

 
�(p1)�(p2)�(p3)�(p4) (B.3.9c)

+
�3�2F

4!

Z

p

�
�K 0(p2)

 � 4X

l=1

h(pl)
 X

3 perm (i,j)

�
h(pi + pj + p)

 
�(p1)�(p2)�(p3)�(p4)

(B.3.9d)

3.

Z

p

�
�K 0(p2)

 �2

��(p)��(�p)
D(2)

III
(p1, p2, p3, p4)�(p1)�(p2�(p3)�(p4)�(p5)�(p6)

=

Z

p

�
�K 0(p2

 �2

��(p)��(�p)

1

6!

�3�2F

2

X

10 perm (i,j,k)

h(pi + pj + pk)h(pi + pj + pk)�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

gives

1

4!

�3�2F 2

2

4X

l=1

h(pl)h(pl)�(p1)�(p2)�(p3)�(p4) (B.3.10a)

+

Z

p

�
�K 0(p2)

 �3�2F

4!

X

3 perm (i,j)

h(pi + pj + p)h(pi + pj + p)�(p1)�(p2)�(p3)�(p4)

(B.3.10b)

4.

Z

p

�
�K 0(p2)

 �2

��(p)��(�p)
D(2)

IV
(p1, p2, p3, p4)�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

=

Z

p

�
�K 0(p2

 �2

��(p)��(�p)
⇢
1

6!

�2

2

Z

q

X

15 perm (i,j)

X

6 perm (↵,�)

[h(pi + pj + q)h(pi + pj + p↵ + p� + q)h(q)]�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

�
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gives

=
3�2F

4!

X

3 perm (i,j)

Z

q

�
h(pi + pj + q)h(q)h(q)

 
�(p1)�(p2)�(p3)�(p4) (B.3.11a)

+
2�2

4!

Z

p

Z

q

�
�K 0(p2

 X

6 perm (i,j)

�
h(pi + pj + q)[h(p+ q + pi) + h(p+ q + pj)]h(q)

 
�(p1)�(p2)�(p3)�(p4)

(B.3.11b)

+
�2

4!

Z

q

Z

p

�
�K 0(p2

 4X

l=1

X

3 perm (i,j)

�
h(pl + p+ q)h(pl + pi + pj + p+ q)h(q)

 
�(p1)�(p2)�(p3)�(p4)

(B.3.11c)

B

�
2

4!

4X

i=1

�
�K 0(p2

i
)
 �

A(0)(pi) + A(1)(pi)
 �
�+ U (2)

4 (p1, p2, p3, p4)
 

= �
2

4!

4X

i=1

�
�K 0(p2

i
)
 ✓⇢

�
F

2

�⇢
� �2

X

3 perm (i,j)

F(pi + pj) +
F�2

2

4X

i=1

h(pi)

�
+ [A(0) + A(1)(pi)]�

◆

Where F(p1 + p2) =
1
2

R
q

�
h(p1 + p2 + q)h(q)� h(q)h(q)

 

=
1

4!

F�2

2

4X

l=1

�
K 0(p2

l
)
 X

3 perm (i,j)

Z

q

�
h(pi + pj + q)h(q)� h(q)h(q)

 
(B.3.12a)

�
1

4!

F 2�2

2

4X

i=1

�
K 0(p2

i
)
 4X

l=1

h(pl) (B.3.12b)

+
2

4!

4X

i=1

�
K 0(p2

i
)
 
�
�
A(0) + A(1)(pi)

 
(B.3.12c)

C

�
2

4!

4X

i=1

�
�K 0(p2

i
)
 �

U (1)
2 (pi) + U (2)

2 (pi)
 � 4X

i=1

B(0)(pi) + B(1)
I
(p1, p2, p3, p4) + B(1)

II
(p1, p2, p3, p4)
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=
2

4!

�F�✏

4

4X

i=1

K 0(p2
i
) (B.3.13a)

=
�2F

4!

4X

l=1

�
K 0(p2

l
)
 �Z

q

X

3 perm (i,j)

�
h(pi + pj + q)h(q)� h(q)h(q)

� 
(B.3.13b)

�
F 2�2

4!

4X

i=1

�
K 0(p2

i
)
 � 4X

i=1

h(pi)
 

(B.3.13c)

�
1

3

2�2

4!

4X

i=1

�
K 0(p2

i
)
 �Z

q,k

h(q) [h(pi + q + k)h(k)� h(k)h(k)]�

Z

q,k

h(q) [h(q + k)h(k)� h(k)h(k)]
 

(B.3.13d)

�
2�2

4!

4X

i=1

�
K 0(p2

i
)
 �⌘p2

i

2✏

 
(B.3.13e)

�
�2

4!

4X

i=1

K 0(p2
i
)

Z

q

K 0(q2)
�
h(q + k)h(k)� h(k)h(k)

 
(B.3.13f)

+
2�2

4!

4X

i=1

�
K 0(p2

i
)
 � 1

2� 2✏

✓
2

3
�(1)v(1)2

◆ 
(B.3.13g)

�
1

4!

F 2�2

2

4X

i=1

�
K 0(p2

i
)h(pi)

 
(B.3.13h)

D.

�
4

4!

⌘

2

4X

i=1

B(0)(pi) (B.3.14)

+
1

4!
⌘

4X

i=1

p2
i
h(pi) (B.3.15)

Where at the fixed point F� = ✏

3 , ⌘

2 �!
✏
2
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1

4!
(4�D)B(1)

I
(p1, p2, p3, p4) (B.3.16a)

+
1

4!
2(4�D)B(1)

II
(p1, p2, p3, p4) (B.3.16b)

+
1

4!
(4�D �

4X

i=1

pi.
d

dpi
)B(2)(p1, p2, p3, p4) (B.3.16c)
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In the RHS

=
✏� 6F�

4!

� 4X

i=1

B(1)
I
(pi)} (B.3.17a)

+
✏� 6F�

4!
B(1)

II
(p1, p2, p3, p4) (B.3.17b)

+
✏� 6F�

4!

�
B(2)(p1, p2, p3, p4)

 
(B.3.17c)

+
d(2)4

4!

� 4X

i=1

B(0)(pi)
 

(B.3.17d)

+ ✏
1

4!
B(1)

I
(p1, p2, p3, p4) (B.3.17e)

+ ✏
1

4!
B(2)

II
(p1, p2, p3, p4) (B.3.17f)

+ (�3F�)
1

4!
B(1)

I
(p1, p2, p3, p4) (B.3.17g)

+ (�3F�)
1

4!
B(1)

II
(p1, p2, p3, p4) (B.3.17h)

We know all necessary terms to find B(2)(p1, p2, p3, p4). We will reorganize the terms and will

make suitable ansatz about B(2)(p1, p2, p3, p4) so that (B.3.7) is satisfied and at the end we get

some number proportional to
P4

i=1 B
(0)(pi) in the LHS of (B.3.7) so that we can equate that

with d
(2)
m
4!

�P4
i=1 B

(0)(pi)
 
in RHS to get the anomalous dimension.

Equation for B(2)
I
(p1, p2, p3, p4)

Taking (B.3.8a),(B.3.9d),(B.3.12a) and (B.3.13b) and adding suitable couterterm,

Z

q

1

4!

3�2F

2

X

3 perm (i,j)

4X

l=1

�
h(pl)

 �
h(pi + pj + q)h(q)� h(q)h(q)

 

+
�3�2F

4!

Z

p

�
�K 0(p2)

 4X

l=1

�
h(pl)

 X

3 perm (i,j)

�
h(pi + pj + p)

 
+

9

2

�2F 2

4!

4X

l=1

h(pl)

+
1

4!

�2F

2

4X

l=1

�
K 0(p2

l
)
 �Z

q

X

3 perm (i,j)

�
h(pi + pj + q)h(q)� h(q)h(q)

� 

+
�2F

4!

4X

l=1

�
K 0(p2

l
)
 �Z

q

X

3 perm (i,j)

�
h(pi + pj + q)h(q)� h(q)h(q)

� 

+
�
� (4�D)�

4X

i=1

pi.
d

dpi

1

4!

 
B(2)

I
(p1, p2, p3, p4) = 0 (B.3.18)
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On LHS of (B.3.7) we are left with,

2(4�D)
1

4!
B(2)

I
(p1, p2, p3, p4)�

1

4!

9�2F

2

4X

l=1

h(pl) (B.3.19)

Equation for B(2)
II
(p1, p2, p3, p4)

Taking (B.3.9c),(B.3.10b) and (B.3.11a) we get,

�3�2F

4!

Z

p

�
�K 0(p2)

 �
2h(p)

 X

3 perm (i,j)

�
h(pi + pj + p)

 

+

Z

p

�
�K 0(p2)

 �3�2F

4!

X

3 perm (i,j)

h(pi + pj + p)h(pi + pj + p)

+
3�2F

4!

X

3 perm (i,j)

Z

q

h(pi + pj + q)h(q)h(q)

+
�
� (4�D)�

4X

i=1

pi.
d

dpi

 1
4!
B(2)

II
(p1, p2, p3, p4) = 0 (B.3.20)

On LHS of (B.3.7) we are left with,

+2(4�D)
1

4!
B(2)

II
(p1, p2, p3, p4)
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Equation for B(2)
III

(p1, p2, p3, p4)

Taking (B.3.9b),(B.3.10a),(B.3.12b),(B.3.13c), (B.3.13h) we get,(Note that we need to A(1)
III

for

the equation to be satisfied.

�3

2

�2F

4!

Z

p

�
�K 0(p2)

 � 4X

l=1

h(pl)h(pl) +
X

i 6=j

h(pi)h(pj)
 

+
1

4!

�3�2F 2

2

4X

l=1

h(pl)h(pl)

�
1

4!

F 2�2

2

� 4X

i=1

K 0(p2
i
)h(pi) +

X

i 6=j

K 0(p2
i
)h(pj)

 

�
F 2�2

4!

4X

i=1

� 4X

i=1

K 0(p2
i
)h(pi) +

X

i 6=j

K 0(p2
i
)h(pj)

 

�
1

4!

F 2�2

2

4X

i=1

�
K 0(p2

i
)h(pi)

 

+
2

4!

4X

i=1

�
K 0(p2

i
)
 
�A(1)

III
(pi)�

4X

i=1

pi.
d

dpi

1

4!
B(2)

III
(p1, p2, p3, p4) = 0 (B.3.21)

where A(1)
III

(p) = ��F
2

2 h(p).

On LHS of (B.3.7) we are left with

(4�D)
1

4!
B(2)

III
(p1, p2, p3, p4) (B.3.22)
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Equation for B(2)
IV
(p1, p2, p3, p4)

Collecting (B.3.9a),(B.3.13a),(B.3.13g),(B.3.16a), (B.3.17a), (B.3.17e), (B.3.17g) and the sec-

ond term of (B.3.19) we get,

�3

2

�2F

4!

Z

p

�
�K 0(p2)

 �
2h(p)

 4X

l=1

�
h(pl)

 

+
2

4!

�F�✏

4

4X

i=1

K 0(p2
i
)

+
2�2

4!

4X

i=1

�
K 0(p2

i
)
 � 1

2� 2✏

✓
2

3
�(1)v(1)2

◆ 

+
2

4!

4X

i=1

�
K 0(p2

i
)
 
�
�
A(0) + A(1)

I
(pi)
 
+

⇢
(4�D)�

4X

i=1

pi.
d

dpi

�
1

4!
B(2)

IV
(p1, p2, p3, p4) +

4�D

4!

4X

i=1

�Fh(pi)

�
1

4!

9

2
F 2�2

4X

l=1

h(pl)

=
✏� 6F�

4!

4X

i=1

�Fh(pi) + (✏�� 3F�2)F
4X

i=1

h(pi)

Where 1
3�

(1) = �
R
q
f(q)h(q) !✏!0 �F , v(1)2 = �

1
2�✏

R
p
�K 0(p2) !✏!0

�F

2 , A(0) =

�
F ✏

4 ,A
(1)
I
(p) = F 2�.
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Equation for B(2)
V I
(p1, p2, p3, p4)

Taking (B.3.8d), (B.3.13d) and (B.3.13f), we get

Z

p,q

⇢
�K 0(p2)

�
3�2

4!

X

4 perm (i,j,k)

�
h(pi + pj + pk)h(p↵ + p+ q)h(q)� h(p+ q)h(q)

 

1

2

�2

4!

Z

p,q

K 0(p)h(p+ q)h(q)

�
1

3

�2

4!

4X

i=1

�
K 0(p2

i
)
 �Z

q,k

h(q) [h(pi + q + k)h(k)� h(q + k)h(k)]
 

+
�2

4!

4X

i=1

K 0(p2
i
)

Z

p,q

�
�K 0(q)

 �
h(q + k)h(k)� h(k)h(k)

 

+
3�2

4!

4X

i=1

h(pi)

Z

p,q

�
�K 0(q)

 �
h(q + k)h(k)� h(k)h(k)

 

+
2

4!

4X

i=1

K 0(p2
i
)AII(pi)�

+
�
� 2(4�D)�

4X

i=1

pi.
d

dpi

 1
4!

⇢
B(2)

V I
(p1, p2, p3, p4)|1

�
+
�
�

4X

i=1

pi.
d

dpi

 1
4!

⇢
B(2)

V I
(p1, p2, p3, p4)|2

�
= 0

(B.3.23)

A(1)
II
(pi) = �

�

3

R
p,q
[h(pi+p+q)h(p)h(q)�h(p+q)h(p)h(q)]��

R
p
K 0(p){h(p+q)h(q)�h(q)h(q)}.

On LHS of (B.3.7) we are left with

3(4�D)
1

4!
B(2)

V I
(p1, p2, p3, p4)|1 + (4�D)

1

4!
B(2)

V I
|2(p1, p2, p3, p4)|2

(B.3.24)

Equation for B(2)
V II

(p1, p2, p3, p4)

Considering (B.3.8c),

Z

p,q

6�2

4!

�
�K 0(p)

 X

3 perm (i,j)

h(pi + pj + p)
�
h(pi + pj + q)h(q)� h(q)h(q)

 

+
�
� 2(4�D)� pi.

d

dpi

 1
4!
B(2)

V II
(p1, p2, p3, p4) = 0 (B.3.25)
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On LHS of (B.3.7) we are left with

3(4�D)
1

4!
B(2)

V II
(p1, p2, p3, p4) (B.3.26)

Equation for B(2)
V III

(p1, p2, p3, p4)

Collecting (B.3.13e) and (B.3.15) we get (because of the expected structure of B(2)
V III

as ⌘

✏
we

consider the term ✏�@BIX
@�

from RHS of (B.3.7)),

�
2

4!

4X

i=1

�
K 0(p2

i
)
 �⌘p2

i

2✏

 
+

1

4!
⌘

4X

i=1

p2
i
h(pi) +

⇢
(4�D)�

4X

i=1

pi.
@

@pi

�
1

4!
BIX(p1, p2, p3, p4)

= {✏� 6F�}
1

4!
BIX(p1, p2, p3, p4) +

1

4!
✏�
@BIX(p1, p2, p3, p4)

@�

We ignore �B(2)
IX

or ✏B(2)
IX

terms being higher-order and get

�
2

4!

4X

i=1

�
K 0(p2

i
)
 �⌘p2

i

2✏

 
+

1

4!
⌘

4X

i=1

p2
i
h(pi) +

⇢
�

4X

i=1

pi.
@

@pi

�
1

4!
BIX =

1

4!
✏�
@BIX

@�
(B.3.27)

And on LHS of (B.3.7) we are left with

(✏� 6�F )
1

4!
BIX(p1, p2, p3, p4) (B.3.28)

Equation for B(2)
IX

(p1, p2, p3, p4)

At last we collect the terms (B.3.16b), (B.3.17b), (B.3.17f) and (B.3.17h) to get,

{4�D �

4X

i=1

pi.
d

dpi
}
1

4!
B(2)

X
(p1, p2, p3, p4) + 2(4�D)

1

4!
BII(p1, p2, p3, p4)

=
�
✏� 6F�+ ✏� 3F�2

 1

4!
B(1)

II
(p1, p2, p3, p4) (B.3.29)

We ignore the term ✏ 1
4!B

(2)
X
(p1, p2, p3, p4) and get the following euqations:

�

4X

i=1

pi.
d

dpi
B(2)

X
(p1, p2, p3, p4)� 9F�2

X

3 perm (i,j)

Z

q

�
h(pi + pj + q)h(q)� h(q)h(q)

 
= 0

(B.3.30)
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To solve this, we use p̄ = p

⇤ . In this noatation �
P4

i=1 p̄i.
d

dpi
B(2)

X
(p̄1, p̄2, p̄3, p̄4) can be written

as,

�

4X

i=1

p̄i.
d

dp̄i
B(2)

X

✓
p1
⇤
,
p2
⇤
,
p3
⇤
,
p4
⇤

◆
= ⇤.

d

d⇤
B(2)

X

✓
p1
⇤
,
p2
⇤
,
p3
⇤
,
p4
⇤

◆

So the solution is given by,

1

4!
B(2)

X
(
p1
⇤
,
p2
⇤
,
p3
⇤
,
p4
⇤
) =

9F�2

4!

X

3 perm (i,j)

Z 1

⇤

Z

q̄

d⇤0

⇤0

⇢
h

✓
pi
⇤0 +

pj
⇤0 + q̄

◆
h (q̄)� h (q̄)h (q̄)

�

(B.3.31)

In LHS we are left with

1

4!
(4�D)B(2)

X
(p1, p2, p3, p4) (B.3.32)

B.4 Relevant operator at sub-leading operator

B.4.1 The �6 equation to find D(2)(p1, p2, p3, p4, p5, p6)

�6 equation is given by ( we donot have to consider �(�)@�S

@�
part because there is no

D(1)(p1, p2, p3, p4) in this case).

�
4

6!

X

10 perm (i,j,k)

�
�K 0(pi + pj + pk)

 �
�
 �

B(pi) + B(pj) + B(pk)| {z }
1

+B(pi + pj + pk)| {z }
2

 

�
2

6!

4X

i=1

�
�K 0(p2

i
)
 �

A(pi)
 
V (2)
6 (p1, p2, p3, p4, p5, p6)| {z }

3

+
1

6!

✓
6� 2D �

4X

i=1

pi.
@

@pi

◆
D(2)(p1, p2, p3, p4, p5, p6)

=
d(0)2

6!
D(2)(p1, p2, p3, p4, p5, p6) (B.4.1)

d(0)2 = 2
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We collect the terms marked ’2’ to find first kind of D(2)(p1, p2, p3, p4, p5, p6).

�
4

6!

X

10 perm (i,j,k)

�
�K 0(pi + pj + pk)

 �
�
 �

B(pi + pj + pk)
 

+
1

6!

✓
6� 2D �

4X

i=1

pi.
@

@pi

◆
D(2)(p1, p2, p3, p4, p5, p6)

=
d(0)2

6!
D(2)

I
(p1, p2, p3, p4, p5, p6) (B.4.2)

Similarly collecting the terms marked as ’1’ and ’3’ we get the following equation,

�
4

6!

X

10 perm (i,j,k)

�
�K 0(pi + pj + pk)

 �
�
 �

B(pi) + B(pj) + B(pk)
 

�
2

6!

4X

i=1

�
�K 0(p2

i
)
 �

A(pi)
 
V (2)
6 (p1, p2, p3, p4, p5, p6)

=
2

6!
D(2)

II
(p1, p2, p3, p4, p5, p6) (B.4.3)

B.4.2 The �4 equation to determine B(2)(p1, p2, p3, p4)

The �4 equation is given by,

1

6!

Z

p

�
�K 0(p)

 �

��(p)

�

��(�p)
D(2)(p1, p2, p3, p4, p5, p6)

�
2

4!

4X

i=1

�
�K 0(pi)

 �
A(0)(p) + A(1)(p)

 �
�+ U (2)

4 (p1, p2, p3, p4)
 

�
2

4!

4X

i=1

�
�K 0(pi)

 �
U (1)
2 (pi) + U (2)

2 (pi)
 � 4X

i=1

B(1)(pi)
 
+

1

4!

✓
4�D �

4X

i=1

pi.
@

@pi

◆
B(2)(p1, p2, p3, p4)

+ (4�D)B(1)(p1, p2, p3, p4)

=
d(1)2

4!
B(1)(p1, p2, p3, p4) +

d(0)2

4!
B(2)(p1, p2, p3, p4) +

1

4!
{✏�+ �(1)

1 (�)}
@

@�
B(1)(p1, p2, p3, p4)

(B.4.4)

Where

U (2)
4 (p1, p2, p3, p4) = ��2

X

3 perm (i,j)

F(pi + pj)

| {z }
UI
4

+
F�2

2

4X

i=1

h(pi)

| {z }
UII
4
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F(pi + pj) =
1

2

Z

k

{h(pi + pj + k)h(k)� h(k)h(k)}

d(1)2 = �F�

B(1)(p1, p2, p3, p4) = ��
4X

i=1

h(pi)

Calculation of �

��(p)
�

��(�p)D
(2)(p1, p2, p3, p4, p5, p6)

a.

�2

��(p)��(�p)
D(2)

I
(p1, p2, p3, p4, p5, p6)�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

=
�2

��(p)��(�p)

� X

10 perm (i,j,k)

h(pi + pj + pk)
 
�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

= 30⇥
� 4X

l=1

h(pl)h(pl)
 
�(p1)�(p2)�(p3)�(p4) (B.4.5a)

+ 60⇥
X

3 perm (i,j)

�
h(pi + pj + p)h(pi + pj + p)

 
�(p1)�(p2)�(p3)�(p4) (B.4.5b)

b.

�2

��(p)��(�p)
D(2)

II
(p1, p2, p3, p4, p5, p6)�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

�2

��(p)��(�p)

X

10 perm (i,j,k)

h(pi + pj + pk)
6X

l=1

h(pl)�(p1)�(p2)�(p3)�(p4)�(p5)�(p6)

= 30⇥
4X

i=1

h(pi)2h(p)�(p1)�(p2)�(p3)�(p4) (B.4.6a)

+ 30⇥
4X

i=1

h(pi)
4X

j=1

h(pj)�(p1)�(p2)�(p3)�(p4) (B.4.6b)

+ 60⇥
X

3 perm (i,j)

h(pi + pj + p)
�
2h(p)

 
�(p1)�(p2)�(p3)�(p4) (B.4.6c)

+ 60⇥
X

3 perm (i,j)

h(pi + pj + p)
4X

k=1

h(pk)�(p1)�(p2)�(p3)�(p4) (B.4.6d)
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Equation for B(2)
I
(p1, p2, p3, p4)

Collecting (B.4.5b) and (B.4.6c), we get the following equations:

�2
Z

p

�
�K 0(p)

 
[2

X

3 perm (i,j)

h(pi + pj + p)h(pi + pj + p) + 4
X

3 perm (i,j)

h(pi + pj + p)h(p)]

⇢
(4�D)� pi.

d

dpi

�
B(2)

I
(p1, p2, p3, p4) = d(0)2 B(2)

I
(p1, p2, p3, p4)

(B.4.7)

Equation for B(2)
II
(p1, p2, p3, p4)

We take �(1)
1 (�) @

@�
B(1) term from RHS. Collecting (B.4.6d) and the term with U I

4 in the second

line of (B.4.4) we get the following equation,

2�2
X

3 perm (i,j)

h(pi + pj + p)
�
�K 0(p)

 4X

l=1

h(pl)� 3�2F
4X

l=1

h(pl)

+ 2
4X

i=1

K 0(pi)A
(0)(pi)

⇢
�
�2

2

Z

k

X

3 perm (i,j)

[h(pi + pj + k)h(k)� h(k)h(k)]

�

+

⇢
(4�D)� pi.

d

dpi

�
B(2)

II
(p1, p2, p3, p4) = d(0)2 B(2)

II
(p1, p2, p3, p4)

Equation for B(2)
III

(p1, p2, p3, p4)

Collecting (B.4.5a), (B.4.6b) and the term containing U II

4 we get

Z

p

�
�K 0(p)

 � 4X

l=1

h(pl)h(pl) +
4X

i=1

h(pi)
4X

j=1

h(pj)
 

+ 2
4X

i=1

K 0(p2
i
)
�
A(0)(pi)U

(2)
4 |2 + �A(1)(pi)

 

+ 2
4X

i=1

K 0(pi)U
(1)
2 (pi)

4X

j=1

B(1)(pi)

+
�
4�D � pi.

d

dpi

�
B(2)

III
(p1, p2, p3, p4) = d(0)2 B(0)

III
(p1, p2, p3, p4)
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We have,

A(0)(p) = 1 ;A(1)(p) = F�h(p) ;U (1)
2 (p) = �

�F

2� ✏
;B(1)(p) = ��h(p)

So the equation for B(2)
III

(p1, p2, p3, p4) becomes,

F
� 4X

l=1

h(pl)h(pl) +
X

i 6=j

h(pi)h(pj)
 
+ F

X

i 6=j

K 0(p2
i
)h(pj)

2F
X

i 6=j

K 0(pi)h(pj) + 4F
4X

i=1

K 0(pi)h(pi) +
�
4�D � pi.

d

dpi

 
B(2)

III
(p1, p2, p3, p4) = d(0)2 B(2)

III
(p1, p2, p3, p4)

(B.4.8)

Cancellation

Note that the last term in LHS and the third term in RHS of (B.4.4) cancels. Also the term

(B.4.6a) cancels with the term d(1)2 B(1)(p1, p2, p3, p4).

B.4.3 The �2 equation to determine A(2)(p)

�2 equation is given by,

Z
(�K 0(q))

�2

��(q)�(�q)

�
B(2)(p1, p2, p3, p4)�(p1)�(p2)�(p3)�(p4)

 

+
⇥
A(p)� p2A0(p)� 2

�
�K 0(p2)

 
U2(p)A(p)

⇤
�(p)�(�p)

+ ⌘
K(p2)(1�K(p2))

p2
p2

K(p2)
�(p)�(�p)�

⌘

2
A(0)(p)�(p)�(�p) =

d2
2
A(p) + (✏�+ �(�))

@

@�

A(2)(p)

2

(B.4.9)

U1
2 (p) = �

�F

2� ✏
; U (2)

2 (p) = ��2G(p)�
�2F 2

4
h(p)
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Where

G(p) =
1

3

Z

q,k

h(q)

2
[h(p+ q + k)h(k)� h(k)h(k)]�

1

3

Z

q

h(q)

2
[h(q + k)h(k)� h(k)h(k)]

+
⌘p2

2✏
�

1

2� 2✏

⇢
2

3
�(1)v(1)2 +

Z

q

f(q)F(q)

�

�(1) = �

Z

q

f(q)h(q) !✏!0 �F ; v(1)2 = �

Z

q

f(q)h(q) !✏!0 �
F

2

A.

1.
�2

��(q)��(�q)
B(2)

I
(p1, p2, p3, p4)�(p1)�(p2)�(p3)�(p4)

=
�2

��(q)��(�q)

1

4!

X

3 perm (i,j)

Z

k

�
h(pi + pj + k)h(k)h(k)

 
�(p1)�(p2)�(p3)�(p4)

=

Z

q,k

�
h(p+ q + k)h(k)h(k) (B.4.10)

+
1

2
h(k)h(k)h(k) (B.4.11)

2.
�2

��(q)��(�q)

�
B(2)

II
(p1, p2, p3, p4)�(p1)�(p2)�(p3)�(p4)

 

=
�2

��(q)��(�q)

1

4!

1

2

Z

k

X

3 perm (i,j)

�
h(pi + pj + k)h(k)� h(k)h(k)

 4X

l=1

h(pl)�(p1)�(p2)�(p3)�(p4)

=

Z

q,k

�
h(p+ q + k)h(k)� h(k)h(k)

 �
h(p)

 
(B.4.12)

+

Z

q,k

�
h(p+ q + k)h(k)� h(k)h(k)

 �
h(q)

 
(B.4.13)

114



3.

Z

q

�
�K 0(q)

 �2

��(q)��(�q)
B(2)

III
(p1, p2, p3, p4)�(p1)�(p2)�(p3)�(p4)

=

Z

q

�
�K 0(q)

 �2

��(q)��(�q)

1

4!
(�F )

�X

i 6=j

1

2
h(pi)h(pj) +

4X

l=1

h2(pl)
 
�(p1)�(p2)�(p3)�(p4)

=

Z

q

�
�K 0(q)

 �F

4!


6⇥ 2

⇢
2h2(p) + 2h2(q) + 8h(p)h(q)

2

�
+ 6⇥ 2

�
2h2(p) + 2h2(q)

 �

=
3�2F

2

Z
K 0(q)h2(q) (B.4.14)

�
3

2
�2F 2h2(p) (B.4.15)

� �2F 2h(p) (B.4.16)

B. 2K 0(p2)
�
U (2)
2 (p)A(0)(p) + U (1)

2 A(1)(p)
 

= 2K 0(p2)
��F

2� ✏
(B.4.17)

= 2K 0(p2)
��2F 2

4
h(p) (B.4.18)

= �2K 0(p2)A(0)(p)
1

3

Z

q,k

h(q)

2

�
h(p+ q + k)h(k)� h(q + k)h(k)

 �
(B.4.19)

� 2K 0(p2)A(0)(p)
⌘p2

2✏
(B.4.20)

+ 2K 0(p2)A(0)(p)
1

2� 2✏

�2
3
�(1)v(1)2

 
(B.4.21)

+ 2K 0(p2)A(0)(p)
1

2� 2✏

�Z

q

f(q)F(q)
 

(B.4.22)

+ 2K 0(p2)
�
�

�F

2� ✏

 �
�Fh(p)

 
(B.4.23)

C. � ⌘
K(p2)(1�K(p2))

p2
p2

K(p2)
�
⌘

2
A(0)(p)

= �⌘ p2h(p)�(p)�(�p) (B.4.24)

�
⌘

2
A(0)(p) (B.4.25)
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Equation for A(2)
I
(p)

We collect (B.4.12) and (B.4.19) to write the following equation,

Z

q,k

�
�K 0(q)

 �
h(p+ q + k)h(k)� h(q + k)h(k)

 �
h(p)

 

� 2K 0(p2)A(0)(p)
1

3

Z

q,k

h(q)

2

�
h(p+ q + k)h(k)� h(q + k)h(k)

 �

+ A(2)
I
(p)� p2

@A(2)
I
(p)

@p2
= d2

A(2)
I
(p)

2
(B.4.26)

On LHS of (B.4.9) we are left with,

Z

q,k

�
�K 0(q)

 
h(p)

�
h(q + k)h(k)� h(k)h(k)

 
(B.4.27)

Equation for A(2)
II
(p)

We collect (B.4.10) and (B.4.13) to write

Z

q,k

�
�K 0(q)

 �
h(p+ q + k)h(k)h(k)� h(q + k)h(k)h(k)

 

+

Z

q,k

�
�K 0(q)

 �
h(p+ q + k)h(k)� h(q + k)h(k)

 �
h(q)

 

+ A(2)
II
(p)� p2

@A(2)
II
(p)

@p2
= d(0)2

A(2)
II
(p)

2
(B.4.28)

On LHS of (B.4.9) we are left with

Z

q,k

�
�K 0(q)h(q + k)h(k)h(k)

 
+

Z

q,k

�
�K 0(q)h(q)

 �
h(q + k)h(k)� h(k)h(k)

 
(B.4.29)

Equation for A(2)
III

(p)

We collect (B.4.17), (B.4.21) and (B.4.16) to get,

� �2F 2h(p) + 2K 0(p2)
�
�
�F ✏

4

 
+ 2K 0(p2)A(0)(p)

1

2� 2✏

�2
3
�(1)v(1)2

 
+ A(2)

III
(p)� p2

@

@p2
A(2)

III
(p)

= d(0)2

A(2)
III

(p)

2
+ (d(1)2 )

A(1)(p)

2
+ {✏�+ �(�)}

1

2

@A

@�
(B.4.30)

Where d(1)2 = ��F and A(1)(p) = �Fh(p).
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Equation for A(2)
IV
(p)

Collecting (B.4.18), (B.4.23) and (B.4.15) we get,

�
3

2
�2F 2h2(p) + 2K 0(p2)

��2F 2

4
h(p) + 2K 0(p2)

�
�

�F

2� ✏

 �
�Fh(p)

 
+ A(2)

IV
(p)� p2

@

@p2
A(2)

IV
(p)

= d(0)2

A(2)
IV
(p)

2
(B.4.31)

Equation for A(2)
V
(p)

We collect (B.4.22) and (B.4.11) to get the following equation,

2K 0(p2)A(0)(p)
1

2� 2✏

�Z

q

f(q)F(q)
 
+

Z

q,k

�
�K 0(q)

 
h(p)

�
h(q + k)h(k)� h(k)h(k)

 

+ A(2)
V
(p)� p2

@

@p2
A(2)

V
(p) = d(0)2

A(2)
V
(p)

2
(B.4.32)

Equation for A(2)
V I
(p)

We collect 5th term of (4.3.36), (B.4.20) to get the following equation

⌘
K(p2)(1�K(p2))

p2
p2

K(p2)
� 2K 0(p2)A(0)(p)

⌘p2

2✏
+ A(2)

V I
(p)�

1

2
p.
@

@p
A(2)

V I
(p)

= d(0)2

AV I(p)

2
+ d(1)2

A(2)
V I
(p)

2
+ ✏�

@

@�

A(2)
V I
(p)

2
(B.4.33)

B.5 Evaluation of Integrals

Z

p,q

h

✓
p+ q

⇤

◆
h
⇣ q
⇤

⌘
h
⇣ p
⇤

⌘
h
⇣ p
⇤

⌘

=

Z

p,q

K
⇣

p+q

⇤0

⌘
�K

�
p+q

⇤

�

(p+ q)2

K
⇣

q

⇤0

⌘
�K

�
q

⇤

�

(q)2

K
⇣

p

⇤0

⌘
�K

�
p

⇤

�

(p)2

K
⇣

p

⇤0

⌘
�K

�
p

⇤

�

(p)2

We evaluate the integral for K(x) = e�x
2
.

=

Z

p,q

e
� (p+q)2

⇤2
0 � e�

(p+q)2

⇤2

(p+ q)2
e
� q2

⇤2
0 � e�

q2

⇤2

(q)2
e

p2

⇤2
0 � e

p2

⇤2

(p)2
e

p2

⇤2
0 � e

p2

⇤2

(p)2
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Now we apply Schwinger parametrization.

Z

p,q

Z 1
⇤2
0

x,y,u,v= 1
⇤2

e�(p+q)2xe�q
2
ye�p

2
ue�p

2
v

Now we do q inetgral first. We Complete the square on q and change integration varibale q.

After that we do p inetegral. Also we change x, y as x !
1
x
, y !

1
y
. At the end we take

⇤0 ! 1.

Z

x,y,u,v

Z

p,q

1

(x+ y)2
e�q

2
e�p

2( xy
x+y+u+v)

= F 2

Z 1
⇤2
0
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�
1 + (p+ q)(u+ v)

 2

= F 2
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2
{log 2}2 �
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{log
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2 + 2 log 2� 6 log 3 + 2 log
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1

2
{log

2⇤2
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⇤2
}
2 +

1

4
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4⇤2
0

⇤2
}
2
� 8 log 2 + 5 log 5� log
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4
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2
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4
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So,

Z

p,q

⇥�
�K 0(p2)

 
h(p)h(p+ q)h(q) +

�
�K 0(p2)

 
h(q)h(p+ q)h(q)

⇤

= F 2

✓
1

2
� log 2 +

1

2
log

⇤2
0

⇤2

◆
(B.5.1)

Using same procedure we can find all other integrals of used in this thesis.

B.6 Useful Mathematical identities

In this section, we give various mathematical identities about the functions h(p), F(p), F3(p),

etc which were used in the thesis to find the composite operators.

h(p) =
1�K(p2)

p2
f(p) = �2K 0(p)

�p.
@

@p
h(p) = �f(p) + 2h(p) (B.6.1)
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F(p) =
1

2

Z

q

{h(p+ q)h(q)� h(q)h(q)}

✓
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d
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+ ✏

◆
F(p) =

Z

q

f(q) {h(p+ q)� h(q)} (B.6.2)

F̄3(p) =

Z

q,k

h(p+ q + k)h(q)h(k)

, F3(p) = F̄3(p)� F̄3(0) =

Z

q

2h(q) [F (p+ q)� F (q)]

✓
�
p

2
.
d
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◆
F̄3(p) = �6

Z
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◆
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Z
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I4(pi + pj; pi) = Ī4(pi + pj; pi)� Ī4(0; 0)

=
X
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(B.6.6)
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