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PREFACE
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4. An algorithm to genercdte the polynomial =zeros of degree one of

the Racah Coefficients - ( with K.Srinivasa Rao ) J.Phys.A :
Math. Gen. 20 (1986) 507.

£ Solutions of Dicphantine eguations and degree-one polynomial

zeros of Racah Coefficients - ( with K.Brinivasa Rao and




R.C.King) J. Phys. A: Math. Gen. 21 (1988) 1959,

6. Polynomial zeros of the 9-jJ coejficient -(with K.Srinivasa Raa)
J. Phys. A: Math. Gen. 21 (1988) 4255,

T. 4 note on the triple sum series for the 9-) coefficient

( with K.Srinivasa Rao ) J. Math. Phys.Cto appearD.

8. Response in Am. Math. Scec. Notices - ( with K.Srinivasa Rao)
31 (1984) 165.

9., A new FORTRAN program for the 9-j Angular Moment um
Coefficient - ( with K.Srinivasa Rao and Charles B.Chiu )
Comp. Phys. Commn. (Submitted).

10.Multiplicative Diophantine Eguations - ( with K.Srinivasa Rao
and T.5.5anthanam ) Jour. of Number Theory (submitted).

1l1.The interrelationship between the Jour sets of 3?2(115 for the

3-J coefficient - (with K.Srinivasa Rao ) Phys. Lett. A
{submitted).

12 .Hahn Polynomials and recurrence relation for the 33—

coefficients (under preparatian]i
This research work is presented in seven chapters, the first
of which provides the mathematical background required. There are
four Appendices, at the end, which give some of the Fortran
pPrograms used to generate the results presented. The 1ist of
references is given after the Appendices. Finally, a 1list of

mathematical symbols used is provided for ready reference.

V. Royes umi
(V.RAJESWARI )




®

e ———

ACKNOWLEDGEMENTS

With unbounded gratitude I offer my obeisance and reverance
to Dr.K.Srinivasa Rac, my thesis Supervisor. Words cannot measure
his magnanimity, benevolernce, altruism and affability. He was
always ready to spare his time whenever I approached him. The
cheerful readiness with which he offered his help at every stage
of my work has been solely responsible for its completion in time.
I consider myself highly previleged to have worked under his
guidance. 1 express my sincere gratitude to him for his Eenuine

concern, constant support and encouragement and to members of Hhis

family for their kindness and hospitality.

It is my pleasure to thank Prof.,Alladi Ramakrishnan, former
Director, The Institute of Mathematical Sciences, Madras for his
kind support and for the award of a Junior Research Fellowship.

I am thankful +to Prof.E.C:G.Sudarshan, Director, The
Institute of Mathematical Sciences for his interest and for the
continued support by means of the Junior Research Fellowship.

My sincere thanks are due to the Council of Sclentific and

Industrial Research, Government of India for the award of a Senior
Research Fellowship, which was very helpful during the last two
vears of my work.

I thank our Registrar, Dr.V.Varaprasada Raoc, Administrative
and Accounts Officer, Mr.5.Krishnan, Office Superintendent

Mr.R.Jayaraman, Mr.N.S.Sampath, Mr.V.Parthiban and all other

1t

= WATHEMAT,
of

+
(o
D.‘: Fir

Caq

{
IBRAR Y \'¢




administrative staff for their kind cooperation in all office
matters.

Excellent facilities were offered by the Institute’'s library
and I am +thankful to the Librarian Mr.K.S5.Santhanagopalan,
Mr.A.R.Balakrishnan, Mr.G.Venkatesan, Mr.5.Muthusigamani,

Mr.M.G.Radhakrishnan Nair and Mr.J.Balakrishnan for the services

rendered by them.

Numerical computations were carried out on a number of
computer systems and the facilities offered by the wvaricus
\ Institutions are gratefully acknowledged: The Indian Institute of
‘ Technology (IBM-370/155); Anna University(IBM 360/44); Department
| of Nuclear FPhysics (Microvax-II) and Department of Theoretical
Physics(P.S5.1. PC/XT) of the University of Madras. In particular,
I wish to express my sincere thanks o Prof.V.Devanathan and
Prof.T.Nagarajan of the Department of Nuclear Physics of the
University of Madras for allowing me to use their system and
Mr.Samuel, Mr.Shivaji of their computer centre for +their kind
help. T am thankful to the computer facility offered by the
| Institute: an IBM-PC/AT - gift from the Alexander von Humboldt

Foundation - and the Nelco Forece - 20(D) mini computer system.
I thank Prof K.R.Unni, FProf.R.Vasudevan, Prof .N.R.Ranganathan,
| Dr.V.Radhakrishnan, and Dr.K.H.Mariwalla for their concerr.
| Discussions with Dr.R.Parthasarathy, Dr.R.Sridhar, Dr . R,.S51imon,

Dr.R.Balasubramanian and Dr.R.Jagannathan of the Institute




-

of Mathematiecal Sciences, Prof .R.P.Agarwal of +the University of
Lucknow, Prof.Remy Y.Denis of Gorakhpur University, Prof.Arun
Verma of the University of Roorkee, are gratefully acknowledged.
Collaboration with Prc:f.T,S.SanthanamT The Institute of
Mathematical Sciences, Prof .R.C.King, University of Southampton,

Prof.Charles B.Chiu, University of Texas at Austin sare thankfully

: acknowledged. I thank Prof R.C.King for making available the
Tables of 9-; symbol by K.M.Howell of +the University of
| Southampton.

I have great pleasure in acknowledging the help I received

‘ from my friends on various occasions: Dr.A,Shanthi, Mr.J.5.Prakash
and Dr.M.V.Satyanarayana(of I.M.Se.); Miss,N.Shanthi(of E Gl i L
Madras); Mr.Ganesa Murthy(of the Department of Nuclear Physics,
University of Madras); Mr.Shekar and Miss Sripriva {of +the
Department of Theor. Phys. University of Madras).

My sincere thanks are due to Mrs.E.Gayathri, Mr.T.V.Vasudevan
and Mrs.S5.M.Parijatham for sparing their time despite other
domestic responsibilities, for thelr dedicated effort and neat
typing of the thesis. The help received from Miss.5.Geetha and
Mr.K.P.Shankar is also acknowledged with thanks.

I am thankful to Dr.Rahul Basy and Mr.Madhavan Mukund for
their helpful suggestions during the course of the preparation of
this thesis in its final form.

My special thanks are due to Mr.5.Muthusigamani for his




timely help, Mr.T.Venugopal, Mr.E.Moorthy and Mr.T.R.Narayanan for
their helpful services.

Last, but not least, I will be failing in my duty if I do not
record here my gratitude to my parents, brothers, sister and my

sister-in-law for their love and affection throughout.

vi



Introduction

Quantum theory of angular momentum provides an invaluable
tool for the study of all quantum mechanical phenomena which occcur
in the fields of atomic, molecular and nuclear rhysics.
Technically one could consider the two epoch making papers of
Regge in 1858, '59 (Regge (1958), (1959)) to provide a dividing
line between what could be called the classical work in this
field and the more recent developments. Among the noteworthy
contributors to the classical work are Wigner, Racah, Rose,
Yang, Clebsch, Gordan, Fano, Howell, Biedenharn and others. The
article by Smorodinskii and Shelepin (1872) entitled Clebsch -
Gordan coefficients viewed from different sides refers to the new
developments which have Regge's discovery of the new symmetries
(Regge (1958), (1959)) as the starting point. These new
developments pertain to gen&raliéation of angular momerntum
coefficients to arbitrary complex arguments: to higher Eroups such
as 50(4), 80(5); SU(3), SU(B), sU(1:1); GE, F‘ etc. They are
intertwined with aspects of: algebra, geometry (multidimensional
and projective), topology, function theory {analytic, special),
differential equations, combinatorial analysis, calculus of finite
differences and number thecry. In the words of Bmorodinskii and
Shelepin (18972), the theory of angular momentum as of today “"takes
a4 new form of calculas going beyond the scope of the classiceal
theory”. Most of +these developments Thave been discussed

extensively in the two volumes entitled Angular Moment um in




Cruantum Physics and The Racah-Wigner dlgebra in Guantum Theory
by Biedenharn and Louck (1898la, 1981b).

This thesis presents the recent research work pertaining to
the following topics: connection between the Clebsch-Gordan (or
3-j), the Racah (or 6-j), the {4s - 3j (oxr 9-J) transformation
coefficients and generalized hypergeometric functions of unit
argument; the study of the polynomial (or non-trivial) zeros of
these angular momentum coefficients along with algorithms to
generate the polynomial zercs of degree (or weight) one of these
coefficients. The proper perspective .“or this work 1is in the
context of contemporary work done by Brudno, Bremner, Louck,
Biedenharn, Van den Berghe, De Meyer, Van der Jeugt, Koozekanani,
Varshalovich, Bowick, Wu, Alisauskas, Jucys, Bandzaitls, Labarthe
and Lindner.

In Chapter 1 the basic definitions for the angular momentum
coupling (Clebsch - Gordan or 3-J) coefficlents, and the &angular
momentum recoupling (Hacah or 6-J, {s-3j or 8-]) coefficients are
provided. From this starting point the symmetries of these
coefficients, viewed in terms of sets of hypergeometric functions
of unit argument, and their polynomial or rion—-trivial gzeros are
studied. In this chapter a fundamental theorem which deals with
the minimum number of parameters necessary and sufficient to
obtain the complete set of solutions tor multiplicative
Diophantine equations of degree n 1s stated and proved. This

theorem is a modification of the theorem due to E.T.Bell (1933) in



his classic paper entitled Keciprocal arrays and Diepghant ine
analysis ., The homogeneous multiplicative Diophantine equation of
degree n is given by:

X% ..o X, = uwou o...ou o, (no>1) (*)
where ¥, u, are independent wvariables. The statement of the
theorem is:

Theorem: Every solutiocn of the homogensous multiplicative

Diophantine equation given by (%) can be expressed in the form:

n TL
T by - = R

J= J |:I}j-,:l !

1
for all 4, 3 = 1,2,....,n where all the n- independent parameters
¢ij can be arranged into a n ¥ n square array with ¢ij being at
the intersection of the ith row and jth column subject to the
greatest common divisor (g.c.d.) conditions:

g oy biy

The proof provided here is both simple and straightforward without
recourse to reciprocal arrays used by E.T.Bell. This fundamental
theorem is essential +to nbtaiﬁ the complete solution to the
problem of polynomial zeros of degree | of the 3-3, 6-jJ and the
9-3 coefficients, dealt with in the subsequent chapters.

Chapter 2 deals with the interrelationship between the sets
of hypergecmetric functions of unit argument which were shown in
Chapter 1 to be necessary and sufficient to account for the known
symmetries of the 3-] and the 6-j coefficients. The mathemtical

formulae required to establish +this are: (a) the reversal of



series property for +the (l)s; (b) the Erdelyi - Weber

p+iFP
transformation. It is shown that starting with a member belonging
to the van der Waerden set of six EFz{ljs for the 3-j coefficient
and using the reversal of series property, the remaining five
members of this set can be generated. In the case of the 6-j
coefficient, in Chapter 1, two equivalent sets of ‘Fatl}s were
introduced - a set I of three Jy(l)s and a set II of four
J3(1l)s. These are shown here to be related to one-another

through the reversal of series property. Further, Jjust as +there
exlist a set of =ix st{ljs of the van der Waerden form, it is
shown that sets of six-sF;[lys can be obtained for the Majumdar,
Racah and Wigner forms, from the van der Waerden set, by using the
Erdelyi-Weber transformation. However, while the van der Waerden
set of six Binl}s is necessary and sufficient to account for the
72 symmetries of the 3-Jj coefficient, each of the Majumdar, Racah
and Wigner sets, due to the nature of its parameters, 1s found to

account for only 12 of the 72 symmetries,

In Chapter 3, it is shown that the series part of the 3-3
coefficient can be rearranged into a formal binomial expansion
using the generalised power (or lowering factorial). A rarticular
case of thls result is the one obtained by Satoc and Kaguei (1872).
The fact that for n = 1 the generalised power (defined as a
lowering factorial) is the same as the ordinary power reveals

explicitly the polynomial zeros of degree 1 of +this coefficient.

B




Thus the closed form expression:

(1 =& (n,1) & (x,¥)) ,
for the pelynomial zeros of degree 1 is obtained. The expressions
for x and y can be simply related to the numerator and denominator
parameters respectively of the set of RF;(I}E. The complete set
of polynomial zeros of degree 1 of the 3-j coefficient are then

obtained from either the above closed form expression or the four—

parameter solutlon to the homogeneous multiplicative Diophantine

equation of degree 2. (This four-parameter solution was also
obtained by Brudno (1985)). A procedure, similar +to the one
adopted by Bowick (1976), has been used to sieve ogut +the

eguivalent zeros of degree 1 and retain only the ineguivalent
ones. Explicitly, to avery ineguivalent polynomial zero of degres
1 correspond 72 eguivalent ones (including the itneguivalent one)

and they are generated by using the 72 symmetries of ‘the 3-j
coefficient. Of the 36 tneguivalent polynomial zercs of the 3-3
coefficlent reproduced by Biedenharn and Louck (1981b) from +the
work of Bowick (1976), 21 are found to be polvnomial  zeras of
degree 1 computed as above. The remaining 15 polynomial zeros are
classified according to their degree (SrinivasaRao and Hajeswari,
(1985a) - 13 are of degree 2 and 2 were found to be of degree 4.

These are tabulated.

The main objective of Chapter 4 is to obtain the complete set
of solutions for the polynomial zeraos of degreea 1 of the 6-j

coefficlent. Following the method detailed in Chapter 3, two



formal binomial expansions can be cbtained for the 6-3
coefficient. One of these which utilises the raising factorial
corresponds to the result of Sato (%EEE}. The other, obtained by
Srinivasa Rao and Venkatesh (1977), which utilises the lowering
factorial is an exact binomial expansion for n = 1 and hence it
reveals the closed form expression:
(1 - &(n,1) &(x,v)) ,

for the polynomial zeros of degree 1 (Srinivasa Rao and Rajeswari
1984) of the 6-j coefficient. The Parameters x and ¥y are related
to the numerator and denominator parameters of the set of _F (1)=
respectively. The polynomial zeros of degree 1 of the 6-j
coefficient are also shown to be related to the solutions of the
homogeneous multiplicative Diophantine equation of degree 3. The
fewer parameter solutions obtained by Brudno and Louck (1985),
Bremner (1986), Bremner and Brudno' (1986) are compared with those
obtained from the solutions to the constrained multiplicative
Diophantine equation of degree 3, which alone generates the
reguired complete set of polynomial =zeros of degree one
(Srinivasa Rao, Rajeswari & King 1988). gn alternative prooff is
given for the theorem of E.T.bell stated in Chapter 1, using an
induction hypothesis on N where N is given by:

8 K e B =y B ocves A =N

i 2 ™ i 2 ™

In passing, mention 15 made of the only possible physical

¥ The author is thankful to Prof .R.C.King for this.




explanations which exist for a few of the polynomial gzeros of
degree 1 of the 6-j coefficient. While Van den Berghe et al
(1984), and Vander Jeugt et al (1983) interpreted nine of the
tneguivalent polynomial zeros as those which arise due to the
imbedding of the exceptional Lie algebras in 50(3), it is pointed
out that all except one of them are polynomial zeros of degree 1.
Two algorithms are proposed to generate the polynomial zeros of
degree 1 of the 6-j coefficient from the constraint eguation:

ahi :-abc+def+adg+beh+cfi

¥

which is satisfied by the nine parameters: a, b, c,d, e, f, g, h

and ¥, necessary and sufficient to solve the multiplicative
Diophantine equation of degree 3, viz. X %X, X, = uou u, . In
these algorithms, the constraint equation is reduced to either:
axy = fix+yry+56 or a'x + By = ¥,

and solutlions for these are due to Brahmegupta (see Dickson, 1852)
and Paoll (see Dickson, 1952).Either these solutions were used
or the closed form expression was used to generate the complete
set of polynomial zeros of degree one of the 6-J coefficient.
Koozekanani and Biedenharn (1974) calculated the polynomial zeros
of the 6-] coefficient for arguments = 18.5, and wusing the
symmetries of these coefficients ordered these in a speedometric
fashion. They found the zeros of the 6-3j coefficient with the help
of a computer program which resorted to the use of numbers

decomposed into powers of prime factors. Our method of computation

stated above revealed that 1174 of the 1420 +tabulated by
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Kooczekanani and Biedenharn (1974) are polynomial zeros of degree
1. The remaining 246 of the polynomial zeros were sorted out
according to their degree (Srinivasa Rao and REajeswari 1985a),
Hitherto the computation of the 9-j coefficient has been with
the help of & single sum over a product of three 6-3 coefficients
due to Wigner (1940). As the 6-3j coefficient is itself a set of
Ja(l)s this method 4implies a sum over four indices,. In
literature, there exists a triple sum series due to Jueys and
Bandzaitis (1977) for the 9-j coefficient, as well as a sum over
aix indices obtained by Wu (1872) using the Bargmann generating
function method. It 1s reasonable to assume that the triple sum

series of Jucys and Bandzaitis would be more economical and

efficient compared to the conventional single sum over the
product of +three 6-3 coefficients. In chapter 5, it is
established that the numerical complitation of the 9-3 coefficient
using this triple sum series 1is in general superior +to the
conventional method mentioned above. Starting with a suitable
product of three ‘Féfl} functions and making three judicious
substitutions it has been shown that the “triple sum series of
Jucys and Bandzaitis (18977) is in fact a particular case of the
most general +triple hypergeometric series, evaluated at unit
argument for all the three variables. This identification
enables us to think of evaluating +the +triple sum series as a

folded triple sum. One observation 1s that the 72 symmetries of

the 9-J coefficient are not manifest in the triple sum series.
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This results in the fact that the number of terms involved in the
triple sum series is different for different symmetries of the
same coefficient! Faor example, in the case of:

30 20 10

30 10 2o '

BO 30 30
the triple sum series can be shown to have only & single +term.
However its Symmetries have several terms and the symmetry

20 10 30

30 30 B0 ;

10 20 30
1s computed as a sum of 33761 terms of the triple sum series!
Having realised this, given = 9-3 coefficient, it is necessary to
find that symmetry for which the number of terms in the triple sum
series will be a minimum and the 9-j coefficient should be
computed only for that Symmetry. This infact was the

Strategy

that was adopted in the numerical evaluation of +the triple sum
series, using repeatedly the Horner's rule (Lee 1866) for
polynomial evaluation. A new FORTRAN program based on this
approach for computing the 9-J coefficient was found to be 2 to 4
times faster than the conventional single sum series, for smaller

values of the angular momenta and even higher advantage factors
have been found to be possible for larger values of angular
momenta (Srinivasa Rao, Rajeswari and Chiu 1888), provided +the
number of terms to be summed does not exceed 200 (on an IBM
PC - AT) or B0DO (on & VAX - 11/780Q).

The identification of the triple sum series with =& triple

il




hypergeometric series in Chapter 5 enables for the first time +the
study of polynomial or non-trivial zeros for the 9-j coefficient
(Srinivasa Rao and Rajeswarl 1988h). It is to be noted +that the
conventional single sum over the rroduct of three 6-3
coefficients will not reveal these polynomial zeros. If XF, YF
and ZF denote the upper limits of the summation indices in the
triple sum series, then the polynomial zeros of degree 1 of the

8-J) coefficient are given by the closed form expression:
al  XF,¥F ,=F @2, KF , ¥F ,ZF o3, XF , ¥F | ZF

L7 %61, 4,0,07 %82, 0, 1,0 %43, 0, 0, 1°

where the following notation has been introduced:

& a,b,c.d

P.q.5 .8 S(a,p) 6(b,a) &(ec,r) &(d,s)

The a's and ?'s are given by:

al = (x2 + 1).(x3 + 1).x4.x5 , £l = xl.(p2 + 1}.(p3 + 1) ,
a2 = (y1 + 1).(v2 + 1).yd.y5 , B2 = pl.(p2 + 1).(¥y3 + 1) ,
a3 = (22 + 1), 23, z4. z5 v B3 = plosl. (b3 F 1),

Since the a@'s and (3's are themselves products of three factors
with x4 or x5; v4 or vb6; z4 or z5 being set equal to 1 (for they
correspond to XF, YF or IZF respectively. HNote. The xi's, vyi's,
zi's and pi's are defined in Chapter 1), wa find that once again
the homogeneous multiplicative Diophantine equation of degree 3,
is encountered in the study of polynomial zeros of degree 1 of the
9-J) coefficient. However, unlike the case of the 6-j coefficient
which is a polynomial in a single variable, +the 9-j coefficient
being a polynomial in three variables, the study of its zeros of

degree 1 involves the solutions of a set of 24 multiplicative

S, 1)




Diophantine equation of degree 3. A detailed study of these 24
cases revealed that 12 of these do not yield any degree 1 zeros
which have been shown to be due to inherent inconsistencies
related to the viclation of triangular inequalities, ete. Of the
remaining 12 multiplicative Diophantine eguations of degree 3,
four are found to be full nine parameter sclutions and the other
eight involve fewer than nine parameters in thelr solutions with
one of the angular momenta itself being a free parameter. The
polynomial zeros of degree 1 Gft&%“& coefficient were generated
using the closed form expression and also a set of sclutions
of the multiplicative Diophantine equations. It is clear that
while the solutions of a single multiplicative Diophantine
equation generate all the polyvnomial zeros of degree 1 of tﬂa 3-j3
and 6-j coefficient, all the polynomial zeros of degree 1 of the
9-j coefficient arise from the solutions to o set of
multiplicative Diophantine equations, for there exists no single
solution which will generate them all.

In Chapter 7, the connection between the 3-j cecefficient and
the discrete orthogonal Hahn polynomial is established. It is
shown that Majumdar's form of EFEEI} for this coefficient is
readily identifiable with the Hahn polynomial which 1is described
by Karlin and Mec Gregor (1961). The four recurrence relatlions
obtained by them for the Hahn polynomial are wused to derive

recurrence relations for the 3-3) coefficient, &and two of +these

relations have been used by Schulten and Gordan (1875) 1in the

==z




—————

exact recursive evaluation of the 3-j coefficient. 0f +the four

recurrence relations for the 3-j coefficient, derived as a direct

——

‘ consequence of the three-term recurrence relations obtained by

Karlin and Mec Gregor (1961) for the Hahn and dual Hahn
polynomials, three are found to be independent and two of these
three are recurrences in both j and m, These appear to be new as
they are not available in literature (Biedenharn and Louck, 1981a,
1981b).

To summarise, in this thesis, the following results have been
obtained:

| (1) It 1is shown that the set of six EFEIIJa for the 3-j

coefficient of the van der Waerden form can all be Eenerated

by starting with one of them and applying the reversal of

a Elle.'l:l repeatedly. This same reversal relation for a ‘F!{l}

is shown to connect the set I and set II of ‘Fatljs for the

6-J coefficlent. As in the case of van der Waerden form, a set

of six Elle:l}s are derived for Wigner, Racah and Majumdar

forms of the 3-j coefficient by applying one of the

transformations given by Erdelyi and Weber (1952) for a

nF;tl}. to the van der Waerden set. But, unlike the van dar

Waerden set which accounts for all the known 72 symmetries of

the 3-j coefficient, it is found that the other three sets
account only for 12 symmetries each.

(11) The 3-J coefficient 1is rewritten as = formal binomial

expansion and thereby a closed form expression 1is obtained
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for the polynomil zeros of degree one of this coefficient.
Using Bell’s theorem it is established that four integer
parameters are necessary and sufficient to generate all the
polynomial zeros of degree 1 of +this coefficient. The
closed form expression as well as the four-parameter formula

have been used to generate these ZEeros.

(11i)By rewriting the 6-j coefficient a5 a formal binomial

(iv)

expansion a closed form expression 1is obtained for the
polynomial zeros of degree 1 of this coefficient. Bell’s
theorem is again used +to establish that eight integer
parameters Are necessary and sufficient +to obtain the
complete solution to this problem, of generating zeros of
degree 1, and it is shown that the fewer parametric
gsolutions given by other authors generate only a partial
list of the complete set of Zeros. Two algprithms are
presented to solve the constraint equation :

Z =X ty+tutv+wu,
where (x.y.z = u.v.w) and these aldorithms have been
successfully tested on a computer to genefata the complets
list of degree 1 zeros of the 6-j coefficient.

A new FORTRAN program has been developed to compute +the 9-j
coefficient using the triple sum series due to Jueys and
Bandzaitis (1977) and this new code 1is found +to have an
advantage factor of 2 to 4 (for the nine angular momenta a,

b, ¢, d, e, f, g, h, 1 = 10 and an even larger advantage
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(v)

factor for larger wvalues of angular momenta) over the
conventional program as long as the number of terms to he
summed in the triple sum series does not exceed 200 on the
FCs or 600 on the VAX - 11/780 computer,
The triple sum series for the 9-J coefficient is identified
Wwith a triple hypergeometric serles using which the polynomial
zeros of the 9-j coefficient have been studied for the first
time. As a direct consequence, a closed form expression for
the zeros of degree 1 of the 9-J coefficient has been obtained
and the zeros were generated using the closed form exXpression
as well as a set of parametric formulae based on the
solutions of 12 homogeneous multiplicative Diophantine

equations of degree 3.

(vi)The 3-j coefficient is identified with a discrete orthogonal

Hahn polynomial and +the three " term recurrence relations
derived for the Hahn polynomial by Karlin and Mc Gregor have
been used to derive three fundamental recurrence relations

for the 3-3j coefficient.
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Chapter 1
Mathematical Formalism

In this chapter the basic definitions for the angular
momentum coupling (Clebeh-Gordan or 3-J) coefficients and the
recoupling (Racah or 6-j and ls—jj or 9-J) coefficients, their
series representations and symmetries are described. These series
representations are used in the study of the polynomial or
non—trivial zeros of these coefficients in the following chapters.
A modified form of a fundamental theorem, originally due to
E.T.Bell, is stated and proved. It deals with the minimum number
of parameters necessary and sufficient to obtain the complete set
of solutions for a homogeneous multiplicative Diophantine equation
of degree n. This theorem is essential to obtain the complete
solution to the problem of polynomial zeros of degree 1 of the
3-4, the 6-j and the 9-] coefficients.

1.1 The Clebsch-Gordan Cor 3-j) coefficient and its symmetries

Consider the addition of two angular momenta (in wunits of
h=1) J, and jz to get a total angular momentum _iEl

Jy = J, + Jz . (1)
There exist two orthonormal bases : one 1in which the operators
Ji, jzz,jaz and j32 are diagonal, +the eigen state corresponding

to which is denoted by |(J,J,)d,m) and another in which the

operators Jiﬂth,Jzz and Jz_ are diagonal whose eigen states are
denoted by |jﬂﬂ} |j2m2}. These basis vectors - for the coupled

state of the system viz. |[j1j2}j3m5} and the uncoupled stats




|jﬂﬂ} |j2m&} - are related by the orthogonal transformation
1€3,3,)3,m) = . Eﬁ C(J,d,dmmm) Jim) |i,m). (2)
1’2
In (2), G{jljzja;mimamsj is the transformation coefficient known
as the Clebsch - Gordan coefficient after the work of Clebsch
(1872) and Gordan (1875) on the invariant theory of algebraic
forms which is an equivalent formulation of the coupling problem
of angular momentum. In Physics literature these are also
synonymously referred te as the vector addition or vector coupling
coefficients. Since the significance of these coefficlents in
relation to the quantum thoery of angular momentum and rotation
matrices appeared first in Wigner's classic papers of 1927 (Wigner
1927a,1927b), Biedenharn and Louck in their treatise on Angular
Homentum in Cuantum Physics — Theory and dpplications choose to
designate them as Wigner coefficients. (For a list of the notation
of Wigner and related coefficients refer to p.150 of Biedenharn

and Louck (1981a)). It has a non-zero value only when the triad

[%sza} satisfies the triangular inequality:

13, = 4,12 3, 53, *+ 3, (3)
and when the projection quantum numbers m, M, ym satisfy the
relation

m, =m_ +m, . (4)
The inverse of (2) 1s
Ijimi} lji’.mZ) = E G{‘iijzjﬂ;mlmzmﬂ:l I(jIJZ}meB) {za}
,m
a 3

which is obtained using the orthogonality properties of the

Clebsch-Gordan coefficients:




EC(, 0 dmmm ) C(J 3,3 mmm) = &(3,,3," )6(m,,m*),

(2b)
m, ,m,
and
JEMJJJmmm}cujj.ﬁ%%;:ﬂmm;mm,%w.wm
. where &(i,k) denotes the Kronecker delta function. Many
approaches have been adopted in literature +to derive the

explicit expression for +the Clebsch - Gordan coefficient, and the

detailed expression depends on the method of derivation. In +this

respect there exist four fundamental forms for this coefficient

| viz. Wigner’s, Racah’'s, van der Waerden's and Majumdar’s

forms.
i Wigner gave the following form {1940):

| C(d, 4,3, immm, ) = S(mtmy ,my )13, 1A(, 3,3, 003, + my) (3 - m )1
* {03, m) - m) (5 m) (- )y
J-rm+5

il © 3yt d,t m -s)I(d, - m +s)!

“{EEKJH'J‘+JZ‘5?!{ﬂ3+m3'533(J1‘Jz—m3+5}!}_1
for this coefficient, while

v (D)

Racah E194?] arrived at the
expression:

C(d,d,dg5mmm,) = &(m +m, ,m ) (3, 1{(I +3, -3, )1 (3, -m )!(3,-m,)!
GIE TORIG I YO RD e (6 IR T IES D ENG IS M DY
(=3, +3,+3, )1 (3, +m ) (,+m )1

J-rn +T

* L (- DY (g, m ) (g4, -t |

i {t.!{ja-ma'—t.]l1{ji—m‘—tj.'{jz-ja+m1+t}!}-1. (6)

for the same coefficient. Racah ( 1942 ) has remarked +that the

expressions derived by him as well as by Wigner are "unsymmetrical

and unpractical for the use”, and making use of the identityv:

R o P
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5151 = L (a-b)!(a-c)!{s!(a-b-s)!(a-c-s)! (bre-a+s) !}, (7)
N s

Racah (1942) rewrote the summation part in (6) as :

i m o+
E (-1)7 7, m ) (I, m ) B, mmy 1) (G, m ~t) !

= —m o+t
x{jz-j3+m‘+t>!}" = t}::i_l-}'l 1 {j1+m1+t}!(jz+m2}_|

x (=d, 43, +i ) H{tlat (3, ~d +m +) 1 (3, +m -u) |
x{=3, # 3,43, w104, =, ~my-t4u) 1T, (8)
In (8) making the change of variable from t to p :
g =

g " dpmmata -t (9)

and by using the identity :

L(-1)% (t-s)!{s!(x-5)!(z-5)!}* = (t-x)!(t-2) ! {x!z! (t-x-2)!} 3 (10)
5

for 0 = x = t and 0 £ 2z = t, Racah (1942) obtained for the right
hand side of (8):

L
E{‘llz & Eji+m1}!{ii‘jz+33)!{Jz+m2J1{“Ji+Jz+JH}1 {u!EJz+mz"u]?
x (Jg+d, =3, ~udd tm ~w) H(d, ~d, ~mo+a) E(, -3, -m +u) 1S (11)
In (11) making the transformation :
B = j2+ m, ~\ (12}
Racah (18942) arrived at the following symmetric form (also known

as the van der Waerden's form (1932)):
3
C(4,3,dqim,mym )=8(m +m, ,m )[I 1 A(5,3,45,) nlffji+mi}!{11-mint}“*
=

*E (-1)%{z2! (3, +3,-3,-2) 1 (J,-m -2) ! (J, +m_~z)!
=

(=, i tm +2) (=], +5 mm +z) 1} (13)




The expression derived by Majumdar (1358B) is given by:

C(J,3,d,immm ) = 5{mt+mz,mg}[33]{{"j1+J2+JH}!{J1+m1}!{ji—mijl
o (8 )G m )Y R0, =3, 43,0 (3, +3, -3, ) !
% (3, %3, ¥+ 1) 0, 4, ) 10, -, ) 13T
Jrm o+t
<L (D) (23,-t) 1 (3, +3, -3, +t) ! {t!
#CImy =) (=3, 43,43, ~t) L (4, =3, ~m, +£) 1}, (44D
In the above expressions ﬁ{jijzjgj and [x] denote, respectively:
80032350 = 103, 43,13, 0003, =3, +3,0 103, 43, =3, 0 1/(3, 43, +3, +1) 1172,
[x1=(2x+1)*"?,

and the limits of the summation indices are such that the
arguments of the factorials are always non-negative. Among the four
forms mentioned above,the symmetric van der Waerden form -(13)- is
the one that will be used the most often (for reasons based on the

symmetries of this coefficient, to be discussed later), and it is

rewritten as follows

3
003 dpdqimmymy )= S(m +mm )03, 1803, 3,3,) 1 {C3g4my)t(d,-m, )12
i=1
2 E ] i
x L (-1)% {ai (o) Iy (B, -2) 117", (15)
Z k=1 l=a
Wwhere
011: ji_‘jﬂ+m2’ f:uz: jz—jn—m1| {]_E',j
B, dg e By= d 4y, Bu= 3.+, -4, (17)
#nd ®min w8 & “max *
with 2 s max(ﬂ,ai,uzj and R min{ﬁi.ﬁz,ﬁg}. (18)

In Chapter 2 the interrelationship between these four forms for
|
' the Clebsch - Gordan coefficient via an{l}s will be established

and their relative merits discussed.
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The symmetries of the Clebsch - Gordan coefficient are

interpreted more easily in terms of the Wigner's 3-j symbol (Wigner

1840)

33, 3y _ yoeca el ay
[m: mi m:] = (=1 Ed.d C(JngJg'mi'mz'_ma}’ (18)

where the projection aquantum numbers in the 3-3 ecoefficient
satisfy the condition:

m+ m +m, = 0. (20)
Wigner (1940) showed +that the 3-) coefficient possesses +the
following symmetry properties:
(1) It is invariant under even permutation of its columns:
(ii) Under odd column permutations the 3-jJ coefficient gets

B TPRE e
multiplied by the phase factor {*l}‘ .

t1i1» When all the projection quantum numbers are reversed in

their signs, viz. m > -m,, the 3-j coefficient acquires the same
rhase factor as in (ii).

The aforesaid 12 symmetries of +the 3-j coefficient are
referred to as the classical symmetries,

Regge (1958) pointed out that the previously known symmetries
of the 3-j coefficient formed only part of a larger group of
symmetries which had 72 elements. REegge represented the 3-j3
coefficient by the 3x3 array with nine non-negative integer

elements

sEgae
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[J: J5 iﬂ] = P 127", a Mg . (21
He asserted that the 3x3 square symbol is invariant (up to the
j1+jz*13
phase factor (-1) )} under

{1) parmutations of its columns (5,, 6 in number),

(ii) permutations of its rows {Sg, € in number), and

(iii) transposition about its leading diagonal (5,, 2 in number).

For odd permutations of rows and columns the saquare symbol gets
btiot]
[ i 2 a

multiplied by the phase factor (-1) ) Hence +the symmetry

group has 72 elements, being the product of the three permutation

groups of three, three, and two objects, respectively: Ea“ Snx Ez

Among the above mentioned 72 symmetries, those due to the 3!

column permutations and the exchange of the last two rows of +the

sgquare symbol correspond to the classical symmetries. The square

symbol introduced by Regge is a magic square in that each of the

column and row sums equal : J = j1+jz+jg. Though Regge gave

slx new symmetries for the 3-j coefficient, he did not write these

explicitly in his paper (Regge 1958), and these can be found in
| the papers of Srinivasa Rao (1978) and Venkatesh (1978).

1.2 Generalized hypergeometric functions

| Gauss (1866) defined the ordinary hypergeometric series as

Flabiciz] = ¢ Aihodbal p (22)

n=0
where g
(a,n) = C{a+n) {T'(a)} = a(a+l)(a+2) -+ (a+n-1) (23)
and , in particular, (a,0) = 1. The parameters a,b,c and z may be
-




real or complex. If either of the numerator parameters a or b of
the function ZF;{a.b;c;z] is a negative integer, +the series has
only a finite number of terms and in fact it reduces +to a
polynomial. However, if the denominator parameter ¢ is zero or a

negative integer, the function is not defined since all but a
finite number of terms of the series become infinite. The series is
convergent for all values of z, real or complex, such that Fla]4l.

and diyewsent for all values °f z, real or cComplex, such that: |z] S {.
For 2 = 1, the series is convergent if Rl({c-a-b) » 0 and divergent

if Rl(c-a-b) < 0. For 2z = -1, +the serles 1is convergent if
RBl(c-a-b+1l) » 0 and divergent if El(c-a-b+l) < 0.

The Gauss series satisfies the differential equation:

B2+ e -1y &6 +a) 86+ bllw = 0 (24}

where 6 = z g; and w = 2Fi{a.b;c:z}-

The generalized Gauss function, or generalized hypergecometric

function or series, is defined as:

n
s ({le.ni z
F : : = ; L
prq{{®p)ilfyliz) ni_ (1.n)((B,).n) (25)
where the p numerator parameters ml,mz,-~'.ap, and the q
denominator parameters Hiﬁ%"'”ﬁq are denoted by {aP} and

{ﬁq}.respectively,ﬂny of these parameters and the variable =z may
be real or complex but the denominator parameters {ﬁq] must not be
negative integers, as in that case the series is not defined. 1If
any of the numerator parameters hJPJ is a negative integer, the
function reduces to a polynomial.

The series PFq(z} converges for all values of 3z

" real or

complex when p £ gq.For p > aq+l, the series converges only when

ol i,




z=0. If p = g+l, the series is convergent only in +the unit disc
|z] < 1. The function corresponding te p = g+l has been most

widely studied and in this case the series is convergent

1 B3 =35 I e

or I1f z = A and RI(T Bq ol T aP} 20

or if z = =1 and RE(L ﬁq ol up + 1) > 0.

Whipple (1825) classified +the general series pﬂiktz} as

well-poised, nearly-poised, Saalschutzian .etc. depending upon the
conditions satisfied by the parameters. In particular, the

function p+1Fp(zj is ecalled Saalschutzian if

pti P
1 +F a = 58 . (26)
k=1 k k=1 k
The relation between generalized hypergeometric functions of unit

argument - viz. the an{l} and the Saalschutzian ‘Fs{l} - and the
3-J and the B6-) coefficients will be discussed next.
1.3 The 3-j coefficient and the set of =zix ﬂthl)s

Racah (1942) has shown that assuming the srgument of one of
the five factorials in (15) as the summation index instead of =z,
leads to some symmetry properties of +the Clebsch - Gordan
coefficient. Making such a substitution for each of the five
factorials in (15) successively, Srinivasa Rao (1878) has arrived
at five series representations for the Clebsch-Gordan ccefficient.
These five together with the one given in (15) constitute a set of
8ilx series representations for this coefficient. In terms of +the
elements of the square symbol, || R,, | ., this set of six series

representations is written in the following compact notation as

L - s




3
HRikH o & {m1+mz+m3‘ﬂ) {-lje{qui i1 {Rik!fEJ+1]!}1/z
; k=1

x § {—ljs{sJ{Rzp-sl.'{Hﬂq—s]!{er-s]l!
5

-1

e f5+Rnr—R2p}.'[5+R2r-an]|!} . (27)

for all six permutations of (par ) = (123 ) with
J = ‘j:l+'j2+j3
and Rh —R2 for even permutations,
&(pqr) ={ P
Rgp_H§q+ J for odd permutations, (28)

The series given by (15) corresponds te ( p q r ) = [ 428 ) in

(27). It has been shown by Srinivasa Rao (1978) that the set aof
six series representations given by (27) can also be obtained by
permuting the indices {1 23 ) in the expansion for the 3-]

coefficient given by (15) and (19) and remembering that the serjes

dcquires an additional phase factor of (—1}J for odd permutations.
. In establishing the one-to-one correspondence between the series
obtained by the substitution procedure and that obtained by
permuting the indices in (15), use is made of the fact that 43, 1=
an eaven integer so that [-quji ls always positive.
Rose (1955) has pointed ocut that the Clebsch-Gordan
coefficient can be expressed in terms of a 35;[1} hypergecmetric
l function. To arrive at this relationship, all the factorials in

| the series expansion for the 3-3 coefficient are replaced by the I

- functions, and use is made of the relation :

I(l-n-z) = {~1)® Cin) Fl-n) {Faez)) (29)
. = (-1)% C'(1-n) {(n,z)}", (30)
|
|




obtained from
and F{n) T'(l-n) = 0 Cosea(lln) (31)
F{ntz) F(1-n-z) = N Cosec{N(n+z)} = (-1)% N Cosec(Nn). (32)
In (30) the Pocchammer symbol defined by (23) has been introduced.
Using (30), those I' functions in the series representation whose
arguments contain the summation index z With a negative sign are
rewritten in terms of a ' function with a positive index of
summation, and the resulting expression is then ldentifiable with
& generalized hypergeometric function of unit argument. In this
manner the series in (27) can be rewritten in terms of aF;{l}s

given by (Srinivasa Rao and Venkatesh 1878 ; Venkatesh 1978)

a
IRyl = otmtm+m,0) (-1)PI) g (g4 sgany 1yt
1,kz=1
» {F'(1-4,1-B,1-C,D,E)} " of2(A,B,C;D,E;1),  (33)

2

A=-Ryp» B=-Ry ., C=-R_,D=R, -R_+1, E = R T

and PAX Y, o) = T(X) O(Y)-- -, {35)
for all permutations of (p q r) = (1 2 3). Each of the six series
is invariant under the Seperate permutations of {Rzp,qu,Rirl and

{Rsr"Rzp’ RZr—Raq} and it thereby exhibits an Sg x Sz symmetry.
Thus, each series accounts for 12 distinct symmetries of the 3-j
coefficient and the set of six series representations us therefore

necessary and sufficient to account for all the 72 symmetries of

this coefficient.
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1.4 The Racah Coefficient and its symmetries

The Racah coefficient is the transformation coefficlient which
occurs in the recoupling of three angular momenta. Consider the

coupling of three angular momenta

3, +d4, =3, = 13 (36)
In terms of the coupling of two angular momenta, any two of the
three angular momenta could be coupled to form an intermediate

angular momentum, which can then be coupled to the +third one to

yield the final J. Two of the coupling schemes are

J1+ jz = jiz and J12+ Ja = ¥, (37)

J 48, = and J,td,, =7, (38)

where j:z and ng are the intermediate angular momenta.The

orthonormal basis vectors corresponding to these coupling schemes
can be written as

|{J,jz}J,EJEJ M > and ]Jiijzjgljzsd M >, (39)
and these two set of states are related through the

transformation

[€3,3,09,,3,9 M > = £ 0(3,3,0 4,5 3,,3,,) 13,03,3,03,,9 ¥ >. (40)

23

Here H(J*sz Jgs j:zjzsj is called the recoupling coefficient. It
is straightforward to obtain an explicit expression for the U
coefficient in terms of the Clebeh-Gordan coefficients since, by
decoupling the state ](jijz}jizjaJ M »into |j1m1>]jzm2>ljgma> and
by recoupling them suitably using (2a), (2b) and (2c) one can get

the state |j1[j2jgjjzaJ M >. This expression for the U coefficient

P




as the product of four Clebsch-Gorden coefficients summed over all

the projection gquantum numbers is

U[Jl.sz .:ia;:rujzal = E C(jljzjm; mmm _) C[J”JaJ ; m,m_ M)

all it i 12 12

" C{‘jzjg‘jza; mzmamsz C{‘ji‘janJ ; mamzaH}‘fq'l}
In fact, it can be verified that out of the six projection quantum
numbers only +two are independent (say, m  and m,) due to

the additive bproperty of the projections (20 ;

The Racah coefficient W{jlsz js; j:zjzs} is defined by :

W30 i 30, 0,4) = {15,,0 L4, 17 U4, 3,0 Jab 353,40  (42)
Racah (1942) showed that the U coefficient can be reduced to a
single sum series which 1z independent of the projection quantum
numbers. This remarkably simple expression derived by Racah (1942)

is given by

W(abed;ef) = A(abe) A(cde) A{act) A(bdf) w(abed;ef),  (43)
where
w(abed;ef) = ¥ (-1)2 (atbtctd+l-z)!{z! (a+b-e~2) ! (c+d-e-z)!
§ ® {a+c—f—z}!(b+d—f-z}!{e+f—a-d+z}1

x (e+f-b-c+z)1} *. (44)

The symmetries of the Racah coefficient are interpreted more

gasily in terms of the Wigner's (1840) 6-3 symbol
a b e — .+ atbte+d i
{ s } = (=1) W(abed;ef), (45)

and these have been discussed by Racah (1942) as well as by Wigner
(1840). Racah (1942) derived the symmetry properties of +the W

coefficient from its expansion Eiven by (43), while Wigner (1940)
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arrived at the symmetries of the B6-) symbol (45) from its
expansion 1n terms of +the Clebsch-Gordan coefficients., These
symmetries are referred to as the Classical symmetries and they
are as follows. The 6-j symbol is invariant under
(1) the 3! colﬁmn permutations;
(i1) the interchanges of any two elements in its first row with
the corresponding elements in its second row.

These 24 (3!x4) symmetries are also called the tetrahedral
symmetries due to their correspondence with those of a regular
tetrahedron, as pointed out by Wigner (194Q).

Regge (1959) discovered six new symmetries of the Racah
coefficient, which increased the total number of symmetries to

144. It is in Regge’'s paper that one finds the symmetric form for
the Racah coefficlent

i 4 |
Wabedief) = NI (-1)¥ (ev1)!{ 1 (p~ap)! [ (A,-p)! }*, (46)
P i=1 j=1
with
N = {—l}a+b+°+d

L(abe) A(cde) A(acf) A(bdf), (47)
and

a1= at+b+e, az: ct+d+e, asz atet+f, a‘: b+d+f,

sz atbto+d, ﬁzz atd+e+f, ﬁn: b+o+a+1, {48)
The a’s and ’s.are positive integers and the 1limits of p are
given by
< =
AR Pnin™ P = Prhax
B 5 max{ai,uz,ma,a‘} and Pl = min{ﬁl,ﬁz.ﬁﬁl (49)

Based on the series representation given by (46), Regge (1959)

makes the significant and obvious observation +that the Racszh




coefficient exhibits invariance to a 1l44-element symmetry group
which is " isomorphic to the direct product of the permutation
groups of 3 and 4 objects " - viz. the three £'s and the four a's.
Iﬁ is interesting to note that the simple change of variable
P-a+h+tec+d-z = Hl-z g {50)
in (44) leads to the elegant form (486). However, 1t is only (44)

which i1s widely quoted in early books on angular momentum (Rose

1855).

1.5 The Racah coefficient and sets of 4F3(1)s

Many authors have pointed out the relationship between Racah
coefficients and ‘Fs{l} hypergeometric function ( e.g. Biedenharn
(1953), Rose (1955), Jahn and Howell (1959)). Using +the method
described earlier to relate the 3-3 coefficient to the set of
nF‘E{l]s. the series expansion for the Racah coefficient can be
recast into a ‘Fgfl} hypergeometric ‘series. The ‘Fatlh gEiven by
Rose (1955) and Biedenharn (1953) is obtained by rewriting Racah's
original expression (44). It should be noted +that Racah’s

expression correspond to making the substitution for z, glven by

(50), wviz,
z =ﬁ‘,_-13 (51)
in (46},

Srinivasa Rao et.al. (Srinivasa Rao, Banthanam, and Venkatesh

(1875) made the observation that by making the substitutions

z =3, -p (52)
and

= :ﬁa—P (b3)
in (46) successively, one can obtain two more series

representations for the Racah coefficient similar to (44) which

again can be rearranged into ‘ngl} hypergeometric series. This
set of three JF, (1)s are given by ( Srinivasa Rao, Santhanam, and
| i

I




Venkatesh (1975), Srinivasa Rao and Chiu (1988))

W(abed;ef) = (-1)E*1 N r(1-E) {r(1-a,1-B,1-C,1-D,F,q)}"

* 4F5(ﬁ,B,C,D;E,F.G:ll, (54)
where
= -RIP, B = —RZP, g 2 -RHP, b= -R‘p> | = -Rip—Rzp"th—H‘r—l,
F = Hﬁq—R3P+1, G = R‘r-R‘p+1, (54a)
for (par) = (+ 2 3) cyclically. In (54a) Rjk's denote the
elements of the Bargmann (1962) - Shelepin (1964) 4 = 3 array for
the 6-] coefficient:
II?'I —Ct‘ Ill?z _ut HH ‘—Cl‘
{ ab &} B B o 3,79 B (55)
def B :
ﬁi_aﬂ Hz_an ﬁnkﬂn
rl?i —ﬂ‘ BZ Hﬂ‘ ﬁ:‘l -ﬂ-lr |
here the a's and 3's are as in (48). The 6-] coefficient is

invariant under +the 3! column permutations and the 4! row
permutations of this array.

For all the physical wvalues of a,b,c,d,e and f all +the
numerator parameters A,B,0 and D are nonpositive and the
denominator parameter E, being also negative, satisfies the

. condition (A,B,C or D) > E, by wvirtue of the triangular conditions

| as implied by A(XYZ) viz.:
' (=X + Y + Z) = 0,

[0 = Y =+ Zy= 0 (56)
{ Xt Y= Z)y'Z 0,

s e




For the 4Fa{l} series to he convergent (Rose (1955)), there must

be a numerator Parameter such that
CAsBiB, D) = (F,G). (57)
However, comparison of the denominator Parameters with the

numerator Parameters, along with the triangular conditions, yvields

the conditien
(F,G) > (A,B,C.D), (b8)

for all the three series of set I. From (87) and (58) it follows
that both F and @ must be greater than zero for the ‘F;[I} series
to be convergent. It has been found that ( Srinivasa Rao,
Santhanam, and Venkatesh (1975)) the 4! permutations of A,B,C and

D and the 2| rpermutations of F and G leads to 48
(4! x 2!} distinet Symmetries of +the Racah coefficient. The
permutation of a pasitive Parameter with a negative rarameter
leads at best to a J ~+ -j-1 substitution - which is a wvalig

mathematical symmetry in angular momentum theory - or a symmetry
like the one obtained by Minton (1970) which violates +triangular
inequ alities ( Yakimiurtiﬂ?l}. Vinaya Joshi (1971)). Since each
‘F;{lj series exhibits 48 of the 144 symmetries, it follows that

the set I of three ‘Fgfljs is necessary and sufficient to account

for the symmetries of the Racah coefficient.
| By making the substitutions

l 2 - p - =y i=1,23,4, (B9)
Successively in (46), Srinivasa Rao and Venkatesh (1977) arrived
at another set of four BSaalschutzian J,(1)s for the Racah

lcaefficient ( Srinivasa Rao and Venkatesh (1877), Srinivasa Rao

and Chiu (1988))

.




W(abcd:ef) = (-1)* "2 w r(a’) {r(1-p’,1-¢',1-D,E' ,F’ ,G" )}

# FLAT B L.C DR LB L6 5T (60)
where
A= R *R  +R_ +2, B'=-R , C=-R_, D'= "By
E'= R -R +1, F'=R_,-R_ +1, G'= R _-R  +1, (B1)

for (par s) = (1 2 3 4) ecyeclically and R#'s are again the
elements of the Bargmann - Shelepin array (55). In (54) and (60),
the parameters of the 455{115 satisfy the Saalschutzian condition
(26). In each ‘Fafl} of this set, three of the numerator
parameters, wviz. B’ ,C’ and I are non-positive and the denominator
parameters , viz. E' ,F' and G° are required to be positive. Hence,
gach series exhibits 36 (3! = 3!) distinct symmetries of the Racah

coefficient, so that the set II of four ‘FE(l}s 1s necessary and

sufficient to account for all the 144 symmetries,
Thus, the 144 symmetries of the Racah coefficient are
exhibited by the single series expansion (46), or by the set I of

three ‘F;(lis, or, equivalently, by the set II of four ‘Fstl]s. In

- Chapter 2 we establish that these two sets of ‘F;{ljs are related
to each other by the property of reversal of the terminating
| Saalschutzlian hypergeometric series.
\ 1.6 The coupling of four angular momenta and the 8-j coefficient
] The two-electron system is one of +the instances where the
1 coupling of four angular momenta arises.Since each electron has
.

. an orbital angular momentum and a spin angular momentum (denocted

'hy ﬁ,sland 42,52 respectively),a state of total angular momentum
|

|

|

. -




J and projection Jz is constructed either by adding I‘ and s, (to
Jlj and adding Zz and sztto J,) and then adding the total angular
momenta of the individual rarticles vig. J= and J, to give 1J
~referred to as the j-j coupling scheme -, or by adding ¢ and &
to L, s and S, to S and finally couple L and S to give tha total
angular momentum J - referred to as the L-5 coupling scheme. The

basis vectors in these two coupling schemes are denoted by
jtiisi}j‘tizszjjzd M > and | (¢,¢,)L (s,5,)8 J M > (82)

respectively, and the two sets of states are related through the

unitary transformation

£..85. .4
i i i
I{‘xstj‘ji{‘:zsz}‘jz'] M o> :LES 'cz Ss jz |(€152}L {5:52}5 J Mo,
; L § J (63}

where the transformation coefficient is known as the L5-343
transformation coefficient. Egn (63) represents a speclal case of

the problem of adding four angular momenta to a total angular
momentum J
kR +.i2 +Jg +J4 =3 (64)

Choosing two of the Ways to recouple the four angular momenta (63)

can be written as

:I.'I. ‘jz 1z
l(Jijz}Jiz[J3J4JJH‘JM%= z i, 3, 4, I{jijaidla{jzj4}Jz4JH>-
1 1 .
13' 24 h S jz; J (63a)

The unitary property of the recoupling +transformation on four

angular momenta impliesthe following orthogonality relation for




these coefficients

j.i jz j!.z ‘ji jz j:z
-y J, 3, g,  FR I = 8(J, 03,50 603,35,
faztee L 5, 3, 0 A (69)

Wigner (1940) introduced the 89-j symbol which is related to the

ls-jj transformation coefficient by the relation :

jl. j? ‘j:z j:l. jZ jj.z
3o Ay By ¢ SRR ITELTINE IV | 8 9y 3 |-00EY
Sis By § Jia Jaa 9

The ls-;j transformation coefficlient can be expressed in terms of
the Clebsch - Gordan coefficients by decoupling the state
I{szjjlzijsj4}jg4J M » in the defining relation (B83a) into
]jlmi>|jzmz>]jnm33|j4m‘> and recoupling them suitably to form the
state 5[j1jsjj,5(323‘1324J M > This expresses the 9-3 symbol as a
product of six 3-j symbols summed over all the projection quantum

numbers (Wigner (1940), Edmonds (1957))

jl ‘jz :'12 i i J J J J
j J _j = E [ 2 12] [ 4 34] [ 12 34 ] *
ja j‘ Ja-: all mom,om. m,om,om m m,, M
13 Y24
» [11 Iy jiﬂ-] [Jz is jzi] [jiEl daa IJ‘i] (B7)
m, my Mg m, m, M M.a My

From (67) it is obwvious that the nine angular momenta in the 9-j
symbol satisfy the triangular inegualities implied by the six

triads :
Al . 1.3, )y,a03._ 3. 3 . ),a03, .3 J}.ﬁfiljajlsi.ﬂij

1 2712 374 "84 1Z "3 4

Ja, hald 3, d).

24" 2a i3 " 24

Further, of the nine projection quantum numbers only three are

independent due to the relation (20) which exists among them.

Wigner (1940) (see also Edmonds (1957)) has shown that the




9-j symbol can also be expressed as a product of three -3 symbols

summed over a single index and this reads as

§e e e 2x I i, 3, 3 R S T
Jy jm - E{-l} {2x+lj{3; J? xia} {J: % j::} {Kiz ji“ :]2}
jl! jZ-ir
(68)
with Kmin > = Xmax :
and Xnin = max (13,91, 14,3, 1 13,73, 1),
xmax = min j1+J . j3+j2‘ R A

Relation (68) also <follows from the fundamental theorem of
recoupling theory ( Biedenharn and Louck (1981a)) according to
which every recoupling coefficient ( 3n-j coefficient, n =
3,4,"'') 1s expressible as a summation over products of Racah
coefficients. ( see also Biedenharn (1953)).

The symmetry properties of the 9-3 symbol were discussed in
detail by Jahn and Hope (1954). Wigner (1540) has indicated that
the symmetries of the 9-j symbol can be cbtained either from (68)
or more easily from the symmetries of the 3-j symbols in (B67). The
symmetries of the 9-] coefficient are:

(1) An odd permutation of the columns of the 9-3j symbol results in
an odd column permutation of three of 3-j symbols, and hence the
8-] symbol acqulires a phase factor of {—lia. where o = j1+jz+ji+jq
+¥2+%“+j13+j2‘+J. An even permutation of the columns leaves +the
9-3i symbol invariant.

(ii) Due to similar reasons as in (i) above, the 9-j symbol is

invariant under even permutations of the rows and acquires a phase

factor of E-I}E for odd row permutations,




(iii) A transposition of the 9-j symbol about its leading diagonal
leaves it invariant.

Thus, the symmetry group of the 9-j coefficient has 72 elements,
it being the product of the three permutation groups of three,
three and two objects, wviz. ng 53” Sz , respectively.

Eg.(68) for the 8-] symbol i1s independent of the projection
guantum numbers but it represents a four-fold summation since each
of the 6-J aymbols is itself & single sum expansion. In literature
there exists +two other expansicons for +the 9-3 symbol, each
derived by different methods. One of them is a six-fold summation
obtained by Wu (1972) on the basis of Bargmann's generating
function approach. This is not of interest here. Another
expression for the 9-j symbol is due to Jucys and Bandzaitis
{1977) and who express the 9-3 symbol as a triple sum series. This

is the simplest known form for the 9- coefficlient and it is:

i

a b ¢ - {d a g) (be h) (i g h) [_1}x+y+z
def r=(-1) de £y (6 Tof L 3T 2]
Bk i (d e f) (bac) (1cf) - xt yl =l
LAxl - x)!(x2 + )1 (X3 + %)} (vl + v)! (y2 + y)!
(x4 — x)! (xb - x)! (y3 + v)l(yvd - y)l(yd - yv)!
5 fzl = z2)! (=22 + =z)! (Pl -y - 2)!
{23 — 2)l{z4 — 2)!1({z25 - 2)!(P2 + x + vI!(P3 + » + 2)!
where (o8

02 x=min({ ~-d + e + £ , c +f - 1} = XF ,

o
I

I

¥

min ( g - h +31i , b+ e - h) Y, (70

=
I
ra

1A

min(a-b+c¢c, a+d- g)

iF

R T




1

2f, x2 = d+e-f, x3 = c-f+i, x4 = -d+e+f, x5 = ct+f-1,
¥l = -b+e+h, y2 = g+h-1i, y3 = 2h+1, y4 = bte-h, 5 = E-h+i,

(71)
2l = 2a, 22 = -atbte, 23 = atd+g+l, zd4 = a+d-g, z5 = a-b+eg,
Pl = a+d-h+i, P2 = -b+d-f+h, P3 = —at+b-f+1i,
and
_ fa+b+ec+ 1) Afab o)
(abe) = = TE -y ; (72)
It is pointed out that

although (68) 1is the

simplest known
algebraic form for the 9-j symbol, it does not

show any of the
known symmetries of this coefficient. In Chapter 5, it will be
established that the 9-j symbol can be computed more

efficiently
using this series representation and in Chapter 6, this

8eries is used in the study of the polynomial
coefficient.

triple

zeros of the 9-)

1.7 Multiplicative Diophantine Equations

Bell(18933) in his classic paper on Reciprocal Arrays and
Dicphantine Analysis cat&gorised' multiplicative Diophantine
equations into seven types and obtained the solutions for them in
terms of the minimum number of necessary and

sufficient
barameters. 0f these the one which is of interest here is the
homogeneous multiplicative Diophantine equation

of degree n. A

modified version of theorem which gives the

Bell’'s complete
solution to the problem of multiplicative Dicphantine equations of
degree n is stated below and a procf of +this theorem which is
simpler and straightforward than that due to Bell is provided.

Theoren 1 : Every solution of the homogeneous multiplicative
Diophantine equation:

L 7 o




XX, x 0= L T T 1F 5 e T {73}

can be expressed in the form

n n
= n ¢ and u, = n ¢ (74)
17 i Pay § 7 0, Fag
for all 1, = 1,2, ,n, where the n> independent parameters ¢1j
i S 1,2, ,n) are positive integers which can be arranged as g

L * n square array A(¢) with ¢ij being at the intersection of the
i-th row and the j-th column, subject to +the Ereatest common
divisor (g.c.d.) conditions:

[xi 20y ) = ¢ii (75)
applying to only the diagonal elements of the array.

It is to be noted that this Statement of the theorem
differs from that of Bell in that the two arrays A(dp) and its
reciprocal ﬂ“f¢} of Bell (1933) have been replaced by the array
A($) and its transpose. Hence the proof that is provided here
dispenses with the use of reciprocal arrays ip obtaining +the
required solutions, (Note: Given A(d), 1its reciprocal En{¢} is
obtained by arranging the diagonals aof A(d) as the rows of AR(¢} =
for details refer Bell (1833)).

To prove Theorem 1, it is first shown +that it holds
independently for n = 2 and 3 and then we complete the proof by
induction. First consider the case n = 2. As usual, given any
non-negative integers x and y, the €.c.d. of x and ¥y is denoted by
(X,¥); x divides y is denoted by x|y in the sense that vy/x 1is an

integer. For n = 2, (73) becomes:

A oFg = Bow (76)

and to find its solutions,let (x, yu, ) = z_, then X, = z.z




and u, = 2z z with
[Ez,za ) = 1. (77)
substituting for x and u, in (76) and cancelling 2, gives:
X, 2, = u, z, - (78)
By virtue of (77) it follows that z,lu, and z_|x, so that X,=2 2,
and u,=z,z_. Now substituting for %, and u, in (78) and cancelling
2,2, then gives 2, 2_. Hoting (77) once again, comparison of
X, and u, indicates that (x, W, ) = z, . Summarizing, we have
e zizz ! Ly = 3324 : By = Hg8g i 4, = BBy (739)
with the g.c.d.conditions
{xi » 1, T = 2, and (% 1, ) 2, - (80)

Z

Thus the general solution of (76) is given by (79) and necessarily

I

involves four parameters subject to the g.c.d. conditions (80),.

This solution may conveniently be displayed in the form of an

array:
| ul 1.12 | 1.11 1.12
xi zl zz = x: ¢"11 ‘13'12 (81}
xz za Ei :{Z ¢2! 4)22
where we have relabeled Zy 12, 12, and 2z as ¢, . »$,, and

432 yrespectively and the products of the elements in the rows are

X, and X, while the products of the elements in the columns are

u, and u, .

Following the above proof for n = 2, we give the proof for

n = 3 when (73) becomes

X, %, X, = u,ou, ou. (82)

If {x: 1, ) = a and {xz 4, ) = e, then
= 2z , u = = 2, with (zi,zz} = 1, (83a)
and X, = ®2z2,, u = e z, with (z“.z‘} =1, (B3b)

S 1




Substituting for X,

X, U and u, in (82) and cancelling ae,

we have

2 4 8 [54}
By virtue of (83) it follows that

z, |z ,u, and z,|lz,x, so that:

2z, u, = 2oz and By X = B, B, - {85)
Substituting (85) in (B4) yields : z2, = 2, . To solve the two
Diophantine equations in (BB}, let:

(z, ,2,) =& and (z, ,z ) = d,

then g, = be, 2z, = & h and z, = d g, z, =d f , (BE)
with (€ sk ) =21 angd (f & )= %. (87)
Substituting (86) in (85), we get:

h u, =z € and f X, = 2, & . (88)

Due to the relative prime conditions (87), (88) imply:

hlzy, , ey, , and flz, »  &]x, (89)

80 that

z2s = RZ , uy =c £ and zg =/ nm, x5 =8 n. (90)

Substituting (90) in (88) we get § = ¢’ and 7w = n'. Use of +the

12, 12 1%, given by (86) in the relative
conditions (83) satisfied by them Eives

solutions for z,

prime

(b ¢

» 2 &) =1 and ¢d f, b h) = 1,
Or, explicitly, we have

(& ,d) = (b ,8) = (e
and (o

:dj = (& &) = 1,
(81)
JIY = (d JRY = (f ,h) = 1,

Finally, from (91) since zgy, = h € and Zg = f

= T, W& have to
solve the Diophantine equation :

h f = f b Hith {f rhj = 1-

(92)




Eq.(92) implies A|n and f|¢, or n = h & and £ = JF 1i°,
‘which on substituting into (92) yields t = it Therafore,
n = h i and E = F i {93}

From (83), (86), (90) and (93), we have the solution to (82) as

xl tabe , 1,,1_1 —adg ,
X, = de f i = b e h , {94)
X, = & h i, ug = o 4y
with the three g.c.d. conditions
[x1 U, ] R [J-;z u, }] = e and (xg yu, ) = i, (95)

The last of the g.c.d. conditions is a consequence of (gh ,cf) = 1

obtained from (B7) and (91), which on multiplying by

from (94) : (x, ,u, ) = t.

i vields,

These three g.c.d. conditions imply the

nine relative prime conditions given in (87) and (91).
Renaming a,b,c¢, **,t as ¢ , ¢ ,.° " ,d,,, the solution for
n =3 1is given by the 3 x 3 '

&rray .

u!. le uﬂ
X i d}l i ¢I. 2 q}.'l 3
X, b, b, &, ; (96)
xg ¢3 1 CI:IE 2 Li}ﬂﬂ

Eq.(94) now read as

3 3
Xy = W & and u g 7% (97)
T g =39 ey
and (95) becomes
{xl :ui } = ¢-ii ¥ fﬁr i = 1}21‘3_ {‘BB}

Following Bell (1833), we call (73) as the Type I

multiplicative Diophantine equation of degree n. Setting u, = 1
4n (82) leads us to the

lowest non-trivial inhomogensous

ey f ==




multiplicative Diophantine equation, called Type II by Bell, wviz.:

X, %X, X, = u, ou, . (99

The scolution for this equation can be simply obtained from

that of the homogeneous equation (B2) by setting u, = 1 in (98)

which implies ¢13 =@, = ¢, = 1. Thus the solution to (99) is

1.;[:l l.'tz
1(.‘ ¢1: ¢I.1.2
xz Zi 22 { 105]
x:—: CI:EI : ¢52

with the g.¢.d. conditions given by

(xy suy ) = ¢ii . fer 4 = 1.%3.

{101)
Having derived the result for
|

n = 2 and 3 for Type I and for
n=3 m=2 for Type Il multiplicative Diophantine equations, the
Theorem 1 can be proved by induction from n to n+l. To do s0,

assume (73} - (75) te hold far not only n =

= 2,3 but also for all
values upto and including n, we shall prove that these

held for
n+l variables. Applying the theorem for n = 2 to
{x1 X, x ) S = I:u1 u, u_ ) B (102)
and let {xh+‘ L ) = A {103)
be the g.c.d. condition. Then
1'L:-w- 1 = & J"":-.+ 1 and un+ i = u:-w.i !
with {x:H1 *u;+1] =1 - (104)

Substituting x,,. and u,,.4

in (102) and cancelling * gives:

L ’ = - = o= ’
{11 X, X ) B i - (u, u - )

i 2z ] u:"n-:l.1 EIUE]

xhi-i [ l(11:]. uz o u?‘r }

By virtue of (104) it follows that and
“;+:l(31 X, *°° x_) so that




ui uz ekt un = H x;+i and . ” xn = ,'-I" u;_lﬂ.{lﬂﬁj
Substituting (106) in (105) yields :

H = p'., Hence, the two
inhomogeneous equations to be solved are

ui 112 AR un = H x‘h-l-:l. and x: xz o xn = # unﬂ. (107)
£ R e 3 ¥ ’ -
implying (u, u, U, X, x, X ) =H & S R
The solutions

of +these equations are obtained from the

corresponding homogeneous eaquation by setting the required u’s (or

x's) equal to one in (73) to (75). Omitting the degenerations of
the form

(x,1) = 1, the solutions for the inhomogeneous equations
in (107) are given by :

Hooox L,
o0 PP (w, k) =2,
B U2 (%2 Yo with (108)
1 : {uz jx:"l'{'l} = Eﬂ
un ni t-ﬂ'a:
~and
H '::i-.'l
ol (%, &) =
X | as Y22 with * o (1089)
: - Exz ,u;+1 ¥ E 22
x‘h yni yhz
From (108) and (109) we have :
“ :Eil Eu-i 2 A fnl = ¥ ¥ L

i1 z4 nt ° (110)
‘Ea.(110) is a homogeneous multiplicative Diophantine equation of

ﬁﬂigree n whose solution is known to be




i1 :5?.[-" 3

11 ¢u.' o
21 Eb:.z_ o

nd

™
™
= &

.
q} Zn

with (£, vy ) = ¢y, (111)

sl 4l 0

™
Therefore, the solution of (102) is given by

W 4, B B
xl. ¢I11 d}iz ¢I1r'|| 12
¢ ¢ $ (x5 ,u, ) = ¢
21 22 2n 2z AR i i k5 i
; . . ‘ (x +i’un+1} = &
xn cbﬁﬂ. ¢n2 q;nn Trd
xn‘i"l qaz II1TEZ o !:nz A {lld}
Relabelling the (2n+1) parameters Mg W¥ge &M o ¥ 3 E:z’
r’zz’ T 'Enz 23 ‘:I)i,ﬁ-ri ’ ¢z.n+1’ B ¢n.nf1; ¢ﬁ+1,ﬁ+1 '
P o b T 4 ,, . -respectively, we can  write the

solution for the homogeneous Type 1 multiplicative Diophantine

equation of degree n+l by simply replacing the index n by n+l in

jTB} - (75). This completes the proof of +the Theorem 1 by

induction.

The other types of multi plicative Diophantine equations have
been dealt with in Srinivasa Rao, Santhanam and Rajeswari (1987)

and they are not dealt with in this Thesis since +they are not

directly relevant to its contents. The above proved Theorem 1 is

used in the study of the polynomial zeros of degree 1 of the 3-j,

6-J and 9-J coefficients in the following chapters.




Chapter 2

Interrelationships between the sets of pF 1=

for the 3-j and the 6-j coefficients.

2.1 Introduction

In the previous Chapter the four fundamental forms - viz. the
Higner, Racah, van der Waerden and Majumdar forms - known in
literature for the 3-j coefficient were given. It was shown that
there exist a set of s5ix series representations for the 2=
coefficient corresponding to the van der Waerden's form. In the
case of the 6-J coefficlient two sets of series representations
were also written down.

In +this Chapter the two transformation formulae for
terminating hypergeometric series of unit argument required for
use later on are recalled. Dne of Fhem pertains to the reversal of
a terminating hypergeometric series of unit argument of +the type
PHF; and the other is a transformation between two terminating
gﬂ[i}s due to Erdelyi and Weber (1952). It is shown that the set
of ;ix 3Fz(1}3 for the 3-j coefficient can all be generated by
starting with one of them and using repeatedly the reversal
relation for a Hinl}. This same reversal relation is shown to
connect the set I and set II of ‘Fa{l}s far the B-]
coefficient.Using the Erdelyi-Weber transformation fer a aF‘zill
the Wigner, Racah and Majumdar forms of the 3-j coefficient are
derived from the vander Waerden’'s form. The asymmetriec nature of

these three forms in comparison to the van der Waerden's form is

discussed.




- 2.2 Mathematical Formulae

€a) Reversal of a terminating hypergeometric series

fAs stated earlier in Chapter 1, when

one of the numerator

‘parameters in a hypergeometric series is

negative, say -n, the
series terminates with (n+l) terms. When more than

one numerator
‘parameter is negative, the one whose magnitude is the

smallest
determines the number of terms. In such cases the

saries c¢can be
summed in reverse order and the result identified with a different
hypergeometric series. The property of reversal

of series of a
terminating PHF'PEI} can be cobtained as follows:

= v (fa )sei(-n,r)
Let P

PﬂFF{{aPJ'_n:{bP};l} = el {l,r}[(bp},rj 3 {1}

here one of the numerator parameters is a negative integer.

When
‘the series is summed in reverse order, the last term becomes the
first term and so on. Hence the series can also be written as:
n {((a ),n-r)(-n,n-r)
pth{{&p}’-n;{bP};ij - FEL fl,nfr]([bp}.n-rl ' (2)

hsins the ldentitles (Slater (1965)) satisfled by the Pochammer
symbols

(a,n-r) = {—llr{a,n}ftl-a—n,r}. (3)
1/(n-r)! = (-1)T(-n,r)/n!, (4)
(-a,n) = (-1)"a!/(a-n)!, (5)
the right hand side of (2) can be rewritten as:
n {{ap},n} m ([1-(bp.}"—n}rr} 'I.'_nlr}
LY i—e—e = = ' (6)
((b,).n) T (1,r) (1-(a )-n),r)

?ﬂnﬂﬂ we get the reversal of series property as:




((a_),n)
- ; . . _ 1-(b_)-n ,=n
LR Rl S e S N o b Y
:.‘-_.P'I'-‘-P P P {{bp}’n} pitip 1-(a y-n

- é (7)
Ip (7) it is stralghtforward to verify that if the hypergeometric
series on the left hand side is a Saalschutzian then the

one that

15 obtained on reversal is also Saalschutzian.

'
R .

Cb) The Erdelyi-Weber Cor E-W) €C1952) transformation

L
In this section a transformation formula between two

terminating stat1 )8 I8 Tetnllsd, This is one of 5 large group of
i:pwn transformations (cf. Bailey(1935)) and the proof given by
Erdelyi and Weber runs along the following lines: Let

i
. 5 - e
0,207 .851) = F‘(_EE% L Cemesysey b, Pl @1 g

4 (8)
B

which can be checked easily by expanding both sides in power
series. The well-known identity:
I' 1

- i - _ir.rtn-a) N o 4
2Ty (mnyerit) = Flr+n,r-a) =zfa("Mejo-n-r+l;1-1),

used for the o dn (8,

(9)

and the right hand side of (8)

i
7 : : - s, r,rin-a) = ol G
:HFZ{ n.ﬂ.ﬁn?’,érl} — rfﬁ,a‘ﬁ,}'+n,}‘—ﬂ} IZFii n,o,oa n-?"+1,1 't.]
(=]

]

o t.f:'n'-l ( l_tjé—,‘?-l

dt. (10)
Changing the variable of integration to

o= (1-t) , (11)

?g}llﬂl can be rewritten as: 2

o i o r'{é.}‘.?"i'n-ﬂl - A O =
B (10B37.651) = prm e lBE) [ R (-n,aiamnr 41t

i)

x (1=t )P e )Pl g g0y

Y




i:gwusing (B) once again to identify the integral with a S, (1)

S . : - Py, r+n-a) _ S _— X
:g%( n,a,?r,6;1) = M, 7 ) oFp (0,083 140y -0n,6;1). (13)

The above transformation can, infact, be derived from the
lables II A and II B in Balley (1935) whichsummarize and group the
equivalent numerator and denominator parameters of B (158

ained by Thomae in the notation introduced by Whipple in

F (0;4,5) = (-1)™ iz Yy ) F_(4;01
F{ § b ] } = { ) r(a_ Ia oA ) n( ¥ }-
123 1Z4 125

 Reversal of series applied to the sets of hypergeometric

series for the 3-j and the B-j coefficients

- It can now be established that the set of six _F (1)s for the
ﬁ-ﬂ.enefficient given in chapter-1, can also be generated by
gﬁiming with one of them and applying the reversal relation (7)
eatedly. Further the set I and set II of ‘F;{1]5 for the 6-j
fficient can be shown to be related by this same relation (7).

(a8) The 3-J coefficient was expressed in terms of a set of

six
F (1)s (Srinivasa Rao 1978) in chapter 1 as
o 32 ) = s(m e 4w 0)-1)8(PAT) & o L/(J+1) 1372
m mz mﬂ] i & mB ijl;ll:l ik
, *» {F(1-A,1-B,1-C,D,E)}™" K, (A,B,C;D,E;1),  (14)
ers
e A i - - o s L
8 R, B=-R,.C=-R,, D=k -R_+, E= R, R+,
for all permutations of (p g r) = (1 2 a),
RB-{% for even permutations,
g{pgr) = { F 9 (15)

R -E + 7J for odd permutations.
ap 2q

-l ==




- and POX,Y, o0 ) = P(X) T(Y) -~
The E#IS are the elements of the Regge ({1958) array :
—j,+J2+jn Ji'dz+j3 o i P 8
[jl. jz jH = 'j.'l. -mi ‘jz -mz jﬂ -mB
P T mﬂ] J, Fm I, Jgtm, ' (16)
The reversal relation (7) (corresponding to p = 2) is applied

to the HFZEI} in the series representation (14)
(par)=1(123). Since all the

for
numerator parameters in the
ﬁﬁﬁl} are negative integers (we exclude the possibility of one or

more of the numerator parameters being zero since in that case the

5&%(1} reduces to unity), -n in (7) could be identified as

(=3, tm ) or (=dgmdtd ) rox (-J,~m,),depending upon Wwhether
Hﬁi"mlﬁ or {J1+Jz—jgl or (Jj,+m,) determines the number of terms
in the antl}. For example setting:

n = {jl = ml]

the transformation (7) loocks as fallows:

;ﬂﬁ{-%&mi“jz_mz'hj1"j2+J3;1_j1+ja_mE’l_jz+j=+m1;1}
J. —m

= EeEy

: Pl bm, I g 4, 3,5 1-3 43, ~m,  1=4,+5_+m_)

* AT, =3 g 1, =5 4m 1k 4 L 14 =3 45 )]
x gFp (-3 +m -5 -m ,—.ii+Jz—.is;1—ji+jz-mH,1+j2—j!+m1;1}.

(17)

In writing (17) use has been made of relation (5), whenever a

ﬁm&ammer symbol involves a negative integer in its argument.

substituting (17) for the an{l} in (14) corresponding to (p g r)=

(12 3) it is straightforward to see that this vields the series
representation for the 3-j coefficient for (prar) =(132).

Similarly the identifications:
n=(j +m) and n = Gl e = 3.9

z 2 8 =

SR L




in the 5F2ﬂ1} for (pgqr) = (1 2 3) lead respectively +to  the

series representations corresponding to (p q r) = (3 2 1) and

(B9 r) = (23 1), It 1s to be noted that each one of the three
i;(lja obtained in +the above manner has two more negative
-?3i§ger5 in their numerator parameter set and  hence  the
transformation (7) could be applied in those cases also. In all
these cases we are led to the series representations corresponding
to(par)=(312)and (Par)=1(213). Hence starting from
‘one of the series representations and applying (7) repeatedly we
Benerate the set of six series representations of the 3-j

‘coefficient.

W(abcd;ef) = (-1)Et g F(1-E) {T'(1-A,1-B,1-C,1-D,F,G)}™
« JF (A,B,C,D;E,F,G;1), (18)

where A, B, C, D, E, F & G for the three cases are:

(i) A = e-a-b, B = e-c-d, C = f-a-¢, D = f-b-d,
E = -a-b-c-d-1, F = e+f-a-d+l, G = e+f-b-c+l, (19)

(11) A = b-a-e, B = c-d-e, C = c-a-f, D = b-d-?,
E = -a-d-e-f-1, F = bt+c-e-f+1, G = btec-a-d+1., ({20)

(ii1) A = a-b-e, B = dc-e, C = a~c-f, D = d-b-%,
i E = -b-c-e-f-1, F = at+d-e-f+1, G = a+d-b-c+i, (21)

The set II of four series representations are:
ﬂ[abcd;ef} = [-l}ﬂ -2 N I'(A") {l“{l-B'.IL—'G",J.-*}}',E',F',G‘}]-"1
™ ‘F;{A'.B',G',D';E'.F'.G';l] 5 (22)
With the parameters A, B', C', D', E', F & @ for the four

series being given by: --50--




(1) A' = atbte+2, B* = a—c-f, C' = b-d-f, D' = e-c-d,

E' = a+b-¢-d+1, F' = ate-d-f+l1, G’ = bte-c—f+1. (23)
{i1) & = c+dte+2, B' = ¢c-a-f, C' = d-b-f, D' = e-a-b,

E' = gtd-a-b+l, F* = cte-b-f+1, G'= d+te-a-f+1. (24)
(1ii) A' = atet+tf+E, B' = c-d-e, &' = a-b-e, D' = f-b-4d,

E' = ate-b=-d+l1l, F' = atf-d-e+l, G'" = ectf-b-e+l. (25}
(iv) A' = b+d+f+2, B' = b-a-a, C' = dc-e, D' = f-a—0o,

E* = b+d-a-c+l, F = b+f-gc-e+l, G = d+f-a-e+l, (26)

The transformation (7) (for p=3) is now applied to the 4F5{lj
in the set I of =series representations - say egn.(18) - with tThe
parameters given by (18). Since all the numerator parameters in
the ‘Fafl) are negative integers, the one whose magnitude is the

minimum determines the number of terms. Assuming:
n=o+dg -a ]
in (7) the transformation reads as:

F [e—a—b, e—c-d, f-a-e¢, £f-b-d ; 1 ]
4 3| -a-b-¢c-d-1l,et+f-a-d+l,e+f-b-ct+l
= {-1]°+d_' F(1+a+tb-e,l+atc-f,1+b+d-f,atb+e+2,e+f-a-d+1,

et+f-b-c+1) {C(l+atb-c-d, Ltate-d-Ff,l+bte-c~f,at+tbtc+d+2,

EE g RECE o e Lol R e o
In writing (28), relation (5) has been used wherever necessary.
Substituting (28) in (18) automatically leads to one of the series
representations belonging to set 1II viz. that given by
gan. (22) with the parameters given by (23). The identification in
(27) corresponds to assuming that B determines the number of terms
in the Jat1) given by (19). Instead, one could conzlder the cases

when A, C or D determines the number of terms. In esach case

application of the transformation (7) leads to one of the series

=t P




Ei§WQsentati¢ns belonging to set II.

A similar result holds for the ‘Fa{l)s given by (20) and (21)
lso. In Table 1 the actual correspondence between the set I and
set II of series representations on reversal, is given.

Similarly, starting with cne of the series representations of

set 11 and applying (7) to the JFo(1l) leads to one of the series

onging to set I. In this case each ‘F;{lj has three of its

merator parameters -viz. B', C' & D' - negative and hence each

€ of them could be assumed to determine the number of terms in

1). The results in this case are given in Table 2.

Therefore, the set I and set II of series representations for

B6-J coefficient are not independent and are simply related by
reversal of series of the terminating ‘Fﬂflji

51.‘ The interrelationship between Lhe four fundamental

forms of
B the 3-j coefficient

In Chapter 1 four different forms for the 3-j coefficient

h exist in literature - viz. the ones given by Racah (1942),

ner (1840), van der Waerden (1932) and Majumdar (1958), twere

n. The van der Waerden's form was dealt with in detail in
it chapter. The other three forms when rewritten in terms of a
(1), using the methods described in the previous chapter are as

ows. The Racah’'s form is given by:

: i =i_+m a
LS = B S PR | 412
[m: . :] (m, +m,+m_ ,0) (-1) MURLTEE D

* PULHS, igmm, ) AP (L4d, ~d +m 1=, +3, +5_,
143,79, 4050143, mm , 14), +m, , 14 4m )}~
x3F2{1+ji+m1'_ji_mﬂln‘jl-‘_mi :_jz_‘jn+m1’1+'jz_'j e R )

(28)

.




Wigner’'s form becomes:

(. T 1 3

[":1. [‘12 I‘Ij'l:] = 5(”’*1"‘”‘2"‘1115,[!} (-1) 2z "1 1+ n-_ {Rik-'f{J"'l}-'}iﬂ
1 2 i,k=4

x T(14],+J, +m ) {T‘{l+ji-dz+m5.lhji+.‘:z+dBr

Prigmmg . 14§ -m,, 145, +m, 145 +m )}~

% 3F2(1+;j‘=~m1 *-—j3+m3 ! ‘ji-‘jz_'jsi_‘jz_ja —1‘!11 " 1+j1_‘jz +mg 1)

(309
the Majumdar's form is rewritten as:
& =1 —m a
L A - _ fp7d i i-2
[m: & m:] = &(m +m,+m,,0) (-1) M R, !/(J+1) !}

yooe=x
x rfz:ja-!-l} {F(l-'-.}‘_jg-mz 11_j1+-jz+33 1
-1
43, =0yt 3y 140, mm, , 145, +m, 145 _+m_ )}
*oTa (103,40, 70, =3 w3, =8, - 0,528, 145 -5, mi1).
(31)
literature, these oF,(1)s have been referred to by Smorodinskii

Shelepin (1972). Tt will be shown that the Racah, Wigner and

forms given by eqns.[EQ].I{BGJ and (31) can be obtained

om the van der Waerden's form by wusing the Erdelyi-Weber

formation egn.(13) for the 3F‘zl,’l} and that each one of these

s 15 in fact one member of a set of six such serias

sentations.

:;dentifying the numerator and denominator parameters of the

' (1) in the van der Waerden's form as:

::t:.ﬁ,f’?:B,n:“C.}"=D&nd & = Kk , (32)
an applying the E-W transformation leads to:
F = ‘ =
(3 ii ri:] = Smotmyam,,0) (-D%CPI) g R (g1 1y

1 k=4

X i"{l—]]"}{r{l—ﬂ'*1+E‘~-E',1-G‘,E',1+A'-D',1+D‘—I}'}}_l

* RF;{A',B'*C';D',E';IJ, {33)

e




--.Iiﬂz.p' B = 1+R2r' b = _Rir' b _Rtr_R . B =R r_R5q+1

ar 2
I

¥ (34)
set of aF;{ljs will be called as the Wigner set of an(I}E’

4 f}.in (34), setting (p g r) = (3 2 1) results in the Wigner
5
;f the 3-J coefficient given by (30).

Alternatively, identifyng the parameters in (14) as:

a=A, 2 =0C, n=-B, » =D and &6 = E

, (:35)

using the E-W transformation (13) yields for the 3-3

efficient, the form (33), but the numerator and denominator
N

ameters of the F (1) will now be:

i |

”_-_r = -Ezp’ B' - 1+R3P| c' = —R D* - .—Ra

iq’

q- R!Ir’ B = 1+Rzr- R‘:Iq
(36)

set  of EIthl}s. since in

ifying (par) = (1 3 2), the

%gﬁ_will be ecalled the Racah

Racah form of +the 3-]

'{eient, wviz, (29) can be obtained. Biedenharn and Louck

la) in their treatise point out that Racah's form may be

ned from Wigner’s form by using the two transformations that

e due to interchanging the second and third rows of (15)

aﬂgd by the interchange of the first and second rows of (15).

Finally, a third identification for the parameters in (14)

gt: = Ay Fs By n= G = K oands =B

¥ (37)
and use of (13) will yield for the 3-j coefficient the

form (33)
with the numerator and dencominator parameters given by:
R
-':'~.-’-. ':"-"‘Rap‘ B = 1+R!P, o = '-Eu_, B = _Rzdeap’ E =1 + Rsr-—Rz
(38)
R

e




'1- L
This set of oF,(1)s will be called the Majumdar set, since for

L

;rﬁ = (3 2 1) the Majumdar form of the 3-3 coefficient given
él} is obtained.

‘Thus, it is found that starting with the highly symmetric van

Waerden set of JF (1)s, three sets of ,F,(1)s corresponding to

er, Racah and Majumdar forms can be obtained by

‘Erdelyi-Weber transformation in

simply wusing
three different Ways.

ersely, the same E-W transformation can be used to get the wvan

Waerden set from the Wigner, Racah or Majumdar sets, by virtue
he fact that the matrix relating the numerator and denominator

meters in (13) acts like =a projection operator.

In fact, in (14), three more identifications can be made for

8 parameters as:
T

o

:B,ﬁ:A.n:—U.}ﬁzEandrS:D. {39)
:B,.i":‘:C,n:—E.r‘—‘Eandé:D, (40
=B, #=4& n=-C, y=Dsand & =E . (41)

and denominator parameters of the resulting BFéil}

'fse three cases viz. (39), (40) and (41) are given by:
b, B = 1R, & = -R _, D = K _-R_, E' = 4R, "R,
(42)
3 lFRzg’ B' = l+R2q. C' = _Raq’ D' = _Rzp_Rzr‘ E* = 1+REI:'_RZF ,
(43)
-*;Raq. B* = 1+R1q. g = R _, D = -qu—Raq, B = 1+H2r-Rﬂq
i (44)
_HEn‘ce eans. (42), (43) and (44) would once again generate the

figner, Racah and Majumdar sets of series representations on which

15 superposed the my + -m, tramsformation. Raynal (1978) has

shown that, starting with a given al;(1) belonging to the van der

-




Waerden set and resorting to the work of Whipple (1925) on the
symmetries of the oF,(1) functions, the Racah, Wigner and Majumdar
forms can be obtained,

It should be pointed out that,

[

(pg r) = €1 32) in (34),

(par)=1(132) in (36), (45)
(Par)=(321) in (44),
‘correspond to’ eans. (28) , (28) and (30) of Raynal (1978)

.ﬁgpectively.
| It is to be noted that in the van der Waerden set of JF,(1)s
;&I the three numerator parameters are negative integers and both
gizdencminator parameters are positive integers. Hence in this
ihe the 3! permutations of +the numerator parameters are all
E;ibwed and lead to meaningful symmetries of the 3-j coefficient
s0 that the van der Waerden set accounts for all the known 72
Eﬁmetries of this coefficient. But in the case of the Wigner,
5§}oah and Majumdar sets of 3F'z{l}s two of the numerator parameters
fa} and C' ) are negative integers and the other (B°) is a positive
integer. Among the denominator parameters one (D') is a negative
integer and the other (E') is a positive integer. In these cases
the only permutation which leads to a meaningful symmetry is that
of the two numerator parameters which are negative integers.
Permutation of a positive parameter with a negative parameter does
not lead to any known symmetry of the 3-3 coefficient. For
EﬁﬁﬂPlE. in the Wigner aFkil}, (34), corresponding to (p q r) =

f:; 3 2), interchange of B’ and C' results in the 3-j coefficient

being related to:

=5




(3, -4,+m -1) /2 1 (=3, +dgtm ~1)/2
. (46)
=0, -3, tm, ~1) /2 Il mod (=4 -5 4m =1)/2 |

though appears like a Regge symmetry, can be shown to
ate the <triangular inequality. Thus, the only allowed
ries in the Wigner, Racah and Majumdar sets of Hthl]s are
: due to the interchange of A° and C*, as 1is manifestly
t in (33) and hence these sets account only for 12 of the 72
ries of the 3-j coefficient. The asymmetric nature of these
s has been realised by Racah (1942) himself which is reflected
statement that his formula "is similar to Wigner's formula
s, also, unsymmetrical and unpractical for the use”,

onclusion

To conclude, the results cbtained in this chapter are the

(i) The wvan der Waerden set of o F,(1)s for the 3-j
coefficient has been shown to be generated by starting
with one of +them and applying the reversal of =a
terminating hypergeometric series repeatadly.

(i) The same reversal relation has been shown to relate the
set-I and set-II of Ja(l)s for the 6-j coefficient.
(brinivasa Rao and Rajeswari {18985b)).

fiii] It has been shown that the Wigner, Racah and Majumdar
sats of gty (1)s for the 3-j coefficient can be obtained
from the symmetric van der Waerden form by the use of
‘the Erdelyi-Weber +transformation for a terminating

332(1}.{Srinivasa Rao and Rajeswari (1989)).
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Table 1

‘respondence between set I and set II of ‘thl}s under
A
revarsal .
of series Mo, of terms deter- Eq. no. of series
ng to set 1 mined by belonging to set Il
A (24)
B (23)
9
(18) C (26)
D (25)
A (26)
i B (26)
(20) C (24)
D (23)
e e e e e e e e e e e
. A (25)
B (26)
(21) C (23)
D (24)
Table 2

;fp;rreapondence between set I and set

reversal,

II

of _F (l)s wunder

o, of series

Mo,

of terms deter-

Eg. no. of series

ng to set II mined by belonging to set I

B’ (21)

(23) c (20)

D’ (19)

' B (20)
(24) c (21)

D" (19)

: B (20)
(25) cr (21)

: D (19)

B’ (20)

(26) c (21)

D’ (19)




Chapter 3

Folynomial zeros of the 3-j coefficient
Introduction
' The 3-j coefficients play an important role in the study of
guantum mechanical phenomena. The vanishing of  these
icients have physical significance in that they imply
tion rules for certain transitions. In +this chapter after
tioning what the polynomial (or,non-trivial) zeros of the 3-j
icient are, the canonical parameters for this coefficlent
y Bryant and Jahn (1960), as quoted by Bowick (1976), are
ssed. The 3-3 coefficient is rewritten into a formal
1] expansion and using it a closed form expression is
pritten down for the polynomial zeros of degree one of this
icient. The parametric formula derived by Brudno (1885) for
€ zeros in terms of four integral parameters is disucssed and
‘Bell’'s theorem it is established that +this four parameter
wla gives the complete solution to the polynomial zeros of
e one of the 3-j coefficient.
né:w=ynnmial zeros of the 3-j coefficient
It was mentioned in chapter 1 that the 3-j coefficient
es if the angular momenta (ji.jz,jnj do not satisfy the
gular inequality; or, if the projection quantum numbers
pﬁhg do not add to zero. The zeros which arise in these cases
alled trivial zeros. On the other hand, there exist zeros of
coefficient for allowed values of the angular momenta and
Jjection quantum numbers too. These are termed as the polynomial

op-triviall zeros which were tabulated for the first time by

R




= J

alovich, Moskalaev and Kersonskii (1975) for [j1+ jz+ ja}
. Bowick (1976) reduced this list by eliminating the classical

11 as Regge symmetries (Regge 1958) of this coefficient. The

method adopted by Bowick (1976) to distinguish the eguivalent

3-j coefficient from the ineguivalent ones is described below.

Canonical parameters for the 3-j coefficient

Since the 3-j coefficient possesses 72 symmetries it is clear

it belongs to a set of 72 each of which has the same

jcal value (differing at most by a phase factor). The

ients of this set are called eguivalent 3-3j coefficients,

igh the ones that are related by Regge symmetries may have all

the arguments to be different unlike those elements which are

ated by the classical symmetries. Hence to distinguish between

eguivalent and ineguivalent ones, it is necessary to have a

of parameters which would be the same for all the eguivalent

= and different for the tneguivalent ones. For this purpose

ﬁgukﬁ (1976) used the integral parametrisation developed by

ryant and Jahn (1960). These integral parameters are obtained

as
= Given a 3-] coefficlient :
J‘ jz jﬂ] with J = j i
=d +J +j 1
['fl'i1 m, m, i ¥z Ym
‘orms the symbol
a b
& 2],
r
L g ¥ e Ejﬂ = j,_+jz_jg! ok Pes -j_i_‘mll b +r = jz+m=r
@ T J AWy W Rl o (1)

and using known symmetry properties of this symbol orders it in

such a way that

s




azbz2z0 cz2dz0Q,

> (2)
(a + &) = (¢ + d), D)
(@ - B) = (e -d) if (a + d)= (¢ + d}. (4)

symbol brought inte this final standard form, the

required parameters are:

Lpis Pzr P-ﬂ’ ﬂ"r nz} = bory Bt By 1y o, d) ,

th By + B, + Py * e + n, - Jo. (5)

that the

number of distinct 3-j coefficients with a given wvalue of J

her it has been established (Bryant and Jahn 1960)

is
equal to the number of distinct partitions (q ,q,.n_.,n,,3p ) of J:

J=q+q +n +mn, +3p and p, =0, 1, 2, ...,[J/3],

@, 2920, n 2n, 20 ,(a, +a

= +
2 i 2 z]I [n‘ nz:"

_and if (g +q,) = (n_+n,) then (q-q,) = (n, - n ), (6)

1

wWhere [J/3] stands for the largest integer less than J/3.

Hence it is clear that {?1. Py Pys N, nz] along with J uniguely

?hﬁracterise a 3-j coefficient.

It is to be noted that in terms of the elements of the 3

x 3
Rek (1958) array
—d, i, g j:?jz+ja d,+3, 3,
I Rik I = g Wy ‘jz-mz js-ma i
j1+nh j2+mz j3+m3
ﬁf?hav&,
,[;:_t-+ r, b+ r, r, ¢, d) = {R21’ Raz’ Rxs' R!“—R‘a, Rz-zdRuI}' (8)

&ﬁé alaments of the 3x3 Hedge array satisfy the nine relations

RJP + Rmp = an + Rnr - {9)
ﬁpx cyclie permutations of both (£ mn) = (1 2 3) and (p g r)

By




':3}, Using (8), relation (8) can be rewritten as:
%ﬂ g P B e |l s (R, s L R, Ry "Rz Ras “R,,)
= (~A, =B, -C, E-1, D-1} , (10)

f8ve A, B, C, D, E are the parameters of the GF, (1) for the 3-j
T*_ﬁicient given in Chapter 1, corresponding to (p g ri= (1 2 3).

- Lockwood (1976) introduced five new parameters for the 3-)
goefficient which he called as canonical

parameters, These are

ined in terms of the a's and f's that oceur in the

saries
representation for the 3-j coefficient (viz.(16),(17)

of Chapter
) as follows. The parameters #,, f#, and f_are ordered as p< q< r

e, O as f = g = h, The new parameters are defined as:

nsph, a=zhg, b=h-y,

¢ = qgq-p and d = r-p . (11)

In terms of these new parameters, eliminating all but h, and
substituting (s + h) for the summation index in the

series
resentation, Lockwood

revwrote the 3-] coefficient as the

jgggct of a phase factor P, a numerical factor R, and the series:

T =L (-1)° {s!(s+a)!(s+d)!(n-s)!(n+c-s)! (n+d-g) 13>, (12)
S

ood cbserved that P,R and T are invariant under the

srchange of @ and & or of ¢ and d and concluded +that there
sts a four-element symmetry group. It was

pointed out by
nivasa Rao (1980) that P,R and T are infact invariant under the

series (12) exhibits twelve symmetries. He also observed that
n +c) and (n + d) can be

identified with +the Regge array

oo -5




ﬁm;nta Rzp, qu and R while @ and & can be identified with
. B, ) and (R, - R, ), for (par)=(123),

-Iﬂsnce the parameters introduced by Bowick (1976) as well as
(correctly interpreted) parameters of Lockwood correspond to
the numerator and denominator parameters of one of the set of six
)s for the 3-3j coefficient given by Srinivasa Rac (1978).

The 3-j coefficient as a symbolic binomial expansion

Symbolic methods for generating the 3-31 coefficient have been
by several authors, Ansary (1968), SBato and Kaguei (1972),

':pd, Minlos and Shapiro (1963). Feollowing the procedure given

r Sato (1955) and using the definition of the lowering factorial:

B B

(13)

e expression for the 3-j coefficient (viz.(27) of Chapter 1):

. -' 3
[ T 1 _1y8(par) Sk
[m: a m:] =6 (mmytng ,0) ((DTTERI (R, /T 1))

I (1TENEB SR~ BYIER - &)

e

x (s + B - R_)!(s + R, - R )17, (14)

:q:mal binomial expansion for the 3-] coefficient can be

n as
[34 3, ‘ja] = &(m, +m_+m_,0) (-1)° (PA¥) ; (R, !/(J + 1)1}*%
m,oom, m, i Yz Tg? ik

i,k=1
#» {I'({n+1, Gu+l, Gv+l, Brp+'ﬂ+1, qu+n+1_}-1

« {(B__+ n)(B,_+n) - C,C)H™), (15)

., R0, Cu, Gv represent the Rik's 1in  the

irée = min [Rzp, R - op

3q

» (R, R _, R __) other than n, Brp= &, .~

o -, and Erq:Rzr“R

3g

result (15) is general when compared with that obtained by

s .




» and Kaguei (1972). Their particular result can be derived by

ing (p q r) = (23 1) in (15), while (15) itself holds
the six permutations of (pgqr) = (1 2 d).

far

tion (15) is symbolie for n > 2, since it uses the generalised

ower (Ansary 1968 ), but exact for n = 1, since 1;»':1]I = p . Hence

:hﬂnemial form for the 3-j coefficient explicitly reveals =&

subset of the non-trivial zeros, since when n = 1,

(B,,*+n) (B +n) = C, C, , (16)

les a zero. These zeros which correspond to n = 1

can be
fﬁﬁiﬁaﬂnted by the simple multiplicative factor:

(1-6(n,1) 6(X,Y)) , (17)

iplying the standard expression (14) for the 3-3 coefficient

&8 1 is the index that decides the number of terms in the

1ial expansion, and it being (say), qu, X and Y are given by:

= Rmr'Rkp and T Y = Rﬁp'H}r . (18)
yclic permutations of both (p g r) = (1 2 3) and £ m k) =

(I 2 3).It can be seen that the conditions given by Lindner (1985)
s 4

the same as those given by (17) and (18).

':The condition for the degree 1 zeros glven above can also be

bly interpreted via the set of _F (1)s, ean.(14) for the 3-3

icient, and in this case the expansion ends after the

second
berm (n + 1 gives the number of terms in the series),
A B C =
1+—"—ﬁ—-—ﬂ, (18)
ABC=-DE, (20)

-6l -




:'A, B, or C being -1. Based on the criteria given in (17) and
along with the parametrisation of Bryant and Jahn (1960)
ussed previously a FORTRAN program has been developed to
rate the eguivalent and ineguivalent zeros of degree 1 of the
3-) coefficient.The listing of the code is given in Appendix-A.
guivalent zeros of degree 1 were generated up to i, = 13.0
been adopted. In Table 1 is listed the eguivalent zeros of degree
q??f %,' 8.0. The ineguivalent ones were seperated out of +the
. containing the eguivalent ones and these are listed in
e for J (= p, + P, + p, + n + nz} = 38. This reveals that
up to J = 27 there are 25 zeros of degree 1 and these form a

1.

_iiy of the zercs lilisted by Bowick (1976) in the same range.

ble 3 the zeros of higher degree upto J =27 as contained in
hhle of Bowlck (1976) are 'listed. In the following we
cuss the parametrisation for the degree-1 zeros of the 3-j
icient.

3.5. Parametrisation of the polynomial zeros of degree 1 of the
Jﬁ—J coefficlent

Brudno (1985) has given parametric formulae for the degree-1

5 (or linear or welght 1 =zeros as they are synonymously

In the Table of Bowick (1976) the entrles corresponding to
J =17 (8,2,1,3,3) and J = 23 (10,3,1,5,4) are missing. Also
ﬁhﬁ entry given for J = 23 (14,1,1,6,1) 1is not a zeroc and
ﬁhose with J = 24 (16,1,1,3,3) and J = 27 (12,3,1,8,3) are
i{eng entrles and these are corrected in our Table.

65—




one-parameter formulae

s
1]
A

have been given by him ,viz,
an 2n+i ™+d
[ an=1 -2n 1= ] ! (21)

[ Zr+d 2n z
ned -n -1 ] 8 (22)

Brudno (1985) in the following manner:

The condition for the zeros -viz.(20)- in terms of +the

parameters of the 5F‘=[1} in (14) when written explicitly (for
:ﬁ_g r) = {1 2 3)) reads as:
F = Gy Fudy: =yl (3, - m) {:iz+mz}

'[-ja"jz+m1+1l{js_-ji'“"z+1}' (23)
In (23) any one of the three quantities: (3,#3,-3,), (J,-m ) or

ﬂma} could be equal to unity and we can assume without loss of
g kel ity that :

j_‘+j2"jn=11 (24a)
F which is now a product of two integers is decomposed into
our integers:
[ Fz=abed, (25)

Eﬂaring one particular partition of F viz, (ab) (cd), we have:

= a b {24b)
= c ad ; (24c)
= aec , (244d)

= b d | (24e)




ﬁEﬁ'ﬁke equations (24a) - (24e) yield the solution

fficient as:

for the 3-j

[ a(bte) /2 d(b+c ) /2 ((btc) (atd)-2) /2 ]

a(e-5)/2  dic-b)ye (b-c ) (atd) /2 (26)

& the parameters a,b,e,d can take on any integer value from 1

oF: Erudno’s{lEEE} conclusions are however imprecise and we

to make the following observations:
f the 24 possible Ways of partitioning abea to identify the

X and Y parts in (18) of the 3-j coefficient, which vield the

econdition for Polynomial zeros of degree 1, in addition to

héﬁ] only two other independent forms result. These are:

a(b+d) /2 c(b+d) /2 ((2+d) (a+c)-2) s2
[ a(d-b) /2 c(d-b) /2 ] '

(b-d) (atc) /2 (27)
al(c+d) /2 tle+d) /2 {[a+b}{c+d]~£}f€ 5

[ a(d-c)/2  b(d-c)e (c-d) (at+d) /2 ] (28)

All others are related by the t?trahedral symmetries - wyig.

column bermutations and / or m o+ - m£; or Regge symmetries,

e three forms (26), (27) and (28) wyield different (Regge

iﬁequivalant] polynomial zeros of degree one, if and only if

a ® b =2 - A g g For, when & = ¢ or & = o

or c = d

& of the three forms becomes a parity 3-j cocefficient (i.e.

*=:%= 0 and {j1+ J+ J,) odd) and the other two

ther, when a = & Or @ = ¢ or a = d, two of the three forms

forms merge .

can be related to each other by a Regge symmetry.

fact (23) can be written as:

F = uy = x v

. (29)

5, ¥, u and v are positive integers. It should be noted

£ this equation is =& homogeneous multiplicative Diophantine

LR .




‘equation of degree 2, and the solution was given in terms of four
@mteger parameters «, &, ¢, d by Brudno (1985). That this four-
parameter solution infact gives the complete solution +to the
Problem was established by Brudno and Louck (1885). They rewrite
(29), which gives the condition for the zeros of degree 1 as:

(x +ua) (y-v) = (x-u) (v +v), (30)
‘and prove that the complete solution to this equation is given by:
) X =2af, ¥y ZfF8; u zmay: w =gd (31)

where o, 3, ¥, & +take on all positive integral values. They also

‘Pasternak ( cf. Dickson (1952) p 252). To this end, (30) \is
transformed wusing the identity:

4AB = (A+B)? - (a- B> (32)

‘and rewritten in the form :

X + Y = o + vV, (33)
éhere
' X=z=x+y +u-v, Y=x-y-u=wv,
(34)
Ozx+y7y-u+wv, V==x-¥y+u+v.
Pasternak, in 1906, had proved that all the solutions of the
Diophantine equation (33) are given by
X=kr+ts , Y=L r ks,
(35)
U:kr_JSJ v=~5r+k5

where k, r, £, s are integers. Brudno and Louck (1985) establish
‘that this implies the result given by (31).

It is5 to be noted that considering (29) as it is, without any
transformations, one can establish the above result by resorting

to Bell 's theorem (Bell 1933) stated and proved in Chapter 1. The

- BB=w



polynomial zeros of degree one were generated for the 3-j

coefficient by using the four-parameter solution, the details of

which are given in Appendix A.

3 6 Concl usions

In conclusion, the results obtained in this chapter are:

By rewriting +the 3-3 coefficient as a formal binomial

expansion, a closed form expression has been obtained for the
polynomial zeros of degree one of this coefficient,

(i1) Using Bell’s theorem, it is

established +that the four-

parameter solution given by Brudno generates the complete

list of vpolynomial zeros of degree one of the 3-3

coefficient.

'_-J:' The eguivalent as well as the tneguivalent polynomial zeros

of degree one of the 3-J coefficient have been generated

using Fortran programs based on the closed form expression or
the four-parameter solution to the multiplicative

Diophantine
equation of degree 2.




Table 1. !
The eguivalent zeros of degree 1 of the -] coefficient,

j ":’1 jz ‘13 " m, m,
3.0 3.0 2.0 2.0 -2.0 0.0
23,5 3.0 1.5 1.5 -1.0 -0.5
4.5 4.0 2.5 3.5 -3.0 -0.5
5.0 4.0 2.0 3.0 -2.0 -1.0
5.0 4.5 1.5 2.0 -1.5 -0.5
85,0 5.0 4.0 3.0 -4.0 1.0
f,.jﬁ_,u 5.0 4.0 4.0 -3.0 -1.0
5.5 4.5 4.0 3.5 -3.5 0.0
6.0 5.0 3.0 3.0 -1.0 -2.0
6.1 5.0 3.0 5.0 -4.0 -1.0

5.5 2.5 2.0 -0.5 -1.5
6.0 3.0 5.0 -5.0 0.0
4.5 3.0 2.5 -1.5 -1.0
5.0 2.5 1.5 -1.0 -0.5
5.0 2.5 4.5 -3.0 -1.5
6.0 1.5 2.5 -2.0 -0.5
6.0 4.5 4.5 -5.0 0.5
6.0 2.0 4.0 -3.0 -1.0
7.0 6.0 4.0 -6.0 2.0
7.0 6.0 6.0 -4.0 -2.0
6.0 3.5 6.5 -5.0 -1.5
6.5 3.0 3.5 -1.5 -2.0
6.5 5.0 6.5 -4.5 -2.0
7.5 5.0 5.5 -6.5 1.0
7.5 5.0 6.5 -5.5 ~1.0
6.0 3.0 3.0 -2.0 -1.0
6.0 3.0 6.0 -4.0 -2.0
6.0 5.0 6.0 -5.0 -1.0
6.0 6.0 -5.0 0.0 5.0
6.0 6.0 5.0 -5.0 0.0
6.0 6.0 5.0 0.0 -5.0
7.0 5.0 6.0 -6.0 0.0
7.5 1.5 3.0 -2.5 -0.5
7.5 3.5 7.0 -6.5 -0.5
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Table 2.

e tneguivalent zeros of degree 1 of the 3-j coefficient.

jz j.'a ml mz mn p.'l. pz PB nl. n‘Z J
3.0 2.0 2.0 -2.0 0.0 4 1 1 1t 1 8
4.0 2.8 3.5 -3.0 -0.5 6 1 1 2 1 11
5.0 4.0 3.0 - 4.0 1.0 6 2 1 3 2 14
5,0 3.0 5.0 -4.0 -1.0 B8 1 1 3 1 14
6.0 3.0 5.0 - 5.0 0.0 8 1t 1 2 2 15
6.0 4.5 4.5 - 5.0 0.6 8 2 1. 8 3 17
6.0 3.5 8.5 -5.0 -1.5 10 1 1 4 1 17
6.5 5.0 6.5 =-4,5 -2,0 9 2 1 5 2 19
7.6 3.5 7.0 -6.5 -0.5 12 1 1 3 2 18
7.0 6.0 4.0 - 5.0 2.0 8 3 1 5 3 20
7.5 5.0 5.5 - 6.5 1.0 4 2 1 4 @3 20
7.6 4.0 B840 -60 -2.,0 12 1 1 5 1 20
8.0 6.5 5.5 - 7.0 1.5 10 3 1 5 4 23
8.5 5.5 8.0 -6.5 -1.5 12 2 1 5 3 23
8.0 4.0 8.0 -8.0 -1.0 15 1 1 4 2 23
8.0 4.5 9.5 -7,0 -2.5 14 1 1 6 1 23
7.5 7.5 -5.0 - 1.5 6.5 9 4 1 5 b5 24
8.0 6.0 9.0 -6.0 -3.0 12 2 1 7 2 24
10.0 4.0 9.0 - 9.0 0.0 16 1 1 3 3 24
9.0 8.0 5.0 - B.O 3.0 10 4 1 7T 4 26
9.0 7.0 7.0 - 8.0 1.0 12 3 1 5 5 28
g5 6.0 95 ~1.5 20 ¥ 2 1 € 3 26
8.0 5.0 11.0 -80 -3.0 186 1 1 7 1 28
a0 7.5 9.5 -8B.0 =3.8 12 3 1 8 3 27
10.5 6.0 8.5 -9.5 1.0 15 2 1 5 4 27
0.5 4.5 11.0 -85 -1.5 18 1 1 &5 2 27
10.0 8.5 6.5 - 9.0 2.5 12 4 1 7 & 29
10.5 7.5 8.0 - 9.5 1.6 14 3 1 6 &5 29
10.5 6.5 11.0 =-8.5 -2.5 168 2 1 T 3 29
9.5 7.0 11.5 -T7.5 -4.0 15 2 1 9 2 29
R 4.5 11.5 -11..0 -0.5 20 1 1 4 3 23
11.0 8.0 11.0 -8.0 -3.0 15 3 1 8 4 31
{2.0 6.5 10.5 ~11.0 0.5 18 2 1 & &5 31




Table 2 {continued).

il 3 Jsr m: m, Mgy p: Pz Pn My o, J

1.0 11.0 10.0 6.0 -10.0 4.0 12 5 1 8 5 32
11.0 9.0 8.0 -10.D 2,0 14 4 1 7 § 32
12.0 8.0 9.0 -11.0 2.0 186 3 1 7 5 32
11.0 10.5 -6.5 - 3.0 9.5 12 6 1 B 7 34
12.0 9.5 11.5 -80 -3.56 156 4 1 g 5 134
12,0 10.5 5 -11.0 3.5 14 5 1 9 § 35
13.0 12.0 .0 -12.0 .0 14 6 1 11 6 38

Table 3

ij;inaquiunlant zeéros of higher degrees of the 3-j coefficient.
" Polynomial zeros of degree 2.

31 jz j3 m!. mz m!l
4.0 4.0 2.0 =2 0.0
8.0 3.0 4.0 -4.0 0.0
(I 5.0 - 5.5 s 2.0
7B 4.0 0.5 e 1.0
6.5 5.0 8.5 -1.5 1.0
10.5 3.0 8.5 -8.5 0.0
.0 5.0 8.0 -6.0 -2.0
.0 8.0 6.0 -5.0 =T
.0 7.0 5.0 0.0 -5.0
1258 2.0 7.5 T:b 0.0
10.5 4.0 4.5 -4.5 0.0
11.0 3.5 L.B 0.0 ~1.5
7.0 6.5 T.5 -5.0 =Eh
Polynomial zeros of degree 4
1.0 6.0 0.0 1.0 -1.0
4.0 1.0




Chapter 4

Folynomial zeros of the 6-j coefficient

4.1 Introductions:

Polynomial (or nen-trivial) zerocs of the 6-j coefficient are
ined as those which arise due to the polynomial part of the 6-3
goefficient becoming zero when all the triangular inequalities

:fﬁﬁﬂing the six angular momenta are satisfied. Such polynomial

- of the 6-j coefficient have been classified by us according

elr degree. Polynomial zeros of degree one, also referred to

leight-one zeros by Brudno, Bremner, Louck et. al. have been

sively studied in recent vears.

In this chapter, the parametrisation developed by Jahn and

3_(1959] to characterise a 6-j coefficient in a unigue manner

scribed first. Following this, the various approaches that

3 been used to study the polynomial zeros of degree 1 via

a formal binomial expansion or Diophantine equations or

ations of exceptional Lie algebras or orthogonal polynomials

discussed.

From & formal binomial expansion for the 6-j coefficient =&

form expression is obtained for the degree 1 zeros. Using

:ijﬂm due to E.T.Bell, stated in Chapter 1, for the

neous multiplicative Diophantine equation of degree 3:

uyW, it 1is established that nine integral parameters

d,e,f,8,h and ¥, say) are necessary and sufficient to

in its complete set of solutions. An alternate proof based on




ion with respect to N is also provided where N is given by:
X, = Bow, . om = N. The egquation xyz = uvw
ned by z = x + ¥y + u + v + w is central to the discussion
polynomial zeros of degree one of the 6-j coefficient. A
m is established to show that eight parameters are necessary
fficient to obtain the complete set of polynomial zeros of
dégree 1 of the 6-Jj coefficient. In the light of this theorem, the
parameter solutions obtained by other authors are shown to
de only a partial list of the complete set of solutions. The
aint equation: ghi = abc + def + adg + beh + cft has Dbeen
d to two simpler forms of Diophantine egquations
viz. agh = g + yh + & or a'ac + e = P,
hich solutions have been given by Brahmegupta (cf, Dickson
p.64) and Paoli (cf, Dickson 1952, p.401) respectively. Two
thms based on these solutions are presented here. From
» of these, the complete set of polynomial zeros of degree
{lof the 6-J) coefficient, upto I = 177, where I represents twice

e

. sum of the six angular momenta, have been obtained.

ynomial zeros of the BE-j coefficient

3;515 recalled that trivial zeros of the -3 coefficient
ien the arguments violate one or more of the triangular
lities implied by the four triads viz. A(3,3,3,), a(3,¢,¢,),
#Lﬂjzig} to be satisfied by them. Apart from these
zeros, the 6-j coefficient possesses zeros for which all

2 triangular inequalities are satisfied. These are known as

= Y-




bhe non-trivial zeros. Koozekanani and Biedenharn (1974) tabulated
e zeros for the first time by calculating the vanishing values
he 6-j coefficient using a compuier program which resorted to
ithmetic based on powers of primes. Bowick (1976) reduced the
of Koozekanani and Biedenharn (1974) by eliminating the
valent 6-j coefficients (i.e. coefficients related by any one
f the 144 symmetries) and retaining only the ineguivalent ones,
o this he used the parameters given by Jahn and Howell (1959)
racterise all 6-j coefficients related by the 144 symmetries
a unigue way.

nonical parameters for the 6-j coefficient

Given a 6-j symbol

- R P
' L T 4 ’
1 £ w®

parameters of Jahn and Howell (1058) are calculated in the

Jn: ;’|1+j2+j3, J!.: 'j:.+£z+zs' Jz: ‘jz+£1+£a‘ Ja= j3+£1+£z,

K:: ;}z+£2+ja+¢‘a, KZ: j1+zl+;}5+£3, Kﬂ: j1+£l+jz+cz_ £1)
B!

e quantities J , J , J , J and K , Kh, K are defined such that
=T m a b c a c
J =2J . =3 = JE = ordersad [JG, J , J

i 2’

J,)
[{ﬂ?_ K‘b = K = ardered {Kl, Ez. KB). (2)

s of these, six positive integral parameters are defined

m m m
=K ~J . p =K -3 ., p=Kk -3, (3)

i P




ﬂ1+n2+ns+P1+Pz+P5:Jm_ (4)
(2) it follows that

= . =
ni_nzana ! Ps.'_l"-‘"zzl;’sm' (5)

~each distinct 6-3 symbol 1is characterised by an ordered
ion of J given by (4) and (5). It is to be noted that J,

¥

, b and K, K
3 i

- Kg in (1) are the same as the o’s and f3’'s

~of Chapter 1.

i) Lockwood (1977) introduced certain parameters 9 9, 4. q,
J;;ﬁ;-pv. B, which he called as intermediate parameters. These
e same as the a's and (3's introduced by Sato (1855) and
iven in (48) of Chapter 1. After ordering the g's and p's as
LELTRFL b R, FE 2R ., (6)
ood defined certain differences between these as:

9 -9 879 ~q,

o, g, g Ao oep e g g o
_;Hj,after aliminating all but Q, and substituting [q&+ g)

1l
1l

SRy =g s &

;ummation index in the expansion for the 6-j coefficient,
(1877) rewrote the €6-j coefficient as the product of a

Artaet+brocrdie

factor P = (-1) y @& numerical factor E and the

T=L(-)®(In+a+bt+tct+dt+te+s+1){sl(s +a)l

s
x (s +b)!(s +c)l(n-s)!(n+ad-3a)(n+e - 5)t} . (8)
skwood observed that P, R and T are invariant under the

nge of @, & and © and of d and e and concluded that the

r n does not enter into the symmetry operations and that

o, .




here exists a 12 - element symmetry Eroup for the B-J

icient. It was pointed out by Srinivasa Rao (1980) that P, R
are infact invariant under the interchange of @, b and ¢ and
ntd and n+e, The series (8) thus exhibits 36 of the 144
ies of the 6-j coefficients and n does enter into the

cperations. Hence the conclusions drawn by Lockwood on

asis of his canonical parameters are not valid. If one must

to some parameters as canonical parameters for the 6-J

ignt, then the ordered set of seven parameters J_, n, n,,
. introduced by Jahn  and Howell are  the

al parameters.
e 6-] coefficient as a formal binomial expansion:

hiﬁ explicit expression for the 6-j coefficient due to Regge

g

S a
iy = NI CDP (eI g (pa ) T (Baop)! 1 (9)
‘cz 'ta } P i];.ri i jE.t J
N = A(3,3,4,). au;:,c,}Auitzg).a(r,.izrg; ,
pmin = p = Pmax ﬂ
Pmin = max {uiinz,aa,a‘] = a
Phax = min (8,.6,.8,) =3, . (10)

) making the substitution:

e




Sato (1955) rewrote the 6-j coefficlient as:

I 3, 4
{ £ &1L }
1+ 2z 3

o ST

N E (-1) ® (e + 1+ X)I{ ki(n - k)!(A+ k)|
k=o P

. P -1
xfﬂq+ k}l{ﬁr+ k}!{Bu~ k]'{Ev k)!{} (12)

_I-._:-. n = ﬁﬂ - 0(0 , Ai = ﬂ.ﬂ - ﬂi " i = P,Q,r ,

B. =6 -a , j=u,v. (13)

n o. and R, respectively.
Using the definitions:

P! “ (p + e}l
P{a} = Tp - ayr 2and F{ Sl

i (14)
the 6-j coefficient was rewritten as a formal binomial expansion

Sato (1955) as follows:

Lo oo} = % 07 reeg o x
1 2 s ;
* {M(n+1,A +n+1,A +n+l,A +n+1,B +1,B +1)}

s -1 (1)
e {{ﬂp+n%{ﬂq+n]{ﬂr+n] EuEv(ﬂn+1] 1 : {15)
Alternatively, by making the substitution:

p=f_ -k

(o]

'Y%;using the symbolic notation:

p! _
Pta} = 7 B P{ a) _ 1 ; (17)

in the place of (11) and (14), Srinivasa Rao and Venkatesh (1877)

btained the following symbolic binomial expansion for the EB-j

icient:

S




SE 3
4 2 h: |

* AT(n+1,A +1,A +1,A +1,B +n+1,B +n+1)}™

* (B, +n)(B +n) - A A A (B, +1)7"3 () (18)
Ay =B, —a, , 1 =p,q,r and B, =iff; =By, i = ugw,
t is to be noted that for n = 1, (17) implies that
| M ey and p Y = 1/p, (20)
as (14) reads as:
T2 p oad P = (pe1). (21)

H;ﬁeatleast for n = 1, the generalised power (Ansary 1968 )
ﬁﬁ by (17) represents the actual power and the formal
lal expansion given by (18) is an exsct binomial so that for
-ﬂ@is binomial expansion reveals some of the zeros of the -3

ficient. The X and Y referred above are given by:

X:= (Bu * n) (B, + n}Eﬁﬁ + 1)

= (B,- e ) (B~ e ), +1) (22)

Y= (B a ) (By- a )(By- &) . (23)

Based on the above mentioned criterion for the degree one
¥os of the 6-j coefficlent, viz:

(1 - &(n,1) 6(X,Y)) , (24)

ter program has been developed to generate these degree one
‘With the same type of ordering for the arguments of the 6-j
ficients as has been done by Koozekanani and Biedenharn
4). These degree one polynomial zeros have been generated for

< 13.5_corre5panding to the tables of Koozekanani and

TG




Bledenharn (1974) and it is found that 1174 out oy

the remaining polvnomial zZeros

ulated by them were sorted out according to their degree given

(Srinivasa Rao and Rajeswari (1985a)). The first

entries of this sorted list of zeros of various degree are

en in Tables 1,2 & 3. Using the parametrisation given by Jahn

nd Howell (1959) foy the 6-j coefficient a FORTRAN program has

E.ﬁévalop&d to sieve cut the Lneguivalent -3 coefficients from

guivalent gnes. The lneguivalent Z2eros of degree one given by

(1976) was reproduced by the Program. The details of this

ther programs are Egiven in Appendix B.

The

he condition for the degree one zeros given in (24) can also

1ply interpreted in terms of the sets of Jo(l)s for the 6-j

ificient given by (54) and (B0) of Chapter 1. In +this

'jn = 1) the eXpansion ends after the second term and the

{ « ABOD . .
EF G

ABCD =-EFg

(25)
R (26)
C, D, E, F and 3 are the numerator and denominator

ers of the ‘F;{lJ hypergeometrie series , with A, B, C or

B=] coefficient

Brudno (1985) Eave, for the first time, several
|

Parametric
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formulae for the polynomial zeros of degree one of the 6-j

coefficient. He gave the following three one-parameter formulae:
i+ 2 rekd 2
{ r T+l n+1} ’ ( a7 ‘:I

Bx + 412 (3% + 432 ¥ o+ 2 {25}
(ZH o+ e 3.2 ax + msz|

o ad - 4 oty
{2J+3/2;J ¥ 1/2}2_:— :/z} (29)

from these he gave a mare general nine-parameter solution

‘derivation of which goes along the following 1lines: The

tion for the zeros - eaqn. (26) - in terms of the parameters

= S O

the F (1) of set-I for the 6-j coefficient {zl 32 33}{given by
i 2 3

) of Chapter 1) when written explicitly reads as:

B2 03,0 3,0 303,44+ 8003, + 4,- ¢)(3,+ ¢, 2), £30)
g G+ 4 060 1Y% -5 — ¢+ )4+ &, -4, - £+ 1),

any one of the four integer quantities: {j= t jz = jH),
| + L, (3, +4, - £) or (3, + ¢ - ¢,) ecould be egual

nity and without loss of gene_ality it ean be assumed that

_‘ju kS {i 1 cz =1 (31la)

which is now a product of three integers is decomposead

into
intagers:
F = abede fghit. (32}
e considered the particular partition of F given by:

N § * & -4 s oadag (31b)
j1 +-% - % = beh , (31c)

g, e = L = e fi, (31d)

j1+jz+zi+fz+1 = ghit

; (3le)




Ja.'.;g_.ji—(‘-{-l = de f , (31f1)

ja+:{3—~jz—£2+1 = ab e . (31z)
8 seven equations (3la) - (31g) yield the solution for +the B=3

fficient as:

tabctradg ~1)72 (adg+cfi+def —-1)/2 (behtabetcfit+def -2)-2
_Ffi + abcec yr2 (beh + def)-2 (b tadgt+de f -1:)~2

g with the constraint: (33)
lghi = abec + def + adg + beh + c f1i,(34)
= » = 1, 2, ....In the above equations
identifications made are slightly different from those of
Brudno (1985), and this has been done to fecilitate an uniform and
stent notation in the rest of the chapter,

B Equation (30) can infact be written as:

Fzuvw=xyaza, (358)
.@;+§hé'canstraint (34) taking the form:

Z = x+y+u+v+ow, (36)
iere x, ¥, 2z, U, v and w are positive integers. It should bhe
that eqn. (35) is & homogen:ous multiplicative Diophantine
tion of degree 3 the solution of which was given in terms of
e integer parameters a, b, €, d, e, f, & h, i by Brudno
. To establish that this nine-parameter formula gives all
p8sible degree - one zeros, Brudno and Louck (1985) saolved the
licative Diophantine equation (35) explicitly with the
raint (36). To this end eqns. (35) and (36) are +transformed
'-ﬁ;gﬁe identity:

- 24 ABC = (A+B+C)” + (A-B-C)? + (-A-B+C)® + (-A+B-C)° (37)

g




| they are rewritten as a pair of Diophantine

aquations
nvolving equal sums of like powers:
f+*ﬂ+29:uﬂ‘+‘f'+w’, (38)
L & ¥ + Z =2 0 = ¥ & w . (39)
X = x -y + z, U = u+v-—w,
Y =-x+y+ 7, V = ua-v+w, (40

Z = u-wv -y, W = x4+ 3y + 2
0 and Louck (1985) located & Ltwo-parameter solution to the
of equations (38) and (39) which was due to Gerardin
kson 1952, pp.565, 713). Bromner (1986) extended the
igatian ef (38) and (39) to produce twoe four-parameter
ions and related them to the Brudne and Louck solution of
Finally, Bremner and Brudno (1986) solved Lthe Same
antine equations to obtain anocther four-parameter sclution
 they claimed gave all degree-one zeros of the 6-j
cients. |

.{it is to be noted that usirg the theorem of Bell {1833) for
omogeneous multiplicative Diophantine equation stated and
ed in Chapter 1, it can be established that +the complete
on of (35) constrained by (36) requires eight integer
jarameters. Given below is an alternate proof provided for Bell's
heorem. The various parametrisations of solutions referred to
‘are summarised and compared with the eight-parameter

n., It is shown (Srinivasa Rao, Rajeswari and King (198Ba))

t all the parametric solutions with fewer than eight parameters

8 in a certain sense incomplete,

S -




.6 Alternate prr.mf'r of Bell's theorem

iiﬁﬂarding to Bell's theorem, every  solution  of the

XX, ..o x 0= A (n > 1) (41}
. expressed in the form:
L n ¢ r
= 1 and u, = 1 iy (42)

_ ;ﬁe n- independent parameters ¢ij with i, j = 1, 2

are positive integers which can be arranged in ann x n

A(d) with ¢ij at the intersection of the ith row and

h column subject to the greatest common divisor (g.c.d)
(xi Iui ) = ¢’ii 3 (43)
.,n satisfied by the diagonal elements of the array.

prove the theorem for all values of n an inductive argument

cent of that used by Brudno and Louck (1985) is resorted to

iking into account the g. ¢. d conditions without allowing

tion of the components Xy and uy for =1, 2,

4

., n. Let:
X, Xy o0 X = ou U, «..ou = N, ({44)
nduction argument is made with respect to the parameter

eeping n fixed throughout.

's theorem is obviously true for N = 1. The

only

is Xy = uy o= L for % = 1; Bieseoy n oand correspondingly

B for all i, 4= 1, 2..:., =n. For +the induction

i author wishes to thank Prof.R.C.King for this.
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‘hypothesis it is assumed that all the solutions of (44) are given

u Bell’'s theorem for N = 1,2, ...., M-1, with M > 1.

Now two cases arise:

: ' which

firstly any solution of (44) with N = M

'ﬂ;i,ui} =44 wWith 1 < g =N for some i e {1,2,...,n 3. (45)

celling gq throughout (44) with N = M gives an equation of the

game type with N = M/a. By the induction hypothesis, all the

utions of this equation are given by Bell'’s theorem for some

A(¢"). Having divided both Xy and u, by q it is clear that

=l . Simply multiplying this element at +the intersection

the ith row and ith column of the array A(d") by a and leaving

8ll the other elements unaltered gives +the required array

for the original solution of (44) with N = M. The g.c.d.
wr:}ticns are automatically satisfied,
. Secondly, there remains only tée case for which
[xi.ui] =g = for all 1 e { : R N

ince M > 1, it follows that there exists some prime P » 1 sueh

P | M . Correspondingly there exists x; and uy with i =

that p | x; and p | 4,. Cancelling p throughout (44) with N

es an eguation of the type (44) with N = M /. By +the

.on hypothesis, any solution of this equation gives an array

”Wﬁ:atisfying the g.c.d. conditions. In fact, by virtue of (46),

diagonal entries are 1. Multiplying the entry ¢ij at the

ction of the ith row and Jth column by p and again leaving

e other elements unaltered gives the array A(¢$) required to




represent the solution of (44) with N = M. The g.c.d condition is
still satisfied because the diagonal entries are still just 1.

This completes the induction argument and Bell's theorem is

{ﬁ{y&d-provided it is shown that the n parameters are

genuinely
independent.

This can be seen most easily by considering those

tions of (41) of the form (42) for which the n° parameters
: ij

on nz distinct prime values. It is obvious that to generate

Eﬁxcampleta sét of such solutions for arbitrary N, all the n~

remeters are required.

It is worth pointing out that in general for n > 3 it is not
that all distinct arrays Ald) satisfying the g.c.d.

tions (43) give distinct solutions. However, this is the case

n = 3. This is trivial for n = 1 and n = 2. For n = 3 it ecan

be proved by noting that if A(d) and A(¢') are different but

i
spond to the same solution of (41) then there exists some
P > 1 and some pair (i, j) with i # j such that

Pl o 2 A b
I order that the arrays A(¢)

(47)

and A(¢') correspond to the same

ition the product of the elements in their ith

rows must
de, as must the products

of the elements in +their Jjth
s, Hence, taking into account the fact that their diagonal

nts also coincide, there must exist k such that

}w1-¢ik with {1,3,k}={1,2,...,n }and k= i # j = k
. (48)
such that

with {i1,jm}=s{1,2,...,n }andm = 1 = J2m .




It follows that if n = 3 then k = m. Hence

{xk Uy ) = HLp. e H.ﬁ.{xk.uk} . (580)

b

for some integer un = 1 ,» and we have a contradiction for p > 1.
it follows that, for n = 3, distinct arrays A(d) satisfying +the
.¢.d. conditions (43) lead by means of (42) to distinct solutions

) and vice versa. Applying this result to the degree-one zeros

orem: The degree-one polynomial zeros of the 6-J coefficients

are all given, upto symmetry transformations, by:

+tu+v-t)/2 (y +u+w - t)/2 (x +y+v+w-=2t)/2
(x + w)/2 (v + v)/2 (x + 3y +u-1t)/2

t x ¥
- u X +tu -t ¥ +u-1
- W X+ w -t Yy +w -t ! (51)
v X+ v -+t y+v -t
tht = 1l and x vy z = uvw wheré z=x+y +u+v+ w, In

3l) the right hand side represents the Bargmann - Shelepin Array
gmann (1962), Shelepin (1964)) defined by (55) of Chapter 1.

possible solutions to these equations are specified by the

u v W
x a c
g o = f A (52)
fod & h i

il the appropriate rows and columns of this array. The entries

"ﬁ_c, d, e, f, &, h, ¥) take on all positive integer wvalues

P [




consistent with the conditions:

ghi -adg+beh+ec fit+abec+def (53}
b, d) = (b, 8) = (b, f) = (e, d) = (c, g§) = (e, h)
= (d, R) = (fy &) = (f, B) = 1. (54)

makes it obvious that the complete set of solutions of the

on (44) constrained by (43) requires a minimum of eight

ters (since (53) can be used to eliminate one of the nine

sters). Thus (33) can be explicitly written in terms of eight

eters alone (viz. x, vy, u, v, ¢, f, & and h where x = a b &

Uu=-adgand v =5 e h) as:

3%+u+?+v-1} (Y+u+¢f%§%£;25;% -1) (x+ty+v-2+ %%%;B;Y 3}
: -.':-;'"'” i cf%}g%% ) (y+v) (x+y+u-1)
(54a)

h Brudno (1985) obtained a nine parameter solution, +those

sters were not required to ﬁatisfy the g.c.d. conditions

m by (54) nor did he realise the vital connection between

omtal zeros of degree 1 of the 6-3 coefficient and the

omogeneous multiplicative Diophantine equation of degree 3,

:}mparisnn with other parametrisations

The three one-parameter formulae of Brudno (1985) given by

28) and (29) are rewritten as:

n+1 2 m+ 2 m+ 1 m+ 1
not Ll a+l } - { m 2 m+ 1 } v DT
3

(3x+4)/2  x+2 } —_ {f3n+l]f2 (3n+1)/2 n+l (56)
3/2 (3x+3)/2 (2n+1)/2 3/2 3n/2 ’

--88--




and
J a3-1 3J  feeesy 2z 241 (2m41)2
(43+3)/2  (2J+1)/2 (4J-1)/2 (5+1)/2 (5+2)/2  (36+3)/2f 47,
with m, n, b=1, 2, ... , where , in (55) and (57) the

symmetries of the 6-j coefficient have been exploited to write

them in the form (51) with t = 1. These three cases are covered
in the notation of (52) by means of the arrays:

u v W l u v W | u v W
X 1 m n 1 X 1 1 1
v I y 1 1
28 | m + 2 3 E . z | 2 2 w1l o 2 (25+3) 2 1

respectively.

Fy

By solving the pair of Diophantine equations (38) and (39)
%br sums of like powers, Brudno and Louck (1985) determined the

Wo-parameter solution specified by the array :

u v W u v W
q Jg-2p 1 X | 2bth 2b+3Ah 1
B/2 1 a-p — v b 1 h , (58)
3  (2q-p)/2 3a-p z 3 b+h  4b+3h
with &, A = 1, 2, .... By the same means Bremner (1986) obtained
the solutions given by the arrays:
u v W u v W
r-6 3 2 X a d 2
a-23 1 5 — 3 b 1 R, (59)
1 r+asé o3 = 1 a+3k &+ 3d

MG




u v W
cip —Aos +FEy -5 (—»+55) /2 =}
(cy —basS+p-25) /2 1 —cp+ 50535 —3
1 o Bl Sty 25 35/2
u v W
X pst3qr+das r/2 p
(—pr+2gr+3gs) /2 1 rr-gr-qs
z 1 IFr+2q?r+3q?s (3r+3s)/2
(60)

‘with p, q, r, s =1, 2, ... subject to the constraint:
' g (2r + 3s) > pr » g (r + s).

The culmination of this approach is the four-parameter formula of
Bremner and Brudno (1988) which they claim gives +the complete
solution to the problem. However, it is not difficult to see that
ihe array corresponding to their sclution (Bremner and Brudno

(1986), equation (27)) can be written in the form:

| u W W u v W
r 1 pg-rs x o 1 fi—ab
5 rQ-rs 1 = ¥ ] fi—ab 1 . (B1)
. | pta+r+s j*) q z | atb+f+1 I 1

2 2 2 _
{ a/z  3/2  3/2 } = ¥ (62)

esponding to x =y =1, u=v=w=2 and z = B, specified

.....
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u v W
x 1 1 1
b4 1 1 1 (B3)
2 o 2 -

cannot be obtained from (61) with integer parameters. A clue to
this omission comes from noticing that it may be recovered from

(61) by setting -

p=ag=2(3)" r=sz=(3)" (64)

ﬁ&ﬂ explanation for this lies in the fact +that in deriving the
ﬁmlution (61) to (38) and (39) Bremner and Brudno (1986) have made
successive transformations from the parameters (X, Y, Z, U, V, W)

o (o, 3, #, &) to (p, q, T, 8). However, at one stage a
‘denominator is removed, with the justification that their original
‘equations (38) and (39) are homogeneous. Quite apart from the fact
*i@gt such a step is not appropriate in dealing with Diophantine
jggﬁations* the weight-one 6-j c;efficients are not themselves
in any of +the sets of parameters since thelir

%Efinitiﬂn invaolves setting £t = 1 in (51). In terms of the

Lwramaters (p, 9, r, s) of Bremner and Brudno (1888), the hidden

a { 2(pa - rs) Y,

s { 2(pa - re) Y ¥?. (85)

p{2pa-rs) 1, g

r { 2(pq - rs) ¥'?* |, s

substitution of the wvalues p g =4 and r = 5 = 2 then glves

18

= (%J and r' = s' = {%}’xs , which as noted in (64)

(63) to be recovered from (61).

e



It is perhaps worth pointing out +that a four-parameter
solution very closely related to (6l1) may be very trivially
obtained from the complete solution (52) merely by rearranging the

elements as below, taking care to preserve all row and column

products

Ll W W b1 v W
abc 1 1 b4 o 1 X
de f 1 1 e v d 1 i

& a+d+h+i
bea] beh cfi 2 |\ == fel L

This is a four-parameter formula for the complete solution in
which the parameters a, d, h, { are positive integers. This same
complete solution to the Diophantine equations (35) and (36) can
be obtained even more trivially by setting x = a, ¥ = d, ¥ = hand
i, Seolving for 2 and u then gives

z=(a+d+h+1)ht » (bt ~ad) , u = adz /hi (67)
gprecisely as indicated in (BB6). Fdf each set of such parameters
ht is necessary to check that z is a positive integer, which would
%ﬂSurﬂ u being an integer. In terms of Bell's theorem (52), since
=e = f =1, we have, in fact, a five-parameter soclution,
#hich reduces to a four-parameter solution due to the constraint
eguation (53). It should be noted that +the fifth parameter
la+d+h +1) / (hi - ad) will not always be an integer,

¥ 7T 9/2 g9/2 - 9/2 9/2 7
kg 5/2 4 4 - 4 4 5/2 J

s the four-parameter sclution
¥ == 2, ypr=d=2,; ¥y¥=2H=8,; wzd1=28
g}that the fifth parameter is:

B (e +d + 2 +£) / (hi - ad) = 1/2

S L



which is an exceptional case referred to in Table &.

The conclusion drawn from the above discussion is +that the
one-, two- and four-parametric soclutions given by Brudno
(55) - (57), Brudno and Louck (58), Bremner (59) and (B0}, and
ourselves (66) do not yield all the polynomial zeros of degree one
of the B-] coefficient. Te illustrate this explicitly, the
minimum values of the parameters allowed in the one-, twa-, four-
‘and eight-parametric solutions given by different authors and the
‘eorresponding arguments of .

J
lggat =0
with the value of the invariant
1:2; (j, +4) = 3z2+x+y -5

k=1

are listed in Table 4. Hote that

. 4 81 . ;
3/2 3/2 3/2f *

corresponding to I = 21 is the first polynomial zero of degree one
given in Table 1.

&hnugh. like the eight-parameter sclution (52) and (53), the
one-parameter and four-parameter formulae (58) and (68) also give
rise to the first of the non-trivial degree-one zeros, unlike the
elght-parameter case, (56) as well as the two other one-parameter
formulae (55) and (57), the two-parameter formulae (58) and the
four-parameter formulae (59) and (60), ecannot generate the
complete list of polynomial =zeros of degree one. This is
;j_.'_llustrated in Table S by listing the first fifteen Regge

ii_,:nequivale.nt polynomial zercs of degree one and indicating which

LEres




of the parametric solutions given in Table 4 can account for

them and which cannot.

4.8 Algorithms

In this section two algorithms are discussed to solve (53)

_and find all its solutions. To solve (53) completely, it is

reduced to (i) a quadratic Diophantine equation (Srinivasa Rao and

Rajeswari 1987) and (ii) a linear Diophantine equation, the

solutions of which were given by Brahmegupta (of 6th Century A.D.,

c.f. Dickson, 18952, p.64) and Paoli (e.f. Dickson 1852, p.401)
‘respectively, and these are described below:

Algorithm 1 Since the nine parameters in the array (52) can take

non-zero integer. values

(1) Choose:w, &, c, &, & &tid F te have valiuss 1 to 10 (say),

successively and arrange these into a nest of loops.
(ii) Choose a value of i, also to be 1 te 10 (say).
(1iii) Equation (53) then reduces to the gquadratic Diophantine

egquatiaon :

AXYy=03x +yry +86, (68)
with o = i, x =g, v = R, 8 = ad, ¥ = be and & = abec + def + cfi.
The solutions of (68) were given by Brahmegupta as follows:
Let = be an integer and let n = ( a & + g 7 /e
Choosing only those integer values of & which will give
lnteger values of n , the solutions for x and ¥ are given

by the two sets:



o SO v B 5

[max (£,n) + min (F,¥)], [min (£,n) + max (3,7)], (B8a)

[max (£,n) + max (3, r)], [min (£,n) + min (3,r)]. (639b)

BRI

In these sets (689a) and (69b), x is that containing ¥ . Using this

method, all allowed values of g and h for a given set of a, &, ¢,

d, e, f and ¢ in (53) are found out.

‘Algorithm 2

"

L® 1

(i)

(ii)

(iii)

(iv)

Let seven of the nine parameters in (52) take successive
values 1 to 10 (say) and these are arranged intce a nest
of loops. The two parameters excluded from this nest
should belong to independent rows and columns, e.g.
(e,e), (e,1), (b,d}, (c,e), (e,8) ete, in (52).

The nine relative prime conditions to be satisfied by the
parameters, given by (54), are checked. (These conditions
are the direct consequence of the three g.oud,
conditions).

The constraint equation (53) now reduces to the form of a

linear Diophantine equation:

a' x+ 'y = ¥ ' . {70)
For instance, if x =z a, ¥y = e thpn

a' = b @ ¥ d g

e f ol oy ot (R o=e FTTE)
Solutions of (70) and (71) are sought such that sh > <cf
and i(gh - cf) 2z b (¢ + k) +d(f + g). Paoli (Dickson
{1952)) noted that if (70) has integral solutions, any
common factor of a’and * must divide y 'and hence can be

removed from every term. Hence, let «'and (' be relatively




prime and positive. Let = denocte the least positive
integer such that (¢ '- &'£) is divisible by pB'. Then
every solution is given by:
X =& +3m, y = r'-ea's)/f-a'nm , (72)
where the values of m making x and v positive are 0, 1, 2,...E; E
‘being the largest integer less than (3 *- a'e)/a’ 3 . Thus all the

parameters subject to the constraint (70) are determined.

Determining the nine parameters of the array (52) using
‘either of the algorithms given above x, v, z and u, v, w are found
mm (being the products of the row and column elements of (521}
;aspactivelyj, These values when used in (51) with t =1 gives the
corresponding degree-one zerc of the 6-J coefficient.
Alternatively, a simpler algorithm is the one which arises
due to the four-parameter solution given in (66):

(i) Let all the four integer parameters, @, d, h, t take
successive values 1 to 10 (say) and these are arranged into a
_ nest of loops;

f&%}lﬂheck for Rt > ad, cnmputé z given by (67), and

(111)Check for z being an integer and compute u given in (B87).

Having obtained the values of x = a, y=d, v =h and w = i

as well as the wvalues of u and z, the required degree-one

polynomial zero is given by (51) with t = 1.

All the three algorithms mentioned abave have been
cessfully tested on a computer to generate all ths tnegutvalent

ynomial zeros of degree 1 of the 6-j coefficient corresponding
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to the table of Biedenharn and Louck (1981b). These programs are
described in Appendix B.

4.9 Physical Significance of the zeros

The polynomial zeros have also been studied wusing Group
‘theoretical methods (Van den Berghe et al) and utilising the deep
‘connection between +the angular momentum coupling, recoupling
coefficients and the orthogonal polynomial (Suslov et al). A few
of the zeros have been explained using the seniority coupling
scheme, aquasi-spin model and +the coefficients of fractional
parentage. These are described briefly below.

One well-known example of a non-trivial zero of the 6-]
coefficient known from the time of Racah (19423 is:

{553}
3 3 3
Biedenharn and Louck (1981b) have illustrated how this zero comes
out as a conseauence of the Embeéding of +the exceptional Lie
algebra Gz in the algebra Z0(1). Following their remark that it
:would be of considerable interest +toc examine the remaining
exceptional groups by similar explicit results, Van den Berghe et.
'al. have discussed in series of papers (Van der Jeugt, Van den
Berghe and De Mever 1883; Van den Berghe, De Meyver and Van der
.Heugt ({1984); De Meyer, Van den Berghe and Van der Jeugt (1984))
htha results for the exceptional groups F4 and Eﬁ. They  Thave
'explained a few of the zeros from realisations of the exceptional
‘Lie algebras F, and E . Their results are tabulated in Table 6. It

is to be noted that of the 9 ineguivalent 6-j zercs,8 are degree 1
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zeros and only one is of a higher degres.

The connection between the 6-j coefficient and the Racah
polynomial - which is an orthogonal polynomial (Wilson (1882)) of
a discrete variable (polynomial orthogonal on a discrete set of
points) - has been utilised by Smorodinskii and Suslov (19823) in
explaining some of the zeros. They look upon the zeros of these
coefficients as the zeros of the Racah polynomial and have given a
condition for these zeros which is the simplest condition for a
root of the polynomial. In Table 7 the szeros explained &by +this
method are listed.

Arfken, Biedenharn and Rose (1851) while investigating the
_?Esibility of competing radiations exhibiting different angular
ZEEtributions (in the sense that one radiation 1is isotropic and
another anisotropic) came across two singular cases, viz, the
transitions: 3/2 » 3/2 and 5+ 4 by quadrupole emission.
1hese transitions implied the non-trivial vanishing of the 6-J

goefficients:

2 2 o ' 5 5 2
{3;2 3/2 3;2} and { 2 2 4 } :
Amos de-Shalit and Talmi (1963) have shown that the first of these

Eg zero on the basis of the seniority scheme. An explanation for

i

Zéro is presented below.

In the guasi-spin model, three operators viz, E+, Z and Za
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are defined in terms of the fermion creation and annihilation
oparators br o and'ﬁ.m respectively as:

_ 1 —l R +
E+ = 25 (=1} bj.m bj,-m " (73)

il

= Jemm d.m

2.=2)" =38 -1y’ "b__ b . (74)
m
In (73) and (74) i, m denote the total angular momentum and

projection guantum number of the fermion on which the operator

iﬁ_moperatas. Using the anticommutation rules for +the fermion

L

operators, and assuming that (23) is an odd integer one finds

that:

— T _ % =
L Z .2 1 = 2 ¢ EbLm b, b. hLmed = 224, . (75)

— 1.m 1.
Hith Eﬂ defined in the above manner, it can be shown that

il o % T B R (76)

which shows that +the three operators, 2+, & ; ZD obey  the

commutation rules characterising angular momentum. Hence these are

ecalled guasi-spin operators.

Combining the concept of seniority and the
creation-annihilation propert} of the operators Z , Z_and Z~ the
eigenvalues of the operator 2Z° defined by:

sl (z, &_ +Z_2) + 7. (77)

can be found out and it is given by:

g (a2 + 1) (78)
‘Where
e = Gudtl o ¥
L] = 4 2 ¥ ( T 9 }
with v denoting the seniority of the many-particle nuclear state

with angular momentum j. In (79) (23 + 1)/2 gives the total
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number of pairs (i.e. J = 0) that are allowed for a given j walue
and the seniority v gives the number of particles that are not

paired (i.e not coupled to J = 0). The eigenvalue of Ea i.e. the

projection of Z, is given by:

T g - Eiil ' (80}

where n gives the total number of particles in the state j.
Further, it can be shown that the +tensor operators with odd
angular momentum are quasi-scalars whereas +the evan teansor

operators are quasi-vectors,

With these facts, let us look at the interaction energy of a
quadrupolar one-body potential in the two-particle state (with
J = 3/2) having J = 2. This has the form:

E>=< (P vz, 0=, 8| % v=2 3=2 M>

2 2 2
“ {3;2 3/2 3;2} ; (61
Since the one body potential U: is a quadrupole interaction it
iullows that it is a vector in quasi-spin space, The 1initial and

final states belong te quasi-spin values:

2 = 0

z . Q
=]

(82)

Hence the matrix element in (B1) wvanishes due to wviolation of
quasi-spin 0 ¢ 0 + 1 and hence implies that the 6-j

coefficient is zeroc though all the triangulr inegualities are

satisfied for this,

Judd(1970) has related the following zeros:
5 B 2 6 4 4
{j 224 :} and {: 55 2 }
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to the vanishing of the fractional rarentage coefficient in +the

atomic

E - shell.

4.10 Conclusion

(1i1)

To conclude, in this chapter

(1)

(ii)

We have shown that rewriting the -3 coefficient as =a
formal binomial expansion, (X - Y)“ﬂ the polynomial
zeros of degree 1 of +these coefficients can all be

represented by the simple multiplicative factor
(1 =38tn, 1) 8%, %05,
This criterion has been used to generate the complets

list of degree one zeros.
Using Bell's theorem it has been established that eight
parameters are necessary and sufficient Ifcr the
complete scolution of the homogeneous multiplicative
Dicphantine equation: x v z = u v w along with the
constraint z = x +y +u + v + w which gives the
condition for the golynomial zeros of deg}ee 1 of +the
6-J coefficient.  The parametric formulae given by
various authors for these degree 1 zeros 1in +terms of
fewer than eight parameters have been shown to generate
only subsets of the complete set of zeros.
Two algorithms have been presented to solve +the
constraint equation z = x + ¥y + u + v + w which hawve
been successfully tested on a computer to generate all
the polynomial zeros of degree 1 of the 6-3

coefficient.
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Polynomial zeros of degree one of the B-j coefficient

(egquivalent ones).

4

3.5 5,0
0 b

. B
.0
3.9

5
5

.
.0

S
6

8.0

5

1

0 TR |
1.0

.0
.0
=B

2
2
1

2.0

5.0
6.0 - .0

3

3

.0
8.0

.0
.0

2
1

2.0
3

4.0

6.0
6.0

6

3.0

1.0

.0

6.0

18

.0

o
0
8.0

8.
8

ul

Lo

3.5
3.0

o
0

4,

4.5

5
0

3.

- ¢

g8. .0

.0
.0

0 3.0 3
.0

2
2
2.0

2.0
%

3.

6.0

4.

5.0 50
6.5 5
2

%

o

5
.0
.
25

3.

.0

0
5
.0

3.

3.0 6.0

5
2.5

2.
3.

3.
3

.0

2.
4
4

3.

6.0

3.0

6.9
5
.0
0

8.0

.0

4
2

3.0

2.0

4

4,

B
7.0
.0

4

o

b
.

3
P

6.
7
7

0
8.0

0
.0
.0
o -

2.0

3.
2
2
3.

0
i
=5
20
0

4.
1

0
5
. D
i
.0
5.0

4.

7.0

6.0
4.0
9.5
6.0

4.5

4.
i

4

5

4.0

.a
.0
8.0

4
3

.9
.0
2.0

i
3
3
1

2
o

4.5 4.5
.0
B
.9

3.0

.0
.0
.

T
i
1

1.0

7

8

3

2

7

+0
-5

.0
“h

4
3

2

5

T
7

4
1

.0
4.0

7

.0
8.0

v
5
1.0
145

3.0
4,

5 4.5
.5 6.5

T
T

4.5

8 AR

0

5
5.5 4.0

6.0

)
o
0
1.0
4.0

5.
1

0
8.0

8.

5 4.
5

3.

5
0

%

8.0 6.0 5. 1.5
B 7.0 4

3.5

3

4.0 3.
4.5
6.0 5.0

7
7
4

4.

i)

0

2.5

o
6.5

4.

8.5 7.0 4.5
5 6.5

w0
.0

5
5

4.0 5.0
.0 3.0
3.

LER
3.0

.0

0
8.0

o
8

1

5.0

3

5
5.5
3.0

2

5
0.5 4.0

2.
B
5

B.5
8.5
8.5

5
.0

2:5 b.5

4
3

3.,
2

5

3.0 2.6
5.0

5.0

.0 5.0

.0 5.0
.5

4
2

.0

5
6.0 6.0

5

7.
8

.5 4.5

.0

8.0
8

4.0

6
2

.5 2.5
.0
.0

2.0

4.5

2.0

3
2

D
.0

B
.0
9.0

.0 A0 3.0
i .0
2.0

5
1

.0

6
6.5 5.0

0 5.0
-2 Bib

.o
6.0

o,
B
6.

5] 4.0
D

B

9

.5

.5

<5
. D

i)
.0

4
4

3.5

5.8 2.5

6

6

.0
-5
3.0

4.5

4.5 2.0
.5
L

0
o
.0

5.

4.0

6.5

5
0

9

2.5
6.0

5.0

5
.0

4 3.
3

8.
B

6

0

6.0

7.

3D

5

—102--




(continuad) .

Table 1

3.0 4.5 6.
5

5
i

2
2

8.0 7.5
-5

0

B
=)

it
-5

1
p

6:0 3.5 3.0
Fi:D

6.5

6.
T

9
5
9::0

6.
3
2

.0

7

.0
9.0
2.0
8.0

6.0 3.5
6.0 5

6
6

5
5
H

6.

3.5 4.0 B8,
5

T+

5 4.0 3.5

3.

g

6.

8.0

4.5
4.

+5

B

T

5 5.0 3.5
3 5
.0

3.

L

6.
B

a Fa
D

5 B.5 o
.0 D

T.
8

4.
B

4.5 L0
B

B
0

B By
B.

.5

1 T
T

2.0

.0
9.0

9

1.5
3.

g, .5

6.5

5
.0

5 6.
4.0 6.0

.0
|

2.0 5.
T

B.0
8.0
8.0

4.0

4.5 8

5.0

5
5
5

6.

6.5

8

0
0

2.

.0

£d

5,

0 5.0
5 i

g. -+

6.5

3

3.

9.0

G 4.0

4.

2
4

7.0 4. 4.

7.0
T

5

2.0
i
b

P

.0
.0
o2

g
7
B

.0 3.8 3.0 2.0
8.0 5
B

9.0
g

5

.5

3
B.
4

5

2.

.0
.0
0

B

.0

3.

.0

0
.0
.0
0

b.
&
6
B

.0

&
4

5.0 0
4

2

.0

&
&

7.0
10
T

4.0
¥

]
6.0

1

.0

4
2.0
g

3
T

.0

8.0
8.0

8

D
.Q

“
2

B
4

2
=

6.0 6.0 b
&. .0

.0

!
5
.0

4

B
4D
.Q

.0

5

0

E.0
&

1.8

3

e
8

5
7

8.0
8.0

.0

.0

0
0

L

3.

5
b

e R N

70
1.0

2.0

8

5.0 3,

4,

6.5 4.5

L

5

L

u

7.0
0 5

7.0 5.5 4.5

8.5

.0 8.5
.0 9.0
3.0

4
B

G D
<

3
2

2 5.5

B

.0
.0
s:h

0 4.0
s

4
4

9

.0
.0
.0

.0

0

3,
4

D 6.5

5

5

= 2
D
5.0 6.0

8.0
8.0

9.0

5

6.
4

o

ol
3

B

D

6

5.0 .0 4

.0
9.0

9.0

.0
2.0
8.

b

.0

0

uy

7.5
7.5

6.0 4.0

.0

B
6

A BB 2l 3ub
.0 0

7

3.0

LB
.0

B
T

0
0

o 3.

5.

7

=5 7.5

5.0

5.0

9.0

9.

|
woh
=

[

1




Table - 2
Polynomial Zeros of degree 2 of the 6-] coefficient
(equivalent ones).
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Table - 3

Folynomial zeros of degree 3,4 and 6 of the 6-3 coefficient
(equivalent ones)
POLYNOMIAL ZERCS OF DEGREE 3

3y Jg I3 ¢y ¢y ‘3
12.0 10 5 10.5 8.5 10.0 5.0
12.0 12.0 9.0 8.0 4.0 11.0
13.0 10.5 9.5 7.5 10.0 .0
13.0 12.0 8.0 7.5 8.5 5
14.0 11.0 6.0 6.0 9.0 10,0
14.0 12.0 5.0 3.0 11.0 12.0
14.0 12.0 7.0 6.0 8.0 9.0
14.0 12.0 11.0 9.0 5.0 12.0
15.0 12.0 6.0 8.0 11.0 11.0
15.0 13.5 13.5 13.5 10.0 8.0
15,0 14,0 8.0 8.0 9.0 9.0
15.0 14.5 12.5 13.5 9.0 .0
15,5 14.5 12.0  / 10.5 45 14.0
15.5 15.5 15.0 12.0 6.0 13.5
16.0 13.5 12.5 12.5 8.0 11.0
16.0 14.5 11.5 12.5 3.0 10.0
16.0 155 14.5 12.5 6.0 13.0

POLYNOMIAL ZEROS OF DEGREE 4
16.0 15.5 15.0 11.5 ©  14.5 7.5
17.0 15.0 14.0 12.0 7.5 13.5
17.5 15.0 13.5 10.0 15 9.0
17.5 16.0 15.5 7.5 12.0 15.5
17.5 17.0 11.5 10.0 12,5 11.0
17.5 17.5 14.0 13.5 7.5 14.0
18.5 14,0 13.5 11.0 13.5 9.0
18.5 16.0 11.5 11.0 11.5 11.0
18,6 18.0 15.5 8.0 11.5 15.0
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Table 3 (continued).
POLYNOMIAL ZEROS OF DEGREE 5

I 3 4ty 43 Jp 3y 33 4 4
14.0 13.5 12.5 12.5 10.0 9.0
15.0 12.5 12.5 11.5 11.0 9.0
16.0 13.5 11.5 11.5 10.0 10.0

Table - 4
Parametric solutions of the polynomial zeros of degree one of
the 6-) coefficient.

FParameters Racah coefficient Inva-
— riant
Eagn General ?ggtzgm jl sz ja Jl 52 JE :
(55) m 1 3.8 JF 2:8 1.0 .0 2.0 24
(56) n 1 2.0 .0 2.0 1.b 5 1.b 21
(57) b 1 35 A 35 1.8 B 30 27
(58) (B,h) (X,1) 16.5 15.5 8.0 11.0 12.0 5.5 137
(569) (a,b,d.h) 5 OO A W Gl .5 5,0 2.5 1.5 3.0 4.5 46
(60) (g&,2,r,s) (3,1,1,1) 15.5 15.0 8.5 12.0 12.5 4.0 137
(66) (=,d,h,L) (1,1,2,2) 2.0 2.0 2.0 1.5 1.5 1.5 21
(62) (a,b,c,d, (1,1:%3,4, 2.0 2.0 20 15 15 1D 21

e,f,8,h,t) 1,1,2,2,2)




Table 5

Parametric formulae and the first fifteen of the ineguivalernt
polynomial =zeros of degree one of the B—3J coefficient.
Y indicates that the parametric formula accounts for the zero and
x that it does not. ¥ refers to exceptional case, given 1in text.

Serial number of parametric
solutions given in Table 4
(number of parameters).

1 2 3 4 5 5 T 8
4, 4 & 4, (1) (1) (1) (2) (4) (4) (&) (8/9)

2 2 /e 3/2 3/2 % ¥ e % x x Y ¥
2 2 1 2 2 Yy x x x x x T ¥
3 a/e 1 ase2 % x Y x x x 4 4
7/2 3 5/2 3/2 3 Yy ¥ x X X x ¥ 14
4 2 3 4 Y x x x x x v 4
g/2 3/2 2 5/2 9/2 ¥ X 44 x X x 14 4
g/2 9/2 17/2 3 3 x X x x x n ¥ ¥
5 4 7/2 3/2 9/2 x v x X % x 14 24
4 7/2 1 7/2 4 x X x x x x 7 ¥
5 3 5 x x x x ¥ x ¥ 4
5 4 5 2 Y % x ‘% x x ¥ .4
B 4 5/2 b/2 11/2 x x x x x b4 v v
8 T/2 3 3/2 6 g % o Eeox ocx o ¥
9/2 9/2 5/2 4 4 x x x x x x *x
T 7/2 2 7/2 6 ps x x x v x 7 v
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Table - 8
Polynomial zero= of the 6-J coefficient which can be
explained from realizations of the exceptional Lie algehras &

F‘, and EG.

Jq Jg g 4 &, £y Algebra-subalgebra chain

6.0 5.0 3.0 3.0 3.0 3.0 Gz: S0(3)
11.0 11.0 3.0 4.0 4.0 8.0
11.0 11.0 8.0 8.0 4.0 8.0 F‘: S0(3)

3.0 2.0 2.0 1.0 2.0 2.0 F‘J 20(3)e Gzﬁ (S0(3)® S0O(3)
4.5 4.5 7.0 4.0 4.0 2.5 F+3 S0(3)e Sp(6)=> 50(3)2 S0(3)
11.0 8.0 6.0 4.0 4.0 8.0 E5: F;D 50(3)

7.0 6.0 5.0 4.0 B.0 4.0

B.O 6.0 6.0 5.0 4.0 3.0 Eﬁ: Sp(8)> BO(3)
9.0 6.0 4.0 2.0 5.0 5.0

Table - 7 |
The zeros explained from the orthogonal polynocmial approach

3y Iy Jg 4 ‘s ‘g




Chapter 5

A New Fortran Program for the 9-j Angular Momentum coefficients.

5.1 Introduction

The need for angular momentum coupling coefficients, wviz.
3-j, B6-j and 9-j coefficients, arises in nuclear shell model and
nuclear reaction caleculations (Amos de Shalit and Talmi (1983)),
a3 well as in atomic and molecular physics calculations. The
computation of the matrix elements requires these basic angular
‘momentum coefficients. In this chapter we present a new FORTRAN
program to compute the 89-j coefficient.

The conventional method of computing the 9-3 coefficient

ﬁi-es use of its expansion in terms of a single sum over the

product of three B-j coefficients, due to Wigner (1840). Shapiro

(1967) has written a program to compute arbitary
{ﬁrj coefficients for SU(Z) whicﬁ are descrisbed through the
‘graphical representation developed by Yutsis (1862). Tamura
(1967) has developed codes based on the standard expressions for
the dn-j coefficients for n = 3. The program presented here makes
use of the simplest form for the 9-3 coefficient known in
ﬁi&rature which 1s a triple - sum series due +to Jucys and
andzaitis (1977).

The triple =sum series 1is identified with -1 triple
hypergeometric series introduced by Srivastava (1967). The Horner
scheme for polynomial evaluation (Lee (1966)) is then resorted to

:ﬁ} computing this triple series. The conventional single sum
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series involving the product of three 6-j coefficients (each being
a single sum series in turn) is alsc programmed for comparison.
Three sum rules satisfied by the 9-j coefficient are evaluated to

check the correctness of the code developed.

The mathematical formulae used are listed in the beginning,

and the method of calculation described. Following this the
program structure and its coperation are described. The results
and the relative merits of the programs are discussed at the end.
5.2 Mathematical Formulae and Method of Calculation

The conventional single sum expression for the g9-j
coefficient derivable from the fundamental theorem of recoupling

theory (Biedenharn 1953) was given in (B8) of Chapter 1 and it

reads as:

ab o
2k adg b eaeh e £ 1
de f = F(-1) {2k+lj{ } { } { } ; (1)
{ & h i } & h 1k d k¥ f kahb

‘where a, b, o,
' ]

and the summation index k takes the values:

.y 1 can take integral or half-integral wvalues

max (|a-i], ]d-h], |b-f]) £ k = min (a+i, d+h, b+f) (2)
‘The coefficients on the r.h.s. of (1) are the 6-j coefficients.
The Fortran program WF to compute the 6-j coefficient based on the
4?& I of ‘Fail}s (discussed in Chapter 1) - due to Srinivasa Rao
and Venkatesh (1878) and Srinivasa Rao (1981) - is employed in the

fuction program WNINE for the 89-j coefficient given by (1).

The simplest known algebraic form for the 9-j coefficient due

ﬁﬁ&ﬂcys and Bandzaitis (1977) was given in (69) of Chapter 1 and
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this after a slight change of notation reads as:

{(d a g) (be h) (i g h)
= (=1y%R
(d e £f1 (b a e) (1 c £)

Mmoo
o o
e 0

F{l+xl, 1+x2, 1+=3, 1+y1, 1+y2, 1+zl, 1+z22, 1+pl)

=

F{l+x4,1+x5,1+y3,1+y4,1+y5,1+23,1+=z4,1+25,1+p2, 1+p3)

1 (l+4x2,2) (14x3,%) (-xd,x) [(-x5,u%)
¥ E =T Bl

X,¥,2 (-x1,x%)
(1+yl,y) (1+y2,y) (-y4,y) (-¥d5,¥)

* (1+y3,y)

(1+z2.2) {-23;2) (-zd4,2) (-25,2)
(-z1,2)
1

* —ropi.yrE) (12, x+y) (L#p3,xrz) (3
where
0= %x = min(-dtetf, ct+f-1) = XF

0 <= yv < min( g-h+i, b+e-h) = YF , (4)
0 £ z £ min( a-b+te, atd-g) = ZF ,
(abec)=Alabec) {atbretl): (5)

(-atbt+tc)!
and the symbel (A,k) as well as the guantities x1,

S <
vl,...,¥5, 21, ...,25, pl, p2 and p3 are defined in Chapter 1.
Study of multiple series in several variables was initiated
by Appell (1926) who considered the product of two Gauss functions
hFis} and showed that replacement of one or more of the pairs of
(Pocchammer) products by a composite product leads to four double
series: E;. F}, F; and F, which are called Appell functions in
literature (1926) A generalization of this idea +to products of
Fﬁqu is available and the boock of Harold Exton(l1978) on HMultiple
ﬂwpergeometric series summarizes the results published in several

papers. The fact that the 9-) coefficient has been represented by

-



(1) and that each 6-] coefficient is a 4Fg{l} suggests that the

product of the following ‘Fg{ljs be considered:

i [ 1+x2, 1+x3, -x4, -x5 ;l] ¥ 1+yl, 1+y2, -y4,-yb ;1]
4 8 =x1, 1+pZ2, 1+p3 + a3l 1+4¥3, -pl, 1l+pZ

b T 1+22,-23, -z24, -=2b ;1] = p

i o -z1, =pl, 1+p3 -x =P x! vl 2!

' N (1+x2,%x) (1+x3,x) (-x4,x) (-xb,x)
(-x1,x) (1+p2,x) (l+p3,x)

(1+yl,y) (1+¥2,¥) (-y4,v) (-¥5,¥7)
(1+y3,v) (-pl,y) (1+p2,y)
(1+22,2) (-=23,z) (-24,z) (-2b,2)

x

(-z1,z) (-pl,z) (l+p3,z2) " (8)
ﬁn (6), the following replacements of the pairs of products:
T (1+p2, x) (1l+p2, ¥) by (1+4p2, xt¥)
(1+p3, x)} (1+p3, &) by (1+p3, =xtz) , (7)

(-pl, ¥) (-pl,2) by (-pl, ytz),
‘are made to make the identification with the triple series which

pecurs in (3) possible. The product of the three F (1)s given by

(6), with the replacements given in (7) leads to the new function:

:ffﬁ}[fﬂ}‘: (0); (0); (0): 1+x2,1+x3,-x4,-x5; 1l+yl,1+y2,-y4,-¥5;
i (Q)::2+4p3: =pl; 1tpd: _ -x1; 1+y3;

Rt 31_ o 1 1: i
l+z22, -2 z4 _z? 1,1 (8)

which clearly is a particular case of the function defined in
three variables by Srivastava (1967) and which 1is an elegant
nification (Exton (1976)) of the triple hypergeometric functions
Lauricella-Saran (Lauricella (18933, Saran(1954)) and
Grivastava(1964) functions, It is to be noted that the new
generalised hypergeometric function in three variables:

R U N
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defined by Wu(1973) is the same as F(3) given in (8) above, which
is a particular case of an extremely general hypergeometric series

defined in three variables by Srivastava (1987) as:

I ca)::(b); (b ); () (e); (e )i (e"’); %, ¥, =& ]
fa)relEys: efv)s (2 3y gy (') (et

= T ((a),m+tn+p) ((b),m+n) ((b'),n+p) ((b''),ptm)
i ((e),mtn+p) ((£f),m+n) ((£"),ntp) ((£' "),p+tm)
. (e)um) ((e')yn) ((e'*),p) x" ¥y 2P o
((g),m) ((g),mn) ((g°),p) m! n! p!’

:ﬁhere (a) denotes a sequence of parameters (as in the notation

of Srivastava (1367)).

The procedure adopted for the numerical computation of the

------

iple sum series in (3) is as follows:

. T -+ = L AS(x) L BS(y) L 0CS(x,v,z)
X, ¥, 8 x ¥ A
= E AS(x) I BS(y) #(x,¥)
x ¥
= L AS(x) #(x) . (10)
X

Wherﬁ AS and BS are one-dimensional arrays and CS is a
E-":__-na~eu—|i:1:1.n'ua=1'1E-ic:nr:Lal array. The summation over each one of the
indices x,y and z is by adapting the Horner's rule (Lee 1968) for

polynomial evaluation, viz:

2 P " n -—
a, + a, x + E’z ¥ + + an ® e
% % B -1 &
s (It x (@ x(T+- +2=x(1+g—x) "))} .
o 1 n-2 =i (11}

The algorithm employed for evaluating (11) is:

ay = 0 , then o D= - T U cfai], (12)

o [



It is to be noted that (12) holds even when one or more of the &

i
are zero.

In the function programs which use either (1) or (3) +the

following special values for the 8-3 coefficients have theen

incorporated:

08 e e 0 e ff£fa0 fbd

{ fdb = c f g } = { d e e = 0 e e
f ean d fb bae f ac
af g bae e d e c e d
e 0 e = £ &b = { e b a = ae b
b £ d d o e 0 f f F O£
29 . _pbroterr o i
f£o0 [e] [f] de f '

In the case of b =

e = 1/2 in the 8-3 coefficient, it is checked
whether a =d and ¢ = f; and if so, then

a 1/2 &
&8 1/2 o = 1,
E h i

Hf (2 + h + 1) is an odd integer,

The expressions (1) and (3) are used for calculating the 8-j

fficient and the corresponding function Programs are named gas

BNINE and RNINE respectively. - The function Program WF is used to

evaluate the 6-3 coefficient.

In the past, sunm rules were used often +to check the

gerrectness of tables of angular momentum coefficients, The
following sum rules are satisfied by the 9-3 coefficient (K1 Baz
and Castel (1972)):

- L (2x + 1) (2¢ + 1) {

g o P

b
=
a

L Hh 0

2 } = éc’e{a bec} {edf}, (14)




Jel ab e

T {_l>b+¢+e+f X (dx + 1) (2b + 1) { d f e } = éh e{a be} {d e £}
519 x d a X {16)

c'+e+2&+x1 ab e d b e a b o

(-1) {2x1+1}{2x2+1} d e f ae f'}) = ' o g

X, X, 8 X X, E e d f
(16)

{ 2a b e} is defined by:
_ 1 if la —¢]l =b=a+e,

takeld = { 0 otherwise. (17)

An attempt has been made to see the usefulness of these sum

‘rules in demonstrating the correctness of the numerical algorithm

%5&& on the triple sum series for the 9-j coefficient.

5.3 Program Structure and subprograms

The complete program comprises the main Program which calls
‘iftunction programs WNINE and RNINE for +the 9-j coefficient.
The time taken for a given set of parameters is noted with the
P of system dependent routines. - There are two main programs -

TEST and PROGSELECT - each of which makes use of seven

ction subpreograms and nine subroutine subprograms.
ﬁﬁ?ing and operation of the main programs
Communication with the afore-mentioned funetion subprograms
1§ established through the following statements:

WNINE (A, B, C, D, E, F, G, H, RI)

RNINE (A, B, C, D, E, F, G, H, RI)
the arguments stand for the nine angular momenta: a, b, a,
© f, g, h and i.

At the very beginning the logarithms of the first 500

torials are calculated and set-up as an array in &

S|



one-dimensional COMMON block, FCT(500). This is the conventional
approach (see for e.g. Tamura (1967); Srinivasa Rao and Venkatesh
(1978)) and has the advantage of not only being available for a
look-up when needed but also prevents overflow due to products of
large factorials, since multiplication of factorials is replaced
by the sum of the corresponding logarithms, which 1is then
exponentiated.

In noting the time required for execution, use is made of
system dependent routines described later. Due 1o the limitations
of these system dependent routines, reproducible timings were
obtained only when the function program called 1is computed
n times, n being 10 or 20 for the IBM-FC AT and 100 for
VAX-11/780, in a loop. In PROGTEST, since two functions are to be
timed(viz. RNINE and WNINE), +the system dependent routine 1is
called twice for each of them - once before calling the function
program and a second time after returning from the given function
program. The difference in the twe timings calculated 1is +then
divided by n to get the averaée time taken. The variable used for
nis ITEST and this quantity 1is read in 13 format, after
setting-up the FCT(500) array. The nine angular momenta are then
read (either in the interactive mode or from a data file) in the
F4.1 floating-point mode.

The subroutine SET is called which sets up a two-dimensional
array R9 employed to keep +track of the nine angular momenta

treated as the elements of a Ix3 array. I1f any one of the
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elements of this array is equal to zero, then the value of the 9-J
coefficient reduces to a 6-j coefficient, as given in (13). When
the zero element 1is located, control 1is tranaferred +to the
function program VALUE which will return the special value of +the
9-3 coefficient.

Preliminary runs indicated that if b = e = 1/2, as in the
case of the ls-jj +transformation coefficients

a 1/2 ¢

{ d 1/2 f }

i h i
frequently encountered in quantum physics calculations, the RNINE
function program, which uses the triple sum formula (3) is faster
than the WNINE function program, which uses the single sum over
the product of three 6-j coefficients given by (1). However, for
arbitrary a,b...... iy subject only to the triangular
inegualities, we found that depending upon the data, the number of
terms involved in (1) or (3) indicates which of the two function
programs is time-effective.

For this purpose, when none of the nine angular momenta is
zero, the subroutine CHANGE is called and it searches for that
symmetry of the 89-j coefficient for which the number of terms in
the triple sum series is a minimum. The subprogram TERM evaluates
the actual number of terms (NT1l), which could occur in RNINE and
the value (NTZ) of the index k in (1) for WNINE, which when
multiplied by three (NT3) gives the number of times +the function
WF will be called when (1) is employed for evaluating the 9-j

coefficient. Using the values of NT1 and NT3, an ad hoc
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Prescription is given to choose the time-aeffective program for the

given data.

There are two main programs called PROGTEST and PROGSELECT. In

the former, the computation for a given data is made using both
RNINE and WNINE, the averages of the times taken are noted and the

advantage factor computed. Control is then transferred to read

the next set of input data. The main program PROGSELECT on the

other hand differs from PROGTEST in that exiting from +the

subprogram TERM, based on the Prescription, control is transferred

to either RNINE or WHINE, so that the time-effective Program alone

is computed.

Subprograms

We now give a brief resume of the function brograms used:
1. Function WNINE employs the single sum series (1) for the 9-j

coefficient. A check is made to find whether the corresponding

elements in the first and second rows of the 9§-j coefficient
are equal and if so, whetheyr the sum of +the elements in the
third row (ICHK) is an udd_or an even integer. If ICHK is cdd,

then the value of the 89-J coefficient is 2ero  and hence no

computation is required in this case. (This check is mainly

because of the possibility which arises in  quantum physics

calculations, when two particles may be in the same (n,€,s,3)

orbit resulting in the §-3 coefficient being zero for the

transition matrix element for certain special wvalues of +the

operator involved). If ICHK is even or if

any two of the




corresponding elements in the first and second rows are
unequal, then the expression (1) is computed in a single DO
loop for the variable k, in which for each term the function WF
is called three times. The function WF ecalls +the function

programs TRIA and PHASE. The value of the 9-j coefficient is

returned as WNINE.

2. The function subprogram WF (A,B,C,D.,E,F) caleulates the B-3
coefficlent using the set I of three 4Fﬂtl}s given by (18) of
Chapter 2. We check for the two denominator parameters being
positive and accordingly select the parameter set (19}, (20),0r
(21) for the 4Fatl}. It is checked whether any of the numerator
parameters is zero, and if so the 4F3(1} is set equal to 1.
Otherwise, the number of terms in the series is found and +the
4F3El} caleulated using the Horner’s rule and the value of the
6-] coefficient is returned as WF. In Srinivasa Rao and
Venkatesh(1878) WF denctes the Racah coefficient Wia b c d;e £)

but in the present program WF denctes the E-1 coefficient

{ 3 E ? .In this subprogram, there is only one exponentiation

of the logarithmic sum in the last step.
Function PHASE(N) is for finding the value of {—I]N.
Function TRIA(x,y,2) checks for the value of {f *x ¥ 2 1 being
1008,

3. Functicn RNINE employs the triple sum series (3) evaluated
using the scheme (10) which adopts the Horner's scheme for

polynomial evaluation (11) - (12). The check for ICHK being



even or odd is made as in the function WNINE. The

=ix
triangular inequalities which must be satisfied by the nine
angular momenta are then checked. Then, from (6) to (B), it

is clear that for the series (3) to be well-defined the

denominator zero (occcuring due to the negative nature of -xl

and -z1) should not occecur before the numerator zero (occuring

due to the negative nature of -x4, -x5, -y4, -yb, -z4 and

-z5). This requirement 1is then stipulated. The overall

multiplicative constant factor (Cl) and the overall phase

factor (CONST) in (3) are computed next. The triple sum over

the indices x, v and z starts by setting up the reguired one-

dimensional arrays AS(x) and BS(y) and the three-dimensicnal

array CS(x,v.,2). The scheme stated in (11} for this

triple-sum is then implemented in this function program, by

suitably setting-up intermediate arrays - CZ(z), BY(y) and

4¥(x) - which are input to the Horner’'s scheme (11) being used
for the indices =z, y and x.

This function program RNiHE calls besides TRIA (for checking
the triangular inequalities +to be satisfied by the triads of
angular momenta) and PHASE (which computes [-l}n}, the functicn
HORNER :

HORNER(KI, KF, A)

where K1 and KF denote the index wvalues of the first and last

terms of the one-dimensional array A.It computes the folded sum

of the non-zero terms of the array A, using the scheme(1l1), and




algorithm (12).

4. The function subprogram

I VALUE (A, B, C, D, E, F, G, H, RI, I, J)

where the nine angular momenta A,....,RI are the arguments of
the 9-j coefficient and the two integer variables I and J are
the two-dimensional array indices used to locate the position
of the element which may be zero. The location of the zero
helps in the use of (13) to express the special value of such
a 9-j coefficient which is simply given by a 6-3 coefficient
maltiplied by a phase factor and a numerical factor.

The subroutine subprogram

BRTERM (A, B, C, D, E, F. G, H, RI; NTI, NT2)

8 where A,...RI are the nine angular momenta in the 9-j
~ coefficient and NT1 and NTZ are two integer parameters which
- determine, respectively, the actual number of terms which
~oeccur in (3), and the number of allowed values of k in (1).
In this subprogram, the values of NT1 and NT2 are determined.
1.'-'Thf:;ugh k gives the numbe£ of terms in the expression (1), the
1?act that each term involves +the function WF being called
thrice, makes us ceonsider 3k as the important index in
reckoning the time taken per term of evaluation 1in what
follows. The values of the variables x4, x5, y4, yb, z4, 25,
pl, p2, p3 and their integer equivalents IX4,...,IPF3, as well
‘as the final values of the summation indices in (3) - viz. XF,

ﬁF and ZF (or, IXF, IYF and I1ZF) and of the initial and final



wvalues of k in (1) - wiz. KI and KF - are required in the function
‘programs RNINE or WNINE, 5o, they are put in COMMON blocks in
this subprogram.

The times taken by ENINE and WNINE were noted for several
input data including the following two sets of data:

(I) a=15, b=2, e=15, d=3, e=15, f=15, g=12, h=13, and 5= i =25

(II) a=15, b=15, e=15, d=15, e=3, £=15, g=1b, h=18 and 5= 1=30
The data set (I) corresponds to a large number of allowed terms
(210 for 5= i =21) for RNINE given by (3) but a small value of 3k
@E for 2= i =25) for WNINE given by (l1). On the other hand, the
ﬁfta set (I1) corresponds to a comparatively smaller number of

‘allowed terms (64 for 15= i =27) for RNINE (3) and a larger value

of 3k (between 48 and 84 for B8< 1 =30) for WHINE (1). For these
yfcific data when we ran PROGTEST on a personal computer and on a

:;ﬂﬂif?&ﬂ, we found the fellowing absclute values for the average

s (in seconds) per term of computation :

tion PC - Fortran i PC - Fortran VAX - 11/780
ram version 2.0 version 4.0
IRE 0.00393 0.00258 0,0487
: 0.0125 0.00828 0.0857
tio ~ 3 s 3 - B

Note: The timings shown here were obtained on an AT & T PCB300
runs on an 8086 at 8 MHz supported by an 8 MHz BOBT
-coprocessor and the timings glven in the case of the

-11/780 are the CFU times found with the help of a lexical
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function discussed later, under System Dependent Routines. From
these timings, we note that the use of the later version of
E?utran compiler ver.4.0, instead of ver.2.0 reduces the absolute
time of computation by a factor of ~ 1.5, though the ratio of the
time taken per term of computation remains almost the same in both
the cases. If we were to use these times as an index of the speed
of computation of the 9-j coefficient using RNINE (3) and
ININE (1), then we can arrive at a prescription, that if
NT1(number of terms in (3)) is less than 2 times 3k, NT3 (which

gorresponds to the number of calls of WF in (1)) then it would be

advantageous to use RNINE. Otherwise, (viz. NT1 > 2 NT3) WNINE
Eﬁ ld be advantageous for computing the value of the given 9-]
goefficient. This is the basis for our adhoc prescription

referred to earlier. We found that if NT1 = NT3 then the

or WNINE is not significant and hence either function program can
beused. Also, to avoid numerical discrepancy in the wvalue
.'.ned by RENINE, if the numbér of terms to be computed for any
fiven nine arguments of the 9-j) coefficient exceeds 200 on the PFCs
£ 600 on the VAX-11/780, then the stable algorithm WNINE will be
eferred to RNINE (since in RNINE exponentiation of the sums of

garithms is resorted for every term of computation and due to

off and +truncation errors +this causes the numerical
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discrepancies). These two prescriptions are incorporated in the
main program PROGSLECT.

It is significant to note that when we ran PROGTEST with the
call of CHANGE subroutine, the symmetry of the 9-j selected for
- computation in the case of the data set (1) reduced from 210 terms
to a mere 3 terms, while in the case of the data set (II}) the
- gymmetry of the 9-j coefficient selected for computation had +the
- same number of terms as before. This is mainly due +to the fact
~that the formula (3) does not exhibit any of the 72 symmetries of

- the 89-j coefficient. For example, while

15 2 15
{ 3 15 15
12 13 15
‘belonging to set (I) has

0 = x = 15, 0 £ yvy=4 and 0= 2z = 86,

3+ 16 12
15 2 13
15 15 - 1%

* =0, 0=y=2 and =z = 0.

[he actual number of terms in-the former case is 210 and in the
latter case only 3. This is typical for large values of angular
Since it i1s not possible to analytically find out that
@pwetry of the 9-] coefficient for which the number of terms in
triple-sum series is a minimum, we make use of a subroutine

ed CHANGE for this very purpose,
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6. The subroutine subprogram
CHANGE (A, B, C, D, E, F, G, H, RI)

has A,...,RI as the nine angular momenta in the B5-3 coefficient.
The 72 symmetries of the given 9-j coefficient are those which
arise due to 3! column permutations, 3! row permutations and the
transposition of the 3 x 3 array. Ife-a+b+tec+d+e+f +
g+ h + 1, then the 9-j coefficient amcquires a phase Tactor [Fl}a
for odd column permutations and odd row permutations of the 9-]
coefficient. These 72 symmetries are generated for the given 9-]
coefficient by calling the function subprograms CINT for column
permutation, RINT for row permutation and TRANS for transposition.

For each of the symmetries generated, the values of XF, YF, ZF are

found by calling a subroutine FXYZ - which calculates the
quantities =4, x5, y4, v5, =4, 25 given a, b, ...1 and the upper
limits of the summation indices given by (8) - and the sum of

¥F + YF + ZF (IXYZ) is calculated. These 72 symmetries of the
given 9-3j coefficient and the value of the sum XF + YF + ZF for
‘gach one of them are then storéd as one-dimensional arrays with
array names: Al, Bl, C1, D1, E1l, F1, Gl, H1l, RI1 and IXYZ. These
arrays are stored in a common block named AX. Also, the number of
ﬂﬁm column and/or odd row permutations performed in the process of
!@iting the symmetries of the given coefficient is noted in the
one-dimensional array with the array name JSIGl, since 1t 1is

.

necessary to keep track of the phase factor assocliated with

=25



the symmetries. The symmetry which yields a minimum of the sum
XF + YF + ZF is a measure of the number of terms in the triple sum
series. That symmetry is chosen by calling the subroutine ORDHN
which searches for the minimum value in the array 1XYZ and returns
it as IMINV., The 9-j coefficient parameters noted as A2, B2, CZ,
D2, E2, F2, G2, H2, RI2 correspond to that chosen symmetry for
which XF + YF + ZF is a minimum (viz. IMINV). These nine wvalues
‘along with the number of odd column and/or odd row
permutations which led to it from the given 89-) coefficient, noted
a5 JSIGZ (for the chosen value of the element ©belonging to the
array JSIGl) are placed in the common block named XX. The
‘triple-sum series is evaluated only for this symmetry and it is
pultiplied by the phase factor,if ¢ and JSIG2 are both odd. Thus,
%me use of +the CHANGE subroutine converts the inherent

disadvantage of the lack of symmetry in the triple sum series to

an advantage! An extreme example is cited here to substantiate
ﬁhﬁ importance of the CHANGE subroutine. In Table 1 are given
some of the T2 symmetries of a 8- coefficient and the
corresponding values of XF, YF and ZF. The actual number of terms

in the triple sum series is given in the last column.
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Table 1.

a8 b o d & ) i feg h cd iF YF ZF No. of terms

20 30 10 30 10 20 60 30 30 0 0 0 1

3 10 20 60 30 30 30 20 10 0 20 40 21
30 20 10 60 30 30 30 10 20 0 40 20 41
60 30 30 30 10 20 30 20 10 0 20 60 441
60 30 30 20 10 30 30 10 20 0] 40 60 1681
30 30 60 20 10 30 10 20 30 20 20 40 9471
30 30 60 10 20 30 20 10 30 40 40 20 18081
20 10 30 30 30 60 10 20 30 60 20 40 33761

The actual number of terms given in the last column of this

‘table is reckoned after taking into account the constraints on the
- ranges of %, v and 2 placed by pl, pZ2 and p3, viz.

y+z < pl and if p2,p3 < 0, then x+y = EPEI , Ztx = |p3|.
hgﬂ to the search made by the CHANGE subroutine, the symmetry
corresponding to the number of terﬁs being one would be selected
for the computation of RNINE whichever symmetry of the above
example is read in. (The remaining 72 symmetries yield one or the
other of the number of terms listed in the table for this specific
ample cited here). However, when the number of terms becomes
rﬁrge {above 200 for IBM-PC/AT and above 600 for VAX-11/78B0), we
- d that the program RENINE becomes numerically inaccurate due to

round-off and truncation errors caused by the repsated
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exponentiation of the terms involved in the x, ¥, 2z summations.
On the other hand, the program WNINE is reliable, since it ealls
repeatedly (3k times) WF which is a single sum series and the
exponentiation of the sum of the logarithms is made only once in
WF. Consequently, in addition to using the subroutine CHANGE +to
get that symmetry which would make +the number of +terms to be
summed in RNINE a minimum, the choice of RNINE or WNINE is made in
PROGSELECT on the basis of the prescription given esarlier.

In CHANGE, besides CINT, RINT, FXYZ, and ORDN +two other
‘8imple subroutines SET and RESET are used. While SET sets the
‘nine elements of the given 9-j coefficient: a, b, ¢, d, e, f, &,
h, i, as the elements of a two dimensional array, RESET resets the
two-dimensional array as a, b,..., i.

7. The subroutine subprogram

ORDN (I1, IMINV)

‘has an integer parameter I1 which specifies the dimension of
the one dimension arrays Al, Bl, C1, D1, E1, F1, Gl, Hl, RIi,
Y72 and J51G1 which are placéd in the COMMON block (AX). This
subroutine sorts and finds the minimum value of IXYZ out of the
given list and returns this value as IMINV, The algorithm
-H;ed on exchange of elements known as bubble sort (ref. Knuth
;gTﬂj is adapted to order the elements of the array IXYZ so

that IXYZ(1) becomes the minimum value of XF + YF + ZIF after
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System dependent routines

The timer routines used are system dependent. The IBM-PC/AT
Fortran language Compller version 2.00 allows the usme of their
GETTIM timer routine in the IBMFOR.LIB library. This subroutine
GETTIM(IH, IM, IS, IHS)

requires the variables IH, IM, IS and IHS (which represent the
hour, minute, second and hundredth of a second) to be specified as
type INTEGER*2 variables and at link time IBM-FOR.LIB must be
linked along with the library BOBTONLY (which is for +the 80287
Math Coprocessor). The VAX-11/780 computer allows the use of the
SECNDS function subprogram which returns time in seconds as a
single-precision floating-point wvalue of its single-precision,
Fj$ating—point argument. This function is used at +the start of
‘the segment to  he timed with  the Fortran statement:
= SECNDE(0.0) and at the end of the segment the use of a
statement: time = SECNDS(tl) will return as the value of the

variable time the elapsed time. Depending on the computer on
i a

ﬁ?the case may be) a certain set of statements are +to be made
comments in its main program because of the use of system
dependent timer routines in it,

Furthermore, since the VAX-11/780 computer system is in a
'iiti—usar. time-sharing mode, no definite statements regarding
the execution timings can be made when the SECNDS system routine

%&psad. 5o, we made use of +the lexical functions in a
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hﬁhroutinel to get the job- processor information. This

subroutine uses those features of FORTRAN which are seldom used,
if ever, by those users who are not System Analysts. This routine
gave the CPU time for the execution of the function programs which
was reliable when ITEST was set 100. These timings are the ones
which are quoted in Table Z .The details of the program PROGSELECT
{5 given in Appendix C . In the case of PROGTEST the main program

ne is given since the subprograms are common for both.
5,4 Results and discussion

For a chosen set of data with b=e =1/2, the new 89-]
coefficient program ENINE based on the +triple-sum series shows

considerable advantage factors DYEI the conventional program
WNINE. In this case, irrespective of the magnitude of +the other
angular momenta, it can be shown that the number of terms in the
-ﬁ;ple sum series is at most B. In Table 2 a part of the output
for the set of data used is reproduced. The number of terms (NT3
ﬁ% NT1) for WNINE and RNINE, as well as the execution times in
geconds (Z1 and 2Z2), along with the advantage factor
(ZIDA = Z1/Z2), are given in the last three columns of this
le. This demonstrates that the new Fortran program RNINE given

s 15 advantageous in all guantum mechanical calculations which

{jﬁire the 9-j coefficient (with b = e = 1/2) and since the
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number of terms is at most 8 in these cases, RNINE is

reliable.

numarically

For large arguments of the 8-J coefficient, if the number of
terms in RENINE exceeds 200 (for IBM-PC/AT) or 600 (for VAX-11,/780)
or when 3k (NT3) is much smaller than the actual number of terms
occuring in the triple sum series (NT1), even after the CHANGE

subrourine has been used, the conventional program WNINE based

on
(1) is to be preferred since it is always stable. The ecriterion
of choosing either WNINE or ENINE, used in FROGSELECT, depending

‘upon whether 2 x NT3 < NT1 or NTL1 < 2 x NT3 has been found to hold

 for the 9-J coefficient data with b = & = 1/2 also (where +the

RNINE program is always advantageous as stated above). This

‘ad hoec eriterion is checked at the beginning of +the main

Program. However, it is to be emphasised that for most, 1if not all

‘of quantum physics calculations, the input angular momenta are not

'ﬁmd large and further since b=e=1/2 in those (ls

= FF)
coefficients, the upper bound on the number of terms is 12.
When contiguous allowed values of angular momentum - vig.

8, atl, a+2,....,at8 - are used for the nine arguments of the 9-j

coefficient as input to PROGTEST, it is found that for a =
9,4,5,6,7,8,9, and 10, the corresponding minimum number of terms
'to be computed in the triple sum series are: 6, 24, 60, 120, 210,
1336, 504 and 720, respectively. This set of data revealed +that

ﬁie numerical values of RNINE deviate from those of WNINE for
a9,

W



B 9 7
Further, in the 9-j coefficient { 6 7T 10 } , 2 =2 X = 14,
X B B

As X is varied over this allowed range, the number of terms in the
triple sum series starts from = minimum value (7), increases to a
maximum value (196) when X is around its middle wvalue (B), and
then decreases.

Based on these two observations, a sample data set was used
to check the correctness of the two codes RNINE and WNINE when
used in the evaluation of the sum rules (14), (15) and (16). The
sum rules could not pin-point the line of demarcation, in the
allowed values for the nine arguments of the 9-j coefficient, for
which the numerical values are right or wrong. In Tables 3, 4 and
%'a set of input data used for checking the sum rules (14), (15)
and (16) as well as the numerical values obtained for the Ileft
‘8ide (summation) (and right side in the case of (16)) of the sum
‘rules for RNINE and WNINE are given. The results were obtained on
‘the Nelco Force 20 (XPS-20 of Honeywell-Bull) and the entries
marked by (*) show the beginning of small deviations from the sum
‘rules. These marked entries in Tables 3 and 4 correspond
‘respectively to the maximum number of +terms in the +triple sum
'1ging > 1000. 1In the case of Table 5, one or more of the 9-j
igﬁfficiEHts on the left hand side of the sum rule involves ths
imubar of terms in the triple sum being > 1000. This enables us
ﬁ}.reiterata the earlier ad hoc criterion arrived at based on the
pumber of terms to be summed in the triple sum series being used

85 an indicator to choose WHNINE instead of RNINE in PROGSELECT.
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8.8

(i)

Conclusion

The feollowing results have been obtained in this chapter:

The triple sum series for the 9-J coefficient given by Jycys
and Bandzaitis has been identified with & triple
hypergeometric series (Srinivasa Rao and Rajeswari (1988d)).
A new FORTRAN program RNINE has been developed to compute the
9-J coefficient, based on +the triple sum series and the
relative merits of this Program in comparison to the
conventional code WNINE are discussed. The execution time
for the programs RNINE and WNINE are found to be proportional
to the number of terms to be summed. Based on this
observation a criterion is given to choocse either of the
programs for a given set of data. TFor the set of data consi-
dered, the new program RNINE has an advantage factor of 2 to
4 (for a; by wi.iy 1 = 10 and an even larger advantage factor
for larger values of angular momenta) over +the conventional
Program as long as the number of terms to be summed in the
triple sum series does not exceed 200 cn the PCs or 600 on

the VAX-11/780 computer(Srinivasa Rao, Rajeswari and Chiu
(1988L)).

Note: The numerical work on VAX-11/780 was done at the University
f Texas, Austin, U.S.A. by my collaborators- Dr.K.Srinivasa Rao

iid Prof.Charles B.Chiu- and the details of this part of the work

included mainly for the sake of completeness),
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WN{2.0,0.5,1.5;2.0,0.5,1.5,2.0,1.0,3.0)=-0.845154-02 & 0.88
RN(2.0,0.5,1.5,2.0,0.5,1.5,2.0,1.0,3.0)=-0.845154-02 1 0.20 3
.0,0.5,1.5,2.0,0.5,1.5,3.0,1.0,2.0)= 0.447214-01 6 0.45
.0,0.5,1.5,2.0,0.5,1.5,3.0,1.0,2.0)= 0.447214-01 1 0.19 2
0,0.5,1.5,2,0,0.5,1.5,4.0,1.0,3.0)= 0.436436-01 6 0.64
.0,0.5,1.5,2.0,0.5,1.5,4.0,1.0,3.0)= 0.436436-01 1 0.18 3
2.0,15.,3,0,156,,16.,12,,13,,5.0)=-0.282582-04 21 1.77
»2.0,15.,3. DagdBes 18ea 1349 550)=-0.282582-04. 3 0.26 6
v @:0,15,,3.0,15,,15.,12.,13.,10.)5-0.130118-03 21 1.83
,2.0,15.,3.0,15.,15.,12.,13.,10.)=-0.130119-03 0.24 7
2.0,15.,3.0,15.,15,,;12,,13.,15.)=-0.5317425-03 21 1.B3
y2:0,15.,3.0,156:,15.,12.,13,,15.)=-0.3174256-03 3 0.27 8
y2.0,15.,3.0,15,,15,,12,,13,,20,)=-0.380328-03 21 1.85
2.0,1%,,8.0,15.,15.,12.,13. ,20. )=-0,380328-03 3 0.28 T
y2.0,15.,3,0,15,,15,,12,,13.,25,)=-0.797602-04 21 1,82
-14.0,15.,3.0,15.,15.,12.,13.,25.)=-0.797602-04 3 0.25 7
v 18, 18, 18, ,3.0,15.,15,,18.,5.0)= 0.2597649-04 33 " 9.94
,16.,15.,16.,3.0,15.,15,,18,,5.0)= 0.297649-04 24 1.08 2
++15.,15.,15.,3.0,15,,15,,18.,10.)=-0.778325-04 63 6.20
.415.,15.,15,,3.0,15.,15.,18.,10.)=-0,778325-04 44 1.76 3
v dFen e B350, 1603154518, 15. )= 0.B33425-04 B4 6.70
<+ 155515,,16.,8:0,15.;15,,15.,15.)= 0.B33425-04 €4 2.47 3
.415.,15.,15.,3.0,15.,15.,18.,20.)=-0.229412-04 78 7.80
.»156.,156,,15.,3.0,15.,15.,18.,20. )=-0.229412-04 44 2.25 3
.+1%.,15.,15,,3.0,15.,15.,18,,25. )=-0.428631-04 B3 5.77
.915.,15.,15.,3.0,15.,15.,18.,25.)=-0.428631-04 24 1.35 4

+315.,15.,15.,3.0,15.,15.,18. ,30.)=-0.643728-06 48 4.18
+»15.,15.,15.,3.0,15.,15.,18.,30.)=-0.643728-06 4 0.38 12.

-+20.,;10.,30,,10.,20.,60.,30., 30.

}J= 0.268745-03123 10.29
sip @@ T 80 309 805 805805, 80 )5

.268745-03 1 0.14 73.

0

0
.430.,15.,45,,15.,30.,80.,45.,45.)= 0,120758-03183 15.56
s 0304, 154 ;45.,15,,;,30.,90. ,45.,45.)= 0.120758-03 1. ©0.18 97.

T




Tabla 3

Checking sum rule Eiven by (14).

o

a e d e f RNINE WNINE
1.0 .5 5 2.0 5 1.5 .1000000E+01 .1000000E+01
1.0 2.5 1.5 -5 1.5 2.0 .1000000E+01 .1000000E+01
2.0 3.0 4.0 3.5 4.0 5.5 -1000000E+01 . 1000000E+01
3.0 2.0 4.0 5.0 4.0 4.0 .1000000E+01 .1000000E+01
7.0 8.0 11.0 6.0 11.0 9.0 .1000000E+01 . 1000000E+01
8.5 7.0 8.5 8.0 9.5 10.5 -1000000E+01 . 1000000E+01
8.0 8.0 7.0 6.0 7.0 10.5 .1000000E+01 .1000000E+01
9.5 8.0 10.5 7.0 10.5 &@§.5 .1000000E+01 . 1000000E+01

10,0 8.0 8.0 14.0 8.0 =20.5 .1000000E+01 . 1000000E+01

10.0 9.5 12.0 10.0 12.5 19.s -1000000E+01 . 1000000E+01

15.0 13.0 12.0 10.0 12.0 14.0 .9999571E+00 .1000000E+01

Table 4
Checking sum rule given by (15).

N a b a d & f RNINE WNINE
1.0 .5 5 2.0 5 1.5 .1000000E+01 .1000000E+01
1.0 1.5 2.5 +5 1.5 2.0 .1000000E+01 .1000000E+0]
2.0 4.0 3.0 3.5 4.0 5.5 .1000000E+01 .1000000E+01
3.0 4.0 2.0 5.0 4.0 4.5 .1000000E+01 .1000000E+01
$4.5 6.5 4.0 5.0 g5 9.5 .1000000E+01 .1000000E+01
7.0 11.0 8.0 6.0 11.0 9.0 .1000000E+01 .1000000E+01
B.5 5 7.0 8.0 9.5 10.5 ,1000000E+01 .1000000E+01
8.0 -0 8.0 6.0 7.0 10.5 .1000000E+01 .1000000E+01
8.5 10.5 8.0 7.0 10.5 8.5 .1000000E+01 .1000000E+01
0.0 8.0 9.0 14.0 8.0 20.0 .1000000E+01 . 1000000E+01
0.0 12.5 9.5 10.0 12.5 18.5 .1000000E+01 .1000000E+01
5.0 12.0 13.0 10.0 12.0 14.0 -9999651E+00 .1000000E+01 %
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Table - b

Checking sum rule given by (16)

o
(8]

e i E h i RENINE WNINE

3.0 5.0 3.0 2.0 4.0 .0 4.0 4.0 -.276575-02 -.276574-02

3.0 5.0 4.0 2.0 3.0 .0 4.0 5.0 -.178988-02 -.178988-02

4.5 4.5 B.5 4.0 4.5 .5 6.5 5.0 ,217731-03 .217731-03

g.5 6.5 9.5 7.0 8.5 10.5 9.5 8.0 .354B54-05 .354854-05

9.5 7.0 12.5 8.0 8.5 8.0 10.5 9.5 .2B81298-03 .2B1298-03

8.0 4.0 11.0 10.0 8.0 7.0 11.0 9.0 -.8856215-04 -.985215-04

g.5 3.5 10.5 .0 9.5 8.510.5 7.0 .106378-03 .108378-03

7.0 10.0 9.0 11.0 6.0 10.0 8.0 11.0 7.0 -.104B6B-04 -.104868-04
7.0 11.0 6.0 15.5 10.5 11,0 11.5 16.5 7.0 .412024-05 .412024-05
7.0 2.0 6.5 8.5 5.0 8.5 12.5 7.0 .233157-03 .233157-03

.0 5.0 6.5 8.5 5.0 8.512.5 7.0 -.610603-04 -.610603-04

. 9.0 3.0 7.0 8.0 6.0 8.0 10.0 9.0 .1B4865-03 .1848B5-03
.0 9.0 6.0 7.0 8.0 6.0 8.0 10.0 8.0 ,135287-03 .135287-03
.0 10.0 3.0 6.0 9.0 7.0 9.0 11.0 10.0 .28B5535-05 .285535-05
[5 11.5 10.0 18.0 7.5 11:8 8.5 1B.0 10.5 .572776-05 .572775-05
12.0 10,0 14.0 15.0 5.0 10.0 13.0 15.0 12.0 .755133-05 .755656-05

. The results for the left and Yight sides of this sum vule

were the same foy RNINE and WNINE i1r the computer
output irnn all but the last line shown above. The entroy
for RNINE showrn in the last line coyvrespends te the
left side which deviates from the resulis for the right
cide and that for WNINE due te the lame number of terms

swmyned.
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Chapter - B
Polynomial zeros of the 9-j coefficient
6.1 Introduction
In earlier chapters the polynomial or Cnon-triviald zeros of
the 3-j and the 6-j coefficients - in particular zeros of degree 1
or welght 1 - were studied and a comparison was made with the
studies made by various authors using different methods. In this
chapter our study of the polynomial zeros of the 9-3 coefficient
is presented and this study is the first of its kind.
Thé non-trivial zeros of the 9-j coefficient are those zeros
which arise even when the arguments satisfy all the triangular
inequalities. A closed form expressiun is obtained for these zeros

(of degree 1) using the triple sum series for the 9-J1 coefficient

given by Jucys and Bandzaitis (1977). They are also studied from a
set of parametric solutions +to the homogeneous multiplicative

Diophantine equations of degree 3, viz. X, X, X, =u u, u,. Using

the closed form expression as well as the parametric formulae, the
polynomial zeros of degree 1 of the 8-3 coefficient Wwers
generated. However, unlike the single four-parameter solution of
X, X, = u u, which generated the complete set of degree one =zeros
of the 3-J coefficient and the single eight-parameter solution of
X X, X, S u ou ou with the constraint Xg = x, +x, + u+ ut oo,
which generated the complete set of degree one zeros of +the 6-j

coefficient, it is found that a set of solutions of the egquation

X X, X, =ou u, u is necessary to generate the complete set of

1385




a direct consequence of the fact that while single sum series
representations hve been obtained by Wigner and Racah for the 3-3

and the 6-j coefficients, the 9-j coefficient is represented, at

.2 Closed form expression for the degree one zeros

The triple sum series for the 9-3 coefficient due to

Jucys
andzaitis (1977) is:
C v {(d a g) (b e h) (i g h) [_1}x+y+3
f = (-1) )
i (d e f) (bac) (1cf) n xl vl 2zl
Lxl = %) (%2 + x) (%3 + x)! (¥l + ¥)! (¥2 + y)!
(x4 - x})! (x5 - x)! (y3 + y)i(yd — y)I(y5 - y)!
(21 - 2)! (=22 + z)! (PL - v - z)!

{33 —z)l(zd - z2)! (25 - 2)I (P2 + x + ¥)!(P3 + x + z)!
(1)

Ex=min( d+e+f , c+ f - i) = XF ,
£y£min[g~h+i,’b+e—h}=YF.
=2z2=Zmin(a-b+c, a+d- g) = IF , (2)
- (a+b+c+ 1) Afla b c) o, {3)
(a'® 2] = (—a + b + o)!
xl,...,x5,¥1,...,¥5,21,...,25, pl, p2, and p3 are defined in
gms of the arguments a,b,...,i of the 89-] coefficient and are

iven explicitly in Chapter 1. If ¢ is set equal to zero in the
§ coefficient, the triangular inequalities to be satisfied will
#dto f =i and a = b, and the triple sum series can be shown
0 reduce to a single sum series, which corresponds to a 6-3

Wefficient. The symmetries of the 9-J coefficient then leads to

13-~
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is cobviocus that every polynomial zero of the B6-]
coefficient would imply a polynomial zero of the 9-j coefficient.
The degree of the polynomial zero would be the same in both the
cases. However, the 9-j coefficient in this case is a special one
ﬁith one of the nine angular momenta in it being zero and such 9-j
zeros are not the subject of interest.

It was shown in the previous chapter that the triple sum
geries (1) for the B08-j coefficient can be identified with a
jﬁpergeometric series in three variables in contrast +to +the 3-j
and the 6-J coefficlents which are represented by hypergeometric
series in a single variable. This +triple hypergeometric series
was also shown to be a particular case of an extremely general
@ypergecmetric series defined in three wvariables by Srivastava

‘

(1967). Vie:

Fm:[{a}--{ )i (BT ); (D7) (e); (e'); (e'')) x, ¥, 2 ] =
feridf); £ (S (g)e 4&"); v )
- T ((a),m+n+p) ((b),m+n) ((b'),n+p) ((b"’),p+m)
B, B ((e),ymtn+p) ((f),m+n) ((£'),n+p) ((£ " ),p+m)
m n =)

EZ ) X (5)

tam) o
g ),n) ((g°),p) m! n' pl !

where (a) denotes a sequence of parameters (as in the notation

of Srivastava (1967)).From (5) it is clear that the degree of the

.



polynomial F¥is given

by the sum of the maximum values of m, n

and p, and this corresponds to XF + YF + ZF in (1). While the

conventional expression for the 9-J coefficient does not reveal

the polynomial zeras of the 89-3 coefficient, the above

identification with a triple hypergeometric series enables

us to

find these zeros.
A closed form expression is derived for the zeros of degree
1, when the series (1) ends after the second term, and this could

happen when

(i) ¥F =1, YF = 0, ZF = 0, or
(ii) XF =0, YF = 1, ZF = 0, or
{iii) XF = 0, YF = 0, ZF = 1.

Using each one of the above conditions in (1) automatically leads

to the following closed-form expression for the degree 1 zeros

ﬂi'ijvFle ﬂz'HF'Y F
1_‘5(?,:.,0,:1-6{?,:-’}1 n"'ﬁﬁﬂ,n..n. J (6)

4 2 ¥ 1 1

- - P s N
F 8 F

where the following notation has been introduced:

& a,byc,d _

pars - °(&P) 8(b,q) &(e,r) 6(d,s) , (7)

the &(a,p) etec., being the Kronecker delta functions. In (6) the

a's and 3's are g€iven by:

al = (%2 + 1), (xa + i), x4, %S s Bl = X1, (p=2 + 4).(pa + 1)
02 = (vt +1).(y2 + 1).ye.y5s , (B2 = B.(p2z + 1), (ys + 1) ,
al = (gzz + 1), za, zd. =s » 3 = 2. {pas + .1}_ (8)

and XF, YF and ZF are given by (2).

It should be pointed out that the triple sum series (1) does

not exhibit the 72 symmetries of +the 9-j coefficient. In the

revious chapter while numerically evaluating the 89-J coefficient,

ca il e



using (1), it was shown that while the (extreme) example:

30 20 10
30 10 20
60 30 30

has XF + YF + ZIF = 0, its symmetries can have XF + YF + ZF = B0,

80, 100 or 140. Correspondingly, the number of terms to be summed

in the triple sum series, reckoned after taking into account the

constraints on the ranges of X, ¥ and z placed by pl, P2 and p3

(viz, y + 2 < p1  and if p2, p3 < 0, then x + y = Is2] , 2 + x =

|p3|), for the Elven 8-j coefficient and its symmetries can be

21, 41, 441, 1681, 9471, 18081 or 33761 terms! This is due to the

inherent lack of symmetry of (1), On the basis of this

- observation, the degree °f the polynomial zero of the =B

coefficient can be defined as that given by the minimum value of

k? + ¥YF + ZF for one or more of its symmetries,
6.3 Multiplicative Mophantine equations
£

In the study of the polynomial zeros of degree one of the 6-j

coefficient (in Chapter 4}, it was shown that the complete set of

Z8ros can be obtained only from the eight bParameter solution of

the multiplicative Diophantine equation: x ¥ 2 = uv w subject to

the constraint z = x + ¥y + u + v + Ww. The polynomial zeros of

gagree one of the 9-j coefficient can alsc be studied from the .

solutions of the homogeneous multiplicative Diophantine equations

of degree 3, viz. x y 2z = u v w. Since (1) is a triple sum series

and not a single sum series as in the case of +the 6-J

oefficient), the closed form expression (6) for the polynomial

8ros of degree one contains four terms and this immediately
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suggests that the multiplicative Diophantine equations to be

solved to generate the degree one zeros are:

al = f31 , for XF =1, YF = 0, ZF = 0, (9)
a2 = (32 , for X =0, YF=1, ZF = 0, (10)
a3 = 33 , for XF = 0, YF =0, ZF = 1, (11)

where the «'s and the {3's are products of three terms given in
(8). Furthermore, from (2) it is obvious that XF = 1 (say) could
arise due to -d+ e +f =1andec+f -izlorc+f- 1 = 1
and -d + & + £ =2 1; along with one of g - h + 1 or b + € - h being
0; and one of a - b+ cor a+d - g being 0. There are therefore
eight different cases which should be considered explicitly for
each of the above three equations (9), (10) and (11), and these
different possibilities are indicated in Table 1.

From the discussion of the homogeneous multiplicative
Diophantine eguation of degree n: '

XX, 00 X005 0o, ..., (n > 1) (12}
in Chapter 1, it follows that if (12) is written as:

n,on, n, = n, ngn {13)

then the solution of (13) is represented by the array:

n-l- nﬁ nﬁ
nl ¢1:[ cb:l.z ¢15
nz ¢2 i ¢2 2 EFZ'-'H
n ¢ ¢ ¢
| a1 32 33 { l ﬂ.j
We first consider the case XF = 1. The sclutions for the

eight different cases can be grouped into‘two setas (I) and (II) of
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four solutions each:

a a+[2nd-n!],r’2 nzg”z
[nl—n5+n‘—l]f2 (n, +n_-1)/2 n, /2
g h {nz+n4*2}£2
}Hi
n.=n, h=g+1, g=a+ (n -n, +n -2n. - 1)/2. (X1)
n,=(n +t+n, +n -n, -n -1), h=g+1, g =a+d. (X2)
n 4 n,, n, = n, h=5b+e. (X3)
ng = n, h = b + e g = a + d. (X4)
- a a + (2n_+n_-n - 1)/2 (n,+n_ -1)/2
L?I] {n1+n4—2]f2 nIIE Ty /2
g _ h (nz+n‘—n5—1}f2
ra
n,=n, h=g+1i, g=a+ (2n, + 2n, - n - n)/2. (X5)

n. = |:1:|.1 + n, i Al Sl « (R 1), h=z=g + i, g = a + 4. (XB)

n, = o, n, = nl,f h=Db+ e, {37
n, =0 h =b +e,g2 = a + d. (X8)

A detailed examination of these eight seolutions, named as
}%“,.JKB}reveals the following:

(a) The conditions given in (X2), (X3}, (X8), (X7) are inconsistent with
the triangular inequalities. This is demonstrated below:

(¥2) In this case ¢ + f -~ i =1, g -h +1i=0, a+d-g=0 and

a b c a b c
d e f = d a f
g€ h i atd atc+d+f-1 c+f-1

b+e-(a+d+ecs+y £f-1) 20 and a-b+cz= 0

Which together imply: e - d - f + 1 2 0, i.e e = d+ f or
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d +f - 1 only. Similarly, from the triangular inequalitiss for
(b e h) and (d e £):

b+e-(a+d+ec+f-1) =0 and d -e+f = 0,
lmplying: b - a-¢ + 1 2 0

, i1.e. b=a+c or a+c¢c - 1 only,

These restrictions on e and b lead to the following four cases:

Case Cid: e=d+f and b = a + e, which imply from (I):
n, = n, and n, = n, {15)
These two together with nonn, = nnn, imply:

n, = n (16)
But the condition n,=mn +n + n, - n, - n, - 1along with (15)

leads to:

ni = n5 + 1 " [1?}
which is in contradiction to (16). Hence no solutions are possible

in this case.

 Case Ciid: e=d+ ¢f and b =a+¢c - 1. As in Case 7 S

these two conditions imply from (I):
n, = n, and rﬂ:ﬂ = = 1 (18)
:Substituting these in n, =

= o n, ~n, - n, -1 leads to:
n. = n, (19)
The conditions n, = n,_ and n, = n, in nnn, = nn.n. gives:
n, = n (20)

which is in contradiction with n, = (n, - 1) given in (18).

EHanca no solutions are possible in this caée also,

A
CLase Ciiid: e = d + f - 1 and b = a + e . The arguments in

case (ii) can be repeated here and it leads to the conditions:
. n, = n‘-l and n, = n,
which contradict each other.
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Case Civd: ee=d+ £f -1 and b = a + ¢ - 1. Using these in :

b + @ - h = 0
h=za+d+ec+f -1 leads to:
=1 Z 0

which again is & contradiction.

ﬁuneefxz}cannct vield any degree-one zeros of the 9-3 coefficient.

In this case ¢ +f -1 =1, b +e - h = g, a-b+ = = 0,

From (I) we have n,=mn, n,=n and these two together

with nnn = nmnn imply n, = n_. Substituting these 1in

the 9-j coefficient given by (I) we gat:

atc o} a atn, /2 n, /2
e £ = {(n _-1)/2 (n,+n_-1)/2 n, /2 M & a i
atcte o+f-1 g a+{n1+nz+na—l}f2 {nz+n9—2}f2

he triangular inequalities for (g h i) and (a d g) imply:
(g - h + i)Y = @ and fa+d-g) =2 0 (22}
hese in terms of the solution in (20) read as:

g -a-n/2-1/2 = 0

7

(23)
"8 ta+n/2-1/2 =z 0,

hese two together imply -1 2 0 which is a contradiction. Hence,
3)does not yield any zeros.

'ﬁl In this case -d + e+ f =1, g - h 4 =0 e td - g = 0

ence

a b ¢ a b Q
d e T = etf-1 =] f
g h 1 ate+f-1 ate+f+i-1 i

ié triangular inequalities for (b e h) and (a b c¢) imply
b+te-(ate+f+1i-1)=20 and a-b+cz0
-vf:together imply (¢ - f -1 +1)=20 1i.e.

= I U, and c = £ + 1 - 1 only (24)
'@%31? from the triangular inequalities for (b e h) and (e £ i)

.



we have:

b+e-(a+e+f + 1 - 1) 20 and -c+ £+ 120
and these two together imply b -a-¢+ 120 or
b=a+c and b=a+e¢ -1 only (25)

These restrictions on b and o given by (25) and (24) 1lead to

four cases and the arguments in these cases are similar to those

given for the case(X2)and the conclusion dis +that (X6) cannot

also yield any zeros.

(X7) Here we have: - d + e + f = 1, Bb+e-h=0

» 8@ - b +ec =0,

and the arguments are on the same lines as in (X3), thus

leading to the conclusion that no Zeros arlse out of this

parametric formula.

Thus (X2), (X3), (X6) and (X7)do not yield any polynomial Zeros

of degree-cne of the -3 coefficient.

(b) (X1), (X4), (X5) and (XB) are solutions
(than

in terms of fewer
nine parameters) and have one of the angular momenta itself

&8s a free parameter.

Next we consider +the case YF = 1. The eight different

solutions in this case are given by:

& {*n1+n4]f2 ol
(I11) (n,-n_+2n_-1)/2-a n, /2 | £
{nz+n3—l]f2 En‘-E}KE [-nz+n5+n‘~ljf2
where
a = {nk-n3+n5-ndjf2, ¢ =b=-8; =4 =@, (Y1)
n,=n, ¢ = b-a, f=4d- e. (Y2)
n,=n,:; n,=mn, f=4d-e, {Y3)
n, =n, ¢= Tr=f £= {nl+ n,+ n.= Enﬁ- 1)/2 - a. {Y4)
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a [—n1+n3+n*—1},"2 o

{nz+2n5-2};’2—a (ni+nﬂ—1};’2 f
n, /2 (n -2)/2 (-n +n_)/2
a = {n2+n5—nﬁ-l}f2. c=-hb-a, f£f=141-¢. (Y5)
h,=n,c=b-a, f=4d-e. (YB)
n,=n, n,=1, £ =4d - e. (Y7)
n, =%, g 5% =4 F= (ni+nz-n3—2nd+1];”2-a. (Y8)

he following conclusions are drawn from a study of these eight

(Y1) and (Y5) are genuine nine parameter solutions, related

by the symmetries of the 9-J coefficient and the interchange

of n by n,.

d) The conditions given in (YZ), (Y¥3), (Y6) and (Y7) are

inconsistent with the triangular inequalities. This is

demonstrated below: a

t) This corresponds to bte-h = 1, -d+etf = 0, a-b+ec = 0. The

condition n_ = n, in  nnn, = nonmn. gives:
nn, =nn (28)
triangular inequalities for (€ hi) and (a d g) we
a+d-g=0 and —g+h3”il?’_*ﬂ
hese in terms of the solution given in|read as:
[ns—na}ED or nsann, (27)
{n‘-n2—1}253 or n‘2n2+1. (28)
?'-"[-26} implies:
n, = n, (ox) {n‘ - nz] = 0 ({29)
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Combining (29) and (2R);

(i) {n4 - nzj =0 in (28) leads to =12 0

(1i) {n4 - nz} = -n in (28) leads to f-n-1) = 0
both of which are contradictions.

(Y2)In thi=s cass b+te-h = 1, a+d-g = 0, e+f-d = 0, and

the arguments are similar to those for (X3) and (X7). In this
case the condition
-+ h+1i =0

which follows from the triangular inequalities for (g h i)

implies: =1 = B which is a contradiction.
(Y6)This corresponds to g-h*i = 1; =dve+f = Q. HBFG = 0,and
the condition ng, = mn in nnn, = nnn, leads to:
nn, = n,n, {30
The triangular inequalities for (¢ £ i) implies -c+f+i > 0,or
L 2 B i.e, n, = n,. (31)
(31) in (30) leads to the condition:
n, = n, . {32)
Ean. (32) leads to twe seperate cases. These are:
(i) n, =n,. In this case from (IV) it follows that i = 0. It

has already been stated that when any one of +the nine angular

momenta is zero, the 9-j coefficient reduces to a 6-j coefficient

as in (4) and the zeros of these special 9-j coefficients are a

direct consequence of zeros of the 6-J coefficients and we are not
interested in these, since they may be considered as derived
polynomial zeros of the 8-3 coefficient.

(i1) n, < n,, (IV) implies i<¢0 which is not allowed.

(Y7) In this case g-hti = 1, et+f-d = 0, a+td-g = 0

and hence

Sl



abc a b a
def = a+f = £
g h i ate+f atet+f+i-1 1

From the triangular inequalities for (b e h) and (a b c):

b+e-(a+e+f+i-1) 2 0 anda-b+cx0
which together imply : g =—f =21 51 20, 3.6
s £+ L ar fF+ 41 -1, only.
Similarly, from the triangualr inequalities for (b e h) and
. (e £ 1):
: b+e- (a+e+f +1-1)=20 and -¢c+ £ +1=z0,
implying: b-a-e¢+1 20, or
b=a+ecec, or & + 2 = A ¢ ARlw:

These restrictions on ¢ and b lead to the following four cases:

Case ¢13: ¢ = f + 1 and b = a + ¢, which imply from (IV):

& = L1

, T o, W 1)/2 and b = {-nu- n, +n, + 13)/2

But from (IV) we also have b = {—n1a+ e, L = 1)/2. S50 from both

these expressions for b to be true, we reguire B = 1. The

conditions given in (Y7) already require n, = ng and n,6 = 1. These
together with = 1 and the requirement nnn, = nn.mn. imply

n = n. From (IV), when n, = m,, i = 0 and as mentioned before

we are not interested in such cases.

‘Case Cii2: c =f +41 -1 and b =a + ¢, imply from (IV):

g= n, =6, Fa o= 1}/2 - a and b = l‘.-n.jl = B b A = 1)/2,
" But from (IV) we also have b = {—nl I TN 1)/2. For both
these expressions of b to be true, we require n, = 0. Since, by

definition, each of the nine parameters in the solution for the

multiplicative Diophantine equation take only positive non-zero
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integral values, we must have strictly n_ »> 0. Thus +this case
vields no zeros of degree 1.

Case Ciiil: c=f+iandb=z=a+e-1=2a+f+31 - 1. The
arguments for case (ii) can be repeated and they lead to n = 0,
and consequently to no zeros of degree 1.

Case Ctvi:e = f + 1 -1 andb=a+c-1=a+f+1i-2, imply
from (IV):

c=[—n1-'na+ni-l}f2—a and b:{unl—n3+n‘-'3:|;"2.

Also from (IV): b = (-n + n. + n 1)/2. For both +these

gxpressions for b to be true, we regquire n, = -1, whiech is
igrbidden.
Thus, (Y2),(Y3),(Y6) and (Y7) cannot yield any degree one

of the
2 ros.\?—j coefficient,

(e) (Y4) and (YB) are solutions in terms of fewer (than nine)
parameters with one of the angular momenta itself as a free
‘parameter.

Finally Z_ = 1 is considered. The eight solutions in this

gase are given by:

n‘fz {nl+n‘-ng-l}K2 {n‘+n3—1]f2
{nz—n‘sz & i +(n‘-n3-2nﬁ+l}f2
Enz-E}KE h i
i~ = I:r.l.tF e B 1)/2, e=zd-f, h=b + e . {Z1)
n, = 1, ezd =4, HR=zig+3 . (Z2)
nﬂ:l. n, = n, h=g+1i. (23}
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n‘KE {n1+n‘—2}f2 n1f2

(VI) [nz+ng-n‘—ljf2 e i+{nl“2nﬁ}f2
(n,-n_-1)/2 h i
where
i = l[}:l.5 + ng ~ 1)/2, e=d-%f, h=Db+ e . (Z5)
n, = n_, g =d =% h =g+t (Z26)
n, =n, n =n, h=g+i. {&T)
n, = on_, h=Db+e, e =i+ {n2 # n. = o -n, —Zn5 + 1)/2  .(Z8)

Of the eight solutions, (Z1) and (Z5) are genuine nine
parameter solutions. The sclutions given by (Z2), (23}, (Z6) and
(27) do not yield any polynomial zero of degree 1 due to violation
of triangular inequalities as explained below and (Z4) and (Z8)

are solutions in terms of fewer (than nine) parameters with one of

the angular momenta itself as a free parameter.

(Z2): This corresponds to atd-g = l, e+f-d = 0, g-h+ti = 0

abc A b c
d e f = aet+f a i
g h i ate+f-1 atet+f+i-1 1

The triangular inequalities for (b e h) and (a b ¢) imply:

and hence

b+e-(eta+f+1-1) Zz0anda-b+e=0
which together leads to : ¢ -f -1 +120, i.e.
c = f + 1 or e=f+rd -1
Case Ci12; i=ze -1 in (V) vields:
i = (n +n_ - 1)Y/2 . (33)

i | &

The triangular inequalities for (b e h) imply (b + e - h) 2 0 and
v)
this condition inLalong Wwith 1 given by (32) in turn implies:

(-n_ +1) =0 (34)

3
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The only value of N consistent with (33) is n, = 1. The solution

for (Z2) already has the condition n, = 1 and this along with
n. = 1 reduces the equation n, My BLoE Ry AL A tao:
non; T A Mo (35)

Also i Biven by (32) now becomes

¥ = {n1 - ong

)/2 . (36)
Since i should be greater than zero this implies:

n,>mn_ . (37)
This condition applied to (35) requires n, < n_. But n,< n, in (V)
makes d < 0 and this is not allowed.
Case Ci1i2: i1 = ¢ - f + 1 in the solution given by (V) leads to:

i= I:nsl + n, )/2 (38)

and this along with (b + e - h) = 0 in (V) implies:

which is a contradiction.

(Z3): 1In this case a+td-g=1,¢c+f-41=0, g-h+1i= 0

4 b C a b o
d e f = d a T .
€ h1i atd-1 atd+c+f-1  c+f

and combining the relations:

and hence

bt+te-(a+d+ec+f-1)z0 and (d —e + £) 2 0
which are implied by the triangular inequalities for (b e h) and

(d e f) we get:

b=a+c or at+ec -1
Case Ci2: b = a + ¢, in (V) implies:

W o= l[n_1 +n, o+ n, - 1y/2 . {39)
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From (V) b is also aqual to:

[N= R n, - 1)/2 (40)

The two together imply n, = 0 which is forbidden.

Case Ciid: b = 3 + ¢ - 1. In this case the same argument as above

leads to:

n, = 1. {(41)

This along with the other conditions ,viz, n_ =1 and n. =mn, in
n, n, o, = n nE n imply:

n, = n, . (42)

But when n, = n,, d becomes 0 and hence no non-trivial Zeros

result.
(Z6): This corresponds to a-b#e = 1, <Hd Fe+f = 0, g-h+i = g,
and since n, = n_, the condition n n, n, = n, ng n_ becomes
non, = n, n_ . (43)
The conditions (b + e+ h) = and (e+f -1) =0 imply:
Ca Fonc) = il * n, ) (44)
and
n, = n, (45)

respectively. The two together imply:
n, = n (46)

<+

The only consistent solution for (43), (45) and (46) is:

n =n_ and n, =n_ . (47)

But (46) in (VI) along with the condition
—at+td+g=EQ
leads +to -I'= o, which is & contradiction,

(£7): Here a - b + ¢ = 1, 2 -h +1i = 0, e+ f -1 = ¢ and the
arguments used in (X3)(also (X7) and (Y3)) can be repeated in this

case. The condition: -a + 4 + E Z 0, in this case leads to -1 2 ¢,
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Hence (Z2), (Z3),(Z6) and (27) do not yield any zeros of degree 1,

Te sum up of the 24 cases studied, 12 did not yield any
degree one zeros because of inherent inconsistencies and of the
remaining 12 studied, only four (two from (9) and two from (10))
are full nine parameter solutions, the other eight being fewer
( than nine) parameter solutions having one of the angular momenta
itself as a free parameter.
6.4 Results and discussion

The polynomial zeros of degree one of +the 9-j coefficient
were generated using both the closed form expression (8) and the
set of 12 sclutions of multiplicative diophantine equations
discussed above. Using (6), the polynomial zeros of degree cne for
all non-zero arguments of the 9-j coefficient that arise when
0 < a, b, d, € £ 5/2, were listed c; an IBM - PC/AT computer. This
restricted range for +the arguments was found to contain 447
polynomial zeros of degree one of the 8-J coefficient. The first
20 of these are given in Table-2. Also this range of arguments

contained only three polynomial zeros of degree 1 of the 6-j

coefficient, wviz.
2 2 2 i 2 2z N 4 T/2 B/2
as2 3s2 3/2 ' 1 2 % 2 bs2 5/2
and (4) gives in this case all the corresponding polynomial zeros
of degree one of the 9-3 coefficient.
In Table 3 are listed the first few inegquivalent polynomial

zeros of degree one, for 12 £ o £ 18, These were generated from

the 12 soclutions of +the multiplicative Dicphantine equations
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discussed earlier. After generating the polynomial zeros, the
results were further analysed with the help of a program by which
the inequivalent 9-3 coefficients were isolated (by dropping the
equivalent ones, which are any of the 72 symmetries of the listed
one). Since the symmetries of the 9-j coefficient are all
generated only by column permutations, row permutations and
transposition about the leading 'dlagonal’, (unlike in the case of
3-J and 6-j coefficient where in addition to permutations and/or
exchanges, Regge symmetries also exist), the ones that are related
by any one of the symmetries can be identified by inspection.
Using these symmetries an ordering procedure has been arrived at
to seperate the ineguivalent ones. However, it was realised that a
much simpler ordering prescription Que to Howell (185%) can be
used for ordering to get the inequivalent 89-J coefficients. The
program used to obtain the list of tneguivalent Zeros based oan
Howell's prescription for 0 <a, &, d, e= 3 is given in Appendix D.
The significant point to be noted is that the nine parameter
solutions do not generate all these listed zeros. This is obvious
by a lock at (6), since the nine bParameter sclutions are from (10}
and (11) only which arise from the third or fourth terms of (6&)
being equal to 1, and these exclude the zeros that arise from the
secand term of (6). So, the set of 12 solutions of the
multiplicative Diophantine equations 1s necessary to generate all

the polynomial zeros of degree one of the 9-j coefficient. A scan

of the tables of 9-j coefficients (Howell 1959) reveals & listing




of 87 polynomial zeros and of these 60 are zsros of degres one.

6.5 Conclusion:

To conclude, based on the +triple sum series for +the 9-j
goefficient, +the ©polynomial zeros of degree one of this
coefficient have been generated using:

(i) the closed form expression (6) ,or
(ii) a set of parametric formulae based on +the solutions of 12

homogeneous multiplicative Diophantine equations of the type:

Xi Xz KE = 1.11 le U'B
Due to the relation (de-5halit and Talmi 1963):
k L) LY [ [ [ s r
e J e 'jz J T a3 el ‘jz J' o> = [JY [k] [J']
‘jx ‘jz J k.t I-cz
x Jyo 3y I <e i TN el §y e g T U al g, (48)
k; kz k

it follows that the polynomial zeros of the 9-j coefficient imply
that certain specific reduced matrix elements of the tensor
product of two irreducible tensors taken between certain specific
well-defined angular momentum states are zero, It is possible that
these wvanishing matrix elements have some quantum mechanical

significance.
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Table - 1
The 24 FParametric Solutions

AR oo sl ol ol 2l 70 BORADS
=2 1 zo0 0 =0 0 (X1)
= 1 1 z 0 0 0 = 0 (X2)
= i ! z0 =20 0 (X3)
z 1 1 = 0 0 > 0 (X4)

1, 9, 0
1 =1 = 0 = 0 0 (X5)
1 = i = §] 0 = 0 (XB)
1 - § = =0 0 (X7)
1 z 1 =g 0 = 0 (X8)
= 0 8] 1 = 1 = 0 (Y1)
0 =0 1 =1 =zq 0 (Y2)
0 z 0 1 = 1 z 0 (Y3)
= 0 0 i =1 > 0 (Y4)

G, L, 0

=¥ 89 =1 L z 0 0 (Y5)
0 = 0 = 1 1 =0 0 (Y6)
0 =0 = 1 1 0 =0 (YT)
=1 ¢ =i L 0 20 (Y8)

- 0 20 1 = 1 i
0 = =0 1 z 1 (22)
= 2.0 1 = 1 (Z3)
z 0 =0 1 z 1 (Z4)

By Ak

= 0 0 =0 g 1 (Z5)

= 0 = 0 =1 1 (Z6)
=z 0 0 =0 ] 2tk 1 (Z7)
=z 0 0 0 Sl ¥ = 1 1 (28)
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Table

of the 9-]

one

of degres

aeros

The first 20 polynomial
coefficient, withe = a + b +ec+d+e+f +g+h+ 1

the last column.

in

given




All the inequivalent polynomial zeros of degree 1 of the
18,

the 12 solutions of the multiplicative Diophantine equations

coefficient for o =

Table - 3

8-J

The last three columns represent which of

rise to the entries in this table.

Eive

Column P represents the four 9
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Chapter 7
Hahn Folynomials and Recurrepce Relations for 3-]J coefficients.

T.1 Introduction

Recently, there has been a considerable interest in
unravelling the deep connection between the basic quantities of
the guantum theory of angular momentum - wviz. +the Clebsch-Gordan
(ex 3-4) coefficients and the Racah (or 6-3) coefficients and

orthogonal rolynomials of & discrete variable (i.e. rolynomials

which ars orthogonal on a discrete set of points). smorodinskii
and Buslov (19825@, while determining the eigenvalyes and

eigenvectors of a Hermitian operator, were led to a4 relation

between 3-; coefficients and discrete Hahn Polynomials, "which are
Practically unknown to rhysicists" . Wilspn (1980) and Askey and
Wilson (1979) related the 6-3 coefficient to the orthogonal
polynomial named as Racah polynomial, which contains a5 limiting
cases the classical rolynomials of Jacobi, Laguerre, and Hermite
and their discrete analogues which B0 under the names of Hahn,
Meixner, Krawtchouk and Charlier Polynomials . Askey and Wilson
(1980) discuss the classical type of orthogonal polynomials that
can be given as hypergecmetric polyrnomials and they provide also a
chart showing their interrelationship,

In this chapter we relate the 3-j coefficient to the discrete
orthogonal Hahn Dolynomial through a EE;{l} transformation due ta

Erdelyi and Weber (1952) which was discussed earlier in Chapter-2.

The four recurrence relations (one 2ld and three new) obtained by

-6l



Karlin and Mc Gregor (1961) for the Hahn polynomial are used to
derive recurrernce relations for the 3-] coefficient. Two of these
recurrence relations have been found to be useful in the exact

recursive revaluation of the 3-3 coefficients by Schulten and
Gordan (1875).

7.2 The Hahn Polynomial : Definition and Properties

The Hahn polynomials defined by Karlin and Me Gregor (1961)

are
Qu(x) = @ (x; «, f#, N)

I
3F2{~n} X, ntat@E+]l ;| a+l, -N+l1 ; 1) (1)
for real &« > -1, 7 > -1 and positive integral N. The results of

Karlin and McGregor, which are made use of here are obtained with

this restriction of a, 2 +to real values > =7

This discrete polynomial has been shown (Karlin and McGregor,

1961) to satisfy the following orghaogonality relaticons:

MW= 1

E Qx) @x) p(x) =1 s¢m,m) (2)
=D I

and _— i
hEL Q (x) W (v) L= = B(x) 5(3:?) (3)

where &(x,y) is the Kronecker delta functicn and the weight

function are:

ksl
P(X) = pxia,@,N) = G |prrer (4)
[ )
ey
= = n {2n+otF+1)
and L nn(a,ﬁ.ﬂ} = [ NTatGen ] CEESE
n

C{B+1l, n+a+l, n+a+3+1) (5)
Dio+l, at+3+1, nH3F+1l, n+l)

with [ 2 ) representing the usual binomial coefficients. Karlin
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and MeGregor call (3) as their new Dual orthogonality relation,
7.3 Hahn Polynomial and the 3-j coefficient
In Chapter 2 the 3-j coefficlent was represented by the Van

der Waerden set of EEE(I}Q which for (p g r) = (1 2 3) reads as:

5, 3, 3, - L 2
(5 oz a2 ) = etmoem,m.0) (-1) RURCTCI T
x {I'(1-A,1-B,1-C,D,E)}" _F (A,B,C;D.E;1),  (8)
where
A=z -j+m,B=-§-m,C=-3-j+3,,D=1-J+j -m ,E = 1-§ +j +m, .

It was shown that using one of the transformations given by

Erdelyi and Weber (1952) for the 3Fz{l}.viz.:

r" et
GJF (enfonir,651) = e XS R (a,6-0, -0 dtern,551). (7)

to the right hand side of (B) with the identification:
o = Ay o= By on=2 -G = B and S = Tk (8)

leads to the Majumdar form of the 3—J coefficient:
2j ~-j =m a R ]

x« T2 +1) {F(i+d +4m , 143 -m , 1=, +]j, +3,
1+'j1_j2+jﬂ" 1+j2+m2’ 1+:|1"j3_m2}}_‘
2 3F2{1+j1+j2'j9,—j3+m3,Ji—jz-jﬂj—Zja.1+j‘—j3-w5;1}
(9)
In this form, the 9F2{1} can be readily identified with the Hahn

polynomial Qn{uj defined in (1) and this leads to:

jtmy (3, -3,m)! (2j,-m)! n! (23, +n+1)!
Q (x) = (-1) 7 { F==3 i 43 = !
n (23,)! (203, -3, )+n) (] i, +m, —X): —_—
) ! {Eja—x}! {ji—jg+m2+n 3! }1x2 [ ji ji_j3+n jg ]
Ejz_ja_mz+x}E{ji_Jﬂmmz+n]! x_ja_mz HE jahx

e



where the following identifications have been madse

n o= -j+i +i.x = dom, N = 23+l = §-iom,B = mitm. (11)
Though, « = (J,+m ) - (J,-m) and # = (J-m) - (J;+m;), being
differences between integer quantities, appear to be capable of
taking positive or negative values: due to the 72 symmetries of
the 3-J] coefficient, it is always possible to choose a symmetry of
the given 3-j coefficient for which both a« and 2 are = O.. This
restriction to non-negative real values of o and (3 1is required

since we use the orthogonality properties for the Hahn and dual

Hahn polynomials of Karlin and Mc Greger (1961).

Using (7) over again, with the roles of y and 6 interchanged

to transform the right side of (7), Erdelyi and Weber (18352)

obtained the transformation:

T ; Iy, &, y-atn, &+n-a)
3F2[ﬂlﬁl nlylé'l l} = r{y'i_n: I:E""n, ?’—ﬂ, 5_‘1]

o El:l-«z {ﬂ.1'|ﬂ+ﬁ-r-é_n;_n;1+a&r-n’ l+ﬂ._6_n;1) -{12}

Identifying:
a = A, =B, n=-C, ¥ =Dand 6 =E , (13)
and applying (12) to the 3E'zil} in (B) leads to the following

expression for the discrete Hahn polynomials:

L { n! (2Jg-n)! (2(Jatda)-n+l)!
Q (x) = (23 705, 3, m ) (23,-n) (3, +3,-m -n) ]
. fmo<nil PR
[ X 3, Jyrd,mn ] (14)
T TR Ta

with:
n =Jj +JZ"J31TK=Ji'm1, H=1j1+1. ol='ji-jz"m3*l, ﬁ=-j1-j2+mg—1.{15]
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This form (14) happens to be an equivalent way of vrelating the
Hahn polynomial to the 3-j coefficient and is gimilar +to that
given by Smorodinskii and Suslov (1982b)who alsoc made use of (12).

7.4 Eecurrence relations

The first of the recurrence relations is due to Erdelyi and

Weber (1952) which is:

[bn o g ] Qntx} = thﬁflix} + ann_1{K] ; (16)
where
b - I(nta+f+1) (n+a+1) (N-n-1) (17)
no (2nt+ta+3+1) (Znt+o+3+2) '
& o n (nt3) (n+a+fz+l) (18)
w = { 2nto+3) (2nta+F+1)’
which is valid for complex values of = if n = Q, 1,2,... s N=2 but
is valid only for X=0, 1,2,..., N1 when n = N - 1. Using (10),

(17) and (18) in (18) after simplifying and rearranging leads +to
the following recurrence relation for the 3-j coefficient:

B3, 3,.8,) [ % ;:] t O AGL S, 0 [Pt J:]

A, m., m, Inz m
AR R T ] Nl 2] =0, (19
1 F4 2

where
Aldg g3 = 18 g3 T R g (33, #1071 102 1472, (20
B{JF.Jq.jrJ={2jp+l}{JP{jp+1}[HL'mqJ"[jqijq+llhjr{jr+ll]mb} ) (21)
with p# g # r being 1,2 or 3. These expressions, with minor
notational modifications, correspond to (Ba), (6b) and {6c) of
Schulten and Gordan (1975), respectively.

The orthogonality relation {3) for +the discrete Hahn

polynomial, can be shown to imply +the following normalisation

condition for the 3-j coefficient:

e



2
3 5 SO | =
b (231+ 1) Lf nF mF] = L. (22)
i | i 2 3
i

Schulten and Gordan (1975) have provided & numerical algorithm for
the computation of the 3-3 coefficient based on recursion
gguations relating coefficients in two different types of strings.
They derived the recursion relations algebraically from cartain
sum rules satisfied by these coefficients. The orthogonality
relation (22) along with the recurrence relation (13) has been
shown by them to the adequate to determine (except for an overall

phase factor}), the wvalues of the string of 3-J coefficients

[%.Jz ja] for all allowed values of J
m, m, m, 1

The second difference equation derived by Karlin and MeGregor

for the Hahn polynomial 1is:

[B(x) + D{x) - »_ 1 @ (x) = B(x) Qﬂix+li + D(x) @ (x-1), (23)
where |
B(x) = (H-1-x) (o+l+x),
D(x) = x(N+3-x),
Lﬂ = n{n+ta+3+l),
and (23) is valid for n = B Ryess oW1 E6F 1] complex value of x.

This recurrence relatlon implies for the 3-j coefficient -

Clm_+1,m -1 [%. jz js ] + Dim_,m_} [h.jz js]
2 3 m_ll m2+1. mar-:. 2 a Il'i.’L m2 mEI

J J J =
- E{mz.mgﬁ[mi ngi maai ] =2 (24)

wherea

_ _ : i 172 =
C{mp.mqi - [{JP mpillijp+mp}(Jq mq}ijq+mq+1]1 : (25)

-



and
= =3 (3 #1)+3 (F + i (3 #1)+ 6
E{mp.mq] i (3 +1) prJp l}+aq{3q 1] Em.pmq ; (26)
with p# g = r being 1,2 or 3.These expressions correspond to the
appropriately modified forms of 9(a), 9(b), and 9(c) of Schulten

and Gordan (1975). The orthogonality relation (2) can be shown to

imply the normalization conditicon

. . . 2
T (24, + 1) [Jx J, Ja] -1, (27)
mz ey mi mz mﬂ

which along with the recurrence relation (24), has been shown by

Schulten and Gordan to determine (except for an overall phase

factor)the values of the string of 3-) coefficients E# ;z _magm ]
1 Z 1 z
for all allowed values of m,.

Thus, the recurrence relation in J ~and the recurrence
relaticon in m,, m, are found to be direct conseguence of the
corresponding recurrence relations satisfied by the discrete
orthogonal Hahn polynomials. The derivations of (19) and (24)
given here are a direct consequence of the definition of the 3-)

coefficient in terms of Qﬁtx} given in (10), as opposed to the
algebraic method resorted to by Schulten and Gordan of deriving
them from certain other sum rules

Karlin and MeGregor have given two new first - order
difference-recurrence relations satisfied by the Hahn polynomial.

These are :

{ (n+ta+p+l) [ (n+t@A+l) (x-n) - (nte+l) (N-1-x) ] +
+ (2nta++2) (a+l+x) (N-1-x) } Q (x)
- (2ntot@+2) (atl+x) (N-1-x) Q (x+1)
+ (ntatf+l) (n+a+l) (N-1-n) @ (x) = 0, (28)




and
{n [{nt3) (H-1-x) - (nta) (nta+F+x+l) ] +

t+ (2ntotf3) (atl+x) (N-1-x) } @ (x)

= (2nta+3) (a+l+x) (N-1-x) Q (x+1)

- n (n+3) (ntatB+N) Q (x) = 0. (29)
While (16) is a three-term recurrence relation in n for Qh{x} and
(23) i5 & three-term recurrence relation in x for Qﬂ(x}, it is to
be noted that (28) and (29) are recurrence relations mixed in n
and x. However, since a term invelving Qn{x+1} is common in both
(28) and (29), one can try to algebraically eliminate it. This
results in (18) - &a three-term recurrence relation in .
Therefore, we consider (28) and (29) along with (23) to be the
fundamental recurrence-relations satisfied by Qh{x}.

A straightforward wuse of (10) in (28) and (29), after

simplifications, and rearrangements leads to the following

‘¢

recurrence-relations for the 3-J coefficient:

D(jl'jzijﬂj ['\j; J: I*:Inz] +2Ej1+l:| E[ms,mz][i: 'j:z jﬂ ]

ml m m2+l m. —1i
T e 4, AR .
SCRSTENE RN A ) TR
and
N A T
E(Jg s dy 0 33) [”‘i o m:] + 23, Clm,,m,) [m: nta magi]
P o= Ay 3 =
+ R o By [aml v m:] =0 ,(31)
where
Bl il #1380 = (3 =4 ¥3M0T68 *a3Ld, =8, ~am Vim (-3_#4 %4 71,

(32)
and
E(d, Jq 4p) = (3,73, 43003 (3 -3 +3,+2m +1)+m (3 +3 +§ +1)]. (33)

Multiplying (30) by ,ji and (31} bw {jii-l} and subtracting, we
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would get the three-term recurrence relation in ji for the 3-]

coefficient, with the constant factors cbeying the condition:
Eji+1}E(j1:Jz.j3} 2 J; B[J‘.jzaja} = Bijl.jz,Ja}- (34)
It should be pointed out that the other two forms for the 3-j
coefficient wviz. the Wigner and Racah forms (discussed in

Chapter 2) do not lead to the desired ranges for the indices x

and n, to satisfy the known sum rules for the 3-3j coefficients
given in (22) and (27).

7.5 Conclusion

As a direct consequence of identifying the 3-3 coefficient
with a discrete orthogonal Hahn polynomial, corresponding to
the four three-term recurrence relations due +to Karlin and
Me Gregor, it was shown that four three-term recurrence relations
can be derived for this coefficient. Of these, one is a linear

combination of two others and +the other three are fundamental

recurrence relations for this coefficient and two of these appear

to be new.
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CONCLUDING REMARKS

In this thesis the following results were established:
Sets of six BFZ{lis corresponding to the single EIthll dus to
van der Waerden ,Wigner, Racah and Majumdar were derived and
these were shown to be related to each other via an Erdelyi -
Weber transformation for the S (1)s.
The 3-j coefficient was related to the Hahn polynomial and +this

led to three independent three-term recurrence relations for

this coefficient, of which two appear to be new.

The set I of three ‘Fa{ljs and the set II of four 4Fs{l}s for
the B8-J coefficient were shown to be related to each other by
the reversal of series argument for the Saalschutzian ‘FE{l}s,
Formal binomial expansions were derived for the 3-j and the 8-3j
coefficients, using which closed form expressions were derived
for the polynomial zeros of degree 1 of these coefficients.
These closed form expressions, as well as three algorithms based
on soluticns of multiplicative Diophantine equations were used
to generate the complete set of the degree 1 zeros.

The 9-j coefficient was related to a triple hypergecmetric
series and this led to an efficient new Fortran program for it
and to a discussion of its polynomial zeros, for the first time.
A closed form expression , as well as solutions to a set of
maltiplicative Diophantine equations were used to derive the
complete set of polynomial zeros of degree 1 of the 9-j

coefficient.
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A study of the polynomial zeros of degree 2 of the 3-j and
the 6-j coefficients in terms of +the Orbit classification to
solutions of the Pell eqguation is due to Louck and Stein(1987) and
Beyer, Louck and 5tein(1987). However, in the case of the 6-]
coefficient, their algorithm for determining numerically the
fundamental solutions of Pell's equation, does not generate all
its polynomial zeros of degree 2. Exploiting the connection
between the 3-J and the 6-j coefficients to sets of qu{l}s,
Srinivasa Rao and Chiu (1988) obtained closed form expressions
which represent polynomial zeros of any degree n and they rroposed
simple algorithms based on the principle of factorization of
integers, to generate numerically all! +the polynomial zeros of
degree 2. It is considered that a study of the polynomial zeros of
degree 2 for the 9-) coefficient can now be made exploiting the
connection established between this ‘coefficient and the triple
hypergeometric series.

As has been suggested by Biedenharn and Louck (1881b)in their
treatlise on Racah—-Wigner Al gebra in Crucer b wm Theory the
distribution of the polynomial zeros of these angular momentum
coefficients is basically a number-theoretic question and this is
yet to be studied.

suslov (1983) has suggested that the 9-j coefficient is an
orthogonal polynomial in twoe wvariables. The connection between

this and the triple hyperdeometric series discussed at length in

this thesis is to be studied.

S



Finally, the studies made till date on the polynomial zeros

of these angular momentum coefficients will hopefully motivate an

investigation into their physical significance.
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Appendix A

This 1is an Appendix to Chapter 3, which concerns the

Eeneration of ©polynomial =zeros of degres one of the 3-3
coefficient. All the equation numbers referred here belong to
that chapter. The program ZERO1 Eenerates the eguivalent as well

as the ineguivalent zeros of degree 1 of the 3-J coefficient using

either the closed form expression or the four parameter formula

given by (17) and (26), respectively. The eguivalent zeros of

degree 1 using (17) are generated in a subroutine THREEJ and those

using (26) are generated in a subroutine THREEB.

Of the two CALL statements in the main program ZEROl, one
must be made a comment statement (by keying in C in the first
column) at the very beginning to enable generation of the zefns by
either THREEJ or THREEB. The one-dimensioned variables 4in the
common block are set to 150 and for this case NN, the variable to

be read in I3 format can be < 26. While in the case of THREEJ,

the value of NN generates all the zeros for Jl = NN/2; in the case
of THREEB, the zeros corresponding to a,b,c,d < NN are ganaerated.
The ordering prescription of Rotenberg et. al.(18959) 1is followed
in the case of THREEJ. For every zero the canonical parametars
P,y Pyy Pyy D, and J are calculated by calling a subroutine
CANON and the arguments of the 3-j coefficient corresponding to a
zero along with its canonical parameters are stored in the one

dimensional arrays AJ1, AJ2, AJ3, AM1, AM2, AM3, 1IP1, 182, 1P3;

N1, N2 and J. The variable I1 gives +the number of egulvalent
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zeros generated. These entries are then ordered with respect to
the parameter J in ascending values.of J. The ordering is done by
adapting the straight insertion sort Algorithm S given in Knuth
(1873). After ordering, the minimum and maximum values of J are
noted as JMIN and JMAX, respectively. The ineguivalent ones are
sieved out by making use of the fact that B,» P,y Py b, W and J
are the same for equivalent ones. The ineguivalent zeros along
with their canonical parameter=s are written down.
e SUBROUTINE CANON (IR, IP1, IP2, IP3, N1, N2) has the nine
elements of the £w0 dimensional array IR (I, K), I =1, 2,
d and K = 1, 2, 3 as its input elements. These are the

elements Rik’s of the Regge array (7) which are calculated

in THREEJ (or THREEB). This subroutine calculates the
canonical parameters P, P,» Py M and n, {J being
calculated in THREEJ (or THREEB)), for a given 3-3

coefficient by interpreting the parameters given by Bryant
and Jahn (1860) in terms of the parameters of the set of
six JF (l)s given by (10).

® Function PHASE(N) calculates the value of {-1}N.

& Function TRIA (X, Y, 2) checks for the triangular
inequality being satisfied by X, Y and Z.
® Function PARITY (A, B, C, X, Y, Z) has the arguments of a

3-) coefficient - viz. A, B, C representing j‘. % T, and

, m, respectively - as its input

X, Y, Z representing m ., m i

2z

parameters. It checks if any of the Regge symmetries of the

S T



given 3-j coefficient is a parity 3-3 coefficient. PARITY is
used in THREEJ ( or THREEB ) to exclude parity 3-j
coefficients from the list of zeros.

Subroutine ORDER (Il) has Il as one of its input wariables
and the other input variable denoted by DUMS (which is a
one dimensional array) along with the output wvariable KEY
(whichlis alsc a one dimensional array) are stored in a
COMMONblock A4. This orders the array DUMS which has I1
elementﬂin ascending order and stores the key sequence in
thdarray KEY. This is adapted from the straight insert
sort Algorithm S of Knuth (1973).

Subroutine ORDERZ2 (I, J, K, Il1, I2, I3) orders the given

threﬂintagers I, J,and K in descending order and returns

them as I1, 12, and I3 so that I1 = I2 = I3.

#***#***#*#*****#*#t*#**#*####*H.:!K*#**#t###t*#*#*##*#****####*****##*

60

10
11

FROGRAM ZERO1

IMPLICIT REAL*B(A-H,0-2)

LOGICAL LX,LY,LZ
CDHHDNK&lJAJl{lSﬂ].ﬁJZ{lﬁﬂ}.ﬂJE{lEU].ﬁH1[15U].ﬁHE{lED},AﬂE{lEU}
CDHHDNKHEKIPI{ISG},IPE{159],IPE[lﬁﬂ}.NlElﬁﬂ],NE{lSUJ.J{lﬁﬂ}
CDHHDHHA3!JP1{T2].JPZ{TEJ.JPS[TE},JNI{TEI,JNZ(TE}

COMMON/A4 /DUMS(150) ,KEY(150)

DIMENSION BJ1(150),BJ2(150),BJ3(150),BM1(150),BM2(150),BM3(150)

DIMENSION KPl[lSG].KPE{IBU}.KPB{lﬁﬂJ,Hl{lED}.HE{lSG}.N{l&ﬂ}
READ(*,680) NN

FORMAT(13)

CALL THREEJ(NN,I11)
CALL THREEB(NN,6I1)
WRITE{*.IG}{AJlEIJ.hJE{I].ﬂJEEI].ﬁH][I},ﬂHE{I},AHE[I].121.11}
FORMAT(B(5X,F6.2))
DO 11 I=1,1I1
DUMS(I)=J(1I)

CALL ORDER(I1)

DO 13 I=1,I1
IS=KEY(I)
BJ1(I)=AJ1(IS)
BJ2(I)=AJ2(1S)
BJ3(I)=AJ3(1S8)
EM1(I)=AM1(15)
BM2(I1)=AM2(IS)
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13

1z
44
14

15

30
25

BM3(1)=AM3(18)
KF1(I)=IP1(1S)

KP2(1)=1P2(I5)

KP3(I)=IP3(18)

M1(I)=N1(I8)

M2(I)=N2(18)

N(I) =J(IS)

CONTINUE

JMIN=N(1)

JMAX=N(I1)

WRITE(*,12) JMIN,JMAX

FORMAT(2110)

WRITE(*,44) [aJ1[1},AJ2(11.AJﬂ(I},Aﬁl(I},AH2{1},J(1],I=1,11}
FORMAT(5F6.2,110)

JHM=JMIN

T=1

DO 50 Li=1,I1

IF(JM -N(L1)) 20,15,50

JP1(I)=KP1(L1)})

JP2(I)=KP2(L1)

JP3(1)=KP3(L1)

JN1(I)=M1(L1)

JNZ(TI)=M2(L1)

IF(I.EQ.1) GO TO 25

DO 30 K=1,I-1
LX:(JP1{IJ.EQ.JP1[K1}.ﬁHB,[JPZEI}.EQ.JPZ{K}}
LY:{JPS{I}.EQ.JPE{K}}.ﬁND,{Jﬂlilr.EQ.Jﬂlfﬁjj
LZ=JNZ2(1).EQ.JN2(K)

IF((LX.AND.LY).AND.LZ) GO TO 40

CONTINUE

AB=BJZ(L

NRITE{#,35]&A.AB.AC.AD.AE.£F.IA,IB,IC,ID.IE,IG
FDHHAT[E(EX.F511}.5{21.12}.23.13]

I=1+1

CONTINUE

GO TO 16

JM=JM+1

IF(JM.LE.JMAX) GO TO 14

aTOP

SUBROUTINE THREEJ(N,I1)
IMPLICIT REAL*8(A-H,0-Z)
LOGICAL L1,L2
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COMMON [AL/ATL(150), ATL (150), AT3(150), AM1 (L50), AML(150), AM3 (150)

CDHHDNXAE{IPI{IED}.IPE{15D}.1P3{150}.N1{15G}.N2{150].JEIED}
DIMENSION IR(3,3)

I11=]

DO 10 J1=1,N
A=J1
All=A/2.0D0
DO 15 J2=1,J1
B=J2
B11=B/2.0D0

AHIB:D&BEfﬁll-Ell]
AMA3=A11+B11
Cl1=AMI3

20 IF(C11.GT.R11) Go TO 15
AJ22=A11+B11+C11
JE22=AJ22
TZTRI&[AII,EII,EII}
IF(T.EQ.0.0) GO TO 25
Dil=-A11

22 E11=-B11

30 F11=-D11-E11
AMOD=DABS(F11)
IF{AMDD.GT.CII} GO TO 40
S1=PHASE(J22)
52=-81
L1={D11.EQ,D.U}.ﬂﬂD.{Ell.EQ+D.D}
LEZ{Fll,EQ.D.DJ.AND.{SE.EQ~1,EDGI
IF(L1.AND.L2) GO TO 40
IR[1.1}=—ﬁll+Hll+C11
IR(1,2)=A11-B11+C11
IR{1.3}=ﬂ11+BII—Ell
IR(2,1)=A11-D11
IR(2,2)=B11-E1]
IR(2,3)=C11-F11
IR(3,1)=A11+D11
IR(3,2)=B11+E11
IR(3,3)=C11+F11
DO 45 I=1,3
DO 46 K=1,3
IF[IHEI.K}.EQ.]} GO TO 50

46 CONTINUE

45 CONTINUE
GO TO 40

50 L3=IR(1,K)

52 I1=2
12=3
GO TO &5a
54 I1l=1
I12=3
GO TO &8
58 Ii=1
I12=2
B8 IF(K-2) 60,622,864
B0 Ki=2

K2=3
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GO TOD 68
B2 Kil=1
K2=3
GO TD 686
B4 Kl=1
K2=2
E6 IX=IR(I1,K1)*IR(1I2,K2)
IY=IR{II,K2}*IR[IE.K1]
IF(IX.NE.IY) GO TO 40
?zP&RITY{ﬂll.Bll.Ell,Dll.Ell.Fll}
IF((EE.EQ.l.UDﬂ}.hHD.{?.EQ.U.G]}GO TO 40
CALL G&NDNEIR.IQI.IQE.IQ3+HH1.HN2}
AJI1(T11)=A11
AJ2(I11)=B11
AJ3(I11)=C11
AM1(T11)=D11
AMZ(I11)=E11
AM3I(T11)=F11
IP1({I11)=1IQ1
IP2(I11)=1IGg2
IP3(111)=1Q3
N1(I11l)=MN1
N2(I11)=MNZ
J(I11)=J22
I11=T11+1
40 El11=E11+1.0D0
IF(E11.LE.0.0) GO TO 30
35 D11=D11+1.0D0
IF(D11.LE.A11) GO TO 22
25 Cl1=C11+1.0D0
IF(C11.LE.AMA3) GO TO 20
15 CONTINUE
10 CONTINUE
I1=I111-1
RETURN

SUBROUTINE CANON( IR, IP1,1IP2,1P3,N1,N2)
IMPLICIT REAL*B(A-H,0-2)

DIMENSION IR(3,3)

DO 70 JP=1.,5

DO 71 JQ=1,3

IF(JP.EQ.JQ) GO TO 71

DO 72 JR=1,3

IF((JQ.EQ.JR).OR. (JF.EQ.JR))GO TO 72
JD=IR(3,JR)-IR(2,JP)

IF(JD.LT.0)GO TO 72
JE=IR(2,JR)-IR(3,JQ)

IF(JE.LT.0) GO TO 72

JA=IR(2,JP)

JB=IR(3,JQ)

JC=IR(1,JR)

CALL ORDERZ2(JA,JB,JC,1P1,IP2,1P3)
KA=IP1-1P3

KB=IE2-1P3
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IF[ID-GW-TE] GO TO 15
N1=JE

N2=JD

GO TO 76

N1=JD

N2=JE

KAB=KA+KB

KDE=JD+JE
IF(KAB-KDE)72,73,74
KAMB=KA-KB
KDME=N1-NZ2
IF{KAMB-KDME) 72,74, 74
CONTINUE

CONTINUE

CONTINUE

RETURN

FUNCTION PHASE(N)
IMPLICIT REAL*B(A-H,0-2)
PHASE = 1.0D0

M=(N/2)%x2

IF(M.NE.N) PHASE = -1.0D0
RETURN

FUNCTION TRIA(X,Y.Z)
IMFLICIT REAL#*#B({A-H,0-2)
TRIA=0.0

Xl=-X+¥+Z

X2=X-Y+Z

X3=X+¥-2

IF((X1.GE.0.0).AND. (X2.GE.0.0).

RETURN

FUNCTION PARITY(A,B,C,X,Y,2)
IMPLICIT REAL*8(A-H,0-2)
AO=0.5D0*(C-B+X)

Al=B-C

A2=A0+Y

A3=A0+Z
IF((A1.EQ.0.0).AND. (A2 . EQ.0.0)
BO=0.5D0% (C-A+Y)

Bl=A-C

B2=BO+X

B3=BO+Z

IF((B1.EQ.0.0).AND. (B2.EQ.0.0).

CO=0,5D0%(A-B+Z)
Cl=B-A

C2=00+X

C3=C0+Y

IF((C1.EQ.D0.0).AND. (C2.EQ.D.0).

D1=C-0.5D0* (A+B+Z)
D2=A-0.5D0*(B+C+X)
D3=B-0.5D0* (A+C+Y)
IF((D1.EQ.0.0).AND. (D2.EQ.0.0)
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.AND.

-AND.

-(X3.GE.O.

(A3.EQ.D.

.(B3.EQ.O.

.({C3.EQ.0D.

(D3.EQ.O.

0))TRIA=1.0D0

0))GO TO 75

0))GO TO 75

0))GO TO 75

0))GO TO 75



E1=0.5D0*(A+B-Z)-C
E2=0.5D0% (B+C-X)-A
E3=0.5D0*(A+C-Y)-B
IF((E1.EQ.0.0).ANRD. (E2.EQ.0.0).AND. (E3.EQ.0.0))G0O TO 75
PARITY=1.0DO
RETURN

75 PARITY=0.0

RETURN

SUBROUTINE ORDER(I1)
IMPLICIT REAL*8(A-H,0-2)
COMMON/A4/ DUMS(150),KEY(150)
DO 15 K=1,I1

15  KEY(K):=K
DO 45 J=2,I1
X=DUMS(J)

IY=KEY(J)

Do 35 1=J-1,1,-1
IF(X.GE.DUMS(I)) GO TO 40
DUMS(I+1)=DUMS(I)
KEY(I+1)=KEY(T)

35  CONTINUE

40  DUMS(I+1)=X
KEY(I+1)=1Y

45 CONTINUE
RETURN

SUBROUTINE ORDER2(I,J,K,I1,12,13)
IMPLICIT REAL#*8(A-H,0-2)
I1=MAX0(I,J,K)
IF(I1.EQ.I) GO TO 7
IF(I1.EQ.J) GO TO 8
IF(Il.EQ.K) GO TO 89

7 12=MAX0(J,K)
IF(I2.EQ.J) I3=K
IF(IZ2.EQ.K) I3=J
RETURN

8 12=MAXO0(1,K)
IF(I2.EQ.I) I3=K
IF(12.EQ.K) 13=1
RETURN

9 12=MAX0(I1,J)
IF(I2.EQ.1) I3=J
IF(12.EQ.J) 13=1
RETURN

SUBROUTINE THREEEB(N,I1)

IMPLICIT REAL#*8(A-H,0-2)

LOGICAL L1,LZ
COMMON/AL/AJ1(150),AJ2(150),AJ3(150),AM1(150),AM2(150),AHM3(150)
COMMON/AZ/IP1(150),IP2(150),IP3(150),N1(150),N2(150),J(150)
DIMENSION IR(3,3)

I11=1
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12
11
10

DO 10 IA=1,H
A=TA

Do 11 IB=1,H
B=1IB

Do 12 1C=1,N
C=TC

DO 13 ID=1,N
D=1D
All1=A*{B+C)/2.D0
Bl1=D*(B+C)/2.D0

Cili=(B+C)*(A+D)/2.D0-1.DO0O

AJZ2Z2=A11+B11+C11
J22=AJ22
T=TRIA(Al1l,Bl11,Cl1l1)

IF(T.EQ.0.0) GO TO 13

D11=A%(C-B)/2.D0
E11=D*(C-B)/2.D0
F11=-D11-E11
S1=PHASE(JZ2)
52=-51

L1=(D11.EQ.0.0).AND. (E11.EQ.0.0)
L2=(F11.EQ.0.0).AND. (52.EQ.1.0D0)

IF(L1.AND.LZ2) GO TO 13

IR(1,1)=-A11+B11+C11
IR(1,2)=A11-B11+C11
IR(¢1,3)=A11+B11-Cil
IR(2,1)=A11-D11
IR(2,2)=Bl11-El11
IR(2,3)=C11-F11
TR(3,1)=A11+D11
IR(3,2)=B11+E11
IR(3,3)=C11+F11

V=PARITY(A11,B11,Cl11,
IF((S2.EQ.1.0D0).AND. (V.EQ.0.0))GC TO 13
CALL CANON(IR,IQ1,IQ2,I1Q3,MN1,MN2Z)

AJ1(I11)=A1l
AJ2(111)=B11
AJ3(I11)=C11
AM1(I11)=D11
AMZ2({111)=Ell
AM3(111)=F11
IP1(I11)=1IQl
1P2(111)=1Q2
IP3(I11)=1Q3
N1(I11)=MHN1
N2(I11)=MN2
J{I11)=J22
I11=F11+1
CONTINUE
CONTINUE
CONTINUE
CONTINUE
I1=111-1
RETURN

END

D11,E11,F11)
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Appendix B

This is an Appendix to Chapter 4

» Which deals with the

Beneration of the eguivalent zeros of degree one of the 6-]

coefficient, using:
i) the closed form expression (24):

ii) the algorithm based on the solution of Brahmegupta:

1ii) the algorithm based on the solution of FPaoli; or,

iv) the four-parameter solution given by (68) and (B7).
(Note: all the equations referred here belong to Chapter 4.

These four cases are computed in the subroutines SIXJ, SIXB, SIXP

and SIXF, respectively.

At the outset, three of the four CALL statements in the main

Program ZEROZ are made into comment statements. The value of N is
read in. In each of the subprograms, corresponding to every zero,

the canonical parameters B n,,oon, P Py P, and Jm Hre

calculated by calling a subroutine CANONS and the arguments of the

6-3 coefficient along with the canonical parameters and the number
of zeros generated, denoted by NC, are stored in a file ZEROZ  oUT
as AN, BN, EN, DN, CH, FN, N1, N2, N3, IP1, IP2, IP3, JM and NC.
(The output can be stored in the file ZEROZ2.0UT either by

redirecting at the time of running the program or by means of an

OPEN statement). In these subroutines the ordering of the output
parameters for the zeros of the E-J coefficient is according +to

either the prescription of Koozekanani and Biedenharn (1874); or,

that given in Rotenberg et.al (1959,

® Subroutine SIXJ (J) generates the equivalent zeros of

degree 1 for jl = Jjlusing the closed form expression (24).
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® Subroutine SIXF(N) generates the eguivalent zeros of

degree 1 based on the solution in terms of four integer

parameter a, 4, h and ¢ esach one taking +the wvalues

1,2,...N. The arguments of the 6-j coefficient are ordered

by calling a subroutine ORDER3.

Subroutine SIXB (J) generates the eguivalent zeros of

degree 1 based on the constraint equation (34) being reduced
to utilize the aslgorithm (68) of Brahmegupta (of Dickson
(1952) p.B4). The zeros corresponding to each of the seven
parameters a, &, c, 4, =, f, and ¢ (called as IY, IU, 1IP,

IZ, IV, 1IQ and IX) taking the wvalues 1,2,...,J are

generated, and the arguments of +the 6-3 coefficient are

ordered using the subroutine ORDER3.

Subroutine SIXP (N) uses the solution of Paoli (of. Dickson
(1952) p.401) to solve the constraint equation (34) and
generates the eguivalent gzeros of degree 1 corresponding to
each of the seven parameters &, ¢, d, f, g8 h and ¢ (called
as JB, JC, JD, JF, JG, JH and JI) taking the wvalues
L, 2% This subroutine makes use of a function
subprogram IGCD (IX, IY) - which finds the greatest common
divisor (g.c.d.} of IX and IY - +to check for +the nine
relative prime conditions to be satisfled by the nine

parameters (54). The arguments of the B-j coefficient are

)8



ordered using the subroutine ORDER3.

® Function IGCD (IX, IY) makes use of Euclid's algorithm (of.
Kriuth (1973) p. ) to find the g.e.d. of IX and 1Y,

® HBubroutine CANONG (MO, M1, MZ, M3, K1, K2z, K3, N1, N2, N3,
IP1, IP2, IP3, MM) has MD, Mi, M2, M3, Ki, K2, and K3 as
its input wariables which correspond tao JD,Jl,JZ,J!.K!, K:,

and K.EI given by (1) and computes n, n,, n,, P, B, P, and

Jm (named as N1, HZ, N3, IP1, IPZ, IP3 and MM respectively)
Biven by (2) and (3).

® Subroutine ORDER3 (A, B, E, D, €, F, CJ1, CJ2, CL1, CLZ,
CL3) has the arguments of the 6-J] coefficient as its input
parameters and the output wvariables are ordered as 1in
Hotenberg et.al. (1959) with the help of the 24 elassial

symmetries of the 6-j coefficient.

The output of ZERDZ2 stored in the file ZEROZ.OUT serves as
the input to the program ZERO3, which sieves out the eguivalent

G-3 coefficients generated in the program ZEROZ and retains only

the tneguivalent cnes. The ineguivalent ones are separated by

making use of the fact that the parameters i Ny, ng,, P, P P

2! a

and Jm are the same for eguiuvalent ones,

R
¥ PROGRAM ZEROZ2
IMPLICIT REAL*8(A-H,0-%)
READ(*,10) N
10 FORMAT(I3)
CALL SIXJ(HN)
CALL SIXB(N)
CALL SIXF(HN)
CALL SIXP(HN)
5TOFR
END

[eReR o
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SUBROUTINE SIXJ(J)
IMPLICIT REAL*8(A-H,O-
LOGICAL LL1,LL2,LL3
WRITE(*,95) J

FORMAT(I3)
NC=0

M=1

DO 60 M1= 1,J
AN=M1
AN=AN/Z2.0D0
DO 50 M2=1,M1
BH=M2
BN=BN/2.0D0O
EMIN=DABS(AN-BN)
EMAX=AN+BEN
EN=EMIN

IF(EN.LT.EN) GO TO 50
DO 40 M3=0,M1

DN=M3

DN=DN/2.0D0

CMIN=DABS (EN-DN)
CMAX=EN+DN

CN=CMIN
FMIN1=DABS(AN-CN)
FMAX1=AN+CN
FMINZ=DABS(BN-DN)
FMAXZ2=BN+DN
FMIN=DHMAX1(FMIN1, FMINZ

Z)

)

FMAX=DMINI (FMAX1,6 FMAX2)

FN=FMIN
AMX=DMAX1(CH,DN,FH)
IF(AN.LT.AMX) GO TO 55
X1=TRIA(AN,BN,EN)
X2=TRIA(CN,DN,EN)
XI=TRIA{AN,CN,6FN)
X4=TRIA(BN,DN,FN)
IF(X1.EQ.0..CR.X2.EQ.0D
GO TO 75

L1=AN+BNH+EN
L2=CH+DN+EN
L3A=AN+CN+FN
L4=BN+DN+FN
LO=MAXO(L1,L2,L3,L4)
LE1=AN+BN+CN+DN

..OR.X3.EQ.0..0OR.X4.EQ.0.)GD TO 55



LEZ=AN+DN+EN+FHN
LE3=BN+CN+EN+FN
MO=MINO(LE1l,LEZ,LE3)
N=MO-LO

CALL DANOHEEL1+L2.L3.L4,LE1.LEE.LEE,Hl.HE,HE,IPI.IPE.IPS,JHJ
IF(H.NE.1) GO TO 75

I1U=LE1-MO+H

IV=LEZ2-MO+N

IW=LE3-MO+H

IX=IU*IV=IW

IP=MD-L1

I18=M0-L2

IR=MO-L3

IS=MO-L4

IY=IP*IQ*xIR*1IS/(MO+1)**N

CONTINUE

XIYy=1Y

AIN=IPxIQ*IR*IS

AMO=MO

AID=( AMO+1.0DO0 ) **HN

AIY=AIN/AID

CH1=DMAX1(CN,FN)

CHZ=DMAX1(CN,DN)
IF[[ﬂﬂ.EQ.BN].&HD,{{CH.GT.DH].GR.{CHE.GT.BH]}l GO TO &5
IF{{BH.EQ.EN],hHD.{EFN.GT.CH}.GR.ECHI.GT,EN}}} GO TO bb
IF[f(ﬁN.GT.BN},AHD.{EN.GT.EN}}.ﬁHD.{CHl.GT.BH}}GD TO bbb
WRITE(*,444) AN,BN,EN,DN,CH,FN,H

FORMAT(6(2X,F4.1),110)

GO TO 54

IF(N.NE.1) GO TO 54

LL1=IX.EQ.ILY

LLZ2=AIY.EQ.XIY

LL3=N.E@.1

IF{LLl.AHD.LLE.AHD.LLB] NC=NC+1

IF{LL1.AND,LL2.AND.LL3) HRITEE#,ES}AN.BN,EE,DN.GH.FN,Hl,Nz.
N3,1P1,1P2,1IP3,JH,NC
FGRH&T{E{IH.F5.1].E{iK.IE},lX.IS.Iﬁ}
M=M+1

FN=FN+1.0DO

IF(FN.LE.FMAX) GO TO 35

CN=CN+1.,0D0O

IF({CN.LE.CHAX) GO TO 15

CONTINUE

EN=EN+1.0D0

IF(EN.LE.EMAX) GO TO B

CONTINUE

CONTINUE

RETURN

END

FUNCTION THR1A AND SUBRROUTINE

APPENDLY A RANT THEY ARE N

ORDERL ARE GIVEN 1N
pT TRETP gaTED H ERE
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35

60

SUBROUTINE SIXF(N)

IMPLICIT REAL*B(A-H,0-Z)

I11=1

WRITE(#*®,75) N

FORMAT(1I5)

DO 10 IA=1.,H

AA=TA

DO 20 ID=1,H

Dh=ID

DO 30 IH=1,N

HH=IH

DO 40 II=1,N

AI=TT

DN=HH*AT-AA%DD
IF((DN.LT.0.0).0R. (DN.EQ.0.0)) GO TD 40
ANR=AA+DD+HH+AT

NRE=ANR

NDE=DN

Z=ANR*HH*AT /DN

U=ANR*AA*DD/DN

IZ=TIDINT(Z)

IO=IDINT(O)
Z1=(IZ/2.0D0)*2.0D0
Ul=(I0/2.0D0)%2.0D0
IF(21.NE.Z) GO TO 40

X=AA

Y=DD

¥=HH

W=Al

A=(X+U+V-1.0D0)/2.0D0
B=(Y+U+W-1.0D0)/2.0D0
E=(Z-0-2.0D0)/2.0D0
D={X+W)/2.0D0

C=(Y+V)/2.0D0
F=(X+Y+U-1.0D0)/2.0D0
AMX=DMAX1(A,B,E,D,C,F)
IF(AMX.GT.18.5D0) GO TO 40
JO=A+B+E

J1=C+D+E

J2=A+C+F

J3=B+D+F

K1=A+B+C+D

K2=A+D+E+F

K3z=B+C+E+F

CALL CANON6(JO,J1,J2,J3,K1,K2,K3,N1,N2,N3,1P1, IP2,1P3,JM)
CALL ORDER3(A,B,E,D,C,F,AJ1,AJ2,6AJ3,ALL,AL2,AL3)
WRITE(*,35)AJ1,AJ2,AJ3,ALY,AL2,AL3,N1,N2,N3,IP1,1P2,1IP3,JM, 111
FORMAT(6(1X,F5.1),6(1X,12),1X,13,15)
WRITE(*,80) IA,ID,IH,II,NR,NDR
FORMAT(5(1X,12),1X,13)
I11=T11+1

S oy



40 CONTINUE

30 CONTINUE

20 CONTINUE

10 CONTINUE
I1=T11-1
RETURN
END

SUBROUTINE CANONG6(MO,M1,M2,M3,K1,K2,K3,N1,N2,N3,1IP1,IP2,IP3,MM)
IMPLICIT REAL#*B(A-H,0-2)
CALL ORDERZ2(K1,K2,K3,KA,KB,KC)
MM=MAXO0 (MO, M1,M2,M3)
IF(MM.EQ.MD) GO TO 66
IF(MM.EQ.M1) GO TO 67
IF(MM.EQ.M2) GO TO 68
IF(MM.EQ.M3) GO TO B8
66 CALL ORDER2(M1,M2,M3,MA MB,HC)
GO TO 70
67 CALL ORDERZ(MO,M2,M3,MA,MB, MC)
GO TO 70
68 CALL ORDER2(MO,M1,M3,MA ,MB,MC)
GO TO 70
69 CALL ORDERZ2(MO,M1,M2,MA ,MB,HMC)
70 N1=MM-MC
NZ2=MM-MB
N3=MM-MA
IP1=KA-MM
IP2=KB-MM
IP3=KC-MM
RETURN

SUBROUTINE ORDER3(A,B,E,D,C,F,CJ1,CJ2,CJ3,CL1,CL2,CL3)
IMPLICIT REAL*8(A-H,0-2)
LOGICAL L1,L2
AMX=DMAX1(A,B,E,D,C,F)
IT(A.EQ.AMX) GO TO 13
IF(B.EQ,AMX) GO TO 14
IF(E.EQ.AMX) GO TO 15
IF(D.EQ.AMX) GO TOD 18
IF(C.EQ. AMX) GO TO 17
IF(F.EQ.AMX) GO TO 18
13 CJl=A
CL1=D
GO TO 19
14 CJ1=B
CL1=C
B=4A
C=D
GO TD 19
15 CJ1=E
CL1=F
E=4
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16

17

18

19

21

23

24

25

28

27

F=D

GO TO 19

CJl=D

CL1=A

G=B

B=C

C=G

GO TO 18

CJ1l=C

CL1=B

B=D

C=A

GO TO 18

CJ1=F

CL1=E

E=D

F=A
BMX=-DMAX1(B,C,E,F)
IF(B.EQ.BMX) GO TQO 21
IF(C.EQ.BMX) GO TO 22
IF(E.EQ.BMX) GO TO 23
IF(F.EQ.BMX) GO TO 24
CJ2=B

cL2=C

CJ3=K

CL3=F

GO TO 256

CJ2=C

CLZ2=B

CJd3=F

CL3=E

GO TO 25

CJz=E

CLZ2=F

CJ3=B

CLI=E

GO TO 26

CJ2=F

CL2=E

CJ3=C

CL3=B
L1=((CJ2.EQ.CJ3).AND. (CL2.GE.CL3))
L2=(CJ2.NE.CJ3)
IF((CJ1.NE.CJ2).AND. (CJ2.NE.CJ3)) GO TO 28
IF((CJ1.EQ.CJ2).AND. (CL1.LT.CL2)) GO TO 27
IF(L1.0OR.L2) GO TO 26
H=CL3

CL3=CL2

CLZ=H

G0 TO 26

I=CL1
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CL1=CL2

CL2=0

GO TO 28
26 RETURN

SUEROUTINE SIXP(H)
IMPLICIT REAL*B(A-H,0-Z)
I111=1
WRITE(*,75) N
T5 FOEMAT(15)
Do 200 JB=1,N
Do 190 JC=1,N
DO 180 JD=1,N
IF{IGCD(JB,JD).NE.1) GO TO 180
IF{IGCD(JC,JD).NE.1) GO TO 1BQ
DO 170 JF=1,H
IF(IGCD(JB,JF).NE.1) GO TO 170
DO 160 JG=1,N
IF{IGCD(JB,JG).NE.1) GO TO 1860
IF(IGCD(JC,JG).NE.1) GO TO 180
IF(IGCD(JF,JG).HE.1) GO TO 180
DO 150 JH=1.N
IF(JC*JF.LE.JG*JH) GO TO 170
IF(IGCD(JC,JH).NE.1) GO TD 150
IF(IGCD(JD,JH).NE.1) GO TO 150
IF(IGCD(JF,JH).NE.1) GO TD 150
IA=JB*JC+JD*JG
IB=JD*JF+JB*JH
IS=IGCD(IA,IB)
DO 140 JI=1,H
IG=JI*(JCxJF-JG*JH)
IX=IA+IB
IF(IG.LT.IX) GO TO 140
IF(1S*(IG/IS).NE.IG) GO TOD 140
IAP=IA/IS
IBP=1B/I5
1GP=1G/IS
IEP=0
130 I¥Y=(IGP-1AP*1EF)
IF(IBP*(1IY/IBPF).EQ.1IY) GO TO 135
IEP=IEP+1
GO TO 130
L3B M=0
250 JA=IEP+]1BP*M
IF(JA.LE.O) GO TO 137
JE=IY/IBP-1AFP*M
IF(JE.LE.O) GO TO 140
C WRITE(*,138) JA,JB,JC,JD,JE,JF,JG,JH,JI
C138 FORMAT (914)
X1=JA*JB*JC
X2=JD*JE*]JF
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X3=JG*JH*J1

Ul=JA*JDxJG

U2=JBxJE*JH

U3=JCxJF*xJI

AX1=X1+X2+01+UZ

A=0_5DO*({AX1- U2-1.0D0)

B=0.5D0*(X1+02+X3*AX1/1G-1.0D0)

E=0.5D0* (U3*AX1/IG-X1-2.0D0)

D=0,5D0*(U1+X3*xAX1/1G)

C=0.5D0*(X2+U2)

F=0.5D0*(AX1-X2-1.0D0D)

=DMAX1({A,B,E,D,C,F)

IF(AMX.GT.18.5D0) GO TO 137

JO=A+B+E

J1=C+D+E

J2=A+C+F

J3=B+D+F

K1=A+B+C+D

KZ2=A+D+E+F

K3=B+C+E+F

CALL CANONB(JD,J1,J2,J3,K1,K2,K3,N1,N2,N3,1P1,1IP2,1F3,JM)

CALL ORDER3(A,B,E,D,C.F,AJ1,AJ2,AJ3,ALL1,AL2,AL3)

WRITE(*,35)AJ1,AJ2,AJ3,AL1,AL2,AL3,N1,N2,N3,1IP1, IP2,
1 IP3,JHM, 111

as FORMAT(6(1X,F5.1),6(1X,12),1X,13,15)
J11=T11l+1 .
137 M=M+1
GO TO 250
140 CONTINUE
150 CONTINUE
160 CONTINUE
170 CONTINUE
180 CONTINUE
130 CONTINUE
200 CONTINUE
11=111-1
RETURN
. BND.

FUNCTION IGCD(IX,IY)
IMPLICIT REAL#*8(A-H,0-2)
IGCD=1X
IF(IX.EQ.IY) RETURN
IF(IX.GT.IY) GO TO 10
M=1Y
N=IX
GO TO 20

10 M=IX
N=1Y

20 Na=M/N
IR=M-NQ=N
IF(IR.EQ.0) GO TO 30

=g )=




75

M=N
N=IR

GO TO 20
IGCD=N
RETURN

SUBROUTINE SIXB(J)
IMPLICIT REAL*8(A-H,0-2)
I11=1

WRITE(*,75) J
FORMAT(15)

DO 20 IX=1,J
ATX=IX

DO 30 IA=1,J

IP=IA

DO 40 IB=1,J

IQ=1IB

DO 7 1IY=1,J
ATY=TIY

DO B8 IZ=1,J
ATZ=12

DO 9 10=1,4J

ATU=1U

DO 11 IV=1,J
AIV=1V

ID=IP*IQ#IX+IP*IY*IU+IQ*IZ*IV

ISB=1Y%IZ

ISC=IU=*1VY
MABC=MAXO ( ISE, I5C)
MIBC=MINO(ISB, I5C)
AMABC=MABC

AMIBC=MIBC
N=IX*ID+ISB*ISC

DO 50 IE=1,N

AN=N

AE=IR

Q1=N/IE

RZ2=AN/AE

IF(Q1.RE.Q2) GO TO 50
IF(QL.LT.AE) GO TO 11
AMAQE=DMAX1 (Q1, AE)
AMIQE=DMINI1 (Q1, AE)
MAQE=AMAQE

MIQE=AMIQE
IF(MABC.EQ. ISC) GO TO 33
H51=[HEQE+HIEC]KIX

51 =(AMAQE+AMIBC) /AIX
AT1=(MIQE+MABC)/1X

T1 =(AMIQE+AMABC) /AIX
AS2=(MIQE+MIBC) /IX

52 =(AMIQE+AMIEBC) /AIX
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33

34
31

3z
10

35

AT2=(MAQE+MABC) /IX
T2 =(AMAQE+AMABC)/AIX
GO TO 34
AS1=(MIQE+MABC)/1X
51 =(AMIQE+AMABC)/AIX

AT1=(MAQE+MIBC)/IX
T1 =(AMAQE+AMIBC)/AIX

ASZ=(MAGE+MABC) /IX

52 ={ AMAQE+AMABC)/AIX

ATZ2=(MIQE+MIBC)/IX

T2 ={(AMIQE+AMIBC)/AIX

IF((AS1.EQ.S1).AND. (AT1.EQ.T1)) G0 TO 32
IF((AS2.NE.S2).0R. (AT2.RE.T2)) GO TO 50

5=52

T=T2

GO TOD 10

5=51

T=T1

P=1P

Q=14q

ﬂ:{P#Q*hlK+5#ﬂIY$ﬁIZ+Q*AIE*AIU—1.DD]fE.DD
B=[P*Q#EIX+P*ﬁIY*aIU+T#ﬁIU*&I¥-l.DD}IZ.DG
E={S#EIY#AIZ+TtﬁlU*ﬁI?+P#hIY*ﬂIU+Q*ﬁIE#AI?}IE.Dﬂ-i.Dﬂ
D= (T*AIU*AIV+Q*AIZ*AIV)/2.D0
C:[E*&IY*&IZ+P#AIY*&IU}IE.DD
F={P*Q#&IK+P*AIY*&IU+Q*&I2*&1?-1.Dﬂ}fz,Dﬂ
AMX=DMAX1(A,B,E,D,C,F)

IF(AMX,.GT.18.5D0) GO TO 50

JO=A+B+E ‘

J1=C+D+E

J2=A+C4+F

J3=B+D+F

K1=A+B+C+D

K2=A+D+E+F

Ka=B+C+E+F

CALL CﬁNDNE[JD,Jl,JE.JH.Kl,KE.KB.Nl.NE.H3.IPl,IPE.IPS.JH}
CALL DRDERB{&,B,E,D,C.F.th.ﬁJE.ﬁJﬂ.ﬁLl.ﬂLz.hLS}
HRITE[#_35}&J1+AJ2.AJS.ﬁLl.&LE.&LE.NI,HZ,N3+IPl.IPE.
IP3,JHM, 111

FDRHﬁT[E{1x,F5.1}*Et1x,121.11.13.15]

I11=T11+1

IF(51.EQ.52) GO TO 11

IF(S.EQR.51) GO TO 3l

CONTINUE

CONTIRUE

CONTINUE

CONT INUE

CONTINUE

CONTINUE
CONTINUE
CONTINUE
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11=111-1
RETURN
END

PROGRAM ZERC3
PROGRAM TO OBTAIN THE 'INEQUIVALENT’ 6J COEFFICIENTS FROM
A GIVEN LIST THAT INCLUDES THE SYMMETRIES
IMPLICIT REAL*8(A-H,0-2)
LOGICAL LX,LY,LZ
DIMENSION JN1(1000),JN2(1000),JN3(1000)
DIMENSION JP1(1000),JP2(1000),JP3(1000)
OPEN(3,FILE="ZEROZ.0UT")
READ(*,50) JMIN,JMAX,I1
50 FORMAT(2(I3),16)
WRITE(*,75) JMIN,JMAX, K I1
TH FORMAT(2(2X,13),2%,18)
I11=1 7
DO 10 J=JMIN,JMAX
I=1
REWIND 3
READ(3,58) N
55 FORMAT(I3)
15 READ(3, 2) ﬂ,B.E,D.E.F.HI.HE.HE.IPl.IPE,IPB.JH.MG
2 FDRHﬂT[EEIX.FE.IJ,E[lK,IZJ*lx.Iﬁ.IE}
IF(J.NE.JM) GO TO 20
JNI(IY=H1
JNZ2(I)=N2
JN3(I)=N3
JP1(I)=1P1
JP2(I)=1P2
JEI{TY=IFP3
IF(I.EQ.1) GO TO 25
Ml=I-1
DD 30 K:1+H1
LKthHl{I}.EQ.JNI{K}.AHD.JNZ{I}.EQ.JHE{K}}
LY:{{JNB{I}.EQ.JNH(HJJ.END.(JPI{II‘EQ,JPI{K]
LZ:{[JPE[I]+EQ.JP2{K}J.EHD.{JPS{IJ.EQ.JPEEKJ
IF((LX.AND.LY).AND.LZ) GO TO 40
a0 CONTINUE
25 WRITE(#*, 35) A,B,E,D,C,F,N1,N2,N3,IP1,IP2,IP3,JM,111,MC
ab FORMAT(6(2X,F4.1),7(2X,13),14,18)
I11=T11+1
40 I=1+1
20 IF(MC-I1) 15,10,10
10 CONTINUE
I2=111-1
WRITE(#*,70) N,12

T0 FORMAT(,/," N=',13,10X,' NO OF INEQUIVALENT ZEROS=',I5)
200 STOP

END

aoaa

)
)
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Appendix C
This is an Appendix to Chapter 5 which gives a listing of the
numerical code to compute the 9-3j coefficient. The description of
the main programs and various subroutines is given in detaill in
Chapter 5. While the complete listing of the program is given in
the case of PROGSELECT, +the main program alone is given for
PROGTEST, since the other subroutines are common for both. Also,

the subroutines that are already listed in Appendix A or B are not

listed here.

o S 3K o o o o o o o S ok K o o R o o o o o o R SR S O o R RO S S K K R R R

PROGRAM PROGSELECT
05K o o oo o o K oK R K R R R S R R S O ORI O

MAIN PROGRAM TO COMPUTE RNINE(A,B,C,D,E,F,G,H,RI) AND
WNINE(A,B,C,D,E,F,G,H,RI1).THESE FUNCTION SUBPROGRAMS COMPUTE
THE 9-J ANGULAR MOMENTUM COEFFICIENT. THE PROGRAM RNINE USES
THE TRIPLE SUM FORMULA OF JUCYS AND BANDZAITIS IN ITS FOLD
FORM,WHILE THE PROGRAM WNINE USES THE CONVENTIONAL SINGLE
SUM OVER A PRODUCT OF THREE 6-J CQEFFICIENTS, WHERE THE 6-J
COEFFICIENT IS COMPUTED AS SET OF THREE HYPERGEOMETRIC
FUNCTIONS OF UNIT ARGUMENT.

THIS PROGRAM SELECTS EITHER WNINE OR RNINE DEPENDING UPON THE
AD HOC PRESCRIPTION NT1.GT.2%NT3 OR WHEN THE NUMBER OF TERMS
IN RNINE (NT1) EXCEEDS 200 (FOR IBM-FC/AT) OR 600 (FOR
VAX-11/7B0).

S A A o oK KK K R K K R K AR K K R K

IMPLICIT REAL*B(A-H,0-Z)
COMMON FCT(500)
COMMON/XX/A2,B2,C2,D2,E2,F2,G2,H2,RI2,J51IG2
DIMENSION RS(3,3)
C LOGARITHMS OF FACTORIALS SET UP IN A COMMON BLOCK
FCT(1)=0.
FCT(2)=0.
DO 10 HN=3, 500
AN=N-1
10 FCT(N)=DLOG(AN)+FCT(N-1)
WRITE(6,30)
30 FORMAT(® INPUT DATA FOR A,B,...,RI, IN SF4.1 FORMAT',//)
40 READ(L,50) A,B,C,D,E. F,G,H,RI
50 FORMAT(9F4.1)
IF(A.LT.0) GO TO 190
151G = A+B+C+D+E+F+G+H+RI
C CHECKING FOR ANY ONE OF THE ANGULAR MOMENTA BEING ZERO
CcaLL SET(A,B,C,D,E,F,G,H,RI,RS8)

0O aaoaooaaaQooa a
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DO 10 1I=1,3
DO TH J=1,83
IF(RS(1,Jd).EQ.0.0) GO TO 80
70 CONTINUE
GO TO 90
BO IE=T
JK=J
C RNINEJ GIVES THE VALUE OF THE SJ-COEFFICIENT WHEN ONE OF
C ITS ARGUMENTS IS5 ZERO
RNINEJ=VALUE(A,B,C,D,.E,F,G,H,RI, IK,JK)
GO TO 160
g0 CALL CHANGE(A,E,C,D,E,F,G,H,RI)
CALL TERM(AZ2,B2,C2,D2,E2,F2,G2,H2,RI2,NT1,NT2)
NT3=3%NT2
3 THE FOLLOWING IS A PRESCRIPTION FOR CHOOSING WHNINE.
C $% NOTE : FOR THE IBEM-PC/AT MAKE THE NEXT STATEMENT C...
IF(NT1.GT.2*NT3.0R.NT1.GT.6800) GO TO 120
C 8% NOTE : FOR THE IBM-PC/AT REMOVE FROM THE NEXT STATEMENT C
C IF(NT1.GT.2*NT3.0R.NT1.GT.200) GO TO 120
100 RES1=RNINE(AZ,B2,C2,D2,E2,F2,G2,H2,R12)
IF((ISIG/2)*2.NE. ISIG.AND. (JSIG2/2)%2,NE.JSIG2)
1RES1 = PHASE(ISIG)*RES1
WRITE(S,110) A,B,C,D,E,F,G,H,RI,RES1
110 FORMAT(' RNINE(',B8(F4.1,','),F4.1,")="',E13.6)
GO TDO 180
120 RESZ2=-WNINE(AZ2,B2,C2,D2,E2,F2,G2,HZ,RI2)
IF((ISIG/2)*2.NE. ISIG. AND. (JSIG2/2)*%2.NE.JSIG2)
1RES2 = PHASE(ISIG)*RES?
WRITE(&,150) A,B,C,D,E,F,G,H,RI,RES?

150 FORMAT(' WNINE(',8(F4.1,','),F4.1,")=',E13.6,/)
GO TO 180
160 WRITE(6,170) A,B,C,D,E,F,G,H,RI,RNINEJ
170 FORMAT(' NINEJ(',B(F4.1,','),F4.1,')=",E13.6)
180 GO TO 40
180 STOP
I

FUNCTION RNINE(A,B,C.,D,E,F,G,H,RI)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION C5(30,30,30),B5(30),A5(30),AX(50),BY(50),CZ(50)
COMMON FCT(500)

COMMON/AA/X4 ,X5,1X4,IX5,Y4,Y5,1Y4,1Y5,24,25,124, 125
COMMON/AB/P1,P2,F3,1P1, IP2,1P3

COMMON/AC/IXF, IYF,I12F,1XI,IYI, 121

RENINE=0.
C THE FACTORS D1 TO D6 CHECK FOR THE TRIANGULAR INEQUALITIES
c TO BE SATISFIED BY THE 9-J COEFFICIENT.

IF(A.NE.D.OR.B.NE.E.OR.C.NE.F) GO TO 10
ICHEK=G+H+RI
IF((ICHK/2)*2 .NE.ICHK) RETURN
c THE FACTORS D1 TO D6 CHECK FOR THE TRIANGULAR INEQUALITIES
C TO BE SATISFIED BY THE 9-J COEFFICIENT.
10 D1=TRIA(D,A,G)
D2=TRIA(B,E,H)
D3=TRIA(RI,G,H)
D4=TRIA(D.E,F)
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DE=TRIAL(B: A, L)

DE=TRIA{RI,C,IF)
IF(D1.EQ.0..0R.D2.EQ.0..0OR.D3.EQ.0..OR.D4.EQ.0. .OR.D5.EQ.0. .
1 OR.D6.EQ.0.) RETURN

c FACTORS X1 TO X3 (IX1 TO IX3) OCCUR IN X SUMMATION PART
X1=2.0DO*F

X2=D+E-F
X3=C+RI-F
X6=A+B-C
XT=A+B+C+1.D0
X8=-C+F+RI
X8=C+F+RI+1.D0
IX1=X1
IX2=X2
IX3=X3
IX6=X6
IXT7=X7
IX8=¥8
I1X9=%9
C FACTORS ¥1 TO Y3 (IYl TO IY3) OCCUR IN Y SUMMATION FART
Y1=E+H-B
Y2=G+H-RI
Y3=2.0D0*H+1.0D0
Ye=-G+H+RI
YT=G+H+RI+1.D0O
Y8=-E+F+D
Y3=E+F+D+1.D0
IX1=Y1
iYy2=Yy2
IY3a=Yy3
IYE=Y6
IYi=¥"
IYd=YHd
IY9=Y9
C FACTORS Z1 TO Z3 (IZ1 TO IZ3) OCCUR IN Z SUMMATION PART
21=2,0D0*A
Z2=B+C-A
Z3=A+D+G+1.0D0
ZBE=A-D+G
a7 =—-4A+D+3
Z8=B-E+H
29=B+E+H+1.D0
121=71
[22=22
1Z23=23
126=16
1ZT7=27
I1Z8=78
1Z29=7Z9
G CHECKING FOR THE DENOMINATOR ZERO NOT OCCURING BEFORE
C THE NUMERATOR ZERO
20 NN=DMIN1(X4,X5,¥Y4,Y5,24,25)
ND=DMIN1 (X1,Z1)
IF(NN.GT.ND) RETURN
G C1,C2,C3,C4,C5,C6,C7,C8 ARE CONSTANT TERMS
CL=FCT(IX2+1)+FCT(IX3+1)-FCT(IX4+1)-FCT(IX5+1)
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40
60

66

80

CI=FCT(ILY1+1)+FCT(IY2+1)-FCT(IY4+1)-FCT(IY5+1)

C4=FCT(I122+1)-FCT(IZ3+1)-FCT(1Z4+1)-FCT(IZ5+1)

Co=FCT(IX6+1)+FCT(IX7+1)+FCT(IXB+1)+FCT(IX9+1)

Ce6=FCT(IYB+1)+FCT(IY7+1)-FCT(IYB+1)-FCT(IY9+1)

CT7T=-FCT(IZB+1)+FCT(IZ7+1)+FCT(IZ8+1)+FCT(1Z29+1)

CB=FCT(IX1+1)-FCT(IY3+1)+FCT(IZ1+1)

C1=0.5D0*(C2+C3+C4-CE5+CB+CT)+CB

CONST IS THE OVERALL MULTIPLICATIVE CONSTANT PHASE FACTOR

CONST=FPHASE(IXb)

INITIALISATION OF THE ARRAYS AS,BS,CS,AX,BY,CZ

DO 60 IX =IXI+1,IXF+1

AS(IX)=1.D0

AX(IX)=0,

DO 50 IY=IYI+1,IYF+1

B5(1Y)=1.D0

BY(IY)=0.

DO 40 IZ=1ZI+1,IZF+1

CS(I1X,1¥,1Z)=0.

CZ(IZ)=0.

CONTINUE

CONTINUE

CONTINUE

T1=1.0D0O

Nl=1

DO 170 IX=IXI+1,IXF+1

EVALUATION OF THE X-DEPENDENT FACTOR AS(IX)

X=1X-1

JX=X

IF((JX.EQ.D).AND. (N1 EQ.1)) GO 'TO 80

IF(N1.EQ.1) THEN
XT1=FCT(IX2+JX+1)+FCT(IX3+JX+1)+FCT(IX4+1)}+FCT(IX5+1)
XT1=XT1+FCT(IX1-JX+1)
DXT=FCT(IX2+1)+FCT(IX3+1)+FCT(IX4-JX+1)+FCT(IX5-IX+1)
DXT=DXT+FCT(IX1+1)+FCT{JX+1)
T1=DEXP(XT1-DXT)

ELSE
WRITE(G,66) IX1,1XF,IX,N1,X1,X2,X3,%X4,X%X5,TH1,1T1
FORMAT(//.,415,/,7TE11.4)
THM1=(X4-X+1.0DO)*(X5-X+1.0D0O)/(X1-X+1.0D0O)
TL=T1*(X2+X)*(X3+X)*TM1/X

ENDIF

AS(IX)=T1

T2=1.B0

N2=1

DO 160 IY=IYI+1,IYF+1

EVALUATION OF THE Y-DEPENDENT FACTOR BS(IY)

Y=1Y-1

JY=Y

IF((JY.EQ.O0).AND. (N2.EQ.1)) GO TO 100

IF(N2.EQ.1) THEN
YT=FCT(IY4+1)+FCT(IY5+1)+FCT(IY1+JY+1)+FCT(IY2+JY+1)
YT=YT+FCT(IY3+1)
DYT=FCT(lY4-JY+1)+FCT(IY5-JY+1)+FCT(IY1+1)+FCT(IY2+1)
DYT=DYT+FCT(IY3+JY+1)+FCT(JY+1)
TZ=DEXP(YT-DYT)
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100

130
140
150
160

170

THM2=(Y4-Y+1.0D0)*(Y5-Y+1.0D0)
T2=T2* (YL1+Y )% (Y2+Y)*XTM2/(Y*(Y3+Y))

ENDIF

BS(IY)=T2

P2XY=P2+X+Y
IF(P2XY.LT.0.) GO TO 150

IPZXY=P2XY
T3=1.D0
N3=1

DO 140 1Z=1IZI+1,I1ZF+1

EVALUATION OF THE Z-DEPENDENT FACTOR T3

Z=17-1

J&=2

IF((JZ.EQ.0).AND. (N3.EQ.1)) GO TO 110

IF(N3.EQ.1) THEN
ZT:FCT{I33+1]+FGT{I24+1]+FCT{IE§+1]+FCT{IZl—JZ+1}
ET=2T+FCT(IZ2+JZ+1)
DET:FCT[IEE—JE+1}+FCT{134~JZ+1}+FCT(IZE—JE+1}
DZT:DZT+FCT(IEI+1}+FCT(IZE+1}+FCT{JZ+1}
T3=DEXP(ZT-DZIT)

ELSE
TH3:123—3+1.UDU]*(E4—E+1.DDG}*{Z§-Z+1.DDGJ{{ZI-E+1.UDD]
T3=T3%(Z22+2)*xTM3/Z

ENDI

EVALUATION OF BILINEAR COUPLED FACTORS IN X,Y,2

AND CS(IX,IY,IZ) ARRAY

P1YZ=P1-Y-2Z

IPLYZ=P1YZ

PIZX=P3+Z+X

IF(P3ZX.LT.0.) GO TO 130

IP3ZX=P3ZX

CGﬁ:FCT{IPlYZ+1I-FCT{IPEKY+1}-FCT{IPSZK+1} + C1

IF(T3.EQ.0.) GO TO 130

TT3 = DLOG(T3)

CSEIx.1Y.IZJ=PH&SE{JK+JY+JZ}*DEKF{GC5+TT3}

N3=N3+1

CONTINUE

NZ2=N2+1

CONTINUE

N1=N1+1

CONTINUE

IMPLEMENTATION OF HORNER'S RULE FOR THE TRIPLE SUM SERIES.
DO 210 IX=IXI+1,IXF+1

DO 200 IY=IYI+1,IYF+1

DO 190 1Z=1ZI+1,IZF+1

CZ(IZ2)=C5(1IX,1Y,12)

CONTINUE

SUMMATION OVER Z OF CS(X,Y,Z) USING HORNER
EY{IY}=HDRHER{IZI+1.IZF+1.CE)*BSEIY}
CONTINUE

SUMMATION OVER Y OF BY(Y) USING HORNER
AX(IX)=HORNER(IYI+1,IYF+1,BY)*AS(IX)
CONTINUE
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0 SUMMATION OVER X OF AX(X) USING HORNER

RNINE=CONST#HORNER( IXI+1, IXF+1,AX)
RETURN
END

FUNCTION HORNER(KI,KF,A)
IMPLICIT REAL#*8(A-H,0-2)
FUNCTION HORNER COMPUTES THE FOLDED SUM OF THE NON-ZERO TERMS
OF THE GIVEN ARRAY.
DIMENSION A(50)
C=1.0D0
IF(KI .EQ.0.AND.KF .EQ.0) GO TO 70
IF(KI .EQ.KF ) GO TO 60
C = A(KF)
DO 50 I=KF-1,KI,-1
IF(A(I).EQ.0.) GO TO 50
C = A(I)*(1.D0 + C/A(I))
50 CONTINUE
HORNER = C
RETURN
60 HORNER=A(KI )*C
RETURN
70 HORNER=0.
RETURN
END

o i |

FUNCTION WNINE(A,B,C,D,E,F,G,H,RI)
IMPLICIT REAL*8(A-H,0-2)
COMMON FCT(500)
COMMON/AD/AKI , AKF
SUM=0.0
IF(A.NE.D.OR.B.NE.E.OR.C.NE.F) GO TO 10
[CHK=G+H+RI
IF((ICHK/2)*2.NE.ICHK) GO TO 30
10 AK=AKI
20 ICO=2.0D0O*AK
CC=PHASE(ICO)*(IC0+1.0D0)
SUM=SUM+CC#*WF (A, D,RI , H,G, AK)*WF(B,E,AK,D,H,F)*WF(C,F,A,AK,RI,B)
AK=AK+1.0DO
IF(AK.LE.AKF) GO TO 20
30 WNINE=  SUM
RETURN
END
FUNCTION WF(A,B,C,D,E,F)
IMPLICIT REAL*B(A-H,0-2)
{ THE EQUATION NUMBERS IN TH1S5 FUNCTION PROGRAM REFER TO THE ONES IN
{ COMP.PHYS.COMMUN.,VOL15 (1978) 227-235.
t THE WF FUNCTION EMPLOYS THE SET I OF THREE HYPERGEOMETRIC
L FUNCTIONS FOR THE RACAH COEFFICIENT GIVEN BY (2.18) TO (2.22).
COMMON FCT(500)
_ WE=0,
U THE TRIANGULAR INEQUALITIES ARE CHECKED FIRST
CHK1=TRIA(A,B,E)
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IF(CHK1.EQ.0.0) RETURN
CHKZ=TRIA(C,D,E)
IF(CHKZ . EQ.0.0) RETURN
CHK3=TRIA(A,C,F)
IF(CHK3.EQ.0.0) RETURN
CHEK4=TRIA(B,D,F)
IF(CHK4.EQ.0.0) RETURN

IF(B.EQ.0,.OR.C.EQ.0..CR.E.EQ.0.) GO TO 70
IF(A.EQ.0..0R.D.EQ.0..0OR.F.EQ.0.) GO TO 80
D1=E+F-A-D
D2=E+F-B-C

C THE POSITIVE NATURE OF THE DENOMINATOR PARAMETERS(D1,D2,D3) IS
C CHECKED TO ENABLE THE SELECTICN OF THE VALID 4F3 FUNCTION.
IF(D1.GT.0..AND.D2.GT.0.) GO TO 10
D3=A+D-B-C
IF(D1.LE.D..AND.D3.GE.0.) GO TO 20
IF(D2.LE.O, . AND.D3.LE.0.) GO TO 30
C THE NUMERATOR (N2 TO N5) AND DENOMINATOR (N1,N6,N7) PARAMETERS
C OF THE 4F3 GIVEN BY (2.20).
10 N1=A+B+C+D+1.0D0
N2=A+B-E
N3=C+D-E
H4=A+C-F
5=B+D-F
NGE=D1+1.0D0
N7=DZ2+1.0D0
GO TO 40

C THE NUMERATOR AND DENOMINATOR PHR&METERS OF THE 4F3 GIVEN BY(Z.21)
20 N1=B+C+E+F+1.0D0

N2=B+F-D
N3=B+E-A
N4=C+E-D
N5=C+F-A
N6=-T0141.0D0
N7=D3+1.0D0
GO TO 40

C THE NUMERATOR AND DENOMINATOR PARAMETERS OF 4F3 GIVEN BY (2.22)

a0 N1=A+D+E+F+1.0D0
NZ=A+E-B
N3=D+F-B
Nd=A+F-C
NS5=E+D-C
N6=-D2+1.0D0
N7=-D3+1.0D0D

40 F43=1.0D0
I11=A+B+E
12=C+D+E
I13=A+C+F
I14=B+D+F
I1X=-A+B+E
I1Y=A-EB+E
I1Z=A+B-E
I2X=-C+D+E
I2Y=C-D+E
I1272=C+D-E
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C
C

13%=-A+C+F
13Y=A-C+F
I13Z=A+C~F
I4¥=-B+D+F
I4Y=B-D+F
I4Z=B+D-F
C1:FCTE111+1}+FGT{11Y+1]+FCT(112+1}—FCT(Il+2]
CE:FCT{IZR+1}+FCT{12Y+1}+FCT{123+1}—FCTE12+21
CE:FCT{131+1:+FCT(13Y+1}+FET[IHE+1}—FGT{13+2}
C4:FCT{I4X+lj+FGT{I4Y+1}+FET(I4Z+1}—FCT{I4+2}
CONST=0.5D0*(C1+C2+C3+C4)

IF ANY ONE OR MORE OF THE NUMERATOR PARAMETERS IS ZERO THEN THE

C VALUE OF THE 4F3 IS SET EQUAL TO 1.0 AND THE PROGRAM SEGMENT FOR

COMPUTING IT IS CONVENIENTLY SKIFPED.
IF[HE,EQ.E..DR.HE.EQ.U..DR.H&.EQ.U..DR.HE.EQ-ﬁ]GD TO 60
N= MINO(NZ,N3,N4,N5)
I¥X=K-1

50 RN= (IX-N2)*(IX-N3)*(IX-N4)*(IX-N5)

RND=( IX-N1)*(IX+N6)* (IX+N7)*(IX+1)
F43=1.0D0+F43*RN/RND

IX=1X-1

IF(IX.GE.0) GO TO 50

60 GE:FGT{H2+1]+FET[H3+1}+FCT[H4+1]+FCT{H5+1}+FET[NS}+FCT{NT}

WF=PHASE (N1-1)*F43*%DEXP(CONST+FCT(N1+1)-C5)
RETURN

C SPECTAL VALUES OF THE RACAH COEFFICIENT GIVEN BY (2.33).

70 N=B+C+E+F

WF=FPHASE( N )/(AF(A)*AF(D))
RETURN

B0 N=A+D+E+F

WE=PHASE( N )/(AF(B)*AF(C))
RETURN

SUBROUTINE TERM(A,B,C,D,E,F,G,H,RI,NT1,NT2)
IMPLICIT REAL*8(A-H,0-Z)
SUBROUTINE TERM CALCULATES THE ACTUAL NUMBER OF TERMS CONTRIBUTING
TO THE SUM IN (3)AND THE NUMBER OF VALUES "K' TAKES IN (1)
EOHHDN{EA!K&,RS.Ixi.IXE.Y4.Y5.IY4.IY5.Z4.Z5,IZQ.125
COMMON/AB/P1,P2,P3,1IP1,IF2,1P3
COMMON/AC/IXF,IYF,I2F,IX1,1IYI,I21
COMMON /AD/AKI , AKF
SETTING THE LOWER LIMITS AND DETERMINING THE UPPER LIMITS OF

YO(IXD, IXF), Y (IYI,IYE), & (1ZI,12ZF) - (SUMMATION INDICES)
IXI = 0
IYI = 0

121 0
CALL FXYZ(A,B,C,D,E,F,G,H,RI,IXF,IYF,IZF)
FACTORS P1,P2,P3 OCCUR WITH BILINEAR COMBINATIONS OF X,¥Y,Z
P1=A+D+RI-H
P2=D+H-B-F
P3=B-F-A+RI
IP1=P1
1P2=P2
IP3=F3

1]
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IXI1=1IXI

IAP2=IABS(IP2)

IAP3=IABS(1IP3)

IF(IP2.GE.0) GO TO 50

IF(IAP2.LE.IXF) THEN
IF(IAPZ2.LE.IYF) THEN

GO TO 50
ELSE
IXI1=IAP2-1IYF
ENDIF
ELSE
IF(IAP2.LE.IYF) THEN
IYI =IAP2-IXF
ELSE
IXI1=IAP2-IYF
IYI=IAPZ2-IXF
ENDIF
ENDIF

50 IXI2=1IXI
IF(IP3.GE.0) GO TO 60
IF(IAP3.LE.IXF) THEN
IF(IAP3.LE. IZF) THEN

GO TO 60
ELSE
IXI2=IAP3-1ZF
ENDIF
ELSE
IF(IAP3.LE.IZF) THEN
IZI=1IAP3-IXF
ELSE
IX12=1AP3-1ZF
IZI=1AP3-1IXF
ENDIF
ENDIF
60 IXI=MAXO(IXI1,IXI2)
NT1=0
DO 90 IXM=IXI+1,IXF+1
IX=IXM-1
DO 80 IYM=IYI+1,IYF+1
I¥Y=IYM-1

ICI=TP2+IX+1Y
IF(ICL.LT.0) GO TO 80
DO 70 IZM=IZI+1,IZF+1
12=1ZM-1
I1C2=IP3+1X+1Z
IF(IC2.LT.0) GO TO 70
NT1=NT1+1

70 CONTINUE

80 CONTINUE

90 CONTINUE
AKT=DMAX1(DABS(A-RI),DABS(H-D),DABS(B-F))
AKF=DMIN1 (A+RI,H+D,B+F)
T2=AKF-AKI+1.D0O
NT2=T2
RETURN




c

10

20

30

40

50

END
FUNCTION VALUE(A,B,C,D,E,F,G,H,RI,IK,JK)
IMPLICIT REAL*B(A-H,0-2)

C  FUNCTION 'VALUE' EVALUATES THE 9

IF(IK.
IF(IK,
IF(IK.
IF(IK.
IF(1IK,
IF(IK.
IF(IK.
IF(IK.
Al=A
Bl=E
Ci=D
D1=E
El=C
F1=0G
GO TO
Al1=RI
Bl1=F
Cl=H
D1=E
E1=F
F1=D
GO TOD
Al=F
Bl=RI
Ci=D
D1=G
El=4
F1=E
GO TO
Al=H
B1=0G
Cl=E
Di=D
E1=F
FlzA

GO TO 90

Al=H
Bl=B

EQ.
EQ.
EQ.
EQ.
EQ.
EQ.
EQ.
EQ.

90

30

g0

Cl=R1

D1=C
El1:=E
Fl=A

LT B e T Rl S

GO TO 90
Al=A

Bl=@G
cl=C

D1=RI
E1=D
Fl=H
GO TO 90

ARGUMENTS

.AND,
. AND.
-AND.
~AND.
.AND.

. AND
. AND

.AND.

JK
JE
JK
JK
JE

-JK.
JK.
JK.

15 ZERO
(EQ.
.EQ.
.EQ.
.EQ.
-EQ.
EQ.
EQ.
EQ.

1)
2)
3)
1)
2)
3)
1)
2)

GO
GO
GO
GO
GO
GO
GO
GO

TO
TO
TO
TO
TO
TO
TO
TO
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60

70

80

80

Al=R

Bl=A

Cil=H

D1=0G

E1=C

Fi=D

G0 TO 30

Al=F

Bl=E

G1=C

Di1=B

El=A

Fi=H

30 TO 30

Al=D

Bl=F

Cl=4A

D1=C

El1=B

Fi=aG
N=Bi+C1+El1+F1
Pl1=2.0D0*E1+1.0D0
P2=2.0D0%F1+1.0D0
VALUE=PHASE(N)#*WF(A1,B1,C1,D1,E1,F1)/DSQRT(FP1*P2)
RETURN

SUBROUTINE CHANGE(A,B,C,D,E,F,G,H,RI)

IMPLICIT REAL *8(A-H,0-2) _
COMMON/XX/A2,B2,C2,D2,K2,F2,G2,H2,R12,J51G2
COMMON/AX/A1(72),B1(72),C1(72),D1(72),E1(72),F1(72),G1(72),
H1(72),RI1(72),IXYZ(72),J51G1(72)

DIMENSION R9(3,3),R81(3,3)

C THIS SUBROUTINE EXAMINES THE 72 SYMMETRIES OF THE 8-J COEFFICIENT
C AND SELECTS A SYMMETRY FIR WHICH XF+YF+ZIF IS A MINIMUM.

N=1
DO 120 I=1,3
Do 120 J=1,3
Js1 =0
CALL SET(A,B,C,D,E,F,G,H,RI,R8)
IF(I.EQ.J.AND.I.GT.1) GO TO 120
IF(1.EQ.3.AND.J.EQ.1) GO TO 120
IF(I.LT.J) CALL CINT(R9,3,1,J)
IF(I.LT.J) J81 = 1
IF(I.EQ.2.AND.J.EQ.1) THEN
CALL CINT(RS,3.2,1)
CALL CINT(R9,3,3,2)

ELSE
IF(1.EQ.3.AND.J.EQ.2) THEN
CALL CINT(R9,3,3,2)
CALL CINT(R9,3,2,1)
ELSE
ENDIF
ENDIF
DO 50 L=1,3
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DO 50 M=1,3
50 E91(L,M) = RO(L,M)
DO 110 I1=1,3
DO 110 J1=1,3
Ja2 =0
3
3
60 RO(L,HM) RO1(L,M)
IF(I1.EQ.JL.AND.I1.GT.1) GO TO 110
IF(I1.EQ.3 .AND.J1.EQ.1) GO TO 110
IF(I1.LT.J1) CALL RINT(RS9,3,3,I1,J1)
IF(I1.LT.J1) JS2 = 1
IF(I1.EQ.2.AND.J1.EQ.1) THEN
CALL RINT(R9,3,3,2,1)
CALL RINT(RS9,3,3,3,2)

ELSE
IF(I1.EQ.3.AND.J1.EQ.2) THEN
CALL RINT(RS9,3,3,3,2)
CALL RINT(R9,3,3,2,1)
ELSE
ENDIF
ENDIF
DO 100 K=1,2

IF(K.EQ.2) CALL TRANS(R9,3)
CALL RESET(A2,B2,C2,D2,E2,F2,G2,H2,RI2,R9)

CALL FXYZ( A2,B2,C2,D2,E2,F2,G2,H2,RI2, IXF2, IYF2, I12F2)
30 Al(N) =AZ

B1(N) =B2
Cil(N) =C2
DI(N) =D2
E1(N) =E2
F1(N) =F2
Gl1(N) =G2
H1(N) =H2

RI1(N) = RI2
IXYZ(N) = IXF2+IYF2+I1ZF2
JSIG1(N) = JS1 +JS2

100 N = N+l

110 CONTINUE

120 CONTINUE

N = N-1
CALL ORDN(N,IMINV)
DO 150 I=1,N
IF(IMINV.NE. IXYZ(1)) GO TO 150
GO TO 160
150 CONTINUE
160 A2 = A1(I)
B2 = B1(I)
C2 = CL(I)
D2 = D1(I)
EZ2 = E1(I)
F2 = Fi(I)
G2 = G1(I)
H2 = Hi{I)

RIZ2 = RI1(I)
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J5IGZ2 = J5IG1(I)
RETURN

SUBROQUTINE ORDM(I1,IMINV)
IMPLICIT REAL*8(A-H,0-2)
COMMON/AX/A1(72),B1(72),C1(72),D1(72),E1(72),F1(72),G1(72),
1 HLI(T72),RI1(72),IXYZ(72),J5IG1(72)
THIS SUBROUTINE SORTS AND FINDS THE MINIMUM VALUE IN PLACE OF THE
GIVEN ARRAYS (ALGORITHM IS ADAPTED FROM THE ONE GIVEN IN
D.E.KNUTH "SORTING AND SEARCHING",VOL.3.
Do 30 JL =2,11
= JL
= WL =1
1 K
1 I
20 IF(IXYZ(K).GE.IXYZ(I)) GO TD 30
AL(I) = A1(I1l)
Al(K) Al(K1l)
Bl(I) Bi(1I1)
B1(K) B1(K1)
Cl(I) Ci(I1)
C1(K) Cl(Kl)
D1(I) DLL 1L
D1(K) D1(K1)
E1(I) E1(Il)
El1(K) Ei(K1)
#1(1) FL(I1)
F1{K} F1(K1)
G1l(I) 2 1 10 0
G1(K) G1(K1)
H1(I) = H1(Il)
H1(K) = B1(K1)
RI1(I)= RI1(I1)
RI1(K)= RI1(K1l)
IXYZ(L) = IXYZ(Il)
IXYZ(K) = IXYZ(Kl)
JEIGL(I) JSIG1(I1)
JSIGL(K) JSIGI(K1)
K = K-1
I = 1-1
IF(I.GE.1) GO TO 20
30 IMINY = IXYZ(1)
EETURN
END
SUBROUTINE SET(A,B,.C,D,E,F,G,H,RI,R3)
IMPLICIT REAL *B(A-H,0-2)
DIMENSION R9(3,3)
C THE ELEMENTS A,B,...,RI ARE SET AS ELEMENTS OF THE ARRAY R9(3,3).
Ro(1,1) =A
R9(1,2) =B
R9(1,3) =C
R3(2,1) =D
R8(2,2) =E
R9(2,3) =F
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R8(3,1) =G
R9(3,2) =H
R9(3,3) =RI
RETURN
T D

| SUBROUTINE RESET(A,B,C,D,E,F,G,H,RI,R9)
IMPLICIT REAL *8(A-H,0-2)
DIMENSTION R9(3,3)
C THE ELEMENTS OF THE ARRAY R9(3,3) ARE RESET AS A,B,...,RI HERE.

A = R9(1,1)
B = R9(1,2)
C = R9(1,3)
D = R9(2,1)
E = R8(2,2)
F = R9(2,3)
G = R9(3,1)
H = R9(3,2)
RI= R9(3,3)
RETURN

END

SUBROUTINE CINT(A,N,LA,LB)
IMPLICIT REAL *8(A-H,0-Z)
DIMENSION A(1)
C THE COLUMN INTERCHANGE OF THE ELEMENTS OF THE ARRAY A IS PERFORMED.
ILA = N*(LA -1)

ILB = N¥(LB -1)

DO 10 I=1,N

ILA = ILA +1 f
ILB = ILB +1

SAVE = A(ILA)
A(ILA) = A(ILB)

10 A(ILB) = SAVE
RETURN

SUBROUTINE RINT(A,N,M,LA,LB)
IMPLICIT REAL #*8(A-H,0-2Z)
DIMENSION A(1)
C THE ROW INTERCHANGE OF THE ELEMENTS OF THE ARRAY A IS PERFORMED.,

LAJ = LA -N
LBJ = LB -N
DO 10 J=1,M
LAJ = LAJ + N
LBJ = LBJ +N

SAVE = A(LAJ)
A(LAJ) =A(LBJ)

10 A(LBJ) = SAVE
RETURN

IMPLICIT REAL #B(A-H,0-2)
DIMENSION A(3,3)

c THE ARRAY A I5 TRANSPOSED IN THIS SUBROUTINE.
DO 10 I=1,N
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Do 10 J=1,N
IF(I.GE.J) GO TO 10
SAVE = A(J,I)

A(J,I) = A(I,J)
A(I,J) = SAVE
CONTINUE
RETURN

END

SUBROUTINE FXYZ(A,B,C,D,E,F,G,H,RI,IXF,IYF,IZF)
IMPLICIT REAL*B(A-H,0-2)

COMMON/AA/X4,X5,1X4,1X5,¥4,Y5,1Y4,1Y5,24,45,124,115

C THE UPPER LIMITS OF THE SUMMATION INDICES XF,YF AND ZF ARE

C

COMPUTED IN THIS SUBROUTINE.

IX4=E+F-D
IX5=C+F-RI

X4 = IX4

X5 = 1IX5

1Y4 = B+E-H

IYs = G+RI-H

Y4 = 1IY4

Y5 = IY¥S

124 = A+D-G

I1Z5 = A+C-B

24 = 124

25 = IZ5

IXF = MINO(IX4,IX5)
IYF = MINO(IY4, IY5)
IZF = MINO(IZ4,1IZ5)
RETURN

END
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PROGRAM PROGTEST

MAIN PROGRAM TO COMPUTE RNINE(A,B,C,D,E,F,G,H,RI) AND
WNINE(A,B,C,D,E,F,G,H,RI).THESE FUNCTION SUBPROGRAMS COMPUTE
THE 9-J ANGULAR MOMENTUM COEFFICIENT. THE PROGRAM RNINE USES
THE TRIPLE SUM FORMULA OF JUCYS AND BANDZAITIS IN ITS FOLD
FORM,WHILE THE PROGRAM WNINE USES THE CONVENTIONAL SINGLE
SUM OVER A PRODUCT OF THREE 6-J COEFFICIENTS, WHERE THE 6-J
COEFFICIENT 1S COMPUTED AS SET OF THREE HYPERGEOMETRIC
FUNCTIONS.

THE SYSTEM DEPENDENT ROUTINES ARE NECESSARY ONLY WHEN THE
EXECUTION TIMES ARE NEEDED FOR THE FUNCTION PROGRAMS RNINE
AND WNINE. THE IEM-PC/AT REQUIRES INTEGER*2 DECLARATION AND
GETTIM ROUTINE FROM ITS LIBRARY IBMFOR.LIB (FORTRAN 77
VERSION 2.0). FOR VAX-11/780, THE ROUTINE REQUIRED 15 THE
FUNCTION SUBPROGRAM SECNDS (NOTE THE SPELLING) WHICH RETURNS
THE SYSTEM TIME IN SECONDS AS A SINGLE-PRECISION FLOATING-
POINT ARGUMENT. COMMENTS WHICH START WITH $$ IN THE 4TH &
5TH COLUMN ACTS AS FLAGS TO NOTES WHICH INDICATE THE

STATEMENTS WHICH SHOULD BE CHANGED BEFORE COMPILING THE
PROGRAM ON THE IBM-PC/AT.

IN ITS PRESENT FORM THE PROGRAM WILL RUN ON THE VAX-11/780.

oo ok Aok o o o o o o S o S R K R KK K oK S AR KRR R ROK
NOTE: FOR IBM-PC/AT MAKE THE NEXT STATEMENT C. ..
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IMFLICIT REAL*B(A-H,O-Y)
3% NOTE: FOR IBM-PC/AT REMOVE FROM THE NEXT TWO STATEMENTS C
IMPLICIT REAL*B(A-H,0-1)
INTEGER *2 IH,IM1,IM2,IM3,IM4,1IS1,152,153,154,1IHS1, IHS2
INTEGER #2 THS3, 1HG4
COMMON FCT(500)
COMMON/XX/A2,B2,C2,D2 E2,F2,G2,H2,RI2,J51G2
DIMENSION R9(3,3)
C LOGARITHMS OF FACTORIALS SET UP IN A COMMON BLOCK
FCT(1)=0.
FCT(2)=0.
DO 10 N=3, 500
AN=N-1
40 FCT(N)=DLOG{AN)+FCT(N-1)
READ(5,20) ITEST
20 FORMAT(13)
WRITE(E6,30) ITEST
an FORMAT(® ITEST=',I3,//.,)
40 READ(5,50) A,B,C,D,E,F,G,H,RI
50 FORMAT(9F4.1)
IF(A.LT.0) GO TO 180
ISIG = A+B+C+D+E+F+G+H+RI
& CHECKING FOR ANY ONE OF THE NINE ANGULAR MOMENTA BEING ZERO.
CALL SET(A,.B,C,D.E,F,G,H,RI,E3)
Do 70 I=1,3
DO 70 J=1,3
IF(R9(I,J).EQ.0.0) GO TO 80O
70 CONTINUE

o [ [ e |

GO TO 30
BO IK=1I
JK=J
c RNINEJ GIVES THE VALUE OF THE 9J-COEFFICIENT WHEN ONE OF
C ITS ARGUMENTS IS ZERO
RNINEJ=VALUE(A,B,C,D,E,F,G,H,RI, IK, JK)
GO TO 160

90 CALL CHANGE(A,B,C,D,E,F,G,H,RI)
CALL TERM(AZ2,B2,C2,D2,E2,F2,G2,H2,RI2,NT1,NT2)
NT3=3*NT2
ZTEST=ITEST
C %% NOTE: FOR 1BM-PC/AT MAKE THE NEXT STATEMENT C...
ZT1=SECND5(0.0)
C %% NOTE : FOR IBM-PC/AT REMOVE FROM THE NEXT STATEMENT C
c CALL GETTIM(IH,IM1,IS1,IH51)
DO 100 ITT=1,ITEST
100 RES1=WNINE(AZ2,B2,C2,D2 E2,F2,G2,H2,RI12)
IF((I51G/2)*2.NE.151G.AND. (JS1G/2)*2.NE.J51G2)
1 RES1=PHASE(ISIG)*RES]
NOTE: FOR IBM-PC/AT MAKE THE NEXT STATEMENT C ...
Z1=5ECNDS(2T1)/ZTEST
NOTE :FOR IBM-PC/AT REMOVE FROM THE NEXT THREE STATEMENTS C
CALL GETTIM(IH,IM2,152, IHS2)
AID1=((IM2-IM1)*60+(152-151))*100+(IHS2-1H51)
Z1=AID1/(ZTEST*100.DQ)
WRITE(6,110)A.B,C,D,E,F,G,H,RI,RES1,NT3,21
110 FORMAT(' WNINE(',B(F4.1,','),F4.1,')=',E13.6,16,F10.5)
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71 GIVES THE TIME TAKEN BY WNINE IN SECONDS
$§ NOTE: FOR IBM-PC/AT MAKE THE NEXT STATEMENT C...
ZT2=SECNDS(0.0)
$$ NOTE: FOR IBM-PC/AT REMOVE FROM THE NEXT STATEMENT C
CALL GETTIM(IH,IM3,61S3,1HS3)
DO 120 IT=1,ITEST
120 RES2=RNINE(A2,B2,C2,D2,E2,F2,G2,H2,RI2)
IF((1SIG/2)*2.NE.ISIG.AND. (J51G2/2)*2.NE.JS1G2)
1 RES2 = PHASE(ISIG)#*RESZ

[ o B o0 I o § P {

C %3 NOTE: FOR IEBM-PC/AT MAKE THE NEXT STATEMENT C ...
Z2=SECNDS(2T2) /ZTEST
C %% NOTE: FOR IBM-PC/AT REMOVE FROM THE NEXT THREE STATEMENTS C
C CALL GETTIM(IH,IM4,I54,IH54)
C AIDZ=( (IM4A-IM3)*60+(154-153) )*100+(1H54-1IH53)
C 7Z2=AID2/(TEST*100.0D0)
c 7Z2 GIVES THE TIME TAKEN BY RNINE IN SECONDS
ZIDA=Z1/Z2
C 7ZIDA GIVES THE ADVANTAGE FACTOR OF RNINE OVER WNINE
WRITE(6,150) A,B,C,D,E,F,G,H,RI,RES2,NT1,22,ZIDA
150 FORMAT(’ RNINE(',8(F4.1,’,'),F4.1,')=",E13.86,16,2F10.5,/)
GO TO 180
160 WRITE(6,170) A,B,C,D,E,F,G,H,RI,RNINEJ
170 FORMAT(' NINEJ(',8(F4.1,','),F4.1,')=",E13.6)
180 GO TO 40
180 STOP
END
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Appendix D

This is an Appendix to Chapter 6 which lists the Programs
used to generate the equivalent zeros of degree 1 of the 8-3
coefficient and the one used to sieve out the inequivalent ones
using the ordering prescription given by Howell (1959). The
variables and equation numbers given here refer to those of
Chapter 6.

Program NJ1 generates the eguivalent 3zercs of the 9-3
coefficient for the values 0 < a, b, d, e, < NN/2, where NN is an

input wvariable, wusing the closed-form expression given by

(6). The argument of the 9-j coefficient a, b, .-+3s 1, the

maximum values of the summation indices XF, YF and ZF and o, along

with the serial number of the entry named as A, B,,.., RI, IXF,
IYF, IZF, J5 and N respectively are stored in a file 9J1.0UT. The
cutput data ls redirected to this file at the time of execution.
Program ORDER4 orders the data stored in 9J1.0UT in ascending
order with respect to ¢ (JS) so that when the execution is

complete the first value of JS corresponds to its minimum value
and the last one to its maximum value. The output of this 1is

gstored in ORDER4.OUT.

The output of ORDER4,0UT serves as input to the program SIEV.
Before executing this program the minimum and maximum values of JS
denoted by JMIN and JMAX and the total number of output data in
ORDER4.0UT denoted by I1 should be provided in the appropriate

places, The numbers given in +the present case correspond to

O<a, b, d e = 3.

The symmetries of the 9-j coefficient clearly indicate that
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while those having different values of o are certainly
inequivalent ones, the ones with the same values of o may be
@ither equivalent or inequivalent. Hence to separate the
inequivalent ones, all the entries with the same value of o ie. JS
are stored separately in ane dimensional arrays, viz,
Al, A2, ...., AS9. This set of data is ordered with respect to Al
is ascending order. Following this the nine arguments of every
9-j coefficient are ordered amongst themselves in a particular
fashion following the method of Howell (18959) (in the suhprégram
Howell) after which this ordered set of nine arguments will be

the same for equivalent ones and different for inequivalent ones.
Using this criterion the inequivalent ones are separated and

Wwritten down. The ordering prescription given by Howell is as

follows. Given a 9-3 coefficient, with +the nine arguments
a,b,e...,i the following quantities calculated:

Nl = a+b+c, N4 = a+d+ g,

NE = d+ a*fF N5 = b+e+h ,

NE = BE+h=+1 NE = c + f + 1

and they are ordered using the symmetries of this coefficient such

that the following conditions are satsified:
Nl = N2 = HS :

N, 2 N4 z NE Z N

1 6°

If Nl = NE then a = d, if also a = 4 then b =z e
If NE = HB then d = g, if also d = g then e z h.
If N4 = Ng then a 2 b, if also a = b then d z e,
If N5 = NE then b 2 ¢, if also b = ¢ then e = £,
It Hl = N4 then NE z NEII if also NZ = N5 then b =z d.

213



If Hl = NE and N4 = NE thean a = @, if also a = &8 then b = d.
= = = =
It H1 NE and H5 NE and a d then b a &
If HE & HE and N4 = N5 and a = b then d 2 h.
If Nl = NE and N4 = N5 = HE then a =z f, if also a = f then
bz d, e
If Hl = Nz and N4 = H5 = NB and a = ¢, then b = f, if also
b =f then b = e.
It NE = NB and N4 = N5 = HE and a = b = ¢ then d = 1.
= = = = = =
If Nl Nz NB H4 N5 NE then a h if also a h
then b 2 e, i
= Hl = NE i NE = H4 = H5 = NE then a = 1, if also

i then b = £, h.
Note: In the programs NJ1 &and SIEV the funection TRIA,and the

fr
1]

subroutines SET,RESET,CINT,RINT and TRANS that are already given in

previous Appendices are not repeatea. However, in the program SIEV,
the subroutines SET and RESET are to be used without the list of
variables being a part of the BUBROUTINE statement since they are +to
be placed in a COMMON block named YY in the main program. Similarly,
the subroutines CINT and RINT should contain the statement

COMMON /YY/ A(8),AA,B,C,...,RI and +the subroutine TRANS

should have the statement COMMON /YY,/ R9(3,3),A4A,B,C,...,RI.
0 R S T K R G R O R SR 3 o o R R R OO R R R R R R R R R R Rk R R R R R Rk
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PROGRAM NJ1
c PROGRAM TO FIND THE 9-J ZEROS OF DEGREE 1
IMPLICIT REAL*8(A-H,O0-2;
OPEN(UNIT=3,FILE='9J1.0UT’ ,STATUS="NEW' )
READ(#,5) HH
b FORMAT(I2)
I=0
Ii=1
DO 10 Mi1=1,HN
AM1 =M1
A-AM1/2.0D0
DO 20 M2=1,NN
AMZ=HM2
B=AMZ2/2.0D0
CMIN=-DABS(A-B)
CHMAX=-A+B
C=CHMIN
70 DO 30 M3=1,NH
AM3=M3
D=AM3/2.0D0
DO 40 M4=1,NN
AM4=M4
E=AM4/2.0D0
FMIN=DABS(D-E}
FMAX=D+E
F=FMIN
80 GMIN=DABS{A-D)
GMAX=A+D
G=GMIN
g0 HMIN=DABS(B-E)
HMAX=B+E
H=HMIN
100 DIF1=DABS(G-H)
DIF2=DABS(C-F)
RIMIN=DMAX1(DIF1,DIFZ2)
RIMAX=DMINL (G+H,C+F)
RI=RIMIN
D2=TRIA(D,E,F)
D3=TRIA(G,H,RI)
D4=TRIA(A,D,G)
D5=TRIA(B,E,H)
DE=TRIA(C,F,RI)
C WRITE(#*,200) D1,D2,D3,D4,D5,0D6
cz200 FORMAT(B6F4.1)
IF(D1.EQ.0..OR.D2.EQ.0..OR.D3.EQ.0..0OR.D4.EQ.0.) GO TO 50
IF(D5.EQ.0..OR.D6.EQ.0.) GO TO 50
IX1=2.0D0%*F
IX2=D+E-F
IX3=C+RI-F
IX4=E+F-D
IXh=C+F-RI
IY1=E+H-B
IY2=G+H-RI
IY3=2.0D0=H+1.0D0
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130

140

150

160

IY4=B+E-H
IYE=G+RI-H
1Z21=Z2.0D0*A
1Z2=B+C-A
IZ3=A+D+G+1.0D0
IZ4=4+D-G
1Z25=A+C-B
IP1=A+D+RI-H
IP2=D+H-B-F
IP3=B+RI-A-F
IXF=MINO(IX4,IX5)
IYF=MINO(IY4,IY5)
TZF=MINO(124,1Z5)
N1=A+B+C
NZ=D+E+F
N3=G4+HB+RI
N4=A+D+G
N5=B+E+H
NE=C+F+RI
IF(IXF.EQ.1.AND.IYF.EQ.0.AND.IZF.EQ.0) GO TO 130
IF(IXF.EQ.0.AND.IYF.EQ.1.AND.IZF.EQ.0) GO TO 140

IF(IXF.EQ.0.AND.IYF.EQ.0.AND.IZF.EQ.1) GO TO 150
GO TCO 300

NDR=(IP2+1)%(IP3+1)
IF(NDR.LT.0) GO TO 300
IT1=(IX2+1)*(IX3+1)*IX4*IX5
IT2=NDR*IX1

IF(IT1.EQ.IT2) GO TO 180

GO TO 300

NDR=IP1%(IP2+1)
IF(NDR.LT.0) GO TO 300
IT1=(IY1+1)%(TIY2+1)*IY4%IY5
IT2=(1Y3+1)*NDR ,
IF(IT1.EQ.IT2) GO TO 160

GO TO 300

NDR=IP1#(IP3+1)
IF(NDR.LT.0) GO TO 300
IT1=(1Z2+1)*1Z3%1Z24%125
IT2=1Z1%IP1%(IP3+1)
IF(IT1.NE.IT2) GO TO 300

IF(A.EQ.D.AND.B.EQ.E.AND.C.EQ.F.AND. (N3/2)%2.NE.N3)
GO TO 300
IF(D.EQ.G.AND.E.EQ.H.AND.F.EQ.RI.AND. (N1/2)*2 NE.N1)
GO TO 300

IF(A.EQ.G.AND.B.EQ.H.AND.C.EQ.RI.AND. (N2/2)%2,NE.N2)
GO TO 300

IF(A.EQ.B.AND.D.EQ.E.AND.G.EQ.H.AND. (N6/2)%2.NE.N6)
GO TO 300
IF{E.EQ.C‘ﬁHD.E.EQ.F‘&HD.H.EQ.RI.AND.(NdﬁE]#E.NE.N4}
GO TO 300

IF(A.EQ.C.AND.D.EQ.F.AND.G.EQ.RI.AND. (N5/2)%2.NE.N5)
GO TO 300

IF(A.EQ.0.0.0R.B.EQ.0.0.0R.C.EQ.0.0.0R.D.EQ.0.0)
GO TO 300

IF(E.EQ.0.0.0R.F.EQ.0.0.0R.G.EQ.0.0.0R.H.EQ.0.0)
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60

€120
300
50

40
30

20
10

GO TO 300

IF(RI.EQ.0.0) GO TG 300
J5=A+B+C+D+E+F+G+H+RI
WRITE(3,80) A,B,C,D,E,F,G,H,RI,IT1,IT2, IXF,IYF,I2F,1,11,J5
FORMAT(9(2X,F4.1),214,512,14)
I1=11+1

WRITE(*,120) IX1,IX2,1IX3,1X4,IX5,1IP2,1IP3
FORMAT(713)

I=1+1

RI=RI+1.0D0

IF(RI.LE.RIMAX) GO TO 110
H=H+1.0DO

IF(H.LE.HMAX) GO TO 100
G=G+1.0D0

IF(G.LE.GMAX) GO TO 30
F=F+1.0D0

IF(F.LE.FMAY) GO TO 80
CONTINUE

CONTINUE

C=C+1.0D0

IF(C.LE.CMAX) GO TO 70
CONTINUE

CONTINUE

STOP

END

S S o ok oK K K o ok K R O oo o K R o R K KR R O KR K R Kok

PROGRAM ORDER4

Cc PROGRAM TO LIST THE ZEROS OF THE 9-J ORDERED WITH RESPECT TO JS.

50

T8

IMPLICIT REAL*B(A-H,O0-2)
OPEN(3,FILE="9J1.00UT" )
OPEM(4,FILE='"ORDER4.0OUT")
READ(#*,50) JMIN,JMAX,I1
FORMAT(2(13),16)
WRITE(4,75) JMIN,JMAX,K I1
FORMAT(Z2(2X,13).2X,16)
IT1l=1

DO 10 J=JMIN, JMAX

REWIND 3

READ(3,2) A,B,C,D,E,F,G,H,RI,IXF,IYF,12F,J5,1
FORMAT(S9(2X,F4.1),312,214)
IF(J.NE.JS) GO TO 20

WRITE(4,2) A,B,C,D,E,F,G,H,RI,IXF,IYF,I2F,J5,1I11
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20
10

I11=111+1
I¥(I-11) 15,1010
CONTINUE

STOF

FROGRAM SIEV

C PROGRAM TO GET THE INEQUIVALENT LIST OF §-J ,FROM A GIVEN LIST

C

10

20
30

33

€200

a5

THAT INCLUDES THE SYMMETRIES.
IMPLICIT REAL*B(A-H,0-2)
COMMON/YY/R9(3,3),4A4,AB,AC,AD AE, AF,AG,AH, AL
COMMON /XX /DUMS (200), KEY(200)
COMMON/ZZ/N1,N2,N3,H4,N5,NB
DIMENSION A1(200),A2(200),A3(200),A4(200),A5(200),A6(200)
DIMENSION AT(200),AB(200),A8(200)
DIMENSION B1(200),B2(200),B3(200),B4(200),B5(200),B6(200)
DIMENSION B7(200),BB(200),B8(200)
DIMENSION C1(200),C2(200),C3(200),C4(200),Co(200),C6(200)
DIMENSION C7(200),C8(200),C8(200)
LOGICAL FA,FB,FC
OPEN(UNIT=3,FILE='ORDER4.0UT",STATUS="0LD" }
ODPEN(UNIT=4,FILE="SIEV.OUT' ,STATUS="NEW" )
KK=1
IX=1
JMIN=12
JMAX =41
I1=1323
I=1
JSOLD=JMIN .
READ(3, 30,END=45) A,B,C,D,E,F,G,H,RI, IXF,I1YF,12ZF,JS N
FORMAT(1X,F4.1,8(2X,F4.1),312,214)
JSNEW=J5
IF{JSNEW-JS0OLD) 20,33, 3%

A9(1)=RI

JM=JSOLD
WRITE(*,2)A1(1),A2(1),A3(1),A4(1),AS(1),AB(1),AT(I),A8(1),A8(I)
FORMAT(S(2X,F4.1))
WRITE(*,200)
FORMAT(' STORING CONTINUES')

I=1+1

IX=IX+1

GO TO 20

REWIND 3




JMIN=J5
C WRITE(*,210)
C210 FORMAT(’' STORING COMPLETE')
45 IM=I-1
e IX=IX-1
DO 40 k=1,IM
40 DUMS(K)=A1(K)
CALL ORDER(IM)
DO 50 K=1,IM
IS=KEY (K)
Bl(K)=A1(1S)
BZ2(K)=AZ2(15)
B3(K)=A3(1S)
B4(K)=A4(1I5)
B5(K)=A5(15)
BE(K)=AB(I5)
B7T(K)=AT(1S)
BB(K)=AB(IS)
B3(K)=A9(1I3)

C WRITE(*,220)

C220 FORMAT(' ORDERING CONTINUES’)

C WRITE{*1E}BIEK}.EEIK}.ESIK];B4{K];BSEK}.EE{KJ.B?{K}.EE[KI.EQIK}
50 CONTINUE

C WRITE(*,230)

C230 FORMAT(' ORDERING COMPLETE’)
DO 100 Li=1,IM
AA=B1(L1)
AB=BZ(L1)
AC=B3(L1)
AD=B4 (L1)
AE=B5(L1)
AF=B6(L1)
AG=BT7(L1)
AH=BB(L1)
AI=B9(L1)
CALL ESET
CALL HOWELL
CALL RESET
Cl{LlY=AA
C2(L1)=AB
C3(L1)=AC
C4(L1)=AD
C5(L1)=AE
C6(L1)=AF
CT{L1)=AG
CB(L1)=AH
CO{L1)=AI
¢ WRITE(*, 240)
Cz240 FORMAT (' INTERNAL ORDERING CONTINUES')
C WRITE{*,E}Cl[L),CE{L}.C3{L],E4EL].C5{L],CE[L},GT{L}.CB{L}.CB[LJ
100 CONTINUE
[ WRITE(*, 250)
C250 FORMAT(" INT.ORDER COMPL.')
DO 150 L=IM,1,-1
CA=C1(L)
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CB=CZ2(L)
CC=C3(L)
CDh=C4(L)
CE=C5(L)
CF=C&(L)
CG=C7(L)
CH=CB(L)
CI=C3(L)
WRITE(#*,2) CA,CB,CC,CD,CE,CF,CG,CH,CI
DA=B1(L)
DBE=B2(L)
DC=B3(L)
DD=B4 (L)
DE=B5(L)
DF=B6(L)
DG=B7(L)
DH=B8 (L)
DI=B3(L)
DO 140 LX=IM,L+1,-1
BA=C1 (LX)
EB=C2 (LX)
BC=C3 (LX)
BD=C4 (LX)
BE=C5(LX)
BF=C6 (LX)
BG=C7 (LX)
BH=CB (LX)
BI=C9(LX)
IF(LX.EQ.IM.AND.L.EQ.IM) GO TO' 1456
FA=(CA.EQ.BA.AND.CB.EQ.BB.AND.CC.EQ.BC)
FB=(CD.EQ.BD.AND.CE.EQ.BE.AND.CF.EQ.BF)
FC=(CG.EQ.BG.AND.CH.EQ.BH. AND.CI.EQ.BI)
IF(FA.AND.FB.AND.FC) GO TO 150
140 CONTINUE
145 WRITE(4,146) DA,DB,DC,DD,DE,DF,DG,DH,DI,N1,N2,N3,N4,N5,N6,JM, KK
146 FORMAT(8(2X,F4.1),BI4)
WRITE(4,400) CA,CB,CC,CD,CE,CF,CG,CH,CI
400 FORMAT(9(2X,F4.1))
KK=KK+1
150 CONTLHUE
IF(JM.LT.JHMAX) GO TO 10
STOP
END
SUBROUTINE HOWELL
IMPLICIT REAL*8(A-H,0-2)
COMMON/YY/R9(3,3).,A,B,C,D,E,F,G,H,RI
COMMON/ZZ/N1,N2,N3,N4 N5, N6
CALL N1TONE
MX=MAXO(N1,N2,N3,N4,N5 N6)
AMX=MX
IF(AMX.EQ.N1.0OR.AMX.EQ.N2.0R.AMX.EQ.N3) GO TO 10
CALL TRANS(3)
CALL N1TONG
10 IF(N1.GE.N2) GO TO 20

~=220--




20

30

40

bO

CALL RINT(3,3,1,2)
CALL N1TONE
IF(N2.GE.N3) GO TO
CALL RINT(3,3,2,3)
CALL N1TONG
IF(N1.GE.N2) GO TO
CALL RINT(3,3,1,2)
CALL N1TONB
IF(N4.GE.N5) GO TO
CALL ‘CINT(3,1,2)
CALL N1TONG6
IF(N5.GE.N6) GO TO
CALL CINT(3,2,3)
CALL N1TONB
IF(N4.GE.N5) GO TO
CALL CINT(23,1,2)
CALL N1TONB

IF(N1.EQ.N2. AND. (A.
CALL RINT(3,3.,1,2)
IF(N2.EQ.N3.AND. (D.
CALL RINT(3,3,2,3)
IF(N4.EQ.N5.AND. (A.

CALL CINT(3,1,2)

IF(N5.EQ.N6.AND. (B.

CALL CINT(3,2,3)

30

30

40

50

50

LT.D.OR. (A.EQ.D.AND.B.LT.E)))
LT.G.OR.(D.EQ.G.AND.E.LT.H)))
LT.B.OR. (A.EQ.B.AND.D.LT.E)))
LT.C.OR.(B.EQ.C.AND.E.LT.F)))

IF(Nl.EQ.H4.ﬁﬂD.[NZ.LT‘NE.DR.[HE.EQ.HE.RHD.B.LT.D!]}

CALL TRANS(3)
CALL N1TONGE

IF(N1.EQ.N2.AND.N4.

B.LT.D))) THEN

EQ.N5.AND. (A.LT.E.OR. (A.EQ.E. AND.

CALL RINT(3,3.1,2)
CALL CINT(3.1,2)

ELSE
ENDIF

IF{NI.EQ.H2,£ND,H5.EQ.NE.ﬁHD.ﬂ.EQ+D.hHD.B.LT.F] THEN

CALL
CALL
ELSE
ENDIF

RINT(3,3,1,2)
CINT(3,2,3)

IF{HE.EQ.HE.AND,H&.EQ.HE.hHD.h.EQ.B.hND.D.LT.H] THEN
CALL RINT(3,3,2,3)
CALL CINT(3,1.,2)

ELSE
ENDIF

IF[N1.EQ.H2.hND.Hd.EQ.H5.ﬁHD.Hﬁ.EQ.HE.AND.ﬁ.LT.F}THEN
CALL RINT(3,3,1,2)
CALL CINT(3,1,3)

ELGE
ENDIF

IF(N1.EQ.N2, AND.N4

EQ.N5.AND.N5.EQ.N6.AND.A.EQ.F) THEN

CALL RINT(3,3,1,2)
CALL CINT(3,2,3)

ELSE
ENDIF

IF[NI.EQ.HE.AHD.H&.EQ.N5.ﬁHD,H5.EQ.HE.AHﬁ.A.EQ.E
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1 -AND.B.LT.F) THEN
CALL RINT(3,3,1,2)
CALL CINT(3,2,3)
ELSE
ENDIF
IF{HE.EQ+N3.END.H4.EQ.HE.AND.NE.EQ.NE.EHD.&.EQ.E.AHD-
1 B.EQ.C.AND.D.LT.RI) THEN
CALL RINT(3,3,2,3)
CALL CINT(3,1,3)
ELSE
ENDIF
IF{HI.EQ.NZ.&ND.NE.EQ.NE.AHD.HE-EQ.N&.AND-Ni.EQ+N5.
1 AND.N5.EQ.N6.AND.A.LT.H) THEN
CALL RINT(3,3,1,3)
CALL CINT(3,1,2)
ELSE
ENDIF
IF(HI.EQ.HE.ﬁHD.NE.EQ.NE,hND.H3+EQ.N4.ﬁHD.N4.EQ.N5+
3 END.NE.EQ+NB.ﬁND.H.EQ.H.ﬁND+E.LT.E] CALL RINT(3,3,1,2)
IF{Hl.EQ.NE.&ND.HE.EQ.HE.END.NS.EQ.Ni.&ND.Hd.EQ.Hﬁ.
1 ﬁND.NE.EQ.NE.AHD.A‘EQ.H.&ND.B.LT.RI} THEN
CALL RINT(3,3,1,3)
CALL CINT(3,2,3)
ELSE
ENDIF
IF{NI.EQ.NE.ﬁHD.NE,EQ.NE.ﬁHD*N3.EQ.H4.AHD.N4.EQ.H5.
1 ﬁND.HE.EQ.NE,ﬁND.ﬁ.LT.RIJ THEN
CALL RINT(3,3,1,3) .
CALL CINT(3,1,3)

ELSE
ENDIF
1F[Nl.EQ.Hz.AND.N2.EQ.NE,AHD.HS.EQ.N4.AND.N4+EQ.N5
1 .AND.HE.EQ.HE.AHD.A.EQ.RI.AND.B.LT,F] THEN
CALL RINT(3,3,1,2)
CALL CINT(3,2,3)
ELSE
ENDIF

IF{NI.EQ.HZ.AHD.HE.EQ.N&.AHD.NB.EﬂiNd.ﬁND.H&.EQ+N5.
1 &ND.NB.EQ.NE.AND.ﬁ,EQ.RI.AHD.B.LT.HJ CALL BINT(3,3,1.8)

RETURN

END

SUBROUTINE N1TONG

IMPLICIT REAL*8(A-H,0-2)

CDHMDN;YY}RE(S.S}.A.B.C.D.E,F.G.H.RI

CDHHDNKZE;Hl.HE,NE.N4.N5.NE

N1=A+B+C

NZ2=D+E+F

N3=G+H+RI

N4=A+D+G

N&=B+E+H

NE=C+F+RI

RETURN

END
*##**##***#*#ttmx#**x;*x#**#x*xx*xxam***##xz#*###*m#x**#**#x*#***m#*
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List of Symbols
In this thesis for the sake of ease in typing, & rigourous
notation has not been adopted. The symbols wused which are not

further gqualified, have the following significance:

Symbol Meaning

a,b,c,...at non-negative integer parameters

a.b,c, e &

j‘,jz.ja.jiz.....J,ﬁ: half-integral and integral values

m ,m. ,m_ ,m _, M of angular momenta

- 2 3 142

Ji,Jz,J!,le,....J angular momentum operators

bT . .bJ & creation,annihilation operators

z+.z_.zn gquasi-spin operators

[ Y ] binomial coefficient

Qn(x] = QHLX; o, 3, N) Hahn polynomial, (1) of Chapter 7.

&(x, ¥) Kronecker delta function

|d.m> , <Jj,m| Dirac ket, bra notation for
angular momentum states

<y, mj T: | 37, S matrix element of tensor T:

<3 T kﬂ o reduced matrix element

A" () reciprocal of the array A(¢)

x|y x divides y (or,x/y is an integer)

(x ,n) Pocchammer symbol (n an integer)

(e & ) g.c.d. of a ,b (in the context
of multiplicative Diophantine
equations only)

[x] (2x + 1)*7*

[J/3] largest integer < J/3 (Chapter 3)

{abaecl defined in eq.(17) of Chapter 5

LcgpRas




C{ji.jz.jﬂiml.mz.mn} Clebsch-Gordan coefficient

[ff J, ‘ia] 3-j coefficient (or 3-j symbol)
i mZ m3
ﬁﬂja < I 1 defined on p.19 of Chapter 1
(a b e) egan.(72) of Chapter 1.
-'j.'l+j2+'j.’.l jl-j2+j3 "j1+'j2_j3
j1~m1 J,—m, J—m, Hegge 3 = 3 array
jl +|Tl‘ JZ +m2 ‘ja +m3

Il Ry |l Regge array ,(27) of Chapter 1
U3, 3,9 3,:3,,3,5) recoupling coefficient, (41)of Ch.1
W(abed; ef) Hacah coefficient

abe s - .
{ d o f } 6-3 coefficient (6-j symbol)
ZF;{a,b;c;z] Gauss hypergeometric series
iﬂp} a e, e iinteger parameters
{ﬁq] ﬁ:'ﬁg* ...,ﬁg !integer parameters
PFq[[ﬂp);{ﬁqi:z} generalized hypergeometric series
F{H}[{a}=:tb1:{b‘};{b"}:tcl;[c'l;{c"l;x.r.z] . triple hypergeom-

(e}::(£); (2 ); (L * Y:(@);tg ); (g ") etric series.

J.‘I. JI le

j“ J‘ S tls - Jy transformation cosefficlent

'jl:i 'j?-4 J

a b ¢

d e f 8-3 coefficient

g h i

ﬁ:. oty Hz ey rin ey

B0 Bey Be Bargmann - Shelepin array

ﬁi_uﬂ ﬁi_nﬂ ﬁn-ﬂa

ﬁ.l e ﬁz = ﬁs_nt

(Noete: Standard mathematical notation is used as far as possible
and these symbols are naturally not listed herein).
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