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FREFACE

This thesis is concerned with a study of the cohomological
properties of certain moduli spaces of vector bundles over a
compact Riemann surface. A detailed discussion 1is given in the
Introduction. This research was funded by the National Beoard for
Higher Mathematics.
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INTRODUCTION

He listens for Inspiralions’ posiman knock
And takes delivery of the priceless gift
A lLittle apeoilt by the recelvver mind

or mixed with the manulacture of hia braim;
wWhaern least defaced, them ta 1l most divinea,

Pail dunsdinds, FPavitri, Beseh seven

The Betti numbers of the moduli spaces of semi-stable vector
bundles of rank r and degree d, with (r,d) = 1 have been the
subject of study beginning with Newstead [PN-1](in 1967 for
r=2,d=1),Harder-Narasimhan [H-N1(in 1372, ¥V r,d,(r,d)=1) and in
recent years by Ativah-Bott [A-B](in 1882 ¥ r,d, (r,;d}=1 More
recently, F . Kirwan [K] (in 1888) has paid atitention +to the
non-coprime case and has computed the intersection Bettil numbers
of these moduli spaces. N.Nitsure [NN-2] (in 1887) has computed
the Betti numbers of the moduli space of parabolic wvector bundles.

Apart from throwing light on the +topoclogy of these medunli
varieties the cohomology groups provide us with subtle geocmetiric
information especially regarding the rationality of these
varieties.

We make a brief digression here to discuss the Liiroth problem
in the present context.

In 1878, Liroth proved +that every unirational curve is




rational., In 1894, Castelnuove proved that every unirational
surface over «C is rational. (This i3 not true for
non—algebraically closed base fields:(for example cf Manin
(Cubic forms ,‘'Arithmetic, Algebra, Geometry', (North Holland
1985). The problem of Liirnth ls *‘Are all unirational varieties of
dim =2 3 ouwer € rationagl %7

Subtle invariants have since been defined to answer this
question. COne such is the Brauer-Grothendieck grcup for schemes,
introduced and investigated by Grothendieck [AG].

If V is a smooth proper wunirational wvariety over C then
Grothendieck observed that Br(V) (the Brauer-Grothendieck group )
is a birational invariant of ¥ and is actually isomorphic to
HE[V,E}Lar. Hence ¥V cannct be raticnal unleas EBK?TE}LGr = {0Q).
But, in reality this provides us with only a negative criterion as
has been recently shown by J.Colliot-Theléne and OQjanguren.

In 1972, M,Artin and D.Mumford in [A-MT, constructed
unirational conic bundles V over a surface, for which
Z, < H’(V,2). These give us examples of unirational varleties
which are not rational, thersby answering Liroth's problem in the
negative,

One is thus led naturally to pose this restricted question:

"What is HB{?‘,E}mr for these modulil varieties F"(#)

In [A-B] Atiyah and Bott show that all the cochomology groups
of M(n,d), (n,d)=1, are in fact torsion-free.

It is known that for (n,d)=1 the wvarieties M(n,d) are

Eingulaf.{cf [N-1] ) Smooth models of M(2,0) (the modull space of

ii




vector bundles of rank Z and degree 0 with trivial determinant )
have been constructed by Narasimhan-Eamanan [N=-2] and
Seshadri [5-1]. N.HNitsure [HN-1] was led to pose this question (%)
for the smooth compactification of M(2,0)° (the s=table bundles )
constructed by Narasimhan-Ramanan [N-2], which we denote by HNH',
Nitsure shows that!ﬁ{ﬁ’.zjuw = (0).

This was our starting point. Nitsure's proof of this fact was
somewhat lengthy and since H?{?,E}Mr iz & birational invariant we
were led to seeing if a simpler proof could be obtained using the
canonical desingularisation meodel of M(2,0) (which we denote by N)
of [5-1]. (This is ¢canconical 1in the sense of representing a
natural moduli functor ). We give a considerably shorter proof of
Mitsure's thecrem in Chapter I using the variety N. (We denote this
variety by Nﬂ in Chapter I for technical reasons )

The preoof led us to define a natural stratification of N as
given below:

We have a cancnical family of quadratic forms {E&}KEN ol A
3-dimensional vector space parametrized by N. We define closed

subschemes {NL}, 1=1,2,3, by the condition

N = {x N | rank of Q=3 -1 }

L

Cne observes that NL - N+1, 1=1:2,83 {N4

i
]

are  &ll amooth

subschemes of M.

We nse this stratification to compute some low cochomology

groups of N. In particular the main theorems of Chapter I ares

iii
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Thoorem CAl. The third cohomology groups aof H La

torglion—yFfrea,

g = 3.
Theorem CBY. Let &_denate the Betti numbers of N. Then we haue:

B, = 28 B, =79 + 4. 52 4
The basic principle in these computations is the following:
One explicitly determines the strata and their normal
bundles and examine the Thom-Gysin seguence. (see alsc [A-B] pp
E37). This principle has been expleited to the full in [B-2]1 +to
Eive a complete description of the strata of N and teo compute
about Erd's of the Betti numbers of N.
This concludes Chapter I of the thesis.
Chapter ITI is devoted +to giving an application of the
computations of Chapter 1 by studying ths +third intermediate

jacobian of N,

For non-singular projective varieties V with the plurigenera
hlnt?} = hﬂﬂi?} = B an intereating invariant is the
intermediate Jacobian attached to H (V). In this situation(e.g, if
YV is unirational) the Weil intermediate Jacobian coincides with

the Griffiths construction and we have the Weil-Griffiths Jacoblan

J*(V),an abelian variety which is by definition

iv



J5(v) = B (V,R)/Inage H (V.Z)
where H (V,R) is given & complex structure via the decomposition
H(VER)e C=x~ H'? e g™

(ef [G]}).

A polarisation on V cancnically induces one on J (V) as
follows:

Let w denote the Kihler class defined by this polarisation.

Then w defines & bilinear pairing on HQ(?,EJ as follows:

B (V,€) ¢« H(V,&) —— €

(& , B) — [ & A ap (n=dimg V)
W

[Where we have tacitly assumed that all classss in HF{?,C) aAre
primitive since h°7= W% 0 , 1™': 1'% 0 say when V is
urniirational )

This palring induces a polari=ation on the torus JI{?} making
it a polarised abelian variety which depends holomorphically on V¥
( ef [G1}.

For the modull space H{n,d}L of =emi-stable wvector bundles of
rank n and degree d with detE = L, Mumford-Hewstead [M-H] and
later Narasimhan-Ramanan [N-3] have shown that if (n,d) = 1
JZ{M{n.dJL} is canonically isomorphic to the principally polarised
Jacobian J(X) of X.




If (n,d) = 1, M[n,d}L 1z no longer smooth. For the cass

n=2,d=0 L = ﬂx we have the desingularisation model N, which sclves

a natural moduli problem. Moreover, from +the computations in
Chapter I, we have H (N,Z) = 279, and since N provides us with a

smooth compactification of M{E.ﬂ}é it i= natural to posze an
P o

analogous aquestion for the intermediate jacobian of +this wvarietw

M. Then the main theorem of Chapter II reads as follows:

Theorem CCY There is a canonical polarisation ' on JZ(N{Kj) arud

an isogeny @ of degree o4

¢ 1 J(X) —— J(N(X))

such that ¢*CE*J ™ @,

Iin fact

Eer ¢ = { polintas of order 2 of J(X) }

Thus by Torelli's theorem we have,

Corollary. IS N{Ki} 15 titsomorghic to H(Kz} for two curues

Xz it ]{2 , then }[1 is isomorphic to }[2,

i




CHAFPTER I

COHOMOLOGY OF A MODULI SPACE

Our tesks are given, we are bul instrumentis:

Prd, Hurelinds, Savitrd, Beehk oceven,

£1 Preliminaries

In this section we shall outline very briefly the definitions
and terminclogies of [S-1]. The proof of most of +the statements

made in this section can be found in [S-1] or [5-2]. We state at

the very outset that the ground field of all our varieties is the

field € of complex numbers.
(L) ¥ is a smooth irreducible projective curve of genus g = 3.

(ii) Let V be a vector bundle on X. By a naredelic obructuae  at

point P € X we mean

(a) a guasi patradelic structure 1.e a flag

(8) weights @ ...,z attached to F*'f?, L F“vp such that

Call k = dim F'V,- dim F'V,,... k = dim FV, the multiplicities




ozl SRS o
1 r

The naredelic degree of V¥ 1s defined by

par deg V = deg V + L. ﬁpL

and write par w(¥) = par deg Y/rk V.
If W is a subbundle of V, it acauires, in an obvious way, a
guasi-parabolic structure. To make it a paraboelie subbundle, we

attach weights as follows:

Givenib, FoW e ?ﬁ for aoms J; let jg be such that
+1 L

F°W & F°V &nd Ft°‘i'-"¢ 5o V; then the weight of FOV = F °W.
Define V to be parabolic stable ( resp semi stable) if for every
proper subbundle W of V, one has par p(W) <par u(V) (resp = )

If Vi3 the category of semistable vector bundles on X of
rank n and degree 0, then we denote by FV_~ the category of
parabolic semistable vector bundles at a fixed point F = X and
fixed parabolic structure. {(cf [5-1] for +this mnotation).Recall
that, one can choose the weights (o) small encugh so as to have
the condition ‘'parabolic semistable’ equivalent to'parabolic
stable’.

(tii) N is the isomorphism classes of (V,A) = P?4 (& & parabalic
structure), such that End V is a specialisation of Ja-the (2 = 2)
matrix algebra.

In fact, if {?,ﬁi} and {?,ﬁz} belong to N, they represent the

same element of N (i.e isomorphic in PV4} iff +the underlyving



vector bundles ?; and v; are lsomorphic {(cf [5-1]). Hence we often
simply write V « N.
(iv) & is the variety of all algebra structures on a fixed
4-dimensional vector space which are specializations of JE and
admit a fixed identity element, We have a canonical group of
automorpghisms acing on &, namely the subgroup of GL(4), fixing
this identity element.
{v) M denctes the normal projective wvariety of equivalence
classes of vector bundles of rank 2 and degree O under the
equivalence relation V ~ V' if and only if gr V = gr V' .
(vi) M will be the open subset of M consisting of the stable
bundles.
It is known that M - M is precisely the singular locus of M
{cf [N-1]1). The main theorem of [5-1] is stated below.
Theorem 1, (Seshadri) There (s a natural strucitiure of a smooth
grojective variety on N and there exists a caneonical morphism
p : N—— M, which is an i(somorpghism ouver M. More precisely, 1f
Ve, then gr V=D& D, with rk D = 2, gr D is a direct sum of
stable line bundles of degree [ and the morghism p i H— M 1is
given by V—— D. Further V = p-ilfl'ig} i ifi End V = ..-*11‘12 ar
eguivalently Cwhich is easily seen 2 V = W e W, where W is stable.
In the course of proving the smoothness of N, Beshadri
defines a morphism from neighbourhecods U of a given point of N

into & which we shall denote by




We shall briefly indicate the construction of ¢ The functor
defining the moduli space N being representable, we have a
defining vector bundle E on X «x N of rank 4, Let f : X x N— N be

the canonical projection and End E the vector bundle associated to

the sheaf of endomorphism of E. Set
B = f*(End E)

E 13 the canconlcal family of speclalisation of JE, parametrized by
N (ef Prop.b [5-1] for details ). Consider any given point uw = N ;

then choosing a neighbourhood U of u, which trivialises B, we get

a natural morphism
¢ : J— o given by V— End V, V = U,
This morphism exists by the so0-czalled wversal property of -

Further, leat AD = End v;, ?u the vector bundle corresponding tTo

the point v e U, i.e AD: ¢U(u}. Then, if ﬁh iz the minli-versal

deformation space of ﬁn, the morphism

induced by the versality of ﬁu,is in fact smooth,




Mote 1.1 By an abuse of notation, in the course of this chapter,
we shall suppress U and the mini-versal deformation space
corresponding to each point, and simply denote by ¢ : HN— &  the
smooth local morpghism defined above. In fact, we will be using it
only in this form throughout this chapter.

Note further that these ¢U are unigquely determined modulo
automorphisms coming from the canonical group of automorphisms
acting on &,

Definition 1.1. Let MCI (resp Nﬂ} be the subvarieties of M (resp
N) consisting of bundles with trivial determinant. Then it is easy

to see that p maps Nﬂ to Mn,

Proposition 1.1 The restriction of the local morphism ¢ to the

sub-~vuariety N remcins smooth.
=]

Proof. Let J denote the Jacobian variety of line bundles of degree

zerc on X. Then we have a natural morphism

w3 Nn x J— N

(E,L) — E & L

{that this map is a morphism follows from the universal property

of N and the fact that E © L gives a family on X parametrized by




|
|
|

|
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We claim that w is smooth. In fact w is etale. For, let I < J
be the finite subgroup of J consisting of elements of order 2.
Then there is a natural diagonal action of M on NG * J which 1is
ocbviously fixed point free. It is not difficult to see that N is
actually the gquotient of N,»J by I' and w : N, x J— N the
guotient morphizm ( note that ocur ground field is € and if A a2nd B
are smooth complex manifolds and G is a finite group acting on A

sﬁch that B is the set theoretic guotient of A by G, then B is
A JG ).

This M -action being fixed point free, ¥ is etale.

For b = Nﬂ * J, choosing a nelghbourhood U of w(b) = u in N, We

get the following diagram

where Huis the mini-versal deformation space of the algebra
hﬂ = ¢U{u] in &, SBince ¢T, ¥ are smooth, s0 is ¢T e ¥. In other
words the local morphism (again by abuse of notation)

¢'ow:blnxJ~——-—;.ﬁf

is smooth. If L= J, then End(E @ J) = End E and hence ¢ o »




clearly factors through Nﬂtc give +the smoothness of the

rastriction of & from Nﬂ to &,

Remark 1.1 . Because of Prop 1.1, by the same arguments as in
[5-1], we see that Hn is a smooth projective wvariety. We then get
an obvious generalization of Theorem.l.l namely that »p : M~ M
is a desingularisation of Hﬂ, and that it is an isomorphism over

M ete.
(=}
&2 .Conic bundles

Definition 1.2 Let 5 be a variety. A genoeral ized conic bundle & on
S is giving

(2) a vector bundle V on § of rank 3

(8) a clo=zed subscheme € of P(V) over S, such that, given 2 € 8y 3
a neighbourhood U of s, where € n p (U) is defined by a = 0,

e L = F{ﬁ1{U3.HZ}. H being +the tautological 1line bundle for
Ptv}—z+ S l.e py(H) = ?* and therefore p*[HE} = Ezt?*], etc.

By definition, # is a Cartier divisor and 1s therefore
defined by a section of a line bundle €& on P(V). Now leocally over
5, 8 and ¥ coincide and therefore by the see-saw theorem (cf
Mumford’'s Abelian varieties) there exlists a line bundles L on B
such that 8 = H oL = 52{?*} @ L, the condition (8) above is
souitvalent to giving an element q of F{Ezt?*} @ L) or a g@uadrallic

form




| The discriminant A of g can be defined as a section of
i L e {ﬁZ{V*J}z- The equation & = 0 givez locally the degeneracy
| locus of B,

We now intrcduce subschemes on 8, namely for i = 1,2,3, set

3 = {s e« 5 | g restricted to ?a, the fibre at s, has rank = 3 }

Thus we have a stratification

SHCEECE‘CS=SQ
If g : 8— 5 be the projection, let € = g*(sL}. g = 1,828
Then we have S1 +o be the degeneracy locus of ¥, i.e given by
A = 0, and Ez < § 1is the singular locus of S, . The space € can be
described as follows:

g - Ei consists of non—degensrate conics; EL = Ez ef pairs of
linss intersecling transversely; Ez = EB of repeated lines and EH

of the whole plane, We call % the cancnical subschemes associaled

te the conic bundle ¥ on E. Accordingly we make the following

Definition 1.3 A generalized conic bundle € is of type I if Ei - B

» of type II if Ez = @ and of type III if Ej =9,




Definition 1.4 (cf p.l164 [5-1]1)Let T be an algebraic scheme and

{QJléra family of algebras parametrized by T and defined by a

| locally free @T-module G of rank 4, We say that this is a family
of specialisations of JE if, given t € T, there is a neighbourhood

T1 of t and a morphism Ti——+ &, =uch that {Gthfﬁ is +the base

i

- L} 1
| change of {Hy}yeﬁ by f, where Hylﬁ the algsbra structure

corresponding to v = o,

Remark 1.. 2. By Remark 3 [5-1], the above definition has an
equivalent formulation as follows: Let T = BEpec R, and G bLe an
R-algebra with identity e, such that the underlying R-module is
free of rank 4. Let J = G/Re_. Consider the canonical structure of
g Lie algebra on J induced by the associative algebra structure on
G. This gives a canonical skew-symmetric bilinear map J x J— J
or equivalently (in our case )an element of J ® J. Then we say the
algebra gives a family of specialisctions of .«ﬂz rarametrized by T,
if this Lie algebra structure is defined by a svmnetiric element of
J ® J. Further, the algebra G is isomorphic to r;q*, g being the
| corresponding quadratic form. This definition generalizes, in an
i cbvious way, when T is any schem=, and G is a wvecter bundle of

rank 4 on T; however, the quadratic form g on J takes values in a

line bundle on T.

| Note 2. We shall use this reformulation in the course of +this

'chapter.‘

B T




Femark 1.3({} Denote the canonical family of specialisation of Ag
parametrized by Nnby Z,

({L) For ¥y = =, let M} be the corresponding algebra
structure; then {m;}yﬁﬂ.gives an obvious family of specialisation
of Hz.

(¢ii) Let T = Spec R and G an R-algebra giving a family of
specialisations of JE. Then by Remark 1.2, we get a symmetric
element of J @ J = G/Re_ . This symmetric element naturally gives
rise to a symmetric bilinear form on J*(the E-dual of J ) and
therefore a quadratic form on J*. Now J* being a projective
R-module of rank 3, it defines a vector bundle of rank 3 on T.
More generally, if we are given an algebraic scheme T, a family
{G }of specialisations of M,, then we have a canonical vector
bundle V of rank 3 on T together with an @T—valued guadratic form
qQ : V— O_, and thus a conic bundle on T.

(tv) The families 2 on N and {ﬂy}yeﬂ.on A4 give generalized
conic bundles on ND and o yespectively,

Notattion 2. Dencte these conie bundles by F on ND and @ on o

Proposition 1.2 The conic bundle P on NE ts locally the base

change of @ on & by the leocal morpghism ¢ Nﬂ—> sF of &1,

Proof. This is an immediate consegquence of the definitions of ¢,

e :
, and {ﬂy}yeﬂ'

10




Remark 1.4, Following €2, we introduce the canonical subschemes

g cF c H oo

3 Z i

and

N3 = Nz = N; c ND
assocliated to the degeneracy locus of P and @ respectively. Then,
by Prop 1 2. 2 locally maps ND i Nz into & - M;in such a way that
H - N — a4 -« N - N — & - &
i 2 4 2 L] i i
Remark 1.5 By Theorem 1 [5-1], we know that & = & x A, where A 1is
the 3-dimensional affine space and & +the 6B-dimensional affine
space whose points are identified with the set of guadratic forms
on a fixed 3-dimensional wvector space (or algebras of the form Gq+

-the even degree elements of the Clifford algebra associated to

the quadratic form g ). Therefore we have for (¢ = 1,2,3

#H ={ge?d | rank g = 3 - £ }

Note that

# -# ={aqlac? C =M }xA or equivalently

11




Motation 3. We dencte the subsets Nﬂ = Nz and H; - Nz of N.;; by A

and ¥ respectively.

Let K = M - HDH, be the singular locus of M . The bundles
| here are of the form L @& L_i, where L is a line bundle of degres 0.
Let KO be the nodes of K (i.e consisting of bundles of the type

Le L with L° trivial ). Then

K-K ={LeL' | Led-T}
Jand ' as in &81. It may be noted that K is the Kummer variety of

dim g (cf [N-11).

Proposition 1.3 The subssts I and Y of Hﬂ e precisaly

-1 o, O " ; " :
N.;, - p {'E{OJ and p TK KBJ respectively, where p : Nﬂ—-!- HB LS

the desingularisation morphism. In particular, 7 - Y = p"‘{{'bj‘.;}.

Proof. By Remark 1.3, we know that V = p_I{Hi} iff End V = "’H'z‘

Therefore it is enough to show that, for E e p (K - K0

End E is isomorphic to the algebra C;. for a quadratic form g of
rank 2 on a 3-dimensional vector space and conversely,
We consider a point E in p_iiL o L_i]l where E=VeW,

Ve Ext(L, L"), We Ext(L*,L), LeJ -I. i.e

12
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It is clear that points of this type are actually in ﬁdEK el
Deing (1), it is easy to see that End(V ¢ W) has four generators,

which in terms of block matrices can be described as

: where I 1s 2 » 2 1dentity matrix, and ¥, and ¥z comling from
identification of the line bundles in the exact sequence (1). The

defining relations can be given as

2 =
| u =u, v =wv, uww=0, uv =1,
2 2
w o= ox = wxe =0, uw=w wu = 0
(2)
| ux =0, HU = O, vw = O, W = wy
ux = X, xw = (O,

If g is & guadrcitic form of rank 2 on a 3-dimensional wector
space over an algebraically closed field k then it is easily s=en

that qu iz & 4-dimensicnal k-algebra with

+

Cq =k 4+ kx + k7 + Kk such that

13
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e = =1, o = =y, oy = (3,
ffa = p yoo = 3,
Now put a = i’il + i), b = ;—El —ia), e = (¥ + ), d = (W - ¢},
where . = ¥Y-1 € k. Then a,b,c.,d are new gZenerators of Gq+ with
the following defining relations
a* =a, B =b, ab=0, a+b =1,
FA = — _ _
o = d =wed =0, @ = e, ca=4l (3)
ad = 0, da =d, be =0, b = g,
bd =4, db = 0, |
A glance at (2) and (3) proves that End E = c;.
Conversely, let E = ﬁdiﬁ = Kﬁ}: then, End W has four
generators x,w,u,v with the relations (2) as above. Consider

ue End E, and let V = ker u. Then V is a subbundle of E

and we

have an exaclt ssguence

l— V — E — W — 0.

It is clear then that W is in fact ker v,
we get a splitting of the exact seguence,
of

Now using Prop 1. [6~1].,

L4

v = End E and therefore

implying E

V and W cannot he

of

Va W,

the

type



Le Lor L' ® L™, For the same reason, aince E e EV,, we rule

=1

out . Vs Lie L, W=L"® L. Hence we are left with
Ve P(Ext(LL™")), We P(Ext(L™",L)) or vice versa.

Note that for LeK -K , Ext(L,L7) = H(XL ) has
dimension g - 1 and therefore Y is a P2 % P *-fibration
over K - K-:-‘ The vector bundle to which this 1is associated has

fibre at any L « K - K to be Ext(L,L™') & Ext(L',L).

Corollary 1.1 The magp

P ¥Y—s K - Kh

g-2 g-2
isalP x [P fibration asseciated to o vecter bundle on K - K-::'

| £
. Corollary 1.2 The fibration ¥—— K - Kﬂ is locally trivial tn

the Zariski lopology.

Proof. This follows from Cor 1.1 and SBerre (ci[JF5-1]}).

Proposition 1.4 let P - Pz be the restriction of the conitc bundles
P cuer points of ﬂﬂ - Hz(i_e Z)Y, Then the total spoce of P - E} L

smootf.

Proof. By Prop 1.2., P - P, iz locally the base change of Q - Qz

(the restriction of @ over the points of & - S Since ¢ N, — A
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iz= a smooth local morphism, the total space of P - Pz is smocoth
iff the toetal space of @ - Qz is =0,

o
Consider any point fai.aziﬂs.ﬂ¢.a5.aﬂ} = & . This defines &

guadratic form
= 2
g = ai,ﬁ: + az}[‘f + r::_n'f - Q‘XZ + czs'fz + fldz ;

We therefore have a conic bundle C over A® by considering the
conics defined by the auadratic forms. By Hemark 4. it is «clear
that the conic bundle Q on # 13 essentially the conic bundle C,
Thus we would have proved ocur claim 1if we show that the total
space of C—— A - 5’ is smooth, where 8 is the degeneracy locus

of C and 5 « 5 its singular locus. We have in fact more:

Lemma 1.1 Let & : C—s A° be the canontcal morpghism, Then

8 (A% - (0)) is smoocth.

Proof. Let P  C be any point. Then P can be given by

(a,,e,,a ,a ,a_,a_,X.Y,2)

where not all @ are 2ero and not all X,Y,2 = 0, P 1lyving on +ths

conic defined by g = aixz : R + aﬁzz. Taking rartial
derivatives of g with respect to a i=1,....6, we have
; ﬂqfaﬂL = 0, T o= by csany'B = X =¥ = %= 0

16




£3 Cohomology computations

Let W be a conic bundle of the type I (cf Def 1.3.) on the
variety S. This gives rise to a topological Brauer class bw in
B (5,2),_, (i.e the torsion subgroup of H (85,2)),

Let W be a conic bundle of type Il (cf Def 1.3). Then if W
degenerates to a pair of lines over an irreducible diwvisor 51 e 5,
the restriction W; of W over & gives rise in a natural way to a
double cover of 5 (cf Lemma on p 28 of [FNZ2l)and W - W, 1s a conic
bundle of type I over 5 - E:' We shall dencte by '’ the element
in H?Eﬁi.E] coming from this double cover. Consider the part of

the Gysin sequence for S1 < 5 which involves HHKE.Z}. i.e,

g
H'(5,.2)— H(5,2) — H(S - 5,2)— B (5,,2).

Then we have heres the

Theorem 1.2 (Nitsure ) Llet W he ¢ conic bundle of
type IT on 5. If the total space of W is smooth, then the image of
E::'._“r o HB{S = EL.Z]h“ under the Gysin map g, 1s precisely

i
(= Hz{Ei,Z}_ In particular {f o # 0, thern bw T 0.
1

Proof. For the proof cf [NN-1] and [NH-2].
Proposition 1.5 let W &2 a conic bundle of type [ over 5 where

ﬁ[S,Z} = 0 and with bw 0 n Ef{S,E}LGr, Suppose  thot | there

exists another topological Fl-bundle e 5 with the gpgropsrty

17




that Ha{U*E}LW: (0}, Then bv = ibu:md Hj[E_E]Lw is gensrated =4}
e
w
Proof. To prove this propositicon, we shall appeal to the following

well known (cf [NN-11)

Lemma 1.2 Let U—s O e o P' tundle cver a poth connected space 5
with T_-:'I(S}l = 0. Then the kernel of the induced homomorghism

Ha[E,E}-—-—-; HE{U,Z} is generated by bu'

We now apply the lemma to the bundle U0 —— 3. Since we have
ff[U.E}Lar = (D), we get HF(S,Ellnr'tﬂ bs genersted by b, which
is a 2-torsicn element. Also bw liezs in HPES,E}RH, anrd &E = 0

T
which implies bw = & ., This proves Frop 1.5,

u
The next step is to construct explicitly a P'-bundle on the
subspace Z - Y which satisfy the property of Prop 1.5. Tor <this
rurpose, wWe elaborate in some detail, what 1s called the Hecke
correspondence of [N-2] in terms of parabolic bundles as remarked
in [M-8].
Let ¥ be a wector bundle of rank 2 and degree 0. Suppose we

are given a paraboliec structure at a point = = X, defined by &

l-dimensicnal subspacs

Ez?x < FV =V  &nd welghts (a ,o,) such that

(i) parabolic stable = parabolic semi-stable

18




{(ii) parabolic stable = underlying bundle is semi-stable, and

(iii) underlying bundle is stable = any parabolic structure is
stable.

Let T be the torsion Ou—mcdul& glven by

T =V/FV, T, =0, x=y
Then we have a homomorphism of V onto T (as Gx—modules y. IT W is
the kernel of this map, we have 0 — W— V— T— (0 &and W is
locally free of rank 2 and degree -1,
Let H be the moduli space of parabolic stable bundles of rank

2, degree 0 on X and ﬂq the moduli space of stable bundles of

rank 2, degree -1, Ff:H— M, the ganonical morphism ; let
= -1
Hn = f be}.

Proposition 1.6 If V € H then W defined above, is in M and the
mag w tH—s Ptf V— Wis a [P'-bundle, locally trivial ©n  the

Zariski topology In fact 1Lt is the dual projective Feoincare bundle

on .
H—i

Proof. We first eclaim that if V is parabolic stable then W is
stable. To =see this, let F <« W be 2 1line subbundle. We need to
show that deg F < 0. BSuppose this is not the case, 1.e. deg F = 0.

Let G be the line subbundle of V generated by the image of F

in V. Then deg F = deg G. Since the wunderlying bundle of ¥V is
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gcertainly semi-stable, we have deg G = 0. By our assumption
deg F =2 0 and hence we have deg F = deg G = 0. This implies that
the canonical homomorrhism F— G is an isomorphism. We alsoc see

that by the definition of T
G < FV,
o o
but V being parabolic stable with weights 0 < @ <o, we get

par deg G = o, < 3[“1 t a,) = par deg V/rk V
which leads to a contradiction. Hence W is stable. Conversely, we
claim that H is isomorphie to the dual projective Poincare bundle
of Hq restricted to M . To see this, we start with & W e Mo
Then, given a point in F(W:}, x <= X, one can easzily obtain &
vector bundle V of rank 2 and degree 0 and an injection W— V as
vx—modules. The cokernel then gives & 1-dimenzional subzpacs
ngx of ?; and thereforse & guasi parabeolic siruciure, The
stability of W +together with an argument as above, makes V
parabolic stable. That this map is an isomorphism is a conseguence
of the universal property of the moduli space of parabelic

stable bundles.

That the map H-— Hﬂ iz locally trivial 1in the Zariskil

topology, now follows from Serre [JP5-1].
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Proposition 1.7 Consider the canonical morphism § :Hn—-——r Hﬂ. Then

is a P'~fibration over M and f *(K) has codimension g — 1 in H.
[ ]

Proof. That f is a P'-fibration over HZ is immediate by the
property (3) mentioned before Prop 1.8. Let L e L™ « K - K,. Then
the points of H lying over L ® L™ are of the following form

Case 1. V is a non—trivial extension of L by L fer L by LY

We claim that a parabolic structure on V which is eguivalent +*o
giving a subspace Fz‘fpc:f V. of ﬁimension 1, 1= stable 1iff
LP < EZVF. This is necessary to ensure parabolic =tability, for
otherwise if L, = Fz‘.FF. then par deg L = deg L + o = a and
a, £ par deg V/rk V - E-Eui + e,), since o K oe,
Case 2. V= Lo L

We claim that a parabolic structure FZVP such that Ez‘f'P#LF or L.P_1
is stable. This is easily checked as above. In fact we see by an
argument as in Prop 1. of [5-1] all the parabelic structures of
Case 2 are isomorphic and give one point of M. Hence the total
dimension of the fibre at L @ L™ = dim Ext(L,L7) + 1= g~ 1.
Therefore, dim 7' (K - K)=2g-1,

In fact, it is not difficult +to see that for x e K - Kﬂ.
_I_f_‘{le is the union of two projective spaces of dim g - 1  meeting
‘at a point.

Finally, let V = Hﬂ be such that grV = L ® L, (L of order 2).

Then the following can be easily checked,

() Vhas a parabolic structurs rendering it parabolic stable iff ¥

|
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is a non-trivial extension of L by L.

(ti) A parabolic structure given by FZ?P iz stable 1ff
Fz?;#LF{where L is the unigue line subbundle of V ).

Once again by an argument as in Prop 1. [5-1] we see that all
the paraboliec structures on a non-trivial sxtension V of L by L
are isomeorphie. Hence the fibre of f over L o L is isomorphic to
P(H (X.0,,)) which has dimension g -1, implying
codim(/™(K), H) = g - 1.

Remark 1.6. Thus we have the following diagram

which gives a correspondence betwsen H_i and M.

k=4
Froposition 1.8B The Firiration Y—0 o I{ﬂ with fibre

F=rP"% P¥% satisfies the conditions of tha Leray—Hirsch

theorem and consequently we have
B Y,R) 2 BT (K - K ,R) ® H (F,R).

Proof The following form of the Leray-Hirsch theorem will suit our

purposes. (cf R.Bott and L.Tu -Differential forms in Algebraic

topology. )
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Leray—-Hirsch. Let E be a fibre bundle over B and compact fibre F.
Suppose that B has a finite good cover. If +there are global
cohemology classes e |, »¢_on E which, when restricted to the

fibre freely generates the cohomology of the fibre, then H*{E,R} i=s

a free module over H*[E.E} with basis & 4,.... €& ; ©Or more

precisely, 1f +the canonical map j:H*[E.m]-——+ H*{F,m}, is
surjective, then for any subspace W of H*{E.E} such that
J|W :W—> H'(F,R) is an isomorphism, one has

H(E,R) = B (B,R) & W
Since ¥ in our case is P¥ 7% P77, H*[F.E) iz generated by line
bundles on F. Therefore it is enough that any line bundle on F can
| be extended to a line bundle on Y.

By Cor 1.2., Y— K - K, is locally trivial in the Zariski
topology. Let L be a line bundle on F, and U« K - KD be a
trivialising Zariski open subset. Then L can chbviocusly be extended
to a line bundle on U » F, which we continue to denote by L. Since
Y is smooth, the bundle L on the open subset Ux F of Y ecan be

extended to a line bundle on Y.

Proposition 1.9 The element o = HZ[Y,E}1 associated to the doubls
on Y erising from the contc bundle P is non—=ero.

Proof. By Prop 1.8. and Spanier [Sp], HliY,E} = 0, Hence 1if we

consider the cohomology exact sequence for

00— &2 — 22— Z2/(28)— 0
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we get

H' (Y,2/(2)) € B (Y.2)

o e H(Y,Z) is the image of the covering elament in
f[Y.EK(E}], end is nmon—zero 1if the covering is non-split.
We claim that this double on Y is in fact the pull back of

the covering
J-TF'— K - K (%)

J being the Jacobian of X Cline bundles of deg 0 2 (for notations
ef &1 )

Since this covering is non—-split, and since H‘[K—KB,ZJ = 0 Lt
follows that the covering element corresponding te (%) 1is a
non-zero element (7 in HE{K = KG,E}. Thus by Cor 1.1., and the
Serre sequence fTor the fibration Y— K - Kﬂ (ef [Bp-2] )} we

have
H (K - K ,2) — H(Y,2)

maps 7 to o which is therefore non-zaro.
Thus to complete the proof of Prop 1.9, it is enough to prove the

claim.
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Fix tB e X. Then if E = Nn’ ocne can easily =see  that EL CAn

be identified with the right regular representation of A = End E
[see for e.g& Prop 5 [S5-1]).
et E = V& W be an element of ¥ as in Prop 1.3. It 1s easy

to see that the scalar in A do not meet ?L and W; under the

(=] =1

‘above identification. S¢ 1if we consider +the projective spacs

P(A"), A’ being A/(3calars), then ﬂ‘and ﬁ‘giv& a palr of lines

o [=]

in P(A'). Az in the proof of Prop 1.3., identifying the algshra A
with a ﬂqf corresponding to a guadratic form g in 2, it 1s clear
that this pair of lines are the ones in the conic bundle over Y.

Then the one dimensional subspaces H;and L:lgive ralr of

o o

points L,  and E:i in P(A'). Then the correspondence
=] =]

gives a double covering on Y since we have a definig family of

vector bundles EY = ¥, Wy}ye‘f* Obviously, this is the canonical
double cover associated to the conic bundle on Y.
- H " 5 i
Note that {LY =] Ly }er gives a family on Y which is clearly

the pull back P*{LL & LLL}UEK _ Kn' under the map p:¥Y— K - Kb‘

The double cover of ¥ given above iz therefore the pull back

of the double cover of K - Kﬂ given by J - N— K - Kb.

Proposition 1.10 (a) Let I and ¥ be as in §2. Then there exisis o




togological P'-bundle D on 7 — Y with H*{[},Ejtc:rsicn fres, In fact
P
B= 7 CH:J.

€LY The topological FPBrauer class bD = 0.

Proof. (2) By Prop 1.7. f '(K) has codim g - 1 in J.'-I[:‘I and

P = Hﬂ - f“t(K}. Censider w :Hﬂ—s M_irx,M_i'xbeing the ==t af
bundles in M with det L . Since the P*-fibration w is leceally
trivial in the Zariski topology & line bundle on the fibre F' ecan
be extended cbvicusly to Fla U, where U iz & Zarizkl open aubset
of H_i'x. Since H_ iz smooth, the closure of L in B agives a line
bundle on HD. Now the cohomology on P' is generated by line
bundles and we can apply the Leray-hirsch theorem to concluds that
the cochomology eroups of Hu are those of H_m % P*,

By Atiyah-Bott [A-B], all the cohomology groups of M—m: are
torsion free and therefore all the cchomology groups of HD are
‘torsion free.

Bince g = 3, the complex codim of fﬂ[i{} in Hﬂ is g - 1 which
45> 2. This implies codimps (K) in H, 2 4 = g - 1 2 2,

Lonsider the homology exact seguence of the pair {HG,D}
g (H,.D.2)— H_, (D.2) — f'lk_ifﬁc.z}—* H,!_iliﬁﬂ,ﬁlzll

Now HD is a compact complex manifcld and therefore we <can apply

tha Alexander duality theorem to the pair fHﬂ,D] to get




—~ .
H(H ,D,2) = H (H-D,2)

= 5K, 2)

n = dj_mmHﬂ‘

Bince dim[Ef_i(K] =n - 4, we therefore get

=2 -1 _
H(H,,D,2) = H "(f (K),&) =0

and similarly HE{HG,D,EJ = 0.

'Thus we have

H,(D,2) = H,(H,,2)

By the universal coefficient theorem one has torsion subgroup of

B(T,Z) to be that of H(T,Z), T any topological space, and

therefore we conclude that
B(p,2)__ = H(H ,2)__ = (0).

Note that Z - Y = H and this completes the proof.

The claim (&) is due to Ramanan (p.52 [R])
Theorem 1. 3. Hg(E,E} is torsion fres,

| Proof. Consider the Gysin sequence for (Z,Z - Y),
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. @
(2 — B2 &) — T2 - 1.2) — .2

Now By Cor.1.28., ¥ is P92 P9 *-fibration over K - E{ﬂ and by
p.159) H'(K - K, ,2) =

{[Sp]
0 implying by standard arguments H (Y,Z) = 0

[note that E‘[Y,E} is torgion free By the universal coaTfinlenTt

theorem ).

Thus we have from the Gyvsin sequence an injection

H(Z,2) c H(Z - Y,2)) (%)

Now note that H'(Z - Y, &) = 0, This follows for example From the

G;,rsin sequence. For, note that Hliz - Y &) = f—f[z,z}, Alzso we will

be seeing in &4 that the codimension of Nu — Z in ND is actually

6. But N is unirational and is therefore simply connected, being
smooth projective (cf Serre [JPE-2]1 ).

Hence #{NG,E] = 0 implying
H(Z,Z) = 0 = H(Z - Y.2).

Thus we can apply Prep 1.5., and Prep 1.10., to see +that

L{Hal[E - E.E}Lm iz generated by bP_

- .The Brausr eslement coming
i

from the conic bundle P - P over N - N which Z - Y. By Frop

14, the total space of P - P2 iz smoocth and the theorem due to

Nitsure menticned in &3.1 is applicable. Thus we have

g, ) =a#0 (a#0 by Prop 1.8.)



This together with (*) and the exactness of the Gysin seguence

gives H (Z,2) __ = (D),

Lemma 1.3. Pic Z is generated by Pic(Z - YY) and the element [Y]

coming from the irreducible divisor Y < I,

Proof. This follows from the following general fact:

If ¥ is a smooth wvariety, U< X open with ¥ = X - U an

irreducible diwvisor, then

Pic X— Pic U

is a surjection and the kernel of this homomorphism is

by [Y].

generated

Lemma 1.4, Lel Hi = Nn be as in §3. Then Pic H:: is wmenerated by
Pic M and [N;] over @. {in fact over 2 (cf Remark in Appendix 2,

[B-1] )

Proof. Firstly, we remark that N is precisely ¥ in N . Actually,
i [a]

‘we will be showing in §4 that Y < N: is precisely the set of

‘non-singular points of Ni. Let us assume this., Suppose N1 iz not

irreducible and let A, B be subvarieties such that N = AU B.

Then An B c N - Y and hence An Y and Bn ¥ will disconnect Y

which is false since Y is connected. Thus N, is irreducible. Alasc
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since ¥ is irreducible it follows that ¥ = N .

An arvrplication of Lemma 1.3. and the result of Appendix 2

([B-1]) vields the result.

Eemark 1.7. Thus by the above lemma, any L = Pic Na can be

exprassed as L = a[.1 + bLz, L1 = [Nlj and LZ <= Pie Mn.a,b =0,
In particular, let L be chosen ample. Then if F is the fibre
of Y— K - K, L when restricted to F 1is [E:LL.1 + bLzJIIF. But,

since L2 = PicM_ , which is trivial on F, we havse

LIF = (al)|F

Now F is isomorphic to F % P¥? and L is ample, thersefore we

‘have the restriction of L1L to each P¥% to be either ample or

negatively ample.

Let e = Hz[“f,lR} be the Euler clasz of the irreducible divisor

Y in 4. Then by the adjunction formula, we have

e = Bl

where [Y] is the class of Y « Z. Now L1 = [N ] and [N ] = Y.

henoe

it follows from the above reasoning that the Euler class e when

restricted to the factors of Fis ample or negatively ample.

Proposition 1.11 Let E be the normal bundle of Y in Z and E be
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the complement of the zerec section. Consider the Gysin seqguence

for the Z2-plans bundle {E.ED}

B (Y, R) — H(Y.R) — B(E, ) — B (Y,R) — HT(Y.R)

Then the Gysin homomorphtism
heHY(Y,R) — H?(Y,R)

given by wedging with the EFuler class e = HZ(Y,[R} i an injection

for k £ dim P9F - 2 = 2g - 8.
Proof. By Frop 1.8., we have

H(Y) = £ H(K - K JeH"(F)

L+m=k

or using the subspace W of H*{Y] ag in Prop 1.8., we have, any

e Hk{‘fj v=( for k = dim[RF. to be expressible as

u = ]_,"‘uiﬂ wo, o ouoe H*{E{ = Kn], woE W,
.

where not all w are zero (this is so since k = dimpF ). Without
:1555 of generality, the w 's can be chosen linearly independent.

Now consider u @ &, & the Euler class in HZ{Y,[E}



u@a:Euta(wLﬂa},
i

Consider the class w ® e, This when restricted to the fibre F 1ia
non-zero, since by Remark 1.7.,the class = restricted to the
iéﬁtors of ¥ is ample or negatively ample and wL'by the definition
lies in W and so w o~ e 1s non-zeroc on F for w € Hk(F.fR}.

'ﬂimmﬁﬁ_z = 2, Hence by the linear independence of the uL'a wea

u@E:EuLﬂtwLﬁej#D
L

nH (Y, R) — HZ (Y. R)

is an injection for k < dimP¥" - 2 = 2g - 6.

Corollary 1.3 The Gysin map considered in Theorem 3. i, e.

h:H (Y,R) — HY%(Z,R)
also an injection for kK = Z2g - E.

Proof In fact, the Gysin seguences for [E,Eﬂj and (Z,Z - Y) are



h
2 (Y, R)

A

2(z.R)

YL R)

and therefore, since h is an injection by Prop 1.11.,s0 is h'.
Corellary 1.4 Hk[Z,ER} = Hk_Z[Y,E} & Hk{E“Y.E}, E =28 - 4.
Proof. Consider the Gysin seguence for (Z,Z-Y).
— HOY,R) — H(Z,R) — E(Z-Y,R) — H'(Y,R)— B (Z,R) —
Sirnce h 12 an injection for kK < 2g - 6, we get

0— H(Y.R)— H(Z,R)— H(Z-Y,R) — O
for k = 28 - 4 and this proves the corcllary.

Remark 1.8. In Balaji [B-2], the Betti numbers of M are computed
using the Hecke correspondence if the genus g of the curve X is
> 4, for 1 = 2g - 3. This has alsoc been obtﬁined by Kirwan [K].
;ThiS'tcgether with Prop 1.8., Cor 1.4.,and Spanier [Sp]l, yields
‘the Betti numbers of Z for i1 < 2g - 3.

For the sake of completeness we shall give the above

Ebmputation in full.
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For any pair (X,Y) in the complex projective spaces E*(X,Y}
will denote cchomology with coefficients in R, 1in +the uaual

topology. We shall mainly be dealing with cohomology (or
homology ) groups of the type

(1) H(X), X a projective variety.

(i1) B (X,Y), X a projective variety, ¥ a closed sub-variety,

(1ii) H(X,X - ¥) under same conditions as in fd1).
Hence by Spanier [3p2] the singular cohomology groups coincide
with the H groups of 6.1 of [Sp2].

'_E_uma 1.5 Llet D = fd{I{] < H, Then we have an iscmorphism

H(H - D)—— H(H) for k < 2g - 3

Proof Consider the pair (H,H - D) which falls under the type (iii)

above. Writing the homology exact sequence for this pair, we have
b

— B (HH -D)— H(H - D)— H(H)— H(HH- D) —

‘Now, H is a smooth projective variety, therefore by the

Alexander
ﬁﬁality theorem (6.2.16 of [S8p2]) we get
, H}Hk .
B (H,H - D) —— H (D), A = dimg(H) (%)

If A - k > dimg (D), then k < codimy(D), i.e by Prop 1.7 impliss
hat k < 2(g - 1). Also if X - k > dimy(D), then H (D) = 0,




hence we get using (*)

H(HH-D) =0 for k < 28 - 2.
Hence the exact sequence of the pair gives
H (H - D} = H;{H] for k < 2g - 3.

mma 1.6 The Leray-Hirsch theorem for real cohomology groups

holds for the Ti—ftbratian £ 5 H = B—s MZ and hence

5 (8 - D)

n

g L) e B (E).
Proof The Leray-Hirsch thecrem as stated in Prop 1.8 will suit cur

Since £ is a projective morphism, wWe can consider the

relatively ample line bundle on H - D, (or in this case, we could

B-D ). This when restricted to the fibres will give a power of

miﬂ hyperplane bundle. Since our cohomology groups have

cemark 1.0 From the above Lemma 1.6 we obtain the following
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relation between the Betti numbers of H; in terms of those of
ﬁ?— D:
B (H - D) =B (M) + B (M).

‘Also, Lemma 1.5 gives

B (H) = B(H - D), k< 28 - 3.

By Prop 1.6 the Betti numbers of H are the same as those of
??x'ﬂd and can therefore be cbtained uwsing [A-B].

By [A-B], pp.593, the Peoincare polynomial of H—1 is given by

PSRN ¢ o Gkl il & a7 B
T (1-t%) (1-t*)

poopy = CEFEYT = Py
L {l_tz}z

5

ng this we can compute recursively, as much as 2g - 2 of the
Betti numbers of M.

heorem 1.4. H (2,2) = 2°%, when g > 4,

. By Theorem 1.3.,1-13{2,2} is torsion free. By Cor 1.4.,
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H(Z,R) = H(Y,R) ® H (Z-Y,R)
) = 0, and since Z-Y = M

; o+ using Remark 1.8 we
de that H'(Z,2) = 29,
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£4. The main theorem

fonsider the stratification of N.;, in terms of the degeneracy locus

£33, 1.e Hz o Nz = H1 < Nu‘
position 1.12 The subvariety Nz has codimension 3 in Nﬂ.

gof, Consider the local morphism
e ;ND —_—

). We have already seen that ¢ maps l‘*i1 inte #1 and Nz into -#2.

‘eover, ¢ being a smooth local morphism, its {fibres are

limensional. Hence the codimension of Nz in N, eauals the

mension of &, in #. We have alsc seen that & <& is a

surface given by & = 0 and .nfz c & is precisely the singular

of # . 5o we would like to show that
codim of & in & = 2.
Z i

der the natural conic bundle C on A% as in Lemma 1. Let & be
ersurface of A® given by A =0 and let Sc 5 be 1ite

~ locus . Then by Remark 1.5, it is enough to show that

codim of § in S = 2
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definition, if

q = all + Y + c2° + fYL + gXI + hXY.
:_-.';:‘ A is given by

e
A = det [ h b
g f

I}
| E——_

if Sym(M ) is all (3 x 3)-symmetric matrices

2 = {A = S?m(Jg}| rank A = 2 }

he conditions @0A/da = 9A/9b = dA/dc = oA/8f

dA/fag = dA/Bh = O,

Be = /°, ac =g, ab=h°, af = hg, fh

]

b, ch = f=z.

3

hot = g-sf and a’g = hof g-c

S = [A e Sym(M )| rank < 1 }

which we obtain the codim of § in 5.

lary 1.5 H (N, ,2) = H (Z,2), k = 4.( and thersfore by the

rsal coefficients theorem HF{NG,E] = kazlz}' k< 4,

Consider the homology seguence of the pair [HQ.E}
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Hkﬂ{Hu1z,z]—f Hk{E.z}—l Hk{ﬁnrz}_’ HkEND,Z,E}.

-'_'-m:e Hﬂ is a compact complex manifold , the Alexander duality as

in Theorem 1.3.,gives

B (N,.2,2) = B °N,-2,2) = & °(N,.2), n = dimgN, .
By Prop Ll-E.,dimRNz =n - 6 =since codimga (N, N_) = 3, Hence
% (N ,2) = 0 for k < 6.

- HN,2,Z)=0 k<6
5> BN .2) = B(Z.2), k<4,

fRaorem 1. 5. H?{NQ.E} = 29,

froof.  Firstly, H (N ,2) 1is torsion  free. For, by

Cor 1.5.,H,(N,,2) = H,(2,Z) and since
Hatwﬂaz}tnr = HZEHQ'Z}tnP

e have (by the universal coefficient theorem, )
B (N, ,2), = H(2,2)_ = (0)

by Theorem 1.3.
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Now using Theorem 1.4.,and Cor 1.5, ,we get

52y = 229,

E‘_I’_henrem 1.6. The Betiti number B4 of Hu is given by

_ 2g
B (N,) = 7°C, + 4,
Proof. We use Remark 1.8 to get the Betti numbers of H; to be

B, (M) =1, B =0, B0f) = 1, B(M) = 28, B,() = 2 eto
By Cor 1.4.,

B,(Z) = B,(Y) + B_(2-Y) (%)

Now, by Prop 1.8., B,(Y) = B (K - K ) + B,(P"% P°?). Hence, by

‘Spanier [Sp]
_ 29
B,(Y) = *%c, + 2,

Als=o, B (Y) = 0, since the odd Betti numbers of K - K, and

P"x P° are zero (cf [Sp] again). Combining this with (%), we

_ =2
B, (Z2) =79€C, + 4,
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Hence by Cor 1.5., we get

_ 29,
B,(N,) = %, + 4,
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CHAPTER II

THE INTERMEDIATE JACOBIAN

Nething is our own Lthat we crecls

FPri Aurebinds Favitri Bosh seven

&1 Preliminaries

Let us recall the definition of the Weil map relating the
termediate jacobian J°(V) to codimension 2 cycles on V where ¥
5 a non-singular projective variety.(cf [G],[M-N],[AW] )

Let A be an algebraic cyecle on VxT of codimension 2, T
ome parameter space. Then we have an element a = B*(vxT.,2), the
sohomology class defined by A, Assume that Hai?,E}LDr= 0, and
sider the (3,1) component of the Kinneth decomposition of @«

given by o e H (V,2) ® H (T,2), i.& a homomorphism
a B (T,2) — H (V,2)

‘which defines map(the Weil map)

B (V,R)/

bt H (TR /g (1,2, .2y

If V is as above and T a smooth projective curve ,then ¢ﬁ

dafines a morphism
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¢ ¢ J(T) J(V)

5

Recall that HF(?.R}fﬂaiv 2) has & complex atructure etc a3 in  the

introduction.

Remark 2.1. If we assume that V is a unirational variety then
we have noted that Jz{?j is an abelian wvarliety; and ¢ then 1= an

~abelian varilety morphism.
£2,.The universal bundle on N x X.

By a universal bundle E on X = N, we mean a vector bundle on
¥ x N whose restriction to X x {n} for any n = N 13 exactly the

vector bundle En on X corresponding to the point n = N.

Remark 2.2. Let V = N . Since the functor defining N 1is actually
shown in [S5-1] to be representable 3 a universal bundle E on X =
N. This gives us a canonical algebraic cycle c,(E) < B (x x N,2)

and the induced map B, JEX) —— (W)

Remark 2.3 Recall the Hecke correspondence of Chapter 1,

‘Hemark 1.6
‘Then there exist universal bundles F on X = H and G on X = Hd

(ef [M-N]1,[5-2]1 ). Moreover, it is easy to see from the definition
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of w : H—— Hﬂ that the seaquence
00— (1 = w}*E-—+ F— £—0

is exact on X = H, where £ is a coherent sheaf on X = H defined by
the torsion sheaves T on X (i.e ¥ h e H, xh =T as @x-madules,
and the torsion sheaves T on X are defined as in the discussion

after Lemma 1.2).

Remark 2.4 . Before proceeding to the main proposition, we shall
recall a few definitions from [S-1].

(1) Let T be any parameter variety and Wie= {?ﬁhﬁa a TfTamlly of
rank 4 vector bundles on X x T. Fix & point P € X and let ?P be
the restriction of V to T, T being identified as a subscheme of
X%« T by t— t x P. Then to give a family of parabeolic structures
(for the moduli problem  associated to the variety N

) (V,a) = {(V.,a)} . is to give a section
#*
At T— P[?P )

where V% is the dual of V, (cf Ch I §1 also )

Tao glve a rigidified family of parabolie structiures

(V,A) = {Fﬂ}ﬁt]hET iz to give a nowhere vanishing section

[= 2
=
<

45




; *
such that the asscciated morphism & : T— EF{?F ) iz a family of
parabolic structures.

(2) Define the functor
& : (Schemes) —— (sets)

%(T) := {Isomorphism classes of rigidified families in PV, (1.e
;,J,'?L,ﬁtj = P‘V_‘ ¥t =T ) parametrized by T }

Define the functor
F : (Schemes) —— (==ts])

F(T) = {{‘F.E} < %(T) | End V, is a specialisation of # V¥ t e T}
Then one of the main theorems of [S-1] is that ¥ s

and the scheme N of Chapter 1.,represents it.

. Note that if (V,A) e #(T), then Aut(V,A) = identity.(cf
jE-1], p 172')

Proposition 2.1. Let E' be the restriction ef E te X x M and F'
the restriction of F to X x H.Then there exists a vector bundle @
of rank 2 on H such that

€1 x OCE >R F © g c@
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bundles on X « H Cg; X on Hﬂ—r }[;I'a is the pgrojection,

Proof . Consider the families (1 x f}*fE‘} and F* on X x H . From

the definitions of # : 2 - Y—>s M and O W — Ha, it 1= clear
that if t e H°,

(1% H)(E) 2F o F (%)

as bundles on X.
Alsc by Remark 2.4 we know that since E' is the restriction
of the universal bundle E on X = N, there 1s a natural family of
igidified parabolic strucfures on E', which we denote by E.
Denots the bundle F' @ F' by F' @ 33, where 33 is the trivial
rank 2 bundle on X x H. Note that since F' is  stable,
Wt(F' @ 3) = GL(3) = GL(2)., Fix & t « H . Then by (%) above, the
pundle (F' @ 3}1 acgquires 8 rigldified parabolic structure from
hat of (1 x £)"(E;),which is defined by a point &, in
(' e 3)F,. Let ((F" @3)5 ) < (F @ 3)), be the open subset
onsisting of parabolic structures which make (F' @ J3) parabolic
itable; observe that GL(3) acts transitively on this opén subset.
firther these open subsets patch up to define an open subset
(F ® 35 of (F eXF | Clearly £ e ((FF o 3)f )7
rivialise (F e 3}: in & neighbourhood U of t in H . Then we get

: nowhere vanishing section (going to a smaller open if need be)
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Tyi U— (F @ 300 |,

such that £ (t) € ((F> ® 3)7 )" V¥ t e U, Thus, we have an  open
covering {U} of H such that ¥ 1,3 a rigidified family
of parabolic structures on (F' @ 3) |

T coming from

£, & 7 U— (F © 3

Hence by the representability of the functor F of
Remark 2.4 ,we have V¥V 1, an isomorphism of rigidified families
* " e "
(L = £} (E") | = (F" & 3) |

U x X A
L L

(*%)

Since the Et are rigidifications, via the isomorphiams (%%

we get canoriical isomorphisms

I3

(FF 3, 8) |, , = (FF 3, 4) |

15 L
where U0 =0 m U,,
L i 1

‘These give us functions

8 0 n Uj—-!- GL(3) = GL{2)

With si_j.-sjk.sk1 = 1 ¢on Uﬂk = Uirﬁtﬂ r Uk, {becanss the Ei 5  are

rigidifications ). These transition functions define a rank 2
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vector bundle @ on H°, and the isomorrchisms of (k%) patch up to

define a (rigidified) isomorphism
(1x AAYE) =2F & g"(Q)
on X = HE

£3. Computation of = ACEJ.

*

Before proceeding to the computation, we shall prove some

trivial facts on Chern classes,

‘Lemma 2.1. Let A,B and C be three vector bundles on X x T, T soms

_:.parma.ea:er vartety with H‘{T,E} = 0. Suppose that the seguence
00— A— B— C— 0
ig exact. Then
cii{E} = cSA{A) * cad{ﬂ}.
Proof . Consider c,(B) « H' (X x T,2). Then clearly

¢, (B) = ¢ (A) + ¢,(A).c (C) + ¢, (C). Now c,(A), o,(C) are 1in

(X x T.2). Let the Kinneth decompositions of
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i
f
+
1
-+
L¥]

ciiﬁ}

and

ctfﬂ}

"
e

where o and [ = B'(X) @ B(T), ¥ 1,3, Now since HI(T) - 0 we

have
g T ﬁ:l....‘l. =8B
Hence
Le,(A).c (C], =0
- c BJB} = ¢ a,i*’” + s,IC)

Lemma 2.2. Let W be @ dundle on X x T with H(T) - 0 and let

V=We L were L is a line bundle, Then
cmi{?} =g (W)

L

Proof. ¢, (V) = ¢, (W ® L) = ¢ (). (L) + ¢, (W) + ¢ (L)*. Again, as

in Lemma 2.1,

le, (W) (1)1, =0
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) 2z _
and s=imilarly [ cl{L) ]a.s =

Therefore ﬂg____[?’} = 03_1EW).
Lemma 2.3. Let
0— A— B— C— 0

be an exact segusnce of uvector bundles on ¥ = T, with H"(T} =0,

Suppose that ci{G} = 0. Then
05,4(31 = ey (A)
Proof. Trivial from Lemma 2.1
Lemma 2.4. Consider the exact seguence of Remark 2.3,
0— (1 = w}*G—r F— &— 0

et X = H,

Ther
® :
ca'lflﬁi « ) G) = ¢ (F).

3,1

Proof. We claim that c (£) = 0. For, by definition of the sheaf 5
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we have an exact seguencs

00— I— @ —_— P e 0
HxH

whﬁfe I is the pull-back of the ideal sheaf at F € X. Thus we have

the relation
CJI}.Q[E} =% (T

where the , dencte Chern polynomials, Since I L2 5 line bundls

cL(I] = Ak B ctiI} and (+) implies that
c (£} = 1 =% g (I} # (L g (1))~ ...,

But since I is the pull-back of a line bundle on the curve X,
(e, (I).+)" = 0, k2 2. Hence c,(£) = 0. Now, since the variety H
is wunirational and projective, H'(H,2) = 0 (ef Chapter 1),

therefore by Lemma 2.3.,

o, (1 x ¥)8) = ¢, (F)

This proves Lemma 2.4.

Consider the P'-bundle f i+ H —> M. Then it has been shown

in Prop 1.5 that we have an exact sequence

0— {r "}— H(f,2) > B(F,2)— 0
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where » ' is a 2-torsion element, lying in the topological Brauer
group Brmp[ld’} (identified with H (M°,2) _ ), coming from the

P-bundle f : H — M . Moreover, we have the following diagram

0— {y "} — H(M*,2) —— H(H.2)— 0

1 /6

8 (z,2)
T
0

and & is an isomorphism. The vertical exact sequence is as 1in
Theorem 1.3., above and the fact that » ' maps to r 1is precisely
the contents of Thecrem 1.3.

Consider Z-» N and let (1 x 1)*(E) = E, be the restriction
of E to X x Z. By Cor 1.5, since B(N,2) = H'(Z2.Z), k<4, it
follows that H*(X = N,2) = H'(X » Z,2); therefore by naturality of
Chern classes, 1t 1is clear that we need to compute only

c,(E) € H'(X x Z,2). Since there is no ambiguity, we shall drop

| the subscript and call (1 x 1)7(E) = E, as § itself on X x Z.
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Lemma 2.5 The following diagram is commutlatiuve

¢, ,(E) : B (X,2) —— B (Z,2)

L !

e, (1 x H'E) + B (X.Z)—— ¥ (5",2)

Proof .E' is the restriction of E to X x M (Z - ¥ = M) and the

lemma follows trivially from the naturality of Chern classes,
Lemma 2.8 The following diggram is commuiatiuve

- . 3
e, (F) + B(X,Z)y—— H (H,2)
[k ]

¢, (6) : H(X,2)— H (M_,.2)

3.4
Proof . Since w» ! H— ﬂd is by Frep 1.7, a P'-bundle locally
trivial in the Zariski topclogy, an application of the
Leray-Hirsch theorem implies that w*: Hgfﬂd,zj-——+ EF[H*E} is

an
isomorphism (cf Prop 1.10.)

The naturality of Chern classes therefora

cmifG}

implies that

c11({1 % w}*(G)). Mow using Lemma 2.4, We get

11

Cliiﬂ} ¢, (F) =nd the lemma follows.

Theorem 2.1 The map
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e,,(B) : H(X,2) —— H(N,2)
I [

Z29 29

is given by multiplication by *2'.

fe

Proof . Firstly, by Prop 2.1, (1 = f}*EE‘} F' @ q*iﬂ}, where &
is a rank 2 bundle on B, By the splitting principle, we can
| assume, far the computation of Chern classes, that
q*{ﬂ} = 11 =] Lz,LiJﬁ twe line bundles. Therefore, it is enough to

compute ciiiF' @ EL& ) LE}}‘

Using Lemma 2.1 and Lemma 2.2,

c (F" @ (L @ L)) =2.¢c (F)

Thus,

e, ((1x £) (E')) = 2.o, (F').

3.1

By Remark 1.9 H (H,Z) = H(H.Z), and 30 by the naturality of

Chern classes cmitF} = ¢ [F"}). By ([M=-H],IE]1)

3.4 !

c,,(6) : H (X,2) —— H(M ,2)

is an isomorphism. Hence by Lemma 2.5 and Lemma 2.8, we get
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CaiEE} to be maltiplication by BT (Locsely put

CiifE} = E.Gmi[F'} . 2.011EF} = 2.011[5} Y3
Corollary 2.1 The induced Weil map (ef 2.2 )
¢ 1 J(X) —— T(N)
is an isogeny of degree 2295 in fact,
Ker ¢E = {peints of order 2 of J(X)}

Remark 2.5 From the proof of Theorem 2.1, it folloews +that the

induced Well map

P ¢ JX)

F

J°(H)

is an isomorphism. Here H is nothing but P(2,0)the moduli space of
parabolic stable bundles of rank 2 and degree 0. The same proof
tegether with a general Hecke correspondence for rank n  bundles,

together with [N-3] would show that

& J(X) ——— J(P(n,0))

is an isomorpghism V n.
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54 The Polarisation on JZCM.

As we have noted in the Introduction, in the case when V 1is
unirational, a polarisation on V induces canonically one on Jz{v]_

This a priori depends on the choice of the Kihler class on V.

Remark 2.6 The varieties N and M[n,d}L*{n,d} = 1, are =smooth
projective unrational varisties (cf [5-2] ) and so satisfy the
conditions on the plurigenera, viz, e e

Remark 2.7 Consider the case V = H{n.dJL, {n.d) = 1 dealt with in

[M-N],[N-3] and [R]. In [M-N]}, it has been remarked that since
Pic M{n.dJL = Z, there iz a canonical polariszation induced on
J*(M(n,d), ) and that under the Weil msp , which in this case 1s an
isomorphism, this is equivalent to the principal polarisation on
J(X). (SBince in these cases , numerical equivalence is eguivalent
to algebraic eguivalence, we shall denote it using '= ').(4 proof
due to S.Ramanan of this fact is given below 2

For convenience, denote H(n,d)L by V. Let G—— X x ¥V be the
universal vector bundle (cf Remark 2.3) and ¢ﬂ ! J(X)— Jz[?},
be the induced Weil map . Then we know that ¢a iz an diszomorphism
of abelian varieties (cf [M-N1,[N-31,[R] ).

Let {X} _, be a family of curves parametrised by T &and let
t, = T be any fixed point. Let {V } _. be the correzponding modulil

spaces of vector bundles (of type M[n,dJL,{n,d} = 1 ). Then since
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Pic ?L =Z, ¥Y¥t1t=T, it i= clear that given a polarisation

Ii of ﬂ_. it can be lifted to a family of polarisatiens {L}

=1 =] LB
parametrised by T. (Since we have a projective morphism % —— T
with fibres ‘Ft ato )

Now consider Hg the moduli apace of ecurves of genus g, Then
it is EKnown that for & generic curuve X = Mg . the HNeron—Severi
group NS(J(X)) =2 , and we have &a non-empty ogen subaet
{X = Mé | HS(J(X)) =22 } ecf [BM] )

We are interested in proving that ¥V X = Hg , the 1izomorphism

B, ¢ J(X)— T(V)

is polarisation preserving . So fix an X in Mé and let {KthETb& &

family of curves parametrised by T such that E_ = ¥ arnel there

=]

existis o ‘t.1 e T such thot HEEJ(XL Yy = &,
1

By the discussion above, we have a family of pelarisaticns
e OB {?LhET . parametrized by T which induce polarisation
& on Jz[?L}. Thus by Griffiths [G] we have a family of
polarised abelian varieties {J°(V),©'} __  parsmetrised by
T. Therefore, we have a family of Jacobians {thghfﬁ with two
families of polarisations {® 1} and {®'}, © Tbeing the cancnical
principal polarisation and ® ", the one induced Ifrom JZE?L} {via

the Welil map ).

Hoé, since t1 e T is such +that NS{J(XL}} = &y 4t implies
1
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that

Therefore, since we have a parametrised family of polarisations,

and since the Neron-Severi group is discrete, we have

B =8"'" ¥+t =T

In particular we have

Therefore since Il = X, we have
(=)

@ 1 J(X)— T (V)

ju

to be polarisation preserving.

Remark 2.8 Note that the above argument cannct be directly applied

to the case of the moduli space N, since Pic N =2Z & & (ctf

Chapter I. Lemmas 1.3 and 1.4 )

Conzider a family of curves [KLhET as above and let {N}

L LT
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be the corresponding family of meoduli spaces. Thus we have a

projective morphism #/—— T,

Lemma 2.7 Let h = T and Lh any polorisation on Nh' Then, thera
exists an ample bundle £ on & such that _.fh = L (in other words Lh

lifts to a family of polarisactions {LL}L onn {N ) i

=T L L=T

Proof. By Lemma 1.4, Pic N is generated by Pic M® and the class of
the irreducible divisor N, = N. Let L, generate Pie M
(Pie M = 2 ) and L, = [N, ], the class of N in Pic N.

Then we claim thot there exist line bundles -"51 a7l .’Ez o N

such that ., if t e T be any point (£,), = (L), and (£) = (L), -

Firstly note that Pic M = Pic M (cf [D-N] ) (in fact, this
isomerphism over @ is =ll that we need and that follows from
[B-1] ). Now the moduli space construction generalizes to a family

of curves. Therefore, Li lifts to a family of line bundles

{{L. ) %

1t teT’

Also the construction of +the desingularisation model N
generalizes to a family of curves. From these considerations and
the fact that the line bundle Lb coming from the divisor N1 of the
degeneracy locus (cf Remark 1.4) is canonical , we deduce that
there exists £, on 4 such that (£,), = (L), v t e T,
thereby proving the claim.

Since by Lemma 1.4 Pic N = Pic M" + Z.[N 1, whers [N ] is the

class of the divisor N;, the Lemma follows from the above claim.
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Theorem 2.2 Lei E'J'l' and @z’ be two polarisaticns on JZ{H}

induced from polarisations L1 ard L2 on N. Then

e* =6"
1 2
so thot we hove o canoritical polarisction 8 ' on JZ(N}. Further @ °*

is equivalent to the canonical theta divisor @ on J(X) via the

Weil mapg ¢.

Proof, Let {EJEET be a family of curves as in Remark 2.7, viz

X = X and there exists t = T such that NS(J(X)) = 2. Let

L]

{N;hET be the-corresponding family of deaingularisations. Then by
Lemma 2.7 ,any polarisation LL on Ni can be lifted to & family of
polarisations {LthﬁT. Let {@;} be a fTamily of polarisationa on
{J%(N)} induced from {L }. Then we have by Griffiths [G] a family
{JZ(NL}, @L'} of polarised abellan varietics varying analytically
& s B

Consider the family of jacobians {J{Ki]} and the two familles

of polarisaticns {BL} and {¢*@!'}. Froceeding &3 in Remark 2.7, we

conclude that

In particular we have
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(where & = Bt Y.

L=

By the canonical nature of the isogeny ¢, we see +that the
poelarisation induced on JZ{N} iz inderendent of the choice of +the

polarisation on N and this polarisation is equivalent to the theta

divisor on J(X) via #.

Corollary 2.2. Let Xi and xz be two curves such that the varieties

N(X;} and H{Eﬁ} arse lsomorphic. Then

Proof. An isomorphism N(X ) — N(X,) maps & polarisation on N(X )
to one on N(Kz}. Then we get an iscmorphism of JZ{N{Kl}}
anto JZ(N(HEJ} which by Thm 2.2 12 polarlsation preserving for the
canonical polarisations. Thus using the canonically defined

isogsnies

$p ¢ (X)) — TNXD)). 4= 1,2

we have

(J(X),8,) = (J(X,),0,)
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implying by Torelli's theorem, that

Remark 2.9. Using Remark 2.5 and arguments similar +teo the one
above, wWe have similar statements for P(n,0), the moduli space of

parabolic stable bundle of rank n and degres 0O
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