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All OVERVIEW

This thesis deals with cartain @spects of coherent states and
squeezed cohérent states and their dpplications.

Coherent states for th:e harmonic oscillator were originally
discovered by Echrmﬁlnger(l} when ne was looking for the states
WiosSe wave mckets hac classicel motion. fhese were rediscovered

(2)

by Sudarshan and Glauber{ in the study of ths quantum theory
Of optical coherence. The coherent status provide a good description
for the vurious optical fields sspecially for a laser light. The
conerent states and their generalizations are also extensively
eémployed in other areas of physicss A varitable source of
information in the form of & eollection Of reprints has been
published by Klauder and Skagerstam.{4}

The main results contained in this thesis are briefly

discussed below:

1) Schrodinger showed thHat for the harmonic oscillator

aiven by the hamiltonian

2

e 2
9 =3 +10%)

{‘P = momentum and X = position)

the states whose probability density wave packets have classical

wotion viz.,

1

207 xdﬁj ACD@CE‘J’E'*“@ (2a)

ol = ’PEE (t)

M o (2b)

il



where

A:yoq(v“ﬁ) (3)

are given by

b
— el | g_-EE{ i
> = & / SO S

(4)
Yi=g “t

where the states M are the eigenstates of 8%1 .
Equ.(4) defines a coherent state (ce.5).

Equ.(4) coula also be obtained as:

1> = D) 10y "y

D) = Exb(olal-of @) (6)

15 known as the displacem=nt operator, and (U apnd 84

where

dre the
annihilation and creatiopn OpEratDrs.

Chapter 1 contains a bries introduction to the coherent

States of the hirmonic cscillator 4nd their use in the formulation

Of the quantum theory of coherence.

Roy and Virendra Singh{EJdnd Boiteux and Levelutiﬁj obtained

generalized coherent states (g.c.s) for the harmonic oscillator

45 given below:

M,y = D) 1M (7)
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4 detailed discussion of the g.c.s is given in Chapter 2.
It is also shown that |Yi; o> coula be obtiines Erom the c.s (s>,
{o be precise ths statesiw1fné> are proved to be the exciced
States of the displacea oscillator vacuum |o) . PFurther, it
is also shown how a cu;.Id) could be expanded in the basis ok M~
These results are discussed in Chapter 2.

2) In the languaye of Lie elgebra, we can say that the
harmonic oscillator algebra (Heisenbery~lieyl algepbra) can be
used to define the coherent state lel> » given by equ.(4).

Coherent states for the angular momentum i.e., for su(z)
algebra were introduced oy Radcliffe(?J and ﬁrEﬁchi{B}Et al,
Owing to apparent similarities in the treatment of these two

{9)

coherent states, it was shown, using grous contraction procedure,

that the harmonic oscillator coherent state coula Le obtained as
a4 certain limit of anguler momentum coherent stdte. Not much
nas been knowvn about the ineanding of this contraction proceaure
except that the two different eoharent States are relateda as a
consequence of a limit. e show that the grouy eontraction
Jrocedure merely aneans a well knowm coneept of limdting distributions
in propability theory. We make use 0f these concepts Lo associate
@ probapility aistribution with an srbltruary Lie alusora apa
further the contraction of Lie algebras is shown to e ‘contrdction
of probability aistributions',

Sone remarks are nace regaraing. the coherent states of phase
blerator in guantun mechinics i finite ginensions. These resyles

are discussed in Chapter 2.



-iv -

3) Chapter 4 gives a detailed review of syueezed coherent

e \ Lo
states (s.c.s). They are defined as /

2,42 = Died) Sez) 105> &)
where
S(#) = E'n:JP[.E'-‘., alat - z Oﬂﬂ] (9)
= 5 5
is known as squeezing operator. " 4
Unlike D@ which just shifts @ ana A 5 S(2) mixes (1 ana @

into another equivaelent boscn system as given below.
8 % .. po _
S&S+:accs£xh + e Cﬂ'gm«?m?l._/&
& | + g (10)
e Anhn + @ Cothn = A

2

&

o
|

e squeezed states correspond to Caussian wave Packets with

widths distorted from

that of vacuum state and those states follow

(11
classical motion: but the unoertaiptie )

5 pseillags,

The nonclassical nature Of squeezed states comes from the

nonexistence of Glauber=Sudarshan funection 13613 a5 4 well
behaved positive definite function.

In Sec.4.2 a new class of Sgueczed stabes Known 4s logarithmic

States have been introduced apc Ehelir squeezing properties have

Deen studied.
o iy P i = _ (12)
4) Motiveted by an interesting result of PFisher et al

who proved that ‘squeezing could not be naively generalized', it is



shown that the para-Bose pscillator does not admit even Saueezing

of order two (See Sec.5.1).

5) Though for the harmonic ocscillator one cannot naively
generalize sgueezed states, one cdn obtain generalized sgusezed

coherent states in a more useful way as
IM, 2,0 = D) S(Z) IM ). e

The possibility of sgueezing the state |M) and the

states |M  Z o) are discussed in Sec.5.2.

6) In Chapter 6, the formalism 0f S.c.s is axtended to the
hydrogen atom and it is shownm that the aynamical symipetry group

0[4) Oof the hydrogen atom alrsady possesses such squeezed states.

7) The other nenclassical effect namely 'antibunching' is
discussed in Chapter 7. The bunching and antibunching properties
0f various coherent states and sqgueezed coherent states are also

stuaied in this chapter.

8) Many countinyg aistributions arising in cuantum pptics
POssSess the property known as scaling property. In the addencum
it is shown that the pure squeezed stutes have the scaling form.

The study oif the squeezed states is useful for various
reasons: 1) for their nonclassical nature , ii) their use in

nonlinear optical processes and optical communications b

iii) the detection of yravitational waves. Recently the squeezed

- by 5 . 13
sStdtes have been ocbserved in four-wave mixlug.{ )
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The results in this thesis not only generalize the concept

of squeezed coherent states also discuss about their bunching

and antibunching properties. The results alsc throw some more

light on the squeezing operator. Extension of S5.C.5 to other

quantum mechanical systems like hydrogen atom are alsc studied.

The results in this thesis are based on the following papers

and preprints:

1) 'Impossibility of squeezed coherent states for a

2)

3)

1_!__:;

5)

6)

7)

para=-Bose oscillator' - T.S. Santhanam and M. Venkata
Satyanarayana, Phys. Rev. 30 D, 2251 (1984).

'Generalized coherent states dnu generalized squeezed
coherent states' - M. Venkata Satyaparayana, Phys. Reve.
32 D, 400 (1985).

‘Bunching and Antibunching properties of various coherent
States of the radiation field,' - M.H. Mahran and

M. Venkata Satvanarayana, Phys. Hev. A, 1986 (In Press).
'Sgueezed coherent stotes of Hydrogen atom'

= ¥e Venkata Satyanarayana, J. Phys. A, 1986 (In Press).
'A nocte on contraction of Lie aluebras'

= M. Venkata Satyanarayana, J. Phys. A, 1986 (In Press).
'Logarithmic Staces of the radiation fiela'

- R. S5imon and M. Venkata Sdtyanarayana, Preprint 19386
(To be submitted for publication).

' A remark on angular Momentuii Colieréert States'

= M. Venkata Satyanarayana, Preprint 1984 (Unpublished)
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8) 'Scaling property of squeczad states'
= B.A, Bampah and M. Venkata satyapnarayana,

Preprint 1986 (To be submitted for sl lcation) .
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COHERENT STATES
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CHAPTER 1

INTRODUCT ION

The matlematical description of the radiation field from
the point of view of quantum mechanics with the objective of
inteéprEting the results in the sense of classical mechanics has
resulted in developing a powerful machinery called thﬂ‘cuherent
EtﬂtEE>0f the harmonic oscillator. The fact that the light is
essentially gquantum mechanical in pature was brought to light

by Planck.[l}

It is very well known now, that one of the conseguerices of
the second qu»zmtizen:.in:an{2;| of the radiation field is to think of
the radiation field itself as an assemblage of harmonic DSCillﬂtDI${3j
and therefore the Fock space, constituted by e fime= OS2I
movides a natural setting to describe every mode of the field.
Depending on the situation, alternative states like 'coherent
states' have been found to be more effectively useful to represent
the field, and these states have now occupied a high status as the
'fundamental tools of the art' in the study of gquantum optics. In
this chapter the coherent states of the harmonic osclllator are
introduced in order to facilitate necessary background for the rest
Of the thesis enabling us to get to other 'alternative states' like

4 ;]
sgueezed coherent states.



1.1 Definition

We briefly review the different ways of defining the harmonic
oscillator coherent states:

A) Minimum Uncertainty Coherent States

| The hamiltonian of the harmonic pscillator is
I X
A = P ™ W X (1.1
= A A

(m ¢ mass and w: circular frequency)

and the solution to the classical problem is given by the

equations Iy
e N® )
x“[tj ("*’““J' (EI4)
I‘,.rl

b ® = @mE)  Gos(wk+4)

The coherent states of the quantum harmonic oscillator can
be defined as the states wihich result in the minimum uncertaintym‘bJ

of the measurements in the canonical variables
A Y

2
[ﬁx}l{ &JP)L o / 4

with the Eeatrictinntaj

(/_\.‘:Sy@jpf' = 1 /(‘m_ m}L

where the self-adjoint ﬂperatursx.and-P satisfy
rela tion

(1.3)

(1.4)

the Heisenberg

Il
S
s

e, 4 ]

' (1.5)
and

9. }..
BA) = <A = <

(|
£
R
|
™
°F




=

From the measurement point of view these states a2re the closest

analogs of the classical states which restrict the Heisenberg
uncertainty product

(2 (a) > K4

to the minimum. A exXample of such a state is the ground state

Of the harmonic oscillator.

In deriving equ.(1.3) from equ.(1.5) the Schwarz ineguality

is made use of which gives equality for the states which satisfy

(AX)NY =~ X (AP)Y, (A neal)

(l.6)
or
Cx..,_q_')\JP)f\r = olaln {1:7)
with Y = {A+LAP>o (1l.8)
I e O
Fo = Y
= i A { A ikﬁ}]
the normalised state which satisfies equ.(1.3) is
7 s>
() = [:eTrm:tJ:] ExJP{ ’; (:‘g] <’~‘I°>'1} (1.9)

which is Gaussian.

Now consider the state |o> , oL {complex)

2
=l /2 YL
> = e / 7 X [n> (1.10)




=

With the use of the generating function of the Hermite

polynomials, it could bz shown that Y{()could be obtained from \«y

(up to a phase). Therefore the states |«) are coherent states.

It is easy to check

| x (D> =X $P = A CoB (wh+ 4)
b {1.11)

[N = W) = o
1/2,
A = I« (a /‘ri/mw)

The above eguations are the same as the equs.(1l.2)

where

Further,

2 E & == mw./‘gi;/;g_,
(&“}HE)] = )t"/JL“m.LU b (ﬁ“’”r‘k}) - (1.12)

So, we observe that for the coherent state |« whose energy
Es = ., {?{]xitjln{} will have thesame motion as X((f) for a classical
particle of ensrgy E-E, where Ea= ’ﬁ..il‘i. Therefore, the shape
and the minimum-uncertainty proparty of the wave packet are
preserved in time.{?} S50 the ogscillator in a coherent state will

l:-have classical energy.

B) Annihilation Operator Eigen States

Quantum mechanics of the harmonic oscillator could be

formulated by non-hermitian operators (I and {ﬂ- (defined below)

whose spectra are complex unlike the hermitian operators ) and ‘P
(9)

=:'i-ih.il:h have real spectra.




B
1/z2,

(zi'ﬂﬁuD (‘m WA+ 4 )

i/2,
CPT:( L (mwi~L-b)

2k W

(1.13)

Equ.{l.5) implies [a_J cf._l ‘21

Therefore I’JP___'} u)aff is non-canonical.

Considering the eigen states of (0, s

Alt> = k) 5 ot (Comploot) (1.14)

[ety could be shown to be that given by equ.(l.10)

C) Displacement Operator Coherent States

The state |)> could also be obtained by the action of the

unitary displacement operator {20,

|l >

DEt) on the vacuum state |0 .

ol

DO\ oy , ot (Complaac) (1.15)

and

DEI= Exp(a- o)

(l.16)

Using the Baker=Campbell-Hausdorff fcnrmu.‘:.-em{J“L:|I Equ. (1,10)

could be easily derived from equ.(l.15).
The above results could be viewed from a group theoratic
approachi. The coherent states of the oscillator could be obtained

ds the displaced ground state of the oscillator, the unitary



o s

‘displacement operator [){) representing an element of the
Heisenberg-Weyl algebra.

&5 = D)oy 5 okClanple)

where |0y satisfies

QAloy=o , Nlo> =03 (1.17)
and n
N =@ )
lhbu . (4.18)
[@._JN} s [N}{f] = (1.19)

In order that equ.(1l.14) to hold, we have as a consequence

l of equs.(1.17) and (1.18)

(ﬁd‘}@@@{)i[&,]}@{ﬂ = + LD (1.20)
t.6-, D) furnish a basis for(AdyQ). Sinced~ :i% in view of
[EE,CL#] -4 . equ. (1.20) gives the solution

D(et) = Eocp(at a — Eff::t)

where the second term has been added to make D () u.nitary.[iz}

i q
The operators(l, @ and *ﬂ form the Weyl group w" s wWhose

general element is the unitary operator

_ + 5 A
B[t,ug;—_g*’tﬂ gﬂqpb{a = aLtlDfPO (i1.21)
and L real,
How
L d? ol ) (1.22)
D(_'tud'a_ Dcftl_;‘“{;’_) = (=5 'I;}(_“‘{i+ 2 el

where




=

¢ = (L +4 -ﬁ*ﬁfmc{,r_{:).

(1.23)

The discussion in sections (B) and (C) could be summarised

as follows:
The operators D{@EWgenerate the coherent states [« » from

the ground state |¢) which is also a coherent state.

The displacement operators provide a complete and orthonocrmal

basis for the adjoint group of the Weyl group with a scalar product

(:D@Ogj)fﬁ{')) = Ur@)@{) ])T(;Di_')) = JE ollst= o' ). (1.24)

All the three definitions (A), (B) and (C) are equivalent in

the simple harmonic cscillator system.

1.2 Properties

(a) The states |« yare not orthogonal.
s 4 2
<a<}ﬁ~> :EI‘PE{ ﬁ-%@‘“ + (P )] (1.25)
is known as Bargmann's delta function IE)@JE'). (The reason for

calling it a delta function would be clear by observing egu.(l1.33).

If (k—p) is large then the states are 'almost' orthogonal since

o o :
|[<<|B>] = Eodp (= 1=~ ) HA2 6y
(b) The expectation value of a normally ordered product of (L
and CE.T is
o m %t M
) (el @ o = (cr) oA (127)
The above equation is of great use in the application of

coherent states. If F(C};Jc{r)is a normally ordered function




then

o \F{aﬁj’)iﬁo = @iF@Hvﬂ;Cﬁi) \oy .

(c¢) The completeness rela tion i%;iven by

—i—-jafi{ o> <ot | = 4
IT

2‘ .

(d) They

complete. In

are overcomplete. A sub set of [o)» is already

fact, coherent states on a lattice with

o = JTC (WMAAN) = Koy 5 M, N = 0,24 £2,. ...

are already complete

(13)

(e) an arbitrary state |\’ can be expanded as

| > :chi ESXCINOF
3

For |Y')

|f2

= ||’3> a coherent state .

_ [ L slp>
S

ajé& NCHSAED:
TT

(1.28)

(1.29)

(1.30)

C1.51)

(1.32)

(1.33)




A

(£) Diagonal Representation

_i-
Overcompleteness property enables that an operator F%iijLJ

could be expanded as
t ¥ x
Elay® )= d & Pletyor ) N> <] (1.34)
1T

The possibility of expressing an arbitrary density operator
0f & gquantum-mechanic; l system in the form (1.34) known as the
‘diagonal coherent state representation' was first discovered by
Euﬁarshan.(l4j A representation of this type for a more restricted
class of operators was discussed by Glauber,[lEJ under the name

P-representation.

For _f[ﬂqﬂﬂt)a density operator, its diagonal representation

Batisfies
" A
'P(':{:“{) _C.J_t’_a_f‘. = 1
T (1:35)
since

Th[S@ah] = 1.

1f the dynamical variables are in normal ordered form, then

(1.36)

their expectation values could be written as averaging a classgical

runction over a probability distribution as 2,
1t : L -&.‘“ﬁ' i (‘,E, oA
?‘L [_gJ Cﬂ. ClﬂJ e 'P@{Jci)r:{ ol T (1.37)

where 9 is the density operator.

Y3
For the existence of T}@iﬁi;)tu represent a density operator,
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it must possess the following propertiesi

l.?%ﬁ;mf;}shnuld be regular, real and positive definite.

2. Projections |d>&!| are linearly independent.

3. ?@%}&f)ShDuld be normelised to unity.

If the third condition is realised then the second is never
of it. Also, in certain regions of the complex plane,rp@,o;:)could
become nega tive. But the diagonal representation holds under very
general conditions provided that it is interpreted in the sense of
‘generalized function theory. That is why?l@iyf)is also called by

the name 'quasi-probability'.

(g) Differential operator representation for (. and (L :

/ | 3 !
i’y = ot Lt lot'> = (S + 55) Ll > (1.38)
Multiplying by{@ﬂﬂr}and integrating over «' gives
~ [ ok 0
Slalys = (F + 250 &>, (1.39)

which means

ok 0
(== (ﬂ* e ( 1.40)
= el
and
3
T_ ol a_ (l.dl)
o= (5+ =)
1.3 Coherent States in Optics
After Schrodinger's discnveryt;} of the coherent states

dn 1926, the interest in them was revived and the first fruitful
use of these states were made in 1963 in the formulation of the

‘quantum theory of coherence by Eudarshan{l4} and Glauper.'*5+ 16)
Such an interest was necessitated due to a class of experimentﬂtl?J



I

which are considered to be initiators of a new discipline of optics

called 'Quantum Optics®

The observable gquantities of the electromagnetic field are
the electric field E(%,t)and the magnetic field B(% Yand they

satisfy Maxwell's equations.

E{ n,X) ecould be d{‘ecﬁmpcsecl as,
E[-\-Jt) —_ -.;.:’t) = E ( {1.42)

_E{ﬂ’-t)is the positive frequency part (associated with the photon
' (=

and E{wi‘-) is the newm tive frequency part

)

annihilation operator)

(associated with the photon creation operator) and they are not

‘hermitian. 1In addition, we define vacuum state Ked;
f+}

— -ll 3
Supposing the field makes a transition from the initial
state |[L) to the final state | > in which one photon has been

absorbed, the relevant matrix element is
)

<_H g(ﬂ;'*tjl‘J‘;) (1.44)

Now, the probability per unit time that a photon is

absorbed by an ideal dEti_Cl‘..Dr J.S prgmrtinna]} to
Z l{ﬂE(mm 2@1 2B ECE| E (2, ) 10D
= ] !:[ht)EE R4S (1-45)

I
One can also keep detectors at 2\ and /r to detect delayed

‘coincidences (as done by Hanbury Brown and rwiss{ d:".'l and in such

‘Cases the matrix element is
) (+) .
LE|EGv ) EGu,k) (£ 2 (1:46)

and the total rate at which the transitions occur is proportional

to



e

(=) (= ) )

LLIEM,®) E(m,4) E(#) ECy, £) 14 )

Iffis the density operator of the state Of the radiation

field, then l'..l.45} and (1.47) could be written as

Du[FE(,b) Eln,0] (1.48)

and &)
B;L[fgggh,t) E(&t)ﬂ(&)&) E( »EJ] e
respectively.,
The cnrrelati.on functions cnuld be: defimd as
G@brt) =Wm[fE@b E'Ca, ] (1.50)

gad ) (+)

O Cutipmstisnat; b))z &ﬁ”E(mlb)E@z,m Efd;j)f(h#JL#] el

and mare generally

(=) (=3 =3
(5'1 by by znkzu) %[f 'H"J‘Ei) g(ﬂﬂ-)iﬂ"-'-g(ﬂméﬂ)

H; +}
E (nsbor) . - oo E Qan, )] (252
According to the classical theory of coherence the first

‘order correlation function fﬂCtﬂIiZEE as (19)
{17

Gr(:j" tl;h-ﬂtﬂ = ,E("f k) JEEP‘L 2) (1.53)

Similarly

621()% J:i' }sztz 3 &L\?‘ "E:E,.& EL.}:L ’I'I"h): E(’-E';’EJ»E[Q%‘[&) DE(,{I.-:-.NE;) aE(‘fIH,'%LJ (1.54)

and generally A
G bstubss. - 12an bo) = EQub) EQut)- £(£3_w,énj
E('}L:ﬂ.“ 'r}.H) -------- (.-._2.)1 '{'J.V

Such a factorization of correla tion functions is possible

Oonly for the states [ ) satisfying
(+

E &0l > = Bz b)) > (1.56)

d we identify these States as coherent states.

(1.55)
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(+)
Therefore coherent States are the eigenstates of the _g ({En;{")

and in these states the quantum correlation functions 'mimic' the
classical correlation functions and they could be factorized
satisfying the classical description of coherence. This is the
Ireason wny coherent states are named so.

The second-order correlation function is of great importance

Poth in semi-classical and quantum theories of ccher&nce.uo}
The normalised second-order correlation function (for a single

mode) is given by 23

(2) ki Ak
%[Eg,{:lgﬁxtg,t,_) - __{_}G-;C-\.( b2 2)_ L

{EGt) EE&-J»&J>< ECut) Els, B

which could be rewritten as (for .?mt,.:-fhg and af:;:f"-‘;_,:

g{ﬂa}) = dldaa> (1.58)
| ¥ Loy '
using the Fourier expansion .LJRUJ' :I:
EQ}J»{:) = LZ(ft“}h}L) &, W) e i (1.59)
Since ] ;{
;
Aoy — "‘MLQ? ;&w (1-69)
{'a
2
= A o4 (G‘;“d:.:f) : (1.61)

.2
‘where 6 = sm2 S {__"ﬂ,}
‘a,l(ojis the guantity which determines the classical and non-classical

properties of various States of the radiation field. These will be

discussed in Chapter 7.
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So a coherent state |ol> of the radiation field (single mode)
ds the one given in egu.(1l.10).

The probability that there are Y1 photons in a coherent state (o>

is given by

2 M
U )
=i = e i Ll52)

ch i a Poisson distriobution.

A typical state of the radiation field of a laser operating

#ell above the threshold is closer to a coherent state and the

photon counting probabilities have been experimentally verifieg
to be closer to a Poisson distributinn.tzl}

Thus the use of coherent states in guantwn optics is clear

from their role in the formulation of the theory of coherence.

There are certain non-classical aspects in the quantum theory

Of radiation like 'squeezing' and 'antibunching' and the states

possessing such effects are discussed in Part II. To understand

these effects the understanding of the diagonal representation is
Bssential.

PRl @
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CHAPTER 2

; *
GENERALIZED COHERENT STATES

In Sec 1.1 various definitions of the coherent states of the

harmonic oscillator have been given and for the harmonic oscillator
Ell these definitions give the unique state |~> (equ.(1.10)).

But for genecml potentials criteria (A), (B) and
(1)

(C) lead to
different states. In & series of papers Nieto et al{l}have
*@gelﬁped 4 formalism keeping Schrodinger's criterion in mind

8nd successfully applied it to obtain coherent states for various

potentials like Morse potentiale The essential idea is to transform

8 system with an arbitrary potential into an equivalent harmonic
Pscillator system

2 -101 le
i mWe X¢ :
Uf[% +v(x}]U e (2.1)

ticle system. Also the states obtained can obey some of the

fuations of motion only approximately.

Roy and Virepdra Singh{z}shnwed, by adopting Schrodinger's

Jﬁieriun, i.2., to define coherent states as those with undistored

tmalizable wave packets with classical motion,

that the harmonic

sciliator possesses an infinite string of coherent States

8sed on M. Venkata Satyanarayana, Phys. Rev. D32, 400 (1985),
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‘hitherto not thought of’.

Originally they were known as
:’;igsem-cuherant states' {B}intraduc:ed earlier by Boiteux and I.-ram:-:lu.zt.M:I
Following Roy and Virendra Singh we shall call these states as
';gé‘ne:alized coherent states. (5)

2.1 Definition and Details

The generalized coherent states (g.ces) of the harmonic

pscillator are

st = DEON s Nz0d,dy. .. (2.2)
where |1>1is the mth state of the harmonic oscillator. Then |0,>

s the usual coherent state|ol>introduced in equ.(1,10).

The wave function associated with the state M ol > could ke
bbtained ag

i) = @ [x- x&tﬂ EIAP[-‘-"Pd("i xtl) LE'R?(Z]

(2.3)

t;'}@“ and Eq are th..{wave functions and the encrgies of
: states |ny respectively. Therefore the probability density

A
packet lﬂf) {x-—]{_,,!_{:.})] Iretains its shape and moves classically.
il e
i fact this particle-~like or

'lump' property is common even to

e nonlinear Schrodinger equation ' ®’

2 2
oy . 2 8y 4 WL Y + AN (fop 2.4
- Gl &

Now using the Baker-Campbell-Hausdorff formula, the Fock space

=presentation of |n,e» cuu.ld be ubtained as

.i'r‘L &> = Expl-5 |0 ] Z( ) o Edfnﬂzj [_—m{fn}] 1-m>
Exp[Lmb(m+ ]]

here Lﬂ[:xj are Laguerre polynomials defined as

(2.5)
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- k
() i Cnteed) (-0
i) = 2 lkiwsd) Aol (2.6)

Also , the uncertainty in the state Im,e> is
I {27
N &-P: (’ﬂ—’r %J-J/kl_d, )
Which means that the minimum uncerteinty (¢-¢, AW 2)is not necessary
for the classical motion of a wave packet. This fact has been also
hoted by Ohnuki and Kamefuchi.' '’

Alsoln,«ysatisfy the criterion in equ. (l.4) since
247 i
. 2 z .
mw(&.*x):%;&x.&# = (4 ) Aw . (2.8)

The expectation value of energy is a sum of a purely classical

Eerm and a quantum term:

- 4 o VA w !
C%Jn{![tfmﬁ L)y = Eg +(n /2) (2.9)
where Em:('wuzAz/z)is the classical energy for oscillation
8mplitude A,

fue

Further the |m,«>have all the characteristic properties of the

joherent states as described in Sec 1.2. For example the identity

perator could be resolved as

Jé‘i M, o> oL :'ﬂ _ (2.10)
1ilE

Also, |Inyo4> provide a diagonal representation for general
perators as in equ. (1.34).

We give a brief review of the literature coneerning the
faces were |m,«> could be spotted.

The states i""f"L}a{> could be obtained when one considers the

amiltonian (8)

ol
4 'X.l b /6{,{:—) (2.11)
ol
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where »6{5} is an external force. If the driving term is taken to be
linear in(L and (1 then one obtains |l
Considering Lm0l 2 s 2
2(m-") (M-

2 L ]
.|*(M1%;e{>|:fi” %ET]IDH [L“ (1) (2.12)

It has been shown by liound.n{g}that equ. (2.12) is related

to the S-matrix element Smn by

2
2.13)
| < |y B{}"l == 18"”’"'-""'-1 ; e
S8 gives the amplitude for excitation from the initial
Bscilator state |m) to the final Im> .

Also, F.nllenhorstlm}has proved equ.(2.12) gives the matrix

Element for a transition from the state Im) to the state |m)under

the influence of a gravitational wave.

Eque (2412) is known as Schwinger's furmula“l}
and is also given by Fe:fnman.uzj There are other places where
* formula occurs (Refrs. 13-16).

In fact equ. (2.2) is explicitly given by Ring and Schuak.{l?}

2s2 Relationship between g.c.s and c.s

. We are interested in obtaining IM,el> from |eb). Let

M, &> = AC&,&T%)]&) (2.14)

— A, fl ) D) o> (2.15)

A(OE -:1,11_) is the operator to be determined.

m,e>= DEYHIN> (2.16)

. )"0 (2.17)
D) J—ﬁ‘f_




(2.18)

N
= {CETT )
m,e> = J

state | ol yis very clear as the Ylth state of

fot> . (2.19)

The meaning of the
ke oscillator whose ground state is |4> ,» a coherent state, not | o>
85 in the case of the usual oscillator.

In other words, the O eCe8
e the excited States of the displaced oscillator. The above

esult is clearly depicted in the following diagram
DO
> E

1o

(@)
A oo

W

N
|70l & ) [y

10 ¢ ground state of the harmonic oscillator

> # ground state of the displaced harmonic oscillator

i€ dbove way of obtaining g.c.s using equ. (2.19) not only

tiblishes the relationship between g.c.s and c.s; it also gives

as
Therefore the g.c.s I, >is related to the c.s let> just/the
iiber state Im> is related to the vacuum state lo> .

 Alsp, the g.c.s ['W,0¢> is a 'generalised coherent state' in
‘g_‘g_qnse of PEIE].E:!TDV{EJ for whom the reference state could be
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fl arbitrary vector in the Fock space.

With the use of equ.(l.41), equ.(2.19) could be given a

[fferential operator representation as

= % YT R
'_;—'x:&':}:J% Z [1} (—«: ) [ﬁ = %] | ok > (2.20)
L o

The coherent states of the displaced oscillator could be
efined as

Bty = Exp[ﬁaﬂﬂ.ti}~ gla- “‘ﬂ |ot (2.21)

= Excpi( Bot- ok ) DLB) 1

?..
i LA,
= Eap(Bu-pd) €% F DEAIMS

_iplr L8 e
B ) ‘ExJp[\%d F’G‘J o Z-J“‘ 0

(=)
x IM> 0 (2,93

(02 g0k

1 could also be written as

Iﬁ’“» = Exp(li‘;{— F’Jf} DR DEI6) -

Therefore [Rist> is just another element in the set of

(2.24)

lerent states, which forms an linvariant subset of the Hilbert g pace .
B equ.(2.21) could also be written as

. - 4"
B> = PRy FEERS
| -

(2.25)
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From equs. (2.24) and (2.25), we note an interesting fact

that any arbitrary coherent State coulad be expanded in the basis

0f Q.C.5.

These states [m,ol>are used to get the 'generalized squeezed

l‘-_ﬁ'e_:e_nt states' of the radiation field (See Chapter 5),

The states [Myd > have interesting (also important)

On-classical attributes like antibunching and sub-poissonian

& & & & & & & &

2)0 M.M. Nieto and L.M. Simmons, Jr., Phys. Rev. Letter 41, 207 (1978);

#hys. Rev. D20, 1321 (1879); ibid 20, 1342 (1979); M.M. Nieto,
ibid 22, 391 (1980); v.p. Gutschick and M.M. Nieto, ibid 22,
1403 (1980); M.M. Nieto, L
ibid 23, 927 (1sgo).
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«Me Simmons, Jr., and V.P. Gutschick,
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K Easwaran; Nuovo cimento B17, 332 (1973).

M. Boiteux and A. Levelut, J. Phys. A6, 589 (1973).

i}-:“:@eneralized Coherent States' mean different States to

ﬁiﬁf&r&nt people s
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1980) pp.337.
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C.M. Caves, K.S5. Thorne, R.W.P. Drever, V.U. Sanaberg and
M. Zimmerman, Rev. Mod. Phys. 52, 341 (1940).

17) P. Ring and P. Schuck, The Nuclear Many Body Problem

Springer Verlag, New York 1980). The states M,s> are

used in the 'generator coordinate ne thod' in nuclear physics.
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ANGULAR SURENTUL JOBESRANT STATES

There have been many dttempts o define coliercit States for

B Lie groups other than the Helgenuerd-iey L groul, the
Ercaldzations involving che eriveria (8) and (C) in Seu. 1.1
e (L)
sarut and Jdirardelio

fave eXtznuew the iusa leniterion B

- . L2S e e
Efe non=compact SU(4, 1)« Sharme et al have cerfined the

Cent states of tne varda-duse oseillators as che 2lyenstates

the annihilation ouerator.

We have already swcen that the oscillator coherent states can
fined as the dispulaced grouna state legue(L.15) ). nadcliffe{"}
ralized this concept to the rotation wroup SU(2) (known as

. . . . (5) : (4)
IeIent spin states or atoie cohurent states ) anu Perelenov
Nded the idea for an arpitrary Lie Yroup.

1 Hadcliife States

The angular momentwn alyebra is

l—_:]_z Ok | = 2T e feplc=te S

T = o i;,.:J—?. (Fe2)
' 2 ladder ouerators anu ”J;_j:[’gfum Jz are cue generatbrs of

Bengular ponentun aloeora,

e e

h. Venikata Sdtyanarayana, Preprint, The insgitute Of
Mathematicai Scicpnces 1G=a

ge s Venrata Satvanarayvana, J. Pavs. 1945 dH3s6 (Tn  Press);
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Radcliffe made a formal analogy between the operators of the

Heisenberg algebra anc the generators of SU(2) as

o) ~ 14:47
(3.3)
] i

define the angular momentum States as

ey = DL M) \”};a;};>n VEC"”‘JPXWJ (3.4)

| D+ = Excp(wT— (£ 3+) (3.5)
' /
L $) 24\ g,
() V= EL m-wﬁ fp E

----

24 ,
v e Z(z} w4y (3.7)
\H> i Cﬂ-'*"tl“'“ll)? P=0 i

normalisation factor has been chosen so that

B 24 !
Gl = W)Z : i( @m)

The states [}A} are the eigenstates of the operator

DE9T; ZD(H) = TRl (3.8)

with the eigenvalue g, .

The characteristic properties of the coherent states (Sec.l.2)

-E:IEE‘# possessed by the Radcliffe states.
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They are non-orthogonal since 2:}
1+ X B Zh
[ @) I |

fe completeness relation is

(3.9)

(NP

J&H)'([‘*\JMUHZ) oﬁ-.z[* -4 (3.10)

(244D <L
MO)= == e =i

The states |M> are also the minimum uncertainty states in

ense they minimise the uncertainty product
foa P 4 -;]i 2 (2.12)
(A%) (ATy) » 3%
V !
3, Ty amd Tz are operators rotatec by D(W.
states HJ"> are also kpown as Bloch states since the wave

nctions corresponding to the states ||L)» are defined over the

sphere S 2

There have been many similar attempts to define the coherent

Of the rotation group and these are described by Gulshan.im}o

’Fﬁ_:l_.gen States of Fhase

The problem of defining a self-adjoint operator for phase in
antum mechanics has attracted a lot of at.tantinn.{”

‘The problem is to find a self-adjoint ¢ canonicelly conjugate

[43,:-335—_' =4, (3.13)
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As pointed out by Carruthers and Nietﬂ.{?}

equ. (3.13) is
Strictly not correct, since taking the matrix elements with states

i —nt
$ty (the eigenstates of Jz and J ) leads to a contradiction

e = Exp(Fpm

B 16s. ') In fact ¢ and J; satisfy the guantum mechanics in
inite Discrete Space L 4
R |
bl e e
(an '~ ™)
2T em =7}

[6,3)

3 I B
A for m #FM

0 Jorire. =8

(o) L4 | plEM> = L by . (3.14)
ils is becsuse of the domain of the operator Jz consists of
inctions periodic in ¢ {:3}
On the other hand Weyl's commutation relation
UV =€eVu (3.15)
(o 4 ©
O 4
. Ex,Paﬁ.cq: A s (3.16)
N .’i'.aHi S R -
S BRGNS i ]
Nfi= ETC-AP-L‘:(TE -1-;1_,11_):] (3.17)

(2.8)
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4—> o0 ;
' - S (m—-wm
] ¢

can be reexpressed as
2mid 2T

=

;.':'13’% A el?r'"” = Jz+1 -~ P (3.19)

1 i = (zjﬁi)?} (3.20)
4 Sstands for the projection operator on the highest weight
&[ﬁﬂj)-- The presence of | takes care of the finite
'L of the space.

' The angular momentum operators ean be polar decomposed as
T
J+ ::j%-e = e

e = E’-LL&J‘T = U E—Lei;
L

-ﬂqiara sl ngular hermitian operators, € is unitary. In

(3.21)

£
& standard basis, € ¢.is the same as the unitary operator |J of
wdL . £
»16) and this satisfy equ.(3.19). Since @4:. is a cyclic
ermutation matrix (a circulant), it is diagonalized by the

ter matrix (finite Fourier transform)

[ o s3]
i et e
el 16164- o S (3.22)
2441
Vsl M2
‘iE E & _
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- : 4
SS-ri STSZ 1 amd S =1 (393

ol

Ie the eigenstates |¢) 0f the hernitian ohase sperutor

! L) RS
s = _i_ € lpimD (3.24)
2}+j_ 4
M=l

HLEEIﬁ)S> are sigenstates or cp ana callea by Santhanam
feneralised coherent states' since they have a sharply defined
Bt
i) , ..
B These form a complete set.

. these states the uncertainty product is

2 W )
(ATx) [&43) >0 (3.25)
mum on the left hand side is reached for

¢ o wod (24+D
“_‘!.

. = /]RLZS‘JI':L} J'&:G,i_,z)"'
4
fhese coherent states have also been optained indepenaently

(129

ihirsen anu employso in the study of precession of spln

{:‘i:{h}

f» We could see that the coherent states as derined by
9l are assoclated with the Pripneigle of bMax il Entrowy, by
0y the provabilibty tor a4 system ueseribed by a coherent

[ 4 §:>ﬂtﬂ pe in a projected state [éim>given By
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e — 4 e = (2 e A (3.27)
E@mlﬁﬁ _‘3_&41 St 5 3) B

‘For the Racliffe states HA> this probability is

24) (1)

(1+ 1)

3 (3.28)

Tﬁﬂqukx>::

is a binomial probability.

‘According to information theory the distribution defined by
4.(3.27) (i.e., equal probability for all states) corresponds
timum entropy and any other distribution like equ.(3.28)

nes a more organised state and carries more information.

The situation is worth comparing with radiation field.

;24} possesses a distribution similar to the black body
stribution, (Principle of Maximum Entropy gives the Bose-Einstein

:htinnilz}).

Distributions similar to equ.{3.28) like the
iﬁf:;disﬁributinn (equ.(1.62)) are employed to study more

sed f£ields.

‘e give below in the Table ,the characterisation of the

nt states of the radiation field and the angular momentum

he information theoretic approach.

— s S S e e s s e e

\ V
R T -E _____________ II ___________ -
nciple of 1 ! Thermal states A
i V45> —— (uniform | — = (geometric !
oy t probability) ! distribution) !
U v e R s o e i gl e e e =
'|> ——— 5 (binomial 'ty ——(Poisson v
i probability) ! distribution):
: Equ.{'j.?} : Equ.{lnlD] :

'
i
i
I
|
]
I
|
i
I
I
i
I
H
!
I
4

L

_— o e E o s B e e
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3 Contraction of Coherent States

The apparent similarities in the treatment of coherent states

he harmonic oscillator and the angular momentum led Arecchi et al{E}

0w that the angular momantum coherent states yo over to the
monic oscillator coherent states. They made use of an algebraic

4$Tique called the 'group contraction procedure' originally
(13)

b

itroduced by Inonu and Wigner. The concept is that of
ining one Lie algebra from another Lie algebra (usually

-Isomorphic) by means of a limiting procedure. It is a

ds to infinity. The contraction of Lie algebras has been

eveloped by saletan'1?) ang discussed by many authors. ‘1>’

In the present discussion the contraction of angular momentum

T
oh
18

rent states to the harmonic oscillator coherent states

e

volves the contraction of SU(2) group to the Heisenberg-weyl

(17)

ne‘lﬁ} and Cnofri made certain studies concerning the

Hi

herent state representation of Lie groups.
Not much has been known about the meaning of this procedure.
this section we illustrate that this limiting procedure could
® understood in the language of probability theory.
From equ.(1.10) and equ.(1.62) the Poisson distribution
i ()"
e —

Fe9= i, (3.29)
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gould be associated with the Heisenberg-iweyl algebra.

Also, from equ.{3.28) the binomial distribution

N
HJPH*)’IE (%) CIRF) (3.30)
= = 3.30
fida (4+1p2)F
3 ) 2 \dlz
uld be associated with the 3U(2) algebra. Taking |p| = -EEF)
«(3.30) could be rewritten as
L @DCED e Cppe) (2
JLMWZ 2 - (3.31)
P (‘l 1915 i'?' 3’ in (2})13
N equ.(3.31) we keep « fixed and let-a: tend to infinity then
5 (3.32)
+
-l={| Got1?)
Fpdz e e (3.33)

0rresponding to the coherent state |ol> of the Helisenberg-leyl

(%)
de This limit is also known asthe Holstein-Primakoff limit.

he contraction of Lie algebras used by Arecchi et al{E}

ntails a contraction of probability distribution. Here the

PAtraction of probabilities' is meant in the sense of one
bability distribution going over to another probability distribution,

ept that is well kncwn{lgj in probability theory. In the

Ease of SU(1l,1) the Comiwutation relations are

[T_zﬂ"i] = RE e e

2 (3.34)
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r14fﬂlﬁare the ladder operators. The coherent states of
Su Ilj are defipad 35{1‘4;’

4/2,

Iz, = 2 (fmﬂk ) Z }*k k>, (3.35)

N 2 2
;~hfj2'ard.}kare complex and related by |Z| +|pl =4 .
Ihe associated probability distribution is

r
ﬁ[l@ = (“'H]‘Q-i) (11\2’)“( IR (3.36)

R-4
1 is negative bincmial.

IE in equ.(3.36) we letipi tend to zero,7| tend to infinity
nd M'ﬂ tend to A then

e > T | (3.37)

2
AT L EE)

:Jch(}‘)_ ki (3.38)

g Foisson probability distribution associated with the coherent
i%bfnfrthﬂ harmonic oscillator algebra. This is the same

ng procedure employed by Barut and Girardelln.[l} So the
action of SU(1,1) to Heisenberg-Weyl algebra i%%ame as
raction of the negative binomial distribution associated with
aﬁaﬁli'tn the Poisson distribution associated with the
enberg-heyl algebra.

:Sh;we have explicitly shown that using two examples that

flie procedure involved in the contraction of Lie algebras is closely
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related to the methoa of obtaining one probability distribution
from another involving a limiting procedure.

This relationship between Lie-algebraic contraction and

Contraction of probabilities' could be extended to the general

Iy of contraction of Lie algebras. Probability aistributions
aaniﬁﬂbe assoclated with arbitrary Lie algebras via defining

Lent states.(For this purpose Perelemov's methndla} could be

Such an association mekes the study of Lie algebras

resting in the same way as special functions

dare associated
(20)
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PART II
SQUEEZED COHERENT STATES
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CHAPTER 4

AINTROLUCT ION

In the first two chapters the coherent states of the

tion fiela have peen discussed. #&s already said in Sec 1.3

i€ coherent states are useful for the 'classical description'

Of the optical fields. An ideal coherent state corresponds to

tate of a one-photon laser operating well above the threshold.
could be inferred from the fact that the photon counting

ghibs 0f an ideal coherent state i.e., Poisson distribution
(1.62)) agrees very well with the counting distribution from
ser operating well above the threshold. This is due to the

'ihat a laser signal is very close to an amplitude-stable
(1) :

odd. Thus the coherent state description of the radiation
I is justified.

‘Recently a more general class of coherent states koown as
'lgueezed coherent states' have been introaucea ana they are
appropriate to describe the so called 'squeezed light'EZ}
‘Sgueezing' and 'antibunching' are two effects which reveal
antum properties of the radiation field and cannot be

:Eﬂ by treating the radiation field classically.

Photon & tibunching is characterised by a gquantwn state of
leld in which tne variance of the number of photons is less

he mean number of photons. (See Chapter 7). Squeezing is

terised by a field state in which the variance of one of

& 0f thelr commutator.
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In this chapter the sgueezed states are introduced and the

fhon-classical' aspects of squeezing are also discussed.

§.1 Definition
Let us consider two dimensionless operators A ana B satisfying
commutation relation

[A,B =% (4.1)

‘According to Heisenbery's uncertainty relation

> |lzest - (4.2)
(AA)(AB) 2 2| <>
A state is called 'squeezed' when uncertainty in one
'F'D'l"
vable (say A) is less than that/minimum uncertainty state, i.e.,
2
(AA) 4_% |2es| . (4.3)

0L and (LU the annihilation and creation operators of a

ingle-mode electromaynetic fisld

[OEJOLT]Ii (4.4)
he hermitian amplitude oper ators (y and (X, defined as
Q= +L, Cf:-{li-iﬁ;_ (4.5)

ifY the commutation relation

A (4.6)
[ai :&2] = 2
ne corresponding uncertainty relation is
(ﬂ&ij(&al > 1/4_ . (4.7)

s A gtate of the radiation fiela is sgueczed if one of the
amplitudes (F,4=1 2 satiszies
2
Q) ea/s . (4.3)
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A squeezed state is known as an 'ideal sgueezed state' or

Ysqueezed coherent state' (s.c.s) if in addition to (4.8)

(&ﬁi)(&ﬁg> =d/A (4.9)

f the usual coherent states (equ.(l.ld))

2
(QCEJ = &ti(ay - aﬂj_))l'.ﬂ'i}
2
= ¢ot| A oy — (4l [o0)

Ls{n (a0 ) oty = («i=<lta+f1)‘°“‘ﬂ

=
= (4.10)
— %
e (4-11)
. (Mz) =
(Aay). (‘f" al) =1/4 . @. 12)
oherent state is not a sgueezed state.
For the 'two-photon coherent states' 3 defined as
L 2> = DR)SM) 10 S
E?ﬁ)is the usual displacement operator and
o w2
S(%}: EIJP[%CE.&-—Eatﬂ (4.14)

LB
as the 'squeezing operator' ana Zz=Nte is a complex

2 -2
(Aoy) =2e )

5 + s (J&Uﬁ’ G_D) (4.15)
(aay) :% e

Aay . A, =1/g . (4.16)
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sar that for i+ 0 , the two-photon state is an ideal
tate.,

‘e we proceed to sections 4,3 and 4.4 for more detalls

g two-photon states and squeezing, in section 4.2 we

e new squeezed states known as the logarithmic states.

*
logarithmic States

Soarithmic stat&stqrsjﬂf the radiation field are defined as

1
9> =cloy +}%Z( )/Z'm (4417)

e
_ed-tel®)
= dog (1-9)

icl‘z,{;ﬂ, =0

0’) = (4.18)
= 2 M =
B g St

s |9 could be viewed as a certain limiting case of the

o4 Bose-Einstein distribution ‘4

» For 2.=0, @ﬂ
t the logarithmic distribution and that is the reason the

%ﬁ are named as the logarithmic states.

and {i?:;jif%?ji—- and for ( (real),

n and M. Venkata Satyanarayana, Preprint, The Institute of

natical Sciences, 19B6.
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e % 29 zay (4.19)
(A) :[?-l—{flm})%—éil) 4.19

2
oy =(L +uo') = 40272 (4.20)

| .,__'(cf&} = ﬁz (Tﬂ/_) (4.21)

=gl oS 90 2]
= LA :J—Cf; pC ]32[ jzzi ﬂ/ﬂ/ﬁ*J (4.23)

fsgueczed. Sgueesing is exhibited by the logarithmic states
2
in and“]:) for certain ranyes of the parameter 9, (Ax)

2
are plotted in Fig.l for various values of € .« For

even for low values of Ct, and ’P is sgueezeu at a higher
than where X, is sqgueezed.

. 2 2
Fig.2 gives a plot of (ﬁff.} Vs (ﬂ“F} « The points in

the two rectangles correspond to the sgueezed states.
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It is of interest to remark that the logarithmic states are

not minimum uncertainty states (in the sense of equ.(4.9)).
:{ly for the high values of ¢ (greater than ©.9) the product
o 2
(Ax) (AP) is very close to 0.25.

(7) :
Stoler et &l recently introduced binomial states which
are sgueezed and alse antibunched. But these states are also not
minimum uncertainty states,
The logarithmicstates and the binomial states are good
exanples for the states which are both squeeZed and antibunched.

(See Chapter 7).

8.3 Quantum Mechanical Aspects

Egquations (4.8) and (4.9) give the exact definitions of the
‘squeezed states' and the 'squeezed coherent states' respectively .
The 'two-photon coherent states' (TC3) defined by equ.(4,13) are
he sgueezed coherent stoates of the harmonic ::~.-e.t:i]..fi.autla:-.r..{'E"‘rl

The philoscphy of 'squeezing' is contained in the following

Scale transformation on position and momentuwn Gperators:

1
X A amd p— T-F ; (4.24)

} could be complex. It is clear that the above scale transformation
is canonical. It will be shown in this section that such a scale
‘transformation effects in reducing the uncertainty in one of the
guadroture variables as in equ.(4.15). The above scale transformation
4s in fact the well known Bogoliubov transformation employed in

Euperfluidity and Supercnnductivity.{lz}
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A) Bogoliubov Transformation

+ :
The squeezing operator 5(Z) transforms (@, )a set of bosonic

T.
operators intof/{n-,ffr Jannthf:r equivalent set of bosonic operators:

Le T
S&SJr — o CRRT +e 0 Swmhh = A

~L T T (4.25)
S(I.TST :ELaSGuijbﬁ*C[ Codh o _fFJ‘
EZS_ince it =
[e,a]=1, [k b]=1.
The operator S(Z)is unitary.
(4.26)

5efoglic oy +
(L and (L 1like a

dee, S(E) is the operator which transforms

Bogoliubov transformation.
A more general canonical transformation could be written as

..t.
& (4.27)

o« "
j}:rlolﬂ-y&jr s Az va

for a pair of ¢ numbers M.V satisfying

Z 2
M=l =1

ihe structure and physical realisation of

have been discussed by Yuen.{a)

if f@t,{i{‘j is any power-ceries function of (X and (1 then

S+ fa,ah § = §(b L) .

If N:Ct—l_& is the number operator in the (d._,cf) system then

.-1-
N;:,{}t& - SNS. (4430)

(4.28)

that leads to equ.(4.27)

(4.29)

/
!
N has discrete positive edgen values y with ground state|0q), (332



NHW‘Lﬁ) = Wa (e 3 N,lc’}) =0 (4.31)

J'mg) =5 > | (4.32)
where
Cl—tahim> — ™y .

Similar to |mi> , the states Vth) can be expressed as

LM
\-'m?> = J:f:) |D-}> (4.33)

+

The stateal?ﬂ§>are complete and urthurnnrmal.jrand I
as lowering and raising operators for ITH}).

The squeezed coherent states are defined to be the eigenstates

Df/E)' :
k1P = 1P

(4434)

From equ.(4,25)

!,6>3, S|p2 | (4.35)

where {]_“3) {31“5> . (4.36)

From equ.(4,35) it is clear that from an drbitrary coherent state

Jﬁ) ; @ SeC.5 can be created by using the unitary transformation
S(2).
Therefore the usual technology of the coherent states could

be applied for the states IR

?‘ i.e.,



| AN
|F5>} = D) 199> 5 Da(p) =€ : (4.37)

EE?L = : . 4.38)
J;rs%m - -1 :

% 1 A )
LB 1€ = Exch(fFp - 21f LIFT) . s

The Bogoliubov transformation achieves something more interesting
and useful apart from the equivalence of two bosonic systems. It
trapsforms any quadratic hamiltonian into a harmonic oscillator
hamiltﬂnian.{l4}

The general guadratic hamiltonian involving two-pghoton process
is of the form

2z
% 2 T 1
ﬂ{ :/ﬁ(fi(f& +3C1a StE ﬂ._(l g :'LSCE = :F.%EE'J (4.40)

where the ¢-numbers jk may be time dependent and Jﬁ_shnuld be real.

Under the econdition

£; > 25|,
using Bogoliubov transformation, the hamiltonian in equ.(4.40) could

be changed to the followiny form

U_C" Sl ,f;—t(r (4.41)

wWhere
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/{3‘ '_y 5) (4.42)
= |2/5,6- ﬁ)} et
Vo= I:(:Fr 5)[24, ]ik EL% (- 43)

2 AL
:(51"4‘j51|) :

where &y, and ¢,, are arbitrary phases. Unlike equ.(4.40) the

hamiltanian {4-411 does not contain the nonlinear terms such as

and (4{" )

B) Fock Space Representation

The Fock space representation of Iﬁ> in (ELJCE.‘I-) Sys tem

¢

is given by

2 = (4ed4)
>, ;mr@} B
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To determine MW | f':‘)}a,

Since ’b_:}*g‘ —E"ZJCRTJ
and
el Flaf,o) [y = F (L, 5
2, (18 = (f_ SO RIOA il
the solution of (4.46) is
2
Py = () E::qo[-i.mr - Lypro(2) o
o L i_ Fud +4L90:[ (4'4?)
) Pt

br M=1 ang p-g ¢ ©qu.{4.45) reduces to the usual forw of Lot| 3>
Q.T-' a.;.':.D ~ {SE!E Equ-[lnzfljj

Using the generating function of the Hermite oolynomials

2
E’,thi: ._,Z H“& iglgee (4.48)
B = > <> Lnipg (4i)

H=E



R I

where
114
_Jn-ilz/g af [
. — 4.50
et I"?L> = m J )
0 |pPq is obtained as
[5 3 1 9. "P‘sz {5

«iey = (3x)

2 * 2
XExjo[u%lﬁ'f +(%) f@J . (4.51)

Substituting equ.(4.51) in equ.{4.44) the Fock space
representation of H?'}g, is obtained.

For [ =55 s B and the asymptotic forms of H,ﬁ)

Bgll.({4.51) reduces to >

—|Bl /2 Igﬂ
<%l[g> = ﬁ (4.52)

a5 expecteds

Completeness

From the completeness relation of the states ]'o{)' (equ.(1.29)),

LJJ;;: |20 <zl =1 .
=

(4.53)

So the states IEJQ.{> could be used as basis states.




C) Minimum Uncertainty States
The conditions under which the states |z ,o) (or

equivalently [f?ﬁ}?:! remain as minimum uncertainty states will be
analysed in this subsection. The presentation «lsu gives another
interesting approach for viewing the squeezed states.

If | is the state of = system then S(h) |W>( 7L real)
LEbresents the same systeu compressed in position Space by the
factor A= E,_h‘. This is the reason for §(z) to be called as

'‘squeezing operator'. This could be seen from the effect of S(n)

on the position and momentum opsrators. From equ.(4.25)

Sov % S0 = (A V244 4)

1/
— Uiy &') (&%h.{._f-;mjxh) Ca-""i‘a-r,) (4.54)

So S*@,) 9. SE) = e = X/h

+ o (4.55)
omd  SToy b S z=ep = pi
fso, R
- S e (%/2) |
«56
W (4

&
ST 4 sev = )

From the discussion above it is clear that the width in position

Space of the state

Inoo> = SOw |0) (4.57)
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is € multiplied by the position spread of the state |o)> . Since

the ground state |0) is Gaussian, its position spread is

AN = ( j_"—-juz

2 MW (4.58)
and the position spread of [#,0) is given by
i/g_
A"JLI = [ E (4.59)
= (o) |

Therefore, for very large negative values of FL » the state |h,0)
15 highly localized in position space and for very large positive
values of h ¢« the state Ih..',_g} is highly localized in momentum space.
The states [h,0) could be generalized to get the 'squeezed

coherent states' by de fining

12,&> = D) S(2) 10y (4.60)

where o and ? are complex. The state | 2,0l is a Gaussian
packet with the same shape as|h, 0> but displaced from the origin

in position and momentum space.

The wave packet of a squeezed state could be directly written
from equ.(1.9)

2
2 : (4.61)
als = . Jx-¢07 A ey
Squeezed ~ L e Erp?- [ nl(ﬂ'x;):’ T }
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The time development of the states |#,4» (under the harmonic

oscillator hamiltonian) could be obtained from the

temporal
evolution of S(%) given by
.E-
_cwkaa ! cwkaa
£ S(Z) e
cook Jrz_ v o2 iwl@a
=5 Zol-20o ) €
— e ExJF[Ia 2

26wt
- s(ze ) . (4.62)
Therefore ! o iwt
Q-LMtil'uiiﬂ>: D@{g"m{:)-S[Ea ) |od>
= et éém}tizedlém’t> (4463)

The time development of the uncertalnty product is obtained

— 7L <
from the following expectation values (for f— & and X =oly Loty )

Y2
A ; :
Cal>Y, —(m) (oly Coswh + 4y Sim o k) (4.64)

i/
(pB>S = mhw) 4gSnwlt+o coswh) (4.65)
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_ 4 2
(51) (l:iw) [ﬁ‘?}%mfwf + -/-E? Cot m"i (4.66)
(ﬁrp)z = (m A w)[ RoZwk + £ cot mﬂ (4.67)

‘The uncertainty product is

2
i z_i_. (PN ?_u_},&
(ﬁ%) (ﬁ"p) - j_+ E._ £ p2 /?) ’ (4.68)

Now for h=p ({=1)the states |0,«> are just the coherent
States and the uncertainty product is constant in time. Also the
states |12, ) do not remain as a minimum-uncertainty state as

time progresses. Every time w4 - /2 the states I2,6t> will be

minimum uncertainty states.

S0 the state I 2,6t> will be a minimum uncertainty packet only
if 2 is real (#2;,6=0) . Even these states IR ,o0» do not
remain as minimum uncertainty states as time progresses; the
finimum uncertainty is attained at times w Ak = Trf.?_ J

From equs.(4.66) and (4.67) ang L= [_'f b

2

[axct)] g [&“P(E}]z
L&) (L mAw]

(4.09)
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S0 the uncertainties in % and *P lie on an ellipse rather
than a circle as in the case oz coherent states.(see equ.(1.12)).
These ideas have been plctorially depicted by Halls“ﬁ} in

his review.

D) Nonclassical Nature

It has been indicated earlier that squeeziny is a
nenclassical effect and the ‘manifestation of the Squeezed states
Of the radiation field is a purely guantun mechanical effect.‘EgJ
Il fact this is the reason for the recent interest in the sgueezed
'States. The nonclassical nature Coles from the condition
[:ﬂa.,;)l{_i_. s der Lo Ao . As seen in Sec.l.2.,
the coherest state description of a radiation field is defined by

the diagonal representation

f - J'PCO{) lod> <{,<r| d,lv:::i (4.70)

Also, dccording to equ.(41.37) the normal eruered correlation
functions of (L and ClJr can be obtained from the coherent State
tepresentation using the methods of classical statistical mechanics.

For Q4 &, described by equs.(4.5) and (4.6) 3

7
(Bas) = LT3+ [Peofeeed) = (> +44) Ao} g
4

Since the quantity inside the parenthesis is real and its

.. X g 2
Square is positive, the squeezing condition (&.u,hj {‘-1,;4_
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implies that T%&) is not non-negative. Such a field does
(1e)

not have a classical analog as & coherent field. Walls defines
the squeezed states as those which 'do not have positive nonsingular

representation in terms of the Glauber - Sudarshan Pqiistributimn'fl?}

Summary of this sgctions

In (A) equivalence of [@JCET:} system ana [,6-_, jri-,] system is
established. Squeezing in(ajafjsystem is eqguivalent to coherence
45 Gb, b systen and wice versa.

In (C) it has been shown that the Heisenberg uncertainty
product takes the minimun value (Jﬁlf4j only at certain instances
of time and this is periodic. Alao the wave packets have classical
motion satisfying Schrodinger's criterion. Thus the coherent
States could be put at par with the squeezed coherent sStates as far
85 the classical motion of the wave packets are concerned.

The real distinction between the c.s and the s.c.s is brought
out in (D) that a s.c.s does not have T{ﬁ}as positive cefinite

and hence a s.c.s is nenclassiczl.

4,4 Quantum Optical Aspects

It has been discussed in the earlier section cthat the squeezed
light is characterised Dy the nonexistence of P~representation as
4 non-singular positive function. So the real quantum behaviour
Of the optical fields occurs in a regime in which no non=singular

Pﬁi} exists.{lg}

Our present knowledge of the squeezed states 1s mcstly due

(3) (16)

. 1
to the work of Stﬂler,l o) LUEED} Tuen and Walls.
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States |eyZ) were first defined (as in equ.(4.13)) by stoler.'10)

He characterises the c.s. among all other minimal uncertainty

States uniguely, from identifying coherence with minimality of the

uncertainty product, This is clear from Sec.4.3 C,

1, (20)

independently obtained the S+C.5 and employed them to

study two-photon amplification. He also showed that the fluctuation

mroperties of these states are quite different from Chaotic as

well as coherent fields.

First comprehensive Study of the s.c.s in the context of

quantum optics is due to Euen.‘aj

RDWE[ZlJ Showed that the s.c.s could be emitted by a two-photon

laser, which was also noted by Yueniaj

The review of walls“EJ

contains wvarious schemes for the

Jeneration and detection of the sgueezed states andg their applications.

Walls also pointed out that the squeezing is to be Considered as a

]
'macroscopic quantum effect.
This section discusses Certain statistical properties of the

S.c.5 and also various schemes to generate the 5+4C.S0

The probability for M, photons to be found in a s.c.s le,n)

could be calculs ted from equ.(4.51) (for MyV  and ﬁ) real)

— =

f-"@
= ﬁi'l_ . :}_‘U_ H (Ji‘p.'f?) (4.72)

where U = sin hr; M = cos hr and ﬁ(;“l‘v):"x
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It is to be remariked that the counting statistics of the s.c.s

‘is far from the Poissmn.‘u}

1'.*51113(16:'1‘1&3 plotted M- 'P-ﬂ for ot=7 ‘and 1 =t¢.5and compared

the distribution with a coherent state (1 =g). The photon

statistics is super-poissonian for 14 ¢ and sub-poissonian for A70.

The exXpression Ior Pﬂ in ecu«(4.72) has peen usea in the study

0of the interaction of a two-level atom with a squeezea light by

Milburn { 22)

(P-";.q_ for the pure sgueezed state

=
S(2) 10> = (Ctosh |zl 2
i e bl jlf‘lm*]%
£ kanhlZh) Y lan> (4,73)
2.

2 Z !

is obtained from equ.(4.72) by choosing L= as

4 ,[:a,.\,ﬁfIZi“(g_n)

rP?-“ T Ganliz & %
(4.74)
?z_mj_ == 0
2 :
Since nwH— Sva s 12l for @ pure sgueezZed state, equ.l(d.74)

could be written in the following fn::rl:nt{}lz":II



T} _ (zn-DU N y
N =) —
Sk 14+ L0y (1+) 2

(4.75)

Btz ©

An interesting aspect of the s.c.s is the fact that the mean

numoer of photons in a s.c.s varies depending on the sqgueezing

parameter |Z| .

2
>z LA = [l P Aoads 2] (4.76)

whereas the mean photon number in a c.s. is just Ia-li:L « SO0
‘Squeezing increases the population level in a cavity. In féct one
‘can view the action of operators S(2) and D) on the vacuun 1o
@5 various methods of f£illing an optical cavity.

It is to be noted that the counting statistics of a chaotic
light and a purely squeezed light are akin to each other in view
Of the expressions for the second order correlation function for
(24)

both these radiation fields. They are given below:

For a chaoctic light

(2) (4.77a)
j»[co =7
For a pure sgueezed light

(2) 2 4770
3(03 =2 +Gthn : :

Eoua.(4.76) implics that sgueezing could be considered as a

tuning mechanism for the purpose of amplifying the mean number of
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photons in a cavity or in an optical process. This aspect of
sgueezing gives ' a remarkable result'{zl}fnr the intensity of a
two-photon laser. Since | , the energy intensicy of radiation is
proportional to the expectation value Df(i%}., for the single

photon laser

(1%, = wiaadaiay = T(1)

ana for the two-photon laser

2 2
T 2::5: 2T +21 . (4.78b)

So {LIE> for a two-photon laser is enhanced by three times that
of a single=-photon laser. This is the reason for the belief that
the sgueezed states may be emicted by high intensity f:i.eln::‘ls.'I']"E’:II

Recently there has been a lot of interest in looking for the

squeezZed states (both theoretically and experimentally) in various

optical processes like resonance fluurescence,izb} paramstric
amplificatiunEEE)EEL (Free Electron Lasers)fz?} higher order

nonlinear optical pIBCEEEES,{Zb} Jaynes=Cuwnnings mmdeltzglﬂﬁtl

four-wave mixing.{agl

Most of the interactions which generate the
squeezed states are or the guadractic form given in egue(4.40).
We will give a brief survey of a typical squeezing hamiltonian

belows

28909
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Degenerate Parametric Amplitfier

In a degenerate parametric amplifier, a pumping field of
frequency 2 interacts with a nonlinear medium ancg gives rise to
a field of fregquency w) . This process is described at exact

resonance by the hamiltonian

T e 2,7 +
3—[:1&}/&+ff}+wm”*+’£§—(ﬂ‘f’"ﬂa‘) (4.79)

Ei%igft pump nperatnrs;(ﬂﬂirs signal mpde operators)

( K ¢ coupling constant) .
In the parametric approximation, pump field is treated classically
and the pump depletion is neglected. Then the cpematmr,{r could

_ —2twk . -
be replaced by Be « For B real, the resulting hamiltonidn is

2 ;
+ . 2 2iwk 21wk
3—[,‘: LO&CI-!—%(ELEL -DE+€. ) (4.30)
In the interaction picture,
: 2 -
==K e
3{1— —I(Q G ) (4.81)

Thus we see that this nonlinear device genNeLales S5.C.5.

The detection of the sgueezed states in an optical process
is not an easy job. The reason is the nighly transient nature of
the squeezed states. As seen in Sec.4.3 the SgueecZey states are
generated by quadratic interactions. Further under the time

evolution these states attain the minimum value of the uncertainty



roduct only at certain points of time. Alsc the generation of the

gueezed states is critically sensitive to the phase stablility of

thie driving laser field. In the conventional optical experiments
one measures only the diagonal elements of the density matrix of
the signal field and hence the problems associated with the phase
stability disappear.{jl}

Recently the Bell Laboratories group have announced the

rimental observation of the sgueezed states. They employed

the nonlinear interaction, four-wave mixing, in an opticel t:-a\.r:i.t._y.{32:J

4.5 Conclusion

The spurt of activity in the study of the sgueezed states is
net only due to their nonclassical nature, also due to their utility
reducing the guantum noise in a totally different branch of
physics namely gravitational wave detection. The gravitational wave
detection is based on Michelson interferometrys The sensitivity

‘of this device is limited by quantum fluctuations; the two sources

0f this being photon counting and radiation pressure. HRecently

‘2 technique has been proposed which uses the squeezed states of the
‘radiation field to reduce the photon counting fluctuation in the
interferometer and thereby increasing the sensitivity of the
'interitrcnmterqtaszn gay briefly, the arriving gravitational
signal interacts wilith an oscillator that is iniéqueezea states.
Various methods of producing the squeezed states in an oscillator
't0 register the gravitstional force have been studied by

Grishchuk and Eazhin.{34}
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Another important application of the sgueezed states is the
possibility of employing them in optical communications using
lasers. If the state of the laser beam is a sgueezed state, the
information could be communicated with reauced fluctuations and
thus the quantum noise level could be lowered below the zero point
limit. Yuen and his collaborators have developad a theory of

; ; : & a5
optical communications using the sgueszed statESE 5)

S0, we see that the Sgueezed states have a potential capacity
to play a much more important role in quantum mechanics, guantum

optics and the detection of gravitational waves.

Some more historical details regarding the s.c.s have been

given in Ref.(36).
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CHAPTER 5§

SUUEEZING OPERATOR *

The nonclassical effects of the states generated by S(z)
on Io) have been discussed in the earlier chapter.

Mathematically 5(2) could be thought of as an operator
acting conformally on the phase space (for 2 = real); since
an unit cell in the phase space namely a circle would be deformed
into an ellipse due to the action of S(Z).

In this chapter we shall be concerned about other aspects
of S(z) like the possibility of generalizing S(2) for multiphoton
proauction and the extension of the results to the para-Bose
oscillator, which gives a surprising result that even the
sgueezing (i.e., the two para-Bose coherent state) is not admissible.

1)

Fisher et al{ in an interesting paper discussed the
possibility of obtaining generalized squeezed coherent states in
the Hilbert space of the harmonic oscillator. They are obtained

by exponentials of polyncmials (L and [}j- acting on the vacuwn:
Ity 2,y = D) S(Z) 10> (5.1

whiere

R % k
S(EFO = E:)(.'P]:Eh[{:f) - EL‘(@'] (5+2)

%

This chapter is baseada on

1) T.S8. Santhanam ana M. Venkata Satyanarayana,
Phys. Rev. D30, 2251 (1984).

2) M. Venkata Satyanarayana, Phys. Rev. D32, 400 (1985) .
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and D) is the displacenent operator and Eh is a complex factor.
‘Such a generalization of the sgueeZed coherent states, Fisher
et al{l]named it as 'naive generalization' for reasons which are
obvious.

Fisher et altl}pruved that the squeezed coherent states exist
only fork-=2, which are the s.c.s discussed in Chapter 4. ¥For R>2
the sgueezed coherent states do not exist. The method of their

proof is to consider the vacuun expectation value of S(Zy).

which has a power series expansion o
4T (k1Y + 2R
2 IFE" L : SEachE
o] S(zlo> =4 -12el == + 12l 4

.

2
5 1 )+ (3R

i 2 My, {EE}
T S I ™ ._i_- Cn + - -
(2!
¥ v
Cy is the coefficient of (-) |Zgl /(1w]! ana it contains many terms
and all are positive and the largest is of the oraer of (kn)!
and others are alsp of the same order.
Therefore, W 4
e el 0 (544)
L_/t lzh]l (v n F
Y, —> 0
for all k>2 and Z,.to - This means the series in u.(5.3)
R 2q

(2) for 'h‘);z_ « For 'R:E it marginally converges.

is divergent
This shows that for khy2 , S[Eh*j though unitary it is unbounced
in the Hilbert space of the simple harmonic oscillator. This is
due to the fact that |0 is not an analytie vecturuj of the

generator ‘ﬂ‘k + wWhere ‘sgl—h is given by
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Sz) = Fab [Lﬁ’h] (5.5)

i.e..Jgh is not self-adjoint for 52 .

So the result is that the sgueezing aisappears for the
many-photon states R> 7 .

It is interesting and also instructive to look for ths
fields which do not even admit squeezing for k=2 . Such an
example - is furnished by para-Bose fields. 1In Sec 5.1 it is shown
that for the para-Bose oscillator the sgueezed states do not

(4)

exist for all orders of the statistics.

.5'1 Para=gSose Oscillator

(5,6)

The para-Bose oscillator satisfies the equation of

motion
[AN] = A (5.6)
and does not satisfy the canonical commutation relation

(547)
gl

*

Il

[AAT]

N is defined as
oAt ANy L
N :_(AAJr — Ao (5.8)
2
where-&ﬂ is the lowest eigen value of the hamiltonian

AL, :%(A-FA-}—AA*) . (5.9)
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The case -Enn:é‘cmrresponds to ths usual harmonic oscillator.
Mo 15 defined as the order of the statistics of the para-sose
oscillator.

It can be easily seen that the operators ﬁ.,f’ﬁ and N[‘ﬂ' &E)

| i | 2kt N
do not close to form a Lie algebra. However A A and close
and the algebra is the algebra of the Lorentz group $0(2,1).

This could be seen from the following symmetric cperators

: 2 3 2
F-hirf(f“’“+""‘ i H?_:%(A’f-m); Ho = L (5.10)

and they satisfy the commutation relations

[Hc:J H1:[ =4 Hy
e [Hy, Ho] =4 Hy (5.11)
[Hijulj':_LHp .
Since the spectrum of N is positive definite the Fock space

representation is given byKE‘EJ

: A
(A]z'n, 2m+1 [2 {“Jr'kﬂ'ﬂ

1
(A)Zh-i,zﬂ - (2ny'*

I

(5.12)

When -F-..:,:ifl + the above representation reduces to the usual
representation of the Bose oseillators and the distinction
between the even and oda matrix elements disappears. So for

every value of kg an infinite spectrum is obtained given by

Moy Rptde, Rt s o e 8O
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The physical meaning of the para-Bose oscillator may be

understood if we see the Green's ansatzlj}

240 'J:
A = 2 Ay (5.43)
i #ed

wnere A s are the usual annihilation operators for the Bose
oscillators for a given H’ ., but anticommute for different 3’
values.
The idea of the para-Bose oscillator was proposed under a
broader scheme known as 'para-Statistics' which means the maximum
occupation number of a state might be any finite (positive)
integer unlike Fermi-Dirac statistics or Bose-Einstein statistics
for which the occupation numbers are 0 and 1 or ni(= 1,2, ...)respectively.
The concept of para=Statistics has played a significant role in
the development of guantun field theory since the nethod of
guantization of a fielu is related to the statistics of the
particle associated with the fieldql?J
#As seen earlier the para-Bose oscillator also possesses an
j.t'ifir:ite spzctrum similar to the usual harmonic cscillator spectrum.
The difference between the two oscillators is manpifested in the
symwetry properties of the states which are different for the

two oscillators.

The coherent states of a para-Bose oscillator have been
(8) (9)

defined by Sharma et al and Biswas and Santhapnam. Considering
the displacement operator D) = E:.P [ A+— A acting on
the wvacuum ic> , Sharma et al i"B:'::-i::*J:.r:limaa coherenc state Inx.)jm

o
‘as
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mzk = z “>,h=. (5.14)

where

1/

i

and

Qo= Z Mo (i ui) . (5.18)
30 87+4] r{w Jk}

The same coherent states have been obtained by Bilswas and

(9)

Santhanam ~ by using the differential operator representation

for the anphihilation operator. They also obtained

v e
I (4o)

(5417)

WSOl A A 0y, =

= G ( Sr::l..y)
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(1)

Proceeding along the lines oif Fisher et al, we consider

SlZi= Ex—p[zh (AJFJ& — Et Ah} (5.18)

and
g kﬁﬁkw} T
RQBICHIDE 1-125) ol A o
i
< _ 2 oy
ey (R - % elERl
nﬂ 2“ T ; L " {5‘19.}
+ ) 12kl :_1:13'. -
where

2
=Sk b2 Cpt Gl #

In general, as in the case of the usual harmonic oscillator
(equ.5.3) each Tﬂ has many terins, all are positive and the largest
is of the order of Ch‘r"\ and indeed¢ the others are alsoc of the
same oraer, as all of them arise from the vacuum espectation value
of a pmlfnumial of degree 12 in A and A+ .

The leading term of the with term of the series in egu.(5.19) is

E FSL[?%]"@} r{[ht i]*’?“‘}
e (ko)

(5.20)

A

Now we shall discuss the convergence of the series in egu.(5.19)

for the various cases which arise for the various statistics.
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case 1: ho= if,l'z . then

g, - o B4

: (5.21)
2yl 1
) e _

- Now two cases arise that MK cculd be odd (mk = ?_"m+i) OL &ven

(rnrfcg: 2m.) - In both the cases

S I
A= Ll e (5.22)
(2!

For «5{:2 » the series in equ.(5.19) converyes, implying that the

two-photon coherent states are possible, the result obtained by
Fisher et axl.“"'J

Case 2@ J?xa: i A8 In earlier case again two cases arise that 'nfﬁz

could be odd or even and we will discuss .them separately.
(X) nk=2m

2N
| Zk |

(2n)!

]

£ 5™ FOm+d) (m+1)

2]
2, 2
— AZel 57 ()
= (2wl
: : 'ﬂ/&
Using the test in Ref (2) ,it is easy to see that Z (—} M diverges.
(L) mAR = 2m4

(5.22)

12, 2wt (5.24)
An = 2RL 2 T(med ) T(m+2) $24
(2v)!
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Using the similar arguments as earlier E f") fE"ﬂ_ diverges.
Now we consider the special case of particular interest; bhg-1

ancl J’R:l + i1.e.,, corresponding to the two para-sSose coherent

Statbes

29 2

Tl
)E“n = — = (L) (5.25)

(22!

2%
| Z]

2
2
The vacuum espectation value of StZ)= EI-JP['E—A*—E”A ]

could be written as a power series of .

2y 2N

f@.) :Z C'J“ izl 2 [ zﬂﬂ) ' (5.26)
MNzd

Clearly th does not tend to zero as Y tends to oo ang hence the
divergence of j?[z} is established which means the nonexistence
Of the sgueezed states for a para-Bose oscillator. Exactly similar
arguments hola good to prove that the Squeezed states do not exist
for all orders of the statistics.

So ha;ing establisned that a para-Bose oscillator does not
admit squeezing for all orders of the Statistics we arrive at the
conclusion that the para-Bose vacuum lg}km is not an analytic

vector of the generatur'ﬁ; where

Extfc 6] = bz A~ ZAA]

which is a bit surprising.
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52 Generalized Squeezed Coherent States

The impossibility' result of Fisher et al‘ljis Very interesting
and it has led wus to a more interesting situation where even the
Squeezing of the order two is not possible.

Though one canot ‘naively' generalize them for the
harionic oscillator, ope G2n generalize them in a more uqﬁjul
way. The generalized squeezed coherent states (g.s.c.s) are

definea as{loj

I, 2z, = D) S(2) )

(5.27)
where S(Z) = Ex,p[_%(fff_ ?3&3:[ (5.28)
= 2
(We have chosen to PUt Z /5 in the squeezing operator as a
convention followed in the literature in contrast to Sec 5.1)
We procesd to get the Fock space representation for the
state M, E, o).
We first compute [W, %>
M,z25 = S(2)\m) (5.29)

= S imydm) S

:Z | m G;m(ﬂi) (5430)

T
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The method of caleulating the expansion coefficients is
given in the Appendix A and they are given by

— 1 ) [z 7

/
_EFJ:[:“-.N:] E}f;;_ & ;r"ﬂ’r'"'l-ﬂ'ﬂ_ (‘Y‘ﬂ.[ qq_'|) ZG{IM’E"LFI)

Cosfru &Y

A
(—4|simtin)

o E

A
i, i i SATSA
(Gim(®) = — 1), %’J';_i]" (5.31)
—A(n-m)6/z a3 ml koA
& (=) S =

(- 4/saitn)

s (z>~+1>t[%-tﬂﬂ![gg_, ﬂf

for m o odd

3
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Only odd-odd or even-even elements of (r L 2) survive due to the
fact that S(Z)essentially creates two excitations every time it
acts.

In the spirit of Refs. (1) and (4), we realise that St2) has
a finite expectation valug in the state |nM> {:'fm*r Nz, 1,250.-0)
i.e., squeezing of the statas I is possible. We consider ap

interesting case below:

Giool® = lo|Stz)l0)

4
(cmlil)ifz

= (5.32)

[

The authors of Refs. (1) ana (ll) have wrongly renarxea that Grm{EJ
sums as tanh |Z1<1 for M <ed . The exact expression for G,MEEJ
is given by equ.(5.32)

Now the g.s.c.s [M,Z o> is given by

I, 2, > = D) I 2)
(5+33)
= DEO) D Im> GyE) 3
W
Using eque(2.5) 5 1/?_
— el fm ~=t !
M, 2, o) =%c Z GintE) (“E,T)
™, & }
(A=) (=) 4 (5.34)
w [ (1?) o | 42
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Equ.(5.34) gives the Fock space fepresentation of |m, 2,0,

Also, M, Z,o£> could ke expandea in terms of the states
Im,2»88 illustratea below:

Consider -
<MJ%IHJESQ{.> = Qw, Z . DOin, 2

~ (|82 D) S I
= {m | Exp(o T In>
= Lm| Exp(Fal- ¥ @)|ny
=R (5.25)

-
where “?‘ =l Ctliy — oz‘_‘&"'“:""”%‘" h") and /(-"_, ’E" ar

4s given by equ.(4.25) apa |"-"‘-J".s"> is a g.c

From egqu.(2.25)

b 21"’“1 £ Lo 2\ 20
"

1=

=S e

:? oy & Lo 2 (5.35)

Since |, 2% is given by

m, 2> = S(2) | > (5.37)

—\‘ﬂliz .'rLE fl‘”“mml} H;ﬂm ~
(it >z e (7“—') |l (5.38)
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the g.s.c.s }T’L,E,o{) could be written as
4/, tm-w) ™M-N

S
—171
Mz = € /ZZ1W‘JE><§;!T) = () () : (5.39)

!

As an example FOr & y,5.C.5 we dive helﬂwli’zjy"_> :

v o0
— et o
e 2 fankizl) @ROL
(coshi21) /2 =T VAL ml
2kt d) ~2k-1 ,
X !im't(w) LI feo)

241
Overcompleteness of |M,E,+4)
Since D(«) and S(2) are unitary, for a given ol and # the set
Of states (M, Zep,N=04,2,. .. forms a complete set just like
the set IM) . For a given n andz , the set M, 2 aywith all
complex of)8 forms ail overconplete set. We can obtaein the
resolution of the ldentity as

z ’
'ﬂ = O_{'E [“;%,D{> <, Z el \Sadl)
1T

In the spirit of equ.{(2.21), we cen definé the Squeezad

consrent state of the displaced oscillator as




2y = Ewp[%(a*u& Z (-] 1>

E@D&E\!%d & ; E j:amz[x_i_%) ‘J{'ln | 2w, ot> (542J
z &I%!
N =0

The physical interpretation of the g.s.c.s is the same as
that of the two-photon coherent state of the radiation f_‘i.tall'd..l"lzJ
We can consider the yg.s.c.s as a coherent state formed due to

two excitations on a particular state |m) .

5.3 HNew Squeezed States

(13)

Recently D'Arianc et al have arrived at 'a new type of

two-photon squeezed coherent states' using the formaliSm of

Branat ana Green’nerg{ Qjcmd the method suggested by them overcomes

the impossibility result of Fisher et r:d.u':I

i4)

Brandt and {ireanberg[ constructed Bose operators /{"{'h)
and (k) £Or K-particles by employing certain kind of renormalization

to 'dress' the k-particles:

(h) b (k)
z ) (* (5.43)

and ja)ﬁ i/?-
Of*‘}_z ©) Tl s
4 1 (4-01 L1 ( L+ k)] € (5.44)




-

where 6y arbitrary.

.r.
’f"{kjw‘{@ﬁatiéff the comnutation relations

.f-
[/5’{&)’/&{&?] =1

[ N 3 /@"{&)] :-/t? /6?42.3

for N= [I-tﬂ !

(5.45)

,i.-

From the commutation relations it is clear that fb{h}and '5'{'}::_)

act in the Fock space as k-particle creators and annihilators:

/ﬂm | Ak +2> = B [(a-0)k+2>

’{"(Th) | 8% +X> Z»}m |Ca+2)k+ 2> (5.46)

where DS)\Q/;Q.

D'Ariano et al{la}hav& defined the many=-photon squeezed
coherent state as
E : C (5447)
1&’{£-’w)[h3> = ’D(:’{) Sﬂ?}(EJM) 1 > s

SUE}EJ ol = Ex"l:) (z /ﬂ;ﬁi wh - f’(’EkJ) (5.48)
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for (. real and 7 complex. The minimiun uncertainty product

Of these states is somswhat similar to that of the USUal 5.0

5.4 Other Developments

An important problem of mathematical interest is disentangling
the squeezing operators. We first give the disentangled form of S(Z)

and then discuss the ethods of obtaining it.

Sl = Eoct 2 aa - ii &Uz]

I

4 2
(Cosh 121) /EEKJP[E%I£ML|EfQ+I

n
Ki (Sech121-1) (‘a+)“ Sk
nil
2
Zi Lol (5 449)
XEK?EEE[

The above normal ordered form of S(2) coula e obtained by

'the most straight forward anc obscure’ £ me2thed i.z., ay
¥ 1 i . o - | b= . 1 {16‘}
applying the famosus loCoy 's theorem.
Fisher et al{nobtﬂined it by using Lie algebra matrix

technique, ises, by the tollowing identification procedure :

, 1

T =l

2 Ak i‘f_ 4o (5.50)
E&a‘f‘a‘_‘: ‘3‘1(0_._

*‘j—(m = RS R ORESO
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Now we have a realisation of 5U(1,1) algebra

L, L] =2, M{L_EJLiJ:jL___ | (5.51)

Now

Sl = EDC]D[<;¢ Ec:) (5.52)

and expanding the exponential, the normal ordered form as 4ip
equ.(5.49) of 5(2)is obtained.

Disentangling of other sgqueezing operators is more difficult
and discussed by Hitschﬂl.{lT} For example the k-photon Sgueezing

operator
| Sf%h) = E'Xv};[‘ifh@t_}))g— E;Qk:] (5.53)

is yet to be written in the normal ordered TOLl.

Jefore we conclude this chapter, few remarks are in order
regarding other generalizations of the squeezed states.

Strictly speaking the saueezed states are nothing but the
'intelligent states' well known to group t:buamurir.?1:.5.”‘EiIJI

In the case of SU(2), the Radcliffe states (Sec 3.1)
exhibit Equeezing.iEO}

Recently the concept of higher—order sgueezing (similar to

higher~order ccherence) has been introduced by Mandel and Hung.tzl}



-89

For Ei 5 El two canonical conjugate operators satisfying

[Ei,E;:_J = S

the field is sgueezed to order 2.3 T
' v
<[ﬁEi) >< (zn-4)1hc™ . (5.54)

The above definition is in view of the fact that the normally
brdered momsnts of the ueviation all vanish tor a coherent state.
They have also shown that the higher-vrder squeezing exists in a

nunber of systems like resonance fluorescence.

Appendix A  Calculation of Gm-.{})

angz] = dm| §(2)In> (A.1)

Direct method is to use the normal ordered form of
(equ.(5.49)) and then take the projection of S(Z)n> on (M) .

3 ’ gl A
“e use an elegant me thod due to Hﬂﬁﬂldt By

GI{(,EI} (/k—:{{l]i"fl &.01{1 ELJP(_"::<R+ U“D +)|D> (A.2)
(fo1 neal)

(A.2)
~ Jeixt H &

Using [DE_, mﬂri and 2gu.l4,.,25), the following recursion relations

are obtained:



< To TS

)RCchrfm'}c H‘k %1) = —ABunbo Hh-[;f.j? + H*E—{ijt.?é*-f

A cothox I.{ {xJ = AvAl H:k( ) —'LH,{qif..

and r Hi,'l{x) = CD%:E:__X Hg} ﬂ(x) :

We define the generating function

I e /k 'f
HE,bix) =5 He@ a4
&, L=0

(A.4) and (A.5) give

Cos %H[&Jy_,‘ x) = (._ a kamdx +C£{~.I_x) H(a, b-;x)

and its solution is
h@bx) = (%) Ex-f:[u% o kam b +

e
waere e(byx) = H(o,b;x) :Z Ho, 0 4"

d=p
Substituting in (A.4)

{
[ Aawmhx) L (x
Ho, 5 "( 2 : Ll Ho, ¢

Therefore

Bayksx) = HD('JL)EJ__P[ Ca=4) Ea i

&ﬁ&ﬁt Z

(A.4)

(A.5)

b EAlﬁj

(A.7)

(A.B)

(4,9)

(4.10)
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To calculate LM;D:
) — A
jﬂ.HaEE}-— Hlu% )
Ax

Also from (A.4)

Iﬁﬂw:‘%J%mJbM&x

From (A.1l) ana (A.13)
_ 1
Moo= 4/Ccospn)™’®

in view of Hq%”'!: i -

Therefore from (A.10)
i ot
-[_}hfz(*k! 1!) T ”“““’E‘I) =
Cos b 2.

M) (&N (-9

A
| — 4 [ 8on hEx
X iiz: ( X ) o R feven
A

(/o ni

1
Gy = Jit (-ﬁ{i!)h(mf&x)T"
3 2

Cothax

Y z (—4—/.»5:.&.2\11)}.
(2+Dl | &1y [ﬂ A
2 .

W, Cherunite

L To1 R, b edd

(A.11)

(A.12)

(A, 13)

(A,14q)

(A-15)
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Since we npnead

& Py -
GIM[E; H<4Q\EI'P[%Q&—%&G;“E> (A.16)
(for 2 CUY'N“:VEM)
we redefine (| and (iT as
- + 8 +
A= E_wﬂ@ Bt AT: e KZCE- (Ae17)
where 2 - % E.L' i)

The commutation relation

[A_, AT] =) (A.18)

remains unaffected,

Therefore
Z
5 (%) = EI-P [_.;._.l" (A-‘-" )'ﬂ"-?_):l (A.19)

and by applying the technique ceseribed above the Cﬁhh%}

coefficients are obtained as ip 2qu.(5.31).

i SR -7 - 1T ¥ ¥ S ot
Sobe G bebe e

el
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CHAPTER b

*
SUUEEZED STATES OF HYDROGEN ATOM

The mechodology of the sgueezed coherent states described in
Chapter 4 comes handy to defipe squeczed coherent states of other
quantun machenicdl systems especially where the harmonic ocsclillator
coule be employed. In this chapter the dynamical Syluetry group
of the hydrogen atunxnanwly[}}#}is made use of to defipne its
Squeezed coherent states. Yhe result is very interesting:
the hydrogen atom in a Squeezed eoherent state has nore energy
than given by Bohr levels.

The method of approach is along that of ".'rts.-r_r:_y-.“':I He
introduced oscillator like coherent states on the O@)alyebra of
the hydrogen atom and showed that the correct classical limit
could be obtainea without the correspondence limdit. He also
indicated that the thus introduced coherent states describe the
‘elliptical orbits' anticipated in 1926 by S¢hrodinger.[2}
lore recently Bhaumik et alta} using these coherent states
constructed a wave-packet which travels on an elliptic trajectory.
In fact all these works are further developments on the
realisation of the Connection between the hydrogen atom and a
four-dimensional oscillator with a constraint wnich has been
rediscovered by any am:‘rn:nrs;'H':l since the aor iginal discovery by
Pauli. (See the elaborate review, incidentally the first such

(6)

)
otne by Bander and Itzyhsnniﬁ']. also Nieto obtained

w
I'his Chapter is based on

‘. Venkata Satyanarayana, J. Fhys. Alg, (1986) To Appear.
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coherent states for the cou lomb potential which ape different from
== (1) - (300 g it

those introduced by Gerry'™‘and Bhaumik et al. ieto

developed a formalism to obtain coherent states for general

Potentials using Sehrodinger's criterion, i.€,, to define coherent

Stdates as those with undistorted wave Packets with classical

(3) are the

motion. Coherent states pf Gerry[l}and Enaumik et al
minimum uncertsinty states of the harmonic oscillator.

We like to recall that the harmonic oscillator hamiltonian

o - ;E;t,u(cfﬁ+i?) (6.1)

will have energy in a s.c.s |, Z> given Dy

c
f}Eg?f: 4o, 2 | RN 20

— A w (1 S kil + 5 ) (6-2)

How we can define sgction variables as

s 1 !
T = A (% soah 121+ 2) (6+3)
and el
Alsp
cl
. 2t "
oI i

The quantized energy levels are recovered by iavoking Bohr-

Sommerfeld rule
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T=zh(m -5-5@&11-2[-1—%—) (6.6)

The above form of quantization condition is chosen in view
of the fact that &JES'% becomes JKLU[“H+3-;2)&5 the squeezing
parameter Z approaches zero. .
We shall now proceed to discuss the s .c.s of the hydrogen atom.
The hamiltonian of the hydregen atom is given by

2

0 = ”” -2 "

it is very well known t.hat the angula r momentum vector L

and Pauli-Runge-Lenz vector ﬂ‘ given by

A zep | 4 (kxp-PxL) (
= = o o _Q,IIL( = jf i = 6.8)

e

!
commute with 9-?, . Alsn:ﬂ- is orthogonal to hf.} and

A

2

2 2 =
f = (%) 3‘&(*—2*")&) +(Ze ) (6.9)

Using the decomposition C:f«d.) = SU(?-)&QE) SUEJ'J,{,, : ;
Schwinger's boscn realisation of SU(2) and the properties of \2%

Gerry obtained

..i_
({?ﬂimi+ﬂ+m 1) (ﬂ} b4 Aoy o, + i) ' (6.10)
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and

24 2 + X
Z t : Ty
2 (afng+ aaea) + (4 bbb+ 4) (6.11)
KE
f A ~
where [{}J:}QL :{ = j_ and l_ . Y :_Z for A = i;l :
Now introducing thée Fock Space basis i.e., eigen gtates of
t .
&:—{IL as I"ﬂ,{) and {f}—{ )61 as I"FHL‘> whore J,:i_rj'_eq‘.iat.iunﬂ (G.10)

and (6.11) become

Mg -y = M (6.12)
aficl
5
HZE et |
S e e (6.13)
E’Vh 2?5‘__1 ,ﬂ‘l Dali

VRSEE M =AW, ] =y W+

We now introduce the s.c.o. as

&y 8 a A ~
lelg 5 Z¢ D = Dty ) S(2p D Imi=0)
b_ ,EL E., f}- {E;lﬂj
ki, Z: 5 = DEl ) Si(E ) lmg=o)
: i A
for ai,':i_l?_, and Z?_—_}I? and :-{J; =
The condition in 2au.(6,12) reada as
2.4
|D61q12+la{f‘[l+ E;n;,—,,,?f‘hi + Sk n,
8

: 2. PRI S ) .
= [o{f‘l_g_ id‘ll;l -+ QUi -"Li -+ ":':I-M../L A 2 (5015)

L
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a jis

Now for the squeezing parameters H{ and 7ty for £=1,2 tending
to zero, the above equation becomes

: o 1 - A
Iﬂfiqlz-l-]“ffi = |ely | + ld;__ i (6416)

the one obtained by Gerryujas expected.

In the spirit of equ.(6.2) the energy becomes

Q_Boﬁ B - M 7 ot

A zﬁzodfllﬂﬂflﬁgmﬁﬁ +SundZng +4)*

(6.17)

Q a
Again for hi: ‘ﬁl =0 , the above equation becomes

V4 Z i
_Z‘H‘
a_‘E' :E: 2 at:l L 4
AT e g

(6.,18)

oy
the one obtained by Gerryu}{where JQ: Ze )
Further

We see that squeezing does not affect the rela tion

for the period of kepler orbit,

a el
Using equ.(6.6) and taking Ny= ?[1 anc A, = A,

w2 get -

() _pet

.

&5 5 ;ﬁf(ﬂn 1M+ Sud oy 4 Sun ki, o 1) <

(6.19)
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The above eguation gives the energy levels of a hydrogen
atom specified by the principal quantum pumber 'P'h{:"ﬂj‘_+ﬂg_+i)
anc the squeezing parametersfty and M, . 1t 45 to be noted
that the energy levels acguire higher values, as it happens
£0r the harmonic oscillator,

Taking hj_: }"‘11: O equ«l6.19) becomes

4
(M) - M Ze
= = z e (6.20)
2 K (Mgt 4+4)

which gives Bohr energy levels. 61 (m)
We can proceed to calculate the dusolute shift in energy E‘S =
o e e i)
(n) E[m Uz e? (Smhrg + S h'4,)
A = 2
S 2k (Mq4m,+4)

2
2 S
X (27 + 27, +2 + Sk ng + Svndc )

(-21)
(Wit My + L+ Sty + Qi k)

2 e
For Sﬂ‘\/ﬂ-h_f_ i‘:. 'H.,f‘ acl :?Lr'n.rﬂ\_ ‘hl LL ?11 3

(M) () 54%2&4 C Quk;f-.ahi + SwdPA,)
ES = 2 7
[ 2 (M4+7, + 1)

X (L"ﬂj_-l-.}_ﬂ -+ +S’MHL+5WL
» [i _ _2(Suking+ SihA,) ]

(Mg +m,+ 1)
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2
izt (Suih 7ty +SrdZa,)
i
2 (ng+n, - 1)°

X [ﬂﬁﬂngﬁ 4 =2 (Sunhing + S ’f“z’ﬁz}]
= vl . L
[etnonrt) » Gang 550 (o
The rela tive shift ip (-lnergy is given by

E[;: = ém = (smffnﬁ s..;\,rfﬁz) [ifﬂ1_+*~1;,_+ 1) A ‘Swtf‘}bﬂ

(6«23)

(*‘ni.ml—r e gmﬁ.«&lhi_-{- S mfﬁ?}xz ) &

When the sgueezing parameters are very small compared to "4 and ",

i.2q, for Su. /E\E‘)Li L& Ny and .’5’&;,&2')1.2_ LNy

E(W) (wm)
Scz E (S ,Ej'hi 4 Sun &Ehz)
E(%j i Cﬂi*“l*'i)a

i .3
X ['}__(n.j_-{-“ﬂ,_+ {)+ Swbing + S“““'f”h*"]

X [“i‘i‘ M4 —2 (S.m;vfmlhj_ +- Smﬁlﬁgﬂ (6.24)
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The spectral transition energy ﬂ E(’ﬂ ,hi 4 f"‘z — Ay :}12.)

is given below:

-

™ e
AEUM i (ng +my) + (M +1,) +2
(h._,?t,,) 24 . l(gh;m,f,\lhi'—r!;ﬁa“ﬁ}ﬁz,ﬂ
X | (ng-my )+ (M- ”""‘P-JJ i~
1
b8

2 s
I:("Hl..} "P'Ll-|- Sm&.-hi + St b ﬁta -+ i)
X (g +MMy 4 S by 4 Swihh, +1J]
Equ.(6.21) gives the squeezing correctiocn to the spectral

transicionse.

So by making use of the dynamical symmetry group ((4) it
Eurns out that the squeezed states are available in the O(4)
group due to O(4)~ SU(2) ®SU(2) . 7The essential idea
of this chapter is that O(4) possesses states which

have more energy than the Bohr energy levels.

G & ok B b Kol & OB& e
&Eﬁz&ﬁc&ﬁa&k&
[ R Y e
bl eebr &o& &l
oo Beide Beibe G
LT, Rl ¥ S R
B Uy sl
b bel e e
b & B
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CHAPTER 7

*
ANTIBUNCHED STATES OF RaDIATION

In the recent past the two nenclasdical effects of light
namely ‘squeezing' and ‘antibunching' have attracted a lot of
theoreticians and experimentalists. So far in this thesis the

discussion has been regarding sgueezin

1
=1

; in this chapter
antibunching and various states of the radiation field which
exhibit antibunching are discussed. Antibunching furnishes

'a clear demonstration of the guantum nature of light which is

not explainsd by classical thea:y'&lj First we shall give a

brief introduction to bunching and antibunching. These ideas arose
mainly dﬁe Lo Hanbury-SBrown and Twiss experiment,{zjdescribed
briefly belows:

A quasimonochromatic light beam from a thermal source is
divided by a beam splitter into two mutually coherent parts(Figel).
The delayed coincidences are measured, i.e., we look for those
events that the second detector counts a photon [ seconds later
the first detector counts a photon. The coincidernce rate in the
detection response is then plotted agdinst a time delay T (Fig.2)

The eoincidence counting rate as a function of the delay time
EXNIDits a distinct peak 4t Tz=0O . ‘This means the photons have
a tendency to arrive in pairs; chis tendency is known as ' photon

bunching’ .

x
Based on

M.He Mahran and M. Venkata Satvanarayana, Phys. dev. 4 (1966)

{In Press)
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48 indicatea in Sec.l.3

the zecond araoer gorrelation £

g('fij M
latay

Lnt_n__t

provides a nzasure of such

correlatinng .
90! the outcome os the danoury <£rown ana Tyiss

correlation experiment i

intensity

£or the thermal iicpe

(2
g : d %DJ =,
and

(2)
Ffor the logar ddght

) g (o) = i
& light field (or the Fock space state descriuving
field) is

ehe light
said to se antibunched if

(23

Jeo <4

it means that the provapility Of Geteotlin
[EEmibe fahs photons

b}' &

= ¢olpnciuentc
iz lessd than that £ram coherent fiela
coherent stcat

Qe criibed

vihich: hds Polsson uvistcribution for e
ohton eolunts.

(2)
fhe exXpression for jfﬁ} coula be rewritten a

) (o cns)
o) = = =
dor= 1 i

) 2
where « o=

2
Lnds = 4ny,

ancibunching means

=10

O LN

“Unakisn

e B

(7.2)

{7e3)

{.'-"-'::-J

(7.5)

(7.8)
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For Poisson distribution (corresponding to ideal laser light)

g'z_-_ {y\_) and so gf%'?n}:j_ agreeing with equ.(7.3). So
antibunched light possesses tnoton cistribution narrower than
@& Poisson cistribution.

Suppose a radiation field has a binowial counting uistrioution

Lthen it must be antibunched since the binami&i counting distribution
has its mean 'I\_‘P and wvarlance hvf)ﬂ[') (tor 0LY, ‘Pé i and *b—f-‘z =l 1
Very recently the binomial states of the radiation field have been

introcauced by Stoler et al.u] They are

AL
M’M> :Z Py 102 (7.7)

1
M-% f2

[5: - (2)%{1 (4~ ) (7.8)

Etnd'}'l and {1-’1‘['] are the probabilities of the two Mossible outcomes

wheare

of a Bernoulli trial. These binomial stutes reduce to the
coherent states and to nugber states ipn Gifferent limits. The
binomial states are antibujched anc Squeezed for certain parameter
ranges.,

The method of generdating antibunched states has been
described by StDlEI{4JﬂJ1d there has been a lot of thepretical and
experimental activity.m‘} A4 detailed anc good review has been

given by Paul, (6)
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There are many states in the Fock S@ ce which are antibunched.
(1)
For example, the number state |1 > is one such since g ()= j_-.i,

which is a reflection of the fact that the state Iny contains

a definite number of photons.

The logarithmic states of the radiation field introduced by
7)

Simon and Venkata Sa1:.3.r-a,:1-'=*=ra;rr-a_nELE (See Sec.d.2) are also

antibunched for certain Srameter ranges. Using equs.(4.19)toc (4.23)

(2 Hffrg(i—‘{)
g(f}) == Cioia2)

(7.9)

= [j__h;lrl)_

ROE P A —E ) clearly the states are antibunched.
FPure logarithmic states (i.e., forc-p ) are antibunched for

% L i— E"“i andg Jits 3{?2} is as in Fig.3.

A |
(21 I
HIfo)] |
I
|
I
=1
| A= |-e
I
e 1
]
|
I
|
——
o A | G
121 )
EiG:0 4 10) OF LOGARITHMIC STATES
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But the phase states | ¢

4 .
14y = L b (aet) Z A1 (710}

Ao A

dare bunched sincae

(2) 1
3({}): 4[5 ) (7ell)

We further proczed to inves tigate the bunching and antibunching
broperties of various coherent states since those are the states
which are useful for the description of the optical fields.

First we consider the generalized coherent state I'ﬂﬁi:}

defined in Chapter 2 (equ.2.2)

m Wy = Ex-p(nm; L ) |

Its 3[0} is given by

2
(2> -,-1{2 et - i)

g CDJ = Clﬂil"ﬁ'“‘)l

2
which means the states IM,&% are bunched only for 2 |«|"-1 >0

(T12)

2 )
and for 2 ldl"-4 £ O , the states clearly nave antibunching. so
2)
unlike the coherent states ol > for which g (6)=1 . the
generalized coherent states (g.g.s) IM, oL > have sub-poissonian

statisties for

2
2 \t)” < 4 Y
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This means if o/ were to lie within the unit phase call around the
origin then the Corresponding states are antibunched. Here we
‘have an interesting comment regarding the counting statistics
Ef PHJ:1> + 'The appropriate generalizations of the Poisson
distribution' as stateq by Koy and Virendra E‘n:i.n:;qi-l':EJ also contain
sub=-poissonian statistics for zlnul{i .

Next we consider the sgueezed coherent states (s.c.s)

(See Chapter 4).

1,25 = D) S(2) 10D

(2)
Its (e) is given oy . = ‘{:91 §
4 [(o(= &*Boinhnin. Coson) (27~ & ,a.mﬂjw )
(2) + 410128 + 3 Auad |
9 Wi == (7e14)

Clet)* 4 Awdn)®
For =0 and o real,

2 2
(2) ézﬂmﬁif}L+(ldaﬁO’gﬁmj\h - Auwbo

d@=1+

The state |o/;7v)  is bunched only if the nurerator of the

(7.15)

e RN
(&% + A fh)
second term of equ.(7.15) which could be rewritten as

: L 4 2
F60) = ai(l,awwfmlh ~ Aunk 1h)+(2"5'*“£“h+£““’£‘-7d (7.16)

is positive.

Fe)is a quadratic expression and its analysis is simple
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and given below.

The roots of (o) are
7, i/p_
" Ao (442 B hin)

E[&%h — Bund )

(7417)

3

sl ol =

Case 1l: (>0 IThe roots are real and aistinct and cthe coefficient

of [}{2 namely 2 Ruabh (M,Elhhfaﬁ.&h) is negative. Therefnre for

4 given value of the sqgueezing parameter A in order to have an
antibunched state, o should be chosen such that oldaly L K>, -
For oy < & Lo, + the state I9,R> is bunchea,

Case 2: <0 : The roots X4 and o; are purely imaginary

quantities and cthe coefficient of o = namely 2 Swidon [Lﬁ'ﬁﬁ_%&}d
is positive which means Fet) is positive, and thercfore for all
values of o we have only bunched states.

The discugsion in Case 1 and Case Z given above are to be
compared with Ref.(9) and equ.{6.7) of ’fune:n.[m:J Our results
Are exact for @ \redl) and 2 (real) and £ix the exact range of
valuss for ol in terns of N whereas the alscussion of Ha.!.is"gj
is baged on the limic [o|” S>> S dis.

Now LOr of =@ L., toOr Lhe Squeezed vacuum state |0, £ >

@) _
g (o= oot n (7.13)

(2)

which is to be comperec with 5(@) = 2 for a cihaotic light beam
in an optical cavity. as remarked in Sec.4.4 equ.(7.18) means
that the cavity £illing due to SqueezZing is mere bunched than

the chaotic light and the counting statisties are sindilar.
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All the above discussed results could b obtained as various
special cases of the (?E?Q) of the gensralizea squeezed coherent
states (g.s.c.s) introduced by the author (Sew Sec.5.2)

I, Z,et> = D) S(2) ImD
and its 3&3{_’0} is given by ; ; oo
l:(x’f-fzmi),%mﬂ\n.m&n €°%) (= (nvt) Adnhn. Coshn £

: ok
-+ 4!@12&443:1 n+1) +Bunk n +1) (M+2)

A
-+ 410 Cothen M+ Gogln - W t"n—i):l

(2) _ (7.19)
d©:z
o = ap 2, N&
(1) Buadin 4w Cde )
Now,
Case 13 For FZ-p , the equ.(7.19) becomas eque(7a12)
Lase 2: For =0 , the equ.(7.19) becomes equ.(7.14)
Cagse 3: For m=o0 and & =0 , the equ.({7.19) becomes egu.(7.18)
Case 43 FOor Nz=0, 020 omd ot heal, the equ.(7.19) becoues equ.(7.15)
Now we proceed to get the conditions for bunching and antibunching
Df L:]ﬂsvlcng!
A 2 2 & Buibin. CRlin
Egn.'w&n (30 +1) A 200 Burdar +(AM+20+1) Bubin.
2
2 2 4. Ruidan Ccﬁﬁxhj
(2) i 1 +2 0 o Cﬂ.&dlh—fnfv’&.ﬁ. ~2(@n+l) L A
3(0) Lol . (7.20)

i 2N
CET IV BN
(27
The numerator of the second term of 3{ 0) in the above expression

could be written as (for of and %, real) s
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F ) = c{’z[l‘.t’n—f-j_) ,&M‘lﬂ +o2n —(2n+1) ,&m.h-zh]
+ AAL (B 442 4 (v t) Ahn-M (7.2)

7.22
= P00 - G (Seny) 24)
The roots of F(ot) are
1/
Ag,oly = F [G*(’l)/ffh{' (7.23)
Case 1: MLO . 1In this case £(n) >0
Taking or = ,&q\.)ﬂf’h’ &{n}cuuld be rewritten as,
3T N- % (d+4m*) ~ X7 (5 +AN+2) (7s24)
Since X )0 ., the positive root of 3{'1) is
2 42 2
SL(1+4W—J + N[5+ 4N +EJ} - (4+4m)
- (7.25)

2 Gl

£ 2 (5 +4m +2)

Now two cases arise, 7L positive and p negative,

a) For 140 , such that x2Xy ; G(20)40o and oy and A, are purely
imaginary, Since f0OuSe , for all o, Fle) >0 i.es, the

sStates are bunched.
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b) For #1140 , such that 0LXLA; , the sign of 3(2;”1‘3 Opposite
to that of the coefficient of :n:"" le€¢s, positive. Thercfure,n{i
and of, are real and Gistinct. For ® L and K{7oly, ,
F(sl) 70 4 lse., the states are bunched ana fc:rn(i.;{_ng.{rglj Fee o

i.e., the states d4re antibunched.

Case 2: A7 0

The positive root of F2) is given by

n-4) 4+ 4n-1) + Nn3n E
i/ﬁm ( )
= 2 an

(7.26)
}12_

Now similar analysis could De dons as above in case 1 apg
the range of values for both the cases are given in Table 1,

To know whether a given My 2,o¢> is bunched or antibunched,
one should just caleulate Xy lequ.(7.25)) ana M, (equ.(7.26)) and
then look at the Table 1,

To have a feeling for F(.::{) (eque(7.21)) we have Fig.4 which
gives tﬁe behaviour of the functions :?{n){la. and 2a ) and Gi(w)

(14 and 24) for N=5 andn:z25 respectively. at a
chosen 1. the ratio of Gt(n) to f(n) determines oy and o, .

We note that fmy is a monotonically decr=asing function ang
the root of {0 namely h, tends tn{fﬂuz}(z > 98 M tends to infinity,
Tne positive root of Gi(n) 9iven by equ.(7.25) could elso be obtained

from the positive Zeroes of G—,{n] Erom Fig.d.
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Just for Ithe sake of reéference, 'I_-_! and A, are given in Table 2
_ =

upte wmz=2 5 y Since the exact range of wvalues for h anajare
decided by A, and Ay « The last colung in Table 2 gives the positive
roots of Gi(n) for different values of k¢

Finally we would lise to uiscuss why an tiounching should be
considered as nonclassical. it is due to the nonexistence
Glauber-Sudarshan ’P[o{) 45 a positive definite function. This c¢ould

(2) e
Pe seen from the expression for 3 (0) « From equ.(7.5)

E"P@.z)(mﬁ—- Z mr”‘)’fatzq

?(o): 1+ [j o Idlzdlof]l (7.27)
(23

For antibunching 8 CD).{_i}which means 'P(n{}is highly singular ang

t-—:u_!;c".-s on negative values. 'PG:{} exists as a positive aefinite
function for thermal light and cnherentl light; whereas 'P{n{)dﬂas not

exist as a well behaved function for antibunchea J.ight.{l“

--.-l--—u.ui—-.-.-p—u.-‘-—._l-—-u_—n.-——n.-.—.—.-.-——-—.

[ T T e e e e e T
i ]
! Range for % : Range for of i
{ ] (] [ ]
T T S S e B
i’ 2, E B S/LM}LJ_?L E Bunching E Antibuanching E
e e e — .
s P X% iseocacw | o s
(] ]

1 i S A R e e 'f -------------- '| ___________________ '*
e Poldoly amd ! 5 !

(=4
E e & e e e W 4
(]

! ; L o $ AL L Loty :
. e — e . :
: : ; NO 1 oldoly ,ff;f !
L] i | i ] rfy ]
W o e — . 1
: : XLt Loty He :
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Number

L LR R S

o a3 o

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24

0.15030104
0.095599996
0.07266194
0.05669263
0.045637483
0.03919661
0.03392628
0.02989722
0.02671307
0.02414943
0.02202909
0.02025004
0.01873623
0.01743253
0.01629819
0,01530223
001442089
0.01363534
0.01293089
0,01229556
0.01171971
0,01119535
0.01071585
0.01027571

0,00987029

Table 7
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0.40235943
047030687
0.49556065
0.50862217
0.51658773
Ue52194834
0.52580166
0.52870417
0.53096914
053278542
053427505
0.53551769
0.53657103
053747463
0653825855
0.53894520
0.53955173
0.54009056
0.54057360
0.54100800
0.54140186
0.54175959
0.54 208660

0.54238605

0.54266214
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}oayE N=S

10 2 a;b N=25

10

I |
+1 +1:5 +|2:0
1b

=10

=10

-10

=10

1S A2 L!u:‘jha_vir: £ Lk =ty - -
=t o _..';.L.' {lﬂ =Hgle) ..:1'_-]_} anc |._-|-"tr_:| ;IIJ-Lu:' and Ehj

for n = 5 and 25, respeceivaly.
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ADDENDUM

*
SCALING PROPEATY OF COUNDING DISTRISUTIONS

The quantized versions of Maxw=ll's equations are enough to
do the 'practical electrodynamics®, i.¢., to calculate fields., Iif
We Stop here then we fail to get complete details regarding the
radiation field. To have a knowleage of the dynamics of the
radiation fiéld We require the counting distribution of the
radiation field. This is S0 because light is a ‘ranﬁamly fluctuating
e:»cc:it‘atinn'flJ Again depending on the photon counting distribution
of the radiation tield, we realise a particular class of states to
be more useful to work with, in a given context. For example
the chaotic light PoSsesses ueometric counting distribution, which
is determined by the Principle of Maximum Entropy. 0On the
other hand the coherepnt states have the counting distribution to
be Poisson. These states could be termed as ‘classical' for
redasons mentionsd earlier in this thesisg.

There are other nonclassical states which have different
Counting distributicns exiibiting Sgueezing and antibunching
(Chapters 5,6 and 7) like binomial states, logarithmic states
and ‘sgueezed states. In khis note we briefly discuss ap important

broperty known as ‘asyvuptotic scaling' associated with certain

counting distributions in quantum optics,

*
dasad on

S«A. Bambah and W, Venkata Satyanardyana, Preprint, The Institute-

of Mathematical Sciences, 1o93g,
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Definiticnt A counting uistribution iﬁix} isisaid to admic
Mmoo
scaling form (or asymptoric scaling) if

?;gg <ny P e o
¥ el

where Z - vL{{Hyf> and Y is some function.

The asymptotic scaling form of eounting uistributions was
tirst known to workers in guantum optics. Later it was introduced
in the study of hadronic multiplicity distributions, now known
as K ND scaling.u}

The generalized Bose-Einstein distribution (See paye 65 )

hds a scaling form
'Rh ;;a-l E_ng-
n*«(g) :.ijgjal (2)

Haturally the chastic Lidhet has a scaling forii.

Coherent liyht coes not scale because the Poisson uistribution
does not scale,

In this note it is shown that the pure scueazad ctates

have the asymptotic scaling form.

Pure Sgucezed States

The counting distribution is yiven by
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e = Ci—h [“EM’_E“E_) (’“—"‘

Al (3)
@"'H'i = 0

Also, <N = Sunh (4)
and
Y
n; )
<n> ﬁj_ﬂ = -i‘_)___u _(_i__rjl%.—- 5 (5)
(14 am)? \ 4(4+L)] miml A
A Mi—= &5 and Wy —> oo and making use of Stirling's

approximation equ.(5™tencs to

%(%):Jze e (s)

which is the asymptotic sceling form of a pure scueezoed state.
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Now we would like to point out the Similarities between a
pure sgueezed state and a thermal state. Though the counting
distributions are oifferent for these Ltwo states, as already
pointed out earlier, their Second=oraer corralatcion functions
Dehave somswhat identically. Both the states are bunchned;
in fact pure squeszed states arc more bunched than a chaotic stace.
Eoth the states admit asymptotic scaling forms: for the thermal
light {n‘?ﬁlgaes as E_E whereds for a purely sgueezed light vy P
goss as EHE/E ’

It appears ironiecal that while a pure squeezed stace has a
counting aistribution ‘similar' to black body aistribution,
Squeezed coherent states are to be attributed entirely nonclassical
aspects. But we must realise that squeezingy defies a classical
description in the sense that the tlauker-Sudarshan function
fails to exist as a'well behaved function' .

“hat the scaling form amounts to is as Lwy is varied
(it could be done By chancing the counting time of the photon
Cetector) the E%\ attains « kind of statiopardty f[or larue values
of W and In .

The counting aistributions which adidt asyuptotic secaling
form arising in guantun optics nave been made use of in constructing
quantum optical mogels for particle production in hadron~nadron
eollisions anc they have been highly 5&DCEEEful.{3}

Bivajima and Suzukit4}have discussed meny orcher counting

distributions anu their scaling forms.

L A
Cf el Bode b ey B
celied bk Sk &
B ool Bk
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COMMENT

A note on the contraction of Lie algebras

MV Sutvanurayana

The Institute of Muthematicel Sciences, Madras-6040 113, India
Received 2 | decermber | 955

Abstract, 1 s demonstraed thin the contraction of Lie dlgebras con be viewed us ihe
procedure that enderlics limiting disteibutions i prishahility theory, The consequences of
such dn mterpretitiom are discussed

The contraction of Lie algebras, i.c. the method of obtaining one Lie algebra from
anather Lie algebra (usually non-isomorphic) by meuans of a limiting procedure, was
originally introduced by Inonu and Wigner (1953) and later developed by Saletan
(1965) and it is discussed elaborately by many authors (Venkatesan 1967, Gilmore
1974, Barut and Raczka 1980). Arecchi er al (1972) employed this method to abtain
the harmonic oscillator coherent states from the so-called atomic coherent states. In
this comment we shall explicitly show, using two examples, that the procedure involved
in the contraction of Lie ilgebras 15 closely related to the well known method ol
obtaining one probability distribution from another probability distribution involving
4 limiting procedure,

The coherent states of the harmonic oscillator algebra (Klauder and Sudarshan
1968) (also known as Heisenberg- Weyl algebra) and angular momentum algebra (also
known as SU(2) algebra) (Radclifie 1971, Arecchi et af 1972) have been defined by
different people in different contexis. The coherent state representation of Lie groups
is also well studied (Hioe 1974, Onofri 1975), Coherent states that arise from the
Heisenberg-Weyl algebra are known to be the cigenstates of the destruction operator a:

alz) =z|z) (1)

where z is a complex number and ity Fock space representation is given by

"

|2y =expl-|z7/2) ¥ ;h_-,m}. (2)
nay M2

These states huve many interesting properties and applications, especially in quan-
tum optics ( Klauder and Sudarshan 1968). Also

flz) -—|{rlf:'r|:=:xm—i:|':'ltl:—[r}- (3)
Al

gives the probability that there are n photons in the coherent state |z). Due to equation
(3), 2) is known as the Poissonian superposition of number states [o).

Coherent states of angular momentum are defined s [Rudeliffe 1971, Arecchi e
ol 19720 Hioe 1974)

Pt }

|lu:|_-— I— 3. :_,l-)L jl‘l'l 3 14#
J]"'lj.llj]l ||H|I n (i
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2 M V Satvanarayana

where yi is a complex number and | p) are the projections of a single angular momen-
tum j. _

Owing to apparent similunities in the treatment of coherent states of the harmonic
vscillator and angular momentum, Arecchi et al (1972) ;hﬁ'i&:gd, by using contraction
of Lie algebras, that the angulur momentum coherent states go over to the harmonic
oscillator coherent states. Not much has been known about the meaning of this
contraction procedure, We propose that this limiting procedure could be understomd
in the languuge of probability theory as illustrated below. Now

Tyl =['Jﬂ[#}!;=(j)ilﬁlzipii |l (53"

gives the probability thut a system described by the coherent stited s in the projected
state | py which is a hinomial distribution,
Taking |u[* = |=[7/2) cquation (5} can be written as
(202 =1 (2= p 1) (=
- [z pl2i)"
IT in equation (6) we keep z fixed and let j tend to infinity then wal) = fi(z) of
equation (3. This is the so called Holstein-Primakotl (1940) limit used by Arecchi et
al (1972 hus the contraction of Lie algebras used by Arecchi et al (1972) entails a
- Atraction of probability distributions. Here we mean that the ‘contraction of prob-
abilities” is the limit involved in one distribution going over (o another distribution.
In the case of SU(1, 1) the commutation relations are specified by
o b=+,
& ()
Wil )=24

where J, are the ludder operators. Using Perelemov's definition (Burut and Girardello
1971, Perelemov 1977) the cohercat states are defined as

o =1

ftz ph= ¥ ( i ) 2"t k) (8)
Vo =]

where = and p are comples and related by |2 + ||’ = 1. The associated probability

distribution is given hy

i —1 3 3
mm=(":f1 )f.l:r'!"{lul‘}‘ (9)

which is negative binomial,

IFin equation (9) we let |w|* tend 10 zero, # tend o infinity and |70 tend o A
then Pulp) = fi(A) of equation (3], This is the sume limiting procedure employed by
Barut and Girardello (1971). So the contraction of SU(1. 1) 1o Heisenberg-Weyl
dlgebras the same as the contruction of the negutive binomial distribution associated
with SUCT 1) o the Poisson distribution associated with Heisenberg Weyl algebra,

This relationship between Lie algebraic contraction and ‘contruction of proh:
abilines” could be extended o the general theory of contraction of Lie algebras.
Frobability distributions could be associated with arbitrary Lie algebrus via defining
coherent states as shown by Perelemov (1977). This makes the study of Lie algebras
interesting in the same way as special functions associated with them (Miller 1965,
The connection hetween “contrction of probabilivies” and the stidy of Ciyley- Klein
geometnes (Sanjuan 19541 via the group contraction procedure will be published
elsewhere

Tl )= (6]
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In this note we show thal squeered coherenl Slutes Jo not exist for the pari-Bose oscillator.

I. INTRODUCTION the pura-Bose oscillator,

It can be cosily seen that the operators 4, A ', and N (or

= : “ . . o ]
In & recent paper, Fisher, Nieto, and Sandberg’ discussed /) do not close and form un algebra. However, A 41

the guestion of oblaining generalized syueezed coherenl
states in the Hitbert space of the simple harmonic ascillutor,
These are obluined by exponentials of polynoemials in a und
i ! ucting on the vacoum [0} as follows:

|, 2y =D ()5S L2010} i
where

S(Z)=explZia")s—2Z8a)M (2}
ind

Dla)=explad'—a’al , (3)

where Zy i the complex squeeze fuclor,

Fisher #al' proved that squeezed coherent states exist
anly for & =2, which are the familiar 1wo-pholon eoherent
stigtes.’ For k> 2, the squeezed coherent slates do not ex-
ist. The method of their proof 15 1o consider the vacuum
cxpeciation vulue of

Ui Z) =explZita ") =Z(a)4 . (4)

which clearly diverges for & > 2. For & =2, il marginally
converges. This shows that for & > 2, U, (Z) though uni-
tury 15 unbounded in the Hilbert spuce of the simple. har-
mionic ascillator,

In this Comment we extend the resull 1o the para-Bose
case, where we prove thiol squecsed colierent Stiles do nol
exist for all orders of slolistics.

Il PARA-BOSE COHERENT STATLS
The para-Bose oscillitor satisfies the equation of motion
[AN]=d (5
and does sot-satisly the canonical commutation relation
[4.4']=1 . (6)
N is defined as
N (AT A +A4") —hy | (7)
where fig i5 the lowest eigenvalue of the Hamiltonian
A=40d'd+4d") . (8)
The case fig= -{- corresponds to the standard oscillator,

Generally 2y (s delined as the order of the statistics' ol

30

1
and N elose and the algebra is the algebra ol the Lorentz

group 502,17, Since the spectrum of Nis positive delmnie,
one cin obtin the Fock representution®?

lzi_]z.,jn.n“‘lziﬂ 'i‘hu]l”* (49
arml
{.-E'I;,,_Lh“f?.n]]“ . (1)

When ﬂu=—;-, we pet the wsual representation of Bose os-
cillators-and the distinclion: belween the even and odd ma-
trix elements disappears, We thus get an infinite spectrum
Mg b g2 e Tar every value of g,

The physical meaning of the pura-Bose oscillimor may he
understood iF we see the Green's nnsite!

Iy
A= FHY, (1
i=1

where the &' dre the usual annihilation operitors for (e
Base oscillators for o given J, but snticommule Tor different
J values, Though this representation is known 1o be reduc-
ible, it brings oul the physicol meaning of A as o collection
of Bose oscillutars und thus un extro dégree of Mreedom is
introduced.

Coherent stules of o puru-bBose oscillutor have been de-
fined by Sharma, Mehw, and Sudarshan® ond Biswas and
Sunthunam.’ Considering 1he displucement operator ) L)
weaplwd ' —a*A ] acting on the vicuui i[l},,u, Slhiasirmea

of ol " ablained coherent stile |o) B B

|n'}'ﬁu= }:Elﬂnliihu i (121

where
12
")

iy = ] ;I:I} I'l'“ﬂu [{ BB

SR
and

~1f3

= 4
ao=| 3 ki) (Hlal®® . 4

g5l | F% W) | (o S

2 2 5

The same cohérent states have olso beéen obinined by
Biswus wnd Sunthanom’ by using the dilTerentiol operator

2251 © 1984 The American Physical Society
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Biswas and

Ay "I

=l (sayl) . {1:5]

representation for the annihilation operator.
Santhanam also oblained

i U:nJ'

m+1
2

i
wo{O1A mA 0

L. PARA-BOSE SQUEEZED COHERENT STATES

Proceeding nlong the lines of Fisher of al.! we consider
U Z) = expl Zy (A ") = 277 (4 )4 (1t}
and

r0LULLZ) 10} 5 =1 = Iz,l?,nguu ha "lm,.ﬂ-a- o

T T3
==z ey
2P+ 12
FO=pmzppm iy
(2n)!

(n
where T =Cy, T1= 02+ Oy, vle,

In general, as in the cose of the usual Bose oscillator eacl
T has many terms, all are positive and the largest is ol the
arder of Oy, and indeed the others are also of the same or-
der, as all of them arise [rom l!u: vacuum expectation value
of a polynomial of degree & in Al and A,

MNow, we write the lending term of the sth term of the
expansion on the right-hand side of Eg. (17) ns

E? |}. 2"*|’“%"-‘~ i |l1.‘ L 1"' | + ol
4"
s : L1%)

N TEY I (o)
Case I Take hg= -!.-, then

I
ke 1k k1 +] +_]
I-zilhI [l 1 H“”
"7 2! '+

Mow two cases arise: sh =
we gel

2ot pnd 2or - L o both cases

il |ZL|?"
LT F T

takll , (209

CUOMMENTS k4]

which is obtained by Fisher et al! as is expected, since
fip=7 corresponds to the standard oscillator, Now for
& =2 we get 1he usual two-photon coherent stales.

Case 2: Take hg= |. Apnin lwo cases arise! gk = 2m and
Ini + 1.

i) ik = 27m

1Zil™ o
= {IIHE Pl 10 0m 4 1)
=——;——-21"'1'.m1:*z ; (2t

It is ensy 1o see that X0 — 1%, diverges,
Gii) = 2m + 1

i 1z 29 g+ 1)U +2) . {22}
(2aM!

Again il is easy tosec that 30— 1", diverges:
Mow we consider the special case fg=1 and & =2, Le.,

corresponding to the Iwo-para-Bose coherent stale,
We have

= l‘_:; l}' 2 1)? (23)
Consgider
fi)= S =1zt (24)

n

n=0 n
"

Since the series delined by Eq. (24) is an allernaling scrics
where ench 1, i% positive, we can apply Leibnite™s tes®
st Uie convergencee ol flz). We note that 7~ 0 us
n— = ond |4, is nol o decreasing seguence. Therelfore
Flz) s divergent, which proves the nonexistence of (wo-
para-Bose coherent stites.

Similarly, it could be proved that squeszed coberegnt states
do nol exist for all orders of statistics:
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Roy and Virendra Singh showed that the harmonic oscillator possesses an infinite string of exact
shape-preserving coberent wave-packet states |n,e) having elassical motion. In this paper it is
shown that the states | n,a) could be obtained from the coherent state | a) and it is also shown how
a coherent state |a) could be expanded in the basis of |m,a)'s. Further, the possibility of “squeez-
ing" the state | n ) is investigated and the “gencralized squeezed coherent states” are obiained. The
squeezed coherent states for the displaced oscillntor are also defined. The physical meaning of

squeezing is also pointed out,

I. INTRODUCTION

It is well known that Schrédinger’s original motivation
for introducing coherent states was to look for those states
with probability-density wave packet remaining un-
changed in shape as time progresses and have the classical
motion

(x)=x4ln=4 coslwt +¢) i1
and

{(pl=palti=Mx {2)
where y

:Iﬂl 2 |7 (3)

“ i Muw :
and

=] m
la)=e=leli2 5 |
n=p Vil
is a coherent state (CS),
Nieto® et al. have used Schridinger's eriterion to d:aﬁm:J

Ima) =expl—1 [al0)|?] 3 [2L

mo={]

where L™ ~"x} are Laguerre polynomials,

Also, the uncertainty in the state | n,e) is given by
Ax Ap=(n 4+ . (7}

The above equation implies that the minimum uncertainty
{i.e.,, fim/2) is not necessary for the classical mation of a
wave packet. This fact has been also noted by Ohnuki
and Kamefuchi,®

The states | n,a), though not explicitly stated, could be
spotted in the literature*~'" The states | m,e) could also
be obiained when one considers the Hamiltonian®

H=+p’+1q*+qfl1), (8)

32

coherent states for arbitrary potentials. (For the other cri-
teria of defining coherent states see Ref, 3,)

Recently, Roy and Virendra Singh? showed, by adopt-
ing Schrodinger's criterion, i.e., to define coherent states
as those with undistorted normalizable wave packets with
classical motion, that the harmonic oseillator possesses an
infinite string of coherent states, hitherto not thought of,
Oniginally they were known as “semicoherent states™ in-
troduced by Boiteux and Levelut.! We briefly discuss
their coherent states below.

Define |

Ulalt)=explaitla’ —a’(rla] . (4)

Then the “generalized coherent states” (GCS's) of the har-
monic oscillator are

ey =Lale)) | ndexpl—itn +;—]mfj ;
=il 19

where | n} is the nth state of the harmonic oscillator. It
is easy lo see that the state | n,a) satisfies Schrodinger's
criterion.

The Fock-space representation of | m,a) is found to be

172
= l L™= [al0) | )l 0" =" | Yexpl —ietim +31] , (6)

where f(t] is an external force. If the driving term is tak-
en to be linear in @ and a', then one obtains the states
| ).

Il one considers (m | n,a}, then

| {m |na)|?

1
ZE'-FII“{H'

=T J ra | II'IH—HI{LJIM-M'- |l.'-[ | IJII -

(9)
It has been shown by Koonin that Eq, (9) is related to
the S-matrix element 5,,, by

400 © 1985 The American Physical Sociely



| S | 2= | {m | 0y} |2 (10

S Bives the amplitude for excitation fram the initial os-
cillator state | n ) to the final | m).

Also, Hollenhorst® has proved that Eq. (9) gives the ma-
trix element for a transition from the state |n) to the
state | m } under the influence of a gravity wave,

Equation (9) is also known as Schwinger's formula,’
and is also given by Feynman.'’ (See also Refs, 11—13.)

Section II discusses the relationship between GCS's und
CS's and in Sec. 111 generalized squeezed coherent states
are introduced.

Il. RELATIONSHIP BETWEEN GCS AND CS
We are interested in abtaining |ma) from |a). Let
| n,a)=Ala,al\n)|a) (11
=Ala,a\mUa)|0) (12)

where A [a.a’,u} i5 the operator to be determined. Also

|ma)=Ula)|n) ) (13)
% i
=) 2L |0y . (14)
N
From Eqs. (12} and (14)
ta)t 4
Ry )
Vi i) i

Since Ula) translates « and @, it could be proved us-
ing operator caleulus' that

]
AT 0 (16}
n!
Therefare,
Y awn
1”'“}2% |ee) . (17)

Now, the meaning of the state | n,a) is very clear as
the nth state of the oscillator whose ground state is |a),
a coherent state, not |ﬂ), as in the case of the usunl oscil-
lator. In other words, the GCS's are the excited states of
the displaced oscillator.

The above result is clearly depicted in the following dia-
gram:

Ulea)
st

(atyr

vl

| )

[n)
Ule)

| 0): ground state of the harmonic oscillator,
|ced: ground state of the displaced

harmonic oscillator ,
The above method of obtnining GCS’s using Eq. (17)
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not only establishes the relationship between GCS’s and
C5's and also gives a simple algebraic way to obtain the
GECS's,

One can also see that the GCS |n,a) is the “general-
ized coherent state’ in the sense of Perelemoy! !, for whom
the reference state could be an arbitrary vector in the
Fock space.

Since

|a), (18)

brae [sdl o e
a [:t}-—laﬂ+ 3

Eq. (17) could be given a differential operator representa-
Lion a5

d i g i
—_{. L=

dex 2 la).

‘_a':lﬂ‘—ﬂ'll

1 r 1
|"-“:’=ﬁz n

i -=il
{19}

Therefore, we observe that the GCS | n,a) is related to

the CS |a) just the number state | n) is related to the
vacuum state |0),

MNow, we illustrate below an interesting use of GCS's.

The displacement operators Ulal's provide a complete
and orthonormal basis for the adjoint group of the Weyl
group formed by a,a',1 with a scalar product given by

(Ula), UlaN=Tr{ Ula)UNa") | =rSla—a’) {20
und i

Ula)U(B) =expl +laf —a* MU a4+ ) (21)

In view of Egs. (20) and (21), we think of defining
coherent states of the displaced oscillator as

| za) sexpfzia’—a®)—z*(a —al]|a) (22)

=exp[z*a—za®|l/(z)|a)

L m
=exp[zta—zatle= a1 ». ‘fm Ulz)|n) . 23
n=0

Using the relation (6), we get

| z,a) =gl e, — |al’ —?E"L,E""”Hﬂrllilmﬁ .
mimeo V!
(24)
Equation (21) could be written as
fz.a) =explz*a—za® Uz} U(a) | D) . (25)

In view of Eq. (21), | z;a) is just another element in the
set of coherent states, which forms an invariant subspace
of the Hilbert space. Equation (21) could also be written
ns

me-lil'2 S 2 26
| zya) =e n_gumfu,n}. (26)

From Egs. (25) and (26}, we note that any arbitrary
caherent state could be expanded in terms of GCS's,
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III. GENERALIZED SQUEEZED
COHERENT STATES

First, we shall briefly discuss the squeezed colierent
states (SCS's). The 5CS is defined gs!®!%

|a,z)=Ula)S(z)|0) , (27)
where Ula) is the displacement operator given by
Ula)=explaa'—a'a) (28)
and
F i
S(z)=exp 348 =7 aa {29}
is known as the squeeze operator. Also,
CEE i +e'fa lsinhr=p |
(309

Sa'st=q! coshr +e =% sinhr =5 ! !

where z =re'®, The squeezed states correspond to Gauss-
ian wave packets with widths distorted from that of the

‘H.\__ 1
172
g =lln—mi0/2 | ymtns2 _’ﬂ! tanhr
coshr 2
Gm”{.'!}——_
172
—{{f —mlisT mansz-as | nlnl
it {—=1) -
coshr
0, otherwise .

Only odd-odd or even-even elements of Ganlz) survive
due to the fact that §(z) essentially creates two excilations
every time it acts,

In the spirit of Refs. 17 and 22, we realize that § (z) has
B finite expectation value in the state |n) (for
n=0,12...), i.e., squeezing of the states | m} is possi-
ble. We consider an interesting case below:

G‘mfz.lz{ﬂlﬁzl'lﬂ}l (33)
= 1
"~ (cosh J2g| e 5

[The authors of Refs. 17 and 19 have remarked thai
Guolz) sums as tanh [z | <1 for rc o, See Eq. (4.2) of
Bef. 14.] Now the GSCS | mz,a) is given by

M. VENKATA SATYAN ARAYANA

‘_luulu-
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vacuum state and those states follow the classical motion
though the uncertainties oscillate\?

Recently there has been a lot of excitement regarding
SCS’s, since they are considered to be usefyl in the detec-
tion of gravity waves.® [t has also been proved that these
states are emitted in certain nonlinear optical processes.®
(For a review on SCS's see Refs. 19 and 20.)

Now, we define generalized squeezed coherent states
(GSCS's) as

| mza) =Ula)Siz)|n) .

We first compute | n,z ):

(31)

|r;.z}ES[z}fn} 132)
=2 o) (m | Sz)|n)
i
=3 |m)G,.tz2). {33)
fm
Making use of a slightly modified form of the technigue

developed by Rashid,? we get the expansion coefficients

Grnlz) Lo be
A
T i n}/2 1_ sinh’r ’
] s —— for m,n even
x m "
(240112 --3-]' 3 J
(34)
A
4
’1,.1 1 nlé2—1 ‘iirli.l_l;
2 Mg =l g |le=t |,
, ! 3 2
- for m,n pdd

|n,z,a}'—_:U{c:}|n,z}EU{a]'E |m}G,.lz) . (37

Using Eq. (6),

172
Imza=e-tel2 36, ) |0l
m, | {

XL:,E_"”{ | e |1}1-::’_""i."} ’

(38)

gives the Fock-space representation for

| mz,er} could be expanded in terms of
below,

Equation (38)

| mz,a). Also,

| 11,2 }'s as given
Consider
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{mz|mza)={mz|Ula)|nz)
={m |S"2)U(a)S(z)|n)
={m |explab’—a*h)|n)
={m |explya'—y"a)|n)

| m,z)=S(z)|m) (41)

and (m | n,9) is given by
172
. |

i:m |ﬂ,?}=E"|Y|=ﬂ
ml |

L™= |y | Dy ym—=n

={m|ny}, (39} (42)
where y=(acoshr—a'sinhr) and we also note that  Using Eqs. (41) and (42), we get GSCS as
| n,7) is a GCS. From Eq. (26) } s ; a1
nZe)=e~ mz) |—
|mzal=3 |mz){mz|nzea) ] :E; | ml
m
=3 |mz){m|my) . (40) XL =" [ | pm=n, (43)
m
Now | m,z} is given by As an example, we give below the GSCS [1,z,a )
|
k
—lel’z = {2k 1!
& £ I pim =2k =1) 2 =1k—1
Lzg)m=——— s tanh|z | | —=—=— {|e]*)a™ mp . (44}
| 1,z;e) osh |z P2, 2, Ilfﬂ [z | Vst o |af |
Overcompleteness of | n,z,a)
Since Ula) and Siz) are unitary, for a given a and z the set of states |mzad, n=0,1,2,..., formsa complete sel
just like the set | n). Foru given nound z, theset | az,a) with all complex «'s forms an overcomplete set. 'We can ob-

tuin the resolution of the identity as

2
1= f ale |maz 3 ez .
T

Using Eqgs. (38), (39) and (43) the projection of | mz,@} on other states like |

{45)

m ) and | m,z) could be calculated. In the

spirit of Eq. (21), we can define the squeezed coherent stute of (he displaced oscillator as

| z,a@)po=exp

%{at—a'il— %Ea -—a]lJ |a)

=(cosh |z | )='/? S .
GRS Evpy

The physical interpretation of the GSCS is the same as that of the t
We can consider the GSCS as a coherent state formed due

established fact that SCS's are employed in quantum nondemolition (QND) measurements

. 12
tanh |z | ‘ - l?';;}: | 2u,ee )

{46}

(47)

wo-phaton coherent state of the radiation field.'®

to two excitations on a particular state | n). It is a well-

to reduce the quantum noise,

It is also hoped that GSCS’s will find application in the QND measurements and quantum optics.
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COMMENT

Squeezed coherent states of the hydrogen atom

M Venkata Satyanarayana
The Institute of Mathematical Sciences, Madras 600 113, India

Received 24 Octoher 1985

Abstract. The Of4) algebra of the ydrogen atom is made use of 1o define its squeezed
coherent states. 11 is shown that the effect of squecting is to increase the energy of the
atani in s levels, The corrections to the Bobir formula and the spectral transitions due to
stjuecting are caleulated.

Recently Gerry (1984) introduced oscillator-like coherent stales on the O(4) algebra
of the hydrogen atom, and showed that the correct classical limit could be obtained
without the correspondence limit. He also indicated that the coherent states thus
introduced describe the ‘elliptical orbits’ anticipated in 1926 by Schrodinger (1978).
More recently Bhaumik et al (1986) using these coherent states constructed a
wavepacket which travels on an elliptic trajectory. In fact all these works are further
developments on the realisation of the connection between the hydrogen atom and a
four-dimensional oscillator with 4 constraint which has been rediscovered by many
authors (Kibler and Negadi 1983, Cornish 1984, Chen and Kibler 1985) since the
original discovery by Pauli {(see the elaborate review, incidentally the first such one,
by Bander and Itzykson (1966)). Also Nieto (1980) obtained coherent states for the
Coulomb potential which are different from those introduced by Gerry (1984) and
Bhaumik er al (1986). Nieto developed a formalism to obtain coherent states for
general potentials using Schridinger's criterion, i.e. to define coherent states as those
with undistorted wavepackets with classical motion. Coherent states of Gerry (1984)
and Bhaumik et al (1986) are the minimum uncertainty states of the harmonic oscillator
(see Klauder and Sudarshan 1966). In this comment we introduce the oscillator
squeezed coherent states on the 0(4) algebra of the hydrogen atom. Further the effects
of *squeezing” are calculated,
First we shall briefly discuss squeczed coherent states and their importance,
Consider the harmonic oscillator Hamiltonian

H=twla'a+)) (1)

with [a, a"]=1. The eigenstates of H are given by [n) where a'ajn) = n|n).
The coherent states |a} is obtained as

ler)y= D{a)|0) (2)
where D(a) is the displacement operator given by
Mal=eaploa’ a*a) {3

ind o a complex number.

(1305-4470/ 86/ 000000+ 0080250 € 1986 The Institute of Physics Do
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Squeezed coherent states (scs) are defined ay
|a, Z}= Die)5(Z)|0y (4)
where 5{Z) is the squeezing operator given by
S(Z) =expliZa'a’ -1 Z%aa). {(5)

Z 15 known as the squeezing parameter.

The squeezing operator §(Z) transforms a and o' into another equivalent bosonic
system b and b' as

Sa8" = a cosh r+¢a’ sinh r= b .
Sa'S'=a’' cosh r+¢7"% sinh r= b %
where Z = re'’.

The scs have the following two remarkable properties,

(1) The classical motion of the wavepackets. Itis easy to see that the scs correspond
to Gaussian wavepackets with widths distorted from that of the vacuum state and
those states also follow classical motion but only the uncertainties oscillate (see Fisher
et al 1984). Because of the oscillatory motion of the uncertainties Fujiwara and
Wergelan (1984) named it as the ‘jester',

{(2) The non-elassical nature of squeezing. Writing a =X, +ix; and calculating vari-
ances Vi) and V(x:) in the scs |, Z) one obtains

Vim)=te™  V(x)=le (7)

It has been pointed out by Walls (1983) thut the condition V(x,) <} implies that
the Glauber-Sudarshan representation P function should he a noen-positive definite
function, Thus squeezing is a non-classical property of the electromagnetic quanta.

Originally scs were obtained by Staler (1970, 1971), who showed that the states
with minimum uncertainty form an equivalence class, which are the 5Cs.

There has been some activity on the quantum mechanical aspects of the squeezing
operator (Fisher et al 1984, Santhanam and Satyanarayana 1984). The present author
also introduced generalised squeezed coherent states for the harmonjc oscillator

(Satyanarayana 1985). (For reviews on scs see Nieto (1984) and Walls (1983),)
From (1) we obtain

Ha =, Z|Hla, 2) = hol|e| +sinh’Z + 1), (8)
Now we can define the action variables as

J=ht|e|* + sinh? Z 4 1) i)
and

Hi=wl
Also

v=aH5 ol (10)

The quantised energy levels are recovered by invoking the Bohr-Somerfeld rule
J=h(n+sinh’Z+4), (11)

The above form of quantisation condition is chosen in view of the fact that H) hecames
fw(n+1) as the squeezing parameter Z approaches zero,
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V1003 Styueezed coherent states af the hydrogen atom g
::: We shall now proceed to discuss (he sts ol the hydrogen atom. We employ the
13007 notation of Gerry (1984),
130 The Hamiltonian of the hydrogen atom is given by
13009 H=p"2u—Zer (12)
3010 It is very well known that the angular momentum vector L and Pauli-Runge-Lenz
b3011 vector A' given by
1413 ‘=—Ze'r/r+ U/ 2p)(1 = P—pxL) (13)
L commute with H. Also A’ is aorthogonal to L and A7 has 4 term containing H. Using
i it the decomposition Of4)=5U(2), ®xS5U(2),, Schwinger's boson realisation of SL(2)
i1 and the properties of A’ Gerry (1984) oblain
13016 Ea}d,+a{a;+1]’=|{hfb;+a’1§h3+_1]" (14)
017 and
(018 —uZety a:‘E={a}u,+a;a,+1_]"‘+{b:b,+h;b,+1}’ (I5)
i where [a, a]]=1 and [b,, bll=1fori=1,2
11020 Now introducing the Fock space basis, i.e. eigenstates of aja; as |n;) and hib, as
132 [m) where i=1, 2, equations (14) and (15) become
1 = m 4 m, (16)
42y and
14024 E,=—puZ% 1247n? (17)
13023 where
I 826 A=t mtl=m+m+ L
(R3] We now introduce the scs as
1304 faf, Z7)=D(af)S(Z)|n=0)
1029 S i E (18)
1303 |n';,Z*-_}ED[n'J}S{Z'”m,=ﬂ}
I fori=1,2 and Zi=r{and Z;=r],
T3 The condition in equation (16) reads
ver |af [+ lad +sinh? 12+ sinh? r3=|ail +|adf +sinh? £+ sinh? . (19)
11034 Now, for the squeezing parameters r and ! for i= 1,2 tending to zero, the above
Fany equation becomes equation (17) of Gerry (1984),
ey In the spirit of (8), the energy becomes
" s —uZ’'e! o
= i 203 (|aff + |a sl +sinh? i+ sinh? 2+ )7 ¥
i For ri=ri=0, the ahove equation becomes equation ( 18) of Gerry (1984,
I Further we see that squeezing does not affect the relation for the period of the
Lk Kepler orbit.
1 Using equation (11) und taking r = r, and ¥ = r., we obtain

r BN |
RTTe El:-j=—." ?‘LL?{ = —— = {210
Tiad 2h700my + natsinhe r, 4 sink” fatl)
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Exquation (21) gives the energy levels of o hydrogen atom specified by the principal
quantum number n{=n,;+n,+1) and the squeezing parameters ry and ry. It is to be

noted that the energy levels acquire higher values, as it happens for the harmonic
oscillator.

Taking r,=r, =0, equation (21) becomes
EM' = —puZ%e* 203 (0, 4 na+ 1) (22)

which is equation (15) of Gerry (1984).
Now, we proceed 1o caleulate the absolute shift in energy Elnl— gl

#Z'e* (sinh’ 7, +sinh’ ;)
zﬁ? [ﬂ;+ﬂ1+1}:
y ([}Eu, t2n,+ 2 +sinh® r, +sinh’ r;])

(L] )
E'~EM=

{ny = ny 1 +sinh® ri+sinh? ) (23)
For sinh® r, % n, and sinh? r;« n,. we have
EQ —E'" = #f::‘ {SIT:T::;“:;?; rﬂ{z.q, +2ny+ 2 +sinh’ r, +sinh® ry)
’ (I _ 2sinh® ry +sinh? ﬂ)
(i +ny+1)
- #:ﬁ.:?r‘ pu;:;: :-I :s:nlt;* rﬂf i+t 1 =2(sinh® r, +sinh? 1))
%[20m; + my+ 1)+ (sinh” r, +sinh® r,], (24)
The relative shift in energy is given by
Eug'—E™ _ —(sinb® ry+sinh? £)[2(n; + ny+ 1)+ (sinh? r, + sinh® r)) :
EiNRE (n,+ nt-rl_"r- sinh® r, +sinh® ry)? ’ (23
Forsinh® 7« n, und sinh? r, < n,
=lml " . ¥
HqE:anl_:z _{5[{11-:;‘::‘:-:::;? r:}[ﬂ m+ny+ 1) +sinh’ r +sinh’ ]
<[4+ 1 =2(sinh® r, + sinh?® r,]. {26)
The spectral transition energy AF(n, Ty Fa=emn ry, 1) s given below:
s

AEN" = _v;,'-‘_“”’ o bk (gt ma) 4 2(sinh® ry+sinh® £ 4 1)][(n, - my )+ — )]

1
x - " & - ¥
(1, + ny+sinh® r, +sinh? ro 1)y + my+sinh? £, +sinh? ;)

(27)

Equation (23) gives the squeezing correction to the spectral transitions, which arise
mainly due to quantum mechanical nature of squeezing.

In & future communication we shall investigate the nature of the motion of the
wivepacket constructed using these squeezed coherent states,

The author is grateful to Pressfor T § Santhanam for the discussions, He has also
benefited from the discussions had with Professor E ¢ G Sudarshan and Dr Gautam
Gihosh. Heis grateful, for the-award of a Senjor Research Fellowship from CSIR, India.
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In_contrast 1o coherent states o) which luve zero Hanbury Trown and Twiss Effect [ie,

BUOI=1], it 15 shown that genetalized coliorent siates | e} are antibunched For [ref?e
tnge of values (o a Geal) By temiis ol (e SUUEEAIg pheaimele
state |a,r) in order toexhibi Bmching and antibunching
act rapge of vilues o eand o loe p given o Tor generalized syucered coherent states | mer) to ex-
hibit bunching and atitibineling arve nlso obtainel,

1986 PACS numberis): 01,65, —w, 42.50.13v

MS code no. AKII 12

The quantity which determines bunching and anti-
bunching of a state' of the radiation ficld is decided by
the second-order correlation function g'(0) given by

(a'a'aa)

)
(= (1}
. _,.,E ey
and it could be written ns
T R t
gu’t{]}= |:ﬂ' aa ﬂ'}—-{ﬂ ﬂ'} :2]

{a'a )+ '

where ' and a are the photon creatiun and destruction
opernlors,

A light field (or the Fock-space siate describing the
light field) is said 1o be antibuncled if 2"N0) < 1, which
means that the probability of detecting a coincident pair
of photons is less than that from a coherent  field
deseribed by a coherent state which has Poisson distribu-
tion for plioton counts. Antibunching is considered to be

| "a clear demonstration of the quantum nature of light
which is not explained by clussical theory,” since it meins
“anticorrelation” in the photon detection, The method of
generiting antibunched states lias heen  described hy
Stoler® and the subject has been attracting a lot of thearet-
1cal and experimental activity! (See the review of Fuld).

There are many states in the Fock space which are anti-
bunched. For example, the number state [ a0 i one such
since g () =1—1/n, which is a rellection ol the el
that the state | n ) contains a delinite number of phoions,
The hinomial states of the radiation [ield recently intro-
duced by Stoler et al® are antihunched for certain parnm-
cler ranges. Also, Simon-and Satvanarayann ver ¥ Tecen-
Iy inteoduced the laganithmic states of the sadiation Geld
defined as

I3

[} A
[q}=r1t.b}+,ﬁ'z 4 [y for =l<g =1 ]

n=lI f

where
: . 2y 145
fi— ‘:_‘_.l.:'. 8 [ ()
It —q)

[
T e
b ordeeal) for the syveered eoherent
are ohtined. The conditioms and: (he ex-

| |

i;i and ¢ is the point inside a uhit circle, ‘These states are an-
. tibunched for certain rnges of g and e. Dut the phase
i state |#) (Ref. 7) is bunched. For the coherent state
¢ |a), gM0)=1 which means that it has null Hanbury
" Brown and Twiss correlation,

= In this communication we discuss the bunching and an-

 those are the states which are useful for the description of
= the optical fields. First we consider the generalized
© coherent state® | n,a) as defined as

a

| ma) =explaa’—a’a)|n) , (5)

- have been studied in detail.” Its g'2(0) is given by

3 £
g (0)= 4 A2 e =1)

3 ot (6
(let]|*+4n)

*which means that the states [ o) are bunched only for
2l |*=1)0, and for 2 la|?<1 the states clearly hinve
lamihunchiug. So unlike the coherent states |a) for

i which g 2M01=1. the peneralized coherint states (GCS)
Lavah has subpoissonion statistics for 2|5~ [ This
- menns il e were to lie within the unit phisnse coll aronned

the origin then the corresponding states nre antibunched,
Here we lave an interesting comment repanelinge
woeounting stanistics of i), “The approprinte genernli-
i zations of the Poisson distribution” us stated byt ey and
Virendra Singh also containg subpaissontin stalistics for

tibunching properties of virious coherent states, since |

[
—

: |
¢ owhere | n) is the nth state of the oscillator. These siates

—

§ .
IS e S =
| Next, we consider the squeezed coberent states. (BES)
| defined ag!-10-1
E |, Z)=Del5(Z10), (7
f Where Dia) is the displacement operitor given by
b Dhr'IEJ:n]'l{un‘—cr'ul ; (8]
i
EI il
Ha L ) o
AlF=exn owlal s il 191
2
= s
il ! |




=

e |
I
| is klm“n a5 the squeeze operator. Mq:r

o 'sinhr |

.S'r.rS*:a coshr e I
(100

Sa'lst=e-1?

; i
a sinhr +a'coshr |

I .

|I g”'[[l']: {_I_J::i!—-m!_"ﬁ'sri:11|r|::r|:|5I1r:I{|1'2

—F

bl | ) l

H
' I

s:nhrl:mhril +4 || *sinh?r 2 sinh r]

o = iy e

| where Z =re'?. SCS were also introduced by Rowe ns the
\ “hrt‘ﬂthmg modes™ of the radiation lield in the context of
lw:: photon processes (Ref, 13).

1| |

(| e|*4sinh’r?

The g'*10) of SCS is given by
(11)

—_

I ] f I_
For (=0 and & {real),
2sinhr +-sinh’r( 2 + 1) —a’sinh2r

£2)
HH0l=1+ =
§ ] {a® +-sinh®r)?

The above form of

only if the numerator of the second term of Eq. (12),
which could be written as
flay=a*(Zsinh’r—sinh2r)+(2sinb'r +sinh?r) ,  (13)

is positive. fle) is a quadratic expression and its analysis
is simple and given below. The roots of f(a) are

sinhr(14-2sinh’r)
2{coshr —sinhr)

E’|,E1=i

(14

Cpse 1: r=0. The roots are real and distinet and the
coefficient of n!, namely 2sinhrisinhr —coshr), is nega-

g'210) could be reduced to Eq. [
(2.30) of Walls and Milburn." The state | a,r) is bunched |

{

(12) \

p

|
: i
¢ sinhrisinhr —coshr) is positive which means flea) is
positive, and therefore for all values of @ we have only
bunched states.

The discussion in case | and case 2 piven sbove are to
be compared with Ref. 1 and Eq, (6.7) of Yuen."" Our re-
sults are exact for e (real) and r (real) and fix the exact
range of values for e in terms of r whg:reas the discussion
of Walls' is based on the limit |a|®>ssink?r,
| I‘:IE.'I}W for a=0, Le, for the squt':z:d viicuum  state

0

[qiz'm}=2+mh’r : (15)

which is a rewritten form of Eq. (17) of Walls,' which is
to be compared with g'*Y0)=2 for a chaotic light beam
in an optical cavity, This means that the cavity filling
due o squeezing is more bunched than chaotic light and
the counting stulistics are similar.

All the above discussed results could be oblained as

tive, Therefore for a given value of the squeezing parame-
ter r, in order to have an antibunched state, o should he
chiosen such that m<a) or a>a;. For a;<ca<as, we
have a bunched state,
Case 21 r <. The roots ey and-a, are purely imagi-
nary quantities and the coefficient of of numtl\
sl

various special cases nl' the g'*'(D) of the generalized
squeezed coherent states’ (GSCS) introduced by one of the
aullmrﬁ earlier defined as |

|n En}—-ﬂia}.ﬂ'iz]lu} (16)

nnd its g'?(0) is given by

il | |

—

|

—_

—

1

g =] [a*—{2n + Usinhreoshre ][ a* = (20 + | ?ﬁir]]lr'u:mlm.-'”] 4 e | fsinh’rin 1) I’

4sinh'rin 4 Din +2)4-4 || ?::u-,'h!rri Y-vash®rm(n — 1 WA | e | 24-sinh’r +n cosh?r)? . (17 I

‘ Mow, lor ease 1, Z =0, Eq. (17} becomes Eg. (6); for case 2 2 =0, Eq 017) becomes Eq. (11); for case 3, 0 =0 and ¢ =0,
Eq. (17) becomes Eq. (15); for case 4, n =0; #=0, and a (reall, Eq. (17) becomes Eq. (12),
Mow we proceed to get the conditions for bunching and antibunching of GSCS

" M0 =[sinhr (n?+3n + 1)+ 2asinh’r + (402 420 + Lisinh?rcosh?r + 2na’coshir (

—cosh®r —2(2n 4 Datsinhreoshr ] /e’ + sinh?r 41 cosh?r)?

(i8) -
| i I .
H 1
|| e ‘J]! | - = e
ll | CORE I | -
| TANLET, Range ol values lor e and o
- S —— — e ————
I r i -
I . x=sinle Bunching Antibunching '
l___ "u:i-:f":'.'-" X Ay l — a0 AT R r‘l‘
]._I e x = i 0 ey el et h
AR | : ] [ T S 1 ! :
| iy X ity | oty and e | i t
| (T« 00 aps ]
| e - : = =y !
! i 1 IS i I
! i1
1 |
! | {1 -
i i
Lt SArs
A fieal = i o



T : i | ,

= v Glr) could be rewritten s

_Z.'Jii glx)=n—x(14+4n?)—x5n2 440 12 | (22)
' i ; "': := :5 5 Shios x >0, the positive root of g (x) is
7 a, =

e LOL b4 e (5002 -4 +2)]'"2— (14417 !

25nt44n 4+2)

(23)

———=il: =l = la) for £ =0, such that x> x5, glx) =0 and o and o) }
sl are purely imaginary. Since f£(r)>0, for all a, Fla)s1,

1 e, the states are bunched, |

el —l (bl For r <0, such that 0 «x <Xz, the sign of gix) is |

1 opposite to that of the coefficient of x2, je, positive, {

Therefore, o) and @, are real and distinct. For o <o) and
a>ay Flal>0, ie, the states are bunched and for
i <a<ay, Fla) <0, ie, the states are antibunched.

Case 2: r >0, The positive root of Slr)is given by

; S e i
G DEf = EnGn +2] ‘ 1.\,{24]
7 .

A similar analysis can be done as above in case | and the
range of values for both the cases are Biven in Table I, To
know whether a given |nz,a) is bunched or anii-
bunched, one should just caleulate %; [Eq. (23)] and r,
[Eq. {24)] and then look at Table 1.
= To have a feeling for Fia) [Eq. (20)] we have Fig. |
2 which gives the behavior of the functions JUF) (T2 and 2a) l_
vi= and G(r) (1b and 2b) for n =3 and n =25, respectively, |
i At a chosen r, the ratio of Gr) to f(r) determines a, and
[ as. Wenote that S{r) is a monotonically decreasing func- fes
’_1;:':' tion and the root of f(r), namely ry, tends to +in3 as n |
tends to infinity, The positive root of Gir) given by Eq. |
e % (23] could also be obtained from the positive zeroes of 1_
L. Behavior of f(r) (1n and 2a) and G{r) (1b and 2b) l| Glr) from Fig. 1. : \
for n =5 and 25, respectively. '\jl !
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