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CHAPTER O
SYNOPSIS

I+ 1s well recognised that the inecualities furnish
a very general comparison principle in studying many
qualitative as well as quantitative properties of solutions
of related equations, 'BEveryone knows' that Gronwall

inequality is.but one example of an inequality for a mono-

tone operator {£  in which the exact solution b = a+Xur
provides an upper bound on 211 solutions of W< a +&kuw .

On the basis of various motivations this inequality has

been extended and used in various contexts. The first
nonlinesr version of this inequality is due to Bihari which
has been Turther generalised in several different directions.
An extensive survey of these generzlizations is ziven recently
by Beesack E'F;B] , Deo et, al [9] . A4n important

feature of these results is that these inequalities are

e

reducible to differential inegualities.

T

Fov this finite system of integral inequalities

£
P (t) £ bm-k({ Aa) fr)dn

where the components of cP (t), B(t) 2and the elements
of 4(t) are non-nogative, the upper estimate for ¢ (%),
= L

121 £vy 4 the i-th component of '#:bit}a can be obtained

by using Gronwall inegquality provided A(t) dis an upper

or lower triangular matrix. For the general A(t) two

different approaches havebeen used:



q :L}, Using any convenient norm,' one get the following

inequal ity
t
b < Hbmﬂﬂ AW b @ ds

Combining this with Gronw2ll inequality estimates Tollow
for =11 the components of db(t) uniformly e.g. see
Theorem 1 ( 12 , p.249).

(ii) Connect @ (t) with t he maximal solution of the
system of related differential equations e.g. as in
Theorem 1,9,3, [lD] or the solution of the related
integral equations {12 §,.

Method (ii) is more of theoretieal interest since for
the related differential equations the maximal solution is
infTaet toe only solution which is in the general case,
imyossible to find., B8till, in almost all the known results
method (ii) is used indirectly e,z. adding some positive
terms in the right hand side so thst the solutionof the
related differential system can be obtiined in terms of the
Itnown functionsa.

For the sccond order system

t t
d C6) £ pCed+ [ a (M drds J’J”—m‘“ $(mdn

t+
cplit} < B + { qilaa} baydn

]
(=]
One can find the explicit genuine upper estimate for cﬁ (t)

and t.‘pl{t) provided an upper estimate for the inequality



¢
R LPO+ T a, (A &A ds
] .

t A
+ﬂ{a'§‘!‘;[lﬁi¢'3 ‘l!all{t]tﬁ{rjdvr] d b (2)

is known. The inequality (2) appears in a natural way in
the study of integrodifferential systems, Thus, if 4(%) is
of scme particular npture, the study of integral inequalities
of the Type (2) involving n-integrals is required e, ge in

d x 3 matrix A(t) with 895 = 89 = 834 = 0 leads to

an inequality of type (2) involving three integrals,

For the Volterra integral equation
= 5
W) = W) + | 1k, Au(s)ds
o

the famous method of Courants replacing K(t,s) by approxis
mate degenerate kernel also leads to inequality of the

type (1) with particular A(t), e.g.,if

v
G, 3 2 2 0g. By R (3)
==
then
M +
luh) < Jw i+ g ) I-ﬁch; lu (s da (3)
y=l (o

witiiech cen be written as

& Xt
Pty < | b sy dA+IAL&J¢Lh) A2 (2)
L= (=]



where

= =3
) = (R ()50 =5 Ry @), b(t)= o)) (6,00 1 (6}

t
A&}:(%E&‘IE]JH}), RO = S h o jumida

4 conversion from (4) to (2) is -lso simple, for this note

that
+ 7

P () £ %ctm[twwﬁzﬂj{hiq:;.caﬂaf, (5
(=] = = =

Multiply (5 by gg(t) and summing for all i, to obtain
oL

= t
2 () 4] < 23O 2 i

L%

T
+2 3.3 ]da ()
d=t 9 & -

ddding both sides W (t)}, and defining

1,,
Yy =+ 3 ARSI AN
di=

(6) leads to inequelity (3) in ¥ (t). Thus if the estimate
for tud t)} is lnowm from (3) one has estimates for $ (t)
and if the estimates for <P (t) are known from (4) one has

estimates for ju(t)l .

In o similar way for the nonlinear Volterra integral
equations it is necessary to study the inegualities of the
type

v +
b )} < o (e i+ 2 QYLHJ ?-_r{&} H{{wwsi) das (D

¥ =9 =

Or perhaps inequalities involving sewveral integrals,



In Chapter 1, mainly these types of inequalities are
' studied, the known Tesults are deduced or compared as
remark. following the main results. These results are
used to study asymptotic behaviour and oscillation of
solutions of functional differential equations.

Chapter 2 deals with the discrete analogue of the
results presented in Chapter 1, several known results are
improved and some applications to discrete stochastic
models are given.

Usually in the literature inequalities involving
higher order derivatives have been converted inteo © equi-
valent systems and then the estimates are obtained in
terms of maximal solutions of the related differential
equations e,g. see [ll] . 1In Chapter 3 we deal directly
with these types of inequalities and obtain the estimates
in terms of known Iunctions. Some applications are also
given.

The discrete inequalities involving higher order
gifferences are important tc study error estimates, conver-

gence etec, in discreté methods for solving differential

equations. These inequalities are presented in Chapter 4
and some ~pplications are glven.

In Chapter 5, we have generalized the results of
Coapter 1 to n-independent vari-bles, Snow's [l{}l]
method of Riemann fimiction is extended and Wendroff's
agtimates are improved. These results are used to study

several properties of the solutions of partial differential

and integral eguations in n-independent variables,



In Chapter 6, the discrete analogue of some results
.nbtéineﬂ in Chapter 5§ have been established. These
inequalities are applied to study wvarious properties of
solutions of summmary difference equations in n-independent
variables.

" Lastly in Chapter 7 we establish several existence,
miqueness results for hyperbolic delay differential
equations, Some basic inequalities have been derived
which are used to study the ~pproximate solutions. 4n

iterative scheme is provided which converges to the maximol
solution of the related system which is the basis 6 study

several properties of the sclutions of the original systen.




CHAPTER 1 7

CONTINUOUS GRONWALL TYPE INEQUALITIES
1. INTODUGTION,

1t is well recognised that the integral inegualities
furnish a veral general comparison principle in studying
many qualitative as well as quantitative properties of
solutions of differential equations, The celebrated
Gronwall inequclity lmown now as Gronwall-Bellman-Reid
inequality r_l] ’ ‘:E] ] [3] 3 [éjprcvides explieit bounds
on solutions of =~ eclass of ldnear integral inequalities, On
the basls of various motivations this inequality has been
extended ~nd used in various cont®@Xts. The first non-
linear version of this inequality is due to Bihari [5,6]*
which has been further generalized in several different
directions., Jin extensive survey of these generalizations
is given recently by Beesack [?,E‘,] , Deo et. al [9] .

For the finite system of integr»al inegunlities

t
Pty ¢ bty + | Ay by ds

&}

where the components of C#‘{t}, b(t) and the elements of
A(t) are non-negative, then the upper estimate for #-"i{t),
(€ <™ the i-th component of &(t) can be obtained
oy using BBR inequality provided A(t) is upper or lower

triangular matrix,

For the general A(t) two different approaches have

been used: one connects with the maximal sclution of the

¥ In a recent letter, Prof,J.P.Lasalle has informed us that he
gave the same inequality much earlier in the year 1949
‘armals of Math,', 80, p,722-730
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system of differential equations e.,ge., theorem 1.9.3 [107],

another using any convenient norm, resulting the inequality

+=
Nl c Wb R+ | HAGHI bl ds

and GBR inequality provides uniform estimate for all the
components of d&b(t), e;g. theorem 1 (p.E&,@.B]) « First
method is more of theoretical intcrest since for the related
differentizl eguations the maximnal solution is in fact the
only solution widich is in the general case impossible to
find, |

For tle second order system

=
S ) £k +]La,P & ta, b @]lds
. et

t
P b+ i an (B) (A da
One ean find the expliecit genuine upper estimates for cﬁ( t)

and C-?L( t) oprovided an wyper estimate for the ineguality.

+
Pty < Bty + Ca @ $ s +a, A (ks
@ o5 (1)
+ [ ql’{uﬁct}clc)j dx

o

is known. The inequality (1) appesrs in = naturcl way in
the study of integrodifferential systems, Thus, if the
matriz A4(t) is of =  some particular nature, the study
of integral inequalities of the type (1) involving
m-integrals is required e.g. in 3 x 3 matrix ai(t) with
{111; a.. = Qi =0 leads to 21 inequ-lity of type (1)
involving three integrals.,



In tnis Chapter, we shall study meinly this € ype of
integr 1 inequalities in Section 2 and in 8cection 3 we
present some nonlinear generalizZations, In Section 4
several applications are given, After each result several
remarks ara in order wnich deduce or compare the known
results.

Throughout we shall consider all the functlions appearing
in the inequalities are real-valued, non-negative and |

continuous on I = [0, o) without further mention.

2, LINEAR GENERALIZATION.

THEOREM 1., Let the following inequality be satisfied

I
Mm(t) £ P +90) E:]Ev(t*“) (2

woere

t + t-"r-J
E_Ct u) :i{“ft}éa}m{g} seo ] G uck)
dtvdtﬁfu‘ih'

Then

T 4
W ¢ P a® ] S E (a PIx

Y=\
2xp( ft;_ E (T N T) dx
B Svb (3)
PROOF, Define a differentiable function R(t), by
m
RE) = E,'E,,(t,u‘) ,R(0) = o
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Then, on differentiation, we obtain

At
R’{ﬂ Sis EL(f;u} (4
=1
where

E k) =1 U-“H’ &) '"J{- ct}uvc.,J

dt_’f d'--ty_" = d‘tl

From the assumptions on the fimetions, R(t) is non-decreasing

hence using (2) in (4, we find

R () < Z E (t, P49 R)

Y=4

= ZE it \=~>+ZE (t, %R)

=

z_zE e, {:}JrE‘.U:}ZE (t q,}
Y=

On integrating the above inequality, we obtain

Mi

R(E) £ (
o

-l

Con

t (5, exp( § 5 E (T,9)dT) da
&5 Y=l -

Substituting this estimate Tor R(t) in (2), the result

follows.

COROLLARY 2, In (2), let p(t) be nordecreasing,

Then

L () < j:&)[t—l-ﬂy&"}f s e Cx, m:. (3)
Cy=j ¥

GJLP(. fE (':,Cb) d.‘t){i&:l
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also, if qg(t) =1

Wk) € Py @xp ( E‘E?(t,i})
| = =

COROLLARY 3, Let the followling inequality be
satisfied

o
W (&) & P +2:-_; 3,0 E _,u)

(€)

where 3_(_{'}3: el ¢ wm . Then
L

W twm
(a) ()< p)+TT 8‘r{ﬂc£ E, (2, B)%
‘ ¥=i

% e

-

exp(I°% El(x, (Tg,)dc)ds

R e
(b) If p(t) is nondecreasing, then

v s
ur ¢ PO g o] > £ 6,0 %

L= |
tm i ™m
exp ( fﬁ > E, (x, (T3, dz)dx
" ™ iy
- vy
< RCE er a‘(t-b} e ‘r%lE' (-t? iﬂi’:)).

PROOF, The inequality (6) con be written as

T ™
Wt £ P +{ :’j"‘ § (D)3 E Ctu)
= =

Rest of the proof is same as in Theorem l.
REMARE 1, If p(t) =u,, a(t) =1, m=1 then

Theprem 1 reduces to Gronwell's orilginnl result,
REMARK 2. If q(t) =1, m = 1 Corollary 2 reduces to
Bellman's {p. 58,[14]) result,
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1, Corellary 2 is same as Theorem 1

il

REMARK 3, IfT m
or {15].
| RMaARK 4, If m = B, p(t) = Uy, gt = 1 and & (&
£14¢ ) = for (t) Corollary 2 glves the following estimate

£ ,
(=] &

which is not comparsble with
). o
Uitl < um{"“.[ £, () exp( jl[.f‘"(tz}
L) o

§ 1) dt] =

obtained in [16].

REIARK &, Several other partiecul-r eases of Theorem 1
have been considered in [15-333 s pbut the results are
not comparable as in Remark 4,

In the next result we shall unify several results

of Preclipatte given in [15—2.‘?.] .
THECREM 4, Let the inequality (2) be satisfied,

—_-E;,lEEE'"‘"'-
Then

uLt}QPH}-l—ﬂ_,[H'}i(t}, 1<3<m (9)
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wherea
t s
ey = [ Pt Z%fﬂjﬁxp(]{zﬂu&ﬂ{»itl
: (=] ¥=1 R {m)
Y 9 u- ) dt; ) dt,
c W= 41
Pw = {[PEaL § @) +3 ii,}?-ft o dx

Y=

ax'e(é E%I%H&}U a1t

Y=1
i itl))cit dt, 2‘;‘1&
| domy
SUIEII G «J £ the term%iHZ‘[—(ﬂU%(ﬂ
Y=l
represents the sum of ~ll functions except when

CL,H:}‘E'UE} "'ﬁ o for 50111alth47111415T1?

then 'E[ () is taken to be zero, also L,f 8 (E)y=10
J‘_,_|

PHOOF. The inequality (2) with these functions 1s

souivalent to the following system

t
W, ¢ PO+ AL (U EHG e ] Ay, 19

£
u‘!_&,f} < é} U’ CANTHAARSS Led Wy Ufﬂ]*i*H 5 (13).
3‘ -!‘.'_i < c}

£
W, (6 < AR S ANTNCA RS

(14)
o

Define

t
R, (0 = § [ & @u ) +§ (k) u, (114

£ )Y B WD Jde 3 ejen

s
o
E
R (en :é fh(_mu,cmdg_
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Then, from (12), (13) i (14) it follows that

R" (D) ¢ EWMLPWH+qEIREIT+3F ) R (15
R ) f-% (’c}[l"ﬁt}+‘1,tt}$2 &;}+g ¢e) r-z (+) (16).
344£m

R ¢ £ OLPE+9 ()R, (0)] (17

Adding (15), (16)3 , 3 <4 £ ™, (17 to get
™ i ™ .
(Z R B)) PS> F () +°;,(t}’£ § ()R (E)
=i Yzi

1 5:_ ‘a (+) RY (+)
ami hernice

('F—R ) - qu,tﬂf u:}U 9. LH){ZR )

cp(t}‘[_ £.8 (19
Integrating (18) , we obtain

g 4%
S R_(B £ Pk

(19)
A=l
and hence
My =k
R tﬂé?(ﬂ-z R_(+)
Y=} { 20)

Adding (15, (lﬁ}j? 3 £ J < ~va  and meking use of ( 20)

we find
-1 -l B pE

(R u:}) L P Z G R ACo Pt 3 () R ()
e |

4T §ORLE $9,.

=3

=1
E‘]‘-: )-S5 R\_ﬂt’)]

=1
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This, it follows that
™=A i - ™M-1
( = R (5 g U ‘gfcﬂ—z,m_ﬁ:)) %
== r=| L=
=i

(T R &) < t::{f}ﬁ: FoEE)

=i

4 C+) 'p ()
dm-a )
from which, on integrating, we get
i T
> R, &) £ Pt (21)
Y=
or
-2
R, ) &£ P -3 R, () (22)
Y=t

4dding (15), (18) 3, 3 £ V= Rash B end using (22) to
find

=1 - 3

(z R cﬂ) LZq{ﬂthiU d; ) -G, CE)X

=\

(3: R, () < P{HE @+ g BB
Y=i

Thus, on integrating we obtain
-1
FiREEE) 57-%(*:). (23)
=4

Continuing in this way, we find

W= 34

> R, CE) g_'l"-:-(t), 4 <)< S
r—o
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Since u(t) = U t) € p(t) + q(®) Ry ( t) and
=

£(k) £ Z Ry H:} | &) 2w the Tesult (9) follows

1

from | L9) , {E{l]_, (23}, (24}5 .

In the next result we shall shoy that the estimate (8)

ean be improved uniformly.
THEOREM 5. Let m = 2, p(t) = g, g{t) =1 and

i i‘ll(t} = 1‘21(1:} in (8). Then

e
wie) < u, (14 J £, (t} ’.;",—:b{‘{:._’l} *

(25
exp (- 5 E+{t11+{-._1 () ld b )d b
where
e B £
¢ﬂt':£ Eft](éfﬁgéhiﬁ)x

=
exp (- | i{-ﬂ&ﬂ-&ﬁ}fﬂ] dt, ) dt, .
=
PRCOF, Define Rl( t) As the right member of (2).
Then, -2 find
; f e ek S Y cds
; — L T ST
R (t) =f, (el Lucth+1 £ (& 2i,

F{,_ () = &,
or

I =
R (k) £ anijt} LR+ | flltti} Ry (i dt, ] (212)




167

Define
t
R ) = R (8 + | £ G R () dty
<

Then, it follows from the nondscreasing nature of R (t) ,

the ineguality

t =
) ek (B) R D)+, LR, -1, [ (51
- _ )

11 Ay

Tiousy we find

E ;
: i
R, () s, exp( }3 [+ 5, 000de) (-e0)

Bubstituting this estimate in (26) and integrating from

€ to &, we obtain the desired result.

REMARK 6. Following the proof of Theorem 5, it is
trivial to write improved versions of most of the results

obbain © din [}5-23] :

The next result deals with an inequality with devia-

ting arzument of the following form

Yy
‘) < PtfH%‘ﬂEQﬁt*“’ (27)

where

QT{JC,U.} == Eyi’c*uﬁ 4 e\.- {.'t, u) ' (28)
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in (28, E?(f, W) is same as in Thcorem 1 and Q_Y(."-‘HU

95 deinca as follows
€. tt,u) -§f-‘. Uz&j& ) . -J.ﬁn ol gL,y

de, di, - -- &4,

The funetion g(t) € t ~nd continuous on I. We shall

assune that -T = L_’i_""l! "3[{'1 where T is Tinite ~nd a[{?.‘a:mJ
q(thz o for + ¢ Lf*; @) . The funetions

u(t), p(t) and q(t) here are reml-valued, non-neg~iive

and continuous on [-T,e). The function u(t) ig defined

atl Pl in the Shitiel. i;lterval =< ;0.

THEOREM 6, Let the inequality (27) be satisfied.

'rﬂ- d 1
by 2 PG + 908 [ 2‘_ WO e APy
o

SOl e
S T=) &
o<t &t

W) & P +c;,<4.—}j = Q (A, p) %

O y=i

exp( [° > @ (T,9) dt) ds, (6259

Aoy=l
nroof of theorem 6 is similar to Thcorem l.

REM;.RIE 7. The above result can be generalized for
pnl delays zlso.
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REMARL 8, Very particular case (m = 1) of this
result has been extensively used to study seversl
propei des of solutions of differential equations with

deviating arguments e.g. sce [24, 25}.

In the next theorem, we shall consider the following
inequality

£
W) € wee) + FREE, A uwes) s (29)
o

wnere the funection X(t,s) is continuous, differentianble

with respect to t on Ix I. 4&lso K(t,t) 2, 0, o k(A 2o
J KL, A) ' 2
but K(t,s) or __,..__—-—“ 3 not neeessarily separable as

considered by Willett [26 ).

THEOREM 7. Let the inequality (22) be satisfied.
Then

s =
UG ¢ W)+ & e exp( [t de,)dt,
& =
where

+
G () = Kt D) wit) + a;'it#% Wria) da
o T

{_
) = Kbty + [ IrGEA g,
3 o at_ -

PROOF. The proof is similar to Theorem 1,
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REMARK 9, Let K(t,s) = sin(t-s), o 2 Act « T

-then K(t,t) = 0, 3i(,s)

o

ot
we get r:pz('k) = <-'P5(f} = Alwnt. Hence Theorem 7
provides the estimate u(t) £ exp(l-Cost).

Obviously
Willett's result cannct be used here directly, also if

we cousider u{t}Li-b-fULE]dh {}-N-vhf.‘b- A)<#) then

GBR inequality provides Wit) ¢ Et « Thus, in several

situations Theorem 7 provides better estim~tc also,

In the next result we sh~ll consider the

2 gase
leCe, A) & Z_ﬁ?tt? $, (8) in (29).
=)

THEOREM 8. Let the following inequality be satisfied
t
) cur e > 3, H‘\ (R uay ds (20)
=1
where

(1) L (+) is nondecrensing (ii) ﬂ (+) = £ £€m

and are nondecreasing for 2L £ L 4™,

‘Then
3
W) £ & w (31)
where £ is defined inductively as follows.
ERUY =T

L~

t..
I‘iw = LJ(th 3;“} ‘EIPLi'ﬁnh‘EJa‘,‘dé)

h:;?l?.._.}m_
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PROOF, The proof is by finite induction, For m=1,
the result follows from Corollary 2, Let us assupe that
(31) e true for giwven h’ <R €9+l . For m= ki,

we are given
. It
¥ A
Uiee) & Fusced g S8 1 By gAulnd ]
& t
> ‘Lf}j% (A U (R A
= X T
y=t (]
fince the part in the brgcket i1s nondecreasing, we have

t
u@) ¢ L@+, P P unds]
o

i =
LEW®YY B FEwr) () U {4
R ﬂh"‘" R C&;%h.{-l Ly (8D =

Thus,we find

we L e g [i+ﬁ% CAY u(*—?" s |

£ 9.® [t+f hy OB 22 W Ca) ds’]

wr LAY

low it is easy to show that
W) £ W BR, G, “*EIJPCE% PR G i da)

— h_.‘i-
=

Thus the result is true for =211 k&, This completes tne

I}I'DOf-




RMMIRK 10. Willett {26} hns studied the same
ineguality (30) under = more general hypotiesis, but
the pre-:nt form 1s very uscful in severnl -pplientions
e Ly SEE [E?] y Gliis 2lso corrcel tie inductive sroof
Eiven by them in their theorem 1. In fret 1t nppears
without monotomic nature on 81_{{:-), 9 2« thelr

Tesult may not be:wvalid,

THEOREM 9. Let the inequility (30) be satisfied

where 8_({-)‘;1‘\:_"-.{ 2 o o, Then!"
L

Vo - o
(A L LW®EHTT G B [ wom = 4 (4)
T=i o) ¥ =l

¥=1 ¥ ¥ =4

t‘:ﬂ aad
<exp ( S M3 H (dT)as
A

)
J
S

- (s

(b) If wr¢t) is nondecrersing, then

€
m e

Wek) cw TH+TT g ® | S 4 om %
= o

€ ™
exp(f T30 En 0 de)di]

i (33)
i tm I
W g (rexp(f T q (0 Z 4 (ads)(@8
= p &T:I Y Y =i b 2

PROOF. The proof is similar to Corollary 2.
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REMARK 11, Estimates obtained in Theorem 28 cannot

be co. sared with (31), but if G (BI=V, 1< ( ¢m,
L

then (34) is the natural generslization of Bellman's

lemmg whereas (d1) 1is & crude estimate.

REMARK 12. Estimate (31) depends on snarticular
ordering i.e. for differcntiorderings for the summation
the resultsalso differ, wilcreas estimntes obtained in

Theorem @ are unifornm.

d, NONLINEAR GENERALIZATION.

Qur first result is connected with the following

ineguality
W) ¢ perlLug -\—ZH (ruw) ) (38)
where
t f .,
M cthﬂ[{— G e ---J-P ) W Chy)
dt,, S
and ol_: Jl<1 <Y |2«Yy<ya are nonnegative real
¥L Y 1
mmMm:mﬁﬂmcmmMM:ua}b . We shrll denote
R
= E — ™aX ok 4
Y‘E‘d'ﬂ- S veyem

THEOREM 10. Let the inequality (35) be srtisfied.

Then ;

W) £ U PE) ana({ & (B ds), WEE I
sd —r

wi+) £ {:(-L—‘Jf_u +{i.~=n()§ dfl(é-)da_'[ (27

: ]

g&m




where 24
=
._4,:, (t) = Z H - F) u
y=| z
> PROOF. Following the proof of Pheorem 1, we obtai
' LA i ol
= (&) £ :L;_I H, CE P [ RG] -
wnere

a
= + 3 H‘(‘t,"d)_
= ]|
Trus, 1t follows from R (&) W,y bhat
T

R (4) & R ey 2 M, P LU 5

= R'- (t) ‘:‘:’4{4:)
and now the result follows immedisately.

REMARK. 13, 1In (37) where o{ > |

4
e

y We assume
o
%) § & (23 ds >0
R
REMARK 14, For m = 1, p(t) = 1, ki1 = 2, Theorcm 10,
reduces to first result in this direction by Frecedman [ESF,T .

REMARK 16, If m=2, %=1, x =0, p(t) =1,

£19(8) = £59(%) and A, €1

Theorem 10 gives the following estimate

s
W) £ U -EJPLE;E"{_t)D-ﬁ-u e H ey dt, ] d¥,)

which is not compar=sble with the result

& k, :
W (k) & ucﬂﬁ}m Lxp (“:5;- £ () dfl){,_LLl ::L:_i (=t 1
i

= 0 bl -
J st Elp(*-“*%ﬂﬂfftj}dgw Tk
obtained in Elﬁi,



iRK 16 - = = = 5]
RRMRK 16, If m=2, &= 2 &= 1, ;= 1, 2

p(+ T fll(t) = fgl(t), Theorem 10 gives

JC' tt __._i
W) € Uoll=to § £ () (4] £ ) dty ) d ]

which is not comparsble with the Tresult

W) LUy O I-hw]™

RiETe

Tt -
. (O = U, {fnexp({§ (epdty)dy, (39
(=] o

The estimate (38) 1= the actual form obtnlned after simpli-
fication of the result obtained in [237].
In the next result, we shall show that the estlmates

(38 econ be improved uniformly,
THEDRE}i lli Lt:‘.'t I = 2-’ D(|1= 23 Iill-_-* l’ &,11= l.’
p(H) =1, £;(8) = £g(®) in (39).

Then

* *r e
W) £ U (O L \=hcod
where
5 = £,
b (8) = W, ([3{-”@,) Exp(_é}q,‘,{{-,_} dt,)dt,

i

o

q:‘h&j = %ILU:E + ho -'E”U:J gilli“ £)dy, .
PROOF. Following the proof of Theorem 5, we find
R (+) & £, () R, R, (),
Thus, it follows that .
R () £ £ ORI BI+ (5 B “Uo KO | £ (6D 4k ) R, (8)

2nd now the result follows easily.
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BREMARK 17. Several other results obtained in
: ]::I.E-f- —l can be easily improved following similar lines
25 in Theorem 11,

For the next result we shall reduire the following

c_.agss of fumetions,

DEFINITION. 4 funetion W+ oc,e)—(o,x) is
==°7 to belong to the class § if

(I Wr{w) is nondecreasing and continuous for u 3 0

) LU W s CRA) , Bz o Vgl

This class 8 hos been modified here to avoid the
triviality L (u) = uw(l) as defined ~nd used previously
in several nomlinear gener~lizations by Deo. et. al [ 29 §
also see [ 8.

In the next result we are concernmed with the
following ineguality

" Lo s
W) € PO+HE® T £, (5, W) + = 3,8 &%M‘J
u?(us,m) dh‘ (59)

THEQREM 12. Let the inequality (39) be satisfied

where (i) p(t) > 1 and nondeereasing (ii) gi () 24, 1¢ Ll

{imM‘ES?\gyi[ . Then
R L
W) £ p® q:»_fiﬂ T ﬁ (T F ), (40)
= L =

oLt £b g™




where

twm i
Py = 1+9W® [ 3 E (5, ”"a-l’* 27
D=1

£
Q—IPRi E_E (T q,,rrg YdT)da

FW) =G, (6, MH %ca)q:{&')t‘rg m}da]

t
r—;; 3_&1‘1[_61h{l)+[ -p\}{b}t‘ilf_a) rT 3 A) '[T F(A) d)ﬂ 2<hel

= o<\d_<u
G (W) L._.,wm* o

In (40), t is in the subinterval {_o,b] of I so that

,:shgi_

=
@hm+£ Fi (B & (5) rrg mrrv; (A da € Dom (G ),
L=1) =

k.
Bty ot kel

PROOF. Since 8,({:)7}1 s we have from inequality
{

(39)
um % ™ {
£ P +9 3 E (k, M3 )
rT‘a [‘b?l =1 L=\ Llri;_ L
= =
where

-
Pty = P+ 3 [ 4A (mw, () da
Y=o

Since p*(t) is nondecreasing, we obtain on using Corollary 2

t(t) *

;:: L P () ‘:]P,? (£)

!Ta ()

=\

.anﬁthﬂnce, since LIy € S, we find

T + {
“(“l LP&H-Z E% cmq:-m rrg (AW ( LS 3}
Pyct) T3, i df’“'}ﬂ'&{

ar A A o




| i 23
N f{a‘_u) a (A w, (V(ad) da
o
_ whnere ]

Vip)= UB  Ja (D= ) T g )
a () =L *

Now, the result follows by induction as in Theoren B3,
For L = 1, we have

L \+ § % LAY @CAY L, (. W”) A
e = pm
Let R(t) be the right member of the above inequality, then
R (4) ¢ HoEB)alt) w (R®)) | Rio) =1
and hence
[
R (+)
wJREH}

2 £ () ald)

?-iiirt_tﬁgl‘:-!’ﬁtiﬂg the ahc‘-,fe iﬁequal:,lty i‘;'tlm 0 to t and using

the defimition of "Gl, we obtain after rE:iElplificatiGn
NEEY £ PG E (),

Nt g i

pohns, tiac result is frue. Next, lct {41}; glves
5 ke S0

1\:*{1-"} < P :,_:rl‘ E (+)
-.,sem? k, \ekRig - , then it sufrices to show
s e p U i

.“'-4:*)" 2 pot) rrrm fmr (= =

%i-s, we are glvnn

=%

N < U?m + [ £ {""'.?"a.céﬁ'“-.f\.aﬁ V(R))dAaT]

. ‘R
: =



s = - il

29

and hence, since the part inside the bracket is nondecreasing
s we fing

R t
VD £ ITE® LR + fi (B acmdx
=1 o !
d A
Lo (VY A]
or
V() t R vV (A)
s = Hx WA TE MW (e Vs
PO g (4 o v i bs) rTF:‘{Js}
= L=t
and from this it is easy to show as for { =| , that
le+
Vit) ¢ P(HITFH:)F tﬂ = pP@ I E Hc}
] 0 T

This completes the proof.

REMARK 18, If q= 0, & =1, g, (1) = 1 and
p(t) = u , Theoreu 12 reduces to Bihari's [ 5 |original

lema. For g = o, g;(t)=l, Theorem 12 is same as

Theorem.l of .. 80 } . For several other particular cascs

of Theoren 12 see [29] ,[Sl-f-l.ﬂ:] -

THEOREM 12,

#
-
—

In Theorem 1%, assume J (£) 1< tzl
Arc nondecressing alsoc. Then

1
W) & pd) cb.stﬂ e
=

where, now

t
=3
B =D G [6,0+][f,0 g g 0 da]

— t = '
I-;H‘} = 31:2“:\? G‘h [&h{i‘x + éﬁéb) ah[aﬁ c’ﬁgfﬂ\lk




and

<#>(Jc‘}-i+'=\,H:} I ‘:T_ E CA,l) *

o ¥ob

fe A
exp () zE (t,9)de)ds

THEORE! 14, Let the fD]_'Lr:n;rlng inequnlity be

satisficd

L
U k) < rtt}+%[ﬂi E(HWHE®I X E (b, W) (49
=i

where

(1) b(+) 7t end nondecreasing (ii) g(t) 2, 1

(iii) Lr és . Then

o |
L) £p®IH RBD G (GO Z EL(A,‘;’]CEQM],

¥z

ok &b £ @

(45)
where
2
= o< lu_<Ww
G (w) UL LT CA) ? o
H-—_
@®) = +5® f oL E s e
el L =N
exp (| = E,(r,33)dc)dr
A ¥=I
In (43), t is in the subinterval (o,bjof I so that
i = (N -
G+ § ZE*QJ%.,‘-'&CPq‘]ciA € Dom (& )
S ¥
The proofs of Theorermsl3 and 14 are siriler to that of

Theoren 1=,

fHEUREM 15. Let the inequality (42) be satisfied

where (i) n(t) is positive snd nondecressing (ii) % (t) 3|

(iii) Wr 4is positive, nondecreasing, continous and




submultiplicative. Then 31

Bty < gy ) P& {_.mU)Jri E_E (A, ”u‘*f
e
where G and Qﬁ(t] are same as in Theoren 14 =nd in (44
t is in the subintervel {(o,b7] so that
D y=1 '"'——_}5____- -
PROOF. It is easy to show that
Wk € 4 (D) g P

whera

L
P*({-} = pw +;E E,CE ww )
=

Now since Wwr 1is suhmultiﬁﬁtive, we find

VG 2! z.,'[-L-ZE(t' l..fJ'(i FCE‘&)/Pj
mﬂq:;[mc&m =

= i e
EIT’ Pq’}

wl P g) }

Let R(t) be the rignt sids of tho above iilequality, then
1 ]

i __I

R < Ei Y{%1MER]M(F’C‘PE))
i
Z_E f~+-' M_CP:&))MfRLt}:} Risy=1,
T Yzl

r.r‘r*.

mt)e-& L&Huﬂ EE w WP yda]
| =

REMARI 19, BSeveral particular cases of Theorcrs 14

'5nd 15 nave been discussed in [31-453_
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~8 we have mentiomed in the introduction, for several
particular systems of integral inequalities, explicit

upper estinates can be obtnlned on using the results of

Sections 2 and 3. For example, for two dimensional

integrnl inequalities

! E

%, <Lk, H-DE R Ay X0, (0 [da, i
which appenr in the study of two dimensional differentinl
system. IT

£ ¢, 0, )l b (D) +a, DI+ a; %, |

wiere by (t) and aij{tj are continuous nnd non-negative,

then it follows from Theorem 1.9.3 (207 that | x, () cU @)
where ui{t} be the solution of the differentinl systen
u:' i) = bt +a; G + 0‘:‘1({) w, 8

uitb}:\hiiﬁizhl, {45)
From (45) jwe find

. E
U, ) = exp ( [a, ) dg )[R+ [ (Bats) +a,(8)

L
W (8)) exp (-i,iu( £,y db, ) dE T

‘substituting this in the first equation of (458), we have
for w,(t) the exact form as considercd in Theorem 1, with
= 2, plt) noncecressing and gq(t) = 1.

Thus Corellary 2
‘gives the upper cstimnte,




For the Volterra integral equation
=
W) = w k) + j K Humds
iEhe £ ous metlpvd of Gcmr-mts replacing K{t,s) by

‘approxinate degenerate kernel i.e. if K(t, s);;n =5 grl; t) 111_( 3) o
it

then
Tz

| | i £

U ety < fw el + 319,01 [th mliuemids

I ¥=1 o

"ﬁ"Thaorems 8 -nd 9 provide wpper estin~te foT { uc £)l.
| Hese results are also lmportant in studying several

....

aroperties of solutions of the original eguations e.gZe.

, _[a?]

In = similar way for the nonlinear Volterra integral
quations 1t is necessary to study the inequnlities of the
Jme (89), (42). Besides sroviding the upper estimate for
""" r;ﬁifferentiml, :Lntc:gr al and integro—ﬂlf“crentlal

mns or 55,?51'.»3.:!.5,,~+ tha 11;xequ._“thies oht ined here are

' in pI‘O‘?iﬂ,; mquenbss, L":Gl'i't‘-lﬂ‘llﬂuﬁ rlcn"rrdenc:e,

- ] J.tz:r, as},rl:rpmtic beh ricm.r *:_nd DEEl_l"‘t:LGIl ete. cf the

since the theory is Almost similar £6 as given '

‘A muperabive study of soue results obtrined in |

\tigns of nonlinear differential systens, Followlng

s |

x (4:"! = h & ) ..

g}
"'1’




]
and the perturbed system including an operator T as 34

Y =FCE Y@ +§ Y0, Ty®) (47
His Theorem 1 [[45] can be restated as followss

THEOREM 15. 8uppose that

[Pk, 5,48 24,2 £ 5, MYt E Az £ rel

where £.,,f,,€ C [1,11:_*. Further, suppose that the operator
T satisfies the inequality

t
| Tyl 2§ £ o 1ycalda

foo ' GE,R{}. Then for every bounded solution

where

of (46) on I, the corresponding
'solution a (tytosxy) of (47) is bounded on I provided

&[i'”(.ti‘] + 'E-li{{:l} "E:’ -E-ll(i‘l} d'!:lld-bt < ;:1::. ( 48)

PROOF., The proof is similar as in { 457] with an

‘application of Corollary 2,

REMARK 20. If 14( = le‘:t} , condition (48) becones
§ H coa (49)
) {-“{.EF](H-SD £ () dE ) dE <o

Gondition (49) is automatie=1ly satisfied if

25 .
li £ (f)dt, Lm,i{h{wdglé o ( 50)

s required in his theorem., In several cnses (49) is more
Y . +

-I:-_-'i_-;._,s tion (49) is satisfied whereas (50) does not satisfy,
using the results of this Chapter, almost all the

[ts given in [[45-597] crn be improved.



30

Next we shnll consider the following functionnal

differential equation and discuss asymptotic behaviour

and o=cillation of 1%ts selitions:

ey + & £, x), W) -0, xT, X (3, ®),
L=y

a=it e o E.'j H:}}) + ey x (1), X (1)

m-1)
Neieid {ﬂ X (tm} ! (-L- N =6 (&)

where
b, f €CLIXARITT (=2, eom

(52)
For ,CREC LIXRT Rd;zpe-ym

gghﬂ‘f)f’:t?f‘};ﬁ; Em % (+) =

(52)
?.'h(’cl p it i e, : i—“:;m Tt = =
We shall assume that under the initis1 conditions

X ()= plE) ; + <t Grack ‘x_{a%tuﬁj 1& : A = 0, A=Y 54)

L the cquation (5l) hes a solution which exists for allt y +,
4 solution x(t) of equation (51) is called oseillatory

*:Lf 1t hss nolast zero, i.e. il x( 1:1) = 0 for soue t- then
there is a to >ty with x( tlj 0. Bguntion (51) is enrlled

escillatory if every solution is oscillatory. We erll a

i@'élhtian %(t) of equation (51) nonoscillnatary if it is

sventu~lly of constant sipi.
First we sholl study the asymptotic behaviour of
solutions of equation (51) o

|
;r.




THEOREM 16. Let the functions L5984y and

= Ly 2yenaylly k= 1,8,..4,y0 Satisfy the conditions (52
and (53) and in addition suppose that

(O U F CExy e 2y, 20 €5 L el

d=1
| Y, mtz;u]{@
B L0, (X, - Xy Zyym %25 e RE Fi; Tg"'l.j are
contincus functions and D(LJ 5 ?’-J are nositive constants.
e T S e (59
fH(uYds < »
A e g .
e = . -§) %; —1 )
S (£ At A *’+W M9, w}] “]
SR s (58
tion (51) has solutions witich arc asymptotie to
: &L_i:l 85 t -5 o where Qo PEOE .
PHDGF. Choose & 7,4 so large that 3&; (ery»o0 ,

"-'3‘,-_;}.;1, T 7zt . Integrating (51), (n-k) times from t

(k- ;
_4{-:} 14{;%} t-to) T('ﬂ k-0 ¢ f & gjrl(%’

n-1) (n=1)
LAY % -:m,xiﬁuf’*‘*),*“ax (g, ))ax

+ | (m-1)
(M-k-0)! {.{-t""} 'fw (5, X)) x“f.ihf"-md 5 =0
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I y (56) snd (57) we get for 4 y t, the estimate

i~ k-1

_ D)
_:&1] L f-\ht -}—Ezhit e

Jz:ir:[\ﬂf’-ﬁ P

tn l-:tl J“I

+1 ‘}EEW} Ixe gi*u.-.:-ﬂ g flent?

{j] . a0
b el ’L—l +.i_ Il-l{a‘}d.&
d=o0  Jt (n-R-Of %

.:'n+’R~H. -+
Ap= £

A 5. I|!

—

fo.. |
K

— wax th_} R = A X Bh.'; Hon W€ El'd-

oz R=<n-t o< ken-\

i | -kt
et R, ERE (60)

3

=t tw (4=1) “'{.l.j
Rir=A+8 | 5 5 TIRMIx Gl
tn E."'...'.I 3:1 {61}
l...-ij' 1
#1500 Eﬁiﬂ)l;da

1 show th~t R(t) is bnum._ed. For this, choose £,2.t,

i NG DT | T GER Bo| BRI £

) s m-nﬁc ereasing we have from (60)

\ T -k-1
G%t{_&x}l < [ 3*:3' i{'}] =G : s ol s (62

and in view of (80) snd (62) we obtain

A +5f Z 5’___ LiR el A e
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il I -Lb‘ll (4, {A}) Ry Rl%f(,m] A

where 4* is n proper pGSitiVE constant depends on Al

:If R{t} = 1, the cﬂnclusmp fDllDWS,DE_.BI"l ize we have

(n-j) ey
b A 4
R.(+) "-A-}B}J‘%-l%lti- ol —_

i, ot ey usa) Pk IR (e ds
] wnere

¥ = max (u{‘_j’?"”‘)
st =t -
Meifee

How a proper "‘pplicﬂticﬂ of Theorem 10 yields
oAy
R £ A E‘:CPS I%F_ EUFL GapjasT R

- By (64)
-, e ® 6) L‘]d}:’ Y-‘-i
+wqtfﬂ (3 4

y ok
_g__._ﬁ-m) z,,ta +E.U-‘r}j EI;L‘IDP (] A A3y g

S f.,m {g )" -4 ‘*ﬂld*’* L‘s"“'

'_‘ is bounded from (58), For Y >4 we have
™
B < A I nﬂ Z&EUP ] 50 Pty 3
N lll Ee s :| 5k L
+ 19, mﬂ(g r.a)) '-4] LL'EZ‘_

_'g_ta-' Rg_t} is bounded providea’

> (-NB(TE 5 LIk o) 4 St
pe g

AB 65)
19, wi (3. m){ PR s

e B(t) = 4, this corresponds to an =pprosriate choice

fduitinl conditions for the solutions of (51)




39
hus we have shown that R(t) £ C. where Gl is sone
. finite positive constant, The inequalities (60) =znd (E2)
‘now becoue

- .
| P ee

(R e (+) )ﬂ_k-'}_i
b Cq, e € C] , 7k (66)
Inteyrating (51) fron t; to © we obtrin
Plhi=1) Cn—1) s
B (b = X (4:‘4-_[ Z Rk e X ‘}Cﬁakn}db
t' L=y

—[f?\[b con, XM Ry 44 - (66)

In view of (57, (53) ru:ui (66) the integrals in (68h) converge
s L — o -nd therefore the 1limit x(n"l){t) exists and

- E—oe
fte nmuber. To ensure that this limit is not zero

suﬂiclenﬂy large cBs6.4>0 so that (65 holds.

:Ebiidi‘tlun on & gusrentees 84&L R(t) is bounded for

: @™
. o _
%{‘ﬁﬂ"',i 5 llzthtﬁ})d-'z +I }:ﬁtfq AR
i - -
i
el
‘the solution x(t) with the condition x{n ~1) (’cl} = 4 has

fiSdesired type of asymptotic behaviour,

48Y 17, If g« v «4 and the hypothesis of

CL'_E-_, the equetion (51) has nonoseillestory solutions.

mr the appropriate choice of initisl conditions

ng (€5) the eguation (51) has nonoscillatory sclutions.
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Next we shnll give oscillation theorem for bounded

solutions of the equation

_ ™ [ =
s HEONE P ) F (e, 0 ), - ooy Xy,
=4

o

X (3700, =, X7 OY)

-y (ri=1) . =1}
+H (4 2@, X cb), x{mm?---,xf (T 0))=0(67)

THABOHEN 18, TLTet the functions ﬁLh? Ty, satisly the
condition (53) and in addition, suppose that

P 5 o0 (=§2,+.-,m for sufficiently large
5

(11) if x, ~nd 2, bave the sape sign then F(x,?---,lnﬁ;"wlﬁ
i=1,2,..., 1 has thot signfor o1l sufficiently large t

T g x, tnd 2 have the saue sign then

‘?1 Gt SR e, S A R Z ) has that sign for =11

B cuificiently large © .

A fliere exists an index j such that

o
s - Gy diE = o (68)

Ty J{-;;'}] for n even all bounded solutions of (67) are
]
atory (b) for n odd, a1l bounded sclutiﬁnsh 67) are

£ oscillatory or tend to zerc monotonicplly.

PROOF. Let x(t) be = bounded noncscillatory selution

and hence we pay assume that there is a tD such

) > O for tzt,. The case x(t) <0 is freated similarly,
Livn ANEE) = s y 1 = 132400840 there exists
k=0 Cu

> F, Such that X (§; ) yofor 3 ty. Thercfore by

conditions (i) - (1il) we have ~“™(+) < O for




‘Bince .x(t) is a bounded positive solution of (87) it
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b
‘iollows that

(9> W)
LICEY XY o
ifor each j = 1,2,...,0-1 nd suffieiently l-rgc t, say
€56, 56, . It follows that -d ! on=dd

for t 5, ty also

_th X () =0, =2
> 0o

SO (69)

.again from (53) , we may =~ssume that there is a t, > %
such that for tyty 7 t5 we have

%

(= ) '

{‘ I) C&L(ﬂn('j:*_ﬂ Z < - di=h 2 ==y W=
!

q_‘:m {;\}

i & = s S
+ > Cﬁﬂ[&*—n )= D

(70)

Since x(t) is of Tixed sign for + 2.k, 5 1t fellows that
' 1(4;‘;. X () exists nnd it is boundul (since x(t) is
gﬂ)

Ifmn is evenhxiﬂﬂ >0 Deeause in this ease x'(t) > 0.

1s odd eituer X (@) is zero which proves (b) or X (e9) 0.

Agswne that X (o) >0 for n even or odd and wo shall
e a contradiction,

‘Bince x(8q (%))»0 for t 3 tgywe have from equ~tion (67)
gonditions (i) - (iii)
O +BW EGan), - x| X 0g,0)

(n=1)

== 2o 8 g @4)) Lo (71)

G s, = dyee T
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Using (69), (W) ~nd the continuity of F it follows that

- (n-t) =
Q.w-x F ( x B, ey, e (]}k‘} 1(3‘“(4:)} , X Lgtﬂ‘}) =L
t e

exists nnd is a finite positive number., Therefore for
;-_sufficientl:f large 1;4&, ts

Ti=1 }
i Fj’(x(-&)}.--,lﬂ 3*311(3“&1}1...?1‘“‘ acm}
2

t 7 t‘t
and from the inequality (71), we find

X"+ R <o

( 72)
Wltiplying both sides of (72 by £ "

and integrating
from t, to £ we obtain

f Y dr+ > J JE. p{h‘i as <

T

(73]
ceassive integration by pPI‘tE of the first inteprsl

) glves

in

7=ty

B Oy da = Ple)-Pt )J,-(—t) ﬂ‘.[lh; LGy ] 74)

-t k. SR
PlE)= F_c-l) (m=1) (-2) + - (k) >0

i1 15 positive. 8ince x(t) is bounded =nd because of

hypothesis (iv) the ineguality (73) is impossible. This

ompletes the proof,
*
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Findly we shall consider the equation

! (_J.'ﬂ. 1_'11-1'}
(Y(E) X () +1>: B ) (X ® 1&1 “'11r 4> )

L=y

(+ (2 ﬂ*“& e (75)
. +)ﬁ ('10: ']11‘7'-;&}?' "?xctgm ) )=
where '
fxtiﬂ - X (k-T, ) L=1,2,--™

@] (3
a-r&j:' X (£- 5"'(1:‘}') J—-i 2, e S e
L

Cx) (v - e il
X, () = 2 (- a,t®) "‘*‘:H": ’
'R h\_—:]rli'.'} lTL_
The delays T.(+), o7 C4) and ﬁ_d:t} are bounded by & common
L
constent M, nonnegative, nondeercasing ~nd continucus real

valued functions of t. The functions

pi{ t) « R—> R end continuous for each i,
Fi H Rzn_';,R and continuous for each i, ( 76)
h : RPLR is continuous.

Phe following lerms of Kiguradze [ 60 ] will be necded.

LEML 19, If u(t) is » function such that it and all

ts derivatives upto order (2n-28) inelusive jAre absolutely
Gontinuous ~nd of constent sign in the intervel (tD s
2nd 1 (2n-1) (43 () £ O then there is en integer s oelzaina

wiich is even so that Tor © 73, ‘i.:':1 we have

TRy
U () wir) ‘},D,h’.‘: D,'I_l----,i

2MN+k-2 i
(-1) ~_LEREH uEy zo .,'R:l*':"'wl'“ "

=5 — 1k
CEey e 11__ an-l 11:1\

w3y,

Gan-2) - -sC2n=A=0)
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THEQHE! 2. Suppose in addition to (76) the following
condiltions hold

(i) FL (t) y, o for every b C ﬂt‘p’-a:}

Am=d i s

(1) yyeco (b, =) , YY) is bounded and satisfies
[ 45 {

Y(H) v0, Y o, (1) f:lw)‘:- O, Y =2, 3 ons 2

(iii) sgn E{Iq,111---,111):,&3n %, and

Fl, =2 S T s #E:{j"t?'“ixl"‘)fmr P11 L

(iv) Bgm AN G ST SURNNIS. S Bgn % and

I -

£ {"3"'-:1'11,‘ ey =) = ‘ﬂf'l'ixhxz_,' 0y Xgm)

'I."J'JI =k c‘,'::‘ where I denotes the set of =211 indices for which
khe function Fy(X;,X5 «e.,%X5) 1s nondecrensing with respect
{60 ech vari-ble Xy3%gy XgyeessXg, 7 2nd decrensing with
Tespect to A, Ry o= -y Ay 425 well as the functions x50l

= — T - - x—
i E(x 0, e ix‘w‘ﬂl ch are nonincreasing on (o0,9),
; L

._.'.j there exists =~ positive and differentiable function Cf’{ﬂ

E); tl for soue t; such that

i
fLems RGETH R(E™ o, 00 +h(£70 - 0)

LeT B ain- /
e

fl L= I_
LD P B Tds 2w
By iapy L2

for every k 7, 1

el 211 bounded solutions of equation (75) are oseillatory,



o%S
PHOOF. Let x(t) be ~ boundsd nomoscillatory solution (7).
Gonditions (i) - (iv) iwmply that - ‘:-:{t) is agrin a su::-luti:n
(75). Thercfore we con assume that x(t) » 0 eventually,

folloving the results obtained in [ 61 62 | we find Lunt
) J

1)

] il p
=0 € () “x.L{tw“) 70 . j::l,hjlz_*"a PR A (77

_ Hi (21
X ctyso, X )20, X'(4) 20 X (430 [y % (1) £0(78)

"_ Suffi'c:iently l-“"l“'EE‘, t '}/ tD“ ilso

A (1) .
E‘:‘-ml CEY ‘..'_{'J} J: 1,3;'..9111_!- (79)
ifoyr define the transfornsation
Lt {. 2m-2 \}(:‘“'1}
v > G R ;
5 5 t} ) bt | bk, ( 80)
o ] 1 )
obt~in on using (v), (78
B, o BOETER(xd-m,0,010) 217
| ver > - ™M)

! art-1
+ﬂ:§ﬂ{ﬂhm:’:‘:""m 2o M

2 E-na) (&)
= e 1’{1’4\-1] =

=CE-) - (&1)

0w in the leimia 19 we tezke u(t) = r(t)x'(t) ~nd obtiin on

(77) ~nd (78) also the behaviour of r(t)

_ Tn-1 17-1 i (im-21)

i_]j['t’c}‘y,’c (xC2 gy £))

| (Lmn-2)%
e (im-2)

X (k-m) 5, E (@D KGR
| (am-2)1 'r{t} y (82

| £7 St M.
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Using (82) in (8l) we obtain the last two terus as

. r
EO S0z x M o zinigler | P
<P (> X (+-M) Y W{zﬂ—lﬁ'

=€ Lz + 4 YRS
=t=tvt3*rtt}{:m ! e
(zn-2! ] E.L “‘H“FHEJ:} Can-231
@UC\ t‘l-'l\'l
S - x mlﬂm-ﬂ eyt
¥ SEhAe
and henco
2 =1
2.4 7, T RCa #) K Ge-M0;00,6) 202
LeT x (£ -™M)
+ b)) H (x@E-mM), D, » -, 0) l’:m—z
o€ (E-m)
|
_ L) 2 ) (2n-v)!
+* CP(‘HI 4:1“.—2 9 5= 7 t_n"\'M_
(83)

czm)
8ince > (+) £o0 for { 71, +M , we have on using

ylor's formuln

Y {(t-M) = Pld)

2=

Py = T < C;f 8V =k ma M)
a}
2y
,'.‘!'_;'-n-—“-— p&} . 1“ K}“E +N'|"} is finite,
to® -b""' CZn- 1”]'_
ollows thet there eoxists Q 4;: >/ 'tﬂ+M and an

aporopriate constont k = > 1 such that

xt-M) 2 RETT) 45t (84)



Using (84) in (83) and using (V) , we find that

i 2m—1 Tm-|
Z ) 5 P T R{Z" £) K ([0 «)0) am-2
Le L 2

h.{-lﬂ-'
+ @ ARG " 0,-,0) 242

h _i:_Z.'n—i

I
& k) A2 yEZE,  (88)

On integrating (88 from t; te t , we obtnin

= £ 2mM-=1 27—l
R
‘tl' LE’I h bl"ﬂ—'l

+*?-L(}al“-:c:, very 0)
hhﬁ_ﬂ:—i—
Ty @A |,

|
FAS e g

PAY (25)

Froum (vi), we find Z(t) eventunlly positive whleh is 2

cuntrrliction., Hence the result fellows,

RRMARK 21, Damyn [_62] hns obtained similar result to

e
our Theorch 20 by using extrs condition on c',:: (1) il.ec. Plr)seo

‘He hns rlso given ~n extra condition on Fj ¢

E(Axh.,.,kih} = M:]("Ln*z;“* Xam) (86)

in
ifor every ( X%,, %2, +-*, Xy.,)ER aAnd €K which is
‘heing never used in proving the main theoren. 4lso the

‘condition

7

(8]

%{;Ax,,.,-,hxlm) =0 S HE SR S (




A . |
for every C‘I_i ;Xg  ® vy Xom)ER ,AER1S used in his

Pheorern 3 without wention.

Now we shell state ocur next theorem whieh a2lso does nut

THEORE!! @1, Supruse equation (75) satisfy conditicoms
) = {v) of Theuren 2 alsc (86) and (87 holds. There
.sts o positive ~nd differentiablé function 43&),*:21':1
for some tl -such that

J 'L em L {RCGETR) R0 00 +he, o]
icm 2>

O L e:}::”‘m) (2mn-0! TJda= o
X PeoIcamyT

Then all bounded sclutions of eguntions (75) are oscillntory.

Pﬂﬂ-’.}F. The proof follows fron the Theorem 20.




CHAPTER 2 45
DISCRETE GRONWALL TYPE INEQUALITIES

1, INTI0DUCTION.

The theory of difference equations is in a process

of oontinuous developuent and it has become significant for

its various applications

in mmerieal anplysis, control
i

Bystens, engineering and so cn. The role played by the

discrete inequalities in the theory of difference equations

%5.-3 well known, One of the most used discrete inequality
is the analogue of GBER inequality established by Jones ];63]
and Suglyama [E&j and it varients [6& and refercnces tuerein].

In this Chapter we shall study the discrete analogue

l0f the results presented in Chapter 1, Several knowm

iresulis are irproved ~nd soue 2pplications to discrete

'stochhstic models nre piven,

The following notations we sh-ll use throughout this

,ter. Ng denotes the sat {0,11 - 1_}, The expression
BE =
I

. E. b A) Trepresents a selution of  the linear difference
B ~=e

eguation A u( t) = blt) for all telN
gondition x(o) =

g: under the initial

0, where A is the operator defined by
=1
BAU(t) = u(t+)) - u(t), It is supposed that >0 his) = 0.

. s A=0D
e eipression T 1 C(A) represents the solution of the
=0

gar difference equation u(t+l) = e(t)u(t) for all + & Ng
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) In wit~t follows we shall assume that all the funetions
| appearing in the Inequalities are renl-velued,; nonnegative
ppenc defined in .

§2. LINE\R GENERALIZLTION,

THEOREM 1. Let the following inedquality be satisfiecad

Uit) £ PO +9,(0) 2 E, (1) (1)
=t |
‘where
-1
E?&,Iuﬁi = o {— {‘c.}Zf S0ty sivis

' t\:G £,=0© -1:.,-.‘" -

: 5 .j‘-"(t'r‘} Wity
. gl 8

: Y
in:r 21l téHg 21 Then

™
W £ P +ﬁ|,£1-‘;z (E NECCA ‘Pi)x

. (=)
TT {_1+§; AE (T )1
i = A+ ¥=I

E_I‘LDDF. Define R(1) X follows &

m -
R = F E Chu)  Red==@
R sy finst |
then it follows that

o
ARG = T AE5W
1r.-
2 STIRELUE, PHi&E (£, 98
Y=i
e AR(E) 2 0, R(t) is nondeereasing on Ny and we find

Ret+)-[ 14> AE(+ ) IRM € 3 AE, (P

y o | T=|
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| Jt_ :
wltiply the above inaqualitnﬂr L+ z AE, CE ub,']]

=i
‘end suming over from 0 to t-1, we obtain

-4 £
R(-I:}W[HY_.&E @ q,)] 'S L}_aE CA,PY )X
e
Pt
['_HrZ.fhE ﬁtﬁu)]
r = s::

‘nence

{-_l
Kit) < (_ng c»:-, t:»))x.

A=
r‘ [:H-Zf}. E\ CT, ‘1;)]
= B Y=\

Substituting this estimate in (1), the result (2) follows.

" COROLLAXY 2. In (1), let p(t) be nondecreasing.

Then

-1
W £ peor D+ 9,6 2 | C:z: AE, (A,0N)X
) 2)
TTEHrE.{LE (z,5) ] ¢
! 7. =k
Mlso, if o(t) = 1
es ¢PC-H1T[1+Z£:«.E,(& v (2)

g Ve £ T
PROOF. (2) £o110WS fI'E-‘;.l (2) without any diffiecul ty.

show (4), we note t"ﬂat

(i ) -1 ' tl
@) rT Ei+y(=)] = z { T OrY@m) - T (lnm)%
T =4t Kdg s =t r = A%t
-t
= T (l47eed) - ]F (1+T{L))
T T=-oO T= t

[
T ('.+Yr.?:-)}—l
T =D

Bw substituting q(t) = 1 in (8) and Y = }: INESCED)
x =

5-_uging_ the above relation the result (4) follows.
|



D<

COO0LLARY 2, Let the following inegquality be

‘satisfied
=
W) ¢ ptH +2 gr(f} B G u)
1=

.__-g.il %Ift} 1-?;'" |« i < A « Then

=rf m i Pt -15.+1

() LLCE) & b + 5 aYH:} ‘z: { E AE(AB) rr i+
i =
| Z b E,CT, rr 901

If p{t} is nﬂmecreasing. Then
Y

1:1+ > AE, (T, T“g )j
L= b+i Y=

™o -1
£ P T AE, (A TT )]
 SP®IT AW IT LT A8 I,
REMAKK 1, In the ineguality (1); let m =1, g = 1,
Bhen (2) is sane as obt-ined by Sugiyama [647.
EMARE 2. In the inequality (1), let m = 1, then (8)
lis sane as obtained by Pachpatte [65] .

4 discrete version of Theorem 4 (Chapter 1) which

THEOKEM 4., Leb the inequ-lity (1) be satisfiled,

'a.'f'-.:f-i AL léem i‘f'-L_Hl {-L+1[“'"-+m1
| < | <ol for Al e nNe o Fhon it gigtj‘;il

P& ’-L-PE-J‘)*“%“‘VE'{HHEJE"“ (5)
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ere
£t
)= X Ptt\i{-&)rr E'+Z‘w:nff
t,=o =i Loy vE) e
Y 9 & ]
Tj(’c'}*z [Pf‘t\lz-f-{t,}+§ ﬁi‘% {-'H]’*
1=D .
(1)
l—t_[H{Jr? {%ﬂ&.,(n‘)g*gi(t) =3 wj

2 23 &wn

PHOOF. The proof is similnr to th"lt of Theorem 4

(Chapter 1) and Theoren 1,

REMARK 5. Instead of gi(8) < 1, | £ 1 £m=2- | it
gs sufficient to assunme

- oa—g 4 .

Y g0 U 4> (B EENo, (8
=\ Lal= a-JL "
JEMAK 24, If (6) is not satisfied, then

uL{BQb(t)+q,tf}"[Dj () =1, 2 (D

jiliere P, (t)is same as in Theoren 4 and P5(t) is defined as

) £-1
n,;_ = > [ecat Cr) + [‘%,(_b){» (DU G )R]

5O

1 f_";_screte analogue of Theoren 5 (Chapter 1) is the following:
- THEORBI 5, Let o= 2, p(t) = Uy, q(t) =1 and

’.E'.E%; {t) = ¢ 31{ t) in (1). Then

=3
«sp&:: = Z 2 wi(]‘r D+F c-c) +‘r , ]") }i‘t.}u@ﬂ_
1 IID
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The proof of the above thecrem is similar to that

of Theoren 5 (Chapter 1) and Theorem 1.

REMARK 5, If ¢ (t) = 0 in (8, the estimate is

same as given in [66 ], alsc obtnined from Remark 4,

ﬁl‘&ing the similer 1ines it is easy to improve all the resuits
obtained in [65-717 .

Qur next result is the discrete ancloguc of Willett's

inoquality [ 267 .
THEOREM 6. Let the following inequality be

Uet) € p o + Zbcﬂ(r_v (B W () (9)
for all £eN, . Then for all k&N,

W & F P& (10)

E :Dibiq'“bm
Lour = o5 £-t o

D L LJ-I-('F p‘}[_"[_\; w [T (Vv F F‘ﬂ = E ey

z0d r=ph 9 d- e
'_PﬂDDr. For it = 1, we obtain from Theorem 1
= £
R R F RIS vid R (B Eé)ftﬁ Vi () B D)

_ =5 R
jouy assume that the result is true for scme k such that
I< k< m-1, then for l+l., we are given

_ k. E=t
Wy < Pct}+z £) T\ (AU
ER = (1D
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) E ()= R + Pw"*“&z:fh&” W sy
From (11), we find
ue ¢ p B
fron the definition of Fy, we have
-1
A ES C =y A
B LR PR B DN = VL cauc )
. k-
gaich is obt-ined on using the fact Zl Vi, CAY U (A)
Ao
is nondecreasing for all £ € N,. -«
Onece again on using Theoremtl, we cbtain LI
. __I = 'y
W) < AYE . Ok Pl
P < R RE ) E Vi RRATT IR,

=Dy B P
). :'F;w%({}' = .
ige the result follows from finite induction,

Next result is the discrete version of Theoremg(Chapter 1)

. COROLLARY. 7, Let the inequality (9) be sAtisfied

gi< o and are nondecreasing for 2<i<m . Then

Wee) £ £ PO (12)
-
F o zw G l:hﬂ\:’h]ﬂﬂl;‘_\ v F C Ph{ SONN

R:t,i}"”?m -

MONLTHEAR CRNERALIZATION,

‘l OREM 8, Let tha follgwing inequelity be satisfied

=1
Wy < peoluot Z E (W0 HE W] (13)
e



516)

:_?‘31' "ﬂ:ll'{'.ENﬂ,whﬂre W_% oand o<cet<t . Then for

all +e N '

WO LpH) e (-Hiu + (- n{)t }&E C 2 }{E(JHH Pui?lj;-q
= o Btlél’;:lr;}

where

Tt -t
ety = TE' [1+Z.&E A, P‘»j

PLaEJDF. Let R(t) be the tern inside the bracket of

BLENt side of (12), then as in Theoren 1, 1t follows that

' =4 A
RGN (143 AE, G+, PIRM® ¢ AE, G, PHR .
Y=l

0n multiplying the nbove inequelity by e(t+1l), we obtain
|~ of
ALRMEMILAE (L, B)e (¢+)[RB e -(H*Ff (15)

BOT all those tEN, when AL R € (%) ] 7, ©, we have

) =gk, +4
t R{£>€H) ] j A LR E_r:m] ¢ ARDE (]
§=o¢ t LR E{Hﬂ LR 'E’,[":-H'}-_‘l

drom (15) , we have

{— o
AT T AR
BLROEM)] < Q-VAE(HPY e (e (16

Bifiiorly for =11 those + €N o ¥aen A AN R G L1 £ G

. - — : JI*“'-‘ll
@ have O LRME)€ ()] and hence *(16) is obvicusly
=

B&tisficd, Swming over (16) from 0 to t-1, the result (14)

| COXOLLAUY 2. Let the following inequality be satisfied

0
W) « by u, =+ Zl g G w) i
s



<34

Wiore
- £
_ B o
SV {: fﬂu ') v.-i‘_% CE Wy
i- [ur ] 't-.._.ﬂ

for 211 ¢ N,. Then

£ — J
LL{JC}*LLLDP&EFTD+‘Z_&H (A, p)u q =l
=
t-t m Ry~ ¥ E’i-ﬁ‘»
U) 4!9H:>Lu B0=RyS T AH Y D <

ATO ¥F=I
t-1 dﬁ ﬁ'# %
where- 1f oL 91, we nssume LL + (-) 2 E AH ():.}'P‘}Llo >0,

A=ox=l

"PROOF, The proof 1s simlilar to that of Theorem 10
fEhehter 1) ond Theoorem 8.

REMARK 6, Several particular enses of Theorem 8 and
o pllary 9 lizve becn discussed in E&E—'?l], however the
sults nre not comparsble, but following the some lincs

in Theorem & mest of his results ean be improved

LY,

Next result is the discrote smnlogue of Theorcm 12
hipter 1), tere nlso we shall follow the smue definition

B Gl ass S,

"THEOREM 10, Let the following inequnlity be

_T.E‘rf ied 7
Wit) ¢ pLJcHu.,[ﬂz £, L, u)+£g +) X
RS ’c -1
S b, w9 i

p(€) 2 1 ~nd nondecreasing (ii) gi(t} ALl
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UiE) < P pE) FTg ) ]Tf: ()

L-I

161 S
:@_-"}H|+q,,tt}3_-: (Z&E (@ Ta ){T LI+ Z'&E(t

* = AF l-
4 179.) ]
e ] L=t
"@'}"G-L E h”‘\‘z___-&x U:‘iq:{#.».‘.ll_'l'calgh)y‘
2 A=o ey R
- R_*
T E Rl e = achel
U,_c{ 2 i | E :
by = A
u LA.ThIf!.-.} 15{-LLQ‘ELL1 \Ehfl
q_@ﬁg.eﬂ
i k-t 0
n+z% 1a}¢>(f}ﬁ‘3 (W TT &) € Dom (G ),
i | =) & ;
ittes s e

PHOOF. The proof is similar to that of Theorenm 12

sber 1) with an applicntion of Corollary 2.

It 18 ey Lo write down discrete nanlogues of

fEdre.s 15 and 14 (Chepter 1), since the proofs are similar

e the detiils are not repeated here,

80ME APPLICLATIONS.

WLike in continuous ease, for severpl particular systens
Biiscrote incqualities, explicit upper estimntes can be
'-.-_;-','n;u on using the results of sections 2 and 3. TFor

e, for two dimcnsional discrete lnequalities

" -t
13 (B < VR | +§ﬂl+itﬁ,1,iﬂ.-}, 11[&)“}',3 {=1,2

oh sppear in the study of two dimensional systems using

plers pethod.




£ &, x,@0,%, ) ¢ gi[t-, | @ J3,01) [zi,2

8”_{-} W, U,) is nondeerensing in (i and W, then
{6 follows from [ 78] that | x (9] < w (), where u,(t) nre
jotutions of
£} ¢ (o) = Hz-l | .
for several different gff':- our results provide exnlicit
f

Bper estimates in terms of known functions; e.gey if By are
2r Theorenm 1 is spplicable.
Next we shall make a coup~rative study of some known

£s as ziven in E‘?-‘:l] + GConsider the linear stochastic

ete systen

= 5 (W)
Ia'n-l{:imj A Ce 3 (17)

Ldn[wj = TeE NG

ﬁhe perturpedd systems including an operator T as

B () = A () X (W) +F (i, X (), (TLA)

lﬂf-ﬂ: Ly, MENG
BT ) n~ni Y are stochiastic processes, Adw) is mm r x T
“ &
% wiose elements are measurable functions for ench n, f

5 . - i L i e Bl
e vector volued function defined enSix 7 x R, I

n

BN Buclicdean y sprce and T is an operritor which maps
';-_'1{1'_ Let ‘y‘ﬂtl-?‘idenotes the =stoehastie fundamental mabtrix
Bitions of (17) such that Y (W) is the unit matrix.

Fhe following modified versions of his theorems 2-4

ilch require woaker conditions cnn be proved using the

gSnlts ol section 2 ond the parallsl arguments he Ons used.



THEOREM 2', Suppose that

W) N () £ (un, X, ), (T )] €@ L (X B0
+|3}£u:r}{{ﬂr1grw31

\L

where Q’K{M‘L b (Lu}ara non-negative random functions
od for AL N, 3 &€ oo « Further, suppose that

perator T satisfies the inequality

4 =t

l LTIﬂ} ()] £ ;Z_ C—;J* v ) | Iaﬁm}i
=c

P E
e @ (wlis o non-negntive random function defined for
S
L2 WE L . Then to every bownded random solution \él{u:r)
<0 ﬂ
17) on N, the corresponding rmdom solution Iéw} of

i8N is bounded on N provided

]T (14 a, = +b, (W) Z C ] <

R=o
_ .;urz»i 3'. Let us assume

= (= ol M

{8 ) \{f,, (v} 2 ™M ¢ \ Y lwileMe

| - (s, X ) (T XY () | £ c._“tw:}i X Lot 4 b () LT3, ) ()]
|

| g o: *D{x"ﬁ “_1

e 'Z_c{u)\‘x[w)t

O

MY0, o > 0 n~re constants and U (w), b_ﬁ{w}, C o)

I

gdefined in Theorem 2', Then 211 randonm soluticns of (19)
s ZEeroc as Y-S 45 provided

I f
o { KT

S L+ a, UuJ+I:>Lv-JZC (o) & | £ os
e T=0o :

IPHEODEM 4', In Theorem 3! let —« = € 2nd K <c¢
3> 0 is o constant, then the conelusion of his

- Follows,



LT 61
EGRO - i ;
1. INTRODUGTION
In this Chzpter we shall discuss some new integro-
‘dlfferentinl inequalities involving higher order derivatives.
The estimates are in terms of known fimetions =nd applicable

-

_'rectl:,-.r to higher order differential equations. In Section =

we shall consider the linear case and in Secction 3 we shall
;fzﬁ'e*_s_ent severnl nonlinear inequalities. Some applications
are glven in section 4,

Phroughout we shall assume all the functions and their
"‘_: ‘jg:_ivatives appearing in the inequalities are real-valued,

fon-neg~tive ond continuous on I = { o,cw)s

2, LINEAR INEQUALTITIES.
THEOREM 1, Let the following inequality be sntisfied

) S, = )
W) ¢ P+9Mm & S%éfﬁ}u cpdaoek (1)

d=C © o

(R) t
W (£) € P +9.) i ®(2) exp( itpz(t}d_t)d.b (2

Rt § il
P ()= P h B+ E;Q‘Z W o) ‘i’q €=
dRENEs o Ci-OL
b t J
e E‘:_jﬂz—#-t 5{t_1) P dx
- o
| h{ £ ety ot 3
Bz 9 ) B ) + = ’:-.}-t § (o= 900 dx
. (s .
t m' “"‘THEH,”- ‘--.\
i / ;x Liaramgy N\
.-rn ..h._._.._____ }
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Pi00OF, Let us define
R + %)
RE) = 2 f '@1 (€D U-Cb}cl.b
=0
‘Then frou (1), we have
(RY
W) <P+ RMW, R@ =0 (3)
f_‘_nteg_mting (3) (k-j) times to obte in ‘
h U L R=4-
u&&) <> tf{o) it__ +(,R_& e Stt-—x) P+ (OR@ dx

t=f (- . |
oc)sk-t (2

Thn g fron the- definition of R(t), we have
(3

= 2: ;O U
&-D Ry 4" !. 4 'R.-A-l
< hoLE Weo) £ i 0 o
J_Q L= J (t-—-‘l} - O

49, GoR00)dX] + IO [P+ BR®]

0n using nondecreasing nature of W(t) =nd arranging the

iberi: we obtain
R & F W +HORE)

Integrating the above inequality and substituting the
resulting estimate for R(t) in (3) produces the result.
COKOLLARY 2, In the inequality (1), let ¢ 'LJ o
oe & < k-yand p(t) be nondecressing. Then

(R
W )2 PO I+g0® 5 $,(r exp ( E P rydc)da)

Uca '
1 cbq(ﬂ: 491&3_




COROLLALY 3, In the inequality (1), let p(t) be B0
differentiable, p'(t) 3 0 and g(t) = 1, then

(kY £ =
W 4y ¢ exp (| ei::aﬁmdb)[]:{c)-kﬁ;qucan
Elp{-ﬁhd’a{-ﬂdt)d’"‘]

where :
R=\ 1}
q:w) -p&) +¥ Z u (n} . mt
d=oil=o (d- L}*

REMARK 1., For k =1, h (t) = hl( t) = h(t) in the
inequality (1), we have

] £ +
W £ Py 450 tS} $ e exp( &¢1cz} dz)ds

t
c!;:Bm = holue+bty+ [ peordc]

t
fo= harlaw + 19 de
Siiich is not comperable with the result obtnined in [?9:}
(his theorem 1). In our next result we shnll generalize his

heorca for any k.,

| THEORE! 4. In the inequ~lity (1), let h,(t) = h(t)(0<j<k)

J
'\;";.‘3, 1, Then

(ﬂ -’-‘Pecj+ﬂ:,[+:}i %U_.}\_A{m +E>h(b}‘1,n. (5)
exp( | %u,}j'_q, (x)-11dx) da

where.

: ’ Jc

B - 3 fir) An) €xp ( f Lo q @ + Ao+ R0
+(R-N1dt)dar

+LR—L+1)£;,L't}+{h 2= x‘ﬂdt‘}da 2<i 2k
IG: x) ]3{,:-:) dx_ J



PuUOOF, Let us Zefine
- = R _
RO = [ R uards, g4

o= | d =
i as in Theorem 1, we have

REEY+ 1 (+) Rt « Rty AE) ~ R @) RS R+ R R,

I

Rt t :
LB =R, 0+ L -ty o R (D dT
; i i

i
|

gin, as in Theorem 1, we find on using R,(%) £ L (%)
I+R, B c it AL +IRhmgm+ho+9® IR +R®

R e ke
RB=R,®0+5 4 | ¢t-tyq R (2dr,
d=o

L o |

2 1 B A+ LA G+ 29 &) 1) R &)+ RL.,“-"

-3 k& g
C

mg the last above inecuality, We find

Rhfnﬂ < Btk



d hence 65

Eh&‘i chmam +LEwmgm+ R +(R-09 @)

| | + (R-2)] Ry + B ()
this we get on integration

Rh&a LB,

mtinuing in this way, we obtain

cha LAm+B®I +hdl9®-1IR &)
diiron this (5 follows.

£ 2, For the case q(t) £ 1, an estimate can be

fained from the inequality

;;1 () ¢ hLAM B OTI+Hhd Y Uc}R,(ﬂ

istimate obtained in Theorem 4 can be improved uniformly

to justify this we shall consider the case of Remark 1.

[HEOLEM 5. Let k =1, h () = hy(t) = h(®), a(t) > 1
nequality (1). Then

£ P +9 e H%cm L em+Rimn]expd %F\u) ENCEY
dat)da

= W) +pt)+ I (s> da

=
= S Ch s o - ‘PMDEJLP( 5 E%Lﬂq,tcﬁ-ﬁﬂtﬂf%tﬁfﬂi

: u{nhcb{t"}{iJr?xH']) 5 HESTE 5 %ct}dt‘} da

BROOF, 4s in the Proof of Theoren 4, we find

A

-l et
R, +A®R W ¢ A R @+ ket yebOR @) (9
¢ 4+ AR, &)




whern

k {_*:) = Fﬁ .’.} ;

7\’:1{:‘“ < R @%H}-k-['_?\f_-.:'} 4T+ 90y ] R, () + B YR, ()
llow, since
E fa
R R, = gL utey ) g dedda
] o

w2 obtain

R, 2« [hib PO -vOI+[ADO B +5®E + RO IR
2nd hence

R, £ dp (+),
iBubstituting tiis in (6) and integrating, we obtein an estinate
R;(t). The result follows from the definition of Ry(%).

The next result is concerned witih the following inequality

TRen c.pu:n-b},i-ﬂ[ '?"_E Ly Z m}-t-E Ct, W1 &)

waere . (¥,-Yare same as defined in Ch-pher 1.

THEOUEM 6. Let the incquality (7) ©be satisfied. Then

E v
U- H)A‘P({-\+1, HS[EE Ca¢}+E {a,k‘.']m

twv

exp (L z E (TR +ELLT,9 ] de)da

ghero q;::r;ﬂanﬂ ¢ (t) are saue ns ¢:H1 and -:1:1{#} vith
l,'.;"’(’c) o1, o< 4R respectively.

PROOF, Let R(L) be the part of right side appesring in
e praclket :::f I T‘ﬂ_en we hnve

'-m FE'_ E G, z‘_u )+E i u®y

T o e el

40



—

3

) ‘Purther ~s in Theoren 1, we obtain

=l s
R() &£ L E.Ct, & +&R-P- ﬂ,a>+£E ¢k 43R BY

4 =i 1=
=l :
LT E_ R RR)TE, (t,PFaR)
=1

-l

i
< S E b )+E (£,p)] +LZ ELCHb)+E (£ IR
and now the result follouws after integrating the above
nam“l:l. B

-4 REMALK 2, Several particular cascs of Theorem 6 have
‘been considered by Pachpatte [40} | 79, g0] , however,

‘the results cbtained here comnot be compared with his results
Bat s Lu Theorem 5 all his results can be improved uniformly
and for tils in our next theoren we shall give the improved
fersion of his theoren 1 Leo] .

1 . THEQOAEM 7, In the 11le<1u-_llt},r {'?}? 191:. n=2 k=1,

8D - w0, aD) =15 510 = £,(8) =D, T,(8) = B,

Then

I..l.l'. I P
ﬁ_' () 2 weoy L+ (2-¢ (m)alm Lexp (D4 a@abmrldr)
yi R
where
1 E
é’c)- f o)+ a+ibtr.} dr)exp (- E Ui+ at +bld T

dA
Pi00F, For this nﬂrt'i{:ul.;;r case, let ;Ll{t) be the
_t part of (7). Then ﬂl{o} = u‘('o) and
R @) = atﬂ]’_utﬂ-ru&)-{-i bmmﬂ d<}

W
pLice

: : oz Wy 54l
U c R, W e+ f R mdna
! I n

"y



. _ e

ES
R (4) £ atH R, (8)

gire ., (0) = 2u(o) and

E

R, = Ule) + R(6) + 5 Ry(Ada+ fbcm R (s da, (2

fronm (9) , we find

_ £
R (H) ¢ R, )~y LItk + 5} bea dal

1 £
| R,() cath R+ Ry - utad i+ £+ bmda] U+bw)
+ bR, )

Btegrating the nbove inequality, we oblain

I
R, < ue[2-g ®]exp( (Ti+ta+beoldr)

%ituting this estimate in (8 =nd integrating the obtained

paounlity produces the desired result.

HONLINEAR TEQUALITIES.

EEED?EH 8. Let the following J.neunlt:,r be satisfied

U cbed+x | hiem Do ufia) da (10)
d=0 e

8ve p(t) is positive =nd nondecrersing, Then

5
. nexpll & _crrdas)
%.fu{h}&': Z e CEsior ==

n'.L- A .
1—5} 43"?{&') E:.f‘p(g 4;13{.*.}&1_)&.5

Ll ,.: i
e () — E._ f. [:ﬁ t, (1) '}:
l' (=o § r‘l L'}'.
=

¢= @ =P h {—
= 1 l:.l'}*



E A

aslong as b-{é (D exp (| ¢ (xddrdda >o 69
o Y o 43 -

PROOF, 8ince p(t) is positive and nondecressing we

Tiraal

R
BEtY) 2045 ?%Jca} W ”']méf (11)

6t us define the rigat side of (11) ~s R(t). Then on
giffercntiation, we get

- R 1
Rt ¢ T h BR® ey

d=o
¢ A D PEIRIH + Z h @ R®L Z W to‘lt
izo iz e
e kg

+{h_1_”£ l:LG: -T) P Rd]
iow using the nondecreasing nature of R(t) and p(t), we find
r .'I
RO <G ORD + R D R4
:;gration of the above inequality proves the thecoremn,

| REMARK 4. As in Theoren 8, it is ersy to find the
tinntes in torns of known funetions for the following

108 gﬂﬁl ities

LB R € Y s
B L (D LPBTT §® [ o W uiinds,
4= =

g_u)::,i, o< dsk,

S fh] iR i' l-:.h Il
D W ) ehbO+E (A ;OB uHmy 1 c&-‘#dw‘a o<

d=o ©
RELLK 5. 4 particular ease k = 1, h () = hy(8) = b(%),
%) = 2 of Theorem 8 has been considered in Theorem 3 | 791 ,

i this is not comparable with our result, However, his




gstimate can be improved uniformly to "0

i A
r atuva) I bowm expC & xyderas

W) £

| = (wile)+a) [tb{m Eﬁpd&qh{ﬂdtjda

o

yhere
b =) Ul at) b,

OWIANK 6. Several otheT results given in [:83__1 ; which

are particular cases of Theoren 8 »nd Reumark 4 e~n e improved

miformly ns in Theoren 4.
THEOREM 9. Let the following inequality be satisfled,

(k) ke
o U:::..;c,+‘5l 33\&

%]
oL ud qaﬂ [ w Uiar] *as (1D

where %, oLy 4 O < ] ¢ R are nommegabive nuubers

‘pnd C is a positive constant, Then

(R &
L — '_cl__-—u——-'-'—'-_'
LA Gy £ \ {13}

[1s Gt ) [ 9 ] e

yhere P’ - maiin{i g GEJ f_-h?j and oA +P >\ y nlsO

o1 %
b = C {'_c:“-?qhuwrz’r—\ &)(Zumﬁ i
8 1=} Gt TE }

-

-El...-

—

. t
B long as = (4B f & A da vo,

PiOOF., The inequality (12) eesn be rewritten as

W% ¢ RB
el
.,I;l.;here .R _t % S
rey — Ca
R ) = “"Ea L Eu ca] [u, mﬂ da_

C



Then, we find on using the faet that R(t)

> 1 and 71
nondecreasing
I R-1 =t U} j
Rty « ¢ Rl h L Ro%k (45 %&m[Z b ‘
5 4= 1=] EL: J"
| L h—&a—i
+ T L@ e A
oA +P
£ ROR h

Now on integrating this we get the desired result.

THEQHREM 10, Let the following inequ~ality be satisfied
(k) ¢ ) 4y
Wy & Q+Z 5 ’F.J (mLu )Uﬂ] Luwem)
-0 ©

oc¢c bl ¢ek-t

where oL, ol €

i ere sane as in Theorem 9,

Then the
estimate is same as (13) replacing

(+ here
dﬁb 3 by A:PHH:) here

@ -t i
D E) = VL Ez m% Pt it
=4 (L__lj'_}l [In—i}l'

THEOWE] 11, Let the fullowing ineguality be satislied

K
s o BT E (> L T
T=1 J o

ere EY(JE., =) are same as defined in Chapter 1 an

d the
nstant C > 0, also the number K 7 0(#\). Then

(&
LL

o < cf’:cpflﬂ 5 E LA, t:i:}da)[H(t—uﬂx

& Y=t

A
{ E;(*’B,C )-E‘-f-{:(i—{t-mﬁ > Ett %)

o ¥oi 1%

dt)da]



ot ]
(g}

The proof of Theorems 10 and 11 are sinilar to

that of Theoren 9.

THEOUEM 12, Let the following inequality be s~tisTied

3 R
LLb”f_t‘.s "HP(H-%E‘Q L%‘)I% & M(Eu cm’)da (19
Pl

where
;‘i) p(t) is positive and nondecreasing (ii) §. &)1, 1¢eem
L

(iii) v is positive, continucous, nondecrensing and sub-

multiplicative. Then

s e
W < P *.‘Tg ® G Lam+] = R 4y L cm)de]

a=| L:‘ [;::(e‘a}
ynere
R L () e t i i
q: (ly=S S 4 (O F 2 +'§; [ (+-2) pOTT g dx
d=o (=0 {&L*}t Jg&‘ﬂ J=1 d
pmﬂg 4
G (W “‘L{ fr?m ,0<U, 21

s long as

tm P
G+ § E_J_E.imub Uﬂ) da € Dom (G'),
2Ld=] B




PROOF. The inequality (14) can be rewritten as

u[k‘.::ﬂ L pmdrj gé G R

where

-
R = 1+ El { jﬁé_ﬁ‘% ol :>: W) da

‘Thus, we find on using u(t) nmldecrc.-ﬂ_mng nd 2!

; B
RAY = = WM& (v (T w )
4= b2 =0
L E h® s Cc’p ) o7 (RED)
= d = F{'ﬂ

‘Integration of the above inequality with the help of the
definition of G leads to the desired result,

. (m-1)
THEOKEM 13, Let U € L [a,b] be such taat e
Gr l - U‘ I - "Iﬁl. | where TI. ~? \ 2 LEt u[ﬂ*-l} be

absolutely continuocus and f 'I"J- .{ﬂ}} c; Ayl oD . Then

IILLUE 2 '.L_Cﬂ{s.‘}\dﬁ £ ‘,{L (_1-:1} j i.uw?:;m! (15)
a
dhiore )
Ned, N5
-, .
K ::1{{1'1»1‘:5.\&1“-“-1) ?

PHROOF. 1In view of the asswptions on u, for any s
Buch thnt Q. <« 2 2 2 b
2 n-i~

LT o LA U de




Therefore A
¢k
. () :
B8] n—t= )
[ L (A Lfﬂ(.h}\é tu _‘ CA-1) lu{ (Hldt
(n-i-01 a

and by Schwarghhk dinequolity

1LL ey uﬂ[a | cﬂi CA- ay (H Wi | c“:‘)
(M=(-D! Cam- 1|+'-)

Thus, integrating from » to x and applying Sciwarz's inequality

to the right side again

> A 'S mreb
) | an-x(-1 2
S I LL{LUJLJ,M]{EJME < Wl fiEs—edi - aAs ) «
o (n--O) (zm-2i-D"> a |
h
x 1
C | 1&“1,.1%{5 | W) At )dr
o a
X
| . (X-a f‘ k tny 2
£ - = SR AL 1 LR }1 .
(n-{-0)zn-2t-)" (2n-11- t} Go

iMhe above is, in fact (15), This coupletes the proci.

RIULAGK 7, For n =1, 1 =0, (18) is Opiall originrl
resul i ['_8.4.] At n‘),E. i=0, =D (15) is shnrper than
Willett's inequality [85] -nd reduces to same as obtnined
in [83] . 4lsc for the best bound in this cose see Laz1l.

THEORE] 14. Let pyq be both positive c011st'=n‘1:5 satisiying

@'}‘q‘} 1. Let u be 25 in Thecren 13 snd let I ] {“}5}\P+:t’5 B

) X
' wﬂ lu w:;\ Vdia < My Lx—n"? L \1 1LL¢“E,5]|P+&1{1?1
o
P(1-d)
i YR (n-D =)
Mizaq 0= (L—-n-t)l) S
Y=
P+q .
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PROOF., 4s 1n Theoren 19, the result follows on using
Helder's incguality instead of Schwarz's inequality two tiues
with proper indices,.

REBMARK 8 Forn=1,1 =0, x=10b (17 is sharper
result similar to Yang's [86]. For n»1, 1 =0, x =1

(17 rccuces to same ns obtained in [837] .

THEOREM 15. Let u be as in Theoren 13 and let f(x); g(x)
' be non-negative continucus functions cn[a,b__} for which the

inequality
5

i -
bu ™ol e cx 5 Foa LW mlds + g (. Etd%’t)(lg)
Ca C=
wWol do) d?:-

holds, whore C is a2 pesitive constant. Then

E ol 2 cexp(l “Liman) (20)
4—{:1 Q{mﬁxpt !f.trﬁdt)d’-‘a

fa= long az \—¢ -Sz_ KA £xp I&#-ft‘)dtj Ar Yo,

wherc
-t N
®(xX) = =4 ¢x) . 2l e G D I
L_‘D

PROOF. Dofinc ¢p(das the right side of (19), then

T (A L5 l () “Yoyldt
oy = FENMU el g0y | u & u o)
L=

AaD)
cpiedis TN
fsing Theorenn 13, in (21) to obtain
-t =
P (1) ¢ § (O ‘“‘gj3|+3(1)21h (- a‘: % (22)

L=

EI (;t)i d'l.'.



Since | u""mf;i}'l e b (XY -nd C#’f.:ﬂis nendecreasing, it 76

follows from (22) that

$' O £ FCO P+ QD PR

Integrating the above incgquality, the result (20) follows.

THEOREM 16, Let p,q be as in Theorem 14 and £(x), &(x

and C be as in Theoren 15, for which the inequality

A
X X m Oy P
Lol < e+ § 5 u™mtds + §3d(Z Ttu'Colzs)
(¥ a. Lo o

Lo ¥ de)ar
holds, Then
; "
CE’_I_PCS&:FCA}&a) e

Paq, - (v -
L= < paq -0 (Rew) exp (chag 0] RN

a.

| U5 ¢

P+, -t x A
‘as long as |—C (p+9-) SQRCA‘_; QI—P{{P"”%'”S{F{TJ dt)d}_‘. 70 o
] . 2 i'ﬂ-ij'f?*l,
where R (x) = g cx) 2 ™M, (X-a)
lzo

PROOF, The proof is similar to that of Thecren 15,

REMARK 9. For p = q = 1, Theorem 14 reduces to Theorem 1&

anAd Theoren 16 18 sane a3 Theorom 1.5.

4, SOME 4PPLICLTIONS.
Here we shall point out few applications cf the
inequrdifies obtrined in sections 2 =nd 3 to discuss bounded-

ness, nsymptotic behaviour and ~n upper estimate for the

solutions of higher order differential eguaticns,



V7

First we note that the estiuantes given for the
solutiens and their derivatives of the inttisl walue

problens

Y = F @, y'@®)

\éfaﬂ = Cﬂ'r\a'['ﬂ = C 'T‘E!H{ﬂ\": s

and

i
YY) = Y D) F (), ), 4'w)
%{d}: e ) Hl{dﬁz C,
when F satisfies

| ECE, 4,y ®)| ¢ hey (1yml +1y®l)

in terus of the kuown function h(t) in ]:’?9] 3 E‘eE] ean he
improved uniformly on using owr Theorem 5 end Remark 5
respectively,

lext we shall study the asymototic behaviour of the
solutions of the following differentinl egu~tion

(R41) gl o
Hh = -E- @:.’ LA *H':‘i1 '-J'H:]_’ ooy Ia“ﬂ{_{j) (E5)

THEQLUEM 17. The solutions of the differentinl equation (25)

a

when the function £ shtisfies the condition
%, & )
H(i‘}ﬁ&),»--;g c_ﬂ)l&c;z_:cﬁj {ﬂllﬂ 0 (26)

'R 5
L
lare ssymptotic to 2. A4t s t>a  vhere G ¥0°

L=G

provided




PTDDF Fron (25) and (26) we have

ly' ) eyl 1 St [y Polds.

c J=a

Now a direet ~ppliention of Corollary 3 gives

ia ml < E:r»(fdp e d) 1y m)'.+ Sqacan it

exp(- { () dt)&.{]
Let + > 1 5 then fron the definition u:rf 433(1:1 and "#’5(-{)

we find

R
B, £ 24: ﬂk_g.k)

b (4 < L‘Zf Hip 15
wnere L is sone proper constant,
Now fron (27) and the -above inequrlities, we obtain
(k) LR >
b4 ol s ket exp (S b S T“MR (0ds) [k, exb(], -&%""‘

é“’\q‘*haﬁi‘?ig ;;,: 51:\ U;,A:s,)

where 'F’-'. k;__, K3 and KL!. are some constents. BSince

$p (k)
j Z AN B (DAL Lo, hen "‘3 c&)| is bounded,
d=o ¢
Now it is easy to show thnt hnm i m}{,ﬂ =D ag
toeo 1T C

in Pheooren 16 (Chapter 1). Here cue cen also Tind the crse
when the inequality (26) with some exponents is s-tisfied

and thus the Theoren 10 i1s directly spplicablee.




7]

Lastly we shell show that Theorem 6 can be used to

find some estimates for the position and the velocity of a

?ﬂrticle of unit mnss moving in space, whose equrtions of

X = | ek %)
ubject to the initinl position KIB) = X, rnd initinl
elocity ‘;L(c.“}: ¥ + To simplify The metter, we shall consider
o

that F satisfies the following inequality

[E x50 ¢ by +a, B ix,®) +a,@ [x ®) (29
+ 4 @ | 1 ]+ B | x|

L K30 £ ap @ 31+ a,, 60 | x,00) (29)

LE (£,%, 304 £ a, O} x| i)

Prom (30) we find

: : £
Xyl & Lxgeof+ | 3z ) 1x (»ids (21)

tand fron (29), we have on using (31)

| X, < x|+ f{ahfﬁhk = las ) EEBE S XL Ms52)
+ f’i:nB‘{.a‘al x, (0] dz} | 44
gupstituting (21) ==nd {32}-_ in (ES}c: we Tind after integration
the inequality for l l-(.{Ltﬂ which 1s exactly ssiae form prs
considered in Theorenm 6, Thus it is poussible to find the

estinate for x(t) and x(t) in terns of the known funetions,



CHAPTER 4 80

DISCRETE INEQUALITIES INVOLVING HIGIER ORDER DIFFERENCES

1, INTLODUCTION.

In this Chapter we shall discuss sone new discrete
inequelities involving higher corder differences which hare
discrete analogue of the results given in Chapter 3. Here
also we follow the srme nutations of Chapter 2, also we shall

L“}:: Wi =) « - = (m-n+l)

denote ()
In vhat follows, ~l1 the funetions and thelr differences
;'-'ap_pearing in the inequalities are assumed to be real-vealued
non-negative -nd defined in Ng.

2. LINBAR TNEQU.LITIES.

THEOREM 1, Let the following inequality be satisfied

R -
AR L) LpUd+q > 2 4 u-_qaufa.) (1)
d=0 A=0O d
for all £ eNg . Then
=t -1 -
f-’l W) £ P +q,u:}Z $WTT Livg ] (2)
h-O Timibd
where _
R-v i
$ @ =p® W +T T Aumk, &‘)Lt}
i et e B e C |
i= -0l
S i)
£35S f?-.,maﬂ (+-%5-1) b (A)
J=0 AZD LJJ'-
k-l trd_l,f 5 ‘)
GEY = {ﬁﬂ{++ i ) -2
CPJ. = % : Fﬂ f=0 1'“'"1 s b("b)_

d!
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PROOF, - For o < § <« R—-t 3 it is easy to verify

R+ (i-§) t-ka (R-§-1)
Aupy= 3 ® Ayl s en K
L= (! (R-3-0} &Aoo 2
Define
k£
RifEN=ns ‘Fl wauuﬂ
dza K=o

then (1) cen be written as

E‘“u{t} &P + 9 ERE (4)

Fron the definition of &(t), we obtain on
using (3) =nd (4)

ARM = 5 %J @ A U )

with R(o) = 0.

=6
k-1 R~ Ge=iY
h%hma ey £ &‘J[Z{,ﬂ A U (o)
P e L“f “—'”I
g t- hﬂ

Rzl

R~ d ; . H‘E
T Nuwey bt | At (Purvg b Rw)
dso ize T
=t t-4-1

4+ h )Y koA

! ') cpmﬂ,mmmj
Jeo Pl oo gn

On asing nondecreassing nnpture of R(t), we find

IAREY £ dﬁ;tt‘x T R,

Rest cf the proof is similar to the one of Theorem 1 {Chanpter?).
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e
COROLLARY 2. In the inequ-lity (1), let g‘u;_ﬂ} =05

o é'j <« Rk-| and p(t) be nondecressing. Then

t-\ t -
iR
A wE) & pY Ui+ L R il [.+¢cz;:.]
A=O T= A+

where

- i) o
P = z%hﬂé ) & ()= )

l'.] o tj l dt
PA0OOF, The proof follows fron (2) =nd the identity
¢yy t Ci-1)
) =§ 2 (t-»-1)
o) 1
REMAHK 1. For R:l?ﬁDLtj: 'F,.I{_ﬂ—_- 1 () in

toe inequality (1), we have

- t-1
AU < p® + 9 E_ B0 [T Li+4 o]
T Al

where
k- ;
q:gm - H @ Lutoy + ) + EDPHHJ

-\
PO =h Ly®+ ‘%*_ 9, |
=0
which is not comparable with the result cbtained in [‘?Gj
(his theorem 3), In our next result we shall generalize

his theorem for nny I

THEOME 3. In the illﬁquiﬂ_it}’ {l} 5 %14 (+3y = -F'IH:'} 5

D Te bk o G T Then
k t-t
(e £ P90 %: Biem LA +8 0] %
o .h____]

T Li+hc) e -]
Tt o |




where
83

- J ) B g ()
Al =pE+2 3 awam v 5 Y G-2D pedy
d=0 {=o (i) =0 =0 é"
t - =
Biterson Bieay ACK) FT OEh@ ey s F ik Fe) o e - _,'
o o] L= 54
_ +1 i
3 @z X Ch Aoy +B ) TT (aLh@gio+he)
‘ E-0O TRt

+ (R-L+) g+ (R~ L—ij’]}'igif_h_
PiOOF. The proof is similsr tc the one in the

econtinuous ense Theorem 4 (Chapter 3) and Theorem 1
HKEMARK 2, For the case q(t) € 1, the following

estipates holds

-\ =
AU ¢ P +9(0)3 Z by LA +B T Li+Hy ytfﬁ
AT

The discrete analogue of Theorem 5 (Chapter 3) is the

followings

TIROREM 4, Let k=1, %guﬂ = Rt zhe 5 Y

in the inegquolity (1)« Then

aur+)¢p{t)+%rtaz L (224 Fa g ]x

ATD +-i

TT LI+ YRy — Ry )

T = h+l
where

ot -
)= L —yeDHITT L+ 9@+ ho+ 40 e
i fizo ¥ T = At
+-

AN
¢ @) = W@ U+ RO Z N (T ho)
A=D Tzl I




PROOF.. The proof is similar to that of Theorem 5 84
(Chapter 8) and Theorem 1. The next result is concerned

with the following inequalitys

=1

k
AN 'LL&‘}“-P[t}-{-q',H:}LE E, &, Eauwb , AU

where £ (%, ‘)are saue as defined in Chapter 2.

THEQREN 5. Let the inequality (5) be satisfied for
all £t €Ny + Then

o)
ﬁfumapmwmiLE AE, (A @)+ AE (A PIIX

bt oy @) ‘f._
tTTME_’E-t-L z N (zjd:aq‘]-a-ﬁﬁwﬁ,ﬂ.ﬁ)l

where dpﬁ{-ﬂ and ~:[::Ci (+) are same as <p (&) oand b (&)
with ?-.E:'.H:t, o<l <R,
PROUF, Thne proof is similar to that of Theorea 5]
(Chapter 2) and Theorem l.

REMARN 2. Several particular cases of Theorem 5 have
been dlscussed by Pachpatte [70] ,[0} 1?_8?] , | 88) however,
the results obtained here cannot be compared with his resultis
but as in Theorell 4 all his results can be improved uni formly
and for this in our next theorem, we shall give the insroved
version of his Theorem 4 [70] .

THEOREM 6., In the inequality (5, let u = 2, k = 1,

2(8) = u(o), alt) 3, 1, Jf“ ()= @ = a) and

£,,(00=b@#). Then

£ A -l
A ) £ U LH-Z (- cm)ac) [T [_9_+a£t]+bf*’ﬂ]
T=0
wiiere
- A

$ ) =7 (l¥ben) i+ ’J"‘Z_.bit]J 1_L1 +qm+bccﬂ
AzO




PiOOF. The proof is similar to that of Theorem 7
(Chapter 3).
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de NONLINBEat THEQUALTTTES,

Here we shall state the discrete anrlogue of sorec
results given in seetion 3 (Chapter 3). 8Since the proofs
are similar to the one in the continuous case,(Theorem 1
here and as in Chapter 2) the detnils are nct repeated.

THEOREM 8'. Let the following inequality be satisfied

LR UL £ B F E:_ &' #, m 2R om A u (s
Jd=6 Az=O
where p(t) is positive and nondecreasing, Then

5
) e )
ARy o B2
\—F cb(#&ﬁiﬁﬁ+”
=g M
where

=
= [_T LL+"‘|P (")j

=0

P )= l[nf’r‘-'}__ f @ iﬂ

I =0 f!l dl
X! ci-0)
D (#)= > z 15 wted B ey B
2" T i=elizo b e
-1 '
as long as |-~ 3 4:“(_.&‘} & (AN >0,
b

REAHK 4'. 4& in Theorem 8', itis easy to find the

estimates in terms of known functions for the followling

inequelities
R + - & 5

() ARUb Lpm+ T g; > Ay ATumBum,
Jco Ao

§; Bz 0sd 2R,




R - 7 3 £6
(D) AU ehblo+Z = %a(m&u{maum o¢clek-t,
J=0 A=o0

THEOREM 2', Let the following ineguality be

satisfied

Iz R St ke X i a{£
AU 2 ct > }: %d.mr_& wewl Ca‘uw)
J=0 A=0C

where o, of; g c<z) <k

C is » positive constant. Then

sre nonnegative npmbers and

ﬂ“um < s o Y B
Cl-(o+p-0 5 fEPAT
A=
where F,;mn.xira(.:oﬁjﬁk} and A+pP > y also
L R-U =3
4:: = Lo Rh MO )-: A (Z A uley (B]) Hr)
) ‘1‘ t= y!
5 [:L\,}
=8 .
e )“‘4 7
. o1 Th=i>.
85 1005 A5 =Gl R- T b (A o, :
Ao
THEOWLEM 11', Let the fnllawing inegquallty be s-tisfied
=1
f_\.hutﬂé Y > e Z &-U)'{*E.M{f ¢ ARy
Y= d=0

where p(t) is positive and nondeercasing and X 30 CE1)
Then

ﬂhutfj £ —.:H-}-E Et’JSHU_af);_S;gE (:5. b )
)).-




whera

t -

A=

satisfied

where

k

where

(ﬂ(k},'} e 1

as long as

cPu:} 4

o

k-1

submultiplicative.

L

da

U, uriB)

Eove.

A==l

i
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ey TT [H-Z. AELC(H F ‘;j

e z:. wl(e) u:) {4:}
'PH:‘) ‘] (=] L= Z

THEOREM 12!,

{A—L}' d ST .

Laet the following inequality be

=t

(1) p(t) is positive ~nd nendecreasing ¢15) Gy 5
i

Then

s 5
Au < btﬂﬂ'g ® & [+ = Dy®

k-t
G (D=p® ﬁ‘g DO+ T Aue by +y

k
AR u&wp&wz‘ﬁ% (ﬂz:% mm(zau{m
=

g 1ELEM™

(iii) W is positive, continuous, nondecrcasing and

-1
m"{cp us)_)j

Azo v=l poa)

J 1 ¢ 4-0)

4=0LE0 -
R-t E-y-1 ¢ iy
TP BT (£-5-1) 1.)'! il

d=cRA-0 1.”

.

GID+FE T Hpes

CRES

e ('4)1%'“) & Dom (G'k_l)‘

PR [T g, (»

u=)

o <L, S




4, SOME APPLICATIQNS.

There are many possible applications of the inegualities
obtrined in seetions 2 and 3, here we shall point out few
which are sufficient to convey the importance of our resulta.

First we shell consider the following k+lth order
differcnce eguation

R R

AT wy = § O w), Al - -, AMUE) (6)

and show that Theoren 1 is directly applicable to find the

upper estimates for the solutions of (6), provided

k
|0t U,y o k)\a.;:%'q () U | )

-

In fact any solution of (6)  also satisfies

-1
&. iy = :tf‘u.{u)ﬂ-z § (A, U, AuA, éf‘um)
L=—0
or

R - -
(A uw\ & | Ao+ iz S B | Aum)

Hence fron Theoren l,we Dbtf."_lﬂ

| AR Wity ¢ AT + Z E— Ll 4:11)]
= T = A+l

# *
where dP! () ~nad C#Jlf.;t‘ﬁ Are sane as d;‘;[j:j and c‘plf,-b“} with

b+ =| MRuand 4=t .

-




Now from (3), we find

b (L) : t-k (r—1)
luesie 5 GVl Kuol 4ol S ke L

L=o ([ (R-t)! »=0

A=\ A= *
| AR iy + 2 3&‘ eIV '[_i+¢1£t-2]]_

T,=0 tl:Zﬁﬂ

‘Similarly, if the funetion f satisfies
W R
i
|ty ug ey Wl é_f}ﬁww( AL

where b5 is snise as in Theorem 12' and lifkliio)k‘}c:

The upper estimate for the solutions of (6) can be cbtained
directly on using Thecren 12°,

Several other properties like boundedness, uniquencss,
asymptotic behaviour ete, of the solutions of (6) can be
discussed with the help of these inequalities as in ordinary

differentisal equations,
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1. INT.ODUCTION,

In this Chapter we shall genersiize the results of
Chepter 1 to n-independent varinbles. Snow's [ 101} method
of Menann fwetion 1s extended and Wendroff's ([89],;:.154\]
estinates nre improved. These results esre used to study
seversal properties of the solutions of partial differential
and integral equations in n-independent variables,

Throughout this Chapter we shall use the following

notationss

Let FL be an opesn-bounded set in R" and let a point
L L ¢
(3¢ 52,5 X )in YL be denoted by . Let v and x(y<4x) s
be any two polnts in - and denote by D the parallelopiped

defined by y< s <x, that is 3 L hp £ xs Lt f 2 .

J F ]
X
SLJ ‘dA ingiecates the n-fold integral _( B N c;,r,“--- da,
‘and - g (x) denctes 3w e da

x

3 alr"aiﬂ
In what follows we shall assume that 211 the funetions
‘appearing in the inequoalities are resl-valued, non-negative,

‘continuous and defined inJ.

12, LINEAR THEQUALITIES.
LEMMA 1. Let p(s) be continuous function in, . Then

ithe charecteristic initial vnlue problem

(-1) " N (B, %) = PCAYNCA, XD =0

VLa,;x"}:lcﬁnﬁi—:l;,lﬁiéﬂ (=)

a unigue sclution N (s,x) near to x and satisfying

{,I[—-f;ij '?}'D-

R 2




Phis solution is continuous and if p(s) is non-negative,

so is V (s,X). 91

P.00F, The funection W (s,x) is the Riemann function
relative to the point z. The problen (1), (2) is equivalent

to the integral equation

b 1
VA = i+ ] PV, dE
; A ; (2)

The existence, uniqueness <nd non-negative properties of
NV (5.%) fcllows by successive spproximation crguments as
given in [98, 94, 100, 101 for n = 2 and systems, dn
explicit representation of W (s,:{‘) is given in [1(]21. gince
V' (s,%) is continuous and N =1 on Ay =, V&L«
there is a domain j_)+ % onwhich w % © even if p(s)
is not nonnegntive,

LEMMA 2, Suppose p(x) =nd g(x) =re continuous functions
infL ., Let\ (g,x ) be the solution of (1), (2) and let
B’ be ~ cunnected subdomein of S containing x such

hat N zo for all b€ D+. If D ¢pY and

ufﬂ—mmuczag%cx} (4)

where u vanishes togetnoer with 11 its mixed derivatives

upto order n-1l on X;=Y4.,4 |« L<T =« Then
L
X

W) ¢ § 9@V G, x)dE, (5)
4

PIlOCF. The proof follows from Young's theoren [1o02}.
he
THEORE! 3. Let V (s,%x) be the solution afhchﬁ.ractﬂristic

initisl value problen

T T
GO A= ELCA VA, =0 ina: O
T=1
(7

Urek. ey =1 onl Ar= X, el an




and let D Dbe a comnected subdomain of /A containing x

such that \v 30 for =11 A€Df. If DED' and
b (8)
LL(X) & LX) 4+ DLx) i = (x,u)
where =
II ')(Y_'

x
EYLX,L.GI:JE h,ﬂ‘-“-')j T, | f(xluuldi... (2
d 4 3 dx .

Then

A P
L exd gmm-‘rbcmi{d ;thta,a}ws?mda_ (10)
=1

PROOF, Define a function <P (x) such that

i b |
il iy VSR G S VB

=1
Then we have

>
p (XY = E.QCxX,uWw)
x = ) X

and hence from (8

dycane > EL G m+b+}—ZE C%,0) + Z?E"lﬂﬂb#‘;_{m
X T=| ¥=

Using the nondeerensing nature of ¢ (x) in (11), we find

qb;;m-j_‘_e G, b p ) & ELE
B

Cax,a)
A

where @ venishes together with ~ll its mixed derivatives

upto order n-1 on A; =Y, , ETE T

llow an appliecaticn of Lemia &, provides

P & 5 :Z‘_E (A,00 V (A, 2)dA, (12)
‘3. Y=t

The result now follows from (12) =nd u(x) € a(x)+b(x) '-‘# (x)

(1))

P
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REMAGK 1. Some particular cases of Theorem 3, n = 2 93
and m upto 3 have been considered recently by Pachpatte (P71

theorcns 1-4 and [98] y Glicorems 1-2), but his results cennct

be colpered with our results. In the next theoren we shall
consider a particular cmse of (8) , the obtained result

unifies 211 his six thsorens for the general n, also a

[ 4%

result of agerwal [103].

THEOLEHM 4. Let Vi (s,%), 1« i< n, be the solutions

o characteristic initizl wv-lue problemns

e:-\‘h V), L4, 1)—'1’_2 besy £, La’e-‘sU g )V A= 0 m N
=i =\
T el

b \G LRy - [Z. {;q;&)f-(m U a {!;‘j—amfd’i")xﬁ(ﬂ,l'}:ﬂ

\,Ef.ﬁ)x}:. } ol B =2 Ls e
and let DY be n connected subdomain of £ containing x

Buch that Vi 5 0 5 1< jewn forall AeDn’

i Sh
DCDY snd (8) is satisfied where
= 4. (x| &\ - = XV = e
{”-“LK)_.'%E{'L Al e e PLH-. %H-l,i
b =g loo, 1l ety
- then
Wit) £ txa+ bc-x:a’f-d‘f (XY, L <jem (12)
wnere
e
P o= | acx,li-}* IV o0y i
4 =
5% At
= 1 ':,1'}'? {1)
,P:;EI‘}:%LquJT-Z; {:E'I'}_i-%‘mﬁ! = 1

\i(ljxﬁdx‘,’ 2£jem,




PilOOF. The proof is spme as in Theorem 4 (Chapter 1) 24

and Theorenm 3 with repented appliecation of Lemma 1,
U{EMARK 2, For the particular cese m = 2, b = 1,
i‘l]_: f21= fl, f22 = I‘E in {(8) the estinate (13) tekes the

form
1

A .
Wiy caco+ | Foablach 4 ach (fhed+ (19
¢ £ i) v e 3 e & e
where V|, (s,x) is the solution of characteristic initial

velue problen

(:f;“v!&u,,m — (£ +HMIV (A X)=0 im0 (15

VT A, X)) =l on Ap = X ot éLém, (16)
In the next result we shall show thet the estinate (14)
ean be improved uniformly, The improved version of

Theoren 1 in [97] is the following (here we have talken

6 —o ©5ineec it does not play any role, the tern
i o

THEOREM 5, Let v, (s,X) be the solution of (158i, (16)

h(a) ¢ A) 44 con be merged in a(x)).

" nnd let DT be n connected subdomain of S containing x such

that \; 7,0 for ~11 AEDY | If DGD' end (8) is

gatisfied where n =2, b = 1, f:L'I.= fEl = fl . fEE = .f.‘2 s
- then
< =
Ex) & atxwﬂli:ﬁ(x‘} [fxw;l'i't-f.aimxi)tﬁtf)
+HGxH) -l y () d 11_';'1 (17)
where dx

= b : :
Cixd= % 0 ) Et{.x}'!r{,x}dx_
X a p




o)
o] |

PAOOF, Define

1

p & Bt x
Px) = Jfohuedydx + [ £ [+ oA uet)dx dx
| % \ 1 ! 3 B

then, from (8) it follows that

P
d‘?x{ X) ¢ f oo Lat)+e o +1§ foehlach+ & x4y 119
Let
o 1
$ 0= 43{11+§%{'1(x1{_u£x'}+ P ldx (19)
then, we find
P (D= COFTH a4 he]

b B 4

which is from (18) and (19)

o
P octfoolamrp ol s olaco+ &0 - Ja O eo
X ! 1 p l} dx_ij

Using Lemia 2 to obtain

x
b Gy £ Jach (e +He-cGhiv Gl d,
i i

gubstituting this in (18), we find

f

PO ﬂ_({-(l}[_ﬂ. r.x.H-Sa{ﬂ.(l }H- 4+ H )~ e_m&}ﬂ-

and now the result (17 follows from u(x) é a{}:} + :ﬁ (%) .

In the next theoren we shall cbtain Wendroffls type

estimate for (8).




26

TAEC.EM 6, Let the inequality (8) be satisfied in .

where (1) a(x) 1s positive and nondecrensing (ii) b(x®) > L

Then
B L]
Wexy g aexy bexy exp C 3 E'(x,;b))
=l . (Eﬂ)
PuOOF. The inequality (8) ecsn bes written as
™
Y
PO £+ 2 E (X, b]) (21)
where
P (XY = Ui ]
a (x) bx)
Let d'alii} be the right member of (21), then
1§3{-}"ZE (x bc‘{J)CZE Cx 'bcpﬂ_ (22)
and ‘4:1{3(':""3({-!?%{1x|'.+11""ﬂx“} = , A1l1 the

partisl derivatives unto order n-1 v-onishes when Xe¢e = Y.
g L Ly

for any 1, |2 (<m .

Since (@9 is nundecreasing, it follows from (22) that

M
i
f 02 E!ExLl,bﬁ <, ()

&
”E
3

3
e X; E Cx,b)y + (‘ 1(3-;?})('4:1 L?L-I“-'.\"
3 ¥=Ii
e =P:(x}

heice

€ Baal
L 431 11"‘3‘»-ﬂ.-|) < }____E\;‘f.l.,b“)‘

gt-.liu_'g X =



o
-}

Keeping D forel e K
7

y Xm-y +fixed in the above ineguality and

setting X..= Ay and integrating with respect to Aa from O

to X.,, 5 we obtain

VO S llaa= g ) S e S S T Sl TS i Jv
( 1 i i) 5 S‘J“ ?E E G ;1‘?5:‘ m—l 4 21,

P (%)
B + =1 C3,b)
= Z Exl = -x'-':!..-|
==y .
‘llepeating the above arguuent for 28 X onugoy B0 A,

We get

P (xX) n
X, < B EIC‘I b}
S RES ¥l

Integrating the above inequality and using 4:1( By Xa =ves A )=

we ind
.m &
cplr.x.y < exh ( ;Z_ E(x,b)).
=1

The result (20) now follows froro c{: (x) £ <'$> cx) and
the definition of q:('z).

REMARK 3, The estimete (20) foir n = 2, m=11s
shirrper than given in ( [_89:[ y Del5 ) and same as obtained
by Kasture and Deo (6] , theoren 9), Forn =2, b = 1m wito
2 sinilar results have been obtained in [92] .

In our next result we do not recuire any condition
on a(x) and b(x) as in Theorem 6, alse the estinate (20) con
be deduced.

THEOREM 7. Let tie iInequality (8) be satisfied in . ,

Then

1'\“'\.
UE) £ a(x) 4+ b ix) E“ELE (A Q) x (23)

exb ( ,a‘ E Ey(t, b)Y dt)ds



P.0OF, Define

A = exp(l ¥ g ¢t,b)dt
Ly CA,2D P L ZE G
lthen it follows that
™ LA 'l
1) W, (5,x)-F E (5,b)wes,x) o
) o
Wrem, X)) en by = X V& ile w ol

Consequently, WA, x) satisfies thedifferential inequality
(24) of which Vi(s,%) is the exact solution (Thecren 2).
It follows from([BL) , p.125, 130))that W(s,x) % v (54%)
and now (23) follows from (10).

In ense the condition on a(x) (e-n be non-negative)

and b(x) of Theorem 6 are satisfied, then fronm (23) we get

X ™
W) £ ata)booli+ ) }“_EZ(,A, b) x

Y=| (25)
P S ¥
exp( ] 3 E (&b)dt)da])
Using (24) in (25), to obtain ol
ne :
WEx) € a o b LIt En S,a‘*-';,(*-;“-‘"d@]_ (26)

Now using the fact that the partinsl derivatives of wi(s,x)

upte order n-l vanishes on ’EE = il-_ y leLem it
follows frow (26) that
x,
AN
w0 £ acoboo b+ @ ‘Ei ”;)1{-"*' 5'dasT "0 dn 1) dA, ]
i

and hence

WO € abGoliy @Y ™ wex, , ‘-j,_,--*:‘iﬂ,x)—witi,l}ﬂ

or
W () & alx) by wiy, x)

which is sane as (20).
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Here we shell state n-lndependent variablé analogue of
sone resulis given 1n section 3 (Chapter 1). 8ince the proofs
are simlar to the cine for n = 1 and given for the linear case

here in secticn 2, the detnils are not repeated,

THEOREM 10' Let the following inequality be satisfied

wue) caonle+ S Hitx, W] im N
¥z

where
I.T_‘ o
s
of Al Yy
Hiex,w= § £ ahu ey - -- § F D uwdddx".. do
4 4
and oK. lE&lgy, |<¥em are noci-negative real

nuiibers and the constant C$0. Then

1 -
TRES {-_r_a(me:xptf Qemda), laa(':l

= :
wex) < acxyle +(|_:.4_)S ACA) da"_'[ ‘joﬁ.*l
g ore “Y*Zm’. o = max uc Q(x}—*f_}-q (x,a) ¢
y= A ':-ﬁ-*rr.w

and when o 5 o we assune ot = +{.‘_,“j' Q¢ AYdA »O,
DEFINITION.. & function W :[ o, e)—> (0, ) is

sald Lo belong to the class 8 if (i) Wr(un) is positive,

nondeerenaing, continucus and L'thc““f-ih' SR S By i for

all 2 <5k < n and ny, 0

Y ) wiw) < w(ufv‘} for all MEpor, N
o
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THEOUEM 12', Leb the following inequality be

satisfied
£ x

Wexy & acx) +1“_E (x u)-ngL(x)ffﬁ (A) w (UeH) in 0
L=t ;! d%

where (1) ad(x) y | and nondecreasing (4idi) 3{ (x) 7 i1 (el
(11d) W, € 5,14 (<t
Then 1

W) £ acopyLc) TE M)

el

where

i
wix)= Exp(}:& €, e)) o Ricxi=T1 9.0x)
=1 t=
k-t
R (= Gmkt&hci; + 5 R By s €om [T F (Ayda | F o=
4= '.Lh*ill
e cdb o <8 &
&Gy (8= jﬂnﬁaﬂ 3 o £
as long as
R

thm-u,j% 4, (mw(mqn&)ﬁ F{m&f:. € Dom (6,
III.'R_ f—l

h_”}

THEC:EM 12', In addition to the hypothesis of Theorem 12!

lat gi [?.v,}:| Lzie , be nundecreasing., Then

1

WEx) £ aC)wx) [TE (0
] S
where

e 8
WO = eap (3 E G0
=
—1 X R-!
thc“) = ghtx.) G‘]h LG O+ %%h(a) ¥, (A gh{m Ei ¥ (&) as)

Eex) =t e |



e |
1ol
as long as

k-t
G (VD + o ?“‘ka“ﬁ %A G D TTE (43 da € Dom Corp ),
le e U
THEQREM 14', Let the following ineduality be EahlS;lEﬂ

By £

WGD £aco+ 3 B Gou+ 3 B (x, ww) in a.(29
Y= =l

where (1) a{x) =\ and nondecreasing (ii) Ww e S

Then
. o i
WO £ aCORED) &'Lem+ ), 3 By (sy)daT] (29
=1k

where “-{-' (%) 1s same as in Theoren 13' and the terw inside
the bracket of (28) & Dm{&_]
THEOREM 15'., Let the inequality (28) be satisifed,
where (i) A (x) is positive and nondecrassing (ii) W is pesitive,
continuous, nondeerensing, submultiplicative and W Qh‘-'hfln ) X))

7,0
far all 2 jesini s itnen i

x
SNESE LTSS RRES! & LG “H'% E, ELQ"’? u_r_%w )df%ﬁ}

where ‘-i“{}*J ig sste 23 in Theorsi 13' and the tera inside

the bracket of (28) € Dom(Gy )

4, BOME APPLICATIONS.

Here we shall present some applications of our results
obtoined in sections 2 nnd 3 to diseuss unidueness, centinucus
dependence and =1 upper estimate on the soluticns of the

nonlinear hyperbelic integredifferential equation

d .
U 00 = FCx, uex, f tx, 5 uea)da) (20)

4




together with the piven boundary conditions 1: 2

U“(-T"--:"Wxi-nléi;Ii.‘.;a'*'?j’;“):"ﬁ t<£m . It is also tc

be remarked that these properties ecan be satisfied for more
general equations than (20).

The funeticns F and K are continuous on their respective
domains of definitions,

EXJIPLE 1, Jdny solution u(x) of (30) satisCying the
boundary conditiovns is alsc¢ a solution of the Volterra integral

equaticn
1

> t 1 o i e b 1 1
Wiy zaed+§ Fox,uexty | KO, X3 wtadh))dx™) (a7
'3 ld dxl
where a(x) takes erre of the boundary conditions,

Let us assune that

| FCx, W), veo —F (x, Weo, Ten)) £ F ueo-weol (32)
+ Ry vy v el

|G, B, u B = KX, 2. Teaydl < £ omnlum-mn| 2

where i, L1953 Ty are same as appear in (8), also let
Vi(s,x) be the solutien of charmcteristic initisl value

problen

Y
YV ) =L E O e LJ £, dxd Juiax)=o inn
NES ey = | on A = 2 o el em,
Let D' be o connected subdomain of J. contadning x sueh that
Ly >0 for all SEB+. Let LJLIC'I.} and L{l(x} be ftwo solutions
ef (21), then we iind on using (22) and (23) that
U, X)) —u, 0] ¢ {1[ £ OO0 T D —u Gy | 4 D x

1

x )
- 5 {.11(::1) | u_l(x"")—ul(xlil a5 4
a .



—

application of Theorem 3 to this inequality implies taﬁ: ?’
u G36) = W tx} for 211 x & npt

EXGPLE 2, Let us assuue that

|F Cx, L) Ve & 5‘.“{‘x.}lutx.ﬂ+ 'Pl:.‘;")wu'ﬂ{gg)

| KX, A, uim)] £ £ |uerl. (35
Using (34) and (35) in (31), %o obtain

* x
lueol € lacals J T8 Chlued I+ e ] § o

J
(26)
(Ut dx*] dx'

From Theoren 7, we find

fuweol clacx)y | + fa [ﬁ‘tx}!thﬁ-*ﬁltx) S‘i {— ULNMI H)d-d]
3

) dx® _']dx 35‘1

{:_1;:(5 LD+ xl.ag
‘1’ 1

£ latolem y wieTe M > 0 1s a constant, Ghen from (87)

or (86) with Theoren 8, we let
<

| (x| f-M@_xptf_j[f”(x)Jrh ’i‘f-}[ i‘,_?_tf“idfldx')_(aa}

Further, if fl’=: g then fron (38), we obtain
1 s

al
| wxyl ™M exp {“[a £, 60+ fﬁ £, dx21dx') (a9

ok
The estiuate (2€) iH:\ﬂﬂillI]E‘IﬂblE with

x£
el em i+ 51 f,,tx‘mxp{{é £ .00+, AT dx* Y x' 1 40)
ag obtained in [ 92) for n = 2.
In order Uit't‘:rlrem_inﬁ bounded in (40) it is necessary %o
have

TR OO+ Fa e A <




wilich 1s sane as 1 4
11 [ i * i '
'i—'HCI}dI_ <@, E '{'11[1de {m_ (41)
In (32), we require
g 2 5
%ﬁiix)LH-f,}%ll:x‘J dx*] dx' 2 o (42)

which is obviously satisfied if (41) holds, but in several
cases (42) is more pener~l then (41), for example, let

™ B )
Foaex) = exp( Z (x4, ) and + x) = exb(-2 3 (x;-4:))
L=| =i .

for this (41) is not satisfied, where as (42) holds., Thus
tae results obtained here will be npplicacle ©o Liore general

situatiine,

EXPLE 3, Fullowing the sipdlar lines as given in [9?]
it is easy to show that the solutlons ef (21) are continuously
dependent on the initisl conditiuns, with proper apnlication of

our resultsg,



CHAPTER 6 15

DISCRETE INEQUALITIES IN n INDEPENDENT VAiRIABLES

1, INTRODUCTIOCI.

In this chapter, the discrete analogue of some results
obtnlined in Chapter 5 have been established. These inegualities
are applied in studying various properties of solutions of
suwmory difference equations in n-independent wariabless

Following the notaticns of Chapter 2, the product
NDxNa'ﬂ---xMJn times) be denoted by N: s 4 point (1}?---,151‘}
in N: is denocted by Tx__;‘ . JTheifirs{ difference with
respect to the variable x; of the functlon WXy, =+, Xm ) iz
deifined as

&u;xh--.jxﬂj == utlhn- ,11.__”151"1,1£+1;_-}x“‘}-ut'xhn-,x,ﬁ}l

L

La

the second difference witii respect tc the veriables 2 Sk xi = 1

2. = — biz=

3 a-iji--;rx'h.j‘&u:&?j“.;xr

et " e i - oo | e ee Y
-‘U'{'-"Llj 31L-—l:‘1‘#15'xL+ﬂ 1'IJ-|)‘IJ+ ‘-'13,“" !

T e o I
i GUETER SR G ) I VU G AT T PR
) U CXf, "2 X)),
The higher crder differences sre defined anslogously, The

functions appearing in the inegualities are assuied to be resl-

valued, non-nep-tive and defined in N i e

2. LINEAR THEQUALITIES.

THEOAEM 1, Let the following dnequality be satisfied

i Y
UEx) £ 3= a,(xpd + 35 B (xXu) (D

L=\ F=1
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where
=1
. W= 'x.- 2 =1
E.cx,,u}:z ':1)}: F r:x}._.Z T ’CX'JLI.{I')
1: 1-_ o X' =0

Then
A==
L) ¢ La, tcﬁ+}: a, (] TT L+ Aaa) o
R =2 G CAY AR, 0+ T alk) 2)
™ Y ' c=at
& E& E g (B Xa, oon Xy )]
PROOF. Let P (x) be the right metiber of (1). Then
&qatx‘z—f:,a {Is-rza;E {x W) (3)
X, Y=o
and
- i Al % 4
TAY 4:11'.:::.‘) = E AQE SURE SRS (%
2lso

~h
" Xm) = Qo) * El A Cxél‘}-

JFL
S8ince W (X)) £ d(x)anad CP{YJ is nondecreasing in x, Tfrow (3),

q)('xh' I I!:-I:D‘Iiﬁ-lﬁ‘

we pget
&q:s{:x‘} z&E X, )

< ):;L“E“;cx,m) PLx) | t5)
1=
From (5) , on using the fact P C Xy -2, Xonys l.n""ﬂ 7, P,

we ohioain

~n-'.
»:x. Sy g X ) A
CI:! - Jo "= m .&1'\ ci: {_x‘! LN
— Nl LR U U Y
< g %)
d’{j‘la”' I.,‘_”'I““‘l"} <2 n Ex 7]‘

¢>(1) Y=1



Now leeping 2, j - iy Xy Fixed and setting X, = Ayn and

) Lirs

= L ror _— il t how ine aldits
surmming ove A,ﬁ_g,l_’,._‘}—xﬂ_i in the above inequality

we find

=) =4
) 23 A
A 4;11"'3: < I_ E{TEY E:.‘Ilﬁ x“"l*p?”"ﬂ'?\‘j
: = L0 Y=) Xyt Ly An
b x) %
A
s =l _7 [13\'}
= *‘r{_tﬁ Ex" SESEE

Repeating the zugve arjunents successively to obtnin

'f—\‘ﬂfﬂ 5_&9»1{1& b, i ?}l&E‘;Iu,u). e
Chf:,(i} Qt(:{,ﬁ-ﬂ-nl[d}-}—gaﬂ.it;i} =
Froi (8}, we have
= o
bl i) e D BN S + EE“-!H"Q b(x)
qlcx,1+a1{n}+ii:3u££x;} =

How keepinag Xg ve-, X fixed ~mnd setiing X, =%, and suming

gver ?m. = o e PR A in the above inequality, we find
fron (4)
=<.~|
LA i
AL U
43[1\&{__5(}{5]%-‘2&}_[1;_\]?1' ‘\-_H. e LY +
L=k A= QA CA) + G,00) +.qui”-ﬂ
=
Lo ~
> ‘&Eh*(}"‘: Py o=y Iﬂ-,'-\;,l_
e

The result (2) now follows from u(x) € b (x).
REMAWC 1., There are YL different conclusions possilile

for the Theoren 1, correspunding to n-permutations of (X -5 Xy )

end corresponding n-permutaticns of @& y;. .-, Qn




—

RR{ARK 2, For n =3, m =1, the estimate (2 is 108
sane as obtained in([104), Theoren 1), For n = 3, m = 2,
£1= £y , bhe estiuate (2) is uot ccmparable to as obbained
in ( [104]) , Theorem 2 ). For n = 2 and m upto 2 some results
are given in [105].

THEOREM 2. Let the following inequality be satisfied

b ol
utx)é.ucxa-rbtx}ziEfcx,u) (7
Y=
for all > & NE , wiere (i) QA (x)» 0 and nondecreasing
(i1) bCx)» | . Then

=1
Weo ¢ acobon IT EHZ&E,, (A, 1;.,“-1::“.,‘:";] ¢ (8)
1= i

PROOF. From the assumptions on a and b, inequality (7

conl be written as
b Y
Vi @R 0 YZ E (x,bv)
oot
where V = U/aqp
iest of the proof is same as in Theorsia 1.

REMARK o, For the inequality (1) witn the assumtions

of Theoren 1, we have from Theorem 2

11"
Wwix) = Eﬂ [ )T_ []+ E.&E (_-’bl 11 x“‘“%gj
L=l A=0

REMaK 4. There are nldifferent conclusions possible
for Dheoren 2 and also for (9).

REMaiiK 8. IT a = W (constant), then (2) and (9) are
salie. In the geuneral cize (2) and (9) are not conparable, In

epplications (2) requiresless work to counute the estimates

then (2)



THEOREM 3, Let the in E-"EI'U:J..'tf (1) be satisfied, 1"9
where :.'1* (x;) 1s same egs in Theoren 1 and -5'“ = {-t = LE€m -
S L TCEN, T e - 20 For
-E_HH b Et-n O T d; 21ELE m) 3
all: S & N: « Thnen
Y G a Tl E Ol I

where

> ag(x ﬂ]‘"‘f_ 5 b
“P(x:t_['_qm‘a+L 5 ’u ”acmm&”i;‘ (x)
At e P | b

+3 -3 (‘Z?mu a; ™) |

’51:0 Am=o Y=}

Rt = zct ¢ ‘:+£ r:&cmug‘thﬂ'ﬁiﬁ}-

f_:'l.
PROOF. Thae proof is similar to that of Theoren 4 (Chapter 2)
and Thepren 1,
REPAAK 6, &s in Theorem 1, there are W) dilferent
conelusions possible for Theorem 2.

REMARK 7, For n= 35, m = ] Theorem 3 is same as
=1
given ii'Lﬂ:lU*i:[ o+ Ehgorely L, For n = thfl = By Theorem 3 is

gaie s Theorem 2 uf [LD{] « This alsoc covers some results
giveil in l:lCISj fer n = 2, m upto =2,

THECREM 4, Let the following inequality be satisfied

|

™M
W) £aCO+Y 9.3 A (AUls (11)
=] 4 AzD \i

n _ " I |
for all A& Nu , where (i) a(x) > 0 and nondecreasing

i s + - e ) e [
(ii) g[ ) =l V&L S and nondecreasing for 2 £ 1€M™M,

Then

LU & FMCLL X
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where

x - Wa-' Ay

Fhw = l.;.:rL }W U+= - }__- '?-\ REA) R_.%hﬁh']]

A=0 "'51-"-" A= 0O
Rozilg 2o oyima
PROOF. The proof is similar to that of Theoren 6
(Chapter 2) and Theoren 2.
THEOREM 5, Let the 111&E]_L-11LJ.E}T (L) Dbe datisfied for
alll X N:‘ y where (1) a(x)) 0 and nondecreasing
(11) 3,007 for all 1€ (<M . Then

“rrl 1" :IJ_"
lJ.Lx"}*‘—’-a{le cgl GO TT Li+ > ---Z z% mﬁfa.m]
=0 22=0 A,=0 Y| e y

PAQUF, The inequality (11) con be written as

Wex) € acx+ 1”1' 9. Ex‘ﬂﬂ_(Z#’w (AY) wea)

-0 (=
and now the result follows froa Theoren 2

2, NONLINE.R I& EQUALTTTES.
THEOREM 6, Let the followin: inequality be satisfied

WO £ peo [c+3 W (w7

=i
where
Y
A Ayy v
HTfilju}— 35[1)14. (_:x_*} ..Z;F AW cx')

'IC' x'zo
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where Gy o , are saue as in Theoren 10'. Then

ad

Xyt B
Wexy= @ PLIETT [H—Z AH e S c—_“' '_] 'L{r‘m::.l
A=o i ?
utm-s-_]:r.x)[_c +(i.—-a-f.‘12__l—-i{,?:- P}Q ]{d‘ u‘y oh L1

=il
P:00F. Thae preof is similar te that of Theorem 10!
and Thegoren 1,
Next result iz the discrete analogue of Theorsn 18!

(Chapter 5), we follow the same definition of § as given in

Chapter 1,

THEOLEM 7, Let the following ineguality be satisfied

1 X~
W) £ atx)y+ }: E fix LL‘1+Z g (x) 2 H. {n)u_rtufa}j
Y=i i=o
(12)
forall x e N: y winere (i) q(x) | and nondecreasing
(11) gttx‘:::;,! sl b (iid) wfés,'.f:f.s_i,
Then
i
W) € W) (x> L) TT Ex) (13)
. i 1
where !
2oy = j‘T 9. ),
= :
E—:‘u"‘"
NpIEE =T |_n+g_z:~,E Un 3 Xz eemy Xy €D
Li=0 )
X~ Rt
Fhu)—&hf_cnm Z_Jﬁ mwa}ﬂmdr:[: ]’F“{I}:’E
i =

e
&{Eﬂ‘j dh , 04 B, <85
R G LH.R{FJ
i G k-1

Gy (0 +z hp(A)p sy ecs) 1T [:écmaljcm Cfnh‘)
a=|

as long as
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THEOREM 8. In addition te the hypothesis of Tl'iEG]’."’.'—".I!I"?_!

let g (x)_{<i<Q be nondecreasing. Then

{
PHED E-NE S AED Lﬂ_[:uc}
e
where _ :
Xy 1y ¢
‘41(511':;FT c}; i 2 Eiaai-ﬁiaill_j' ¥y 111,i>j]
s — Y=+

— =] 3 i Xt }'{—
PR{_X?: ai{(‘-}\: th. l—_l_-r!hr"]' -\—E_D‘t-l k)}}'\,l_r {ﬁ]dhkh}ﬂ F: [hﬁj

By =l e ksl

as long as

R-! —1
G+ L P W (2 e IT £ E Do (G, ).
Fo)iiA

THECLEM ©. Let the following inequality be satisfied

‘_—
o :
Wexycaco+ > B, W+ 2 E (X, ) (16)
T=| =0
where (i) a4 (x) > and nondecreasing (ii) Lr € S . Then
]
W0 € ) w ) G LG+ Z B ex,w)] (17

=

yhere ‘W () 1s same as in Theorem 8 and the tern inside
[

the bracket of (17) € Dem (&) .

THEOREM 10, Let the ineguality (16) be satisfied,
where (i)a(x) is positive and nondecreasing (ii) W is
positive, continuous, nondecreasing and submultiplicative.

Then

ﬂ .
W) ¢ 0 (DY G' [+ E (x, ¥C2wdyy (9
=4 a

where ¥ (x> is same as in Theorem 8 and the term inside the

braciet of (L8) & Doml(G'). p
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The proofs of Theorems 7-10 ars similar to that of

ocur egrlier resulis,.

+ SOME APPLICATTIONS.

The results obtained in scctiors 2 and 8 ean be direetly
used to prove the uniqueness and continuous dependence for
the solutions of discrete wversions of hyperbolic partial
difrerenticl egustions involving n-independent variables as
in the continuous cese (Chapter 5} also for morc geoneral
equations as glven in [104-1087] , since the arguients are
similar the details are not repsated here. To show the
importance of our results we shall provide an upper bound on
the solutions of difference equation of the fornm

=1
S ke A MUEAYS) (19)

AT ey = B ey
B ?1_
together with the given sul tuble boundary conditlons

T e R G =Y e

gt le L &m
1 O TH L 3 “\J 7 !

The functions F and K are defined on their respective

domiing of definition »=nd

= o, wexy veo)l € § e tueol + F,00 Vol (20)

€y a0 emd) & £ emiuca)] (21)

where %]‘151 are soue as appear in (1),
4

4ny sclution u(x) of (19) sacisfying the boundary

ﬂ

conditions is also a selutibn of the Volterra difference eguation

i
b | =

WX =g ifj+§.-. FOx', wixt), '::hix xt uex®) (23

¥ -0 :x_:::-
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where g(x) takes care of the boundary conditions.

Using (20), (21) in (22) to obtain

1
~ =

].U..l.ll"sf-\ji_?rﬂ-'rz [&LXJllALl}ll-fi— (_1].2,;_ txliu{fx"}}]

}_Cﬂ

T Eggx‘;l < O (x) where a(x) is same as in Theorem 2,

we [ind

5 S '}'_z-l TE ‘
]uai‘jl'—’-th_l,‘fﬁ Fie2E . }'_Efli(xr.-g-fcszl}txﬂ(zu)

i
1 = 2 X ,-0 1“._:1

B8 AR el E_G :Cx;) where Q;(x;) are sane as in
f==t

Theoren 1, we find from (2

X5t Aditx)
lw ol ¢ Luna}+zqc1)]11[_‘.+ —
= x'=o a (X, }.t-c.im}.yy_iu €x;)
P g =t
+§:"'§: [:r“'-"’:}*ﬂ‘ UHE £0x )j]
XyE0. X I’“-D (24)

alsc, in case I, = g, from Theoren 3 1t follows that

Icey e B [ =\s 2 (25)
where
1rl[‘_ &E}I(IFL}
IFiE s Laznwf—ﬂfﬂlﬁ o e
Bk -_YI-‘G Q1-.,1]}+-‘.11LD)+IL£:;L,C21}
s 5] il l
R 1,_5-“{1'>+£l1£17’]1
TL:D _Iiﬂ:D
and

B Li'l"z_u_{l }+}_‘_ J}Lx}?ix]

=} xi-o
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The estimate (24) c¢-nnot be obtained from (23) except
when |g(x) | = constant, also (25) cannot be obtained
from (24). For n = 3, (25 is same as obtained in [1057] ,
It appears that in general it is not possible to compare
aﬁyane. of the estinrtes cvbtained here, however for a

particular situation we have more flexibility to use these

resulbse




CHAPTER 7
HYPERBOLIC DELAY DIFFERENTTAL EQUATIONS
1. INTRODUCTION

Differentizl equations with deviating arguments have
many applicatlons in the theory of automatic contrel, two
body problems of classical electrodynamics, econcmics,
biovlogicel problews and in mony areas of science and technology,
The abundange of ~pplications is stimulating a rapid develop-
ment of the theory of delay differential equafd ons,

The theory of partial differential equations with
deviating argunents has been very weakly worked out. The
only suech equations encountered in applications nave deviatiocns
with Tespect to only one variable for example see [107-113],
Here throughout we shall consider the following normal fcrn
of the hyperbolie differential equations with deviating
arguments
'
I 3y

= F 0%y, WEX, ), WO 0,0, WaXog), UxC330 ),
—ty (X593, Uy (34022, %)) 4

o<Xta- 0cYsb,
It will always assumed that the functions %i oy Gl =92,

are continuous over o £ =x &£ QA and the funection f is
continuous of 211 its arguments, We shall denote,

= = . ™ i
e T*w.n..{ Lo g_ti‘i,t-l-,l,ﬂj
Dex<e ~i

aniix,%}: bexta,0sysbl

Jex, ) ~Tt exco,08y4h]
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and assume that —T £ §;(xY<a ({=y,2,3) forall osxca
For t he equation (1) the Cauchy problem ( Goursat problem)
takes t 2 following forms Equation (1) subjeet to the
conditions |
L G M= e D, B3 40 &R,
il Xy0) = DIXY 4 oEx 2R (2
W lo;0) = o) 4w (oyo)= P (0)
we sh;ﬁl denocte ¥ (o, 1) = (y)e The function i (x,y) is

continucus and R{JXLI,%), W, Cx,4 ) exists and are continucus

on o R, $pais c:rn'l;inugus\aly differentiable on o x < QA
By a solution of the problem we shall mean a fumction
wx,y € CLR,UR,,R] s the partial derivatives Ui‘u'ﬁ“
on R{ W RD and L'L::. a1l RD exists and are conti:mu';-.s,]
alsc satisfies (1) in En and the initirl conditions (2).

It con be easily seen that the problem (1), (2) is

equivalent to the following system of integral equations

x 4 - "
UL-{_N;L&j = E { ﬁrgx}{-{z}]t‘ w(at) - U L‘agik;t})dadh
L= 3 1
, +P X5
letm‘a‘i = e (0 g.gxi-kju{xjﬂ}“.; ugfgztx},f})dt Yo
s : oW 5
X X7
u‘a(,x;a) :éatxﬁ-{.h,g,uta,nﬁ}j...1ulaf*33cm;*p)&¢+[g{x,-j‘u
where
L END w o(x,4) €R
POy = % ’ (4)
PO+ 4) = plo) Y {x,ﬁjeRb
and
gy =) ! e

o »T!. 5’2 ¢ Ltj?ﬂ]_ (9)
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In section 2, several existence and unigueness
theorens have been obtained for the sclutions of the problen
(D, (2. In section 3, the error bound between the solutions
of (1), (2) and its approximate solutions are established.
In section 4, some inequalities have been derived which may
be used as a tool in the theory of hyperbolic cdelay differen-
tial equations, Lastlf in section 5, an iterative scheme
is provided which converges to the maximal soluticn of a
sui table problem, This maximal solution is being further

used to coupare the solutions of the given problem (1), (2).

The first result 1s local existence theorern,
THEOREM 1. d4ssume that K, >o, K, >o and KK; >0

are glven real numbers and let

(1) ¥l ’E'LLP{ i{ni‘ii!"ﬁ:ch ‘r“"'.!qh"ijl.'- {'11'33 € Rg 3 [$|1,iqd'zl52xi
AANUNES DREANIARY

(11) for all Cx,4) & RyUR, ,IP‘-X:'&“ ERHIIE[C*,E)I{: Ka ,
lﬁjtl.&‘i}lé KS.
Then the problem (1), (2) has a solution provided that

M < M K, Ko KB) (8)
Ak 57 aiterae,

P#00OF. The proof consists of a standard applieation
of the Schauder-Tychnoff fixed point theorem, We shall
dencte B the Banach space of continucus functions with

first order continuous partial derivatives exists on R UK, ,,
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the norm for u(x,y) € B is defined as follows

- MAX fulax,yyl, M [y LX) MaX |y, Cx,4)
o ma:{gluﬁﬂi Tl T L), e L ‘ai}

-

We:! define a mapping T on the Banach space B as followss

For each wu(x,y) € B, let Tu(x,y) be the function

=
W,y =f § 6c0f( st uiap), -5u (9L8);1))dsdE (7
g4 + P YD,
It should be noticed that T has the following properties;

(a) if (x,¥) € Ry, then Tu(x,¥) =¥ (xy)

(b) Tu(xyy) 1s continuous and first order continpous partizl

derivatives exists on RRUR_  i,e,, T: E—>B
(e) .(Tu)xt;,u} = £ 00y, WGy, 0, Wy 13,00,40), (X4 € R

(d) fixed polnts of T are solutions of the problem (1), (2)
(e) T is a continuous operatur.
Consider the closed, convex and bounded subset By of B

defined by

B, = {u € R IU G, £ 2K, lu ) Ezkl?lu.&flﬁ}lé 1'r<3§

and we shall determine the condlitions suar that TR, CB, .
From the condition (ii) it is ‘claar that By C B, if
(%, € Ry. Now for UEB and (x;4D> ¢ R, , we have

lTun,piaK,armg i ¢ k,+Mab

dz
(=]
HTLL}]S'*;:’J',-& Ko+ ™M E'ad < K+ Mb

=}

HT'“L}LaCIﬁT’lékg,*’rM ildb < Kyt Ma
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thus condition (6) implies T, <£5%, . Using ascoli-drzela
theoren, it follows that T#EH is sequentially coumpact,

Hence b; the Schauder-Tychnuff fixed point theorem T has

a fixed point in B . This completes the proof of the theoren.

Next result 1s about global exdistence of the solutions.

THEOREM 2. A4ssuie that

(1) M= Ap TUE G, 4 4y, o ¥ 2 (4D €R, Qg oo, O ER® L
and 1s finite

(11i) Conditicn (ii) of Theoren 1.
Then, the problem (1), (2) has = solution in K UR_ .
Pi0OF, The proof follows from Theorem 1, on choosing

Kiy Ky and Kq sufficiently Inrge =o that (6) 1s satisficd.

To prove cur next two results, we sihall assume that the
funetion f sntisfies the Lipsechitz conditicn of the following
forn

2 ) 0 b =
H,('u_’l?j?%“.,.ﬂ.&“}_.‘r {-Xﬂlj-:.ﬁf,-,"'jﬁ’b}} £ L;_icv-"'};_l (8)

i
=]

- —— : b
for all (X, 4%, -~ Vi) Ex,%}“{,”.-.jﬂh) ERL KR

£¥

THEOREM 3, «ssume that the funetion f satisfies the
Lipschitz condition (8). Then there exists a unique solution
of the problem (1), (2) provided

&
T s C ek, b ey e L (9)

L=
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PROOF, We shall show that the operator deiined on
B by equation (7) i1s contracting. Consider the same nora
as defined in Theorerm 1. For this let W . V& B , then on

using (8), we find

F e -
{Tun,k&}_‘run}gﬂéﬁ [ By Lluca,y -Vl 4 -+
o o

Ll LLE{%:"W’H —vigannly
s 4%

b
_‘L__“.LL—U“JY_L.-OB
ard sirdlarly =

&

ILT'..L}I‘-L‘@—(T\J}XEITEH < u—wvi ?;:_'.Li b
3

Ry u‘uaiw‘h == (Tvnut‘hﬂil < BHu-vil 3_L; @

i=h
Heneae we obtain

[
Il Tu—=Tvll € T Ly max (ab,b,a) lu-vil
L=t

and now the c:n;mf.iticn (2) shows that T is contracting. Tihls
conpletes the pracfof the thesorem.

actunlly the solution of the problem (1), (2) exists
even if condition (9) is nut sptisfied and this is what we
shall show in our next thecorernl.

THROREM 4, 4ssume that the functlon I saﬁisfies the
Liyschitz condibion (8). Then tanere exists a unique sclution

of the probled (1), (8 on RUR, .

PLuOUF. Let L = wva x [_'], BV =ilyay -6




case Te | =

Define the space B as in Theoren 1, with the norm
_,-BL_'I'J.-\"“:]}

= ot
OURE «max[ <

R, LR QSN MITRESWRINE SR
(LiKg A

Then for U,V ER | we have

—bL Cx+i) L (A+E)

SSRGS g
S e n-—‘i VX ’p'. E&{:s:“_ne . e
(]
%‘L; uu-w*dadt
ra = - 1~ L
< Z Ll ez 0-e et
L= o
o +47)
EIDLL:{ 4 )

S e
< L jlu-vil (|__E_J°'—‘-"- U_E—ELI-J-
Sirdlarly we have &L * b

Bl sk
E_b UHrlj}}l,'l'u} (2, 4) - (Tu}KIJ e Hu- ""H e i )
4
E_LLKK*%HH{TLJEE& M) ‘(TU)L&{I}:.}{ < {iu:*di‘. ({—e ELQ)
ané hence

H,T..:-T\rn% 2R L=Vl

where

R — "mﬁ"x_‘L-L{.\—— \J("- ELb} (1— ELb) (- e ELQJ}[

and 1t 1s obvious that k<« 1 .,

Case IT L <\

Define the space D as in Theorem 1, with the different
norn

—bJL (x+4)
L o % X i

{l U.Hﬁ‘*-— R iR (L'Eidl[::}l&'}lllﬁuxf‘i,‘aﬂ}Iu.&f_I?‘;‘L‘J”i
: WUy .
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Then for u,v € B, we have
ot I o gt o -biLb
= -rbj‘.ii. Tu E:L,ta}ube-I,%ﬂ ¢ 4 llu-vil, Ci-€ Y(-€ 2 .

&* P rw G = (TOLHP) £ L Hu-Mll,, C1- e Bt by
&St *E‘th‘méu,-@ (TU')\&"-I 0 B ) |V VR [ D EE“J
and hence

I\ 'Tu—‘ruuh 7z, hl Hu—un**

whers

im,l:‘“"‘ﬁxiﬁ{'»— Ehbr"'u‘)(ll—i? '”) (1= “"“‘b)rh 'r'-‘d%

and .once again i{t < | « This conpletes the proof,

Next we shall prove a general uniqueness theoren of

Perron type which isbasedon those given earlier by Shanahan [114]
for hyperboliec differenticl equations.

- THEQOREM 5. 4Assune that

(1) g,cxy ({=1,2,3) wmej Lo,a] into itself,
L

(i1) e ¢ LR_xR RT and

e

Y, Yo = SO0 T, W € GO0, V-l

\9,-F,1)
wiere g € CL R *AR_,!_». Ryd, g €x,4,0,-- 13-‘):@:%(_1,‘3 P .-

)
is monotenie non-decreazsing in CPn;' - -
(11) 2Z(z,y) = 0 is tie only solution of the hyperbolic delay
differential equation

and bounded.

—‘-(_‘a':.ﬂ[.l,‘a?1[3("-331"'?an_(.aatlj,ka}) (10)

suea that Z (o,0) =6, zZ(x,0)=0, 205, 4D = (11
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PROOF, Because of (i), recall that R;= iiﬂ;gl‘. BLYs b'j
and hence Rl RGeS RD . Let ua assume that there are
two sol ‘tions w(x,¥), V(x,y) for (1), (2) on R, ,
we define
A x40 = Tex, gy =vixs |
B Cx,y) = luxy)- v (2l (12)
A iy = m} {xJ%;ﬁu\gu?E)I

Since we have
WX, o) = Nix,0) = ), U ix,0) = Ve (x,0) = d}ifx'} S OEX S A
ule,3)=Vie, ) = wiyy, uiia;‘g}:vgm,t&] = -1«&(»3} yesyeh
it follows that
Als,0) zo, B(x,ad =0, CCosYD=0,

Furthermore, by inductiocn (i), (ii) we obtain

<
ARG £ é} }1 dC2%, A, AC tn,1)) Bis,4),B03,08,t), Cxt),
4 C (23, ) Y dadt
Blx,4) € -l:. g Cx, %, A, .0, Clg 0, b)) db
- - <
COny) & 5 JCaY, AL, -+ CC30 ) da
Let us define the sequence cf successive amnroximations to

the sclutions of (10), (11) as follows
Ao €XyW)= ALK YD, % (3,40 = Btx, ), Yo lXya = Cex,y)
and for n 7,0

FA X4
iy 3 :é g d (5t Dr‘*n{‘g‘:ﬂ:D{-n(ﬁt(“‘-%t'}jﬁﬂ[b,t)a Blg021),
Y5 Cat), Yl da (0,8 ) dadt

Pt
E_vﬁﬂll,»ﬂ = ﬂm SHE G =R e 8 2 IR, Y € 3360, 8))dt

‘fﬂ_}_iile&‘; - 313 (3,4, :{ﬂ[a]ﬁjj o ~iviy fﬂ(:],_cr.}, '3)3:’45_

o
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Bince o EX,4) £ ol x4y, B x40 < BCxigd, Yatx;4) € Y,y

we find on using (i)

(i) o GG, € & (00,97, B (300,59 £B(4,00,9),
Yol 40 N 3o, iy
Now on using nondecreaslng property of g, 1t follows by

indiection that

O '.&] < D{ﬂfux"%‘}? !311':3(’%-‘j = &i,xiﬁj 3 Yn[-lfa} = "{11.\...:;"1"&3.

4also the funetions ol (x40, B L), Ya (X, %) are

uniformly bounded in view of the faect that g is assumed to

be bowided. Hence we get

Qiam Ao $1, ) = L EE4D Vo ﬁﬂ[:{,‘aj = RIx,4), Qiova fﬂtx}.awj—. ‘J-Ei,‘&\
T —2 .0 =73 N-<7 o
2 on R .
It is easy to see, using Lebegue's monotone convergence
theorelty, of (=,¥) is = sclution of (1@), (1l). Hence we

have
ACX YUY & RGx,40, BEX, w) £ Bl g), Cox, 4) £ Yy,

Now by =ssumption (iii),(x,y) = 0, B (x.¥) = 0, {(K,F} = 0
ani this proves A(x,y) =0, B(x,» =0, Glx,y) = 0, 'This

completes the proof of the theorem.
To prove owr next results we shall assume the following
conditionss

(1) 9,00 (i=1,2,3) are continuous and g.c¢x) £ x for

all x € Uo,a] Also UM 9.¢x) = O =
O or e =L
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(11) $& ¢ LR xR,R1  ond bounded

{ili) for c:(-v %aﬁﬂ“,‘i’s),ﬂl,g,zﬁ,-": ﬁ} EE-.—_-,!-RE
[ftlrﬂﬁtﬁj"':ﬁ'}"}(’::"&, ﬁjg”*}%}l-f: Ei——qtll'#t“"aii

+a, |- Hl+9z = SRR
6 + 9 Gy LR "‘FEH'QE et L
Where R >o. 5 a, 2| Qe L= 15 s &
L=
P Gl s
o L I olFenwlie

(iv) _
g )
B ﬂi >‘§e e cé Lbil4,-F )\ 4 b4 -5
— X 3,
}‘a 15 ! L lﬁ —-‘-'bﬂ-a '.f-( 1 #3-'?*;3"’{4‘ Ic'q_ip t C:PL*._FEF‘“‘
. ﬂ{, Tk
+hg =B b e -1

where C >0 f::_i:- <), b0 (i=iy2,°°,8) itn

] c=

o<x<l Bex and R Oy=stty <= 8%),

The present thoorem is eclassical Naghio type, for a particular
case of hyperbolic differential eguations, onc ecesn refer
to Kempen {1207 , Wong [1187 ,[119] .
THEQAEM 6., For k <1, econdition (1) - (iii) implies
that thierc exists one ond only one selution for (1), (2).
Before we prove this theorein, we siinll state manother
uniqueness theoren in which cenditions are similar to
Krasonosielski and Krein type. For particular cases see
Palegewskd [ 115 ] , Palczewski and Pawelski [116],
wong [117],[118] ,
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THEOREM 7. For 'h'.}fl , conditions (1) - (iv) imply

that there exists one and only one solution for (1), (2).

PRUOF, We shall nrove both the theorcms simultaneously.

Recall condition (i) which gives R, = {(D,j] “os Y = 'e::gl

and R,UR =R, . To prove existence, we have fron

econdition (il)

= J‘:.U-t:i | ¥ ¢, |1. “:qi}l . (1}332 R":{'{b}r#‘:' "'+51EREE

Then, if we define
K, > max{Mab, "f“‘{;xldpcqu;c%‘;-q:mn}

Kk, » mox § Mb “f‘f[‘éil ]d:x{:m')\ E

K, % Taex§Ma, Max [y (P[]
all conditions of Theorem 2 are satisfied and hence there
exists -a solution of the problem (1), (2).

Next we shall prove the unigueness:
Let us assune that there are two solutlons ut.l,téylu;x,.?)

for (1), (2) on R, . Ffor Rg\ , define

Q (x4) = a, ALx,Y) 4 %2 A g2,y L 93 Blx,4)
%3 =N 1
Qg Blg, cx,9) 4+Gg CCx) + Qg CCFE0)
3 2 <

for Xy >0 where a(xyy), Blx,¥) , C(x,y) are defined

in (19 . Sinece £ is continuous and bhounded we note that

I%LI:E?L{LIJ\&E; LR ".Ld, (_'3313}}\&_}J

— § (3,4, VEu) 000y V.alfgsix'j}}})l & M s,




where MLIH tends to gero as x or y tends to ze: or bcth.lzg
dlso

x
d
A L, ":E} (5; M!r.-ad?“dt _Mj& Xy
ERES
ﬁ(‘lj{ﬂ,‘a}é t ] Mo dadt 1-5 SL#M d.hdl:_-gMI Xy
: =] o 3

and, similarly
Bx;4) € M:r.zlﬂ 3 B(g‘:(x),ﬁl < 5\’11%%

C(IJ‘H‘} 3 Tvslna_-x‘} ¢ I:%-j‘(:"j.lla‘} = Mﬁ'j-x'

and hence RUIx, ) € My, 1 therefore it Tollows that

qQ (x,¥) 7, 0 for all (x,4)&D and ltw Q) =0
A= Ag

wiiere F_);-_- {"J'_}ka‘je.ﬁ‘a bDE D: {;«_.,-_;:.r:RnaIld 3 (] CTIE:G'E

Clearly R is continuous on D if we define § (A, )= o for

A €D » We shall show that Q(=,y) = 0. Using (iii),
we observe for o < —x = X .
+4 T
x ‘d !
Acx,u) < R é} :i; caey La, Aca )50z ACY o B va LR
1a.n J},{al.;;.}J%‘j+q5b Cat+ate tgm,ﬂ]
— ‘-l Cb:. e
<R

Qr¥)drdt <« Ry xy £ v xy

29 o

and simil arlyﬂ

B,y € vy, Cixy) < yx
Hence we find
ACSEL RN < YeT ACg X, HILYX
BOH,§Y < vy 5 BOg ), ) < rg

BILE F< war d e {3_,,'\‘115;}:, Y X
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= 3 - 129
which gives ¥ = th,gjav‘;qt < Y vhich is the
E=3

desired contradiction.

Foo R 71, lok ™M = AP bl%tx;ﬂj,qﬁ,---,ﬁiﬂ then
Ro%R

we have

Alx,g) € ZMay, BOGYI £aMy | CLXy) £ 2MX, (XD eR,
alsg fron this we Tind
AL‘EI{,K},H“} < AM 3if_13‘~ £ 1M I_‘a-
B (g1x),4) € 2 MY

c (‘33‘“‘:‘33 < 1M G (D £ 2 M2

From (iv) , it follows that
X b o
Ar,x,x&*;g ) E%‘”— [}Lb.taﬂ""j (LMY dadt
o &Btﬂ =yt

o -E)ra
£ c(2MD (.xn&j“ B2

Co-preal?
¢ e {1M)ic:c~a’3[!*m+&j Aivice CL=B) + &>

also,
4 b % &
By L= 5y G0 L CE dt
; - =] Iﬁ‘t_ﬁ i:.:‘
Y
< C (2 M) x™ P@.u.a“"l3:"~’¢-=-'; ) n
La-pd)+x] e (M) EERg Tt
Similarly

; ofL—
elEx;uais € {:mﬂx{::tp F‘x
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Since oL > P we find

: o S U-pY % ol =R + o
ACq,4) € CCamy (g ey < Cm) (xy)

o of - n( d-—P
(G000, & C (2 (30%) ¥ < Clam) Cxyy Ty

o, o 4
CLgex,3) ¢« €M (g?;-_ﬂ,gf{ pgzcxgi—. C (a Mf{h_g\;‘ Pﬁ:-

Now it follows by induction that

L x ik CI=pY o

A {%I{u,g‘i

* TR "

(=(-B)
s g ¢ amy (x4 it 4
2 {glr;u.. 1?
C Cx, %% ) ng* Tl (-8 a{,’t
L e 2M)

C(giny) | ¢ 4 e

where %ﬁ: 5_"_}(4....,(1_1.___4‘.1,(‘?“ for N ) e e
Therefore we obtain the following estimate

Alx. 49 (X 4) G Cx;) _
X ]]L S < (13)

72 L
ALg ) : B0 = %ﬁ :

C (g,60,%)
E"'tran' .':.E H-—ﬂ EF'EJL
where p = € ((ayd=% gwd g = C Cay =,

e

Define
R"-:I,la} =2 L7 Ay FR Gy ,&LE"{:]I YY)+ 95 X Bt x, )

¥ A, X = (g 0,4) +a, 4 (X, +a Y CE‘_.';J__L‘H,‘,;\
e
for Xy 7 O « Then from (13) it folleows that

i
C‘{-d [I\&“,?[ﬁ‘-ﬂ-\ +{R Qg +93+ g+

+ a1k 72

O REX,4Y = R(A

(I

Wi
s f_‘.x.'at)?

I
n




where § = L O-B)- [R “""')]/ﬂ_ﬂ‘} . Hence we have] 31

Qt:-m Reay =o y where A € R and A, €D . GCleariy
h—7he

R is continuous on D if we define R(3,) =a for A_e€ D

We shgll show that R(x,y) = 0. If not, there exists a point
(Igjga} such that 0Ly = B Gy gy = «’;:Jf- p\(x‘%w,_
o

On the other hand (iii) ioplies

= o .
Alxa, 4 <R[ caed' Lo Acs o+ a, ACg cayjt) ¥83 4 Bra)
o

) IS
+a,h BN Y g ¢ ca)
R "
+a.tC {gacm.*:}]&&t
1 TRk

[Fe=

[ CJS-HR 'Rir, 0y dAdt

l:l-
< kv S

Similarly we have

[ {Lt‘.iﬁi"ciéd{' < ¥ (%, h)m_

A LT XD, 8,) < v (x,q.)®
Furthermore analogously

[k
AT m{'xﬂlﬂin} #
do

Hence we obtain ¥ = R(xy, 43y <Y i a, £ which is
i=i

the desired contradiction. This completes the prool of the

P | 1.3. 7 = 4
B (5,(x0), ﬁ_ﬂ c (g {:uhk&u-)

) !
B(Xe, Ys) % calRenyy SO }

theoren,

2. APPROXDMATE . SOLUTION,

By an approximate solution of the problen (1), (2), we
shall mean a fimetion Vv Cx,y) &€C ERyGR. R 5 the
partial derivabtives Vo \J% in RLURy and \Jj“i’ in K,
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gxists aid are continuous, also satisfies

‘\J‘IL& = ~§{‘xJE,\;(I,E],---,Vﬁfﬂatxi,%})+f}Lljgﬁ, (14)
(X, %) €Rq

Vi, Y =y Oy 8,y (G &R,

N(X,0) = il ra(xy T Exca e

W (8, + 50 = () + o7 ()
ka:i{ﬂ}{:.‘) + é_xfa}c:‘} = q:ai(_a‘_-,.;" o (o)

where the functions % (x,¥), + (®)are asdefined earlier and
7 (%y¥) is continuous on Ro , Tex,4) is continuously
differentianle on g £ X = . For the Timcticons

ﬂ.f]')[‘t':k?l’i}we shell gssume § CXV& X
i i

The following theorem whnich is based on those given in
El&')] 3 LBI] for the equations without deviating arguments,
estinates the error between a solution andan approximate

soluticn of (1) (2).
THEOIEI 8. A4Assumne that
(1) WL CX, 4D is a solution and V(x,4) 1is its approximate

solution of (1), (2)

RN T G TR RN L B o CA R AR e e 6 Tk P R AR
'I,“l,;b—?ihi.)
where %{x, \a} q;l s #L\" £ C EEG“RL+TR+1 and dis

monotone nondecreasing in q:i R q:a 5
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(131) = € € LR, URo R4 , Z CX,%4)> possesses continuous
nositive partial derivatives 2z | Z& in R, v Ra and
1:{1‘1 ]
?-1.33“’ 8 (x4, 20053 ,000, Zy (G000, 40+ ITex, 90} ) O uNER,

(iv) | §ex,ydl € Z x40, | 5.0 < Z 06U S.Eiiagpﬁi?- Cop)

&

for all Cx,yHeERy, | o5 (0 ) € 25, (X, 00  for a1l xe{o,a]

Fl

Then, on R
7 | 6] Rg}
| VO -uwla wl € Zx,4) , ! Ve €3,4),— uIL:L,*&-'}{ £Z.0x,4)
(x — Wy b)) £ Cxy4)
[N Gy Mg (i Ie 2y COA,
PROOF, The claim is true in R, because of the assumption

(iv). How it is enough to show that in R,

b Vo lBYd U, G | L2, €54 (16)

1v‘a£1,~a“}—iiaf‘1;j\[ ng‘fl,g‘;. (17)
Since (16) and (17 give
| V{i.;t&\ﬁu{t,ka}ll ~ Mo ) -uw,*a-ﬂ < 206G - Z (0,9
| Ve, ud = ulo, w5} — NV (o,m —tto,0d| £ 2 (0,4) =2 (a0
also, we have IN (o, 0y — ulo, 0yl € ZCoyod fronm (div) .

Henee adding the three we get

PV e, gy —uexu) € Z x4,
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dssume that both (16) and (17)do motsatisfy, let £, be

the greatest lower beund of the numbers ¢ > =y, (X,¥) € R,
such that two inegqualities are satisfied four (my) < t .

Then there exsts a point (x,,y) with x + y =t  for

which one of the inequalities is not true, but in edither

case we have

WV Gty =Gt £ 26,9, Ivig ooy - u fahu::;“\ £ Z(3,50)
BYEESY RE L{xll,&\l < Z 00 ?k 'u'x('a{x“?,ka}-—uxc'al(.ﬁ:'},'-a“ﬁﬁl_‘[ﬁiﬂ,'a]

| Vy CL) —UyCOP] € 2y Gy, IVCga00,9) ~ uatz L3401 ¢ z;a;ﬂ;@
for x+y < 1:0.
Now, let | V0o, 40) — Uy $Xo 4 ) = Z 8 %0, 45)
but we have succeszively
' : do
\V:L{ *o, %n}‘*“{_x“:‘&n)\ = éj | ¥ (Ko, VX, b)Y ,0ey H%E-gau,,} R

A (3 1) = F (%o, %, UKo 1)y 0 =)
Lx.a[ﬁat.i.g],'i:"}ﬁ‘l,df ) o, (X))

iy
v s
E‘g E'j“:,;ﬁ: \Vixﬂ{j_u{;mtj\ =
o]
\vﬂtg SR uﬁigim FENRIE TR oY
At + Zy (1 ,00
4
< 5;'2 xy AL t)db+2Z $Xo, DY = 2 S%0,4,)
contradicting the asswmption. 8inilar contradietion occurs

in the other case | \Jﬂ ( Lo, L&c‘l e ug_lEi Lxﬂ‘ D) b= 2.% G

glso. Hence the desired result follows,



4, EOMB TNRQUALITIES.

The results obtained here are based on those given in
{Bl__j[ ,._.LEG] for the equations without deviating arguments.
Throughout we shall assuile %i eyt S (it = 1)

anid the expression

G = Rl Oy ey P CG,00,9))
Xy 49
will be denoted by Pd in what follows,.

THROREM 9. Assume that

(1) u,v € C LR YRy ,R] , the partial derivatives
U"l '.lukj*.'w"x.uu“a in R!URO and ULIL& 3\"1\& in RD
exists and are continuvous.

(i) L ec ['_ng.g*h’ R1, § (X,4,% -+, is monotenic,

non=decreasing in CH Sy '—'PE and in Rc, Pu<Pv .

(31i1) LU, YD) €V W (40 «;uitx}aj},uauﬁg-) LV

w By
LL:E-%U'J £ Ulf 1,00, 0% x 24,
Then we have on RLURG}
3 o e
LA[I,\}}&U(I}L&“}} ulr.r,%j. < Vo5, 4) G

u.a MY < Uatxj'g‘}_
PROOF. The eclain (18) is true in Rl because of the

assumption (iii). Now it is enough to show that in R,

Lj_li“-‘_}'ﬁ} P 'L_flf_l,'ar_} ; u.ﬁ LI'J"}] o \.-'\a (11‘3"}‘ (19)
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U5 O6HY LV 00 =5 Ux; 9 —ule, 4y £ VIX,) ~Vie, )
u\ﬁiﬂ, 4) < \hi{c.}p = Wle)'p —ulo, ™ £ V(o) —Vv (o,
also, we have W (o,0) € V(0,0 , Hence adding the

three implies WX, 4D < VI Y), 4dssume that (19) is false,
and letb to be the greatest lower bound of numbers t ?1.+~d
suzh that two inequalities are satisfied for X4y <t
Then fthere exisis a point CXo,Y,) with = _+ M= bl

for whicih one of the inequalities is not true. Let us

suppesc that

U $Xos o) = Vy (2o, 40 ( 20)
Then, by assumption (1ii) 4 So we have
L]

W €, § —RCNE CX Y =R T vo (21)
also,
W (Xg,4.) £ VIXs,Ys) y Mg xg) %) € V(g% %)

U 085630, 36) £ V5 C 9,025 o)

U‘a{hr %‘DE < Vz (1"'-’: la’,;) 3 L&lé{'aa,{l'ﬁﬁ%ﬂ) & ua( 3'3{‘]"'-)1 %n\)_

From (20) and (2l), we obtain

UL iRy i) “;;,ux,a (o, o) (22)

1
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Now using nmconotonie non-decreasing property of f£f; it follows

Su'L L
[P i S

F0%0, 40, U0, 0>, -2 Uy (230500, 400) € F(xa, Yo, VXa, 80,

s u%[%a{-xa,kaoﬂ
this together with (22) and the assumption Py < pv yields

T ¢ o5 os ¥ (Xayi), 0 eey Vg (350000, ) ) €T (e, g, V(Xayg) 0

Vl-* [33(1"1 :lib))
vialelh is an absurdity. If we assume that u.H (Xa,43) = Vy (X, o)

instead of (20) an argument similar to the foregoing leads

to a contradiction. This coupletes the proof of the theorem,

DEFINITION. 4 funetion W € € LR, UR,,R] possessing
continuous partial derivatives Ux?kka in RyuRgs, Wy

in A, and satisfying the hyperbolic delay differential
ineguality

U‘i?‘&) < .f.l("::(',l.j?uc;(,\a_') o ..‘U\a. Caacﬂ}‘ﬂ‘)

in Z_; -4 sald to be an under funection with respeect to hyper-

bolic delay differential eguation
2
U.._,{,d::_{—(1,‘3_’utx,té]}---,Uxa{33cxﬁ,\1,)j‘ (23)

If, on the other hand, u satisfles the reversed inequality

it is said to be an over Tunction.
THEOPEM 10, Let u, W be under and over functions with
zespect to the hyperbolic delay differential equation (23)

respretively. Suppose that + € € [R.x R‘“’, Ry -E{x,ta,qa',---anh)
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i¢ 2onotonic nondecreasing in 4:: s ) ¢'i. » Adssume that
V 24 o solution of (23) such that
Us s XYY € Vo 00 < umy () v R,
Uy (X, 40 < Vy (3,9 < Ly (6, 4) e R,
uxt.x,n“} <V Ex08 ¢ b, (x,0) ;05X =0
Wi, o) < Vio,o) £ wle;0),
Thon, we have on Ry Ruj

LL{;:L}H} Lo L‘J;,';j‘j < Ly [x,%]
ul‘{x:g‘} £ ‘Ul(I,‘&).{_ “chx?‘&?‘

LL,

§

PROCF. This result enn be proved by a repeated application

Exy D= V%[I,%}.ﬁ uvt&{x,‘&.'}.

of Theorem 9,

THEORRM 11. Assume that
(i) th2 condition (1) of Theoren 9
(1) FElRARNL,RT 3 tex,y & & & ) 1s
none sonlc nondecreasing in cp1 < 431 : :#4; and 'vw..RDj Pl <Py »

S
Gtiste u.[x.,ta’;.é‘d{:(,l&‘\?uxﬂx,‘a} N ATHY T R,

X bl
U‘x( LD £ VI{'IJG. C< X <A

J .
Then. we have on R, u R, ;

Wix, 43 & VI Yy W C3G 40 L Ve CX505%)

PROCF. The proof follows from Theorem 2,

p—
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£, JAXDIAL SOLUTIOIN,

For the past several ysars to study several qualitative
as w2ll as quantitative properties of the solutions of
differential and integral equations wmaximal solution of the
rolntad systens have been used effectively e.g. see [1331,
[, [ax] «

Tere we present a construetive iteratiwve scheme which

. eoaverges o the maximal solution of

U.Ila: £ (1,‘3,&1{1}3"}}- oo }u‘a{gacxj,ta'}"}ﬁ‘x,?“}‘& Re (24)

subject to conditions
Wix,yY) = RSy Cxsdy ey
W (x,0) ey (] o 253 o£x <A L
B (0,00 = alito) s F’1C°:=ﬁj = of, (o)
where {5(1,%] 3 lr"sxc-x.,a} y 13%:;:::,1&} exists, non-negative
and coiinmwus on Rl, ol (x) is convinuously differentiatlle,

also o{xtl‘} 7o eaeic Fe s ail| Siandltel Con 2ot

The schere is somewhat similar to given by Agarwal
and ¥rishnamoorthy [123:} s Krishnamoorthy and AgaTwal [1243
for boundary wvalue problems for ordinary differential
cgnations with and without deviating arguments, we shall
denste
0 i R
o By, 4 Yo €% g €
(‘x,gj = : -
F ety =



Tt can easily be seen that like problem (1), (2) the 140

problem (24), (25 is eguivalent to

58 : | 1
w ey =0T hontjumty, s uy G eoa))dade

°© ©
i 355
Let B denote the Banach space of continuous functions
with first order continusus partial derivatives exists on RUR,

writh the siern

TAX WX l| ™Mo | Lx }.1 TnaX (x
I - Tmad YLD W 4 [LJ.. )
A= iinJRg N g0ry YRR, &
Define B, C R the closed, convex cone of non-negative
functions witih lon-negative partial derivatives on R.IUR“

Lelt 8 denote those elements of B, which coincide identically
with Bh_}tamn R, 2nd dxyon ©0< x < a « Define

the get

= fuesaifiuil < ol

THEOREL 12, Assume that
(1) £ =

i1 R ¢ i on-decreasing witl
(il ‘Tr)'w CX, 4 c{.‘ sio = :_{p Y is non-decreasing with

recpect to P b .-y ::b&

L £

(1ii) for 211 Cx,y4) € R LR, there exists a §>0 sucn

that
=] = [I.x. ;
WG =0 JTB e Res,t, $, --0,8) dadt
‘: + P £ F
4] " 5
(L, C%4) = S E,{_x‘}?\Lx’c 5, .- f)dtﬁ-‘e Cx, 42 =%
=]

LLZ(I,‘E!B: { &{1“}1‘\ {*"“‘Tl‘cl?f S D= e F’éirx ) A

(s}
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For (X, 4) € R,uR define the iterative scheme as

+! - - bl
N (%Y4) :L ) E[Ilﬁﬁ:‘:,f,L&MEE,H.}~--;UH[?IZEFJ,H)&A&‘:
o
y +p*x,4)
Tyl ) i T n
l.Licat}kp::}j eff,x)ﬁ(_at}t,u CaxEY o ooy ML aLI} ) at
B GHY)
*n-H

‘_:! '[11“1\! = 5 B () t’\{;’.&.‘-&j LL {943‘3) ==t L{\J(%Kﬁ)ﬁ}‘}ﬂb

S ha G S
Then, the seruence {LL“(:{,L&:,]J convergaes to the maximal

solution of (24), (25 in 55’ -
ROOF. Glea E o o <
R . 2 r:_lfy' L'LC'-'E:%‘}, ul{j‘“‘\_&‘jjula{x.]gajg _? .

Now using assumptions (i) - (iii) we find

0 3 |
We,y) =0 | 8 s, b, wiatd,mem ;_f’,&f_% (2, ) )dade
DEE

’ +Pf13)
ﬁJr 5 E‘rxﬂfwr;at- 5, ;“E‘)dz‘:pd'r'\i‘brx

=5 Lf\fi‘f,‘a}

where we used (y° Cdr_x}?é} ,‘u. {?1 Cx'}j&} u .-:_3 (1),6‘5 L

and whieh Tollows from the assumtion (iii). Similarly we

get
\ . L I o
W C9 4D € Uy CF553 , Uy (X, 4) & Wy O35,
Using -an inductive arpgument, it is easily seen that
[=] i )
Py Wy o W x4y, 2he 7 W (Y 2O
Py U OGHY 7 W T 5 v 5,0l G 4) yo
1] o u'l, :\.3 s Y 'fa “ e Y }'é £

3 1 i
D s G ugii,p Silie on

s E(x,\aj 7,0
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: = A | n
for all G, \a‘} E RI URa . The sequence { L {x?\a} 1" 3
M . i e o
el 11 and [ LA A 1 are unifornly bounded
{ X ’\3} 'gj:‘ "'%‘) 3 N |
anc monovonically decreasing and hence converges to so.ife Wz, 7)
'LixE Xa¥) Ll\a[ Zy¥) zesnectively. Fron the contiauity of h, Uiu;"“‘}
is a soluticn of (24, (25) in SF « ‘Then

x
Ltﬂtx,la}-\fﬁl,‘a):f IEE () Lher,t, 8,00, 8) -Riat,
: o o

VCAEY, o eey Vi £9.00,80))
LR dadt
>0
(=]
and sindilarly L,{xﬁx.]la) =V 0,49 20, u"% (1,!3}_.\!%{1.,“1} 7,0.

In Tack induciion shows that for each n
)
Ly (,".W.}‘-j’) —V(I,‘a} "7,9
7
Wy (x, %} == VKCI_}H) %9

Lk-%‘ Cx, ) — My E0d) 20

and therefore in the limit u(x,y) = V(xyy) 7, 0O,
uxlli:}’} = FX(K:}’]}D, Uy‘(?i,?} - ".Taf(,-:,}r) >, 0. This completes
the aroof,

Next we shall prove the Tollowing lain comparison theorei.

THEQREM 13, With respect to problem (1), (2) and (24), (25)

we assuine

(i) l{‘(‘l.,la,l_,[.h..-}u_h)'! 5?\(—_\(_’1.&’“"”}...} 'lLk{:‘) for all

'E-I-Jkd'.-un'“) W) € RGKF{.&
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@ Pl Py, 1Bt < Hoog, IReple Beop
for a1l CX;4) €R UR,

(1ii) assumtions of Theoren 12,

Then, if 2(1,3} is any solution of (1), (2) in Sg
we have for (X, 4) € RiUR,

| Z b € WO 12,009 £ 03009, 124 6Pl s w ),

PROOF. For n = 1,2,8,..., set

I Ty
Voox, Yy -'-;,E £ &)t (AjftV-ﬁﬁ&,t‘j,’;--,Vﬁﬂ{'aacajjffjjdh.{it‘
S 4 PO Y)
cx"ﬂ‘}—uf ) hlx,+, V" & 9% SR 3(1}%})}&#
e +'F’ Cx,%)

R S oo heny, v TS :UEf@;m;a))mau;é;
vOex,u) = 12yl Vo ex,u) =z (uu ) Vg _11 %479,
for all (x ,1;? € R, Uﬁz w04 O, Vy () 4

Then, using (i) and (ii) we find

|
V040 = f 5 SO R LAty 1250, ,12._&(33(;.11:}4}43&1:
IDH& +'P C*:k&)
E, é g\ At Za, 0,2 4 (350,8)) | dadt
Xy +{ Pex,
\i j sc:c}fu,t,zfa,ﬂ, Y02 cg3{m t))dadt
° + Py |

_ » lzcx, 9ol
and simdlarly

|
U;Lr_xﬁj 7 | 25580, V.i (%,4) 7, 11,3[.1,%31
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for all (X,4) € R) URy ~ » Inductively, we have

I
O L ALE ST Ve SN P SRR VA SR TEPE
(x,u) | < v C(x SINEET, ) £ v € VD ELY) 28
]2.1 14 | < Vy g = x 2 RIS x Y2 =
A £ I & * £ VﬂE:\: )éf
i‘"‘& 5901 & Vﬁ"‘:‘d} € Vy (x4) & o0 & WX, 4) €
for all (_fat,\a) € RIURg . 8ince the senuence {Vﬂfia‘j)};
(oo s}
"L "‘:.-_ ~LI,L‘E]} ?_ﬂd {'ua (1,11 } arc monotoniecally inereasing

and wiformly bounded. We zet in limit these secueneces

respectively.

converge - Lo V(x,y) , \‘.Tx(}:,y}, ?F(}:,y} in 55’

From tie continuwity of h, V(x,y) is a solutlon of {24) . (&5).

Thus we have

| 4@ SUDIRS Vx4, | Z L5 ¢ V:{(-Ia'i},!llzg[l,\d)l &uﬂtx,tﬂ .
But the maxmimility of u(z,y) comnletes the rouf of the

theorem,

In concluding this Chapter, we mention that the results

£

of tois Chapter can be exvended for the systems without any

difficul ty.
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