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1. Preliminary remarks

-

Stochastic theory plays a vital pols in the modelling and
analysis of a variety of disciplinos ranging from spcial scicnces
to biological studies, besidos its being an inteqral part of the
modelling of many physical processes. The evolution of system is
described by means of a random function defined on a suitable
parameter space. In many of tha evolving processas, a certain
regularity is found in tho statistigal features of the random
function. This important fact enables us to extend the methods
employed in deterministic systems with suitable modifications and

Wwith appropriate criteria, to tho problems of pandom functions.

Thus the random functions oboy difference or differontial
or integrodifferential squatiaons, characteristic of the esvolution-
ary phenomena they describe. Such random equations apise in the
investigation of a varisty of phenomena, basides the pepular
Brownian motion. The following are some of the situstions in which
random equations play a significant role: Wave propagation in
random media, electrical circuit theory, turbulence theory,
astrophysical problems, analysis of neuronal netuorks, populatian
studies, statistical mechanics of continuous media. A lucid and
systematic apalysis of random equations can be found in the
sutvey article by Ramakrishnan (1959). The reader can study with

profit the book by Srinivasan apd Vasudevan (1971) .



Generally, coefficients, rarameters of initial eonditions
in 2 classical differential sguation can be random, Also the
foreing term in the difforential eouation may be a random function.
A simple example is

v X (D= FXIR, MDD, xlIt)xe

(1.1)

with the random function 3? (t)y the random initial value C, If
the functions are well behaved, satisfying some regularity proper-
ties, we can consider eq.(1.1) as =a Family of classical problems
for the individual sample functicons. The classieal mothnds are

available for tpeeting such equatians,

But, wa have a diffarent picturs if the random functions

are of the 'uhite notse' type. Then eq.(1.1) is written formally

25

X{L)= LX), 0 +G(B),E) w(E)
| : Xl&Yee (1.2)

where W(t) is the whits noise. The whita noise is described
as a stationary Gaussian process with mean* Zero and constant
spectral density, Such a process doos not gxist in the usual
sense; but it is a vary usoful mathematical idealisation for
describing random influences.

Langevin (1908) introduced the whits noise as the force
exerted on the Brownian particle by the moleeular collisions.
In the Langevin's equation, the white noise W(t) is introduced
additively and henca the probability distributions of the

solution process can be caleculatod,

But in the model deseriboed by GQ.{T.E), the white noise
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enters the equation in = multiplicative way and a new theory is

hecessary for studying this cquation, Even though, the whita noise
Praceas bristles with difficultios When one trigs o rigorously

formulate the integrals . ayop such Ffunctions, it is identified to

be the formal derivative of tho Brownian motion process B(+),

Hence uq.(1.2] can be writtsn as
dX(t) =F (XD dan
)({,LU)_T C (1.3)

This can be written as the integral cquation

XIB)= € +[ # %, 94 4{E (eere)dnic)
Fo 2

The first inteqral on tho right hand side of 29.(1.4) can bae defined

(1.4)

in the usual way. But the sseond integral cannot be defined as a
Riemann-Stislties integral with resnzct to the sample functions of
E(t}, because the value depends on tho intermediate points in tho
approximating sums, In 1951, Itg defined integrals of tho abovs
type and put the theory of stochastip differential equations on
8 splid footing, It may be pointed out that Itan's theory is esta-
blished as a self consistant thoory and not as an aextension of
ordinary differential equations. The rulas of Ito palculus differ
from the rules of ardinary caleulus, mainly due to the peculiar

propertiss of the Brounian motion process 4 (t). The fact that

Eg%”r—f-,:ﬁ(?) == B(‘f)j‘j is proportional to [}t plays

an important role in the Ito's ryle for determining the differen-
tials, |



In 1964, Stratonovich introduced anotharp type of stochastic
integrals and cQuations with applications in various modelling
problems. The rules of Stratonovich caleulys agres wWwith those of
ordinary calculus,

Mathods have been doveloped to wurite the Fokkar Planck
equations for the Langevin squation (1.3) described with Ito and
Stratonovieh rules. Tho differnnc2 in the two Fokker Planck
equations is a term in the deift veloecity, appearing in the
Stratonovich but not in the Ito's method. The diffarcnce is dua
to differont assumptions madn by Ito and Stratopovich about the
correlations botween the system variables and the fluctustions.,
Whanever the fluctuations ars additivo, the tuo approaches ars
equivalent. But when they appear as multiplicative torm, the
correlation between the fluctuzting function and the system
variables i1s finite in Stratonovich rulaguhile it is assumed to
be zero in Ito's rule.

Recantly there has been a growing interast in systems
described by stochastic differential sguations in which theo
Fluctuations depend multipligcativoly on the system uariahlﬂsl
Naturally we have to consider the tuo approachcs as deseribed
above and study the implications. Similar attempts have baen
made in a variety of contexts, Examples of such phenomena
include slectromagnetic waves propagating in a random medium
Tatarski (1961), magnetic resanance (Kubo 1966) Kubo line
broadening (West et al 1979),

Tho main theme of this thesis is to study the Langevin

equations ardsing in different physical contaxts in the light of



lto and Stratonovich theoriss. Tho areas of investigation broadly
include fluctuation dissipation rolations, stability problems,
applications of path intogral technioues and smoothing approxi-
mation methods, Also stochastic difFeruntial_eQuatiuns driven by
point processas &are considered, The point processes ares character-
ised in terms of certain point functieons known as cumulants and
product densitiss. (Ramakrishnan 1950, 1959), Wg relate them

to new concept of combinants and tho relsvanes of Bgll polynomials
is high_dighted. In the next saction we giva short summarise of

the various chapters in this thesis.

2., Chapter Summaries

This thesis consists of six chaptors,

In Chapter I, wo give a short account of stochastic
differential equations as formulated by Itp and Stratonovich., The
mathematical aspects of the two prescriptions are brought out,

The symmatrie 6? -multiplication method of Itn (1950) and Hasagauwa
(1980) is explained and Ito's chain rule is derived, The solution
process of Ito stochastic Hifferantial equation is Markovian and
heneces Wwe can Write the Fokker Planek squations for the evolution
of the probability density of the sclution .

process. Ewven before introducing his concept of stochastie
integrals, Stratonovich (1963) dorived the Fokker-Planck equation
taking into accournt the corrclation batueen the fluctuating
functions and the system variables, Vlle ngive a short account of
his derivation du@ to its importance in our future applicﬂtions;

We have obtained the Fokker-Planck eguation of the Langevin

‘equation in the two senses, by considering the evolution of the
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6

characteris€is function of tho salution proncass, This ncu method
(R.Vasudevan and KuV.Parthasarathy, 1981a) entirely dopands on
caleulating the infinitesimal genorator (Wong 1971) for the systom.
This method is aqually applicahlc For stochastic systems .. driven

by both continuous apd point procossas,

We have given a short account of 'unified caleylus' stress-
ing canonical extension method of MeShane (1974) and its generali-
sations of Marcus (1978). The concept of Liz series is introduced
in the investigations.

In the final section of this chapter we have our neu rosults
on finding the Fokker-Planck cfuation for the stochastic systam
driven by random telegraph noiso (R.Vasudovan and K.V.Papthasarathy

Tl At
1981b), The stochastic Liouvillo's cquatinnigF Van Kampen (1976)
is used and the evolution of +tho probability dunﬁify is found
using cumulant expansion tochniquos (Mukamal 19;51. The stoady
state solution of the process is found by 2@ new method of applying
a suitable operator formalism. Theo approach to white noise limit
and the relevance of Stratonovich theory are indicated. Our

method (R.Vasudevan and K.l .Parthasarathy, 1981b) diffors from the

usual %Eﬂhﬁiﬂﬂﬂ by Kitahara et al (1979) for coloured noiseo,

Chapter III doals with tho pew roaylts on fluctuation -
dissipation relations. Starting from the Langevin cquation,
Einstein established the relation between tho frictional coeffici-
ent and the fluctuating force correlation. Taking 2 multipli-

cative term in tho foreing function in the Langevin equation as

random, We have obtained modifiad raesult on first fluctuation -



dissipation relation. Wo have also modified the goneoralised
Langevin equation of Kubo (1966) by introducing a fluctuating forco
in multiplicative way., This gives @ significant result in a modi-

v
fied form 4m sccond Fluctuation-dissipation theorem. We havye also

found out the time evolution of the averages of L and f;z, L
being the angular momentum. fn chseryation on tho vipial theoram

is notad and tha releovance of Stratonovich rule is emphadsad
{H.Uasuduuan and K.,V,Parthasarathy, 1981c).

Chapter IV deals with tho now results on stability thoory,
again discussod in the light of Stratonovich theory. Moment
stability properties of the harmonic oscillator with fluctuating
frequencies are widely discussed (West ot al 1980). 1In dealing with
non-linoar oscillator problems, it is generally difficult to got
closed sets of solutions of momsnt gquations. Hence mothods are
devised to obtain the Fokker-Planck gquation for a nou variable
like the onergy of the system. The enargy envelope method of
Stratopovich is a powerful technigue in this approach. e exploit
another invariant of the systom and the anxiliary Equatiuns} intro-
duced by Lewis (1968) in his discussion on time dependent harmonic
oscillator. The motion of the harmonic oscillator on a straight
line can bo considered es the projection of a two-dimensional
motion of a particle under an attraction to the same centre, Using
this fact, the equation of a differant envolope of the motion is
studied for the f£ability in mean and mean sfuare. Due to the

complexity of the Fokker-Planck equations, wWe use approxXimations
to linearisc theo system,and obtain stability rosults similar to
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the results of West ot al (1980) [R.Uasudguﬂn and K.U.Pﬂrthasarathv,
1981d) ,

Chepter Vy, consists of throo important sections. In the
initial section, we obtain the mean and corroclatinp function of
the solution progess pf the stochastic differontial gquation

L% x(t) = K(t), [ being tho stpechastie difforential oparator of

the form l)j — 9%:__.1-_ },’:__l.r__ﬂ “y’{-”.'--) } -3“?:” ’3’; are constants,
Y(t) is the random Process, This occurs in the doseription af
the polarisation of the dicloctric madia (Mazur 1975), 1f we takao
soveral approximatu soluticns of +hy 2quations Wg ean arrive at
the smoothing approximation (Fpisch 1568, Kellpr 1564, Adomian
1870) and othor higher typus of approximations of tho equations,
We compare these approximations with thao solution enrraspending
to the Stratonovich formulation (R .Vasudovan and K.V.Parthasarathy,
1981f) ,

In the subsequent soctions, wp give some results on the
path integration techniques. Wp Pollow the transformation rules
given by Van Kampon (1980) for £ha Ito and Stratonovich approaches,
Choosing a suitable transPormation wo oxpross the equations in the
tranEEDrmG variables with additiye Fluectuating force. Following
Hakeary, lb?gﬁgiuu the path integral solution for the probability
density of the process. (Vasudovan, R. and Parthasarathy, K,U,
1981a) .

Next we introduce tho now concopt of Routhian path intogral,

In Feynman's approach, the propagator is describoed by a path
integral dopending upop the Lagrangian of the aystem. In rocent
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years, mora attention has beon paid on the Hamiltonian path into-
grals in phasg spaee (Garrod 1966) . In classical mechanics
(Goldstain 1980), Routh's pracedurs of solving a problem is well
known, when some of the coopdipatns arn cyclic. We use the
picture of Routhian in the most guharal form, combining tho featu-
res af both the Lagrangian and the Hamiltonian formulations., The
sdyantages -of=thu path intogral definod through tho Routhian has
many advantagas. (K.U.Parthﬁsarathy, 1981) .

In Chapter VI, we study how the combinants (Kauffmann,
Gynlassy, 1978) can be related to thae product donsitios
(Ramakrishnan 1959}. To characterise tho probability of n=cvents
accuring in a given interval, it is uscful to describe p(n), theo
desired probability, in torms of its dovistions from the Poisson.
Writing the genorating Functlon as

ElA) - Z ex bl coRAR)

Yiz Bl

We obtain a charactorisation of tho probability by the quantity
C(K) called the combinants. Thn cumulants of the distribution
can be dircetly obtained from (1 (k). To study point procosses
Ramakrishnan (1950) introduced the powsrful tool of product
densities. The product densitics can ba polated to the farctdrial
moments _;Ej:——:::} of the oveonts oecuring in an interval

(Xi=

by proper integration over the continuous state vyariables. The
moments of p(n) are relatod to thnse integrals by using the

well known C:g coofficients. In a similar manner thea

combinants can be related %0 Appropriate sum of intograls over
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clustor functions. Honee wa nots that the combinants play the

same role in ecalculating the cumulants, as probahilitics do in

finding momoents.* Doubly stochastie point processes apo studied
using the methad of combinants, As an application to branching

phenomena, we have usad. tho ﬁuthnd 0f combinants to find tho

statistics of the population in +ho al generatian.

The Bell polynomials (Himrdﬂn, 1958) arc used as an affective
tool in deriving the relations batwoen C(k)'s and - Pfkj

o

and vice gersa, The problem of compound Poisson process is also
discussod | ", using Begll Holynomials (H.Uasudﬂuan, e

P.R.Vittal and K.V.Parthasarathy, 19g1),

This approach to study the point procoss is new and is very

useful to analyso muléipio—eand CoTTr et edy—peintfunehs 4
physical scionees, j) feak jﬂf«\imm oy 1 chr&;tu—‘g
o3 b by @ oeladid r e
“}wmp,att. l‘_VQQ L:}JMEE-M e %C{ I’ﬁ‘/\_j d Covrr



STOCHASTIC DI FERENTIAL EQUAT. 10NS

1. Introduyetion

Mathematical egquatinns play a central role in tho modolle
ing apalysis and the prodiction of the various phenomana that
arise in physics, biology, cngincering, cconomics and other
soclal sciences., These cquations involve several paramotors and
coefficionts; for instanco, tho diffusion cnofficiont in hest
conduction, refractive index in wave propagation, volume seattor-
ing coefficient in underwater acoustics and growth ratc in popu-
lation studiss. The magnitudos of thoso coofficients ara experi-
mentally determined and the mean of a sot of experimental valuos
is used for a particular coefficicnt. The averago values of the
cosfficient or the parameter will sorve the purpose in certain
cases; but in many cascs tho dispersion may bo so large, that
the deterministic methods fail to provide suitable modsls for
the problem. In other words, tho coofficionts are stochastie
in nature. Hence, models based on stochastic formulations are
necessary for the scientific invostigatinns. By taking into
account the various random effocts,de get a random egquation
governing e scientific phonomenon. An oloaant and detaileod dis-
cussion of tha basic prineciples and solutinns of such random

squations is found in the excellent article by Hamakrishnﬁntlﬂﬁﬂ);
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In a series of three clasdix papers, Ramakrishnan (1950, 1953,
1956) has described his original ideas regarding the integrals

of random functions.

Random differential equations are differential equations
involving random elements, In gensral, the randomness enters
the equatlon through (i) the initial conditions, (ii) the forcing
term and (iii) the coefficients, We follou the mean=square theory
to study such squations. This approach 1is simple and well=-
daveloped and it is defined in terms of distributions and moments

of the processes with which we are inkerested,

Random difédential equations have besm the subject of
intensive study right from the beginning of this cemtury., In
the study of the motion of susponded pollen partibles, Albert
Einstein (1905, 1906) and Smoluchowsky (1916) introduced random
equations and showed that the solutions of such equations can be
obtained :dmdirectly by the rosults of random walk thanryi
Langsvin (1988) modelled the motion of Brownian particles by a
differential equation with a random foreing term. A special 5= =
stochastic integral was definsd by Campbell (1909), to deal with the
the fluctuations in the sleetron stream, which was used to obtain
the general results for the cumulative response to point Euants;

In the mean time, Uhlenbeck and Ornstein (1930) gave a complets
analysis of the theory of Brounian motion, by considering =
second order linear differential aequation with a random forecing

term with Gaussian white characteristics. This was followed by
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[

another paper, by VUan Lear and Uhlenbeck (1934), dealing with a
second order partial differential equation with inhomogeneous
random forcing term., Thess attempts had a profound impact on
physicists and engineesrs, drawing their attention to the pro=-
blems of ?tnchastic processes, In this cantext, we refer to
the éiiz;; articles of Chandrasckhar (1943), and Wang and
Uhlenbeck (1945), highlighting the major problems of physics
discussed by the methods of stochastic theory., These works are

of immense use in stochastic modelling problems sncountaerad in

physical and sngineering scienees.

The formal mathematical analysis of Brounian motion and
the consequent development of the theory of stochastic inteqrals
Wers undertaken by Wiener (1920, 1921, 1935}, anticipating
Kolmogorov's formalisation of probability. The concept of con-
vergence in the mean and the mean square and the development
of stationary processes, highlighted by Wiener (1930), Khintchin~.
(1834) and Karhunen (1950) continued to attract the attention
of mathematicians, physicists and slegtrical thinaarst In a
comprehensive survey, Moyal (1949) gave a detailed account of
the theory of random inteqrals and aguations with illustrations
From different disciplines of physies., Bartlett (1966) incor-
ported most of these results in his monograph., This was Followed
by a physical approach to stochastic processes and in particular
to stochastic integrals by Ramakrishnan {1959), who gave an

excsllent account of the subject in his suruey articles, published
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in Handbuch der Physik, Differant types of random differantial
equations have been analysid o in Ramakrishnan et,. al, {1956&],
(19s6b), (1960), Since then, thoro has beon tramendous activity
in this area among physicists and angineers, apart from the
parallel and systematic attempts by mathematicianes (Doob 1953,
Ito 1951, Gikhman and Skorokhod 1968, 1971),

Wong and Zakai (1965) discussad the relation betuassn
ordinary and stochastic differential equations with special
reference to Ito's work, It was pointed out clearly that the
theory of stoehastic differcntial equations was establishod by
Ito as a self-consistent theory and not as an extension or limit
of ordinary differential equations, The main objeet in tho study
of such stochastic difforential egquations was to provide a2 con=
structlon of Markov processes, correspanding to the systam of
differential equations, But due to the inhorent non-uniqueness
present in this approach, somec physical sciontists (For example,
Caughey and GrayleEE) camg forward with ether definitions of
integrals to be used in modelling. The work of Stratonovich (1964)

and
merits special mention, since it provides an altmrnatiuaffruitFul

approach to stochastic integrals. Stochastic differential squa-
tion written in the symmetrized form of Stratonovich can be
interpreted as the 1limit of eguations written for non=Markov

PTDCESSES .,

The ambiguity in the values of the stachastic integrals

mentioned so far, may be eliminated to a great oxtent by amploying
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the sample path approach devaloped by Wiepor, Cameron and

Martin {l?d?] published a sarios of Papers to avaluate Wisner
integrals of a class of funectionals, Faynman (194E) mada explicit
use of Wiener's concept in his raformulation of non-relativistie
quantum mechanics in terms of an intearal over tho Space of paths,
Ramakrishnan (1956) Proposcd a phenomenological interpretation

of integrals of a class of randop functions. It extonsively

uses the idea of tha Probability of sample paths and incorporates
the concept of path integral in a differant manner from that of
Wiener measure., Later ony Spinivasan and Vasudayvan (1971)

gave a heuristic acecount of tha cstimation of probabilitics of
sample paths, in the context of intcgrals of randop processcs,
Which included point procosses as Wall as the Gaussian whitg

noise process, Their monograph lays emphasis on specific pheno-
mena and tho mathematical problems that arise from them, have hean
solved to a reasonable degree of satisfaction, Rocently the
stochastic calculus developed by MeShane (1974) provides a
reasonable framework for the development of stochastic models
leading to unambiguous results, Having thus traced the develop=
ment of the study of random differential 8quations, uwe give a

brief account of stochastic intagrals of Ito and Stratonovich.

The layout of this chapter is as follous., Section 2
introduces the necessary proliminary concopts of stochastic

processess Ue give a short summary of specific processes liks
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Markov processss and indepondant=inecromant Processes, Then thes
Al Lff\_nn_j e

concepts ragarding the analysis of sdaghatticnroenssos such as

continuity, differentiation apd intogration are presented., The

section concludes with a bpigf roview of the Wicnor Process and

the White Noisc Procass, 1In Soection 3,wo introduce tho stochastic

integrals as formulatod by Ito and Stratonovich, We pointed out

the important fact of tho Brownian motion process LRy Tun

E '{({hﬂ(tljz‘} is of first order in At. This fact influences
the definition of Ito %Etngrsl and the Ito differentiation rule,
Hence the rules of thefczlculua diffor from those of ordinary
caleuluss The relationship botuoon the tuo intograls ie stated,
ARlso the symmotric (iirmultiplicatiun method of Ito is discussed
and as an application, Ito's chain rule is given. Section 4
provides a short account of Fokker-Planck equations correspond-
ing to the two types of Langevin's ecquation, Evan before
introducdng his concept of stochastic integrals, Stratonovich
(1963) dariuadh?hgnkker—Plannk oQuation taking into aceount
the correlation botwoen solution and fluctuating functions .
Wo give 2 short account of his dorivation, This is followod by
another method of deriving tho fFokker-Planck equation in section
5s It is darived from the oquation describing the time avolution
of the characteristic function of the process subjectod to both
eontinuous and point processcos as inputsi Scction 6 deals with

a8 short account of stochastic differontial equations

by point processos. In scectian 74 We present our nsw results
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on stochastic systems subjocted to resal noise pProcaesses, g

take the random telegraph noisc as tha input and obtain tho

Fokker-Planck squation dascribing the ovolution of tha probability

donsity using cumulant expansion tachnigues, Tha stationary

solution is also obtained,
from tho

ﬂiFFurmntftuchniques'adnptad by others,

Our mothod of derivation is entircly

2, Basig Roviou of Stochastic Procusscs

In this scction, wo Prosent a short roviaw of stochastic

Processes, which are neaded fop our furthar study, fiiﬁéaftﬂiiﬁ“LEf
Bunntsy Combe bl d fiom ik frook Ly-Svong a93-3),
Lot kff[_ boe the sample space, LD 2 sample point and

T.y the parametar Spdco, associated with the stochastic procass

K{t, W), For convenienca, we write X(t) instead of Xft,w ).
The mean value of the procoss X(t) is defined by

m(t) = Eix{t)% i (2.1)

E being the mathematigal axpectation, It is thus a function of

time, Higher moments are dofined similarly,

The Bovarianco function of the procass X(t) 1is defined by
RI(3,8) = Csuv-( X(4), X ()
= fo'"&))xh':))

== XX (6} — Efxpsjfé-“{)‘f@}-(z.z}
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Hy The class of all stachastic procassas is too gopoeral for
many purposcs, but by considaring a subclass With spoeified
Properties, Wwo can simplify tha problom to & groat extent, A
spocific class of procosses that is quito usoful is that of

Markov procosses,

The Markoy Process

This important class of stochastic procoesscs weg initiatod
by A.A.Markoy in 1906, Markoy Proportios of stopchastic pProcassas
are discussed extansively in tho hooks of Doob (1963) and

Bharach@-Roid (1960),

A stochastic procoss X(t), ¢ & T is called a Markov

Process, if for overy n and TR £y & &5 ¢ oo Lt in T

We havo

B it s, e ot
s F { :)F'TU E_'ﬂu /:{‘r]—h é_”'_-" 3’;
(2.3)

F' being the conditional distribution function of X(t), This

is equivalent to

| .5_‘_ .i_‘)(«,-”f;—.,?/ Awm—1, E‘,q_;)':]lhn: ;t_”"lj vewes jﬁf;}ﬁ*;j
"'—f- im’*; E“/DFHH;’ hﬁ_f} }

(2.4)
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- being the conditional donsity function of X(t),

Equation (2,3) op (2.4) implies that a Markoy pProcaoss represonts
a8 collection of trajectnriua'uhmsn conditional Probability
distribution at given instant, given all past observations,
deponds only upon tha latost paste. This is the probabiliatie
analog of the deterministie theory in mechanics Whero the trajec-
torgoat a givon time + is complotoly determined by its state

at some ;;iéé t requiring mo information of its states at

times to t' . A Markoy Process is completoly specified by its

First and second distribution functions,

Independent - Incromont Processe

. — i

Consider a stochastic process Xit)y £ 30 A% The random
variable X(tzj - X{tl), 0 é_ £ty éhtz is called an ineroment

of X(t) on [t;,t, ) . If for anl 81 & L een Lt

the int:rl:ments x{tz) - x(tl)’ x{ts) o x(tz), ey &(tn} = x(&l:l._-l}
8roc mutually indepondent, tho stochastic process Kft}, t E} 0
is called an independent - incroment stochastic process,

In the above definition, if +he probahility distributions
of 3@5} ~ 1(tl), seey x(tn) - K(tn_lj depend only on the

parameter diffcrancas tZ - tl’ t3 - t?, sss 3 "-'-n = tn—l’ the

process X(t) is said to havo stationary independent incroments,
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It may bec noted that a continuous—parameter indopendent

increment stochastic process im Markovian.

ﬂﬂgixﬁiﬁhgfhﬁjnchgggip Procasses

= e

In order to discuss the bohaviour of dynamicgal systams
Whose inputs are stochastice Procossos, it 1s necessary to dovelop
the analysis of stochastic Procossas,  Hence, we develop the
concepts of continuity, dorivative and integral of a stpchastie
process in the mean square sensa. The analysis of such concopts,
ultimatoly dopends upon the bohaviour of deterministic functions
like the moan and the covariance of the process X(t). This is
the main advantege of moan squaro caleulus, Yo considar a

particular class of stochastip processas X(t), for which

E 3 [x(¢) ; = D (ZiS)
T 7}

throughout our study on stochastic integration,

Eunt;guitz

R stochastic procaoss K(t), b T Ls sutd to be conti-

nuous at t, in the moan squars sonsa ir

U E [X(L—-ME;) ~ X!t—)]lj =0

HES s

(2.56)
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The process X(t), t & T 1is moan square continuous at
t » if and only if, its covarianen function P{s,t) 15 continuous

at (t,t).
Ir X(t) is Uido=sonsg stationary, wo haye
R(syt) = Rs-t) = R(T) (2.7)

Hence, a Wwido-sonse stochastic procoss Kft) is mean square

continuous at =all t é; Ty if and only if AT Y 4s continuous

A stochastic procoss X(t}, t é; T 1is said $o be

differontiable at ¢ in tho mean squars sensg, if

Do X(b+48) ~Xity D

(2.8)

Ab>o AN
exlsts in the sense of mean-squars convergence, 1.0, if
9%
M E X[+at) —X () 8 ?-QCE) A

.;55"‘36 Ak (2.9)

If a process X(t) 1is differentiable for all £t &£ T, it is said

to be a differantianle stochastic procass,
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Again, it is mean squars difforontiablo at 4 y if and
only if the sccond ordor derivative of its covariance

‘;\Q‘p\( A, B)

=1 exists at (t,t)
24 3k

function,

Hean Squarc Integretion

In the developmont of intugrals of stochastic processes,
‘We &ro intorestod in Riomann intagral and Riemann=Sticltjes

7inﬁaﬂral in the mean square sensa.

Let X(t), ¢ & T, bo a stochastic process. Considor
."En interval Elh]é Te Let & = tn {_‘ "tlj.lllll{tn = b as

a partition of [E,h] « Considor the sum

2 2 X C‘C*b\) { b Ca e‘_) (2,10)

e G G e

sﬁmﬁ process X%(t), ¢ ég. T is said £o bo Rifmann integrable,
I

iff I converges to a limit in the mean square sense as n — m,

B Retion o usy that = w}g«x | &g Ep 10+ This limit is

azfllqd the moan square Riemann integral of X(t) over 4[3,@]

Ao

I = j X(t)dt (2.11)
oL

B2 e
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Furthor, the above 1ntng'E} uxists, if tha integrals
ymwnu M@J ? (2,1 ola di
(28
gxist,
Hlau
R
A Sy
E’ig gﬂbﬂ&)ou'“"'u&?r -“ Fgmaxw)jd&fﬂ“‘
- 2 44
:2 - "U“E TJ Siaanisee (2.13)
o -

Next, we considor stochastic Ricmann~Sticltjos integrals

8
E f FIBd X0
(%

of the typos

(2.14)

A
Vo = | xiDd £,

& (2,15)
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Where K{t:l is a stoghastic Procoss dofined on Ea,b] é—T .

and f(t) is ap ordinary function on the same intoryval for t,.
Keeping the dofinitions given carlior in the cass of Riemann

integrals, we form tho random variables

W =
Vo :&Z £ (TR X1 kr) ~X /b
=]

(2.16)
if ‘é't'" - V!‘YL:VI oXxists, then V is ecalled thao
'}"jf—_‘} & 1
—>7

filemann-Stieltjes intogral of £(t), on the intoryal [24b]

with rospeet to X(t) j It oxists, if and only if the ordinary

double Riemann-5ticltjos integral
b b

U( hg Flt)rls) dg R(t,s) exists and is finits

(2,17)

The definition and existonco of Uz can be devolopod on similar

liﬁﬂﬂ .

In scetion (3), Wo will devolop tho concept of integration

with raspect to Brownian motion proacess,
The Wicner Procoss

The Wicner Procoss or the Brownian motion Procoas B(&)

ds of vital importance in tho modelling of stochastic systoms.
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A rigorous mathematieal analysis of this procoss was aiven by

Wienor in 1923,

The Wicnor process - is defined as follows: A continuous
paramcter stochastic process B(t), t_affl is called a Wignop

Process if

(1) F {B(n] = D\} s B0 (2.18)

(ii) The probability distribution Eﬁ‘{B{t) - B{s{} is Gaussian

with
£ i [E!(t] - B(s}]i
E.{ [ﬁ(t)-e{gﬂ2:§

Tha guantdlty D is 2 physical constant, Further, it was shoun

(2.19)

i
=

2D (t-s), (2.20)

that B8(t), ¢t E}U is a stotionary independent-incremont
processy 2ince tho Wicnor pProcuss is Gaussian, it is complotely
spacificd by the moan and covarianeso functions. In general, if

B(t) = a(t ¥ At) - B(t}, Wwe havao

L
= gj;ﬂ B:fkl]-jaj S R T 642_{>(§abdﬁtﬁj%;

k cven (2.,21b)
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- 2
:Tlfl'u fact that E%B E(t):J % is of first order in A t is

What causcs the poculbiritios in the Ito caleulus, to be deseribed

later in Soction 3,

Now wo give tha vital propoerties of the Brownian motion
‘;‘_pa_:'n_::esa.

‘Ehg covarianco of tho Wienor P LOcaoss
Fl-
Tha Wicnar process E(t], t ,‘.}; 0 has

£ {_E(t)} = g (2.22)

| Ei[ﬁ(t}]&} = 2 bt (2;'2'3)

from equations (2.19) and (2,20). _
jﬁ'ﬁ-ld:jring o £ s & t, ug hayo [E!'(t-) = EI(S)J and EB{E-} - E{Uﬂ

are indopendont procossos, Honeco

E{ [BlE) ~>(2)) [ B4 - deﬂj

= C? usin_g“ (2.19}-

E{EE(’G) E(B)]_ - [E{E)JL’} = 0, since B(n) = 0.

Thic ‘gives :
e o '
Biee g .f [B(t) 8¢ sﬂ} 2 S f [H’(:s)] ]u 2 Ds using (2.23)

= 2D min (s,t).
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Thus, tho Wicnor process has the covarianco function

R(syt) = 20 min (p,t). (2.24)

The Mienor Procoss is moan squers cont inuous

-

Now Prom nguation (2.20)

; 2
E f [E{t + 5t) = B{t)] } = 204 t, and this

tends to zero as At ~> 0, Henco from tho dofinition of

mean squaro continuity 3 §HQL2.E}, the mean squarc continuity

of Wicnor Procoss follous,

Tho¥ionor Progoss is not difforeontiabdn

e - e

Again, for tho Wiocnor Procoss E(t), Wo have

[F};[{r—m{:) h%@J % = &b
AL =

A

(2.25)

1:r-$ing qu{z -2”) ™

The above oxpoctation divorgos, in tho limit At —> 0. Henco

tho Wienor process is not difforentiablo,

We mention two important points about the Wiencr procoss,
The first is tho moan square continuity of tho Wienor Procaoss
is useful in the sonso that when driving a systom with such a
l_yfﬁnnss, tho output may also bo continuous,
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The socond main fact is thnt tho Wioner procaoss 1s not

nf boundod variation (NnGarty 1974) and thus is not difforentiable.

i}Ha knou that tho common Riemann-Stoiltjos inteqral is definod

only for functions of boundad variation, Thus, intograls with

ﬁig‘.'ﬁ[:ldct to Wigner Procaessy do not axlst in the ordinary suns;a';

UYo develop this concept in scction 3 in dotail,

This is anao of tho vidoly usod concepts in stochastic
L oy
nmﬂcdasna modolled as an approximation kaspany physical problems,

We dofinc a white noiso pracnss W(t) as a Zoro moan

0ss with corrnlation functiaon

= {[W(E') wa&)Jg = &D -SJ(P.-JS)’, (2.26)

:@iﬁﬁraan tation of thg Whito Noiso

We show that tho Wwhito noisa can be weltton formally as

Wit) = E..E.Li;.l

= (2.27)

5 ] -
Since B(t) is Gaussian, B(t) is also Gaussian, Tho
ancagof X(t) and X(t) donotad by Re(s,t) and Rg(syt)

connected by tho rolation (Papﬂulia 1965)
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R (%) = 9[" Ry (2,6) (2#25)
Hanco o PR LY = Rp, (A8
| *’RBC '}) 9/5.&1*(% 2
i & —.._f-mdw[&b)% from £q.(2.24)
=8 ;l_ %}fr§-é{) e
B CUA-D TR Sl

iln tho abovo H(s=t) is Hoaviside undt stop function dofinad as
H(s = ¢) = o i s £ t _
=L 3 E®S B (2.29)

'.f_i-s_ means tho formal derivative B8(t), ¢ ;’, 0 has thno propartins

;_-f'-"-_-l__h'itu noisc. Thus ws have tho rolation {2;2?).

T s Ito and Stratonovich Thoory on, Stochastic Intograls

Let us consider the basic systom of diffdpantial oquations,

"Bsnntud by

E )
| i;i{ ) = (}(H—) Y(f);b)) ({ﬁ'.l]

£ is linoar or nnn-lihnar roal n-uvoeteor function, Kft?
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the n-dimensional voctor stato and Y(t) is tho m=voctor réndom

{3-42}

oxists in tho moan square sansay tho dorivative dﬁtt oxists
in the mean squaro sunsn, and,
}_—) H'ﬁf{:é‘g) :-5\ jc(i‘”{?.) y Y.(E),T) dT ’ : }
i 2 2.3
&

A speeial elass of random difforontial oguations is one
where Y(t) in oq. (3,1) has only whito noisa compononts,

spocifically, we moan cquations of tho form

= £ (X0, + G X0, W), keT
SE-(ETQD == 369

(3.4)
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whoere  W(t) is an m=dimonsional voctor stochastie procoss

Whosc compononts bolong to a closs ealled whita noise,

E(K(t), t) fsan nxanm matrix

be a function of X and ¢

function and it is allowod to

y to take into account tho pﬂssihility
that the noisc may dapand on tho state of thp systam, KD is

indopondont of UKt), t & T, This cquation is also called

the Langevin cquation for theo progoss,

The above cquation- (3,4) plays an important role in

modaelling phenomona, duc to tua important rﬂasﬂns; Tha first

is that tha solution procoss generated by the eq.(3.4) is

Markovian and poworful analytical tochniques oxist to study thao

solution. Tho second is, although whito noise is a mathomatieal

artificz, it approximatcs closaly tha behaviour of many noise

processcs in engincoring, biomadical and alectronic sySthE;
Books dealing with those applications include Aoki €1957),
Stratonovich (1968), Jazwinski (1970) and Kushnor (1967),
Ramakrishnan (1959) Srinivasan and VYasudeyan (1971), Arnold (1973)
Van Kampon (1976), Mortegson (1968) , Sowmg [(§73).

The noise in a stochastic systenm anters tha diffoerontial

‘sguation reprosonting thao systom in two ways - additive and

multiplicatives Let the dynamical system be represonted by the

cquation

X(8) = f(5,0) + o(x(®), § (1)) (3.5)



32

Whorag g (£t} ds a Fluctuating function, F(x), G{K,_g )

arc arbitrary Funetions, 1If

6OX\(), ¢ (1) ) = £ (s (3.6)

then tha system (3.5) 1s saig ¢q have additive nalsa, 1.e, the
noise ontors additively, It ig not multipliod by any function

of the solution Process, If

G(X (t},_g (£) ) = o(x (t)) £ () (3.9)

~ then the systom is said to haygo multiplicativg noise, i.o,

the noisu has a coefficient whigh is a Function of tho dopendent
variablg,

In the additiys typa, tha Fluctuations Jiggla thao
‘particles irrespoctive of their positians, Examplos of this
i for instancno,
additive type accur,An aloctrical networks with noisn sources,
Fluctuations af electro-magnetic Ficlds in continunys modia
i andau and LiFshitz, 1960), But thera oxist Procoessos, whepe
ﬁﬂfr§luutuatiuns do depond on tho values of the macroscapic
_g;ﬁﬁ@lqs. Examples for the later typg of cuations ara found
Hhiaﬂ-diaciplinas, for instango - supharmnnin'gunﬂratiun
aham, 1973), Raman scattaring and tho lasop in the regime
antum bptics, autocatalytipe chomigal roactions, like those

°d by Schiagl (Schlogl 1072, Horsthonka and Malak-Mansour,
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1976, iHorsthemko and Lefaver, 1977), tho vorhulst modol in tho
ficld of population dynamics (Horsthomko and Malak=-Mansour, 1976,
Nitzan ot. al, 19?4], random magnotic Fiald (Baurrnt, 1965) and
Wafle propagation in a medium With random refractive indox

(Keller 1964), ote,

Having stressod tha importance of multiplicative noisa

systam, we proeeed in study ag, (3.4) in greator dotail,

b .
Wo eliminata tho whits noisa M(+) in egq, (3,4) by using
its formal ropraoscntation as tho darivative of theo Brownian
Procass (og, 2.27). Haence, concontrating on tho scalar caso,

eds. (3.4) is formally eguivalent tg

Ax(H) = £ (x10), B+ G (X, drit) teT
X (ko) = Xo i

This og. (3. 8) nan be convorted 1ntn tho integral equation

RO = X/&Qﬂ:fl( X(7),T)dT +j6; (0, 9dR(D), teT
h.

(3.9)
X[ o)

uhers K(tu) ‘is indepondont of the incromont d B(t), t & T.

The fdest intogral can bo dafined 4s a mean squarp
ﬁ-i-a;ma_nn intagral. The sscond integral is not dafined in the
maan square senscg 8s a Riomann Sticsltjes integral, sinco B(t)

is of unbounded variation as statad garlioer. If want the integral
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L~
/(0= | xbdew _
. a ( 510 )

e %EI&Finr-: tho randnm variahle Y, by

z X () [Brtr) -5 (b 0]
R= .Z;keibfk! ,&] (3. 11)

Wls sequencc of random variablos doocs not converos in the mean

aro sonsc to o uniquo limit, Tho 1limit depends on tho seanticnl -

rticular choice of T_'/R « Tharafora, tha integral I:-S.l‘!-'l}

8 not oxist as a mean sguare intagral in the usual sensa,

hiu now study eg.(3.8) in the moan square sonse follou-

ing the intorprotation of Ito (1961),

Let B(t), t 6 T = Eﬂ,h] be a Wioner Process with

= f BI H?} 28 (2.19)

E{Bo-ns] =20 (g

(2.20)



39

ket X(t) bo moan souars continunus on T, At any time ¢t f}-T.

'Ehﬁ stochastic process X(t) is indepondent of the incroment

izﬁitk+1) - E{tk{] for all tk’ tk+l satisfying
g 2 | 2 by 2 th—!—_} £ A= dokbf= “"/‘%1 |6ry t2)

Lonsidor 2 sequence of finito subdivisions of T apd lat us

orm the random variaplo

N} : |
= &Z: X ( hﬁ) [Q (‘17@_”)'_ Bﬂ?ﬁi] (3.12)

(3]

1,i.m Tn =Y oxists, tha random variable VY is

talled tho Ito stochastic integral of X(t) with respoct to

over the interval T and is denntad by Ak L
b .
g X(t) d B(t) (3.13)
a

1t may beo notad that tho valuyes of X(t) in (3112)

‘not taken at arbitrary points in ths intorval [%k'tk+£]

at the points tk' Thus tho dofinition givon abovs is not

o

'.'E"_-:!,:.l-

mﬁ}}nﬁ;a mean squarc integral in the wusuzl SENS0.,

We mhou that the mean squars limit of the sequenca Y

.?*Tﬁ? (3.12) doponds on tho choice of tk at which X(t)

Loy

s the values,
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We taka tho procoss X(t) as B(t) ditsolf and definec

. 'ﬂ** '
.:\/_/%:{h R )[P(L?’ﬁ;r) BH‘,}Q)] (3.14)

—
—

V. = ,R B{&k,ﬂ)LBﬂ‘/}q-ﬂ) B “:’kﬂ (3.15)

where a = b e byl vas it =BG

Uz show that

M~

gl .

%51->:z (Z*n ‘7?1) A {;. L)rg'jl [Bf[‘&ﬂ) 3/&9&)]

| =29 /Er a) (5.16)
and henco the segquoncos {Yn "ij and [SZH } convorga in mean
squarc to different limits.

Proaf, Taking

A(BlE) = BlEy,)~ Bk

(3.17)

= by B ¢
Alg) = f“,;q_,_, #l’:‘/fg ; (3.10)
';a__,_qd_ noting, from (2.21b) ;
. LUSED e
E % [A B’h—"l S5 - Ab'h (3.19)

(3.20)
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We have

E[ {7 (25%)°) - 2n(abu)]
-3 ?E (2 % et b %)ﬁ
Z‘ = [{ (A B,h)h-'— 2D (ﬂ&&)}j

& £ [{ée,k) + 4D (Abg) 43@@3@9@_‘{

;. Z[g(&mh,a) 4 Y (46 = 1D (A at))

= 5 5D (:i*f,k) LB DP z(ﬁﬁ‘ﬁ) 9'3("’(’{““)
fo

P3¢
ﬁgﬂgﬂ the eq.(3.16),

We now enlist some important

results on itu intograls.
(1) The

Ito intearal is lincar and additiyg

in the
Eﬁ'ain of integration.

(2) Lat al®) be a random

function setisfying tho
;m{%}%iuns

B08)l 15 thdepandant.cp Bt ) = B{t£ (¢ £t

t b),
S
for all t £ T and
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jE f[&rﬂ]l}% £ o0
e

Let  £(t) be anothor randnm function similarly dofiped,

(3.21)

Then

| Eg FJ;Q*fE)DlE“fP)} =0 (5.22)
':Eﬂﬂ‘“*)c!@!‘@ jﬂ@ damt=ay E{%}H@}&.
R T -+

(3,23)
-
20 being the variance paramgtar of E{t).
(3) 1f Xx(t) = ‘g olt) d B(t), t & T (3.24)

a

‘Jﬁhan X(t) is mean squara continuous on T.

Another internsting oxtonsion of Ito's stochastie integral
is Ito's differentiation rule (dto 19511; Yo just give tho
‘statement of the theorem and ovaluate 5 }FE(t} - B(a{} da ()

5 .

and point out the significance of this intogral,
Let X(t) be the unigue solution of the vector Ito

‘stochastic differential equation (3.4), which ean bo written as
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XD = £(% 0,0+ G (X))t BlE) berT

-31Et ﬁ# fx(t)tj bo a scalar valuad pgal Fu
;d‘iFf‘nruntmhla ko &

(3.25)

nction continuously
and having

Hhrivatiuas with roppuct +q R Thon tho stochastig difforon-
tial ofrf? of 7" is

=
= b db—;-fpxctx +1 & GdG P db

continuous soeo g mixed paptial

(3.25)

| SR (3.27)
E 9}{”;)){_, J SJ')Q.n:’J)(_.,_ ) Q)( 2 J
= B Bre)) ] :wa,e

Uhere D donotos the mxm matrix whosg ij nlemant is Dij'
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The cquation (3.26) is = stachastip difforential pquatinn

ghnsa solution is =a f"urz:c:cimn of tho solution of og, (3.25).

To ovaluates [{E(ti ~ 8(a) E( d B(t)

o
o A8

EXE’E‘)‘%“’JJ — D(t—a) {3;25)
and apply ca. (3.26).
lat d X(t) = d B(t).

el

E;Eﬂ ue hava,

43 = *Do!i- 4. ('X(EJ R(a)) e X () +L (2 D)d-
= (X1 = era) d xit)
== <B(E)“~ P:xfﬂ)) o B’({'J

) - g{a)jo!e ):-[er&)-ﬂg(a)] = Dit-a)

being the variance paramotor of B{t)_

(3.29)

The abave rosult (3.29) is due to Doob (1953) and this
ustrates the important eonscquenca of Ito intagration, I
5 not agree with the ordinary rulos of integration, using

Wo get only the first topm on the right hand side of
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t?&.??',l_. Intuitively the prosones of tha torm D(t-a) ecan bo

vicwed as a corroction torm which ansuros E(I J[B(t?—-ﬁ(aﬂdﬂ;t}

.
=0 wuhich is in agreomont with (3.,22).

Wo noxt show that tho solution procoss X(t) of tho
00, (3.8) 1s Markovian. Ue urits tho oq. (3.8) as

£ o) XD =%ty 1) 2k + G(x1t), D) (8(l-+a8)-BIE)

(3.30)
‘Then given X(t) , X{t +/t) dopands only on tho Brownian
éﬁ_ycrﬁmcnt B(t +ﬁt) - B(t) « Tho Brounian motion incremeonts
- arc independent and by assumption 8(t) is independont of

(T ], A £ te Thus the X(t) process is Markovian,.

e e

Hacently_’ Stratoncvich {lHEE) pr‘ij:_\.c:sad a nou {Bymmnt_ric)

;ﬂ_-_’:i:-_i‘ﬁinitinn of a stochastic intogral SE(E({'J st) d 8(t).
. G

Lot tho scalar random function 6(B(t),t),t ET = [a‘,iﬂ

bo an oxplicit function of B(t), uhore B(t), t & T is a

Z:i:d' E‘t S tD <, tl {_I-'- {:tn = h be a partitiﬂﬂ of Ealbj and
= max (tk+l - tk) « Then tho Stratonovich Stochastic

integral is':. defined by
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j

= % ;2 ZQ(BM@*F fh’“‘a P)(F& Skt %/E&D

f'“:? 0 R=o (3.31)

‘ "ﬂlantly @{( ﬁL’?") il rihﬂ)})*’-{ +£32+')can be
:-. instead of & (q__{ B {)_+_ gf{.ﬁﬂ 4{2) GCray and

e

‘:%hﬁy (1965) noted that "L(“ (%H‘ﬁ);b&)‘f‘& 65(&‘,}3-.”) %’:H?]

J 1lso an equivalent chnice. Stratonovich has shown that if

{t), t) is continuous in t and has a caontinuous partial

ative E}G-l' and further satisfiocs tho eondition ,
_,B_ =B

J e {}G(@(F)#,%)/lj e < o0

(3.32)
i
the moan square limit in (3.31) oxists and is relatad to
to intoegral by
A A
ME),Jwefe...Ij (B0, 3 (0)43( 20 db
| ‘_'“ (3.53)

The t integral is = well-dofinod Riemann inteqral,
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parline
We mote that tho/Stratonavich integral is defined for a

much mora rostrictad class of fun

ctinns than the Itn intngrall
Stratonovich inteoral is dafined only fop

cxplicit functions of
H(t)

Also the Stratonovich intogral no longor has zoro mean,

t this stago, we point out (Vanp Kampun {1981)) that

equation (3,4) is just a Mppge: 1quations™ 1in thu sanso that it
does not definc a stochrstic pracass X(t) . This "pro—aquatipn"
¥ nan be turned into an actual chuation b

wun 2dditional intorprotation rulo, Th

y supplementing it with
ﬁrascrihgd by Ito and Strotonovich, a

o two rulos arn thosao
s duscribed in this section.

the prescription is givan, we ean uriten douwn the

" equivalent oquatinn in tho nthor Praseription, as givan by

ﬁnt, once

- Stratonovich (1964). If @9+ (3.4) is supplementod with

Stratonovich interprotation, ths oquivalent Ito cquation is
' Pr.

given by the transformation rulo that the 1th compoment of
‘voctor F{}E(t),t) is modificd by the addition of

Z Z @/KOL Uimal

‘ (3.34)

Now wo give tho polatinn botwoan the Ito and Stratonovieh

#{Eaggals, in tho sealap pas:o following Hasegawa and Ezaua (1980)

Stratonovich (1966), in tha form f_

it S
(X0 AR = T[ ¢ (x4 dale) +ﬂ%%"fg%%

A &,

(3.35)
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Lﬁhking variance paramotor of B(%) to bo unity in(S;E&)fﬁnd

Proof. Donating the intogrands of thae Ita and tho

?fﬁfﬂﬁhnnuinh integrals by G d8 and G.dB; wa Hays fram tho

yﬁﬂurlylng dofinitions of theo tuﬂ typos of intngrala,

g = GIXI,E)[ Bt ab) ~ aiey] (k- o)

(3,36)

:L'L [e; (X208, b+ o)+ G- MH;:)[B/E‘#*)"M)]

AL >0
(3437)

In (3,36) sinco X(t) daponds on B(s) in tho past s < t only
W y T—

G and dB  arc satistically independent. Hanca

LG(XE) dait)y > = o (sl am)

‘AucBuch simple rolation cxists in (3,37) . But, wo have

- Gdp: _[G(X{HQ&) h-.r_‘iy&) G(xib), bﬂ[af’{**df’)*gfﬁﬂ
L1 [260xi0,0) @,[xxe);e)j At + o agy7>

(3339)
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Using dB(t) = 0(A 32
we havo (3,35),

» mentionod carlicr. Hones

Hora, it mey ho notaod that we haygp G(be),t}
instoad of G(B(t),t) as in (3.33),

Honco, to stato oxplicitly, we hays that if

-"7-‘?1’9 = L (x16),0) b+ & (b, 4y beT

(z.40)

ﬁ;?a Stratonovich oquation, ths aquivalent Ito cquation is

WXty = [£0x0,0)+Looxa, %f{i_f”)r’aj"'b
+ G(x'1P det)  Fer

(3.41)
Similarly, irf (3.40) is considorod as an Ito aguation,
! '

:‘:_ijrrue._pnnding Stratonovich cquntion is given by

+ G xity,DAB), teT

Having dosecribed tho

(3.42)
Langovin equation in the twp
roaches, Wo give a shorpt account of tho unifiod troatmont

stochastic caleulus, introducod by Ito
of_symmetric U=multiplication,

(1975) by the nams

Tho symbol usod tn indicatns Stratonovich definitinn

@§i§h3~pf3ﬁuct (3.37) uas in Fact Used by Itn, Thé rolation
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botWoen the two typos of multiplication of a stochastic diffop=
‘ential by a timo dopondont random variasblg may be oxprossad hy
mﬁg gencral formula,

‘)/*dx = ')fle ‘\‘—‘;;:D\)(A)f

(3,43)

Hdk dY d dt  (noccessary tn rotain O(dt) (3.44)
ZY d%x2= 0 (3.45)
d dX dY dZ = 0 nogloet of torms of 0(dt)3/2 (3,46)

The main advantagn of tho symmetric multiplication is

t it satisfios all the EU;GE 9f usual difforantial caleculus.

3 fact ariscs from theo idantity

d(XY) = X df + Y dX + dX gy (3.47)

may bo casily verifiod, from

AE) Y(E+06) = X0 Y 1E) = XD [Y [ F+a8) —Yi8)]
(O[X(e+a8) — Xit) ]+ [xpat) ~xie)[¥tra6)~yip)

5 from (3.43) and (3.47), wo have

d(XY) = X ., dY +v , X (3.48)

s £h“ symmetric multiplication dofined by (3.43) rostoros

basic rule for the difforuntial of products.
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Rs an immediatec appiicntinn af (3.43), we obtain tho

formula for Ito's diffor- ntl 1 d (x(£)) (3.26).

tou o pXI6)) = ¢!(xrt)) . o x/b)

((X0EY) - [£068) db +Grx,8) A 8] U3 uig €
) «A£O0H U+ f_;f (X)) « b1 (X;0) B

= o (x10) L300 - 4 L A plrxe) £r0bdE)
;_-?l(x%}) Gob 48 ¢+ L d (¢lexe) Qe 48)
= ol () L0010 A+ /(x0) GIxE) dB

d( c?"r_’ ) [ X8 di-+ G (xt) d B]

.71'-““@) 0B M-+ 7 (%) & (08 o8

_:_-f(xft)qﬁrr; ) ekt Cx1) GO0E) dB+L¢ foch)

R =0 CCLH e
(¢ % +-L 6% ¢!l X)j (e )G ( r@] d8/6)
L M= )’f{-) X= SXE)  (3,49)
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in agrocment with (3.26), with unit vorianco paramctor for

Having discussa? thu Ito and Stratonovich typas of !
5?;ngcuin equations, Wo givo tho sguations for the time devolop=
.Zﬁ.ﬁ:‘b- of the transition probability density funections for tho

splution procoss in tho noxt scetion,

The Fokkor=Planck Lruations

P e e o e ]

A dynamical theory is rdescribod by an aquation of

igass of Ite and Strotonovich types of Lepgovin equations,

Based on tho work of Bartlott (1966), tho first pro-

":'E}ility' donsity function P(x,t) of a stochastic procoss

ht}, £ é— T satisfics the differontial cquation

> ele) CAVII . :
el L ) B0 POt

" '}’}:! L"’J* 9'3..“

(4.1)
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'm{ = ’6”“ 55 ey wk)] / Xi= }L}

=) 2 g) (4.2)

‘Here D‘('}L(x;t) aro callad tho cordvatwmomonts af tha stocha-

sti:: procoss X(t) and tho ocquation (4.1) is called tho

___‘___'_'_'_t_'_".ntic oquation associatod with the procass X(t). HNeocossarily

O{-ni /S should exist in the 1imit tﬂl’.’*"‘:}{},

The above asquation can bo casily axtonded to tho doter-

_ minatimn of thuo sccond dunsity function P(J)E‘ :r-{_; b-)
Since

F?‘(zJ{:jﬁt,JE,):P(Df;f-‘/«‘f,u&*;)?(’iui‘z) s
Ik ' 4,3
('X; {:.-!3(”{:}.) being tho ernditinpal density, we must cal-

o lato P(ﬂ;{-{?(_fj &‘Q knowing P(l.f; E}) . By a similar

[ rocodure, tho r..quatinn Fur P(j %' 1[3 {7) is givan by

EPUE) _F =" 7 52 b)) Pl o,
/ Z}_ 2 U&,ﬂ(:{ ¥ 1o t)Pr,Pjoréﬂ

(4.4)

: ¢ X[b+2b)-X)] [ XI&)=x, xtk 1}
‘h'%@itﬁm b ﬂ )-X(E)] / )
= '?\:.fjl;g)*""

(4.5)
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From the Kinotic oquntinn, it is ocbhvious that tho

‘above mothod is usoful only whon o fFow of tho dorivatso momants
‘ara nonzecro, But Paowwle (1967) has provard tho thonrom PIf
'%%ﬁ-deriuatu momopts G{Ty (x,t) a¥ist for all n and i® zoro
for tho somo sven n , than fq{X,t} = 0, n 2} Je N I vigu of
‘this thoorom, Wwo will Apply tho Kinotic cnuation to study tha
procossos for uhich ofy (x,t) venishos for N s

Physically, thio moans that tho procoss can chango only by small
?@quntﬂ in a small time intorval, a(#x (x,t] dafinad by (4,2)

will aporoach zers fastorithan ) - as Ab—>p for n> P

fghﬁﬂr this condition tho Kinotic 2quation has tha form nof the

_ﬁbkkEr-Planck aquation in the theory nf Markov processcs,

Wo know that the solution of Ito differantial cquation
is Markovian. Honee tho Fokkor-Planck oguation for the study
of the cquation (3.25) can be written immediatoly., In (3.25)

{hfiﬁj is the n-dimonsional snlution process, G(X(t),t) 4is an

propertics
E-]a%®] = E{EOL(E'+4P)—-BC5{E)}:D
E‘{ A %L\CE-) &B&ff)}‘: f}_'[:}%}&&_ 5 = ;_?(:_n

[ Crd =gy 9 (4_;[5)
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‘Then tho transition probability donsity of X(t), P(x ,'t/ oty )
*o

satisfias thg Fokkor-Planck nquntinn

o, & olo —»2 & (0 B e
J / ) = ;9 CJL £0‘ / / / )

- % ai e <[00 ProE)T4)
. EEL IR

(4,7)
G (T)0) = b L= a5y ) wi)3 ]
1 Ab=yo At / (4.8)
o) (0, ‘Qum L Eééxfﬁ.@ KL)=7
J / ) o At L [ | ) ?(4.9}
tho initial conditions
2 Fa [ﬂ;l’c}z R 5(;(J “3‘(%})
2 J=1 (4.10)
he boundary conditions
ff& o) =0 02 A S F oot
2 / ) C) FF, {a 11)

I is also called the Foruarp: cquation, bocauso it is

rad as a functien af tho foruward variable, h;-, t moving

1 in ‘l'._imc:.



J
_“]u
- Jil'nd,l |
P23 FD Ay (F5,6)
i [ Bl e
LL.&J=’ ) J (4,12)
Jith conditions (4.10) ang  p{ % 4 £/ ig} ) = 0 as
-'f.?'[.;y — + o E—r*r* tss q) (4.13))
it It ean hag shown {C:‘v:lnng ]'_9?3:.?, that
(%, 0= Lo L E T a0 310= 57
= -F_,} (:’l«‘-’ =) (4.14)

componont of ¢ f;-, t); and

"'5.-55;,9:% X iax (e)&x&{f)/w) ’?;
= Q(@DC;DU Gd=hzyom (4.15)

the mx m matrix Whaso ijth oloemont is
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Honeco, tho Fokkor-Plonck ﬂUﬂtlﬂn (4.7) may be put in

n}ézta {(F )G) Fi%
Sell=p

the Pﬁrm: Hrltlng P orar P( ﬁ s By ¥ ot t
il Z ’Q [-? \) j

(&}15}

Tha Fokker-Planck zou-tinn fop EQ.{S.E}, in tho Ito
ﬁﬂ}#ﬂ is given by, writing P far P(x,t[ Xos t )
(&)

o N 2
= -2 {FP el g 1 6 0Pl

(4.17)
RS transition probability for thu samo ¢q.(3.8) in tho con-
tion of Stratonovich satisfics tha uquation

B . [ 1500000038 Jrjd foiof

. (4.18)
uith the conditinp

P('ﬁJ&b {Iﬁﬁeﬂ) :(STQ‘-FI&)

(4.19a)

P/ A, = R :fe.-/, b o.;) —> 8 O N—=>Tad (4]11%)
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;ﬂ 14,13) can alsn bo uwritton as

=~ 2 (F0P) 4D 2 Gy Gix) P

S % (4.20)
We obsorya that whithar wa taka tho ﬂq.(E.B) in tho
sanse of lto or Stratonovich, ws arrive at tho sama solutinon nof

long as E(K(t), t)  is indooondont nf K{t}_ When G{X(t),t)

function of X(t) , ws obtain two distinct Markoy Procassas,

tutions, Which diffors in tho systomatic (drift) bohaviour

net in the Fluctuation bohaviaup,

Even bofore introducing his intorprotation for tho
hastic intogral, Strotonnuich (1963) has given the Fokkope
< oguation satisficd by tha transltiﬂn prnbﬂbillty donsity

12 Markovian procoss Xty wa given below an outling of

his derivation (Stretonovieh 19673 ),

Ll

Wg consider tha Langovin oquatinp

9'.’3 T EFEMHA &) (4.,21)

e most gencral form, E;, boing a small paramotor, F

is a function invélving random arqumonts. Taking

e E‘a) = Ao (4.,22)
Et

s tho initial valuo at timo tﬂ y Yo consider tho incroment

7 [‘(,)__;fﬂ — H (:}’ a)-“: H (:}rg)&jz.‘gj {4-.'23)



1)

'iﬁlch dopands nn thg

e

initial valye ®
cl&xﬂj in thao

o @8sontially, Wo wpitg
farm of anp oxXpansing

(o) = € H (X )+ 61}4&(% i

Substituting (4.24) 1pt, (4,21)

iﬁf%ii “F“Gja };2~"+' bkl

(4.24)

» Wo got

:*'Caégﬂ@[f” +€Hr+ﬁu}+“h

ﬁ-ﬁﬁ%ing confficiants of likp Pedcrs ip é;—

, ( v(m) = (%)

s We got
2y : . (4;25)
1 that 1

(4.26)
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GXprassod H.(xn) in tarms of F, to soma desirod

@ecuracy, wo considar tha statistical charactoristics of H{xu)'

Tha characteristic function of H(x,) 1s given by

o 2=d ‘1‘/;? L -J‘l‘ (%s) >

(4.27)

Inverting, we got the ona=dimansinnal probahility density

Y Jfg) 0 4 3
[t )= 1+ s gl
A=y [A

(4.28)

_g;@wﬂhanglng the ordar of intagration and summatinn in (4 .28)

i GO 3 -{*A(ﬁﬂéfa)
i - (&)< Wﬂ du

(e

(4.29)
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Multiplying (4,29) by a funetinn f‘(:-:D) from a suitabls elass
of functions apd integrating we got

ducing, the Dparator 5
o0 9 g S r&
ey -—L(-n*) Z H 00 >

B P 9{0?50) ( +L) g(ﬁihxo.) (4;32)

ﬁt:.atlng this wo get P = L cﬁx = Kn) (4.33)
' = |
P - ki (-H*L) P (4.34)

= Ly B, (4.35)
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-

oparal
- ds tho invorsa af tho P F

£ 1 iy, - We haye

&L:G- <@H+¢ﬂb>+(h4§HTMam
) >+ 0(€>)

L) =1~ 652>+ o€y wan
and
B . — | y ’ " .2 .
C[+L‘_) = 651 £ oy £ Hy >+£2 « H, HP
1 > T

Using 09.(4.25), this may bo simplfind as

(4.39)
napn K [;"’+‘E] is the eovarianeo of tho indicatod arqumonts
inad by oq. (2.2 ), and

ducos to tho Fnkkur—Flannk

Neglocting torms of ordaor é;
"'f!__:_'_:-‘_i:b.’ El'llj UE.‘LHQ (ﬂ 34}! B0 {'{‘ 39) s
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aguation,

TI:P_(I}P/;TGJ )Hha [K:(TI){/(‘ZI P/chr? Dﬂ

_[L_Lg ] f{zfj!)P(I) ﬂq)ltfj(

Q*}?{

(4.40)

i) = ~ JoFM)
) = L) >k [M ; M) o

_ ') —_ g}\ el k’ [‘: { ~ }) H ! ( ){ﬂ (4 ;&2)

gain, using {5‘ 26) wa got

R0 = ¢ £ P(:r) S+ ¢ J 9LD0 f 4 )] dT

4 %_ < (a4, 43)
=iy f K [F‘(T;E)) ey E)] oLﬁ-
I M_L f K [ FOx), Feeaf)de (4t
] f:'z'f"i) R (.}f AN (4.45)

Bt~ t — o2, uo got

B0 —K (), th’tx)%M(:t)++K(:i)

(4, 45)
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Uhereo

M) = ELF(2) > (4.47)
o

K (%)= &EQ'JK [Rr, Rtar

—

&
K'(2)= 4 € S KIZZ RedT (0

‘Henco wo gut the Fokkor=Plapck cquation in the farm

P = - [iM (".Jt)-ir K (ﬁ)jﬂ]—}- (2% [Km)ﬂ

(4,50)

In this eonnoction the following obscrvatinn may be

hotode The coofficient

K00 = M) +‘- SES
Is the "averago dorivativa!

qgnfnz .diw>((?fj >(f01;? dijx S
K N - ¢ k(e 569> =Ki(0)
ﬁi, if Wwe wish to caleulato ths moean valus nf EF £1[!:))§({_?]

ft ‘have to allow for tho correlation botwoen xEt) and E; (ﬁ}

7

According to (4.51), K (x}

(4.51)

diFFﬂra\Frnm the mepan valuo
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() = ¢ < Rl am]>

Calculatod without rugard for enrrolatien botweon x(t)

f0 (t) by tha E!uantity

g [é‘mulﬁ bet_}‘OCCB)

ﬁ_,oq (4.52)

and

Similarly we can oxtond tho aboys considarations +n

SyStoms of Langovin oquations invnlving ssyoral PTOCOsses.

3= R (% Ih= R (Y
,}{P__ c FP(?{“ X b [—) E-F;;f'—‘f:é)

dofino the random pProcossos, (t},..., xp(t), Ir p

(4.53)

tho transition probability donsity, we have the Fokkor-

Llanck ogquation,
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Thus we nbscrved thou Structurs of the Fokl er-Planck oguations

] to ted
gorresponding/tho Langovin wiuation, intorprao
i .

in the Itn
Stratonovich types

1bion =~ Apnothar A “Lproach¥®

Rocontly an ovorp incranasing interest is p!id to the
modelling of systoms in torms of stochastic diffarontial aguations,
;”_Uﬂil known proecedurs is tn rfuseriba tha

a variable nf intorest
 terms of a Mapkav procoss by =

Langavin equation driven by
‘tn noisa,

A bottor justification nf tha mndolling roquiros
it the fluctuations should bo dascribed by enntinuous and
ontinuous sample paths genorataod from Markovian nnisa, In

- section, wao give the mothnd Af finding the time ovnlution

i the characteristic function of theo solution procoss, following
apty (1974).

As an illustratinn of this powarful technique,
ytain the Fokkor-Planck aquatinng for tha Ite and Strotonovich

i Wo recall that to describa a Mapkov procoss, it is
:fﬂﬁr

?iciﬂnt to obtain tho transition Probability depnsity of

%(t)
With this and the fipst donsity

t, £ s 4_t, ue havo tha
te charactorierization of tha procass X (t}

i (s) for soms s & t.

(t) at some arbitrary time

Alsn +hao

rlxtlwyFUHctinn, which is tha Fnupinr trananrm of the
on & paper by R, Vasudavan and K.,V Parthasarathy to be
itted for publication
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Probability density Furctinn, would bo sufficiont tn doseribg
tho systam. U givon below, in tho fopm of a thoorom, thao
diffarcntial oquation satisficd hy +ho transitinn probability

donsity. Theg Proofy cssontially doponds an the differantial

We give the following main thaorem
THEOREM . Lot

dXID) = £ (X)) dt- +ol BI)+dTp/e), &,;(t;-ﬁﬂ

—

ba tho stochastic difforential cguatinn , whoro K(t) is the
n=dimensional solution procoss, B(t) 4s an n=dimonsional vocknp
Wignor Procoss with covarianco moatrix
L o G A et
EldBio) @aw) |=a5 e e

f-.--*' -
'hp(t) is an n-dimensional vogtnp ooncralised Poissan Procoss

‘With rate voctor f¥ () and Jump pProbability density pa{ G{ y 2

iLat P =pr (X, t / v,s) ba tho transition probability donsity

Efgnntinn fFor the procass X(t). Thon P satisfiocs tho partial
L”ffuruntial equation

2 (P S 2 @‘?’ [#Prhz?]

“J “9d=| 910399 L) (5.3)
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Where tho convelution (¥) is dofinod by
r 1 =

< - ey e
A

(5.4)

j‘};a proof of this thoorom follous immodiatoly from the lommas

given below,

LEMMA 1, Lot M}?(E_}fj /?fs))us tho characteristic

function of the Markov procuss K(t). Assumo the follouing:

"M = Cﬁ;k_) !;(‘“(g)) is continunusly difforentiable in fg: £ é. T

f {({’1[; LLL [‘Z Frat)- Xf@} ) X(E)j]

4?(&;57() (5.5)

whore E [lg[] is bounded on T,

o ﬁb (bL} {7; % ﬁ.>) (5'.?)
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Bbis (me/ )

ngwiﬁEmﬁQFhﬂ@WS

= Ly

(5.1)
Uhere tho oxpoctation in (5.7) is ovor X (). Tha function

C I-I_) {—_:1 Y{e)) is callod tho infinitosimal genorator of

e Mackov semigroup, (Wnng 1965). Onco ¢(ﬁ;b) Yﬁ—’)) -

f’f all that is nocdad 45 dofing a stochastic systeom fully

Wo galeylate :F( L‘H J.—_.. X{é‘)) for the systom
bod by eqg. (5.1), in tho fallowing lamma 2,

The infinitosimal aenerftor #7( {T}‘,E'J ?{E})

ho systom (5.1) is givon by

; . J= s T —

E}&J }(f{—)): LA +(Y,- £ ’“31[ U @L{
", 2

~ 3 Ao 1= Mag fus))

=

LEMMA 2,

AU is the 4°P companent of ;\ (t) and Mai(ui)
c " sump.

\ 3 detailed praof,
Mg rofar to McGargy (1970) fop a @ - *vee .
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We nou consider ths sgalar Ito stochastic difforential pquation

given by

AX(E) = F(xH,0 - F+G~f“’*)f9;”3®) il
™

if P I\('XJE‘)?@QI:Q tho transition probability density of

the solution progess x{t], tho charscteristic function

_){{“ ;E_./cht_d) is given by

M}‘( U E/ o, b > Sf' P(gx;f;{ﬁjh)dg (5.9)
Using 2q.(5.6) we get

LW AXLY)
P, f-xah;*fim %E[e w)mﬂ

>a At

Now EQ.(E.Hj can be written in thn
3

incremental forem

DXIE) = X(b+ab) = X&)
=Xt At G AB(P)')LO(‘M‘) (5.10)

ﬁHEing (5.10) in (5.6) we gat

(M E/?{a; {})

;. 1 Lu {fak + & 4 BB +G(ﬂé‘)
=L L) ! x(&ﬂ
L- = ﬂé’

e hﬁ —-lc ’Fﬁv ‘Flr:(ff,};..f—}‘] G 'F":N E‘;PKXKE‘)JE-Q)



xg:+4u¢;(&aaﬁ9~%;g(gﬁganj}+j

LG

'-_5_:_=_'-_-_1_n itﬂ's thenry We have

G(XID,B) AR ? - "
B un = 6 E(snmy
” : o #""2‘ )
' o e (5.12)
obtain
b,k e > Mg, & |
(WG 2o b)= (u + ~D67u -

Now the avolution of the gharacteristice funetion is

tained by using (5.13) &n (5.6), Honece, we get the
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I

: Cb X5
Cu S (te"M{ [ty = DU (e’ (x@

(5.14)
Fﬁﬁknau that, If the Foupigs trsnafnrm of a function q(x) is
6/ u is Lux ~
ﬂ) QU‘) Jr: Cj‘/(ﬁ)&l’_:’:(%f':’f))
(5.15)

then the Fourier transforms of q'(x) and g"(x) Ara respecti-

f iy U QW) e it

s (FODPrey) <~ tu FEAOPH b
Y f:/ LU/’(_F{;’(] )> (5.16)

ﬂ- - o P,k fe )}*“ LLL?;*( El g)P/x;é}mﬁ)
- - — lE(C K’(H’I)-E’mx)(ﬁ.‘r?}

Hence, taking inverse Fouriar transform in,f?E.ia!} We get the
!
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EE%El Fokker Planck cguatiaon

s

"Z(')(;{—!?('cr,&a): “_\ (’\C F)‘]‘“—b (C P>

(5.18)

Similarly, considering the ecquation (5,8) in +ha Stratonovich

88Ns2, W= can wupito the =quivalent Itn afuation as

) = %m0 dF 4 DG(WH ) Qé,rw#-},#)dgg—
' + G de
LG OOE RIS =,

lines ue get the corresponding Fokkar

and proceeding on similarp

-Planck equatian,

Instead of % ,t) in eq.{5. 1D} Wa have the modificd

, for drift ternm AF (" W1 } L ) - D G? fk /l) E—) x'?_{iffé};é)

hnthar derivations apn exactly similar and henco Wn

get the
tinal form as

‘ k) =2 [%t (414 D6 ) 4]

7 Fi

LN [ C )L P?
ot

Thus ue have exploited the mathod of MeGarty

the Fokkar-Planck pQuations.,

—

~ (5,19)

to derive
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ith point processes as_ ipputs

In this section we procesd, with a shopt account of the
{T?ﬁlling of stochastic differential equations driven by point
ngsaas. The theory of stochastic integrals with respect to

1t processes is well developad and it follows a parallel
ach to Ito and Stratonovich inteqgrals (Snyder 1975,
flarcus 1978) .

Ileds

Realising the limitations of Ito integrals,

ane (1974) has developei a ‘unified caleculus' which is well-
uited to modalling analysia, Ve oive balow, his concept of

1anical extension and the racent generalisation of Marcus

hl, applicable to more qeperal typas of noise phsnomena

Considnr a dynamical system whoss state x(t)

sfiss the inte:_;ral equation -/i{ e

(—) =X (0) _f'{—{lfxﬁc’)c!?’-}-% Gy [X(‘C,DJZ(E .
_ ) L

at time ¢t

- r-
Oor
hd

r the equivalent differentizl %z;atinn .
| g L
D= F(xup)ydty 3 6 [xz@al z(z)
L=

Uhera  Z* (t)

—

(6.2)

are Independent and smooth noise processes

pschitzian, for example) . Mhan Zi(t} is the Brownian

on process eq.(6.2) represants the well-knoun stochastic

ferential -equation studied so far, But this model is not
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Fyaquats to dascribe certain physical phenomena and hence other

models are used as inputs fap yialding better rosults,
In order to investigate s

on Z{&) . In Ris

is repleacud by a canonical aduation, whieh is

ﬁaiid for more general continiays noise progessaes
a3 P
the Brounian motion process,

E;prnach, 29.(6.1)

y including
Yhen Z(t) happens to be the
nian motion Process, the canonical aquation is equivalent

interpreting eq.(6.1) in the Stratonovich senss

Meshane
2ains his results on the assumption that the poise

? pProcesses
- sample continuous and this

rosults in the vanishing of his
-helated integrals of ordor threa or higher.

But this
perty is not true for point processes,

Recrntly, a mors
extonsion is definad in (Marcus 1978) whieh
ieludes the point processgs as Woll as noise processes of

ral canonical

 The gen=ralised canonigal axtension is definad as follows,
Eha differential Uparatnr Ny be defined by

J>L~EG7(><)9

0= (6.3)
ra GLQ and Ié arg tho ’Em

components of Gi and x

== (Q;{;{}J_ Ml qr“{j))/ y» Whore prime deonotas
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,_i gt
B o) (v (), natoy)

'jjfé]ﬁf' D; aras dofined by

’MFH(Q(V'“* I {D (“‘“OD (6.5)

N -
i (m (x)) = a(x), (6.5)
anonical oxtension of (6.1) and (6.2) is defined in terms

u
"% = X(o) + J £{ X(x)dT

E" "/% &m-*) (ﬁ'T}m
e g S J_ SE_DL- (G, ( k’fﬁ))é{f{{-}).

m={ L=
p?lﬁst intagral in (5) is the Ito-heloted integral of
- (6.7

can also be writton as

;o Earﬂtnrs Di 2

| m—) 8)
._“‘1‘2 s @b (G(mu)(olz&))

is the canonical oxtension of that defined by Mcshane

i the sense, that if cach Zi{t} gatisfies a K.fi t
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'E_:I._n_n and is samploc-continucous, than 211 the Ito-bnleted

jrals in (6.7) with m? 2 will vanish, As an example, ue

soe that if Ii[t} arzc indapendent Brounian motion process,
then eq.( ﬁ:. Bbacomas

| R
0~ [0ty +1 3 D (G O] dt

;,[:r; %

_ &
3 Ge(e)dzit) 8D

L=y

r if the ZX&) aro Lipschitzian, all the intograls with

vanish and e9.(6.7) is =ame as (6.1). i

u - ich 2/ () PAN(D)
fﬂe noW consider tho caso in which 2 ( i :
ﬂﬁpendent point processes with constant Jjump sizies

' |

: ﬂ<42. and ﬁg) =37 v, gra the independent counting
9505, (Snyder 1975) which count the numbep- of jumps of

.o Zk(t} In this ce2se the Ito-beleted inteqrals for
}A&: not vanish., It is proved in (Meshane 1974) that

R P bt (
) (ol 22)" = (o) [ALm) d WD)

e b (5.0
4 = (;ﬂ“;;) ?;E; ‘%iﬂ (H‘T:§L;)
=

L
L i i
_C"n are the jump times of N

The concept of Lie series {Eap and Well 1970) is useful

to shouw that eq.(6.7) is well-defined. The solution of the
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difforential equation

KD < G (X(E), X0)=Xo (o

] (52, ) —) |
'I'-'I:.::? . — e )(ff_')) - X ;rj) Z % =l (X(ﬁD)
N :_;

(6.12)

lent to the point prunus drivon oﬂuatiqn

. cDe )
=X(0) +§qf(“‘-ff})f‘5?“r (eﬁi X(0)- Yfﬂd%ﬁ-”}

kS
I [;i(}t} = G4 = constant for all i, then

LX*-"— .d{@?f*‘}*%— . Hence the point canonical
r is {—— & L

0L = X(0)—+ [ (10 dc+ S | brc ol M-
oM = gy

). & °
"'-“‘Xfﬁ)“f‘f{f‘xﬁ") “C+Ef§%d1(@

=1 &8
(6.14)
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We get the important rosult that the point process

ical oxtonsion of f6.1) is itealf.

More recsnt gencralisations of this concept can be
| in Marcus (1981),
ochastic Systems Induced by External Coloursd N

"

pise¥*

. In recent years, langavin equations are frequently used

1 various branches of physics, dus to the mathematical elegance
pchastic differential squations with white noise inputs.

ery these theories represent only specific models Corres—

: ng to the Markovian limit, In the formulation of +he

t of random frequency modulation, Kube (1969) called this
arrowing limit", Further,ﬁgha Works of Horsthemke st al
1977, 1978) it was established that certain non-linear
5y subjected to external white noise exhibit a series of

tions, which are not expectad in the usual phenomenologi-

0int of vieuw. This new class of non-equilibrium phase

tions has been called noise induced phase transitions.
he White noise moddl is adequate only when the correlation

--ﬂ?ﬁ the external noise is much shorter than the characteris-

idc macroscopic time of the system. With these limitations

28 White noise model, it became natural to study the
ur of non linear systems subjected to more realistic

2d on a paper hyIH.Uasudauan and K.V.Parthasarathy to be
iitted for publication
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se. The developmant in this direction was concentratod

ig on tuo aspects (i) the inFluance of the correlation time
luctuations on the macroscopic behavigur of non-linear

Lems, and (ii) an explicit study of the approach of a peal
8 to white noise ie. when the correlation tima qt_car

ing to zero. But arguments were put Forth (Horsthemke et al,
) that the noise inducar phase transitions are not dus to
the white noise idealisation but they occur for real noise with
.rﬁipri but non-vanishing corralation time.

F With the coloursd noise represented by Ornstein-Uhlenback
36s only an approximate formula for the stationary probabi-
$ could be obtained (Horsthemke et al 1978),

| Exact analytical pesults for a special case of external
¢oloured noise ie. "dichotamous noise™ ware obtainad in

ara et al (1979),

In this section we obt2in the equation aof ths avolution
he probability density of the sclution procass by an

ly diffarent approach. UWc start with the Liouville's
tion of Van Kempen {lBTﬁ) for tha phase space distribution
function [~ (x,t), WYe oxpross the Liouville's equations in

of suitably defined oparators and connect it with tha
-%inn of evolution of probability density function with the

.ant expansion technique.
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Tha method of Finding the stationary solution is based on
the neuw apprmgnh of applying tho oparator of the Fumn(?f3+—L_oJ
defined subsequently.

Bandom Telegraph Npoiso
Ue eonsider a2 non lipeas system subjected to colouped
- noise I (t), which hastucl levnls :ﬁfél s 28 tha state spaca.
This noise is often callsd tho ‘random telegraph noisa'or ‘the

dichotomous nmisat Tha temparal evolution of thno conditiopnal

probability f%{:[i}&/;z}} y charactarising the process is

described by the master sguation

f_!: P (6) :—f(l =1 [ e (7.1)
dt| P (b & | = f) (e

uith P:t“') = P(I(E)= +5)
The stationary solution of 09.(7.1) is easily seen to be

You,
P(I,Qé /‘I“) AL {72)
If the random tolograph noise has this (7.2) as 4nitial
condition, then I(t) is = stationary process, with
EH{ I[HS =0 (%)
:r_.._'y”H——EJJ
E{I(E)IHJ)}: AR : (7.4)
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‘Hence, regarding the mean and the correolation functions, this
‘noisc is indistinguishable from the Ornstein-Uhlenbeck process.

Further it converges to thoe Gaussian white noise in the limit

. < 2
Iﬂ_}) o{)}’}"’_;)m such that % = F’-_z—: (Finite)

WUith these basic propartiss of I(t) y our interest is %o
find the equation of esvolutian of the probability density,

P (?f;ﬁr)}aj} for the system, described by the equation af the
mu ltiplicative typs

X(E)= F (XD + F(XIB) TIE) (7.0
clearly

P Jg/gru) = Pl 4t /ﬂOJIGJ—PP['J‘M“‘&JE/“JID)

(7.6)

Consider a probability flow in phasec space of an ansamble
of dynamically equivalent systoms, described by eq.(7.5), but
distinguishaed by the realisation of the fluctuating function
- I(t), 1In this phase spacs picture, there exists the density of
systams?%%(x,t) at the point x at time ¢t . Ir X1 () is
the solution of (7.5) for a particular realisation of 1(t), then

the phase-space distribution is niven by (Lax, 1966, Van Kampen

1976) :
Pl0B) = & (2~ x(0)
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#hg density f}(x,t) must satisfy a continuity eguation

2o, ) LI
SEJ —+ 5_;.” [1 f(jjt_ﬁ -0 (7.8)

with tha initial condition

Clx,t=0) = 4 (A=-2(5)) (7.9)

Van Kampen (1976) has proved that the conditional probability
density [}(ﬁi} EJ ]{3) ls obtained from averaging the phase

space density function oyer all possible realisations of I(t),
ie.

P(:’CJE/J’G) = Al 2 (7.10)

Wz assume that szch membar of the ensamble starts from
the same initial condition x(9) and hence we are not indexing
the initial value for sach realisation,

Using (7.5) in (7.8), ue get

20,0 . 5 o
. S(ﬁ = B =1 SH(—@ +3ra:)r(p)]frx;z-)} (7.11)

We introduce operators Loy end Ly defined on an arbi-

trary function 13 (x,t) by

Loy (o0 ===fm9,008)
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L; ﬁ/(ﬁ;P): *Q_é’_ LQ,{:{)I(L) (-j/('j}{—ﬂ (7.13)
L l
In terms of thesa operators, (?.1} can be Writtaen as
i;rf:(jfj£—>

By the definition of tho operators, We note that Ly is

= Loflx, b + L Blx,6) (7.14)

associated Wwith tho doterministic and Ly with the stochastic

ﬂwiutinn of the system.

(7.10)
We novw proceed to obtzin the eguation satisficd by / i

méﬁg cumulant expansion technigue. (Van Kampen 1978, Kubo 1963,

mel et al 1978). In particular we follou the arguments

advanced by - Mukamel ot al (1978),

i We introduce tho phase-spacs distribution function
I’i('x,‘t} dofined by

. E Lt

P = ¢ (b (7.15)

iﬁﬂﬁﬁ:bntiatinn with respect to t gives

B — Lot ~L gt
,%{ijﬁ&) =l Ei,E)4+e D _f_’('%&)

Hence, using (7.14) we get
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N ~ —Lgt
BE0D) 4 |, £ 00T e (L, POty o)
| AN —Lob Lot

= Lo P2l 4e Li()e FOLD

Thus we have

? (2)k)  —Leb Lok

Vit
= e Libe Flb) (7.16)
Using the interaction representation, denoted by
"‘LD{_ _ Lgé"
= € Ly(E) ¢ (7.17)

- N
= (k) P (L) (7.18)

The formal solution of (7.18) in terms of the timo ordored

— EI“F( y T; ()d {-I] | (7.19)

(L0 = U (5o 72\ E) (720)
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In (?.19},[ :‘ 1 denotas 'timc-ordering' defined by

%Ei:p;ascriptinn that one should first BXpand the exponential

601+ T e J 5 ot e,

05 (7.21)

s

fﬁﬁ%aubsaquantly, in each multiple integral reorder the operator

according to decraasing valuess of their times

f’) } ’ ‘T*f L Tnd G = rlhcff[{{ LJ(T’\)L (T‘Q

) O } {.22)

= e g M n ((_) (7.23)
ﬂﬁgg =
' SR T
";;::-;:.—_;__;. d T J de, - . ,@‘ Ty Ml By -T'h) (7.24)
¢ 9 0

Pc, . o)=L L@ Ly s

Taking the avarage over the ensemble of realisations of

s,
1(t), ue have
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P> = LU b > e o

sifce each momber of tho ensemble has the same initial condition.

155 (7.25}, Wa use the oxpansion method of Kubo (IQEE} to

i%{gsa the average of the nuolution operator in terms of the
cumulants, UWe hawve

B0 (t0)>= exp [ K]+

(7.27)
oA .-..-.. Lr;.{j
K (D) = qﬂ% Kn (L) (7.28)
ﬁﬁ{i'ﬁn(t] being the cumulants defined as
3 é? ?:{ Ty
- (7.29)
- 5 A o

Uhere ths double brackst-notation {iﬁi jﬁ;?

eumulant ordering.

indicates a

If we define tho time dorivative of the cumulant

tors in the interaction raprasantation as

(7.30)
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1@=gﬂt the equation satisfisd by P{x,tfx S

pE1%0) _ ) Pl b )+zf§@ Pl - a1)

fios

This equation simpli/ in an alagant form when we expand

the avolution operator upto tho second order tarms. The first

eumulant vanishes here and the sazcond cumulant is same as the

second moment. Hence, usina (7.27) and (7.28), (7.26) becomes

{ca (";{ g) b e H@k},(;\f 02 ))\Ic: (2, 0) (T.ﬁz)

—1 ok aLZ—
=—Llol ZLPMHE>+e <3l H8)S (7.36)
ok

Combining (7.33) and (7.34), we have
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LA EY > + Ky (6) 2xp Kall) PO
TP -
=Ly e TLPOLB F + K (D) LG,

Hence, differentiating (7.28) for n = 2, uWe have ,67 732
i._
<9]°("1 B N Lo ZpP(a,b)5+6 inTZL(&)L!{tD(ﬁz@
Lok - Eolar SR TR [
= Lo 41"(1;{*)74—6 Jetn;ﬁ LiBe € Lie 2o
ﬂ Lo (k (2] e U o
=L, P(x,E) xﬂ)ﬂdza (De  L(ge >e <pouby

E L—g TJ J'_,-_.{(T t‘)é
d <~*£ d(:{)I{F}re (; ) f;mr()>e (>

(LAM P=p(tf0) 5 £ erA,0)

__ Lo l=%)
Bl P4 :‘i ’3(71{)}& B (B C2) S i < ) ey
i o

=L, P+f

6

— (Lot
|, P i &9- e (?h()JA‘E' £ H :37; ‘3(“)*1) P4, <),

T 5 =L T-5)
@ 1.!..@‘._&'-‘--"*3 Coun~ El'ujfr :r.ﬂ-u. "ﬁ'm&_ﬂ? Mf/—ﬁ.p\t_t € FJU_H =

.}%ﬂ»ﬂ_.ﬁ- ftee ton vt L.a,_f;fl,qi" s "i«_.?/{,uﬁ;, ordi,
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‘Hence we get tho Fokker—Plansk eguation as (liEﬁLLg t?'hlj

[ N
P(_?".JH% . wjv_ %{TP{:{JH?@
A 2L ' % ~ “
13 e Jf?(_ (r+ %}_ﬁ ) (7.35)
H A o d
Tl 1 N - £ J1)Pe, )
The non-markovian charactor is cxhibitod by tha memory kernal.

3
In the uhite noiss limit A—>e0, Ylseh, 47 o2

A ¥ o
[Finite} the kernel roduces to a2 NDipac delta function and the

ffnkkﬂrnplﬂnnk equation bagomes

This is exactly the Fokker-Plangk equation, corrasponding to

the stochastic differantial nquation

dX = F(XID.0)db + Q(x10),6) d8/8,

which has to be interpretod in tho Stratonovich sonse.

This illustrates the theorem that Uhenever a stochastic
differential equation is obterinad as the white noise limit of
a real noise problem, the equation should be interproted in tha
Stratonaovich sense (Wong and Zakai, 1965),

Next, we obtain the stationary solution f;Er(x} of eq.
(7.35) by the following new approach. Ib is given by the

equation '
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| € (L)t
- = fin e o
—

™,

s (e B oy 1
wihae [P = H{—( ) (7.37)

(e.) L{=) P L3 9P
ok

o900 -« Lo

Operating both sides hy "d":’_}_h We get

PL)fcof o 2 40P

LG ) il
o= (] Q_M@) = 2 5]
J &“8,(3{) A gff':’-u 25 B
H?@_ﬁ & i ba_g_ QE,L‘{}.{\:-Q.J,_QAULX'DJ- ~ Cand W;d_g

Biwico _ Spo saar_ g
L2300 A% 55() A" g
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o {\H 30+ QA ) 80 g )~ fﬁr)z*ﬂ

ﬁ 77%)
ﬁljlf'i_ P (-’f) ]
= b,
| g
Z[“‘“frx) 4 %1‘.’_}"{"”*“% I
o) -0 AT AR
o ATy )R - 4F
¢ Jr) B
ﬂ‘g‘m}ﬂ -f—Lf-‘i)

e gty ;
AR ] A 2z e2 _ o
V() ol o e J,_‘J;}HI/A 7))~ 4§ (w?%d:bﬂb

S ARITOC) - £3a) | + Cornibart

Hence ~

"F: Pf,f- (’3")

pi

~ (3) I .5 v ) ~
= N ‘3; 2 £ 2 -exF/inl 2. Ti T © (7.38)
A9 ()~ TH) [ AT )

Thus, we recover the oxprassion derived by a different method,

kkb'tp\ cP\ama, fc?’f‘;’)
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The influence of colourcd noise in concrote applications

is worthy of mention particularly in tho study of Population
grouth and chemical reaction schemos. (Schlegl 1972, Keizer and
é@f:lg?dt Glansdorff ot al 1974) . The size W of an isolated
wulation varying with timo is ofton described by thz nonlincar
althus ocquation (Lotka 1921)

] "y

U= 3[&)_,—8rf} (7.39)

‘This is also tho oguation doscribing tha Vsrhulst model. Both

@Euua-and obtain results similor to those of Van Kampen (1976).



CHAPTER_ III

NEW RESULTS ON_FLUCTUATION DISSIPATION THEoRy™

i&:Iﬂﬁ:ndUctinn
1

In physies and unginooring, a number of probloms lead to

random difforontial equations of tho so pallad Langovin typao,

N physics, thesc oquatiaons arc cneountoro | in tho study of
‘Brounian motlon, (Mang and Uhlenboek 1945). Eyon though thare

‘had been a lot of invostigetions of Brounian motion,

it was not
until 1905 that a guantitativo thoory; making prodistions

‘Susceptible of oxperimental vorification wns put forward,
Blbort Einstoin (1905), who shaucd that the kinotic theory of

m'%@ﬁr roquired that small perticlos susponded in a fluid undop-

@0 an irrogular motion., This motion was too chaotic to bo des-

>ribed in any othor way than statistically and Einstoin obtainod
somo of tho statistigal char~cteorisation of tho motion. Thers
have been a numbor of invastigations along this lino, _
.r%kuund (1946) showed the rolation botuoen the friction cons-

tant of a Brownian particle and the Fluctuation of thao force

Beting on it. Even carlier, Nygquist (1928) provad tho rolation

3 LA P-U{MQE
botucen the thormal noisa and “mgedapeo of a rosistor, which is

Based on a paper by R.Vasudovan and K.V .Parthasarathy %o be
submitted for publication.



91

Tho importance of this thoorem has beecn widely rgpﬂgniéﬂd
in tho dovolopmont of tho statistical mechanics of irrnyersible

processas (Callen and Wolton 1961, Kubo 1957, 1966). Fluctuation
dissipation thearcms ars usad in charactorising tho fluctuations

in tho systom and to dorive thy admittance from thormal fluctua-

ﬁiqns. The random driving forco on the particle and the

frictional forece arisc out of tho random collisions of the

modia moloculos with the particlo. Since thosc foreecs arisc

out of a common source, it is natural to cXpoct some relations
‘botwaen thom. Thesc rolations =re gonarally callod fluctuation=-
dissipation thooroms,

In most of the lLangovin oquetions used to modol physical

systems, the fluctuations aro ndditive. Recantly thero has boen

Lgrgrnat dcal of intercst in systoms describod by Langovin

gquations in which the fluctuations depend multiplicatively on
‘tho systom variableos. The fact that fluctuations aro magnificd
‘or rocduced dopending on tho state of the ayatom leads to intorost-

jmg'bnhauinur, that cannot occur in the proscnco of only additive
fluctuations.

Rs deseribed carlior, uhopovoer the noisc sntors the

Langovin oquation multiplicativoly, the two approaches of Ito

and Stratonovich aro availabhlo., The Ito troatment of stochastic

jﬁiffuruntiﬂl equations aluays ignoreos corrolations and thus

iﬂggda to non physical rosults. Hence we follou Stratonovich
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thoory in tho study of suitablo Langovin squations to darive

noWw rosults on FluctuatinnuﬂiSEipatiun-thunry.

Tho plan of this chapter is as follous: Soction 2 givas
g8 short account of fluctuation-dissipation rolation of Einstoin.
Wo goneraliso tho Langevin nguation by taking the friection
coefficiont random and considor the nouw cquation in the
Stratonovich sonso. By wsing tho mothod of moments, basocd on a
genoral lau we got modificd fopm for first fluctuation dissi-
pation rolation. Wo also point aut significant contribution
rogarding tha virial thoorom. In section 3, uc consider Kubo's
form of goneraliscd Langovin-equation with an additional
multiplicative fluctuating torm. Yo present our sccond
flucbuation dissipation rosult in the Fouriorp transformod
version. Socction 4 doscribos anothor application of tho gonoral
lau doscribed in scction 2. Using this mothod now results are

—

ocbtainod for tho time ovolution of the avaorage of the L‘ and
— —
L? ’ i}> boing tho angular momentum.

In all thesc rosults, the proscription as laid down by
Stratonovich brings out inhoront charactoristics of tho

stochastic systom, which aro supprosscd in othor considerations,

e e

2. FPirst Fluctuation - Dissipation Thoorom

The Langevin equation of a froe Brownian particle in one

dimonsion is given by theo phenomonological stochastie cquation



93

b= —mTh 4 RIL) (2.1)

Whero m 1is the mass of tho partiels, moving with volocity p.
The first torm on the right hand sido is o systomatic frictional
farco, linocarly rolatad to tho particla's volocity. The socond
ﬁﬂrm is the random foreo due to tho collisions of the surround=

ﬁhg moleculas,

For 2 simple and idealised modol of tha Brownian motion,
iuhlnnhuck and Ornstein 1930, Chandrasskhar 1943, Wang and -
‘Uhlanbunk,lgﬁs,_ﬁamak:ishnan,lgﬁgﬁ,,the following condifions
aro assumed: (i) the procoss R(t) is Gaussian (1i) Its corro=
lation time is infinitoly short, ie. tho corrolation function
of R(t) has the form

LRIDRIEDLD =2,D §(t-t)

(2:2)

where £ 7> denotos tho ayorago ovoer an ensemble of roali-
sations of R{t) and (1ii) Tho Brounian motion takas place in
- tho modium in thormal cquilibrium.

Thoe first assumption is justificd for a Brownian particle
having @ mass much larger then the colliding molecules, since
the motion is a result of numerous succossive indopandant

collisions, which enables onc to appeal to central 1limit
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thoorem. The sccond assumption is also roasonable bopause tho
corrolation time botucoan succnasive impacts is short comparod
with the time scale of tho Brounizn motion.

Due to tho first tuwo assumptions tho process p(t) is
Gaussian and Markovian (Wang and Uhlenbeek 1945). Hones we
have a complote information af thao proeoss  p(t) from the
transition probability P(t;;;_— } r”*a{‘fﬂ’ from tho voloeity '%

at timo to the velocity p at time t . P( HE-“)ME-D) satisfics
the Fokker-Planck equation

=P |
‘%Tg = _ﬂ(f) P’)—}r D BJ:L (2.3)

P(FJ En,'; '90;2:'3) = é-(}j"t:") (2.4)

The fluctuating foreo and the 1iffusion constant are given by

the relation o8

= ;ETL LRIEDRIEAD) Y b,

o
Result (2,5) is given in the standard derivation of the Fokkop-

(2.5)

Planck squation. From assumption (1i1), we havo

k;__\}m P(}D}E‘ /b"i{"> 'C“QXF( ij (2.6)
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ie. the stationary solution of 09.(2.3) must coincido with the
Maxwollian distribution, This gives the Einstein rolation

betuwoen the friction and tho diffusion constants
2 i
D= RT (2.7)
YYL

Wwhere T 1s the bath temperaturc and k  is Holtzmann's
constant, Eqns. (2.5) and (2.7) give

( D (k- - 2
Y= W&TJ&RF!L-:)RW:JTEJ>“M" (2.8)
0

eq. (2.7) or (2.8) glves the reletion botueen Priction constant
ﬂfg and the fluctuations of theo random force. This is the
coneept of fluctuation-dissipation theorem. The fluctuation—
= = e
dissipation relation ocnsuros that the onoroy E;__l:ﬂqrj

the Brownian particle is cannnically distributed at cguilibrium
(57'“ @w#(*
7#

The aboveo discussion is cqually true in the caso aof the

(2.9)

Brownian motion in a potontial fiesld., (Kubo 1966, Mori 1965).

Attempts wore mado to gencraliss the Langevin equation
(2.1), to got a despor insight of tho fluctuation-dissipation
theory from a more genorel poift of vicw. In our nau attempts,
Wo take tho friction coofficiont ¥~ to be random, so that this

random forco enters tho Langovin oquation in a multiplicative



96

= 2
{

mannor. Following tho work of L ade la Paena (1980). We gsan
obtain important relations doscribing tho average propertios of
‘the stochastic systems, as particular c2sos of a goneral lau,

| Rs pointed out in tho introduction, the multiplicative noise,
éintﬂrprﬂtsd in the Stratonovich sonsc, gives risc to 2 modifi-
cation in first fluctuation-dissipation relation and the Virpial
~ theorem which is very usoful in tho kinotic theory of gasaos,
The Langevin cquation now under considoration is given by the

sat of cQuations, in phasc spoon
= = P/%
f;:_an+F(D£)+R[E) (2.10)

%E{x) being the oxtornal force and R(t) 4is Gaussian driving

‘force with mean zero and corrolation function

LZRIBRIE)>=2D & (t-t)

(2.11)

ﬁ%g friction coofficiont ﬁﬁg is also a fluctuating function

Uhich we partition as

Wf?:’ Fgg 1—-«Xf‘5)

(2.12)

IAB > =0 2 s)
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and

LA AE>>=2D 5 (t-) (2.10)

We assume that ;\ (t) and R(%) are independont,

1s basod on the cvnlution of tho probability donsity P(x,p,t}

Our analysis

for the oscillator displacomont and momentum in phaso space,

Following Stratonavich {1953), tho Fokker-Planck equation
. satisfiod by P(XyPyt )pan be writton

using eq.{ ) of chapter
.I'I %

Deonoting the right hand sidos in eq.(2.16) by Fl and F

2
raspoctively, we find th

a2t tho following corrclation functions

venish | (FUFFI) K{F), Faz) K(Fz Fﬁ':):
)

K(2EL,Fe), & g TN K(;L Fre

TJ'-C e F,‘ v P/w\, (2.15&1)
‘uhere ’:: = P a = /35}3 -‘AHL)F“?' FOOS-R () (2.15b)

The only tuo surviving

.F:(}i;EL F%L(;)
= K[ Fo =MD, (= fe pmdoOP +REOHR)
L = LA MDY P ff jf?
K By, Fox

J:{( Bs F )?{ E-)fH- Fx)-+R | E)} 1‘}?@ --A [ ) fD+ F?(W)Mt(;l

S /300 MO P RIORZBS -

corrolation functions are thao following:

(2.17)
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Using (2.16) and {2.1?}, We got the ovolution cquation for

P(x,p,t) as

P (i |
o }Ji?x g)}i[uﬁnf—k?h:)?j

-3 17 pP) +3}_ (5 P3P
(5 E)fx =
gk( ,PiE) £ QE*JF{(E [%)f:-ﬂ‘-(::{)jﬁ

(2.18)

Let F{x,p) be an intecorable, but otharwing an arhitrary
function of the phaso space varisblos, Multiplying og.(2.18)
by £(x,p) and intograting over the phasc spaca, Wa qot the

equation giving the evolution of {f f {x,p):> as follous

;f%@fer =L P pipm 2 P

%(b 30) L ]b >+D<§;f_>~f~ DLp 9f>

{2 .19)
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In (2.19)

s lot us takg Succossively f£(x
%p and  p?

sp) = Xy Py le
and get tho vQuations

%> = Leps

(2.20a)

O ’

G% Z F} = £ F(0) ‘?‘(H“F‘QF> (2.201)
411> - é—; L X ))> (2.212)
éL LoLpy = éﬁ7+4x HEDY {E-/%OC’{F?Z

ney (2.21b)

4 P"‘y =L PF>+3 (2 %’_’3@4 szf‘-%ib- (2.210)

The above Gquations arc of vital importance in characteris-

ing the ovolution of tho Stochastic system undop consideration,

Equation (2.156) can be written as equivalent Itn cquation
b= —Bo p +F(0) + Db+ RID=AOP-
boreoing e got Sk <P = LFCOKD-p) b

(2.22)
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Which is samg as aq.(E.EDb}. If the oquation (E.Tﬁh} itselr

Woro taken in the Itg senso, tho term I}}S in (2.20b0) wiln boe

absont and this is cquivalont tg suppressing the corrclation
betuean p and>\ (t) .

Considerdng the equilibrium stato
'(_2.213){}::'):9 and < [0 >= 0. Equ(2.218) gives

¢XP>:O 1o x apd p agpe uncorrelated,
83.(2.21b) gives

.EL_ = =z -_L 2
z_mélo 7 léﬁtPH)?

» Wo have from-eqns.

Using the

(2.27)

This can be ldentified as the yirpial thoorem for the system

(Goldstein 19a0) < J[F{:{))dutumines the avorage kinotie

Energy.
Newt we derive +ho importané oxtension on first fFluctua-

tion dissipation thoorom (Kubu,Ehandraackhar, 1966,1945)

Sisce x and p aro uncorrelated, F(x) and p

‘also uncorrelated and henca Zp F'{x)7 =0 ,

1§
b
3

aro

Hence eq.(2.21c) gives

D= (ﬁg - Q:EE) £ PlP © (2.28)

This is tho important posult of this section, throwing
implication of the

%Eﬁhf on thﬂfinherent correlation botwoen the Fluctuating

force
and the systom variable. We find this is tha modified form of
ol

the famous Einstein's relation, WMhon the friction coafficient
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1s assumed to be random. The cffoct of tha above correlation
is to decrcasc, €ha averaga friction constant by an am::u.lr'ﬂ:‘f‘zi].)wr
When this correlation is ignorad as in Itg's sensn, Ws get hack
tho original Einstein's polation., Using (2.28),(2.2% becomos

2D =~ Lo >

2m[fe-2%)

(2.29)

Which moans thao average kinotic onorgy is inereased, This is
thoe modification in tho virial thooram.

Coming back to ths timo=dependant casa, wo have, from
eq.(2.21b)

i ai_r;L3? = —1  /x =ihe ol =
29 2
wrenel by = Dilieebol

el R
P>

(2.30)
y

This is the gengralisaq form of tha virial theorem in the time
depandont case. In the cquilibrium state x and p wero
uncorrelatod. But now we find the difference in tha virial
theorom due to the corrclation botwesn % and P « Furthor,
there is tho modification in tho coofficient of { xp> ig.,
._L ([?JG -—FEJJ « Here also ue noto the effect of Stratonovich
iS5 _

‘approach.

Next, we hava the fluctuation dissipation thooram to the

time-dopendont case, Eq.(2.21¢c) gives
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D=L 8L P> ~LpRe0>—pTRILFS Guan

Yo find tho rosult in 2 madifisd form duo to the following
roasons:

(1) tho correlation botusen p  and Fx)

(11) the timo dopendence of éfpz:?

(iii) the friction cocfficiont is random and multiplicative and

the corrclation botw-.an ;k (t) and ths phasas space

variablo p is taken into consideration,

We conclude this scetion with the derivation of the madi-
fied form of the first fluctuation dissipation thaorom by

considering the cvolution af tho avorage enerqgy of tho classi-

cal system. Neglecting the friction and stochastic Furnms, the

avorago energy is given by the Hamiltonian #{ é “+_qu>

whero \f(f{) is the potential related to the nxtarnal force
F:{x} through

Flx) = — dv

s (2.32)

using 0g9.(2,19) with ¢ (x,p) = }{E, y Wa get
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& Lhe> =L LPVO0> RO D >

il )

+HB—R)LLE>+ D +5LL >

== (&%ﬂh ;345) A.}T}j:? -—f— _Lm using (2,31)

At equilibrium, cﬂ_ 4{‘}4Fk# — ¢y Which gives

2 ((Sa, —*Q;FTS)) / PL> (2.33)
in agreement with (2.28),

5. Second Fluctuation-Dissipation Thaopam

In the last soction, we considored ong aspoct of genera-
lising the Langovin oquation by considering tho friction
coeffieient as random. Kubo (1968) and Mori(1965) considopad
varilous gencralisations of the Brownian motion of a particle
Wwhich is not necessarily heaviecr than the particles interacting
with it. In order to most sueh roquirements they iptroducaed a
frequency dependent friction instead of a constant friction,

This i=s sguivalent to thao assumption that the frictional force

depends on thao histnry of the motion thrﬂugh an integral of the

form Lf qf’f&L—Pj)/ f}th{}j « Thay chose tha following

genaralised Langauin equation
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E
, )
b= -_&f?f-(f{-—f:'),bf&])dﬁ: FERI+ LK),
(fﬂ t:;[—a (3.1

Wheore H(t) is the randow fores and  K(+t) is the pxternal

force.

The random foreo satisfics thpo conditions

L RI>> =9 (3.2)

(C )R () >0 7k
< P 4 (3.3)
ie. R(t) is not corrolated withe velocity be&ii)J tf}?&h
If thare is no eXxternal force wa put K(t) = n « With thp

abovo assumptions we got tho volocity correlation function

from the equation P_

i'{ PLER) PUEADS> = =W DL plep ttaptylt

0
Its Fourier-Laplace transform is found to be
£

— 1wt | 2 |
VP e dee L 2 ptny

) ] 3.5)
0 L )

uhere ?FYLQ) is given by
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20
—twi -
Plwdr= _Sew ) b (3.6)

G
Tho admittance [L{[UJ) is given by

/HH{LU) — | I e (é.?}

YL )

and honeco Wwe havo

ag

| | iy -
(W) = LB b lkattye die. (3.6)
If tha equipartition lau
™ £ };l{ )= Ha T (3.9)
is assumed we can write (3.8) =5
) ;
B —twl .
f\{ (w) :JQ'T' j{ PlEy) F’fé'ﬂ‘?'@>€ ok (3.10)
&

Ve noto that (3.8) is the gensralisation of (2.7).

Kubo (1955} has also derived the relation
g tw) Seaifs i " —(wl
=z P> J RIED R (o4 e U=

0 SERYT

S i
L !.{-]% f ZREDRIEHE) e b= (3D
()
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This is the rolation botwaon tho frequency dopondent

friction and the correlation of the random forco oxprossed in

the Fourior=laplace transformed versions, This result is ofton

callad tha sccond fluctuation dissipation theorem.

The gencraliscd Langovin cguation (3.1) has been consider-
ed by many physicists, Likan Kubo, Mori (1965) also givos the
vorsions of tho fluctuation-dissipation theorems, oxpressing

the kurnai-as a continucd froction and using projoction
operator techniques. Kannan apd Bharucha=-Reid (1972) havo
obtainod the fluctuation-dissiprntion polations dircectly using
the mean sguars solution of tho goneralised Langovin cquation.,
Yo modify #he goneralisod langevin nquation by intro-
ducing the fluctuating forcu g(t) p(t). Ve apalysc the
cffects of the multiplicative fluctuations in tho contoxt of
Stratonovich theory. Wo fPind that the socand Fluctuatimﬁ—
dissipation relation is significantly difforent from that
Kubo's resultw
Tho DQE?tinn under considaration is
HE -H-;—Jrﬂg,_y) pIEDAE RIS I P,
(3.12)
L Sk
For convenience we take tho mass of the particle as unity,
R(t) is the random forco With proscribed statistics. The

fluctuating force g(t) has zoro mean and corrolation givon by
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£ FUE) 2re > :..gg,g -T'H*-b-’)

g8ssumod to bo
Tha R(t) and glt) arLfﬁnﬂﬂm“nﬂﬂnt Eg.(3.12) 15 ocquivalent to
the equationp

pr) = plts) J (J = }a(t—)aw”%u-

RIL) b g e breny di,
JrJ;f “{‘j&()\ b

Consido

(3.13)

(3.14)

ring the last inteqral in 0q9.(3.14) in Stratonovich

Sense, We uWrito the equivalont =quation in tho saonss of Tto,

Uslng 0q.(3,35) of of Chaptor II, we hava

L -
35 FED) POEYAE < T o rety gty ])jf’“")@“‘
y , ; (3.15)
Hence eq.(3.13) transforms n
8= = o) B sie-uf] pae!
E | h
~+ RIED -+ FeD p(E) (ot

Now g{t] and p(t) are indepondont.,
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Wa mako the transfmrmgﬁinn
= (S5 B e
b= F e -
(3.17)

B J gH—‘Mk
(b ( /b “_>€ 3 }"‘{E‘ﬂ):ﬁf&f’) (Is.'la}

Hence 29.(3,16) rnduc g to

_ ] g At Jor)ut
R +3(0 F et (F&%rwa$%k
- | f e de!
-+J[ﬁ%f,e9 JJ@A{]&% pr)
L '
(3.19)

Eq.(3. 19) again simplifios to
“I&HML
RiDe & ‘};(%)+J[;a”({- z—’) ,‘Dcm— @M_)
L j g.{{—”Jolf}au-

(3.20)
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From e9.(3.20), wo get,

Q Ctg) = F(h})

(3.21)
—J 1,'-.1"{"
Rlte+8) ¢ ko ITF) 7’_‘!”&”&
Fott ~f FLE") e
+JD°(¢-+£ —t)~ D8 Ftts- f“):[e BrE) db
(3.22)

/
In the last intogral, we offact a tr"nsfnrmatimn L= é‘ﬂ-&

and simplify it as

8‘[ ﬁ“i)cif]”

) ~ 7 i - J)JP”
f[whm sie-¢"y ¢ P (bt)ie,
: (3.23)
t=a

Henee eq.(3. Eiidascumn g
Rlbutl) ¢t $1EVM = Flta30) bot b

L _,_f{;?r'r)oﬂ?:

‘)“J[’ﬂ’”(f‘—kv **rfﬂt'i&"j bttt e i dt-!

EJ: 0 (3 .24)
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FTDm {3-21) ElnI'J (3.24}1 Wa g0

I,me}
RikS) Rtord) g Tt &' Wi ?fmp/m*)
_53{?}dt
j{fu [Prt-eD=F £ik-t) PPt e
H= o

The fluctuating functions R(t) and g(t) aro on cqual footing,

(3 25)

which means
LRI P 32, - Elat
Loty WS 5= g 2k (3.26)

Wo use eqns. (3.26) and tho fact that R(t) and g(t) and hance
R(t) and a function of g(t) arc independont.

ﬁueragin'g aon both Eifdgs of og. (3 25) Wo hawvo
=+

f ORI B e E FlEot)
_Ygr?:jc!‘r
S[’IS’{E* Li) D R'“[E___ Dj<}j f_))) CLL "?FH)><E fﬁ+ta>o{ﬂ,

(3.27)

e .
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From Kubo (1962) ue h”U“

<€auf:§-~{,?*J ?fE"JJ >

J

-
- Qf’l’.};? C-—-t E) g (’Q r[_f) fﬂ.m)/,?au‘ a“‘

i) (3.28)

where L ++v >  denotes tho cumulants of 5 [I'E_)
Hence using T 3 H_F) fkss ')\’-),7 < 3(&0 grf&:l)>

e ;2/ Svg E_ 11.‘3;_) y tho only surviving torms is :__,5
“—J &ﬁt_cy >
T &
o~ il:g*'f—f“_
} | Er) oLty dib,
“'P—'XF‘;_J f<<: FIED I
E,:, Eo

. efxf: J J<<’_ 9 [Eo+t) 9 (k& +&3 )>7¢,{,(- GLL

(3.29)
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Similarly to+E
s D(E-E) »
< e Eo-f &/ >; e (3.30)
Honce 09.(3.27) simplifics b
roN
Dt
AR [EDRIE+ED> € = L BlE) #[Eo+&)>
(¥
—fj[w& ) =D Ert-eD¢ Hb)kfi*-rt))}ﬁ Ab"
[_J (5057)
=D
Putting " %_ B r:ﬁ"!_—
[P~ D8] e = ofe) -
and taking Laplace Fourier transforms,
1(:){jl i b
e | ACT — 1w .
L("ﬂH) & F{w)= J( el Saeb) ol (3.33)
a

wue got

L] £ RI E) Rlta+t)> eD ‘J L[é ;:[E«ﬂ) F(hﬂ-&ﬂ

Elog

(3 ..34)
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To simplify tho R.H.S. DF{S.:N},LI:: procoad as follous:
Lot

L & Ples) Fltort)> = L)

(3.35)

Multiply both sides of eq.(3.24) by P{i“) and t"lkirg?g i
eXpectations, wo got __J‘ gffhi}r:{t'
l /a(éa) B> = L Ritetty Bl e 1 +£ﬂ>

gr‘t} (=
*‘51: BN Tt ’)]/fﬂ-w‘)ﬁfﬁo—f—t—)><€ko+ﬁ E

(l*e) £ Jb“—ﬁ)jg [Bamtl

L T8

[wle-eD =5 k-t e 2 pay Fltael),
=

0
- J o et Y £ BB F Bty di-

5%&&% < RfE4E) b(f cD S jﬂc}- 29, (8- 24)
(i e)ﬁ{/:{é-) F (b4 >~ ] ~E )< FlEe) b+ E)ydb
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Taking transforms wo got

tw | Ples) plb+t) > — <Mm>
£ o ()l e Pty Fbat) S

Hancu} j[j{w) == L ,ﬁ-:} d};_"ﬂlt‘u\) F(&Q +E)>
—  reonts B CEOIS

L"]' ~ y’.l[f.j)
( Bvin to Flte) = Ff{"m)_)

Using tho statiops rlty condition

£ F (k) ;»(h—rb >z~ LD F 6460

We have again,

(3.36)

(1

L ﬁ< F(W ;f’%ﬂ»}
. L{d Y rr&u+t)>j
%i{‘ < Eff“a)Ffi"n+&>>}

[&,w) ) = LR LR ffi Z Mﬁ)}%@a?
=

”
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o S =
=W fl{tﬂ) F L w L F ( Bo) 3’;

(3.37)

Sunte £ F(ED P (4D >
= 4 EHEQRIES

. B

from (3.3) ane (z.21)

Furtho
T :r),

L [j\p(lfﬁ— 5)4’ } f&)#(f_a’f‘fb)@u_

o P[{c,)jb{ﬁj—i-{;)}c“‘

= 5

c.-x:[E
E,
f

_¢) 4_ 4,3(55,)}(&—&# >d%

it e 1ol (5.30)
() [ bwo 1) ~ < 0] E
;!F(MJ 5 being the transform of A ( E)
Using (3.26), (3.37),(3.38) in (3.34) wo got
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f"'\,.-

| Dt SACLS 4 1= Ttk
L2 RIEDR(E+E)> 6 D=L PE)SXW) (5.3

If M (W) 5a  I#akse t5 bo L£< R[h}ﬁ?fhﬁ&))& .

Mw=T) = £ plh)> Jg VB -Fte)] e j

L (3.40)

whors }f‘(@@) = ]_“' - SEalg s

v

This is tha nou form of second fluctuation dissipation

theorom. This modificd form is attringd by considering the

M
multiplicative noisg torm in +he Stratonovich senso. IfF D = D

wo get back og.(3.11),

4« Bosults on Angular Momontum

In section 2, sparting from the gonoral law (g.2,19)
giving the time avolution of tho average value of the dypamigal
variables of a stochastic systom, we arrived at intoeresting
results on Virial thoorem and fluctuation-dissipation thoorems.
Theso rosults uwerc basc | on tho timo-ovolution of tho sccond

ordor momonts. In this soction, Wa considor rosults derived
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from the throo-dimensional aonaralisations of o0.(2.19) wa study

the behaviour of (L 2 @ L LE)- UhcrniL}ia tha angular

mamontum voctor.

Tho Langovin equation in ths cartosian component forms

arc easily givon hy

e FW 5&2_:; (= :k = ﬁé

e 2 m ) 2 e (6.1)

= = Lot MO b AR (2550 %5) 4R 1)

—T.
)

;Eg_, = ( (%n"f‘}\:—'_(u'c-}) hl.—jd FQ (3[1_, jl:lj ?F3>+E1[E
h; = = CFQ‘}' A (k))’:}—{— F:; kagjjiljnfg)+;{5[g:> (4.2)

Here j(C} PQ} }:L'{{:hzégarq tha components of tho displace-
ment ‘,?’ momentum }v and oxtornal foreg F [’?) rospeetively,

)\ [:['E:)J RL[!‘) ;@ =h2%,3)  are the components of the

indepondent fluctuating functions, which havao vanishing means

and correlations given by

CALUBDNED >= 25, Skt (5,

Z Re(b Rg,{k‘) >= 2,0y S(E-t)

(4.4)
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The equations (3.2) can bo writton in the squivalont

Itn sonsao
as follouws:

;3 = F (o, %a, w)wn RBIh+ RO (,
-Af&)ﬁ

and two similar equations,

FD P(3 jﬁ*jffﬂﬁofﬂ

(1 =1,2,3),
the Fokker-Planek oquation is g:L'u'Jr: by {:Scrnng 1973, Lax 1966)

! if 2P N .
Alen . % i Sk = pB Fﬂ'#‘i"g(bai“{iﬂ)}PJ

3 5 |
: (DL,; P)+£3P{@BG£)P
l:ff}:[ i} d
(4.6)
Uhore [:DLJ] = f‘“ -Er:g_ -EJB e
2 e 23
Dy, Dy Daa

. ) N (4.7)
and &1 DGy =Dy b, Supba Dz bk

Do kb B RS Xl =By]
Vo bb B bh Bk | tew

—
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If -{:(EI¢5 PJ) is any dynemical varinblo, the ovolution of its

averago value is given by

oliqc?’h_j_ 3/%3? 3
e *mgargﬂ>+‘§<)§'§%
L= L
3
BES
+? ><}> =D
: Ve (4.9)
i ) 4355 >f§§39“’%7
wherc EDiA,J _513' gre tho olements of the matricas in

(4.7) and (4 ,8) respoctivaly.
Taking «]C = X P,: and X, P} successively ue got

( s =
2 > =-L Lhpo+<AEY (4.10)
G‘“." j_,}i? bl i "—(-ID.E )é})p_j’,-
ﬁ_éizf’;*? = é};’j;, P>+ <HX> T (4.11)
T+ 20 =P LB
Taking JDKJE = g1(£. and subtracting (4.11) from

(4.10) we get

vttfléa(fp ~Aa P> = LR -, F;>+(b—ﬁa)<3‘;l?fﬁ';h>

(4.13)




Similarly Writing tho othor tuo ﬁmpnnunt cfuations, we get thu

—
cquation for the cvaludion of L_/\, Donoting M = "Y'X F
the torque of tho extornal forco, Wo got

fg LT>s 2> +(P-p)2 >

(4.,14)

Hence the squilibrium Average angular momentum is

ity W S 2%
<y~ Fon

thoreas, for any centrol forec, wo have the general formula

f_%; =3 = (-Fh .ﬁD E‘
(L) — _g_g_ﬂ:; e (4.16)

p i >;> decays following tho eamo law for all central forco
e
Probloms whon Bﬂ )

T
Noxt, Wwe considor the cvalution of £i‘ L? ;}, for which

Wao take
! S rEEaCE
Z‘zz: g?zF{ (% p) ”
= (o SCHE P ) ~( 2 et )

i > =
AT (3[} b=, )a}) (0, J]%=l'~’._3}’z)+(;{3 h—:i,;‘»;) (4.17)

using Lagrange's identity,
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Using 09.(%,9) and (4.12), with somo calculations, wo got

— 2, —Z
5 = Qs +B-RILE > 42 >
Fd L L

«.-.gv‘{v? L>—+Lf__>/:rh>“-{—(3 ﬂd>é"—-){&1ﬂ)

From this result uc soo theat at oQuilibrium and for wontral

forcos,

0= (4.19)

Intograting (2.17) for all cantral foreo problams, wo have

~(B,-37 )t
L}_[t_)> {L[‘-ﬂf

31})([“- £%) T
+ 4JJJ i (&)pdﬁf )

1o x ord
Thus wo havao Dbtalnmd modificd oquations fop < L .2 and

(.EZ;; valid for all timcs and at couilibrium. In aXl the
in the results duco to
areas discussed so far, we have dramatic behaviour/ = *

multiplicative noisc introducody with Stratonovich interpretation




CHAPTE 1y

 — L — -

*
STRATONOVICH THEORY_ IN STABILITY PROBLEMS

T e T e il

1. Introduction

hn accurate mathematical model of a2 dynamical systom,
often requires the coasideration of stochastic olements. The
addibive stochastic elements may represant, for instance,
maasurement errors and oxternal perturbing inputs: The multipli-
cative stochastic slements may account e.g. for parameter uncep-
tainities and for varistions of the amplificr gains, The
analysis of systems with additive noise is wsll daveloped and
is not essentially different from the analysis of corresponding
deterministic systoms. But, the presanece of multiplicative
stochastic elemonts has an essential effeet on the system proper-
ties. This is 1in particular truc for the stability behaviour,
For a beautiful account of ths stability concepts we refer to

Arnold (1974), Kozin (1969) and Williams (1976),

The organisation of the Present chapter is as follous:
In section 2,introducing the basic concepts of stability in
stochastic systems, we doscribo the stability aspects of the
Brownian motion of a simple harmonie oscillator with fluctuating
Frequencies. Sceetion 3, doals with the ensrgy envelom method of

Stratenovieh, which is a pouvarful tool for reducing the Fokker~

—— o — S e e s S e - ——

* Based on a paper by R,Vasudavan and K.U.Parthasarathy to be
submitted for publication,




Planeck equation to 3 Space With rolayant constants af motion as
coordinates, In sopption 4y Wo considar tha invariants forp non-
linear squationg op motion introduced by Lewis (13968). Giving
2 short account of Routhian Procodure, of inunstigating a dyna-
mical Problem, wo deriya tha anxiliary cquation through the
Routhian approach, Section 5, doalg With our pew results an

stability theoory in tho centoxt of Stratonovich interprotation,

2.Egﬁiuﬂtgiﬁimmy@yqHy@k@ﬁug
the state of the system to small changes in tho initial stato oy
the paramsters aof the systom. Thp trajoctorics of a stable

system that ars glposo to cach othor at g Particular time should

remain close +p oach other at all subsoguent times,

Tha stability study of tho moments of the solutions of

random differential equations was initiatad by Rosonbloom (1954) ,

ket  X(t) Be tha solution proecoss of a systoem of random

differential aquations

Definition The system is said to he stable in the mean

(;JE/&/:’TUE(JS(T{‘)J<E (2.1)

E—>=6
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—

Where L is a finits constant victor, This implins that suorpy
input with boundod mean gives risn to an output with boundad

maan,

Definition The systam is asymptotically stable ip the

maan if
s B [X)) —>o. e
L e

(We shall always take tha @quilibrium solutinn iIt} = 0 as the

solution whosa stability is baing studicd, unless otheruise

stated),
Dofinition Tho system is said hg moanp SQuaro stable if
: 0 ere _ -
'&ME/X(&) .Mb))aéc. (2.3)
e

Where C 45 a constant squarc matpix Whose elements arn finite,

Definition The system is asymptotically moan squarpe
stable if . i
Lim Elxbxin’| = o0.
Eh___-?m {E.ﬁ}

Whore 0 4is the null matrix,

Tha mean sguare. stability of a systenm With white poisg
coefficients can he studied with +ha differential cquations
satisfied by tho moments of tha solution processes, Witk this

short introduction, ug study theo stability propartios of

stochastic oscillators,
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The various aspects of tho Brownian hotion of a simple
harmonic oscillator hava hoon notosd by a numbor of invastigators,
fﬁamakrishnan 1959, Wapg and Uhlenback 1845, Van Kampen 1976,
Bourrat: : et al 1973). Oscillators With fluctuating frequenciss
can be used as a maodel in = varioty of dynamigal systoms

(Frisch 1968, Tatarski 1961) .

In recent yoars, the instability encountored in sugh -
systems has been the subjoect of study of Mest ot al {IEBDﬂ,lQBDh)

The equation undor considoration is

:)'C‘..}- 2k >0 -+ LAJ‘?—[{"I) 4 E ‘i)«j—ﬁr‘&) C:;{T})rr) ::(.z'ir’)ﬁ)

Here x(t) 1is tho oscillator displacement, ;ﬁ 1s the dissipativs
parametor. F(x), G(x,x) ars non-linsar potential functions.

2.
flt), W g5 (t) ape fluctuating functions with the following
statisties

£(E) =0 (2.6)
'fJP)f;HJj : lﬁiug[k-b{) (Qﬂ

Whara the bar denctos the average over an ensemble of rpali-

sation of f(t),
Taking

bt ) ol o HRGE {atas
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T L (B)), uavave AALYD=0 wien & >

denoting the aVarage ovor an ocnsombhla of reflisationns of u(t}.

The cumulants Dfrﬁﬂ{t] ard given by
LLPE) Pl wYRY) = 7¢ T‘ 0(t~b) -3l b, o)

Similar statistics hold for (3 () also. Tha fluctuating
forces aroc taken to bo indapandant.

Concontrating an the linoar stochastic oscillators,
(satting the non lincar functions Fix), G(x,x) in {(2.5) ogual
to zero). e write 29.(2.5) as t4o sot of coupled first ordorp

differential gguations

c= P
Hows sy (N + 7Dt + FLE) (.10

The equation of oyglution for the distribution P(x,p,t} is

given by

'a P(:r b

AL teangqery oned (2,.11)
1-} =R S iﬁ; "
fl_ T}:;jtﬁ S F> ( i :{)hf-I}g!jiiéégimhjkéﬁzé]

The moment stability propertiss arpo studlad by the
solution of P(x,p,t) as tnh}ca;. The average oscillator dis-

Placement and momentum are found to be identieal with those of

3



; £2474

an osclllator with constant froguoney JE‘D. The mean displaca-

mont and momentum arc stable irrpspoctive of the magnitude of

the froguency flumtuatiﬂns_Fﬂ{t}.

Tho scecond momcnts ars affucted by the frogueney fluctua-

tions. When tho frowuency fluctuations are too large, the

b e o TR s
socond momonts < :\\r ) P r"”_'}> and 43“%) P“—}>
aro unstable, Tho cpitical velua blh ;2 \u"q_ﬂ 5-|p aratas
stablp from unstable bohaviour. If :D /_{__ 2__)\ fl"b

then astj+%?¢é one obtains stoady state values

7 2 S— ~u £ 4_3“:&') }3’( E‘) J=5
(P >=VLLXhHy = Dbk . (2.12)
T Ne=Dy

The steady state sccond momonts arc pon zero in the presence of

f(t) in (2.5). 1If I)z > _A,}?;_ s the sacond moments grou

that
exponentially in time. It may bo noted © the highor ordor

cumulants I>Tﬁj h:;,z do not appoar in tho rosults.

The moment stability rosults on linear oscillator uere
discussed basad on the closcd sots of transport cquations for
the oscillator integor moments., It is not possiblo, to obtain
such closed sct of pguations for the #en-lincer oscillator.

In such cases, Wo got an infinite hierarchy of moment cquatlons.
The truncating procedurc is not feassible and it bucuﬁcs

nocessary to introduct othor approximation schemes,
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Usually wo construet an apriroXimato roduced avolution
oquation for a singlc variahlo of tha systoem explicitly and
obtain the moments of tho chosen veriable from this oxact
solution. Generally we introduce as now variablas 8 spt of
"constants of motion' corresponding to tho unporturbed problem,
Tho Wwoll-known constants of motion of tha systems arc cnorgy
angular momentum, action varisble apd cecentricity., Even tho
'initial conditions' provido = general and thooretically usofyl

kind of constwnts (Lax 1966) , Basod on thesa lines, uwo have

the onergy cnvelope mothod dascribed in the next saction,

......

9+ Energy Envolope Method of Stratonovich

Stratonovich (1963) constructad a single variable
equation for an oscillator with constant Frequency driven by a
random force. The procedurc is hased upon describing the
oscillator in terms of displacement x(t) and enargy E(t),nn the

assumption that for small dﬁmpinggx ; tha averaege snargy

b ——

envelope E(t) wvaries much more slowly than x(t) .

We consider the equation
XA+ e~ £(2) = JE S(E) (3.1)

Where {;_ is & small parameter, g'{t} is tha Pluctusting
—

force with

a0

S LB B de o /k (3.2)

¢




The energy

r .r:.j_ - -
b X e (3.3)

Whers f“?
. - = 7 ;
W= J“hw (3.4)
Ay
is the 'potential Functlﬂn'
From (3,3),
B (f}t—ﬁ— (3.5)
Hence multiplying (3.1) hy x, and using EQ.(S.E), Wo get
¥ 2 P
Ez=GX +y@1£(k) (3.6)

Thus, Wwe can urite the coupled aguations

:;1 = Jg[gfi_ i rv[_)j {ﬁ.?)

£ =~ e [E-u iR o,

The Fokker-Planck squation for tha probability

\ﬂ/ (%,E,t) is given by

W (3E,B = [\ﬁz(EwrvT) Pl
T

T&e (L:—-LL— 4. )ﬂ,{_cé? lié-*u)ﬂ(.z-.ei

density
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W (2 ER dade - P (¢ pjk)c{xoq_/;

The probability distribution H(Y,E,t] can bao Writton as the
product

W {3 ED = Wa (B WED 1

Whero Ué(x,tftj is the conditional Probability density of x —
at time t given that its ensrgy onvelope is E, and W(E,t) ie
the probability density that the energy aenvelope is E at time
t & If E}is small, the tnorgy E  is consarved during a large
number of periods and the timo spant at x  is inversaly

proportional tg tha veloecity Q, (ic.)

Wa (2, E) O(m) @l BY v/ ks

The prohability density UW(x,E,t) can be uritten as
W (>, E b = W(E,B (3.12)
2 ¢ E) E-utx)

Wherao

CF’ <E> = _"‘f m  (3.19)

the region of intsgratiun R is ogiven by W (x) . F .
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Substituting (3.12) into (3.9) and intograting uith
respoct to X, We get the Fekkor-Planck cguation for the

single variablao E as

OW(Eb) - ( /) _ )ﬂ) Lok DT (¢EW
Sl OE i{‘{_ A 2 DE> 'l[i:_fﬁ .14)

Whopo

CF (E) - jﬁﬁ) cJ;{_ ! (I3.15)

Using this method, Wost ot al appivad at the follawing
Fokker-Planck squation for 2g9.(2.10) oXprossed in torms of the

variables x and E

2 W(EB) = gU 2N~ DL)@_@W(%Q

(3.1
+ 5 ADE-}MU H wiEb)]

The stundy state solution of eq.(3.16) is oasily found
and all momonts < = """-’/\,E;g converge for Wi?\' to a

value proportional to ’”—]3""‘], and diverge to () for m ) n s

Whanever

e Ay £, 2 4\ﬂo -
M + | L (3.17)
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This tachnique is us:d for tha stochastie non-lipcar
problems, for which tho reador is roforrod to Wnst ot al (1080p).
As stated earlior, Wo devise suitahlg procoduros to

reduce Fokker=Planck oguatinns £n0 a spacc Wwhose coordinatos aro
somo 'rolovant' constants of motion, ecorresponding to the
unporturbed problem. The preblom of finding oxact invariants

for timo-dependont Hamiltanian systoms is rocziving the attontion
of many investigators in rucont yoarpa. This ganaral mothod is
useful in tho problem of stochostio differontial cquations.

Hence we give a short account of this thoory in tho next section.
4. lﬂnggiﬁ_t for Monlinoar quﬁtlﬂHSIuiﬂkg; an

Exact invariants for timo-dapondont systems arz of vital
importance in the study af theoir physical proportins. The
simplest example is tho time dopendent harmonice oscillator,

described by the ecquation
o ] L
A+ Wil A = (4.1)

whero w(t) 1is a fFunction of t. Lowis (1968) has shoun that
tho guantity

[fﬁ N R PC() —) (4.2)

is an exact 1nuariant for thy timo-depondent ocsecillator. Hare

fﬁ (t) 4s a function introduced in tho discussion which
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satisfies thn anxiliarpy nquﬂtiqn
[::--}- W -ffJ E "7“‘* (4.3)
f;ﬁ

The invariant I was uscd by Lowis and Rissenfeld(1969)
te construct an oXact quantum thoory of the timo dopandent
pscillator. Tho same invariant was usod by Khandokar and
Lawande (1979) who darivad an oxprossion for the Foymman propa-
ga&tor in torms of tho cigen functions of I,

Sevoral difforent apnroaches hava boon mado in finding
the invariants. The fundamontal and tho most fruitful approach
is lLutzky's version of Nocthor's theorom (1978), which we out-
line bolows

A symmctry transformation for a systom is doscribed by the

group oporator

X= (RO S +(6Hh &= (40)

If (4.5) is a symmetry transformation for a system with tho
Lagrangian [ : s then the combination of torms
66D

Jl_
g_%; ) +(’? 'F 5) +§ L. (4.5)
is a total time derivative of a function "]C(ﬁ(:)

iin.)ii}f_**'] ( F _“)L“i“”—-—'

o
-

(4.6)

!

d

T
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If (4.4) is satisfied, thon tho Following is an inyariant for

the system

I:(Ef—”) gi:"—g-}—’?"f: (4.7)

For uxamplu_gg = cunstant,ﬁ):{], f = 0 corrospond to tho conser-—
vation of onargy.

Lutzky (1878) deorivod the invariant (4.2}, by applying

Nocther's thoorem to tha Lagrangian
7 By s e
P & 5§ P (t) T (4.8)

A rocent generalisation of the Lowis systom ((4.1), (4.2),(4.3))

is dus to Ray and Roid (1979), given by

bt

T Ry = 3(_?351
- X
~i::‘+ UJL{E—) )= ‘HF‘){IE} (4.10)

and frz-ji'

e -
e qé_;({;x_ S f") _Pj—f’l-r‘*‘;) d”)]—}‘j? (“‘])“}A? (4.11)

Wa note that o9s.(4.9) and (4.10) are coupled.

(4.9)

This brief reviow of pairs of nonlinear equations giving

riso to invariants is important for our study. In particular,
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8 physical meaning to the origin of tho invariant, duc to
Eliezor and Gray (1976) is of immonsa valuo,

Now aq, (4.1) describos tho motion of a particle in a
straight line. It is instructive %0 considor it as the
projoctiaon of & tuo-dimonsionzl motion of a particles under an
attraction to tho samo contre of forcc and according to tho same

law of forco.

The equation governing the anxiliary motion is given by

= > 3 —
3 i ol ff)ry =g (4.12)

p— =
Whore (x,y} arc the cartosizn components of e Using polar

coordinatos (f?{-}} We have tho following equations of motion,

corrosponding to the radial and transverso dipocctions

i

%ﬂfé%+jlf:C? (4.13)
%GEIE(P“G): a (4.14)
On integration, (4.14) gives

—fj'?"ﬁ — ’E\, (4.15)

L]
here h is the angular momentum constant. Eliminating @
between (4,13) and (4.15) w- g2t Lowis oquation (4.3) far fn

Herce, in this casc the invariant I of (4.1) is -EL“_ y for,
2=
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using

A< *fﬁc;Wﬁ 0, X = r%g
B = 4a}_ .Iﬂ e i "z,
Il-iﬁ—?%*+0.*FU]

3
- J—[ 22 Tp f (r C-IEIB'_PFLA;\E}B)F‘"PYGM{%?
- il

2, o ko

(4.16)

Ve study tho proportize of a simplec harmonic motion in
8 straight linc by considering it as the projoction of tho
uniform motion in a gircla of which the straight lino is a dia—~
moter. The approach dascribad above is just a gonoralisation
under genoral laws of force.

We give an altornativs mothod of deriving oq.(4,3) by
Routh's procodure which is explainad bolow (Coldstein 1980},
Routh's Procodups

Wo consider a dynamical systom with N dogross of freadom,
It is well known that tho Lagrangian is a function of g and a

and can be writton as
| L: L_..( CDJ e ./II/,M) ?'/f ?N} (&_1?}

¢
9,9 being the generaliscd coaordinato and velocity.
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Similarly tho Hamiltonian is a function of the gonera-
L]
liscd coordinates g and momanta }3 Uhore F}Z_Bi? 1a
2%
= [ O ry .
H = H r _if‘l + ' .II/' ll-\(' Pf ¥ o, }-JM__;I E:) (&115)

The advantages of tho Hamiltonian may bo combined uith the
Lagrangian procedur® by a mothod dovised by Reouth. In the
Routhian procedurs, We have a2 math:motical transformation from

-

the 9, 9 basis to g , p basis only with respoct to somo of

the coordinatas,

If
L=L (ET/J W %5,-{1}{%; ' }Nﬁﬁ '(]/,.g_j},-fﬂ' ?k»\a (4.19)

We exXpress the Routhian as a function of tho arguments given

bolow

r© - e f

. U, T : i G
R=R (Vi e, Vs~ v, b bebosr IV) (o)
The Routhlan and ths Lagrannian aroc connocted by the relation

& :
RH 5 P o (4.21)
— e !

-2 Ryl

The Routhian behavos liku thoe Hamiltonisn with raspoct to

C%T'"‘Iﬁg and like the Lagrangian with rospect to
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This means

L= 052y A (4a22)

) 94%. L 3 R S (4.23)

In particular iff}}, Ib?ﬂ are Cyclic, Fﬁ}, 55 }ﬂé
are constants. Hence tho Routhian iy a function of only the non-
cyclic cooardinatecs and their goencralised veloeitios. The
Lagranges cguation® for the non cyelic coordinatos can bo solved
without any regard for tho behaviour of the cyclic coordinatos.

Tho prime examplo whoro Routh's procedure may be usofully
applied is in the examination of devistlons from stoady motions
and stability uf such deviations, Standard exemples aroc tho
steady motion of 2 particle in 2 eircular orbit about a centre
of foree, uniform procession of a heavy top. In such problems
tha stoady motion is charactorised by all of the noncyclie
coordinatos being constant, For a dotailed study ue refor to

GColdstoin (1980).

Considoring our problom 0q.(4.12) tho Lagrangian is
qivon by

P2 | ol
L_:%i[f’urflg%+.uJﬁﬂFf] (4.24)
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doscribed in (f?ﬂ ) system. Eg.{4.21) givos tho Routhian

R= R(P fi, B, B)=—L + 19{38, (4.25)

Uheoro [,)E} - %_ﬁi:_ _f:. a — ’ﬁu
Hence 7 A “ﬁj_-
_iL—F+f _?_bu F]“!-__L
5 i
- -y %iiii — Lké‘*ﬁg é :l:f;
E_f) e = . fies

The cgquation of motion is given by, using o9. (4.23)
o[( RN _ 2R
A=\ o d f

Mo get

s r L .{32—
LW P = TR
2
in 2greemont with eq.(4.3) . fﬁ,
We concluds this section by noting that the above discussions

can be extended to systems where the efuation takes the form

2y
L Gepif) ek +GB) =0 (4.26)
At ™ AL

The invariant I, corresponding to this. equation is
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P ) s L
I;”: i - +(f*?»: _T.firj)ia:x}::(;? JP(E)&I%). Caam)

where (3 is apy sclution of

o =
LP tp) df 1@ pe Blex o3 Prw@. (s.20)
-2 oLt pF3 .
We use some of thess concapts in our further study in the next

section,
5. 8tability Analysis in Tuo Dimension al Motion

In the previous ssctions, we had occasions to study the
stability problems discussed in terms of certain constants of

motion,

Mow the stability propertiss of the simple harmonic

oscillator equation

iw(_uf“;g)x:o

(5.1)
and these of corresponding randam differantial squation
LY .. .
J+ (Wi + A B(8)§=0, (,
ﬁ) {EJ) being a flucsuating force
gre closely inter connected. Gikhman . ) and

Skorokod (1971) have discussed this problem When ﬁ? (&) is

the wWwhits noisg.
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Phs described in section 4, equations (4.1) and (4.3) are
connacted in the Lewis system, We modify eq.(4.3) as a random
afuation by various methods. O0One such method is to introduce

tha random force Ff(t) sec-E} on the right hand sides of Eqid.@
ie

2
ot LR il
Epwf = B4 fi) Lach -
fﬁj ) (5.3)
This is, exaectly ths pguation of motion of a particle subjected
o
to a central FGrDﬂ{AJ#T’ touards the origin and the fluctuating
force f(t) sec{ in the radial direction. The invariant used

in the derivation is the angular momentum
24 )
Pop = A (5.4)

Furthaer this is the envslope of the motion of a particle whose

, A % axis
projection on the

Yo w=x = f16) (5.5)

This is easily verified by applying the transformation X = fhﬂﬂg'
in eq.(5.5).

Similarly we consider
i [ = \
A F2AE)A F o A= £1) (5.6)

using :L:,f;QJ§SQ} s the above equation hecomes
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Cosp(F-F 8+ RFHIT)
—Aub(2pb +Fp +ARLE) =fIE)

(Where k = Edk[t}, with i Fﬁ

— (R k.
TJE-E} . ﬁﬁi— © ﬂ (5.8)

AN A-ean fmﬁvw~ ﬁq-ﬂjV
this egquation becomes %_

L —ajk® A

e h

A 2 n -+ G
P+ A PFW = o8 % LR AcBs.g
]C._‘i
In (5.9) the noisa f(t) enters multiplicatively.
Hence, We are interested in the stability problem of such
gquations and the interpretations in the context of Ito and
Stratsnovich theory. Further wa study the stability of the

first and sscond momants of fz and p Whers p = fﬁ

The above esquation (5.9) can be made more complicated by
taking the damping coefficient k(t) and tha fluctuating

frequency W alsoc as random,

Lot A ()= R+ FUE) uhosre £ (D= s

and the fluctuating function is delta correlated,
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L FIHFECE)>= 2D, 0(-t) (5.10)
Similarly LA;LZE_) T:'tfliiﬂ—'“:féf) whers
s i S kol

A}/‘;[ﬁ)ﬁﬁft_-’f;} _—QD;SH'—EJ) (5.11)
and f‘{'t:} has zaro meap and

¢ B £y = A -t)

(5.12)

Mow eq.(5.9) can be uritten as a pair of coupled

F=p L
== (o +F() b (AT PR)F
| o pd 0 | EfED
B :

3 ) ‘f”%:géf) (5.15}
TD Cas B

Using Stratonovich approagh:  we pan write the Fokker

Planck equation for P ( fp,p,t], and obtain transport equations
for moments to discuss moment stability. But it is axtremely

difficult to solve such diffarential equations. Hence ue adopt
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certain appru:imatiuna and modifications in our discussions ¢

¢

A F1old!
follow. We takauJ to be deterministic and replace <£i Eaj'f Eleie=>

by LFD* & (similar to egq.(3.29) of Chapter II1),

Than e9.(5.13) becomes

= aifibis=Raele £
R +5
F (5.14)

Tn solve this squation slasgantly, we consider the deterministic
solution given by

. { rJ\“f: — D;e)é_

L
EQ: i‘:‘ € (5.15)
W
g T
y J h . = (5%16)
= ey

Jf):_ i_ X ("’—?}g— -’410) o : (5.17)
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We find that the average values of f3 and p~—> 0 as t —

if ku;>202 « Hence the region of stability is modified when
k(t) is made random,

The stapility of higher order moments can be similarly

discussed with eq.(5.14).




CHAPTER -V

—a

STUDY, OF STOCHASTIC EQUATIONS AND PATH INTEGRALS®

R i o ccp— . i Al i

1. Introduction

In this Chaptor we study somo approximato mothnds of
solutions of stochastic difforential oquatinnss The portur=
bation approach is a vary pouorful tochninue, whonwver the
random parametric variations arpe small, comparcd with the dotop-
ministic parametric values. Onc main advantagn of this
technigue is that 1t transforms tandom crnofficiont problems intna
those with random inputs., Bosidas this mothod thore are vapinus
techniques for finding approximato snlutinne of tha averaged
random . ° r~- equations lik: truncataod hicrarchy mothods,cumu-

lant and corrolatinn discard mrthods ate. We fnllow tho mothad

of smoothing approximation - (Frisch lgﬁﬂjﬁgg%narn with
Stratonovich mothod. flsn the path intagral moethnds ars oxtonsi-
vely usud for roprosenting the solutionsof Fokker-Planek oquatinns
(Haken 1976) wun consider some of those aspucts in this ehapter.

We nrganiss this chapter as follows! In scetinn 29 uwe }
consider a particular staghastic eqQuation oftun made usa nf inﬂ**%gwf
the dicloctric propartios of a fluctuating fluid (Hazur,lg?ﬁ).

In Section 3, we give the method of writing doun the path
intcgral solution of the Fokkor~Planck oguatinn .aexaxRak

s This is based upon the genceral mothod of transfop=-
m&tinﬁ}piUun y Ito leED), Hascgawa (1980), 1In section 4, wa
define’ thu now path integral basing the notion nf RFouthian
“employad in classieal machnniecs,

- — e -—

* Bascd on a papor by R.Vasudoyan and K.V,Parthasarathy, to bo
submitted for publicatinp,
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2. Stretonovich thuory ant =x thing approximation method

s mmia

approXimate
In this scction, wc consider somao/mothods of solutions of

stochastic difforential agquations. Ono of tho most pouwerful
approximation techniquos is tho poerturbation approach. Pertur-
bation mothods can bo applied whonover tha random paromeotric
variations are small compared with tho dotorministic peramotric
values and these cover a class of problems of physiecal importanco.

Wo consider the basic veoctor difforontial equation

L(ROE] X = TO,b30 @

vhare Lfﬁfal,t) is an n X n squaroc matrix, whosc olements
arc random difforentiel npormtnrs,.gdit] rcpresonts a voctor
random coefficient procoss, ?ftj is an n-dimensional random
input process. The initial conditinns essnciatod with thao
vector solution procoss _;Tt) aro assumed to be givaon.

Wo oxpross tho cnofficicnt procoss A(t) in tha form

B (D) = S+, At )+EA, 1)+

whereo é: is a small parametor. Th2 loading term Ei; (t) is

(2.,2)

doterministic and it ropresents tho unporturbad part. The
p—c

coofficiaents hltt), ﬁzft) aro stochastic processaes, glving

the porturbed part.

[Hﬁﬂf;uc can also put tha difforeontial oporator in the form

L (A6 = Loloaltnh 46, L)€ Lotbteg, o

..




Wwhers Ly 1s ths corresponding detorministic operator. The
difforontial oporators Llﬁt), int], «s»e 2ro in anneral fun-
ctions of ﬂl(t}, ﬁzft) s v'a and hohce thoy aroc stochastic

oporators. Heonce 0q.(2.1) can bo writton as

Lo+ €1L1O+ ELa1) 4 RO
(&0

In the perturbation schemo, wo sesk a splution of tho 0q.(2.4)

(2.4)

in the form
K(E) = Ko () & X([E) +£ 50 ()4

04 .
Using A2.5) in eq.(2.4), and aquating eoofficionts nf the samo

(2.5)

order of é;f s Wo got tho systom of differential cguntions

LoD Xo ) = YL
Lo (B) i) s —441E) XdB)

e T

(2.6)

Lol X1y = ~[LIR (LI XID+ kst

dtl;z
Thus we get a2 systom of random differential mguations uith

random inputs only and thoso inputs, are knoun by solving eq.

(2.6) succuessively.- Thus theo perturbation techniquoc transforms

random coefficient probleme into cquatinns with randnm inputs.
Whon theo difforontial oporator Lnft) is linoar with

constant cogfficionts, its inverso operatnr, Ln-l(t) is well
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dofincd, Then uWwa can uritu the solution of cq.(2.6) in tho form

Nolty =95 (8, N

XOL[E‘)"‘ =Ly r@ ZLL[QXE)-LL;) (2.7)
=152y ee

Hence the solution prunass oqg. (2.5) can be written as

X(0) = [T- € 51 D1 1) -EL B Fheluy
Ly 1) =] U EITE) b

We find that in eq.(2.8) tho right hand sido is an oxplicit
function of tho coeffleiont process A(t) and the input process
¥(t). Wo can only ovaluata tho first fou torms, since tha
evaluation of highor order torms is oxtromoly difficult.

But, we can obtain tha couations satisfiod by the momants.
Theso moment equations ofton throu somo light on the solution
process. For a detailed discussion, We refor the reador to the
papers by Keller (1964), fidomian Hi‘ijﬂﬂ} 8 ik Rl

Tho memeat cquation for thJL?DlUtiﬂﬁ process 1s given by,
taking avorages as both sides nof eq.(2.8). Nssuming statistieal
independenece of ;f;) apd F?;). Up got

<i7:4;D>HGL;}ZL;>{‘;—Q>-‘ : i l !

Y= LR

2 e = ey
e Ll Lol 2 LS dNey, )

whera 415 j; stands for the mathematical sxpactdtion,
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£q.(2.9) glves

LXo7 = XOHELTLLIL Xo> + 00E?)
=LX> +E LTl > xs +oe)

(2.10)
with some simplificationg

bLotest o et (ar 3 ins - Ly L)
T o(eD | L0 = £57

Using eq,(2.10) in (2.8) ws got,

(2,11)

Eq.(E.ll} givos the mean equation upto

the scpond nrdor torms.
Similarly

UC can obtain the dotdrministie cQuatinns nf highar-

ordur moments. We can find, for instanca the enrrolation

functinon (Adomian 1970)

LXEDX (8> = § 1+ 7k 13 EDJLLttyE))
—~ ALY L, (tfa);} LX) IBp—+0 (6)

(2.12)

This equation, togethor with tha knowlodge of the mean solution,

gives the correolation function diroctly,

Recantly, stochastic differontial aperator ogquatinns, both

lincar and nonlincar, arg rocaiving the attention of many invose

tigatdrs (Adomian and Vasudayan 1981), Thay havo dovelopead

convergent mothods of Successiva approximations fop tho
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Having deseribnd the perturbation method, we considor the

stochastic diffnrcntial cquaticn of a particllar class given by

)( H*) <H*) (2.17)

Hare x(t) is 2 random process. K(t) is somc exXternal forco,

%
L is 2 stnchastic differcntial oporator of the form
3
L_ . 16! :} ._*_fh{anf-’ﬁj :ffpj
5 95 (2.18)
where ?f;}qﬁ are constants and e} (t) is a stationary random
progess with meoan zoro and given stochastic proportics,
Sec
ﬁﬂﬂhL;tnnhﬂstlﬂ difforontizl oguations occur in thao study§%
tho polarisation of tho dicloctric propertios of a fluctuating
£lyid (Mazur 197s).

Tho formel auluti:m af nq. (2 A7) is

e SR m_).— G K(E)  (2.19)
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-_%:1 % = -*-I
3

whero L is thoe inversa of L and G = y tho random

Grecn funiction operator of tho problem, Averaging (2.19) ue get

X
<x(tD- G k(t), G is the propangator for the averagaed

pcquation
Defining
P (2.20)
Uo got
) = K[ E) (2.21)
with Ll
X | —|
b 3 7~ (2.22)
Wg definc an operator j{7 as follopus
. I '
| = Z% -’t-’fff{””‘f} = Ly (2.23)
so that t— [ |
.
L — LQC[—-ﬁ"Ln{)—LU(["{‘G’d‘X‘) 45
with _J
67“ :LD “{2.25)
But, on the other hand
E‘___ buss ('I"*"EG 8‘!5‘7‘{&')) (2 .26)

ap that

ety o -}
/\E ‘,> iT Ly & (17 G,,Y) 7 (2.27)
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Uaing (2.23), (2.27) in (2.22) un got

-] ~
HIP <Y 04T Gay) ><(+T]Gm{-}} S (2.28)
From (2.28) we find that tho macroscopic oporator ﬁfj is given
in terms of the corrolation functions of y(t). If qﬁ; is
callod as the bare kinctic coofficiont andI N YU the
rendom kinotic eoeffigiont, thon 7(5—%7( gives tha macros-

coofficiont

gopic 'renormalisad' kinotic . For, from 0g9.(2.21) and

(2.,23) wo got the avorage of X as givon by

‘M;‘;V < (G DL FARIE) @29

’}/ is still an operatnr, Which turns nut &0 ba A gonvolution

opoerator in timna, oq 42 .29) can bo put in thu Form

- .
E(X“:“)> - -r—--\(ﬁ i X fé‘}? —-—f—;* '/é—__ {-I).Z“'(fpf);"{!—(‘z ,30)
P 7, '+RH-§

Wo will solve for thoe moment of tha solution procoss of

09.(2.17) by Stratonovich thaory and tho smonthing approximation
technique (Adomian 1970, Kellsr 1964) .

Woe give a short note on tho smoothing approximatinn

mothod belouw, Closely following Frisch (1968)

Ua egnnsider the equation

6 0
Lol iy Cuns oley e = (f T (;7t l*I?l’ (2.31)

I:||L
ljhe projoction operator P Eﬂtiﬁfiég tho conditinns
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O

PG =G P, PLP=0, Ps=y.
Plo=Llof , Prto) =~fro).

(2 .32)

Thao rm‘:a_n ficld 1s given by P'}V e A’L[/ ?

(2.33)

and the fluctuating fiold is given by |
Jm}, = GP—P) v (2.34)
Applying P and (1-P) tn 09.(2.31) wo got
Py= Pafp—PG Ly
o i%nfi;'- G Pla
= ¢°L — G PLCI=AYF
= 6}~ G:“Plﬂcr“f
Henco

Py= 2> =G~ GoPLSY

(2.,35)

Kls

" (=D =y = 0=PEY - (D6
= G (1P~ G}
= 6% -6y =G (=L, [zf-w
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[ire) 5@£~J$U4UL£J4+L%EL
o [+07 (—p) Ly ) S = - G (t—P) L, L7

o~ dy = [H& (-py L) -5 f"f'—v'em il
f G (‘.ﬁP)Lj LM/

Eliminating thﬁ Fluctuatinm fiold betwoon (2,35) and
(2.36) wo got

2= G GGPL—rJ\“f’
-:G%J,v-f-(; % ~PL ZF Gr("r )L)féﬁ

h{
& th “LC*\’DM L7 (z,.s'r}
where = § T\
Y, ) L
M= giI ;f S|

is callod tho mass operator. Reteining tho first twe torms in

8q.(2.37) uo get tho smoothing approximation,
B':IL-LZ 11?} as

(Lolp) X(E) = RIE) whons

Ug gconsidor

=0 4
P.
PMMM m;’wNﬂanay LI“TW‘L>
Zx> = PX= 13 k- G LS x e
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Similarly

) x= %= = L3 (P [+ 67]
Honce
(it L)X = S () Ly L%

yoros, s .
gyl 3 g =Py %7
’1"\:!

(2.39)

-~ MLX7
This givos
— ~ |
4:_)( p g th} K — Ly [ L ML X>
&rO+LEPH”74X>?£;ui
B LX> = (\+L:JPL;M) 5K
=< ) 8 _
*:_Z (““Lu po”) e €
N<o (2 .40)

~) o) .
= LTK by dhitob7 LK
Whts Mzl LA m)
This is tho cquation for giving the muan undor smnnthing approxi-

matlon. For our equation

CetYe T 9) Xt = KIE)
L';J 2 +s qiven by the Gru’%;\'?gunﬁ)inn
&bt e it (2.41)
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Hence
-
R
- j K)ot o “

i
H-Pf; Lb' &Jt) % PH i =9 ‘;Lf?) _
+< f AL 03(}.")-]( ,,uh“g‘jll—)( Yol kw)ﬁﬂ?r

@)
fg‘frh—}?Qk’FL e S-etemno loanm o A j%ﬁbflrﬁdcin
E

| r—-”ﬂ’a flec i_u; | ’a’afH” ay T

hf J d,{—ll Z jd“m) J(E' )}-d{" o lequ

o
EJ” {tq
i

:"1{1 JTETﬁrB (Ef' & {) jfnr“h -, [E;” Ef ({'?a(F-AE)
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rx_ 1(11 'I
boig [ (.. [porgdm JHm™
Ao o~ = l__ f()( g) ‘é[g)"'g'
{ENYS Lf“_ e = Jh_xjnﬂ-t‘) ]
s E-t kIE) At
KX> =) e kithdt ._}_T;rjf ye Cortind
We cqnsidﬂr tho equation {2, 18) in tha stpatonnvich scn3a. Tho
equiualgnt 1+n pquation,
dazﬁ_-:.:@xﬂ“ﬂ\/x—k;';‘?ﬂ"‘x”“”%) 75
' 2 ﬂg

A=

gﬂjﬂhuing tho wvarianco paramobor.
A6

Ayvoraging, WO get

fifix

AT — % £ L_X?—}-r"a’ Xy
y L 0 Dan I S ) fﬁf-KfH

- -—(mfo*_q_; )L x>+ KIE)

Honceoe
_ = I
2R 5= g (e ZE )t
’Y’n({:‘*{'—'f) ({"-U)
S crely d

5 %“"‘“)(—&f_,t (b))t >f<rtt

WLx s M &"*"”“H 5
- 7= ‘S K{H)au"-—i*""l’ = { s {J)Cu' (2 Ewh
0
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‘Comparing (2.41) and (2.,44) wa suu the difforonce nf a factor
4 in the sceond toom.

From (2 28), Wy havo

,.\J\’ .Y 43 )/,-‘ "?Dj/’<’] J?oj—-l.-

2— -~ i l ]
'-:v-T AﬂGGB?;’MWI’MMJ

28l =0
[Eee!)

.
== i [J Aj/bjy(tj)>0”"
o b B .
S e I dbmdrilt

Henece from eq. (2.29}, wa have tho squation satisfied by <ﬁ j}

-1’

givan by

[ _
248> fr, 2 <X KIE ()

Wwhoso solution is samz as (2.44),

Similarly we considor tho smonthing apnroximation snlution o

evaluato (! (t ) "{ti)> E

Wz hava, indicating thu quantity ovaluntaod at time ¢ as{
KB =il b= M T Z;r ¥ )(‘;QZ)

£T1 ,f__rﬂﬂﬂﬂhﬁ_“\ T
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Himcae

LXE) X [En> 2

T o
) 4740“*) XolE) > E‘< Xo( B Ly Ly Xou )2
HSE Rt T i :
e
28 FralE :»zt_? Xol B) D>+ L GTL R, L lr s>

TERL LT St Bt ol

Sinco (J.) 0, wa havn Lﬂqwga?"
4}:&);(( = 4xaf&)><ufm>+<x /@W)
l—f:- L_[ Xra

+ higher order torms. ’ ‘Lf Pl < ED__HL LU L Yo Xoft f)'>

Wo ean ovaluate the respective avoragos anpd aftor

simplification, wa get

LXE) x[t) > = £ xo ('f'—)'xa{'h)} G40
v Lo L)y
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5. Fath Integral in Lengevin €quation

T

In this section ue nive 2 method of finding the path
integral solution of the Fokker=-Planck mquations,

-

Wo consider the Langevin nquation

kff)t:41[XJ#-@fﬂ)imfF) (3.1)

Whenever an equation of this type is oncountored we may bp

interested in a transformation to a nou variabla X= ?’f?g)

Mhen wa effect such a transformation by the usual procedures
of caleulus eq9.(3.1) is transformod into another eguation, Only
when W(t) is smooth tho solutions of this new equation arg
the transforms into jﬁd coordinate of the solutions of the
original equation. But when W(%t) 1is the white noise and the

integrel is an Ito intogral, this is not nacessarily thg case.

Following Ito (19850) and Van Kampon (1980), we give the
transformation rule in the Ito and Stratonévich prescriptions.

Undor the transformation
— i) I
A= Cf(x) {(5.2)

Eq.(3.1) in the Stratonovich sonse transforms to

X(E)= FOX)+ §(R)w(t)
X)) = £004'(%)

(z3.3)
Whera

(3.4)
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G(X)= G(x)q'x)

(3.5)

This can bse easily chocked with tho Fokker-Planck

equation, The Fokker=F lapnck aquation (with variance parametep

unity) f~v [Fa pd-F /H_b{) y

(3.6)

P N e | )
o= EUL(-F:F P +L (’(a:)a GO P

Under the transformation {3.2], b

SF_ < Xrmais T—~‘-—=~r‘;u)a SEDP (s
:;kT >k

2Ccomos

—— —_—

Where f and G are conncectod with 7 and G by the

relations (3.4) and (3.8). Also F(-j:} {_) QF!{':{): Pf’xjé_)

Henee, if x(t) is definad by (3.1) in the Stratonovich sonsa,

tho process 3{ (t) = {? Cr(£)) 28 %he oho dofined by (3.3)

in the Stratanovich sango,

However, if we transform tho Fokker-Planck equation

corresponding to Ito's sanso, under oq.(2.2) wg got
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. o
" B O0=F00 P L6003 00
' (3.9)
~ )= 2 e '
G (X)= G4 (x) (3.10)

Which arc diffoerent from (3.4) and (3.5). Henece, 1f x(t) is
defined by (3.1) in tho Ito's scnsa x(t) 1is defiped by (3.3)
in the Ito's sonsc with (3,9) and (3.10) instead of (3.4) and
(3.5). With thasc new transformation formulac, we can fraaly
transform the variables in the Ito schemeo.

We use this transformation schame to aXpross the path
integral solution for the physieal processos With additive and
multiplicative fluctuations. (Dashon 1978, Feynman and Hibbs
1965, Flatta ot al 1979),

Uhen eg.(3.1) is intorproted in the Stratonavich sense,

We offect 2 transformation ’ﬁtj X
EQ*:: Q}(T}Q) = _}d‘?ﬁ;) (3.11)
] ; /
so that C[uj[ X} g /TB f(){): = & f)O o
16 (30}

/s X Few) o "
:(i)“(%o 60X)= " en=!

G(X)

Henco

(3.12)
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and the oguation transforms to

XY= F O +wip i

ie. an eguation with additivun fluctuations,

The Fokkow=Planck oquation corrosponding to (3,13) is

b 52 AT BB I
2 P, == =[Zm)Prg,p +32 P(G)s.20
1= | 2% Az

Following Haken {19?5}. (314} can bo roplacod by tha integral

afQuation

B, b+at) =
| " -

af?ST{{—'-)rpj—_L_ e "Tiab(vfﬂ‘-@ ?(fj
JiToaE ) pap T A EEp
e “_Mba;a‘raT’J} P(T,E)

T (3.15)

uith tho conditions n{—ff.-i‘ |, 4o £ CLES )

This integral corroctly gives tha ouolution of tha probability
density in the time intepval (l'}%_l_,ﬂ{:—) b‘j“ 0{&&—)

Considering an arbitrary timo intorval N At y We itorate

along a path N +fimas in incroments of x corrasponding to
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Al

time stops A t . In the limit JHQr;é ij; of tho itoratod
Nisk=k

form of eq.(3.15), we obtain a Functional inteqral over the
trajoctories. Hence thg path intogral solution fop the proha=-

bility density P(x,t) 1s givan by

' [ J-E“ ; = e 20
Plybe ﬁ?r(:«?) expy xj;tym-ﬁ)__,:m—-,y%}?f 9

(3.16)

vhare jsﬂ(iﬁi) indicates intogration over a path and the
gxponontial is tho Probability donsity to have a continuous path

x (t) in the Spaca undor considoration.

Similarly, wa considor 09,(3.1) in the Ito sansa and

offect the transformation (r9,3.11), uc get

iy e <o) NI W P e = )
jF’(T}{ ) c% (%) - M ( '?E;EEG;i

£ (X -4 g'1x)
A (X
G{%) —j 1)

Honce the equation transforms to

Y AL) = e e WE)

(3.17)
(z.18)

(3.19)
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an equation similar to (3.13). Honge the path intogral solution

.

for P{;]t} can bo uwritten similars to 0q.(3.15) and Eq.(ﬁ.lﬁ}.

Hence, using the transformations for the tuwe approachas
Wa are able to write tho path intogral solution of the probabi-

lity donsity in tho transformed variabla.

4« Bouthian Path Integral

Tho concoept of an intagral oyer a function space was
introduced by Norbert Wisnor (1923) in his study of Brownian
motion. 1In his now formulation of non-rolativistic gquantum
mechanics, Feynman (1948) doscribod the propagator of
Schrodinger wave function by an intogral ovnr tho spage of all
possible trajoctories-of tha syastom. Ramakrishnan (195511955],
used the idea of the Probability of'trajectorios' in invosti-
gating the intograls assnciatad with = plass of random functions.
The idoa of path intograls was also used by Chandrasokhar (1943)
in random walk problems. Kac (1951,;959] uas the first to give
8 systomatic proof for path intugrals as solutions of partial

difforential equatiops,

Feynman's formulation of non-relativistic quantum
mechanics had the follpwing featuras,
(1) 1t concentrated on tho propagator of the Schroding:r wave
function rather than on the wave function ltself, exprassing

the propagator as an intogral ovor all possiblo paths from
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one given point to rnothar.
(i1) It uas directly conncetor with thao Lagrangian rather thanp

the Hamiltonian classienl dynamics.

Garrad (1966) closely follownd Feynman's approach ratain-
ing the first featurs, Instoad of the second featurs, ho used
the deseription of tha clessical system in topms of canonical
variables, Ap advantaogs of his Hemiltonian path intogral formu-
lation is that thore is no naod to introduce special pnormali-
sation constants to maintain tho upitarity of thn propagator.,

In the convarsion from tha Fovaman's Approach to the Hamiltsopian
formulation, the normalisation constants appoar automatically,

In classical mechanics (Gsldstnin IBBD), Routh's proce-
dure af solving a problem is woll known, when soma of tha
generalisod cﬂurdinntﬁﬂ of a dynamigal syst&m aro cvclié. g
usa the picturac of the Routhisn in the most gonoral farm,
combining tha features of both th- Lagranaian and tho Hamiltn-
nian formulations. Thao path intcqaral definad through the

Routhian has many advantages, which arn discussed belou,

The Foynman Method
Feynman gave tho folloving recipe for calculating tho
s )
propagator K ( Cl/}?/)f‘ Y
Lot ljﬁu roprosent the sot of continuous, pioceuise

dif forentiable functions qft), sitisfying the conditions
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[ f H
;‘J = = o X !
/ ‘r '1") . I/ , y .ﬂ'r i"ﬁ H": HE s
The trajoctory of a partiesls moving from §' ta @ in the time
interwval ¢! 14 reprosentaed by a funetion i“n/l « The
action intogral ia g:l.'l..i'z:'n by

f%U?fEﬂ qu&b_jihw“)*_v(%ﬂgjdkf (4,1)

The propagator is qivan hy
iy g g1t [ Oy p o
K(VSY, ERE)=[exp fami gy |,
g /

Whore the intogration is oyar a sat of Functinn5~JQJ %
ficcording to Hamilton's principls 1q1classical e
mechanics, we calculato the agtion for allfuhlch satisfy the
given boundary conditions, to soloet that unigua path for which
g\ﬁ =0« . That is thoe glass of variod paths in complotely
disn@rﬁﬂdat the end of this procodure, But in Foynman's

approach of guantum mechanics, wo intougrate over all concoi-

vable motions including thoso which arn classically disgarded.

e define the function space integral:as follows, Lot
/ ]
us considor 2 sequonco of partitions of the interval t‘éLtéﬁt

The NER partition is given by tho (N+1) points f i
Eo=tlab ¢k <. b, <, =t For the WM parsition



. N ' 3 3. e i s
:_iL}n inT — L B %J'” A:}Nfﬁmﬂiqitﬁfh

We consider the piccowisg linaar funection Which has thao valuae

Xx. at ) "
J tJ

(ic.) tyu_): Cl/jﬁ Ki_u-—l% ) L ("-c}'—l'
AWAUE p J &g

.‘;___ ] é Zhé &A// (4.3)

/
7 .
Wharo %0":? and v =Y .
In the nth appraximotion to tho Funetional intogral
We integrate aver all such functions with a normalisation
constant so that KN approachos a unitary kerpal,

Thus,

K(%" 9, t-t)

3o

Ny

e

V-0 ZJ:Q ﬁ;h'h =1 N

(4,4)
Hamiltonian formulation
Let Y. . Ty (colloctively denotod by @) bo the
coordinates, fﬂ p— F%J (donoted by P)  bo the canonieal

momenta of a system, Wa givo the fallowing preseription for

calculating { (Gi) ég }'rt ) 28 intogral over tho set of
paths. The N approximation is defined as before by the
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!
(N® 1) points, b= t'<H <. Lbyy Lbnztn

The function 0 (&) is approximated by a piscowisn

linoar function going From f}{ lg;ﬂq} in the intnrual.é; Eﬁﬁ}-

21

The function P(t), in tho samo intorval, approximatod

by a constant P(}( « For any functional F[@UT)J Pf LLJ:]

of the phase=-space trajectory tho intogral ovar paths is dofined

JFEQ{«{_*)) Pm)] d SEPit)

JF LQ ”d "p%"wcj?{ it D'PPN’

N—‘m

(4,5)

It is not necessary to introduce zny normalisation Factnr

Following this dofinition, the propagator k:{l%?” ﬁ? %J1 f{)

is given by

K(@”G})k“f) |
H@kc‘m jpm fuow)} S+ < [prH]

(4.6)
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Wwhero {::: I|-i | J_ILM |
g Pd§ = f 2> %"_’5 0y ) =
(-1 ,UJ R (4.7)
As an illustration, we consida~ £ha casa whan is a roctan-
gular and Hamiltonian @ t
I |
= 4: I fy{) (4.8)
The action intecgral for such 2 path is
Nl ;
g \J U::ﬁ/hir?ﬂ}‘_—-vmfl”&
L
Er
-Z£P0L By~ )““fl ~& D_JWUC
6’ EJ_" (4.9)
Putting
Q%“q@ d=1 A&J‘:t}"‘t}"*
and using 2
b4y, — P At Hx.it b _wAY, +m(ﬂ7/d)L
d i— = ( :ﬁi) 2 BE
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and
e g
__J ; E]/—@?QP ["fh 37] L&b& lr(a 11)
59.04.9) bocdnas EA’
T- 5 [2% (b~ 1 43128 [ud !
HHUJ::*L J_‘W( J 4t “D = ,33-1 ﬁ{a 12)
u’“;‘ T

J

Integrating with rospect to rﬂf A y using (4.11), the abovs

may be simplified as
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Lar

N : 2 3 ]@? j
N e Cx b ATy i 4,{) A{j
J=7 -*tkh)hg X b= -J

X’Gﬁ}x; o . 4“%;_;
P
< ( =N Meepanc syl o
“J2) \E5E pATCICE Ry 1 i

Thus the Nth order approximations to the functional integqral

are the seme in the twuo mathods,
Bouthian formulation

e present our new approach of path integral defined in

terms of the Routhian of the system.

As dafined earlier in Chapter IV, the Routhian R 1is

related to the lLagrangian L by

R=~) ‘ﬂ-i /L’vj/v’ (4.14)
Y=

Hence

R [ 0t B B e m )
]aafifé}

The action integral I =

\det
: ;Z}?@ R(Cz’ # }"}J%H Z’“)}

(4.18)
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Ue consider the system with tha Lagrangian

(.= J—+ — Vi Fﬁ) -

S (4.16)

= =
8 before. The propagator in terms of the Routhian R is given

_ _ 8 A
jﬁiPlﬁva(pA < hf R rﬁiﬂo{ é}?((r)ol Pﬂ*)
oL ;..-’ (4.17)
whers (\':‘:.‘J” f'” ¥
| w@ﬁ_f(g )y By ) A -
le F_J U,-; (4.18)

]DL j 2 oml g 3= N gd
Jme-z o (bt y-Snlb-) s (yae
= c)“f B T T Geha 2
eq.(4.17) bacomes F r EJ“"
:
aw{zb&(%& e L_d” ;)+§ 5 (Yo )
f =A+) ‘id"’

A 3, 3,
J:z!g‘u'@u'}d% c%j,;w‘}',/]’;" d}g-
o

(4,19)
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As before, this may belﬂimplifiad as

g AT {[G;%f %jj}/hi}’*%}}i i @d)j

€

Intagra{:ihg W.r.t, "’{)}jz} y using (4,11) ws get this

simpllfvlng to

[
r <5 ,\.“Il_ v ol
/ L = (A = (47
“”ﬂ ) 7'&7 fh_i ("ZFGL‘)HD_%AEQ Té—j)j
ld"! ‘LJ w5 (vl I \

- Fi
A

UYL T
S
2 vin l/\ cﬂju QQJT; % - ;L' ) r:‘; LY, i'\,c‘wmm:ﬁqaﬁm
A4 Nt ,
oty Corraspendis g (N2, 55 By
Heree we gobeq, foi1) 7 Buin fbe Fyuig

7? Com N[ AT A ) )
J=r (52) by ) £ S TR YA

(4.20)

in agreement with eq.(4.2).
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The underlying idea in the connection between the
Lagrangian and the Routhian is based upon the partial Lagendre
transformation , (Courant and Hilbert 1953). \hen we express
the p?th integral in the Hamiltonian formulation, we eliminate

]
q’ %% from the Lagrangian using the equations
{

)J = ..3_."}: =l 2. jﬂ.._). Further the integration 1is to
S AN
be carrled out with respect %o 1}{.- (L&P_!) }j : bﬁ?

But whan we follow the Routhian procedure, only 4

af Cbl,g are to be eliminated, While evaluating the funct-
ional integral, we integrates with respect to all '?J,& and

h 1Pr2_}-‘- PA( A momentum coordinates) only. Hence the
number of times of integration is less. This is due to the
underlying Legendre %ransformation. Thero has boan a lot of
investigation on Hamiltonian path intograls in phasc aspace
(Gaprrod 1966), whoso equivalanco to thz Lagrangian path intogral
has been shown only in Cartesian ennrdinates. But, the Hamil-
tonian path integral, on any cnordinato basis would yisld a L
dasired prn?ag?tﬂr i1f an apnropriato effective Hamiltonian Is
chosen., {éi;;f?nﬂmatﬁ ot a2l 1979}, Following this schome

the Routhian path integral can always ba usaod aoffectively.



COMBINANTS AND BELL POLYNOMTALsS™

1. Introduction

In the previous chaptors, wo studic! soma aspects of
stochastic difforontial oquations drivon by econtinuous and point
Procossos, To motivato tho study of rapndom aquations driven by
point processps, we consider the Llangavin doseription of tho

motion of a particle immosod in a fluid, givan by the sgquation

miE :___rhn,f +,Q!£) (5 5
dp <y

as doscribod by oq,.(2.]) of Chaptor III, 1If it is supposad that
the time of contact during a callision is very short, tho result-
ing force may be assumod to be impulsive, 1In this casa, the
voloeity will not bo difforontinhle and 09.(1.1) must be replacod
by

L .__';rh’f};g{%_}_ )b
(1.2)
whero %!E)JE}&B may be supposcd to be a compound Polssonn
ProcesSe Juch point procossos apo widoMy used in tho areas 1likns
optical communications, biomedicina and insuranea, For an

eXxeellent survey of Point processes the reador is refarred to

- —— e —— —

* Based on the paper by R.Vasudevan, P,R,Vittal and K. V.Partha=
sarathy to be submitted fop publiecation,
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the dY®icle by Ramakrishnan (1953).

R point procoss oan be studiod with the praoporties
reclating to a spocifiod intorval af the stato spaea. Such a
procoss is also callad a "Counting Procoss', New tochniquos
have boon dovelopad for a proper formulation of such problems
in torms of cortain point Furctisns known as cumulant functions
and produect densities. Tho product densitios introduced by
Ramakrishnan (1950,1959) provide a eomploto statistical
characterisation of the point procassos. Further, they enjoy
2 unique privileged position sipes thoy have direct probabilis-
tic interprotation and honea satisfy clagant difforential or
integral equatians,

Rocently, tho now methrnd of combinants was introduced
by Kauffmann and Gyulassy (1978), in thair study of thooretical
models for created boson multiplicitios, It is tho purpnsa of
this chaptor to study the relationship botweon tho combinants
and other clustor corrclation Functiuns. Such rolations are
furthar brought to light throuah the role of Bell polynomials,

introduced by Bell whon asscssing soma combinatorial probloms
- i bl
(Riordon, 1958, Comtot, 1974), Heas ue Pt '%Phd“ﬁj1;*f?;ﬁl 1996
At R, j nilfouald i K Oftromen, ond bploddy ;
In section 2, we give a briof acenunt af product
densitios. 3cetion 3 introducos the basie devolopmants of
combinants, Starting with different types of goenorating

functions, the relatinns botwoon the combinants, and other

cluster correlation functicns arc astablished in soction 4,
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In section 5, we obtain thi roprosantation of the distpibution
of doubly stochastic processcs in torms of combinants. As an
application of tha mathod of crmbinants in brapehing phennmena,
sectinn 6 describes the agvaluatinn ~f the moan and tho varianco
of a population at any required gonaration. Soetion 7 givos a
short account of Bell polyniminls, nocassary for future appli-
cations, In section B, wo give altornative pronfs for samo of
the results of socctions 3 and 4, using Boll polynomials in an
clegant manncr. This chapter econeludaos with an application of

Bell polynomials to compnunrd Poisson procoss in socction 9.
2, Product Daonsitic

The product donsitics intpnduced by Ramakrishnan (1950,
1959) arc powerful tonls £+ donl with stnchastic pnint
procosses. This relates ta tho distributinn of a diserato
numbar Df_pntitljs in Eﬁ?tanHUS infinity of statos, We fotlow [Fe
Lot bos Ll '-'g } Acdael— don Lo Ay R O easih utim

Thae central quantity «Ff intorest in this situation is
dN(t), the number of ontitios securring in the continuous
interval t and t+dt, Wo sssume that the probability that
there is ono ontity botucon t anrd t+dt is propnrtional to

dt, while the probability that thore is more than ono ontity

is of order smaller than dt. Hanea tho mean number in dt is

EJd veB[= £ (b ok -
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While
E[{4vBT | = fode

Whore 511L£i) is called tho product density of the first

(2.2)

ordor. WWo soce that all tho momonts of tha stochastic variablo

dnit) are equal to tho probability that tho stachastie

variablo assumes tho valua 1, Peoduct densitios of higher

order oXpress all the correlatinns af tho strchastic variahle

dN(t) existing at various timos.
E [dmiedd )= £ (b ddb,

E“[ol NE) 4Nr%3_)..;Awgf~@ ol
s j%v (yﬁ;bia" t?E)C”Ty~- Aty »

wvhoro {%1_ arc the higher sordor product donsitios. The mean

number of entitics in a givaen range of the paramoter ty ds

&
= [ Nea)-wiay] = Ef vy di= (2,00 dr
oo

& (2.5)

given by “t

Similarly, the mcan squarc numbor of the ontities in tho range

aatoash: obf: ok 18
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=[] N ~Nfﬂ>§j=ffg[d NI dNCENdt db,

A LA
= (o ak +§ £ (Fo b )b dE,
A i (2.6)

Equatian (Z.E) brings nut th. singular bahaviour of tho randnm
variablos dh"/h) GINH;] Whon tl and +

Ramakrishnan (1950) has provcd

2 crnalasco,

8 very usaful rosult fnr tho

calculatinn of tha ¥y momont of the numbor of ontitics in

the dosirod ranga. It runs as

E[-{ NSRS Fr_f
5 ,er A>- f_:&
bz ¢, ,. dk, . --~jo!i:a L A

o o (2.7)

g

where E;g, donotes the numbar of various conflusncos of (p=s)
infinitesimal intervals, tho maximum ordor of any confluonce
being (r-s). The (14 coefficionts being indopendeont of the
f funetions ean be derived from the following formula

(Ramakrishnan, 1950), uhen the total numbor nf ontitios is N,
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(2.8)

R
X
Nh::gz C/g VON=L) - CNwHQ
=

a set of rolations valid for N = 1,2,

An altornativa axprossinn for those cnofficionts obtainod
by Kuznotsnv, Stratonovich and Tikhonov (1965) is just tho samo

cquation (2.B) in annthar closod form

e Ly
C:% /f: OL ( H—I)J (2.9)
;
L_. Glhj ¥ w =
It can bo proved lqn, thet (Vasudo IJAN, 19659)

m AR
B @ >»fz -1

(2.10)

These numbers aro alsc eallod Stirling numbers of sccond kind.

Rocently, in counting statistics of photons cobtained iIn
phnto clectric omissinns, apart from the moments and cumulants
of tho distribution, annthor quantity called the gombinants were
introduced by Kauffman and Byulassy (1979).

Uhenover particlos arc produced and if one is interested

in P(n), the probability that n particlos are producod,it

was found wsaful to charactorise tho gonoral FTR\) in terms of
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its doviation from thc Pnisson. If tho first combinant alono
oxists, which is alsn the mean, tha process is Poisson., In the
casg of Brown and Twiss cXporiment, [IQEQ,IBST} whore tho
nature of photon bunching comos into play, we cannnt oxXooct the
olectron emission to be a Prnisson and henco wao oxpeoct thae nthar
combinants to be differont from zorn, It is the purpose of this
Chapter to relate thoso combinants to the known product density
functions f and the clustor Functions 9 . It is interesting
to sco that tho eombinants play a similar role as the probabi-
lity d%ﬁ?ributiuns thamsclves. In ealeculating the moments we
sum YL over the probability distributions, while in calculat-
ing tho cumulants we sum ith’ over the combinants. Much of
this analysis is found in tho book (Kuznotsnv, Stratonovich and
Tikhonov, 1965), though explicit atteontion has nnt beon draun

to the combinants.
3. Cembinants

It is useful to charactorisc tho genoral F?fﬁ) in torms
of 1its deviatians from the Poissaon, Traditionally, this is
done by considering deviations from the usual mamonts of
possossed in tho Poisson caso., The probability generating

function for the Poisson distributinon is given by

(3.1)

X m,
FEX = 3 A PO = exp (A7
N=a
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Ue sce thatagﬂ?_Fq>Ois e first dogroe polynomial, If houwaver,

Wo omploy highor dogqroes, we can urito
2 AR
-&3 FCA) = fogf Plo) +£—f C (RO (3.2)

which meoans,

= AR
oy = exp[ Zecbafnl
~i
The oxpansion cocfficicnts C[ ' )3 C02) 0 thus complotoly
charactoriso PUN) Evary C) 1s found in torms of P[m}.&

upto that ordor and {?(4?)/%_ETL oXpressiblo in torms of tho

irs roha rating ) Pflg ' Ei:ég)-
first ;ﬁz probability ti _gFEr : P(u J F?fﬁj
Plo) )

This stands in stark contrast +q 'ordinary! probability
coefficicents such as momonts and cumulants, cach nf which
involves every single ona of the infinito numbor of Pfhi) in its
definition. It should be howovor noted that tha condition
P(OB:?CJ is pogossary to tho existeonce of the c(k)

dofinod as abovo.

It thore aro PJL indopondontly distributad variablas,
cach distributed according to F%lp*}) s Which has gonerating
function Fﬁf()o, Wo find that the coofficients C(k) of

N (= & Ni) satisfy tho additive proporty
L
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(AR = = Gy (ﬁ);/ﬁ:,i)z_}

(z.4)

It is easy to ses from (3.2) that,

P(o) = exp (-3 2(4) 5

/
The expression for C(k)'s in terms of (’hggg%);ig ara gilven

gz follouws:

N D (

1y = _LTr7 3.6a)
cit) P o)

C(2) = P(x) ( “Pr1) = (3.6b)

Pro) pla) 5
— Pen) = (3.6c)
) =tts - [0 (B 4 )

Thase are derived in & systematic way in saction B Py -ries
Ve i -

Elmllarly f%ﬁn)#g are giu“n in terms of C(k)'s as

Bln)= Z f (C‘W))/é o 5(%7_3’?”)

M,=6 = fe =

(z.7)
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Which may bo noted to bo a convnluted form of the multiple
Poisson distribution with ceambinants C(k) as tho "mgans!

Kauffmann and Fyulasqy (1978) . Fram tho relation,

@L}”EU&)/\ [+ P){+f:~:._)\+~--

(3.8)
B
uheore P% — .1}(( r;'j) (3.9)
ve obtain ] Fﬁ/ Tﬁg (3.10)

CHQ) e

This gan be chocked with cquation (3.6),

Now, 1t 1s our purposc to rolats the combinants with the

product densitios and thoe clustor functions.,

4. Cluster correlation functions:

T . | ST A

Lot us take tho moment conorating function of F?ﬁi) as

L s
QM(E) = z R . (4.1)
Y=

Thon it has beon shown in (Kuznotsov, Stratonovieh and Tikhonow,

1965) that

Bis iD= Z(‘E D § j% () xg)d-

(4.2)
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S 7N
Uhorse jg_z‘ [’:,I:[_}Dfl}' - 1,%) ara tha 5 ordar product depnsi-

ties dafined carlior (Ramakrishnan 1950 or 1959)., It can be

easily shown that P(D} s the probability that thero is na antity

in the region R is given by

o0 R
PR{E’): Z%jjﬂ (20 5 A) ol ot Al
A=o

(4.3)

Lo

R K

D )
Rlso, the probability {}:‘(ﬂ,i of n antitics in R is givon

by Kuznetsov, Stratonovich and Tikhonav (1965) as

9 A el
Pp\f“):iqg{jjf ﬁﬁ i A

TH—I

the points (gft;}fz} it :)f"/]) boing the continunus set of points
in the region [

The factordal moment gono rating function m(&})

is givoen by I‘Dpl"ll:ing t by/&\ (J_f_ld.:"r) in @m{&_) i.o0,

GB]C (€ ) Z j /-]C ﬁl i )d:{ s (4.5)
FL R



Thercforo

= [Qem(’"ﬂﬁﬁ

| [
= < Cn=n >
5 (4.8)

= { -fqﬁh (B ste, - Sta dedityns ol doge
R R

The actual moments are related to tho factordl moments as glven

by (2.7).

e AR

—

The cumulant genorating funection is given by

) 1 A
L Z" (e =0
= 2
/g:i /:.% (4.7)

whare

R R A
8;5 ars the cluster functions of nrdur*\and relating te the

point process giving risc to Pfﬂ](KuznutSﬂu, Stratonovich and
Tikhonov, 1965). Tho cluster Functions 315 [.‘)’J s § 5 Q{,g)
3

doscribe the irredueible clustors (which cannot be split into

functions of any of its arguments) rolating to tho nccurrenco
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of the point process in tho ‘rogion R,

; K Tha cumulants Ky of tha P(n} Process aro obtainod from

Céfilib) by %he rolation,

o :
Rimp i (Qc_p_(” (4.9)
Q(.“Yﬂ ab b= 0.
using (4.7), (4.9) can bs Uritton as

w o) ' A
€ —
#:)1r:: P :gi L )

N 12 (4.10)

- Ti
lit?. kr}l :‘_,gz Cx‘: —C‘/E} | (4.11)
=1

Thus the cumulants of tho process are related to the integrals
of the cluster functions of ﬂrdan\Fuor thoe region B, by the
same coefficients as the moments of the distribution ara relatod
to the product donsitios. Comparo results (4.11) and (273,

It is woll known that tho nrdinary moments of an} aro tho
avoragos équfi> summed over the probabilities P(n) . Have

Wo an analogous situation in thu cass of cumulants? The ansuar
is 'yes' and the combinants play the samoc role as tho probabi-
lities P(n) in calculating tho cumulants., Wg display

ed
z ,Qh/ﬁ[ﬁ) = k;l,
=]/

(4.12)
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just as

)
Zr}’L P('}’T) :/&/‘Z/ C’}/Jtmnmmnt> (4.13)
N=p

To sec this, lot us stapt from the moment generating function

(4.1)
XF " kL

1B et T - Bl —
E_

Replacing £ by +' and using (3.3) ue got

Qi) = 3 £ P00

ren | oo (4.14)

:Q.XFZC[/k)(U )

P Q)KF ZC”’\)EF/‘Q i usi?% ) (4.15)

=1
In @’h’? ’:J) y if ug rtDlEED t! by E we got hack @Rmf’u})

0t

Thereforeo uWo got
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Taking lngarithm both sidos in (4.15} and usinj (4.7) wo got,
00 AR

’&g P(G)—?—ZCC’J::)‘E - 2 (E' 0 Cx (4.17)
4Q = ;H-j L__ '

Difforentiating both sidos with respect to (A , r timss and

using (4,10) anc (4.11) wa net

D Y
Z"/E G 0= l(h:lc;gt,%-
/QJ:; ,,53.:-} (4.18)

Thus we seg that the rth cumulants aro nbtained by taking the
dvarage {ixfi :7 ovor all tho combinants [i{l!) and tho cumu-
lants in turn aro relatod tn tho clustar into grals g by the

(:é?ﬂ coefficionts in a way anals 'gous to tho momants relatinpn—

ship with tho integrals nvar tho product densities,

Let us gn one atoep further in the cumulant gencrating

funBtion Qc_}:( {_) in (4.7) by roplacing t by-&&ff%é—a

Ve got
26} F;.ﬂ
>~ Sy &
Q@@(H) — = E s (4.19)
Therefore

ab;v(@{:f— PD: 5t (4,20)
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/
The rz:h,/& given in (4.20) can be called as factorial cumulants,
!
In (4.17), if weo put UJ::gﬂig{l~+f)JE easily sgo that
k

4 =
%QQL;)I C('?-) = (4.21)

ThusﬁT:%# is tha rth fectorial cumulant with raspoct tn{tﬁ&j

This is analngous ta the factorial momonts

ol L
R

R

It is alsny gasily sgen that

N |
C(f) = LQ ,%% l"_)” MC/‘H-,Q; (4.23)

This is exectly the sama as tho relation betwesn P(n) and the

Factorial moments givon By 088 50 | hes have seon that the
cumulants play very much tho samo rple as +he orobabilities
themsclvos, We computo the cumulants and tho factorial cumy-
lants with respoct to Cﬁ’p) in the same mannor, as Wo computc
moments and factorial momente with rospoct to P (n). Since it
is expected that for many types of distributinns the number of
CK:Q)rﬁg are much less than the infinite numbor of P(p)!
available, it is sasior to doal with tho combinants., This is
attributed to the fact that thui?ﬁgv{g'hauc existence
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essontially due to the clustor corrotations in the systam

regarding the occurrenco of the point ATOCESS .

5. Doubly stochastic process

e T S,

Many intorosting typas of doubly stnchastic procosses
have been mot with in varinus situatinns, as in tho pase of the
counting statistics of tho cluetrons omittod by light falling
on a sensitlve matorial., This loads tn the study of tho pheno-
menon of intonsity correlatinns, inaugurated by the Broun and
Tuiss oxXporiments (1954,1957). A simple summary is given abnut
doubly stochastic prncessos in Saloh (1978). an analysis of
Barkhausan Noise in magnetism alan belongs to a class of daubly
stochastic procoss (R.Vasudoynn and S . K.S5rinivasan 1966) ., This
may be called cithor a socond ordop Process or a doubly
stochastic process. This torm was first introduced by Cox(195s).

A doubly stochastic Poisson pnint process (DSP,PP) is
& Polsson Point Procass (PPP) whosa pato dunsitylfumctinn
,)\fE%) is 1tself a stnchestic process. For cach realisation
of )ﬁ[%) s the rosulting PP is a Poissnon point procoss. Thoro-
foro, the statistical proportics of a DSP=PP arg complotely
spocificd 1f the statistical proportiss of tho ) [B) of the
original process are givon. Tho moments and the moment gene-
rating functions can be dotorminod by avaraging tho corrospond-
ing moments and the moment gonerating functions ovar the

difforent realisation of A/F) .
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The final Paissnn nrocoss for the pandom variabls n

Ped.fs givan by
W e
J
i
whero W is the rats <f ovants intogratod over the eounting

intorval, ‘1.5,
o

From (4.1) and (5.1) we hava tbr momont gonarating functinn

{L ‘f)\ ;
Q‘m'F [F‘) <E /W (5.3)

for sach reelisation W. The momant generating function aof a

has

DSP-PP can be nbtaingd from t4nso of P_PP by avaraging over the

realisation af the ;\ procoss which moans averaging nver the

W procoss. Tharofaro

o %(9) e e O\ = Qu(e)

LE{‘Hfig (5£[" 'iiéé> ropresant the product densities of

the final procoss n. Thon from (4.2) we haye

(5.4)
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Qm - Z(ﬁ Jﬁﬁ( )bty da

R ] (5.5)
But by (5.4), we heve
[“ i
2L =iy -
Q (E_’ Z “:—( gva (342,00 A?:.'a}
R

A

Uhurﬁ-jﬁé are the product densitios of thg U process, As

deseribed in Sectinon 4, we Abtain the factorial momonts of tho

final process n by roplaging jL by ,FTL# in (4.8) viz.
/v 7

W(@fm“y x¥/ b

f j ('-3(;- -fo)c:b”.., A

N“klng a simllwr transformatinn in tho oxpressinn for

u prﬂccas, We get i L

. 2 (e—1) (fx ¥ Nl A2y

(5.8)
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Therefore, We find that the factorial moments of tha final
Process n are the ususl momonts of tho original procass W,

This feots can bo appliod 1 Bocond opdey progassos such as

photooloctron emissinn cte.,

If the originel U procuss is a simple Poisson with

cluster corrclatinn

EA -0 for a1l A | (5.10a)

g} Y ﬁ (the moan of L (5.108)

then wa find that the moment generating funetion of tho

rasultant process n is given by, using (5.5) and (5.6)

Qorg ()= Z(Q“” j AL
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>
i Z(E’Q _J)J/_ f{g (_";{i,,..j/g)g}‘:{!,“ dal,

= ;) W (5.11)

From tho momont geners ting FUﬁDfl1n CQTTVF {%)1m3 get thm Proba-

bility gonarating function ‘?‘? \ _{’ﬂ) by ruplaging e by >1
%

l.0. tho probability gancrating functinn is

o A=l N—
Q Qaf? AJ= %x-ﬁ,/f. —1) W

mﬁ,F ¢ > - hore (5.12)

This result can Blso be oxprosscd in tarms of the combinants.

e 20 Jo
LAp( € —1) W= exp2 C(R)(A -1
PSSR Sp e T

Wg seo that, tho 1.h.s.

ka( Ow Qd/{:t\?

Therefare wa got

(5.13)
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r i
e
oquating coofficient af ;\ both sidos, of (5.13) wg got

CC&): Wfi (5.14)
i

and oQuating cnnst Int torms wo gao

,D z wo) - -wf w(e

. of tho procoss n (5.15)

Since C(k) oxists for all valuos of k, the process cannat bao

a2 Poisson. Howover the C(k)'s g0 down to zero vory fast.

In conclusion, for tho Production multiplicity of
particles producod aceording to somo distributinns, tho fipal
distribution of n partielos ecan bo cXpressod in torms of
combinanta, bocausc the combinants are additivao if cach typeo
of multiplicity is produced indeopendontly. This can be tested

in many ways.

6. Combinants in Branc hing Phonnmona

In this sgctian, wo usa the mothod of combinants in tho
study of branching phonomsna, We study tho prablem nf popu=
lation growth, whose ovolution ean bo pictured as a treo branch-
ing out from the initial individual, with tho nésumptinn that
the individual in any ganoratinn ropeoducos independently of

the individuals in tha presont ond past gonarations, A typieal
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Quustion asked of such 2 procoss is: "uhat is $#hg distributinn
of the total sizo 6f tho Populatinng aftcr a spoecifiod number nof
genoratiofs®™ Such probloms ean ho salva| by using appropriata

goenarating funetinn tochnisues,

Wo give an important thaoran bolow, which will he usad
in further study.

If & parametor of a Probability distributinn is altorad
to behave as o rapndom variable, thg rasulting distribution is
said to be eompound. An impartont compound distributing is
that of the sum ofF = random numbop AF randnm variasblos,

Thoore Lat ,? bo A soguongg of independant
== %x/kj

and idonticzlly distributod randnm variables with commin proba-

bility gonerating functinn (p.g.f}
AN -
?’(‘A) 1 E(A Y sl 3 -

and lat ZN = X|’+>(L'"’_' ' "*"XN (6.2)

(6.1)

Whore N 1s also a randonm varisble, wWwith p.gq.f

B LAY <A e

Denote tho p.g.f. of the compound distributinn af ZN by

<N
G‘r’({\>: E(A ) (6.4)
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Then GC /\) = "fu [J{A}Q:II (6.5)

Prpo

s 2. Al
swnee p=( ) )= B[ EC N N)|
Y e X+ KXo XN
E(f I =E /)
/
< Jan )

Wa havo e ﬁ
GCA) = E L‘iﬂ?-{v\)}wj =R [8N))
Hence ca.  (6.5)

This simplo funetional rolation batwaen tho Bagafs G{A ) of

tho compound distributiop of EN anrd the p.g.F's-fl{}g andé}éﬂ}

1s quite useful in branching phenomona,

The concept of branching arocossas was first introduced
by Francis Galton in 1874. Thoir mathematical modol and its
genaralisations have been oxtensively used in the study of
epidemiecs (Noyman and Scott 1964) , nuclzar chain raactinns and
similar probloms. Rp elegant mathomatical traatmont of tho

subject is given in Harris (1963).
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The basie mochanism of n branching procoss is as follous:
An individual (the o®h genaratinn) is capablo of producing
0:7524 vee offspring to form the Fipst gzhorationng asch af his
offspring, in turp producss of fspring , which together constitute
tho second gunerpatisng apd sz sn. s suppnso the number of
individuals in tho nth generontinon is Z

n

Wa assumec tho simple structurs of roproduction namely,
(i) that the pumbor X  af offspring produced by an individuel

has tha probability distribution
P Ax=Akt =P, 4 (
2 AT RS oy Ry 6.6)

which is the same for cach individual in a given genaration,
(i1) that this probability distribution romains fixed from

generation to goneration; and (1ii) that individuals produce
offspring independently of nach other. Thus wo are dealing

Wwith independent and identically distributod rapdom variablas,

Let o) 43
F:(f>i> o :E{j ;qﬁg }\ f
: fﬁ}: 5 (6.7)

be the p.g.f of X and lot Fn( ;k ) be tho Psg.f. of
zz?ﬁj 7ﬁ:l}1213;' o e DANGE Eiﬂ:—l s tho simp of tho fipst i
generation ZZ} has the samo probability distpibution as X,
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i f zZy=k § = J‘?_p\ (5.8)

and tho sama p.g.f 5,3( }\) » Tho sucond gznoration consists of
€ho direct descendants of tha 23 mombors of the firpst gonoratinn,
so that ZE ds tho sum of 2, independeont random variables,

each of which has the probability distribution {ﬂryaj}.and

Pegsf £ (JX) « Therafore 2, has a gompound distribution

da

with p.g.f. obtained from formula (6.5)
Fa(h)= F(FN) (5.9)

- e
Similarly, the Q?l'fﬂ) gonoration consists cof tho direct
descendants of tha zzjq members of the 9. goneration, so that
Z:qq_}! is the sum of the Equ,indmnandunt random variables,
gach With pP.g.f. F(k}. Henco by (6.5) +ho Pigab.. nf Zrn_*_l

is

Fﬁ-H f)ﬂ = Pﬂ.p:'[ h)] (6.10)
h

But the (Il;f{) generation consists of the T, goneration

descondants of tho Z; mombors of the first gencration, Hence

the p.g.f. of zn+l can alsa bo Writton as

P+ E T‘[ a’:n(‘h)jl (6.11)
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In spite of tha itorative naturo ~f tho pronbility gonepating
function, discussod abovo, it is fairly ocasy 0 find tho mean
and the yariance nf tha papulation at any genocration using

cumulant generating functinn. (Baglaoy 1964). We obtain such

rasults by expressing the gonerating funectinn in tarms of the

cembinants.

In this section, wo us: tho following notations.

N}

C}kj the probability gonerating Punction for the
ht generation
v}

c(R)

MI}L}]- 5= the v T-I!::F'E!.::1:;:13:;-1.-:'l mement of the NED gonaratinon
Vo= Z NN~1) - (N~Yet]) P(ﬂ)

the combinants corrosponding tn the nth goneration

it
v e )
A aa,};'f LA e
Fﬁ: = thao ﬁzfﬁ'F ictorial cumulant 3F thﬁ nEh generation
N Lv ,{a F‘*”?’ﬂ
with rj.{snh?ct to C(/h) d),"’" Ol (A A=/

C(ifz) (o) (A=) (Chv+)

We haye (6.12)

42
2 Nt P
403[,: C,U] z ceRy (A =D
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NG og IS [v]
{%u&}[FCMJ% :J§:C0®xkﬁ%i}‘KDj
L A= fﬂr} A=
(6.13)
o N} N 'ﬁﬁﬁ
d 5 [R'n | _ ) T CRRIEDA
AN= j {’ﬁ_r (6.14)
_ R O in
tc . \ !:2:]
f}v } i JN= ] | : ﬁvﬂl}'%?
Rgain F(}‘) - Fj‘ F ((‘HJ:J‘E.XFJ‘EC/&EF{)}J&!

(6.15)



' N-1
= Iw Y A2 (DL F {r):)) a
‘)’lz‘c(‘;h) R (4e~1) {F’ (M) ) ) J
R

jp et 18 ( )
¢ M
= Kpg Mpg T e, (17

ete. -
NG
(1t is oasily seen that F; | ,R} s and its derivrtivos! aps
equal to upity for all.

valuess af N and )1 at /%::5 undar eonsidoration). Comparing

(6.13) and (6.16). wo qot :
0 A IR A
Do 7 TR
k[tj )'['] LH]

(6.18)

But the first Fantnr§a1 moment or first factersal cumulant is

same as the mean. If tho moan of the first genoration is m,

Iti.



we have e (.18 , giving
7 A VS e
{{\’j 1 Ji BN
Yo = Frvr T 5™ boing the mean of the
nEh goneration
Frocesoding rocursivoly, wo got
/ N
“I\/} S (6.19)
’?Yb = WL
Again comparing (6.14) and (6.17), wo hava

{1} %N*‘Fr ! ( fm-r}jﬂ
gy Mg Ky

(6.20)
Using tho relation, tho sacond factordal moment

M):_zj = <>< ()(;i)>

[

L

Vo X -f-(’huza—m X )= meon X
i 5 -+-(??1ﬁjmeL ><J:E-Y“ﬂiL¢1¥

1}

( ﬂﬂg_J beinag the second cumulant
P o = =
Klag =

)



We get
{ﬁdl% A 2 jP'I
) 1 hJJ GV 6
e —{—(-’h': ) —(m )
1) { Pn=l = gt}
= 'hﬂ,Ij kiz- *f‘( Tyl = 9
( 1P
~d SpN=] §
2 ’ (6.21)
i (cr-—-?TyD ( T L
C?'EJ y being tho variane: of tho first goneratinn,
Hanco \ - {fﬁ“ﬂ} = A
i 2N Y ZN=2= gy=q], L 2Nn-2
}<f H.E_ FARIS) =i By == ?p.l_ kél -+ —_ f—W‘??L
9 5 2N
N1 2(N=1)
: (6.22)

le ="
L ) s — M

Yru

K]Sf }:
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This is the recursive ronlation botwsen tha saennd cumulants

NE apg (N-2) EP

{FUErianccs] af +ha
Honece, procecding rocursively, wao got
{;PJ } Tﬁ‘l T
‘[<.2. EE M—";-'Iﬂ—}‘""
hiz=l ¥)
S0 TyYaL ™ — | 2
T
Y — |

in Egruémcnt with Bailoy (1964)

ganoratinns.

IN=2=Y 2
— ™M &=

(3D

(6.23)

-(6424)
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An interesting problem in this context, is the question
of the ultimate extinction of th= population, The probability
that a population starting with 2 single ancestor will bacome

extinct at or before the nth generation is
s 1 = 5 . '
V= by | Zm=0 = =4 (0) (6.25)

The limit of 3&q1: as 7} —> o is of importance. If
J'Jﬂ_‘: | s the population will never start and if }7}}: O

it will never becumg extinct. Hence we assume Cﬂ*ﬂm'34ij

Hence the generating function ik };) in (6.7) is a

strictly monotonic increasing function of ;\ « It can be

shown that the probability of ultimate extinction equals 1

if and only if the mean number m of offspring per individual

is not greater than 1 . e also find that m™> 1,

from l5.19]. We expect 2 qromatrical incrpoase in population

size and (6.29) gives the divergence in the variance.

Further details can be had in Bailey (1964).
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_._J'
-

Bell Polynomial

- .- -

In this section, we introduce Bell polynemials (Riordan
1958) using the Faa di Bruno formula for the higher=-order deri-

vatives of a composite function., We consider the Function

F:{!T)-:TfFI}%EEé} and evaluate its ”th order derivative

F;}{EO y We assume fiB) = Q(ﬂ} = 0 and write the functions
fL{UJ and g~fu) by the formal series

fluy= 3 :

sk Wi (7.4)
) &
¢
b =
£=]

g " (7.2)
The poefficients jﬁé andJ%ﬁ ara the derpivatives of the
i

HM&

M&
40

[t

i

Functions f and g at respesctive origins. The first fau

orders of Fﬂ are given by

R = +1 &

Eosdin i+ o 3

R & m# 5

= G Fa (493543 )45 (493
—‘riP 3:~

sesscatoy TN gensral, we haye
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F ,_[LL ]L A:TJ | ELIJ 91)" c&ﬂh-ﬂ-l'})
/

]
The numbers Bfnjz Aty i

nelynomials in the 3;_’ /&Hnd
are independent of f(t) its derivatives,

(7i8)

a2nd

They ars calle |
Bell polynomials denotad by

Brg LF(EY= B (T

Thae F

I

J

> BT}‘Q@MQJ o Sn_.ﬁ+ﬂ
n Aare caglled complete E

“ell polynomials and ar@ denct ed
by F_ (f3q). Dhuinusly1r

o0

FE) = - R (F38)

r% (7.4)
ﬂh::',‘ -

Since B’né are independent of -F,‘LL) sy they can be computed

by choosing any ceonvenient function For instance, if

{{MJ: %qu-ﬁf y we obtain the multinominal theorem
R
o : Y=
L _@_b"‘j = 3 el
1€ =i le o= [— i

This gives immediataly

&WQ_



212

B‘YJ{’E?(&J ‘—LT F15) J (7.6)

Their exact expression (Ahramowitz and Stegun 1965) is

qu[éﬁjifzg:?T fi = I (7.7)

where the double prime denctez that th= summation is to be dore

over all sats {rﬂdi% on non-n=gative intensrs Tpi subject
to the conditions

X

P e i) - Za“’ (7.9)
J=1 J=]

The following properties of T}JEI}}{Pi] can be
immediately obtained.

Gn= Bw [370)] (7.9)
3?1 = ngh £9ffﬂ .ﬂ (7.10)
B_,},]g(mﬁ!)&_glﬁn_}};j- _):%[3%(3“@%_,_)

(7.11)



213

ng(@?)u 34.,,‘:53 ‘ )"—C«. hf(%na"l 8‘3 )(? 12)

Next, we give the results on Stirling numbers in terms

of Bell polynomials. WY& dafine two fu '::ti::uns-Ffli>and 3‘{&) Sa

inverse to gach other if

‘? E%!EU - &- (?.15)

5

Taking, 2[&—) — £ —-——l y the multinomial theorem
glves

e J_"(L
—L<~?>f[0f‘ D Z—-{:—-BM{JC s b))

o Q (7.14)

This is precisely one PD“ the gen=arating functions of tha
Steérling numbers "?’l' of the second kind. (Abpampuitz and

Stegun, 1965), usually dafined by
W« 05) |
= Z g‘}r‘{_ AL SV REEE (TX*’EJ*H) (7.15)
K=o

S50, we get

Bfn/e(})f};}) ): gn

(7.186)
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The furction inverse to thes abgys is ‘Ffu)"—i /{’:f:}' (;4-#1)
Now (7.5) gives,

=

oy W )
Aag | 4 e ti‘U;&Tﬁf'
Uz [ 1+ wZ—_Q - Byie

Wwherg We have the genarating function for the {slqnleﬂs)

j
Stirling numbers ng( J of the first kind, introduced through

[ ¥

ULA=D) o~ CoA-R+1)= 5 A o (7.17)

Consaquently

g?w(@fuzﬁﬁ'”;)?/gﬂ

(7.18)

From (7.15) and (7.17), ue get the well known fact that tha

matrices formed by these numbars are inverse to each other.
Next, we concontrate on some results on Matrix ealculus

and the inversion problem thraugh Bell polynomials, Since in

‘%}78 n Q y they can he considered as elemspnts of a2 left-

trlangular infinite matrix !3[ J_J « But only their sactions

n ¥ n are relevant to any considaration upto ardar n. The

determinant reduces to the product of tha diagonal terms



= Igjf degr*'

e
9; J; 4 = g T

SiI'IE:El = J&:] thr: Fa1s D_ - =

3"-‘"} %‘ﬂi £§ ) s 8 first column of _,[9] gives
precisely the coefficients LJ! . The other eplements are fixed
polynomials in these coefficicnts,

It is well known that non-singular left-trdangular

matrices form a grmup under matrix multiplication. The formal
series (_F #ﬁ :i ifﬁ Fk'ﬁﬂF:f£> also form a group

(Henrici 1974) undnr the aperation of composition. We shou

belouw that the latter group can be represantad in the former.

Let us take {[Sf-f'?)] in the left hand side of tha

multinomial thenrem G 5}

Ef’a[&ﬁ]} ‘B { ,, f&ﬂ

i

8

""'“.'
6.

= i"(—*{_) 8?}9 EC{U‘J:J
=g - 1 [
L a

=0
= Z. — B}n[?”“] Bne bc;u

>
AL
S QL
|
o
2

4
5 B n[306)] Bog [F1)]
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Henes,
g
Do Feyle Sy 2 8t Biplleta
B{,HZ'?-F(U )J ?;:Q dh[ ‘)J’]EL j (7.19)

(7.20)

te. B [ F(f)] = f:[—f—f 4 ”T))j:: B[EIH] J'EH-EUJJ ;

This means that the matrix corresnonding to the composition

4
fzﬂ 6}"15 the product of the mat-ices corresponding to sach

Function in the reverse order. 5o the composition operation

between formal seriss corrasponds to the right product of their
respective matricas,

We are particularly intorested in the problem of series

inversion in ths sznse of (7.13). If f and g are inverse to

sach other, using (7.13) and (7.20) we haye
J[F0]=5 BRI = T ond 8[§)s[g=r

50 ths matrix of tha invarse is the invarse matrix, Ip

particular, using (7.19) wa have the following important

results




[
[
=7

L
.tg = B-mﬂgft)]:éj_ FP:_. )L-fe;ELf“J (7.21)

and

B}j] E{,JLP%—[‘ = p).E‘, EEUZ/(’I"!-E{)] (7.27)
2 5},” _ {‘Dﬁfilﬁ

Results {?.21) and {?.2?] are widely used in the

subsequent sections,

8. Results on Combinants - anothor approach

In sections 3 and 4 we dorived the relations between
combinants and other types af clust:r correlation functions.
These results can be dorived in an elagant manner, using Asll
polynomials., The results (7.21) and (7.22) play a vital role
in the derivation of such result=, This approach is antirely

neuw compared to other usual methods,

We hava, as before

F(A) = 2)\ P) < wf:l 2 GMQJ(;\ —-f)J

3.3)
= Pls) %oc}:[z vr/tz)/\”’ﬂ |
Ke
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s P SHZ D]
Taking - 6 4:{
{‘(_‘E):‘E =4 rﬂ >‘) =iavk C(/jQ))\
A= |
FCM < fxl E i’_"(/fQ)/\/g
P!{D) -J:?_:'.; 28 K
- . kz'c(k)/\-
ov, F( S S s 9= (8.1)
- prs) Fla00)-2 l
we &lso have
f18)= §loj=o
'FJ. (D) = 4_(0) = ! —
%/f% — CC/fQ) L;k (8.2)
Again o8 - 0 "
= —\ =
F(A) ‘n%a Plo) ,)?:f, Prod
b T

= Z —-/}E 7 Bﬂ.?_ ( 4 *‘?1) 9”*’«”"“)

in using (7.4) (e.3)
N=| LEE fﬁ:;p : g
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Hence
YL
H_E@ — _J_ Z E’jﬂ,ﬁ ngjgiJ' L '3“"8"‘!) (8.4)

Pr'l'}) . &L,Q:_{

Thus, as a simple illustration, we exhibit P(’ﬂ) in terms of

Bell polynomials, as

Yl
= P(@® 2 C{8) [2C63), .. (a.
P(m) T 2 Bt ()12 &) 13¢), .. (a5

f
We now BEXpress CC/{Q)/& in terms of p(’h)
Pro
nomials {USing 8g.7.2),

We onlist below the valyass of the

using Bell poly-

required quantities. From =g, (7.6) and (g .3), we have

Bﬂ.e [EO‘)] Z A P("’/)BJA 5 (a.6)

T—J Plo)

(c0 i ﬂ)/P{‘o)
PMJ " ) |
By [FCR= fcﬁ«[i‘,;\ e %}\ F’f’h —_] (8.7)

-6\ ¥7) Plo)

B, [FOV] { zf\farzzﬂ{\
=0

‘r Plo) (g.8)
Y (v—1) ,\ Pr v) o, P(2)
% Pra;-_g}\— Plo)
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B, [ECH L™ /ST P ?[
P fﬁ—(:l - %J}\"—\Yé/\ Plo) NED

(Ex\ 2] ):f ,;'*r’% ﬂ)ﬂ
Y= F’r’o] L = Pto)

al r’r:ﬂ v
(Ew/\ (r)) ) my )y Pt
s Plo) P(0)

(|

A:D
_ -
- i By
(‘—_P{U]_ (8.9)
Similarly ue have
R S g ?J 3 P{'B}
3,[FY) = L!)v‘g-; P ] Nes | PO
. ;cﬂ )(j;\ s (8.10)
BTZ[FO\D:E ;ﬁg '\-E: Pro J\ ° (s.11)
B.11
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= (1) 2 (8.12)
..... ete, Prlrbj

——

] J%jé in;}{‘f~ku§]
_dug | U=D

-y (5.13)
= Gl TN Pt
,P)-J,B (:f—}—‘&) being the inverse of '{:__3911 .
Now, from edq., (7.21)
g LA LA
9., = B [3(0) =3 Breg [F(w]8g; [Fw] e got
A= |

Puttings fyje= !";;-nin (7.21) we get the required relations,

= - ;
ﬂ:!_; 8"\;\}‘5/5; C;: 9}‘:@!.}_1&?:{“’11 B”bc{’ug:-.ﬁ_@!

Pl

[f’EJ ¢ | = hEiE:LZJ
F(o)

(8.14)
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S 4 e &} gives, 5”,]
1% C{L)_ g& >: Bog| F fMJj B'Qf ﬁ:f{*:]
= 2 P.@_ [ (Pﬁ) (_D
Pre) Plod
| WL
= _ P L4 (Pm‘
(1) £(a)= P(ﬂ% 2 Prey (8.15)
M= 3 qi‘u’fzﬂj E_
J2 e(3)=g; = -f-} B3¢ [RCu]Be) [#14)]
<[3 P(3) [ P ) @) &) 7(F’ffl
Pra) Pls) Play P‘ew:,;-3 @
a Yo PR _ pw Py ( (8.16)
L& el3)= By . Plo) m) RIS e
ete. in agreement with eqns.(3. 6)

In a gimilar fashion, We oxpress the ratios })(Ab)

, Pro)
in terms Df{“f4{>f£ using (7.19)

We caleulats below the
various BV?‘E roquired. Q
J" | /) (} = b
Nouw B 'E’L[j :~__~{_ é._ -."‘l_!b = _L, d -EL)
40 [Fa]) Ug&u&@ 5
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| | d= 7 =, 7 — (8.19)
B?}f [ﬂp!ué]_ L_-_—thj IL “f':_!‘_{:‘r_ l

U =0
s before,
Bv;'j [8(?\)]2- ?'ﬂ Sy C(ﬂ) (8.20)
T eV
Bon LTV = § = (eup) (5.21)
_ ALE &
Bsafg(n)) = L | &2 (E C’fzh)}\_/k (
Ll ‘9‘.)\: ’k:{ s, A:B

On caleculating the derivatiyos, this simplifiecs

Et%h‘lﬂ,tu

Bsa [Sto]= fetee) (8.22)
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Using B:n,é” [ E(A}:F');g I?,.vb} iaj 8(:)"8 Z—}'—\j}
’"ﬁ.‘:)?':] gives
By [E»]=6) L) Ry [f]
Ct-&{) Pc _ e 1) (8.23)

—

Pto)

5
gtmﬁm\ﬁg) Bil,l { ﬁ)ﬂ % B;_(} [5‘] Borfﬂ*f:j
(L) 2 P2) _ {é('fl}+(¢f“5’)i

B (B.24)
2 B.2
(¢ e Cf“*)—i— -~ (cC))
Further, f?{Dj
B3y (F) = ZB&JEEJB&&Q
3 (8.25)
o, Pc2) = Pz )+ E‘(I)Cfa-)-a-(r'm)
' Pre)

As another application of Bell Polynomials uwe derive the

relation betueen the cumulants and combinants., The cumulant

gencrating function F:f B} is givan by /&D} F{ €9)
Henes K I'B) Z &l 41)( E"iQ
40 = =

=4(F(9)

(8.26)
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—~ . DR
Whane L= LA e ,D
o=
F(e)= & wily f~l0)=3(c)= O
;}—ﬂ- ;X
BMJ:KIQ)]: J — (i Kn b )J
Glh Y= :
Hﬁ,t E B=0 (8.27)
= 1)):"""-: (".‘f‘ I. Cumulant )

0§50
By [$]= iﬁ} @(ﬁ 13]

GLPM{Q 5= (8.28)
2y _ /L\
,/Q:: ) k (8.29)
B Lnj - rd” R ( J)J i 5, g
Han ﬂc?l ;1 -_ii J_"fﬁ C=p J.
Henee using 5
By [K10))= = By 9D By, (£
Ty (g C}
“‘:_5_ d[}v-L <E C(&),ﬁk
o =
= ik :‘i(‘m)gli
-‘“’k:-_;{ ijk) j-ﬁi:“_,.r ‘}YL ){{:f
Henca k’f']_ = JK‘%__'; C(&) /’QW (g.30)
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her results can also be ohtained in 2 similar fashion.
g

» Compound Poisson Process

The compound Poisson Procass ocecupies a central place

‘n the thuory of Point Procosses, due to its potontial value
in applications from such divi rsc arsas as physics,; geology,

nuclaar m'dlclnu, insurance claims and geography.

A stochastic
procoss ;f[Ei>) P,ﬁPfﬁﬁiq called a compound Fnlqsnn Process

if it admits a representation of tho form

X
Vo= 2%

~

Y\,

(9.1)
whero j( E} s a Poisson Proeoss and jfx

21§ s

sefquence of independant and identically distributad pandom
variables sych that ﬂ

S OX(H)

uk3ﬁﬂg ””{éﬂ;ﬂg‘}
are indepesndant procsssas.

We now show that thso characteristic function of the
compound Poisson Process is given by

45 < =P

(9.2)
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Whora ql)é; [‘LL) is the common charaptoristic function of the

random variables %;71’ and ;K is tha rato of occurrengs

Of tho Poisson avents.

:§ oy [ﬁ“"‘w /whx')my (] pfx (k49 W_ﬁ
e SV

o ) ¢ g H)P )‘er
=5, [#1] e on 7 B

Hence eq. (9.2)

Ue now give tho mathod of Finding tho moments of the

rocess G given ths momopts of tha compound Poissaon
E T

Process \?’“f) s using 8ell polynomials. We denote the }’lm

moments of thaose procosaes L, _,\N;Q 7 by E{‘qﬂ) and E—_(V“)

respectively  (Snyder 1974) .

Tha charaut 'vistic function of )fzki) is

| )jq;,*s N ~1] M

Writing (P}/ (W)= | jc[u) e —] and

g fuj CP - ﬂ—'} « Wo hays 1: (LL): {: (8_{":_{)) uitht
£19 =309 = (&)
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T

The Y momants are given by
— ( y ) B E[ﬁ‘rt)j (9.4)
E(E") = Bui[giw] i
The function (_;[u_) — ’r_j_ [~ 1) (9.6)

is thz invarse to ’H”) » since

6] - expptdaitol ) = w

Han“

BQ; Lﬂlf”ﬂ - th Z’fj (E"H*) :‘Lgﬁiﬂ"ﬁ(’ﬂﬂ

r .H{ ) P | 8/ B
From e9.(7.21) ue hEUA Lﬂ /ET? <ﬂ
Ry [310)]< zehg | B B, Hf“ﬂ

P
. Z Bnyg Lr(“ﬂ (’*) '—;
A=

A‘F (1) L= Bne | F )
(=
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This formula gives the momonts of tho prccnsaqg =

Putting ,Q I;j? & ZJ;J { -
By Lotw] = ¢ Bu [F(W)]

(Lo B(8) = & EMY) (5.

Similarly

p | > (9.8)
LR =1 . )

SNl ESE -

In this way we ecan find the moments of +tha procass El » upto

the desired order.

In conclusiony this chapter doals with ths relations of combi-
nants with the other well knoun cluster point functions. Tha
important fact that the combinants play tho same rola as the
prababilities in calculating the cumulanis is brought out. In

deriving our new results, the Bell polynomials play a vital part
in an elegant and systomatic way.
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