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The problen of cardinal spline interpolation
for polynomial splines was thoroughly investigated
by Schosubarg in a series of papers and a beautiful
account is given in his monogreph (97 .

Let
(1em) (¥y) VauOr 31, 22, «»
be a prescribed doubly infinite sequence of real or
complex mumbers. A problem of gapdinal interpolation
is to find a function £(x) in a given function space
such that
(= £§(Y) =y, for all integers » .

The analogue of the Lagrange interpolstion formala
for this problem is the gapidinal geries.

'_: 0 sin 7T (x=v )

(n3) e > e
The plecewise linear snalogue of (*3) s well known.
If M(x) 4s the roof-functicn such that M(x) = 1 + x
in [=0] . ¥x) sl-xia [0,1] ®a Mx =0

el sewhere, then

ey
(1-8 s(x) '1,-?_-_:» Y, Mlx=2 )
is clearly the pilecewise linear interpolant for the
sequence(:1) . The purpose of the gardinal goline



____ __

interpoletion, as pointed cut by schoeuberg, is to
bridge the gep between the linear spline(:4) and the
cardinal series(/-3).

Lot n be a natural musber and let

8, = {ltﬂj- ._
denote the class of functions satisfying the two com=

st ¢ PN

S{x) €7 . in each intezval (Y, U 4)
for all integers o whore /[, stada for the class of
polynonials of degree not ewceeding m md <™ i(p)
l.-thlnlmdlhmvmmmlﬂumith
(0=1) * derivative continuous. The elements of 5,
are called gapdingl gplines of degree n with simple
kmots at the integers. The cardinal gpline inter—
polation problem is then : given the sequence
(-1) to #ind s(x) c §, such that

8(Y) = ¥ for all 2 ,
MrmﬂMﬂMﬂmumlﬂlrm—
lated (between integers) by the operater Do %,

Various considerations led Micchelli [6 ] ¢o
study cardinal splines for the diffepential ematicns

LY = 0 shere
™
(-9 Laeb | (D-Y"
V wl
MYW‘IMMMﬂﬂ“- The simplest case when
azT,-nmummmmm

studied by Schoeuberg. Thus given the differential



operstor (:5) « We define the class
Slivn) = {m}
of functions satisfying the two conditiong
st ¢ @ Xw
LS(x) a0 for V ixmx < 2 4
for all integers ) and the elements of 5(i.n) are

called gapdingl L-splines with simple knots at the
integers.

Qur motivation for the present work lies in
the cpen questicn raised by schoenberyg on page 7
in his monogrsph s~ ‘which of the properties of
polynomial B-splines will carzy over to mope general
Brgplines 7' These are splines having minimal suwpport,
that is the support having the smallest nunber of cane
secutive unit intervals.

We congider the linear differential operator /\
of order k given by

k-1
Us8) /\-lllr > l’"’

j0
where agc (M. A fanction S(x) 1s called a
[\ -caniing} epling with simple knots at the integers
1f it satisfies

(i) li:)E‘.ch"(n

49 st U (v, va)

(H0)A\8(0) =0 4a (Y, Y 42)
for all integers 2’ . 7The set of all such /\ =gapdinal
muwugﬂ‘*.

Gy



In this thesis we study the varicus properties
of /\ =cardinal splines and cbtain a solution for the
A = gapdingl spline intogrpolation problem which may be
stated as follows : Given the seuence(:l) it is
roguired to £ind en Sc¥  satisfying

(V) ay,, for all integers » .

OCur approach here closely follows the work of sSchosnberg
[9]ana (10| and also uses the results of Xarlin (4]
en total positivity. wWe also study /\ =cardinal teperfect
splines gmeralizing the work of sharma snd Taimbalario
i RS

There are geven chapters in this thesis, the

first chapter being the introduction. In chapter II,

we intreduce the notion of a /\ =cardinal spline where

A 49 a linear differential cperstor of oxler k whose
coefiicients are continucus functiong on the real line R.
We alsc congider the generalized S~gplines M(x) which
are /\=gplines with minimal support on R and obtain the
representation of a /\ -cardingl spline in tems of the
generalised B~gplines.

In chapter III, various properties of the basic
spline M(x) are investigated. After introducing the
notion of extended Chebyshev system (ECT gystem), we
obtaln the decomposition of the operstor /\ . Then
the esxponential /\ =splines are introduced and their



propertiss are investigated. Finally under the
additional assumption that the basis Ug seee Uy of
the mullspace k{ A\) of the cperator \ form an
BCT systen oo R it is proved that the basis spline
M{x) is positive for O<x<k.

Cheptar IV is concemed with the probler of
=Cardinal gpline interpolation. after ccusidering
a prelininary answer, it is proved that the get of
solutions of cur interpoletion problem form a linear
monifold of dimension k=2 n Y .. after obtaining
a basis for the space of the so called nullsgplines,
we study the conditions for uniqueness of the solution.
We prove the existence and unigueness of the golution
to the interpolation problar and also obtain it in an
explicit form when the given data is of power growth.

In chapter ¥, we study what are tegmed /\ =cardinal
t-parfect splines. These will generalize the concept
of perfect splines of Glasser [2 | end the t-perfect
wlines of Sharma and Taimbalario [ 11] . we also
conglder an extremal problem of determining the element
having the least tenomm.

io the last two chapters wa pply the method of
functionals in the study of extpemal prodlems. In their
study of teperfect mlines, Sharma sl Taimbalardo [11)
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obtain a selution to the problem of finding the
polynomial of least deviation on [0,1] which
satisfies certain boundary condition. We spply the
method of functionals to give an independent and
altemate proof. This is dane in chgpter VI. In
the last chgpter, the method of functionals is applied
to an extremal problem in trigmnometric polynomials
which was carlier proved by Boas [ 1 | using varia~
tional methods.




GIWPTER IX

2,0 in this chapter we shall introduce the notion of
a/\ - caxdinal spline vheve /\ 45 a lineor differential
opermtor of crder k whose coefficients are contimous funct-
fons on the real ling R, We also consider the gencralized
Begplines and obtain the representation of a A - cardiml
spline in terms of the genexnlized S-gplines.

2.1 | Camdingl solines
iet n be a paturel mumber and let
5, ={ 860}
denote the elass of functions satisfying the two conditions
s (w) € ™ (R
8 (x) ¢ T  4n oaeh € the intesvals(> >~
for all integers m‘ﬂ". stands for the clasa of
polynomials of degree not exsecding n and ™ (R) is the
class of functions on the Fesl line R havirg the (nw1)™
darivative continuous, GSehoanberg calls the olements of
ﬁbhmmﬂmnﬂﬁmmn
the integers.

Different considerntions led Mickinelli [ 6 | to
study in G:mpth capdinal splines for the differential ecuat-
dons | ¥y =0 where the differential opermtor | is given by

L ep B (oeY,) (7, are real constants) (2 - 1D
 he atidect cese where all), = 0 lesds to the cardinal
 polynomial splines studied by Schoenberg. Thus, given the
@ifferential operator (2.1.1) we define the class

s (L, n .{n m} s
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of functions satisfying the two conditions

s (=) @ ™ (0

[.8 (%) =0 for V< 1.2+ for all integers =
end the elemmnts of 5 (L, n) are called camiinal | - gplines
with simple knots at the integers.

2.2, /\—_caniinal sulinos

W shall now introduce the motion of cardimal
A =golines whem /\ 48 the most genaral linear differential
operator of ordsr k.

., e ¢ [ B) demcte the class of contimous fccl
_functions on [ &, b | having the j th deriwetive continucus.

Let /\ be a lincsr differential cperator on [a, b | with zeal
coefficients given

A ad®e = ay
3=0
“I’ Et?‘[l..ijlﬂ'ﬂf:jé_l. ﬂl!locn‘{--cuh-h
4s a partition of [a, b] the function 5c ™2 [a, b] s
called a /\ spline with simple Jnots st the points i:,blj
u,%ec"(gg”x&')) and /\s(®) =0 42 XAy -0 <icm

o ki

Lot us nov consider the linear differential operator
/\ of order k defined by

ay o3 (24241)
j=o
"ﬂl3l°’tmth-ﬂmdmmanntmnm
®eal line R having the § th derivetive contimuous. The mll
space X (/\) of /\is a linear space of dimension k. For
each > c R, 1f we dofine Q(X%)EX (N} by

. d'a 0, ] :5‘ ' F:DJJ--J#‘“‘M:,

EON &) o 2

= gx T N -
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it is mownm [ 3 p.us’_] that Q(X¢))has a unige
representation
&LX, %) étﬂ CfJUl (&) (2.2.3)
whene Uy W,- - W, Mhhlﬂ-n!ltf\)ua(u“‘)&
ars the elemonts in the last colum of WL‘LL‘,- “*h]
whore the Wronskian (| [w,, - - Uy 4s given by
kN--) = (W pdanh , icjck
Ginco Uy By- mméumw the Wzonskian
is not Zewn. mu,, _Juhmmmu::f\ )
Mf\ ummdmuuﬁmw
N { =C -a:DJﬁ *f:{:') D (a ) (2.2.4)
SSEARACION 2u2ed A Bunction S{x) um-am_
Sline with shple Imots at the integers if it satisfies
the conditions k-2
(4 Sleslhey er S (R
{44) SlEay | e Cm(g(v.rﬁj)
t414) RSEx) =0 e (0 v+
for il integers ) . ‘The set of all such A cardinal spiives
is Ganoted by Lja"n|

Iewedeling O Cx/ 3D be

d
i e R E DCZ—EF
S

thon g.r,x ;Olnl.fg mm:mmua-

" 3. The genesalined § ~ molinan

for the study of \cardinal splines, we need 2
conveiient representation for the elements of the linear
space 'f/ |« The most desizable basis would censist of
splines having finite support, that is, the support consist-
ing of the smallaest possible mmber of intenals between

entdes
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the lmots, Ve shall thereforn vecall the notion of
goneralized B-splines.

Since K (/\) 48 a linear space of dimension k,
we can, without loss of gemerality, determine (k) mmbers
Po, Pi,-- . Prwten B.>0 oo that the relation
Po 80, D+L 8, D)+ -+ L 8x K=o @31)
holds. If we set b

Mes 1 = E FE}@CI ) (2.3.2)
thal I (. 0,),- - h)hmg;on-f\ spline with kmots
at 0, %, 2, .. Rk Vorewver the surport of ¥ (x) is the
interval (o, X). Tnfact M (x) =0 forx L O by the
definition of 0(x:)and M (0 =0 for x>k by
virtne of(23). ¥ (x) 1s the basie spline roquired for
the purrose of represortaticn cf elemants of EFU’

4. Aepimsentation of /. camdiza) splinos

Ve simll now show thet i€ Sc J, then & has the
unique represantation o0

SoETe = '?—Tm caﬂil'é});
Mﬁnt:, '-mminummm-nm-
bagis spline for M (x). This is achieved ly a series of
results,

Iheogem 2e4.) ot S (=) bag /- spline with slole
btaak ¢ <f<-- 3 He ® gan ke seopesestad Ao
ey = PO+ bs 5%
gicn =R Ge +0L,:Ja : %) Sl
sbem P (O € KCA) mbé‘s are congtants

entd, e



.

I

Mmmm

liﬁ-ﬂ{ﬂ-ézlbag( 3)

whote by s are constants, Stnoe © (X, %) 43 & /\ spline
with a single ot at x = 5, w0 see that

@ v e @\, - - 3,)

) ¥ (0 € ™2 (n)
(48) NP (x) =0 foF = =3, (=1~ -7

™ establish our theorem, it is enough to show that we
ean choose by s 80 that P () Ec® (). P(x) will them
beleng o XK ( N}, Whenx <5 , we have P () =5 (x).
I S\ L L<wa, them

P (%) -lt:)-hlG{&E?ul

iIf ve st
(k=N (i i)

bi=S 5 +)—51%, 0= Mﬂﬂ‘“’ﬂi-i“n
HMWMPM’{:I“M“:-QH .
We agsert tiak B UV (£ hnmmu:-?&”.
mmm&w@-nm:#%*u“

(k) __ﬁzl s (9) i
ks E 2 ° &P e él’r.

ueing the continuity of PV (2 st x » %, for § = 0,1 Rl
it follows that

2N o™ o
and the contimity of »'™ () st x =3, is chvicus,

[ R O
q(:ﬁ 4 © ‘EPa_ >,
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e sec that
- lw-lﬂw-DJSil.%g Iﬂxagaﬂ
-M“ﬁ.h’.hﬁ“mmm—
et # ™ () 1o continuous st I, %, 3. we choose
bjﬂm d
(ke=l)
-M-IEH lﬂﬂ:-eér

hr‘mwﬂuhm&.:-?’ « Thuas choog-
ﬂblﬁj-hﬂ_,e -M.-m
pw-u{m-zbaetii O e A

hﬂmdhuﬂﬂmhi followns from the
very constrnuction., This completes the proof of the theorem,

milagy 2.4.2 Jf S (0 w0 foEx <3, gpd 5 () 4a
® A\ maiise sith simledmoks a8 £ < T, < - - <%, S
S(x) gan ko msprosontad An Shq fomg
std = = b, 0Cx, %) (28.2)
Mb,‘imhr
Exppss Slnte 5 (2 ds & /\ spline with sirple dnots at
\ %, <2< - <%, by Theowem 2.3.1., wo have the
fepresentation
| 50 -rln)-ir;%—’ b}.'gfi-‘ﬂ,irp
where P(x} ¢ K(/\) 4 %he hypothesis 5(x) =0 for
implies Fl) w0 forall x c 3| o« Sdmoew, , - U
formn a basls of the mull space X (), there exist
constamts QU %y _ - A such that
Pl = ih Q. & =0 «ﬁ—«fﬁ x-:'.a (&-4 3

T =

k

contd, .
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tiow the Nyonaidan of k soluticns of a dlffesrwntial operator
of oodar % is elther identically sepv oFf is never vanishing,
mE Ly, hmmwmmm
pisonoidsn s Dot mexv. Thus ue concluds foom (2.4.3) that
8, =0 fori w3, - R ané the dusised seprossatation
follown,

Meomm 243 I SE€ T/, shnthe mmmemtof S
canmet lo ahooter than k qonagguitidve peit dntonvalas unlaocs
oixi» Q.
Empofis let us sssume thet the myport of S hao afbost (hel)
cansecutive wnit intervels, say (9, & ¢ kel) where r 45 an
intsyer. Then S (x) =0 for < r ond Scr x>y + hedl, IE
um&,w-au-rmi.umma {x) = 0 for
lln!ﬁ:tl}k -uammm

8 0 = ?z b BCx,9)

'ﬂfu\i?k };,\ )‘l
S (D=2 b, = WLEOY ez u;_m‘zbam 3)

J=v G €= d

Necause 8, (x) =0 for =2k amd L - - Ly form a basis
of B {/\), wa miat have

Ek' ba LL_?‘:?) = 0 ,f.:i;ﬂ)- =, fa. (2-4-4)

a':i
T™is givas a system of k homogeneous ecuations in k unimowns
bi,ba, - - ;b « Since esch R-4n (2,3.2) ia obeained in

mﬂﬁﬂhHMMhMﬁmm
tha deteaminart
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Wien )= L.LT(.h.)
. 3 k4
LLJ ) Nty (8= = wy CA) ; s
ugfcﬁ Ct,;fm)- — U (k)

Mis Smpliec thet the systam of egustions (2.4.6) hes
only the telvicl solution vis by =B, w - - - s b =0,

This S (G =@ for a1l x c & and hence 5 (x) =0 for
®c R

Bumuas 28,4 mmeee SCJ, | -38 Six=oin

(p-l, p) and (p=} + % p + X for anv iutooex p. then
S (=) “ﬂh%r‘.'»i

Emaf: Pofine S, (x) =« 5(x) 1 pixip + kel ard 5, (x) =0
otheswise., Then 5, (%) is a /\ spline and its mupport is
affost (p, p + %-1) vhich contains only (kel) consecutive
unit intervals, 5y Theores 2.4.3 we see that 5, (x) s 0
shich jeplies that 5{x) =0 in[p, p + k=l | o Hence
B{x) w0 idn (pl, p + k),

Mecnem 2.4.5 Tho k Spetions
MDD Gr= <5 = g d Bihl Cx—k D
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is

Then S(x) =0 fa (kel, ki, roreover Ly the definition
of the functions M (x-]) it follows that 5(x) = 0 for
X<0. In partioular we have S(x) = € in (-I, O)e
Because S (1) @0 4n («1, 0) and dn (kel, X), Theorem
24844 vaserts thet 5 (2) =0 in (=1, k) 50 that S(x) =0
for §<x<j +1 foronch § =0, 1,- - - %=,

g, vhon < x< 1, we have

0 = S{x) =a, M ()
dhich froligs that a, = 0
whan 3<x<32, we have

€ =S sa, B +a, M (e-d) =a; M (w3)
wich shows thok &, = 0 also. mwmm-’ = 0 for
all § is corpleted by induction,

Snconma 246 AL Sc 'Y, . and S0 =0 fog =<0,
e S (0 has b uBicie SnEoasuiation
36 :‘fgc_%}\’liﬂ)ﬁtm:en
M'{,‘Im&l
Lmefs Since 5(x) = 9 for x<o, it will have only eme
Mook viz % = 0 48 (=00, 1) @0 thet it hag the reprosentate

n
Bix) -8, © (%, 0) 4n (0, 1)

M“mn'. We can than choose Eb-M
S(w=C, ™ (%) w0 for =< -
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1 tace, S
8 (e «C, I"T(JO,Q 9‘{1 E;)—'fb P (Id

—a 9(1 o)—c )3 @L:i o)gl!:u:,l

;“_ﬁﬂummﬁa:%hmm-lm ve
ean row define C, unicuely so that

| 8lw) = TCX)-C M(x-)m o for x<2

 This can be seen as follows. If x<2, them for any constant

ﬂ. we have

Sex) — e Dlex) —¢| I\’FCJ; i) .
A +ﬁ-,%£11ﬁ : j

,-.c:tbec:n S ﬁ o cx, )= EQZDP 9. (x-1,0

A

':(a,—cﬁjs‘.)gc:n,q])_r:‘fa giCat—1 6D

| A A

fow O ix, 1) anmd O (s=i, ©) are two /\ splines having the

 game aingle Mwe at x = i and venighing fior x <1, Thom

by virtue of corollary 2.4.2 thore exists a constant

”M

_ E}il.ﬂ -}- GM.EI
 fhen we have

Stw) - €, () -C, M(x-1)= E’ e PON—C F]g (3-1)5)
3£ we choose

S - —i—ﬁ‘

Bow suppose that C, C, - -, have alresdy heem chosen

stx) q-fbﬂ &) —c MlExmn+a)zo ﬁc‘t XL -

-

22 x<m + 1, we vill have for any comstant G,

contd, .
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Sim) = M tm) - c,Mt-u-..-c,,_,Mmm-anw

N {a B(x,m)-¢ k\Fﬁg(_l n-R ﬁ) o p%c:: o) —1{ o
ﬂmacl?ﬂ -CoBn 9cx, ) - *Cﬁnf 9(1,% a)"lf{ nN<R

stnee {) (x, m), gtl-l.lnll. /S =i, ©) are ala (245

/\ splines having the same single knot ot x = n, by

mu:ummm# _ 4, eo that
Bcx-3,m-3) = /U:aer:xw") j-na .

G, 18 ¢then chosen by ecmating the coefficient of § (x,n)

in (2.4.5) to mer. n:mm::jumm-

sion are now determdned by induction. The unicueness
followp fzom the very constmection ef C..

Sorexk l.l.'?ﬂr for any xC R, the aum
SE C_HMCI 1)
m-ﬁnn (k+#1) torem and hence is convergent.

Dok 2448 IE5c Y, and Stx) =0 fiox ®>k-l,
Lhan =00 has the uadgie Xeprogentation.

—
() = C. M fa=l)
% &g-aoJM <

sleke ©;'s aka congtaita
EEsefs Pollowing the arguments a8 4n Thooram 2.4.6, we
poe that 4f S(x) = 0 for x>N%el, then S(x) has the unique

(2.4.6)
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=) k-1 ;
| :d_wtémx-p; S :ESD‘:J Mitx=g)
Now the support of MM}uu.9+k}. hI'-h
for x >kel, Since, by hypothesis, S5i{x) = 0 for x >kel,
it follows tint Iiuohr:>u. e shall now show
that G, = »-—— = c“-lmmm&h
~ proof. To this end, let us consider
L, =, MEO+¢MG=Dt - -+ C Mx-hy)iRele®)

3

I~

1€ 2 2 <=1, then Minej) =m0 for § =0, 1, 2
ke2 and M (melgl) = 0. uI@-na;mmn
x and (2.4.7) then gives C . = 0. Tims

I:l = E e+ & Mlax=Ny+ - - +Ch-q Mex-k+2)
\ wm-mumm%-c‘:—»ﬁquﬂ_’-m
] The recuired representation then is obwiocus.

Our representation theorem for /\-cardinal splines can be
stated ee follous,

Sheotem 2.4.9 I8 S ¢ Y, , shen S heatheuniue

MR <4 's sloaumativks

Emgeft e k functions M (0, [¥| (wel) .- Mlx=k4l) are
lincarly independent in (kel, k) by Theovem 2.4.5 and
m--llﬂzdnlm-mc’l-hm

Sx) == r:a.M =3} dn (e, %)
4=°
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Toml
8 = -I&i—zc‘i\vlm,
g-sn
8, x .{ﬂltﬂ Sor 2 < kel
o for = > ked
0 =) © forx< k
Sy form> &

“mn,eﬂ -ﬂl,iﬂmhtﬂ.t}-ﬂnu
5; (e It is evsy to see that

5, (x) =5, (%) +5, (® for all xcR
mn,w-p for ® >kel and 00 Ly Theorem 2.4.8 we
hawa

-1
Sp i = 5 5 M (=e3)

whore Cg's are uniquely dotomdned. Since Sy (x) = ©

k-1

-1 Ay |
e gMonf)=2 GMe) ez cMed)

xom which follows the desired Fepresentation,




.

20

30 In this chapter we study the properties of the basis

spline N (x) intsoduced in the last chapter, In particular,
we prove that, under the additional ssmurption that the basis
4, , Yy - ---'4 of the mull space K {/\) form an ECT system
on R Mix)>0 for O<m<k.

3.2 e BCLovstan

A gpoel fanoticr K (x, y) of twun veriehles ranging
over linsarly ordersd sets X and Y respoctively is sadd o
be totally positiwe af opder r if for all

or, Ly <~ ~ - Lo, ;'?,{'?'g,‘i"*#wx;ﬁx; (3.1.1)
: o B
e have the imequalitiea e

A ~J?‘C,ﬂw"-. k(ﬁx?i> ,{{,xl ?L) - - K (II'B,M)

3 (ﬁzﬂ-, b ;?%/1-,- KGoy) KCage: — Klaim))s

| K Gii) K Cogs) o Kbmge)

formml, 2, . r. If strict inoquality holds then we 3.
say that K is gixichly totally positive of orxder r.

If a wtally positive function of order r is of the
form K (%, ¥) = £ix-y) vhers X and ¥ are cach the real

iing, £ (u) e sedd to be a polys Sxaouency Succhion of
opder r.

We racall that a soquence of continuous functions
a'f%‘,f’i), Q,00- - - g t=) s sasa to constiture a Chadwahow

contd. s



Sptsm (T - oystem) on & <m<b 4f, for eny set of real
constants EC&?[ mot all sero, hm%ch%r@:%ﬁk
does not vondsh moro then nel tires o the intumval (s, b).
This implies thot the detomutnart

#’, (7)) Cﬂ{?u.) L) A )
[ @ () g (o) o s 59.:_(”1‘} (3.1.3)
ot 0

for all & (%< %, < - - <<lnaver venishes and tharsfons
maintelns o fixed sigh. Py sultiplying the fina) functicn
by & factor 1 of <1, we way without loss of
specify the sign (3.,1.3) as positive,

In torms of positivity, we have thz following @eofi-
nition of & Chebyahev systen,

Dafinitien (8.3.3) set L, .Y, - Yo dencke
contimuous real valuod functions on a closed finite inteorval
[:l- b mmmlhm‘m
avag (8, 5] provided the (n + 1)°% order detaminnts

Wolh)  Un ) -- - Us(h) \
U(f:];f;.-""g)r:_ L{q({}) u;(ﬁ).. u‘j(‘f,,_})‘

B,

= - for

B (o) B8 S () = - --um(fﬁ)
ars strictly posttive whenawer a L L <6< - <6, 4.
., wAll Bs soferred to as a

(or CT-gyetem) 1f &M,M,* _uv}




23

e shall now explain how the definition in (3,1.2)

can be oittonded to obtain the ‘dorived’ detemminant to

allow for erualities cccuring arong the 7, values,
Suppose ¥ = [a, B] andfor esch x (X, the function

Kix- )¢ Cfa, ], p>1 tmtis X (x ¥) possesses

pe=l cortimpun derivatives in ¥. e pow exvtend the definit-
ion in (3,1.,2) to allow for egualities eccourring among at —
most p of the [ velues as follows. ISor each set of emal .,
we replace successive columma by their suecessive derivetives,
More gpecifically, 1£ ®J{3,< <My a L ¥, < H S - YR

e e o kL i
'?A-I i = s A __'?'"'-*"'"b; O = py
then

K*(“r o K

i G T

is defined as the detemudmart in (3.1.2) dlm(l +1 +3)“
mm:‘::l&‘q is repieced Ly the column vectol

aa,g (mﬂ)“o"_ K (x Xo Y-, 2 K(?L j))

‘l‘m 8 K b)= u, Ctjﬁa.u: =t --L.;E = 2t kg

U (e e :

oll) W) (k). u(“”(;) Uafll L O ) G )
W, l6) U)o Ul o ( ) o (-1)

() W (5) .- - &t Unr () Uy Qe o (52
case £, b = - - .=t =% i.e. q =0 the above 1

—

contds e
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detemminant reduces to the Weonskian of the furctions
LL&JLL,!:" 'JH"?"
Beftnitiep (3.2.2) The functiome wila

be called an mutandad Chalwoloy svstom of order p, or an
El-system of order p, Af a b,i=0,1, 2 n

and
7 (2 ;;I‘_T’,.'.?,.,) e

for all ehodees L, St < - Ny (46149 where euality

mhmd“,mﬂlﬂt‘m

»n extsndsd Chebyshew systam of n +1)widd be

simply referrved to as an El-system. If (L, W ... W,

is & system of(n + 3)functions such thak 1, ., - ,Ly 48

an extended Chelyshev system on (8, b| for esch k = 0,1,-,n

then it is called an extended gonplete Chelwehov gvotam or

an ECT - aystem,

Thone difinitions can be easily modified to include
infinite dntesvals [0 ) and (v, ), For esample &
systen of (o4l) Sunctions U.,u, ..., 6 u, 40 & Chebyshev
systemon (o oo 42y, U, .., L., 388 Chebyshev system
for every finite dntexval (o ] where A>o Ses (87,

On the ECT systems wa have the following useful
proposition,

Shcorm (3.1.3) (Thoovss 1.3, p.36 (8] )e

LSt Lo U, o, 4, DRoSolas 7 [a B Then

contd..



Wo, U, -+ ; Un S am ECT gystem on (= b] itang
v Ag fox X =0, 1, m wehawe L/(u,. . - uy) >o
on (o, ¥) whem She smnalden W (U, u,, o, )

MoCt) WoCh) -+ L«,‘i{@

i DN RIERERA CH)

W CL’L{, {’56:)({‘)“" PN ) o= |l .
} e

G (F-om g, ) e v =

3.2 Iecomponition of tha cpematiox A

In this and the romaining sections we agsume that
the basds &, U, .... L, & K(A) fomm an BCT system
on R, That is w@ijui..-u¢](1)>a for all x € &
for ) w1, 2, .o ke It i known thet K, U, .. . L 8280
IM;MW““H& That is

z C-L W, C?ﬁ)

el= I
has ajmost (j=1) seros on R for § =1, 2, . k. where

¢ ;'s azre asbitrary real numbers mot all vanishing sisesle

tanacusly.
Dafine
'l-"‘g:f”-') ‘:L’l*fn)
¢S n) = L«_ur_[ur,u_,_’](f)
o (w, 2]
B RRD! s l:\f]:_m_,}....k?ﬂl:'] [’L)HEL”"”H? ()

24

7 2
m’-:‘ 9"" N ELL;}.-'-‘. 'E/Lgr'__:](%)
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Stnce U, U, .-, L, foms an ECT system, it follows
that %, (x)>0 for esech xCR, § =1,2 . k. Also
Hjé;:l“"tﬂ.j-:hl «ke In partieular w; (x) ¢ C[o,1]
and hence bounded.

Defining the first order dlfferential gperators
B rE®

we see that /\ hasp the factirisation

%
AT S C)TER, o T
and the equation
NE =m0
is equivelent to
%M.I Dll‘.
3.3 . &

et ¢ Dbe a constant such that £+0, t+1 md
¢t is real, Consider the function £ defined by
£ (0 =™ forall x CR

Then £ (x) satisfies the functienal equation

£(xed) = ©E(x) Sorall x CR (3.3.1)
Tho generel elasent of f, | setisfying the functionel
equation (3.3.1) is given by the following,
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Theazem 3.3.1 g moat genorm) olement
50 of Y, | mbiaSving the Sunctional ecustion

5e+l) mesin) A xnCRr (3.3.2)
As civen ke |
swe ¢S EM0x-)) (3.3,3)

7= -G
shae C. is.n congtant.

Emafr 3¢ 8 C Y, | it has the representation
8 (2 -ZC.M(‘.}{'_;?J (3.3.49)
e

by Theorem (2.4.9). If S(w) satisfies the euation (3.3,2)
then we pust have

Z. & M=)t = ey rle)) aam
3,—.5?:- 9;-&:
which gives by the uniqueness of the representation in

Theoram (2,4.9)
Therefore ‘

C? = {:?(i'a for all §
and then 3,.3.4 gives

S0 = C“Dé 7 M(%-l?)

mummg;-nxmun C f, | eatistying (341,
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ROEAniGion 3.3.2 e define tho function
P, 8) == & ] (neg) (3, 3.6)
3,._

and call it tho gmonantial /- soline of busg €.

Loy 3.3.3 if ¢ <o, shen
$ m w¢ M

Rmef: 3¢ possihle, sssme that O (x, & F*Em),
am§ t:.t}efi’ ) + 1t bas tis reprosontation

P (e, 0) = ch)—ri a ® (, 23?**2_%,‘9 &

D=0

where
() = 2(:* w, () €Kk (A)
1€ d;t:.ugc“m.umy_nu A= 0 for
all inte gers 1) so that
P ® = P . i ® =ca

=

Sines W, , U, ' ' K form & complete chelyshav system
n&?l&t}mmtﬂimuﬂ. on the other
hand

%t:q.—z.u-:gt:.u:
nnhu{mgtnummm“m
on &, This gives a contmaiction, mftn. o ¢™m.

| ™his proves Lamm 3,3.3.

Apr——

?Sw = ?Stn. &) ocxgt (2.3.7)

e

—




___

&%

Be tho restriction of P (x, &) for O xgl. Define
PH (%) = n”- nhﬂ sraw ﬁ;%iﬁ ﬂg‘%‘ (3.3.8)

Than
B P s B =B By o B P =0 (s i)
That is
*Z&E—-}-ﬁ
o1 Sy W
oo i
Qg ) = C vy (2 es<=d (3.3.9)

whare C is = constent and W, (x) >0 for all xCAa,

iowa 2.3¢ Deconstank ¢ An (37)ia

Pl  Suppose the constame C in(3/39)1s sem,
Then we have

cPH""""”nd"h-a'“ B‘ftﬂ =0 a (0, 1)
mmmm-zﬁﬁu.ﬂu&.ﬂ sstisfies
the differential euaticn

n‘_;n‘.! R n‘t-u hf?-l]
now using the relation

El:cl.ﬁ -tf&.ﬂ for all x (R
st follows that
B Mg =+ D;%l&tl-ﬁ for all x CR



vhich implies that %t&t}ec’" {R) contradicting
Lams Je3.3. =

lamn 3.3.5 1If <0 and if P hagatlesst
tmzcmain (¢, 1) . she @memua
M@Q.
Emofs Consider tha intervel [9.:] and aafine
D - P

%m - n’fj_‘m =1, 2 .0 kel.
uhere

Hjl(ﬂ .-1-_ !m j"m&-:“
dax

w
You, i£ x ( (0, 1] thed
Qix+2) = ¢ ¢ 0
8o that

Pixa) mny fxat) any ¢ (0 e Jin)
md indsctively we have

I}j- ’dlr’nid?ﬂ M"-t BJDH .‘%(Pﬂ{ﬂ
Tat is,

C%MJ - tf%tl] :GE. 1) for g =i, 2 .. %l
in particuler this gives
ff;m-:%m for § =1, 2, +eukel  (3,3.30)



our essertion is proved by induction on §. Since
the functions -‘tﬁ are strictly positive and continucus
u(_n.q the zeros of _fq__ mmmu%
2™
By hypothesis, Mﬂ,w mummmu[&.a)
and our sssertion is therefore true for § = 0. low assum-
MM__CEE has atloast two sexos in E_ﬂ.l).n
hall show Wt _‘ﬁ_%; mnmmmh&.l).
¥ja
MHMIM

L{M—}-@w J=2, 2 .kl

g @ B2 (70, myomen ¢ (Do .
Again by (3.3,10) becouse & <0, it follows that ¢ ., (1)

m?::lﬂimmumm and

have eopposite signs. This togdther with the
asmmption that ﬁ’g,/w atloest two sars in (C, 1)
imply thet %,,/wmmm:mu [}.:).
mwm-'-timﬂmhmtﬂ( -g( )
has atleust two Zevos in Eu.l.)

Gage (4d) %!_‘ {0) = © and L?.I-I to) +o

How by (3.3.10), we see that ?Ht |} =0 Tms

vanishes both at 0 and 1, Since has
b

3



N

31

atleast two sems in [0, l?.nmu_ﬁ,ﬂ_ s

atleast three sepos 4n [n. 1] o A BseRiitaiG o8 ‘Nilie'e
theoram gives the daul red pesult,

ot Tl oms 4 (L2) o
wow Pt n-uta.m)i?.lﬂp_ =0 so thet

thore exdots & C (0, 1) at which f?’-ﬂ- Thus ff‘
and hence ; m“dnmau Er. 9.
Wia : |
Cur assertion is tims proved, IR particular we see

m%_ hes atleast two sems in [ o, 1) which

foplies again by ‘olle’s theoem that ﬁ}?H has atleast

one maro in E}. l) This corpletes the proof of ocur
lawa,

-
mmmufmﬂ-mm
follewing,

Jhgopam 3.3.65 ZIL

o t <o
shn P (x © nas alede simle sem in the balf
onen dntamved © <x< 1.

ERenis mmmmﬂ f{h e,

nmmftoa mfn;mww“
hense it hap atleast one mero in n.l) « If posatble
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asmme that for €<0, %H has atleast two 2eIos

i (e 1) o By ioms3ns; thn Tud @ nas o sose
in {0, e By (2.3.9), we tava {_; (@ = Cwyn) for
el 2 ([0, 3] where C 40 & comstant md ¥, (W >0 for
all x CR, From this we conclude that C = 0 while
m&&qﬂ-w:fo. This ecntradictien lexds to
m-mmf&z cannot ave sorfe than ohe Boro
u@.t)mu@. m%@ has exactly one simplo
sown in [n.!).

3.4 lads seault on baaig aoldng
Wo shall now establish tlo main resuit of thds
chupter tiut " (x) >0 for 0Lx<k.

First we pecall some oo propestics of totally
positive kerpels constructed by applicstion of generalized
diffenmaing opeZations to the fundamental solutiop of
differential operatorse

m)i‘w_,; (:}v} (A =1, 2, -.n) be a set of n positive
funstions of the elass C° E.h:] and associate with
tham the first onder differential operators

@‘ﬁ) o -d A Cf’m fe1,2 wn

l-lth-.,'th order differential oporator

SRR
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Lot @yt (k=1 2, ..n) domote the solutions of
L., § =0 satistying the initial conattions () (a) = &, (2
and Pyasess Dy By F @) w Ty L W (a) (3 =12..m4)
whore J ., denotes the standard Konecker dalte symbol.
s (7,0 (k=1 2..n) fom e lsis of solutions
of (0 =0 endeo every solutionof | P = 0 emnbo
written as & linsar corbination of the elements in
_{q”‘,u-. Fud « Tat f e ) danote the Sundemesead
soMstion of the differential cpezetor [ .. his means
thet fo r euch &, 9 _ (%, ¢ sstistics the differential
owation | . § =0 on ewh of the intervals agx<t and
t<xgDd and exhibits the chamucteristic discontimuity in
e (1) ™ cezivetive at the point x = ¢,

Mow let O (1), tf’,_,('_h-)} SR ?ﬂﬁf“)h an ECT
eystam of (h+l) Sunctdons en (— o0, >0 ) gonorated by the
funotions w; (%), .. ¢ Wpq (0 of the fomm

" &
w-2 3e4.1)
CPJ. () = L& {:L'}ifwkch) e 2 W @_Dd %-,‘ = o’%f

L‘:-Ff'?.l".."n*’.

These furcticns constitute 2 bagis of the sclutions fior
the Alfferentisl operator L,,HI:D..,,,., Deiy v Dl
lLet us nov eonceptrate on the differential operator of one
lowrozder L . D, D, 0 and 1et Cﬁqt:.au
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its fundapental solution., ~ basis of solutions for
LoUh=0o ““m{c,m.(n)} g =l v
m 3
L = <'.=<ld‘<%<ﬁ<‘: — . . AEmEmee ‘LL:’

be a sxmernce of fixed perl pombers cuch that

Zh— > oo lietofiE=— =t
rofine P )P (n) oo v B (i) Gn2)
(0 i) f(m.) %(xm) P (i )

- (2. 4:3)

Bxn) ) RRACEOEACES)

c‘ﬂ (K*)sz.(}t“‘-) T Iy Qﬂ(.m&) CPMN {HA')
Cf; (x.-t'-f}) ﬁq)m_(h\iru) S ?ﬂﬂ("‘dﬁ) ?nv” (Tuﬂ

pile) =

“‘--F'"

for Lﬂ(l***"’?) CP-;_{MH-m) 4’ @{A‘!-'ﬂ) CB. (’i..m

Az g gl Ll oy
=== sl @, 1,R, " - s — ol pduh
Then we have the followings E;<

Ihgoren 3.8.1 (Theoren 4.1, p.527 (¢] )
e semel [, (2)40 sotaliy sositive on ¥ = T som
3 -{m. s olly oy O Ky B .......Z
and Tw (—Co, o N

We now prove
Ingoxen 3.4.2¢ IS a(:ndxl. shen tio adaibpade equation

MEIA MG X+ et otats
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)v\&q(&c) = )= 4’)\!(5{)(‘:&

T astablish Theorem 3.4.2, we £irst consider the

sequence v

{P‘T @(42))} {3.4.5)

2= —CO

of the coofiicients of the emation (3.4.4). By Meorm
24,1 whtah noteblishes ti® total popitivity of a ssuence
of Begplines o Chobyshew gystem, when transiated into
mm*mmim (uf-,c.z?_')jm o is a
totally positive sectience. The laft hand gide of (3.4.4)
is the generuting Sunction of 'WT(E{'-;-QJE and
coneerning the meros of functions of tetally
pusitive secuonee, we have the following reasults.

lammm 3.4.3: @ 0 Lx< 1. Lhe amation

M EOX 4 MRS M (D w0

heag all its xogts peal agd necotiver thov sz labsiled
a3

ANE AL - "\‘g’\jkjii%m:

- K2
laza Set.4 @ Tis ccuation
P 1CD /';\%Li ] Cﬂ)ﬁka 4 T1&E-) =0 taem
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mmzx Remtive and xeal: hav ame
- 5f el e 7 .
)\L&_S )\%_;ﬁ é)\Tgo (3.4.8)

These lammag are & very special case of Theorem
Se3onp. @120f (4]

Thus to complete the prvof of Theorem J.8.2, we
nesd to prove strict inecmality in (3.4.6) and (3.4.8).
Cloarly the mots A (><) end /), @0 not vanish
mm@ﬁ%_,)#gm O < | « Fozeover
A ¢ e Co,1) = Yo shall extend this dofinit-
tonto ([ 0.1] 1y
/\j Co) Ly 13‘=L~~'-‘*'~-'?;/>(HI(“¢):—D¢

DI
/\2_,_(') =X "}1“?;"“'{““[; AI(") =

SRS

(3.4.9)

Ten A (<) sre contimwus functions on Cﬂ.ﬂ such

that .
N ED—> s anael s ST
Lamm 34,5 AL o<~ <, </ 88 o<, <<, <

e D\ (<) == A (<) (3.4.10)
shetheror pot 4 and §J ske dlatingt.

Bngfs Aosume that (3.4.10) does not hold and suppose

)\LG’(J = /\?' (<=) :/\a,('é-@) (3.4.11)
o arrive at a conteadiction. Let O (m<i, Then
Gt 3 L% Docense 0S§ < kol
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tiow 5 ,}' -9
@'(xj)b):d‘z g4 )= _Z N, M)
| “hoy
, TR 3"4{**3)
—Ch-—D;“ h-1-9
x KD 32—;7‘ ~7 {2+ '&L) (348.12)

Siace T (o)) 40 & mot of the ewation (3.48) we
find on Jetting x mo(, in (3.4.,12), that

@l = @ Lo, met)

= ?E(um"{ﬁ 2 h Q (=) M (= f@) @)
and eisdlarly, m--oa,u (2.4.12), we get
i _(h- I"!I& k-1—3,
_% Co‘fq,}‘) ?‘\G{.{J é‘é:._ . (a) !\ﬂ@,&-}?) @)

Tus wve havae

;‘;@{1,?5} = _@T("fq; r=0
whers N <o amd O Lo <oy < I giving two
distinct seros for () (%, t)n [0, 1) . T™his
contmdicts Theoran 3.3.6 and our leern is establighed.

He shall now complote the pmof of Theormse 3.4.2.
It follows from Lamwa :l.t.sm% () is strictly
ronctenie in tho closad imtorvel [n. 1]. Ao by
(3.449), wo have > (0) = ), <owhile [ (1) =0

contd.,



o tat A\ () LA () onaneme) <D 1o
strictly increasing. murthor X, (o) = ,‘a <)\ =X,(1)
iy 1omen 3.4.5, /\Cp)./\‘;\ Ct) o Tk ')\<‘R
and P\é@ummmmm

momner, we sce that /\@@summna
m)}! )\ blﬂ}).“

)4)“_,@4 )---A) o tor 02

_!_ 3 ’
%M(’Am‘{\ s /\1<C'7
Letting S50 S Tasws 3.4.3 we have the
following.
Somliaxy 3.4.8. oo anation

M@ DM @A™, +Mmd) = 0

bas only mecative and sipple roots clven by

7\:“4}\_!-34 i N O

#g shall now establish tha final vesult in this
m-

Zheoxem 347 N> 0 fx olndlk

Emefs %o have proved that striet fnecualities
hold in (3,4.6) and (3,4.8).

polynonial

PCA) = Méc‘))\—f-f\q@’-—r) . 4 ML)

Since all the zorws of the

contd, «
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are simple and negative, it is essy to verify that all
the cocffdeients 1) (x + §) bave the same sign. Bow

M@)s ﬁo@ €6 o) for 0 {2

and we have alfeedy chosen P> to be positive. It is
Joown  (Seo Lame 9.2 p. 437 (8] ) e e 4 - Uy
forming the basis of ¥ (/) is an ECT system on R and
@Qx,f;)ummxumdmm
of onder k , then for

% L2y <Ry
éﬁ1<c;1< <E§*,

whore p 45 any mtural mmber holds the inacuality

d CACENCIY ”:'-'. >

always and
/N et
rﬁfn Q’C}{-L«ﬁ?) H; 92) >5:::-
g I =
£f and only 4£ xi..ﬁg(:gﬂ;{xa;)-‘::—[,“““h ;,fglﬂh,..*.

b&u,-f:\-.mmu
6 (v e)>e
i€ and pnly 3£ “C:-L). Tius we conclude that i€
0 (oc<l 1, then [0 >0 and hence MEgy)> 0 for
§=1, 2,- -, ke, This shows that !““lw)nm

§<{ml3++ 1 Sor§ =1, 2, }=l. Conuidering the limiting
-up(—>c3ﬂhhthmﬂmm
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CHAPTER IV
BIE INTEACIATION PROBLEN
Statopent. of the prmblem and 2 noelisinaxy snsver
~ The problem of /\ -cardinal spline interpolation can
be statad as follows:
Given a socuence of numbera
¥ =(Y%) ,2z0,xlt2,-- - (i)
being rosl or complex it is required to find en SC Y,
S(2) e §  for all integers O (4.2.2)
We have already seen that mxy S C ‘_—FAJI s the
representztion
= A
{0 = Plw) + ZQNE;C%@_{_ZD a o (=X, )
b ) i | Ye.eq ¥
R
Pl = > b W (0D € KON
= Ee!
Wy, - - , Up fSorm the basls of [ (N )
I2 0<¢xm<], then
8(x) = pix)
__ 1

Blo) = rlo) and 5(1) = p(1)
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Ha sslect Rix) € K(N) arbitrarily such that P (0) = Y.
and P{1) - e Having chosen P (%) satisfying these two
cohditions, for a solution to ocur problem, we must have

N
%y e 8(2) =P(2) + o ol2,8) =»? (2) ¢+ 0 (2,1) O,

which detorsdnes (| uniquely. Thue for 2 —= 2, 3, we
dotomsine (., - _ successively and uniquely using the
interpolation condition

8 (V) -y, Eoxrall integers o
Simdlazly SoFf ) — i, =2, - — . , tio cosfficients
A, &, - — . aze unicuely detormined,

i | '-']J

Since Pl € K (/\) seatlafying #(0) =y end #il) =y,
depends on (ke2) paremeters we have proved the
following.

- f
Eﬂ’nl lgekaf“u, g(m}-ammm::;i

h(jﬂ} is & linear subspace of J, | of dimension
(H)uﬂmm“nﬁnﬂhum
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% chall now obtein a basle of F, .
e have already soun thot
e = 2J
Pmerw 2 L ™M -) (4.2.2)
-

is the oot generel elerent of Uf, | cetiefying
@H.ﬂ-ﬁ‘_@t&ﬂ for all xc R

In pertienlar
P .=t ¢ o.w (4.2.3)
for all integers) . If wa defing
3 = &)
Pix ) =
g (o, &
for those ¢, for which 3 (0. &) /=0, en

2
riY, el =t for al) imeegers V

Thus for ¢ satisfying P (0, 8) - 0 we see that
F(,6)€ Y, | and dnterpoletes £ (x) = €% st the integersy.

3D (o, ) w0 for some t, them § (2 ,t) =0 for
all integers O by (4.2.3).

Row

e T
= EZL_ E - ™))
at_._(_h- }} ?\q(:;a i 3)
m-H:l{oo tzl;nx we have 3¢ G0, ¥) =0 then

_>: t’Mtu-gi-o

m%qmmmmmu



oyl -- <% <o
Tiis we have

Plont) =0 txemyy, By - b,
sefine

P, G0 e Dlm bty Eel, q-wd. (628

H 0
Taeegm 424 (P9 ., Smelaseot! |
Pmmef: Oy de2inition, v
B (D - FEN) =k, Flobn)=o

for ail integers 2 and hawce r'{:ﬂe(}ﬂal forx =/,

5,2, voo We2. Simcs F |, 45 of Gimension ke2, ®
establish our theoem it is emough to prove that P, (x),
Py (B <eess Py g (x) Bre linearly independent. To this
end, let

F=2
e b’ Py () w0 forallix C R (4.2.5)
jeul

Mbj'amm Wg have to pmove thst

blu—— -hh-l = 0

From (4.2.5), we have R.3 LI
SRRl e et D
a: oy 3,—_1
— %{ [33?_ L; M (x-2)
= L




for all x, implying that
Tow2

5 |
}:l"_jﬁ o forall integers 2 .
=

In particulagp,

2
Z ."j -0 Vo= O s 2, cow T3 (4.2.6)

Mhmmmm.{htb_,a—— € <0

Hence the homogeneous systen of equationg (4.2.6) has
only trivial solution, Tus
b*-h' - - - = h“ =0

and cur assertion is proved,
Since & (o, &) = © for exectly (ke2) aistince

negetive values of ¢, from what is discussed in the
carlder part of this section, we also have the following.
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Deovas 4.2.2¢ JEt> 0o and ¢+ 1, ghen the
nntcue elemert of Y/ shich Antemolstes the data

e
stxteredes (¥} _  issmiovely detemsined se
Fix, ¢! = —h#'a— ECR

e P (e € isdedined lx (4.2.2)

eife 8

4.2 condition fox woimengss

Gonsider the Sunction O (%, £). By Theowem 336,
ve know thot for €< 0, { (=, ¢ has exactiy one sirple
sero in [0, 1) . In partioular, choosiny t = <1 and
setting

20 = Ehdi
anlwmm-u-bh“-ﬂ%
D4 5<4] o Clearly © (mdd) wek {x) forallxc R
go at B (x) is periodic with pericd 2 and honce bounded
on R, Prom the relation

El{x+)V) = l«--l'.ll:.J E (=
it follows that

E( +2) =0 for all Intagera? . (4.3.1)
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Considering the duta of power goowth we have
Zhaoron 4.3.1 : Junigeg

du = OU'*‘“S)lI'JJ = £ o2 Sox some 37 o
and aupooug our dotanolatd n oroblon Lac g goition
S€Jn mutetving she Suo conditions
W s (V) =Yy Zoxall integars v
(44) s (=) -Oﬁ_(l‘:ﬂl&) Gy I = X o0

Zhen the solution As unicua.df and oniv 4F < =~ C yhame
%, ssshogewe of ® (%) pegkioned shovs.

Emofs fagosgity. If posaible let & = © . Then
£ () =0 for all integere > by (4.3.1). Reing
periodic, & (x) is also bounded on %, Let SC FA )
be the unique solution to (1) satisfying (i1). low
conaider 5 (x) +c B (x) vhers ¢ is any constant, Then

S(x) +e 8 (9 € Lfmxlﬂ

(V) ses(Y)= 5(2) =y forall inkegers).
Moreover & + cE is of power gmwth since 5 is of power
growth and E is nunded. Thus we see that for any constant
€, 2 (x) +oR{1 is a solution to the interpolation problem
(1) satdafying (11) which contredics the unimeness,
Hemte C F0 o
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Sligiengy: Asmume <, 4o « We shell now prove
. the unlquenass. e have seen that tho mesos of O (o.b)
ere given by

ik <

I >, = sl formmed, thenm & (0, wl) w0
Smplying zic) =0 which is mot possible because the enly
‘mem of = {x) 4u [0, 1) 4s diffogent from Berd by cur
seowption, Hace ), + —| Soreny ( . We can
therefore find & p 1. p< B2 ouch vt

‘Fh -1{?1'1-3{“_ Q?F{~ILFP_F‘- < <o

12 possible let 5, and 5, be tw Alstinct eloments of
setisfyiog () and (52), Mow lst S0 =8, {0 -S,(x.
Than

8B € Sjn,l
5 {Y) = 0 for all integers »

and

Sl =9l xd3)sexnx >t
T2

¥e have almedy sson khat {rliﬂ}“ fom a basis
of Soﬂ,m where <

I'jlﬂ-Et&‘?*j) =0, 2 eee Bl

mﬂwﬁhﬂm#hh
() = = v
i B




4.8

mm-":mmmmu.

let us Dow consider the behavicur of P,(x) as

R tco o First we motice that for esch 4 = 1, 2, - ka2
we have ]

Py (xef) = 7 2y () (443.2)
for each integer j and all x,

lot 1<{il{pel. Then by the choice of p, we have
. AL

3¢ memm | | >

Mﬂ“ﬂﬁllmﬂﬁﬂ”& such that

LR S|

\ ?‘;_I > m for all 7, M,

and ugsing the relation

Py wen) = > Bylm = (%)% ry @

wo ses that

]rih-ﬂ > ot |y (0| foralin>m,

Fixing =, uﬂ—uMmm-'-m

Mi“}&hlﬂrdlialr Set Ny, mmax (", M2 ),

Then
|2y ()| > n° % | Py hﬂb{n-nf"" P, (x) Sor a3a n.z N\

which ghows that s
(Plp] >l K, a8 45 cofsradl (433
where K, io @ constant aml 4 =1, 2, .. p=l. Hut

= E
m

and
8(x) =0 (:i ull.jr’,‘) s x— TcO
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mﬂmmhm““’hn.‘“h_
for 4 =1, 2,- - pel. Hewe 5(x) redwces to
k-2
) = > O.LPL(:()
ﬂ:_j:-

Vow sippose p <4 < he2, Them | N |>| and so there
_exists an integer ™ M“thi’"}ﬁf[hmwzfn&_
using the relatiem

Py lx+n) = ?\L‘p‘(ﬂ
it follows that

Py (xemd)| > 8®% oy 1) goradin m,
~ Choose n, sufficiently large so that |%em| <2n forn > n,,
Setting N, = max (ny n,) wve see as before
Py tewmd | [2m) ®% | 2, 0 gor @22 vz Ny
o

from which we deduce that

S+
RAED) Z\gl Ka sy 500
M.’h.mmm"’l“l we lmd,
This together with the fact

1"’,|<R1114 a8 %X — +c0

shows that a, = 0 for 4 = p, p#l .. ke2, Hence S =
ﬂnﬁ-l’m&-ﬂmium
4.4 mmm

Cur result on /- capdimal spline interpolation mey
be stated as follows,
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Theorem 4.4.1% Simpase he given dota of bisseuence
{9 ) matlafies

Ha) :OQ:ulE) a8 >+ MREmpE 37 0
Zhen there exista o wniqug function 5 (% satiafvinc
L followdna gonditions

1) 5 (2) =9, forall iokeosrs
() six)ec A,

44) s 0 =0 (135) a3 =5 + AL 2nd oplv 48
¢ sFosham ¢; Aathe zem mentioned in Theopam 4.3.1.

Proof: lLet us supposs that the solution to cur intesw
polation problem (if it exdots) 4s unique so that ¢, 7o

Then

7\&_1 < ?\Rﬂ{h = ?\F{ﬂ{ ‘r\F_!c- - < NS C

where p is defined in the mEficiency part of the proof
of Theoram 4,3,1. These axe precisely the zeros of

P 8 N (leded)
j=o

Simce >, = —| for any 1, it follows that £ (s) has

m zemseon 3| = | H“%[{—g) has no poles there.
Then we have

Sl RS B :

(162 e (4.8.1)

the Lourent series on the right hand side comverging in
mm]??,_,\{ 13 | < 1?\1,_.,] containing (3| |
This implies the existence of an ingquality of the fomm




.

o1

~B )
lwyl< P e for al) integers U .  (8.8.2)

Where A and B ape constanta.

Cleazly
STl (SR T
Y — 7

'Zy w M (k-t-u-c}‘): 0 ‘{v‘z “:ﬂa“ma 6

Defineg —

= ;uzm =Ly PICk-1v) g g

_ . r] o ‘E}.:ﬁ:}
LG £ 3 ey | | MCk-1-2- 2]
S0 e e He=s

L
Zy-x-1

42 LS5 [wa_p | ™M k=0
T Uz —RBw
= e
=i Ce s L
‘ = K-t e \,{) 2 YES =
Flnd‘l‘it X % el wa hove
=

’L‘Lj:)l < GHAC D}J‘g_b_#lix = K‘i o

Thoas  use ser that Sor appmopriate constants X and B
| — Blxl
L] « Ke for al2 xC R (44824

contd,,
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fimce 3, = C, | ie also unique.
Tus [ (x) defined by {8.,4,3) istie unicue

element of . | satisfying (1) and (111) where
! FENE =)

T :'ifgg 2 0
which is a bounded secmenta. | is the bagie function

for our irterpolation problem,

tow define with the giver sequence ( 1 )

Elx) = 5_;_ %:u T (4.4.5)
“ﬂ“ﬂﬂltﬂtllj,-‘j? for all j§ and that
sie S ®

low we prove that 5 (x) defined by (4.4,5) converges
locally uniforsly and that § is of power growth.

ainee the given sequence ', 1s of power growth,
we have

1Y) 2B (137 +1)  forall integers 2 (4.4.6)
g0 that
[sigol < Z—H}le | L Cx=2)|

gives, ueing (4.4.4) and (4.4.6) that
—B |x- 2l

_ S

[SCGO) £ AKZGM)e ™ “goran u & tutn)
and the geries on the right hand side converges unifofmly
on every compact gubset of R, Thus 5 (x) converges
locally unifo smly.

contd. .
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It remains to show that
E’u: g JeCx=pi) = OQI-F&) 03 L 71X 4,4.8)

nﬂlhud (4.4e7) it 15 encugh to show that
o= () B'“‘ﬂ = OG\.’LFD (4.4.9)

Wy will only prove that

OISO - —
S e 2| _ Ox5) b X 5O (adalo)

=0
The case when X —) <~ fpllows in a similar wvay,

Yow —a| S
Sl G iREeetil s I el
ZC{-} e 3 = e  ur(2Z)e
D=1 LSS EH 2> A~
—B | x-wl e —BF-Al
4 Ze _FZ":JS:LE@,.B' 5
S AH I o
s — B (-3
= OC_D"F}L = 2 e
7 X4
= S —RBvu
ERED =t &%1E Ve
20 > A

1f we restrict x o thg ¥ange Iéi, in which the
m:f.s e‘%l is decroesing and colvex, them
we may replace the last sum by an integral and cbtain

oG
5 Bx s —B¥ _s gx g —B8k
Blhe S oie i j €e dt

f LL)S a u
(14 e
conttd..




S+

by the change of variable € = x + u. The last integral
being O(1) as x .00 , wa see tat (4.,4.10) holds, This
complotes the proof of the theorem,
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GHAPTER V

(- PERPECT /|- CARIGNAL SPLINES

Se1 2in extzemal pxoblem fox & perfoct /\ camdinal splineg
The contept of /\ camdinal gplines, where /\ iz a
lincar differential operator of order % with coefficients
contiruous real-valued functions on R has been introduced
in Chapter II, Here we consider a muboet of this class of
/- cardinal splines. These will generalime the coneept
of perfect splines studied by Shazma and Tzivbalario in
(23] . we further dtemmine the element having the least
t nom {defined below) for & given real ¢ (which is none

zeve) in cur subelass,

for the sake of completeness, let us recall the linear
differential operator /\ , of order k, defined by

kel
N o e > .,n’ (5.2.1)
j=0

where 8, ¢ o (R, § =0, +u Bel. Hers ¢ (W) s the
clase of real valued functions o R having the 3™ derivestve
contimious. The mull space X (/\) of /\ 45 a limear space
of dimension k, Let W, -- ), basis of X () and
further suppose that (L, Lo, - - , U, fomm an 5CT system
on R, With the notaticns as earlier, we ses that if we set

l'.l“) = n', nH seam ﬁ $»3:; %%

then
A =W ) g O cee w00 D' @ o

contd..
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vhere
'7“‘” i!‘lﬂ\l’{ﬁ u.-lk{l)?ﬁ forxc R,

It is clesr that ﬁ e K(@unnmun““ £ =0

farther move
o' u; wo 123 /4L )=t 2.%
) (!.1-3)
" “ -"’“ j'l-lon-

Ror £ = =l, 0, «o W2, we define the class s‘-{st:ﬂ}
oonsisting of all functions with the following two

m
@ s ) cc®

f42) 8 (@) ¢ ® (A) for V<x<v.foreall integers 2/ .,
Mthlmm“ Tefineg
Sh.—_{SE Sh Zf)h‘ I%{;:F) fwhtﬂm@w)hrmmm
&tnmmm

Datemnine S(x) C Sﬁ?}’mth“
where

= 5Cx)
“S“t,w . ?ﬁfiltfﬂ

where (%) denotes the integral part of x.

S¢2 £ pROpeERy of tig catioual olution
te ahall now prove the £following result amalogous
to Theorem 1 of [ 31]

Zhepmem Se2.3% JE F € 5, m.-f-
WF ES ﬂ.ﬂu

contde.
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2 21 F
= \ €0

and
Fixd) et 7 () Zox @il = c R,
Epopfr Comsider the saquance {'n {ﬂ}ﬂm

given by .
r(:i-+ gt Fixed) mwmi, 2, 3--.(5,2.1)

Than
Tyl 1 2 g e
S.2.2)
T T e (G {
Lo
mm-mmr weS « forsover the

Pepresentation (5,2.2) slso gives
MEse e o

Usging the standapd diagomal pIocess, we can select
& sabgoruence convexing on A and unifomaly on esch
£inite intasval, ummumwrmm
it is advly ebwieus that [ (-Oc S, n-lili-‘ l! *‘if
mmmmww{ }

@nd observing that
D=l

5‘-“‘-’ 1 S FPilx+4 +1)

o (] " jo e BAL 3]




Clx+D Flx+a) SETT ST

! = e e = e
_"':’{ t ot 1] T oo p g Oy 0

Singe the t=nozm of 7 is bounded, we see that the last
twe terms in the right hand side of the last line above
tend o Zep a8 . —cO , Tms taking the limdt as
Ty DO 4 we heve

7= (:el) B _{x)

tmj — tflj
wihiah faplies that

Fiea) st P 0

This completas tha proof of the theovem,

Se3 Soue Spocial waaad
We shall now considor casas feg particular values
of r and which are of gpeeinl interest.,

Same l v Men X =ol. Inthis cage there are mo
cuntinuity Fequirements. &fmoe (L, ---,4, 38 @&
emplete Chebyshev system we can detexmine ¢ - - ,C,

uniquely so that
k-
ig the unique function having the least supremivm Dorm
on (0,%] « I 0<xL 3, then
contdes



o V(0 = win hrthMﬂl:'t
ow, define
7 = P (x 0<im<l
-t”rle Y X< VUl
for all integers 2/ . Then one can easily verify that
F (%) defined by (S5.3.1) is the unique solution to the
problen.

(5.3.1)

Case II r = k=2. In this case

’:.t .{:ee"’m: %V 5 -tmq‘(ﬁ in (2,2 41)
for a3l integera . %cﬂ adl L}ﬂﬁ,,em 1,-'}
Congider the exponential spline of 6%.cles R to base ¢
defined in Chapter IIX and is given by

P (me) * g eInta-3)

Ju=c0
Qearly, P (wt)C S g and satisties
¢ (et =td(xt) for all x ER.
Let us dencte the restriction of ¢ (xt) to 0< x<1 by
@ (% ana let

P fopy 0 =2V D)
dvidently

By Pyey 0 =0
o that

CPH‘ﬂ = e (x) in (0,1)
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We have alrealy seen that C:7:0.uWithout loss of generality
we may choose C w 1 and thea we have
Preg(® = 4 (0 1a (0,2)

If we define

(0 =f (0 o0<m<y

F(xel) = tF (0 for all x c R
thﬂl‘(ﬁél:::mhth-Hlﬂﬂ-ﬂﬂﬂ
satisfying

F(xel) = tP (0 for all xcn

Zheogem (5.3.1) §hem r = k-2, them F'(x) defined

by (5.3.2) mm.ug': that minimizeq
£he tmogwm, wig..

(5.3.2)

5(x)
181 e, "\*m
BEoof + Sase () £<O. et 0¢5%3, wien
| @ gul!i®ly + Setting 8(x) = F'(2 = G(x) we see that

0 25(x) «0 48 (Y, 2 41) for all integers .
u-lﬁa"‘{ﬂ g0 that it can be represented as

k-1
8% @« 5 GV lw) forall x€ R
i=l

the congtants c"-mumﬁr determined. Since
ug.uz...l'h-mmmun
S has atmost k-2 zercs on R. From the relationa
2 (xa) = e (0
and
w26
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it £ollows that F" has oscillatory behaviour in succes-
slve intsrvals and hence 5 must have infinitely many
Zeros on R. Thus we must have S(x) =0 for all xcR
which proves the result.

Sase (48) € >1. Oonsider ¢ (xt) forO<Lxm<l.
We know that }5{1.1'-3 =t ¢ (0,t). we have alreaty
proved that ¢ (0,t) is positive for positive t. Since
>0, we conclude that O (1,t) 1s also positive. ow from
the representaticn.

& (%®) -F_“t Mix=2)
We see that, if auq. chen

Tlt) o 3= o maer) a0 gl
1) = ={k=1) j=o
80 that, bscause (t| <o , _@t:.t) =0 for0<xz<1

dmplies that
k=1
> thxket=g) =0
J2
342
it by Theorem, the egquation

M) A5 i) 2R L M ke1) « O
for 0< < < 1 has onl

mB(-ﬂr"? ¥ simple and negative yoots and by
lllﬂ‘;»ﬂhrﬁéx{h Tus 1£¢€50 amd 0 < x <1

we mist have

i
i» M{xqk=1=]) > 0

wvhich shows that © (xt) > 0 for ¢) 0 amd O<x<1.
Usiag the relation & (xel,t)st £(xt), we conclude that
P (%t) >0 for ¢>0 amd xcR.




Hence ¥ (x) Gefined by (5.3.2) is positive for all
RER., If r'(ﬁft':"] attains its maximum value [ in
[©.1] at x, then since this function is pericdic
with period 1, we have

Fix =)
T, =) -f for all integers 2 .
t

R=2 ol
How let :g'n.tm hell o < [la"l goo=f @d set
S(x) = 7 (®) = G(x) as before. Then it is clear that

o < | alltmé 2F

and in partieular, we have
0 < M
tf_'.-ltj

(Rg=)
Howt S O0as ¥V =<0 gince t>1. This would

foply that S(x) 3 0. That s 7 (X = G(x) for all x cR.

< 2f for all integers ¥ .

Sase (1id) O t<i. Here again, since t>0, as
in the Case (41), it follows that F (x) > © for all xc R

ani that
= I‘i‘?‘-’}
‘[%-']J]

-l
Now we may let 2 —; —oc0 tnﬁu.int[g'_; o"“a-h
since ¢ < 1 and then we get S(x) 0. Hence P (X = G(x).
This completes the proof of Theorem (5.3.1) .

<~ 2P for all integers L .

(CF=]
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Case 111 Mr-ﬂm.’w =0 for § = 1,2,... k=1
in the definition of /\ go that A = D°. In this case
we easily obgerve that

"w-}ﬂ Leli 2 see k

"‘ﬂ -."-l j ml 2 see k
and
1 D “ .u’- 1".. J ’ = L&tc- k.

iy (=2
Wo cobtain the extremal spline in an explicit fom.
Theorem 5.3.2. 1f (¢ 7‘: and sSgant = t-l)'h-_'
then the unigue ¢-perfect spline S(x) with the minimum
t-popm 43 given by
—m—“wqﬂ costh-n)cosHn)  0<x<1
= =
3, 1 4 ) =%
S(x41) = tS{x) for all x¢ (0,1

m;(l ma'—;———ﬂil-!l

Q{k=1) €

The prcof here reduces €O that given by sSharma

and Tgimbalario and hence cmitted. However, since it
reduced to a problem of best spproximation for pely=
nomials on the interval ]:b. 1] » we shall give
in the next chspter an independent and altemmate
proof uging the method of functicmals.
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CHAPTER VI
O A THECREZM OF SHARMA AND TEIMBALARIO.

6.0 1In their study of cardinal t perfect splines,
Shagma and Tzimbalario |11 | proved the following
rasult an best approximation.

Suppose t is a given acngerd real number. If
J&| 41 aad sga t = (=)™ then the monic polymemial
P(x) of degree n satisfying P(1) = tP(0) and having the
least deviation from sezro on [0,1 ] £rom the class of
all such polynomials is given by

Pix) = cosn o8 (——) 0<x=<12
wvhare
Y M Y
H{meok (= cog " =)
2n t
We shall now present an alternate proof of the above

result using the method of functiomals successfully em-
ployed in the study of extremal problems by Voronovskaya [13].
6.1 Method of functionals

We shall now recall the relevant results frem the
theory of Vorenovskaya.

et C [0,1] dencte the class of all continucus
real valued functions ca (0,1 eadowed with the nomm

N €l = max |£(0 ., £cC@d].
0<ix<1

Then Riesz representation theoresm asserts that every
contimuous linear functiongl F on the Sanach space
€ [0+1] has the representation




<H)

1
"D = J" g(r)ac(e) fc C[0.1] (6.1.2)

O
mwunwumun-umm
I = -j |ac{t)] = total variation of < .
[¥]

It is clear that ¥ is corpletely datemmined by the mo-
ments

1
M = [ et KeDo 102 ou (6.1.2)
0

A function @ € € [0.1] is said to be an extremsl function
for the functionsl ¥ or for the sequence (6.1.2) if

max |O(n)]| =1 =d HD) = |) P
(©.1]

hm@'uﬂﬂm-!m*m.tn
n

Pl = 5 ‘l."‘
1.0

with real cosfficients is a finite dimensicnal subspace of
€[0.1] . A Ascessary and sufficlent conditicn that X be
a linear functional on (5 is that there exist a set of
(B4l) real munbers.
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f‘L-. /‘i; ces /U.- (6:.1.3)
such that
o
'.(h." = Z_‘ru"a.‘ (6.1.4)
i0

n
whore p_ (x) 155 ay.x'. moreover £, () = /4 for ked,l,...n.

m@_nmamm F, is alvays continucus
and the nomm of F, is attained for some polynomdial @.
with | Q_ (| =2 and 50 the extremal polynomials always
exist. By lshn Banach extension theorem, every conti-
muous linear functional defined on(f) e be extended

to C (0,1 with the preservation of norm . Somstimes

we also write p (/) for % (p).

The following results are valid.

Zheorem 6.1.1 (Lewma 1, p. 304, [ 7] ). Ihe
function () (x) = 31 is extpemal for F 4 and only 4F
(&} ig wonotonic.

Iheorem 6.1.2 (Theerem 1, p.305 [7] 7 Theorem 1,
p.14 (23] ). da_opder thot a polynosdal p,(x o 41 is
m:.}umwm
dotegrating gunction X () is a step function with 3
floite mcber of digcontimuities oo [0.1] . Moreover
She polots of digcontinuity of o are smong the pointg
i [0,1] ghere the extyemal polynomial takes th
¥Yalug & 1. 1 Gge Oge -+« S age the points of dig~
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soptinuities of o (hersaftor they will be called modeg)
228 0 30 Jg0 +2. 0, a5e the corresponding jusps, them

g2y polynomial p gach thak
pax  |p(w| =i |ploy| ek plopd e
@ﬂ E w102 oco 8
48 as extremsl polynomial.

if F, is the gegnent functional given by (6.1.3)
and erb.... a—.mmm-dﬂwu
the integrating function o with the corresponding jurps

J”I. é:. we have the defining system cf linear
euations
. k
Fa% > cada ReDo 1420 o 8t (6.1.5)
iml

nmmz-um&m&-@&
then ths extremal polynomial is unique (Theorem 4, p. 308
C717 ¥e mum:--tu->§+m we say
thet the segment (6.1.3) is of class II.

Lot @;‘u.mmauﬁmn. we pick
on [0,1] all the potuts (%, ot witeh G () =21
mmmmﬁ" the sign 4 or = accopding
as @ _(S,)mil or =1. 2 interval between the nodes
(e G o) is = intesval of repetitica (altemation)
1f the signs associated with G, md o . are idsntical
(Gifforent). 1If p and q respectively dencta the mnumber
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Of these intervals, then p + q = o~1. Noticing that

in any interval of papetition, there is a point of extre=-
ma of (), which means that there is a zerc of the deri-
vative, it follows that

s +p<mnasl (6.1.6)

The triple [ n,e.p]| 4s called the passport of the
polynomial &_.

consider the class { G, (x) |  of polynomiale
of of class II. mmmmm.;r‘mm
the caly enes from this class of passport {B,nsl,0] .

We recall that the Chelyshev polyncmials on (0,1 ] are
defined by

%,(x) = cosn are eos(2x=1) o<m<a -
However from the polynomials O/ (X) of class 1L cae
e oitata a family & (axsd) of such polynomials with
0Lex + DL 1 for 0<4ix<1l which aleo imply that
|a| £1 and 0 <b<1. Such a construction is imown as
a

Refinitica 6.1.3 ¢ A polynomial O, of class Ix
is called primitive if

B | =1 |Qto-cd> 2

]@\1(1.)[ @l \Q-(lﬁ_)i}l




for all mufticiently small £ 7 ©. If the conditions
of primitivity holds only at one end of the interval,
the polynomial L& sald ©o be gemiprimitive.

Abgerem 4.3.4 (Theorem 38, p. 82 [23]}. a2
solynopdale of pagsoogt [2.m.0] g [mem.1] gre

fsmmaticns.

There 1s 2 close connection betwesn the extremal
pelynoniale of gegnent functianals and the pelyrcomials
of least devistion whose cosfficients satisfy linear
relations.

Zheoreis 6.1.5 (Theorem S5, p. 333 (13]). 3£
mseng the polwendals {%,(0 ¢ of deqres stmost n
with Fesl coofficieuts sbjection to the condition

S b‘l“{‘-l ({709)
i

mﬁn.mmtﬂg:m

ool sashezs s (%) geactes the polynomis) of leagh

mﬂ[?-ﬂ md Qg fe she extremal polvnemial
unct iongl {0(‘:,. ghen

' aﬁt. e &

| 5
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sinilarly smong the polyncmials {r.tﬂ} waose

ooefficiants satliefy two consistent conditions
o n

S5 p‘ﬁ-nm S bgVy = B the one deviating
10 i=D
least from gero on [0,1 ] is given by

Iheoren 6.1.6 (Theoren 56, p.138 [137).
3£ 240 and B0 gnd 4F O (% 0) i3 the family of

st sesgl polynomiale of the segment [l + 2, M) 40

----- .)"L- +_t'llj.m O s N £ 20 u‘htﬂ with

Seviation ¥, is the recuired polynomial, then a neces-
sezy and sfficient conditien thet %, -

Sglx-2) is a8 Sollows "

Bemgxk 6.1.7 : Theorem 6.1.6 camnoct be applied
if one of A nd B is mero. In that case, let

Z Pl‘“lnﬂ,#'l! % P‘m‘-ﬂl
i =20 1 =20

putting 7\‘-/‘*‘«-1". we replace these two conditions
by the equivalent conditions




> Pyljear wma .E_! Pyly = A
i =0 i=0

Then Theorem 6.1.6 is gpplicable.

6.2. peduction to extyemgl problos

Cur problem is to obtain a mmmic polynomial
of degree n having the least devistion from sero on
[©.1] subject to the conditions that P(1) = tP(0)
vhere sgn ¢t = (=1)™. we shall first convert this
problam into a problem of finding the extremal pely-
ncmial of a segoent functiongl. The two counditions
P(1) = tP(0) and the cowificient of x° is 1 give the
two lincar relsticns

P. +b1 $ scans +b. -il. (6+241.)
b. =1 (6.2.2)
Those are given by the seguent functionals (1-¢, 1, L . 1)
@md (040 «++ 0,1) respectively. By the renark i-l..‘{
above, we replace the coaditions (6.2.1) wmd (6.2.2) by
egivalent comditions.

{Wl. Py # oes 4 #' L \“-ﬂx
Py * 1 5
The corresponding segment functionals are given by x*\
(0y)g ¢ =tels oo 12) A

and W
g e
(Mg ¢ ©renen O1) VA H.‘\I
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e are now in a position to spply Theorem 6.1.6. Set
the new segment functional

( 1g +9% g 1 (1tels oo 20240
Let O, be the extremal polynomial of this segment. we
shall ghew that the passport of this polynomial is neces~
sarily (m.n0 | .

n
B imw) w3 guiudat
1«0

Since this is extremal for the functionel F = (1=€,1, ...
L,240)s Uiz have

(Aeblgy gy ¢ +0s + Gy + 240)q » [ 7 (6243
mpiying (6.2.1) to B (x0) we get

‘H% f‘ﬁ o esw {'H #‘-ﬂ l‘-l-ﬂ
From (- Jand (-2-4)we obtain
| #) =% «+2)q, >0 (6.2.5)

which fmplies that (. 4 =1.
Let O 40 Speese T, be the nodes of O, ed 5;. ...J.
be the corresponding jumps of the integrating functiom
in the representation of P. ul-l&mﬁih--
polynomial of dagree n, both 0 and 1 are necessarily
ite nodes. Dut from (6.2.4),CL (1) =& R _(0) and
|\t | %1 by hypothesis. We caonot have therefore both
0 and 1 as nodas at the sametime. This excludes the case

s mned. If s en, then by (6.1.6), the polynemial
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may be of pasport [ nnel]| or [mn0] . Bvery

polynondal of passport [m,n,1 ] has both @ and 1 as

nodes (see (13 | p. 103) and therefore @ , emnot be

of passport [m,m,1| alse. we now elatm thal the passpoil

@}@n B [y, v, 0l 3t 3 emough Ko Pﬂm 3 i, = |
7o see this, we consider the defining gystem

ef linear equations

Og # + =« +dy = 1=
530 4 * +f—f.5; -l
s e bade s s b (6.2.6)
flmgl *4 ses - .m-.""a“. - 1
c:rl‘c;; & e +a“..5; =2 ¢cle

Sage (1) 1 O << -<o_ < 3i. I this
case all ncdes lie in the open interval (0,1) and since
each ncde is a point of extrema snd hence a zere of the
derivative of the extramsl polynomial which is of degree
o, we must have s £ n-l.

Eacluding the first and the last, there are (n=l1)=
eations in (6.2.6) in = wnkaowas, J,. ...d;. I
s $ne2, wmilm;udi -..d_. fran (s41) of thease
emstions and the resulting detemingt ghould be zero

if these eguastions are consistest. Sut eliminant is a
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Vandermonds determinant with entries in the last
column being 1. 7Tois determinait cannot be gero
mmmc—l'-mh (. 1) -

@n the other hand, if s = n=], eliminsting
Oye sese Oy £5om the firsk n equetions of (6.2+6),

we obtaln
I 3 B ke & 1
s S3 S

- - - - - - L 3 - - ﬂ
Bl Bl suce B-1
S “a 2 G_l-l. B

Bpanding by the elements of the last colusmn and simpli-
fying we get

;!'_?T’ (ﬁ_‘-ﬁ'—‘} Tu-'ﬁ”‘l + l-ll'tﬁ'r..a"‘._ﬂ =
Tale 49 not posstble becasse (=1t )0 @a 0<5y< - Loy <1
Thus the system of equations (6.2.6) 4is not cunsgisgtent
when s<{n=i.

£ape (3D t 0 mo <5< .uue 4::15;5(1. The systen

of eguaticas (6.2.6) now peduces to

Criié;'l'--- fa; = 1=t

Eiga * avae fﬁ;én.-l \
& = * & % » ® " B B = 8 t‘-‘:ln

a=1
ﬁ; Cj-'fnﬁcf-ﬁ;_ d_.-‘

n n
F 5 L E I 1 ; = "'.
2 “z2¢ f*.ﬁ" s® 2¢ 0 'n x\?
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If s<in~l, then eliminsting the (s=1) unknowns
6'3 esss Og from the firet s of the middle (n-l) equa-~
tiong in (6.2.7), we get

— |
- .
531 - 8 i

2 2
S3-— S, 1

- - - - L * a2 = -

’5_’. R REE] :’.‘!'.. ,,

which gives a contradiction, since the sbove detemminant
is nonvanishing.

Sape (348 ¢+ O0<c <5 4 ..<ﬁ—.-l. in this
case, (6.2.6) becomss

5;+5;+ *‘é_-i +d_. = 1=t

5'151 #5204 + +.:rﬂd:_‘—-};5; =1

- - L - - L - » - - L - & - %

® & = ® & & & & & % & 2 2 8 8 * W 8 ‘.‘i:-n
ORI S PR L R LA

Ei.gi"ﬁ—zté;f--- *G’,: J.Hfd_.- = 24l

1f s <n=], then the middle (n=1) egations of (6.2.8)
give the unique solution

c};-c};-*— -d;_l-ﬁﬂd—-.-l-
Subgtituting this in the last eqation we see that ¢ = =1.
Bt using (6.2.5) we obgerved that 1+0)% 0. We have
therefore a contradiction.
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We thus cunclude that for the extremal polynoe
ﬂd&.um“mmr;mmmﬂmh
established.

6.3 Jhe solution

We shall prove the following theorem.

dhoogen 6.3.1 . Muppoge ¢ 43 9 given nonzere
Zepl nusbep. If (€] +1 gnd aon t « (=1 ghen the
Bouie polynomial P(x) of degres n gatisfying "n"ﬂ“?

X - m‘itm’*{}

EEcef + we have slrealy seen that the corres-
ponding extremal polynamial is of passposrt [R.n,0 ) and
hence cad be obtained by a semiprimitive Chebyshev tran-
fopmation. Let O{x be the required extremal polyncmial.
merS{x) = T, (axed) where for 0 Lm< lwe have 04 axeb4l,
|a| <1 and 0<b<1. mnu-mua,;u
follows that a + b » 1. Them

Q 0 = T, (axsl~a) = comm 095~} (2ax-2a41)
The boundary emditicn Q) (1) = ¢ Q(0) gives
1 = tcom cos t(1-2a).




2n t
mlh:lz_l. we can take a to be of the form
& e gith o > 0. Then

1o
.
" stn®( L c0s™ 1)
and
ax 2 2%+ (*S
i+t 1 ¢ 1+
2xs =2
Q. (0 = com cos 3 —— ) 0Lx<1,
1e

- o{n“‘(tﬂ"’b.

Now the evefficient of x° in Q) (%

= lim
xS0

2 2xe =1 _nﬁdi)g ]‘
-l:r‘cﬂ F 1e u ( 14 4
+

14 L 14 &

all"l

=
ilml.

et ]

T

-"t-)
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Hence the required monic polynomial P(x) is given by

(140" 2xex =1
Pl e -nu-""( 2 )né:st
| S
wvhere
o = m’t}.ﬂu"ﬁi
We remark that though cos t is many valued,

it can be easily seen that there is exactly cne value of
cos * § end hence o for which (3 (X) has exactly n
nodes 1a [0,1] . For the other values of cos™> §,
mmmm“umm(}.ﬂ.

Bemgrk 6.3.2 « we now conglder alao the case
vhen sgn t ¢ (-0®. 1£
T‘l"ﬁli + (=1) .Eiﬁ_ ‘-"ﬁ_l"i %0
Ih-miﬂ) the system of equations (6.2.6) is in=-
congistent and then 8 = n. In pasticular, we saw thst
12 oon t @ (=1)™ then s wn.

it

B

"{[j‘i:—a—,x + (=0hey eee oy, w0

they system of equations {6.2.6) remain consistent wilkh

8 w81 5 g0 evee Oy, €an be found from the middle
n~l sguations aad wutmmmw

LAJ-"I.-—T_{IPG_, and t-{-l}m -a-—-—-—-
l I.-'l H



79

i [m,mp | 4sthe passport of the polynomial .

we have s s =1 and p = 0,1 or 2. Since all the nodes

lie in the open interval (0,1) which are also the zemos

©f the derivative of a polmomial of degree n, the

cases pel and pull will provide more than (n=-1)-gzeros

for the derivative which 1s a polyncmisl of degree nel. Hence
P mist be sero and the extremal polynomial is of passport

[meae1,0 .

Thus whon ogn t = (=1)® or when case (1) holds,
the extremal polynomial is Of passpost [ m.n,0 ] . lihen
o9 ¢t (=1)" and the case (1) does not hold, we must have
(mn=1,0] as the passport of the extremal polynomial.
In this case neither O nor 1 is a node. Setting P(0) e J
i (1) st where (J|< 184 |8J|Z 1  we have
the linear relations amcag the coefficients givean by

Py =0

Pg +Py+ -« P std

'.-l
Eare we have the case of Ahieszer's polynomials. By
virtue of Theorem 57 ( (13] p. 143) and the remark in
para 3 fyom below in ( (23], p.123) we see that the
axtrenal pelynomial is given by the bilateral Chebyghev
trasfomation = T, (< %+ ) with(a-Dnodes. Thet is

O (2 =% (x4 P)



3

o

where for O <x<1, O<(meB <l  |o]41, 0 <£pa.
How Q(0) @« = J gives
dﬂ-“ﬂl-‘ﬂ.ﬁ'“
wiich gives
S,F-'l .-.&“-‘d"
Since A (2) =t Q (0), we have
-t&‘--mm"lloulﬁ-n
wiich gives

24231 « cosd cos”t &g

Tas

2% = o8} con™es - con d eoa™
liance

Q (® = = comn cos * 6#@.: tﬂléﬂl“&n)
here

o -&[-u@v s 't ) ~con d ﬂ"d”]

Since the coefficient of »* in O (x) u_th'n{.'--.
thst the required polynomial Pix) 1s given by

PR - :‘i“-“ s @uxn + eoa(d eos™ln)
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CHAPTER VIX

G A RESULT OF BOAS

7.0 Boas (1] comsidered the following extremal problem.
Let £(x) be a trigmometric polynomial and congider
a linecar functicnal L defined by

m WIJ
uD « > 5 Ve,
V=l g,-n

uhere :Pff‘_lu’ are given real nmumbers, nf:l,::ﬂl with
the %, all different. Suppose Sarther that Kﬁ: #0
ad that a,, 7 O for atleast one 2 . Then

Lan, 48, 4.e. 40, 4w
ig called the order of L. The problem is to determine
£ which maximizes [L(f)| as € runs through the class
of trigonometric polynomials of type n which satisfy
| #(2 | £1 for real x. A trigonometric polynomial
is of type n if it ig of oxder astmost n and a trigomo-
metric polynomial of type n is an entire function of
exponential type n.

Using variational wethods, Boas obtained a solu-
tion to the sbove problem and then applied to the special
fanctional 0 £(0) + £°(0). M looking for the maxi-
sum, it was further pointed cut that one has to lodok
for polynonials which are real for real x.
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We shall below consider the functicnal

L(® = ~n°£(0) + £°(0)
and prove the rasult of Boas using the method of func=
tionals as in Chepter VI.
7.1

Let G dencte the space of ell trigonometric poly=-
nomialg of opder n, with resl coefficients

o
@ = P Qogk O sink ©0) (7.1.1)
@ =5+ = (gm0 s B

with the metric of the space C of continuocus periocdie
functiong of period 27 . The general form a linear
mm:.wcnluﬂmw

n n
M E— + E {'-1‘:"
o AETR A RS
By the finite dimensionality of Q, such au L is always
wounded .

camsidering G, &2 a subspace of C[0,27], using
Hahn Banach extension theorem ws see that every bounded
linear fuactional L oa G con be extended as a bounded
linear functicnal on € [0,27| with presegvation of
nogn. Riess theopem then says that L can be represented

in the fom
2T

ue) = [ e(O)E/(0)
(4]
where /*hlhﬁﬂlﬂﬂm'm‘[qﬂﬁﬂ.
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A polynomial Teq, is extremal for L if
| T/l =1 and (D = |2 «

Then a necessary and sufficient condition that
a polymomial TC G Ta congtant, be extremal for L
hmmm-.wuaumm

Lit) -Z $t(l9 ) (7.1.3)

where O tp-t.:r—,nu are the points in &.:rfra at which
lﬂesi =1 and
ﬁﬂ&p):} (4] (7.1.4)

(see [127) Lenma 4, p. 14 EBguation 1.14, p.18 or [8)
Theorem 1, p. 260) .
If %, ¢ G, such that (0 ) =1 ad (O ) =0
for j-p. we see that A, = L(t)) and(/4) becomss L{LIT(O )7 0.

7.2 Regnlt of Boag

Congider the linear functional L defined by

L€ = }BO£(0) + £°(0)
Wwe are to find the maxisum of |LE | when £ yuns through
the class C_ of trigonometric polynomials of order not
exceeding & and satisfying the relatica [f£(x)(<1 fSor
all real x. As is pointed cut earlier, one has to con=
sider only real trigomometric polynomials khe result
of Hoas may be stated as follows.
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Ihoorem 7.2.1. ket I{H = n°£(0) + £°(0).
3£ 071, she largest value of |L(f)| gx fcq ia
Suznished by 3 comn & “T“f:i* ﬂlm
Sdop of the fomm

4 cos n cos MWeosl ¢ =1) ., OLwW< 1 (7.2.1)

i
e &

Expof of Theogem 7.2.1 ¢ Flpst Part
Congider the linear function
L(0) =) n’2(0) + £°(0).

Suppose t(9) 4s given by (7.1.1). Then

LY = £ (rate i) a
kD

This is of the fomm (7.1.2) where
}h -?‘"-ka k =0,), «+s= B

and
/L'kh-'n t.b; .l..

The trigonometric polynamisl -cosn & 4is extremal for L
if |8 = L{-cosn®) --3u-?\). We ghall prove that
this is indeed the case if '}\{._‘:f;l’mm

(Teled) .
Let T(0) m =~ comC = cos(nO=() so that
)T
g-p = Pa2i1,2, «¢. 20+,
n

and
ﬂ&,) = (=1)P,




b

g5

—

| n-1
sin n QO

( . — k| d g =

d’t@} o [' + < nﬁﬁﬂ.ﬂn!ﬂ

uq?n-mmmmumr-m

thet P (0) =1 ad § (6) =0 forp =0 L2 .. =2,

1£¢,(0) = 'q}{&-iﬂpl. then ¢t is a trigonometric poly-

nonial such that

€,(0,) =1 and ¢,(q) =0 for § 4 p.

| now
| 2 2
% -l-{t’] =0 tptﬂ) +t; (0) = >~ n CP!@'I +{p'{@p)
(1) Whon p = 0,12, «.. 202, wo have § (O ) = 0O
g "6 _ a0
L By
Chat
it n{=1)¥
b " adey
which implies thet

lbﬂ@'ﬁn
(i4) when p = 2n-l, we have G,-:W’ and 50
C-Ptgrl =1

st Toog] 2

and




which gives
m’a
6
g0 that the condition *ﬂ@’)Eﬁﬂm

%- ?‘Ilﬁ

+1
or eguivaleatly

i 1
L -
7\“':“ p
Thus a necessary and sufiicient condition for -—comm© to
be extremal for L 4s | £ i‘-l- -:!

Second part of the theopem: u--?*?i- + £~;
we see that 4 cosn O cannot be extremal for L. A look
at the theorem suggests that the sclution may be obtained
by meang of Chelyshev tramsformation. As pointed ocut
by Soas ( [ 1] p-6) we need confine caly to even
extremal functiong. An even trigonometric polynomial
ig ©f the foumm

n

t() = :/_’__:d 8 coskl = C.if-';)
a function of cos © alone. There is also a one-to-one
mmmﬂn{@.w‘ﬁ of class II on the
interval [0,17] and the extremal polynomials G (O )
given by the following theorem.
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Zheorem 7.2.2 (Theorem 1, [14] ) 3 n{ﬂ.tﬂ} is
the eet of polwnoniele of Clage 11 (max |G, @ =2
203 _the pusberp Of acdeg o7 Y+l ) ghen botween easch poly-
gestal O () aad esch polwomial G,(©) with musber of
gedes " > g (=TyT ) it is pogsible to egteblish
a.one o _one corpespondence

@\n(liﬂig) = G(6) en [0, T ]

2
Gi=C) = G (5) for 0 £L0cT

Gloos™ (2x-1) = B (w0 olxca.

We shall thersfore convert cur extremal problem
in trigonometric polynamials into a problem for algebraic
polynomials. It als0 tums out that the corresponding
segnant functional is easier to handle.

i=cos O
Making the substitution x = : and setting
t(5) = P(x) we see that
Ta ttol +t'tn} = 1 0°2(0) +X4P*(0)
1£ P(x) -;;_" pfx » then
is0
L(F) = AP0 +%2'(0) «;n'p, +Lp, (7.2.2)

This is represented by the segment functicnal

‘?“‘:f iﬁi ﬂ. LEE ﬂl‘ t’lr,l”



Let ug now congider this seguent functional in
detail. If s is the number of nodes ©f this segment
functional in (0,1) , then s {n+l. Sppose -
0<L6<- - 46741 are the nodes in (0,1 @8 Speeses o
are the jumps at these nodes of the integrating function
in the representation of the functional. The defining
system of linear equationg is then given by

S
Z S .lé-’ = :}""'\.‘ I -ﬂ;h e ﬂ t'-z.ﬁ
J=1
whare

t?‘k): ' I'I‘-’.fﬁ. Qi vss Bn

It is easily seen that (7.2.4) is incomsistent for s<{n-l.
Thus ¢ = 0 Or n¢l. The case s = N4l gives the Chelyshev
polyncmial which is congi@ered in the first part of the
theoran. s we need to conslder only the case s = .
The extremal polynomial »(x) for the segment functicnal
()-la.ffwﬂ. +++ 0) is then of passport { n.n0| oF
[en,1] and heace is obtained by a Chebyshev tradgfovaas
tion. urx.nmmq“ulmw.l-ﬂ
can be easily seen to be inconsistent. In fact, when
ﬁ‘lun.mnu-ﬁmmm (7.2.4) can be written as

5-1.;5_:4 sene 4-5-“-'?‘.’

r’é':+.... +c$;d_‘- Y,

c:!"zk(_l:_, 4...45‘,‘5; =0 Kkea2,30.00
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The last (n-1) homogemeous equations in (n-1) unknowns
with nonvenishing determinant give the trivial soclution
mi.

&—'I-J’-"- -5; =0

This solution does not satisfy the second equatiomn. We
thus conclude that the nodes are given by

0L 534G & — wwe Lo L0
1f T denctes the nth Chelyshev polynomial on [0,1] , thes
the axtremal polmomial P(x) is given by

Plxn) = T{wlirjgl'
M{m|ghn&ﬁ&llﬂﬂﬂém:fﬁélmﬂitle.
Since the opea interval (0,1) contains atmost (n=1) nodes
of P(x) which are the zerxos of the derivative P'(x), we
mumr_-xnmﬁ-x-m. Thus
Pla) s Tl x +1 =0) where 0 £ w<1 and it will be
unique for .7, 3.

1£(0 = 0, the extremal polynomial is a constant
ad when () = 1 the extremal polynomial is the Chelyshev
polynomial. If 0<WwW< 31, the extremal polynomial is

Pl = AWxa=w) = (=12 (1-m)
since P(x) is extremal for (7.2.3), the extremal poly-
nomial for L is

r(:::.% - t-n't(ul -]'—:.i)

e (=1)Pcosn cos 2( weos & + O 1)




9o

thhmalnﬂrnu:m_tlnﬂ is extzemal

for L if and only 4f ) < - 4 « Hence if
3 @

(&) = 3 com n:"‘!mmm-ui-li 0<w<]
1

is extremal for L we should have -4 .
P73 teT

munmmum:mmmr-
nodes dn (0, 1] , the inequality

o N
2a

Mdhm-




il

3.

7.

91

R.7. Boas Jr., 'A variational method for trigono-
metric polynomials®, Illineig Jour. Math.
vol. 3, o, 1 (199) 1i-l0.

G. Glaeser, 'Prolongsment extremal de foncticns
differentiallis d'une variable®, J. Approxima=
tion theory 8(1973) 249~261.

J.d. Jerome, ‘On unifopn spproximation by certain
generalized spline functions®, J. Approximation
Theory 7(1973) 143-154.

8. Karlin, Total Positivity, Vol. I, stanford Univer-
sity Press, Stanford (1966).

S:Kavlio.. a¥d W.J. studden, Tchebysheff systems with
applications in snalysis and statistiecs, Inter-
science, Wew York (1966).

C. Micchelll, *Cardinal L-gplineg®, Studies in
spline functions and approwimstion theory,
Academic Ppress, New York (1976) 203-241.

G-I. Rabmgn and X.R. Unnd, "Extpemal problems and
polynomials of least deviation®, scripta
Mathematica Vol. XXVII, NHo. 4, 303-329 (1966).



: —

N

8. W.W. Rogosingki, ‘Extreun problens for polyncnials
and trigonometric polynomials’s Jour. Lond .
Math. Soc. 29(1954) 299-274.

9. I1.J. Schoenberg, ‘Cardinal spline integpelation’,
Regicnal conference series in epplied mathe=
maties, Wo. 12, S1m Publications, Phila-
delphia (1973).

10. I.J. Schoemberg, ‘On Micchelli's theory of cardinal
Lesplines’, Studies in spline functions and
sppromimation theory, Academic Press (1976
251-276.

11. A. Shaopea and J. Teimbal ario, *Cardinal t-perfect
splines’, SINM. J. TRmer. mal. 13 No. 6 {1976
915-922.

12. S.8. steckin and L.V. faikov, ‘(o minimsl exten~
glons of linear functicnals’s, ProOC. steklov

13. B.V. Voromovskaya, “The functional method end its
wplications®, Translations of Mathematical
monographs, Vol. 28, AMs (1970).

14 £.\.Novenmovskayar *Eetyemal triconemetric poly-
pomials snd their mplicaticons’, Dokl. akad.
Hauk. SSSR 120(1959) 12+-1S5.




