A STUDY OF MULTIPLIER SPACES
FOR SEGAL ALGEBRAS

THESIS
SUBMITTED TO
THE UNIVERSITY OF MADRAS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

By
5. FGGRNIHA' le Scd

MATSCIENCE, THE INSTITUTE OF MATHEMATICAL SCIENCES
MADRAS-20

APRIL 1978



I have great pleasure in taking this ococcasion
to acknowledge my deep and sincere gratitude to
Professor K.R.Unni, Natacience, The Institute of Mathe-
matical Seiences, Madras, for his invaluable guidance.
I am indebted all the more for his constant concern

and unstinted encouragement.

G ﬁ«mm
(8. POORNIMA)



I’E:;IE“-
=
depatas id S - r‘:;,‘:-
= D
.I"'_!E-.'-I:H; T | y v
n!mnuo!m. LY W | LR R ] LE N LE N ]

QEAFRTER X + SEOAL ALORBSAS AND HELATED QLASSES

OF PUNCTIONS !
1. Various class of functions ese R
2. Inoclusion relations ees “he
93« A new Segal algebra cne “ee
4. Conditions for a funotion to be
Pourier trannform e

QHAPTER IX: MNULTIFLIERG OF JEGAL ALGEBRAS ON

ZHE RRAL LINE :
5. The Resulta of Dpas an 8 san
6. Multipliers of D sew sas
7. Iﬂilplim for W and V anw see
8. Hormander's lemma for the Wiener
algebra sww sew
CHAPTER II1: MULTIPLIERS SPACES OF SEGAL ALGEBRAS
AS DUAL 5 PACES
9. BSeveral examples of normed ideals and
Segal algebras ese eee
10. Multipliers of Segal algebres in relation
%0 normed idesls sam aew
11. Application to special ocaces sse see

12. A OCharacterization for M (W, W) ...

21

23
26

29

28

42
46

59

€4

72

7B
1160,



Page No.
SHAPTER IV s+ MULTIPLIERS 4 JR0AL
mnﬁn :

13. A weakstar completion for Segal

algebras see “ee 106
14. The multiplier apace M(8,1%) on
the real line R sus . 470

CHAPIER Y ¢ A OENERALIZATION FOR MULYI-

ZLLERS QX ZRANSLATION e,
DUVARIANY SPACES >
15. Multiplier pairs sad - 127
16. A generaligzation for operafiors commut-
mﬂ“ Mﬂm ses e 150

m LA ] LR e 45?




—

This thesis deals with the study of multiplier ;pl_l- of
Segel algebras. Special attenticn is paid to the Segal algebras
on the real line. In this context, the method of charscterising
multipliers of various classes of funotions on the real line
given by Dose [ 4 | appears to be a relevant approach. On the
real line, the e¢lamscical Viener algebra W , & similar class V,
introduced by Burnham and Goldberg [ 2 | , and a new Segel
algebra D will be of special interest %o us. Complete chara-
oterizations and relaetionshipe of several multiplier apaces
among the spaces W,V,D and the classes ¥y ; 4 = 1,2,3,4,5,6
introduced by Doese [ 4 | , ere given here. Observing that
the space V is actually a normed ideal containing the Wiener
algebra W and proving that V is the dual of a certain Banach
spaoe, we are motivated to formuleste a result on the space of
sultipliers for Segal algebras and the normed ideals. Yhen the
normed ideal is a dual spece, the space of multipliers into the
corresponding Segal algebra turns out to be a dual space.

Many interesting speciel cases are deduced. Using a completion
technique, we charmcterise the multipliers from s Jeggal slgebra
inte I-.J'L (¢) , where G 418 a locally compact abelian group,
and the result is given in e different form on the real line .
Pinally, we have considered a generalisation for the multiplier
on tramslation invariant spaces. |




While dealing with the Segal algebras on the real line,

we have chosen to employ very simple techniques in the proofs
and have found them nevertheless effective %o produce worth-

while results. 1In the characterization of multiplier apaces

of Segal algebras as dual spacea, thes main result follows fron
* simple argumenta. Noreover it turme out that our method not
only simplifies and unites various known results proved using
different teolmiques, but also generalises to envelop a larger
domain of multiplier results.

Before moving on %o expose the chapterwise summary we
shall colleet the necessary material to provide the dackground.

Let G demote s locally compact abelisn group and &
ite charactes: group. We demote by 4>~ and 27 the
respective normalised Hasr messures on G amd & . C_ (6)
otands for the space of all contilazucus Sunctionu on @ with
compaot support, while ( , (@) is the space of continuous
funotions which vanish at infinity. Por 1< p <=, LPca)
is the Lebeague spasce of equivalence classes of complex valued
funotions £ on G such that

: . e
I'ﬁ“.‘o = [ g f.ﬁ{t.), d x ) < oo

G



L1°C&) denotes the space of all essentially bounded funetions £
on O and

"'T:“M = Las. Afe . I_.F(m.-.-|

e G

¥ (G) denotea the convolution measure algebra of bounded regular
Borel measures on U . We use * ¢o denote the convolution
operation. For example, e8¢ y 9 . L'cq) |
‘then
f & € n)= [ f—tm-?} gy cl}

G

where the group operation on G is given by + .

The Fourier stieltjes transform of a messure /< & M(G)

is given by
X)) = [ C-=, ¥) dpiex)d » e & :
| &

and the Fourier transform of a function ¢ 1in L' (6) is

‘given by

b Sedy = | G Ra) Eony d , YeG
G

where (x, 7) denmotes the funotional value ¥ (x) of the

M‘llt Te'c: a8 X e @




A (0) stends for the subspace of < _(&) of funetions
given by Fourier tranaforms of sll the funotioms in 1LX(8) .
A (G) 1s a Banach apace under the noram

G5 s == £, we fei'te)

The dual spsce P (G) of A (8) 48 ealled the space of pseudo-
measures on G . There exists an isometry between P (0) and
L®(G) » induced by

{ £y = KF, 85 2e ¢

/

s o ¢ P(G).

<';-> stands for the functional representation
or dual space pairing through out this thesis.

We denote by B (G) the space of all functions in L (G)
whose Fourier tramsforms have compact support in [ .

It 4e G s the translation eperator Z} is defined
on a space of functions X on G by the formula

_{'“& Feny - iﬁ{'x-?_)

A spsce X is Sranglotion-invarignt if T, f£eX  for esek
e x end xc O,



~
For any funetion 9 omn G , the reflection funetion T is

given by gc-:c) = FCn) , XeG o Ve write supp g
to denote the support of 9 . We use the motation = 4o
mesn isometric isomozrphism.

A S

A stands for the set ofall f where $£c A .

R denotea the additive group of real muibers,the
Iebesgue integral is normalized as to give

UHEN = b =
4 S Em | £(ky| AL

and the Yourier transformof f < L'(R) takes the form

fl=%]

<l
Flwy o éﬂ [ e ey ar

— e}

BV denotes the set of all funetions /¢  which are of bounded
variation on R and normalised by

M L= 00) = !M_(.--m*-t{?):D

) o B g = J:z_‘ [ MCa=0) 'T'f"-t('l-f-ﬂ)}

S = Total variation of . -



n-o. % denotes the set of all integers.

Whenever, for a funotion space, the underlying group is
evident, we drop it in the notation, for convenience. TFor
example, we may write 1 instead of L' (6) .

DEPINITION 0.1 A linear subspace 5 (6) of L (0),

with @ locally compact abelisn, is called a Segal algebrs
4f the following four conditions are satisfied

sa. S cG is dense in I ()
52: SiCiGe) is a Banach space under some
norm (| ”5
and il > b Eillg £e S(a)

:5’5. For G ‘CEF < S(G) for every

F dn 8 (0) and
I'ft'?f“s:. ."I.ﬁ“s

'.I:,J5;4- The mapping % —> Tyf is contimuous from €

it & (0), for every £ ¢ 6 (0) .

._ On non abelian groups, Segal algebras are defined uaing
left (right) translations.

. Segal algebras are defined and studied by Hans Reiter in
1965, though their origin can be traced to the work of Segal



(28] 4n 1947 . The Wiener algebra (See 0.8) is the first
‘exemple of a Segal algebra.
| Various properties of Segal algebras that are used in the
‘sequel are stated below as lemmas and can be found in Reiter
LEWMA 0.2 Tor every [ c 8(0) end erbitrary A in
(G) the veotor valued integral
‘ hepy Ty 8 4y
G
existes as an element of 3 (@) and

Gy

"Hﬂxﬁfls < i, Nels /

It follows immediately that 4f hE S(G) , from S2 ,

frﬁacde-ns < nﬁus H#IIS

h shows that S (G) 4s actually a Banach algebra, in
sddition to being an ideal in L (G) .



LEMA 0,3 Tet e M(G) . Then forany Fc¢ S (&)
the veotor wvalued integral

i Typ dpey)
G

existes as en element of 8 (G) and

g =) Egf Apsgd
G

[y = i -
T £ Sttt Al

Thus 8 (0) 49 an ideal in N (0) .

LEMA 0.4t The space B () 1s contained in every
Segal algebra 8 (G) .

LEN 0.5t To every compact set K in G , there is a

comstant (', > O  ouch that every £ ¢ 5 (G) whose
Fourier tramsform vanishes outside K oeatiafies the inequality

||f-lls - ||:H1

Prom lemma 0.5, we oan show that if ¢ is discorete,
every Segal algebra 8 (G), coincides with it (¢) . Hence, %o
avoid trivialities, we shall always assume G %o be non-
disorete.



LEMA C.61 Given any f ¢ 85(G), there is, for every

Ezo &8 3¢ SfcmiHhIMiﬁ-l‘nm-rmfnﬂj‘A of 9
has compact support and

‘il%if-*fl‘ls < ¢

LEMMA 0.7: Every Segal algebra has approximate units of
- norm 1.
We shall now give a few examples of Uegal slgebras which
l will be of interest to us.
BXAMPLE 0.8t The space W of all continuous funetions *
on R such that

1

irﬁliw = 2L

. = = o4

max | B | <L eo
K< < kt!

is the space introduced by Wiemer [ 33 ] and it has been exten-
sively studied by Goldberg [7) . (See also Hewitt and Ross
[10, p.506 ] ). Sinoe || Ty ll, <2 N2, o the translation

operator has @ norm bounded by 2 . Introducing sn equivalent

oo
S"“‘F‘ 5% mar | Poxtw
el Ko NEXSCE

I fluW =

¥ is a Segsl algebra under ”"’”w‘
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EXAMPLE 0.9 The space I (R) of sll funotions ¥ inm

1" (R) which are absclutely continuous on R with the deri-
wative 7’ Ddelonging to IY(R) is a Segal slgedra if we set
the norm as

L8 /
"f”L.A = ilf"q + Ut n'}_1

EANPLE 020 L'N C.(G)  the spaes of sll L (6)
ions which are in C_ (&) 18 a Segal algebra under the

[/ = ey, & el Feline.
LS e

that here [ £]  otands for the supremum nmorm of F.

EXAMBLE 0,91 L'N LPc¢c) 48 also a Segal algebrs,

b < o and the norm is given by

= eI, + L&l Lo VLR

"f"ﬂnL_P - P

Closely related to the Segal algebras we have the concept
of normed ideals studied by Cigler [ 3 ] .

DEFINIZION Q.12 An ideal ¥ (8) 4n 1} (6) ia ealled
Af the following conditions holds
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Wl. ¥ (6) 4is dense in It (6).

N2. % (6) 48 a Benach space under some norm | (| y Such
that
hel, < (=1 , Le N6«

for all f@ "n)l

u3. “ﬁ»*ﬁllm < Nl I\ﬁHN

forall tclltc) emda fe N(a).

The most important normed ideals ere the Segal elgebras. Here
we shall state important properties of normed ideals due to
Cigler [ 3] .

LEMNA 0.13 A normed ideal ¥ (G) in L (6) 4o a Segal
algedra if and only if B (G) is dense in N (0).

REMARE 0.14 It follows from lemma 0.13 and the faot that
B (G) 15 en ideal in L' (0) that every normed idesl ¥ (6)
contains a unique closed subspace I.(II} y the closure of B (G)
in W (G) , which is & Segal algedbra. Hence, a normed ideal

B (0) 1s @ Segal algebra if and only if ¥ (6) = N (G) .

LBEMA 0.15 ZLet N (G) de a normed ideal and f c ¥ (G).
Then f . N, (&) Af and only if



! | !

Wi =iy

1s a continuous map from G dinto W (@) . (W, (G) is e given
in remark 0.14).

\ LENMA 0.16 If 4 (G) is any normed idesl, Il,{ﬂj is
the smallest closed subspace of ¥ (G) containing all elements

of the form

T % £ -ﬁ.EﬂCG), £ Ve MG .

Ve shall now mention an example of a normed ideal which we shall
deal with in the sequel.

EXAMPLE 0,17 The space V defined by Burnham and
Goldberg [ 2| ocomsists of all those funotions f in L' (R)
which are bounded on R and for which

=¥}
l NN, = - 2 Q. g, P | <=
i A K =~ 0 Kk €% £ k+

Under the equivalent norm
. ]

i i N s s A
v meR K=z-0 K ZLx<k+)

it can be proved that V is a normed idesl (See thecream 2.1
and Proposition 9.2)
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The essential difference between a normed ideal and a
Segal mlgebra is the continuity in trenslation. We thus make
the following definition.

DEFINITION 0.18 Let P> be a translation invariant
Banach space of functions on G . An element fec B 418 said to
translate continuously if the mapping x — T. £ 4is continuous
from G 4nte the Banach space F . The set of all continuously
translating functions in P 18 called the gontinuously

trevelating subspace of P and it is denoted by B,

Thus W, (G) 4s the continuously translating subspace
of N (G) .

VWe elso have ococesion to use the concept of Banaech modules
and their tensor products.

DEFINITION 0,19 Let A be a Banach algebra and X
2 Banach space. Then X 18 a A - Banach module if X is o
module over A in the algebraic sense, satisfying

< lla Il = ] aehA, XeX.
Il | Pas ”,u % 2

r

The gesential part 3{& of a Banach module X 4is the closed

linear span of
i arx o CLEA, 'IEKI
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X 1is an essential module if X = X, ., If X 4s a Banach
module, s0 is ;G under the adjoint mction.

DEFINITION 0,20 The A - module tensor product of the
two Bansch modules X and Y eover a Banach algebra A ia
denoted by

X ® Y
A

and is defined as the quotient space
X &
OY /M

where X @; Y is the projective tensor product of X
and Y and X is the closed linear span nf elements of the

form

Ctﬂt@‘a, _1@)&"}]"1 aeh e X agnd yeV.

RBach element < of X @Y ocan be expressed in the form

A
V]

%': > 1-\_'@1};.

L=

q_.-'T-;

Do
‘I'IIII‘. IEE‘:‘(, \&;‘ E\/ “‘ Z_ “':K...__”x ”'j.,:”\f{_gd

o=

The morm of &  is defined by

X =]
I &l = { 2 2l r*i;,t.:ll,?,l

==



where the infimum ia Saken over all possible representations

of ¥ . Por various properthes of Danach modules, one refers
to Rieffel [24] .

HOTATION 0,21 If A 49 a Banach slgebras amd X and
Y are A - modules, then

Hn“ﬂ % Vo)

stands for the space of sll gontinuous module homomorphisms
T from A into B with operator norm, satisfying

Tetax) = aTwmy, ae A, xeX.

{

BEMARK 0,22 Ve shall immediately néte that sny normed
4denl ¥ (G) and Segal algebra 8 (6) are 1> (6) - modules.
In fact, every Segel slgebrs is an essentiel L' (6) - medule.
Temma 0.16 shows that N, (G) 15 the essentisl part of ¥ (G).
. DEPINIZION 023 Let A, B be any two translation
dnvariant Besnach spaces of functions on ¢ . Then a bounded
Anear transformation T s+ A — B 4s a gultiplier if for

eoh Yc G , T patiefies

tis, T ocomutes with translations.

For the case of Segal algebras, in the strength of ( 31]

ne can formulate the following proposition giving equivalent
ma for multipliers.
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PROPOSITION 0.24 Let 8, and 8, be any two Segal
elgebras on a locally compact abelian group ¢ and let T
be a linear operator from 5, inte 5, . Then the following
are egquivalent:

(1) T is continuous from 8, into I’ which commutes with
tranalationas.

(14) T commutes with convolutioms . i.e. [(£X §)=TExg
oA fe L'(&), 9 € Sta)

(iv) There exiats a unique paeudomensure T  4n P(G)
such that

L

Tg = o xep Fe sta).

(v) ‘There exists a unique bounded continuous funetion 4> on
G such that

TE)" =dp forall Fec Sy

In the light of the above Propoaition we set different
notations, to deal with different types of multipliers.
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(1) (a,3) t If A end B are subsets of L' (G)
or more generally subsets of peseudo-
measures, (A,B) will denote the set
of all functions 4> on G such that
& A CR.

(11) M (A,B) s+ If A snd B aere translation
invariant Banach spaces of functions
on G , H (A,B) denotea the space of
all bounded linesr transformations
from A into B that comsutes with
translations,

(141) Hom , (4,3) : I£ A end B are Bansch L (0) -

'3 modules, then Hom A (A,B) 4o the
space of all continupus module
homomorphismag from A into B .

' Ve shall use the term 'multiplier' %o mean an element of
any of the spaces given above in 0.25 (1), (i1) anmd (111) and
the space wi we mean would be evident from the context.

With this, we shall summarisze the contents of each clmpter.
In Chapter I, we define the various subclasgea

,2,. .. & , on the real line, introduced by Doss (4] .
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' We add to this collection the Wiener algebra W, the space V

and a new Segal algebra D . We first prove that V 4s &

Banaoh space snd tho space 23 L' N BV (R)
in V.,

is contained
That D 48 a Segal algebra 4s then established. Also,

D is identified in a known form. We clone the chapter after

providing necessary snd sufficient ecnditions for a funetion to
be & Fourier tramsfom of anm element in L* , \J, V ama .,

Chapter II conteins the various results on multipliers
among the classes ¥, V,Damd F: 6 ¢=),2,... 6 , We derive

inspiration and information from the work of Dosa [4] for

the treatment of the problems in this obapter. To make ocur

exposition self-conteined we have included a ccineise table of

the plentiful results of Ioss (4 | . Ve prove that for the

Segal algebra D , the space of multipliers into itself coin-

cides with that of ¥ ., Ve derive ceveral relationships between

the multipliers of V end W and characterise their multiplier

spaces in the fashion of Doss [4 ] . In the last part, we

prove the analogue of Homander's lemma (11 ] for W and this

enables us %o characterisze some more multiplier spaces for
¥ aend V.

Chapter III deals with the charagterigzation of multiplier

spaces of Segel algebras ms dual spagea. If N is a normed

ideal, then it contains a unique Segal algedra N, (0.14).
We show that every multiplier from a Segal algebra S 4inte o
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is essentially a multiplier from 5 4into No and whenever W
is a duwal space, the multiplier space M (8,No) is isometri-

cally isomorphic to a dual space. This result can further be

generaliszed to homogeneous Banach spaces. But the speclal cases

are more interesting. By proving that V is eotually a dual
space, we deduce the result of Krogstad [ 14] that N (W,¥W)
is isometrically isomorphic %o a dual space. The result of
Burchen and Goldberg [ 2] that M (1%,¥) @ V also becomes
8 byproduct of this result. Prom Liu am ¥amg [17] ,

Mite Ay 22 (LGH) is seen to be a dusl space. This enables us
%o characterize M (S, UN(C.) ss a dusl space for any Segal
glgebras 8§ . Purther, we show that the clase of all complex
valued functions on the real line, with peried 1, whose one
pided ™ difference matisfy certain Lifsehits conditions is
sotuslly a Segal algebra and obtain its multiplier espace as a

@ual space, Certain Segal algebras introduced by Burphem [ 1]
and Riemerama [25] are also discussed.

In chapter IV we study the sultipliers from & Segal
algebra into 5> (G) where G is a looslly compect abelian
group. The weakstar closure in P(6) of a Segal slgebra 8(6@)
qu the convolution operator morm is found to be isometrically
¢eto M(3,15') . Whenever G 1s compamet mbelian,

s result can be carried over 8o ™M ( Sq, S,) where S5,, S,
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are any two Segal algebrss. On the real line, we characterise
¥ (8,1%) ae s space of sequences of I (R) - funetions and
derive the result of Pigno [ 20 | for Segal algebras.

The final chapter deals with the study of a generaliszation
for an operator commuting with translations. Ve show that the
definition of a multiplier pair introduced by Nandakumer [ 19 )
oan be carried over to difference spaces,

LPCGY , (1<psw) MG, Co(G) and 5o on. We shall

present only typical resulte sinoe the metheds of proof ere
analogous to those given by Larsen in LlSJ .



1. Yarious classes of functions

Let R denote the additive group of resl numbers.
following Segal algebras are of interest to us.
“ﬁli“.ﬂlll from 0-“-. 0-!. and 0.10.

The
Ve recall the

1. The Janach algebra Lf[R)

of all funotions F
in (MR

which are absolutely contimuous on R

with
:g / ¢ L’\CR) is a Segal algebra with the norm given by

A /
Hfi!ﬁ = f’-ﬁi’l1+|1-}? I,

2. The space \/J(R) of all continuous funetions £
en K such that

AN "ﬁf"ﬁl.*ll < oo
| L |
|ﬂ'.‘-—-af.‘l Q&KSK“"I

| If we set
| .l ™M B¢
Wemw <= Swepo 2o Kj“- | £+ |
\W PRIER. < Ksimmg, S =Rk
then \~J (R) 48 a Segal algebra under I

l

\af
3. The Banach space |' N\ C_(R) 4is & Segal algebra
under the norm

21
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"I
= W, £ ; FellMNiciery.
In addition, we consider the following elassea of functions

on R which are always sssumed to be absolutely integrable in
the sense of Lebeague.

1'1 t Absclutely integrable funotions on R 4in the sense of
Lebesgue. This is our usual space LY (R -

P ¢ All funotions iz " (R) which are bounded on R. This is
L LT eRY,

Ty 1 A1l funetions in L' (R) which are bounded on R and
integrable in the sense of Riemann in every finite
interval.

B, ¢ All funetions in '(R) which are uniformly eontinuous
on R, This 48 "N C. (R)

Pg ¢ All funetions in ['(R) which are of bounded variation
en B. This 48 L' NRV.

Fg 1 ALl funetions in L' (R) whieh are absolutely continuous
on B and of bounded variation on B, This is L" (R).

V : A1l functions in " (R) which are bounded and such that

2 M sy | fixo| < w0

T—— K £ % g k+)

Ve sssign a norm in V, similar %o W,
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~ (VA lﬁ{'x*r'mjl
T'Hﬁ“l\F = g,:fR %:_N Kmkﬂ

The clesses ¥, to P, were considered by Toss [4 | in his
study of multiplicators of the subolasses of L'(R) , the clags W
was introduced by Wiensr (33 ] in his study of Teuberian theorems
and the clese V was introduced by Burnham and Goldberg [ 2 ] .

2. Inglusion relations
Among the clapases dofined above the following inoclusion
relations hold

c1) 'F‘{,ra.C'_F‘._,,C‘_F,L(_FJt

1 e
(3) PRY=F, € W(R) € L'NC(R)=F,

C4) ) IslRYE N By ns & Fi- CM €.
The inclusions (1) and (2) are stated by Doss [ 4] and

easily follow from the definitions. The inclusions in (3) were

proved by Wang [ 52 ] . Ve remark that W(R) d4s nothing but the

class of funetions in V which are continuous. %The only nontriviel

inclusion in (4) 4is that Fz €V which we shall mow prove

independently though it i3 implied from the results on multipliers
given by Burnhsm end Goldberg [ 2 ] .

Frist, we entablish the completeness of the space V.,
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THEOR™ 2.1 The opace V is complete under the norm

[
Hﬁ”,\ir = £ B et g | Bey | ‘ PeVY.
K=—s0 K $xu =Kt

FROOP: Let ‘{q?“"g be a Csuchy sequence in V., That is,

(=]

p—

5 e Rufp . | B (n) — £ x| —2 O
lk=—-ee K S3x <K+l
88 ™M 1 —>co « It can easily be seen that ”'”.J sajorigzes the
L™ - norm end the L' - morm. Hence there existe a set X, and
e funetion £ in L°(R) gugh that the Lebesque messure of (RN E))
is geroc and .fﬂfm'}—“} fru) on B . Uaing the L_" -norm similarly,
we can find @ set E, and a funotion ¢ in L'(R) suen that
A

A ﬁ.,.,{'ﬂ) Sl e O

on Ep

and (RN E,) hes measure sero. Let E = E,NE_ . Then (R\E)
has measure sero and f(>)= G(x) foreseh > cE and hence
fe ("CR) .« Tmm £ () —> £(x) 8.0, 0n R. Now

290 285 . Bl P [ £.,00]

K = — a0 ZEEH,J{'!-JJ b i

oo
S e dup. [Feo| =
K== 2e Lk, +1]

Oy

< L;ww'b‘ 2. e Jfrnf"‘l“l by FPatou's lemma
-7 oo K = —20 'Jtrc-f_k11¢.‘.|]

= 'q"""“”“"f)' Hf_..,”\f < oo

N —> oo

Hence FcV . Ve mow olaim that £ _—> £ in V. First we notice
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that
eAS. Bu . '[f,m[m_qﬁ:lm;,}gm M'S-ﬁufn.i?mim -f*£xu|
e Lk, K+(] oot Xk ERaEL]
g0 that 25 ‘
- E_ I{.A-')nm ‘"Efﬂ'.-ﬂrﬂ..t_«.-j,g [fﬂc-ﬂ_j.__ﬁrh.,[:tl)lr
£, = 2Il,, = =0t
\% K== XE‘EJ’(JH“}‘B

- = S
< M””b’ 2L, eAs. /S-u.#, ffmfﬂ} -—-f,_m{'m)l
YRR IREwee nuinliky il

ol e
== Mq_}l::b‘ anﬂ_fﬁﬁwﬂv-—?[} L4 v — oo

Tue fcV amd [(£,-21, O 88 M — o

RENARK 2.2 |lotice that the norm of V given in section 1
and the norm given in theorem 2.1 are equivalent. Ve shall no$
distinguish between the two norms unless the necessity arises.

SHEOREM 2.3 The space V oontains the space ¥g = L' RV.

PROOF:- Let fcF_ and V, denote the totsl variation of

f o Let £5 0 be arbitrary and define for esch ke Z ,
& = £ and set
o 1Kl
o [ £
'}r'qK: 243 Afuvb- f

«e Lk, K+l]

Then there exists x_c [k ,k+1] such that

(%) I #(%e)| < My + £

fhen foreny x ¢ LK, K+1] . we have




2| & LFox) = Lexed |+ | £oxod]

< | By - Fersd) | + My + € 1
by virtue of (5)
e+ |
$ [ PoO- o) | = e oy * £
A
Vg ERR] [ e,
le.
: K+ |
0. gy £ | € V, TRkl [ ey < B
e LK, k] K.

poe summing up with respect %0 K , we get
Ry, < Ve RN, + &

¢ > ©O 4s arbitrary, we conclude that

]li”v < \f“& + It £ 1

1 ﬁr.ﬁer:g

¥e shall now introduce a Segal algebra which is properly

: 4 ¥V end will have the same multiplier space as that
V. ('“ Theorem 6.5)

uch that 7’c \n . Define a mormon D Yy

i/
PR S e e

. ZHOREN 3.1 Let D denote the set of all funotions £eLR)

26
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where LW ia the Segal morm of V., Then with the norm
defined by (6), D 4s a Segal slgebra.
PROCF1~ First observe that

("N gy < nﬁurjﬂuﬁ’mw < 2 £

%o prove that D 48 a Segel algebra, it is enough to prove

(1) complotemess (11) the set B(R) of sll functions in 1L'(R) whose
Fourier transform have compact support is centained in D.

(441) v Ty £ 15 contimuous from R into D. That (111) holds
is obvious from the properties of LA(R) and ¥ end by virtue of
(3). (1) Completenesst~ Let § £. 7 Dbe a Cauchy sequence in D.
Then liﬁm-ﬁnllb——‘;- O @8 M, n —> =0 so that
llf._,,,.,-f.’.,_,]pdd?o and || £ - £l —>oO « By the complete~

n0ss of the spaces I wd ¥ there exists fc L | g c

such that , A
ufm_;z;;iﬂ —o . N fw*'}mm_“?"ﬂ i :

Then

hg- 0, ¢ WG=Fnll, +le), —py

Lol =B, My, o W ndll 55 O

Toke ¥ = dntegralof ¢ . 'Then £cD and (P -2/ —>O.
(11) Let FcB(R) . 8imee RCR) < L (R) 4t follows that
#' ¢ [1(R) « Mt P/(u) = (W £(u) which shows that =
has also compact support. Hence Y/c R(R) and afortiori to W,
Hemee B(R) € D .

EEMARK 3.2 The space D can also be defined by




———

D= ] Fellery =+ e Wl

FAQPOBITION 3,3, Let 2 be a funotion on R defined by
'“Q\'ITE._x M 2o
o)y =
O <
A 3 ~
g0 that 15-[“”'"‘-;:. for “weR , where ( =-V -1.

Then the Segnl slgebra D gan be identified with the space

Byr W= § R¥p: Fewl.

A N X
PROCP, That & () =T for® €R 45 g atraight-
forward verificution. Let £¢D .« Then £/c W oo that

% ", o
te Peuwy & W

IS . ™~
Since ;ft_"_?; C W o we see that U —C Py ey
-
" = (S

which 1o the same a8 £ (u) ¢ _L W .

o =C

Equivalently, +f ¢ R *W

Conversely, suppose JF ¢ % W « 9ince 'ﬁ# L= Lf'
(a recult of Does which is stated in Proposition 4.6) we
see that £ ¢ LPCR) |, Then

(8) Prew = cw fow

By assumption, there exists § ¢\ wsuch that
so that

A > A
B ) s = 'a,fu..')
(9) W=

28



and therefore, using (8) and (9),

29

A * v o~ G
‘:ﬁ"(u] -.:iu.f?(u] g _ %‘{L‘_):-—at%\-—‘_@(“]&u.

A — L =L

This impliee fc D .

1t Aci'R) ,wewrite A= F 1 fcAL  where
¥ otands for the Pourier transform of £ . Let

Siyie woaetsitos f E e R

and m £ :
NPy = {!dhﬂ i 1= =)
O- i ] >

L

fhen § c¢L'CR) and A=5 , Moreover, § - A’ 1a the

inverse Pourier transform of 2 . We set

|— Cod mC
Sm(k) = MmEcmt) = L i
T ’ﬁbl
and 5
:ﬂ.w_,L{} = ﬂ[{'f'n) = Dy CE)

Then J—.-.ao,”é‘“llqz"l and lifﬁﬁ-ﬂ-flf1——*90

8 7N — oo foreach fe¢ L'CR) . That is { 83
is an approximate identity for Ry,

P
Given a funetion defined on R , we dencte by /-,
the funetion defined by
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Non (Y = Acxy A () e R

2

~
G tn) = ﬂ-ﬂfx} , ® e K.

the inverse Fourier transform of /- (>0 . Then the following
resulte are proved by foss [ 4 ] giving the conditions for a
function te be the Fourier tramsform in the speocified class of
functions.
PROPOSITION 4.1 (Doss): A necessary and sufficient condition

that )  is the Yourier tramsform of a funetion in 1L'(R) is that

f\w-. be continuous for each positive integer . and that the
functions <., satiafy the two conditions:
(1) There exists a constant A such that

o H,1 < A

for every n.
(i1) To every ¢ >0  there exists o 'U?-?t} such that, for every
#et E whose measure is less than Ol ’

—

PROPOSITION 4.2 (Dosn): A necessary and sufficient condition
that /1 4s the Fourior transform of a function in the cless ¥y
is that A is continuous for every positive integer m and
that the functions S, satisfy the %wo conditions:

i) Thore exiots m constant A such that
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< A

Homll , S

for every " .

(11) There exists a econstant B sueh that

|5Ffrw('?1‘3i < B

for every m amd °c

FPROPOSITION 4.% (Doss) A necessary and sufficient condition
thet ) F, 4 that the conditions of proposition 4.2 are satis-
fied and that the fumction <. are uniformly. Riemann integrable
in € = '29. ;Heo<)

FROPOSITION 4.4 (Doss) A necessery and sufficient condition
that 7cF, 1s that the conditions of proposition 4.2 are
replized and that the funetions 7 (x) are uniformly (in ™ and

9 ) continuous.

FROPOSITION 4.5 (Dose) A necessary and sufficient condition
that A e r:f‘g is that the fumotions -/\ . ) be continuows for
every positive integer end that the functions

=0 . .
€ s [t P gy (O T
< 7
satisfy the condition: There exists a oconstant C sueh that, for
every o
ﬂ ligsgeadjieoln. | £20°E

- 2l

PROPOSITION 4.6 (Doss)s The two relations
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are equivalent.

¥e shall mow proceed to establish the necessary and sufficient
gonditions for a funotion to be & Fourier transform of a function
belonging to the olasses L°, W, V and D. This 1s done far the seke
of completences in the light of the above results.

s
THEOREM 4.7+ 2 cLfi(R) 4f snd only if
(1) A\, is continuous for each positive integer ™
(11) For some constant C >0 4, | o, |l a < C forall m .
(111) ¢ o, (-xﬂ is uniformly (in m and x ) continucus.

: i
PROOF: Ret A c L?(R) .Them o ¢ L?(R) where o = A .

Then o (%) = o 46n(x) Lorall xeR .
Hence

!
Hﬂ-"”“‘f‘ %= l!r%5m1i1 + o *cﬂnﬂq
< e ! L :
el q"t“qujHJMNq_Hu‘]]Lﬁ
How comsider x, %, ¢ R .+ Then
o (%) —om(ma3| = | T8 () —ax 9, (%) |

-:.l g‘ G"’["X,"&} E‘fnl;{'} le*a{- J TNy =Y) 5..,.,{3‘34:.1?1
R R

< 5 ‘ a“{"iq-‘}] —rcw,_"\g,}] R D Aé}‘
' R
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Since S 15 uniformly contimuous for arbitrary < 5o
We can find a » 70  ouch Vthat whemever [> -, | < % then
7€)~ ocxy) | < € + Hemoe for this '}Z"'?c: we get Af
| ) — x5 | < 5 [ 07on € %,) = 65 cny )| <e Win0e
j]R Smigldy =7 forall M . And 7) 4s independont of 7 ,
fhus 3 o, { are umiformly contimuwous in —m amd x .

Now let (1), (41) and (1i11) hold. We shall prove that
LN
Ac LR cry . 12 we ?ﬁni

Coat Yz = o o) = a5l tx) for all M

Then the hypothesis (ii) gives lToil, = C « Since (1) holds,
by Proposition 4.5, this implies that A 18 the Fourier trans-
form of & function ¢  in L' with bounded varistion. Hence o'
exists s.e. amd o 'CLT(R) . Wow to prove that o is sbsolutely
continuous.

Firet mote that <5, () = &% &, (x) and || r.,.,.,—-qu—H}
OF 0., (%) —> 9(x) o.e. « But $he condition that 'f_d“mr:m]
is uniformly continuous in ~ and > dmplies <., () —> o)
everywhere in R . For every n, F.ﬁr:LA and hence is absolutely

contimuous. Now given 2 5o , />0 there exists 71, suoch
that

{1‘) ICT_..,.‘&[-_{‘)__ a—f_){.)i < 2’/41’4 for sll xeR

Let itxgjpgygiti be any partition on the real line and
oons ider



N | ~

’\'.:_

; () — . L2 a L) — 0

e 1 B‘*} J‘Cﬂ(_"}] <. =28 I CBL} WD{BL}|

N N
T 2 Ve, 6Re) —o5 )| 0 2 195, Coe) — Ty

=1
L=\

By the adeolute continuity of S,  , there exists a % 70 such
N
that whemever > [pc-o | < 7 then

T =

N
) | sl — B i nga S
s =

Eence from (10) and (11) we obtain S to abmolutely conti-

neous.
AN

IHEOREN 4.8 A ¢ W(R) 4f and only if the following
eonditions hold:

(1) /A4, 1is continuous for esch positive integer ™
(11) Yor some constant ~ >o , lemh € € forall M .
(111) ¢ oo, ¢y} are uniformly (in m aend < ) continmuous.
PROOP: Let 7 ¢ (W(R)) . Then o € W(R) where o = A
so that (1) is obvious. MNow TS = o % 8, (n) for all x eR
80 that

I Tty = Il & * Eﬁ,nw g Wollyy Womll, =il

From inclusion (3) and Proposition 4.4 (114) follows.
Now suppose (1), (i1) and (111) are valid. Then o= - || i 2c
ad ) o (3| & C for all > and the conditions of Propositicn
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4.4 are satiofied. Henoe there exists s function S in I (R)
such that o is uniformly contimuous on R and S, () —> T (%)
everywhere in R. Now

==

==
Sk A Il = 2.
Ko£» 4 k4! "=

=3 [k R e 1
K= —s0

e Naana mwﬁ- E MMA+ | Tm |

M = o e CkyK]]

K. = —s0

= Bone e Mol g €¢ vatng etbats Jomes
M —= a0

Hmoe ©° ¢ 'W(R) « This completes the proof.

DHEOREN 4.9 A cV 42 and omly if
(4) A, 1o continuous for every pooitive integer ™
(41) there exists a constant [ such that |o (x> (< R for
every M and K

(141) |, & il forsome C 7 O

(] v
PROOP: Suppese O - o  where oV . Then (i) end (ii)

are satinfied by Proposition 4.2 and inelusion (4). MNow (1i1)
follows from the faet that o, - o % O+, and

loo lly, =il #8mil &2 leliylixll =2l

"4

Suppose the conditions are satiefied. Then o I/, < o, )1 < @
slows that all the conditions of Proposition 4.2 are valid and
henoe o, — o~ @.0. where - ¢ I, ., The proof that lhigzilY, <00
follows exactly as in the previous theoren.
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ZHEOREM 4,10 [ cD 4f and only if

(1) /\,, 1s continuous for each positive integer o .

) I only g &  Smald 5

(144) o3, (a0} and ? o ! (%)} are uniformly conti-
nuous in N amd ¢

FEOO¥:s If A - 5 oD , then clearly (1) holds
and

“d_.-hﬂ:b =H'-‘f'_ﬁ'5-,-.||b L Hr”b”d-rﬁ”? =H¢TH_D+
Also from G’”E:LA md o ¢W and Theorems 4.7 and 4.8
(111) is obvious.

If (1), (11) and (144) mola, "1l 8 <1 Tl ¢ C

inplies from Theorem 4.7, that T .. = o #% Jd~ fer some
o e L® .« Then elearly o, = ' % &+ « Again

Ity € Moy ¢ C end § o (o) ] ie uniformly
continuous in M1 and oc  4mply from Theorem 4.8 that o ‘c\J
L R

Deoes has extensively made use of propositions 4.1 to 4.5 in his
study of multiplicators. But here, we do not depend on theorems 4.7
%0 4.10 to characterize the multiplieras. We have included them as
they are of independent interest. For example, using theorem 4.7
we are able to make the following important observation on the
ppaces [, I F,5 and
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SHEOREM 4.11: The space is precisely the intersection

of Ff:{- and F5 .

PROOPs Let e F, NF; .8imee £ 1sdn Fo &
exiats o.c. amd £'cl' ., Set
SIS fo X O na
for each integer " . Then
{5—__:1 - 'fx‘ *5.—” . e .
Mso, singe h ¢ F; , from proposition 4.4 , § oo, (x)] is
uniformly continuows in and > , Now

Lo I p = Nl 0 o) lly = Lo ATl + N &5,

1

< CArl, +aet,) Nami, =UGl A NR N, <=0

A
fat A, =8 O .  1s continuous for esch ™ 48 also cleer.

. ‘.‘. fron Illol'- ‘-T. we “mm that 'ﬁ\. e F&: « Ve have thus
proved

Fa O e r':&

fhe opposite inelusion is trivial.
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In this olmpter we shall study the multiplier space for the
Gegal algebras D and W and for the space V , related to the
various olasses T, ) =12, -- b, defined in chapter I.

3. The resulis of Togs

Let us reosll that the space (A,B) is the set of all
funotions ¢ such that ¢-A (& . Using the charsecteristic
properties of the classes -, , and by classical methods,
Doss [4 | has successfully obteined the conditions for a funetion

¢> %o belong to the space (Fé-} Fi) J]‘,k.;:l,l.--ﬂn- His conditione
expreas the fact that one or other of the funotions
du) C Pow) e wy

W —ti 3 (<3
i .
belongs to the clmme |-, . It turns out that the function
e X 20
‘htij & {_ o i

)

A :
which has the nonvanishing Pourier transform, 7 (W>= - , UER

A, =

where . _V_1 plays an important role in his chsracterigations.
The spaces under consideration here, ¥,V and D, also being

subclssses of LY(R), it appears natural to take up the approach

of Doss, while studying their multipliern. Thus the multiplier

spaces for W,V and D among themselves and in relation with

r:d' , é""? 2,..-( 8re effectively dealt with in this chapter.
To make a oonvenient reference in our proofs we have

enclosed here a table containing all the results of Doss in [4 ]



F

pe (B,1) & %%2‘ ;, ¢c (PRl) & *ﬁ*_fﬁe ;5
de (IuB)) & ¢ N e (Bl & TP
pe (Ply) & byl ae () & e By
be (Pal) © 4 B| Fe (Pu?,) & s B
Pte (B,F) < ¢ c i, P e (®,,7g) A= d> e i‘rs
pe(Pd) &  doelg| Per) o  a. B
ge ) & FOp | 4 (n) o twe ¥
e (PgBy) & i‘?i‘tj‘e.r’ ac (B,0) “f_‘f& ;5
G e (Bg,0y) & j‘:"&;, ¢ ¢ (R ly) = Lfffe 'i,
e (Bgp) = 2| dem,r) o fﬁu}eﬁ,
¢ e (Pg,7g) = P e ;', P ¢ (Pg0g) = =< :":11:.;'5
¢ e (7g,7) & ¢ e ;, d e (B,0) & ¢=§- ;,
be (PgB) & i:P_f:JL. i:. de (Pel) & Lfi;‘"ig ¥
¢e (pgm) & TG | de ) o i, dy
PE (1g,05) & L‘T{“Li, ¢ (Fly) & D, ¥,
e (vg,7,) & ::f:}& ;‘ Pe(Rg?,) & f—f—_‘f"*f:
P e "5‘,'5} & %J & ;, P c {r“r’) = L‘_L%J » iﬁ
& e (2,%) < 4 e i' Pe(Be,Bg) & L,,i';i:} Ei’

’!hl_:nlt on {r,.r,)unnmnwnm [21] . The rest
+« The symbol &> stands for if and only if.

gre due to Doss [4]
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In the firet thxee sections of this chapter, we shall
oconfine ourselves to treat the multiplier space (A,B) where A,B
very over the classes T, %o ¥g , V , W and D. However, we

observe that, in view of the equivalence of the varicus multiplier
definitions given in Proposition 0.24, for Uegal algebras, the

aforementiconed charaoterization of Doss reduges to the oharmoteri-
gation of peeudomessures o oguch that o+ belongs to a
known class. For example, note that the result proved in
Proposition 7.1 can alsc be formulated as:

¥ (1%, ¥) 10 tsomorphic to the spase { ¢ P(R): srkeV]

As omerved earlier, the classes !4 and !‘ are the
well known Segal mlgebras L' C.(R) smd L” (R) pespectively.
While the multipliers on L7/ (¢, have been obtained as bounded
neasures using differsnt techniques, the charscterisation for
miltipliers on I (R) has not been proved elsewhere. It is

only from the results of Doss, we ascertain that the multipliers
grom LM(R) into itself are bounded measures. For, it io eaay
to see from the table that

(qu F:...\} = (—F:L;':rﬂ)
N
sndwe know that (I, £, )- MCR) « (Bee,for example [ 15))

We shell now 1list below the relevant results that will
used in the proof of our multiplier results.

40
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PROP O 5,11 LACRY = & x 1cR)

This follows from Proposition 4.6
PROPOSITION 5,.2: Fr = R« PACRD! -

This follows from the faet that < ¢ (F, F)
if and only if CPlw) Fs (See the tlhl.l_) and the
known result S

€ Ry 5By = - MER)

A

PROPOSITION 5,31 (L', W) =V

This is an equivalent form of the result of Burnham
and Goldberg (2] thet

ML, W) = V.

An zlternate proof of this result is given by us. BSee
Corollary 11.7 (1).

PROPOSITION 5.,4. If A¢ B , then

(8B s i B

and

This is an easy consequence of the definition of the
multiplier space. See Notation 0.25 (1i).

PROPQIITION 5.5. Let A,B be subspaces of L' ouch that
(1) A and B are Bgnaeh spaces with norms || Ilﬁ and [P

respectively.
(1) "ny, > vy, end Il (1p > Wi, « Lot % be a

bounded funetion in (A,B). Then the mapping Tclp defined by
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Tq,f_?‘} = g_

where ‘5—-4’} gk il s
is & bdounded limear operator.

PROOF: Linearity being easily verified, we shall prove the

boundednesa. BSuppose f., — o im A nd'{;ﬁ..,,——;nj, in B.
Then

. N oy e
LG40, < M- Tge, N+ N Teeall
N e iy DR
&

¢ Ng— Ty 01, + e, Eml,

<

"

( 0
N 3- Tafm H& + Il el ||<‘1HHA—‘M & Mya

Hence %=D and thus ] = © a.e. . How by closed graph theorem,
we sce that ¢ 4is bounded.

Since we have identified the spaces ¥y with Lhery; F with

L'n v, P, with L'N CocR) enmd Fg with LACR) we use

| shy convenient notation without forewarning.

6. Multipliers for D:

¥e shall first obtain e relationship between the multipliers of
W and those of D which enables us to establish that D is

snother Segal algebra on the real line which contains unbounded
messures as multipliers.
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EROPOSITION 6.1:
Tet A,B C L'(R) emd k(%) be the function on R, doefined
in section 5. Then
(1) ¢ c (A,B) ifamdondy it (N _ (4, &xB)

(i1) & c(k+B,A) Af and only if Cptnd . (B,4).

W=

ZR0C¥s- It is an easy consequence of the fagt th ol

";-{L{i&'] .':.._L'I_+ 3 L{Eﬁ t
Uyamd (1) told . J:""”L
COROLLARY 6.2+ het A < L (R). Then

(1) ¢ e(AW) i md only 42 © F() . (A,D)
W~ L

PROOP: By Proposition 3.3
D = R % '1;‘\{ i
And sc the corollary is immediate.
GORGLLARY 6.3t Let A < L' (R). Then

L gplu)

LA — s

(1) 3 c(a,5') 12 and only it & (A1)

(41) 4c(ha) 42 and ondy 42 © Pl (11,4)

PROOR: By proposition 5.1 ok
i S A8 il O
ind the corollary follows.
BEMARK 6.4 Though proposition 6.1 appears rather trivial,
be corollaries 6.2 and 6.3 are of no less importance. Putting
w Fys 4 = 1,2,...6 in Corollary 6.3, we get the corresponding
ssulte of Doss. Por A = V,¥ in 6.3, would give us the important
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relationships of tho wultipliers among the spaces L', W mmd V.

This we shall deal with separately. OCOorollary 6.2 connects all

the multipliers between the Segal algebras D and W ., In parti-
gular, we arrive at the following interesting result.

SHEOREM 6.5 The space of multipliers from D into itaself
is identical with the space of sultipliers from VW 4into iteelf.

PROOP: Taking A=W in 6.2 (1) we have

(12) 4 c Cl\A, W) 4f end only if %‘i;- e T, B,
with A =D, 6.2 (11) gives

(13) & c (D,0) if andomly 4f P . ¢y p). (12) and
(13) together give i

(‘ID) = {'I')
fhia completes the proof.

Sinoe the space of multipliers on W atrietly contains
bounded measures the same i true for D also,

REMARK 6,6 The construction of D suggests, if one defines

again,
Dy= § 2e LPery- f’ebz

Then ’1 is a Segal algebra such that
M {‘llnl} = N(D,D) = M(w,¥).

REMARK 6,7 In[14] Krogstad has considered the generali-
gation of the Wiener algebra to genersl locally compact (noncompact)
groups apd has mentioned this to be the only known Segal algebra on
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noncompact groups where the multipliers etrictly contain the bounded
measures. Here we have by 6.5 and 6.6 exhibited that there exist
infinitely many suoh Segal algebras on the real line itself distinet
- from W having multiplliers spaces larger than the space of bounded
WMeEsUres .

Ve now proceed to obtain another multiplier space for 1.

; 1 -

SEROREN 6.81 (L%D) = X # ¥

PROOF:s Putting A =L* in 6.2 (1) we get

) = o
By Proposition 5.3,

(x',w)

(W) = ¥
and il- result follo'll.

EEMARE 6.9 VUsing the result given in [ 2 | we can prove
that the spece

Sli-’ e 1Am) s f'e 175
endowed with the norm

r’!iﬂqﬁ-ilﬁ’uf
is the relative completion of D and is isometrically isomorphic

to M(1',D). Ve find thet in theorem 6.8 we have arrived at this
result in a simplified manner, as we can easily show that

finy = 8§ e thery ?fev]

to the Proposition 3.3.



7. Baltipiders for W and V

We shall now characterise some multiplier spacea for W and
V and eimultancously study the relationship between the multipliers

of W aend those of V. Proposition 6.3 will be an essential tool
in our erguments.

EROTOSITION 7,1

e (1h¥) itemaomysr T . §

c vV
w~— ¢
PROQF: Put A=W 4n 6.3 (11) end note that

M
(12,w) = v

ZROPOSITION 7.2

(1) ¢c (A i eed emdy a2 ST 5

2 |
= &

(11) b (%5,V) if and omly 42 PO

W -
PROOF: By virtue of Proposition T.1 %o prove (1) it is enough
%0 show that

=
eV .

(A n = @A v

That (Iﬂ".l’) < {I-‘.‘l'} follows from Proposition 5.4. To prove

- the opposite inelusion, let < ¢ (F, V) « Then o ¢ (R, Fy)
| which gives L:E"_“_'-' e E,_ (Table on page 3l ) . But then
¢ € (¥g¥y), (again from table). Thus c-c (¥g,V) dmplies

But Fp=LN¢ s VNF, = W .
This (Pg,V) = (Fg,¥) . This proves (1).
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(41) <€ (P5,V) implies ii[—“-?e:f becawse R c Pg .

Lo —

To prove the converse, suppose ﬁfPt“?._.-_:f « Then there
existe Hf. ¢V  guch that i

& ' ﬂ|
(14) Kolo SEN RS 3w e R .
w —u

Let, fe P5, Weolaimthat & £ ¢V .Forany gc o'

M Ea
{? éf €l a8 (I-I,I) =V . Trom Proposition 5.2 we see that
A -
L ]

Hence, there exists [« ¢ M(R) corresponding to { ¢ Fg such

A

2

/N
| @e K(R) < (9,7). Henee for each g€ L",
kB g

COROLLARY 7,3 (1*,V) = V.

b A A A
(15) o ECy = G , we R
Henoe
Pew> Beuy §ewy = U=t A A A
? T RtRFCuyglu) from (14) .
- wu-v 4 A A A A
— P R gy = Mow) Acw) 3wy
from (15) .

means that C#‘E c(utv) = ;. Ve have thus proved ¢ ¢ {l,.ﬂ.
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PROOF: With A =V in 6.3 (11) we get

Pec A V) standomyir (P o (xhv). Then 7.2

(1) gives the corollary. st

ZEOROSITION 7.4+ (1) CFRy,v) = CFa,W)
(11) g Fy NS SRS TR

PROQE: Notice that (ii) is already proved in the course of
the proof of Proposition 7.2 (1). We shall now prove (1). To

his end, let < ¢ (F; v). Then by Proposition 5.4 o> c (15, ,F)
hich is the same ss (F,,F,) from the table. Bimee chc( (S V) ¢
%, iato V. Hence

y observed, Fg OV V=w ., Hence

{'al ') (:- (,‘l')

M
T, = (7,,7,) (See tadle p.29 )
can derive

+ E & {ll.‘l}-f

(7, ¥) C (Ry,V).
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CGOROLLARY 7.5
(1) ".r'} - t"!‘] - {’41') - {"i',
(’.ﬂ-, tr!!') = t"-'}-

ZEOQP: (1) Since P, O Py O ?; (See inelusion (1) )
and (l'.,?) - (I".‘I] from proposition 7.4 , it is enough to show
that

{"I') = "‘l'}c

Hence 1%t follows that

t"l“ = {" VN ") - ‘,‘n')

~ becsuse, ‘l‘ﬂl"-‘l. Combining this with the trivial inclusion
(Bg,W) < (%4,7) , (1) followss .
To obtain (1i) it i1a enough %o prove that

(Pg,W) < (2y,W)
Let 4 c (‘l,,l’). Since

",i'} < t’,n") - (’ti"] (from the table Pe29)

(P5,¥) C (7,,¥) = (P,,V) from proposition 7.4 we get

P E (P VN W) = (y,W).



o0

EEMARK 7.6 In section 8, we prove that all the multiplier
spaces considered in 7.4, 7.5(1) and (ii) earxe identical with V.

ZROFOSITION 7.1

cp & (Pg,W) Af and only if Sl

c W -

LL = €
PROQP: Let ¢ c (¥g,W). We notice that the funotion
h e l, and hence

~

: A
LR blw) &R 0y €

L —c

Conversely, suppose there existe . ¢ W such that

Lok tw)

&
Let e l, « Then, as before, by Proposition 5.2, there exists
T8 MCR) sugh that

A A
IO < 0 A w e R s

W—=0 A A
ks 3(_-1) = AW g U-F:'EQ
+
How
l.:l:‘:?tuj Gl “ -
A L | A
CIJHL} 3{:4'} = S — 3(1.:.) = £ LL*};-&LM}

M

= R ) f(u)y € L::’
P
aa M (R) C (w,¥). (See lemma 0.3). Hence & ¢ (¥, W), proving

the propesition.
ZROROSITION 7,8s  (W,B5) = (W,Fg),
PROOF: Obviously, {I.l‘) G (I,!,}. et 4> € {l.l',). But,
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from Proposition 5.4 end the table

I~
{'1',) = ("grgl = {'1"13 = N (R)

Hence, thore exista [« ¢ M(R) such that

4’“—""'} :P\,f_u,“} 5 L,{c:ﬁ.

A%
As M(R) < (W,¥), we see that ¢> c (W,¥) and hence we have

P ¢ (W Fg)
Dut, since ¥ C P,, from theorem 4.12, we got
® (¥,
PROPOSITION 7.9t (V,Bg) = (W,Bg) = (V,¥;).

PROOF: In the light of the Proposition 7.8 it is enocugh %o
prove that

(w,Fg) C (V,Pg)
et ¢ (W,Fg) and fc V. Them £ c (11,W), by Proposition
5.35. Ohoosing an arbitrary funetion in !'1 and using the
properties of < and _E it is easy to see that

&£ e (B,T)
Mt (P),%) = ;, from (the Table, p. 39 ). Hence
ﬁ}’ﬁ e Fg for every Pc V.




02

LEOW 7,10t If & c (V,F,) then Crepltads & e

w —cC
ZROCE: Let 4> c (W,Fy). Pirst, oconsider the two functions
defined by
- 2L
— 2 e x =2
e X < o
. O X
1'"(1(‘1'} = g 42
L_ An e* N <o

Then K, end K, Dbelong to L' BV and have nonvanishing
Pourier tranaforms es follows

A

A L U e
i Gy = : R
-c
and )
I :
K‘l ey - S ; y U'{:E
w o+ ¢

Then, the fumotion K;~K, 1is a eontinuous function which belongs
to V. In fact, KK, < L', But this faot is unnccessary for

our purposes. Define
]{3 E:3:h =

~ Y (Rky=Ky) (2 ek .

fhen Ky € ¥ with

Ky €w) ‘

Hence, since < c (W,7,),

M A
[+ u?
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Also, since <> is bounded on ; being a multiplier
from the Segsl slgebra ¥ into the Segal slgebra 1L (R),
(Proposition 0.24) we obtain

() D & FCRDY
|t u>

Prom (16) and (17) we can use the inversion theorem to obtain
(28) o UL R
e

Now <4 c (W,7)) implies <& C (Pg,P,) which in turn implies
that

4

. N
(a9) PV L MR (See the tabdle,p. 39.)
W -
A~
Since b e ks Cudy & R
wt L

P
end (Pg,Pg) = M(R), we got

CI’[U-.) n -—L: L‘CF?'[LI.] N

|+ u™> e~ W=
(18) and (20) put together give

(21) Pitay T A e

e =ik )

But from Theorem 4.12, ¥, /) Py = Fo. Henoe



o4

(22) q’f_u) 5
| 3=

(4

Now, using proposition 4.6, one can derive, (22) implies that

. Fa)
[,C.f?('u.) G— 'C‘;
u -

which is what we wished to show.

GOROLIARY 7,311 M(w,x*) < 1(m)
PROOP: From, putting A = W in 6.3 (1) we get

dc(mit) itamaonlyae U-C o . ocLd0)

—_—
-

. =

But, frz= lemna 7.10 above, this implies
oA e
¢ ¢ B =it@)

Since ¥ and I are Segal slgebrss, appesling %o propo-
gition 0.24 the corollary follows.

ZROROSITION 7.12  (V,Bg) = (V,Fg)

ZROOP: Clearly (V,Fg) C (V,Pg5). 8o, let <> c (V,Pg).
Firat, we observe that < ¢ (I.l‘) from proposition 7.9. Then
from the corollary 7.11,

h(uy = ,f‘ﬁ Cw)

for some :ff\f:f[l]. Thus for any grz\f, CFf—_.f’gr.—N
But c#e(t.l',). Honce from theorem 4.12 again,

¢ c (v,2)



SOROLIARY 7,13  (W,%)) = (V,7,)
2ROOF: From proposition 7.9 and 7.12,

(23) "-") = ('J"}

In 6.3 (1), put A = ¥W,V. Then from (23) the corollary follows.

m.!di {'I") -{'t'g] "
ZEOQFs It suffices %o prove (W,7,) C (V,7,).
Let doec (W,¥p) and { any function in V. Then, for every
?EL“(R} , We see that s
¢f§ ¢ Fo
a8 9 e ;. Thus q.»ﬁe{!l,!!}ﬂhuhu %.{h-ﬂu
table on p. 39 ). This means that

¢ & (V1)

This completes the proof.

We shall now proceed to get the important identification
of the space of multipliers of V into itself with that of W
into itself. We do this by identifying both the spaces (V,V)
and (V,V) with the multiplier space (¥,V).

ZBOPOSITION 7.15: (VW,W) = (V,V) = (w,V)

PROGE: Pirst, elearly, (V,V) C (W,V). If & ¢ (W,V)
and Pc V,let 3¢ ¥y . Then

£4 ¢ \w es (12W) =V
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Therefore,
$F 3¢V  span qe B
or,
¢F e @t gor 2cv.

But (1,V) = V from corollary 7.3. Hemce < c (V,V).

We shall now establish (W,W) = (W,V). Obviously, by
Proposition 5.4, (W,W) C (W,V). If c-c¢ (W,V), then
cke {I‘.'t). again by Proposition 5.4 . Then by Proposition
7.4 (11) we have

(24) (W,¥) C (¥g,W)

Let Tq, be the operator asscciated to <> given in Propo-
sition 5.5. Then

| S
&

is given by Tq,;;-_?_ for eagch f 4in ¥ -hn§:¢$.
Since Tq, is bounded, there existe a comstant C > o
such that

(25) WTe £11, & ¢ nzn, few.

2

But, from (24), CF'EE\:J whenever f¢ ¢ . Hence
T?f‘&w for each 5 i "- An
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I+, = DEN,, fer £ ciNCV

~ the inequality (25) gives

(26) IITEP"‘?”'N s < “in 3 «EE'FE.,
Since !‘-Ll{l) s dense in ¥, we can prove that
can be extenddd %c ¥ with

h Te £\, < ¢ NEly » Peln.

Hence we comclude d-c (W,W).
QOROLLARY 7,161 (V,%,) () (w,W) = (V,w)
ERoop: (V,F,) () (W,%) = (V,B,) () (V,V)
= (V,¥, O V) =(V,W).

COROLLARY 7,17: (V, | 4+¥) = (W,D) = (W, k = V)
PROOP: Putting B =V, A = V,7W in proposition 6.1 (1)
and A = ¥ in 6.2 (1) and uaing the above proposition 7.15, we
get the corollary.
PEOPOSITION T.18 A
(1) (V) 2 1X®)

and . ~
(11) (V,W)N M (R) = 1}(n)

A
PROQP: (1) Thet 13(R) C_ (V,¥W) is dlear. Put
Xm (V,¥) . 8ince (V,¥) C (¥,¥), X 43 s subapace of



tempered distributions on R and hence ; is meaningful. By

the kind of arguments used in the foregoing, it can be proved
that

(52,%) = (V,V)
Sinece (V,V) = (W,¥) and I{AE) C; (W,%) (Bee, for example
[14]), X oannot be IL*(R).
(41) Let 4-c (V,w) N l’i\ll. Sinee k() & V,

~

LR _ gewr Lray € W

: P -t ~
But < c MR) implies U Pl Fr by Proposition 5.2 .
W —t
C e (e 3 2 b e
= . N2
(27) == e W/ kg G

from Theorem 4.Y4. Yow, using proposition 4.6 (27) gives dbcF -
Hence (11) follows.

ZBOPOSTITION 7,19 ¢
(1) i, %F {1.))::;
(11) #g < (V) C W
EROO%:

(1) Let <& c(W,D). Prom corollary 7.17, <> c(V,RxV)

A
Stnee Re V¥, K¢ pgy -LV which iuplies that

b e V. -

=
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A
In 6.2, put A = W. Since N(R) % (W,¥) and Proposition

5.2 G (Uues
¢ o
. A
says " = M(R), we get (1)
+
In 6.2(1), put A = V and use Propositions 7.18(4i) end 5.1 to
get

M

4 < (VY,D
s < (VD) h
It & c(V,D), then C P D = & xW
w =
: A A
pince — < \/ « Hemoe < c || . Or, (11) holds.

U =C

In the foregoing proofs, one observes that the techniques
used are extremely simple and the results obtained are never-
theless significant. Before closing this ohapter, we add one
more important multiplier result for VW, using a different
technique.

8. Hormander's lewss for the Viener algebrs

In his study of translations invariant operators [ 11 |
Hormander proved the following lemma.

LEMA 8.1 (Formender): Let % ¢ R ama fec LPCR™)

Ir | i‘:‘fﬂd_aq. .‘Ihlll
Vi
lzys+e ll, — 2P g, ey 9w
The result is valid for p = -~ whenever ¥ vanishes
at infinity.
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We shall now state and prove its analogue for the space
¥ as it will be used in our investigations.

ZHEOREM 8.2 (Hormander's lemma for W): Let IFc W.
Then

Il 2+ Ty f“iw — :L;“ﬁ”'w A%, Do
PROOF: Tet ( (R) denote the space of continuous
functions on R with compact support. Then C_(R) is dense

in W, Let {70 bPegivenand f . W. Then £ can be
expressed in the form -EF‘}-]-L where |'I1tmw-=:.‘€.

and t} has compact suppert, and

(28) ] i f'mw -H\%mhl[ < ¢

]

(9) | NTpp ot Ll -WTggt g | <as

If 14| 4s suffielently large, then the supports of 7 and
‘t’,gj, have empty intersection and so

(30) n g+ E?}MH =g, + N Ty 4l

Since : 1is arbitrary, (28), (29) and (30) give the desired
result.



o) H

coinoides with the multiplier space ¥ (L', W) and so
M (L'N¢, ,W) Ae isometrically isomorphic to the space V.
2R00Fs Since 1 N ¢, < 1L, we need to prove only that

¥1inc, ) © mat,W). To this ema, let T c ML Nc L¥).
Then there existe C >c such that for fe UNaer),

?

rwww £ e (IR, sy ¥

Since T dis linear and translation inverisnt, for 4 ¢ R
we have

W Te-+ CyTl = MTeetzye 0y
s c (hetzyen +NEtT ey )

Now, letting Y - o and applying theorems 8.2 and 8.2, we
get

2 NTe s = & {2 NN, + nEil, )

so that
Iren,, < ¢ Cher, « 2= gy

Hepeating the argument n times, this yilelds

e, € cWen, + 27" ney, )
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Since the left hand side is independent of y W let n—o o
on the right to get

“Tﬁ“l’m < CHEHIHI

for Ml fc L'N CGcR) o Bimse L'0C.cr) 4s dense in
1*(R), we oan extend T as & multiplier from L* to .

That M(1,¥) is isometrically isomorphic to ¥ is & result
of Burnham and Goldberg (2] . This completes the proof.

QOMLMRL R4 (7 , V) e (R s W) =V for
j = 1,2,5%5,4.

ZBOQRs Bimce = L'CRY amd Fu = Mne cp)

are Segel algebras, Proposition 0.24 is applicable. Hence we
get immediately from the above theorenm,

(31) (P,9) = (2,9) = ¥

Since the inclusion P, > P, Py O ¥, holds, from (31)
we can write, using Proposition 5.4,
A !
t"'l') =V for ﬁ| = 1,2,3,4 .

From corollaries 7.3 emd 7.5 (1) it follows that

[ i
(!:,'l'} =V for - 1,2,5,4 .



JTHROREN §.5: Por | < p oo o the multiplier space
M(U'nL?, W) 49 isometrically iscmorphic to the space V .

Proof is snslogous to that of theorem 8.3
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In this chapter our object is to charascterize the multi-
plier spaces for Segal algebras as dual spaces. The main
result is an identification of the multiplier spaces for Segal
algebras and normed ideals on general locally compact abelian
groups, (Theorem 10.4). As a consequence, we are able to
identify the multipliers from certain normed ideals into them-
selves (Theorem 10.6). Purthermore, whenever a normed ideal
is & dual space, the space of multipliers into the corres-
ponding Segal algebra turns out to be a dusl space (Theorem
10.7). This enables us to characterise the multiplier spaces
a8 dual spaces for several specisl cases. lNany known results
( [II e [24] , [4] ) that have beon proved using different
techniques are essily derived from our result.

2. &
Let us bdriefly recall the propertice of a normed ideal

H(¢), on G 2locally compact mbelian, (See definition 0.12
and lemmas 0.1’- 0-1" 0.15 and 001‘]

¥ (6) unhln: 8 unique Segal sl gebra H'[ﬂ) which is
the contimuously translating subspace of W (4). (0.18)
l.{l} is actually the clesure of B(G) in u (@).
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We shall now collect some examples for ¥ (G) and
I.{Gj.

PEOPOSIZION 9.1 On the real line R, the space L N 12\
endowed with the noxrm

BN hppy EUNEI X YVE T ke Ay

( Vg stands for the total variation of f ) is a normed
ideal. The space LACR) 4s the continucusly translating
subspece of L' 2V end hence is & Segal slgebra.

PROOPs That )'N RV satisfies the properties
Ny, H, and Ny can be easily verified. Let £ be a funotion
in |02y satisfying

I T -
FE = Flitany —2 6__ o 4 —>o0 o R
Then \f(t:”#“——‘:no 8 Y -—>op But
”L;:f—_f,’”m é"ﬂtu}ﬁ—.ﬁ).m" fftjﬁ',_ﬁ”w-—ﬁo ..

“4 —> © which shows that f 1is unifornly continuous. From
theoren 4.1 we can immediate see that 2. )4(R) « Hence
the proposition follows. Notice that for £ . A (R)

el U any = f!ﬁ”q-f |[1gf’,'|r1



which s the I* - norm given in 0.9.

PROPOSITION 9.2 The space V with the morm

B
= Sup' 5, AR ([focter] | BeVs

M eR k=z-wn K< €K+l

I £ w "

i3 a normed ideal and possesses the Wiener algebra ¥V as its
contimuously tramlating subspasce.

FROOF: Again, from the definition of the norm in V,
N1, H2 and K3 are satinfied. If, for any £ ¢ V,

then H.‘—p\af—ﬁﬂm——»c as > e I
Hence Y 415 uniformly continuous. This immediately gives

fe W, Forany f£c W, the essential supremum over
[K, X+1] reduces to the maximum value and hence the norm

Il *HI%r in ¥ gives the Segal norm of W defined in 0.8 .

PROPOSITION 9.3 If G is loocally compact abelian,
L“ﬂLm[&}h-mmmmu LYt ei6) as

its continuously translating subspace. 7This shows that

LAI"ICC,CG,} is o Segal algebra under the norm
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WEN = NI+ 2N

ZROFOSITION 9.4 Let T denote the oircle group (-7 ,7J-
Then define

. > 5 !
g ¢ T i Fe LT femy = O Lo}iﬂl\]}
and set the morm in N, (T) by

PR 1€ cm) Loa Im] l

= = (1120
ﬁl”ﬁc'r'? A T | < 7| £o0

FROPOSITION 9.9 N, (T) 4s s normed ideal on the
oirele group amnd if we define

Sply )= i,f.’.:_ ey ?t'n} = m( : )j

'C'Uﬁ- ™)

then S4(T) 48 the continuously tranelsting subspace of

Ny(T) and henee is @ Segal ul gebra under the norm II-Jl -
1

2ROQF: That N,(T) 48 & normed ideal can be proved
easily. YNow let fc N,(T) and

Il T £ - £
4 ”1[T}____>G @ 4y >0 in T



s ‘le‘-\.ﬂx‘}_lllf‘[rﬂ) ieéi!%\!'—'l"ﬂ

s Y>>0 . This would imply that given 2 > o there
exists O 7o such that for Y4 ¢ (=2, &)

- L "

33 1€ | 12w ez imy| < g

SR SR ST T ) [ T |'§ « Eow choose an integer
M, > sueh that

—

8 7 Vil
and set 5., = 1} for sll  with (™) > mo-
Then, by the choice of ™, 15,.,1\-_%!;_1{5:
so that & ., ¢ { =85 &) for all m , such that

L) 1M « Thus ¢ ., weatisfy (33) giving

I e 1%

—il lgfﬂ'}f-uf-[*ﬂ} <= %

—-imad
for [Mm|>mn, « Bt '\e,bﬂ . — 2 Jwend,
2

"

=2 A T, = 2 + Hence (34) becomes

68
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.h\
| £ ¢ Log |1m1 | < El,ng-g

M) = N which shows that fc S, (T) . Hence
propositien.

¥e mention that llt!J is given ns an example of a Segal

DIVINITION 9.6 Let G be & looally compeet abelian group
-

] !.h-hm‘luml_lp. If o{ is a funotion on 3 such

« 18 leecally bounded and

-

RLT O = for all Sc ¢

= { fie 13 G s i?ﬁ ]“‘f-"i'i)r?(i)] fim}

N (=) is a Banach space under the norm

. S
8) nell = upl o+ P Ixcsrfegy) , Fe e,
; Ntad) 1

e o subspace Scx) of N(w) Wy

Sy :{ £ e L‘l((‘n“} . mf mhltmﬁg



PROPOSITION 9.7 8 ( =<X) 48 a normed ideal on the
locally compact abelian group ¢ and 8 (=< ) is the conti-
nuously translating subspace of N (o). Hence 8 ( = )
is a Segal algebra under the norm of N (L) given 4n ( 35 ).

The proof essentially takes the lines of that of Propo-

sition 9.5 . WNotice that 8S(c) 4is the Segal al gebra defined
by Riemersms in [ 25 ] .,

DEPLNITION 9.§ If I: denotes the real numbers module
1, then the functions on I are the same as the funections on
the real line R having period 1 , How, let © < < =«
where N 18 a positive integer. Also, let \ (A, 6 +)
denote the cless of all complex valued functions ¥ on the

real line R with periocd 1 such that there exista a constant
K > 0 satisfying the condition

B o oo [0 0 B | UGS S agt s o
XeR

where the one-sided n difference is given by

e

) A Poo = T -0V fles AR )

=g

We denote by 1 (, M) the subset of N\(<, ") consist-
ing of those functions T  which satisfy the condition
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(38) f-:::R ' &1 33{-:1':.[ - © ('IH“)
Set
b S } Feao |
”f'”m ; xe R
nen, = S« | AT fos|
X, teR
letl™

end define
(39 UEIl = omax [ NN, , ned. f

for esch £e ACx,m) . Then the following result is
established 4n [30 ] .

RROPOSITION 9.9 [ 30]

(1) A («,w) is a Banach space and 2 (X ,m) 18 a
closed linear subspace of /\(xX,6 w) .

(44) The continuously tremslating subspace of A («,™)
8 ACX, M) .

(414) A (%, ) is the closed linear span of trigonometric
polynomials in /\ (=, m) .

(iv) A(x, n) 48 isometrically isomorphic to the second
dual of ACA, M) .




By virtue of (1), (i1) and (11i) of the above proposition
and definition of the norm in (39) we ean essily obtain the

following propoaition.
PROPOSITION 9,10 /\(x,") is a normed ideal on the
eompact group I of real numbers modulo 1, and A cx, ) is8

a Segel algebre uniquely contained in Als(,m)

Before giving the mein result of this chapter, we shall
‘refer to the definitions of a Banech module, module homomor-
‘phism and module tersor produet given in 0.19, 0.20 and 0.21.
Ve mention a few results of Rieffel [ 24 ] which are to be
‘used in the sequel. In fact, theorem 10.3 below plays
important role in our investigatious,

THROREM 10.1 (Rieffel) If A is e Banach algebrz with
approximate identity and X is an A - gpodule, then

B X 2 =N e
N

'3

where X, is the essenmtianl part of X and dencten

{sometrioc isomorphism.

THEOREM 10.2 (Rieffel) If A is a Banach algebra with
an spproximate identity bounded by 1. If X 1o an essential

2
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A=-module and Y is an A -« module then

H"G"‘lﬂf‘a'(_x.,}'j = Ho*‘mA{'nyE—]

IHEOREN 10,3 (Rieffel) If A is a Banach algebra with
approximate identity bounded by 1 snd X and Y are
].—-ll‘llﬂ. then

% *
Mom , C%,Yy Ty = (x@Y)

where stands for the dual apace of Y .

Observing that the normed ideals considered in section 9
are all tramslation invariant, we assume the general normed
ddeal N (G) considered here to be closed with respect to
translations. This facilitates the definition of the mmltiplier,
whiok commutes with translaticns, for ¥ (G).

Ve shall now state and prove the main result.

SHEORRN 10,4 Let G Do s locally compact abelian group
K (G) be sany normed ideal on G . If H,(G) 1s the

of B(G) in N (8) , then the following result holds
any Segal algebtra 8 (@)s

(S, N) =(S.No) ®RM(S,N)=M(S,N,) 2 Hom  (S,N): Hom (S, N, )
4 L L

g -

~ stends for leomorphism.




74

PROON: First, observing that N .(&) 1is a Segal algebra,
from Proposition 0.24 it follows that

() (s.n ) MES, N = Hom y €S, Ne)

Again, we recall that S and N are L'-modules, where

8§ is in addition, essential. Also N, is the essential part
of ¥ (See 0.16). Hence, using theorem 10.2, we get immediately

(41) l+mgr.5,w) = Hmﬂ(s,wga

Now, to prove M (3,N) = M (8,§,), 1t is enough to prove

MICSC NG - €. MICS n:)

Binge N_, 13 a closed subspace of N . Let T e M(S,N) -

(42) I Te “m <. T r;f-‘is 2 e
Since T commutes with translations and is linear,

R —|[Leidle i Tl -£))
(43) 4 TE- T2 HN [ Tory2 ﬁ')i’]m | ey £ £15



from (42) . Binee fc S , by the property 54 of Segal
~ algebras (See 0.1), 4f 4 —> O the R.H.S. of (43) tends %o
goro. Hence

I TyTe -T2, —> o @ Yo

which implies that Tfec¢ N.(G) from (0.18). Thus
we have established

(44) Mgy, M= TSN

How, let b e {.'.}n This means that %o eagch f ¢ S
there existe G ¢ N ouwhthat ¢ f = §

Define
'Tq,‘. S — N |

b Taillom

M, L
where ¢ £ =3 . Them T 4 is olearly linesr and commutes
with convolutions. %o see that 2 & is bounded, we appeal to
the closed graph theorem.  See Proposition 5.5.

She mapping ¢ —> T4 48 olearly an isomorphism of
(5,0) dnto Hom 4 (S,H) . Now the obvious inclusion (3,H)
- < (8,N) together with (40), (41) and (44) yield the
result, This completes the proof.




REMARK 10,5 In the proof of the above theorem we ntoce
that the density of the Segal algebra 5 48 not used anywhere.
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Hengce the result is walid for any homogenecus Banaoh space whigh

4s an Ll-module, in the place of § . Similarly, the role of

K and l. relies mainly on the continmuity of translation and the

faet that
[,N)e_ = Nn

Hence the result oan be easily extended %o spaces cther than
normed ideals snd Segal algebras. For example, if B is any
homogeneous Banach ogsce whieh is sn L (G) - module then we
can obtain

M{.E:JM) =. HE @,L1J
et HWEL@:H) = va,ﬂr_uj;j)

where N stands for the convolution measure slgebra M (G).
THBOREM 10,6 If ¥ is a normed ideal on G, such that

Mcd, N) =2 N
then

M(NJM) T_H'(_NDJMJ '—'-PJ-'(Nu_,NE,)

(Ve have omitted the other equivalent multiplier spaces for the
sake of brevity).



PROOR: That M (No, N) = M(Ns,V,) follows
fronm theorem 10.4. Nm[ B = '. . u“ll" I('..}C lt'ujl)'
Hence, let T !l..l). Since, again from 10.4,

u(zt,n) = uist o, )

- F":'N;gel.", Fxge No and also,

(45) llia-:-gllmn < ety g,

Then, extend T %o N by defining, {E-:?:' being the
spproximate identity,

T n e SSpE R ey BE N

From (45), T satisfies

As T ecommutes with tramslations for elements in
N, and N, 1is dense in L', we can prove that T < M(N,N).

SHBORENM 10,7t If 5 4s s Segal algebra on G and W
hwmumu G ouch that 1 48 a dual space B
of an l-lnhh B, then the space of multipliers from 3§
4nto the Segal algebra N, 48 a dual space given by

77
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#
MCS, No,) 2 (S&B)
| i
In particular,
K_
M(N,,No) = (N®B)
R

Theorem 10.7 is a direet consequence of theorem 10.4,
if we use theorem 10.3 of Rieffel.

Al. Application %o Specisl Cases
ZHEOREN 11,1
4y mc; nevy = M CE 1R

A A
(14) M (2 Nne, LNRYV) = PR € - 1Y),
(113) M (VN Rv, Unry) =MOA *apy) =M 08 .

' A
(av) M OW, UNDBV) = 0 T R [

PROOP: We first realize that, by Proposition 9.1, we can
get, for any Segal algebra 5 (R) on the real 1ine R
MEs, negv)i=s Mes, th)

88 a consequence of Theorem 10.4. Hence, when S,= L' 1y and
Lf‘ﬂc,, s we get (1), (iv) and (11). Observe that in 2l
Burnhan and Goldberg have obtained the result,

ML, LAY 2 Mhnev .




Hence Theorem 10.6 is applicable, so that we get (iii).

Notice that (1), (i1) and (411) follow frem the results
of Doss [4] . (See the table given in Section 5). But his

proofs are based on classical methods. Compare Fropoaition 7.8
with (iv).

In [17] Liu ard Vang have proved that the space

L"‘ﬂLPcR) for ) <SP <c 48 a dual space. The result can

easily be extended to G, any locelly compaet sbelian group.
Hore, we state the theorem for LE@ieE &)

SHEOURM 11,2 (Liu apd Wang) Let P bde ti» space of
funotions on G defined by

.p 3 { ¢ - ?’“3,*?2 whare 2, c ((c)end 7 ¢ UEGJE

Tor 3;_.13 s Gefine the norm as

RS R e T 1920, ]

in the form 3:*32 « Then P becomes a Banach space in
his morm. Purther, the conjugsfe spsee P* of P s iso-
slly isomorphic %o ' N ™ (() , the operation of f
YN 1®cg) o 4 ecP being given by
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9,25 = f FOo Fay dax
Gy

JHEOREM 11,7 Let 8 be any Segal slgebra on G , Then
the space of multipliers M ( S, "N ) 4s isometrieally
isomorphic to the dusl space (S%F‘)"’

PROOF: DBy Proposition 9.3, L'NC. 4is the continuously
translating subspace of the mormed ideal L 'N1°(6) whieh
is a dual space as seen from theorem 11.2. Hence the theorem
is a direot consequence of 10.7 -

COROLLARY 11.4

(1) M L, Vo) =ML, LNG) = o W et

i) A
(14) M(UOL. o) =MUNG, LD6) =M (LNAG, LN

(118) M (W, 2n10) = MW, 1'N G ) on the real line.

(1v) On the real lime R, the multiplier spsces M (L ,L1'NC)
and ™M (W, L'N¢) are dual spaces.
PROOP: (1) By theorem 10.4, clearly, it follows that

MU, By = M et 0 hReD
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In the theorem above, put S:L’1 « Then
M A ~ {_Lj@?:’)*
(2 U=y dpdens %

Ap it can be easily verified that P is an essential I-“-udnh
appealing to theorem 10.1, we get

Lleor o P
L4

so thas, N (', ['nr=) > P¥*¥ - L'N\® . Therefore (1)
holdse.

Since (1) 1s true, theorem 10.6 can be mpplied to give

M LN, n®) = ML NE,,LN1®) =M(Une, ney .

This 18 (11). %o get (141) put B =W, N = L'N 1% (R

. N, = LUNug,tR) in theorem 10.4 . (iv) obvicusly

follows from theorem 11.3 . Hence the corcllary ; notice that

(1) and (i1) are also given by Doas (4] . SBee the table of
peotion 5.

We shall now prove that the normed ideal V defined in
9.2 is a dual space under the equivalent norm

(#1, = Z e [fexs| , eV

e € A £ k4l



¥e shall not distinguish between the equivalent norma
to aveid excess of deteails.

THEOREM 11,5 Let E denote the space of all loeaslly
integrable funotions £ on R such that , ke Z |

KAt
_r lEctr ] & —> o . a8 >0

I
+1

I
¥With norm defined by !'Ef—’”E = ]’ lBeo)dhe | Fe E
ke Z K

E become= a Banach npoce, Moreover the spuce V is the duaml
of E. Ewery bounded linear functionsl L on E has the repre-

gpentetion
£et) geb) ok, Fee :
LR 2 S
(46) S
where ge‘\f and Ll = Hg!]v

IZRQOPi~ To s€e the completeness of E, let 7.£..] be
a Cauechy sequence in E, Then, for eseh I|cecZ 4 there
exiats, % ¢ ! Lk, kt]  ©=uch that

K )

] I £y €Y -,f“;-n] da. =0 BB M — 60 .

k.
Rt - fl" on [ K, k)] , ke z « Then, eleurly
'*ﬁﬁzE .

Ve ahall now prove the duality.
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We recall that

gl = = o4 Bk (Fool | seV.

K=-0 “e[K,lk+]
For 3¢\ , it is easy to see that (46) represents e
bounded linear functional on E because

lLeer) ¢ [ tgees) 1a0ey) o
R

B f vr"’"-"l.'f ’
g A S FLEd| 1acey| ot
bt | o
Sw-?, /) e . Auafe ,'?(,”!
Z | ol L= Z-
( K'ecZ J‘R_ ﬁL{-J? ) ( k:-wRLFLh' k""] )
= Hq‘inE H}!!V '
and ey < Hﬂ“.ﬂ, .

To prove the converse we proceed as follows. Let L
denote the closed interval (K, K+ 1) . Given fc E ,
let L’k be the funetion that agrees with f on I, and is
gero outside of I, . Then f£ - a—kﬁk « Now

4+
I fl«HE = f [ B iy | it

I

That is the space £, of all sueh £, with E.norm
ean be regarded as the space of all integrable funetions on Ik
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with the 13- + By Riess representation theorem every
continuous linear functionsl on B, 4s given by an L™
funotion on I, . Hence if I 4is a continuous linear

functional on E, then its restriction to E, 1is a oontinuous
:I.h-um.u-uln!' and has the form

(o) - L2, )= fﬁtctbgktﬂdﬂ' for all f, ¢ E, -
Tk

where 9, ¢ L (T,) . Zet § e defined on R by setting

‘a: 3‘!‘2 D‘ﬂIh o oReZ .

We now claim that ge\f and that

¢ £) = ) By %.LH d.1-
R

Prom (47) we observe that given ¢ >0 there exists A

for all fc E

in I-]'{I.) such that

e

- &
f B cer|2idds =5 ( :X[htﬂgktf:)d*/,v”sk”ﬂ -,
e

We can find @ constent O,  of absolute value 1 such that

Ox | Fieo 9, () ab = | J‘ fuc (6 g 00 L |
Ih Ik




Then
~ 3
S winladl 2 et é,k,)
K z —
=
S PR f A6 9, (6> do-
K <= T
A I =
= X (Peeltlns) ta AL =EF Oty )
K= - on K i
"M
< M 0 Z SeRe =L
e = =
Since (| > Q fx |\ = 2 » This gives
K=-m E
ﬂ
s )
oM e B
Kx-m P This gives
2z g, Il € nLl + 3¢
k. = -

"y
> el < Miawi
K =-
for all and ™M from which we oconelude that

"
B!
=)
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mus ()|, < Ll amd eV . How the required
representation 1o obvious. Tor if fcE , then £=E£k
and

=R TEESE £ Y E zh LG

K.

= Zk‘ I P LEY 3, (6 Ak = {. giamgmd-t % E:ﬁmanl-mt-
L EI{ R

This completes the proof.

SHEOREN 11,6 Tet 8 (R) be any Segal algebra on the
real line R . Then the multiplier space N (8,V) is isometri-
cally isomorphic to the dual space ( S © E)¥ .

LA

This is a direct comsequence of Theorems 11.5 amd 10.7 .
Following important results are derived from theorem 11.6 .

CORCLLARY 1.7
(L) MG Vs e W) = N

(1) M ¢ V,V) = MEN,U)*:MCN,{,J);:'EN%E)*

(414) M (Ung, V) = M CLENC , W) .

(4v)

M W) 2 (TG EDT
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ZROOP: (1) Prom theorem 10.4, we got
ARG V) = T W

Since, we can prove that & humumzl—um-.mn
theorenm 10.1 ®
T =
L-"l
Hence from theorem 11.6, we get (1) since X" = V. Notice
that ML W) &V is & result of Burnham and
Goldberg [ 2] using entirely different techniques.

(41) As (1) nolds, theorem 10.6 is applicable. Also applying
the above theorem, we get

MCV,V) = M(W,V) =M, W) "siw%’e)*

In [14] , Krogstad has obtained M (V,¥) as s dual space
of a tensor product @j W, . We notice that our space
E  1s isometrically isomorphic to \/.C defined in [14] .
Hence, we have arrived at Krogstad's result through a siapler
method .

(111) Prom theorem 10.4, we write

PR o, Vi) = Mt A e i) -
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Notice that M (L'NC, V) 2 M(L'NC,\W) 48 proved in 0.5 ,
ueing a different methoed.

(iv) 4 an odbvious deduction from Theorem 11.6 .

BEWARK 11.8 On a general locally compact group © ,
the Wiener slgebra can be defined. See for exemple [23 ] .
¥We can define V 4in a similar way and the foregoing results
for W and V oan be extended without much difficulty.

Thus we see that theorems 10.4 amd 10.7 are, though

simple, powerful enough to obtain several known results at a
stroks.

We shall now turn our attention to some normed ideals

and Segal algebras on compact groups. ¥Ye shell first consider
the Lipechits elasses 7l(x ) and /\(«,n) defined in 9.8 .

JHROREM 11.9 Por O < x ¢, 4 2ot A(x, W)
and A(x,m)  be defined on the compact group I, real
nunbers modulo 1, as given in 9.8 . Then the following hold:

§8). MICLY ) Bt o) = M €Y, o))

(41) M(Dcx, ™), Ak, m)y) = M3 (x,m), Alx,n))
== h""r'al‘,:":':"'“']

and the multiplier spsee M( 3 («, =) L 0(x,m)) 48 a dual
‘apace.
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PROQF: By Proposition 9.10 we see that A (< ,") 4s a

normed ideal on the compaot group I end / («,n) is the conti-
nuously translating subspace of /\(<,v) . Hence, in theorem
10,4, ifweput S =1 and 7cx,m) , Ni= Atx,») and
No = B (,mn) o elearly (1) and (41) follow.

Wow Proposition 9.9 (iv) says that N\(<,~) is the dual
Bpace® (3 (x, wm j“* « Therefore, from theorem 10.7 we obtain

+
M LAk, m, dca,m) & (A, m) ® A, m*)
k2

Ve mote that a8 A (x,m) 48 proved to be a Segal ealgebra,
it 4e an L' - module. Hence, its dual space 7 («, )" is
alsc an L' - module, by the sdjoint sction.

In fact, the space of multipliers from any Segal algebra
on the compact group I into 7 c«,n) is a dual space.

e alnll now prove that the spaces of multipliers given
in 11.9 (1) are actually identiecal with AN (g, W) , To do
this, we resort toc the following result of Burnham and Goldberg
(2] .

LB 11.10 (Burnhan end Goldbery)

Let A be any Segal elgebra on ¢ under a norm !I"[,
Define B a8 the ball in the Segal algebra A given by




Bx = 1 f£e A Hel, < 3

There existe {f,n} C. BL

such that [ £, _ £, —>0 @ M | ., Now, set

x + Then under the norm

b et

H.ﬁl'lm: ;'vu[r”“ ;,fe;f, E becomes a Banach space.
& B2

Noreover, whenever

MUCNETRS e MY o

then M( L), A ) is isometrically lsomorphic to A .

i~

A 1is called the relative completion of A

IEOREN 11,11 For A(x,v) and N(x, n) as in

11.9

(1) M L, Bex,m) &2 Alk, )

(1) ™ Bcer, y R, m ) = MCACL,ny Acx

e 0

a0



RROOF: loté that (41) follows imumediately, by theorem

To prove (1), firet observe that

Mqu,ﬁ{af,h)) ¢ M{Li‘,:__l} E [%c1) ¢ chIj

sinee A (x,m) ¢ L*(I) . Therefore, by lemma 11.10,

it is enough %o prove that A (<,+) 18 the relative comple-
tionof 7 («,7n) . Therefore, let {r 3 ( 3 ()

such that

(48) e N < A forall kK , forsome A >o
and

(49) ||,fkq-.£1fi~—_j;o ae k —3 ag

Now, from (49) it follows that
(50) Fi Gy —s  RiaH Q.e.

¥e recall the norm in Alx;m) %o be, for any 9c Ay, n)

(51) ||9H = s { 5'-&15 1?_“”} : SU-}T: I-’:\E-, 3.{1)]%
£s ",

R
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Hence, using (48) and (50) in (51) we find that £ c N Cx,m) .
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On the other hand, let £, = £xd_ where Y .. is

eny element in AC ~) and { 5y 88 the Pejer's kernel,
the approximate identity in L(I). Then clearly

Né..|1 < ngl Nanll, =nell
by the normed ideal property of A(x,n) . That

’H-:_,,_.-gl\q —> 0 8 M- .o 18 eleo obvicus. Hence
we see that A\ (%, ™) 4s the relative completion of N (<, n) .
Thus we have proved (1) .

COROLLARY 11,12 Let © < <X <4 . A necessary and
sufficient condition for T ¢o be a multiplier belonging to

MC Bt 1), Beot, 1)) is that

%(1']: 2. ¢ Comy ! P ™) tﬂ.ﬂ‘tmt , meZ
M0

be a funetion satiafying the condition

Swp L It & “ T a®-23 1l <
a >0 =

where <f(™) is a function on the integers % given by

X
TE Cm) = @lm) £Cm) Lo it m) .
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PROOP: Since theorem 11.11 (11) gives
M ( ﬁrac,l)} A,y ) = (ML NCGe, 00, Nitat;iy)
The stated condition is proved by Zygmund in [ 34) whenever

Te M(At, 15, At<,1)) . Ses, for example, Lé]

This completes the proof.

G0 far, we dealt with cases where the normed ideals are
dual spaces. In the following we see that theorem 10.2 can be
used to give in some ocases, the multiplier spaces of fegal
algebras as dual spaces even when the corresponding normed ideals
need not necessarily be dual spacea.

ZHEOREM 11.13 Suppose
N

S,CTI)= fﬂel_‘c'r) s A my = Pl e }%
A

a8 defined in 9.4 and 9.5 . Define

N‘lq.:-r} :{FEM[T'}fﬁLtﬁ'}T-O —— }g



Then M, CT) is a Banach space under the morm

Hll” = Ml 4+ ™A% [ fCn) Loghy|
I'CIWJS,G

Purther,

M G 8.0 = MC 1w, ) e o

ZROOF: Using theorem 10.4 and Proposition 9.5, clearly

Mic b, Sy = M oetd N
Hence 1t is enough to show that

(52) M(Lﬁ,hfq} o e DTN

Pires, let T e M (L', N)cM(L!, ") . Henoe
there existe L ¢ M(T) guch that
Tie 5= f"—*-ﬁ' ; fELﬂI{T}'

Let 3 J,]  be an approximate identity in LM(T) with

Then

1§

Wl ¢
U S T 4 S PO
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Hence

a
max | A cmy 3 0mM) Log o |
N e I~ n

is bounded by /I TIl . If we choose F J,,7 to be #he Fejer's
kernel, for all M7

A 0,
rﬁt"‘ﬁ“}b‘“i'?ﬁ}——-a M) a8 M —> oca .

Also, from (53)

fa % 9 4, - S wesk star in N (1)

Henece -~ - jee » 50 that we get from (53)

(54) || palt + THA™ | Cm) Lo 1| & NTH
l<imlg o2

If, on the other hand, |« ¢ M (7T) . Then olearly,
for esoh £ ¢ LYcT)

L max (fic-w-.; ?tmi’eﬂ;lmfl
[ <] g oo

Hru,)f f.”1
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max A Cm) Qfm;‘-evg. 1 |

fare% 1)
L | <l1ml £ o

A
< Nl NEM, + mean | Ay gl | 120,

<] ml &

(£l
< [ hmll s Tpax | A Gy g 1 ) !

| < || &0
so that Te MCL ,N,) where

TEg = pxepe e er)

i M e {.-‘1[-"'171'@4*1”,
(55) Nt < Wpmll | &l

From (54) and (55) the isometry follows.

¥e shall now prove that the apace l,_(!}hutmul
dual space, For this, we need the following result of Liw
m'unmzs[u] .

LEOG 11.14 (Liu end Ven Rooi]) ¢ Let E and ¥ be normed
linear spaces and H , a closed subapace of B X F , Put
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I"\ = i (o, < 5‘”:& F{; r-{ﬂc)ﬂ-ttg}:otumrr
C%,9)e H }
where 5 ana ¥ are the corresponding dual spaces of
E and P . Then there exists a natural isometry bdetween X
ad  (LxF/p)7 .
ZHEOREN 11,15  #,(?), with the equivalent morm given
by

A
VeWhememan Gaypeiats Ba% | tom Loy o] §
Tt g

is a dual aspace.

FROOF: Consider the weight function defined on the space
of integers £ ,

L"«JL""‘IJ‘_ Lﬂ)ﬁf‘hf “' Il""'.lf}'

WGary z Jedg 69 =) Wi =

Then the weighted Lebeugue spuce el 2) on Z 4a
the dual space of Ld'w-' Gz ¢+ the correepondiing Iel-im.
weighted with .,-'(,, + (See, for example [13 ] ).



et MCT) XL, (2) be the Cartessan product and

define a closed subspsee K of ™M(T) X L (2) wy

W = {(ﬁ‘!f‘:’}" IIILLE:M*(-T)-S

Then K oan be identified with  M,(?) . Yow define

i ¢
i Bperideai, 1R, C2)eige

H

I

cL {1 g, Sy pePerr

where ¢ L stands for the closure and FCT)
of all trigonometric polynomiasls on T

¥e assign the norm

SN gy # 20 10m wTony

He T MeE2Z

forany ( £, {q,1) e CCT) xL‘m_,
prove
i = { Ceor,z) € MOTYX LT ez

T(f) —Tcf) =0 For (£

ia the space

(z) « Then we can

-EJEHK
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Hence an immediate application of lemma 1134 gives us that K
is isometric to

A X
C CeTd B e CZN/ O o e v i i

K 48 pdentified with ..'l.“) + Therefore we have proved that

H{!)hl“lm-
THEOREM 11,16 "')_1'11 - 't‘ln':‘)illhllI“-

PROOP: TFrom theorem 10.4, M (S, s,)= M(3, N,

M CShi M) € MU8a5 M) € MICSa M)
But, as we have mentioned in remark 10.5 . Ve can prove that
MIE 55 (Y MET) W S MIGS 4 G sdieadie e

Henge for any Tc M ( S, ) CLM(SMMA_) we get
Te M(s,, 1}) « This implies that Tc M CS,,M,) -

or, M € Sq, Na) € MCSq,M) CMCSH,N,) -

39
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Henoe we oan write , as in thecrem 10.4,

M (5y;85) =M(3s, yN ) =MI(s, M) = HWLTEE,MI}

#
& .+ Hemoe from theorem 10.3,

]

Let M (T)
MiGSin S5 ez (54@?51)* i
=l

This ocompletes the proof of the theorem.
DUEMARK 11,17 Ve observe that theorem 11,15

together with (52) characterises the multiplier space
M (L1,8¢) to be a dual space,

ZHEOREN 11.18
Let @ be a locally compact abelian group with & as
dusl group. Tet o be a loeally bounded function on O
with 1
REED , Te G

then, denote by M («) , the sub space of bounded messures on
¢ defined by
Sup latg) )] f:mf

P meMee)
T C6G

I'\"l_[u('] =

Then M(«) 18 a Banach space under the norm
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Cpadl o = el + é?é [ <L) th:} y M eMiy .

Then for Scy) end N(x) defined in 9.6 we have

M G eBieeser= ML, Ne) 2 M)
Proef is enalogums to that of theorem 11.13

ZUEOREN 11,19 M () 4s a dusl space.

LR00F, M.Mmtommuhmn.il.
we can prove that (<) 4s the dual space

A *
( Cb{GJ‘K L—qw"f (.G-\} /H) ':—L)*

where the weight funetion (v is taken to be = itaelf
and

e U L2, <8y 4 regcm}

Hence, analogous to theorsm 11.16, we can state for the
Riemersma Segal algebra the following result:

*
ZHEOREN 33,20 - M (S, Scuy) & (S)® V) .

ket
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12. A oharacteriszation for ¥ (W.W)

This section contains a characterization tn-_ n (w,w)
viewed s & subspace of W , the @ual space of W .

Our charscterization is actually obtained for u (V,V),
But from 11.7 (i1), X (V,V) = M (¥,¥). Ve have alsc included
& simlilar characterization for the multiplier space
¥ (v, 220c).

SHOREM 12.1 ¥ (W,W) = ¥ (V,V) is isomorphic to the set
of all Ac \J* ouch that £ —> 7 x £ 4is continuous from

L*¥Ck) 4nto V for esch compset set K of R .
ZROOF: Bimce M (L4, 1®) = Hemn 4 (W, 1)
= UV El)jl.f)* T W™ 1% follows that every element of

MW, W) < M(IW,®) 43 given by en element of ¥ .
(Se0 mls0 [12] ) . If Tc M(CW,w) thea Te M(v,v)

by 11.7 (41) whioh implies M(V, V) = M(W, W) ., Hence
there exists Nc \\|* wsuch that

TE = p¥e fe v

and the mapping £ —> A% £ 4s continuous from V into V.

Let K be a compact subset of R and let £ cL™(K) , I ¥
is a functicn which agrece with £ on K and sero outside,
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then ¥ < V . MNoreover, there exists ¥ ~ 0 such that

k ¢ L-N,N] so that
IFly < 2N TRL,
Hence

A = NTEN, € 1TV UFIN, £ (an+) I
Lax e, = e, v v HI,

so that £ —> A rP  4s contimuous from L°°Ck) 4nte V
for each compact subset K of R,

On the other hand, suppose that 7 c W~ 18 such that
¥ —> A%f 18 contsinuous frem L°°CK) fnte V for each
compact K C R, 8ince 7 48 a memcure on R patisfying
the condition that

ey < v torall k ¢ 2

whexre Lf -[k k1] and 7 s independent of ik,
i% follows that for each fc¢ V , we have

ITeu, = waxzen_ < 7 hEN

A

g0 that TcM(V, ) eNowlet fcV .12 P, - £ %,

where X is the charapcteristic funetion of Iﬂnhn
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gy
B vl ame MEN = 2 N

T = =g ht-ﬂ

Since § —> A¥9 1s continuous frem | ™CK) dnto V

for any compaet met Kk C R there exists a commtant
such that

la %”v < i el . Ge L°ck)

This inequality remeine valid 4f 9 ¢ (" Cx « ) for
arbitrary xc R « Henge taking k=Lo,1] s we have a
cors tant Cd guch that

A« f.quv AR Hf.ﬁﬂm

so that
Naxegl PN [ - S P |
\ \/
h:-_m
Ztaiz- pnlldTofaal < arela s e,
N —on 22 MNz- 55
~ C, Hﬁﬂv-

forall feV . Hemee Tec McV,V)= MCW, W),
This eompletes the proof.
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THEOREM 12.2. The space of multipliers M (W, 'N C,)
is isomorphie to the space { AcW's the mapping § —> AxXE
is contimuous from L°(K) dinte L'CR) for each eompmot K C R’S

PROOP: We first notice that from 1l.4 (1i1)

MCW, Livesy = 8 O BN

Also, by Proposition 7.14, it can be proved that
MW, UnLR) =& MW - tad)

using Proposition 5.%.Hence the proof of the thecrem is
evidently along the lines of the previocus theorem.

BRIARK 12,3, Edwords [ 5) hes oharscterised M Cin), 1)
as & speoe of pseudomeasures P Ve R) :{ ae PCR) ; the
mapping f — o A f 18 continuous from C_CR) 4into e R?ﬂ)
where C_(R) 4e endowed with the i ernal inductive 1limit
topology. Theorem12.l and 12.2 are analogous versions in

®
the space W .,
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In this ohapter, motivated by Goldberg and Seltser
[ 8] we elaracterise the multiplier space N IH.LJ'] as a
completion of the Segal slgebra 3(0). Ve consider the

convolution operator morm on the Segal algebra and define a
completion as the weak star closure in P(G). Ve identify
this completion with the multiplier space ¥ (5,1'). we give
l(l,L") separately for the case G = R , as a space of
sequences of I.ltl} - funotions, mo as to derive Pigne's
result (20] .

We first recall that P(G) denotes the space of all
pseudomeasures on C, a locally compact abelian group. P(G)
is actually the dual spsce of A(G), the spsce of Fourier
transforms of all functions in L'(8), endowed with the norm

I1£||A = IFN,
where Fel'(G) with F = £ . A(G) contains the space
B(a) -{fEL"(&}: f bhas compact npmrt}

DEFINITION 13,1 Let 8(C) be a Segal algebra on O,
@ locally compact abelisn group, with a norm li-u~5 + Define
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arnother morm Il - 1l on 8§ by
Wgm = Swb § WExgh,  Nghg ;q}
end demote, for °C > O ;
= - MEN < Z
B> JlBHes ==

and define

(¥

B = {"'E’P(GO t There exists amet { A % C B

2

such that #1 —> o  weak star in 'PCGF}}

let S = UB, eaddefinefor ¢ ¢ S

% o
| S
e B

Clearly, !l'll, 40 aeemi normon S . To prove it

.
is actually & norm, let llsll  =OC forsome o & S
Let € >c Dbdegiven. Buppose F, 3 € B (&) such

that Il Fx3ll, < 1 .80 v - €
- wgn_ H.fi'h’5

Then there exists 3 A} C B  such that *H_—> o

weak star in T (&) ., Now

[CExg, oy = A | < Fag , 4>
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= MmN e g gy

& g Lisw & *el,

< Mg wie lEl, -k

Since £ >0 418 arbditrary, we conclude that {{, ) -=p
for e Bc6)xB(&) ,with I1%ll,<) and hence s
vandshes on B (CG) ¥ B(G) Bt B(&)x B(&) 1

dense in A(G) and o 43 a bounded linear functional on
A(G). This proves that o = O -

o

Hemce S 4is actually a normed linear space.

Ve now prove the following theorem.

SHSOREN 13.2¢ The multiplier space N (3, L') 1s
isometrically iscmorphic to S .

PROOP: Let Tec M(S,L') . Then, using Proposition

0.24, we see that there exists a unique pseudomeasure s < P(G)
such that

Tf‘-r‘ffi forall f ¢ S

How, let §e_,3 C B(G) bve an approximate identity for
8 (6) with IEEg.ll: =t for esch < and set



o = Ty

Then f,c S forall X .Foraemy fc S

Ve have

Hn-ate.ﬂ(*-?”q < ITh e % fl]s, < Tl el o

which implies that [l A _ Il < ITI  gor a11 <

Forany 9 ¢ ACG) , considering the refleotion
funetion 9§  defined by '
: \3\)(7{’) = gvf_-:w) 3 x € G 3
we have n paeudomeasure o  given by
(3; ";:) == ('-év: T)
New suppose 9 ¢ B (&) and K= S'wplaﬁ « ¥rom the

relations

A A A

Vext gl = S Neeg - § 1y 3 & e gog,

where dh is a constent depending on K, we see that

ol

Then if 3 ¢ B(G) , we have

Lo ne‘{«xg-gnh =0 for each ¢ R(G).

109
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g
f);> <?;“‘>

<?a‘3n<)_‘-" LG forall g9 ¢ R(q)
Using the denaity of B(6) 4in A(G) we conclude that
Ry —>0 weakotarin 20) . Thus o c £ with

(56) 25 R S [ e =

Suppose, new OS¢ S . We can find TR, ta

.{')! such that
M < Nell, + £

and H, —> o weak star in P(0). Iet ¥ ¢ B (&)
end 3¢ ACG) ,then £ %Xg e B(G) . Using the
definition of the pseudomeasure o X £ we get

<ﬂ'; X £ ) = < F%Q‘Jr>
‘E:;u<g*3:£‘uc> - Eh&(u<?’ﬂ**£>

so that
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| &9, #FEx| = R g g
< h:v W, Thxen

CETS < hgh, Cletigre) neng

Since A (0) 48 demse in C_(&) , 1t follows from
(57) that o x £ ¢ dnf&)* - M(6G) » for each fc B(&)

and the Inmﬂ norm patisfies

(58) N xell < C(CHellu+ 2) NEI

On the other hand, fe¢ B( &) so that o ¥ £ ¢ B(g).
>

Ory, o*§ has compact support. Choose a g}slj such

that %:1 on the support of a-?,e end so we can
write
o X £ :Cfi‘fﬁ)'ﬁﬁ-—

hence e xf ¢ LG) . Then (58) gives

(59) Lo # Ug i 0 Gllall suhusts), lpllig

Defining the operator T on B(G) by
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T-'ﬁ':'ifr"ﬁ-ﬁ for £ c D(&)

it follows easlly from (59) that T omn be extended as a
sultiplier fxom B dnto L' with

(60) T < Ul + & .

Thus T ¢ M(s,(') end since € >0 4is arbitrary,

(60) gives

(61) {5 Y [ I =l

But el , < ITH by (56) . Thue the mapping T —> &
given by

it da= o= %P

is an isometric isomorphism between Hﬂ,‘ﬁl) ard T .

COROLLARY 13,3 If ] ¢ M (S, ') , then the essooiated
mmiu.mmmumm;u

SWwh Yo ke . etes
s ol |

EEMARK 13.4 ¥ (3,1') oan also be considered s a dual
space of a certain Banach space of continuous functions. This
follows from observing that M(sc@”};_‘?(m) is the same as
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MCSt&)Y, M(6)) . Yer, qu‘;} is the continucusly trans-

lating subspage of M (G) (See remark 10.5). Hence by
( Rieffel (24 , p. 452] ) theorem 10.3,

*
M(s, Y)Y = M(S(e),Mca)) & (Sa)® <d,can)
L' (&)

When G is a compact abelian group, the above theorem
will be the special case of the following more general result.

ZHEOREM 13,5 Let G be a compact ebelisn group and

(Sa, Wlg) end (S, nil_ ) be any two Segal algebras
en G . Defininz on nl.luuulmh

i = Sep §upxgy BeBlad, N9 < 1§

2 1

dencting as before, for o >0 ,

B = iﬁa s, - Wen 513

st BY 20 meT) o amve entats: aineh 1A.} ta
B, ©uehthat A, —> 6~ weakotarin ¥0)| and

setting 5}1 2 xu B, normed by, for o c S“;L
>0

el , = 0 %

e B
the space ™M ( S, S,) of multipliers from 3, into 8y

S

is isometrically isomorphic to S,
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i~

BEOO¥: That M (S,, g ) 4s contained in S .

is proved exactly in the same way ae in the proof of Theorem
13.2 and the inequality (56) also holds.

Suppose mow o c S, . Then there exists
§8.3 C B, ouchthet £ > ;- wesk star in P(G)
where 7 = llesl s g « Then we can say that

~ ~ i
(62) i YA —> Fer ) for every Y ¢ & .
Let fec B(G) . Bince G io compact, G s

diserete. Therefore support of f 4s finite. As, from
(62),

Ea

-’ﬁ:ic-() Ef-g) —_ &) f‘m’) , VEG .

it follows that

~ o A~ N
R pemmensy fee P in L (&)
Hence hyvf —> sxf in L7 (&)

and henoe in 1Y(G) as G is compact. Thus

Ua g - rﬁ-q?fl1 — 2RO,
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Then, using leamma 0.5,

\F R 4 = d’iﬂ‘iflg Z du—. |!ﬂ_ﬁf3—~a—xru1

g 15
so that

tl.n:w
. | < N E]

L

Hence we can dofine 1 ' B(G) —> S (&) given by

TE = oxf
satisfying

ITEI_ < el + g) NElg | £eBlsy.
-3
Since B(G) fa Gemsein S, and € >0 is
arbitrary, we conolude that Tc M (S, ;S,) and that
UTIH < Nlell, . This together with (56) gives the
isometry. This completes the proof.

Prom the above theorem, we now derive result of Geldberg
end Seltzer [ 8 ]

COROLLARY 13.6: Let S be & Segal algedra on a compact
abelisn group € . Then a measure M ¢ M(&) induces a multi-
pider Tc¢ (L)', S) given by
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TR~ px g e e
ﬂmmBMMImum{f\%'ﬁ in § such that

WAl €Kk < oo form =1,2..... and . —>pm

weak star in M (G).

The above kind of weak star completion csn also be carried
over to the charscterisation of the multipliers from the Wiener
algebra into itself. We recsll that W(R) 4s a Segal algebra
on the real line R under the norm

W MER Kzrmoo KN KRS

Prom [ 12] 1% 1s known that the space of multipliers
B (W, W) is isometrically isomorphic to a subspace of ‘l'. the
dugl spece of W. Hence, in this case, instead of considering
the pseudomeasures, the weak star completion is taken in W
itself,

DEVINITION 13,7 If W demotes the dusl space of W,
then

Wi SN TRy € MR € W

Setting
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3

mem = Swp {u;fﬁ- g, : mfgmws__q}

Ve define, aa before, for X > 0O

B = § feld i mew <=3
Now we define
g: e { 'ﬁew{:mmhtnnmiﬂm'ﬁagx

such that € _—> 7 m-mu\n**} and the completion
is denoted by
sl = UBx
AS0

Pt

We introduce & morm in W by setting
| @ilafisittet = x
e B*x

With this, we atate the characterisation of tl» space of multi-
pliers.

ZERCREN 13.8 M (W, W) is isometricelly isomorphic
% V.

PROOP: Pirat, let » c)A . Then there exists a
sequence § 2,7 4n ¥ with A _—> weak star in ¥' and
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N Rm Ul < WAL + &na,
€ 70 4is arbitrary. Now let fc\W ana x e¢R

{"n*f sl = J f—cx-g‘) %ﬁt})dg

= | 2 £ Gatp dy > | 7o Feyy dacy
=3 R
= ] Box-yy dAcy)
R

by the weak star convergence of thay %0 A . Hence

P X £ (XD —> A ¥ P () forall x ¢ R

We shall show that A xFc\W . %o this end, consider

o

S z WA | A X £ (x +"h-'~_-}l
’T‘I"‘.L’;-FR K = —o0 XEEK‘, k‘H]
= $Sup j,_’m mMax Lo | G F Oty

MeR K=-o -H&[-kik""] 2

é 5% g Liv, mMmax | fn % Flotmd|

ot e Bk N~ oo ‘KC—[k;k+ﬂ
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By Fatou's leuma,

L e taf Sup T mMax | fAanXECx +md|

= S R = — Xelk ks

= Ao e I X £l < (han+e)MNe) < o
I —= on W L

Ginee < > O 18 arbitrary, we get TEM(W, W)y defined
by
TE =z AxE Fe W,

b

such that
I TH < I P

"

It T € MCOW, W) , by Unni end Keshavamurthy [ 12 ]
wogta 2c\A” sueh that

T'F:-?’H“ﬁ 5 fE‘L’J

Take any approximate idemtity { ¢. 3 C B(R) for W,
with He,nlldt‘l for all m , Tor example, we can take

mh:u--umx{ = C“"“‘“t} e Las t,=A%E,
M £®

for esch ™ ., Following the same argument as before, it
follows that h, —> A weak starin W' and {6,3C Bo

where ot =Nl + The rest of the proof is ms before.
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RENMARK 13.9 Ve have obtained other characterisations
for M (W, W) . See Corollary 11.7 (ii) and theorem 12.1

u.mmmnmmmum

In [ 20) Pigno defines the convolution approximation
property for a subspace DG) of L"(GJ with I(G) > 3B(6)
and proves that if D(G) has this property, then
(D,31) = N (6) (Theorem 14.2 below). Here we oharscterize
M (8, 1') for any Segal algedras on the real 1ine R and
devive Pigno's result (20] . Also, we specify the multipliers
when 8(R) does not possess the said property.

DEPIMIZION 14.1 If 0) < 1*(0) 4s such that
D({6) > B(6), D(G) 1is eaid to hawe the gopvolution

approximetion property with respeet o 1 (G) if for each

sequence { o~ 1} ¢ L'(G) such that ,L.,..;,L:Mf; el = =
nN—2 so

there exists @ J ¢ D(G) guch that M%%I]u’;ﬁ-ﬁﬁ:it:eﬁ,
|

" —3 o0

SHROREN 14.2 [ 20] If 2 (U) has the econvolution
approximation property them b c (D,L"') 4f and only if &=
for some L € MC&G) .

We shall now restriot our attention to @ = R, the real
line. Let S (R) be any Segal algebra on the real line.
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DERINITION 14,3 Let & denote the olass of all

Sequences j g 3 | \(R) such that

L Atk ”‘é,..,..i-ﬂ”‘l & wa
Ms—> o0

for each £& SCR)

vetine U Tg 11 = Sep ) "dREL,
E g nen_ J
S
Then "-HE y isanormon B ., Yor, let Hi?wIHEzo.
Then we must have “‘ﬁﬂﬁfllfm for all M and each

e SER) « This means that

N A
LGn(w E(W] =0 gopatim, for sl £€ Scr) )

M
and eagh Y ER | But for sach U eR s there existe an
N
£ ¢ LSER) such that £ (4> O  , Hemee g (w) =©
"y
for eash LU ¢ R « This implies 9_ =0 a: e .

for esch n .
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THEOREN 14,4 M (S, L") 1s imometrically isomor-
phie %0 E ,

ZHOO®: et 3. VcE. Wmen Lo l12.x21 <o
M —7 o 1

for esch £C S | Using Alsoglu'e theorem, we see that

1 9., % ¢ 'i has a weak star convergent subsequence in M (R)

converging to My in M(R) . That 1a, for 4 ¢ (o CR)

(69 | goo g% fex dx S | FO0 dpp o0
R ¢ R
Then g
5
I I P LUP \ 5 () d (
e 9c GoCR) Y ey bRa
NGl < R

. i\ Lj,w S ¢ G A FCO a{x‘:
R
| QECL;(EjJHg_“mE‘q}
< L | 3,},“:%4?{]1 < ”iﬁnﬂ”g “‘2”5

:
Therefore

(64) Wel =« WLg,iN £ 1
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Hence, defining T2 -,  2¢S , we get a bounded linesr

cperator T from S(R) inte M(R). To prove ¥ is sotually
a multiplier let %ERJ T e CDCR} « Then

< %, TaTE ) = < T, Cyltp) = <t*3-1§-; e
. WS, :
— T SRR, gaKe) = B g nn ey

Lk
A <c}z?ﬂdﬁt§f‘ﬁ>:<g,ﬁr_éf>

= KB TS

Henoe Tc M (S(RY,M(RY) . Bt M( SCRY, M(R))

#
= M(SCR)Y, L'cRY) « Bee remark 13.4 under theorem

15.2. Hence T e MCS,LJ'J + Horeover it is clear
from (64) that

I T
(65) Tl < % dm =

Conversely et Tc M (S, L") . Shen there exists
o &€ PCR)  gueh that

Tf:.t!r'_ﬂ']e - £éSfR)
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nme T - TKxe where ¢ €.,7 4s am approximate
identity for S (R) with ((c. [ =1 , and €. has

compact support. Them 7o, 1 < L'CR) and

for all ™M
ll o7 J'“P'“a, =l oxe,¥F I, < WTH 0£Ng

end @1l Ff & S(R) .

tus {53 cE  with

< Nl
(66) “ifmlﬁg | T

Since Jronn ﬁ'*.,-,*f-—TF ln!-'-ml,nhﬂl
M—2ex

1 IS
23 <%J°“nq%f}=<§JT£7 for all % ¢ Co(R) -

Hence from (63)
T < W% 30,

Together with (66) the lsometry followm.
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REMARK 14.5 The proof of the above theorem can be
obtained from Theorem 13.2 also. In faot, we can extend
theorem 14.4 to any G, locally compact abelisn, with =
consisting of nets instead of sequences. This is so becsuse
only in the case of the veal line R, 8 (R) and L (R)
possess the approximate identity as a sequence.

QOROLLARY 14.6 If S(R) has the convolution approxi-
mation property, then ¥ (3,5%) = ¥ (R) . This is theoren
14.2 forr D=8 (n}'l'

FHOOF: Suppose convolution approximation property holds
in 8 . If %?-ql;—‘E 'h‘ :ﬁn‘f‘ €o Ch -FEE}

m’“ o -fif,i < ag implies that
. L=
Mbﬂw_}ﬂ Hgﬂul <

That is, there exists K >0 such that, for all n ,
Il
?M“q < k
Then for esch fc L'CR) , we have
g, xe0, < Kk NEN,

Thus T corresponding to 1 9. | given in the proof, becomes

b §

a sultiplier of !-1 into 1" and so is given by e messure.
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Thus l(l..’ﬁl) = N (R) and hence the corollary.

COROLLARY 14.7 ' Suppose convolution approximation
property does not hold for S (1) . Then the elements

$9,1 € E scatisfying
(67) Ao B L G f| = o0
" —> =0

are precisely the ones which correspond %o multipliers which
are not bounded meamsures.

PROOP1- Let Tc M(S, ') . them
Tfg=0cxg , Fes,
for some o ¢ PCR) , Them putting T ., = 7 # €.,
we see that 5_9_%@ satisfies (67) whenever o is not
e bounded measure, from corollary 13.3.
u.{g»,,.,ge E  satisfies (67) then, again from

corellary 13.3, the corresponding poeudomessure cannot be in
u(R).
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In this chapter we define a more genersl commutation of
trenslations for operstors on tramslation invarisnt spaces of
functions on locally compact abelian groups and characterize
such operators on well known spaces. Our methods of proof
closely follow the methods given in the book of Larsen [ 15 -

i3 Multiplier pairs

HOTATION 15.1 Throughout this chapter, ¢ will denote
a looally compaet abelian group and a i%s character group.
7 and 7 denote the respective Haar measures on ¢ and O .
We use multiplication to denote the group cperation in keeping
with the notations of Larsen (15 ] ., Hence the translation
operator E.} will be defined as

Ty Feey = Peny™')

for %,y ¢ & emd ¥  any funotion defined on G and
the reflection function F 4s defined as

S
feny = Fext) x € G
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mmmuu-:-mumumunnun is
stated as follows.

DEPINITION 15,2 [19] Zet A, and A, be two
algebras. et ¥ and W be two linerar operators from

A h‘L, where hntlplnhmumh-. Then ?
i9 a multiplier assoclated with Wy u

Tey) = T Pie9)
for all 2,4 o A, ond we oall the pair (T, ¥) a sulgi-

Rlier pair .

On the convolution group algedra 13(6) the definition
of & multiplier pair takes the following equivalent forms,
analogous to theorem 0.1.1 given in Larsen (18] .

ZHEOREN 15,3 (Mandakumar) Iet @ be & locally compact

abelian group. Let T and Y ®e two bounded linear operators
on the convolution aslgebra 1} (6) where ¥ 45 @n isomor-
phism of L' (G) onto 1teeir, Then the following are
equivalent,
tl}MMhmum- > from ¢ onto O and
Y, L a such that
MFECpd = oy, o) fio Be3>)

forall fc 1'(6) eMall yc 6 4 ana




< s Lt aZe) 1.3, .,

'.-&T

where -l is given by

K }' Fepegy) d2cy) = ]' Fepydacy .

G Ca

(41) Porald £, 9. L'G), TcExg) =TE #yg-

(141) There exists a unique fumetion <> defined on ©

(iv)

(v)

(Note: Por the definition of an affine map, see (27, p. 78] )

and an affine mep < from ﬁ to 3 such that
(Te 38 = b Fo

There existe a unique measure £+ in N () such
that

CT-F)ﬁ :fi Eu'ﬁ

for each f ¢ 1;1{!} and < w8 in (141)

There exints a unique messure + ¢ M (G), a unique
hmﬂm&tmlnioﬂul"ﬁc-a
such that

TELy )= C,70) (Bep) % pety)

forall Y%Yc¢ & .

129
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We shall now extend this notion of a multiplier peir
to tramslation invariant spaces like LP spaces. Ve use the
equivalence (1) of the above theorem to do this, as in the
case of ordinery multipliers.

16. A generalisstion for operators gommuting with
dranslations

DEFINITION 16.1 Let G be a locally compact abelian
group and G be the character group. Let¢ P(0) be a funotion
space on @ ., Ip Y.c 4 aend 5 be any isomorphism on
G then a bounded linear operator T on P (G) 4s which satis-
fien

%) Ly T =037, %) Ty  beg

shall be our new definition of a multiplier.
If the transformation defined on T (G) by

VE = (7 %) Fof e FlG),

is weaningful, we denote the space of all T satisfying (*)
by M((F(6), V) -

We shall frequently make use of the duality property of
FS
the groupe G snd G which enables us to write
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f_l‘i(x),?’) = (%, w¢?)) , X6, Yo
Fa
where ol is the isomorphism on O , induced in a natural
way by the isomorphism F-nll.

PROPOGIZION 16,2 Let G De a loeally compact sbelian
group and i n-m'. Let T be & bounded linear operator on

LF['G-:))(J‘:':Pﬁm:I . Lot ‘a".,c—c: and f!. any isomorphism
of @ onto G . I1f

Ty T 5 SR Bk Epog b o
is satiafied by T , then

(68) Tcfxg) = TE A WQ gor fclP  Fel'm’®

where ¥  ia the linear Ssomorphism of L” onte L7
given by

N33

i

K C.oy¥e ) o , ‘ﬁC-L'i

where I< i® & constant given by

I 5 ﬁ(ﬁ,cm)damzj'ﬁm}dm:) for Fecl'cq)




PHOOFy Pirst we shall prove that '} is a linear

b

isomorphism of P onte (' y (1€ p<0) . Tor any

EclP , pceo , consider

!
( l\liﬁf-x)[*’dzafm)fp

! e
:(r LA N R ,ﬁafgﬂx}] datxs> )

1
/
. b [ lf{mm}IPdﬁt’m)P

Pt Fx) = [foo)P. them Fe LG

Hence R.B.S. = [, p ] B pem) dac) VP

S |
= (kP fr::.m dac) ‘P by definitien of K

5

fm
= < (e ( ,r '-f['n:f 2 Adeo) e

Henoe =/
Lyl , ¢ K Ponen,

whenever p- - , olearly, by the definition of VY ,

og

WAPBIL ) Gl M Blhegy pnn,, Bie L

’

holds. Hence, forevery ) suchthat |< p <o , we mee
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thet \' 1s a bounded operator on i « Clearly Vv is

lnear. It VY = VFE Lo £, , P, ¢ 1P then

(2, Ta) -fffﬁ-fn}) (2, o) Fy (RCEx) L G

!

Or £,(R o)z fa(Rix) for xecG . B8inee 3 4o an

isomorphism of G onte G, £ =F, , Henmce Y 148 one-to-

133

one. Let fr. |® ., Then the function Az ‘*uf':“tﬁu?)ﬁnﬁ"

belongs to L7CG) where K, 4a the constant given by
K| !7 «ﬁ(rﬁ';{vﬂj d Acxy = jﬁ[ﬂ.\ﬂf?ﬂ‘ﬁn JEED-

Now, ut 9 = (KK, )3, .%hem ¢g=f ., Heneo \} is
onte.

Also, YV maps L'ntP omse LnLP « For

3 L] dacxy = k f {Cw;Tu}-ﬁc;gcx:J}d:ﬂcm

= F | Fear | D oene)d for all £c "N F

Almo, for any feﬂ(’th y» She function ‘Q-EL’“ such

that 4 = F  obtained as above also belongs to L3
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Hence the equation (68) is meaningful. To prove (68)

coneider A ¢ LV  where J!.:-q-.%J:J «Por Ffec C.(6)

e 9. L!NLPCG)

L TE % Vg Ry = fTﬁ-ﬁ Wagcuy ) e A
= ” Ty TF o0 q«}r;nckﬁ-ﬁ_g}&m“‘w dAcn)
= JE "C} Tk ey € 7y Ta) }Eﬁgy}}ﬂ?{-&} ﬁ,[l:-’a_] dpx)

By the sssumption on T , R.H.5. becones

==k H Cg™ls 7o) TTpeyyFon) g, 7e) Gepep) Rex) dc::;

= Hl Ttﬁ:?}'r'["” 3(;’3L$?)dﬁ{?)ﬁ.(1"*1 d A ()

Sinee the double integral ~” th’atw#'*“} NS S FCzry) dacm)
df‘t?)

19 absolutely integrable, by Fubini's theorem change of order
of integration is wvalid. Hence

CTExwg, Ry = K || TTpf o0 6ot dac Jepep 4xy)



L Texwy , R )

I

k. “ TTroy oy Rea ) 4302y ZepRey)) o0y

. v 5 d Ay
= j) -cf?sr.-;‘l’ﬁx‘} 1] ﬁ["ﬁt)ﬂa.(,n:,uau)ﬂfﬁtgﬁ

where 17 418 the adjoint of T .

Again by Pubini's theorem, we obtain

<T,€E\V§I1‘I\>=—Jc,—-—f?—#(—%~(—fh—p—)'—‘-)

=k H Fex (pew)™) acreyy) dacy) THE GO ela

= fk I Tamt FCR Cg™1)) FCRey) d i 4) T £ daga)

Sinee Y. C ,olearly T ., %.gc L&) . Henoe

I

Il( E 'Equ-i r{,rg[\a-l}) g‘{ﬁl}}) dﬁ{#)

= _r tq;_"’*zﬁ't"}."f) 3,-(\&_'} dﬁt;ﬂ-
S0 we see that
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£ R gy Ry = .” ‘ff“'a‘q)&t;}dﬁrg) T“Fru}d;ﬁ(,}

¥ J Exq o0 T ey dacw

= j T{ﬁ'#g} txny ~ea !y daca)
= K THOER 43085

Since 1. c |V  4a taken arbitrerily, we can immediately
arrive at

TE W peh £ TTEEX G pie €00 Felinik

Now, let Fcl® amd {p fcC, suehthat o w s

Wen =%l =5l Thea for Jc L'NLF
N Tex w 9 —T(f*g)”F
Sl Tezwg - Te ¥ ¥g t TCEang) ~TCL23U,,

< Il Teayg —Tax yal t 1 Tehxg ~TCoep),

& ITe- Tﬁﬂr}.b g, + 0T M En= Bl Ngh —>o
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Hence (68) holda.

SHEOREN 16,3 Yet G Dbe a looslly compaet abelian group
and G 1te dual, et T De a bounded linear operator on I.'.

Let 'a’ﬂ{_a and £z any isomorphisw of ¢ onte ¢ . If
T satiafies

Z}T = t}_l}fu).-r[f'r;;-ég} dieG )

,

then there exists a unique 4:&-L‘“E5.}m1ht
(TE)" = & (ye)"  toremed FelUaG) -

where 19 the linear iscmorphism of I-'tt}} onto La{u)
glven By W =K(.,7.)f Ry Fel* , Horeover, the

correspondence bBetween ¥ and < 48 a linear, one-to-one
and onto relation.

LROOFs DBy the assumption on T , the above proposition
implies that

TP Ve = T(Ieﬁ'}) = Tf}ﬁ’ﬁ)

= Tg# \P\E "' f',g;:[.'ﬂLl.

»

Ts Y& gpanr %, Te Unl>.

[

M P
or, TF V4
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But, for every v ¢ ¢ , there exists Fc L'NL™>  gueh

that {7 (?) = o0 . This follows from Rudin [27] end
the fact that ' maps ['N1> emte L' NL*>

Define ~
Te c7) iy

dcB) = R
uf}- ¢¥)

- 18 well defined, sinee T () _ Ty (9

—_—

S (1) Wy (F)

P ™
forall £ 9 l! NL™>  such that V¢ () 0, ¥giNAO.
I~ N\
Hemoe £ ()= (D YEC(I) mords gormad fcl'M)>.

such that \{f}m}:}o «Morany Lc l'NL>- with

(e C9) =0 o the tdentity
A ~ A
T4 = ¥§3) = Tges) YEWID)

would simply give TP (%) = O .

holds for i1 fel!ni>



Now we olaim thet <> 4o unique. Tor, if < 4
another such function satisfying this equation, then

(b-*y $2 =0

i.0. [ - qa*)(ﬂqf}(-ﬂzn for all T’&a and

forall fc L' O

But for each *zr{-:a s there exists £¢ !0  sueh

that WP (v) 30 . Hemoe & -d* . Thus < s
unique.

Defime \, on L' (6) By W £ = k(%) fop
for every £cL'(G) . Them @Y, is an isomorphism of

1* (6) onto 1t (0) . qulrinii.n [!‘?] there exists
an affine homeomorphism «  of ﬂ ento I such that

N

AP {0 s faa.,: for -fc-L"Ec,)

Singe ¢, , coineides with on I'M%* , we get

"
Wi = Fo foraly FfcL'n™>

frue Tf = ¢ foux forald Le L'ni>.

139
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Wonmowolaim that &  Delongs %0 L°C&) . To see
this, choose fc |'N\> such that ¥ - | om K Uwx(i)

where IK hwmtuthﬁnlﬂef-s_.*l on any
open set U conteining K Uxox) and £  vanishes off

U . Them, 12 X, ia the charscteristic function
of K

| & «;*KHQ 2l Fox I, = nTeN, =hTEN,

< T I'Iﬁr'lz =NTN IIEIJJ_ < NTH € 9 ¢ )5’1

where Yﬂ_ umm-mui.:m

(69 W gx, N, € NTH Cgem)

"
holds for any 'K C @ compact and \/ open set containing

K U ic)

Now suppose that < 18 not essentially bounded. Then

forany H 7 0 arbitrarily large, there existe a compact set

IX GG with %(K)>o0 oush thet | ()| >N em IE . Singe

~ ~
< 48 sn isomorphism of O eonto G there exists a constant

¢ >0 such that
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"~

d g TeY) WA= f et n) Ay ge 't .
G G

Applying this for the charagteristic funotion Y. of any
compact 'K ¢ & , we get

WIC gk = € ‘2“”

Nowehoose N™ SC(+ C) (TN™ « Binoe for every ™ > |

we can choose an open set U DK U « (k) sueh that

"ZLU) < o 12{'4( U < (IK))

2}
N‘J_
for M = . choose the corresponding open set
Ut cHonTy>

U « Then we obtain

,Zkuj < N -ZCIKU-:{UM)

NTn>Cci1+ C)
A
< N l:_'\?'Lni)"r-ZLu({n(}) "_f-_ _N_? ('EUK)-rE?LM})
o
NTh> C i+ ¢ nTn Ll e )
=N
O —— "?'f.'!k-]

(i i i3
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Therefore,

(70) 7LV < N> % (K ) by chodce of U .

—_——

V) =

How, by the mssumption on <& we see that
(m) WXy > N (2akr) 2
2

Combining (69) and (T71) we get

Y
T Cpako) "> 5 ey, > NCpud) ™

-

which implies that,

p

N
J S e (k)
? €I N> -2

contrary to (70) . Henoe <> 1is essentislly bounded on O .

Hence, for a unique ¢ ¢ L. 9(C¢) we have

ﬂ = < vhr forall feclUn)?

¥ow define a bounded linear operator S on L (G) by

S£Y = o we foraln Y&l
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This 1o well defined since <bc L°CG) . Also, for
el Sokesh = X Tpf from above.

Hence by uniqueness of Fourier Planghersl transfors,

SE = Te Sy £¢ o™

Sinee )/ N> 1o dense in L% and ¥ 1s a continuous

operator on 1L° , we get 8 = 2 . Or,

A A
s % 9F for all .fELl.

Yorany cpc LOCC) , defime T:L> — 1> uy

A 4 2
Te = cp PF ? £E 1
Then
hTen, = o *rﬁ}z- W, = Il < v ¥ fl_{
< ph, N »Pﬁf Hi = Meh N well,

< el Myr WEN,
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? is aleo linear. Yor Y e G, Ve & ,

(ol Sl $Brugy £ )0 €20

M
= EYELE) N T Ty ) 80

PR
= 9759 P Y ( Ty 8D )

= WeR)S Ty VRSt ed)

by using the definition of ¢

s
= peR) O, ) NE D) =y, ¥) CP(?)*F}I‘.'#)’

M N
0 byl E ¢ & Bgaedea)

Hence T satiafies the required property and the corres-
pondengse T —> ¢ 18 onto. If 9 =<, , then for all

PelUn™ 2 4
¢, wer = P, Ge
or
~ oy
Tlf = TII

for all Pc L « Hence by
the uniqueness of Plancheral transform,
Tl F T'L

Linearity follows easily.
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Remark 16.4 ¢ The above theorem s a generalization of
Theorem 4.1.1. of Larsen [15)] . Gince there existe an iso-
metric isomorphism between L°° (G,)  and the pseudomeasures
we oan immediately generslise theores 4.3.2 of larsen [15)
from the above theoren.

SHROREM 16,5 t Let @ be a locally campact abelian group
and 6 its dusl. If Y.cG and (3 4s an lsomorphiss
of G ento O , then

g £ = k C:»> T ) Fe R

defines an isomorphiss of LYcc) emto LTCC)  gor
sny pp suohthat (< p <o o If M(LP, ¢) denotes

the space of all bounded linear multipliers T satisfying
E?T = ["}'-IJiﬂ) Ttﬁ.t‘}} 1 #EGJ
then there exists a linear isomerphism of ™ (17, v) ento

MO, ) where i;P-I- 1’{‘1):1'

EROOF: Let g c C (G) + Then define a funetional

F?'l'.f}‘: <T3Jf> :Tg,";efn) tor all 4 ¢ Cf_r.G,'j,

where T e McLFP,vy).
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It wf -Ff foramy Ffe Co

T 9 Aoy P2 trd 4 Peey = TENEL)
Thus
1F3(F3l = | TR Lrg.[ﬂ]l < HTJ‘-’IHP "‘P‘B”-\L'

Sinee y  takes L' 01V onte LNV ema ge¢ l'nLl
% Gl < o JAlse £, =y'f end ¥ s em
isomorphism on L7CG) given by

*P"f = kRl Gk 5 eCeasyT N ke ,FZ-“'

where

(x; xt¥e)) = (|Bc22) | ¥e) , € G
mten ¢ 2N, 2K,V NEN, hios Ky
Hence

| Egugs| = ¥ Tl W Al Ny glly
= 1
T /% 21, K /P g1y

Extending F} to which of L~ , we see that

Fg (EY = & T3, ﬁ17
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suplies Tgec \V(G) foressn e C,
e,
hTgn, ¢ NTng K N 4,

Henoe T ecan be extended to a bounded linear operator on the
whole of L7V(6) with morm

}fp—!f"
"T”‘b < H'T”P J< 1

Hence reversing the roleof p and 9 ,

oyt
”T”P < "T”% K 7V e

Equivalently,

! e L al
K 7O /b P 7 k(i’ /p

Il"ruP < Tl £ M s

v
=1 T”;,
Henoce we got

Vo, = ¥
Nl = T o AR R
T, iL

17 . Iy
Ik P ”F”},b = ikt n-rn%
This implies clearly that the correspondence between MFL’“A)
asd M(LT ¢ ) 4ia a one-to-one, onto, continuous linear
transformation.




If we redefine the norm in M(LP, y) by the equivalent

=1

M (L%, ) asd . Mo, ¢

SHECHUEM 16,6 Let © be a locally compact abelian group

A,

and & an isomorphism of © omte G, V.G . Then, if
T & bounded linear operator on [ (c) that satiafies

ZH’T = [?"]Tn} Ttﬁ,’{?} . 19_;_...&

then T 4 alzn an alememt of M (|2 , Y¥) where \} 1@

given by
w-ﬁ,: [_.J'ﬁ“] .«r—ﬁ[g

Eoreover, there exists a linear isomorphism continuous from
MCLP, ) dmto M(2 y) .

ZEOQF: HNotice that \} defines an isomorphism both
in LF and | > , Let Te M(LP,¥y) « By a form of Hiesa

Theeres convexity theorem the fumaotion log !l 7T \ Ja is

convex en 0 <L a £ | « In particular, since

ll,flip.’c,,F l%,?} = 2 and ‘!;P-r !/;U’*—| » we have

148

'l then there exists sn isometry between
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Leg 1TH, & N dog NTH, T leq, Aog 1T,
' 4 (1 ey~ V1p
= p ey N7 Ao (0T K )

by the previous theorem.

It follows then that

Log MM, < CVpH ) Aeg- Wil

= "f -lu-s’, k..'ﬂu - I;F

v
- heg ]l’Tﬂ}: ( K v, = /ps ) !-"q_;)
Therefore we obtain

L1 I£
(T, < ¢ N, whare ¢ = (K@TP)7U

Tor any ocharacteristie funotion ¥Yr ofa Borel set E

WTxpllye e I mipg iy 15 e pnimng. Uke g

since TE‘H{LPJ\P) « Lot b 72 « Then

I
TN, € @ nthy, (Acey )ie

T

€ iy (Aced)/2 = e Ty M Xe g



If 1<p<c2 , them, winee [ 72

L -!/‘b
1 L P e R o S T 2e Mg -

by Theorem 16.5 . Hence we see that

\
AT & acey) v
c el The N %ely

< Ty, Wxed, again using Theorem 16.5 .

Therefore, for any T M (|P, y) , 1< p <o, we get

IlT"ﬁEHl € ¢ W %gll,  for some constant G >0 .

Honce T 418 a bounded linear operator en the apace of all
integrable simple functions . Since the space of all inte-
grable simple functions are dense in I.a,l is a bounded

linesr operator on L . Also, 1% is easy to see thas 2

patisfies

- -
'C:}T = &9 ) TT,@L#)

on I-’ (e¢) .

Clearly the correspondence of M(LP, ) mten(1Y )
is continucus, one-~to-one and linear. This completes the
proof.
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How, using theorems 16.5 and 16.6 we can characterise
the space M (LF. ¥) o be the dusl of s certain Banach
epace A C &) of continuous funotions analogous to the
result of Piga-Talamanca ( See, for example, (15] ) .

Similar statements for the spaces M((), Moul6) Ca(G)
L®(6) an8 L7, (6) are alse valid. M (G) smd [ (4)

stand for the respective spaces with the weak star topology
induoed By (., (G¢) and [ '(g) , where ¢ 4s & locally
compact abelian group.

THEOREM 16.7 Let T be a bounded linear tramaformation
of ¥ (G) 4into itself., Suppose V. c & emd 2 & conti-
suous isomorphism of G onto itaelf. Then if 7 satisfies

(72) Ty T = G €Y ) TTe +e 6 .

Ly_)
then there exiots a unique <o ¢ M (G) suoh that
(73) T')\-L = w K Y/

where Y is an isomorphiem on N (G) given by

(74) Yo = Dy e
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Eoreover, there exints a continuous linear map of MM , ¥ )
onto M (G) . In addition,

TV Epm) = T % Y p, VELIG, pe MG,

SEROREN 16.8 et T ¢ Mu (GQ) —> My,(6) de

a continuous linear transformation. If ¥ psatisfies {(72) then
there exists a unique weE M(G) pugh that (73) holds, where

\}Y  is the isomorphiom on M (&) given by (74). MNoreover,
the map, T— W defines a linear isomorphisa from

M(ML(6), ¢ ) eonto N (6) .
SERORWEAE6.9 If T : 1% (q) —> L, (6) isa

continucus linear trarsformation satisfying (72) then there
exists a unigue w € N (6) such that, for

(79) TE= was g f
where '  1s en iecmorphism on L (G) given by
(76) YL = (o To) fofp

Moreover, the correspendence | —> W 4is a one-to-one,
linear, onteo lsonetry.



SHROREM 16,10 XIf T . L™(G) —L(6) s e
bounded linear tranaformation satisfying (72) then there exists
a unique o€ M(6) such that (75) holds for £e L°°(6)
Moreover, there exists s continucus homoworphism of M( L™, V)

onto ¥ (G) where ' is the isomorphism on [ (c.) given by
(76) .

IHEORMM 161 Let T : C.(G) —> (e (6) bea

continuous linear transformation. Let "(,EC: and > be &
continuous isomorphism of G onto G such that [~ carries
compact sets into compnet sets. Then Af T satisfies (72)

we oan find a unique w¢ N (0) such that (75) holds for mll

Fe C.(G) o whezra ¢ 1s given by (76), MNoreover, the

correspondense T — ) 48 a one to one, linear, onto
isowetry.
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