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subapaces of Mhnﬂmﬂmﬂmrﬂmmlm
Bpaces.

Throughout the thesis E denotes a real normed linear
space end E® its dusl, Murther we denote by £, ,
Eq:{err H‘I-Héij
the unit ball of &,

Let M be a olssed subapace of finite codimension n
in B, Ve have by the eanonieal linear isometry

ME T(EHM)*

end hence

vhere "dim® denotes dimemsion. Thus M+ 4is the linear
.m.tnm.rh m‘d“ﬁ :FIJ‘JI‘ZJ' '*':__'Fﬂ—
of E'. Ve demotes this symbolically

= l::f'u.fl-.:- S S ,;{',.,]

¥e recall that M is a proximinsl subepace of E if
'P '_L&J = {mge M i lle-mell = wad hx-mll }
£ ' : meE M
is nonenpty for every xct o Further if P x> 48 a
‘singleton set for each y . , M is a chebychev subspace
of B,




Further for any subset A of By we demote by cocad ,
. fhe convexhull of the set A, and by 3 < A the comple-
Jiﬁiu! the set A in the subset B of E,

= The following theoream of Garkavi characterising
proximinel subspaces of finite codimension in a general
nomed linear space is the starting point of our study..

. ZEEOREM .. Sarkavi [ 67). letlihe o subapace
2£ finite codisension in E. Shen M e vroxlainsl dn E
if and only if for evexy e Mnexe exisls XE€E . -

Ll e n = nx

(A) eand
$cpd=Fexo Jor all femt

The protlem of characterisation of proximinel subspaces
of finite codimension in conorete mormed linear spaces is
a difficult one and Gexkavi has given a complete solution
for the space 0(Q), the space of all eontinuous real velued
functions on the compact Heusdroff space ¢ with sup norm
and |, (r,2) o the space of all real valued lebesgue
integrable functions on the o ~finite positive ueasure
space (T,») « His results Tun es followst




h=plap~ (k' 20, eod  demote

® >
Guoen Scpd fom evexy i ; ki€ miniol .

) SChad NScu) A8 closed for each pair L.\, k>
in Mok

.mmmm_l;_l_ W
= ‘ [ L1CT,;L'|) * m
in order that M be proximinel in |c7,»> it is necessaxy
snd sufficient that for every basis |,f.,...,{~ e
megsure of the seof

G:=§LEET: [feced] = Ne ,i’-;l;.z.a--ﬂg

is pogitive, vhere

N, = 0ss-sup [HCE)) 5 Ne = v Gecsup 4o (D)
T ol &e—op GI.EE-
where CC=2535+ 27
§
C_‘f!r;:—:: {E‘ET‘ ﬁ}"l’él.}fthl éﬁd;-t-eg_ﬁf- 12 - (=)



The problem has also been studied inm, = the
space of all bounded sequences of sealers[4 ] ,(.= the
space of all sequences of sealars converging to gero[7]
and {' = the spsce of ell sequences %ﬁ} of sealars
satisfying S |odn| 2> [7)

n=i

Though the proltlem of cheracterisation of proximinal
subspeces of finite codimension has been studied both in
general and as well as in partioulsr cases,there has been
80 far no characterisstion of such subspaces which unifies
the main known results in the confrete spaces, It is the
objest of our study to provide one which serves the purpose
effootively. Ve give here a charsoterisation of proximinal
subspaces of finite codimension in a general nommed linear
space (Theorem 2,10), which either reduces to or give rise
to eguivalent condi tions to those of Garicayi's in the
spaces 0(Q) and |,¢7,»)e Both the reduction and
reconcilation are far from trival and involve coneiderable
amount of technioslities, Apart from uniting the apparently
unrelated results of CGarkavi, our results provide oclear
interpretations of his conditions developing at the same
tine a2 point of view vhich both abbreviates and simplifies

the argumentis in the special cases,

Ghapter I containe our main theorem and all the

preliminaries required for proving it. In Chapter II we
derive a charscterisation of proximinsl subspaces of finite




pedon in the space | ,CT,3) using our

ara tdon theorea proved in Chepter I, Tie we
peconile vith heoren 1,5 of Garkevi, The finel theorem

of this chapter ssserts that the proximiwl subspaces of

finite codimension n are ‘dense® in the olass of all |
subppaces of finite codimension n, in the space Lic752D .

- e

" In Chepter III ve apply the characterisction thcorea of
Chaptor I to the space C(Q) to deduce the characterisation
~ theoren (Theorea 1.2) of Garkavi in that space.

| Ghapter IV discusases the prollem of characterisation-
‘of semicheychev and chebychev subspaces of finite
‘eodimension, We give a characterisation of semichebychev
‘subspaces of finite codimension in a general nomed linear
~ @pace and thenm shovw that the conditions that are recuired
for the proximinality of seuichebychev subapsces are much
more relpxed than those that are recuired for subspaces
wvhich are not seaichebychev, Henoe we derive a charscteri-
petion for Chebychov subspaces of finite codim@maeion. We
also give applications to the speoe: |,cT5n)



This chapter will be mainly devoted to stating and
proving our characterisation Theorem vhich gives a necessary
end sufficient condition for a subspace of finite codimension
n to be proximinal in a general nommed linear epace. e
aleo derive some conditions vhich are equivalent %o the
eondition of this theorem and olose this chepter with our
couments on the characterisation theorem of Jinger
(Mmeorem 1 , [ 7]) on proximingl subspaces of finite
codimension,

Since the subspaces under considergtion are of finite
codimension, finite dimensional convex sets play a signi-
ficant role in our discussions and the proof of our theorem
essentially involves meny properties of finite dimensional
convex sets., So we will begin by recelling the relevant
defini tions and resultis,

let E be a finite dimensional normed linesr space
and X be a convex subset of E. Then




frontier of X, gre the interior snd frontier of X xelative

Jo the affinehull of K. Zhey will be denoted by yelint K

and relfr K. '
M.ummﬁomMMmummmms

~ "faces' of the convex set K,

DEFINITION 2,4 A subset F of K 1o g fage of K

M:{xe;: gexd = gupg{‘.l@}

h EaeriiLians
~ In this case it will be said thet g and M expoge P. (Note

that since an exposed face of K io a nonempty convex
‘extreme subset of X, it is also a fooce of K,.)

DEFINITION 2,6 XL P is o face of K gnd r + K
hrum.mmn

We will novw 1list some of the elementary properties of
K which will be needed in the sequel,




M =

| B ]
&i’ A nonempty intersection of extreme subseta of K is

“an extrese subset of K,

1ki:t‘--«i X e Kk + Then there exists a smellest extrese
%t of K mm %y 4% will be denoted by £, CxD .
f For y,p ce o let (Y,5) end [3,:}]
denote the open end closed line segments determined by
§ emd ).

M) E.c0 = U{Y_g:r}] DY, mEK and -IEFE"%J}
E, x> ie convex end is the smallest face of K
';§9‘) If E is o convex subset of K and 1 ¢ relint £

then E C E.(x)e :

" (vi) A nonempty intersection of exposed faces of K 18 an
exposed face of K, ‘

It xe velfrk Nk then there exisis a

proper exposed face P of K such that xec F .

A1 the definitions (except 2,1) end properties are
givenin [2]

e 'bbserve that if xc velint K then by (41), (iii) end
(v) x belongs to the comnvexhull of the yelfr K. Thus we
(viii) K is the convextwll of its relative frontier,

We shell now prove two lemmas about finite dimensional
~ convex sets vhich ere needed in the proof, Both these
lemses ere kuown, e firet one in @ different formlation

-




hes been given by Garkavi. The second lemma is given in
L 5] end 1% is attributed to Minkowski., Also ATfsen (1)
as en application of Garatheodory's theorem.
Jowever, ve given independent proofs of these lemmes using
only the most elementary wethods,

L@y = max  ficgd
I st

foB> = mox  HEE, (R=m3comD
ge fi- k-1

B

UG s

@EE: g =1 and :GCEJ':":G”}
1

41 fr-L

{;@ﬁ-‘\’:ifk-.,_f fol®,)= TEM L {mCEn)}



.
»

Proof, Necesuity: Iet $_ be en extreme point
of £, « Then ¢, € wljy E4 NE, and 8o

by (vii) there existe a proper exposed face )/ of E,
exposed by Jic£” amd M, vhere

M*={ FeE,: Hcgd= sup :F!'-"—ﬁllj oconteining

| | BeE,

§,» men NV F-E,Npm, end P, 18 en
extrene point of \7% . Proceeding thus induotively
we oan £ind a finite sequence { i ,_ﬁ} of

L=

convex subsete of [, cach contailning ¢, such thet

0 Mol A

Jee - g Ceie b

M= C )= Su :’CLLEJJ
Me {EeEd- JELE _QEE’:‘E&,_I
-

Hence JV/E . and the condition of the
'}mﬂomunmm

Suffjeiencys Let f{,f>5--->Jn be a basis of E"
such theat $, € E, satisfies (B). e sets v, ,
‘being exposed faces of B, » are extreme subsets of E,
Further sinee [, ., .. ., Jn constitute a basis

10



1, Mmmmmnmumm Suppose
the dim K 48 4 vhere d >1 . ‘hen by the induction
the lemme is valid for all compact convex

of dimension less than d. Since K is a finite

3 convex set it is the convexhmll of i1ts relative
ier by (viii). Further by (vii), every point of the
re ive frontier is contained in some proper exposed face
of K and 80 K is the convexhull of the union of all its

proper exposed faces, Let A be asny proper exposed face of
K, exposed by some [c E ¥ end

*= {1651: fexy = 8up Feyd =k, t‘iﬂw}

ye K

Then A =M Kk 4o closed and since /A <+ K there exists
%, €k Tch thet f(WILR, end thus Xo does nod

l



‘belong to the affinehull of A, This implies that

dim A < dim kK and since A is e compact,
convex set, by the induction hypothesis, A is the convexhull
of the set of all ite extreme points, MNoreover every

| extrenc of A is clearly an extreme point of K also, Tms
the union of all proper exposed faces of K is contained in
the convexhull of the set of all extreme points of K, Hence
K iteelf is the convexhull of the set of oll ite extreme
points,

Ha¥ing nov given all the needed informations about
the finite dimensional convex sets, we will go on to the
preliminaries that ere required for stating the main theorem,

As mentioned earlier, throughout we assume that E
denotes a real normed linear space, E" its dusl and E .
its uni¥ ball.

Let M be a closed subspace of codimension n and

Ml:[j(l.:'f’-.:--"' ‘-’3[“]

{16+, - .- .,Jn ave linearly independent elesents
L

o

12

h '/\/;: = { @'E{_M‘ﬂ* S I @{;!):H,Hj
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and induotively define

1]

e fpn

= BUEINE 50};{)- max P CJRJJ
’J"U,{:.V - te {Qﬂ Fi- = ifh-

C.h:'l.:.?_)..:“‘ ﬂ-)

‘J"L&?— { L EE. hoen =1, Jrcxd =14 nj

and
2D
' B ] ) = EU-P 5*’- e }
M'.FJ E_ {lheﬂ';l"’fﬁtl J. = xEﬂJ| fr-1
. CF;ZQSJ J‘h)
Bemgrk 2,9 We motice that
{.ij-{ :}W?M’;Lj - 5 DM" s

16 8 finite ohein of nonempty convex subsets of (M)
shere each set is an exposed face of the previms one,
Burther since Ji, /., - - - ,{, 18 & besis of M*,
1% follove thet V[, ., 18  singleton set. Also,
we note that

- oo TR B



" dguel F'7 and £(2) , the restriction of the funotional
2 4t the subspace ™M- of E*.,

Now our characterisation theorem can be stated as

BCM&“{H“‘}T“J :Maﬂ.”. <adn (1}

_ Eroof, Hegessity: let M be a proximinal subspace
‘of codimemsion n in E. Then the condition (4) of
Meoren 1.1 hold end hence ve have
0 CE,D = v}
_ hll olearly implies that

14



forevery basis [, f.,. .. , J,, of Mk,

Suffigiency: Swuppose that M. satisfies condition (1).
Ve have to show that ¥ is proximinal, Ve first assert that
it is enough for our purpose to prove that

BLE4D = [M{-}ﬁ (&)
iet & be an arbitrary clement of (MDL] . Consider

, e
by (2) there exists xcf£, such that

Dexy = B! (3)

 8ince (MY" 18 a finite dimensional space there exists an
J(Q e \Qﬁg satisfying
§'(4>= 14

But (3) holds end so we have

P : fexr= B'etd=n40

Mhise implies that | xll > | , which together with the
feot thet X cF, further implies |Zi-=1 ,

 Now consider the element X, = &N x in E.
el 1 o ond @@ X CE; o Since O 4s
s (3) implies that

Qe = e

the element §'- £, Vehave I F'N =1 . Further

15



which gives

gex, 0= Beg) foram e mb @

Also, sinee !xl= 1 we have

e, 4 =ngupxh = U &h (5)

Since & 48 an erbitrary clement of (M) (4) and (5)

- together imply that (A) is satisfied and hence our
asseriion is proved,

Pws to complete the proof of the theorem, we will
only have to show that (1) implies

Qceqd = @]

%o this end, consider D , en extreme point of ™Y .
‘Men by Lemue 2,7 there exists a basis J,,%,--gn 0of M’
‘such that

{i’ a‘uﬁw--agn

B(xs) = @ﬂ

s (1) ensures that 0 CF,) — (ML) conteins all the
points of the convex set Lmljf « But by

Now by condition (1) there exiets an xo¢ Jlg,,g,,..

16




Lemna 2,8 (MY); 4s the convexhull of the set of all
ito extreme points end hence we have

(MY = o (BCED) (6)

Further E, 48 a convex se%, C is linear and so
"@CF,4" 4is also a convex set which gives

gce,y = (o COLED) N

8o from (6) and (7) we get
o CEd = WMD)

as desired and hence the proof of the theorem is completed,
¥We shall now derive a set of conditions which together
are equivalent to condition (1) of Theorem 2,10, These
‘will be mede use of in the later chapters in interpreting
condition (1) in the spaces ('C6) and L. (T, 2D
 PROPOSITION 2,11 Let M be a closed subsvace of
Sodlmension n in B. Let /i, ---jn be @ basis of M .

INEOYE ce g LE — LiLAL W Lt il

@E““ﬁ i)

17



OCI s fo) = Nt i
N ..4. 18 slvays a nomempty set, We

e }. ”‘:}“nu %o be a nonempty set by our assumption.

o e TR RSP S (TR
T s ... 4% nomempty for (= 2, . ... ‘hich

1ves ().

o prove (9) consider &, _ln-,n/;:_h__gﬂ « By (1)
existe  oc,e v, .., such that

pro= &,

\'}E{-Ibaz @;C'}E}nr |: :-I,_'llj AR 1

Stnee X, ¢ T 4. g WA eV .4 the
above equality implies

N : S e & )
0 = Fi(xe) = @6 CJ"‘) =1 Ak ¢

I -17-1'.) W‘HJ—C"'V %{Vﬂﬂ- Lq).

18
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Now suppose that both (8) and (9) are satisfied,

{ ﬂh} .,g,..,- i

Since (8) holds 1, ., 1is a nonempty set end further
(9) implies thot for m X T N

.f:‘h) = Sup Jeexd = max & 4D = $, (4D
] TET Y. - fo- NG, finl

L=12,..-.,n o Hence

(6] sy = fexod = B, P
for each fc Mt . Twme
0l = &,

for every  x, C g ,p, Vbioh gives

..J'f,—J""

B'm:[..ud'n J‘—'J'/J: <5 i

'm It is clear from the proof of
josition 2,11 that the condition (A) of Theorem 1,1

B-CE> = 115



IE Ey

. "“H‘ = 'gu.b _-FI.‘CZ'I"-]
ﬂﬂf.-'fﬁ"l

'i‘ﬁ' C=%35 + = ==27L

20



1, M is proximinal.

2, There exiots a basis f\.f., .- - -, f» of M’

. such that the set A= {{,cgj,{lcgh.... dnCyd: H&Eq}
1s closed in the n-dimensional euclidean space R .

3. Por every basis [, {,. ..f. of V' the set A is closed
in R",

4. E, is sequentially complete for the (locally convex,
non-Hausdroff) vweak topology o (E, m*) . These
statenents imply.and 12 cimr7y <@ (emiGob)

they are eguivalent to-the following stateament:

. Bvery  Jem’\So]  satisfies the following two
condition:

{n) Wie have
2y = i-xeg Nxy =4 ijm.:}:njtu}q':gf?
end

(o) i ilc}‘} &L, f"fnﬂ |fxi5l =00, then

B |Reayd| < Bup Aol , Rem® .
=2 eIy



Eropf: Ve firet obeerve that if F:{._;.J;L,. Jj(n}
i8 a basis of ' , then the mep

T . (ij* 7 {TRTL

= .
18 onto end is actually a homeomorphism, Coneidering

1 — 3 - Suppose that M is proximiral and led
f,- - ->Jn be & basis of M, Then Theorem 1.1
§CE,y = (MYT o Also, by the preceding
A= T. o)) =T (@) Bince T

T Br= (F40, B, - - 8 , Beo

22
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and (MY 48 closed in (M) 1%

2 that A 18 olosed, Since J,-- - -/~ 48 en

T R ——

.~ 34— 4 Zollows immediately fron the definition
: '. entisl completeness,

3 — 2 is obvious,

: .;9 1 Suppose 2 holds, Then there exists o

s G- (91,92 - -5 9n) ©f I guch that the

ﬂ:{ﬂtcg),gicg), =R .jgﬂc?jzyea}:“

closed in K~ . Ten A =T, (sCE)) .+ Sinoce A is
uned to b closed and T, is e homeomorphism it followe

hat O.(c)) 18 closed in (Y. Bt O CE.) 4is dense

(ML) and nence §-(5,)= 1); wnich proves the

4y of M, Hence 1,2,3 and 4 are equivalent,

mﬁ-mmﬁd’mm:nﬂﬁut

‘Iut since 5(b) is satisfied for every ¢ M*s{of
ad a,_. RE Mt 5 4% 18 obviously egquivalent to

! L :
oz every ¢ Mol

{133 (a5 = %{{15}:1&11 s then

i&mm R{:LJ_'] £ Bup Rwd 5, Re mt
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S0, we will now show that proximinality of M iuplies 5(a)
and 5(b') end the converso is valid under the additional
escunption that O~(, ie finite dimensional for

fe miSof

1=— 5. Suppose M is proximinal, Then eondition (1)
of Theorem 2,10 holds, Hemce by Propesition 2,11 we have
74 48 noneapty for eaeh { ¢ M f{o} and

Rup frtx> = moarn &ch) for all fiferhfof (@
XeIT 4 deag ;

Sinoe O6CE,) 18 dense in (MY)) , 5(b*) is equivalent
%0 (10). Hence both 5(a) end 5(b*) ere satisfied and so
1 =5,

To prove the other implication we note that
8Ty CHy for each  femiv§ols Sop if OCITH

is not dence in A/, there exists en Kem! and
BE Nf° N\ B (5-T)) such that

Bup Rexd £ Bup {,ﬂ:'w RH_,,,;;} < @chd
xe iy fanjcy LNt

hieh contradiets (10) and so refutes 5(b') also, Twms
5(b*) dmplies that ocovg)is demse in N for each

7}& Ml\%eg .
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Purther, 4 r{, i8 finite dimexisional for cach

ferm* ol  then, being e closed and dounded
it i aloo compact, By the contimuity of & it
h-mmﬁnt OC-1;) 18 compast and hence is
But ve have already showm that 5(b*) implies
©(n1;) ie dense dn /v, for eseh fcrir{of

B(E = MYy

®o M i proximinal.




CHAPTER II.

Zhe Space Lq1CTo20D

In this chapter we apply: Theorem 2,10 to the space,

L4CTh) e of all real vilued Lebesgue integralble
functions on the o -finite positive meamsure space CT.2D,
and hence obtain the charscterisation of proximinal sub-
"lpmu of finite codimension in that space, This we prove
to be equivalent %o the characterisation theorem of
Garkavi in Theorem 35.,5. The crucial part of this procedure
is interpreting the quantities N, . .,. '« given by I
(Notation 2,13 of Chapter I) in the space L, cT1,2D 4
This is achieved in Proposition 3,3 using the fact that £
is Ww* dense in K, '

Proposition 3.3 is similar to a result of Garkavi
which is given in the course of the proof of his characteri-
‘sation Theorem (Theorem 2, 4n [ 7]). But the method
of proof that is employed here to prove the Proposition is
fotally different from the one which is used by Garkavi to
prove his result.
| First we will give some definitions and obtain the
y results that are required for proving
Pro position 3.3 and Theorem 3,5.

Let M Be a closed subspace of codimension n inmM?t
lo(T>2) 48 the dual of L,(7,2) we have

Mt l::f'u Jay: - 54n] vhere f,. - gn€ Lal 153D
let %, denote the cheracteristic function of the set A,

26



 yifin is a basis of N’ we set

ﬁh _ ecocup 1H1CED] = 140

T =
o 1) (11)
_. F —_—
Ny -gp = 45",1";9 Ny -tn
R=253, ¥ Wik s vhere

NEJ — egs. Sup Jch.Ci:) }:'ng;__ﬁq (k'l'r'rfr--f#-n]

g £+ P-
Gigy- -ty = {1 -fr- U Qa‘*' “fte |

Similarly ve define

= )
Ny = oss-cup |4 e)] =nhll
1 T o
B ; i " r 2)
N = b 0SS:Sup |:['|x£’c'JI ,:_LP:-'J-JE" ) ?-
ok T B0 Sf
G- -J) )



-k ' (13)

(14)

1 S M T ®

Remerk 3,1 Vhenever we are dealing vith a fixed

fis4ss. ->fn we will replace the suffix fi- - - ft by

L (i=tyz-- m)> for brevity's ceke as theére will be no

fusion, For nmu: N¢ il demote r-I‘:f_,h. - - 4e
d Gf vl aemote ¢f . . .

w for the basis [, . . j, of M let

b, (k=253,- .- m)  denote the class of all

28
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gequences {@L} in L,cT,») ouch that s t

K Jﬁcﬁdﬂ ="r~'fré ( ?5«";'.5 given by (11))

Also we set for “CC L,4CT.,2D

xt = max ]:_'.T.;'n] 3 N = mm[':r..:a]

1t s o x 20, X = x4 and |2l =xl-x

fen for eny measurable subset A of T and i@z} ¢ Gk >

IQ:IJZ;-- - 7L ’“hﬂ-

j. 6t dw» ¢ sup j!écid:ﬁ- < sup gl &1
h‘ L ‘Q L

[ | d¥ : el £ 1
J § d» < S?P.AI_ 1§ dv & _?:;%}:) Il §ell £

8o that both
Lovn Bup J ¢ dv

I ;’mp J ¢ das
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exist, Hence for arbitrary 2 - o we can define
the following quantities for a sequence

g . + SO e i
q‘J- #,ﬁm_i pj e'd» , B meinpjgﬁd::-

q—r ™ Gf"

TE = —.fw‘haupj @f.—dj.: > ,SE: ..L,;.-.r_:;w‘b _J @li:do_i'l-?
. ‘5 ¢ U ooy o2
G ¥

¢ £ ¢ ‘
°(o[?-"-—9 JBJ-:":-D)TJ —}“DJS’J 20

(15)
oz’f +'f3f £+ gf < 4

each € >p enda@ll § =L2- - ..m.

We note that the above quentities vary for different
seuences § §.{ . Still ve have chosen not to distinguish
hem for varying sequences i gk‘} since we will be dealing
f&ﬁhiuﬂarnma sequence at a time and there will be no room
for smbiguity,

~ -Now we can prove the following result about the

{@-Lj in Sh,'



CONN Toregoh f-)2,..-,n-1 » 4L
gi}egkm for every Pso

Y :a/mmu.pj @ch':J = MP“PJ gedy =0
AT bTReE

\duction: To begin with

;1 = .»E'wnr_[ $efidy = ’E“f;m__rj’ $efidv +,§f_n;~h_:}[g$5}.¢!u:

, =00 3

= dein f@g‘;,dﬂ. _I'/E:M:gw f et fid >

GF T Gf-lr

b [ 6y 4 b | 4fid
6 T\G‘F“

ﬁwmmwj¢Ma+m:>mejwh?

L L
'T\.G.'P'?

~ R iw»«m«pj §i7d v+ C-Ni4P) ho p0p [ Gl

L it £ f=
G,F T"'Gl

N: °(|? + (N -1) }B;f < NIC“T£J+C‘NI+‘F) ("SPJ

b

"

..,_,:._ EE Cﬂfjf-l- Bf_s‘,'}fjf_i. QIF ) —'P (B'F'i EI'P:)
E R - pplegls by e
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_ ~dmplies that Erg + E\‘P =B s vhich again by (15)

“ r implies that }3,*’: S‘}F =9 « Thus ve have
proved for Eé}_g SO

L

A .ﬁmrmp J dctdy = ,F;.f.‘-npmpj §:d» =0
LG TAGH-

We will now assume that for arbitrary >0 and

16:§ € venave

T tady = dmon Tl =
' F“PTJG\?*@F b ’&M? PT‘!&; ol (16)

._J:JJ:.,,- - -»n-& + Consider any i@'ug et .
r 6,,.,,. = Q,,_f_,‘ by induction hypothesis we have
for each F >0

-

-l o J 9;,3(:\ 1 = %gmirﬂi'}n-gdﬁ Jf%_"f;;g #@L ff-n-rd'ﬂ
n-2

fwms given € > O

ﬂw—-; ST o @t-r JnrdY 4 lrwv- J'tﬁf-rn-ﬂ d
I L= Y L—=oPe o
; GET}‘ ' GI'I"L
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o Jgﬁe"jn-xd:u + L f it fnoyednd

—y DD fir
E = P i C—"b= ;
Gr“_,:_n e Gr"h"'l.-\ G'II;'I"I

= J G Fn-d 2 -+ {Eu}w F e fn-1 AV
” C—>r0
ok ness mel\(;ﬁ:l

ol + CRNp- —€2 M_ou.pj Gitoly

= Hf,\; MGL‘LP f ?
; AN

_ﬁf_, M?p«p J’ g ol + CNm-y €D Minuﬁj gzr;‘ol;::
Gi-z 8] @tﬁjj (= (n-)

~ f [« { rod -~
= Nno oy +f_’ﬁh_,-e:>,B§_. = Nna -5 + G- €O (-5

 (16), since > ©  was arbitrarily chosen, we
i :
gnlet /_-p in the ebove equality to obtain

: N - £ s
:'m;“‘_* = Nazp ofnz) 0 CNm -€) ??)En-l + i{rm-x 'ffﬂ i Cﬁn-ﬂ"ejm"j

e R (oS, B+ & a6 —e CRR T )
m which ve conclude as before using (15)
}3,,&_, - Efq —p foreach ¢ >0
se for {@,% e S s We have proved,
M{rnmp J etd» = f.mkanwp g d» =0
J !

I~ {;'.ln—l T‘Glh-—l
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for every ( > o , vhich completes the proof of this
::_I'm

EROPOSITION 3,3 Let M be a closed subspace of
codimension n 4n L cr»> and - ite smihilator.
en for every basis {4, ... 2f m* ue have

~, :
Ni = N¢ dov £=n2se - ot

To start with

Ny = N = i

Applying induction we assume that

N = N for C=DL2 --n-l
e will now have to shov that

~
N""I"’""Nﬂ

To this end, we observe that since E, is W™ dense

E,,““ we have for k=2.3,.:-,n ,

Np= &up {Miﬁupifﬁihduj

where the supremun is teken over all sequences glg‘,;}
setisfying I §¢llc1 forall [ and

fbfw Jgﬂ:h:ciﬂ = Ny
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for j:=b2,...,k-) » Since by the induction hypothesis

~ ’
Ng = Ng for L=lh2y: - -->2n-)

N = Aup Méwﬁ q?a:-fp.dﬂ} (17
i {@1565::.—1{ e J )

for R=2,3,. . - m

- Now consider { g_f.,g ¢ 5,., + Then by Lemna 3,2
ve have for each € >0

r

,&mgu,p jgﬁﬁdw = fbwmowp | didw =0
: T\Gﬁ-_ﬁ < T\ .ﬂ:;

ie implies that

b Lup jg?ffnda: = A oup Ig::f;ndmi'[mk‘gupj'f;fndﬁﬂ
. 7 b | jget © G

2 RE ot RS =55

ek f{!&. CD{E-;"F E:l:-'l )

& R by a5
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80 that taking the limit ae ¢ — o in the above
inequality we get

M_;smpfgfcfﬂw < Na
L il

- for every £§L} E Qn-| « This together with {1?]

N'ﬂ. = R-?-n. (13)

Ve shall novw prove the opposite inequality. To this
end let i‘:‘ii be a sequence of positive munbers tending
to gero and consider the functions o€ Ly CTo®») glven

w

rxﬁf“ Ga™ , teGum
Te (k)= 2 CGin)

a i & é GIE'HJ:




= ,va j 'I.‘-";
£ e Thpdy 4+ L ,
Ge N E—':méi_?-': f4 d

= %{I\N\‘ L. C N
e odpey S T P C6%E )

o

. Chlery =o'

L—pto ==

.!:'E%:-_ ﬂ;:l =3 a qet W a
o Bed ve have 1 f€5n-
Vi
i SHP f@-;rﬂd'p = N
) this ﬂamx il-llpl.ln —a

Nm > N
Nim.= Na

| completes the proof,

he following propositi
' on will also be
eoren 3.5, et o

s A
s, -
-

> I | ~
2Can ) n J-frC—'Kl‘;-te.;)gg 7 ]
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EROPOSITION 3.4 Given {i.4., . .,Jn+ 8 basin of
e L 2 3!;31J..1:3m
4
being given by (12)

Proof. Let Ji,),..Jnbe & given basis of ™M=

We will now choose inductively another set of n linearly
independent elements §,. - - §n of M+ satisfying (i), (i1)
B8 (111) Lor C=2,. . -sni s

To start with §, = f, obviously satisfies (1), (11)
and (441) for (= | . Also vwe have for € >0O

= Gy = Gy UG = G, @D
How we choose ,>1 such that

.-_-l_f_ .\E\NVU @88 - UJ\)B JDREEJ[XGE'T = T‘Gg. _:_’-‘*_ O (m]

'.-—>ﬂ
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and take 9r = §i +elafa . Ve note that
Gy 0558 520 [ Yagr = X |

20

ﬂ,m €s<: Sup —g:.t&)[%f-a*” G-:] < o0 (a)

ga—>0

MAleo, 1t is eesy to see that (20) implies

Jﬂwm. ©ss :Sup gz&)[kg‘Ef— E—] O (22)

€—>o

.‘Q.ww @ss  Sup ]ngEJI
E—D =&
FR

e b ©ss.Cub [92(£D) by 19)
e —>o ¢t
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= piax [iéa_go -Esa-s;-LP 3262 {'}i&gg E %Gér} >

g’ﬁo ess-Sup - gaCE) {%GE‘T B rx‘ﬁ%tﬁ
= Km

My ess-Sap gl&_js_’li{;gﬂ — 'K&%;E {bgcma.ncl@?;:‘,‘-
. = ﬁﬂlgb
 Further from (19) we have

Nﬂl*ﬂ:‘. = Ao oy @3S-sup g,,c&;i'](ﬂi_:.-'xafrg

e —20

™
= ﬁ'ﬁ + g N,‘;:,,Fb

o, > 0 +this implies

-{E'ET: 192061 = F*’j,g;} = {&er: 19:(&] =ﬁgagnj

- ot o- o
= G'}I‘}LUG[-hh- B G’-}:;I':.

9, and . satisfy (i), (i1) end (iii)
: .;~zi:7;:-l': 2. « Murther since

+ oly ?l‘f]*l_h_

- e
NEFEL Y N:’




. I-_-'_F'+ e RUN
ﬁ“ ILG‘ — {‘ {:E Glﬁe;} . Nalﬁz—e ‘E— 3;{.&3 = Ng,gz “f‘E }

919>
e
G?-az = Gy

0, (21) clearly implies that for small enough € >0 ,
9, >0 o G;f

9. < 0 on G;f

a;.ﬁ,, = Gglﬂl‘

me ve have obtained for sufficiently small & >O

el L e
Gg:g:. = G"g;gz. = G‘jlfi..

9, - s9n0f M setisfying (1), (11) and (111)

0 L=lz): - )N e
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ZHEOREM 3,5. Let M be a closed subspace of
m n in |,(7,2> » Zhen the following
sonditions are eauivalent:

1, M is proximivel

2. V(GS,. .. 4o >0 Lox every basis i, .. s~
of r*.

3 D (GS,. ..4n) >0 ZLox every basis {i.fs, .- -5 fn
of nt, here (. ..;, &4 G5, .. 4. axegiven by
(13) and (14) respectively.

Broof: 2=—>1. et {,}, -,jnbe a given basis of M%

that VCG)>0 « Men x(t) given by

%-3-* e s abeiG
XCE) = 1 Can D
(i) 3 L'QG:

.u L.-‘ {T;"J-J> and ey = L . Farther

xf;d =
"=-‘TII{& Y =

xTfgd» = fx'h‘dy
Gin’ o
{NJ PEGH D — R’v; C- mcs-‘;::a}}

I
D)

ﬁcnr J-*:L;l;- e




Mt Nj= N, fer jsLaio.om by Propsiion 3.3
Henee we have e, ...4, and
QCXD = fVjy - - g

This elearly implies any ge Ty
satisfy

- /n  sheould

_fgﬁ‘dw:%:wc; for j:=hL2, -7
i

end thus we get

BCT g ) = i

A by Theorem 1,2, M is proximinal im | ,CT, )
1— 2 (Proof using the method of induction),
1e% fi,.. .,/n be & given basis of M", Since X is

condition (1) of Theorem 2,10 holds and so
by Proposition 2.11, we have

Aup ch-' (X) = max @D = Ne  for Ezh2e- 7
I-E_J""""'[Ji ‘JE-—J EEM:':ff"‘
Mt by Proposition 3,3

T

Ne= Ng o L 3h2-: -7

43



Further >~7, is nonempty and so

06 >0

Tus for xer-, » if ve define

A = _[l'f:[,d:ﬂ ,  Pis j 21§, d
G’ TG
e =~ Jﬂ:dr: o S =) afidw
=g TGy
then we have

Lo, Bezo ,vese ,Si20
and - (24)
ot +Bc47rc4 dc £ 1 (E=ha-m)

How

j*1+};d35 = f'r;hd'].) = ”j{}:ﬂ:’{'l — "_‘}IHL'T'I.}
it G

= I (st )

Etxﬁ*}.dm + Jﬂc‘&.dm < Nhn By = W -$)

- Nhh (B gl) '

4%
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N4 = fo Sidw

= [atfd» +4£x‘};dy + [xctfidm + [ 2 fidw
Gor TyG NG

Z Mh Gty Bi+t7ni+8i) =2 Nt bg. (24)

Mhis implies that P +S =0 , vhich by (24) further
_ BPi=8 =0 « B0 we have for any & 1y,

§ athd» = [ xhido =0
TGt TG

We will nov assune that

BCEEI>0 for C=1525: - m~)
nd that for every oce 3Ty .. .4 o (L=1>3 - N=2)
J':L"'d'lﬂ = j ot das =0

TN TGt

mmw XETU 4y. --4ny o« Minoe

M&‘l = = fn= < M. . - fn-a.® WO have by the
on. hypothesis,

___jlﬁd:ﬁ = J Ay =a
' T\@I‘L TNGn-2




,_r %t fney do 4 fl fo-dp = ftlt"’gfﬂﬂﬂh-‘r =k f‘:‘t Fn-d2

""Gh\q G:':_Q Gn = ™ Q’H EAY QI

< F-I':n-1 Brnoy — ﬁ“"' C- S"")
= N OB P88 )

e = | xfn dw
' T

j Xt fnods + J"x- fa-vdas
Gnta n-3

- jz-‘f:{ﬂ*l dy  + j 1,“'_.{,..__. d

ok

=| 1,\\
TN
Gﬂi‘i G:L Glﬂ-'!

~
Np-i Cdn-l -+ Bnr-l + Tn-y + c? ..|J

?';h-l bg a4y .

e &
S R R Nan- Bno —'?\jn-: ﬁ—T,.,_.'_)—?&“_, (.,fhﬂj
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get Bn., +S,., = 0 vhich agein by (24)
oL | AL
%J,E!_-* = _gﬂ—',; — [} - Henoce for avery —cc ;. - M=t

e

Now suppose that LR et + Then
BCEET) = 206 ) =0 . Consider any

- e e Then we have by {”]
[2fndn = J o fnd> + jrx;m d»
2 G::: :‘:I

= fﬂ{ﬁd-ﬁhf j X ndw
SUNEA Gt \Gn”

& Nw Bn — Wn C-81)
= R cpld 6
~S
< Nm
e Ty, - - gm-i v Jnlxd) L Na

etes the proof for 1/—> Q.
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2 —> 3. Suppose that 2CGi)> 0 for all

bases of - . We shall show that WG IS O
for all bases of rt

Tet [ 4, . ,4n e a given basis of M, We will
oW prove by the method of induction that there exists
nother basis Riy- - .sRn of M- satisfying

D (]
'G}!ﬁ,,.,.gﬂ - a‘,_‘[“_
GJC@'}“_ ! _R“:}po by essumption, Ell would
iﬂﬂa}li 1) >0 as desired.

o this end, we first show that we can select a besis
_-_sb,_éﬂ.',., of ™! euch that

fc dseitmer [. or —J;

HRI-R_,._ = .K’R..R; 'iﬂ"lr Cmilytgt s ST
vith we have
4 —
Ny, = Ny, = )41l
| we take QI "—:FI .

We will now assume that we cen choose m-i linearly
endent functiongls R,; - - p., of M satisfying

R: is either ¢ or - f¢ (26)
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N, . Bl ﬁp‘_ BEON Cl=12: v oim-)) 27

Let A be the collection of all such (M-1) tuples

?;ur linearly independent functionels. A is nonempty

gince R, bR.,---sRei 48 4n A and further by (26) we have

A to be a finite collection. Also, for any g, - * Gn-|
n A, by (88 ond (@7 we hoawe

T o B = =N
.N-}"--'J-ﬁq"' Nhr iRy NI’ﬂ».w-'h'-"w-l N Ng v

and so for evexy C > o
<y T beTi Ny, .., —€ < 14elbd] £ I_ﬂh,.ﬁ+6_,c=m--ﬂ—uj

s {[T T Rfm_ 3 'ht.‘-e < VfaEdl < ﬁm_ _kc-\-éjc:i,pmv'&

N s ‘gn*lw (26) and (28)

va*- E‘QS-Qu.j: | 4m C£D ]

E—>0 -
G i e e

-
bl
\

i @8 :Sap (D]
E-"—'JD U GIG A .gn-l
A i




o0

= w—;_Ag,_x ['H"LRK A ess8.-Sup ﬁ:&) [T@lﬁ;:' == %G%"-,ﬁn-bj

a—=o ~<gnal
éi‘\;\a esg -Sup —fn (£ O"Gef e r}:t‘ﬁ%‘.- @,ﬁjﬂ

Since A is a finite collection, this maximum will be
attained for some member of A, Thys there existis a
‘member R,,R., - R, of A satisfying

4 _ L
N}' . L= &9{) €ccs.Sup 'pl"nl’:‘:_-) S_%ﬁ.aaﬁ“al ' Ga..‘ﬂ..,i

2 .
= NF...--* o

An 18 eithep {n or —{n ., Thus for the

.“I_.RURZJ--JR,, of M'Ll fﬂl‘ C=ls25 " = -« 3L

f: is either {: or - fc (29)

™ —

Ng,..ge= Na.ge = Ny, s | (30)

fﬁ-’;-Rl‘ -dﬂh = {EET: R.E EE-} = Rj&}"'ﬂ.i a C'-]J11-+"ﬂ3

{ eT " Ri{bj; ﬁf.rv-{i P L‘,:r;:_,...-nj b&f.'aﬂ}

{

- o
= G'_i'l' . :f"l"l.-

=4k
2 AEeT! Hil Iz Ny fos ©= 152 ..-nj by (29




o1

svhich completes the proof for the implication 2 — J.
|}
3 —> 2, We will suppose that 2°CG.’>2>0 for

all bases of ™M and thus show that 2> C&Ga)dYo for all
hﬁll of MLC

To this end we consider an arbitrary basis £, -~ - S~
MY and shov that there exists another basis £, - - - R~
M* guch that

G’-’R""E‘uwc‘ G";l--w{h_
by essumption 2 CGg,. ., ) >0 o this

jould dmply 2 CG°% . ., )> 0 ond thus coaplete

By Proposition 3.4 we can get another basis R,. - - fAn
of ™" such that

i~

NR - - =

Zl
»

e (31)

{I:&T: | B CED| = N, .'ﬂm}:Gﬂ,, 4 (32)
| 48 clear from (31) end (32) that
k. @;,_,ﬂ“ & {Ee-r: l-ﬁ“cm:ﬁp,,..g“} 0

r olaim is proved and 3 —> 2 «
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Hence L/2=— 2 £—> 3 and the proof of the theorea
ie conpleted,

Remark 3,6. The equivalence 1 —) 3 has been given
by Gorkavi in [7] .

Remark 3,7. We observ@ that a result similar to
Propditn3: 3, evaluating the ™'s can slso be proved, If ve
denote by

My, = @ss.sup [§HCEd] = I
T @

™ s v = i} ess . L -[-t {rx & == 'xf‘-u- g
G e = \P J(L D 'ali: Yjesh G‘-jl- i)
- Yox
.GI,J'J,- -_"J'Eq =EEET: ‘{d*'['::) =H,§\_ TRy JJ:IJ1"E§

g - g = {%m: f50) = Ny g ) 7210 "‘“f

lv':ll-';h'_ =%4...5_._- for cf=l2--m

follows in similar lines as given in the
alence 1 & 2 of Theorem 3,5.




We will nov conclude this chapter by stating the
following theorem which as:zerts the density of proximinal
subspaces of finite codimension n in the olass of all sub-
spaces of finite codimension n in the space Ly €To2)

THEOREM 3.,8. Iet |2 m 27~ « Then given n linearly

independent clements Fiahs 50 < = = = syl B lge Elaad

and € >0 , ye cen melegt Dis Faw iy G "
simple funetions on (7,»)> such that

(1) W fo-gen <e Lo =12 - - m
(i1) a g{’toj is proximingl in |, (752D .
L=1

Broof: We first observe that given f& LwcT52D

end € >0 there exists a simple funotion Fe LaeCT52

gi'mﬂ-
with [}-9ize o+ Hemoe  f,. .. ,fn and € >0 wecan
select n simple functions §)- - - §» € L= (15220  guch

that
h4c-gech<e fLor c=l2 - -7

Since each :?‘ takes only finite set of values on T,
it is easy %o see that Mt = [gu S ;gn] satisfies
Cordibcom m -
A2 of Theorem 3.5, and thms /1 ¢ o> 18 proximinal

in Ly cT52) + Thus bota (i) and (ii) are satisfied,




Zhe Space 0(Q)

In this chapter we consider the space, C(Q), of all
renl valued continuous functions on the compact Hamsdroff
epace Q with sup norm and derive the characterisation

theoren of CGarkavi given below:

THEOREM 4,1 Carkevi. [3] let ¥ Dbe a closed
bepa 2 £

ot = [hoshss s ] o Rekes e € oo
Mpo foreny e ccgdts 188 =i+ )\ denote ite
dordsn decomposition and SCh) i%e supports
(&)  beptd>NSepw) = ¢ Sexsevexy }«c;m*"aﬁn'i
(B) . is_sbsolutely contimuous with yespect %o L

on S for evexy |, ko @ MIJ0T W

1/

(1) S5Ckad NScp)  As closed for eagh |, ha e MNSob.

For this purpose, we consider the following 3 conditions
which are contained in the 2n-l conditions given by ( 8)
and () and exhibit their ecuivalence % () , (& and (7
in a series of propositions,

For Acq » we denote by A, the closure of the set A

in Qand A" ite complement: in Q,
let M be a closed subspace of finite codimension n in

0(Q) and ™M~ 4its ennihiletor, Then




BROPOSITION 4,2: (I) &= (O
PROPOSITION 4,3: If (D) o (x) As satisfied, then

() =@
PROPOSITION 4.4t If (D 9 (0 48 satisfled, hem

(m &> ®

Proof of Proposition 4,2. 7. is nonempty if and
only if there exiets [€((S) such that

-4 omn SClD
This is poesible if and only if

1 em  SCETD

S NSCRD = ¢

Proof of Proposition 4,3. First ve shov that
(I) —=>(p> o Assume that (II) holds, We need
to show that

A=scpd , JklCAd) =0 implies [, (4)=0
Suppose not. Then there exists A < SCL) such that
[l|CA) =0 but 2 CA>D 30 o Ve can assune
vithout loss of generality that A < Scrid) Nscud)
g0 that > (CA)>o0 « Selting
v o= = |95

=1
for some fixed basis 05,27, .., 2n of Mt , we see that
to each ¢ QMlj*. there exists o unique € Le =P




such that

@cp:j oLeaydpcg) for all Liem*
&

and

gl = €8s-2up [l Cq D
g 2

If in pddition & c /v, » We also have

1 by 0-¢ on SC™D

(33)
2l k a-¢ on 5Cli)

Let B be the union of all the sets P such that [x,CF)=0

Then A & BOSChiDd o Further we set

C =

= {scp;J \SC]M'j} (U {BHSCPAJ}
{Scpff)\scp')} U {Bn SCMJ}

C, U Ca = {SCLLL}\Sﬂ}A])} ¥ {B GSC}«.L}}

Now we define Ao € Lee(Bs2) as follovwst

1 on {Schingf vy
oly = (34)
=Hon. StSf.PTJ\Bl v ¢,
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llov consider any oA € L () representing a £ N«
We have

€sc .sup |t cgd| & @es-sup Reg>l = n&n=1
8 ha & 22

Then

j &lo~2D (GO a’lpzfq;} = jéﬁa—ﬂpﬂc}dmwj +f&{u-g¢)@p4plcw
SChs) Spp B &y

+ | 0@ dpacyd
Ca

2.0
for the first term on the R.H.S5. is gero and the
vemaining terms are nonnegative sinece by (33) and (34)
A o en &) <= SChED
ol —ol -~ =0 en (s & SCh'D
fus 1f F, is the functional represented by oo s

we have for any cH{ 9

@CP:} = ﬁf}a:) :‘-j @~ P Gl}ufﬂfj Zz 0
SChad

and 80

B(ha) = Aup  Bcped (35)
Fe

o7
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Choose € such that O < e = Ly (CA) « Sinece
(II) holds there exists foc 7)., Such that

haCfed > F,Chad—€ (36)

Sinece gtnE .'I‘V‘t{_u
1 om  SCLTD

4= . (37)
=1, on SCL)

end
|[focqdlc 4 on &

ginee A <—<Chi) }/L.{:,f}:} 48 elaso equal to gmero,
Bus

ofe =1 OB A cccSchad (38)
Further ve note that

:fg = oda on SChd~B (’g]

liow

Balha) —palfed = J @ —42) @ dpacyd

Sl
= j@{,—@ﬁ?jd}mw_%’) + | Ko-Fo)on d W)
A SepINCSCRONED

* j@“a‘ﬁ)[ﬁ:} ol ha O +Jg.,-@godp;.cn;)
el QA




The first term on the R,H.S5, is essily seen to be equal
to AL.CA) from (37) and (39), The second tera is gero
by (38). Ueing (34) end (36) we note that

oh-fo 2o on Cac Scptd

—_—

Xs-fo <o om C& B85

and thus last two teras are monnegative., Hence
BoCha) =3 o) = 2bacay > e

which contradiots (35). This proves (II),

Ve will now prove B) => (1) » Ascune that(P
holds, s0 that A cccpd | |li] CAY=0 would
dmply [i.CAd=0 « Define &, c.j by

&, C D =é:nzuc-@)dpcq;3 5 p.eM"
where ofc Lo (& ;20> 48 given by

1 e is cp;"}} ) {sckm\scmj
Oy =
-4 en §SGD) U § sou) xs:cm}

Then for any o€ | ya CH 5> D) representing a T e

ol = al, by a-.@ g SC k)

and hence, since and are ilﬂ-nnd.

et = oly i“'“L o= & it gcj‘“j
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Also

j (- () ed haCgd + j{ef:rafnj ) dpxCgd < 0
SpatINSCUD Gepd NSERID

and hence

-x) (@ p>rCg) = ©

SCha)
S0 we have
@nc 3) = Sup CRATES)
P- Bens k
How since Mp. = _,:y'ﬁr
Bup h2l) = max B Cha)
fe e )

Let T/ be an open set containing S<CLu)D. Because ()
is satiefied, using Urysohn's lemma, we can get an <€ Cca)
such that

jcf".‘.t.'_] =

= rﬂw xe SCuit) U Csc ptr~V)d

=4 lov e Schi) U (SChEdNV)

and

L0 =1
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Then j[EJ"‘-*"L'_,_.L +« Also

| $oChad — b€y | =2 ha (UNSCRD)

By the regularity of |, , the R,i.5. can be made as
suall as we plesse and hence

Bup k204> = B C(pad
ferty,

This together with (40) implies (II),

Proof of Proposition 4.4. Ve will start with the
fmplication (H — (W) « By sssumption SChad\Schd
io closed for every padr L\, k2 e Minjof .
Sinoe () is satisfied we can infer from our assumption
that both the sets Scudd sch) and  SCREINECKD
are also olosed for all o> pas € MNfol
Hence |, defined by

i oo CSchid U CSchIdnsChd)

-1, e CSCUT) U (SCREid \STI)

has contirmuous extension to the whole of g with I{cua1
by Urysohn's lemaa. Also [, ¢ vy, and further

L-'L Crpay = Sup f-ﬂ--’i—ﬁ';‘
'J'Eﬂ].q

vhich gives (II1),




How we shall prove the converse, We show that if(e0
and (3) hold then

SChid\Schd 0O SCHT) = ¢ (41)

and assert that (41) implies () . To see this, we
change )= %0 -|» in (41) to get

SChid~scud N SCuid=¢ (42)

Again changing |, % -}, in both (41) and (42) we obtain

SCLID N SCud OSCuT) =¢ (43)

and

SChadNSChD 0N SChid=¢ (44)

It is easy to observe that (41) and (43) imply
SChidNSCh) 48 closed and (42) end (44) imply
SCha > N\ SCh) 48 closeds Tus Scl.>\ sCh))
is eleosed and our ascertion is proved,
Henoe %o complete the proof it only remaine to show

that (41) holds, Assume thet 0 end (III) are satisfied,
Then there exists [, ¢ >-t), such that

2Cle) = Sup I"L"C"})
& FE Ty
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How 1f (41) does not hold, there exists & b. in

SChi D~SCld N SCU) » Since foe>y, end
po € SCLi)  we have
fsCped =1

Let U, =['CCe2>) « Then

U,> SCht) , Uy Nscpid=¢  amd f,CUD >0

Set for any U D SchiD

Ul =1un CSCUZD NSCchd)

U' is nonempty for any open set U S>eacuty since U
contains Poe SCuitD » & limit point of SCRIDNSChD
Also

}-uzi:‘U"} = LL[{UHSC}.{.}E‘: N ?_5(4;131} Z 9

beceuse 17 (SCh,)" 48 an nonempty open set emd SCL:I)
is the support of the measure |.. . Using the regularity
of |.. we can seleot amother open set Js. such that

U.q = U:L 5= ) S’C}“‘?J

|ha CUVSULD ) > 2 | pa CUSNSCRID |
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Now define

fo e SCR) USCEDD

=
1l

(45)
4 on UL 0{sekdseud}

By Tietse extension theorem £ can be extended to the whole
of 0 contimuously with noxm 1 and it is easy to prove that
Jerty Consider

ha () =) = jGu-'D @) d hacgd
Sthy)

= JG;‘:D @ dpsce)d by 46
SCRINEC)
Agedn

j@n—%)fqrjdp,_cﬁ;j = j Go-P) @) dhasca)
SCWNSCL) Uy NSCHT)

+ j Go-Pad dhalwd

'{J*J'r\U,,'

i J Go-Dw@w dpa o)
UL 0 (SCriI~SCd)
We note that fo-{>0 en {U‘.‘n tsq.\;:msr:p.:)& c SUa)
gnd thus the third term is nonpositive, Also, since
|{—F] 2 & on Q the first tera i3 less than or




equal %o & | ha CU." N SCUM) | Further

Jr--} >4 em  U/A\UY < £Cui) end so the second
tera ie less than or equal o L, C U/~VU2') which
is strietly less then gero, Thus

5 Go=bd) @edprcyd £ & |ha CBNSCUID | + ha CUNED
SCREINECR)
& O bg (4-5)

This gives a contradiction to the fact that
haCod = sap  halC4d and hence coupletes
-fEJ'*'Ei..ul
the proof,
¥We will now show that the dn- | conditions given
by (8) end (9) reduce to the 3 conditions (I), (II) and

(I1T) (or eguivalently @),(3) and (¥) by the above
propositions) in the space C(Q).

PROFOSITION 4,3: ), (» amd o) —> (g omd @
in_the space ©(Q).

Paoof @ Glearly (I), (1I) and (III) are contained in the
conditions given by (® and (@D .

Mt (I), (II) and (II1) together are equivalent
to ), (P and (¥) by propositions 4.2, 4.3 and 4,4, Hence
() end (2 dmply ©O,(» end @)
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To prove the converse, we vill ascume that ™M* satisfies

e),(p) and (@) .
Since (¥) is satisfied, we have SC[:D\SCly)
is closed for eath |4, , ko & M \Jo§ o Further @
is satisfied and this implies ScLdONSCL) and

SChsINsSCl)  are also closed for each

s plemhiu} . Henece

Scli) \;G: Gl VR e ' {scp.;‘f} ~ SCP.}JJ
- d""

end

o i—] _— !
Sepi ) ‘qut SChy) = 5{; {5*&#@3 s SCWJE

are closed sets for Jd <Ll m

Define £ by
|l«Rre L

£-1 _
1 e SUF) uﬁlscp&j

{ =
- :
-1 en 5%53“;;’,: scpy)  l&Ret

Then £ hes ocontirgous extension %o the whole of Q with (Ifi=1
by Urysohn's lemma end it is easy to observe that [€ 7 Tp.--hi

Thos (o0 end () together imply

_;v*f,}“_ e fip is nonempty for

l= =T
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and this gives all the conditions given by (&
Fow we shell show that (4) is aleo satisfied,
iet Pey'vedn Ng . Clecemd end
X €& Lew (G52 represent the funotlonal &

1 hpae on ECM_J\U SChy) fov lekel

4 b o en SRS SCHD for

We note that sny e null set contained in SCL) or SChe)
is glso & |hp| mull set, iince ([2) is satisfied it ie
aleo a ki mall set for all £ L,lalf<m o Bus

- B ) :
£ e ase Clacem) e SCF_LI)\;!!SCP&) fov 1cRel

o =
4 e @€ Clecen) en SCENY, Sch) o 1erel
and
of':jf lJ-L' a<eg (letem) omn ;Q,SC'HJ‘J
8o
j”‘fwﬂd}*;flw} :J—_Ffﬂl,.e)clw{qr) dor 1&d&t
= &
which gives

SChi)= hydd for ledet



Stnee BenT ., , Inistmpries

A X & Cje) = Sup ke C4)  der @ claeve
BENVE: - fueey Je > Ty -y

and hence all the conditions given by (0) are also
setisfied, Thus ¢ , (B) end ()  together imply (®
and (Q)

THEOREM 4,5: Let M be a olosed subspaces of finite
sodimension n in €(Q) and ™~ Ats annihilatox. Jhen
1) & @0 H((E , ad

Broofs By Proposition 4.5
) ,(p) ed D & ® omd @D
Bt by Proposition 2,11

Hemee (L = 0 ;B and @)

Regexk 4,6, It is clear from Theorem 4,1 end
the equivalence 14— 2 of Theorea 5.5 that the
proximinal charscterisation of the subspaces M of finite
codimension in L,(T,») differs in nature from the
corresponding cheracterisation of such subspaces in €(Q).
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But if to:i :gu sabspace M-, G consista of finite
P 79)
union of aloms for each [c M’ ot Wien we have Ty

to be finite dimensional for ewewry fc Mt Jol
Hence the eouivalence 1 < 5 of Theoren 2,14 holds and
thus we ean conclude that

D.’:CG';H:_‘_) > o for every pair f,,{. c M‘t‘iﬂi

=> 2(6%,...40) >0 for every basds f,fi,- - -sfn of M

For ueing Proposition 3.3 1% can easily be seon that
29CH% 4,050 (hsd € mi\{of) e equivelent to

(1) ng is nonempty for ecch -fe M*\i_n%

(I1) Bup F200 = max G ) for eaeh §,5Hem\(of.
rery, geny,

(I11) Sup  focxn 48 ettained for every {i,f ¢ M \§o].
ol o g S B

Since (1), (IX) and (II1) charsoterise proximinal sube
spaces of finite codimension in the space G(Q)(Lollows
£ron Theorem 4,1) and Propositions 4.2, 4.3 and 4.,4) ve
infer that proximinel subopsces M of L,CT52> behave
like the proximinel subspaces in C(Q) under the adiitional
essumption that G, 418 a finite union of atons for each

}E M‘L\S:ﬂg .




Let M be a subspace of a normed linear space E, Then
M is semichelychev if

Pyt = {maem Lle-moll = Gy I!:L-w.n}

e M

contains at wost one single element for every XcE ,

In this chapter vwe give a characterisation of seni-
chebychev subspaces in a gemeral normed linear space and
derive from this a characterisation of chebychev subspaces
using Theorem 2,10. Murther we apply both these theoremns
to the spsce L,(T,23) to obtain the corresponding characte-
risation theorems in that space,

Garkavi hes given the following result on semichebychev

subspaces which will be needed in the sequel,
Lel
DEOREM 5,1 (Carkavi) Let M be s subspace of finite

Y] QX ] E

for evexry & e(m+)”", there exigte at the most only ome
element x in E guch that

||§ W= nacl
and

$ () = for) for every :FE. M*
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Ve resark thet if O |y denotes the restriction of
the map & 1t the set - , the condition of the above
theorea ie equivalent to eaying that & [, 48 one %o one to
one for each jpEMl\Szgi.

How we uill give our characterisation of semichelychev
sutepaces, '

ML) T, -
every bagim §),. . . .40 0 ml

v{1i) For each {emiqag either >CGj)=o0 28

G, =coCAp) *
Exoof. Heccpsily. let M be a semichebychev subdspaces
inEBend f,,. ... ,f Deabssisof M-, IfT,,. ...

ie empty b(1) is clearly satisfied, Assume het ~7,, . .. ;.
i nonempty. “ince Lmjj*ildm&ﬂnm LR
15 @ besis of M- we have, Gcr1,,. ... ) < () o be a
singleton set, Also, H is semichebychev and so by the
remork esrlier § /, ; 48 one-to-one, This iaplies

b TRl = T is a singleton set,

Hov let fem*~jo§y begiven, If >, is at the
most a eingleton set L(i) 4is easily seen o be satisfied,
Suppose thet -z, conteins more then one clement., 77, 48
convex, O 4@ linear and 80 G(y-1,)i0 aloo a convex set,



Further £0271,) < (MY 'is o finite dimensional convex
set and 80 by Lemma 2,8 ©C»T,;) is convexhull of the
set of all its extreme points, | But by Zemua A47

By = By 0161, is the set of all the extreme

points of cc>t,), Hence
& crt;y =co CBy> (46)

Let ﬁeg} « Then ESEGE = ""'1‘/;2
for some basis 1,9.,-..,9~ of ™MLl ., Prom (26)

Q:-J"'Jg}r\

we have an quM,,. such that
Q-CIIJJ = g;p

vhich dmplies o, ¢ I~Ty, Bo ™ee€ AL

95 ks sl g A
vhich gives A: 4is nonempty. Bt
Suppose that by does mot hold for £, Ten there
existe o , ¢ )Ty N\ CoCAy) + OConsider the element
Bcxi)« Binee QcCx,;D € GCITy>  we see that

&Cx) @ (o c@}) by (46)., Since o/ EEvf)CA}
eand £ is lineor this implies there exists an
Xy € (0 CHLD  satisfying
Ocz;D= 0C(xy )

Since both X, and x, are in 7,, this is a contra-

diection to our gssumption that &/0-1; is one to one, Since
both x, and x, are dn 7, this is a contradietion

to our assunption that @ ;M+1n one to one,
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Sufficieney. Suppose et f» and f-ui) ere
satisfied for the snnihilator space -, We will show
that © /5 ie one-toione for eash fc M (o} + Iet f
be en arbitrary element of _Mlx{gg o Then by AW

M'f'-*ﬂw---:gm is a singleton pet vhemever f,9., -->9n
is a basis of m*, Henoce ;X2 € Ay gnd X F X
implies 6Cxd> = 6Cx.) eand ¥ms & |/ A, ie one-to-one,

Since .\ is finite dimensionsly O0C>T;) < /%
containg only a finite mumber of linearly independent
elements of (MY, Nurther & /). 18 one-to-one and thus
o/ Ay too contains only finite mumber of linearly independent
elements of B, Hemoe <, = co(CAs) 48 finite
dimensional, Since & /A, ie one-to-one this gives
is slso one-to-one and completes the proof of this theorea,

Remaxk 5.3. It is clear froa the above proof that b(i)
and Jyii) together 4Lmply J-1, is finite dimensionsl.

The following theorem of Garkevi on semichebychev sub-
epaces ie given in [ 6] o

JHEOREM( 6] (Gerkavi). Let M be a subspace of finite
if for every ;fe mlx{a'i o the set L. is of dimension
g m-| and for any S+ | linearly independent elementis

Loy Xyy - -~ 23Xy OF N we have

Yok Sthc:cajE = St

R=j,z.-n

L=81, -5
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Bauivelently the sbove theorem can be stated as

{(;C'xﬂi:§tllj_, cEEgsY {chjjzfeM’“E = "Rh"

shere W™ s the

We now show that Theorem 5.4 can be derived by a much
easier and simpler method than given in from
Theorem 5.1 using the map & .

Broof of Theoyem 5.4, Necessity. Let M be semichebychev
in B, Ve have OC) 1) CJNF foramy F& M- (o}
and so dimension of Q—{M&)A_Mﬂnﬂf_%‘ Z Mm=] =
since M is semichebychev we have by Theorem 5,1, & ,FM+ ie
one %o one, which implies

dimension of ;= dimenslon of QC) ) < M-l ,

Parther 4f 3 <«mn-| . end X, - - ->X»n are any set of
linearly independent elements of -1, , Menu

{ﬂ-(.l!:} JQ-C?-C.:_j A 'Jg'ci"-j}

is elso a set of lineerly independent elements, Hence
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it
$; = ecx:)d P = PR,
{(@C—fj 2B S . o e e B D J::.M*-z =R
m™is implies '
{(f‘&‘lm sFRaY5pe < &+ oo me:)):{em-‘j = Ph=

Sufficlencyt Assume that the condition of Theorem 5.4
holds, Suppose that there existe J¢ Miifof such
that & [, 18 notone o one, Then we can got =,
and x, i0L M, Setisfying x, o s Bt

QEI;J:QC‘IQ:ﬁfur Aome @EJ\'}"

fhen x, end x. are two linearly independent elemente end
L] .
g0 by Theovern 44 wC have.

{ CHeme)d 5 fexsd)t Fe MJ'E = %@L}L B C4) TJCEM‘}= TRL

vhioh i® not true. Hence Gf:vn+ i one to one and this
coupletes the proof of thie theorem,

We now chamacterise the Chebychev subspaces of finite
codimension in the following theoren,



(@) J<y. . ..-4n 48 & slngleton set for every basis - -in
ﬂfMl'-
@y STy =co(C A;) for every fc ML“SDE 3

(@) Aup faCxd> =max &CHD  for each palr
XE T ETeNg,

-_;CIJ-fﬂ-E Ml\slng :
Proof, Hegessity. Assume that M is a chebychey
gubspace of E, Then lri.l proximinel end so by Theorem 2,10 (D
holds, Further by Proposition 2,11 (1) lmplies (9) which
gives (a,) » MAlso M is semichebychev end sinee ><y,. .. ..
is nonempty (q) and (a;) are aleo satisfied by Theorem 5.2.

Sufficiency: Assume that @) , (a:> and Cax) hold.
Then by Theorem 5.2 we have M to be semichebychev, Further
by remerk 5,3 (00 and (a) imply that U, is nonempiy
and ia finite dimensional for esch ¢ m* \{o{ . Further
() i8 also sstisfied, Hemce by the implication 5 —> 1
of Theorem 2,14 we conclude that M is proximinal,

Bemaxk 5,6. We note that in the case of seaichebychev
subspeces the requisition for proximinality reduces to
(1) >~1; ie nomemply for each fec M \Jo{ and
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(11) 2up fatx> = mox © (42D for every
xe Ty B evf

pair -J‘l;'J:z.E Ml\SLDE

since ~; io finite dimemsionsl for each fers{of

We will mov give the application of Theorem 5.2 to the
gpeee L,CT.>) o Ve wlll firet give a proposition which
io needed in the sequel. '

(vhere the 4, .., are o8 given in Remark 3.6)
Then we have

W' m‘.{\lp*“nisﬂ w HJ.
M LqE.TJJ-"'J w M‘*"“-F"‘-'M

it
(b)) i =1

(b)) = venishes elmost everywhove outaide Gl b

(b)) ZL> 0 m G

o~
x=e | 6y

i




Eropgf. Let :ce:wr.:},_.-h. (£-) follows fxom the

definition of the set op s SV (£.) ecan be proved
in exaotly the seme way as given in the proof of the
implication 1-— 2 4in Theorem J.4

To show (4,) we will assume that theve exists a subset
A of Eb,}r_+_§.ﬂ, such that .

VCAD> O
and
xzo en A'=an B .. ..
xsp0 tm A =A0GY,. .. 4. ¥
Then
jlfﬂdﬂ =3 jrzfﬂd-ﬁ
4 Gy <idh
- j Yfnd» + (14110?19
ANGS. - ﬁ}i _-_'%\A
= [atndy + Jiv‘ﬂd“” . J g e
AT A E},_.&M
~ o JLH.&,—-; S jlﬁggg,.: + M fiéa!-wf
A+ K [V
bl 7 [ z[xdﬂ .-_j;:_daﬁ + ‘j':natﬂ ]
| f A G- An™A

L

< Mm,
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w ) und{:l-'n.- Since M,ﬂ:ﬁﬂ by Remaxk 3.6 and

LETY . . .4p i8S contradicts the faot that
_)f:x.}ndu = Mn end tms () 10 sleo satiafied,

Assume that for x dn L crou) , () | (fy and (U
hold, Ten vy (b end (L)

anftd:u = in}sd&-’

T °
e
:jf-}cd:ﬂ L ch;ccﬂaﬂ
o} . o= )
s e
= My jx."fd')) - fﬁrﬂggfd?)
of e N
a&\-“*n i :{

i

M [ J widy - jl_d’)]
G5 Gy o
= ;th b'é f_-ﬂ"i‘j .
fﬂl‘ E,.'-"L;'L_p" 2 - - MH mmuimm"‘

DPOves X CETyi. . 4o e

DEFINITION [67) « ket A be s measursble suboct of

Thep 4 is ceslled an atom If
(1) WDCADSO

(i) I€ P is a measurable subset of A , Thewn



WBCRI=© Or D CANR) =2 O

We will mow give the characterisation semichebychev
subspaces of finite codimension,

IHEOREM 5,7. Let M be s Sloped subspace of finite
godimensjon n in |, cr,»> « Zhen in oxder that M be
gemjichebychev in |, c7;2) uummmm
het the following conditions hold.

{p"J For every )el)" . 'j:{'n of ML » €ither fl—"rf:a;....-;“ =2

or Ef,'“&_ gl is an atom,

dm

(dy For every {’eMlxﬁnﬁ » Vhenever (G >0 ’

there exists . ( 7 finite) sets of bases

{“FJQLJQE. ‘Janjhﬁfl""ﬁ'm that

P
e 1)
GLI‘= L..JG:J‘UQ:L' :}_
Eroof, legessity: let M be a semichebychev subspace
of codimension n in |,(CT>2D o Thea by Theorem 5.2 Au
and ,Etm hold,

Let }i,- - +) {n be en erbitrary besis of ™M* ,
Suppose thet :JJEE:":}, Sy )20 Wt G- - g is not
en atom, Then there exists A a proper subset of G, . S

satisfying ,
0 < wCAy = mfaﬂ,,.ﬁ)
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go that wve can define —x, end x> in L4 €T52>  with
X, + = a8 follows:

s e T

= VCA)
0 > R
gl =1 "LG
o4 o= !
’x@"i"':f'ﬂ o U T I
Lo (ED = : 25,665 i~ =g
o Jﬁéa?’h #n
-
It is easy to see that Hxe =1 (c=1,25 end
Eli'}&?d'}} = md‘ — Md" for d‘-_:l‘)l“ LR 5
L
Thus both «, end =x. aredn 7T ,;,. .. s, Duk

x, £ =za  vhich contradicts [ . Hehoe

o
I = is an atom,
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tet fecm\Jof veeush that mcefrso

Consider z co-7, given by

r(t o -
Gy %f;u : , te Gy
XD = 256y )
o > [7¢ G‘l.:

Ten by [y there exists 5. (5. finite) sets of

bases
.

C=

al b
of M such that

x e Co %11;111 £ "jxhi (48)

vhere ?E::E-?“"ﬁ&_,g:‘_)__.gil' C_':'.-_-ljl—}'- "‘_151_:} ]

But by Proposition 3.6 each =: vanishes a.c. outside
Nn ]
G 4,95 5- -9 and so (48) implies that
& o -
G‘T}' :Qt Q-I'}T)%[{-J S JE’}I;L
Sufficiency. Assume that both the conditions of the
theorem hold. Let {,,. .. J,. be an srbitrary basis
of M-y If (&% , )=05 ten by Propoasiion 3.5
J"'C+.- 2 ey is en empty met. Suppose that

m[a’“},_ _ij..,,>>0 « Then a;_q._‘;ﬂillnltﬂ



by assump$don. unuiuumu (Lfr.j () end (.fr;j « HRurther
it

N EEE L. Yty > g
2 { HETR DG - 40 )
BQ-: {!’:E—?}(‘.?l = = fmn = "L[{:}] > |
DB Y- -P0)
then, since @"; T is an aton, either
T e e e ) and &G - g8 =0
or
PBD = 2CaY,. - - ) and 2) C&j, .- o~ B2) =0
In either case it is easy to see that
g ljfnd'ﬂ = I_-fﬂdj.’l #‘-‘— Mo -
T Gdi- g
using (30), (31) (f) end (b). Hence
|2led) = ,i B a2 on Q. -.gn (51)
DGy - - 4n)
and this together with (J») and (J») taplies that >1y. . 4m
is a singleton met,

(49)

(50)
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Nowlet fe nminof be given, If occlr-o

then ulaarly;vH is an empty set, BSuppose that 226505 0
Then by assumption there exists o (> finite) sets of

£ 3 iian i
veses |, g5, ... 4l 35_' of M' such that

& " o op

G}J' :!:E] G":FJQE,;@__E (5‘2)
where eash [ .. . 18 en atom, Since
gt U
A o :
Gy DO G‘-hﬁ:'?l_:- :‘gﬁ
for L=1,2, 2 ed G)'n ¢y =¢ (33) gives
o+ e S i
G
e o o- . (53)
1 =El:i,l; -.I-Jgf__,-**lgn

Now consider any occ STy e X vanighes a.0. outside
5;;; and since (52) holds this implies x venishes p.c.
o il s :
outeide U G'-.hg,":; .- +>g, + DPurther, since

r'\rn e
Q‘i‘:.ﬁi;- ‘_Jgiilmﬂu foreaoh C=1,2,. - -, % ,
x i a constant a.e. on a::ah“uﬂ& e T
(54)
Also
bt
L zZo by
(55)



Now using (f) (54) and (55) we have

x end . are of the seme sign for (=02 -- .~
This together with (51), (52) and {54) imply that thexe
existe poeitive scalars Sl Com YR T such
that
b 1 O
_z_ SRR
L=1
and

o
o '2-_ ol 2%l
C=1

So II.ECD{SLU.----:ZI-rE — (O CA4) .

Hence by Theorea 5,5 M is semichebychev.

THEOREM 5,8, Let M be a closed subspgce of codimension
nin L'Lm.;:"‘j" L - )

shebychev su
S

G'y . ..jn AB anaton for every busls i, - :>dn
gf ™ .

For every { e ﬁiza__g.;.} , there existe s (n finite)
sets of beses {, 5::, '3§ - - > 3:. :; such that

o : o

s
We observe that for a proximinel subspace M of L4 €520

Gigie - gn = G- - dm

for every besis fi,.. .,fn 0f Ml and hence the above
theorea follows easily frou Theorem 5.7 and the equivalence
1 & 2 of Teorem 3.4.
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