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Abstract

In this review we study cosmological perturbation theory. 'The theory aims 
to model the physical universe by perturbing about a background Friedmann- 
Robertson-Walker cosmological model. Two approaches are highlighted, the 
gauge-invariant formalism and the gauge fixed (conforinal newtonian gauge) ap
proach. Boltzmann equations for all the m atter components of the universe are 
studied. We get a set of linear differential equations. The initial conditions and 
the origin of fluctuations lead us to the study of scalar field inflation. Future 
directions include quantum gravity corrections, alternative inflationary and iion- 
inflationary models and the study of inhomogeneity and isotropy in concordance 
with current day observations.
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1.1 The Standard M odel of Cosmology

The current well accepted model of cosmology is called the Standard Model of cosmology. 
The model is based on the Friedman-Robertson-Walker [FKW] metric [5]. There are two 
im portant aspects for the metric ansatz, homogeneity and isotropy. That the universe is 
homogeneous is assumed and the input; of isotropy is observationally motivated [6]. This 
is also called the Cosmological Principle. Isotropy is observed on large scales of current 
cosmological interest which is around 100 - 200Mpc. These symmetry properties lead to a 
diagonal metric in a convenient coordinate system. The metric has one unknown function 
called the scale factor tha t describes the dynamics of the universe. This scale factor is a 
function of time alone and its evolution is governed by the Einstein’s equation. Depending on 
the equation of state for the system, the scale factor evolves in a certain way. The universe 
is understood to have evolved through various epochs, with each epoch named after the 
component tha t has a dominant contribution to the total energy density [7]. The following 
figure (refer Fig. (1.1)) illustrates the evolution of the universe through the various epochs. 
The standard model predicts tha t the universe has been expanding after the onset of the 

'big bang7 and is currently in a m atter dominant state.



PRESENT 
13,7 Billion Years 
after the Big Bang

Figure 1.1: A schematic diagram depicting the time-line of the evolution of the universe - [1]

There are three key observations which constitute the success of this model;

•  The verification of the Hubble’s Law, a statement that the universe' expands [8]. The 
Hubble diagram is a linear plot of velocities of galaxies versus their distances.

• Light element abundances in accordance with the Big Bang Nucleosynthesis 19],

9 The existence of relic radiation that had decoupled from matter, known as the Cosmic 
Microwave Background Radiation (CMB) [10].

The metric for this model is setup in the comoving coordinate system. The symmerrv 
properties of the universe is observable to a certain class of observers called the isotropu 
observers. These class of observers are comoving with respect to each other. To any observer
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who is moving with respect to these isotropic observers, will not see the universe to have 
these symmetry properties. In this coordinate system, each point is associated a fixed spatial 
coordinate and its time coordinate is decided by the clock at rest at th a t point. Then physical 
distances are related to the comoving distances through the scale factor.

{1 1 ^
H i )  p h y s ic a l =  Ic o m o v in g  '

where, T  denotes distances and the comoving coordinate is a constant with time. The 
comoving coordinates can be understood as points marked on a rubber sheet. Then as the 
rubber sheet expands, the physical distances increase but the coordinate distances remain a

constant.

1.2 Inhom ogeneities and  A niso trop ies
But on ‘smaller5 scales we see specific physical structure like galaxies, galaxy clusters and 
other m atter distributions. Due to  the observational success of the standard model, we 
expect tha t these inhomogeneities and anisotropies can be incorporated m a perturbation 
theory with the dominant contribution being the FRW Model. We expect tha t these inho- 
niogeneities have evolved from some primordial inhomogeneities. Iherefore, we can attem pt 
a perturbation theory and expect the signatures to be verifiable from the observed m atter 

distributions and CMB data, for example. This raises several questions:

•  How do these perturbations evolve? To address this, we need to setup and study a 
cosmological perturbation theory i.e. a theory tha t gives the dynamics of the universe 

which is perturbed from the background FRW univeise.

• Initial conditions: The perturbation variables satisfy differential equations tha t are 
evolution equations. When we take the fourier transform of the differential equations, 
we find that each mode of the perturbation variable satisfies an ordinary differential 

equation. We need to supply initial conditions to solve the equations.

•  How do the initial fluctuations arise? It is believed tha t scales of current cosmological 
importance were once small and hence affected by micro-physical processes in the early 
phase of the universe. The origin of these perturbations is assumed to be seeded by 
quantum fluctuations during the inflationary epoch which is the period of exponential 

expansion of the scale factor [11, 12].
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•  The statistical distribution of the initial conditions: This question is of im portant 
because observations are also at the level of statistical distributions. One such ob- 
servationally important quantity is the power spectrum. This is usually the fourier 
transform of the relevant two point correlation functions averaged over all possible 
configurations.

* On what observations can we expect the signatures of this theory? Inhomogeneities 
in m atter distributions manifest as anisotropies in the CMB analysis. CMB is also 
sensitive to the tensor perturbations during inflation. In general relativity, tensor 
perturbations of the metric about a flat background give rise to what are known as 
gravity waves.

1.3 Perturbation Theory

The two sets of perturbations are m atter and gravity perturbations. There are subtle issues 
regarding the definition of a perturbation theory. Gravitation is a theory of general covari
ance i.e. the theory is invariant under arbitrary coordinate transformations. The definition 
of perturbation depends on the choice of coordinate system. Therefore we need to be able to 
define quantities in a, coordinate invariant way. Another possibility is to work in a particular 
coordinate system throughout. This is in analogy to making a particular choice of gauge in 
electromagnetic theory. This method has some disadvantages like1 imphysical modes which 
are coordinate artifacts are present [13]. We will setup and work in a gauge invariant for
malism of perturbation theory using fixed background functions which are invariant under 
coordinate transformations. But it is also sometimes easier to perform certain calculations 
in a specific coordinate system. For such a coordinate choice, the conformal gauge is very 
convenient. We will illustrate this point later but the idea is tha t the metric perturbation 
variables and the gauge invariant variables coincide in this particular coordinate system. 
Thereby allowing an easy change from the gauge fixed to the gauge invariant variables. 
There are two popular approaches for a gauge invariant formalism. Ellis et.al. have worked 
on a covariant approach. The other formalism is the gauge invariant formalism introduced 
by Bardeen [14, 15] and further developed by Brandenberger [16] et.al. The thesis is based 
on this formalism.

The thesis is organised as follows: We will briefly describe the standard model of cosmology 
in chapter 2. Then we will describe the gauge invariant formalism as developed by Bardeen
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e t  al and discuss some simple examples in chapter 3. Then we will discuss how the physical 
universe is modelled1. In chapter 4 we will use the Boltzmann equation for every compo
nent and account for interactions to study the perturbations of the statistical phase space 
distribution functions. We will work in a particular gauge for this treatm ent. Then we will 
study what the initial conditions are for the perturbations variables. This will lead us to the 
study of fluctuations during inflation as described in chapter 5. We will end with describing 
parameters tha t are important for observational purposes.

1 We will follow the approach as given in the textbook [17j
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Chapter 2

Friedm ann-Robertson-W alker 
Cosm ological M odel

As mentioned earlier, there are two important simplifications, homogeneity and isotropy 
which go into determining the metric. Spatial homogeneity and isotropy implies tha t the
spatial metric is of constant curvature. This leads to the Riemann tensor having a certain

form [18]:

~  ^  ijjon fjiid .'/•■ >.<>// b. ) (2-1)

where, K is a real nuinher. The Ricci tensor is got by contracting the Reimann tensor in the 
following way,

R m := g ^ R a w  (2-2)

Then, we get,
Ra,3 = 2Kga,3 (2.3)

The three dimensional spatial metric for a spherically symmetric space can be written in the 
following way,

da2 =  f ( r )d r2 + r 2dw2 where, (2.4)

doj2 — dO2 +  sin2 6d(p2 (2-5)

Using the above condition on the Ricci tensor, we can determine / ( r ) ,  a function of the 
magnitude of the radial coordiante alone.



Therefore, taking the time coordinate in the comoving system and introducing the scale 
factor: the full FRW metric can be written as

ds2 -  dir a(t}2 ( +  r 2dw2 ) (2.7)
1 -  Ki

Here, &{t) is the scale factor which is determined from the Einsteins equation depending 
on the kind of m atter system we are interested in.

In conformal time coordinates, the metric can be written in the following form with.

dr .2

ds — |  d:if -  — ^  2 +  r 2dw2 J , with drf := dt/a  (2.8)

Curvature C onstant K: K can in general be any real number, but we can re-scale the 
radial coordinate and can take the three possible values for K, K=0, +1 , -1. The three cases 
are called flat, open and closed respective. The names come from the range of the radial 
coordinate. This point can be seen easily if we make the following coordinate transformation. 
Define,

r &  ( sin-1 r  (for k = + 1)

* =  J  =  1 r , (for k =  0) (2-9)[ sinh r (for k = - 1)

Then the spatial part of the metric can be written as

ds2 — (r{d \ 2 +  ,//..(\ jUiL’2)). dm2 = d92 +  sin2 Oder (2.10)

Where,
( sin \ (for k = + 1)

fk(x) = \  X (for k = 0) (2.11)
[ sinhx  (for k = —1)

The K  = 0 is the familiar spatially flat case. The K  =  +1 case is called a closed universe.
This can be seen uhiough the following points. The range of the coordinate y is bounded.
Hence the volume of the full spatial legion is bounded. Also a two sphere in this space has a 
bounded surface area. This is in contrast to the K  = -1 space which is hyperboloidal. Here, 
the range of x  is unbounded leading to an unbounded spatial volume. Also a two sphere 
in this space has a monotonieaily increasing surface area with the coordinate y. Hence the 
name, open and closed for the corresponding cases.
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The coordinate system (2.7) is also called the comoving coordinate system This is because 
(.r“ =  constant) are geodesics. The physical distances will be the coordinate distance mul
tiplied by the scale factor, as can be seen from the metric. The scale factor at present is 
increasing with time.

In (2.7), the spatial part of the metric is given in polar coordinates. An alternate coordinate 
system is the same metric with the spatial part now described by the cartesian coordinate 
system. This can he realised by the performing the following change to the radial coordinate.

(2.12)
i +  * f

Then, the metric: becomes, (dropping the bar on the new radial coordinate),

ds2 = dl2 -  a(/) , (dr2 +  r2d u 2) (2.13)
1 - r  -A v “  j  4

We can see tha t the spatial part of the metric is conformal to the flat spatial metric. As 
before in conformal time.

dx2 +  dy2 -f dz2
ds- = a ii/r  -  - — l + Kri J  (2-14)

We then define 7r/ as the metric on a constant time 3D surface as follows:

ds2 = a(i])2 (dn2 — 7ijdxld2?') (2.15)

Prom hence forth , we shall use the above metric and coordinate system unless otherwise 
stated.
Einstein’s equations relates the energy momentum tensor to the geometry of the spacetime. 
Therefore, the symmetry properties of homogeneity and isotropy apply to the energy mo
mentum tensor as well. The form the energy momentum tensor then takes is the perfect 
fluid form which will be discussed a little later. The physical system is then fully described 
by the equation of state which needs to be accounted for in the energy momentum tensor. 
Then the evolution of the scale factor is determined by the Einstein’s equation.

Finally, we end this brief summary with the equations of motion. The specific details can be 
extracted by pluging in the choice of energy momentum tensor. Note: From here on, prime
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refers to the derivative taken with respect to the conformal time r\. We set c =  1.
Starting from Einstein’s equation,

(V1' ■_ Gtt SU ^  o„s-trrU! y .

We have,

f'2 , rr r>-a +  A ft =

(i -{-A ft —

<fZ* =

The last of the above equations is the conservation of the energy momentum tensor. This
equation is not independant and can be got from manipulating the two Einstein’s equtions.
W e list a few examples of now the scale factor evolves when the energy momentum tensor
describes a perfect fluid with the equation of state being a constant. Let -w = p/p, where p
is the pressure and p is the energy density, be a constant. In that case, Einstein’s equations 
reduce to the following.

(2.16)

3?r G T y

^irGTa3,
O

-rO

(9

where T  = Tf~!

- (4 7 J  -  T) d In a.

2.17)

2.18) 

2.19)

v 8 „ < 8
f' ”r >Ia a ~  ^ 71 ̂ a‘ = -T :t( ’ P°A (2.20)

// 4 - 4
a' +  Aa =  - n G T a 3 = -irG(p  — 3 p)as (2.21)

O O

P* =  -3 (p  +  p ) -  (2.22)

Then we lia.ve the following evolution for a(t), the scale factor, as a function of both r/ and 
t. We have also taken K  — 0.

J?1+3uj (2 .23 '
*2

^30+^7 (2.24)
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Chapter 3 

Beyond the Standard M odel

We believe that the exact universe defers ‘slightly’ from the homogeneous model and tha t a 
linear perturbation theory is feasible. In this section, we will introduce the gauge invariant 
formalism of classical cosmological pertubation theory. Many advantages of this formalism 
will be highlighted as the discussion proceeds.

8,1 P e rtu rb a tio n s , gauge tran sfo rm a tio n  and  gauge in
variance

Consider a physical manifold M which is understood to be ‘close’ to FRW metric in a certain 
sense. Let there be a coordinate system on this manifold. To any tensor field Q, we associate 
a background function Q°. The background functions are fixed functions of the coordinate 
system. They are non geometrical quantities and transform as scalars with respect to a 
coordinate transformation. The necessity for such a. definition stems from the following. 
From the definition of perturbation, we see tha t it is coordinate dependant, leading to an 
ambiguous definition of perturbation. So we would like the perturbation to be invariant under 
arbitrary coordinate transformations (diffeomorphisms). By associating to each tensor field 
a background function, we in a sense are giving an absolute meaning to each point on the 
manifold, thereby making perturbations in different coordinate systems comparable. We 
make a note that all coordinate transformations are ‘infinitesimal’. Mathematically, the 
above can be expressed in the following equations1,

Q(xa(p)) = Q°(xa (p))+ SQ {xa(p)) ' (3.1)

1 This chapter presents the formalism developed by Bardeen and later by Brandenberger et. al. [16]



where ‘p ’ is a point in the manifold. Now consider a new coordinate system.

:= +  £a (3.2)

where, is understood as an infinitesimal vector. Then the background quantities by
definition do not change under this coordinate transformation.

Q0(^ (p ) )  =  Q °(^ (p )) (3.3)

The tensor field changes in the following way,

Q ( x a (p)) = Q ° ( x a(p)) + S Q( x a (p)) (3.4)

Then the change in the perturbation SQ is given by, using (3.3),

A SQ = SQ -  SQ (3 .5)

=  Q{$a(p)) -  Q (xa(p)) =  LzQ\p (3.6)

The above transformation for the perturbation SQ under infinitesimal coordinate transfor
mation is called a gauge transform ation. L^Q is the Lie derivative of Q with respect to 
the vector field The example for the expression of the Lie derivative of a rank two tensor 
is given as the following,

=  L ^ v (3.7)

=  ? d aA \  -  ( ^ m  +  ( ^ r ) A ^  (3.8)

In this thesis, the background, metric is the FRW metric and the background quaiiities 
for both m atter and geometry are those calculated in the comoving coordinate system as 
described in the previous chapter.

Now going back to equation (3.6), we can apply the above expansion and calculate the 
change in the perturbation variables. The most important tensor for which we would like to 
calculate the change in perturbation variables is the metric tensor. We will give more details 
regarding metric perturbations in the following sections.

G auge Invariance:
Gauge invariant perturbations are those whose Lie derivative is zero with respect to the 
above coordinate transformation (3.2). Such tensor fields can only be constant or can be
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taken to be zero. W hat we will do in the following section is that, we make a perturbation 
to the metric. These perturbations will be characterised in a certain way. We know how the 
metric will transform under a coordinate transformation (using the Lie derivative as given 
above (3.6)1. We will then accommodate the change in the metric into these variables. Then 
from these perturbation variables, we can construct gauge invariant quantities. All the above 
statements will be explained in mathematical terms in the following sections.

3.2 M etric perturbation

Consider the FRW metric in cartesian coordinates in conformal time.

where, A  is a set alar. B; a vector and CtJ a symmetric tensor. The quantities (A,B,C) 
transform as a scalar, vector or tensor under 3D spatial transformations respectively.

3.2.1 Scalar, Vector and Tensor decom position

We can further decompose the variables B, C  [19]. We will state the theorems regarding the 
general decomposition of vectors and tensors.

•  Any covariant tensor of rank 1 can be written as the sum of two vectors. The first being 
the gradient of a scalar and the second a vector whose divergence is zero. Bi — di<j>-\-Ki 
where the divergence of K t is zero. In a general background, the gradient or divergence 
should be replaced with the 3D covariant derivative.

•  Similarly a symmetric traceless tensor can be decomposed into the following:

(3.9)

Let the perturbation be characterised in general by the following.

(3.10)

T ai3 = A Q:% ’ +  2 D^aB ^  + (3.11)

where,

(3.12)
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Here, D is the covariant derivative, B is a divergence free vector, A | is the laplacian 
and W is a tracefree transverse tensor. To this tensor we can add the trace by the 
following way

T ' U :

Here all covariant derivatives are with respect to the spatial background metric j tJ.

We can collect and characterise the perturbations variables according to their behaviour 
under 3D spatial diffeomorphisms. Therefore, scalar, vector and tensor perturbations are 
characterised in the following way.

sg.(XV
0

-B . ti +  Si 2 (ih*  -  i
(3.14)

where B, <f>, ip, E  are scalars, 5, F  are divergence free vectors and h is a symmetric, divergence 
free, traceless tensor. Hence, the decomposition can be done easily as shown below.

Sg{S"} 

Sg(-V* =

a(v r

- <7 (//')"

(t)

2(f)

~B;i 2 (■(/■ n-j j

r 0 ~Si \

v —Si +  Ffii) J

-a(v)2 ( °

Then.

9,,u &  +  &9nv

(3.1b)

:3.i6)

(3.17)

(3.18)

Let us do some counting. In the scalar decomposition there were four functions (0 , ip. B, E). 
In the vector decomposition, there axe two divergence free vectors {S,F). Hence four more 
independent variables. The final tensor perturbation {/^-) is a symmetric, trace-free, diver
gence free 3D tensor. So it has 2 free components. The total is 10 variables which then, 
characterises a general metric perturbation. The reason for characterising the metric per
turbation in this way is important for two reasons. The decomposition Is unique and the 
decomposition operation commutes with taking derivatives. For this, consider Einstein's 
tensor. It is constructed from the metric and Its derivatives. The above statement says that 
we can consider each type of perturbation and study its evolution independently of the other 
classes of perturbation. That is, we can consider only scalar, vector or tensor perturba
tions independently as they do not couple to each other. The decomposition leads to better 
physical realization of the perturbation theory and makes the calculation a bit easier.
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3.2.2 G auge Transformation

We will now define1 a general gauge transformation and see how the perturbation variables 
transform under the coordinate transformation. A general infinitesimal coordinate transfor

mation can be written as the following.

xa := xa + € a (3.19)

We will decom pose the spatial part of the vector £a in to the gradient of a scalar and a diver
gence less vector. Taking = (£°, 7% 7+ f  where f  is taken to be a divergence zero vector. 
The symbol (;) denotes covariant derivative. So while considering scalar transformations, 
we will consider only the scalar part of the coordinate transformation i.e. — (£°,7^ ;j) -  
When we take vector perturbations, we will consider only the vector part of the coordinate 
transformation i.e. £a =  (*).£'! . To study any such transformation of the metric, we will 
use the lie derivative definition (3.6). Then we accommodate the change of the metric in 
terms of the perturbation variables. The following equations bring out this point.

* S calar tra its  for m a t ions - The coordinate transformation is given by the following:

V = V +  £U (3.20)

^ - ^  +  7 %  (3-21)

The the metric variables undergo the following transformations:

i  =  4>- - f °  -  £0' (3.22)a

il> = ■(/.■ + -  (3.23)
a

B =  B +  (3.24)

E =  E - £ ,  (3.25)

* Vector transformations - The coordinate transformation is given by the following:

f) =  V (3.26)

x‘ =  x* +  f  (3.27)

The the metric variables undergo the following transformations:

S i = Si +&  (3.28)

F, = F i -  & (3.29)
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The piime denotes derivative with respect to the conformal time ■//. It can be shown that 
the tensor perturbation htj is invariant under each of the two classes of transformation, 
the scalar and vector transformations as given above. We mention again tha t the 
quant it es are scalars, vectors or tensors depending on their behaviour under three 
dimensional spatial diffeomorphisms.

3.2.3 Gauge Invariant Variables

Prom the above we can construct gauge invariant vairables for the two types of transforma
tions. In the scalar case, we have two functions (£ and £°), which we can use to  get two 
gauge invariant variables. The two gauge invariant variables will be denoted by $ , In the 
vector case, we have a divergence free vector which we can use to define a gauge invariant.
vector. As mentioned before, the tensor part is already gauge invariant under each subclass
of transformations.

• For scalar transformations, the two variables ;ire.

a
a'(B - E r)'I'' r

a
•  Foi vector transformations, we have

x , , - = s a -

Tw o popular gauges:

(3.30)

(3.31)

/o ooi I o.oZ)

Even though we have described the gauge invariant formalism in the previous sections, it is 
however convenient to choose a suitable coordinate system to simplify and perform certain 
calculations. This coordinate choice corresponds to applying conditions on the gauge variant 
quantities. This is m analogy to the gauge fixing procedure in electromagnetic theory. In this 
tneory, a gauge choice corresponds to choosing a constraint on the vector potentials. For the 
metric perturbations, we will describe gauge choices in the context of scalar perturbations i.e. 
we set the vector and tensor perturbations to zero. Therefore, a gauge choice corresponds to 
conditions imposed on the scalar variables We have four perturbation variables
and two free parameters and f  that can be used to impose constraints on two of the four 
perturbation variables. There are two popular choices for gauges in scalar perturbations, the 
synchronous gauge and the conformal gauge. The table below illustrates these j w e s .



(“Synchronous Gauge
■ ■ ■ I S

Longitudinal Gauge or Conformal 
Gauge

1
1
1
1

1
1

1 II u B =  E =  0

1 2) In this gauge, there is a further resid <t\ $  coincide with the metric pertur
ual freedom allowed in the transfor- bations (p, ip leading to easier physical

1 mat ion leading to the appearance of interpretation. It is also easier to get
I nnphysical degrees of freedom which the equation of motion for the gauge
I makes the physical interpretation dif- invariant variables. Also, all quantities
j ficult are uniquely fixed and there is no resid

1................... ................ ....... -.....-..... ual degrees of freedom.

The longitudinal gauge is convenient in the following sense. In this coordinate system we 
can calculate the equations of motion <p and replace the variable by the gauge invariant 
ones, $  . We will use the second gauge, also called the conformal Newtonian gauge, when 
studying perturbations in more detail,

8,3 E instein’s Equation for Scalar Perturbations

The next step is to calculate Einstein's equation to linear order in the metric variables. We 
are looking for the following:

G/u, =  8 tvGT^, (3.33)

^  =  8ttG(7£, +  STfv,) (3.34)

G%, =  Btt GT% (3.35)

=> 3Gfl„ = S7rG51}u/ (3.36)

The left hand side is determined by the metric perturbation and the right hand side is de
termined from the m atter perturbation. The metric perturbation part can be calculated in 
a straight forward way. We are interested in finding out how these perturbation transform 
and then rewrite the perturbed Einstein’s equation completely in terms of gauge invariant 
variables. For this purpose we only need the background quantities and then study its lie 
derivative. The background FEW G Uiy is given by the following:
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G°0 =  3 ar2(H2 +  K)

G°, = 0 

G’t = a~2(2H' + H 2 +  K'j&j

(3.37)

(3.38)

(3.39)

In the above set of equations. I f  is called the Hubble parameter which depends on time.

By inspection, we can immediately write down the gauge invariant form of the above equa
tions.

The (~) tilde symbol on top the tensors in the above equations denote gauge invariant 
variables. The above can be checked from the known transformation properties for each 
of the quantities involved. We note that the energy momentum tensor is proportional to 
the Einstein tensor. So the above construction just carries over for the energy momentum 
tensor. All we need to do is to write down the perturbations for the energy momentum 
tensor depending on the physical system we are dealing with. This information will go into 
the right hand side of the perturbed Einstein’s equation. Another point to note is that, if 
the spatial part of the perturbed energy momentum tensor is proportional to identity, then 
we have just one independent variable to describe scalar perturbations. This last point will

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

SG°0 =  SG°0 +  (m G°a)'{B -  E')

SC?, =  SCh  +  (<0)G°0 -  0)Gkk)(B -  E') |t 

SG) =  <5G) +  ^ ( T j Y l B  -  E')

(3.46)

(3.47)

(3.48)
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be mentioned explicitly in the next section when we encounter the example of a perfect fluid. 
Below we have listed the full perturbed Einstein’s equation which will be used to study some 
physical examples. We will study ail examples from hence forth in the K  = 0 or spatially 
flat case. This is because at present, the observational evidence seems to be clearly pointing 

out tha t the universe is flat.

—3 //(//<!> +  $ 0  +  V 2$  =  4nGa28T§ (3-49)

(H<$> +  $'),* -  47rGa2dTj° (3.50)

[(2H' + +  2 m ’ + \ v 2D)5) -  \ l ikD,kj = - ^ G a 25Tj (3.51)

where D — 3> — and // =  a*/a. Also 7tk in the last equation (3.51) is the background 
metric in 3D as given in equation (3.9). The above equations are written in confoimal time. 
The (0 prime symbol denotes derivatives with respect to conformal time.

The above equations are the starting point for the analysis ol Interest to us. We make 
a couple of points here. We will be concerned only with scalar perturbations for most part of 
the thesis. We will briefly touch upon tensor perturbations in the context of Inflation later.

3.4 M atter Perturbation

We will describe as to how to specialise these equations to two systems: a perfect fluid and 
a scalar field. The case of the scalar field will be discussed in detail in a later chapter.

3.4.1 Perfect Fluid

The symmetry properties have to be satisfied by the energy momentum tensor as well since 
It enters Einstein's equation 011 the RHS. This Implies tha t the energy momentum tensor 
Is of the perfect fluid form. Then we will consider perturbations to the energy momentum 
tensor, write down the Einstein's equation and study some simple solutions. A more detailed 
approach will follow in the subsequent chapters. For the latter, we will show how a particular 

coordinate system can also be used to describe perturbations.

The energy momentum tensor of a perfect fluid has the form

I '1], = (f) +  I))!!11!!,- -  i^r- (3.52)
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where, u)1 is the fluid velocity normalised to 1. It follows that n11 is an eigenvector of 7J* 
with ‘eigenvalue5 p. p, p are the pressure and energy density respectively. The equation of 
state tha t relates the pressure and energy density will characterise the physical system we 
have. For example,

p = 0, is for non relativistic m atter also called pressureless dust (3.53)
1

p =  - p y is for relativistic m atter also called radiation. (3 .54)
o

Then we can characterise the perturbations in terms of 8p,8p,5iC. We get the following 
equations in terms of gauge invariant functions in conformal time.

ST  o =  dp (3.55)

ST1. = Spd} (3.56)

6T°t = duia~1(pQ 4- po) (3.57)

We note tha t the spatial part of the energy momentum tensor is a multiple of identity. This 
has an important consequence, it reduces the number of scalar perturbation variables to just 
one, either $  or This fact can be seen from the equation (3.51).

[(2H' + +  m '  +  * "  +  2H V  +  i v 2£>]5j -  i 7ikD M = ~4irGa2S T f si) (3.58)

We can go to the fourier space of this equation. The term D kj will then become -  kkk,i).  
Note tha t the other terms in this equation are proportional to the identity matrix. Therefore 
we can apply the operator

kty  -  h r S ;  (3 .59)

on this equation. The terms proportional to identity matrix drop out and we get D  — <I> - =
0 implying $  =  Therefore, when the spatial components of the energy momentum tensor 
is proportional to the diagonal matrix, we have

$  =  $

From thermodynamics of a fluid, we have the following relation

Sp =  c^Sp +  tSS

where
2 Po 

Cs Po
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is the speed of sound and r  is another parameter of the system. The subscript zero denotes 
background quantities. We can then add the corresponding parts of the energy momentum 
tensor and write it in terms of 5S, the entropy perturbation. Then we will have to similarly 
introduce the velocity of sound on the LHS of the (0-0) component of the perturbed Einstein’s 
equation. We get the following final gauge invariant equation.

+  3//( l  +  O T '  -  c2V 2$  +  [2H f 4- (1 +  3c2)(.//2)|<£> -  A n G c P r S S .  (3.63)

Setting SS  =  0 is what is called adiabatic perturbations. We have taken K  — 0. We will 
make a change of variables and write down all the corresponding equations. First we define 

the variables z. 0

$  := 4jrG(po +  Po)~1/2z =  (4tt G ) '1/2[(H2 -  H ')a -2]l/2z (3.64)
H ,  2 , „ ,  /2p ( I I 2 -  H')}-1'2 (3.65)
a 3 '

Then the differential equation (3.63) becomes

-  <*V2z  -  j z  =  0 (3.66)

The gauge invariant equation for density perturbation is,

- 3 H (H $  +  $ ')  +  V 2$ -  47r(?a2(5T0° (3.67)

The background energy density can be written as,

3//2 
P ~  8ttG

(3.68)

Wre then divide the gauge invariant density perturbation by the background energy density. 
But for the perfect fluid we have $  =  as described in equation (3.60). Combining the two 

equations, give,

^ —  =  2[3i/2]- 1[V20  -  3H&  -  .!//-<!• (3.69)
Po

So we will first solve for z using equation (3.66) and then obtain $  from equation (3.64). 
Finally we get the density perturbations, using equation (3.69) corresponding to adiabatic 

perturbations.
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Solutions in sim ple cases, K = 0:
We will work in the fourier space of all the vairabies. Then we observe tha t we get a second 
order ordinary equation for z and <I>. Since the equations are linear, we get solutions for 
each fourier mode of all the variables. This will help in comparing the wavelength of the 
perturbations with respect to the Hubble radius. We will give two simple examples of dust 
and radiation in their respective dominant epochs [20].

For dust: Here we are considering a non relativistic pressure-less dust. Therefore, =  0.
Let r — krj. The differential equation (3.66) reduces to

n
Z ~ J Z  =  0 (3.70)

Then the solution can be written as

u(x,r]) = A 0(n) + B  6(;q) J  ̂  (3,71)

For this dust case, we can calculate 6 from its definition in equation (3.65) . Then the 
solution of <3? is

(W-r - '/) =  C(x) +  D ( x ) r fb (3.72)

Then in the fourier space, the solution for dp is,

S p  9
1 Sub-horizon,

P
(3.73)

where we have neglected terms tha t are decaying with V-

For ra d ia tio n : In this case, c2s — 1/3 and r =  c.skr}. The following is the analysis of the
diffeiential equation (3.63) in the various limits. Again, we obtain 0 from its definition and 
then get the differential equation for 2.

V
Then using the definition for r, it reduces to,

2 nr z (r2 -  2)z = 0 (3 .76)
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The solution for the above equation can be written as

, sm x \ /cos x
r) — A 1 —------ cos;r 1 +  B ( ---------- sin .r

After obtaining <I>, we get the following for density perturbations,

r 2> 1 (Sub — Horizon) r <C 1 (Super — Horizon)

{h ~  co.s(r) #  ~  constant

(3.77)

(3.78)

(3.79)

6 1 2 ^ 0
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Chapter 4 

Detailed Physical A nalysis

hi the previous chapter, we described the gauge invariant formalism and applied it to some 
simple cases and found how the perturbations evolve in the long and short wavelength limit. 
Now we wish to actually study the physical universe by accounting for the various compo
nents of the universe and studying the initial conditions necessary to solve the evolution 
filiations. For this approach we will adopt a different strategy [IT].

Fach component contributing to t he energy density is made up of particles which are either 
nrlativistic or non-relativistic. The energy momentum tensor of each component is described 
,’i atistically in terms of the four momenta of the particles and the phase space distribution 
function The particles are assumed to travel along geodesics. The background
functions are the equilibrium Bose-Einstein or Fermi-Dirac distribution functions at the cor
responding temperature. These distribution functions are independent of position and are 
isotropic. But when we include perturbations, the particles are assumed to be travel along 
the perturbed geodesics in between consecutive collisions. Here, the perturbation variables 
satisfy two types of equations, the Boltzmann equation and the Einsteins equation.

The Boltzmann equation gives an evolution equation tor the perturbed distribution func
tions in terms of the metric perturbation variables. Therefore, each Boltzmann equation will 
introduce a. new perturbation variable. So wre further need two more equations to account for 
the two scalar metric perturbation variables. The final two equations for the scalar pertur
bation variables can be obtained from Einstein's equation. This then completes the full set 
of equations. When we go to the fourier space of these equations, we see tha t the equations 
are ordinary differential equations. Therefore, each mode is decoupled. Finally, we need to 

look for initial conditions to solve these equations.
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This chapter is presented as follows. First, we will setup the Boltzmann equation for each 
component of the universe. The photons and neutrinos constitute the radiation component 
of the energy density Baryons (collectively include both protons and electrons) and dark 
m atter constitute the m atter part of the energy density. We will not consider dark energy in 
this thesis. We will then reduce the Boltzmann equations to obtain differential equations for 
the perturbation variables. The perturbation variables are defined in a convenient manner 
depending on whether the component is m atter or radiation. These differential equations are 
obtained in the fourier space. Then we obtain two differential equations from the Einstein’s 
equation. For this we need the perturbed energy momentum tensor obtanined by performing 
integrals over perturbed distribution functions. After all the equations are setup, we will 
consider a certain limit to study the initial conditions. We will see that all the variables will 
then depend just on one variable for the initial condition. The origin of these fluctuations and 
the physically important quantities like power spectrum will be discussed in the next chapter.

All physically relevant quantities are integrals over functions defined on the phase space. 
We wish to account for perturbations to tnese distribution functions coining from geometry 
perturbations of the spacetime. So now the distribution functions will also depend on the 
direction of the momentum and also on the configuration space variables, l b  study the evo
lution of these distiibution functions in the presence of inter action with other components 
and accounting foi the perturbed geometry, we will work with the Boltzmann equation. The1 

Figure.(4.1) piovides the percentage of contribution of each component to the total energy 
density todaj', This diagram would have been different when we consider earlier epochs since 
the energy density scales as a function of the scale factor.
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Figure 4,1: Cosmic Inventory at present [2]

Firstly, the energy momentum tensor of every statistically distributed component of the 
universe in the radiation epoch is given by the following:

phase space cell. The subscript T  is a label for every component we are considering. The 
above energy momentum tensor is the full general relativistic expression for each compo
nent. Therefore if holds in the case of the perturbed metric also. We will show th a t the 
components of the energy momentum tensor reduces to the familiar quantities even in the 
presence of perturbations. The metric we will consider is,

As an example, we consider the (0-0) component of the energy momentum tensor for radia
tion. Now, starting from equation (4.1),

(4.1)

pit _  ( p o p \  /'■. P'1’) is the four momentum of the particle and g is the degeneracy of the

(4.2)

(4.3)
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The determinant is given by,

(1 +  2'^)[a2(l +  2d) afi(l +  2#  +  6o) (4.4)

Using P 2 — 0, we get,
p°  = P( i  - 1) (4.5)

where

p 2 : =  9 i j P i P j (4.6)

Similarly,

(4.7)
a

Note, tha t the phase space integral is over momenta with lower indices. Inserting all the 
above expressions into equation (4,1), we get,

The RHS of the above equation is equal to the negative of the energy density of radiation. 
So now, the perturbation to the above quantity will come only from the perturbation of the 
distribution function ' J".

4.1 Boltzm ann equation

As mentioned before, the Boltzmann equation [21] gives us a way to compute the evolution 
of the perturbation of the phase space distribution functions. The equation will relate how 
the distribution functions f t of each component evolves with time taking into account the 
interaction with the other species. Therefore, by accounting for all the components, we will 
get a set of coupled differential equations. The Boltzmann equation will also incorporate 
metric perturbations.

where C\f] accounts for interaction with the other components of the universe. Consider 
the LHS of the above equation. It can be expanded as the following,

(4.8)

(4.9)

4.10

The terms
().v‘ , dp



will take into account the metric perturbation. This is because these two terms are calculated 
from the geodesic equation. The term

O f  8 p i

can be neglected because each term in itself is a first order term, thereby making the term 
second order. Now we will setup and study the Boltzmann equation for each component.

4.1.1 Boltzm ann E q u a tio n  for Photons

The perturbation to the distribution function for radiation is most conveniently char act ersied 
in' the following way.

f  =  exp ( r ( i  +  eO rv p \« )) -  x)  4̂ ' 13)

where, 0  =  ~  is the temperature perturbation which depends on position and T is the 
temperature. Here we note that 0  is not a funtion of the magnitude of the three momen
tum  because to zero order in Compton scattering, the photon’s momentum changes only 
in direction and not in magnitude, pL is the unit vector for the spatial part of the momen
tum  vector. Then the distribution function can be expanded using Taylor series to first order,

f(p) =  f ( p ) - p ^ e  (4.14)

For photons, the most important interaction term is the Compton scattering by electrons.

e~(q) +  l ip )  <-* e"(f/) +  7 (pO (4.15)

The interaction term Cjf! can now be written as.

x (2tt f S A{;p + q -  pf - q l) {]]■{(/) f i p ' ) -  f,:(q)f(p)\ j- (4.17)

We can substitute for the energy, the following expressions:



Here we have consideied the elections to l)G non-relativistic. The RHS of the equation (4.10) 
gives the LHS of the full Boltzmann equation given below.

0  +  ikfiB  +  (j) 4- ihfMj) — —necrTa ^© 0 -  0  +  fivh -  ^ i :2(//)0 2^ (4-19)

The RHS of the full Boltzmann equation is got by computing the internet ion term C[f], The 
equation is wrritten in terms of the fourier modes and we have not explicitly put any notation 
to say tha t all the terms are in the momentum space i.e. any term in the equation, say 0 . 
is actually 0 . Here, one assumption is made, tha t the electron’s velocity is in the direction 
of the temperature gradient i.e. vlb is along k \  The equation is written in conformal time 
coordinate. This gives the term a multiplying the RHS. aT is the Thompson scattering cross 
section. ne is the number density of the electrons. //. is defined as the following.

k.p
= (4.20)

Then the velocity of the electrons can be written in terms of /i.

Vb-P -  vbfi (4.21)

In the above equation, P^ip) corresponds to the Legendre polynomial of degree 2 with 
aigument //,. We also define the Ith moment of 0  as the following, (it appears in the above 
differential equation for 0 ).

9i = (Z^i f ± ^  (4.22)

where, P{s are the Legendre polynomials. We have summed all possible particle spins and
polarisation. Also in the above derivation, the scattering amplitude was taken to be a 
constant.

\M\2 =  8tt(jt ni; (4.23)

Though the Compton scattering amplitude has an angular dependence, we neglect it since 
it makes the calculation easier. Also accounting for the angular dependence has a negligible 
contribution.

4.1.2 Boltzm ann equation for N eutrinos

This follows directly from photon analysis. We just need to drop all interaction terms 
because neutrinos are weakly interacting and we will also not consider polarisation terms.



The temperature perturbation is written as iV. the equivalent of 0 . Using the equation 

(4.19), we can write down.

Now we will go over to the m atter sector.

4.1.3 Boltzm ann Equation for Baryons

The im portant difference in this sector is tha t there are a couple of modifications to tne 
approach we followed for radiation. Firstly, the R.H3 of the equation (4.10) will involve 
quantities th a t are appropriate for a massive particle. Hence, the magnitude of the three 
momentum will be replaced by the energy which is defined as \ / p2 +  M 2. Also, it is more 
convenient to describe perturbations through different quantities. Here we will define and 
study density and velocity perturbations. Baryons refer to both electrons and protons. We 
will assume that the Coulomb scattering which strongly couples the electron and the proton 

makes their bulk properties common, i.e.,

Then the Boltzmann equation (4.9) can be written for both the electron and the proton.

The square bracket is a short form denoting the interacting terms. Then the LHS of the 
Boltzmann equation will be written in terms of the distribution function f ( x , p , t  and its 
derivatives. We then perform the necessary phase space integration of the differential equa
tions to get equations in density and velocity perturbation defined as follows. The number 

density is defined as the following:

JV 4- tk flh  “1- (j) ikfl'lf? — 0 (4.24)

Ve — Up V[)

(4.25)

(4.26)

dfe
d t

=  [e7j +  [ep] (4.27)

(4.28)

(4.29)

Then the perturbation in the number density is defined as the following,

n — n (4.30)
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Here, the number density and energy density perturbation definition coincide and is 4- The 
velocity perturbation is defined as:

=  1  /  7f V f  ( 4 ' 3 1 )nb J (27r)J E

Then by following the procedure as in the photon case and taking moments to get all the 
equations, we get,

4  +  ikv6 -f '■’><:) -■= 0 (4.32)
(i , —neaTa , , .

Vh H— Vf} +  tk'ii) — —— {V[, +  3 /0 1)
a h

where, R is defined as the following

The RHS in equation (4.33) is due to the Coulomb scattering. The quantity R is related to 
the sound speed in this medium.

4.1.4 Boltzm ann Equation for Cold Dark M atter (CDM )

CDM is an important component for studying structure formation. We will assume two 
properties of CDM which is motivated from observations. The first property is tha t it is 
non-relativistic and secondly it is non-interacting. So the RHS of the Boltzmann equation
(4.9) is zero. It is more convenient to describe perturbations in terms of density perturbations 
and velocity perturbations. Since CDM is massive, we will take the distribution function to 
be a function of energy in place of the magnitude of the three momentum in the previous 
section (4.10). In a similar way, following the procedure used above for the baryons, and 
taking moments of the equation, we get equations for density and velocity perturbations. 
Also in the analysis, we will neglect terms of order (p /E j2 and higher. We first define the 
number density.



J ij.en the velocity and density perturbations are defined in the following way as before.

n  — w'°^(l +  dDM) (4.36)

„* =  J _  f p L  fEEi (4.37)
n DM J (2t t ) ^  E  K

(4.38)

?Then using the above definitions in the Boltzmann equation gives

$dm +  ikv  4- o(j) = 0 (4.39)

v -h - v  4- iki/j = 0 (4.40)

Again, we make the note tha t the equation is written in terms of a particular fourier mode
ol each variable and in conformal time //. The equations are identical to the ones describing
the barvons with the difference being there are no interaction terms.

4*2 Perturbed Einstein’s equation

U&ing tiie met lie given in equation (4.2), we can calculate Einstein’s equation to first order
in the pei tui bat ion variables. I he perturbed energy momentum tensor can be calculated
from the definition of energy momentum tensor in equation (4 .1).

I he first equation is the time-time component of the Einstein’s equation. We had shown 
carliei tha t the definition of (0-0) component- of the energy momentum tensor as the negative 
of the energy density holds true even if we consider perturbations to the metric. Therefore, 
as an example we have for photons,

( 4 - 4 i )

Aftei peifoi ming the integral using the background Bose-Einstein distribution in the above 
equation, we get,

=  ~ p (l +  4 0 q) (4.42)

I his will go into the RHS of Einsteins equation. A similar contribution will come from 
neutrinos as well For the m atter parts, we will just write it in terms of the e n e r g y  densities 
directly. The full equation is then,

/,”>°  +  3“  ( $  ~  j  =  4?rGa2[pmdm +  AprB r,o] (4-43)
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where, subscript m refers to both the baryonic and dark m atter components and r =  1,2 

refers to photons and neutrinos respectively.

The second equation is the tracefree longitudinal part of the spatial part of the Einstein's 
equation. To get the longitudinal traceless part, we act on the Einstein’s equation the 
following operator ,

1 ,

kjkj — 6{j (4 .44) 
O

We then get the following equation after calculating the perturbed energy momentum tensor 
in a similar way to the previous calculation.

£:“(</> +  ■#) =  -3 2 7rGa2prQra (4.45)

Again, r  =  1, 2 and stands for photons or neutrinos. The subscript m stands for m atter com
ponents which are dark m atter and baryons. We note that only radiation terms contribute 
to the the anisotropic stress part of the energy momentum tensor. The other components of 
Einstein’s equations are redundant.
The first of the Einstein's equations gives an important insight (4.43). Consider first two 
terms involving (j).

k2(h -j- '3—0  (4.46)a '
The first term in real space will be the laplacian acting on the potential (j). This is the
familiar term occurring in Newtonian gravitation in the Poisson equation. The second term
accounts for the expansion of the universe. The second term becomes significant when the 
wavelength is of order Hubble radius or more. So we see that, when wavelengths are greater 
tha t the Hubble radius (H-1), a general relativist ir approach is necessary. This is the case 
in cosmology as most scales of physical interest were in the past outside the Hubble radius.

4.2.1 Summary of the perturbation equations
We will now put together all the equations, those obtained from Boltzmann equation and 
those from Einstein’s equation.

© +  ikfiQ +  (f> +  ikfiip — necrTa ^ 0 O -  0  +  fwb -  i p 2(/-0 ®2̂  (4.47)

$dm +  ikv -f '3<:> — 0 &v — v 4- ikn) =  0 
a
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ikvb +  30 =  0 (4.50)

a , , - n e aT a , , f4.51)
t >5 H— t ’fj -f tkw =  ------ —----- (% -f- 3 /H  j ) I

a K

N  +  tk fiN  +  <f> +  ikfiij) =  0 (4.52)

fz2<p +  3 -  ^0  -  =  47rGa2[pmf>m +  4pr@r,0] (4.53)

/c2((ji>-f^) =  -327r(7a2pr0 r,2 (4.54)

So now we have setup eight equations in eight variables arid would like to stud}' their 
evolution. This leads us to a two important questions. W hat are the scales of ph js” 
interest and how to study them? W hat are the initial conditions for these equations? Both 
these questions will lead us to the study of inflation. Ihese issues will be addressed in 

following sections.

4.2.2 Im portance of relevant scales

There i s  one important length scale in cosmology, the comoving Hubble radius (aH) " ■ The 
perturbations are expressed in terms of the lourier components in 3- sense to compare wit 
length scale. The Hubble radius changes with time. There is one very important puzzling 
problem that observations throw up. We notice tha t photons from causally d i s c o n n e c t e d  

regions have the same temperature. This is also called the horizon pioblein. A n o t h e i  * Y

to look at it is the following.
Consider perturbations whose length scales are greater than the Hubble radius thro b 

the period of photon decoupling. Refer Fig.(4.2.2). Only length scales smaller than the Hub 
ble radius can be affected by micro physical processes. Therefore, the perturbations on such 
large scales cannot be evened out to the give the isotropy of the CMB to a certain decree 
We also see th a t length of cosmological importance i.e. for scales of 102 -  103MPc, have on y 
recently entered the Hubble radius, long after the decoupling of photons from m atter. A way 
to quantify scales smaller than the Hubble radius is hi] < < 1. T he inequality is under 
as the following. Wc go to a sufficiently early time tha t i] is very small and also conside 
wavelengths that are verv large. The inequality is the statement tha t the comoving hoiiz 

is much smaller titan the comoving wavelength.

Inflation is a plausible solution to the above problems. It is modelled in such way 
scales th a t are causally disconnected were once small enough to be affected by physical pro
cesses, These scales then leave the Hubble radius, a time at which the initial conditi
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Figure 4.2: Comparison of length scales with the Hubble radius. Note that, scales very early 
on were inside the Hubble radius. Then the scales left the Hubble radius during inflation 
and reentered in the radiation era - [3]

are set up. Then when they reenter the Hubble radius, they are affected by the physical 
processes and evolve to lead to the current structure.

4.3 Initial Conditions

We will first study the initial conditions of the differential equations provided in the summary 
and then study its connection to inflation [22]. Let us study the equations in the beginning of 
the radiation dominant epoch. In this epoch, we can simplify the equations for the following 
condition, ki] «  1. Also during this time we can neglect higher order moments of the 
© variables. Under these approximations, we can reduce and impose constraints on the 
differential equations and reduce it to the dependence on one variable &. Therefore, we 
neglect terms tha t are proportional to k. This says tha t we are dropping scales that will not 
be affected by the causal physics.
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First we will consider the following;

0  -f ik{.iQ 4- </> 4- ikfiy) = neara  ^ 0 O — © + jiVf, — ~.P2(m)®2^ (4.55)

3  d m  4- i k v  4- 3<p — 0 (4.56)

Sb+ikvb -\-3(j) — 0 (4.57)

N  4- ik fiN  4- (j) 4- ikfi-ip — 0 (4.58)

Neglecting higher moments and terms proportional to k, we get;

0q = —<p (4.59)

3dm =  ~3 (p (4.60)

4 =  - 3  <j> (4.61)

N 0 = -<p (4.62)

We note that all the variables are dependant only on one metric perturbation variable. Let
us now consider one of the Einstein’s equation,

k~{0 4* ^?) =  —327rG'a2p.r0 ri2 (4.63)

Neglecting higher moments of 0 , N ,  we get

(4.64)

We can now consider the other Einstein’s equation.

k~(f) 4- 3— ^ 0 — j 4" 4pr0 r q] (4.65)

The m atter terms can be left out since we are in the radiation era. Using <p =  we get,

3 -  4pI/0 l,io] (4.66)

where we have dropped the term proportional to k2. During radiation, a ~  ??. So the 
equation becomes,

~  ~p. j  =  y 7rGa2[p70 7;O 4- ptB ^0] (4.67)

We multiply and divide by the total background energy density on the EHS. We get.



2 -  - tiGqzp (4.69)

Using the background FRW equation, we get,

1
rj2 3 

Defining

f  = tL  (4.70)
P

We then get,

<pp 4- 0 = 2 ( /0 o +  (1 -  f  )N0) (4.71)

But we can eliminate the zero moments of 0  and N from the first set of initial conditions in
equation (4.62), Then we get a differential equation in (j).

o// +  h..> () (4.72)

The solution to the above equation is o ~  i f  where x =0, -3. Neglecting the decaying mode,
we get tha t <p is constant. Then from equation (4.71) we get,

(p =  2 ( /0 o +  (1 — /)/v  o) (4.73)

We also make the assumption that at such times, the photons and neutrinos exhibit identical 
behaviour and

0o =  N 0(k,-r}i) (4.74)

where, rj* is some initial time. Then the initial condition on 0 O is,

<f>(k, Tji) =  20 o(fc, rji) (4.75)

Now we will obtain the initial condition for the density perturbations for the matter com
ponents. We observe tha t both dark m atter and baryons satisfy identical equations when 
considering initial conditions.

5dm =  (4.76)

4  =  —3<p ( i . i i j

But we also have.

Oo — —*P (4,/8)

N q = -(f) (4.79)
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4/dm  — 30o +  constant (4.80)

In the next section we will describe what the consequences are tor the constant to be zero
or non-zero.

We will also be needing the initial condition for 0 L when we study origin of perturbations. 
Though we have neglected these moments for the above calculations, we will need the initial 
condition on 0 ] when studying the spectrum of the perturbation variables tha t will be taken 
up in the next chapter. We will start from the following equations:

v 4  —v 4  ik'0 =  0 (4.81)
a

vb 4  - v b 4  ikib =  — — (vb 4  3i©i) (4.82)
a K

The term //, aT in the last equation is very high during the early phase of the universe. So 
for this equation to remain meaningful, we have initially

v h/ D M  4  3*0! =  0 (4.83)

So now we will need to determine the initial condition on ©j . This will be done by considering 
a gauge invariant variable in the fourier space,

v := ikB  4  — ■ ■■■■- (4.84)
(p 4  i )a

This variable reduces the velocity we have been using in the conformal gauge, i.e. setting 
B  = 0 in the above equation. We can substitute for i f  the term Gf from Einstein's equation.
We can also substitute for p 4  P  from the background equations. Then we get,

-2ik[<f> +  aH(j>] (4 ^
V ~~ —4a2 j  d2

This can be simplified since we are interested in the case when <j> — constant. We get,

(4.86)

So we can write down,

Then we get the initial condition on ©1 using equation (4.81

61 =  ^  (4-8.7)6 all
We have setup the initial conditions. There are two classes of initial conditions tha t will be 
studied in the next section. The issue of the origin of these perturbations will be studied in 

the next chapter.
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4.3.1 Adiabatic and Isocurvature initial conditions:

We made a mention of adiabatic initial conditions in the early part of this thesis. Here we 
give a more explicit way to understand these. We begin with the equation for S from above,

6 =  3©0 +  constant ^4 gg-j

The solution now falls into classes, those for which the constant is zero (adiabatic) and those 
or w ic it is non-zero (isocurvature). Isocurvature perturbations are not so important in

terms of the physical quantities we are interested in and have only negligible contribution.
a the constant is zero has a certain interpretation. It implies that adiabatic conditions 

aie those for which there is a constant m atter to photon ratio everywhere. The ratio is a
constant both in space and time. The following equations are identical for both dark m atter
and baryonic matter. Consider,

n'DM __ f  11 DM  ̂  ̂ +  $ DM \
ni  Y n4°' J V 1 +  3©g /  ' (4.89)

The ratio of the background number densities is a constant because they both scale the same
way. Therefore, the first fraction is a constant. This implies that the second fraction should
be a constant. Writing to first order, we get

In the early part of the thesis, adiabatic conditions were defined as those for which *<? =  0 
m equation (3.63). This is an equivalent way of stating that m atter and photons have, a 
constant ratio of the number densities. This can be seen in the M ow ing way. The equations 
again hold for both baryon and dark matter. Consider the entropy per baryon.

5  S s
TL-bO* 1% 1.4.91)

where S is the total entropy and ‘s' is the entropy density.

s T 3 pi'*
n„ ~  ^  ~  7 7  (4-92)

since, the energy density in radiation scales T 4 and the number density of barvons is propor
tional to the energy density. We have not considered the perturbation of entropy per photon



because it does not contribute to the entropy perturbation as both ‘s’ and n7 will scale the 
same way. Therefore we have,

dpm 3 Spr
-----=  T —  (4.93Pm 4 pr

We note tha t when we use the condition that d ----- 3©0 and perform the phase space integrals 
to calculate energy density perturbations, we get the above condition. This shows tha t we 
can consider adiabatic initial conditions as either constant m atter to photon number density 
ratio or a constant energy density perturbation as in the last equation above.
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Chapter 5 

Inflation

I hough the standard model has explained the observations to a remarkable accuracy, there 
are certain problems with the model. We briefly discuss some of these problems:

• Horizon problem: We observe as isotropy in the OMB tem perature to a certain degree. 
This leads to a problem. We see tha t photons tha t reached us from causally disconnectd 
regions have the same temperature.

•  Flatness problem: We observe that the universe at present has curvature constant 
K  = 0 to a very high accuracy i.e.

P i —  ~  1
P er

where
3 H 2 

Pcr o^f>OTTGr
So if we consider this ratio at early times at T  ~  10laG eV , say, it is find tuned to the 
order of 10“°' [23]. The problem is tha t we need to understand as to why the initial 
condition is really sm all

• Monopole problem: Certain Grand unified theories (GUT) predict the production of 
magnetic monopoles. But they are not observed.

•  Cosmological constant problem [24]: Let us take that the dark energy contributes to 
70% of the total energy today and that the component is described by the cosmological 
constant. Then the ratio of energy density of this component to its critical density is 
fine tuned to the order of 10“ 128 at the Planck scale.

• M atter-antiinatter asymmetry: Let us assume that there were equal number of m atter 
and anti-matter particles initially. But today we see only m atter around us and no anti-
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m atter distributions. So there is some kind of asymmetry which we need to account 

for.

Inflation is considered a plausible model because it has been able to solve the first two of 
the problems [23, 25, 26]. Inflation is an accelerated state of expansion of the universe. We 
wish to have an inflationary model that has the following properties:

•  Firstly, as mentioned before, the scale factor undergoes an accelerated expansion. This 
is just the statement tha t tha t the comoving bubble radius should decrease during the 
early phase of the universe. As the comoving bubble radius decreases, particles initially 
in causal contact are pushed apart to such large distances tha t they will not be able to 
communicate in the future. This is generally setup by taking H is almost a constant 
during inflation, i.e. inflation is characterised by an exponential expansion of the scale 
factor. This also says tha t the energy density is a constant as can be seen from the 
FRW equations.

• To solve for the horizon problem and the flatness problem, the scale factor should 
increase by a factor of at least TO28 ([23]). This requires that inflation lasts for a time 
when the scale factor grows by at least 67 e-folds since 1028 ~  e()'.

•  Such a model has p < -~f. This implies negative pressure as can be seen from the FRW 
equations. This is unlike any familiar m atter or radiation components of the universe.

Any model th a t can account for these properties is a viable inflation model. The simplest 
model is tha t of a scalar field initially in a false vacuum and slowly rolling towards the true 
vacuum [27, 28, 29]. Refer Fig. (5). In this case, we can arrange for the potential to be 
greater than kinetic energy, which will be an identification of a negative pressure state. A 
further advantage of inflation is tha t it predicts a certain form of the sped:rum for gravity 
waves when it is studied in the context of inflation. If detected, it could give a peak into 
physics at the scale of 1010 GeV[30j. many orders of magnitude greater that the current 
particle accelerators. The description of inflation through a scalar field is described in the 

next section.

5.1 Scalar field Inflation

i t  is well accepted tha t inflation is driven by a scalar field. So we will need to write an energy 
momentum tensor for the scalar field and study its properties.
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Figure 5.1: A description of the potential for the scalar field - [4] 

The action for a scalar field is

S  = j  -  Vr(0 )] V Igld^x

The the energy momentum tensor is given by,

(5.1)

(5.2)

Immediately, we can write out the energy density and the pressure of the scalar field by 
calculating the (0-0) and (i-j) components of the energy momentum tensor. We get,

2 V dt

V(<f)

(5.3)

(5.4)
2 V dt

The equation of mot ion jn conform al time can be written as the following,

<£t0) +  2 a tf 0 (O) +  a V  =  0 (5.5)

where V ! is the derivative with respect the field. There are two quantities called slow roll 
parameters which describe the scalar field potential and its properties.

d f  1 \  ( - H '
(d —

(hi =

dt \ H

1 d2(j)/dt2 
II dd/dt

aff2 (5.6)

(5.7)



Also we can calculate the perturbed equation of motion for the scalar held. Taking

O(.fJ) o !,n(/) + S o ix .!} (5.8)

We can neglect the term proportional to V ” since it is a slow varying held. Then we get the 
following equation,

8(f) +  2aH(t)8(f) 4- k2S(f) — 0 (5.9}

We will analyse this equation after the next section.

5.2 Gravity Waves in inflation

In this section we will consider tensor perturbations of the metric in the context of inflation.
The perturbed metric for tensor perturbations can be written in the following wav,

/  0 0 0 0 \
0 h+ h . 0

0 h- h+ 0
\ 0 0 0 1 /

The spatial part of the metric is divergence free and traceless. When we plug this into 
Einstein’s eqaution, we get identical equations for both the scalar functions h+ and /*,_ in 
the metric,

" 2d• , 9 7 ,
h 4" — h 4“ krh — 0 (5 . J 11

a
Then we can raise these functions to operators and use our knowledge of the quantum har
monic oscillator in to work out its properties. We will be interested in a certain quantity 
called the power spectrum.

T he power spectru m  is the fourier transform of the auto-correlation function. It can 
be written in the following way:

5.10)

/ dx (f(x)f(x  +  /(.)) e'kMdh = G(k) (5.1.2)
All integrals above are 3D integrals. The averaging over x is not explicitly given. We will 
explain the equation in the context of the discussion to gravity waves in the subsequent 
section. For our example, let us take the first to be f*(x). The equation can be rewritten in 
the following way,

/ dx dk’ dk" ,(g*(k’) g(k")) ew * er'k"-x e-'k" h dh = G(k) (5.13)
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Now all the integrals give delta functions. Now we need to input as to how to evaluate the 
two point function in the fourier space. For the metric perturbation variable h, for which we 
will calculate an expression similar to the above, we will assume that the averaging is done 
by describing h as a. field. Then we can quantise each mode in terms of ladder operators
i.e. each mode is described quantum mechanically like a quantum harmonic oscillator. We 
notice th a t the field h satisfies a free massless scalar field in an expanding background.

h -f - h  -  y 2h =  0 ■ (5.14)
a

The first and third term is the free field equation of motion with the second term accounting
for an expanding background. We can go over to the fourier space. Then we get the following
equation:

hg +  ‘̂ h R +  tfh ii =  Q (5.15)

We now make a change of variables,

ahg

Then the equation of motion becomes.

a
hR‘ + [ * - - ) hft =  0 (5-17)

Then we expand each mode in terms of the ladder operators,

M M )  =  v (k ,r /)a g + v * (k ,r /)a l (5.18)

Then substituting in the eq. (5.17), we get

i:' + y 2 “  a )  " =  0

To solve the above equation, we need the relation between a and 7] during inflation. For
convenience, we will shift the origin of rj to the end of inflation. This implies tha t 7} is
negative during inflation. So we have

r , ~ - ±  (5.20)

Then we get.:

a2IJ -  —  ̂ (5.21)
i]

(5.22)
a ^
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Then the solution to the above equation is

e
v =

ikrj % ».23)
krL

Then the two point function defined by the following equation gives,

' (h g lg ,)  = M2(27r)3S3(K -  K") (5.24)

{h'ghgj) = (2w fP h{k)53{K  -  K') (5.25)

where we have defined the power spectrum i \  as the following

Ph =  le j r c J ^ r  (5.26)

(5.27)

a/
Then for the above case, we know the solution for v. So we get

16ttG 1
P> ^ ) =  — 2W *

So using, equation (5.20) from above, the power spectrum can be reduced to

I \ ( k )  =  (5.28)

The function Ph(k) is called the power spectrum of gravitational waves. It is called gravity 
waves because the equation of motion is the wave equation with a damping term. This leads 
to an important point. The function h exists only when the wavelength is greater than the 
hubble radius. When it enters the bubble radius, it gets damped. Therefore, only those 
wavelengths which are greater than the hubble radius at the time of photon decoupling, will 
have a signature in the CMB analysis.

Now, we can make a comment about the power spectrum of the perturbed scalar field. 
If we look at its equation of motion, it is identical to the equation (5.11). So we can follow
the same procedure, without doing a change of variable. Therefore, the power spectrum for

the scalar field is,

p« = £  (5'29)

5.3 Relating scalar field perturbation to metric pertur
bation

We have given a brief description of the initial fluctuations in the scalar field. We would 
like to connect it to the spectrum of scalar perturbation variable 0 which will then be the
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seed for initial conditions necessary for studying the radiation epoch. Consider the following
conserved variable on super-horizon scales. This will link the two im portant variables [31, 32].

c : § f 7+ P )  ~ (5-30)A-(/> 4- r )

£ defined above is gauge-invariant i.e. it can be written in terms of gauge invariant variables 
as given below:

9 H~l §  4- <I>
C =  - :--------- :—  +  $  (5.31)s 3 1 +  w '

I 1 his variable is also conserved when the wavelength of the fourier mode is greater than the 
bubble radius i.e.

C =  0 (5.32)

We can evaluate the variable at horizon crossing and then post inflation and into the radiation 
epoch. Horizon crossing is characterised by a.H =  k . At horizon crossing during inflation, 
the first term in equation (5.30) is dominant, therefore the second term can be neglected.

C\h,c, =  - a H —  (5.33)00
where the input of pressure and energy density have been taken from the background energy 
momentum tensor. After inflation,

k2( p + P )  fc2(4p/3)
j- ~~ dH 0 1 /r Qr\

^  ^post inflation — J, ifJ (o.ooj

(5 .36)
9

For the last equation, we have used the initial condition for 0 i  as mentioned in the section 
on initial conditions. But

v, =  - a H 5- i  (5 .37)
3 (i) o

from eq.(5,33). Therefore, the power spectra of the scalar perturbation 5<p can be related to 
the power spectra of the metric perturbation <£,

o n SttGH2 f ^
= P<p =  afi=k (5.38)

The hist equation gives i. he primordial power spectrum-of both the variables
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5.4 Summary of results and spectral indices

So after setting up the differential equations, we sought for their initial conditions. Then 
we wrote down the power spectrum of the various variables after quantising the variables. 
There are some more points to be made regarding the power spectrum.

A scale free power spectrum is one in which k3P  is a constant. Spectral indices charac
terise primordial deviations from the scale free spectrum. We can rewrite the power spectra 
in the following way

8ttH 2 , 50tt2 /  k y ~ l x (  n m
P* 9 k ^ m 2planJ aH- k 9fc3 \ H 0J V A  (« =  1)J (&'39)

p » =  hT T ...U = *  =  A Tknr- 3 (5.40)
^  m'planch

A t  and 5h are amplitudes, I)j is called the growth function. The important quantities are 
n,n.T- These are called the spectral indices. They characterise deviations from the scale free 
spectrum, n — 1 and n r  =  0 are the indices for a scale free spectrum. There is a relation 
between the spectral indices and the slow roll parameters, so spectral indices give an idea 
about the potential of the scalar inflaton. The next two equations can be got from taking 
the logarithmic derivative of the power spectrum with respect to log k of equation (5.40). 
We get,

//-/ =  — 2e (5.41)

n =  1 - 4 e - 2 S  (5.42)

The above two quantities are evaluated at the time of horizon crossing.
We will give an outline of how the relation between the spectral indices and the slow roll

parameters is calculated.

5.4.1 Equation for nj

Ph =  -----U = k = A rk"T -3 (5.43)

Let us start from the definition of the spectral indices.

8ttH 2 
}2
’’p la n ch

Then we have,
ln(Ph) — InC +  2 InH — 3 Ink = lnAT +  (nT — 3) Ink (5.44)
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We have collected all the constant into the term C. We can now differentiate with respect
to (In k}„ We get.

dZlnH 0 0
-  - 3 — n-T — 3 (t>.45)

dink
Since the derivatives should be evaluated at horizon crossing i.e. at a l l  = k. So we have,

dlnH dlnH  dn
dink dr] dink

During inflation.

Therefore.

From the definition of e ,

dink dk
1W2

H
a l l2

Then we substitute the above and get,

dlnH dlnH dq
dink di] dink 

dll kdn
Hdi] dk 
k 1 

H k

Therefore,

(5.46)

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

— (—aU 2c) (5.53)

= - t  (5.54)

nT = -2 c  (5.55)

5.4.2 Equation for n

Again we start, from the power spectrum.

87tH 2 507r2 (  k y 1 2 x V  ' (r
P0 =  frpi— 5----- \aH=k -  -TT7T I T  ^  T H n ------

W t m p t a n c k  9 k  \H 0 / \D l { a = 1) J

This can be reduced in the following way after taking the log on both sides,

21 n i l  -  Ine =  InC  +  (n -  1 ) lnK  (5.57)
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All the constants have been collected in C above. We can now differentia.] with respect to 
IriK, We get,

d\2lnH -  Ine]
(5.58)dink n — 1

The first term was evaluated when calculating the equation for n r . So car
we get.

.  dr}he—  =  n -  1
an

2c
ck< n — i

:arrying tha t over,

(5.59)

(5.60)

Now
II

a H 2
We can evaluate this using the background FRW equations for a scalar field and get,

Also

4?iGcl)2
a2I P  ' a2IP

'5.61)

:d.62)

(Han

Then

From the definition of 6,

H  - d
a I P  a2 II

e -  1

2add) 2a d 2(e -  1) e =  ------:—|------:— --------L
a2I P  ^  aH

1 d
-  1

H d<j>/dt a<j)H 
Substituting all of the above equation into the following equation gives.

(5.63

(5.64)

(5.65)

(5.66)

Therefore, we get the equation

ek2
-2e -  2(6 +  e) =  n ~  1

n = l - 4 e - 26

(5.67)

(5.68)

(5.69)
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C hapter 6

Sum m ary

Classical perturbation theory was applied to the FRW cosmological model under the frame
work of general relativity. We described the motivation for studying such a theory and then 
the formalism. The formalism began with the definition of perturbation. The gauge invari
ant approach was highlighted. This approach required the definition of gauge transformation 
and gauge invariance.

Then the perturbation of the geometry was studied with respect to metric perturbations. 
Here the decomposition of the perturbation into three classes, scalar, vector and tensor was 
discussed. The quantities were named depending on how the perturbation quantities be
haved under 3D spatial transformations. Then the perturbation to the energy momentum 
tensor was discussed. Finally the perturbed Einstein's equation were written completely in 
terms of gauge-mvariant quantities. Some simple solutions were discussed. The important 
class of perturbations necessary to study the types of perturbations we were interested in 
was the scalar perturbations

To model the actual universe, a more detailed approach was necessary. It was convenient 
at this point to introduce the conformal gauge and work in this particular coordinate sys
tem. The m atter was described to be made up of particles tha t are statistically distributed 
according to phase space distribution function. The distribution functions in the presence 
of metric perturbations and interactions with other components was described by the Boltz
mann equation. The equation is an evolution equation. It was studied for all the components 
in terms of their Fourier modes. Apart from the Boltzmann equation, we also have the per
turbed Einstein' equations.
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Once all the differential equations were obtained for the perturbation variables, we needed 
initial conditions. We took large wavelength and early time limit to study the initial condi
tions. We then obtained constraints among all the variables. We were then lead to a natural 
question as to how these perturbations originated?

The source for the origin of the fluctuations lead to the study of inflation. The power 
spectrum was calculated for the initial conditions by assuming tha t two point functions are 
calculated quantum mechanically.

Finally, the relation between the power spectrum of the scalar field fluctuations to tha t 
of the metric perturbations was described. We also mentioned important quantities called 
spectral indices tha t quantify the deviations of the power spectrum about the scale-free 
spectrum.

Issues not addressed: In this t lies is we have not addressed the following points: evolution
of the differential equations and relation to current m atter structure, anisotropies in the 
CMB, alternative inflationary models [33, 34, 35, 36L quantum to classical transition of 
fluctuations and corrections from quantum gravity theories m the trans-pla,nckian region.

Q uantum  G ravity  C orrections[37, 38, 39]

Inflationary M odels -<..............................Fu ture D irections------------------------ ^ Large Scale S tru c tu re1
I

CM B A nisotropies [40]
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