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SHAPITER.I
ANIRODUCTION

Dirac's® relativistic wave equation for the electron is a
faseinating example of the use of matrix theory in physical pro-
blems and is the starting point of the study of relativistic
wave equations. The generalisations of the Dirsec matrices and
Clifford algebra and their various methematical features and
physical applications have been systematically studied by
Alladi Rlllll.'ilhhll! and his collaborators in the last few years.
Generalisations in a different direction involve attempts to find
relativistic wave equations for particles of arbitrary epin.

The main object of this thesis is to study the matrix
algebraic aspects of relativistio wave equations for arbitrary
spin with special reference to spin-half. Ve also give, in the
last chapter, some other interesting applications of matrix
theory to physical problems.

In Chapter II of this work we deal with Bhabha equations
for unique mass and lpln?"- Dirac himself, and later Fierz and
Pauli, attempted gomeralisations of the Dirac equation for higher
spin but their equations involved subsidiary conditions which are
not compatible when one considers interactions with externsl
fields. mms wrote linear equations of the form ( P}*FH+%}1U =0
without subsidiary conditions, BP* being four matikices of
suitable dimensions representing the spin properties of the parti-
cle but his equations had multi-spin and multi-mass solutions,
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Later investigations by Blrhh-mtmdrn.{’ Unezawa and Visconti and,
more recently, by Capri! conmsist in finding slgebraic conditions
on the matrieces involved in order that the equation describe a
particle of unique mase and unique spin. An important consequence
of this is that a heirarchy of inequivalent equations result for =a
particle of any given spin (in particular, for spin-half) by sele-
eting out lower spins when higher spins are present. In this
Chapter we offer arguments so that such equations are allowed %o
describe particles with lower spins. Ve give a justification for
such alternatives by modifying the condition for unique spin %o

7 |_'i '|___l.
rend J B, C = ses+1) Bo and the Umegzawa-Visconti
condition to read pﬂui = E:::l o TSN & 1& where

f 1is the maximum spin in the field function and s 48 the
unique spin to be selected. Ve give a clase of algebras of the
type Fft—{ﬁ‘ﬂv [3'7\} - iﬁ'ulﬁ}u leading %o such equations
for spin half end discuss their representations. We make explicit
demonstrations to construct matrices which satinfy any desired
minimal equation conditions and many one of our hierarchy of
algebras. The procedure is analogous to the method of Alladi
Remakrishnan for finding the higher dimensionsl L-matrices or
represcntations of Clifford algebra in higher dimensions. Ve

also inveatigate the diagonalisability of such matrices and the
exiatence of a hlﬂl‘lhﬂlln;’ matrix "'] (such that

=1 .
NPpM = ﬁl ) which is essential if the equation is
to be derivable from & Lagranglan ete. %Ye show that Yor the



LQ}
-Capri equation, a hermitianiesing matrix does not exist and if a
hermitianising matrix were to exist, the equation reduces to a
frivial extension of the Dirac form by adding sero elements %o

the wave function and bloating its dimension.

Ve discums the properties of the new spin-half eguation in
the presence of & minimelly coupled electromagnetic field and
show that the magnetic moment is the same as that of a Dirac
particle., The non-existence of T in our opinion is not
2 very serious one as the equations of Flerz-Pauli type due to
Fronadal do not lead toc a hermitianising metrix although the
equations imply the conservation of several different charge
current densities.

In Chapter 111, we discuss relastiviastic wave equations for
massless spin-half plrtinlnin‘g. The Weyl equation is one such
and is known %o be C and P non-invariant but invariant under
the combined CP operation. A second way of linearising the
Klein-Gordon equation to desoribe m massless spin-half equation
is to put the mass parsmeter equal to sero in the Dirac equation.

Yot another method, and one inequivalent to the sbew¥s above is %o
use singular idempotent combinations of the Dirac or Pauli matri-
ces without explieitly putting the mass parsmeter as szero. This

method was envisaged by Bhabha long ego. We show this method can
be used to construot CP - noninvariant equations in which there

has been some interest in the recent past. Ve give two component
equations for & massless spin-half particle using a non-covariant
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factorisation of the Klein-Gordon equation as also the spherical
factorisation (used by Biedenharn et al in the case of a massive
particle). It is interesting to find that these equations can
be CP amd OPT non-invariant but never T - non-invariant
which shows that CP and CPI wvioclation ean well be incorpo-
rated in a T-invariant relativistic equation for a masslesas
particle. We then analyse the most general four component
equation for a massless spin-half particle, starting with the
five 4 x 4 matrices obeying the Clifford ul#ihrn~%ﬂpjc1u§:‘2ﬁpy
Some of these equations are CP and CP? non-invariant., The
equation is of the form (X :p+mA)Y = LE%H where
A 1s a matrix factorisable into two faotors at least one of
whieh is milpotent. Also BA is factorisable into two

factors at least one of which is idempotent in the sense

e ik » 7The equations aleo yield a non-covariant

factorisation of the Klein-Gordon equation and the equations given
by Tokuoka, Santhanam and Iu-nhinhﬁo emerge as special cases of
thepe equations., We study the invariance properties of these
equations under the symmetry operntions C,P eand T and show that

it is possible to write an equation with any prescribed invariance
properties under these discrete transformations. We also give

the trensformations relating the Hamiltonian in these cases to the
better known Dirac and Weyl Hamiltonians and point out that thie
similarity does not imply an identity of the invariance properties

under the discrete symmetry tranaformations.
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In Chapter IV, we disouss equivalent forms of the Dirac
Hamiltonien. Several transformations yielding equivalent repre-
sentations of the Dirae equation have been proposed, like the
Foldy-Wouthuysen (F¥) eand the Cini-Touschek (0T) transformations
and generalisations th-ﬂofu. Ve give mlﬂ a simple and
elegant method of obtaining explicit forms of the ¥ sransfor-
mation: and 1ts generalisations using the U-matrix method of
Alladi Remakrishman®. In particular, we show that if ¥ and R’
are two forms of the Hamiltonian for a massive spin-half particle
but with the ssme elementary divisors, they are rolated by a
aimilarity transformation by & which can be simply written
(except when X' = .H) ag 8 = (H + H')X where X 4is non-
singular and commutes with H' but is otherwise arbitrary. Ve
then give a new generalisation of the ¥PW transformation using
the five 4 x 4 matrices obeying the Clifford slgebra from
which the P and OT transformations and the transformations
of fmavedra and De Vries emerge as partioular csses. We also
show how the U-matrix method mentioned above can be used the
obtain the transformation which conmnects the Dirac Hamiltonian
to the Hamiltonian discussed in the recent literature by
l:l.mn!umu and others. We also give a new non-covariant
factorisation of the Klein-Gordon equntion for a messive spin~
half partioele distinct from the spherical fectorisation advooated
by Biedenbarn and others.

In Chapter V, we'd give a unitary Foldy-Wouthuysen transfor-
mation and disouss related transformations for the Hamiltonian
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proposed by Weaver, Hammer and ﬂnnﬂls for particles of arbitrary
spin., The technique employed by Weaver, lammer and Good is %o
postulate the reat frame wave function, and use n generalised
¥W transformation. One diffioulty, nas was reaslised earlier, is
that except in the cese of spin-half, the transformation is not
unitery. 'll#llls has constructed a unitary operator for spin
one, HRecently, there has been some misconception in the lite-
rature on the existence of s unitary W trensformation for spin
greater than 1. We first eatablish here the existence of a
unitery F ¥ transformation for any spin and then explicitly cal-
culate it., We firat establish here the existence of a unitary
F W transformation for any spin and then explicitly calculate
it. Ve show that the unitary transformaetion can be written as
U=5X where 5 is the transformation used by Weaver, Hammer
and Good and obtain conditions on X so that U 4is unitary.

An additional condition on the hermiticity of X reduces U

to the ¥ W +transformation in the conventional foram for aepin &
and to Weaver's tranaformation for spin 1. The explieit calou-
lation of & hermitian X for arbitrary spin involves the eva-
luation of the function £(g) where gz is related to the spin
matrices. Ve give methods for evaluating f(zo) generally
and also in particular when f(g2) 48 an odd or even function
in e » ¥We use these methods for explieitly writing the
extreme relativistic form of the Hamiltonian and the unitary
transformetion leading to it.

In Chapter VI, we deal with severs) applications of matrix
methods to physical problems. Section A 4is on gquantum mechaniocs
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in finite dimensions™®. We study the ususl quantum mechanical
commutation relation [Q, P l=1{ when T, the
dimension of the space on which these operators met is finite.
Uning the representation theory of COlifford Algebra developed by
Alladi Ramakrishnan® and his collaborstors, we explicitly compute
the commutator [ &, P] when 7. 418 finite. It
turns out that the operator is strietly off-diasgonal for finite

7. « This implies no "uncertainty” and no gero point energy,
if these concepts have any meaning for finite n. Of course, we
show that aa 1 . nnntlnﬁmly. the operstor reduces in
the limiting cuse to the Dirac delte function. We elevate the
comnutator for finite ~. to what we cull "Finite Quantum Mechs-
nice". Seetion B is on symmetricul component networks for
N-phase aratm“. 1t hes been shown by Parton in a matrix analy-
eis of symmetrial component networks for JK-phase systems that
when ¥ 4s prise, only one network is needed %o segregate the
components but when N contains factors, an additionsl network
is required for each additional factor. We show that this result
follows immedistely from a siuple property of the Sylvester
matrix S (S Sl se e by A

( W = primitive Hﬁ root of unity) that when N is compoaite,
a replacement of by m" cannot be sohieved by a permu-
tation of the coluans of the fylvester matrix associated with (o
Further, the Sylvester matrix corresponding te m{ may
become singular in this caese, for some values of . apnd in
this cese, a new network is required whose elemenis, however,



are a subset of the first network. Hection € is n Traces of
products of Clifford llnlntlm. Formulae exist for the evalu-
ation of the traces of Peuli and Dirac matrices and producta of
their linear combinations. These are useful when one works with
perturbation theory to higher orders. Here we study the trace
properties of products of linear combinations of Clifford ele-
ments and generalised Clifford elements in 7. dimensiona,
The latter ylelds a possible generalisation of the congept of
the pfaffian. In section D we give 2 new application of the
rearrangement operstion on & matrix defined by Alladi Ramakrishnan.
The eigenvectors of the eyelie matrix C (Cyf = Oleis i
where 0&q,¢=0 except when T-5 qnedim are given
by the columna of the Zylvester matrix mentioned above. Thus
the Sylvester matrix disgonalises any circulent (which is a
linear combination of the powers of ( + Here we show that the
eigenveetors of the matrix D (D = a8 edyd which

(W = gommutes with C can be obtained from the Sylvester
matrix by a repeated applicontion of the rearrangement operation.
A particularly interesting case arises when the matrix is even -
dimensional in which csse we have to perform a 'semi-rearrangement'
or a rearrangement by a half-integrasl number of times which we
define here. The matrix so obtained will diagonalise a complex
circulant ie., a linear combination of powers of the D matrix.
In section £, we give a theorem on the limiting properties of a
stochastic matrix’?. It is well known $hat for a stochastic

matrix S (S =0 when {4 ,% 5;4=0) when
1



S
§ 1s irreducible, L;fi;‘lm St =T where T  4s an
arbitrary probability vector and Tlo is the eigen-
vector of 8 oorresponding to eigenvalue 0O with sum norma-
lised to 1 . Ve have show that if the eigenvalues of 8 are
all real, then after a sufficiently large ¢ , the elements of
E?%f appronch the elements of T, monotonioally
a8 bt « And when the eigenvalues of S are complex,
then a8 [ s the elements of Egtﬂf approach the
elements of 1T as 2 damped cacilleotion about the final

value. And fimally the lest section, section F, is on genera-
1ised Lueas Polynomials2", In connection with the problem of
finding the uth power of an N x F natrix, Barekat and Baumann
introduced polynomisls which they termed the genermlised ILueas
polynomials satiasfying a difference equation and & set of
initial conditions and suggested it is deciirable to obtain them
in closed form. Ve here show that these polynomials can be
obtained directly from the symmetric funetions which are of basic
importance in combinatorial analysis. Ve give expressions in
closed form for the generalised Iucas polynomials and also for

their linear translates which cccur in the above method. Thease

expresnions are useful in the evaluation of the matrix function
f(z) which coours in Chapter V earlier.
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1. Introduotion:

Dirac's epoch making paper of 19‘31 was the starting point
of the study of linear relativistic wave equations. The generali-
sation of the Dirac matrices and Ulifford slgebra and their

verious physical applicntions have been systematically studied by
Alledi Ramakrishnan® and his collaborators. Generalisations in a
different direction invelve attempts to find relativistic wave
equations for particles of arbitrary spin. A great many such
attempts have been made. Dirae h:llnlr, and later Piers, and
Fierz and huli" attempted such equations. Soon it was realised
that the subsidiary conditions involved are not compatible when
one considers interactions with external fields, for instence,the
electromagnetic field. This can be rectified only at great cost
to the mathematical elegmnce. PFiersz-Paull equation for a spin
3/2 particle has been written in vector coveriant indices

(instead of dotted and undotted indices) by Rerita and Sehwinger®.
it is however, desirable to write an equation without suxiliary
conditionas and also with simple Lorentz transformation properties.
- Bhabha® wrote linear equetions of this type without subsidiary
conditions but it turned out that his equutions, besides having

s s

* A.R.Tekunalla and T.5.Santhanam, Progr.Theor.Phys.,50,982(1973).

+ T.0,.5anthanan and A.R.Tekumalla, !urﬁ::*ﬂ‘r Phys .,(to appear 1974)
7?.5.5anthanam and A.R.Tekumalla, communicated to Phya .Rev.,



several spin components, fail o satisfy the Klein-Gordon
equation resulting in multi-mass solutions. later investigations
by Harish-Ohandra®'? and Bhavhe'® in this direction consisted in
finding slgebraic conditions on the matrices in order that the

wave equation desoribe & particle of unique mass,

In the sixties, equations of Sohroedinger type were more
popular in the description of partiecles of higher spin. Attempts
by ‘lci.nhrgl:!' by Veaver, Hammer and Gcml.n and by Pnrn:u are
noBable in this direction. In such theories, the Hamiltonian is
& polynomial in the derivative operator. It has, however,been
shown by Wightman'* that Weinberg equations lead o unstable
representations of the Poincare group. Physically this meant
that the spectrum of the Hamiltonian also contains non-real eigen~
values. Of course, this causes absolutely no trouble in Weinberg's
construction of a free field theory where one excludes thes from
the Fourier expansion of the field by definition.

So & revival of linear relativistic wave equations csme up.
Technicues have been developed {ﬂnprils} to pick up unigue spin.
The idea is to find slgebraic conditions on the matrices entering
the linear equation (besides the Harish-Ohandrs comdition to
ensure unique mass) to guarantee unique spin. A reversal of the
systematics to pick up lower spins results in a class of equations
for 8 spin-half perticle, inequivalent to the Dirsc equation.

Of course, one sacrifices the diagonalisability of F£. to weaker
bloch form {ﬂlpﬂ“). But subsequent investigations by Santhanam
et .117 have shown that the matrices involved in Oapri'e version
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satisfy a lower degree minimel equation than required. However,
the consistenoy of such equations in the general frame-work has
been proved.,

But while the new approach justifies the existence of such
an alternative equation, it makes it obvious that a hermitianising
matrix in this case does not exist’®'1% | If on the other hana,
one insists on the existence of a hermitianising matrix (if the
equation is to be derivable from s Lagrangian) then the above
equation reduces to a trivial extension of the Dirame form by adding
zero elements to the wave function and bloating its dimension.
However, we do not see any compelling reason to insist on the
existence of the hermitianising matrix. In fact, the equations
of Plers-Pauli type due to Fronsdal®® do not lead to & hermiti-
anising matrix although the equations imply the conservation of
several oharge current densities,

In seotion 2 we outline the general method of Bhabha for
solving the commutator equations to be satiafied by the matrices.
In section 3, we outline the work of Harish-Chandra to get unique
mass conditions. In section 4, we discuss the conditiona of
Unegawa and 'llﬂﬂﬂtili and in section 5, the methods of lnk:izz,
Hhrlt:ag and the method of Uapri" 8o that the wave funotion
deseribe e particle of unique mass and unique spin. In section 6,
we discuss the reversal problem, of a class of linear equations
for a particle of spin half. In section 7, we give the reprosens
tations of the new slgebras involved.
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In section 8, representations of the hierarchy of algebras
are discussed.

We give here a method for constructing metrices

which obey these higher algebras starting from the Dirac matri-

ces. In section 9, we study the solutions of the new equations

and in section 10, we study the chareoteristics of the new
equations in the presence of a minimally coupled electromagnetic
10142892625 | p4na11y, in section 11, we give our conclusions.

2. The Method of Bhabhat

=
!hlhhl"iutnlitgatll relativistic wave equations for descri-
bing the behaviour of elementary particles of ary integral or half-

integral spin on the assumption that these equutions must always
be written in the absence of interaction in the form

CFF.?#—#- '1;"4"‘ =0 3 I-L:G'r 1s 2, 5, {z 1}

where the b are the differential operators -(J_

X
’,L
and B are four numerical matrices desoribing the spin proper-

ties of the particle.

is an arbitrary parameter related %o
the masp. He derived algebraic conditions on the matrices Q.

on the sssumption that all properties of the particle are derivable

from eq.(2.1) without the use of any further subsidiary conditions.
He poatulates that the predictions of the theory with regard %o

the result of any possible observation shall be in sccordance with

the requirements of the prineiple of special relativity.

This ie
the requirement of Lorentg invariance.
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Any gemeral transformation ¢ of the Lorents group is one
whose coefficients t;, are all real and which leaves the
metrie form unaltered, that 1is

PO
g‘;_x_'.u == Lj}tr'tlﬂat“u

where the repeated indices sre summed over and the metric tensor
is chosen to have the form

Y0 = ~9u= %= - G33 =1
%Ip.tp:f‘} ‘FDTJLL FV

The effect of a Lorentz transformation on eq.(2.1) is to trans-
forn the P and 8" %o b,  and g as

Piju': Pu[t_1}h;1. ’ G,Jp_: t"; Bv

where | ' is the inverse of ¢ . If the (' are square
matrices of dimension o , then the requirement of invariance
under the Lorentsz group means that there exists a nonsingular
matrix D($) of dimenaions ok xd which brings the trang-
formed matrices o' back to their original form

by a similarity transformation

et~ de) p”’“mtfi

The Epﬂ are therefore quontities which transform according
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g’ =t (D’ )
and the transformation on the wave function is given by

Y —> 4 (%) = B @Y e

¥ritten in terms of the generators of the homogensous Lorents
group, the above equation for Bj‘“' reads

[ B el A1 R

= g I-LTF,’A - g Ptijav (2.2)

where the six matrices 1’ are the infinitesimal transfor-
mations of the representation D . | VA ave the mucleus of the
representation D and sre antisymmetric in 1 and .
They satiafy the commutation relations,

[Ip,"# ; I?\g’] i _%I""'}‘ Iﬂﬂ_-q-ﬁ,FLG_IHE'FS.P}*I'LLF—%FFIP?&

Conversely, any set of six matrices eatisfying this relation can
be used to build up a representation of the homogenous Lorents
group. Ye need concern gurselves first only with an irreducible
set of matrices pr‘“ end D gatiefying eq.(2.2), since
every other representation cen be szade up of a direot sum of these.

The representation D by itsell is not irreducible and therefore
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is not either,

have also to satisfy eqs.(2.2)
and the collection of the ten matrices 1MV

irreduecible.

its mucleus consisting of the six matrices 1™
But in this problem, the six 1M’

and pM is

Hhabha investigated the most general solution for 3, of the

commutator eq.(2.2). In faet, © can also be an operator the

only eondition on that being that it should ctmmute with I .,
This property has beon particularly used by ‘!u:lmohﬁ, ﬂ-n-ﬂuptnﬂ
and Santhanam and ﬂhunﬂnwh:nrln“ for constructing equetion for

nsutrino and by Brulin and Hjllmrl&g for spin-2 theories (see also
Harigh-Chandre®) .

Define the spinor

E 1 "
-p o sziﬂ_.w Lam

A
0 (2.3)

where the ::r:-; are the Paulil matrices and the rows and columns

are labelled by upper undotted and dotted indexes respectively.
The CGreek indices take values 0,1,2,3 and the Latin indices
1".,1 G-.ﬂ i. th mt “‘1‘1’-

Similerly, define the two symne~
tric spinors,

o

AR = -l o™ 7w (2.4)
¢ W _vml
AL = IPUJMH«;\,F

(2.42)
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Then eqn.(2.2) takes the foram

2 [ake k7] = eRIaTh+ e KEast

(2.5)
Al P = e et p R ST R

(2.6)

where ¢..n and ™™ are defined as

o S

€= €99= € € =0

(2 2\
Efll:—E]_‘: = - - £ .:’1

The matrices 1¢o  4n eqn. (2.2) must bde & reduoible represen-
tation of the nucleus of the proper Lorentsz group and they can be
written in the form

C Teo (Rip 20

I?c- - Tfa—[_k‘lg 24

(2.7)

where all the empty ractangles are filled with geros. K and L

take a form similar $o that of T « Gorrecpzndisz to Shis
reduotion eqna.(2.5) and (2.6) become
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{Relrl AKL | ke @z KST (R —K ET‘LE.TJ { Roforl A KL R led

. el .
= % gIes Sl B | TR RIQI = > EliT<h¢ﬁ-v] F"\'Sl' Rt£t>

_ ) (2.8)
(R ) A K8 Reey LT R0 = L™ (Le) ¢ R 0,1 KL | Rel oy

1 eA™ (Ro 0| AKRIR Y + 1 < R 1 417 Red )

(2.9)
from which 1% is clear that
(Rl AKE | Relry = (Rel AKI RTP <8 AL] 20D (2.10)

the expansion on the right being really the direct product of two

rectangular matrices of dimensions (2R +1)(2k +1) and

(28e+14) (20 «+1) respectively. The equutions (2.8) and
(2.9) reduce to

{ho | AKI Ry K37 (Re)~ K3 (Re) C Rerl AKl R

= (= T
=3 XS kel AT Ry + %EH <Rw-1 AS| Re>
: (2.11)

ol £l ey L™ (ley =17 (0 (e ALY

z

4 A ; g '
_.;_FE ﬂ“n<£r|,&m[£_c>+1 etm (R AM| L) (2.12)
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Dirae, in connection with the direct products of represen-
tations D (1. 1) and Dk, L) of the Lorents group
introduced the two matrices 1 "(f) and "(R) of dimen-
sions (2R+1)x2R and 2Rx(2R+1) respeoti-
1.1;’0 « These matrices satisfy

U R+ 2B RY L) =V (RIUWTCR) = 2k 41 (2.13a)

e (R Ins ™ LR+%) = UL Lh—rﬂf}“&ﬁfﬁl‘?) =0
(2.13b)

: YL

"UT”(R*r%}TLmLhﬁr%_) :KT:L{LR}"P (R+1) E’Tb
(2.14a)

k] oL

UMCR) Vo (R) =Km (R) -R &7 (2.14b)

After a little algebraic manipulstion we can show that

TR kK ™M™r=4) = K™ cRyaTeR)

(2.15)
- LM MRy L €T MRy
7 g
BTCR) K™ Ry = KM -5 ) aALTCR)
= % MMM (ry & L €™ M) (2.16)
2 -

It is the similarity of formes between the eqns.(2.11), (2.12) and
(2.15), (2.16) that led Bhabha to the conclusicn that the non-

vanishing elements of the matrix A and hence B are given by




<Rl | ARG R+%5 0-15 = cwRer+dyulcn)

(2017‘)
CR+%, -51A%E Ry 7 = duk(k+ Frpd )
(2.17v)
KL R+t, 8+1 = t“L}KLR-t-i}Uillﬂ**L}
) ARE LR+ G 5.7 - : (2.18a)
. - K _'_|;|: '1
CRegol+f| AKE [Ro2D = dUDCRe IAT(L+7) (2,188)

where, by properly choosing a similarity transformation leaving I
invariant one can reduce the constants to obey (¢ =1d|

when e F0 « The matrices we shall be considering in
psection 6 and the ones considered Capri fall under the special case
when the product may be gero. This procedure enables one to comple-
tely determine the form of 2y apart from the sbove arbitrary
constanta. _
¥i1a?' has obtained the form of the matrices £  4in the

T° aisgonal form where J> 48 the invarient of the rotation
subgroup., Wild's form is very useful in the discussion of spine,
The non-vanishing components of [, in the Wild basis are
given by
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. A
CRQ pol (R s Lrb)gy > e o [ CRtj -GG +e-14R)] 2S5 @) T

| ReQ+) , L
NCTINEREEER P se e ”[Lh+£—}JLR+HJ+‘U‘]EX

a E)“;@I !
S Bebdotfodepoyd » o WM 7

(2.19)

where I represents a (2,+1)(2)+1) dimensional unit matrix,

lR-01 < 3/ < Rt and 14}

= integral part of J.
A1l other components esre obtained from

2kR+2
SR Ba) B2y = (=1) CR'W [Bol R,

CRelpel K'Y = —(ak] o) o'k

P | Po | s (2.20)
Purther, if r,t,s,u denote two pairs of inequivalent irreducible
representations of the proper Lorents group such that under
iy T8, S su then {‘”rs:' =T
The generators

Lo obey the commutator equation

I'_Lf’ﬁ'r Tty )= = bt lon+3pv o+ G Ipn ~GovIpt.

(2.21)
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Bhabha tried to close the algebra satisfied by the Top
and ([ namely eqe. (2.2) and (2.21) by assuming that

IFD_ :)‘L@?’BT] {2.22)

which we know is true for the Dirac and Kemmexr equations. \ 4is

& numerical constant. Eq. (2.22) dces not hold for any of the
alternative forms of the equations for spin greater than one given
by Dirac, Fiers snd Pauli. But eq. (2.22) is of course consistent
with eqe. (2.2) and (2.21) for any spin as can be verified by
direct subatitution of eq. (2.22) in eq. (2.2) to obtain eq.(2.21).
Bow le- and (. form the Lorentsz group in five dimensions.
For, by introducing the sdditional index 4 and defining

ﬂ' 4:O’W¢4r

eqe. (2.2), (2.21) and (2.22) are all combined into one equation
namely eq. (2.2) where the indices now run from O to 4. The ten
matrices with .M =0,1, - 24 now satisfy the
same commutation rules as the ten infinitesimal transformations
of the Lorentz group in five dimensions. The problem of finding
the irreducible representations of the Lorentsz group oan be
related to that of finding the irreducible representations of the
orthogonal group in five dimensions, the solution of which is
well known. Ip this cese the wave function tranaforms ss a
representation Ks(),, hz) where Ai- A2 are

Both integers or mero, or both half-integers with ), > A220,
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and this desoribes e particle of maximum spin A1 , imrespective
of A « ¥Wor particles with a maximum spin £, the number of
different equations possibdle is f+ Af £ 4is half integer
and £+ 1 4if £ 4o an integer and these equations are inequiva-
ient and deseribe particles with different physieal properties,

the only equetion with unique spin s being obtained from R: (s,
Further the l-uuaptt;n of eq. (2.22) impXies that a particle of
spin greater than one must appear with several values for the rest
mass with rational multiples of the lowest value, as each component
of the wave funetion by itmelf does not satisfy a second order wave
equation but one of higher order consisting of products of the
usual second order wave operators as will be shown in the next
section. Thus a particle of spin 3/2 must appear with two possible
rest masses, one three times the other while a particle of spin 2
han two rest masses one twice the other, the lower values of the
rest mase being more stable in each cese. The condition for unique
mass due to Harish-Chandra will be considered in the next seetion.

1% has also been shown by Madhava Rao, et a1°2:33 that in the
cese of apin 3/2 the algebra of ﬁf& 1g eimply the direct
product of the Dirac algebra and another algelra ( £ - algebra) of
rank 42 so that the original algebra is of rank 672. Madhava Rao
et 2177 nave also shown that the E - algebrs has three irreduci-

ble representations of dimensions 1,4 and 5 and have explicitly
written the irreducible representations.
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3+ Zhe Harish-Chandra Conditdon:

In 1947 Harish-Ohandra showed that by imposing certain con-
ditions on the minimal equation obeyed by the matrices ﬁpu
which are solutions of the commutator eq.(2.2), the wave function
can be made to obey & Klein-Gordon equation with unique mass.

Let the minimal equation for Bo bp given by

Btk Qufl o /4 HRG=0 (3.1)
This can be written in the form
1;"*“- +4 QIB:L_EJr Lgﬂn}1ﬂ4ﬁT-4+ X
+( ay 15?" ¥ 0o @7 B Rl Y0
g and £p are equivalent, % being n Iorentz trans-

formation. Therefore Baj - .{:DJ“,?PJ hacs the same minimal
equation. Put #é”“: HP« « Then

P el
(ﬁ = £y ko v = %on:1 (3.2)

and Fﬂr: %H@P—’ « Then
{Qﬁvﬁv}m.‘_ {12{_'3?1!,% FLCEH‘HZ){% vﬁﬂjmda

—+ 1 il : i
4("3 HH %J'L'HEJE Lyv(gv'}m 4 17

o Py y g

ﬁP‘HzL'ﬁuﬁUJ mﬁr' -y =0
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Now the 'lal’,:a are arbitrary except for eq.(3.2). Hence put

1

?jv . £ .
4 .
(o 2P20)z L
where the 2 : are independent indeterminstes. lNow on
multiplying by 7.’ we find

1l

{(Zu Bvsm' - G.EEW%HQ‘ gf‘"ﬁi [E“By}m-i- }

L T sy ™ I =0

(3.3)
This must be an identity in = + Therefore from the irration-
elity of 2 in s , we get
S|

Qi(t7gn) " % o =0

Row w1 Enzi:, 'E{E:U 5 -Q‘?‘L‘ID c!hll
m-|

Qo +--+ =0

If 34403, .. ere mot all gero, this is an equation satisfied

by ¢, of degree lower than the minimal equation which ia

clearly impossible since, by definition, the minimal equation is

the equation of lowest degree satisfied by Po + Hence,
Qi=Az= ... =p and only the expression in the firet

brackets of eq. (3.3) survive. Equating coefficients of s in
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this ecuation, we get

(P
2. fFPw"ﬁHm+“19w#1%ﬁ'“ﬁum
e Fppa G s pe Brig Pt =0 (3.4)
) 5 (P denotes a summation over all permutations

of ’LLJ,.L, rl_l_.:_? oo Bm . From ﬂ-{,-‘)u it follows

{(P’“ﬁgfhr a?_p”“tp“iap,}querpq{PTL@]_L)’“‘ﬂ. o drso

(3.5a)
where F“P“‘ =p> . On ueing the wave esuation (2.1), this
raduces %o

(3.5v)

Bg. (3.5a) and (3.5b) contain only even or odd powers of p’*ﬁp#
and X respectively and may be written in factorised form as

(P b = PP i)+ =
(3.6a)
and

(E—Cf P ) X=c2p) - =0 (3.60)
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respectively with a further multiplieation by PH[H“ and *

respectively Af the spin is integral. (., Co....
non gero elgenvalues of |,

and the

« Eg. (3.5b), or (3.6b), is the
differential equation (with numerical coefficients) of the lowest

order which the most general solution alr

of the wave
eq. (2.1) would satiafy.

It is clear from eq. (3.6a) or (3.6b),

how the multiple mass arises in Bhabha'g theory. If we now dowmavid

that eq. (3.5b) reduce to the usual second order XKlein Gordon
equation, we get O, -de=.-- =0

« Therefore from
eq. (3.4)

) 2 i
2 " Bp o Bum = 2 Jipz Brs o Bpm :
(3.7)

)
where Z e is the sum over sll permutations of the indices.

This eq. (3.7) is completely equivalent to

7 2. -2
E7Bw) = 2 TN )™ (3.8)

{where the s are arbitrary) which is the natural generalisation
of the Dirac matrices for ﬂﬂ.nh

s

(EH\B].L)L it

and of the Duffin Kenmer matrices fLor which

(@Ehpp) = 2 (g



29

When we take Z, =1 and ‘Z—d‘:g » we get the equation in
terums of o y namely

el 59

Be =Po " (3.9)

n+| 3 i
o

o e, noy

which is the Harish-Chandra condition in the well known form. One
can also look upon it as the condition that S,  has only one
pair of non-gero eigenvalues which, however, ean occur several
times.

Since eq.(3.4) is already in a proper %ensor form, one
might at firet sight think that the invariance of an irreducibdle
representation under the proper Lorentz group is guaranteed.
This, however, is in general, not the case, since for n>2
eq. (3.7) does not generate m finite algebran. Some other stronger
tensor condition compatidble with ea. (3.7) is required to make
the algebra finite. Thus for exemple, for n =2 we have the

Duffin Kenmer commitation relations

BBy tPaByfr = Juopx+t §avfu

In the Dirae and the Duffin Kemmer caser, one can choose &
representation congistent with eq. (3.7) in which the Gy are
Hermitian or anti-hermitian. But this is obviously impossible

for m = 2 for if g, is hermitian, it is diagonalisable.
Further, since Bo satisfies the minimal equation

Ec.m-j 8 ﬁf’- D=0 ell its eigenvalues satisfy the equation
too and hence its eigenvalues are all 0 or + 1, But e
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diagonal matrix (and hence a dingonalisable matrix) with eigen-
values 0, 11 obviously setisfies p° _o, . Hence
for hermitian o, . ms.

4. Unegawa-Vigconti CGondition:

We shall now discuss the proof due to Umegaws and Vieoonti?!
to show thet n = 2f where f 4is the maximum spin contained in
the field function. They sssume the existence of the Klein-Gordon
divisor  d(2) sugh that

A MDY = (B-xD1I
(4.1)

ADY = —(Lpdi +%)
(4.2)

They also essume that \(5) is & polynomial in the deri-
vative operatora

1=
Gy T ope SRy Opn
P=s _ (4.3)

m the coefficients g o (g are obviously symme-
triec in the indices. They show that for a consistent quantisation
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of the field, the components of the wave function Y
obey the commutation relations fﬂyd[x: ) ,@B{xﬁl] = *‘.I:dﬁp{-a] A X =3¢!)
Thus ALd) transforms like the temsor produet YV

of the field funotion. Hinge U containe spins ([,[-4,.-)

where + is the maximum spin, by simple Clebseh~Gordon
theorem it follows that cp) contains spins (2£,20-1,..00e4)0
Eq.(4.3) ean be rewritten as

o2
AC0) = 2. Aoy O Ops kg
J-"::'-GL
£ gy, o, B O Dy
.-{]..I:"l-F-t-1

The terms for which (> 2{f ecan be regrouped as

¢ (f—a2ty/2
dﬁ"Hrz‘}Hl"‘df“l{:{DJ f’f

= ooyt o Ot Oy 3

A 2f
pince 2f 48 the maximum spin in 4 (3) and the rest of the
terms can only contribute to a power of [ « Obviously

T must be mero for -2 odd.
¥rom eq. (4.1) it follows that
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(o, 7 SR ’}:?'I
U;Dﬁlu.: '{"X Ap=0

By + o) + 2% dpv= — 294y

(p "
Z ﬁf‘k'ptb.lq.}*t_rmcﬂﬁ‘.“t =

fore 72

(4.4)

(p
where Z i denotes the summaiion over terms given by taking
‘all possible permutations over the suffixes. Using these
equations 1t follows that

e =23 424
ikt (4.5)

 even when (2! is even. Hence the polynomial dM
- should terminate at L < 2f « If in additicn we require
‘the field function to contain the maximum spin £,

Upay- - gy 7O then | - 2f . This is the
proof of Umezawa and Visoconti.
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As we are here mainly concerned with linear relativiastic
equations of Bhabha type, we do not discusa other types of
equations where the problem of unique spin end massg has also been
attacked. In such cases, subsidiary conditions of the nature of
differential equations are imposed to seleot out unique |p_i.n and

unique m-”'“ .

Therefore the genoral problem of deseribing

a particle with unique mass and unique spin eatisfying a linear.

relativistic equation of Bhabha's type exists. Recently, BakriZ?

has derived field equations of the form
T ® (Tpopo+ X FOY =puy (5.1)

which deseribe particles of definite mass and definite spin.

Here pp are the Bhabha matrices. These matrices were

derived from the finite dimensional representation of the inhomo-

geneous de Sitter group SO (4,1 with the invariant F,Pp,=C

where Yy, is the momentum-energy-mass five vector with compo-

nents P = cartesian components of momentum P.='Po

Po = energy, and pg="Y. Spe , the generators of
the homogeneous de Sitter group are given by

31_,_-,,| = Ipu = ?’\1[[3!.:: ﬁ'u] ’
(5.2)

SHE:BH '
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and their finite dimensional irreducible representations are
those of 80(5), WRs( Ms 2a) characterised by two non-
negative integers (for bosons) or half-integers (for fermions),

such that A As « Bq.(5.1) leads directly to the
Bhabha equation

PP+ X))y =0,

(5.4)
to the mass relation
F',aphq? = {P’_LPF._,-{_,xl)rLP =0 (5.5)
and to the equation
WpWwY = X5l g4 1), (5.6)
where
W = r%i €pvap Pv g (5.7)

is the Pauli Lubanskli peeudoveotor. decomposes under the

m group into several components Y(S,,S~). Y(S4, Sa2)
tranoforme mecording to the irreducible representation D (s,52)
of the homogeneous Lorents group. §0(4,1) decomposes under the
homogenecous Lorentg group into all inequivalent D(S,S5:2)




with

§< (8452l £ 22 € 54482 8N

(5.8)
where =4 for bosons and S = 1?- for fermions.
Equs. (5.5) and (5.6) are satisfied by each Poincare component
separately. BEqn. (5.6) defines the spin in the rest system.
Thus the theory describes & particle with a definite mass
and definite spin A2 o The important point in such an
approach is that the Lorents T and the Bhabha matri-
cen I are related by the above eqn. (5.2) while we
know very well that apart from the PDirac and the Kemmer equations,
the other known equations for higher spins do not respect this
relation if they are to be described completely by Phabha eqn.
(5.4). Bakri overcomes this by taking only solutions of eqn.
(5.1) and not (5.4).

Another class of relativistic wave equations has been
derived by Hurley>. He begins with Galilei-covariant wave
equations for massive particles with any integer or half-integer
8pin and generalises theam to obtain Lorents inveriant equations.
He imposes a minimality ocondition on the number of components

possessed by the relativistic wave function and shows that the
index transformation properties of the wave function may be

either those of the D = (35,0) (+) (8-#,%) representation or
D= (0,3) (+) (4,8-4) and with the incorporation of reflection
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= .
Tyi= {S:D}@'Rs 2!2)@('!2?1 5‘%)@{(]&5}

Thus the wave fuhction possesses 4 (2s + 1) independent components,
has no subsidiary conditions end describes a particle with unique
mass m ¥ 0 and e unique spin. His equation is of the form

(Pef"+ > b =0

P

are the matrices

Gy (28+1)
O (25 +4)
B LR
0= C28-1)
& D o}
Oy A (28442
O { o o (88 £4)
o a a C.?-g"i}
= : ‘1
I _Si KL
Bi= | S« o 0 O
Ki @ 0 v
.+ L '-‘-F'L
O Sl ale
K © (W]
L

term in paranthesis are the mumber of rows in the corresponding
trix, S are the (2 + 1) x (28 + 1) dimensional spin matri-
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ces and K are (28~1) x (2e+1) dimensional rectangular matrices
defined upto a phase by

KLS& = Z:] AR :LE,_'}',KKK_

. :
3iS; 4+ Kik| =£8 € Sc+8 8
¥ & b ¥

where 2. are the 2s - 1 dimensional spin matrices . € ;i
is the Levi-Oivita symbol end O  is the Kronecker symbol.

The matrices of Hurley ere easily understood in terms of
Bhabha's analysis, though Hurley arrives at them without recourse
o Hnabha's work. In section 2, we found that Bhabha has given
the most general solution to the commutator eq. (2.2) when
trapsforms like the representation of the Lorentz group

D =2 &m¢DCRes AL

l.ll he showed that the only non-venishing elements of £, are

B (ko2 pMlRed, Rat> . Therefore the simpleat

non-trivial construction for B esatisfying eq. (2.2) is
obtained by the choice of D as

D= (R VB (REE, L+5)
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o obtain spin s, the simplest choice is

D= (S0 O(s-%555)

Hurley's choice is thus the simplest choice of D covered in
Dpabha's general analysis although he arrived at it without
recourse %o it. In faot Hurley's ([, 4s identical to what one
would obtain using mphn'l prescription and tremsforming to the
J' lumnﬁ bagis. It is a matter of simple verificsation that
Hurley's matrices obey the algebra

> Bty fa—FuBr) =0

and hence the minimal equation ?i =Bo or, in genersal,
Cpup™) = P2 (pup™)

Here Z <P is a sum over all permutations of the
indices. This minimel equation is & characteristic of Duffin -
Keamer matrices for a spin 1 partiocle and the algebra has the
Duffin-Kemmer algebra as a2 subalgebra. Of course, since B
satisfies a Cubic minimal equation, it is disgonalisable and can
be hermitian or anti-hermitian as indeed Hurley's matrices are.
The matrix also satisfies the Harish-Chandra condition with

‘n=1 and hence the equation deseribes a particle of unique mass.
However, when s>1 , the matrices do not satisfy the
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Umegawa-Visconti condition for a comsistent quantisation of the

field since the maximum spin in the field function is & while

the minimal equation is always cubic®” ., In fact the Klein-Gordon
divisor defined (as in seection 4) as

A Aa) = (O -m2) 1,
=
d(®) = ;Z': oy AugOpy- - Opky
=0
AC?) =

and which ean be rewritten as

dd) = m +igd * A [(0pd)T @]?

L
* 2 6820 (vpd)]
rt1

i et [ee ™ (g T

contain terms beyond n = 2 because of the minimal equation
and is given for the whole class of equations, for eny spin, by

dd) =m+ (¥ g0+ EL—._' [(fﬁé}z‘ﬂj

and Visconti have shown that for a consistent quenti-
ition of the field, the ﬂ.'|r'.b obey the commutation relation
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]:rlﬂqii} > @{3 (x> :[ = ldd_{'} (32 A O ~2eh)

go that d  ghould trensfors like '® 7 giving n = 2¢,
Thus for g>1 » the equation of Hurley vioclates the

Umezawa~Visoonti relationt for e consistent quantisation of the
field.

We have seen in Bec. 2, that Bhabha has given the most general
| sclution of Eqn. (2.2) involving two parameters which may or nay
not setisfy eqn. (2.22). Using this form, an attempt has been

made by Capri'® to describe a particle of unique spin and unique
mess by a linear relativistic equation of Bhabha's type. Instead
of having an equation yielding multi-mess solutions, what is done
%o select the maximum spin is to introduce lower spins to “'-E—L

~ with and eventuzlly make the corresponding submatrices in ﬁﬂ

4n the block disgonal form to be milpotent. Here we shall desotibe

‘8uch an attempt by Capri for a particle of spin 3/2 .

_ In this approach, the aim is to construct & set of four
matrices which satinfy the following conditions:

a) Lorentz invariance: This is ensured by following Bhabha's
Z_ﬂnuiptinn for writing the non-vanishing elements of Pp... as
outlined in section 2.
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b) Unique rest mass: To ensure that the particle satisfies
a Klein-Gordon equation for a unique reat mase =, By must
satisfy Harish-Chandrae's condition, i.e. it must have eqn.(3.9)

as the minimel equation. It immediately follows that, for -1
in the Jordan form, B hecomes, in bloek form

Pr= 0 | (5.9)

where ¥ is a matrix nilpotent of order n-l. Therefore, for
e i 4s non-diagonisable and hence cannot be hermitian.
~ (Thiz cen also be seen from the £act that the singular matrices
f  have eigenvalues +1 and O and so if they are hermi-
tien and hemce diagonalisable they will always obey a minimal
equation of degree < 3 and Harish-Chandra condition will not
' be satisfied).

" ¢) Hermitianisability: In order %o derive eqn. (2.1) from
p..hmgiu and %o be able to define a current and energy
momentum tensor, we require the existence of a hermitianising

matrix such that

S e
T B M= Bp PPy
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d) Unique spin: In general, Bhabha's equation yields solu-
tions which contain not only the maximum spin but in faot all
lower spins. In order %o pick up the solutions corresponding to
2 unique spin s, we demand, after Capri, the additional property

TF = scs+nE (5.11)

where E is a projection operator which projects on to the

- subspace spanned by the eigenvectors of g corresponding to
the non gzero eigenvalues. Ixplicitly, B is given By (i» 7' diay sasi)

E = @2:"1 (5.12)

To take a concrete exsmple, we consider spin 3/2. ¥e start
with the reducible representation of the Lorentz group

D=(13)D(0r5)@ (£+0) ® (£41) (5.13)

To satisfy condition (a), we use Bhabha's relations (2.17) and
(2.18) to write the non-vanishing elements of A

() o W™y ety ™)
GukLy L)

_egutinaTy) - UEL-’EW"”UF; )

L
L =2V oWt~ atds ysma O
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~ The products in the adove matrix are direct products. To enable
us to impose condition (@), we go over to the Wild basis which
yields for fo the form

_ D 2cy o—l
PG = % Gunsizie

(5.15)
2
L ("_'E a] o
£
o Co+3C1¢y 130 (65—2) O
=
Po = 5
O Blylere) Ghage,
C§'+ gy (] jac (C=Ca)>
z
L ﬁ{:q. (Ca"fi‘} (8] €5 - 35 Cy

(5.16)
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2 djagemal { (2 +¢j Iy, 5(zt1)Te, 5(z%)1,,
BT ST 55 by om
where L1 is the unit matrix of dimension [ . Yow,

for "Ly' %o represent a solution corresponding to spin 3/2 only
we demand that i~ the Wild basis

T8e = 2(Z+)Es (5.18)

‘Hence, from Eqn.(5.16), it follown that

ercf:i

u
Cs + 2CICy {2cq4(C5~C2)

=0
i f3eq a0 ri:a}:l*r 3¢(Cy
s ylelds the solution
Co=1, ‘33'—,6}_:: C1=L_, 4=t

203 I (5.20)
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¥e note here that (. 1s & good projection operator, it is
idempotent and hermitian. Eqn.(5.20) ylelds Tierz-Pauli
equation as written by Gupta’'. We notice that Cicy #0 :
The hermitianising matrix ean be easily computed as

O 0 T
=

(5.21)

where P, 4 is the permutation matrix.

A patural question arises whether one cannot ndd higher apins
end later make the blocks in @ff = (£ = maximum spin)
jurnuaonunx %o these higher spins nilpotent to yield dur.-um-.
mﬁuu for spin-helf and whether these equations will be
;mlﬂ‘?lllﬂ'ﬁ- The procedure here is just the reverse of what
we did in the earlier section to get an eauation for a unique
m spin. An example tur & spin 1/2 particle has actually
'Ii] beon construeted by Ulpri « Taking the specific example of

ﬂl representation chosen in the preceding section for the field

)&(& 0)e(t e
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we impose the following conditions on the matrix ﬁﬂ y nsmely,

B? = 135_ 85 minimal equation to snsure that the particle
has & unique mass amd J (i, = & (b +1)pS to make
represent a particle with spin 1/2. The latter condition is
incorporated by demsnding that the disgonal blooks in [
corresponding to spin 3/2 be nilpotent and that of spin 1/2
blocks idempotent and then finally fixing the constants that are
otherwise arbitrary by demanding that (slc. satiafy the
minimal equation G - . + Capri hes initisted such
on attempt. In faot, in the Wild form of (5  written out

explicitly in the preceding section and by imposing the condition

Tl@f = JE(J:?*“'JQE;L instead of eqn.(5.18) one gets
the following solutions on the comstants C,. ¢, Ci
when C,=0
e =0, c5=(, ¢ arbitrary
2 <o, G=b C, arbitrary

4. E‘a: 6o Cu4 =0 Cy arbitrary (6.2)

Capri's matrices are obtained corresponding to the first set of
Values in eqn. (6.2). Substituting these in eqn.(5.14), Ppu
are finally given by
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The last two solutions in eqn. (6.2) are discarded as they lead
to lower order minimal equation for Bo « A ocloser exami-
nation'! reveals that even the first two yield cubic minimal
‘equation for ©fo and not of fourth degree as is required.
Since the minimel equation pf =Ra hes distinet roota,

o 48 diagomalisable and bas the diagonal form Mag,ﬁj, -156¢

fThey are consequently diagonalisable though mot by a unitary
mnmttnnm. Thus, one glearly sees that by making the
[ptl 3/2 bloek in @,:L nilpotent one does not get a solu-
tion for spin 1/2 which satisfies a minimal equation of fourth
i!lﬂu. Further, 1t can be seen that the hermitiesnising matrix
given by Ulprl.u is not correct. In feot, we shall show in a
;.utu gsegtion that a hermitianiping matrix cannot exist in this
ease.

A justification for the equations of Capri's type has been
offered by the group at mlim-“ from algebraic considera-
tions where 1t has been shown that if we project spin s from the
representation which contains the maximum spin £, the Harish-

Ch condition is

| =\

E"J :Pa

the Umegawa-Visconti condition is modified as

28 gL 28
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g

The condition for unique spin is

2o l—A =1
T [—'J’f_-. = 5CS+]J§3¢

A similar observation has been made by Glass>’ who has explieitly
demonstrated that by increasing the multiplicity of spin half
componenta in the reduecible representation one can make o %o
patisfy a higher degroe minimal equation @5 =E§ for

gpin 3/2 particles, a result which contradicts Umeszawa-Visconti
theorem. Essentially he relaxes the polynomial restriction on
the K.G. divisor. Notlce however we do not have any result so
far to modify U.V, theorem to make higher spin equations %o
patisfy lower degree minimal equations except possibly the
equations of Hurley whose implications for the U.V., relation
‘have been discussed earlier in this section.

For the representation considered in the earlier section
the X.G. divisor can be written as

A0 = A+ oyudprt chynydpdy
(6.4)

the maximun spin contained is 3/2. If the field function
uet contain spin 3/2 the coefficient by U.V. theorem oy #0
If, on the other hand, we set Xy x =0 (the only other
spin contained s 1/2), we find from eqn.(4.4) that with




o0

ALY = —(Prdp+)

~ and ueing eqn.(4.4) for “\.u A which we set equal to zero

X = Z“f By o
= -1 @
ax 2 PRCEGa~{pwEal) (g8

Z ‘%) denotes permutation of indices and expanding
oqn. (6.5) one gete

BREVEX THUPABU+ BuBUA + BoPapie +Bapppy

TEaByB < ~Z Qe X+ 2T By + 2gux §yp
(6.6)

Eqn.(6.6) sdmits three distinect algebras of the type of Duffin-
lenmer Patiau (DKP) obeyed by the © matrices. The first
ls the Duffin-Kemner-Patisu algebra

Prfv B FEx BB = G Ba + Joufi (6.7)

particles with spin 1 and 0., The second is the
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algebra obeyed by the matrices of Capri

Pred fvs Bt = 2gnipw
5{?‘,9, 531"&%; E‘%U}\. (6.8)

we £ind a third new algebra

180 Bohpu = 9 ux P
1Pwr 2% 5 29,5 (6.9)

‘Both eqns. (6.8) and (6.9) describe particles with spin 1/2. This
ean be demonstrated by constructing the U"L operator and show-
ing that T?_ﬁur_ %_{—i;_ﬂ)r\au where T i3 the

klll‘. of the gemerator of rotations in three dimensions. That

" ce the highest non-vanishing term in A(0) , namely
S dpd v transforms like a spin 2 object
P [2pnv b T and singe ol (D~ YWE P

Ay 4s the field funetion, QV can either be a

ion of spins 1 end 0, which yields the Duffin-Kemmer-
Petiau algebra (6.7), or it can be a combination of spins 3/2
nd 1/2 which yields the Capri and the new algebra. O0f course,
(6.6) iteelf desoribes an algebra if there sre no subalge-
wes of the DKP type. lowever, the abstract algebra generated
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by algebraic quantities satisfying eqn. (6.6) alone is not
finite and one would expect there to be an infinite mumber of
Ainequivelent irreducible sets tf matrices satisfying eqn. (6.6)
a8 was shown by Phabha? « Recently Hurley and Eudu-hm“ have
L.____;gl;nl the infinite order algebra. Turther, if eqne. (2.2)
and (2.22) are insisted upon simultanecusly, then edn.(6.7) is
‘the only algebra pﬂlliullu .

ui I% is quite clear that a representation of the new algebra

n by eqn. (6.9) is furnished simply by the hermitian adjoints
‘of the matrices of Capri. It is therefore very important that a
‘hermitianising matrix does not exist if these two algebras are
%0 be distinot. Ve shall show later that indeed the hermitianis-
matrix does not exist for the Capri matrices, making the two
algebras inequivelent, If, on the other hand, one imposes the
existence of a hermitianising matrix, the two algebras eollapse
into one and lead to a trivial extension of the Dirac matrices
adding geros, making the {..  enti-comnute but 6& ANEE

The above situation is not altogether new since we are
used to & spin 0 particle being described by both the
Gordon equation and a Duffin-Kemmer-Petiau equation. How-

gver, in the present case, both the equations are linear.
By choosing representetions with higher spins esnd choosing
ifferent values of > 3 < L 25 , and satisfying

T li=AL =
the condition 8o :%(‘E_ﬁ) ?,1;‘ E . one may
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get a hierarchy of equations deseribing a spin 1/2 particle. In
these cases, 5, 1is non-diagomalisable if L 7> 2 | %o what
extent these equations will be physically different from the
Dirac equation is yet unolesr, although some preliminary calou-
hiion-m'z"” on the evaluation of magnetic moment reveal that
the content of the new equation i just the same ms that of Dirac
equation in a minimally coupled external electromagnetic field.
(See later sections). In the next few seotions we shall discusa
‘elaborately the hierarchy of these algebras relating to a

‘epin 1/2 particle.

7. ihe Representetions of the New Algehras:
In this section, we discusas the realisations by matrices of
the elements of the elgebra satisfying the relations

Ber LR 2T = 2 Fusnpw

i {701)
Mala A =0, Iy 22513

‘and give methods for obtaining them from the Dirsc matrices.
fhe method is analogous %o the method of Alladi Remakrishnan in
obtaining the higher dimensionsl I-matrices. ¥e look for repre-
sentationa of the matrices B which do not satisfy the

¢ Clifford algebra (which trivially satiafies eq. (7.1).

are 65 independent elements of the above algebra,

??‘?Gt ?l ‘E-EE where M=0 02, 3

fu=0>\ ) and it is easily see that any set of four




54

il square matrices of the form

1 [0 X
| ﬁ*’“‘[o w] (7.2)

where YH* are the Dirae ll:lrun and x(. are arbitrary
matrices with four columns satiefies eq.(7.1). This is at once
from the fact that

W O XivYo Yo
PrivBX = [ . J

T].J. Yy ok

'Lﬁ.t- do not anticommute unless X=0  or, in general,

XYy, + Xy ¥ =0 + If further symmetry properties
are vequired (like, for instaence, parity invariasnce in the
ce of the reducible representation) 8 may be of the

2 Bo = [501 Jf'ﬁ ;:1 _
o ¥y O (7.3a)
[ O XL o
s = e o
pe AR (7.30)
IR O 8
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where X and '. are arbitrary matrices of two columns, 1 is a
unlt matrix in two dimensions snd o Lu the Pauli matri-
oes, It may at once by inferred that the matrices of Capri are
of the above form. The dimensions of X and Y depend on the

x il iy

are fixed by demanding that .o satisfy eq.(2.2) for
oronts inveriance. To do this, we choose 8o in the Wild
| ‘basis directly using the above preseription

i 2 S R
@ g e 3
ﬁﬂ': - ‘IDD
o 1
coe (7.4)
GGQ

¢ 4is an arbitrary number,

This form of fo sutomatically satisfies eq. (5.11)

E 2 Bo where L = 2, to querantee the correct
All the matrices fr- oan now be written down in

®he original basis ueing the spinor equations (2.17) and (2.18)
88 in section 6, the nen-vanishing elements being identified

tran 0q.(7.4).

From the form of B displayed, it is clear that a

] charseteriniic of the matrices is that there are elements
 above and below the Dirac matrices. Thus we infer that

matrices, which are of the above form, do not satinfy

%: = ftf as minimal equetion as required by him but
itisfy the algebra given by eq. (7.1) and hemce : - ¢,
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We mow proceed %o consider the other algebra defined by

Fi

A8 BaTpp= 2guape (7.5)

Dy taking the hermitian adjoint of eq. (7.1) it is at once
gml that if B satisfy eq.(7.1) :,:5.;5_ satisfy
99.(7.5). Thus the matrices which satisfy eq.(7.5) have the

70 a
i [ Xy m] (1.6)

e Aw  are now arbitrary matrices with four rows. We note
X~ is now on the horigontal "Direc tail®, snd P 1

do not antioommute unless X =0 or, in general, unless

Yiky + YRp=0

lgre too, the nmumber of elements in the algebra is 65 and can be

1l ap (4'5 ?’Eﬂ E’Tll E—ﬁia%;f-) where tJ..'—'-.G;h,l_,.a.

fw=0>1 . Agnain, if some symmetry properties are
equired as earlier, we may take

Q -‘{‘;;1
%u—-[;l O

(7.7)
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WE RS 5
v = S Ye

Xy =oy (T-')
O

a 0

where I-nnl Y are arbitrary matrices of two rows, which are

~ above prescription, we choose 3,  in the ¥ild form as

O o 0
L8] o 0
i T 1 o 0

(7.9)

all the Pt~ 4in the original basis being again determined
by eqs. (2.17) and (2.18). All these matrices have elements
on the horigontal "Direc tail® and geros elsewhere and have as
their minimal equation f”: =R .

The two algebras given by eqs.(7.1) and (7.5) are, in

» inequivalent. An immediate consequence of thia, as

‘we shall show presently, is that, for the Capri matrices (as

180 for their hermitian adjoints) a permitiaising matrix

does mot exist. Wor, if B satisfy either of these

| = 9:'52%5 also satisfy the same
1lgebra as can be verified by direct substitution. Thus, if
fy- satisfy eq. (7.1)
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L
-

= i = —1.. o =]
Sy s (S9vSSErs +SBASS BvS) = 29w SPKS

@u By Bt = THuape

A similar statement holds for eq.(7.3). If we now demand the

xistence of a hermitienising matrix v » such that
e the two algebras (7.1) and (7.5) beoone
equivalent end . end will }\ﬂ" to satiafy
both eqa. (7.1) and (7.5). %Thus, using eq. (7.1)

P‘E—{FH’ gv3 = aaﬂ N'@E_
and then using eq. ‘T-” we get

Afne =23 w%& (7.10)

Bs = o

8 the matrices anticommute but their squares ;ﬁ' not unity.

The matrices of Capri satisfy (7.1) but they do not
atisfy eq. (7.5) nor do they satisfy eq. (7.10). Hence, from
the above argument, a hermitianising matrix cannot exist for
hese matrices. In fact, the matrix m  &iven by Capri is




oY

b .
incorrect as can be verified directly or inferred from mﬁhﬂh

mento.

A parallel argument shows that the hermitian adjoints of
the sbove matrices too are not hermitianisabdle., We shall show

presently that the moment we insist on a hermitianieing matrix,
“ﬂ obtain a trivial extension of the Dirac matrices.

ZThe two algebras are, in genersl, inequivalent. As shown
above, if we demand the existence of  hermitianising matrix,
two algebras will become equivalent and R and ﬁl

have to satisfy both egs. (7.1) amd ( 7.5 ) which in turn
es that

{gu, ot = :*’-%u:x Fz_ (Tmy

1 this case, the dimension of the algebra reduces to 17
s v R
Pﬁ.! Bt‘l E"Ilﬁz ?Eﬁa MI fr"?'D:l‘ )‘ Mim|

the anticommutators commute with all the elements of the algebra
[FH* 5By Baia ]_==:= (7.11)

for all »-v.2
egs. ( 70 ) and ( 7.11 ) and Pauli's Pundamental

The » 1% follows that [, are either trivial extensions
the Dirac matrices by adding geros, i.e.,

gk [D = ] (7.12)

C!"I-”t_',.
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or all the B can be reduced %o such a form by a single
similarity tranaformation.

As an example of such a set of matrices where the equiva-
lence is not immediately obvious, consider

Th= E?%% (7.13)

where FH satisfy eq. (7.1) and may be taken as the Capri
matrices. Then Ti* anticommute and

{1—11.11. T.\-J ?5 = E'%F&JTﬂl ﬂ'.'l#}

TPurther || have the form

i X & W
i - O -1 0 |&
= g = (#

Lo Yo O 4

Q S (7.15a)
"[_11‘ 1 s = o
0 =Yy’ O
(7.15b)

he figures on the right indicate the number of rowa in the
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I% is not at once obvious that they can all be brought by the

eseme similarity transformation to the form YJ“’ augnented

by seros. However, consider the transformation

’ i
T Uy o
-'3 Xo i
W= 4=-)& o O
o 0
O },ﬁ s ] . (11-11!}
on € o 7
el (7.170)
S
O ?u 0 J
o 0
'-[_'F i O - o

y % U &

s OB
B =g
5 a0

3 ia & trivial extension of the Dirac metrices by adding
geros. However, n hermitianising matrix exiasta in this case,




Tpi= My
where
l'\']:__ UTE,.-UJr
1 0 2 ©
?'5: 20,
(S T | o
0o o 1

The discussion of the previous section indicates that by
more of other spins and then requiring that

one can have a hierarchy of

(KA L (k42y (k4D

i {ikK+2)
B pe LBV 0 B 23‘ “Fuabui-. pe
(Ea'.)
fov)  lkgryg  CRAE (k+2)
“;‘# > B %P"ﬁ..,}xk *?_‘3”}&;“'"“&

(8.11)
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with the notation

(K+2D (K42 (R4 et )
Brogzps =Pt Bra Bps

the supersceript K refers to the minimal equution satisfied by
1 the matrices
K2 S

; = B

order of either anlgebra is 4K14¢ 45 and the
4~

realigation of the K‘h algebra can be constructed from the

) algebra as will be demonstrated below. The method is

quite snalogous to the one employed by Alladi EI!'.ll-I.':.'i.llu:\nla in

4he diseussion of Clifford slgebra.

As en example, we consider the next higher member in the
lerarchy after the one considered in the previous section.
E=2 in eqn.(3.1),

@ ¢ E'H'E = (&) (&)

BH'FHL [)1] EF}- ?__'a'mf} $H| ?pm.
(8.2a)

). @)l &) D) ) @ (@)
{@F’ P ?(?1'“]3':‘1 "‘3‘#3\?\-&;?‘91

I

(8.20)
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The nrmiihc algebra in either case is 261. Ve note that

eqn.(8.2a) contains the Dirac algebra end eqn.(7.1) as subalge~
bras, while eqn.(8.2b) conteins the Dirac algebra and eq.(7.5)

‘a8 subalgebras. A typical reslisation of the algebra (8.2a)
is the set of matrices

a K" 4 o }(Erj 0
@) P ®
Pr = @ AL
Fe 0 o Yp (8.3)

}qgf] is an arbitrary matrix of four columns and XE :
48 en arbitrary matrix. The hermitian adjoint of this satisfies
90:(8.2b). We mote also that a iypioal oharssteristic of the
above matrices is that there are entries on the vertical (or
horigontal) 'Dirac tails' end on the amdjacent column (or row)
Tespectively. Again we notice that the two algebras (8.2a) and
(8.2b) are inequivalent so long as a hermitisnising matrix does
not exist, that is, so long as 'Y ana ¥ are not

ero. Following the treatment in the last section, o satinfy
rther symmetry properties we choose
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(4] o 8 0
[}
’-O o n(g,)aﬁ
)
x‘“ﬂ & g 9
ﬁﬂ—_. j_l.'.l = .
o o o 1

L o o o O
| S e
x%}an H
@L= o ol 0
o oo gV
0
6 o oY, O (8.4)
un}'?}a - 41
L~ T TR o
L

For getting the motual matrices, we start with the reduci-
le representation

D=(hi)@®2(0rk)B2(L 0) (45 1)
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In the Wild besis we conveniently write fo 8@

r o o o8 0
6 Cq O o
Gle e ol
@L’H 1 o 0 o
5 =
9 o o 1
s, (5]
{jﬂ'fac
LI L
- =

(8.5)

where c, and Cz are arbitrary conatants and finally calou-

late the spinor form ueing Bhabha's prescription.
ces have as their minimal equation

These matri-
B :igf; give the
- gorrect opin 1/2, and matiafy the algedra (8.2a). The hermitian
~ sdjoints will satisfy eqn.(8.2b) but not eqn.(8.2a). Hence the
algebran are distinet and a hermitimnising matrix does not
exint.

1f we impose the existence of a hermitianising matrix on

matrices satisfying eqne.(8.2a) and (8.2h), then the two alge-
‘bras collapese into one giving

'“)"1’ 'E‘r/\} - p_g*};g B% ‘l-‘)

B, with our minimal condition [, - >
bra.

defines a new
An explicit example of these matrices can ba obtained
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.: nJ" : Al
D= (12)®3(0:4)®3(4 ) B 1) (8.7)
In the ¥il4 basis
== g8 60 o B ()
& g o ©|M@
s B L GOE'J
OIRRRE-
J| o DG{E_J
?G:DD g o 1 (2) “.a)
AT TR ¢ S *®
o & D c O O &
o o e o O &
LC' Qo o (4 : J@d
n the spinor form, the matrices are given by
(o S = S - Ebﬂifﬂ
oc © O |mw
D
{0 & o @)
Bo= o o o @ _
o o0 @)l 0 O =
(3
5l O 6h O (8.9a)
' (&
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o O

()
e
o o
Dﬁgﬂ

PL i 0 o -7 ".9"

jh the hermitisnising matrix given by
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9. Bplutions of the New Equation:
Let us study the solutions of the new spin half equation
~ where the matrices satisfy the algebra eqn.(7.1)

Ceptop +myap=o (9.1)

y v
glieig s =g gn (9.2)

r ﬁﬂ-m “ﬂitg-'I} ‘" ﬁ!b and “1“ FE = ]Igu one ‘.“
o [ *L.(‘?ﬂé*n —Brd K) w Wy =0

=1y 203 (9.3)

T ot (9.4)

(9.5)
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We can rewrite eqn.(9.3) as

U W= [ =il 3 « Fm )Y,

: +6
=‘T‘:(~—L, T.%—r"m}’dﬂ Shis
¥e notice that (Capri®’) Y, satisfies the usual Dirac
equation with the Hamiltonian given by
e T T2 em) 8
—i_“:% obey the algebdra
o=
{TH?TILJ?E = = f%ﬂjb (9.8)
The unit element 1s split into two primitive idempotents
and |- FEE* as ‘
%
V=g 401 82 (9.9)
Any operator A is therefore split as
B i
A= BoABe + (=B )ALI—pD)
+ Bri' NCO=Bs ) + (- ﬁE)AFxf‘
(9.10)

by multiplying ean. (9.1) by (1-pi)  we get




W?_-: ("'F%jr‘df‘

=1 I g ‘%)

= =l ] Pad (V® D Wy
= Bxog

(9.11)

it is interesting to note that the interdependence relation

(8.11) does not involve time derivetive and is reminiscent of
the usual higher spin theories.

10. Minimal Eleotromagpetic Coupling:

We shall show in this section that the megnetic moment of

8 particle satisfying the new eguation is identicsl to that of

the Dirae particle. %Ye consider e partiole of charge e in

& minimally coupled electromagnetic field. Ve write the wave
:__“I“iﬂl 58

(B + M) Y=o

(10.1)
ﬁ-___:DHhﬁ = IJQBD —-ﬂDkﬁ'ﬁ.:Dn o —
P : 2 (10.2)
1 >SS K 8 )
(10.3)

Capri®® we premultiply the wave cquation by T e




%o arrive at

L1.13ﬂruf‘.1 = _ﬁ- (;:’_JL-—- :12; l) ?‘ﬂ(\n
™
+ B (~CP +m) Pa Yy
w A it F b ke Y

4w

[Dps D] =teF,, .

2

arrive at

L‘a;'trurp/‘ = ep\uw& +Tu (_LT_‘KDk—k‘Wj”%

PoZ = B (D« %Eﬂ“TL]FkQD.

-'.L‘thsfrq = Qf-\u’Uﬁ ] AT (—k:.‘l:l:[_:’ --'|-F‘:f'-r‘|\]|‘.‘~y_,Il
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(10.4)

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)
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It is clear that, at the stage of eq. (10.4) an error in the

mmerical factor and sign in the last term led him to on
additional term in eq. (10.10).

However, eq. (10.10) shows
that, confined to

y the magnetic moment of the particle
49 just the seame as for the Dirac particle.

The above calculation can actually be made much simpler

using the algebra given by eq. (7.1). We merely premultiply
eq. {"01) ‘.’ [30 to EIt

i?ﬁn (—L:E!} 'i'(‘mjr\}p ]

(10.11)
~ LR f By s s
C g BpBo +m BsBo )Y = AR
-; reiore,
B =T DH SR J =0
Bo( - D" putrm)N )
F‘hlr”(’ =Y
o, =@ Mol + o (D gt m) W
(10.14)

7 ——-.@ﬂ'q +§E|{;"'-..-r|-? _lr_,-,.,-,}f‘qf
Lot Vs W = A (10.15)
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Hence the magnetic moment
_lt the particle is just the same as that of the Dirac partiocle
of mess -

which is identical with eq. (4.10).

However, the interdependence relation eqn.(9.11) would be
‘changed and it is not clear at the moment whether the problen
of inconsistenoy pointed out in Ref.14 will exist in the case
of the new spin-half field, when one tries to quantige the
‘theory.

An independent calculation by Menon>' shows that for the

‘equation obtained by using the other algebra (7.5), the same
v of the magnetic moment is obtained.

"::_ . ml‘

It has been shown that Phabha equations can be written for

mags and unigque spin particles. The unique mass is.

ibtained by imposing Harish-Chandra condition and the unique

can be projected by suitable projection operators. We

ave also shown that if one replaces the disgonalisability
ondition of Po by weaker block form we can get a hierarchy

fof” tions for a spin-half particle inequivelent to the Dirae

.gfllnl, arising from & hierarchy of algebras., We give repre-

htations of these algebras. We study the propertiecs of the

i=ap: equation in detail. Ve show that the hermitis-
lping matrix does not exist in some cases.

in, This we do not
#l, 18 8o sacrosanct ns the Fierg-Pauli equation studied by

sd 20 haas a similar property although one can construct
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conserved charge/ current densities. MNinimally coupled radi-
rnok

ation field does distinguish the new equation from that of

Dirac's ms it leads to the same magnetic moment., It is hoped

that other kinds of interactions may poosibly distinguish these
inequivalent descriptions of a spin-half particle.
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Relativistic wave equations deseribing the neutrino have
attraoted the attention of many people in the past. Shortly
after the introduction of the relativistic theory of the elec~
tron, a two-component theory was proposed by 1’--;11 for the mass-
less porticle. The Weyl equution

e (1.1)

where . are the three Paull matrices and ¢ 48 & two-

gomponent spinor, is known to be not invariant under the opera-
tions of parity reversal (P) and charge conjugation (C) but
invariant under time reversal (%) and the combined operation OP.
Originally, this form of the theory was discarded on the grounds
that it did not give a parity inverient equation. However ,under
| the impetus of the discovery of parity ron-conservation in weak
interactions, the two-component theory was rm“da because it

‘wes then evident that the former objection was not cogent.

A second wey of linecrising the Klein-COordon equation to
describe massless spin-half particles is to write a wave equation
"_i_:ltlumrnu type in which the mass parameter is set equal to

¢ 7,8.8anthanam and AR.Tekumalla, Lett.Huov.Cim, 3, 122 (1972)
+ AR, Tekunalla and 7.5.9anthanam, Lett.Nuov.Cim. 6, 99 (1973)
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gero. Thus we write
(Kplap = LoV

m X are three 4 x 4 anticommuting matrices and

;ll 8 4-component spinor. The theory developed for high energy
‘messive particles can be extended to this case.

' Yet another method, and one inequivalent to the above, is %o

singular idempotent linear combinations of the Dirac matrices
‘without explieifly putting the mass parameter equal o mero. This

‘hag been known in the literature long huk’. Recently, attention

hes been drawn to this faset by !ukunh‘. Sen antn’ and Santhanam
and Chandrasekharan®,

s

In this case, the existence of five mutu-
8lly anti-commuting matrices in four dimensions is suitably exp-
loited. lNormally, in writing a Dirac type equetion for massless

# particles, one starts with the wave equation

(P Hhmf)ap= *—‘Bg (1.3)

m=0 ., However, one can replace m here by M so that

HW= (op + MBI = ap

(1.4)
dE

M: “W'IT'E' +|"'E'i"|2_
|

s substitution does not jeopardise most of the relevant inve-
noe properties and, in general, eq.(1.4) can be transformed
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% oq. (1.3) by a change of representation by a similarity trans-
formation. This transformation is sccomplished by

T e B (1.5)

L-mcf_-_ Sits
MY

8nd the transformed Hamiltonian H' is given by

S AP +op (1.6) |

"

1)z
[ o 2
™ = (Ms~mm, ) |

herefore oq. (1.4) cen be written in the ususl Dirac form |
(p + pw'yap' = vy (1.7

2t
P= Ty

ever, this transformation is not possible if ’mT'-: fmf'
e, if N is singular. In this case we get

[+ (i2y s3] 4 (1.8)

 was whown by Bpabha® that such equations sre plausible. He
nted out that M gshould be of the form N = rmia where
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f 4s ldempotent, ie. p'_ g , which immediately implies

that P is singular unless it is unity. The latter situation
~ corresponds to the usual Dirac equation while the former yields

the above equation. It had not relevance them and thus failed to

atiract any attention. But later developments in both theory and
. experiment, suggest it is worthwhile to investigate the invariance
properties of this equation. One should remember here that m
does not refer %o the mass of the particle. It has been inter-
preted by Sen Gupta as a measure of its chirslity end an !.nt:i\.min
property of the particle, and suggests the possibility of parti-
g'." lee with gero rest mase but not coupletely polarised along their
ption of motion. This property is descrided by the new para-
.- er m. Another feature of this equation is that the llllil'lo-
nian is not hermitian in the ordinary sense, which suggests an
inite quantisation of the fiel ‘.

Santhananm and Chandrasekharan® have shown in 1969 that in

e case of massive spin-half particles, even il we descridbe it
& wave function in 2" dimensions through an equation con-
laining 2n + 1 parametera, it can s$1l1 be brought to the

: I Dirae form involving only four anticommuting matrices

[ & suitable transformation., In the case of massless particles,
e equation ean be reduced to the form of eq. (1.8) involving

Yo anticommuting matrices, two of them ocouring in & singular
nt combination. It is known that there are 2n + 1
anticonmuting matrices of dimension 2" x 2% which form




81
8 complete set of elemente satisfying the Clifford mlgebra of
dimension 2" . These matrices are essily constructed using the
. method developed by Remakrishnan'! . The mos$ general
equation of a spinor particle which makes use of all these

|..I‘

2n + 1 mutually anticommuting matrices can be written as

BHP= (o + oo mast gt + Mot mag]op
= L‘ﬁ‘-ﬂP
o (1.9)

slp = dipy, + da pat dapy

J ':{QTJdij‘: 2_5-”‘,1'__; T-‘SI:DJH.._.,E"I'L

P
o 2 2
B o =2y (1.10)
4 /%-_LI'
| the tramsformation by T given by
N ﬂiﬂ(mqﬂq—ﬁ—-- T Mam Xam) Zm};)
=0 F = A= 4
a7 2 ,lﬁ amh T
( 57 oI : (1.11)
;'5.=f+

(1.12)
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where
2m
[} 1 &
QTY} ). = WQL—' Z n’ﬂa
=2
‘Here again, the transformation does not exist (T becomes singular)
l am
| "!"’"4-
Mg
0 that
Y=1
Lo, 7] =0

Now eq. (1.9) takes the form

[Q{_E MR (I y)] Y=o (1.13)
b
. f':_-__l is of the same form as eq. (1 .B}.@i Y) is, of course,
and idempotent.

More recently, Mhohuh. has given an equation whiech is CP

eriant. Here agein he uses & singular idempotent linear
ion of anticommuting matricee. lils equation ean be

II:.'-: “

| [“—"E*W(HD%JM”:"*% (1.14)
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In the next two sections we shall analyse the most general
two-component and four-component wave equations for a massless

8pin-half particle and study in detail their invariance properties

r the discrete tranaformations €, P and T. The equations of
oka and Pushohich emerge as special cases of these.

We shall
d that some

of these equations are CP and CPT non-invariant,
particuler, we shall find that some of them are CP end CPT

on-invariant but T (in the sense of Wigner) invariant. This is
part ly relevant when people have started discussing the

bility of CPT violation in weak interactions’.

In the fourth section we give the transformations relating
ke Hemiltonian in these cases to the better known Dirae and Weyl
iniltoniens and point out that this similerity does not imply an

tity of the inveriance properties under the dimerete symmetry
ransformetions,

LLTE Y Sy

2 el Hiem ! = LEL],
Sationn i

- We shall first consider the two-component equstions. If we

t ourselves to the striotly covariant equntions, where the
concerned are striotly numerical, the Weyl equation

the list of all possible equations. Hgwever, as

10 has pointed out in comnection with his two-component
iation for a spin-half massive particle, the uniqueness of

gennes;
-’l'l oy

ae's faotorisation of the Klein-Gordon squation hinges on the

damental mssumption that the matrices involved are independent

time. If this condition is dropped, it is possibla %o
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write even two-component equations for apin-half particles.

This he calls the 'Dirsc dichotomy' . We phall here consider the

~ oonsequencee of relaxing this condition for messless partiocle.

Let the massless spin-half particle be deseribed by the wave

Z-qmtlgnu

(9= -+ B)‘{L},tnﬁéﬁ e

here m is an arbitrary parameter and 3 is 2 matrix such that

Lt R U (2.2)

(2.3)

S0 that ¢ satisfies the Klein-Gordon equation with zero mass.
[hus the m here is not the mass of the particle. To find the

gt gensral form for B , we make the following transformation

i the three o~ = matrices satisfying the Olifford algebra

{ﬂ_u? U_g.} = 9_81.&' : L‘,cj, = s e (2.4)

Tl e AN
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Also we note that

- We now construct the matrices given by
Be = f\;afog- w itR f\:,"p::'\j _K-“—Efé (2.5)

Then, by an analogue of Pauli's theorem, the B, constitute a
set of three mutually enti-commuting matrices with the square of

8ch being I , the two-dimemsional unit matrix. We choose / i
8 the matrix

Tk P2 ]
DA d=l gt —gn o

bbb hppe —hg%P2)

(2.6)
| =l
g ( Py ﬁﬂ":){ p
i {
! Qi e
R ,fi‘—#, E i:f} (2.7)
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Hence the set B, Dbecomes

A
B1= TE
{'.
Ba = PIQ_L "F‘U_.g'
P I

(pr+PE)E
B.= P.Bhﬁl 4+ P G — CFi "|‘F'E_]U_3,

N ———

VT T
PCp +pa )
A (2.8)
= L __EE';_
TE = j!'___ﬁ omd {Bo Byl= 23y
P

In the case of 2 x 2 matrices, the above get can also be
written by observing

(TP)NTE) = Pk +lm (P (2.9)

fon which we conolude o K anticomnutes with T P
'k 18 & veotor orthogonal to p . And since K 4s a vector
'8 3-dimensional space, there are two such linearly indeper-

nt vectors which may be chosen as above. This method, however,
inot be used for 4 x 4 matrices.

The most general matrix which amticommutes with O P

RB= O0.Ba + G3B;

= ((111' '-'D-g‘[_r'_é )Ba
(2.10)
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1f, further I’-o.nﬂtmuuuun

LT 2
G'!l"" D‘E =0

(2.11)

Thus the most general 2-component equation is

Hrg= Locp +m( 1+ TP (hasi- pollg

Bifi‘ (2.12)

@ observe sgain that

nd the arbitrary parameter m which is not related to the mass

disappears in the Klein-Gordon equation satisfied by § . The

equation is C,P, OP, 7; (in the sense of Pauli) and CP?, non-
at. When m is resl, the equation is however 2.,

reversal in the amnse of Wigner) invariant, otherwise non-
t. The details are listed in Table I.

A different equation™ can be constructed by using a

rical tnntorhnitonlﬂ of the Klein-Gorden equation as has been
by Biedenharn et al in the case of a massive particle. We
that o0 -7 enti-comnutes with the operator 8.~ (| )

L=rxp is the orbital angular momentum operator sand
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T and p have their usual quantum mechanical commutation

relations. Further, o-p  also amticommutes with B.- (o p (o l+1)

Thus, choosing & suitable linear combination of ‘2 and l, as

above, we construct the following equation for a spin~half mass-
less particle.

Hi@= [op + W4+ep ot +4)]¢= vad

(2.13)
2t

This equation is also C,P,CP and OP?,, non-invarisnt in contrast
to the Weyl equation but, for m real, 7,
details are listed in Table I).

This is becsuse of the mixed
properties under the discrete tranaformstions of the second term

in both these eqs. (2.12) and (2.13). It is interesting to note

that the possibility of COPT wviolation that has already been
envisaged, although in the neutral K-decay, could as well

coour in weak processes involving the mtrino’.

Ve shall now analyse the most goneral four-component wave
equations for a massless spin-half particle snd study the inva-
riance properties of these equations under the discrete trans-

formations.

Let the particle be deseribed by the weve equations'>

Ry = (3 +mp) W (2at) = LA
3t

(3.1)
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where m 4o an arbitrary paremeter snd A is a metrix which
anticommutes with o p  aend whose square is sero, so that
satisfies the Klein-Gordon equation with gero mass. Thus the m
here is not the mass of the particle. To find the most general
form for A we make the following transformation on the five

* -matrices satisfying the Clifford algebrs  (, , that is

{dpy av}= 2800 - iR
1 2 = / !-'-'}l'-r’-— 1.2, 3
e k (3.2)

o5 being given by the product of the firet four o &
Ve choose the C 2 a8

[n U"i] :
= Lo=ih2y3
T Z
T o:[
G{q_-. [::j __-[ _F"

(3.3)

A5 =LV P

s JEAS
Yo

s denote the Pauli matrices and I the 2-dimensional
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unit matrix. VWe now conatruct the matrices given by

Ap= Npv oy (3.4)
with
Jr\P.ﬂ hpl‘ 611'}‘

(3.5)
Then, by Pauli's theorem, the -ln.P, constitute a set of five
mutually anticommuting matrices with the square of each being I,
the 4-dimensional unit matrix, We choose A as the
matrix

‘%h fpe ft? 1 o

N = Fpa. “% SR C 2
4‘?3;’1 JE‘PJFR -rL{]pr;,)u 0

w2 R (3.6)
o 0 @ % i_
where
y ; 1
f= B §
(Pt PtPa)’
ey b
‘3 {ﬁg'nlrrb"i'
0
PARDE

(3.7)
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Hence the set A ve becomen

A= QE;
Ag = dupq— A2 Py
(P:HP;L)% |
#,'3 » ::J(témr.’g-i- o2 PRPE_O‘I?*{FFTE} - U A Ag,
Ma?**d?:?)lf
Ay = o4
;"1;--—— olg -

(3.8)
In contrast to A, and Ag 3 Ay and Ay involve the components
of momentum as entries. Thus we find that there are only 8
linearly independent matrices anticommuting with A= E‘.E‘
They may be written as

‘b(gt} A%J A'{,-,I 'P*"J_J Al{l‘-ﬂa A}, ‘Pi'm )‘!'IFJ

The most general linear combination of these matrices may be
written as

A
A= Z - + C .-‘rlf!l )
#( S (3.9)

The square of each matrix in the sum is a scelar and ‘i““

anticommutes with all other members of the set except A py

where piU . Therefore, if A% is to be a scalar, the

coefficient of ApAfy  uiy. must be gero. Thus
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bty byt =
et i (3.10)
or
o by @ .. .
G O o L) (3.11)

Thus the moet general linear combination of these matrices such
that its square ie a sealar may be written as

A= @+ 0 A)(Rehg+a3 P+ Ay A+ g Ag)
(3.12)

where o, are arbitrary. If eq. (3.1) is to represent a masa-
less particle, then

|
gt (3.13)
Hence we have
S SN e e
Lﬂhﬁ_ql,;{ﬁﬂ-l_mE_ka'f sy =0Q ‘-’-1‘}

Therefore the parsmeters 8, must satiafy the relations

Qf'_ﬂﬁ! =1}

Qr, 43, A4, 05

srbitrary, (3. 15a)

arbitrary (3.15b)
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Thus eq. (3.1) describing the messless spin-half particle can be
written as

Hrap = [ot-ps (1 2 }(EEQT,&T)] = L.%—rg

with e, arbitrary (3.16a)
or

: Y o o
Heh = [op +(as +arap) (Eleﬂ'Tjjﬂ,lﬁ =Ltk

1
with
7’5; g
A:=0 ! ]
e J Ko s erditrary.  (3.16b)

%he most interesting results come from the anticommutativity of
oy @nd <5 , although the presence of the non-eovariant

terms may have interesting implications . BSome special cases

of these equations have been considered in references (4,5,6,8)

as outlined in the beginning of this chapter. Among the cova-
riant equations, we find that the equations

[P+ mBeepaeys)]ap=cd .
F P2t p=col (3.17)
or, more generally,

[op +£ 0+ P (1 £T)]ap= 3%
ot (3.18)
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have not been considered earlier in reference (8). With m real,

the first of these equations is P,0 and Ty non-invariant but
op, T and 0OPT, invariant. So also the eguationa

[c_-if_ + M |+ c{-%}’fjj:qﬂ: L 2

i (3.19)

or, more generally,
[q_.E+{3{‘;'1—_|‘. gfjia4+m5~f5]]¢: Cop (3.20)
bt

All these equations are particular cases of eqe.(3.16a) and
(3.160).

Bq. (3.16a) 4s €, 77 , OP @and OP?, non-invariant
(where T; end 2, refer to the Pauli and Wigner time reversal
operators). It i8 P Ainvariant if ay = 0 and T, invariant
if a5 8, are real and Gy 4 85 are pure imaginary.

Eq. (3.16b), on the other hend, is both CP and COPT, inva-
riant with suitable choice of parameters 8y - Ve give in

fable II the behaviour of these equations under these discrete
trangformationa. This will be useful in the construction of
equations with any desired property under the discrete tranafor-
mations. It is interesting to note that in both eqs.(3.16a)

and (3.16b), the Hamiltonian is non-hermitian, (though it is
disgonalisable a8 will be shown in the last section), in contrast
to the Weyl equation where it is hermitian. Hence the same
remarks apply here as in nn"ti.on 1.
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We also notice that 19;1 is not necessarily idempotent
but is factorisable into two commuting matrices at least one of
which is idempotent in the sense I!-II « Thus for eqs.
(3.16a) and (3.16b)

PA =Xy

(3.20)
where, for eq. (3.16a)
X = (1% E{,E}
= P(AaAg+ - + as As)
(3.21)

end X 1is idempotent in the above sense and commutes with Y,
TFor eq. (3.160)

X= fo(azAyee- +RrAs)

= ﬂ—;d';:
LA S (3.22)

where X ie idempotent in the sense
><{f‘—' 24 A

and commutes with Y .

In fact a similar statement can be made for A, A where
1= 2, 00y 5 "‘1 A 1is factorisable into two commuting matrices
at least one of which is idempotent in the sense I’ =a X .
Also the matrix A can be factorised into two matrices one of
which has square gero. Thus for eq. (3.16m)




98

A=[(1+ Eif_sjlf;]]:p{aq F\i+---+ﬂvfﬂﬁﬂ

(3.23)
where the first factor has square sero. TFor eq. (3.16h)
we have
) d
(Bakg - +erhs) o .30

The spherical factorisation of the Klein-Gordon equation
cen also be used to build, yet another class of 4-component
relativistic equations for a massless spin-half partiole~: with

preseribed invariance properties under 0,P,2. We note again the

following 4 x 4 matrices mutually anticommute, nemely

’ﬂ%l: _ELE J

(3.25)
where ol f end Vs are as defined earlier. Here we have
I=L + & = Tptal angular momentum and Jhﬁ: 3‘{&-'—#11%‘(3
This ensures that A,° and Ay’ a@et on )’ as unit operators.
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Thus there are 8 linearly independent matrices anticommuting with
% f . They may be written as

A-?J Pess Aag Asy B(A 9 A3 Ay BB

As before, the most general linear combination of these matrices
puch that its square ia & scaler may be written as

A=00 + sipn( QoA+ ... casAs)
(3.26)

where a; are arbitrary. Ve write the equation for the maseless
particle as

(P +mAyp=c Op
gt

It this is %o represent & spin-half particle, we require

A2 =0

Hence, as before
- 2l il 19
@Lm—m)( {11+&3+q+-|- q;) =0 (3.27)

Therefore the parameters must satisfy

2 %
Ao—q, = i
Ui 08y~ ,as arbitrary (3.28)
or
5
— 9 ,
ZuilQe =04 Qi srbitrary  (3.29)
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Then eq. (3.1) can be rewritten as

La:p+ (1% g-f}(a"umw-- +u5AnJ]=qx:

= Lrhd (L_E“J (,.m)
b
with 8y arbitrary

3 734
=
=55
1]

H—utlliﬁ = [g_r + ((Go+ ﬂ|q-§}{ﬂgﬁ&_+-- -+ ﬂaﬂﬁjﬂ{h“ﬁ

=La®
ot (3.50b)
with _ i
2. Q=0 ; (o, 0 arbitrary
q= 3

These equations supplement the ones given in the last
section. We list in Table III the invariance properties of these
equations under discrete transformations. The same remarks as
earlier about the hermiticity of the Hamiltonian apply here too.
Here slso EA is factorisable into two commuting matrices at
least one of which is idempotent in the sense Iz =alX.

And A can be factorised into two matrices one of which has
SQUAre Zero.

Thus we have demonstrated that wave equations can be cons-
tructed for a massless spin-hslf particle with any prescribed
invarisnce properties under C,P,T. Ve have also shown that a
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possible CP and COPT wviolation can well be incorporated in a
f-invariant relativistic equation for a massless particle. The
further implications of these equations are yet unclear although
the corresponding equations of the massive particle have attract-
ed the attention of llnrlo.

A vital feature of all the above equations is that the Hamil-
tonian satisfies Hz = p! Just as in the case of the Weyl
equation. The eigenvalues of N are therefore given by -+ p
in all these cases. Ip fact for all these Hamiltonians, the mule
tiplicities of the eigenvalues as also the elementary divisors
are the same as can be seen from what follows. Hence the Hamil-
tonians in all the 4-component equations including the ones given
by Sen Gupta and Fushchich are connected to each other and to the
4~component Dirac equation for a massless particle by suitable
gimilarity transformations. Himilarly the two-component
equations are connected to the Weyl equation by a similarity
tranaformation. Further, the Weyl equation itself, repeated
twice along the diagonal can be related to the Diraec equation
for s massless particle by a similarity tranaformation.

These similarity tranaformations are not all unitary trans-
formations. Indeed they cannot be, for the Weyl Hamiltonian and
the Dirae Hamiltonian for a mmssless particle are hermitian while
8ll the others are non-hermitian and since the hermitieity of a
matrix is not changed by a unitary transformation, a hermitian
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matrix cannot be unitarily similar to 2 non-hermitian matrix.
Further, a sallient feature of these tranaformations is that they
are not purely numerical matrices but involve the components of
momentum and hence one gannot conclude that the invariance pro-
perties of all these equations under any transformation will be
the seme. In fact, as will be shown presently, the Weyl Hamil-
tonian iteelf repeated twice along the diagonal can be related
to the Dirac Hamiltonian for a massless particle by a similarity
tranefarmation (involving, of course, the components of momentum)
and we know that while the Dirac equation 48 C and P invariant,
the Veyl equation is not.

Let us firset find the transformation connecting eqe.(3.16)
%o the Dirac equation for a massless particle. We wish to find
§ such that

S WL B by i
where
and
M (4.3)
We note that
g g
NE =30 (4.4)

Ve observe, followkng the U matrix method of Ramakrishnan,
that

Hr(Hr + Ha) = (Hr+Hp) by (4.5)
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and
Hence, Lt:r~+i45 i iy
S=(s) L L(2aprmr)=fz+th ki

Q.la ‘E‘_F

patisfies eq. (4.1) and is therefore the desired transformation.
Actually, § 4s arbitrary upto post-multiplication by a matrix
which commutes with g for, if X 4is non singular and
commutes with [

(%) Bg (S%) = X ¥pX = Hp (4.8)

80 that S = ' X also tramsforms " %o /0 . Choosing

X= «:_:-5_~E s from eq. (4.7), we obtain S as
| : = '
A e 0 S e (4.90)
and -
§ = @Jg__w,a af = exp-gmhAdp
(4.9v)

Ve oan now extend the above procedure to obtain the trans-
formation which diagonalises 1 . For this, we shall first
£ind the matrix which diagonalises Hp . Again, as before,

Ho( Hp +[§P)=QHE}+ﬁFJPP (4.10)
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and
(Hp+ {33".}&]: QFL (4.11)
Therefore
- F""LP<HD+WJ (4.12)

or, since again U' is arbitrary upto postmultiplication by -
matrix which commutes with (5 , the Hamlltonian Hp i dia-

gonalised by
r(:-w ?PJ oxp (a Eﬂ ) (4.13)
V- RO-abp - apepps) -uT W
that is
U HpU=pp (4.15)

Hence, combining eqs. (4.1) and (4.15), the transformation which
disgonalises ! - is given by

~1

THET=@p (4.16)
where

T< SU= op (LA op )axp(XpEL)
(4.17)

or explicitly

ﬁl: (r+gnmﬁﬂ &P (1% up@) (4.18)
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For the case of H  , the transformations which conneot
it to |l , end which dlagonalise it will be given by the same
expressions as eqs. (4.8) and (4.17), except that here (I
and hence A are given by eq. (5.25).

Ve shall now derive the tranaformations which conneet the
2-component equationa to the 2-component Veyl equetion. The Hamil-
tonian in the case of eqe.(2.12) and (2.13) is given by

ity e Rk (4.19)

where the matrix B is as given by eqs.(2.10) and (2.13) respe-
etively. The Veyl Hamiltonian is given by
= TP (4.20)
As before, it can be shown that the transformation comnecting
Hy ana MW 4 given by

—| _
R HIR b (‘-ﬂ)

where
R = ‘l'f‘fgﬁ.‘?"f = LxprBo P .
(4.22)

Kext we shall find the tramsformation V which diagonalises
H_N « o have

Hw (2P +o3p) = (TP + o3p) oap (4.25)

with

(gop +73p) = 2bCP+ps) (ot
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which showe E*'j?+u-5p is nonsingular. Again we pomt-
multiply by o (since the transformation is arbitrary upto

post multiplication by a matrix which commutes with ©3; ) so
that we get

—|
VoH WY :ﬁ;F

(4.25)
where
- Ji__- ;_3(1 D‘-‘AU“J
V= [MWF}J] & Bepos (4.26)
and
V= {J—“]fi(wﬁ FI?)
Rike) i (4.27)

Hence, combining eqe. (4.21) and (4.26) the transformation which
diagonalises Hl‘ is given by

@:1141 q= o3p (4.28)

= R'u’
“ (4.29)
Ve shall now show that the Dirac Hamiltonian for & masssless
particle is iteelf pimilar to the Weyl Hamiltonian repeated
twice along the diagonal. We know
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= U0
P t[:f’*J
Bt 073 (4,30)
where P is the permutation matrix
{1 a'e o
= il ‘
P [SEQEJ (4.31)
oo

Combining eqe. (4.15), (4.25), (4.30), we obtain

_| —
W HpW = Hw (4.32)

W= Uf \fi
(4.33)
It has been suggested by Pushohich'> that eqe.(2.12) and
(2.13) are isometrically equivalent to the Weyl equation and
eqs. (3.16) ma (3.30) are isometrically equivalent to the
Dirac equation for a massless particles and that all these
equations have similar transformation properties under C,P,%7.
However, we point out that the similarity transformations
connecting Hr o Y, end lHr amd Hm %0 HD  are
not unitery since 1, Hmr, Mir are non-hermitisn while
Hw snd Hp  ere hermitian and & non-hermitisn matrix
cannot be unitarily similar to a2 hermitian metrix. Also these
transformation matrices are not purely numerical and hence the
invariance properties of these equations under the discrete
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traneformations will not be the same. Indeed, if it were so,
the equations of Takuoka® and Tushohich® as slso the Weyl
equation would have the same transformation properties as the
Dirse equation for a massless particle which we know, is a
patently incorrect conelusion.

5. Gonolusiong:

Thus we have analysed the most general two-component and
four-component wave equations for a mageless spin-half particle
using our non-coveriant factorisation of the Kliein-Cordon
equation as also the spherical factorisation and studied their
transformation properties under the discrete symmetry operations
C,?,T. We have shown that it possible to write an equation with
any prescribed transformation property under C,?,7. In particuler,
we have shown it i= possible to write a CP-non invariant two-
component equation. Ve have also given the transformations
relating the Hamiltonian in these cases to the better known
Direc end Weyl Hamiltonians and shown that this similarity does
not imply an identity of their invariance properties under the
discrete transformations. The future implicetions of these
equations are yet unclesr although the corresponding equations
for the massive particle have atiracted the sttention of many.
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F IRAC

1. Intzoductions

' Several transformations yielding equivalent representations
of the Dirac equation have been proposed in the paat like the
Poldy-Wouthuysen® (F¥) and the Oini-Touschek® (CT) transfor-
mations and generalisations thereof. The W and CT transfor-
mations are useful in the discussion of the non-relativistic and
extreme relativistic limits respectively of the Dirac egquation.
Erikeen’, Bhaktavatsalou!, Sasvedra® and 43_11_-_1:-‘ have given
generalisations of the W transformationj, In particular,
Sasavedra has shown thl‘; the; W and CT Hemiltonians can be
represented as orthogonal vectors in a 2-dimensional space and
has given a new Hamiltonian which stands in the same relation to
the Dirac Hamiltonian as CT to W, De Vries has extended
this and shown that the generalised W transformations are
connected with a 4-dimensional rotation group.

In this chapter we shall give & simple and elegant method
of obtaining explicit forms of the above transformations by
using the U-matrix method of Rnahruhm'r. We shall use this
method te give expliecitly the similarity transformation between
any two Hamiltonians with the same elementary divisors and then
give a further generalisation of the MW <tranaformation. In
section 3, we shall also show how this method can be used to
obtain the transformation which connects the Dirac equation to

* A.R.Tekumalla, Comm. to Physica, 1974.
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the non-covariant tunn’ of the Diraec equation. In section 4,

we shall give a new equation for a spin-half massive partiocle
based on a different factorisation of the Klein-Gordon equation.

In general four componenta, and not two, are regquired %o

desoribe a state of positive or negative energy for & spin-half
particle in the Dirac representation. The reason for this is
that the Hamiltonian in the Dirac equatilon

HY = (Pt Pm);“P“:L'BiE (2.1)

contains odd operators, namely <« , which connect the upper
and lower components of the wave funotion. In the ™ 4treat-
ment, by & canonical transformation of the wave equution, a
representation is found where the Hamiltonien is an even Dirac
matrix. Then the Dirac equation splite into two uncoupled
equations of the Pauli type desoribing particles in positive
and negative energy states respectively. When the partiecle is
free, the transformation is given by Foldy and I’unthnncn‘ in

2 slaple closed form as follows:

Let 8 be a hermitian operator. Then the unitary trans-
formation

By —\S {2l2}
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leaves eq.(1) in the Hemiltonian form

Ho's o' 2.
W aﬂ;‘ (2.3)

- and any physical variable whose operator pepresentative, in the
old representation is T has for i%e operafor representative
in the new representation

‘l:‘ »

Tr': ekHTe_‘LE
i (2.4)
e
We choose, after W, 5 %0 be of the form
§ = ?;h pop w(k) (2.5)

where w is a real function to be determined so that H' is
free of odd operators. Since & anticommutes with H,

I i e LR
H= oS Ui &y

= [tm (Bw) + ﬁqu M(%N}J@rf +pm)
Pl ens () + passt (£ w)]
*OF [ oi(B) o a2

(2.6)
If we now set

(= M mlﬁ ' (2.7)
P

m,
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the coeffioient of the o-f term vanishes and H' will then
be free of odd operators. Thua

a 2:
H < ﬁ[%*fﬁ]* PE (2.8)

and in a representation in whieh 1 ie diegonal, H' Lp =¢E q)
now has IGMII where the upper components represent positive
energles and the lower components negative energies. Explicitly
the transformation is given by

. LnrJ(;lfS@M,%j ?’&‘“‘“G ﬁ)

= HPF fBL‘m-anJ

[2€CE+ m)]2
(2.9)

The transformed form of the operator - representatives of
dynamical variables in the old and new representations is given
in Table 1.

The W representation is particularly useful for the dis-
cussion of the non-relativiatic limit of the Diraec equation,
since the operators representing physiecal qusntities are in a
one to one correspondence with the Pauli theory.
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There exists another limit of equal interest, namely the
uwltrarelativistic 1imit? where the mass of the particle ecan
be neglected Ifi~vemparison, %o its kinetic emergy, that is,

m oan be neglected in comparison %o p . A form of the Dirac
equation which has this property iz obtalned by chooaing w
such that the coefficient of | vanishes and only the term

in zl(-_llg remains. Thus if

p (2.10)

M 2 /E ~

[P Eies Soup 2 AL | —sept
g k E] (2.11)

B
and the explieit form of € is given by
‘__E ; .u'\ 'f‘\

QL: E{_P+Pw+ EEE]‘%E A

[RECE+ m) ] G
A simple snslogy between the FW transformation and two-
dimensional rotations was pointed out by anﬂn’. He regards
the Dirac representation as intermediate between the ™ and
CT representations, Thus the Dirac Hamiltonian can be written

28
o= pLE wd ¢ fzf'E E Lamb
, (2.13)
— HF:MW o HLT"&J-MG"
where
o — s (2.14)
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"hus if we consider a two~dimensionsl space spanned by the
orthogonal vectors Hpy end N,y , a positive rotation
through an angla_ U will teke the axis [/, %o the
position H which will be identical to the Dirae Hamiltonian
for the alnve value of ¢ « Iherefore another equivalent
Hamiltonian can be written as

HF = = HFWSA;MLS = H'E,,T Cu‘-‘ﬂ
which is obtained from Hn by

Hile ST S
where

S oy T pap
(2.16)
Thus H' stands in the seme relation to HID as lo! to
- HBpy + Oaavedra suggests that this Hamiltonien H' 1s suitable
for the disoussion of massless fermions, the corresponding wave
‘funetions in the new representetion being directly given in

terms of two-component spinors.

This connection has been extended by de ‘Frh-s who showed
that the generalised W tranaformations are connected with a
four dimensional rotation group. His Hamiltonisn is an arbi-
trary linear combination of the fomr Dirac matrices such that
the sguare is 2.
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3. Zhe U-Matrix Me¥iod and its Generalisation:

Ve shall now give a simple and elegant method of obtaining
explicit forms of the above transformetions using the U-matrix
method of Alladi Ramakrishnan' . We shall use this method %o
gilve explicitly the similarity transformation between any two
Hamiltorians with the same elementary divisors and then give a
further generalisation of the ¥W <tranaformation.

Let H be the Dirac Hamiltonian given by
= : :
and U the matrix which diagonalises i%, so that

=|
Uhu= pE (3.2)

where E‘, iz dieagonal. Since H 1is a linear combination of
anticommuting matrices

g I
He s =BT E=(pr)

(3.3)
We observe after Ramskrishman, that
SRR e (3.4)
Bince (H TR [) s again a linear combination of anticommuting
matrices,
o
iRl == A ELE 5ot (3.5)

and therefore it is nonsingular and invertible. Hence
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(H+pE)"H{H+pE)= BE (3.6)

Thus H+!9[- disgonelises H and is a U matrix of H. The
matrix is obviously Hermitian. It can be made involutionary
(self-inverse) and unitary by taking U as

Ul H-f-FE "'1]
[2 ‘E(E—Hmjli

Actually, becsuse of the degeneracy in the eigenvalues of
H, there im an arbitrariness in the choice of the U-matrix.
Thus we can write

Hlch+peXx ] = [Ct+ pedx] pE (3.8)

where X is any matrix which commutes with p and therefore
has the block diagonal form

X0
s [ﬁ M_J (3.9)

where 1'1 and Il are arbitrary 2 x 2 nonsingular matrices.
Thus the most general form for the U-matrix is

£
e il s ol (3.10)

[RECE+m)]2
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Ve mention here thaet the Foldy-Wouthuyeon transformation is
merely a diagonalisation of the Dirac Hamiltonian and is there-
fore given by eq.(3.10). Tor the P.W. transformation in the
cnnﬂnﬁ??ﬂ form, the choice of X i X = | Ve give in
Table I the transformed operators whem X =( and when
X=1, Ve observe that the complementarity between the Dirag
representation and the transformed representation for the pairs

of operations like position and meen position,orbital angular

momentum and mean orbital angular momentum, spin angular momen-

tum and wean spin engular momentum is exact in the case X = 1
(el

m:f@thunywhlnpﬂml-[ﬂ .

If X ischomenas X = = P+ 25  where g:[f;

then VU simultaneously disgonalises the Hamiltonian and the
heliocity opersator.

We now generalize the above method as followa. Let H'
be a matrix which is a new linear combination of the same anti-
commuting matrices but with the same elementary Ihhmw as
H, Thern H' has the same diagonsl form as H which may be
taken as [ E . Hence

i o b= 1
H = E —
( ) 7 (3.11)

Ve shall now construct the transformation 8 psuch that

&

!
GOR (3.12)
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We can write
R CHAH) = cienian (3.13)

Again, singe H 4+ H' is a linear combination of anticommuting
matrices, 1%s square 1s a scaler and it is therefore nonsingu-
lar and invertible. Hence, except when I = -H', we can write

@ﬂkH'ﬂ HCH+HD= R (3.14)

Further, H + H' 48 hermitisn and eince

%
H+1!) = J?Eﬂ%- HH ply = gealar (3.15)

8 oan be made hermitian, unitery and invelutionary by taking

g~ F ot (3.16)
(26 up'aiH)

This result is true even when H' 1is not merely a linear com-
bination of the same anticommuting matrices as H but any
matrix with same elementary divisors as H. In such a case,
the denominater is not a scalar but ean operator which can be
expanded in a poidmd series psince HH' + H'H has elgenvalues
strietly less than !B!. Further, in view of the degeneraoy
in the eigenvalues of H and H' we can write

where X is an arbitrary nonsingular matrix which commutes
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with H' . Therefore, the most general choice for 8 1is

S= (H+HD ¥ (3.18)

An alternative way of looking at this result is to note

HYCH+RH')Y = Y(u+HOH"

where commutes with H,.

Thus the result given by eq.(3{8) can also be written as

S=Y (H+H"D (3.18a)

where Y 4s an arbitrary non-singular matrix which commutes
with H. BEq.(3.8) gives all the transformations given in Ref,
(6) with suitable values of H' and X . Por instance '
H'= opE , sdien 8 X= oifp gies the OF transfor-
mation.
To further restrict the P.V. transformation, Eriksen
imposes the condition

BT
‘ﬁ" tis (3.19)
This is guarantesd by
X =H'
(3.20)

However, Eriksen's ocondition does not uniquely determine the
transformation. For instance, in Eriksen's case, for the F.W.

transformation

~Sid ke (3.21)
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In the earlier section, we required H' %o be & linear com-
bination of anticommuting matrices. 8ince there are five 4 x 4
matrices which asatisfy the Clifford slgebra

(ol olv]= LBy, (4.1)

such 2 most general Hamiltonian is actually a linear combination
of five matrices

0 -¢I
D‘:L;. X2, dj!) 0{4_—"53 EFPE:[ J

EEL O ‘4’!”

Thus

18 4 e iy %)}
Hi= & [{Jmm + éhzlm 1{){'5] (4.3)

The tramformation 5 which transforms the Dirac Hamiltonian
to H' 1is given by

S‘E(H+H’)>€. (4.4)

Tollowing de Vries, H' can be rewritten using spherical coordi-

nates ss




124

: y i ‘_E}ALLM.
H's EQol amin aui B amg S84t PORTL R L e

- ﬂ.a&wﬁ" m“’i Coal 4+ oA Vighs (“hi5)
"'(‘D<'5" Cﬁﬂrr']lj

By defining

D, = EMWMgM&cm, Py= E Ao LAY A,

D, = E ww]m“% e By M= EMA’*} Co g,
A (4.6)
We see et Py, Py Pz, ™MomdX osn be leoked upen s

the components of a vector with length E in a S5-dimensional
Fuclidean space and the generaliszed P.W. tranaformations are
rotations in the 5-dimensional space. All the earlier transfor-
mations can be recovered from this transformation by suitable
values of the angles as listed bdelow

2V =T, g=o
44
i ‘ﬂ“%:: Sl

with 8§ YDbeing given ‘, eq. J3.18.
The case when N=0 is especially interesting. Here
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the Hemiltonian becomes

[
hi= Qe (4.7)

which is anamlogous %o P.W. Hamiltonian with the difference that
while [ 13 en even operator, ¥5  4s an odd one,

In writing a linear relativistic wave equation for the ele-
atron, one begins with the Klein-Gordon equation

(p pu= M Yoxy =0 (5.1)

and seeks %o replace this by equations linear in all components
of p . Algebraiocally the problem is %o fectorise a five term
quadratic of the form

e R e S T R
A+B+Cc+D+E =0 (5.2)

Thias cannot be done over the field of complex nmumbers but ean
readily be done by using the elements of an eppropriate Clifford
algebra. The representation theory of Clifford algebra of any
dimenaion and of the generalised Olifford algebra which arises
in the equivalent problem of linearisation of the sum of n°®

powers

) m
ho Ao A g
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have been systematically studied by Alladi Ramakrishnan in his
work on L-matrix thlﬂl’j « The most familiar example of a
Clifford elgebra, the Pauli matrices, allows are to factorise at
most a four term quadratic. To factorise the Klein-Gordon
equation, therefore, one has %o go to the next higher Clifford
elgebra. Thus, Dirac obtains

(K p+pm)p=EP (5.4)
where
Qo ay}= 28y v v (5.5)
and DL,}.U may be chosen as
. rogv¢ i Lﬁj
o = ':Tl'o] J i ﬂ‘g-— [:0 —L (5.6)

C=12,3 -

As shown by Pauli, the choice of
larity transformation.

However, as pointed out by Biedenharn et al’, the unique-
ness of the factorisation hinges en a fundsmental assumption,

O is unique upto a simi-

that the matrices entering the factorisation are to be inde-
pendent of space-time, that is, they are to represent indepen-
dent new degrees of freedom. If, however, this condition is
dropped, Direc's factorisetion is Ro longer unigque and Dirac's
classic derivation of his equation for a massive charged spin-#
particle admits of & alternative which leads to a distinct new
equation arising from an elternative factorisation of the

-
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Klein-Gordon equation. It is possible to write even 2-component
wave equations for the electron. This is termed by Biedenharn
as the 'Dirasc dichotomy® ie. 1) either the factorising mstrices
are independent of spece time, leading to Dirac's factorisation
or 2) the factorising metrices are not independent of space-time.

The second alternative gives rise to the possibility of con-
structing a 2-component equation for the electron. For now the

problem of linearising the equation

2 - > oz
=k, f%—rm?‘—E:_D

FL—P m
may be treated as a problem of factorising s quadratic equation
with only three térms. This can be done using only 2 x 2 matri-
ces. Thus a two component equation becomes possible. Biedenharn,
Han and Van Dam give one such using what they term as the spheri-
cal factorisation of the Klein-Gordon equation. Their equation
ean be written as

He¢ = (TP +Mym) ¢= EF

(5.7

where o are the Pauli matrices. and

' iz
4K + 4 %; K= —(oL+1)

Tag &b
They also show that the equation is Poincare invariant. However,
in some problems, as, for instance, when the particle is in an
external Coulomb fileld, since m particular point and a particular
Lorenteg frame and singled out, lorentz invariance is not parti-

-
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cularly relevant. They show that applied to Coulomb potentisl,
the equation leads to exmetly the Dirsec Coulomb energies. They
find that particles represented by their equation possess a new
dichotomic quantum number, stigme, given by the eigenvalues of

g = W_Lﬁgm T ﬂ C'__lT IJ_i;:L:i {"n')

Subsequently, Good'° showed that the stigma quantum number coin-
cides with the relativistic parity and Biledenharn's solution of

their equation amounts to solving the Dirac Coulomb problem for

e definite relativistic parity.

The methods of section 3 can be used here too to find the
equivalent forms of the Hamiltonian of this 2-component equation
and the transformations relating them %o one another. Thus,let
Hy and H' given by

H'E. = U—_‘P -g-'T}ET‘lIL (5.9)
and

H'= (0= p Lot + Mydwn6 Con §+ o= p i % 5.10)

This form of H' 48 the most general linear combination of anti-
commuting 2 x 2 matrices in the spherical faotorisation with
eigenvalues + B . Thus Hy and H' have the same elemen-
tary divisors and are related by a similarity transformation.

Zo {ind the transformation are ohserve

H gnr H = =

(5.11)
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and
s
'y = (Hap+ Hp H
Wk +n') = g e (5.12)
Further
f I‘l 9 I [
(Bartt) = RE s iol s He = o callan (5.13)

and hence Hy + H' is non-singular. Thus the similarity trans-
formation connecting l’ and H' may be written as

H'=U HpU (5.14)

ki e T

U=U = — T (5.18)
@'E"+H53H|+HrHF3)'?

U 4is Hermitian, involutionary and hence also unitary. We also
know that this transformation is arbitrary upto postmultipli-
eation of U by a non-singular metrix X which commutes with
H' but is otherwise arbitrary. However, in this case, since
H' has distinot eigenvelues (+ E and -E), X can at best be &
function of H' itself. If X =H' ,

{4+ HpeH !

E'L

'fif¥}giiliiilﬁ#@z]*

U-:

(5.16)
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The non-relativietic and extreme relativistic limits of ll‘
follow directly from this, the former being obtained with H - rr] E

and the latter whem G '= U‘EE .

We shall now show how the Biedenharn Hemiltonian l, in
:I.tl 4-dimensional form that is repeated twice along the diagonal
can be obtained from the Dirac Hamiltonian Hy by a (unitary)
similarity transformation. The method of section 2 can be used
to explicitly derive the unitary trensformation u-nt[ﬁ the
non-govariant Hamiltonian of Bjedenharn %o the Dirac Hamiltonian,
since, both of them have the same elementary divisors and both
can be disgonalised by unitary tranaformations, S

First we observe that the Hecessary and sufficient con~
dit10n®, for the two Hamiltonians %o be connected by a similarly
transformation is that they have the same elementary divisors.
For, if the elementary divisors are the same, the matrices will

have the same Jordan form, say J. Thus,

=
S BHE=d (5.17)
o

S )

(5.18)
Therefore
i e=h o

(887 ) Hleis™ ) (5.19)

and hence, H' is similar %o H.
Now we note that II’ is a hermitian operator and hence can
be diagonalised by a unitary matrix. Again we observe, since
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- 58 A~ L - H8
Hp= @ pE)=@GEI = E (5.20)

we have
HE,(H - -‘I-E’:P E‘}CE—-—E-'-G_E’)
Tgr_—( E+p)2Cl+ &’3:’?):])5‘

(5.21)
_.@B.l.g—rp“ﬁ}{cr“ﬁ-’r?)r'&
[ RECE 4 pd 2Ci+P2lp)] 2
Thus
Ug HpUp =03 E
where - [ is the diagonal form of H; and U the
unitary matrix that diagonalises it being given by
(‘IHB—I-_i')_—-EEJCE_‘*E“f-ﬁ)
(5.22)
[2ECE+p) 20U+ pa/pd]2
gk wid
B8 (5.23)

e

The same expressions are valid when H, md 5" are treated
as 4-dimensionsl, obtained by repeating the 2-dimensional matri-

ces twice along the disgonal. Now coming to the Dirac Hamilto-
nian H; , as shown earlier

)




HoCHo+ BED 4y + E)

—————— = —————= BE

[QECE +MJ]?1 EEHHWJJ};'

Uﬁ HI}UQ = FJE
where
U._’:_ U+:U = o+ PE l
[REE+m)]>
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(5.24)

(5.25)

(5.26)

Purther, F‘ and 0 ere themselves related by a permutation

matrix. Thus
]
P=F o=?
where
—]| 1.0 a6 o
Pepe | 55t
0001

gombining eqs. (- 2la), (5-a5) (5 ay)

~|
UHEU: Hp

whioh, being a product of unitary matrices,

(5.27)

(5.28)

(5.29)

(5.30)

is unitary.
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An glternative way of writing this transformation is as
follows: We write

L X
H}},{I’H},TH[})(_QE +HpHp+HoHB)

: -
={pt Ho) CRET lptn+ Hptte) = Ho

(5.31)

a -4
where the term @E‘PHEHD“'HQHE‘) < here is not a
pealer. However, this expression can be expanded binomially
and the series coverages for the spectral radius of

HoWp+ HpHo <2E « This follows from the faet that the
matrix Hy H) (ss also Hy Hy ) is unitary except for normali-
gsation and hence all its eigenvalues have absolute value l2 .
Purther the eigenvalues of HpHp+HpHp are twice the
real part of the eigenvalues of H, H, and hemce < 8%,
The equality holds only when !Im-i:ln which is not the oase
here. Thus the spectral radius of n,nn+nnn, is less than
2 E° end hence the expression can be expanded binomially. In
particular, it has no eigenvalue as - 2 E° and hence the
denominator in eq. (5.31) is non-singular. With the further
observation that 2t +HoHD +Hyg commtes with Hy y H) ,

we find that eq. (5.31) is true and hence
-
Hp = U-ttel (5.32)
where : i
UoUe U= (HptHo)(2e ™ Holip+Hotts)
(5.53)
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However, U here is the sum of an infinite series.

Ve shall now give a new two-component wave equation for a
massive spin-half particle arising from a different factori-
sation of the Klein-Gordon uuunnn distinet from the spheri-

ecal factorisation of Biedenharn. Thus the problem is to line-

arise
i (6.1)
to yield an equation
He= (TP +mB)gx) =EF (6.2)

—

Ae disoussed earlier in this chapter, we shall sllow the mmtri-
ces to be dependent on the space-time ocoordinates. Then we ean
treat the above as a problem of linearising s quadratic equation
of two terms and look for a solution involving 2 x 2 matrices.
To f£find the moat general form of B, we make the following trans-
formation on the !nul:l. matrices satisfying the Clifford algebra

{WL-)D—';E:'} = :E_SEOL' 4 L"xj = 1,2 3- (6.3)

1= (301, oan [0 ol i
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where, we note

o3 = L'arlcrl

we now comstruct the matrices given by
BL: = ﬁ:&‘[}_}' {"5)

with
Abhf\d[h: SL}' (6.6)

Then, by an analogue of Pauli's fundamental theorem, the B,

Chitas,
constitute a set of these mutually anticommuting mstrices with
the square of emch being I, the two-dimensional unit matrix.

We choose AN 'LE}' a8 the matrix ™
§ ¢4 P2 fps
/\g}' =
'-JP}_ __9174 o ‘5171

L Hpp,  Apap D
R
(p,wéﬂ@a p

AT S
CpirpA

(6.8)

b= _1 .
fortpa)c il
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Hence the set l’. becones

_ o p
B, = Plﬂ‘, = h ER
ChlrP) s
Ba= 300+ papa0s - (ptpiyoy
PCP+PR% s

(ff Pl) [@3?5 FT)J

(6.9)
Also

‘[ Be) BA' E 208 L‘g_'
and

By=L BB =C0 } Ba (6.10)
This construction can be slightly simplified by observing

(P oK) = pF +L e Cpxk) (6.11)

Since px k= -k x p when the elements of p and k comamute,
we conclude that O k anticommutes with . p if k is a
vector orthogonal %o p . And since k 48 & vector ina
S-dimensional space, there are two such linesrly independent
vectors which may be chosen as above. |

Thus a two-component equation for & meseive spin-half parti-

ole may be written as
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e = 2 wpeming= Lol (6.12)

Ba= FLD-' "P'ﬁ_
CP: . Fil)’ti
Ve notice that the Aemiltonian here, unlike the Biedenharn Hamil-

tonlian, commtes with P
¢ cbeld

(6.13)

The ei of this Hamiltonian (or the tranaformation
which diagonalises this Hamiltonian) can again be easily found
using the U-matrix method. OSince

Ha@Eeft™

(6.14)
we have
H(H x03E) = E) D3 E
(W +03E) = Q+02E) {64
and
(W+03E)- 2ECE+p) (6.16)

from which it follows that (| o ¢ ) is non-singular and the
transformation relating H %o its diagonal form - ¢ ie

given by

U= o3k (6.17)
U'_i__u{':u: H 03 L

. (6.18)
[RECE+p)] >



138
Thus the columns of U are the eigenvectors of H.

Similarly, the transformation relating H to its non-
relativistic limit

oy = BaE

(6.19)
is given by
=1 -
Umt HUmr= I o (6.20)
where
- 7. BB
Umv*f+w+ﬁ-do l),, .
[RECEF m)T™> (6.21)
with
U M (6.22)

The transformation relating H to its extreme relativistic limit

Hey = EEEE (6.23)
is given by
U;, H el gt ks (6.24)
m s}
e (6.25)

[RECE+p /=
Again, the most general form of the equivelent Hamiltonian ia

given by

H's (mop €08 +Ratm0 g +Crpp, Mg 2ug) B 0
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This form of H' 48 the most general linear combination of the
anticomnmuting set given by eq. (6.9) with eigenvalues =% .

H and H' have the same elementary divisors and the transformation
connecting H %o H' is given by

H'= U4 (6.27)
where
U= (+ HH 24 L CHu r+H’H)J-"§
E (6.28)
with
X i
u=u (6.29)

The non-relativistic and extreme relativistic limite of H
follow directly from this equation where H' = B, E and
He o= F_E respectively.

In chapter III we constructed the most general linear combi-
nation of linearly 1ﬁdiplnﬂ-nt matrices which anticommute with
D{'E in the spherical fectorisation as well as our non =
covariant factorisation™>’>2 , The equation obtained there can
be extended to a maasive particle. Let the massive spin-half

particle be described by the wave equation
Hap=(xp +mA)ap = L'%ﬂ;’_ | | (6.30)

where m 48 here the rest mass of the particle. The most general
patrix A which anticommutes with gt-_E- and whose square is
& sealar was found to be of the form
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5
A<= (ast @A)(ZRAL) (6.31)
=g
If the wave function is to satiafy the Klein-Gordon equation with
rest mass m , we get the condition A’hl or
@ T S
(a-ai) (200 )=t (6.32)

Ve get different equations according as we chocse the set *1 as
given by eq.(3.8) or eq.(3.25) of chapter III. In this case,
however, the Hamiltonien is not necessarily non-hermitisn. In any
case, whether H is hermitian or otherwise, it is diagonalised
by

b
ik il (6.33)

where
U= BrspECHp +P)
[REcE+p) 2]
Vhen the Hamiltonian is hermitian, this transformation is
unitary.

(6.34)

7. Conglunions:

We bhave given a simple and elegant method of obtaining
explicit forms of the Foldy-Wouthuysen transformation and its
generslisations using the U-matrix method of Alladi Ramakrishnan
and shown that the transformation is not unique. We give a new
generalisation of the ¥W tranasformation using the five 4 x 4
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matrices satisfying t%n Clifford algebra. We have also shown
how this method can be used to obtain the transformation which
connects the Dirac equation %o the non-covariant forms of the
Dirae equation. We then give a two component equation for a
massive spin-half particle using a new non-govoriant factori-
gation of the Klein-Gordon equation (distinct from the apherieal
factorisation advocated by Biedenharn and others).
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A few years ago Veaver Hammer and llwd" gave a Hamiltonian
formulation of the theory of s free massive particle with arbi-
trary spin. Their object was %o give a descoription without
asuxiliary conditions on the wave function and also with simple
Lorents tranaformation properties. The technique they employed
was egsentially to stert with the rest frame wave functions
(which are eigen functions of the spin operator) and use &
generalised Poldy-Wouthuysen (PW) transformation. One diffioulty,
a8 was realised earlier, is thet except in the case of spin § ,
the transformation is not unitary and consequently leads to a
problem in conatructing orthonormal wave functions in the labo-
ratory system end in transforming various operators from the
F¥ representation to the laboratory syatem. lore recently,
‘lu*l'm.-z succeeded in constructing a unitary spin 1 FW operator.
Recently there has been some misconception in the literature’ on
the existence of a unitery FW transformation for spin greater
than 1. We shall here first establish the existence of a unitary
¥ trensformation for arbitrary spin and then explicitly calcu-
late it. Ve show that this transformation is not unique and find
the condition that reduces it to the ¥ transformation in the
conventional form for spinvhalf and to Weaver's tranaformation

® A R.Tekumalla and 2.9.Santhanam, Bett.Nuov.Cim., to appear 197
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for spin one. The explieit calculation of the unitary PW

transformation in this case involves the evaluastion of matrix

funetions +g) where 2 is related to the spin matrices.
We give methods for evaluating £(2) in general and in
particular, when [(@2) is on odd or even funetion of ¢ .

We then use these methods for also writing the extreme relativis-
tic form of the Hamiltonian and the (unitary) transformation
leading to 1it.

The technique employed by Weaver, Hammer asnd Good is as
follows: the particle is described by a wave funotion which is the
basis of & (0,3 B (5, 0) representation of the Lorents
group. They set up the properties of the system in the rest frame
and then make a Lorentg transforgation to the laboratory frame.

In the rest frame the Hamiltoniall is identified as ™ . They
then exploit the connection be n the Lorentg transformation
and the FW transformation to obtain the wave function for a
particle of mass m and spin s with energy E and momentum P
in the laboratory frame using the genermlised W operator. The
Hamiltonian in the PW representation is taken as H - gC

The Hamiltonian in the laboratory system is therefore given by

4
W =
SEES (2.1)

where 8 1is given by

S = exyp eze
f (2.2)
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e & (2.3)

(2.4)

end § are the 2 8 + 1 dimensional gpin matrices satisfying the
usual mhr‘ momentum commutation relations, I being the 2-dimen-
gional unit matrix, < scting on in mtffmm be replaced
by r_. and the operator § finally takes the explicit form

s = (phzo— paruh 26

(2.5)
and
S's (eorhzo - pauil 26 aed@f
= s'aechi 29 - deddezosT
so that
= B dedhi220 + Lo d 2 2B (2.6)

The funotions w20, 4..L.%6 emd H have been given in
terms of the spin polynomials by Weber and Williams.

Some of the spin # properties still apply here. For instance,
fp anticommutes with <& and T~ where - is de-

fined as
= @)
< (2.7)
s [ Ciay I J
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Also, o commutes with 7o and T‘.“—_P"e i « Further,

gince wsech 2 8€ involves only even powers of = , it

commutes with ( and hence with S and 8' . Again,since

JI-
H'= deelaz®pest - sprestscd sz =

p pCS' Secl 220 H (2.8)

it follows that the Hamiltonian is hermitian. However, the factor

sech 2 g ¢ 4is not a scalar except in the case of spin 4 . Hence

the operator 8 4s not unitary except for spin # . The expresaion
for H, S and 8~* for spin &, 1 and 3/2 are given in the table.

Ve now prove the following: .

THEOREM 1: For any spin s, there exists a unitary trancformation

H= upey! and the unitary matrix U is given by U = 9X
where S 48 given by eq. (2,5) and X 4is such that a) it commu-
tes with and D) satiefies the condition X x" = seoh 226

PROOF: ©Since the Hamiltonian given by

== |
It = SBES (3.1)

is Hermitian, it follows that there exists & unitary metrix which
dingonalises it, that is

i =
Uk, = GE (3.2)

Similarly, since pl hﬂnnmmmmmmdm-
values as H , we have
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Ujﬁ EU 9= ToE (3.3)

where “I is again unitary. Hence

- upEy” (3.4)
where _
U=utvs (3.5)

whiech, since the product of two unitary matrices is also unitary,

proves the existence of the required unitary transformation U .
We now proceed to obtain an explicit form for U ., From eq.

(3.1) 1% is clear that § 4is not unigque but is arbitrary upto

post-multiplication by & matrix X which is non-singular and

which commutes with {3 but is otherwise arbitrary. For, if

X commutes with e o

o —=1
S [%‘ECC.S A) ST PES = g (3.6)
which shows that § X also transforms PE to H bya
eimilarity transformation. We now choose X such that

U = §X ("T)

is unitary. Therefore

E ;
sx (Sx) = E,xx+5 = A

whence
- e |
XA~ glei's (89 (3.8)

o1 XK'= Acch 226 (3.9)
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which is the required condition., We mention here in passing that
toch120= = {N)BS

An shternative formulation of Theorem 1 is possible by
observing that 4f Y is s non-singular matrix that commutes with
H, '

ys pEQYSD = yHy =
(3.10)
Thus S 4s arbitrary upto pre-multiplication by a matrix ¥
which commutes with H. Similarly we can show that s~ 4a
arbitrary upto pre-multiplication by a matrix X which comautes
with EE» or post-multiplication by a matrix Y which commutes
with H ., .

We now consider the molution of eq.(3.9). We obaserve that
the left hand side of eq.(3.9) is neceasarily hermitian and since
the right hand side is also hermitian, seolutions to this equation
exiet. This is at once obvious when we consider the diagonal
form of sech 2 2 ¢ . PFor, let the matrix sech 2 s 0 be dia-
gonalised by an operator O so that

h‘_1f J
U@MLQ.ESJC= Dl {’.11)

where D is the diagonal form of sech 2 g ¢ so that it can
be written as

Dy = dm'%L}' (3.12)
where 4, are all real, Now D oan be faotorised in an infinite

number of ways into two matrices D, Ba such that D= II;- Dg' .
Thus D, can be written as
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* n 5 U0
S ey A (3.13)

Then the matrix

¥ =0 QIO {’.1‘)

patinfies eq.(3.9). Ve note here that since 0 4is unitery and

D, diegonsl, X is a normel matrix., It is obviocus that X is not
unique., We shall presently consider the most general solution for
X 4n terms of 4, .

We may mention here that the problem of finding U may be solv-
ed (though more laboriocusly) even at the stage of eq.(3.2) by find-
ing U, and then U, . Firat we note that BII! disgonalisen
H though not uniterily. HNgw the eigenvectors beleonging to
+E gnd = E can be separately orthogonalised., TPurther H
being Hermitian any eigenvector belonging to + E is orthogonal
%o any eigenvector belonging %o -E . Therefore the resulting set
is coupletely orthogonalised and gives a unitery U, . However,
this method is too laboriocus.

In general it 1s not necesssry to diagonalise the operator
sech 28 ¢ ., Ve shall first find a partiocular solution of
equation (3.9) for any spin s and then give the most general
golution for X and hence for U . We shall then show that the
choice X = X' 48 of special significance ms this choice ylelds

the ¥W operator in the conventional form as obtained by Foldy
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and Wouthuysen for spin # and Weaver for spin 1.

THEOREM 2 ¢ A posaible form of X true for any spin is given by

X = (Cah26 +olg Ak 6) th228 (4.1)

Prooft Simce = as well as s anticommute with [ -
follows that X commutes with ]a « Thus, this choice of X

satisfiea condition (a) of Theorem 1. Again, with this choilce
of X, since ot-;m:i

xxlie (eahip mgl gilizgy -
(Goahz 60— do Awihe)(hech 228) ©
= Cemb 228) (leehaz8)®

Therefore

}(}-:Jr = 0ol o Snty

(4.3)

and X also satisfies condition (b) of Theorem 1 whiech proves
Theorem 2. Thus a pomsible form of the unitary ™ trensfor-
mation for any spin is given by

U = Cemh Zg - panchzg).
(ceh 28 +a¢;—&wlf€1 Z0) feekl 220 (4.4)
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We shall now consider the most general solution of the
equation UpEUJr: | « FProm eq.(3.6) we found that the operator
8 which transforms (C to H 4is arbitrary upto post-multi -
plication by a non-singular matrix which commutes with [
but is otherwise arbitrary. Ve shall first find the most general
matrix which commutes with f « Thus we desire the most
general solution of

XP_—" T’bx “!’}
Sinee ﬁ is hermitian, it is diagonalised by a unitary
matrix
._!
TP AT (4+6)
where
r Jf_ —-I_ {is s S| i
E= o= il Iﬁ_[‘l"l t"?)
Therefore
ST E0 80 (4.8)

and eq. (4.5) can be rewritten as

XT(=Y5)T = T (=Y )TX
or

(TXT) Y = Ye (TxT)

XITF = }!5}('
(4.9)
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oo XAy (4.10)

is the most general matrix which commutes with Y . X' obviousky
has the form

XI g ,x.| D_} { ‘)
{ f ¥a o
where !1 end !2 are any arbitrary square matrices each of
dimension 28 + 1 . Further X' 4is nonsingular if and only if
X and II are non-singular. Therefore X is given by

o= T}{‘T
, U o S Y £
- 5 ]
= Xy—A L XA X

Thus the most general matrix which tramsforms P E $0o H is
B X where X is given by eq.(4.12). If the transformation is
%o be unitary, X must further satisfy the condition XX ' =
mech 2 86 « Alternatively, if we find one transformation U
which is glready unitary and which transforms B to H (as in

(4.12)

ea. (4.4)), we can write the most general unitary transformation
Un wvhich takes (3! tc H an

U= UX. (4.13)

where X 1s given by eq.(4.12) with X; and X, both unitary.
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The solution of eq.(3.9) with X hermitian seems %o be -/
special interest. With the additional condition X = X' , the
transformation U= 8 X leads, (as will be shown in the examples
later) in the case of spin # to the PV transformation in the
conventional form as obtained by Foldy and Wouthuysen while in
the sase of spin 1 it leads to the unitary transformation obtain-
ed by VWeaver. We shall give here the solutions for spin 3/2 alzg

Set X=X 4dneq.( 39 ). Then
oy Acek 28 (4.14)

aor

M
X =(aech 226)* (4.15)

The quantity on the right is multivalued since each elgenvalue
can take positive or negative values. However we shall consider

[T L)

EH:Lugfﬁtigr tnﬁt::!:wszmkﬁﬁnrlnitnt expansion in powers of =,
However, eq.(4.15) es it stands, is not useful as the operator s
occurs in the argument of the funetion while we desire the solu-
tion as & polynomial in s of finite degree. This polynomial
will of course be of degree less than 2 s +1 es = obeys a
characteristic equation of degree 2 8 + 1 . Ve shall therefore
now give a method of obtaining any fumction of = , (in parti-

cular, sech 2 8¢ ) as a polynomial in = .

5. Evpluation of Functiomof % ¢
SBinge § are the spin matrices, JS.n satisfies a character-
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istic equation of degree 2 s + 1 . Thus

(SP-8)(S:p—S+1) - (SP+9) =5 (5.1)
that is
[@py= st ey ~ev - e p- 4] =0 (5.20)

when & 4s half-integrel and

[EP)- s ][@f)‘ i o (5.2b)
when 8 18 integral, Since

L=~ Eb ;ﬂ (5.3)
and

(]

L [Li)@r ] (5.4)
the minimal equation of g 4a given by

EF= el [a= 4] (5.58)
i » 4s half-integral amd

| C s RN - (5.5%)

if » 1is integral, the last equations being obtained by multi-
plying eq. (5.2b) by the nonsingular matrix ~ 75 « Thus =
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satisfies a minimal equation of degree 2 s + 1 and hence any
funetion £ (s) that is given as & polynomial in s can be
expressed as a polynomial of degree af most 2s. MNow let the form
of £(z) be given by

‘&(Ej: a 'Ei:rfh?fﬁ"-:*- o+ @ased (5.6)
where the coefficients a, are to be determined. Since f£(=)
satiefies eq.(5.6), all the eigenvalues of g also satisfy eq.
(5.6). And since there are 28 + 1 distinot eigenvalues we get
a system of 28 + 1 1linearly independent equations. Thus, if

we denote the eigenvalues By A , h2,- ) 2 s+l , we get

28 el
%WII:' = AN 4 Q2N A+ -+ Qaept

By A
*F({}\’U = Qe F e e s s A%y
23
o L i e S

(5.7)
or more conclsely
Hes, V 2 (5.8)
where £ () and g are the vectors
h#ﬂf}ﬂ) =  a
0= | 0w = (5.9)

)

E—L}\ A +|)h E L 1.8+)
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end V 4is the Vandermonde matrix

[ s 28 ]
N A e
= =)
VE TR S (5.10)
: \
s 285
L}"':L."HI Nz ""1__

As the Vandermonde is non-singular, the solution of eq.(5.8) can
be written as

&=V N (5.11)
and f£(z) is given by eq.(5.6) or formally

he)= o< 2' VA{E’Q (5.12)
where !' is the row vector

o g5 e el (5.1

and the elements of the vector are matrices.

The constants A, oan also be separately written in closed

form by suitably interpreting eq.(5.11) as will be shown in
ﬂhl’m ui M|
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| = 08 \ g —i
P}"'r e e ] r}\ﬁ_ﬂ
25| 25-| Als2A
?‘1 (}\a_ e et '}11__5_1_[
25—+ e
Pael e s O TR (5.14)
det ~F( ) {-('}’Ll_] Shier ! ( _;l,':+|)
25— -l
N -
[ ] AL e b o 1

where det. V s the determinant of the Vandermonde matrix is

given by
95+1

Ak 2T TLAE=A)) (5.15)
I._',r& =1
E{}
When the funotion is odd or even, the evaluation is wuck
gimpler. Thus, for an even funotion of & (as for instence,

cosh 8 & or sech Z{ ), we have
28+ SRy

Ht)s 2
=
| Ag4+ 1=t aspd-y

1(2) = Zac) (5.16)

with

) =j-?) (5.17)
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so that
2844t T8 +’{-":*.
> aclit ¢ 1=z =0 (5.18)
Since the =° are all linearly independent,
8, o for 1 odd if s 18 half integer
8y =0 for 1even if s is integer (5.19)
Thus £(s) 4is given by
2.5 50y=2
f(z)= bz "ML E +o ot bagsy 4 (5.20)

where {g} denotes the integrel pert of = . The set of inde-
pendent equations corresponding %o eq.(5.7) is reduced by half

and we get only {° 1 equations. %hus
PR st-2
*ir‘r\l}: Lfr'}\l +L3'J_ ?1.11{ o —}-1'-‘ 2 48% 41

| 5:‘}.2{53‘1“"*{-1:’::‘_5
AN g341) = P04 {534 {55+ S

where the )| now rum only over the positive smd o values,
the lset equation being for 2£(%) or f£(o), according as s is
half-integral or integral. As before, we write

i Ve (5.22)

where V 48 now given by



24 5% 2{5%-2 :
t [ P
243 g
iz 11{ i?} 1. Sl
.l{r}
A 1
{53+
L : i
(whioh is the Vandermonde matrix of ) Aa, . ..
so that
b = ”h’-_l{{')\t)
fhe elements of b» are given by
B § o {33
("}f'){'} G\?_){J} e LA 344)
b = J5%-1 433 -1 2 fes—1
lenTT ey (BPse
. R
det: ,}h){j ;
Ny (A TS “C’iqfﬂ.x)
@k b{s}- -1
JI
1 { o |

where

159

(5.23)

4 {‘\q‘{ﬂﬂ )

(5.24)

— det v

(5.25)
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dakif = 11 =)

L'«:UL
Similarly for an odd function (as sinh7§ or tanh U )
we have,

%"1 . 1'-E+*I-l.:
= Bl (5.26)
k=
1*:-_5.'+1JL' S
=== — - - — EG-.L. - ?:
f2)= = (=2 (-0 e
po that
28 15‘-{.—'1-—1.'_
2 oet- (D it =¥ (5.28)
since the ll are all linearly independent,
ay=o0 for 4 even if 8 48 half integer
80 for 1 odd if s is integer (5.29)
Thus £(s) 4is given by
15 +473 L {i+L Y-
_ R
AEW F .ﬂ (5.30)
L=
The set of equations corresponding %o eq.(5.7) now read
{51—‘%} g_{j,f,,]l.} o =k
*%LMJ — 2.0 % (5.31)

ki=i

where the ?\IR now rur over the strietly positive eigenvalues
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of ® only, the last equation being for £(4) eor £(1), the
munber of equations being {l + i% « As before, we write,

F = Ve (5.32)
where Y is now given by

e oo
e i ?jj T2 R
= '1.{34--%‘5-1
v }2_ ! L ;. 7\2
(5.33)
- 2{sr Ly
1'[.?+-r—5_1 - i G ae g{_‘j’f—'i}
L.
8o that
¢ =V AW (5.34)

6. Explielt Solution when X 4is Hermitians

Ve shall now use the results of the lamt sec$ion to find a
Hermitian X which yields the unitery matrix U =3 X , Ve
require

XK = Al 128
Let X be hermitian,

e
K= (_/L@{J«»Q%Ef)i-:- 5{@) AWJJ

We note that f£(z) 4is en even funotion of =. Also

coh = £ ik P daadhBc B, Acekf=t
fn VR F E
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Spin & ¢
. L
2y = (seehnzg)?
Ve write
- b
Since
g |
(A)= (%)= Qeehp)¥=(m)*®
!‘hmtju : (E)
U= % = ExMt P oot
[&“’”(E—PWJ}&<E)
=  Edant E{_Flg
[&E{E-rmﬂkz

which is identical to the trensformation obtained by Poldy and
Wouthuyesen for spin % .

Spin 1 @
It is simpler %o caloulate U =8 X directly. Thus

U=F@) =Csl %SHPM ?@J@m&aﬂﬁ
= CMEG@&&M@JJ{*‘ pMﬂx’Eﬁ ngs]%

= {et2)~ pto( £) day

where 1“1@3 is an even function and ﬁ[i}_ is an odd
function. Further

I
fe(2) = cshz (e ckaz0)T = (H— b 220 (o) nag) Y

= (14-&%1 E{-})ll-
)
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/hoﬁ’i]= Cl'h” mkﬂ%ﬁ')t
T2 2
Ve write )
feczy = bit b B E'LEZRLPE}JI-
j&e,.f.‘l} = [(%)T = [ { J
1 ]
st S -]
VQ‘LM ],, VE:{G (%)
Therefore , a g
b= Ve fe) - [HE"’FJ "*J
1
and A - v
48) = ey 1]+
Asnd
'ﬁnL = QT 1
VLV'L—T) 'iﬂ{?\.-} = 1“&'%?3&) gt e
Therefore 2 (P’:rgl}z‘{.
C= v - P
i (prE)t
and
fljai%J: ’—P—‘l%
(p%E)A
Thus

U = {’E{%J _ﬁ‘ %a(z)
e k. LeEh A 1] #F

which is identical with Weaver's result.
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Here again

U= FCZ)= fe(2)-8 b
’Fg(? = anzat-!;-z

fed) - (H L:,‘Lhaa )";_

o .ug,k\,ﬂ)é;
2

V= @"2)1 1 'IJI: 1 _T
L b £
L[+ : i =
! = F () = Z K Mfﬁﬁ)ﬂ“ (i M-L&L&)i:’
by === %[ﬁ(q+m&3ﬂ)%+q(l+u&9)tj

_

i

Similarly
Ao(zy = @2+eal

Fny = 4~1¢o¢3&>%

—_—

i =3
Vi G’”‘f *la vﬁt: AR :
Q/L)j by i j -QEJ:] = }3
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e, SRR b 1 :
[CQ_J E VM' [_1_ (n—E.LDLS&)EL“+1(H—LL£Ju&)l1

2 5 A

50 that

~ i
U= c2*+ bz +CaZ+ ba

7. Zhe Extreme Relativistic Limite

We shall now consider the extreme relativistic limit of
the Hamiltonian for any spin. First we shsll investigate the
form of the Hamiltonian in this 1limit and give an explicit form
of the Hamiltonian in this limit and give an expliecit form for
it and then give the unitary transformation which takes the
laboratory Hamiltonian to this form. Ve shall find that there
is a difference between the omse of half-integral and integral
epin becsuse of the presence of zerc as an eigenvalue of the
apin lntri.m in the latter case.

The Hamiltonlan is given by

~
= SRES (7.1)

where 5 4a given by
S;—_ WJE.?__.E — PJ ﬂu:.fpn 20
so that

(7.2)

= (paseh 2zt +lohaze)E - (7.3)
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We approach the extreme relativistic limit by tmﬁwxuj.

F._.;F_ go that " =0 amd 6 = = (7.4)

we shall find the limiting values of the functioms sech n g ¢
tanh n g ¢ @as also coshn s ¢ and einh mn g¢ 4in the limis
P> E when n # 0 . Two omses arise mnecording as the spin
is half integral or integral.
Half-Integral spint

Since wsech nsg b is sn even function of gz,

- e B
fizj: M&Ed‘ﬁ%t‘:hzlfr—{-kg_% e e o

3 (7.5)
Jai?'nj o ﬂ-_ﬂ.b']n. mAl = 0
~ (7.6)
0
the mull veetor. ZTherefore
5§ = NEAR) =
and
Aechmz 6 =0 (1.7)

shilarn_'. we oan show that ooshn ¢ = , Again, since
tanh n s ¢ 48 an odd functions of = ,

18—

25
ok mz2€ = %{ij = ¢ £ +Cat 4.

(7.8)
= et [
: (7.9)
1
and
o (7.10)
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The diagonal form /. of tanh n g ¢ is given by

f\:‘ OLA-G‘—‘:J {‘Li._!)‘tvj JIJ‘"!'} (1.11)
LI+l 254 2s54f

[:.2" L:,.,u,: — E‘ Leally
¥e mote that as ; _ , , tenh® n €= 1 , Similarly, we ean
ghow that sinh n g ¢ =+ ., Thus, in the extieme relativistic

1imit the Hamiltonian for half-integral spin is given by

He = tauwk 26 (7.12)

or, equivalently, |
He_':. t_a..\.t.f\zE? ;ﬂ"? P

(7.13)
where tanh z¢ 4is given by eq.(7.8)
Antegral Spint
-4 11-2
Leek m20 = 4C1) = by 2 b il
r O ] ‘T-“)
*L?\} = jeebh mAE = 3
|
Therefore
< o
b = V 4N oo

A more elegant form can be given to sech n 50 using the
Sylvester interpolation formula. Thus

Lech 128 = S (teakh W0 6) P2

L

(7.17)
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where P, are orthogonal idempotent (projection) operators,

satistying PoPjp = &oyfo, ZPi=1 and explicitly
given by 7#‘“{ - e S
=l , :
St
{711'}
As = ® all the terms in eq.(7.17) vanish except the

one corresponding %o 1-.,'-—-—& « Thus,

Do Enall W P =N ESAL
b 6 iy ' (7.19)

which is just the characteristic polynomisl of s divided by
the produet of all eigenvalues except o and with a factor of
¢ missing. The diagonal form /. of sech n g & is given

o . L' e , 3 o MR Y .. 3
ety it i e
Cdiciia 2y Gies s Lovanad (7.20)

We note that sech n g © 4is idempotent and is a good projection
operator. Similarly, for t%anh n s¢

8~| -3
Jawh w26 = 42) = &5 e 2 4. .. (7.21)

z =y
’{L}\ Y= -'Em.«,k M= = _:
== : (7.22)

g = J'i-[?‘) (11!’)
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The diagonal form /\ of tanhn s 4s given by

' = Sy By b AL
A = # Ir— "I..:P.h.-—h-' < Lr,,;-:..-:—_-!l' :W-'
Lula g L,::N_M L3 [L\./\a.ta ‘Il:-a;-ﬂ-ht;: t?.u)

Ve note again thet tamh® n s © 48 not unity but is idem-
potent and is a good projection operator. TFurther
2
Gocch M 26 Al n28 = 0

Lok A0+ Lol mzB =41 (7.25)

The Hamiltonian in the extreme relativistic limit for a
per $icle of integral spin is therefore given by

HE, - p Avele 3 28 - ade 220 (7.26)

or eguivalently

HE = ]2 Avel, Z8 -+ itg,‘.._-l--. 16 6 = » (7.27)

where the functions on the right hand side :I:Lghu by eqs.
(7.14) and (7.21). Here, unlike the case of, gral spin, the

firast term does not vanish.

With the above expressions for the functions of gz, we can
now obtain the (unitary) operator transforming the laboratory

Hamiltonian H to the extreme relativistic limit of the Hamilto-
nien H, . Since the unitary operator U transforms 2

Es
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to H, it is sufficient %o find a unitary transformation connect-
ing p E end !. . ’lﬂ'. since

M =Upev” (8.1)
if we find a unitary matrix C such that

‘He = i:|‘:E«tL_IL

(8.2)
then
e =e e (8.3)
or =
He =RHR )
where the unitary matrix R
R=cU™ (8.5)

is the operator transforming H %o H, . Sinece the product of
two unitery metrices is unitery, R 1s unitery. We shall now
find the operator C for half-integral and integral aspin.
Half integral spins

For half-integral spin, C ean be very easily found by
using the U-matrix method of Ramakrishnan, dealt with in
detail in Chapter IV. Here

He= lauk Z6 5 5 =5 » (8.6)
h's ey £ (8.7)
Therefore

L}Lcl-i¢+|@5}= Q&af{‘:E)PE o)
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Purther, since I.a;é[;mtu with 3

(He+ PE)l‘- e~ (8.9)
so that H_ + BB 4s non singular. Therefore from eq.(8.8)

e = EC (8.10)

where
C:-L:._I‘—‘C{L = JE(H(;*-I?E}
v (8.11)

C being hermitian as well as involutionary and hence unitary.
The operstor C can also be written in exponential form. Ve

observe again that C 48 arbitrary upto post-multiplication a
metrix X whioh is non singular and which commutes with |

for .
CXPEXC = CBEC = He
; o (8.12)
Ve MI. X = p « Then eq. {B.‘l‘l] ’1.1‘.
‘el fipy K H
TR (H HEQ) s (EEF m) iAo (8.13)
where 0' is still unitary. Then, since '(LHEF j;_|
E )
. He el : (8.14)
L'KP (?PUJ) = ol Hff},a,m@

= L M
7 (140 BB

whence
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— exp |26 (ﬁfd

g =z
This method however cannot be used for integral spin since E.
end [} do not anticommute.

(8.15)

An alternative method, which can be used for integral spin
aleo, is to start with the non-unitary ¥FW transformation used
by Veaver, lammer and Good. ZThus

H=speq™ ' (8.416)

As & ->w, il >}. but the right hand side is not defined
a8 ¢ - .« However as discussed earlier in this chapter,
there 1s a freedom in choosing 8 wupto post-multiplication by
8 matrix X which is nonasingular snd which commutes with | .
Further, to make the transform-tion unitary, we required

XX =sech 28 G .If X is chosen Hermitian, X=(Seoh 2s ¢ )¥
and

0= S G,{jai;ﬂa — Pavk 7)) (ke EH) T (8.17)

This freedom of post-mul$iplying by X can be exploited here,
for the matrix nov longer becomes infinite but on eloser exami-
nation using the expression for £ (z), is found to be well
defined and mon-singular even in the limit as [ — & .
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Let ua write

~ L 1
C = coh 30 (feehad2) P st 0 (Seeh 326) %

=fe2)— B fo(®) (8.18)
ted) = bL'E.EJ'l + b 2 REE
8.1
L™ = M_____r?\_%—-—r-—-—-— L A
le—— thﬁ*?‘»@"bimg‘ AL ) (l-‘r LM%/,@){
e { ]
B
|
= (8.20)
i
“@s0 that e, T
o
b - vﬂt{ m = °
bV f® 2 gy = L o
o
‘Fl
since for every b, ‘except the last, the 1.“ row of the deter-
minant in eq.(5.25) is é‘ times the last row and hence all
the b, vanish except for the last one. Similarly, if
fizl = G e ol (8.22)
Loy = Swh 26
(ol 28 + SuihA6) 2 (8.23)
= J1 — q‘.‘-i-; i
(= CelAG)% &

L
VZ |
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and, by comparison with egq. (7.9) we find

"L* == E Mi@ﬁ' ‘a'“)
Thus we find
_ He
C= xf_;:, HeY E ?] (8.25)

which is identical with the result cbtained by the earlier
method in eq.(8.13).

:P evaluation of f(s) and £ (g) can also be done by
examining their diagonal forme and comparing with the disgonal
forms of the functions tanh g0 , sech 5 ¢ , eto. evaluated
earlier, since all these functionn are simultaneously dlagona-
lisable.

Integral Spin:

We shall here use the second of the two methods in the last

section. Thus |
€ = §X = 26 (Lui«-i?-ﬁl{ :
= FME § ( Lok 228) %

= fe(0r- phed, Ay
(8.26)

28~

fect) = b2 Al (8.27)
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N = cophNo
—T 18 + bk ng) 2
Lok 4 ) L _
LH-t’.vai}'@J_l d'i"'i
T_!E
and =]
=l == 11 = rDﬂ
b= Viaed) g Al ey | (8.29)
= yz | .
5 -
bl 1-V2
and comparing with eqe.(7.15) end (7.22)
i 1 : .___L- \
.E({J ey ('- - E) See) 26 (8.30)
Similarly, if
2.8-1 28-3
in{.?) = B +Cy 72 =y (8.31)
{'u[;\,} - %ﬁ m
e e )E .
| A L (8.32)
T o2 i
V=
and
[4 7]

(8.53)
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Therefore, by comparison with eq.(7.22)

,‘“1) " q—i:‘kmut\%ﬁ . (8.34)
Thue
C =Y Pls

= ]?-_:L\;\—q— foeh 1@ - PWE@J T

=Ll i-vasehzg —pMe
ﬂ[ t] (8.35)

Using eq. (7.25) +this reduces %o
C = orp|lbauh 26y -ﬂ B (8.36)

It can be verified direectly thet ¢ is unitery. For spin one,
this yields

C = m% %(51{(, ¢
which is identical with the transformation for extreme relativia-
tic 1imit obtained by Weaver. Thus eq. (8.36) is the unitary
tranasformation taking Fg E to the extreme relativistic limit
of H and is the appropriate gensralisation of Weaver's result
for spin 1.
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9. Conelusionss

We have shown that for the Hamiltonian proposed by Weaver,
Hazmer and Good for a partiocle of arbitrary spin can be trans-
formed %o the form rR E by a unitary tranatorlltl:n. Ve give
methoads for obtaining this tranaformetion U from the tranafor-
mation 8 wused by Veaver et al. We find the additional condi-
tion which reduces this transformation to the FW tramsformation
in the conventional form for spin # and to Weaver's transfor-
mation for spin 1 . We give methods for evaluating {U}_‘: 4in
general, and in particular when it is an odd or even funetion
of 7 . Ve use these methods to find the extreme relativistic
form of the Hamiltonian and the unitary transformation leading
to it. This leads to a generslisation for arbitrary spin of
the corresponding result of Veaver for apin 1.
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In this Chapter, we shall deal with some applications
of Matrix theory %o physical problems.

A. QUANTUM MECHANICS IN PINITE 1ong"

1.Introdugtiont

Weyl' has shown that the Schroedinger representation for
the momentum operator is & necessary consequence of Heisenberg's
commutation relation. He proves this using the ray represen-
tations of the Abelian group of rotetions. In proving this, he
ugses an ingenious limiting process to go from finite rotations
in ray space to a 2-parameter continuous group. Hore recently,
Allasdi mnm’ and his collaborators have studied exhaus-
tively the representation theory of Generalised 0Olifford Algebra
which immediately furnishes the ray representeations of the
Abelisn group of rotations,

Here we derive, by limiting to the case of finite dimen-
sions, the explicit expresesion for the commutator [Q,P) where C
and P are the position and momentum operators respectively. Ve
show that by going to the limit of contimious parametwisation
(valid as the dimension goes to infinity) we recover the standard
Heisenberg commutation relations.

We believe that this work will open up the possibility of

# 7.5 .5anthanam and L.R.Im.:l.n. Om.h_?nt.hur.!hur.
mip {191“)1
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studying quantum mechenics in finite dimensions.
2. ¥eyl's form of the Heigemberg Relationss
Suppose A and B are two elements of the Abelian group
of unitary rotations on a ray space so that

AB= (v BA (2.1)

where (o dis & primitive n°® root of unity. By iteration we

get

D % (2.2)

from which it follows that A" commutes with B and IB°
commutes with A and Af the representation is irreducidle,it
follows from Schur's lemma that

‘.‘-I' !n-I t!:’}

We take the following representations for A and B*

6100 tw C
) ~
R PPl (2.4)
poo -1 (_ &S
oo -0 fhy,

The interesting properties of the algebra satisfied by opera-
tors like A and B which is a generalisation of the usual
Clifford algebra have been systematically studied by Alladi
Remakrishnan® and colleborators. If one identifies

pim NET aa, T=e1? (2.5)
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where L 7| are arbitrary real parameters, then it
follows that equ.(2.1) is the Weyl form of the Heisenberg commu~
tation relation [Q, P|=1, if we allow power series expan-
sion of operator exponentials (which is justified if A 4s
bounded but not otherwise)® . Weyl takes the limit > .o

such that E’E‘]’ﬁ‘ =21  to show that

P - ““%;U (2.6)
3. Cpse of Pinite Dimensionss

Ve now solve eqn.(2.5) for P and Q by taking logari-
thme. Ve solve the problem that, given
Vi LNE
3 =A L lB =B
S % (3.1)

where S and 7| are arbitrary resl paremeters and

AE =B AL f...LJI.ﬂ: l {,.z)
to compute the commutator | Q,” | and show that

L] =4 ~ (3.3)
in the continuous limit.
We take A, B as in eq.(2.4). The diagonal form of A
is given by B, for
82 A5 = 3B (3.4)

where 5 is the sylvester matrix




S = ﬁL AL o m'l.. - m'“"l (3.’)

4 ¢ (3.6)

Ve then have, taking logarithms

i 5 W .‘.Il'
AEP = {.ﬂa A= S Laﬁl_:. S (3.7)

e = '[\.D
pals ik (3.8)

where log B 4is given by

log B = logu G'l::z, C
{
C.'-' - m—]

Since A end B are diagonaligable and non-singular it
follows® that log A and log B exist. HElementwise,labell-
ing the rows and columns from 0 %o n-1,

(3.9)

B?l’ﬁ = L{_}*f TS (!.10}

~1 .{ —TS
gt dom (g el
S Sy S e (3.11)

(Llog®)g = @"8 %) 0 (3.12)



Ve now compute the commutator

['LI’QG‘-J J-%’P] = [{-D"JBJ g&ﬂﬁ Egé-i]
We have

o, 29 = | Lagoilepst, ~ { dbogws Gpel,s

A
Z {@’ﬁﬁ") I,_,”’k Qﬂaﬁ) u(*‘ VS

L; U=p
d — Svp(log®) 4o € ) wo &ogBros §
= Z E{“’jj“’ (‘r&r{y S
o iy k3w muuuérus)
: a (M- ,
- @__EJ_W'J z e gjuw"s;ﬂ
e =0
Therefore
B : w - A LL{"P‘--S}
e, ] = Qogu) e o 5 pw -
T W=¢
=2
it o =2=1

(4@, €8R] = (Loge (=8) 2!
| = (3.14)



=3
it L‘L)T':_-x%—i |m'-m‘ :X-IL':J_ -“h"
n—i
p— w .
2R e (3.15)
=0
and hence
Limay £8P] = (’.Loimf TS (3.16)
TS e
("2
Thus we have,
; 3 (;E-Tj@rw)l M- 1)
EGZ: FF .]1'5 W m\%_.ml 2
=8 i,

wihia W

a -
i [a,/fd)- g-m> Qg
| T MNET| @:{"’- S 1)

=3
wWhten L:,‘.“T A% L

We notlce that simce n is finite we could choose = -] |
and that [Q,P | 1s atrictly off diagonul and hemce is trace
free.

Ve now prove that the commutation relation given by eqn.
(3.18) does indeed yield the Heisenberg commutation relation
in the limit a8 1. 0 . We begin with eqn.(3.13),
relabelling the rows and columns trom (7' ) te (")
and replace the sum by an integral, that is, we let the matrix
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index take continuous values. Thus the sum

_ (logw yo A U(r—8)
| 7 =9 w
i T
reduces in the limit a8 " 7 % %o the integral’® .
.-IJ_ -rm . fobe -
. K&"il w ) S'U,CT— s) if"f]"“( J___TL'L A %)J ALl
Ng¥ —p
Sl = o-!T[“Ejl L sy 5 w axp ( ZWE ey $)) Jdu
T 1 1 3] S

A (T=S) 4%' ) cl (_u/ﬂ]

s LR e iG SMFC}’TLH”"-ED‘% ) 40%)
A(T-8)

G e G )

= L Or-5)
where we have uged Lus 157 = =W s "L X N
This completes the proof. It should be remembered that in the
limit a® n approaches infinity continucusly, we are taking
only the principal value of log () as this gives the corres-

pondence to the Helsenberg commutation relation.

4. Conolusiong:

We have caloulated the commutator [ Q,? | when the space on

which the operators act is finite. l% elevate commutator
T, L
for finite n %o what we ecall 'Hni‘hikﬂunntu Mechaniecs'. It

turns out that the operator is strictly off-diagonal for finite n.



185

This implies no uncerteinty and no sero point energy if these
concepts have any meaning for finite n . Of course, in the
limiting case as n aspproaches infinity contimuously, the
commutator becomen ntﬂ.&iy diagonal and reduces to & multiple
of the Dirac delta funetion, thus restoring the Helsenberg

commutation relationa.
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The Sylvester matrix has been recently lhm1 to be very
useful in s variety of probtlems ranging from elementary parti-
cle physics to problems in electrical engineering. Ve shall
give here a simple property of the Sylvester matrix which is
very useful in the analysis of electrieal networks.

J3,B. Parton® has given a matrix enelysis of symaetrical
component networks for N-phase systems. Vor a 2N-terminal
networkia ignoring sero sequence component, it has been shown
thet when N 4is prime only one network is needed for sequence
segregation but when N contains factors an additionsl net-
work is required for esuch different factor. In thias mkgn
point out that the above result follows from a very simple
property of the Sylvester Matrix.

The Sylvester Matrix of the Ith order associated with
is given by
AR
=1 W-2 Ln}
: - (1)
Z N-1
SV R

where (0 dis @ primitive H'" root of unity. Ve denote by
(Se§  the collsotion of N-1 S-matrices obtained from

# 7.8 .3anthanam and A.R.Tekumalla, Matrix and Tensor Quarterly,
21, 111 (1971).
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8y (o) By replacing © By o, , " ! . Ve observe

the interesting property that when K 1is prime, the whole
collection SLE,} oan be obtained from a single member by

permutation of the rows. On the other hand, when ¥ contains
factors, the collection |8, | splits up into sub-oolle-
otions 1\ u,“ﬂj ; {a,(ﬂ;: R a,tnf , where K dis
equal So the number of factors of N . The members of any one
sub-gollection are connected by permutation of rows while sub-
colleotions {‘Bl{i)} . {l‘{:}}j 1%§ are not conne-

eted by such a permutation.

The output voltages 'iﬂ"""ND are related to the

symmetrical components V..,e.e V of the input voltage by
11 Nel,1l
the equation

| Ve [ Eay £ £
Ve ’{_—}_1 { e . L 2N

| (2)
Uw L 'EI'\M -LN‘L ; _LNN

L

where we sssume the sero sequence component to be 0. Symboli-
eally this can be writien as

V=187, (3)
where V_ 4is the output voltages vector, T the transfer

o
matrix, S the Sylvester matrix and ?i the syumetrical

components vector. The ordered symmetry requirements of the
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network elementa enable us to express the transfer matrix as

™
-1
TR W SR
e A

(4)
where € 1is the cyclic permutation matrix given by
e B 7 e
¢ o= [-0i01. -0 (5)
000 . A
. 4,00 D

with oF = I,

S8ince the symmetry oconditions imply that we need to know
only the output voltage of the 18t phaee we have the equation

Viao = ]:‘t-!-l Apa v l: 'N'J SVs = JE—E:FE

(6)
where E
ft—r:- L st”’ IElri.-" %IN’]
we denote
N
LISl sormidyes Ww it (7)
L=

Then, by transposition, remembering 8 is symmetrie,

St=10 (8)

If the lﬂ‘ order sequence component is required at the out-
put the conditions for isolating it are obtained by setting

'UI---- -B.-liﬂmtthliul#g t'}

Hence the lﬂ' order segregation can be obtained from
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18% order segregation by permuting suitably the elements of
the vector U . So the point is, two different orders of
network are obtained by reconnection if and only if the corres-
ponding S-matrices in the collection [ Sy are connected by
a permutation of the rows.

By our earlier enalysis, it is therefore clear that only
a pingle network is needed in the case when N 4s prime since
the entire nulluii.nn{!,“g are related by permutations. On
the other hand, if N contains factors some members of the
collection 8,  become singular and hence there exists
no permutation which takes 1t from Sy(w) .

For instance, for N = 3, the collection { 85 oconsists
of the two matrices

Sateyy =T ga[wl}: 1w W (10)

They are obviously connected by a permutation of the rows,

pince

) 1o .
S::l.[b.‘l): [G ; ,]Sliw) (11)
(o 0 T )

On the other hand, when N = 4, the collection {S,] consists
of the three mairices
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b h 1 2 34[(.137'_}: 4 www

§4¢1m_,‘4 =114 L;}l ‘-'}-Lﬂ 34[&}‘.}: 1w s 1delLJJL
| 1 3
1 L'-:'I'LJ_"-"-'Z 4 1 1.'_1_ 1 |L3'-=—' Lg ]
1 LL'-'IE_.II'.JJD Im Lw y)

The membera of the subecollection consisting of the matrices
3
8,(w) , 8,(©7) are connected by a permutation since

AL (13)

However, 8, (w") cannot be so connected. Indeed l‘(ufj is
singular while ﬂ‘Lui'J is non-singular. Therefore, in this
case, we need two independent networks. In general, it ia
easy to see that when N 4is nomprime, the eullui!.nn{ ll.hg
breaks up into subecollections eand we need as many independent
networks as there are subcollections not connected by a permu-
tation of the rows.

Further, in each independent network, only % elemente
are distinct as can be seen from Parton's anslysis. We find
that these elements can be chosen to be identicel with L"—1

elements in the 18t order network.

Beferences:
1. Alladi Ramakrishnan, "L-Matrix Theory or the Grammar of Dirae
Matricea", Tata McGraw Hill, Boubay, 1972.
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30T S S oan a g AR TR bl Maly 0 TRsae B Ta

A=) U'i‘"nj,
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Several formulae exist for the evaluation of the traces
of Peuli and Dirac matrices and produstes of their linear combi-
nltiuul + These are very useful especially when one works with
perturbation theoxry to higher orders. In particular,Caianiello
and his collaborators' and Ohisholm® have identified them in
terms of Pfaffiana. BRgcently, Alladl Ramakrishnan and his
uulhborntorl, heve initiated studies on Ueneralized Clifford
Algebra and its possible applications. In this mt-f we study
the trace properties of products of linear combinations of
generallged Clifford elements which yields & poscible generali-
gation of the concept of a pfaffian. We point out a laek of
uniqueness in such & definition whieh is inherent in ordered

commutation relations.

2. irace Properties ¢
Ciifford Flemantos
The 0lifford slgebra C,  is defined as consisting of

the set of elements {D-h Wole s 0k satisfying

(ohe, Af§ = (ojrotio )= 204y
JC’[;I-F" {y 2y v 3L (a)

The set of elements defined by

At b = el aln (2)

* AR .Tekumalla and 7.8 .Santhanam, Matrix snd Tensor Qly.
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vith P, being an integer modulus 2 considtuting a set of
f”g linearly independent elements with a product defined by

eqn.(1) form en algebra (> . It is known' that whem \- v

this algebra is isomorphic to the matrix ring in 2 dimen-
siong. VWhen M- o2v41 the algebra is isomorphic to the
dirvect sum of two matrix rings one obtained from the other by
changing the signs of sll the matrices. The last element

A pyed can be expressed as the product

vy
d"’lU—br{ = L C{ldi-"&}_"} ‘,)
Consider now the linear combination
(R = (p)
L= Z e o (4)

T

i~
4
e

Prom eqns.(1) and (2) it is clear that all the elements of ([
except the unit metrix ere traceless and A ¢ (., [y

will be the unit element if[ the{, are even. Lg%t us fira%
4reat the case when . — 77 . Then, using eqn.(1) we have

the following result. Yhen Xk is odd, say 2k+1

T (5)
and when X 4s even, say 2K

ot 58 L_UJ" LU-H:,.W” (A2.. 2R) B
where (| 2« 2R) is a pfaffian defined by

(V2. 2= zgﬂ-t_;"aﬁl-fiu{fm:»---(.L'm_pmj N
§
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where the summation is over the permutations of ., Ui, Na
such that ,L‘p:,f: 2, . £ Loy and A ek Ludilies - ofe

and p is the parity of the permutation with respect %o the
original ordering |2 = 1K . The bracket (12) denotes
the sealar product

© @ m @
Q&) = Gq Oy ~ i Q== T (8)

This result is well known in the case of Dirac and Pauli matri-
b
ces and we £ind i% is true for the elements of (., .

Let us now consider the case when n is odd, say
= 2V+41 o Define & linear combination

avad
(p) B
L= 0 el (9)
L=
and the treace
A . 13 <
b = l_.ULLJ 'LL :

By virtue of eqn.(1l) and (3), the trace is given by eqn.(6)
when X is even. However, for k odd, the corresponding
eq.(5) is not in general true. The case of special :lni:n-t

is thus when the number of gemerators n is odd, the nmumber of
fantors k is odd end [_LM gcontain all the 2 V.1 generators

in the linear combination. In this case we find
1) (2R +1)D
e ottt -0

when R <V and

(10)
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T L__m_ L<1u+1)__ ,myg {2, LY EE (11)

where {72 ... 1u+'115 is the determinant defined below.
Now the trace of 2R+1 factors can be reduced recursively
by using the above eqn. to yleld

: R4
T LL*} : '|_Ll : ’}: ‘mu(i 2. .‘L‘R*r'”]rlHi (12)

where the new bracket is expanded as

(1 & - '1]R+4} :ZHQUP{LP':"A- : --*k—"lﬁ+-11(';11~'-11'"'Llilrufl)
JLsEE (13)
where ; _ |
ﬂ!j-i &é-'t.‘ N &.I‘Lw.r.*,

L ' ! ' i il
{Lidg -« Aaveaf = Reboalual' st ot

= L) 1:1 Loz v

ULU{,{ C{.'l.].r-gl" (1'1111’1|

and ( *‘;1],;.,1 : -'{1R+—'-> is a pfaffian. and the summation
is over all permutations of fr;-L.?—r"' J "‘ll‘ﬁ+i guch that

“{;1‘(*{:1'1--- < K ol and ';‘l’-}-'r'l{-'-"'l"lli-i-i Lot Q’L"Lif-i-'i

amd L)< Aappa and the signature ;tantnr (=1 JTP is the
parity of the permutation (, ... .4 with respect to
the original permutation |2 = LR+ « Bq.(13) esn alsmo

be written (with a few number of terms especially when RV )
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“ =
2 v44p (12, .’114+-I)

-

Pl Lap i = e

+ > EOR L LS - L)

B (14)
where the sum is over all permutations B P € & of
1,% -+, 2944  wuch ¢hat Xy <Lla Xeeping
[.-A{..‘L:d‘_{\'- <L.1R+L -

A1l the results given sbove in eq.5,6,11,12 can now be

W), (23 'S :
T UL Sl = (e B

where the bracket now means

(\_11 k‘}-,_y..lh,l_itlii"'-lk)
wher k is even and it is expanded es in eqe.(13) or (14)
when k 18 odd.

The set of elements (, , ... ,Cn satisfying the
ordered commutation relation

Yr . ! L' )
ey =A Y&  ana ecer =wepll <) (15)
and _.L',a'ﬁd,a SR

where (o 1is a primitive . " poot of unity foom the base
L
elements of the Generalised Clifford algebra C., , the
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ordinary Clifford algebra being obtained as a special case
-T;,_ Trﬂ

when =2 . The set of elements ET‘ Qo G

consisting of m"
Tl = integer M° k- 'm  form the algebra C ?‘4’{. with product
detined by eq.(15). Agsin in this case, it has been shown)
that when L is even, C .y is isomorphic to the matrix
ring of dimension -’ and when n 4s odd, C .,  reduces

$o m copies of C"m. consisting of elements wi’a‘mg = g:;u":

elements which are linearly independent with

AL =By Sl o VA=A « Even in this case, the laat genera-
tor is obtained as a product of the other v as

m- m-1 ™=\

e
— =] {:"I Ey l,-iE Eyyw E"u QIU (15)

e YA

TIL
All the elements of ( . except the unit element are traceless
and the unit element is obtained if: 1 . T=,.. ,Tn=0 --modk T

Let us now specialise on the case 1.=:3Y . Define the

linear combination

(. 2 (R,
oL LZ aL & an
and s CkJ
(18)
Then X ; =
—_ S e T lle
el e b (19)

where the summation is over the permutations of the subindi-

es. This can be rewritien as
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T - _FT .7_-_ C.L_u .Q-}_‘p' @'EH £ e'f‘l}'} {m}
where . satisfy

e P S (21)

The only %terms in the expression which give a nonvanishing

trace ocour when

Do Qg % gv =0 e e

(22)
Thus ;
lr=. g2, S0ty
o (23)
where [  satisfy -q.(a'l] and (22) and
) (_H LU: ___1 1 PP
(M 2y Q,_,
CL\ Lo = z T O‘ WGU [; 1
Lr—'l. JL {.+1 =l ta‘)

where the sum is over all permutations of the subindices and
Aﬂjo ig the number of adjacent transpositions required %o
take 1t to the completely ordered form.
Prom eq.(21) and (22), it immediately follows that T=0
when K 0 vaed 7L (25). The above expression for T can
be recast in the pfaffian-like form

—— 26
= “nLu(j‘i'--H) el

B T e e =
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where
K=1
Q& ) = Z*’-'—‘-F‘rc*"a'mﬂ Mg ra LJMF’*“)
P dg=0
where
Cpingr Lo & K yim e
D e ot R A —m+i
and
L"lla'
(it e e O e (21}

L=

The phase factor is a funotion of (2 and is not uniquely
fixed end can be caloulated for each of the terms in the final
expansion on the basis of the prescription given in eq.(24).
This is because the C, obey on ordered commutation relation
and not a eycliec one. In this sense, eq.(26) can only be
interpreted ss giving the various terms in the expansion while
the explieit (¥ factor has to be worked out in each case.
However eq.(27) may be considered a kind of generaligation of
the well known pfaffian,

The case when 2 V414 reduces to the above form
when the number of feactors k 4is a multiple of m . However,
in general, for arbitrary k we have the result

= 2

{9 ;-"Q2y+i
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where JL.H is chosen such that

JE'l—“L'lqu*{:D o dam

Q.a;L_ L‘RU-\'" = mad_-?""’

J;:y - ayv4ed =0 W:uc:i.-ﬂ’\-
and

Lppd +2 2044 =0 raod
Lyeg + Lavid =0. mmedm

Lov 4 9944 =0 . mod-m.
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In connection with a New Approach to Matrix Theory, Allasdi
Rlllhilhnlnl defined a new geometrical operation on a matrix
which he termed the rearrangement operation. We shall here use
this operation to find the matrix which diagonslises a complex
ciroulent.

The matrix is here looked upon not as rows and columns but
as diagonals. In a rearrangement, the principal diagonal is
placed in the first column, the first superdisgonal amd (N -1)
subdiagonal in the second column, the second superdiagonal and
the (V- :l)d‘ subdiasgonal in the third column and so on. Thus

th

for example, d{; ,P\R is the rearrsnged form of the
matrix A,
_Clug Clg A Oe2 R Y U.n' Ao
AR (1)
= Qg an Q1= = | Gu &z Qo
C";'_L, Clzy 422 A aa A2, Q2|

A

The operation can be repeated and we denote by Fsﬁk‘ ~ the
matrix obtained by successive rearrangement Kk times. The origi-
nal matrix is restored after N rearrangements where N 1is

the dimension of the matrix.

The operation may also be performed as follows: Leave the
firat row unchanged, perform a cyolic permutation of the elements
of the first row once, second row twice, etc. Elementwise, A'ﬁ"‘

oan be written as

e B
AR [ ﬁkuvnat{-ﬂk a2 MATEC \ENCE 'F'..-.arw.;nf_. 1974 .
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(."“\RK)% == JD\}-‘,&'{-KA: (2)

where the rows and columns are labelled from O %o H-1.
Let C and B be the matrices

QA D e i 0s T '\LU \
e ceol. .. 0 E: LUL C‘ {,]
600! - - - C 7l N-1
L 4 6@ 400l 4 ' a3
which satisnfy u’-n’-h CB =W BC , where is a pri-
mitive N'® root of unity. It is well known that the matrix

C (or in fact any eirculant, which is a linear combination of
powers of C) is diagonalised by the Sylvester matrix 8

1 ‘1' - 1 = : ¥-
G (B S (S T gloglf ¢ (4)
m | 'ES R

1@ w.. W .
We define a complex circulant as a linesr combinationa

L .
of powers of CB (or CR 2 La;f;)rmad'-ﬂ ) where
0D - 0 ] ; Gu"i?"‘ﬂ’
CR=| oow™S-10 i (o2 e e
; N =i ; Len-v (5)
HDoo .- Qoo W
Apo: D 5 doo -0

we now prove the followingt

THEOREM: The matrix Qgﬂ- (and hence any complex cirgulant
consisting of a linear combination of its powers) is diagona-
lised by the matrix obtained by a repeated rearrangement of
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R«Nl
the Sylvester matrix '%ﬂ Muony Miad dsiny « S ot

Proof: Elementwise, the above matrices can be written as

: %
CLJ -:Siv:\-"f:-a- ,% = Otj (C’BJKJ =W b‘La—'fJ
Lm“& SRH A b.}lk (3+1|‘{a’~)

T e Sl
It can also be verified that & f is unitery for all X
and L(SRKJ“‘)% '_ w EF"'J“*‘K}) « Bow

LONA
Rt& i{' Q Rp.rl{.l_ .1 _fL‘L"_—;L' Q’F)
Kﬁ e <5 )J T’E“j “*’UU”Es)\ |
Pf KB'PJHHU mw'[\& —'td;z! '(GO)
Replacing <) by [+l the exponent reduces to

-—‘f(Lr LP) 1{P+-1J (Q+l},+ H= [Up s L ll)
= p(—L+p + ‘.‘*_‘T‘,i J‘"M—.l-fij St N

are remembering () " | , We have
= 8 S B *
e
'
Rt g

which is diagonal, The '&“i column of 5 e is
the eigen vector of qg,‘z corresponding to eigen value

o :
o
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An especially interesting case arises whem N is even

m Eﬁ& 1s odd (say ”'.me JE % ﬁﬁh}i—inﬁcnﬂ
number of times. can be looked upon thi eyclic por-
mutation of the vi & row by the half integral number -
*i_z' times where by a half permutation we mean the
process in which the aJF element is replaced not by the

succeeding [ﬂfﬂju‘ element but the intermedirte Q}’f éj t

element which is supposed to be the geomatrir mean of the -}'H«‘
and L&{ 1) : elements. Alternatively it may be defined as in

iqqfﬂ)-

We may mention here that for N odd, ¥ distinct inte-
gral rearrangement are possible and each of these diagonalises
one matrix of the set CE:L; {,;g}ﬁ Sy = I . Per N even
however, the integral rearrangements are not all distinet,
the [;%+KJ th rearrangement being just the «* rearrange-
ment with the columns permuted (and therefore their columns
are not two distinct sets of vectors and cennot diagonalise to
non-commuting matrices). However, when we include the semi
rearrangements, we get the N distinct matrices which diago-
nalise the set CBQ .
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Dlustrations:
N odd
i)y N= D
" 44 A A
ety e g J.[mm] el
3 {ww_] BLwiw], W w1

g, f, okt dugematie ¢ ce C™ raspoctiutly

W N=§
2 i :
e, CB @Er: ef3 ) uaqr (ng d.xagwaimi Llj

c ,gaE:'.J gﬁarJ gﬁ; 5?»3 i |

N gyt
N - 4
I i = ’ .1 1
|’Il'1'fl R f.'l,1,__'
5: E 1 J.- = —-’L' 8 ’/i_. ‘Ll'i _L-H-ﬁ LE.JI‘-" r?ﬁ_.
o Yo o (| ? '-.4 { = 1
T ] J..}i' _L'E"z _{;51_'2 -L”"
Ryy - | fila=i
S e
'{.alz,l:..'/ﬂ' ’\:T"'.fq_ {5}1
: : ‘ Raa
CR.u zl.,l.aﬂmml.w—lﬂ, (na[ < :
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1.Introduction:
Let R be an mx n matrix whose non disgonal elementa
are all positive that is Tij >0, L) ond whose dia-

gonal elements are equal to their respective column sums so
that each column adds up to o , that is ; 'F',lj‘ =0

for all é, « We shall refer to this as a column stochastic
matrix. It is well known that

I_-W ERkTi ‘:_E t]_)
A= &

where || 4is an arbitrary probability vector (that is, its
elements are all >0 and odd upto 1) and [, (also a
probability veetor) is the eigenvector of R correaponding
to eigenvalue o . (Ve mssume here that the eigenvalue o
occura with multiplicity 1 as for instance, when R 4is irre-
dueible). This is the so called ergodic property of a stochas-
tic matrix. .

Recently, Professor Alladi Remaekrishnan suggested 1t
would be interesting to study the approach to ergodicity
that is to study how the elements of || agprosch the ele-
ments of the stationary vecter ||, &s L >c0 @ whether
the elements of ||  approasch th: stationary values monoto-
nically or uh.th-rﬁ_thcr cen croas it.

We shall here answer this question and establish that

* A.R.Tekunmslla, presented at Matacience Conference on Proba-
bility Theory and Stochasstic Processes,Bangalore, 1973.
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when the eigenvalues of R are all real then after suffiei-
ently large ¢, the staticnary (limiting) velues are reached
monotonically snd when the eigenvalues of R are complex we
have & dauped cscillation about the limiting value.

Prist we shall investigate how the elements of €
behave as ;h—%?ﬂﬂ and then draw the necessary conclusions.
Ve akhall wde & modification of the Bylvester interpolation
procedure for functiona of matrices by which a matrix can be
eipressed as & lincar combination of mutually orthogonal idem-
potent matrices of rank 1.

The matrix R oan be diagonalised (or Jordanised) by a
sinmilarity transformation. Hence

=1}
A= RU (2)

—4
or R= UAU (%)
where /\ 4s the diagonal (or Jordan) form of R and U is
the matrix which disgonalises R . We shall consider here
the case when R 4is dingonalisable (becsuse the non-diagona-
lisable case while it is slightly mere complicated, can be
dealt with in e similar manner and ylelds ths same results).
In this case, /\ 1hes the form

AN T_‘},@& U T e (4)
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where }\,L' are the eigenvalues of R . Hiinge R is a sto-
chestioc metrix, one eigemvelwe sey ) (-0 @md hu, A3, - .
all have real parts negative. The U matrix gcan be written

U:(u“_ 1‘\5"'_“‘* ‘ki\_n) (%)

where [\ 48 o column vector which is an eigenvector of
R ecorresponding to eigenvalue )‘lﬂ « Further

~ )
UE—VT— 1-112_ t‘]

T
. where \/, are the corresponding row eigenvectors WAk
and VU  satlafy

Urlj= ooy (7)

and k-it'b‘j are all m x n matrices of rank 1 whose range
is the vector (U, . Hence eq.(3) can be rewritten as

?\iﬂ G:\ Vi
R = (U LLL---MU[ }{ o T (e

S

R == jlrﬂ l‘_-'_”\_ﬁ Ui
K




Note that '\ 4o o column and V 43 & row so that U U
is en n x n matrix of rank 1.
Now exponentiating eq.(3)

5 RE _ U Ex\.lzu—i (10)
end using the same procedure
Rk }'Hf-i - U—-—
i = (11)

Since R is ¢slumn stochastic and irreducible, \( = 0 and
all ihll other 7“‘»* have real parts —\US | Purther,

gy = L (12)
and 3
U4
Li' = Az
s (13)
where (i '— end > =] .thatis U
is e probability vector. Therefore eg.(ll) gives
At e b S
_ Rk 1 | A
b i % eed iy B g SN pwi, 4
Lo == .
Gl [Gon e Grn

Thus as F =00 9 £ RE approaches a stationary matrix

and

€% y=>a: )



| 209
These results can easily be generalised %o row stochas-

tic and doubly stochastic matrices.

Fow we come to the more interesting problem of how the
elements of Ep‘k {where R is column stochastie) appro-
ach the limiting values.

THEOREM 1s

If R has all ite eigenvalues real, then, at suffici-
ently large t,the elements (¢ RK) j epprosch the values (!
monotonically as & >0, (We mote here in particular that
when R 4s symmetric all its eigenvalues are real).

Proof:t Wirst we note that at ¢ = o,

afbas, |

that is the disgonal elements are 1 and off diagonal elements, ©
Now going back to eq.(1l)

e R’t)v} 5 % e (Ul "

8ince ?\K ere all reel and R is real, \x and |y, can
be chosen real. Murther, since R is stochastic, )\ (=0

and other ) K — Ve . Bence,

g, o (il ‘
(QRJC)AJ' — iy +-k2_€ t@fk){%)} an
:—"1_'
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s t=o, the K" temis (A (Ui).As ¢ inereases,
gsince N« are all ¢ , M‘t[um) L), €oes mono to-
nically %o o. Hence Qeﬁ)t Y is s sum of n terns sre of
which is a; and all the others monotically approach o. Iy
superposing these terms, we find that the elemenis of Q& )1 }
after a sufficiently large ¢ approach the limiting values ay
monotically (and do not eross the stable value again). However
when the initial velues of the terms in eq.(17) are not all of
the pame sign, the elecment may cross the siable value a finite
nunber 0f times.

THECREM 23
When the eigenvalues of R are complex, the elements of
Rk

= approach the limiting wvalues as damped oseillations about
the limiting valuen.

Proof: Again we start with the expansion

ef_ ZE}M Bhie Ui (18)
ke,

vhere )i, "\Lw Vi may now be complex. However, we know
that e% is real, since R and % are real. So we shall
rewrite the equation to make it manifestly real.

FPirst we note that simce R is real, its characteriastic
equation has real coefficients snd therefore imaginery roots
will enter in peirs. Further, if (i 4s sn eigen veotor
corresponding to the eigen value ) o+ that is
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R =i (19)
then, since R 18 real,
X 5
R = A Wil (20)

_*-
that 48 U\«  1s also an eigenvector of R eorresponding
-
to )\F + Here the star denotes just complex conjugation. A
similar statement holds for the row eigenvectors (/.

Hence e
: _ Nl d s
QR}C Lyl zm_ (e}kﬁb{iﬁ Viet+ © © T UK J"“)
.
it
= > Re e?\k"t Uk Vi
le= - (21)
Elementwise,
s At TRr
(™) "= WL 2 Rete W) Ur)y
= 4 K=2 (22)
where, of course, a; is real. We now write
A= =t A (23)
SON'S
W) g = Tie € (24)
{ |,.' r{ I
@{J &' = T{.:;'E g (25)

!

i .
where (., is now positive and }Li{JHH‘-rT,LKJT\ﬂdJGE\",&J('Q"J
are all real., Then
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% —xywk
QQR’%)-‘?}- 0 bRty Chigaily o el § SO @)

Ki=gil
L i — ek
S O"/L n e Z HB'FLF.TKJ ﬁ (;D‘j-ﬁjﬂf_"l QLWI‘:- 136)
ﬁ‘\.‘-"'}_’_

+ @'k} )
Henoe LRJ:)L hlmnfmwmtanitmqlnin-l

terms each of ihi.ah is a demped osoillation about the mean
value o . The cosine factor causes each “l'l},::;l#ilh“ with a
period Q“ﬁ}!ﬂl and the exponential term is = damping factor
which makes the term finally o. The superposition of these mEm
oseillating terms is strictly anslogous %o the phenomenon of
beats in mccoustics. The result is, in general, an amplitude
modulated wave and when this is superposed on the conatant
term, the result is an amplitude modulated oseillation about
8y - Thus the limiting value ay is crossed an infinite

number of times.

IV. Agtion on an Arbitrary Probability Vegtor:
Again, using the seme decomposition,

: Dk _
%), :CEW.“).L,}_FT' =22t T iy T
L Ak
=ar+=Z e (U (g, Tien

GLIK_

which is again a linear combination of terms which monotoni-
eally approach a; or oscillate about ay according as the
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AK 8re resl or complex and hence, by the same argument as
:mq’\heﬁt‘qj')__g monotonically approaches a, after a suffici-
ently large t or osoillates sbout a, according as Ak
apd all real or complex.

We may slso rewrite the last equation as

Dy .
&e%ﬁ? b sV ) (s
~

qu e
= Qi+ 2 Ree (Vie, T X W)y
P o I {“]
where the inner produet ( Uy, 1T ) is a number. BSince the

monotonicdty or the periodicity of the elements depends om

Ak k '
e : ]_L U, Tl )at best contributes a phase factor and

decides the np‘.l.ituhﬂ. we arrive agein at the same conclu-
sions.




In a recent paper, Barakat and m1 indicated the

importance of generaliged lucas polynomials in & variety of
physical problems>’> and suggested that it is desirable to
obtain them in g closed form. In Barakat's notation these
polynomiale are conveniently defined through a set of differ-
ence equations given by

&) A
1 oG = = T ]
UM+NL{1|;&QJ ] ”) ?_'%{) QA i Um_'_N_L {")

together with the N-initial conditions

(N 7
U-L- = bl*ffh.i.: ) A ~= 0yl ety N-1 {'.}

where Gt:& is the Xronecker symbol. lhm,luin feot, we solve
the problem even when the difference equation satisfies a set
of arbitrary initisl conditiona

T S e
Ui ()
s .
Further, Barakat and Baumann show that the M power of
on N x ¥ matrix is related to its {ll-:I.J“ to o'B powers
as follows

. I-'.'-mwu and A.R,Tekumalla, Jour.lMath.Phys.,
a3, 321 (1972)
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- 2 N (n)
1 M=l ‘ CN)
XM:\,UCE:)}X = “uﬂUN}—-J W QBUM—?- 5
GND EURRE o BB o3 (r)
-_J_'_QNqu-l_Nf1 X o+ LQEUmu;
(N i N—2
. ﬂq_UmL'L—l'" == I UM-N‘#':‘-—}){
_ LN
o ‘*LTCLNI'U m=l | L
(1.1)
R N
e rewrite the term in the _L  parem$hesis azs A w(J)
so that
N
(N), . N=U
XM'—"— Z/_\M L—JJX (1.2)
Jd=1

and give #xpressions in closed form for /&-&Fﬁiﬂ') which are
linear trenslates of the polynomials defined above. We also

give a different expression for sny function of X when ite
eigenvaluea are known.

The ususl method® of solving eq.(Ay) is by the method of
generating functions, making use of the roots of the charact-
eristic equation

) = JLH— Gy DC.N_.l-ﬁ_. i = O =0
==l (ny)

Obviously, 1-1‘- is difficult to solve for the roots of n.{B’)
in terms of the coefficients ((i |l =1, .5 N)
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S0, here the solutions of egs. (Ay) and (Cy) ave obtained in
terms of the coefficients (Gu\i =1, 25 »>N) themselves
direotly without solving the characterisiic equation.

In section 2, we summarise conveniently the available infor-

=) 22
mation about the explicit form of 9 (a,aa) end U COy iz &3)

ond sxtond Ahn pemaald unkteniol |/ G0 dn Nt N sl G )
and glve unli.::lt expressions in closed form for U[ A0 Q, 0y AN )
and \/i" (1,0, ,Gi)s In section 3, we prove that indeed

the generaliged Imcas |/ and \  polynomials have the

form given in section 2. Ve almo give expressions in eclosed

form for At:ﬂtzf} and expression: for any function of X when

its eigen values are known.

2. Lueas Polynomialg for W = 2.3 :

Vhen N = 2, the Iucas pulmnhh"“? are obtained as
the solution of difference eq. “z) satiafying the initial
conditions eq. (!2] « The solution for -qn.ua} and (12} inm

.IL ].’1_.:'_1.1 V
bfﬂ (g =2 @ ( ) o (2.1)
Lhirma
the series terminating when the exponent of a, or a, terme
negative.
The generanl term of eq.(3.1) can be more conveniently
written as
't—“l)m Z}\(_}\,1+'}. }_)]l M A

G el

2,2
Al A2l s
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m“-\)‘d-ﬂ'a’n\ll"‘ M .
(2)
For N = 2 the Imcas ) (4.0-)polynomisls are defined by

the difference equation A, satisfying the initial conditions
and Vé}{_z \).‘ZJ:Q,“

For ¥ = 3, one has to solve the difference -q-{l,} satio-
fying the initial conditions (By). The possible general g0lu=

tion guggested in closed form by Barakat and Beumann for UU
is

=3 (%) :
U;+1(a1,al,oﬁj _ U (a0

PR G

K=4) K=t (2.3)

again with the understanding that all the exponenie are EG

Making use of eq.(2.1) the general term of eq.(2.3) ean
be writiten as

|T'I 2)‘-

il }\H';‘kl#ﬁ“) ,
A 3
it Lw% T Gy G a>‘ (2.4)
| L

m I_Ad -1— a.}\ .L—|- ]-?'\. \3-:_'TL; -

Assuming the correctness of egs. (2.1) and (2.3), it is
easy to guess the general solution of the difference equations
of generalized Luces Polymomisls. Indeed, we have the follow-
ings
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THEOREM 1:

The general solution to the difference equation
(N (™) e (n)
Umw('ﬂj’&“ o) = G4 U= Qve M g

SR et SN OUNU.E-.M

satisfying the initisl conditions
(N) @ CHl " () )
= i =4 U2 UMFI_"LJ

=

where \"“ﬂ are the symmetric functions ealled m;-nuu'!
product sums of welght 1 .

THEOREM 2:
The general solution of the difference equation

(N
(},_FL’:LHJ,- R Ck"IN
v-’*r"n-HJ(” ‘ : }m; ) N Vulj

satisfying the initial conditdons \, = N, V(= Siot=)2oN-]

. D :
Ab V,-ﬁ’ (_GL'IJ{I-'LJ" J':L'Nj: Sh{_ Q.,CL'J-)' JG"HJ"}

is- with QH+,{:CL/N+1:—"' =0 (!-‘)
whare S is the ;}u part symmetric function.
C
The exprensions for Un and VSJ given by eqs.
(2.5) and (2.6) respectively enable us to cbtain, simply, the
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Iucss polynomisls. The first few |,  and 57

( "= 1 to 6) are given in K¢/ . &...: from which all the

regults that have been given by Barakat and Baumann for

N = 3(8), 4{531 and 5{10}{:11'3 easily obtained. Hence,in tabu-

lating U ema V.. it is sufficient to give
hv sm@ S only.

The theorems are proved in the next seotion.
3. Sglutions of Jifferenge Bquations:

Ye know from the well known connection between the
symmetrie funotions® G snd b that

4
= ~ = I+L1%+{’]L.J}+'{” ),
=9y Xt g~ . O g 3.1

where, in the denominator on the left hand side, we can assuue,
without loss of generality, an infinite number of terms.
Sxpanding the left hand side by the mltinomial theorem®, we
obtain (see note)

— =N sl il Dius M.
hm = > (D (ZY. a6y aa- O (3.2)
I>\.1,}".’__~, ea _;"lli )”-1' S lF ;\*ﬁ\

‘ M—-Z A Nt Ay oo
where ~ ) =nu  (Note: (-\)D T )
Frhﬂgﬂ.,,_h,..] e e ;,{@a;@“jmmﬁjg Hﬂ"if“ s o /I:-f—u.,xrq._x"-r.,,j
Hence, the general solution of the difference -q.u,) vi th
initial condition B, ocan be written down by taking ‘the (/
. =
coeffictent, of f: ) C A (A= QX +Q X = = quac™)

In particular, as the solution for the Lucas polynomials
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Ly , : \
ULMJ 3 rUmfZ} [zp\)[ Cithﬂ}h-‘"- | CL-HN
YiEN— _ 3 AL .Lhr' }1,4] {,-’)

and O [ )\, — 7 which proves theorem 2.

In mm,‘ the generating rnmti.on‘ for the solution of

eqn.(Ay) with (0p) is given by :

T .
= N W WA Wy _ e |
'?L?L_} = z S e — RN e PCu |+
"=0 =i SR
where W.-n = l’fﬂ_f“-,]ﬂnlhy PO ror ﬂ-'ﬂLC! , for
-'T’Ttl; Neanivy o 5 M—l « and w-"ﬂ':D _Fmrh,.?,N

We now proceed to gencralize the Iucas V polynomials %o
¥ order. lote that eq. (3.4) gives the solution to eq.(A)
with any initial conditions (Cy). In partioulsr, for N = 2
and Vo =2, V;-d, we getIucas |/“’ polynomisls which
are identifiable as the one part symmetriec functions =
with Q=0 = =0 « Ve now define the gene-
ralized Lueas |/(N) polynomisls as the molution of eq.(Ay)
with the initial conditions

\/QTNJ.V,L.:E,L‘ i _L‘:1)"'J N"i
(3.5)
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Solving torwm, making use of the initial conditions
eq.(53.5) we obtain that

14 V=
ML) = FCI) e where F'IL"JLJ is the derivative
of F (LD ., Purther, we know that
F"L:U b3

P crlges I e
F_L:LJ x—d| I_'_G{;;: X—=aAAw

where (ol |L=01,4,-,N) are the roots of [(A)=0 |,
Hence, in a well known way we obitain

fo= L P
Fi %)

glving S as the solution of the difference equation. It
18 not diffioult to :u that the general expression for the
generalized Lucas V }Mlntliﬂt in ¢losed form iea

™) =2 [ (ZA=1) 7w | S
v };7_&[) ('}H]P‘y.&.] __]I>ar1c’~1_-- GUH
l..r}"'-.? - N .

with N (3.6)
,-t.. =

“‘m“mm“l!hﬂlﬂmnhhzm\/
™
V%‘L)(qt_g—l-) JD*-N_): Si"!"\{-_u!}ﬂ"l_) . ALy Q“N'ﬁ"'l_}')

THEOREM Bs '
I o, ol - , Cly are the roots of the equation
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e - o then
' e M-l -l <l
N |P§T§\1&H C{f D{:.g[':',
= N - N = N =%
LJ%" ) %o Ay L &: X o Ay
ol ola . . AN Ay Ohw - AN
Ve oA - { A il
w) gy o)

Whan m..f:;ml.a&, Retdh e WeHLAL d‘r;@_rl;m; Ol !E

Auiply Uens onprvmume Uy™ and V" docoualy s<koby
b il tondilome (BYD auds (3-5) TL:I.;,F,LJ:R/_%

and for .

The firet part of the theorem follows immediately from
the expression
N-|
j__' - % __D{L 1
e 1 NMe=oj] 1ol
A=A W LO({'_D{.,L) L
=
by expanding them in énu series and collecting the coefficient
n-N+4

of X . The pecond part ie obvious. When B = 2, the
o
ehove expreselons reduce %o
& ST i A S
Um = __'_il_j Vi =ch+oly

O{l_’dﬂ_
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Ve now give an expression for any function of X when .
the eigen values of X are known. From the analysis of

chapter 5, it is clear that 4f .  are the eigenvalues

of X, then
~ Nil=

! ™
L) = aX  40aX 4.+ Ry

where
It | i
DhN tﬂg Lo ; d:.ll 1 B N._’ N-] 1
N-L n-L LS ol ole. .or 't ﬁll“l
Chg oy Oy |V ey Y (-1
QJ:: C.L';'_t . gt o 1 ! C{N
N-CH NeCh) NGyl | == ot
R s oL &
flew) fe - - fam) *.:;‘.1 c('{x g |
Ml g T
) ert‘.L . De": cal
- I ' .C.ifhl

where the determinent in the numerator is obtained by repla-
oing the ™  row of the demominatiow by the indicated
values. The same comment ms above applies when there are
repeated eigenvelues. We now give without proof expressions
in closed form for the linear translates of generalised Iucas
polynomials &;(I) defined by eq.(1.2)

W) TN B0l

A wd) = ZL“U %‘}"‘:” {) || Z“J{a@?‘ ,;1?_“._, Cu?r
N J=d
N T L) AL

t=1
The solution of the difference equation u,) with arbi-

trery initial conditions (0y) can be written in terms of these
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(N
coetfictent A (J) as

s a0y
s e Lochg (3 B2
Jd=)

A further extension of the Imess V  polynomiels is

poasible by writing
Tt
\/'TLJTH 5 Sr“_'_m) ik

(3.7)
Bl Ky = Ogo =10 =0 ol S - SRR
2 part, 3 part eto. symmetric funotions of given weight, given
Wwaw— Za- 1
by 2 (=1 B () j
) + W
Sm,m = X (ZA-10! A ‘ B
SN U (R
A W '
Wi Gy 0 G
where 2 LAL=W gma WZyW "
Vasd satisfied the difference equation
Ny A
(W) ) G

Vnp..]m(ﬂ: Q gy OWN) = Q+\’{n—!,m+' =Qn Vim-p ST

LH) . )
with the initisl conditions, V(. S s =2 N

Por ~o =14 , we get the generalized Lucas \/“‘U polyno-
N ;
nisle with the initisl conditons \/ ' - C .- L =1, 2, N,
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Further it is very well known that hm , S ocould be exten-

ded tomj_w Sehur functions.
as are leveloped in the peper can be
these tﬁottnm too.
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