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Chapter 1

Introduction

1.1 The Standard Model

The Standard model (SM) of elementary particle physics is essentially the

mathematical compactification of everything we know about the funda-

mental particles and their interactions until now. It is till date one of the

most successful models in theoretical physics. Over the last sixty years, it

has been put to rigorous experimental tests and all its predictions and pa-

rameters have been verified and measured to an appreciable degree of accu-

racy. Although believed to be theoretically self consistent, it does however

leave some experimentally observed phenomena unexplained and hence

cannot be regarded as a complete theory of fundamental interactions. For

example, it does not incorporate gravity or account for the neutrino masses.

It also does not account for the accelerating expansion of the universe (as

possibly described by dark energy), does not contain a possible dark matter
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candidate which is consistent with cosmological observations or provide a

solution to the problem of baryon asymmetry (the imbalance of baryonic

and antibaryonic matter in the observable universe). However, owing to its

brilliant success, it is often used as the basis for the development of more

exotic theories, such as extra dimensions, supersymmetry etc. which are

believed to be able to answer the questions that SM cannot, and can be

experimentally verified in future. In what follows, I will briefly discuss

the history of the development of the SM, and its structure (i.e. its particle

contents, interactions and mediators).

1.1.1 History

At the start of the twentieth century, scientists believed that they under-

stood the fundamental principles of nature completely. Atoms were con-

sidered to be the building blocks of matter, and Newton’s laws of motion

were believed to be the dynamical explanation governing the behaviour of

matter. However, Max Planck’s idea of quantized radiation and the sub-

sequent proposal of a quantum theory of light by Albert Einstein in 1905

were to be the primary steps in the development of the Quantum theory

of matter which shattered the then existing deterministic picture of the-

oretical physics. Einstein also proposed his famous Theory of Relativ-

ity, which showed that Newtonian mechanics was an approximation of the

same for low velocities. In 1909, Hans Geiger and Ernest Marsden, under
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the guidance of Ernest Rutherford performed the famous gold foil scat-

tering experiment which established that atoms have a small, dense and

positively charged nucleus. This was followed by the discovery of the pro-

ton by Ernest Rutherford in 1919. All this and the subsequent discovery

of the quantum nature of X-rays by Arthur Compton(1923), the proposal

of wave-particle duality by Louis De Broglie(1924) and the formulation of

the exclusion principle by Wolfgang Pauli(1925), finally paved the way for

Erwin Schrodinger to formulate his famous theory of Quantum mechanics

in 1926. In 1927, Werner Heiseberg formulated the famous Uncertainty

principle and in 1928 Paul Dirac combined special relativity and quantum

mechanics to explain the electron. By 1930, quantum mechanics and spe-

cial relativity became well established.

In 1931, with the discovery of the neutron by James Chadwick, the mech-

anisms of nuclear binding and decay become problems of primary inter-

est. By 1933-34, Enrico Fermi put forward the theory of beta decay and

thus introduced the idea of weak interactions. This was the first theory to

use neutrinos and particle flavour changes. During the same time, Hideki

Yukawa combined relativity and quantum theory to describe nuclear inter-

actions by an exchange of new particles (mesons called "pions") between

protons and neutrons. This marked the beginning of the meson theory of

nuclear forces. From the size of the nucleus he concluded that the mass

of these particles would be about 200 electron masses. In 1937, a sim-
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ilar particle was discovered in cosmic ray experiments, which was first

thought to be the pion, but later understood to be the muon. The pion

was finally discovered in 1947. This is the same year in which physicists

developed procedures to calculate electromagnetic properties of electrons,

positrons, and photons and the Feynman diagrams were introduced. The

following years witnessed the discovery a number of new particles such as

the K+(1949), the π0(1950), the Λ0 and K0(1951) and the ∆(1952). With

the discovery of the Bubble Chamber by Donald Glaser and the advent

of the Brookhaven Cosmotron (a 1.3 GeV particle accelerator) in 1952, a

plethora of new particles were discovered.

In 1954, C.N. Yang and Robert Mills developed a new class of theories

called Gauge theories [1, 2]. Although not realized at that time, these now

form the basis of the SM at present. The following years would witness

the first steps towards the unification of the weak, strong and electromag-

netic forces into the SM as we know it now. In 1957, Julian Schwinger [3]

proposed the idea of the unification of weak and electromagnetic interac-

tions. During the period 1957-59, Schwinger [3], Sidney Bludman and

Sheldon Glashow suggested in separate papers that all weak interactions

are mediated by charged heavy bosons, which were later called the W+

and the W− bosons. In 1961, physicists for the first time used the idea of

group theory (in particular the S U(3) group) as a scheme to mathemat-

ically classify the then increasing number of particles. In 1964, Murray
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Guell-Mann [4] tentatively put forward the idea of quarks. He suggested

that the mesons and baryons are composites of three quarks or antiquarks

called up(u), down(d) and strange(s) with spin 1
2 and charge 2/3, −1/3

and −1/3 respectively. In the same year, Sheldon Glashow and James

Bjorken [5] coined the term ‘charm′ for a fourth quark which had been

suggested in several contemporary papers. However very few physicists

took this idea seriously at that time. This was also the year that wit-

nessed the discovery of CP-violation by James Cronin and Val Fitch in

Kaon decays [6], for which they were awarded the Nobel Prize in 1980.

The next year, O.W. Greenberg, M.Y. Han, and Yoichiro Nambu intro-

duced the quark property of colour charge (all observed hadrons are colour

neutral) [7, 8]. In 1967 Steven Weinberg [9] and Abdus Salam [10] sep-

arately proposed a theory that unified the weak and the electromagnetic

interactions. During the two years that followed, an experiment was con-

ducted at the Stanford Linear Accelerator(SLAC), in which electrons, scat-

tered off protons, appeared to be bouncing off small hard cores inside the

proton. James Bjorken and Richard Feynman analyzed this data in terms

of a model of constituent particles inside the proton (they didn’t use the

name "quark" for the constituents, even though this experiment provided

evidence for quarks). In 1970 Sheldon Glashow, John Iliopoulos, and Lu-

ciano Maiani recognized the critical importance of a fourth type of quark

in the context of the Standard Model [11]. A fourth quark allowed a theory

that had flavour-conserving Z0-mediated weak interactions but no flavour-
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changing ones. In 1973, Harald Fritzsch and Murray Gell-Mann formu-

lated a quantum theory of strong interactions involving the quarks and glu-

ons [12]. This theory (called Quantum Chromodynamics (QCD)) is now a

part of the SM. In the same year David Gross, Frank Wilczek and David

Politzer discover that QCD has a special property called the ‘asymptotic

freedom′ [13, 14]. In 1974, John Iliopoulos presented, for the first time

in a single report, the view of physics now called the SM. The follow-

ing years gradually witnessed the experimental discoveries of the com-

plete particle spectrum predicted by the SM. The J/ψ particle (which is

a charm-anticharm bound state) was discovered independently by Samuel

Ting [15] and Burton Richter [16](1974). Gerson Goldhaber and Francois

Pierre discovered the D0 meson (anti-up and charm quarks) in 1976 [17].

The theoretical predictions agreed dramatically with the experimental re-

sults, offering support for the Standard Model. Martin Perl discovered the

τ lepton in the previous year [18]. The bottom quark was discovered the

very next year by Leon Lederman and his collaborators at Fermilab [19].

In 1978 Charles Prescott and Richard Taylor observed a Z0 mediated weak

interaction in the scattering of polarized electrons from deuterium which

showed a violation of parity conservation [20], as predicted by the Stan-

dard Model.1 Strong evidence for a gluon radiated by the initial quark or

antiquark was found at PETRA, a colliding beam facility at the DESY lab-

oratory in Hamburg, the following year [22]. In 1983 The W± [23] and

1However, it is to be noted that the discovery of parity violation was due to C.S. Wu and his team [21]
long back in 1957 in the beta-decay of Cobalt-50.
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Z0 [24] intermediate bosons demanded by the electroweak theory were ob-

served by two experiments using the CERN synchrotron using techniques

developed by Carlo Rubbia and Simon Van der Meer to collide protons

and antiprotons. In 1989 experiments carried out in SLAC and CERN

strongly suggested that there were three and only three generations of fun-

damental particles. This was inferred by showing that the consistency of

the Z0-boson lifetime only with the existence of exactly three very light (or

massless) neutrinos.

In 1995, after eighteen years of searching at many accelerators, the

CDF [25] and D0 [26] experiments at Fermilab finally discovered the top

quark at the unexpected mass of 175 GeV. And in 2012, almost half a

century after Peter Higgs predicted a Higgs boson as part of a mechanism

(invented by a number of theorists) by which fundamental particles gain

mass, the ATLAS [27] and CMS [28] experiments at the CERN lab dis-

covered the Higgs boson. With the discovery of the Higgs Boson, the

experimental verification and confirmation of the SM was complete.

1.1.2 Mathematical Structure and Particle content

The SM of particle physics is a theory concerning the electromagnetic,

weak, and strong nuclear interactions, as well as classifying all the sub-

atomic particles known. In mathematical terms, it is essentially a gauge

quantum field theory containing the internal symmetries of the unitary
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gauge group S U(3)c × S U(2)L × U(1)Y . In terms of particle content, it

contains a total of twenty five fundamental particles. Three generations

of six quarks and three generations of six leptons with two quarks/leptons

in each generation. All of these quarks and leptons are fermions, mean-

ing that they have half integral spins. Each lepton generation contains one

lepton (e, µ, τ) and its corresponding neutrino (νe, νµ and ντ). Each quark

generation contains one up-type (u, c and t) and one down type (d, s and b)

quark. Barring these, there are twelve gauge bosons. They are the charged

W+, W− and the neutral Z0, which act as the mediator of weak interactions,

the photon(γ) which is the mediator of the electromagnetic interactions and

eight gluons which are the mediators of strong interactions. Last but not

the least, there is the Higgs Boson, which is responsible for the masses of

the fundamental particles. A schematic diagram of the particle content of

the standard model can be found in fig.1.1.2

The form of the interactions among the fermions (the quarks and leptons)

on one side and the bosons (which are the carriers of the interactions) on

the other arises by imposing invariance under space time dependent sym-

metry group. The gauge structure of the SM specified previously is based

on the U(1)Y transformations according to the hypercharge of the particle,

S U(2)L transformations of weak isospin left-handed doublets and S U(3)c

transformations in the quark colour space. The leptons, quarks and the

gauge bosons get their masses due to the spontaneous breaking of sym-

2The figure is taken from [29].
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Figure 1.1: The Standard Model of Particle Physics. The diagram shows the elementary particles
of the Standard Model (the Higgs boson, the three generations of quarks and leptons, and the
gauge bosons), including their names, masses, spins, charges, chiralities, and interactions with the
strong, weak and electromagnetic forces. It also depicts the crucial role of the Higgs boson in
electroweak symmetry breaking, and shows how the properties of the various particles differ in
the (high-energy) symmetric phase (top) and the (low-energy) broken-symmetry phase (bottom).

metry which keeps the equations of motion, but not the vacuum, invariant

under the symmetry group. The mechanism for this spontaneous symmetry

breaking, known as the Higgs mechanism, introduces an additional scalar

weak doublet with a non-zero vacuum expectation value, invariant only

under the subgroup U(1)EM but not under the whole S U(2)L ×U(1)Y sym-

metry. The physical fluctuations around this vacuum are represented by the

Higgs boson. The SM so constructed is mathematically self consistent and

renormalizable. The renormalizability essentially means that the infinities
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arising from the theory can be removed in a physically sensible way by

redefining the free parameters of the theory.

The S U(2)L quark fields are not the mass eigenstates in general. For a

quark of a given charge, the rotation from the mass basis to the weak basis

is achieved via the unitary Cabibbo Kobayashi Maskawa (CKM) matrix.

The elements of this matrix give the coupling between a down-type (charge

−1
3), an up-type (charge 2

3) and a W boson. The matrix can be parametrized

in terms of three real and one imaginary parameter. The imaginary param-

eter is the only source of CP violation within the SM. There are no flavour

changing neutral currents within the SM at tree level, since the electromag-

netic and neutral weak currents are rendered flavour diagonal.

1.2 Weak interactions, CKM mechanism and the charm

quark

Having discussed about the SM in brief, we will now focus our attention

on the physics of the electroweak (S U(2)L × U(1)Y) sector. In particular

we will discuss briefly the physics and salient characteristics of the weak

interactions. We will end this section with a brief discussion on the charm

quark.

In the SM, the weak interaction occurs by the emission or absorption of the

W and the Z bosons (hence these bosons are called the ’mediators’ of the
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weak interaction). All known fermions interact via the weak interactions.

The masses of the mediators are much greater than those of the interact-

ing particles, which is consistent with the short range of the weak force.

Owing to their large masses, the W and Z bosons have a short lifetime of

under 10−24 seconds. The force is termed ’weak’ since its field strength is

several orders of magnitude less than that of the corresponding strong or

electromagnetic force. The weak interaction coupling constant is O(10−6)

to (10−7) compared to the strong interaction coupling constant of 1 and the

electromagnetic coupling constant of about 10−2 [30]. The weak interac-

tion has a very short range (O(10−16) to O(10−17) meters) [30, 31]. At a

distance ∼ O(10−18) meters, the weak interaction has a strength similar in

magnitude to that of the electromagnetic force, but this suffers an expo-

nential decrease with increasing distance. At distances of around 3× 10−17

meters, the weak interaction is 10, 000 times weaker than its electromag-

netic counterpart [32].

The weak interaction is unique with reference to a number of aspects:

• It is the only interaction capable of changing the flavour of quarks.

• It is the only interaction that violates both P(parity) and CP(charge

conjugate-parity) symmetries.

• It is propagated by force carrier particles that have significant masses.

These particles obtain their masses by the Higgs mechanism.
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The SM describes the electromagnetic and weak interactions as different

aspects of a unified electroweak theory. According to the electroweak the-

ory, at very high energies there are four massless gauge boson fields sim-

ilar to the photon and a complex scalar doublet which is the Higgs field.

However, at low energies, due to the spontaneous breaking of the gauge

symmetry (which amounts to one of the Higgs’ doublet fields acquiring

a vacuum expectation value) the S U(2)L × U(1)Y gauge symmetry of the

electroweak theory is spontaneously broken into the U(1) symmetry of

electromagnetism. This symmetry breaking produces three massless fields

which interacts with the Higgs field to acquire mass. These are the W+, W−

and Z bosons, while the fourth field that remains massless is the photon.

All particles have a property called weak-isospin, denoted by T3. It is a

quantum number that governs how the particle will behave under weak in-

teractions. The role of weak isospin in weak interactions is similar to that

of the electric charge in electromagnetic interactions or the colour charge

in strong interactions. All fermions have a weak isospin value of either

+
1
2 or −1

2 . For example, all up type quarks have a weak isospin of +1
2 and

all down-type quarks have a weak isospin of −1
2 . A quark with a given

T3 can never decay to another quark of similar T3 via weak interactions.

Any given interaction conserves weak isospin. For example, a π+ meson

normally decays into a µ+ and a νµ, both of which have weak isospin val-

ues of +1
2 . There are two types of weak interactions. They are called the
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‘charged-current interaction’ and the ‘neutral-current interaction’ depend-

ing on whether they are mediated by a charged boson or a neutral boson

respectively. Examples of charged current interactions is the conversion

of a charged lepton into its corresponding neutrino, or the conversion of

down-type quark into an up-type quark by the absorption of a W+ boson.

Flavour changing neutral current interactions, as mentioned before, do not

occur in the SM at the tree level.

I will now discuss briefly about the CKM(Cabibbo, Kobayashi and

Maskawa) matrix3. It is essentially a unitary matrix whose elements spec-

ify the coupling strengths of flavour changing weak decays. Let us call the

left handed quark doublets

ψ jl =

























U j

D j

























L

(1.1)

where U j are the charge +2
3 fields and D j are the charge −1

3 fields. The

corresponding right-handed fields (U jR and D jR) are singlets. The Yukawa

coupling responsible for the mass of the charge −1
3 element is

− g jkD̄ jRφ
†ψkL + h.c. (1.2)

When φ develops a vacuum expectation value (VEV), we have the mass

3I closely follow [33] for this discussion
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term

− MD
jkD̄ jRDkL + h.c. (1.3)

where

MD
jk = g jkv/

√
2 (1.4)

where v is the VEV of φ. It can easily be verified that eqn.(1.2) is invariant

under S U(2)×U(1). To construct a Yukawa coupling for the U jR field, one

defines

φ̃ = iτ2φ
∗. (1.5)

The Yukawa coupling can then be written as

− h jkŪ jRφ̃
†ψkL + h.c. (1.6)

where

φ̃ =

























φ0∗

φ−

























(1.7)

with

φ− = −φ+∗. (1.8)

The mass of the U term is then produced by the corresponding VEV

−MU
jkŪ jRUkL + h.c. (1.9)

MU
jk = h jkv/

√
2. (1.10)
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One can redefine the mass fields so that the MU mass term is diagonal:

−MU
jkŪ jRUkL + h.c. (1.11)

MU
=











































mu 0 0

0 mc 0

0 0 mt











































. (1.12)

But then, MD cannot be diagonalized because the ψL field is already fixed.

However, one can redefine the DR fields so that the mass term for D can be

written as

− MD
jlV
†
lk

D̄ jRDkL + h.c.MD
=











































md 0 0

0 ms 0

0 0 mb











































. (1.13)

where V† is a unitary matrix. The D jR are simply the mass eigenstates

fields now, but V† relates DkL to the mass eigenstates as











































d

s

b











































L

= V†DL. (1.14)

Therefore

DL = V











































d

s

b











































L

. (1.15)
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In terms of the mass eigenstates, the quark charged current is

(

ū c̄ t̄

)

γµ(1 + γ5)V











































d

s

b











































. (1.16)

The unitary matrix V contains all the information of the general mass ma-

trices that was the starting point of this analysis.

A general n × n unitary matrix has 2n2 real parameters in total. However,

there are n constraints from the normalization of each column and n(n− 1)

constraints from the orthogonality between each pair of columns (the con-

ditions on the rows do not add extra constraints). Hence, a general n × n

unitary matrix has n2 independent real parameters. Not all of these param-

eters are physically meaningful in the CKM matrix. This is because, for

n quark generations, 2n − 1 phases can be absorbed by the freedom to se-

lect the phases of the quark fields. Therefore, the number of physical real

parameters is n2 − (2n − 1) = (n − 1)2. Of these, the number of real rota-

tion parameters are 1
2n(n − 1). The number of independent phase factors is

therefore n2− (2n−1)− 1
2n(n−1) = 1

2(n−1)(n−2). The 3×3 CKM matrix

describing the mixing of the three quark generations in the SM therefore

has four independent real parameters, of which three are rotation param-

eters leaving one phase. This phase is solely responsible for the violation

of the CP symmetry within the SM. It is to be noted that with two quark

generations, a CP violating phase cannot be accommodated in the corre-
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sponding mixing matrix. Hence, it is mandatory for a theory to have at

least three quark generations in order to accommodate CP violation. In the

basis of eqn.(1.16), the CKM matrix (V) has the form [34]











































Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb











































. (1.17)

The Standard parametrization for the CKM matrix is [35]











































c12c13 s12c13 s13e−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13

s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13











































. (1.18)

where ci j = cos θi j and si j = sin θi j. The phase δ13 is the SM CP violating

phase.

In 1963 Nicola Cabibbo introduced the Cabibbo angle (θ) to preserve

the universality of the weak interactions [36]. The main motivation be-

hind this was the need to explain the observation that the strangeness

changing hadronic weak currents appeared to be suppressed relative to the

strangeness conserving ones. With three quark flavours (u, d and s) the

charged weak current as postulated by Cabibbo is given by

Jµ(x) = ū(x)γµ(1 + γ5)(cos θd(x) + sin θs(x)). (1.19)

23



Here θ denotes the mismatch between the flavour symmetry breaking di-

rections chosen by the strong and the weak interactions, known as the

Cabibbo angle. Eqn.(1.19) can be viewed as the u quark being cou-

pled to a certain specific linear combination of the d and the s quark

(dc(x) = cos θd(x) + sin θs(x)). The orthogonal combination (sc(x) =

− sin θd(x) + cos θs(x)) however remains uncoupled. One would expect

that decays like KL → µ+µ− would proceed via a weak neutral current me-

diated by the Z boson. However, it was found that KL → µ+µ− does not

occur at the tree level. In fact, no flavour changing neutral current (FCNC)

processes are allowed at the tree level in SM. Glashow, Illiopoulos and

Miani (GIM) [11] conjectured that with the addition of a fourth up-type

(charge +2
3) quark, the full charged weak current is given by

Jµ(x) = ū(x)γµ(1 + γ5)dc(x) + c̄(x)γµ(1 + γ5)sc(x). (1.20)

In matrix notation, eqn.(1.20) reads

Jµ(x) = Ū(x)γµ(1 + γ5)CD(x) (1.21)

where,

U =

























u

c

























; D =

























d

s

























; C =

























cos θ sin θ

− sin θ cos θ

























(1.22)

With this, the current J3 = [J, J†] is diagonal in flavour space. Therefore,

the neutral current in a gauge theory, which is a linear superposition of
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J3 and the electromagnetic current will also be diagonal. Hence, FCNC

processes do not occur at the tree level in the SM.

Figure 1.2: The one-loop contribution to K0 → µ+µ− in a three quark theory.

Figure 1.3: The charm quark contribution.

This however, does not explain the observed rate. For example, the KL →

µ+µ− decay can be generated by 1.2. In a renormalizable gauge theory 1.2

is expected to give a branching ratio g4 ∼ α ∼ O(10−4), where α is the fine

structure constant.

Here comes the second ingredient of the GIM mechanism. Glashow, Il-

liopoulos and Miami observed that with the inclusion of a fourth quark,

a second diagram (fig.1.3) contributes to the process, with the u quark

replaced by the c quark. In the limit of exact flavour symmetry, these

two diagrams cancel each other. Flavour symmetry breaking induces a
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mass difference between the quarks, so the sum of the two diagrams is of

the order of g4(m2
c − m2

u)/m2
W ∼ α2m2

c/m
2
W . Prior to the discovery of the

charm quark, this predicted its mass. The mass of the charm quark (1.275

GeV [35]) was found to satisfy the observed rates within errors. The same

mechanism applies to the present theory with six quark flavours with the

CKM matrix.

As mentioned at the beginning of this chapter, the SM is not the complete

picture. We believe that new physics (NP) exists at scales higher than the

electroweak symmetry breaking scale of 1 TeV. However, among the nu-

merous models for NP, the correct candidate (if any) can only be identified

by experiments. It is in this regard that flavour physics has assumed an

important role over the last three decades. With no NP particles being

discovered at the LHC, and their masses in various models being pushed

higher, it appears that precision measurements in the flavour sector may be

the only way for constraining and looking for NP.

Charm physics can be instrumental in this respect. This is because, CP

violation in charm within the SM is expected to be negligible. Any CP vi-

olation in the charm sector would hence be an unambiguous signal for the

presence of NP. This CP violating effect could be manifested in D0 − D̄0

mixing or in the decays of the D mesons. However, before looking for

NP scenarios in charm decays, it is mandatory to first have a better under-

standing of the observed branching ratios. NP can also manifest itself as
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new particles contributing to loops in rare charm decays. The difficulty in

extracting information on NP in these cases are the dominant long distance

contributions that plague such decays.

In the course of my PhD, I have tried to look into some of these issues. The

second chapter is on two-body pseudoscalar charm decays. We attempt to

parametrize the annihilation and exchange contributions to these decays.

The non-factorizable corrections which are known to be important while

applying the method of factorization to charm decays have been consid-

ered and parametrized. We take extreme care in the treatment of the form

factors. Finally, final-state interactions, which have previously been shown

to play a significant role in explaining D→ PP decays, have also been in-

corporated via a K-matrix formalism. The elements of this matrix, which

are the decay widths of a particular resonance going to the concerned two-

body final state pseudoscalars, have been taken from Ref. [35]. The ones

that are not reported or are ill-measured have been treated as parameters.

We estimate all these parameters from a fit to the existing data for the

D → PP branching ratios from Ref. [35]. The third chapter is on radia-

tive charm decays, where we explore the possibility of a heavy vector-like

down type isosinglet quark in presence of an additional left-right symmetry

enhancing the corresponding inclusive branching ratio as compared to the

SM, as well as provide a possible method for the detection of such NP in

presence of the dominant long-distance contributions. We provide detailed
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discussions regarding the renormalization group evolution of the short dis-

tance Wilson coefficients, both in the SM and the heavy vector-like quark

model. We also discuss the possibility of using the photon polarization as

a probe for identifying NP in the presence of a left-right symmetric model

with a heavy vector-like quark.
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Chapter 2

Two-body pseudoscalar charm decays

2.1 Introduction

The discovery of charm mixing and hints of CP violation in the charm

sector resulted in non-leptonic charm meson decays being a focus of atten-

tion in the last few years [37, 38]. CP violation in charm, direct as well

as in mixing, is expected to be negligible. Hence any hint of CP viola-

tion in charmed mesons is expected to be from physics beyond the stan-

dard model. Charm may therefore be instrumental in providing insights

into new physics [39–47]. Earlier FOCUS [48], CLEO [49] and various

other collaborations had produced many interesting results in the charm

sector. The 3.2σ hint [50, 51] of a difference of CP asymmetries between

the singly suppressed K+K− and π+π− charmed decay modes resulted in a

large volume of work [52–68]. These works mostly used different models

of New Physics, to explain the result. The hint has since then been slowly
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moving towards zero and currently there seems to be no evidence for any

direct CP violation in charm in any mode [69]. In spite of that, all the

recent work done on D → PP decays motivated by this hint clearly show

that it is critical to first understand the observed branching ratios of all the

charmed hadronic decay modes well, within the Standard Model, before

any observation of an anomalous rate or any new CP asymmetry can be

claimed to be due to the presence of New Physics.

This however, is not an easy task. The mass of the charm quark (1.275

GeV) makes it very difficult to come up with a proper theoretical tech-

nique for calculation of hadronic charmed meson decays. Unlike the bot-

tom quark, the charm is not sufficiently heavy to allow realization of the

infinitely heavy quark limit. The well-known theoretical approaches based

on QCD, for example, heavy quark effective theory [70], QCD factoriza-

tion [71,72], the perturbative QCD approach [73–76] and the soft-collinear

effective theory [77], which lead to very satisfactory predictions for B de-

cays, cannot hence be used to explain data in the case of charmed mesons.

Furthermore, the charm quark is also not light enough for a chiral expan-

sion to be applicable.

The factorization approach is still one of the most successful ways to study

two-body charm meson decays in the absence of any other reliable and

effective theoretical method [78, 79]. However, calculation of Wilson co-

efficients of effective operators is known to suffer from the problem of γ5-
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and renormalization scheme dependence in the naive factorization scheme.

These difficulties can be overcome in the frame-work of the ‘generalized

factorization approach’ where Wilson coefficients are effective and include

important non-factorizable (NF) corrections [80, 81].

There was another attempt to explain hadronic D decays previously using

the so called large 1/Nc (where Nc is number of colour degrees of freedom)

approach [82]. It was observed that dropping Fierz transformed terms char-

acterized by 1/Nc can narrow the gap between predictions and observations

up to a satisfactory level. QCD sum rule calculations showed that Fierz

terms were certainly compensated by the NF corrections [83–85].

One should mention another model independent so called ‘quark diagram’

or ‘topological diagram’ approach in the literature [86–94]. In this ap-

proach, all two-body non-leptonic weak decays of heavy mesons are ex-

pressed in terms of distinct quark diagrams, depending on the topologies of

weak interactions, including all strong interaction effects. Based on S U(3)

symmetry, it allows extraction of the quark diagram amplitudes by fitting

against experimental data. However S U(3) breaking effects in charmed

meson decays have been shown to be important and need to be carefully

incorporated [95, 96].

The importance of final state interactions (FSI) in nonleptonic charm de-

cays had been realized and discussed in several papers [97–100] in the

early 80’s, where the authors had been intrigued by the anomalies in the
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observed branching ratios of the Cabibbo favoured (CF), neutral versus the

charged Kπ modes, the differing rates of the singly Cabibbo suppressed

(SCS) K+K− and π+π− modes, followed by measurements of rates of few

other modes that had unexpected suppression/enhancement. Many of these

were conjectured to be due to FSI. Surprisingly, even in the last couple of

years, in many of the papers that worried about the charm CP asymmetry

problem, these old puzzles were still considered unresolved.

Even for the case of hadronic B meson decays, the role of FSI’s is being

examined rather carefully in the last few years [101, 102]. The mass of

the charmed meson lying right in the heart of the resonance region, reso-

nant final state rescattering is bound to play a bigger role in the D → PP

and needs to be evaluated. However, dynamical calculations of these long

distance effects are not possible and hence they can only be determined

phenomenologically after comparison of the theoretical estimates with ex-

perimental data. Unitarity constraints play an important role in providing

the theoretical estimates.

Another contribution in hadronic two body decays that has been debated

for a long period is that of the weak annihilation and exchange diagrams.

Rosen proposed [103] that the W exchange diagrams may be large and

since this appears only in D0 and not in D+ decays, it could account for the

difference in the lifetimes of these two mesons. Bigi and Fukugita [104]

had then put forward several D and B meson decay modes that could be
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the smoking gun signals of the W-exchange contributions. Yet, when the

mode D0 → φK̄0 was observed, it was argued [105] that it could have been

generated from the decay mode D0 → K∗η, with this final state rescat-

tering to the φK̄0 mode. Annihilation type contributions along with FSI’s

were incorporated in the hadronic two body vector-pseudoscalar modes of

charmed meson decays in Ref. [106]. Studies using the quark diagram ap-

proach of Ref. [107] had also indicated that annihilation type contributions

are needed to explain the observed data.

This chapter is about the role of FSI in the two body D (D here can be

any of the D0, D+, or D+s ) meson decays. The assumption is that FSI ef-

fects are dominated by resonance states close to the mass of D mesons.

In fact, there exist isospin 0, 1 and 1/2 resonances near the D mass, that

may contribute to rescatterings among different channels in these respec-

tive isospin states and enhance/suppress some of the decay rates. In the

next section, the formalism for the calculation of the un-unitarized ampli-

tudes, using a modified factorization approach, where the effective Wilson

coefficients include NF corrections is described. This is in analogy with

the QCD factorization approach of Beneke-Neubert for hadronic B meson

decays [108], where using the hard scattering approach, the NF corrections

are calculable in heavy quark approximation. However, for charm, since

this approximation fails, these NF corrections are not calculable and are

left as parameters. I also indicate our parametrization of the annihilation
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contributions and discuss our inputs: the decay constants, and the form

factors, for which we used a z-series expansion approach. In Sec. 2.3, the

need to incorporate additional long distance FSI effects is discussed. I also

show this can be achieved with a K matrix formalism for coupled chan-

nels. Using the observed widths, masses and known decay rates of the

resonances to the various channels to evaluate the diagonal elements and

leaving the unknown elements of the K matrix as parameters, the unitarized

amplitudes are calculated (as discussed in [106]) to estimate the branching

ratios of all the SCS, CF and doubly Cabibbo suppressed (DCS) D → PP

decay modes. In Sec. 2.4, I list the isospin decomposition of all the decay

modes, the parameters that need to be determined from our fits as well as

the errors in theoretical inputs used. I list all the branching ratios after our

numerical χ2 fits as well as the values of the fitted parameters.

2.2 The Un-unitarized Amplitudes

2.2.1 Weak Hamiltonian and Wilson coefficients

The study of weak decays of charmed mesons to two body hadronic modes

necessarily requires a careful evaluation of the strong interaction correc-

tions. The weak effective Hamiltonian may be expressed in terms of co-

efficient functions, which incorporate the strong interaction effects above
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the scale µ ∼ mc and the current-current operators as:

Hw =
GF√

2
[C1(µ)O1(µ) +C2(µ)O2(µ)] + h.c. . (2.1)

where, GF is the Fermi coupling constant, C1 and C2 are the Wilson coef-

ficients and the operators are,

O1 = (ūαq2α)V−A(q̄1βcβ)V−A

O2 = (ūαq2β)V−A(q̄1βcα)V−A .

α and β in the above are colour indices, while q1, q2 can be either the d or

the s quark. The quark diagrams dominantly contributing to the branching

ratios of D → P1P2 [94] are the colour-favoured Tree amplitude T , the

Colour-suppressed amplitude C, the W-exchange amplitude E and the W

annihilation amplitude A, shown in Fig. 2.1.

Penguin contributions in charmed meson decays are highly suppressed as

the dominant down type quark contribution to the flavour changing neutral

current c → u transition is from the b quark which is accompanied by the

presence of the tiny product, V∗
cb

Vub of the CKM matrix elements. Hence,

the two operators in Eq. (2.1) are sufficient for calculating the amplitudes

and branching ratios of the D→ PP modes.

In the naive factorization approach, the matrix element of the four-fermion

operator in the heavy quark decay is replaced by a product of two cur-
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rents. The amplitudes for the non-leptonic 2 body decay modes are then

the product of a transition form factor and a decay constant. However, NF

corrections must exist; while such corrections for scales larger than µ are

taken into consideration in the effective weak Hamiltonian, those below

this scale also need to be carefully incorporated. In the QCD factorization

approach for B meson decays [71, 72, 109], these NF corrections are han-

dled using the hard scattering approach, where the vertex corrections and

the hard spectator interactions are added at the next to leading order in αs

and its accuracy is limited only by the corrections to the heavy quark limit.

But, in the case of charm decays, where the heavy quark expansion is not

a very good approximation, it is best to parametrize these NF corrections

and then determine them by fitting the theoretical branching ratios with the

experimental data. In the diagrammatic approach of Ref. [94] also, either

the Wilson coefficients themselves or the NF corrections appearing in the

Wilson coefficients are determined from fits to data.

Hence, we write the scale dependent Wilson coefficients, modified to in-

clude the NF corrections which are parametrized by χ1 and χ2 with their

respective phases φ1 and φ2 as,

a1(µ) = C1(µ) + C2(µ)

(

1
Nc

+ α(µ)χ1eiφ1

)

(2.2)

a2(µ) = C2(µ) + C1(µ)

(

1
Nc

+ α(µ)χ2eiφ2

)

. (2.3)

The dominant Tree and Colour amplitudes for D → P1P2, where P1 is
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Figure 2.1: The dominant quark diagram amplitudes

the final meson which carries the spectator quark, while P2 represents the

meson emitted from the weak vertex (as depicted in Fig. 2.1), are then

written as:

T (C) =
GF√

2
VCKMa1(µ)(a2(µ)) fP2(m

2
D − m2

P1
)FDP1

0 (m2
P2

) , (2.4)

where, fP2 is the P2 meson decay constant and F
DP1

0 (m2
P2

) denotes the tran-

sition form factor for D→ P1 evaluated at m2
P2

. We follow the prescription

of Ref. [110] and choose the scale µ to be the energy release in individual

decay processes rather than fixed at mc. This scale which is dependent on

the final state masses, allows for SU(3) breaking, additional to that coming

from different decay constants and form factors. This scale is taken to be,
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µ =

√

ΛmD(1 − r2
2), where, r2

2 = m2
P2
/m2

D
and Λ is another free parameter.

Λ, χ1, χ2, φ1 and φ2 are taken to be universal for all the decay modes and

are fitted from experimental data.

A comment is in order at this point. While [110] includes NF correc-

tions only in the color suppressed ampli- tudes, we have included these in

the tree amplitudes as well. Of course NF corrections in the color sup-

pressed contributions are well motivated, however, vertex corrections etc.

will be present even in the tree contributions and hence these need to be

added. Even in B decays, in the QCD factorization approach of Beneke-

Neubert [108], these corrections are evaluated for both the Wilson coeffi-

cients C1 and C2 (and hence are present in tree and color suppressed ampli-

tudes). For D decays, since the non-factorizable corrections are expected to

be even more important due to the 1/mc corrections being non-negligible,

perhaps incorporating them in tree and color suppressed contributions re-

sults in better fits to data. In fact, such corrections were incorporated both

in tree and color suppressed amplitudes in ref. [107] and several other pa-

pers. In case of charmed meson decays, since these corrections are not

calculable, they are parametrized, with the parameters to be determined

from fits to data.
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2.2.2 Weak Annihilation Contributions

For a long time, W-exchange and W-annihilation contributions used to be

neglected due to the so-called helicity suppression. However, observation

of many decay modes of charmed and bottom mesons, which are possible

only via the annihilation or exchange diagrams have indicated that these

contributions could be substantial. These short distance weak annihilation

effects were hence included in the diagrammatic approach. In principle

these could result from rescattering, even in the absence of annihilation and

exchange processes. In fact, weak annihilation topologies were assumed to

be induced by nearby resonances through FSI’s in Ref. [107]. The authors

in [107] as well as Ref. [111] use SU(3) to relate the couplings of the

final state mesons with the resonances. This leads to the result that the

long distance W-exchange contribution can be induced by a tree amplitude,

while W-annihilation can be induced by a color suppressed internal W-

emission. The resonant FSI modify the W-exchange and W-annihilation

amplitudes but the T and C amplitudes are unaffected. We emphasize that

the assumption of SU(3), plays an important role in these results. In a

most general coupled channel formalism, all contributions in the various

channels will be affected by the resonant FSI, as will be shown in Sec 3.

We parametrize the W-exchange and W-Annihilation contributions in the

amplitudes by χE(A) and estimate them from phenomenological fits to data.

39



The exchange(annihilation) amplitudes are hence written as:

Eq,s(Aq,s) =
GF√

2
VCKMC1(µ)(C2(µ))χE(A)

q,s

CF

N2
c

fD fP1 fP2 . (2.5)

Since the initial charmed meson is annihilated and both the final mesons

are produced from the weak vertex, after the production of a quark-

antiquark pair from a gluon, these amplitudes are a product of the decay

constants of the initial D meson ( fD) and that of P1( fP1) and P2( fP2). Apart

from this, the strengths of the exchange(annihilation) amplitudes χE(A)
q,s are

assumed to be the same for all modes and the subscripts distinguish the

contributions of the pair production of the light quark-antiquark from that

of the strange pair. Since the annihilation and exchange contributions are

necessarily non-factorizable, they depend only on C1,2 rather than the mod-

ified coefficients a1,2.

We wish to emphasize that for the case of decays to two pseudoscalar

mesons, it has been shown in Ref. [108] that in the annihilation contri-

butions the quark-antiquark pair production happens with gluon emission

from the initial state quark. Hence, this contribution is independent of the

FSI effects that obviously involve the final state quarks and are discussed

in Sec. 2.3. Hence inclusion of both weak annihilation/exchange contribu-

tions as well as FSI will not amount to double counting, as pointed out in

Ref. [112].

The scale of the Wilson coefficients for the exchange and annihilation am-
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plitudes must depend on both the mass ratios, r1,2 = mP1,2/mD and is taken

to be, µ =
√

ΛmD(1 − r2
1)(1 − r2

2) .

2.2.3 Non-perturbative Inputs: Form Factors and Decay Constants

We start by specifying our convention for the different mesons involved in

our analysis:

π+ = −ud̄, π− = dū, π0
=

uū−dd̄√
2
,

K0
= ds̄, K̄0 = −sd̄, K+ = us̄, K− = sū,

D0
= cū, D+ = −cd̄, D+s = cs̄.

In the D → P1 transitions, the matrix element of the vector current is

written in terms of the form factors F+ and F0 as,

〈P1(p′)|q̄γµc|D(p)〉 ≡ F+(q
2)(pµ + p′µ −

m2
D
− m2

P1

q2
qµ) + F0(q2)

m2
D
− m2

P1

q2
qµ,(2.6)

where q ≡ p − p′. The matrix element for the production of the second

meson P2, is given by,

〈P2(q)|q̄1γµq2|0〉 = i fP2qµ . (2.7)

Hence, in the amplitude of the non-leptonic two pseudoscalar decay modes

of charmed mesons involving the product of the two matrix elements

specified in Eqs.(6) and (7), only the transition form factor F0 appears.
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Transition form factors can in principle be experimentally measured from

the semi-leptonic decays, however, in the massless lepton limit, only the

F+(q2) contributes to the semi-leptonic amplitude distributions. However,

the semi-leptonic information is still useful, since at zero momentum trans-

fer the form factors obey the kinematic constraint F0(0) = F+(0). The q2

dependence of the F0 on the other hand is accessible only with massive

leptons in the semileptonic decays or in lattice simulations. Simple and

modified pole models have been widely used to parametrize the q2 de-

pendence of the form factors, but these have poor convergence properties.

Recently the z-expansion [113, 114] has been introduced as a model in-

dependent parametrization of the q2 dependence of form factors over the

entire kinematic range and has been shown to have improved convergence

properties. In this approach, based on analyticity and unitarity, the form

factors are expressed as a series expansion in powers of zn, where z is a

non-linear function of q2, with an overall mutiplicative function account-

ing for the sub-threshold poles and branch cuts,

F(t) =
1

P(t)φ(t, t0)

inf
∑

k=0

ak(t0)z(t, t0)k . (2.8)

The series coefficients and prefactors can only be determined from fits to

lattice or experimental data. In fact, CLEO collaboration has determined

these coefficients for the D → π,K, η form factors from the semileptonic

decays but, in the massless lepton limit. Hence, for F0(q2), we use lattice
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results to determine the first two coefficients.

In the Becirevic and Kaidalov (BK) ansatz [115],

F0(q2) =
F0(0)

1 − q2

βm∗2
D

, 1 (2.9)

where m∗
D

is the mass of the vector meson with flavour cd̄ or cs̄, depending

on the transition being c → d or c → s respectively. F0(0) and β are

parameters to be fitted to experimental data and in fact, in Ref. [117], the

Fermilab and Lattice MILC collaborations have fitted these parameters to

CLEO-c data. The normalization f (0) and shape parameter determine the

physical observables describing the form factors at large recoil and are

given by,

f (0) ≡ F+(0) = F0(0),
1
β
≡

(M2
H
− M2

L
)

F+(0)
dF0

dq2
|q2=0 . (2.10)

Using these input parameters we can determine the first two coefficients of

the series expansion in Eq. (2.8) for F0(q2).

Few details regarding the z series form factor expansion can be found in

Appendix B. If the series is rapidly converging, even two coefficients may

be sufficient to determine the q2 dependent form factor F0(q2). Equating

the normalization and slope obtained using Eq. (2.8) to that obtained from

the lattice parameters ( f (0), β), which in turn had been obtained by fits to

experimental data, we can obtain the z-expansion series (up to linear order)

1It has been pointed out in Ref. [116] that F0, but not F+, can be modeled by a single pole.
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Figure 2.2: The q2 dependence of the scalar form factors. The plot on the left displays F0(q2) for
D→ π transition, while that on the right is for D→ K transition.

for all the form factors.

In Fig. 2.2 we show the plots for our results for D → π and D → K

where the lattice input parameters from Ref. [117] are used. We would

like to point out that our D → π and D → K form factor values at q2
= 0

are in very good agreement with that given in Refs. [118, 119] which are

the most precise published calculations for D → πlν and D → Klν form

factors, according to Lattice Review [120]. Further, the shape of F0(q2) for

D → π,K that we obtain after the z-series expansion are consistent with

that of Ref. [119]. Moreover, the f (0) values in Table 2.1 for D → π and

D→ K are also in agreement with CLEO results of Ref. [121].

Regarding D→ η and D→ η′ form factors, since in these transitions, only

the non-strange component ηq is involved, hence one expects, F0(q2) for

D → ηq, η
′
q ∼ D → π. For D → η, CLEO has determined F+(0)Vcd =
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Table 2.1: Best fit values of BK parameters for the scalar form factors

Decay f (0) β

D→ π 0.64 ± 0.03 ± 0.06 1.41 ± 0.06 ± 0.07
D→ K 0.73 ± 0.03 ± 0.07 1.31 ± 0.07 ± 0.13

0.086 ± 0.006 ± 0.001 using the semileptonic decay mode D+ → ηe+νe

[122]. Hence we use this value to estimate F0(0). However, for η′, while

the first observation of the decay mode D+ → η′e+νe has been reported

by CLEO in the same paper, but the form factor was not determined in

this case, and hence we approximate, the F0(0) for η′ to be the same as

that for η. Further, since it has been shown [123] that the form factors and

particularly their shape is insensitive to the spectator quark, the shape for

both η and η′, is assumed to be the same as that for the D→ π case.

The Ds → η, η′ have been estimated with some lattice studies using the

( f (0), β) values from a recent exploratory paper by Bali et. al. Ref. [124].

However, these have larger uncertainties, since even the lowest pion mass

used is still far from the physical mass. Hence, for Ds → η, η′ we take

the form factors to be similar to that of D → K and for Ds → K we take

them to be similar to D→ π. Note that in all these cases the masses of the

final mesons for each of the respective decay process are used in obtaining

their z-expansion coefficients, the approximations are used only for the

input parameters, f (0) and β. Due to this uncertainty, we have added an

additional 3% theoretical error to these form factors.

Turning now to the decay constants, for π and K mesons, the fπ,K are taken
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Table 2.2: z-expansion coefficients obtained after using the BK parameters in Table 2.1

Decay a0 a1

D → π 0.19 ± 0.02 −0.41 ± 0.05
D → K 0.08 ± 0.01 −0.32 ± 0.03
D → η 0.06 ± 0.004 −0.27 ± 0.02

from the Particle Data Group(PDG) [125]. For the η and η′, following the

method described in [126], it is assumed that the decay constants in the

quark flavour basis, follow the pattern of particle state mixing. The η and

η′ are expressed as linear combinations of the orthogonal flavour states,

ηq =
1
√

2
(uū + dd̄), and ηs = ss̄ . (2.11)

The physical states η and η′ are related to these flavour states by,

























η

η′

























=

























cosφ − sinφ

sinφ cosφ

















































ηq

ηs

























,

where, the η − η′ mixing angle denoted by φ, represents the sum of the

ideal mixing angle and the η − η′ mixing angle (θ) in the octet-singlet

basis, φ = θ + tan−1
√

2. Hence the decay constants (form factors) fq and

fs (F0q
and F0s

) corresponding to that for ηq and ηs (D → ηq and D → ηs)

respectively, are given by:

f
q
η = fq cosφ, f s

η = − fs sin φ, F
q

0η
= F0q

cosφ, F s
0η
= −F0s

sin φ,

f
q

η′ = fq sinφ, f s
η′ = fs cosφ. F

q

0η′
= F0q

sinφ, F s
0η′
= F0s

cosφ.
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Various ratios of decay rates having η′ in the final state with respect to that

with η, for example, Γ(J/ψ → η′ρ)/Γ(J/ψ → ηρ), comparison of cross-

sections of scattering processes for π−p→ η′n with that of π−p→ ηn etc.,

had been used for a phenomenological fit for the decay constants as well as

the angle φ in Ref. [126] and had been widely used. Recently, Babar with

more accurate data on two photon widths of light pseudoscalar mesons,

did a combined analysis [127] along with CLEO data to yield a mixing

angle and decay constants with reduced uncertainties: φ = 37.66 ± 0.70,

fq

fπ
= 1.078 ± 0.044 and fs

fπ
= 1.246 ± 0.087, which are used in this work.

With the above inputs, the un-unitarized amplitudes for all the two-body

pseudoscalar-pseudoscalar (PP) modes: SCS, CF and DCS may be written

and are listed as follows. For the decay modes involving η and η′, to dis-

tinguish the case in which ηq is the P2 meson of eqn (4) from that where ηs

is the one, the notation used is:

C
f
ηq
=

GF√
2

VCKMa2(µ) fq(m2
D − m2

P1
)FDP1

0 (m2
η),

C
f
ηs
=

GF√
2

VCKMa2(µ) fs(m
2
D − m2

P1
)FDP1

0 (m2
η),

C
f

η′q
=

GF√
2

VCKMa2(µ) fq(m2
D − m2

P1
)FDP1

0 (m2
η′),

C
f

η′s
=

GF√
2

VCKMa2(µ) fs(m
2
D − m2

P1
)FDP1

0 (m2
η′).
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SCS Decays

A(D0 → π+π−) = −VcdVud(T + Eq)

A(D0 → π0π0) =
VcdVud√

2
(−C + Eq)

A(D0 → π0η) =
VcdVud

2
(−CF0

ηq
+ C

f
ηq

) cosφ − VcsVusC
f
ηs

sin φ
√

2
− VcdVudEq cos φ

A(D0 → π0η′) =
VcdVud

2
(−C

F0
η′q
+ C

f

η′q
) sinφ + VcsVusC

f

η′s

cos φ
√

2
− VcdVudEq sin φ

A(D0 → ηη) =
VcdVud√

2
(C f

ηq
+ Eq) cos2 φ + VcsVus(−C

f
ηs

sin 2φ

2
√

2
+

√
2Es sin2 φ)

A(D0 → ηη′) = VcdVud(Eq

sin 2φ
2
+ (C f

ηq
+ C

f

η′q
)
sin 2φ

4
) + VcsVus(−C

f
ηs

sin2 φ
√

2
+ C

f

η′s

cos2 φ
√

2

− Es sin 2φ)

A(D0 → K+K−) = VcsVus(T + Eq)

A(D0 → K0K̄0) = −(VcsVusEq + VcdVudEs) A

A(D+ → π+η) =
VcdVud√

2
(T F0

ηq
+C

f
ηq
+ 2Aq) cosφ − VcsVusC

f
ηs

sin φ

A(D+ → π+η′) =
VcdVud√

2
(T F0

η′q
+C

f

η′q
+ 2Aq) sinφ + VcsVusC

f

η′s
cos φ

A(D+ → K+K̄0) = VcdVudAs + VcsVusT

A(D+s → π+K0) = −(VcdVudT + VcsVusAq)

A(D+s → π0K+) = − 1
√

2
(VcdVudC − VcsVusAq)

A(D+s → K+η) = (VcdVudC
f
ηq
+ VcsVusAq)

cosφ
√

2
− VcsVus(T

F0
ηs
+C

f
ηs
+ As) sinφ

A(D+s → K+η′) = (VcdVudC
f

η′q
+ VcsVusAq)

sinφ
√

2
+ VcsVus(T

F0
η′s
+C

f

η′s
+ As) cosφ
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The D0 → ππ SCS decays obey the following triangular Isospin relation:

A(D0 → π+π−) +
√

2A(D0 → π0π0) =
√

2A(D+ → π+π0)

CF Decays

(D0 → K−π+) = −VcsVud(T + Eq)

(D0 → K̄0π0) = −VcsVud

(C − Eq)
√

2

(D0 → K̄0η) = VcsVud((−CF0
ηq
− Eq)

cosφ
√

2
+ Es sinφ)

(D0 → K̄0η′) = VcsVud((−C
F0
η′q
− Eq)

sinφ
√

2
− Es cosφ)

(D+ → K̄0π+) = −VcsVud(T + C)

(D+s → K̄0K+) = −VcsVud(C + As)

(D+s → π+η) =
VcsVud√

2
(T F0

ηs
sinφ − Aq cosφ)

(D+s → π+η′) =
VcsVud√

2
(−T

F0
η′s

cosφ − Aq sinφ)

The D0 → Kπ CF decays obey the following triangular Isospin relation:

A(D0 → K−π+) +
√

2A(D0 → K̄0π0) = A(D+ → K̄0π+)
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DCS Decays

(D0 → K+π−) = VcdVus(T + Eq)

(D0 → K0π0) = VcdVus

(C − Eq)
√

2

(D0 → K0η) = VcdVus((C
F0
ηq
+ Eq)

cosφ
√

2
− Es sinφ)

(D0 → K0η′) = VcdVus((C
F0
η′q
+ Eq)

sinφ
√

2
+ Es cosφ)

(D+ → K0π+) = VcdVus(C + Aq)

(D+ → K+π0) = VcdVus

T − Aq√
2

(D+ → K+η) = −VcdVus((T
F0
ηq
+ Aq)

cosφ
√

2
− As sin φ)

(D+ → K+η′) = −VcdVus((T
F0
η′q
+ Aq)

sinφ
√

2
+ As cosφ)

(D+s → K+K0) = VcdVus(T + C)

The D0 → Kπ DCS decays obey the following quadrilateral Isospin rela-

tion:

A(D0 → K+π−)+
√

2A(D0 → K0π0) = A(D+ → K0π+)+
√

2A(D+ → K+π0)

Similarly, to distinguish the cases where ηq or ηs is the P1 meson, which

incidentally appears in both Tree(T ) and Colour Suppressed(C) amplitudes
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(unlike for the case discussed above), we use the notation:

CF0
ηq

(T F0
ηq

) =
GF√

2
VCKMa2(µ)(a1(µ)) fP2(m

2
D − m2

η)F
Dηq

0 (m2
P2

),

CF0
ηs

(T F0
ηs

) =
GF√

2
VCKMa2(µ)(a1(µ)) fP2(m

2
D − m2

η)F
Dηs

0 (m2
P2

),

C
F0
η′q

(T F0
η′q

) =
GF√

2
VCKMa2(µ)(a1(µ)) fP2(m

2
D − m2

η′)F
Dη′q
0 (m2

P2
),

C
F0
η′s

(T F0
η′s

) =
GF√

2
VCKMa2(µ)(a1(µ)) fP2(m

2
D − m2

η′)F
Dη′s
0 (m2

P2
).

2.3 Final State Interactions

Final state interaction effects are incorporated using unitarity relations,

where the contribution to any channel is a result of sum over all possi-

ble hadronic intermediate states. Hence for all the n D → PP decays, the

FSI corrected amplitudes or the ’unitarized’ amplitudes,AU
i with i = 1, ...n

are given by 2

AU
i =

N
∑

k=1

S1/2
ik Ak , (2.12)

where, S is the strong interaction matrix and k = 1, ...n, n + 1, ....N, stands

for all possible states that can rescatter into the PP states. In the heavy

quark limit the hard rescattering dominates, in which case, the sum can be

interpreted to be over all intermediate states of partons and the number of

these states will hence be very large. Parton hadron duality will then permit

this estimation. These corrections are incorporated into the hard scattering

2For part of the formalism used in this section, we closely follow Refs. [101, 128]
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contributions in the QCD factorization approach of Ref. [108] for the case

of B meson decays. For the case of charmed meson decays, since mc is not

large enough, we include these NF corrections in the modified Wilson co-

efficients, in terms of parameters χ1 and χ2. However, some residual long

distance FSI’s may be left which are particularly important for charmed

meson decays, due to the nearby resonances. This residual rescattering is

considered in the limited set of D→ PP decays, to which the duality can-

not be applied and therefore these effects may not be incorporated in the

NF corrections.

The S matrix in Eq. (2.12) can be written in terms of a residual matrix

(Sres) for the rescattering among the D → PP states alone and the scat-

tering matrix which accounts for the hard rescattering from all possible

hadronic states into these channels, resulting in the factorization ampli-

tudes as,

Sik =

n
∑

j=1

(S1)ij(S2)jk, where, S1 = Sres and

S2 = S−1
1 S,with Afac

j =

N
∑

k=1

(S1/2
2 )jkAk, resulting in

AU
i =

n
∑

k=1

(S1/2
res )ijAfac

j . (2.13)

Any S matrix can be written in terms of a real, symmetric K matrix as,

S = (1 − iK)−1(1 + iK). Hence, the unitarized amplitudes in Eq. (2.13),
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may be written as,

AU
i =

n
∑

k=1

((1 − iK)−1)ijAfac
j . (2.14)

The K matrix parametrization has the advantage that the resonances cou-

pling two body channels are represented by poles in the K matrix. The

summation in Eq. (2.14), corresponds to summing the geometric series,

where the final state hadrons are produced from scattering via resonance at

different orders, starting from zero, i.e., directly from the decaying meson

without the resonance contribution, resonant rescattering occurring once,

twice and so on. While such coupled FSI’s has been considered in the

past in many papers [67, 99, 107, 111, 129] most of the papers on charm

decays further assume SU(3) to relate the parameters of the coupling ma-

trix. Since SU(3) is broken, we prefer to use the measured decay rates of

the resonances to various channels to fix the K matrix parameters as far as

possible and the ones not measured are left as parameters to be determined

by fits of all the theoretical branching ratios to the observed values.

For each of the SCS, CF as well as DCS modes, states with the same

isospin are coupled together. In general the K matrix coupling three chan-

nels will have the form:

K(s) =
1

(m2
Res
− s)










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
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


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where, mRes denotes the mass of the resonance through which the different

channels are coupled and k1, k2 and k3 are the cm momenta of the 3 decay

modes. There are six independent parameters Γi j. To reduce the indepen-

dent parameters to a manageable number, we impose the requirement that

the diagonal cofactors of K(s) vanish (or equivalently, detK(s) = 0). This

leads us to three conditions,

Γ
2
12 = Γ11Γ22 , Γ

2
13 = Γ11Γ33 and Γ

2
23 = Γ22Γ33. (2.15)

The Γ′
ii
s are related to the the partial decay width of the resonance to the ith

channel.

To illustrate this, we consider first the case of isospin zero states of SCS

decay modes of D0 meson. The isospin zero combination of the π+π−

and π0π0, K+K− and K0K̄0, and the ηη modes, are coupled via Eq. (2.14)

with the f0(1710) pole in the K matrix. Hence, for this specific case of

coupling of the isospin zero states, in the K matrix, mRes = 1.720 GeV,

k1 =
1
2(mD0

2 − 4m2
π0), k2 =

1
2(mD0

2 − 4m2
K0), k3 =

1
2(mD0

2 − 4m2
η) and we

have

Γ( f0 → ππ) =
Γ11k1

mRes

, Γ( f0 → KK̄) =
Γ22k2

mRes

, and Γ( f0 → ηη) =
Γ33k3

mRes

.

Experimentally only the two ratios of the decay rates, Γ( f0 → KK̄)/Γ( f0 →

ππ) and Γ( f0 → KK̄)/Γ( f0 → ηη) have been determined. Hence we keep

gpe ≡ Γ( f0 → KK̄) as a parameter, to be determined from fits of our
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theoretical estimates to the observed branching ratios.

Similarly, for the I=1 case, we take the a0(1450) resonance with mRes =

1.474 GeV and ΓRes = 0.265 GeV, to be responsible for the rescattering

among the channels KK̄, πη and πη′, to which this resonance decays. Here

again, the decay rate Γ(a0 → πη) is not yet accurately measured and is

treated as a parameter (hpe) that may be predicted from the fits of all the

branching ratios of the D → PP modes to experimental data. Note that

the KK̄, πη and πη′ states appear as final states not only of SCS D0 and

D+ decays, but also in the CF decays of the D+s decays. For all these three

sets of decays, the same K matrix (apart from tiny modifications in the

cm momenta and the mass-squared of the decaying meson) will suffice,

and more importantly with the same one unknown parameter, while many

additional observables (all the branching ratios of these D0, D+ and D+s )

will get added to the χ2 fit. If this one same parameter, along with the other

unknowns in our analysis can simultaneously explain all the observed data,

it would indicate that our naive technique of incorporating the FSI effects

is satisfactory.

We also couple the isospin 1/2 states of the Kπ, Kη and Kη′ channels,

that are the final states in the SCS decays of D+s , CF decays of D0 and

DCS decays of D0 and D+ mesons. Here we use the K∗0(1950) resonance

with mRes = 1.945 GeV. Only the branching ratio, Γ(K∗0 → Kπ)/Γtotal

has been measured. We take the other two decay rates, Γ(K∗0 → Kη) and
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Γ(K∗0 → Kη′) as parameters ( jpe1 and jpe2) that can be determined by the

overall fits of all the branching ratios to data.

2.4 Numerical Analysis and Results

To estimate all the possible sets of coupled channels, the isospin decompo-

sition of all the SCS, CF and DCS modes are listed on the next page. Here

A(U) denote the bare or un-unitarized (unitarized or FSI corrected) ampli-

tudes respectively, for each of the decay modes, while A
mode(U)
i

denotes the

corresponding ununitarized (unitarized) isospin, I = i amplitudes for those

modes. With absence of resonances in particular isopin components with

the right quantum numbers in the vicinity of the charmed meson masses,

some of the isospin components of many modes remain un-unitarized.

SCS Decays

A(U)(D0 → π+π−) ≡
√

2Aππ
2 +

√
2Aππ(U)

0

A(U)(D0 → π0π0) ≡ 2Aππ
2 −A

ππ(U)
0

A(U)(D0 → π0η) ≡
√

3Aπη(U)
1

A(U)(D0 → π0η) ≡
√

3Aπη′(U)
1

A(U)(D0 → ηη) ≡
√

3Aηη(U)
0

A(U)(D0 → K+K−) ≡
√

3
2

(

AKK(U)
1 +AKK(U)

0

)
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A(U)(D0 → K0K̄0) ≡
√

3
2

(

AKK(U)
1 −AKK(U)

0

)

A(U)(D+ → π+π0) ≡ 3Aππ
2

A(U)(D+ → K+K̄0) ≡ AK+K(U)
1

A(U)(D+ → π+η) ≡ Aπ+η(U)
1

A(U)(D+ → π+η′) ≡ Aπ+η′(U)
1

A(U)(D+s → π+K0) ≡ 1
√

3
AπK

3
2
+

√

2
3
AπK(U)

1
2

A(U)(D+s → π0K+) ≡
√

2
3
AπK

3
2
− 1
√

3
AπK(U)

1
2

A(U)(D+s → K+η) ≡ AK+η(U)
1
2

A(U)(D+s → K+η′) ≡ AK+η′(U)
1
2

CF Decays

A(U)(D0 → K−π+) =
1
3
AK̄π

3
2
+

2
3
AK̄π(U)

1
2

A(U)(D0 → K̄0π0) =

√
2

3
(AK̄π

3
2
−AK̄π(U)

1
2

)

A(U)(D0 → K̄0η) =

√

2
3
AK̄η(U)

1
2

A(U)(D0 → K̄0η′) =

√

2
3
AK̄η′(U)

1
2

A(U)(D+ → K̄0π+) = AK̄π+

3
2

A(U)(D+s → K̄0K+) = AKK̄(U)
1

A(U)(D+s → π+η) = Aπ+η(U)
1

A(U)(D+s → π+η′) = Aπ+η′(U)
1

57



DCS Decays

A(U)(D0 → K+π−) =

√
2

3
AKπ

3
2
−
√

2
√

3
AKπ(U)

1
2

A(U)(D0 → K0π0) =
2
3
AKπ

3
2
+

1
√

3
AKπ(U)

1
2

A(U)(D0 → K0η) = AKη(U)
1
2

A(U)(D0 → K0η′) = AKη′(U)
1
2

A(U)(D+ → K0π+) =

√
2

3
AKπ+

3
2
+

√
2
√

3
AKπ+(U)

1
2

A(U)(D+ → K+π0) =
2
3
AKπ+

3
2
− 1
√

3
AKπ+(U)

1
2

A(U)(D+ → K+η) = A
K+η(U)
1
2

A(U)(D+ → K+η′) = A
K+η′(U)
1
2

A(U)(D+s → K+K0) =
1
√

2
(AKK

1 +AKK
0 )

With all the unitarized isospin amplitudes, we construct the corresponding

unitarized decay amplitudes for all the decay modes. The decay rates for

all the D→ P1P2 are then calculated as,

Γ(D→ P1P2) =
pc

8πm2
D

|A(D→ P1P2)|2. (2.16)

Here pc is the centre of mass momentum of the mesons in the final state

given by

pc =

√

(m2
D
− (mP1 + mP2)2)(m2

D
− (mP1 − mP2)2)

2mD

.
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The theoretical branching ratios for each of the decay modes of the D0, D+

or the D+s mesons are then obtained by dividing the corresponding decay

rates by the total decay widths of these mesons. We then perform a χ2

fit of these theoretical branching ratios with the experimentally measured

branching fractions, estimating all the unknown parameters from the best

fit to data.

The unknown parameters in our study are: the four parameters represent-

ing the NF corrections, χ1, χ2 and their respective phases φ1, φ2, four pa-

rameters: χE
q,s and χA

q,s depicting the strength of the W-exchange and W-

annihilation amplitudes with distinct strengths for qq̄ and ss̄ pair produc-

tion, one unknown in each of the isospin zero and isospin one K matrices

coupling modes from decays of D0 and D+ mesons, two parameters in the

isospin half K matrix coupling various decay modes of D+s , one parame-

ter Λ, representing the momentum of the soft degrees of freedom in the

charmed mesons, that is used to define the scale for each of the individual

decay modes, making a total of 13 unknown parameters. On the other hand

out of all the 33 decay modes considered, 28 have been measured, result-

ing in sufficient observables to determine all the unknown parameters and

give predictions for five of the branching fractions of DCS modes that are

not yet measured.

Apart from the experimental errors in the observed branching ratios, the

calculated errors in our theoretical branching ratio estimates arise from the
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errors in the form factors, the η and η′ decay constants, the η − η′ mixing

angle and the errors in the measured decay widths of the various resonances

into the different channels that are included in our χ2 fits. Errors due to

the other theoretical inputs, like meson masses, decay constants of pion,

Kaon, charmed mesons, CKM mixing elements (involving the first two

generations) are negligibly small.

As discussed in Sec. 2.2.3, the z-series expansion has been obtained for

the form factors, keeping the first two terms of this series. The coefficients

a0 and a1 of these two terms are functions of normalization and shape

parameters f (0) and β, obtained from lattice results. The errors in these

lattice parameters are used to obtain the errors in the expansion coefficient

functions and then propagated to get the errors in the form factors. We find

that the errors in the form factors vary from ≈5% to ≈25%.

In the tables 2.4, 2.5 and 2.6, we list the values of the Branching Ratios

of the all the SCS, CF and DCS D → PP modes obtained from our anal-

ysis, after incorporating the FSI effects (shown in the 2nd column), as well

as in the absence of the FSI (column 3), absence of annihilation (column

4) along with the corresponding observed experimental branching ratios

(column 5) given in PDG [125]. We also predict the B.R.’s for a few DCS

modes that have not been experimentally measured yet and are given in the

second column of Table 2.6

After incorporating all the errors, the χ2 minimization results in the fol-
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lowing best fit values of all the parameters:

Table 2.3: Parameter best fit values

Name Values Name Values Name Values

Λ 0.625645 jpe1
0.0000239368 χA

q 132.685
χ1 -2.68215 jpe2

0.096456 χA
s 193.447

χ2 2.23605 χE
q -334.805 φ1 0.302258

gpe 0.0471262 χE
s -81.3363 φ2 2.87681

hpe 0.118834

Table 2.4: D → PP SCS B.R.’s, Columns 2 and 3 show our results with annihilation
included, for the with and without FSI cases respectively, while column 4 which displays
results without annihilation, includes FSI. All the numbers are in units of 10−3.

Modes With FSI Without FSI Without Ann Experimental Value

D0 → π+π− (1.44 ± 0.027) (4.35 ± 1.67) (4.02 ± 1.75) (1.402 ± 0.026)
D0 → π0π0 (1.14 ± 0.56) (3.66 ± 1.43) (2.04 ± 0.79) (0.8209 ± 0.035)

D0 → K+K− (4.06 ± 0.77) (4.27 ± 2.34) (6.78 ± 3.08) (3.96 ± 0.08)
D0 → K0K̄0 (0.342 ± 0.052) (0.561 ± 0.00) (0.280 ± 0.084) (0.34 ± 0.08)
D0 → π0η (1.47 ± 0.90) (6.47 ± 2.98 (3.25 ± 1.51 (0.68 ± 0.07)
D0 → π0η′ (2.17 ± 0.65) (3.81 ± 1.43) (1.85 ± 0.79) (0.9 ± 0.14)
D0 → ηη (1.27 ± 0.27) (1.32 ± 0.41) (1.34 ± 0.29) (1.67 ± 0.20)
D0 → ηη′ (0.953 ± 0.183) (1.04 ± 0.27) (0.538 ± 0.163) (1.05 ± 0.26)

D+ → π+π0 (0.889 ± 0.451) (0.870 ± 0.670) (0.973 ± 0.394) (1.19 ± 0.06)
D+ → K+K̄0 (3.75 ± 0.63) (10.2 ± 3.7) (19.9 ± 5.6) (5.66 ± 0.32)
D+ → π+η (4.72 ± 0.21) (23.4 ± 12.6) (16.6 ± 7.7) (3.53 ± 0.21)
D+ → π+η′ (6.76 ± 2.19) (30.0 ± 7.6) (9.78 ± 3.35) (4.67 ± 0.29)
D+s → π+K0 (1.96 ± 0.90) (1.46 ± 1.10) (1.32 ± 1.01) (2.42 ± 0.12)
D+s → π0K+ (0.817 ± 0.464) (0.174 ± 0.100) (1.01 ± 0.54) (0.63 ± 0.21)
D+s → K+η (1.50 ± 0.75) (6.40 ± 4.52) (2.23 ± 1.82) (1.76 ± 0.35)
D+s → K+η′ (0.707 ± 0.049) (2.09 ± 0.87) (0.057 ± 0.047) (1.8 ± 0.6)

2.5 Conclusions

For several decades, various ratios of decay rates of many of the D → PP

modes remained to be a puzzle as these were expected to be one in the

S U(3) limit, but the measured values exhibited large deviations from unity.
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Table 2.5: D → PP CF B.R.’s, inclusion of Annihilation/FSI in our branching ratio
estimates shown in various columns is the same as specified for Table 2.4. All the numbers
are in units of 10−2.

Modes With FSI Without FSI Without Ann Experimental Value

D0 → K−π+ (3.70 ± 1.33) (8.83 ± 2.47) (5.63 ± 1.81) (3.88 ± 0.05)
D0 → K̄0π0 (1.88 ± 0.99) (12.9 ± 4.4) (3.30 ± 1.47) (2.38 ± 0.08)
D0 → K̄0η (1.59 ± 0.48) (0.97 ± 0.33) (1.09 ± 0.34) (0.958 ± 0.06)
D0 → K̄0η′ (2.29 ± 0.43) (2.06 ± 0.30) (2.45 ± 0.47) (1.88 ± 0.1)
D+ → K̄0π+ (3.42 ± 1.78) (13.5 ± 11.2) (5.25 ± 3.34) (2.94 ± 0.14)
D+s → K̄0K+ (5.65 ± 1.29) (17.0 ± 7.9) (13.5 ± 5.3) (2.95 ± 0.14)
D+s → π+η (2.26 ± 0.82) (0.78 ± 0.56) (2.14 ± 0.90) (1.69 ± 0.10)
D+s → π+η′ (2.64 ± 0.78) (3.73 ± 1.52) (2.52 ± 0.85) (3.94 ± 0.25)

Table 2.6: D → PP DCS B.R.’s, inclusion of Annihilation/FSI in our branching ratio
estimates shown in various columns is the same as specified for Table 2.4. All the numbers
are in units of 10−4.

Modes With FSI Without FSI Without Ann Experimental Value

D0 → K+π− (1.77 ± 0.88) (3.71 ± 1.33) (2.48 ± 1.07) (1.38 ± 0.028)
D0 → K0π0 (2.11 ± 0.26) (3.70 ± 1.35) (0.68 ± 0.46) −
D0 → K0η (0.94 ± 0.45) (0.28 ± 0.10) (0.96 ± 0.32) −
D0 → K0η′ (8.02 ± 3.32) (0.59 ± 0.08) (9.22 ± 1.61) −
D+ → K0π+ (3.27 ± 1.86) (11.9 ± 5.5) (3.51 ± 2.11) −
D+ → K+π0 (3.07 ± 1.02) (2.15 ± 1.17) (3.27 ± 1.39) (1.83 ± 0.26)
D+ → K+η (0.98 ± 0.26) (1.04 ± 0.23) (0.89 ± 0.27) (1.08 ± 0.17)
D+ → K+η′ (1.40 ± 0.39) (1.82 ± 0.18) (1.35 ± 0.39) (1.76 ± 0.22)
D+s → K+K0 (7.84 ± 2.31) (0.68 ± 0.09) (0.72 ± 0.44) −

We have evaluated the bare amplitudes of all the D → PP modes using

factorization, however, we add non-factorizable corrections, weak annihi-

lation and exchange contributions as parameters, and in the hadron matrix

elements, the q2 dependence of the form factors involved are evaluated

using the z-expansion method and finally, resonant final state interaction

effects are incorporated. The parameters of the K matrix coupling the var-

ious channels are defined using the measured decay widths of the reso-

nances (where available) and those unobserved, are left as parameters to

62



be fitted from all the measured 28 D → PP branching ratios. Our best

fit has a χ2/degree of freedom of 2.25, which is an improvement over the

previous results in Refs. [94, 110].

• We are able to get reasonable fits to almost all the observed branching

ratios. In particular, our branching fractions for D → KK, D → ππ

modes that have been a long standing puzzle are in agreement with

the corresponding measured values.

• We have evaluated the cosine of the strong phase difference between

the unitarized amplitudes for D0 → K−π+ and D0 → K+π− and ob-

tain, cos δKπ = 0.94±0.027. This result is consistent with the recently

measured BESIII result, cos δKπ = 1.02 ± 0.11 ± 0.06 ± 0.01 [130].

• The mode D0 → K0K̄0 does not have any tree or colour suppressed

contributions, but can come only from W-exchange. In fact, there are

two exchange contributions, one appearing with a dd̄ and the other

with an ss̄, which under exact S U(3) symmetry would cancel each

other, resulting in a null amplitude. However, since our parameters for

these two contributions are distinct, our bare amplitude for this mode

is small but non-vanishing. There have been speculations [107, 111]

that this mode can arise just from final state interactions, even in the

absence of a weak exchange contribution. However, from Table 2.4

it is clear that without the exchange contribution we are unable to

generate a large enough rate: both final state interaction and the ex-
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change contribution are necessary for consistency with the measured

branching fraction.

• We have also evaluated the four ratios of amplitudes that had been

specified in a recent paper [131]. In SU(3) limit these are all expected

to be unity. Our theoretical estimates for these ratios are given below:

R1 ≡
|A(D0 → K+π−)|

|A(D0 → π+K−| tan2 θc

= 1.27 ± 0.32,

R2 ≡
|A(D0 → K+K−)|
|A(D0 → π+π−| = 1.27 ± 0.42,

R3 ≡
|A(D0 → K+K−)| + |A(D0 → π+π−|

|A(D0 → π+K−| tan θc + |A(D0 → K+π−)| tan−1 θc

= 1.19 ± 0.28,

R4 ≡

√

|A(D0 → K+K−)||A(D0 → π+π−|
|A(D0 → π+K−||A(D0 → K+π−)| = 1.19 ± 0.26.

Furthermore, the following combination of these ratios is expected to

be vanishing up to 4th order in U-spin breaking,

∆R ≡ R3 − R4 +
1
8

[

( √

2R1 − 1 − 1
)2
−

(√

2R2 − 1 − 1
)2
]

.

Using our unitarized amplitudes, we find the central value of ∆R to

be indeed very tiny, however, with a large error.

∆R = −0.000013 ± 0.006.

Our theoretical errors (in form factors, K-matrix parameters, etc.) are

propagated to evaluate the errors in the ratios R1, R2, R3, R4 and finally
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in ∆R.

• We would like to mention that in many modes involving η and η′,

we have additional terms in our amplitude due to our distinction of

the different form factors, compared to, for eg., those that appear

in Ref. [94]. A naive look at the colour suppressed diagrams for

D → π0η(η′) will indicate that the contributions from the case where

the spectator is part of the π0, and that, where it constitutes the η(η′)

must cancel. However, in terms of the specific decay constants and

form factors, one is proportional to − fπF
Dηq

0 (m2
π) while the other is

proportional to fηq
FDπ

0 (m2
η), which are unequal and hence must sur-

vive.

• While the Particle Data Group [125] does not include a world aver-

age for Γ( f0(1710) → KK̄) but it does list two values for the ratio

Γ( f0(1710)→KK̄)
Γtotal

: 0.36 ± 0.12 (Ref. [132]) and 0.38+0.09
−0.19 (Ref. [133]); our

fit value of gpe(≡ Γ( f0(1710) → KK̄)) corresponds to 0.35 for the

branching ratio, which is consistent with these values.

• Our theoretical errors are rather large and could be reduced in future

with more precise form factors available either from measurement of

semileptonic D, Ds modes at BES III, where if even the lepton mass

could be incorporated (eg. by looking at modes with muon in the final

state), then the q2 dependent F0 could be known, or with improved

lattice studies, specially for D→ η′, Ds → K and Ds → η, η′.
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• Accurate measurements of the decay widths of the resonances (used

for the final state interactions) to many of the coupled channels can

reduce the theoretical uncertainties and possibly allow for better fits

to data. For example our fits seem to indicate a rather large value for

hpe or the width of a0(1450) → π0η. This seems to result in larger

branching fractions for many of the isospin one modes. Future mea-

surement of this width can help reduce this uncertainty and perhaps

result in better fits to data for these modes.

• Out of the 28 observed PP modes, we are unable to fit 7 of the modes

well. Many of these modes involve η or η′ in the final state. Including

a gluonium component in the η, η′ states may possibly be one way

of improving these fits. This, along with improved form factor mea-

surements, observation of decay rates of the resonances (playing a

role in final state interactions) to these decay modes, as mentioned in

the last two points above, could go a long way in improving our fits.

One glaring misfit is the mode D+ → K+K̄0. This mode does couple

to π+η, π+η′ modes and hence, may possibly improve, along with the

improvements in those modes. A fit excluding the modes which do

not fit well (modes involving η or η′ alongwith K+K̄0) yields a still

better χ2/d.o.f of 1.44.

• The η and η′ mesons have been subject to much theoretical discussion

over the past number of years. Many authors have claimed that these
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mesons might have a gluonium content and the QCD descriptiom for

these mesons is still under a lot of research. Hence, it is not counter

intuitive that the η and η′ modes are do not fit well. The fits may

become better in future with more accurate measurments for the D→

η, η′ form factors as well as a better undestanding of the structure of

these final state mesons.

• We emphasize that the Wilson coefficients which incorporate the NF

pieces, are expected to be universal. On the other hand, the resonant

final state interactions coupling different channels in various isospin

states cannot be universal but have to be channel dependent. Hence,

we have incorporated this separately. In Tables 2.4, 2.5 and 2.6, we

have specifically added columns comparing the theoretical branching

ratios for all the PP modes considered, for cases with and without the

coupled channel FSI. It can be clearly seen that the fits to data are

indeed much better with FSI.

2.A The Wilson Coefficients

The Wilson coefficients used in the evaluation of all the bare amplitudes

have been calculated at the final state hadronic scale. This allows for an

additional S U(3) breaking effect and they have been incorporated using

the procedure outlined in Ref. [110]. The Wilson coefficients at lower
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scale are calculated in the Ref. [134]. The essential steps are following.

• In the first step, the Wilson coefficients Ci(mW) at weak scale are cal-

culated by requiring the equality of the effective theory with five ac-

tive flavors q = u, d, s, c, b onto the full theory.

• Next, the coefficients undergo the evolution from the scale mW to µ

through the equation

C(µ) = U5(µ,mW)C(mW). (2.17)

• In the next step, coefficients are calculated at the scale of b quark

C(mb)→ Z(mb). (2.18)

• Now, the Wilson coefficients can be evaluated at required scale (µc or

µhadron) through the equation

C(µ) = U4(µ,mb)Z(mb). (2.19)

In the above steps, U5 and U4 are the 2×2 and 7×7 evolution matrices

for five and four active flavors respectively. The Z(mb) is given in the

Eqs.A.7 to A.10 of the Ref. [134].
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The explicit expressions of the Wilson coefficients obtained after following

the above steps are given in the Ref. [110]. They are:

C1(µ) = −0.2334α1.444
+ 0.0459α0.7778

+ 1.313α0.4444 − 0.3041α−0.2222

C2(µ) = 0.2334α1.444
+ 0.0459α0.7778 − 1.313α0.4444

+ 0.3041α−0.2222.

in terms of the running coupling constant α:

α = αs(µ) =
4π

β0ln(µ2/Λ2
MS

)

















1 −
β1lnln(µ2/Λ2

MS
)

β2
0ln(µ2/Λ2

MS
)

















,

with the coefficients

β0 =
33 − 2 f

3
, β1 = 102 − 38

3
N f

We take active flavour number N f = 3, and the QCD scale ΛMS = ΛMS =

375 MeV. Again, note that the scale dependent strong coupling constant

αs(µ) is evaluated at the final state hadronic scales for each individual de-

cay, to take care of the SU(3) breaking.

2.B Series Expansion Method for Form Factors

Using the analytic properties of F(q2), a transformation of variable is made

which maps the cut on the q2 plane onto a unit circle |z| < 1, where

z(t,t0) =

√
t+ − t − √t+ − t0√
t+ − t +

√
t+ − t0

, t = q2,
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where,

t± = (mD ± mP1)
2 and t0 = t+















1 −
(

1 − t−
t+

)1/2












.

This transformation allows the form factors to be given by an expansion

about q2
= t0, given as

F(t) =
1

P(t)φ(t, t0)

inf
∑

k=0

ak(t0)z(t, t0)k,

given also as Eq.( 2.8) in the text. The function P(t) in the above is

1 for D → π form factors. For Ds → η and D → K form factors,

P(t) = z(t, M2
D∗

s0
) (where MD∗

s0
) is the nearest 0+ resonance mass). The

outer function φ is given by [135]

φ(t, t0) =

√

3t+t−
32πχ0

(

z(q2, 0)
−q2

)2 (

z(q2, t0)
t0 − q2

)−1/2 (

z(q2, t−)
t− − q2

)−1/4 √

t+ − q2

(t+ − t0)1/4
,

where χ0 has been calculated [135] using OPE and is given by:

χ0 =
1 + 0.751αs(mc)

8π2
.

For simplicity, we ignore condensate contribution which is of the order

O(m−3
c ) and O(m−4

c ) The strong coupling at charm scale is computed with

the package RunDec [136].
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Chapter 3

Searching for New physics in Charm

Radiative decays

3.1 Introduction

The focus of this chapter will be the radiative decays of charmed mesons.

While both the inclusive and exclusive radiative B meson decays have been

extensively discussed in the literature, less attention has been paid to the D

meson radiative decays as their branching ratios are expected to be much

smaller due to the almost complete GIM suppression.

Moreover, charm radiative decays will be dominated by long distance con-

tributions, which can hide the presence of new physics particles that may

appear in the loop of the short distance penguin contributions. Neverthe-

less, in Ref. [137] it was pointed out that a measurement of the difference

in the rates of the exclusive modes, D0 → ργ and D0 → ωγ in which the
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long distance effects are expected to cancel, would indicate short distance

new physics if the data reveals a difference of rates which is more than

30%. But in general, due to the large uncertainties in the long distance

contributions, any definite conclusion regarding NP will not be feasible

from a measurement of the radiative decay rates for the inclusive c → uγ

case nor for any individual exclusive channel, unless the NP short distance

contribution is larger than that from the long distance effects. In fact, the

possibility of enhancement above the otherwise dominant long distance ef-

fects, in presence of a fourth generation model with large mixing angles of

the b′ quark, Uub′Uub′ had been pointed out in Ref. [138]. Fourth gener-

ation models are now inconsistent with the LHC data, however, models

with vector-like charge −1/3 quarks, for which the authors of Ref. [138]

claimed that their results were also applicable, are still viable. In fact, in

the last couple of years many detailed studies of the phenomenology of

vector-like quarks and constraints from the flavour sector have been per-

formed [139–143].

Apart from the enhancement in the decay rate, which will be subject to

the relative size of the short distance and long distance effects, NP could

also be searched through a measurement of the polarization of the pho-

ton produced in the decay. The SM has a robust prediction regarding the

photon polarization in c → uγ decays and hence, a measurement of the

photon polarization can pin down the presence of NP. This had been ear-
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lier pointed out for the case of B radiative decays in Refs. [144,145]. In the

SM, the photons from the short distance (SD) penguin contribution in the

c → uγ decays will be mostly left handed up to corrections of O(mu/mc).

This dominance of left handed polarization can get masked in the presence

of long distance (LD) effects. However, the fraction of the right polarized

photons will vary in different models and may possibly even allow one to

distinguish between different models of NP. We explore the effects of the

presence of a down-type isosinglet vector-like quark model on the c→ uγ

decay rate, as well as on the photon polarization for this model with an

additional left-right symmetry. The decay rate evaluation requires an es-

timation of both the SD as well as LD components, which are described

in the next section. In Sec. 3.3.1 some details of the down type isosinglet

vector-like quark model are discussed, including the modifications to the

Wilson coefficients in its presence. Sec. 3.3.2 contains a short discussion

on LRSM and the results for the bare level SD contributions to the ampli-

tudes for the emission of the left and right handed photons in this model.

Sec. 3.4.1 gives our results for the branching ratios (BR’s) in the SM and

in the different NP models. In Sec. 3.4.2 we present our analysis of the

polarization function in the LRSM and the LRSM with vector-like quark.
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Figure 3.1: The two types of pole contribution effects. Type-I (left) and type II (right).

3.2 Amplitudes within the Standard Model

3.2.1 Long distance contributions

The long distance contributions being non-perturbative in nature are hard

to estimate. They can be separated into two classes. At the quark level, the

first corresponds to the annihilation (or exchange) diagrams cq1 → q2q3

with a photon attached to any of the four quark lines. At the hadronic

level these diagrams manifest as long distance pole diagrams. The sec-

ond, corresponds to the underlying quark process c → q1q2q, followed

by q2q → γ. At the hadronic level this is the vector meson dominance

mechanism (VMD).

Pole Contributions

The pole amplitudes are a subset of a more general class of long distance

contributions, which include two-particle intermediate states and extend

up to all higher n-particle intermediate states. Phenomenologically how-

ever, the single-particle or pole terms are the most accessible. The pole

contributions to charm meson radiative weak decays are shown in Fig. 3.1.
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If the incoming meson undergoes a weak transition before the photon emis-

sion, it is referred to as a Type I transition, while the transition is of Type

II, if the final state meson is created from the weak transition of the inter-

mediate virtual states, after the photon emission. In both cases, all possible

spin-zero and spin-one virtual particles can contribute respectively, how-

ever, only the lightest of the virtual particles are included in practice.

The transition amplitude for the processes D(p)→ V(k1, λ1)+γ(k2, λ2) can

be written in gauge invariant form as

M(D→ Vγ)

= ǫ†µ(k1, λ1)ǫ†ν (k2, λ2)
(

APV(pµpν − gµνk2.p) + iAPCǫµναβk1αpβ
)

. (3.1)

In general both APV (the parity-violating amplitude) and APC (the parity-

conserving amplitude) will be present. The decay rate is given by

Γ(D→ Vγ) =
|k2|3
4π

(

∣

∣

∣APV
∣

∣

∣

2
+

∣

∣

∣APC
∣

∣

∣

2
)

, (3.2)

where k2 is the decay momentum in the rest frame of D meson.

Pole amplitude of type I

If the initial particle is a pseudoscalar meson, the intermediate meson

has to be a scalar (parity-violating case) or a pseudoscalar meson (parity-

conserving). However since our detailed theoretical and experimental un-
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derstanding about scalar states is lacking, we consider mixing with pseu-

doscalar mesons only and therefore will only get parity conserving contri-

butions from the type-I amplitudes1. The pseudoscalar meson will propa-

gate virtually until it decays to a vector meson V via electromagnetic tran-

sition which is parity conserving. The amplitude is then given by

MVγP = hVγPǫ
†
µ(k1, λ1)ǫ†ν (k2, λ2)ǫµναβk1αpβ, (3.3)

where hVγP is the electromagnetic coupling of the photon with the mesons

V, P and is determined phenomenologically by

∣

∣

∣hVγP

∣

∣

∣

2
=































12πΓV→Pγ

|k2|3
, (MV > MP)

4πΓP→Vγ

|k2|3
, (MP > MV).

(3.4)

The type-I decay amplitude is then given by

APC
I (D→ Vγ) =

∑

n

hVγPn

1

m2
D
− m2

Pn

〈Pn|H (eff)
W
|D〉 , (3.5)

where H (eff)
W

is the effective weak Hamiltonian of Bauer, Stech and

Wirbel [146](BSW), which is given for the Cabibbo-favoured (CF) and

1However, the current data on scalar states does allow us to estimate the parity vaiolating LD contribu-
tions to D0 → φγ, numbers for which has been displayed in Table 3.8.
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Cabibbo-suppressed (CS) modes as,

HCF
ω = −VudV∗cs

GF√
2

[

a1(ud)(sc) + a2(sd)(uc)
]

,

HCS
ω = −

GF√
2

[a1

(

VudV∗cd(ud)(dc) + VusV
∗
cs(us)(sc)

)

+ a2

(

VusV
∗
cs(ss)(uc) + VudV∗cd(dd)(uc)

)

], (3.6)

where V’s are the CKM matrix elements, a1 and a2 are free parameters and

will depend on the mass scale being probed. For our case we use the value

of a1 and a2 from the D→ Kπ data [147].

a1(m2
c) = 1.2 ± 0.1, a2(m2

c) = −0.5 ± 0.1 . (3.7)

It is possible in principle to extend the discussion of the Vγ final states to

a larger set of meson-photon final states Mγ, where the spin of the meson

M should be greater than zero. We can write the gauge invariant ampli-

tude and the interaction vertex in the same way as Eq. 3.1 and Eq. 3.4

respectively. The interaction vertex will then be denoted by hMγPn
instead

of hVγPn
. We consider here final states of the type Aγ, Tγ where A and T

are axial vector and tensor mesons. The formalism for D → Aγ decays is

exactly the same as D→ Vγ decays. The coupling and the total decay rate

are found via Eq. (3.4) and Eq. (3.2) respectively. For the Tγ final states,
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the coupling and the decay rate are given by

∣

∣

∣hTγP

∣

∣

∣

2
=

40πΓT→Pγ

|k2|5
(3.8)

and

ΓD→Tγ =
|k2|5
4π

∣

∣

∣APC
I

∣

∣

∣

2
(3.9)

respectively.

Pole amplitude of type II

Since for the amplitude of type II, the photon emission occurs before the

weak transition, hence, the intermediate meson will be vector in nature.

The type II pole amplitude can be written in a similar way to the type I

amplitude:

APC
II (D→ Vγ) =

∑

n

〈V |Hw|D∗n〉
1

m2
D
− mD∗n

hD∗nγD. (3.10)

Vector Meson Dominance (VMD) contributions

Fig 3.2 shows the VMD contribution for radiative charm meson decays.

We describe briefly the formalism for obtaining the D → V1γ amplitude

from D → V1V2 amplitude in the following. For a more detailed descrip-

tion we refer to [148].
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Figure 3.2: The vector meson dominance (VMD) contribution

• First, the amplitude for the processes D → V1V2 is constructed. This

is then multiplied by the factor e
fV2

, where e is the electric charge and

fV2 is defined as,

〈0|eJ
µ
em(0)|V(k, λ)〉 = e

m2
V

fV
ǫµ(k, λ). (3.11)

Here fV is determined in terms of V → e+e− data,

ΓV→e+e− =
4πα2

3
mV

f 2
V













1 − 4m2
e

m2
V













1
2












1 +
2m2

e

m2
V













. (3.12)

• Since V2 propagates as a massless virtual particle and is converted to a

photon, one needs to extrapolate the D → V1V2 amplitude and V2 →

γ vertex from k2
2 = m2

2 to k2
2 = 0. As a result of this extrapolation fV2

in general will not be the same as determined from Eq. 3.12.

We use the factorization assumption [148, 149] and the BSW Hamilto-

nian [146] to obtain a theoretical description of D→ V1V2 amplitude. The
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squared VMD amplitude is given by

|AVMD|2 =
G2

F |V∗cqVuq′ |2
2m2

D
k2 a2

i
(m2

c) f 2
X

I ×
[

(mD + mY)2 A2
1(q2

0) +
4k2m2

D
V2(q2

0)

(mD+mY )2

]

×4πα

f
2
V2

=

∣

∣

∣APV
VMD

∣

∣

∣

2
+

∣

∣

∣APC
VMD

∣

∣

∣

2
, (3.13)

where f V2
is the off-shell extension of fV2; q, q′ = d, s; a1(m2

c), a2(m2
c)

are the color favored and color suppressed BSW operators, k is the photon

spatial momentum, X is the final meson which couples to vacuum and the

other meson, Y comes in the matrix element 〈Y(pY)|Jµ|D(P)〉, which is

given by

〈Y(pY)|Jµ|D(P)〉 = 2V(q2)
mD+mY

ǫµνρσǫ∗νPρpYσ + 2mY iA0(q2) (ǫ∗. q)
q2 qµ + i

[

(mD + mY)A1(q2)ǫ∗µ − (ǫ∗. q)A2(q2)
mD+mY

(P + pY)µ − 2mY A3(q2) (ǫ∗. q)
q2 qµ

]

(3.14)

X can be V1 or V2; for X = V1, q2
0 = m2

1, where m1 is the mass of vector

meson V1; for X = V2, q2
0 = 0. To calculate the form factors at q2

0 , 0, we

use the form

A1(q2
0) =

A1(0)
1 − b′x

, V(q2
0) =

V(0)
(1 − x)(1 − ax)

,

where x =
q2

0

m2
H∗

. The quantities mH∗, b′, a can be found in ref [150]. All

these long distance effects are rather hard to calculate from first princi-

ples but can be estimated in models. Hence, it is important that the ob-

servables chosen for uncovering short distance NP, have different values
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Figure 3.3: The Feynman diagrams for the process c→ uγ.

from the SM case, even in the presence of the large long distance contri-

butions. We provide an updated estimate for the long distance amplitudes

and branching ratios for charm decays following the methods of Ref. [148]

in appendix 3.A.

3.2.2 Short distance contribution

The amplitude for the flavour changing radiative transitions were first eval-

uated by Inami and Lim [151]. As pointed out in Ref. [152], those formu-

laes need to be appropriately modified for the case of c → uγ decay. The

SM Lagrangian for the processes c→ uγ, which arises at the loop level as

shown in Fig.3.3 is given by,

Lint = −
4GF√

2
AS M e

16π2
mc

(

ūσµνPRc
)

Fµν, (3.15)

where the mass of the final quark u has been neglected and PR =
1+γ5

2 . The

coefficient AS M is a function of the internal quark masses and the (QCD
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uncorrected) contribution to the amplitude AS M is given by,

AS M
=

∑

p=1,2

Qp

[

V∗cbVubG
LL
p (rb) + V∗csVusG

LL
p (rs) + V∗cdVudGLL

p (rd)
]

=

∑

p=1,2

Qp

∑

q=d,s,b

V∗ciVuiG
LL
p (rq), (3.16)

where rq =
m2

q

M2
W

with mq (q = d, s, b) being the masses of the down-

type quarks running in the fermion loop in the penguin diagrams. The

functions GLL
p , p = 1, 2 defined in [152] are given in appendix 3.C. Q1 and

Q2 are the charges of the W boson emitted from the initial quark in the loop

diagram, and that of the internal quark running in the loop, respectively.

The inclusive decay rate for a c→ uγ process within the SM is given by,

Γ
0
c→uγ =

αG2
F

128π4
m5

c |AS M |2. (3.17)

This results in the following inclusive BR for the c→ uγ process,

BR(c→ uγ) =
3
4
α

π

|AS M |2

|Vcs|2I(m2
s

m2
c
) + |Vcd|2I(

m2
d

m2
c
)
BR(D+ → Xe+νe), (3.18)

which is normalized with respect to the inclusive semi-leptonic BR for D+

decays, to get rid of the uncertainty in the charm quark mass. The function

I is the phase space suppression factor and is given by,

I(x) = 1 − 8x + 8x3 − x4
+ 12x2ln

(

1
x

)

. (3.19)
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In the case of b→ sγ decay, up-type quarks flow in the loop and the heavy

top quark contribution dominates and induces penguin operators already at

the electroweak scale. In contrast, all the down type quarks are massless

compared to the electroweak scale, resulting in no penguin contribution at

this scale within the SM for the case of c→ uγ. However, the presence of a

heavy down type vector-like quark, will result in a non-vanishing penguin

contribution at the electroweak scale. Within the SM, the enhancement of

the radiative decay rates in presence of QCD corrections was pointed out

in Ref. [148]. While the enhancement was by a factor of two in the case of

b→ sγ, it was expected to be more dramatic in the case of charm radiative

decays [148, 153]. It is hence important to write down the weak effective

Hamiltonian with all the dimension-6 operators and calculate the corre-

sponding Wilson coefficients within the renormalization-group improved

perturbation theory which are discussed below.

The RG evolution and the coefficient C7eff

The RG evolution of the Wilson coefficients for charm decays in con-

text of the SM to the next-to-leading order (NLO) in QCD corrections

is performed. The calculation for the complete set of operators rele-

vant for charm decays had previously been done up to NLO in the NDR

scheme [154] and to the next-to-next-to-leading order (NNLO) in the MS

scheme [155]. In this article, we work in the MS scheme since the anoma-
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lous dimension matrices at the leading order (LO) (γ̂0
e f f

) and at NLO (γ̂1
e f f

)

are readily available in Ref. [155]. The short distance evolution of the Wil-

son coefficients has to be divided into two steps. The first task is to in-

tegrate out the weak gauge bosons at a scale µ ∼ MW . This is done by

calculating the Ci’s at the scale µ ∼ MW by matching the effective theory

with five active flavors q = u, d, s, c, b onto the full theory. As men-

tioned earlier, no penguin operators are generated at this point, since all

the down-type quarks (d, s and b) are to be treated as massless [153] and

the GIM mechanism is in full effect. The effective hamiltonian for the

scale mb < µ < MW is then given by,

He f f (mb < µ < MW) =
4GF√

2

∑

q=d,s,b

V∗cqVuq[C1(µ)Qq

1 + C2(µ)Qq

2]. (3.20)

Here,

Q
q

1 =
(

ūLγµT
aqL

)

(q̄Lγ
µT acL) , Q

q

2 =
(

ūLγµqL

)

(q̄Lγ
µcL) . (3.21)

The effective anomalous dimension matrix γ̂e f f is calculated in the effec-

tive theory with five flavours. Using this matrix, the Ci(MW)’s are evolved

down to the scale µ ∼ mb, and the Ci(mb)’s are obtained.

The next step is to integrate out the b quark as an effective degree of free-

dom at the scale µ ∼ mb. This is accomplished by matching the effective

five flavour theory onto the effective theory for four flavours. This gen-

erates the penguin operators with the Wilson coefficients depending upon
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MW solely through the coefficients C1,2(mb). The effective hamiltonian at

the scale mc < µ < mb is then given by

He f f (mc < µ < mb) =
4GF√

2

∑

q=d,s

V∗cqVuq[C1(µ)Qq

1 + C2(µ)Qq

2 +

10
∑

i=3

Ci(µ)Qi]

(3.22)

where

Q3 = ūLγµcL

∑

q=u,d,s,c

q̄γµq, Q4 = ūLγµT
acL

∑

q=u,d,s,c

q̄γµT aq, (3.23)

Q5 = ūLγµγνγρcL

∑

q=u,d,s,c

q̄γµγνγρq, (3.24)

Q6 = ūLγµγνγρT
acL

∑

q=u,d,s,c

q̄γµγνγρT aq, (3.25)

Q7 = −
gem

16π2
mcūLσ

µνcRFµν, Q8 = −
gs

16π2
mcūLσ

µνT acRGa
µν.(3.26)

In all of the above, qL = PLq and PR,L = (1± γ5)/2 are the chirality projec-

tion operators. The T a are the generators of S U(3). The Ci’s are the Wilson

coefficients which contain the complete short distance (perturbative QCD)

corrections. For the case of radiative charm decays under consideration

here, the operators Q9 and Q10 are not relevant and therefore not shown in

the above list. We will hence consider only the set of Wilson coefficients

C1,...,8 which are evolved down from the mb scale to the mc scale using

the γ̂e f f matrix now evaluated in the effective theory with four flavours to

obtain the Ci(mc)’s.

Hence, at each order (O), the vector of the Wilson coefficients Ci at the
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scale µ = mc may be schematically written as

C
(O)
i

(mc) = U
(O)
( f=4)(mc,mb)R(O)

match
U

(O)
( f=5)(mb, MW)C(O)

i
(MW) (3.27)

where f is the number of active flavours at the corresponding scale, R
(O)
match

is the matching matrix between the effective five flavour theory above the

scale µ = mb to the effective four flavour theory below the scale µ = mb, the

index O ={LO, NLO} specifies the order in QCD corrections at which the

corresponding quantities are being calculated and the U’s are the evolution

matrices related to the effective anomalous dimension matrix γ̂e f f and are

discussed in detail below. We use the formalism given in Ref. [156, 157]

to obtain the evolution matrices for LO and NLO. We also closely follow

Ref. [155] in the following discussion.

The leading order(LO) evolution

Let us start with the full 8× 8 effective anomalous dimension matrix at the

leading order (γ̂0
e f f

) which can be assimilated in parts from [155,158–160].

It is given in eqn. (3.52) in appendix 3.B with the full dependence on the

number of active flavours( f ) and charges(q1, q2) of the internal quark and

the decaying quark.

Now, let V be the matrix that diagonalizes γ̂0T

e f f
, so that

V−1γ̂0T

e f f V =
[

γ̂
(0)T

e f f i

]

diag
. (3.28)
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The LO evolution matrix U(0) for evolving the Ci’s down from the scale µ2

to µ1 is then given by

U(0)(µ1, µ2) = V

















(

αs(µ1)
αs(µ2)

)−γ̂(0)
e f f i

/2β0
















diag

V−1 (3.29)

where αs is the strong coupling constant.

A few comments are in order at this point. It was specified previously that

the only operators relevant for the case of charm decays within the SM,

above the scale µ = mb are Q
q

1 and Q
q

2. Hence, the matrix U(0)(mb, MW) is

essentially a 2× 2 matrix. The LO values of C1,2(MW), which are basically

the initial conditions are well known and are given by:

C1(MW) = 0, C2(MW) = 1. (3.30)

Hence we have, for the scale mb < µ < MW

























C1(mb)

C2(mb)

























= U(0)(mb, MW)

























C1(MW)

C2(MW)

























. (3.31)

At this point, all the other Wilson coefficients (C3 to C8) are zero. They

get their values from the matching at the scale mb. However, the matching

matrix Rmatch = δi j to LO and hence, for the LO evolution, the coefficients

C3 to C8 remain vanishing even after the matching procedure. The resulting

8× 1 column vector (C1(mb),C2(mb), 0, 0, 0, 0, 0, 0) is then multiplied with

the 8×8 evolution matrix U(0)(mc,mb) to obtain the values of the Ci’s at the
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charm scale. The renormalization scheme independent Wilson coefficient

C7e f f
relevant for radiative charm decays is then obtained at LO using the

relation

C7e f f
= C7 +

6
∑

i=1

yiCi (3.32)

where yi =
2
3{0, 0, 1,

4
3 , 20, 80

3 } [155].

The next-to-leading order(NLO) evolution

The NLO expression for the evolution matrix is given by

U(1)(µ1, µ2) = (1 + αs(µ1)J(1))U(0)(µ1, µ2)(1 − αs(µ2)J(1)) (3.33)

where

J(1)
= VH(1)V−1. (3.34)

V was defined previously in eqn. (3.28) and the matrix H is defined by

H
(1)
i j
= δi jγ̂

(0)
e f f i

β1

2β2
0

−
G

(1)
i j

2β0 + γ̂
(0)
e f f i
− γ̂(0)

e f f j

. (3.35)

with

G(1)
= V−1γ̂

(1)T

e f f
V. (3.36)

The expression for the 8 × 8 γ̂1 matrix with the complete effective flavour

and charge dependence can again be collected in parts from [155, 158–

160]. Due to its large size, we provide the matrix in two separate 8× 6 and
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8 × 2 blocks in appendix 3.B (see eqns. 3.54 and 3.53).

It is easy to see that one encounters a term of the order of α2
s on expanding

the expression for U(1)(µ1, µ2) (eqn. (3.33)). However, a calculation of the

NLO contribution necessarily requires that all terms higher than the first

order in αs be discarded and hence, special care should be taken in using

eqn.(3.33) for the NLO evolution.

Similar to the case of the LO evolution, the only relevant coefficients above

the mb scale are C1(MW) and C2(MW), calculated up to the NLO order this

time. The expressions can be found in [161] and in the MS scheme are

given by

C1(MW) =
15αs(MW)

4π
, C2(MW) = 1. (3.37)

The coefficients Ci(i = 3, ..., 8) however are non-vanishing after the match-

ing procedure at NLO, since the matching matrix Rmatch is now defined by

Rmatchi j
= δi j +

αs(mb)
4π

R
(1)
i j
. (3.38)

The non-zero elements of the matrix R(1) for charm decays being [155]

R
(1)
41 = −R

(1)
42 /6 = 1/9,

R
(1)
71 = −R

(1)
72 /6 = 8/81,

R
(1)
81 = −R

(1)
82 /6 = −1/54. (3.39)
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The full set of NLO coefficients (C1, ...,C8) for the case of charm decays

in the SM is then given by

C(mc) = U(1)(mc,mb)RmatchC(mb). (3.40)

where C(mb) is an 8×1 column vector whose first two elements are C1(mb)

and C2(mb) and the rest are zero. Once the values at the charm scale are ob-

tained, the corresponding value for C7e f f
can be obtained from eqn. (3.32).

3.3 New Physics models

3.3.1 Down type isosinglet vector-like quark

The SM contains three generation of quarks, however, the number of gen-

erations is not predicted by the theory. A simple extension of the SM would

be to have a chiral fourth generation of quarks and leptons. Presence of a

fourth generation would have a significant effect on the Higgs sector of

the SM and is now ruled out by the Higgs production and decay processes

data at the LHC. However, the so called vector-like quarks, which do not

receive their masses from Yukawa couplings to a Higgs doublet, are con-

sistent with the present Higgs data. They are distinguished from the SM

quarks by their vector coupling to gauge bosons, i.e., both the left handed,

ΨL and right handed, ΨR chiralities of these fermions transform the same

way under the SM gauge groups S U(3)c × S U(2)L × U(1)Y . These exotic
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fermions occur for example in the grand unified theory based on E6 [162].

In general these fermions could either be singlets or doublets or triplets

under S U(2)L. Here we consider the case of a down type isosinglet quark.

In the SM, the quark mixing matrix is a 3× 3 unitary matrix which is spec-

ified in terms of three angles (θ12, θ13, θ23) and a CP-violating phase, δ13.

A 4 × 4 unitary quark mixing matrix (A) is parametrized in terms of 3 ad-

ditional angles (θ14, θ24, θ34) and two more CP violating phases, δ14, δ24. In

Ref. [143], a chi-squared fit to many flavour observables was performed

to obtain the preferred central values, along with the errors of all the ele-

ments of the measurable 3 × 4 quark mixing matrix (V). To evaluate the

SD contribution of the radiative decay rate in the presence of the vector-

like isosinglet quark, the central values of the mass and mixing angles are

obtained from the results of the fit in Ref. [143] are used. The relevant

charged current Lagrangian is given by,

LW =
g
√

2
ūiLViαγ

µdαWµ,

where V is a 3 × 4 CKM matrix mentioned above.

Modified Wilson coefficients in presence of a vector-like quark

Having discussed the evolution of the Wilson coefficients for the SM in full

detail we will now simply specify how the contribution of the vector-like

quark model modifies the SM coefficients.
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Table 3.1: Central values of CKM matrix elemnts in SM and in SM+VLQ.

Parameter SM mb′ = 800 GeV mb′ = 1200 GeV
θ12 0.2273 0.2271 0.2270
θ13 0.0035 0.0038 0.0038
θ23 0.0397 0.0391 0.0391
δ13 1.10 1.04 1.04
θ14 − 0.0151 0.0147
θ24 − 0.0031 0.0029
θ34 − 0.0133 0.0123
δ14 − 0.11 0.11
δ24 − 3.23 3.23

The down-type vector-like quark induces a Z-mediated FCNC in the down-

type quark sector. In Ref. [163] it was pointed out for the case of singlet

up type vector like quark, that only the Wilson coefficients are modified.

Similarly for the c → u transitions that are of interest to us, no new set

of operators are introduced and hence the anomalous dimension matrices

along with the coefficients C1(MW) and C2(MW), remain exactly the same

as that in the SM, up to NLO.2

The fundamental difference in this model is that at the electroweak scale,

the coefficients C7,8 will not be zero. While the down-type quarks running

in the penguin loop in the SM3 can be treated as massless and hence do not

contribute, the vector-like b′ quark, which couples with all the up-type SM

quarks being heavier than MW will generate a value for the coefficients C7

2However, at the NNLO order, one encounters terms dependent on m2
t

M2
W

which arise as a result of inte-

grating out the top quark as a heavier degree of freedom at the electroweak scale. Since the b′ is also heavier
than the W boson, one needs to integrate it out too at this scale. Hence, at the NNLO level, the expressions
for C1(MW ) and C2(MW ) change for this model as compared to SM.

3The relevant diagrams in the Feynman gauge can be found in [152].
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and C8 at the electroweak scale itself. The values are

C7 =
1
2













GLL
1













m2
b′

M2
W













− 1
3

GLL
2













m2
b′

M2
W

























(3.41)

C8 =
1
2

GLL
2













m2
b′

M2
W













(3.42)

where the functions GLL
p (r) defined in [152] are given in appendix 3.C.

We have calculated these coefficients in this model for two benchmark

values for the mass of the b′ quark in accordance with [143]. Our results

are displayed in Table 3.2. Our values for the coefficients in the SM match

exactly with Ref. [155] if we use their values for the parameters mt, mb,

MW and µ. We find there is more than an order enhancement in the values

of the coefficients C7e f f
and C8e f f

at the NLO level in the case of this vector-

like quark model compared to the SM. However, we should mention here

that our NLO results for the NP model are not exact in the sense that we

have not calculated the expressions for these coefficients at the NLO level

at the W scale. The LO results are exact. From the values in Table 3.2

it is evident that the dimension six operators O1,...,6 do not mix with the

dimension five operators O7,8 (a fact that is well known and clear from the

form of the anomalous dimension matrices).
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Table 3.2: The values of the Wilson coefficients at the charm scale in SM and a heavy
vector-like quark(VLQ) model with the benchmark values of 800 GeV and 1200 GeV for
the heavy-quark mass. We take the mass of the charm quark mc = 1.275 GeV, the MS
mass of the bottom quark mb = 4.18 and the mass of the W boson MW = 80.385. The
four-loop expression for the strong constant αs has been used.

Coefficients
LO NLO

SM VLQ VLQ SM VLQ VLQ

mb′ = 800 GeV mb′ = 1200 GeV mb′ = 800 GeV mb′ = 1200 GeV
C1 -1.0769 -1.0769 -1.0769 -0.7434 -0.7434 -0.7434
C2 1.1005 1.1005 1.1005 1.0503 1.0503 1.0503
C3 -0.0043 -0.0043 -0.0043 -0.0060 -0.0060 -0.0060
C4 -0.0665 -0.0665 -0.0665 -0.1015 -0.1015 -0.1015
C5 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003
C6 0.0008 0.0008 0.0008 0.0009 0.0009 0.0009
C7 0.0837 0.3324 0.3276 0.6095 0.2820 0.2778
C8 -0.0582 -0.2259 -0.2253 -0.0690 -0.2197 -0.2192
| C7e f f

| 0.0424 0.2911 0.2863 0.0119 0.2159 0.2117

3.3.2 Left-right symmetric model

The minimal Left Right symmetric model is based on the gauge group

S U(3)c × S U(2)L × S U(2)R × U(1)B−L [164–166] with the fermions rep-

resented as doublet representations of S U(2)L and S U(2)R. The electric

charge Q and the third components of the weak isospin I3L and I3R are re-

lated as Q = I3L + I3R +
B−L

2 . To ensure perturbative interactions between

right-handed gauge boson and fermions, ζg =
gR

gL
(where the gR and gL

are the right and left handed couplings respectively) should not be large.

As in the low energy weak interaction L-R symmetry is broken, in gen-

eral gL , gR. Direct search results impose the the bound ζgMW2 > 2.5

TeV [167, 168]. In order to generate active neutrino mass through see-saw

mechanism, vR should be in the TeV range. All these constraints result in

the range for ζg being [0, 2]. The charged gauge boson WL and WR are mix-
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ture of the mass eigenstates W1 and W2, with a mixing angle ζ restricted to

lie in the range [0, 10−3] [169,170]. Since the minimal LRSM models with

an exact symmetry between the left and right handed sectors are becoming

harder to realize, we use a right handed mixing matrix which is distinct

from the left handed CKM matrix. To decrease the number of parameters,

we take the right-handed CKM matrix to be,











































c12 s12 0

−s12 c12 0

0 0 1











































, (3.43)

where c12 = cosφ12 and s12 = sinφ12. This parametrization of the right

handed CKM matrix is inspired by Ref. [170, 171]. The CP violating

phases have been taken to be zero and φ13 = φ23 = 0, where φi j is the mix-

ing angle between the ith and jth generations. For the case of the LRSM

with a heavy vector-like quark b′, there are three additional parameters

(φ14, φ24, φ34). The explicit form of the right-handed CKM matrix in this

case is given by,











































c12c13c14 c13c14s12 0 s14

−c24s12 − c12s14s24 c12c24 − s12s14s24 0 c14s24

−c12c24s14s34 + s12s24s34 −c12s24s34 − c24s12s14s34 c34 c14c24s34











































,

(3.44)

where ci j = cosφi j, and si j = sinφi j.
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The effective lagrangian given in eqn. (3.15) (for SM) may now be written

for the case of LRSM as,

Le f f = −
eGF

4
√

2π2

[AūσµνRcFµν + BūσµνLcFµν

]

(3.45)

whereA and B are the bare SD contributions to cL and cR respectively.

A =
∑

ℓ

{

Q1
(

Mcos2ζλLL
ℓ GLL

1 + mζ2
gsin2ζλRR

ℓ GRR
1 + mℓζgsinζcosζeiφλLR

ℓ GLR
1

+ mℓζgsinζcosζe−iφλRL
ℓ GRL

1

)

+ Q2
(

Mcos2ζλLL
ℓ GLL

2 + mζ2
gsin2ζλRR

ℓ GRR
2

+ mℓζgsinζcosζeiφλLR
ℓ GLR

2 + mℓζgsinζcosζe−iφλRL
ℓ GRL

2

)

}

(3.46)

B =
∑

ℓ

{

Q1
(

mcos2ζλLL
ℓ HLL

1 + Mζ2
gsin2ζλRR

ℓ HRR
1 + mℓζgsinζcosζeiφλLR

ℓ HLR
1

+ mℓζgsinζcosζe−iφλRL
ℓ HRL

1

)

+ Q2
(

mcos2ζλLL
ℓ HLL

2 + Mζ2
gsin2ζλRR

ℓ HRR
2

+ mℓζgsinζcosζeiφλLR
ℓ HLR

2 + mℓζgsinζcosζe−iφλRL
ℓ HRL

2

)

}

. (3.47)

For the case of c → uγ decays, Q1 = 1,Q2 = −1/3, M = mc and m = mu.

l is the down type quark running in the penguin loop with mass ml. For

the case of LRSM with a vector like quark this will include mb′ also. λl’s

are the CKM factors, λLL
ℓ
= V∗L

cℓ
VL
ℓu

, λRR
ℓ
= V∗R

cℓ
VR
ℓu

, λLR
ℓ
= V∗L

cℓ
VR
ℓu

, λRL
ℓ
=

V∗R
cℓ

VL
ℓu

. The functions G
i j
p and H

i j
p for p = 1, 2 and i = j = L are given in

Ref. [152]. Gp and HP are also included in appendix 3.C. We calculate the

SD contributionsA and B only at the bare level. For the c→ uγ decays in

the LRSM model, the operator basis with and without the heavy vector-like

quark now consists of 20 operators. They are the 8 operators described in
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Table 3.3: LRSM, LRSM+VLQ parameter and their allowed range

Parameters
Ranges

LRSM LRSM+VLQ
ζ 0 − 10−3 0 − 10−3

ζg 0 − 2 0 − 2
φ12 0 − 2π 0 − 2π

LRSM+VLQ
Parameter Range

mb′ 800, 1200GeV
φi4(i = 1, 2, 3) 0 − 2π

θi j(i = 1, 2, 3; j = 2, 3, 4) listed in Table 3.1

sec. 3.2.2 which contribute toA along with the following two operators,

Q
q

9 =
(

ūLγµT
aqL

)

(q̄Rγ
µT acR) , Q

q

10 =
(

ūLγµqL

)

(q̄Rγ
µcR) , (3.48)

which are the left-right analogues of Q
q

1 and Q
q

2. 10 more operators with

the chiralities of these operators flipped, contribute to B. Since the strong

interactions preserve chirality, these two sets of operators with different

chiralities do not mix with each other and the RG group mixing of the two

sets are the same. However, the additional operators require an additional

γ4×4 which although present in the literature for radiative b decays [169],

is not available for the case of the radiative charm decays. Hence incorpo-

rating the QCD corrections for the LRSM case, is beyond the scope of this

work.
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3.4 Results and discussions

3.4.1 Branching ratios in the SM and for the NP models

The inclusion of QCD corrections result in an enhancement of the coef-

ficient AS M (defined in eqn. 3.16) from O(10−7) at the bare (QCD uncor-

rected) level to O(10−6) at the LO and O(10−3) at the NLO level. At the

LO, the contributions from the intermediate d and s quarks differ only in

the CKM factors V∗
cd

Vud and V∗csVus. Their sum, using unitarity is −V∗
cb

Vub,

leading to a large suppression in the amplitude. At the NLO, the func-

tional dependence of the amplitudes on the s and d quark masses be-

comes substantial and hence the net amplitude is no longer just the sum

of the CKM factors. In fact, since V∗csVus = −V∗
cd

Vud, this results in

AS M ∝ V∗csVus[ f ( ms

mc
)2 − f (md

mc
)2], where the function f [153] is given by:

f (x) = − 1
243

((3672 − 288π2 − 1296ζ3 + (1944 − 324π2)ln x + 108ln2 x

+ 36ln3 x)x + 576π2x
3
2 + (324 − 576π2

+ (1728 − 216π2)ln x

+ 324ln2 x + 36ln3 x)x2
+ (1296 − 12π2

+ 1776ln x − 2052ln2 x)x3)

− 4πi

81
((144 − 6π2

+ 18ln x + 18ln2 x)x + (−54 − 6π2
+ 108ln x

+ 18ln2 x)x2
+ (116 − 96ln x)x3). (3.49)
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Table 3.4: The values for | A | and the inclusive c → uγ BR in the SM and vector-like
quark(VLQ) model. For the vector-like quark model, the values have been calculated for
the benchmark values m′

b
= 800 GeV and 1200 GeV.

QCD
| A | BR(c→ uγ)

SM VLQ VLQ SM VLQ VLQ

mb′ = 800 GeV mb′ = 1200 GeV mb′ = 800 GeV mb′ = 1200 GeV
Bare 2.73 × 10−7 2.49 × 10−5 2.35 × 10−5 2.04 × 10−17 1.70 × 10−13 1.51 × 10−13

LO 5.89 × 10−6 4.32 × 10−5 4.25 × 10−5 9.48 × 10−15 5.11 × 10−13 4.94 × 10−13

NLO 2.61 × 10−3 4.46 × 10−2 4.37 × 10−2 1.86 × 10−9 5.46 × 10−7 5.23 × 10−7

Hence, the coefficient AS M at LO and NLO is given by,

AS M
LO = −V∗cbVubC

LO
7e f f

AS M
NLO = V∗csVusC

NLO
7e f f

. (3.50)

Note that | C7e f f
| itself is not enhanced at NLO compared to LO within the

SM as is evident from the values in Table 3.2, rather the different CKM

coefficients appearing in AS M
LO

and AS M
NLO

result in the enhancement of the

coefficient AS M at the NLO level.

Since the vector-like quark b′ generates a non-vanishing value for the co-

efficients C7 and C8 at the electroweak scale itself, its presence results in

an increased magnitude of C7e f f
as can be seen in Table 3.2. This results

in the BR enhancement by 2 orders of magnitude in the vector-like quark

model at NLO compared to that in the SM. The values for | A | and the

corresponding BR’s for the QCD uncorrected, LO and NLO corrected con-

tributions for SM and the vector-like quark model (with m′
b
= 800, 1200

GeV) are given in table 3.4.

Table 3.5 shows the bare level BR’s for the LRSM as well as LRSM with a

heavy vector-like quark model. Comparing with the bare level BR’s from
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Table 3.5: Branching ratios for the LRSM model without and with contribution from
heavy vector-like quark(VLQ). The Branching ratio is expressed as a function of ζ, ζg and
θ12 (for LRSM) and of ζ, ζg, θ12, θ14, θ24 and θ34 (for LRSM+VLQ). The corresponding
parameters are varied to determine the maximum and minimum values.

Model BR

LRSM Max 1.96 × 10−11

Min 0.67 × 10−15

LRSM+VLQ (800 GeV) Max 4.65 × 10−8

Min 1.69 × 10−13

LRSM+VLQ (1200 GeV) Max 0.96 × 10−7

Min 1.42 × 10−13

Table 3.4, it is evident that for LRSM alone an enhancement of O(102) to

O(106) is feasible, depending on the values of the parameters of LRSM,

compared to the SM. LRSM along with vector-like quark can enhance the

BR by even upto O(1010).

For the SM (vector-like quark model), the enhancement of the BR from the

bare level to that with QCD corrections at NLO level is O(108) (O(106)).

For the case of LRSM with vector-like quark, QCD corrections are ex-

pected to lead to similar large enhancement. Even if the enhancement from

these corrections is considerably less (∼ O(104)), the QCD corrected SD

contribution from the LRSM with vector-like quark could result in BR’s

much larger than that from the LD effects. This enhancement could possi-

bly point towards the presence of such a NP.
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3.4.2 Photon polarization as a probe for new physics

Within the SM, in the penguin diagram responsible for the c→ uγ process

only left-handed components of the external fermions couple to the W bo-

son. A helicity flip on the c quark leg, proportional to mc, contributes to

the amplitude for the emission of left polarized photons, while, that on the

u quark leg, proportional to mu, results in right polarized photons.

In the LRSM since the physical W1 boson couples to both left and right

handed quarks, a helicity flip is also possible on the internal (d, s, b) quark

lines and will result in additional left handed photons with an amplitude

involving a new coefficient function and proportional to mbζ and similarly

there will be additional right-handed photons proportional to mbζ. In the

presence of a vector-like quark, each of these contributions will be propor-

tional to mb′ζ.

In analogy to Ref. [145], we define the photon polarization for the inclusive

process c→ uγ as

λγ =
|cR|2 − |cL|2
|cR|2 + |cL|2

, (3.51)

where cR, cL denote the amplitudes for the right and left polarized photons

in the process.

For the SM, since the SD contributions to cR are negligible (O(mu) sup-

pressed), if one only includes the SD contributions to estimate λγ, its value

would be −1. However, the exclusive decay modes corresponding to the
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c → uγ process are dominated by LD contributions. To account for these

we add the values of the pole type and VMD amplitudes of all the exclu-

sive processes (given in appendix 3.A). Due to uncertainty in the sign of

the VMD contributions, the long distance amplitudes can lie in the range

(2.08 × 10−9 − 8.78 × 10−7) GeV−1. Since the LD amplitude does not have

any preferred polarization, it contributes equally to both cR and cL. This

results in an almost vanishing value of λγ ∼(O(10−8 − 10−5)) within the

SM. This is in contrast to the b → sγ case [145], where the LD contribu-

tions are less significant, and hence the λγ value is −1 in SM. Without LR

symmetry, an isosinglet vector-like quark can only couple to WL and hence

its addition will only enhance the left handed polarized amplitude. For

this case we find that in presence of LD contribution, λγ lies in the range

−6.1×10−6 to −2.6×10−3. The bare SD contributions to the | cR | and | cL |

amplitudes within the LRSM are given by eqns. (3.46) and (3.47). Here

again the LD contribution is appropriately added to | cR | and | cL |.

The photon polarization can be expressed as a function of ζ, ζg and

φ12 (LRSM) and of ζ, ζg, φ12, φ14, φ24 and φ34 (for LRSM+VLQ). We

vary the parameters ζg and ζ within their allowed ranges (0 ≤ ζg ≤ 2 and

0 ≤ ζ ≤ 10−3) and look for the φ12 (LRSM) and of φ12, φ14, φ24 and φ34

(for LRSM+VLQ) values for the maximum deviation of the polarization

from its SM value of ≈ 0.

The contour plots for the variation of λγ for LRSM with no LD contribution
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(a) (b)

Figure 3.4: Contour plots showing the variation of the polarization λγ as a function of ζ and ζg

for LRSM with no LD contribution on left and LRSM with LD amplitude of 2 × 10−9 GeV−1

on right. For both the cases, the right-handed CKM elements are set for maximum deviation of
the polarization function from its SM value. The bar-legends for the different contours of λγ are
displayed along with the respective figures. Here 0 < ζ < 10−3 and 0 < ζg < 2.

and LRSM with LD amplitude of 2 × 10−9 GeV−1 are shown in Fig. 3.4.

As seen in Fig. 3.4(a), for very small values of ζ and ζg, LRSM approaches

the SM and hence in absence of long distance contribution, the polarization

is left handed (λγ = −1), however as the parameters ζ and ζg increase, the

polarization value changes from -1 to +1. This picture completely changes

in the presence of the long distance effects, shown in Fig. 3.4(b). Left and

right pannels of Fig. 3.5 show the λγ contours for LRSM with an isosinglet

down type vector-like quark of mass 800 GeV and 1200 GeV respectively,

with LD amplitudes (in units of GeV−1) of 2×10−9 , 1×10−8 and 8×10−8,

corresponding to the top, middle and bottom rows. At the lower end of

the range estimated for the LD amplitude, in a model with a vector like

quark along with LRSM, polarization can be large, even +1 as both ζ and

ζg approach their maximum values. If the LD contributions are larger ∼
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Contour plots showing the variation of the polarization λγ as a function of ζ and
ζg. The left panels show the plots for LRSM with a VLQ of mass 800 GeV, while the right panels
display the plots for LRSM with a VLQ of mass 1200 GeV. The LD amplitudes(in units of GeV−1)
are 2 × 10−9, 1 × 10−8, and 8 × 10−8, for the top, middle and bottom rows respectively. For all the
cases, the right-handed CKM elements are set for maximum deviation of the polarization function
from its SM value. The bar-legends for the different contours of λγ are displayed along with the
respective figures. Here 0 < ζ < 10−3 and 0 < ζg < 2.
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1 × 10−8 GeV−1, the maximum polarization value is ∼ 0.5, which further

reduces to 0.05 for LD amplitude of 8 × 10−8 GeV−1.

On the experimental side, branching ratios of some of the radiative decays

of the D0 meson have been measured by the Belle collaboration [172],

BR
(

D0 → ρ0γ
)

= (1.77 ± 0.3 ± 0.07) × 10−5,

BR
(

D0 → φγ
)

= (2.76 ± 0.19 ± 0.10) × 10−5,

BR
(

D0 → K
∗0
γ
)

= (4.66 ± 0.21 ± 0.21) × 10−4.

If the LD contribution is at its lower limit, then the measured BR(D0 →

ρ0γ) can allow some enhancement from the NP SD contribution, on the

other hand, the upper limit of LD saturates the observe BR. The measured

BR(D0 → φγ) also allows some NP SD contribution. The upper limit for

BR(D0 → ωγ) is 2.4 × 10−4 [35] and cannot be saturated by the SM con-

tribution. Also, recently an observation of the photon polarization in the

b → sγ transition was reported by LHCb [173]. Photon polarization is

obtained by the angular distribution of the photon direction with respect to

the plane defined by the momenta of the three final-state hadrons in their

centre of mass frame. A similar technique could be used to measure the

photon polarization for the case of D→ ωγ, since the decay of ω into three

pions will permit the measurement of an up-down asymmetry between the

number of events with photons on either side of the plane. For the model

with left-right symmetry and a vector-like quark, the enhancement in the
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BR(c→ uγ), as well as the photon polarization value being different from

that of the SM, should be reflected in the exclusive modes as well, although

the results may be weaker. All the form factors required to estimate the ex-

clusive BR’s are neither available from experimental data nor yet extracted

from lattice calculations. Hence, we do not attempt to calculate the exact

BR’s for specific exclusive modes. Very recently exclusive radiative charm

decays have been studied [174] in heavy quark and hybrid formalism.

3.5 Conclusions

Charmed decay modes including radiative ones are expected to be plagued

by long distance contributions. For the SM, NLO QCD corrections en-

hance the short distance c → uγ branching ratio by about O(108). Fur-

ther enhancement of the branching ratio is possible in various new physics

models. We show that for certain values of the parameter space, an en-

hancement by even up to O(1010) is possible in a left-right symmetric

model with a down type vector-like singlet quark at the bare level. This

could be enhanced further by many orders of magnitude after incorporat-

ing QCD corrections, enabling the short distance branching fraction to be

possibly even larger than the long distance contribution. Such an enhance-

ment could signal the presence of physics beyond the SM. However, the

uncertainty in the size of the long distance contributions, may not allow

this to be easily feasible. Nevertheless measurements of branching ratios
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of all possible charm radiative modes should be made. A clearer signature

of new physics could be obtained by measurement of the photon polariza-

tion, for eg. for the radiative D → ωγ mode via a technique similar to

that used recently by LHCb [173] for the b → sγ case. We find that for

a large region of the parameter space for the vector-like quark model with

left-right symmetry, the photon polarization can be right handed. For the

modes D→ K∗γ, ργ the photon polarization could possibly be determined

by looking at the photon conversion to e+e− [175].

3.A Additional Information regarding the long distance

contributions

To calculate the long distance contributions, we have closely followed

Ref. [148]. Here, we give the numerical values of various parameters used

for our estimates, as well as update the previous results in [148] using the

latest values of the input parameters.

In table 3.8 we display the results for the calculation of the long-distance

D → Vγ amplitudes. The individual numbers for type-I pole and VMD

contributions are shown separately along with the branching ratios. These

results are essentially an update of the results in Ref. [148] using the same

techniques. The major updates are:

• Inclusion of new modes like D+s → π+2 (1670)γ, D+ → π+2 (1670)γ,
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Table 3.6: Decay width and poles masses used in Type I and Type II pole amplitude
analysis.

Decay width used to calculate hVγPn
Type I pole, Pn Type II pole, D∗n

(GeV) (GeV) (GeV)
Γρ+→π+γ = 6.734 × 10−5 Mπ+ = 0.140 MD∗+(2010) = 2.011
Γρ0→π0γ = 9.008 × 10−5 Mπ0 = 0.135
Γρ0→ηγ = 4.504 × 10−5 MK+ = 0.494
Γω→π0γ = 7.029 × 10−4 MK0 = 0.498
Γω→ηγ = 3.905 × 10−6 Mη = 0.548
Γφ→π0γ = 5.418 × 10−6 Mη′ = 0.958
Γφ→ηγ = 5.584 × 10−5 MD+ = 1.869
Γφ→η′γ = 2.666 × 10−7 M f0(980) = 0.990
Γφ→ f 0γ = 1.374 × 10−6 Ma0(980) = 0.980
Γφ→a0γ = 3.242 × 10−7

Γb+1→π+γ = 2.272 × 10−4

Γa+1→π+γ = 6.4 × 10−4

Γa2→π+γ = 3.114 × 10−4

Γω(1420)→π0γ = 2.03 × 10−8

Γρ(1450)→ηγ = 2.2 × 10−9

Γπ+2 (1670)→π+γ = 1.82 × 10−4

ΓK∗+(898)→K+γ = 4.801 × 10−5

ΓK∗(892)→K0γ = 1.166 × 10−4

ΓK1(1270)→K0γ = 6.588 × 10−9

ΓK1(1400)→K0γ = 4.886 × 10−8

ΓK∗+2 (1430)→K+γ = 2.364 × 10−4

Table 3.7: Pole masses, electromagnetic coupling and form factors used in VMD ampli-
tude analysis.

VMD Poles and Coupling Form Factors
H∗(GeV) e

f̄V
Decays V(0) A1(0) a b′

MD∗(2010) = 2.01027 0.06(ρ0) D0 → K−∗ 0.99 0.62 0.57 0.74
MD∗′ = 2.7 0.018(ω) D0 → ρ− 1.05 0.61 0.55 0.69

0.024(φ) D+ → K0∗ 0.99 0.62 0.57 0.74
D+ → ρ0 1.05 0.61 0.55 0.69
D+ → ω 1.05 0.61 0.55 0.69
Ds → φ 1.10 0.61 0.57 0.74

Ds → K0∗ 1.16 0.60 0.55 0.69
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Table 3.8: The pole-I, pole-II and VMD amplitudes and the exclusive radiative branching
ratios.

Mode APC(10−8) APV(10−8) B.R.
P-I P-II VMD P-I VMD

D+s → ρ+γ 7.07 ±8.36 ±11.5 (4.7-13)×10−4

D+s → b+1 (1235)γ 6.19 4.9 × 10−5

D+s → a+1 (1260)γ 10.4 1.4 × 10−4

D+s → a+2 (1320)γ 18.2 9.4 × 10−5

D+s → K∗+γ 2.30 ±1.44 ±2.22 (1.6-5.4)×10−5

D+s → K∗+(1430)γ 5.15 3.6 × 10−6

D+s → π+2 (1670)γ 7.62 5.4 × 10−7

D+ → ρ+γ -1.30 0.74 ±1.85 ±2.34 (4.2 − 6.7) × 10−5

D+ → K∗+γ ±0.46 ±0.6 2.7 × 10−6

D+ → b+1 (1235)γ -1.13 2.4 × 10−6

D+ → a+1 (1260)γ -1.91 6.8 × 10−6

D+ → a+2 (1320)γ -3.36 3.2 × 10−6

D+ → π+2 (1670)γ -1.40 5.6 × 10−9

D0 → K
∗0
γ -5.21 ±3.62 ±4.77 (4.6-18)×10−5

D0 → K1(1270)γ -0.016 1.6 × 10−10

D0 → K1(1400)γ -0.038 4.7 × 10−10

D0 → K∗(1410)γ -0.018 1 × 10−10

D0 → ρ0γ 1.36 ±1.05 ±1.46 (5.12-18)×10−6

D0 → ωγ -0.703 ±0.897 ±1.20 (3.2-9)×10−6

D0 → φγ 0.318 ±0.956 -0.428 ±1.32 (4.8-6.4)×10−6

D0 → K1(1270)γ, D0 → K1(1400)γ, D0 → K1(1410)γ in the type-I

pole amplitudes.

• Updated form factors taken from Ref. [150] used in calculating the

VMD amplitudes.

• Updated V → P (vector-pseudoscalar) and T → P (tensor-

pseudoscalar) decay widths from Ref. [35] used for the evaluation

of the couplings hVγP and hTγP respectively for the type-I pole ampli-

tudes.

• Inclusion of η − η′ mixing in calculating the type-I D0 → ρ0γ, D0 →
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ωγ and D0 → φγ amplitudes. The corresponding mixing angles and

decay constants have been obtained from Ref. [176].

• Inclusion of the parity-violating (PV) part for the D0 → φγ type-I

pole amplitude. The decay constants for the corresponding scalars

involved have been taken from Ref. [177] for f0(980) and [178] for

a0(980) respectively.

• The decay constants are taken from Ref. [179] for the light vector

mesons and from Ref. [35] for the light pseudoscalar mesons. For the

decay constants of the D∗ and D∗s mesons, we use Ref. [180].

We have only calculated the type-II pole contribution to the mode D+ →

ρ+γ. This is because:

• The corresponding decay widths for D∗s → Ds and D0∗ → D0 es-

sential for calculating the type-II pole contributions to the Ds and D0

decay modes respectively are only given as limits in Ref. [35].

• For decay modes of D+ other than ρ+γ (for eg. b+1 (1235)γ, a+1 (1260)γ

etc.), the corresponding decay constants for the final state particles

are not available.
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3.B The LO and NLO anomalous dimension matrices

We provide the effective anomalous dimension matrix in the MS scheme in

this appendix. For the case of charm decays we have q1 = −1/3, q2 = 2/3

and q̄ = q1−q2. While evolving the Ci’s down from the MW to the mb scale,

one has to make the assignments n = 3 and f = 5. For the corresponding

evolution from the mb to the mc scale, the values are n = 2 and f = 4.

At the LO level, it is given by

γ̂0
e f f =

































































−4 8
3 0 − 2

9 0 0 − 4q1
3 −

8q2
81

173
162

12 0 0 4
3 0 0 8q1+

16q2
27

70
27

0 0 0 − 52
3 0 2

176q2
27

14
27

0 0 − 40
9

4 f

3 −
160
9

4
9

5
6

(

16 f

27 −
88
81

)

q2
74
81−

49 f

54

0 0 0 − 256
3 0 20

6272q2
27 36 f+ 1736

27

0 0 − 256
9

40 f

3 −
544
9

40
9 −

2
3 48nq̄+

(

1456 f

27 −
3136
81

)

q2
160 f

27 +
2372
81

0 0 0 0 0 0 32
3 0

0 0 0 0 0 0
32q2

3
28
3

































































. (3.52)

At the NLO level, due to its large size, we present the matrix in 8 × 6 and

8 × 2 blocks. It reads

γ̂18×2

e f f =









































































(

2 f

27−
374
27

)

q1+
(

64 f

729−
12614
729

)

q2
431 f

5832+
65867
5832

(

136
9 −

4 f

9

)

q1+
(

2332
243 −

128 f

243

)

q2
10577
486 −

917 f

972

− 112nq̄

3 −
(

4720 f

243 +
97876
243

)

q2
42524
243 −

2398 f

243
(

− 32 f 2

243 +
4448 f

729 +
70376
729

)

q2− 140nq̄

9 − 253 f 2

486 −
39719 f

5832 −
159718

729

− 3136nq̄

3 −
(

188608 f

243 +
1764752

243

)

q2 −14 f 2
+

140954 f

243 +
2281576

243
(

− 56 f

3 −
1136

9

)

nq̄−
(

5432 f 2

243 −
232112 f

729 +
4193840

729

)

q2 − 6031 f 2

486 −
15431 f

1458 −
3031517

729

1936
9 −

224 f

27 0
(

368
3 −

224 f

27

)

q2
1456

9 −
61 f

27









































































. (3.53)
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γ̂18×6

e f f =














































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
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3

40 f
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162
20 f

3 −45 − 28
3 − 416
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0 0 − 4468
81 − 52 f
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29129
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9
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1334 f

81 −
79409
243

509
486−
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13499
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5 f
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0 0 − 160 f

9 −
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400 f
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
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, (3.54)

3.C The functions Gp

In this appendix, we provide the form of the Gp and HP functions.

G
i j

P
(rℓ) =

∫ 1

0
dx

∫ 1−x

0
dy 1
Λp

g
i j
p (rℓ, x, y)

H
i j

P
(rℓ) =

∫ 1

0
dx

∫ 1−x

0
dy 1
Λp

h
i j
p (rℓ, x, y)

Λ1(rℓ, x, y) = 1 − x + rℓx − rixy − r f xz

Λ2(rℓ, x, y) = x + rℓ(1 − x) − rixy − r f xz

z = 1 − x − y

gLL
1 (rℓ, x, y) = 1 − x + z + y(1 − 2x) + rℓx(1 − y) − r f xz

hLL
1 (rℓ, x, y) = 1 − x + y + z(1 − 2x) + rℓx(1 − z) − rixy

gLR
1 (x) = 3(x − 1) − x2√rir f

hLR
1 (rℓ, x, y) = xyri + xzr f − xrℓ + (x − 1)

gLL
2 (rℓ, x, y) = −2x(1 − y) + rℓ(−1 + x + xy) + r f xz

hLL
2 (rℓ, x, y) = −2x(1 − z) + rℓ(−1 + x + xz) + rixy

gLR
2 (x) = (1 − x)2√rir f

gLR
1 = hRL

1 hLR
1 = gRL

1
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gLL
2 = hRR

2 hLL
2 = gRR

2

gLR
2 = hRL

2 hLR
2 = gRL

2 (3.55)

In the above, ri = m2
c/M

2
W , r f = m2

u/M
2
W and rℓ = m2

ℓ
/M2

W with mc, mu and

MW denoting the masses of the charm quark, up quark and the W-boson

respectively. The m stands for the masses of the down-type quarks running

in the fermionic penguin loop for a c → uγ transition. Hence, for the SM

m = (md,ms,mb) and for the vector-like quark model m = (md,ms,mb,mb′)

with md, ms, mb and mb′ standing for the masses of the d, s, b and b′ quarks

respectively.
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Chapter 4

Conclusion and future directions

This chapter highlights the main conclusions of the works described in

chapters 2 and 3. I also briefly discuss the probable future directions of my

research career.

Chapter 2 is about the D → PP decays. The theoretical challenges in

dealing with hadronic charm decays posed due to the mass of the charm

quark have been discussed in detail. The importance of the annihilation

and exchange diagrams for such decays is thoroughly discussed and are ac-

counted for as free parameters. We also highlight the justifications towards

the need for adding non-factorizable corrections as free parameters in case

of using the factorization approximation for estimating the charm decays.

A detailed description of the form factors used in our analysis is provided.

In addition to these, resonant final state interactions are expected to play a

dominant role in D→ PP decays due to the proximity of the charm meson

mass to that of some short lived hadronic resonances. We account for these
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types of effects via a K-matrix formalism, relying as much as possible on

data whereas treating the unknown elements in the K matrix as free param-

eters. We fit our 13 parameters to the 28 D → PP branching ratios that

are experimentally available and find a χ2/d.o.f of 2.25, which, though not

a good fit, is a substantial improvement over previous works of this kind.

Most the D → PP modes fit well and we are able to satisfactorily explain

important ratios and phase differences that have been discussed in detail in

section 2.5. The modes which do not fit well are mostly those invloving η

and/or η′ and D+ → K+K̄0. A fit carried out without these yields a better

χ2/d.o.f of 1.44.

In Chapter 3, we explore the effect of the presence of a down type isosinglet

vector like quark in the presence of a left-right symmetry on the inclusive

c→ uγ BR. Although the uncorrected inclusive radiative charm branching

ratio is quite small, QCD corrections enhance it substantially within the

SM. However, even with such a large enhancement, the SM short distance

contribution is still overshadowed by dominant long distance effects. A

detailed discussion regarding the long distance estimation is provided. We

also discuss the RG evolution for the short distance Wilson coefficients

within the SM in a thorough manner. This is followed by a discussion

of the new physics models that we use and the corresponding effect that

the RG evolution will have on the coefficients of such new physics. The

incorporation of these models results in a further enhancement of the short
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distance coefficients. We also propose an observable termed the "photon

polarization“ which may be instrumental in identifying such new physics.

The direct search for physics beyond the SM has so far been unsuc-

cessful. There have been anomalies in some of the observables in the

flavour sector, with deviations from the SM predictions at the level of few

sigma [181]. Tensions between SM expectations and experimental results

have been found in B physics for observables such as the R
τ,l

D∗ =
BR(B→D∗τντ)
BR(B→D∗lνl)

,

Rτ,l
D
=

BR(B→Dτντ)
BR(B→Dlνl)

[182–188] and RK =
BR(B→Kµ+µ−)
BR(B→Ke+e−) [189, 190]. The dis-

agreement of these observables with their SM predictions hints towards

the violation of lepton flavour universality. Attention has also been drawn

towards the P′5 anomaly in the angular distribution for the B → K∗µ+µ−

decays [191, 192], reported by LHCb [193]. The Bs → φµ+µ− rate in the

1 < q2 < 6GeV2 region has been reported to be about 3σ below theoreti-

cal calculations [194]. After the completion of my PhD, I want to explore

some of these tensions. I would also like to look at the rare charm decays

other than the radiative decays, and explore the possibility of using them

as a probe for the identification of New Physics.
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