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Notations

The following notation will be used throughout this thesis:

We denote a finite field of order q by Fq. For any positive integer n, Mn(Fq)
denotes the space of n× n matrices over Fq.

For any matrix A ∈ Mn(Fq), ZMn(Fq)(A) denotes the centralizer algebra of A,
and ZGLn(Fq)(A) denotes the group of units in ZMn(Fq)(A) (i.e., the centralizer group
of A).

For a positive integer, k, let (A1, . . . , Ak) ∈ Mn(Fq)
(k). The common cen-

tralizer of (A1, . . . , Ak) is the intersection of the centralizer algebras of the Ai’s:⋂k
i=1 ZMn(Fq)(Ai). We denote this common centralizer algebra by ZMn(Fq)(A1, . . . , Ak),

and ZGLn(Fq)(A1, . . . , Ak) denotes its group of units.
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Synopsis

1 Introduction

This thesis concerns the problem of enumerating isomorphism classes of n dimen-
sional modules over polynomial algebras Fq[x1, . . . , xk], in k variables over a finite
field of order q. This problem is the same as the classification of k-tuples of com-
muting n×n matrices over a finite field up to simultaneous similarity. Let c(n, k, q)
denote the number of isomorphism classes of n-dimensional Fq[x1, . . . , xk]-modules.
In this thesis, we analyse the asymptotic behaviour of c(n, k, q) as a function of k,
keeping n and q fixed. We also give an explicit formula of c(n, k, q) for n ≤ 4.

This thesis is divided into four chapters. In the first chapter, we state our main
results about c(n, k, q). In the second chapter, we discuss the preliminaries required
for understanding the thesis. In the third chapter, we discuss the asymptotic be-
haviour of c(n, k, q) as a function of k, for a fixed n and q. In the fourth chapter,
we explicitly calculate c(n, k, q) for n = 2, 3, 4, and any k ≥ 1.

2 Asymptotic Behaviour of c(n, k, q)

We study the asymptoticity of c(n, k, q) as a function of k.

A lot of work has been done in understanding asymptoticity properties within
Mn(Fq), as a function of n. Most of this work concerns the probability of a matrix
over a finite field, being of a certain kind. From the theory of the rational canonical
form, for a fixed n, we can show that, c(n, 1, q), the number of similarity classes in
Mn(Fq), is asymptotically qn up to multiplication by a constant factor, as a function
of q. This is also the asymptotic behaviour of c(n, 1, q) as a function of n, for a fixed
q (see Stong [14, Corollary 5]). For a fixed q, Neumann and Praeger [11] proved
that the probability of an n× n matrix over Fq, being non-cyclic is asymptotically
q−3 as a fucntion of n. They also proved that the probability of a matrix in Mn(Fq)
being non-separable is asymptotically q−1.

xv
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Now we shall fix both q and n, and look at k-tuples of n×n matrices over Fq. Let
a(n, k, q) denote the number of simultaneous similarity classes of k-tuples of n × n
matrices over Fq. Using Burnside’s lemma, the following can be easily shown:

Lemma 2.1. Keeping n and q fixed, a(n, k, q) is asymptotically qn2k up to some
constant factor, as k goes to ∞.

The Burnside’s lemma approach fails to give the asymptoticity of c(n, k, q) as
function of k, because the components of the k-tuples of n× n-matrices over Fq are
no longer independently chosen. Nevertheless, we are able to prove the following
theorem:

Theorem 2.2. For a fixed positive integer n, and prime power q, c(n, k, q), as a
function of k, is asymptotic to qm(n)k (up to some constant factor), where m(n) is
defined as

m(n) =

[
n2

4

]
+ 1.

3 Explicit Calculation of c(n, k, q) for n ≤ 4

We explicitly calculate c(n, k, q) for n = 2, 3, 4 and prove the following result:

Theorem 3.1. For each n in {2, 3, 4}, and k ≥ 1, there exists a polynomial Qn,k(t) ∈
Z[t], with non-negative integer coefficients, such that c(n, k, q) = Qn,k(q), for every
prime power q.

Enumeration of similarity classes of matrices over a discrete valuation ring R,
with maximal ideal P , and residue field R/P ∼= Fq, has been a topic of interest
in the past. Singla [13], Jambor and Plesken [9] showed that c(n, 2, q) is also the
number of similarity classes in Mn(R/P 2). Comparing the results of the study of
c(n, k, q) in this thesis, with the results of Avni, Onn, Prasad and Vaserstein [2], and
Prasad, Singla and Spallone [12], we find that the number of similarity classes in
Mn(R/P k) is c(n, k, q) for n ≤ 3, and all k ≥ 1. The results of this chapter, along
with the above mentioned results lead us to conjecture the following:

• For all positive integers n, k, there exists a polynomial Qn,k(t) with non-
negative integer coefficients such that c(n, k, q) = Qn,k(q).

• c(n, k, q) is the number of conjugacy classes inMn(R/P k), for any two positive
integers n and k.







Chapter 1

Introduction

1.1 Overview

Let Fq be a finite field of order q, and n be a positive integer. Let Mn(Fq) denote
the algebra of n× n matrices over Fq. For a positive integer k, consider the algebra
Fq[x1, . . . , xk] of polynomials over Fq in k variables. Let (V, ρ) be some n-dimensional
representation of Fq[x1, . . . , xk], i.e., ρ is a homomorphism:

ρ : Fq[x1, . . . , xk]→Mn(Fq).

As the variables x1, . . . , xk are pairwise commutative, we have for i 6= j:

ρ(xi)ρ(xj) = ρ(xj)ρ(xi).

Hence, a representation of Fq[x1, . . . , xk] is determined by a k-tuple of commuting
n×n matrices over Fq. Any two representations, ρ and η, are isomorphic if there is
an invertible n× n matrix X, such that for each i,

η(xi) = Xρ(xi)X
−1.

Thus, the problem of counting isomorphism classes of n-dimensional representations
of Fq[x1, . . . , xk], is the same as counting the number of orbits for the action of
GLn(Fq) on the set, Mn(Fq)

(k), of k-tuples of commuting n × n matrices over Fq.
The action is defined as follows: For g ∈ GLn(Fq), and (A1, . . . , Ak) ∈Mn(Fq)

(k),

g.(A1, . . . Ak) = (gA1g
−1, . . . , gAkg

−1).

The orbits for this action are called simultaneous similarity classes.

1



CHAPTER 1. INTRODUCTION 2

1.2 The Main Results

Let c(n, k, q) denote the number of simultaneous similarity classes of Mn(Fq)
(k). By

the theory of the rational canonical form (explained in the end of Section 4.2), the
number of similarity classes in Mn(Fq) is given by

c(n, 1, q) =
∑
λ`n

qλ1 ,

where λ runs over partitions of n, and for each λ, λ1 denotes its largest part. For a
fixed n, we can discuss the asymptotic behaviour of c(n, 1, q), as a function of q. As
a function of q, c(n, 1, q) is asymtotically cqn, where c is some constant. If we keep
q fixed, and look at c(n, 1, q) as a function of n, then also it is asymptotically qn up
to multiplication by some constant. This was proved by Stong [14, Corollary 5] in
1988. In 1995, Neumann and Praeger [11] proved that the probability of an n × n
matrix over Fq being non-cyclic, is asymptotically q−3 as a function of n, for a fixed
q. They also proved that the probability of a matrix in Mn(Fq) being non-separable
is asymptotically q−1, as a function of n. Wall G. E. [15] proved that the probability
of an n × n matrix over Fq being cyclic is asymptotically (1 − q−5)

∏∞
r=3(1 − q−r),

as a function of n. In 1998, Girth [4] worked on certain probabilities for n × n
upper triangular matrices and compared their asymptotic behaviour with that of
corresponding probabilities for arbitrary n× n matrices over Fq. He also did these
comparisons of asymptotic behaviours as q goes to ∞, keeping n fixed. Most of the
work cited above focused mainly on counting the numbers of certain kinds of matrices
inMn(Fq) and understanding their respective asymptotic behaviour as n goes to∞.

Now, we shall fix n and q, and study the asymptotic behaviour of c(n, k, q) as a
function of k. We prove:

Theorem 1.2.1. For a fixed positive integer n, and prime power q, c(n, k, q), as a
function of k, is asymptotic to qm(n)k (up to some constant factor), where m(n) is
defined as

m(n) =

[
n2

4

]
+ 1.

The number m(n), mentioned in Theorem 1.2.1, is the maximal dimension of
any commutative subalgebra of Mn(Fq). This was proved by Jacobson [7] in 1944.

In this thesis, we also do an explicit calculation of c(n, k, q) for n = 2, 3 and 4.
From our calculations, we prove that:
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Theorem 1.2.2. For each n in {2, 3, 4}, and k ≥ 1, there exists a polynomial,
Qn,k(t) ∈ Z[t], with non-negative integer coefficients such that, c(n, k, q) = Qn,k(q),
for every prime power q.

To prove this, we need the help of the generating function of c(n, k, q)’s in k,
which we shall denote by hn(q, t). So,

hn(q, t) =
∞∑
k=0

c(n, k, q)tk.

hn(q, t) has a nice property (mentioned in Lemma 1.2.3 below), which will be proved
in Chapter 2 (for any finite dimensional algebra over Fq).

Lemma 1.2.3. hn(q, t) is a rational function.

The most important tool we will need for proving Theorem 1.2.2 is something
called a Similarity Class Type, which is defined below:

Definition 1.2.4. We say that two simultaneous similarity classes of tuples of com-
muting matrices are of the same similarity class type (or just type), if their
centralizers are conjugate.

The problem of counting of similarity classes of matrices over a discrete valuation
ring R, with maximal ideal P , and residue field, R/P ∼= Fq, has been of interest to
quite a few authors in the past. The results of Singla [13], Jambor and Plesken [9],
show that, c(n, 2, q) is also the number of simultaneous similarity classes of matrices
in Mn(R/P 2). From the results of Avni, Onn, Prasad and Vaserstein [2], and those
of Prasad, Singla and Spallone [12], we find that, for n ≤ 3, the number of similarity
classes in Mn(R/P k) is equal to c(n, k, q) for all k. Theorem 1.2.2 and the results of
the papers cited above lead us to conjecture the following:

• For all positive integers n, k, there exists a polynomial Qn,k(t) with non-
negative integer coefficients such that c(n, k, q) = Qn,k(q).

• c(n, k, q) is the number of similarity classes in Mn(R/P k) for k ≥ 1.

1.3 Organization of the Thesis

In Chapter 2, we discuss the preliminaries that are required for understanding the
thesis. The chapter has two sections. Section 2.1 is devoted to proving Lemma 1.2.3
for any general finite dimensional algebra over Fq. Section 2.2 is devoted to ex-
plaining the concept of Similarity Class Types, which was defined earlier (see Defi-
nition 1.2.4).
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In Chapter 3, we prove Theorem 1.2.1 and prove a related simple result (in Sec-
tion 3.2) as a corollary.

In Chapter 4, we give a detailed proof of Theorem 1.2.2. The chapter has three
sections. Section 4.1 is devoted to proving Theorem 1.2.2 for the 2 × 2 case. Sec-
tion 4.2 deals with the 3× 3 case, and Section 4.3 deals with the 4× 4 case.



Chapter 2

Preliminaries

2.1 Generating Functions

Let A be a finite dimensional algebra over Fq, and A∗ be the group of units of A.
For k ≥ 1, let Ak denote the set of k-tuples of elements of A. A∗ acts on Ak in the
following way: For g ∈ A∗ and (a1, . . . , ak) ∈ Ak,

g.(a1, . . . , ak) = (ga1g
−1, . . . , gakg

−1).

The orbits under this action are called simultaneous similarity classes. Let αA(k)
denote the number of simultaneous similarity classes in Ak and HA(t) denote the
generating function in k of αA(k).

Next, we define A(k) as the subset of Ak that consists of k-tuples whose entries
commute with each other. Let βA(k) denote the number of simultaneous similarity
classes in A(k). Let hA(t) denote the rational function in k of βA(k).

Lemma 2.1.1. Both HA(t) and hA(t) are rational functions of t.

Proof. By Burnside’s lemma, αA(k) is

αA(k) =
1

|A∗|
∑
g∈A∗
|ZA(g)|k,

5



CHAPTER 2. PRELIMINARIES 6

where, for each g ∈ A∗, ZA(g) denotes the centralizer algebra of g. Thus HA(t) is:

HA(t) = 1 +
∞∑
k=1

αA(k)tk

= 1 +
∞∑
k=1

(
1

|A∗|
∑
g∈A∗
|ZA(g)|k

)
tk

= 1 +
1

|A∗|
∑
g∈A∗

(
∞∑
k=1

|ZA(g)|ktk
)

= 1 +
1

|A∗|
∑
g∈A∗

|ZA(g)|t
1− |ZA(g)|t

,

which is a finite sum of rational functions. Therefore HA(t) is a rational function.

But the Burnside’s lemma approach fails in the case of tuples with commuting
entries, since the entries, a1, . . . , ak, cannot be chosen independently.

We need to calculate βA(k). Let (a1, . . . , ak) ∈ A(k). Then (a2, . . . , ak) ∈
ZA(a1)

(k−1). Hence the map,

(a1, a2, . . . , ak) 7→ (a2, . . . , ak),

induces a bijection from the set of A∗-orbits in A(k), which contain an element whose
1st coordinate is a1, onto the set of ZA∗(a1)-orbits in ZA(a1)

(k−1) for the action of
simultaneous conjugation. Thus, we get, for k ≥ 1:

βA(k) =
∑
Z⊆A

cZβZ(k − 1) (βZ(0) = 1 for all Z ⊆ A),

where Z runs over subalgebras of A, βZ(k − 1) is the number of orbits under the
action of Z∗ on Z(k−1) by simultaneous conjugation, and cZ is the number of elements
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in A whose centralizer is isomorphic to Z. Hence, we have

hA(t) = 1 +
∞∑
k=1

βA(k)tk

= 1 +
∞∑
k=1

(∑
Z⊆A

cZβZ(k − 1)

)
tk

= 1 +
∑
Z⊆A

cZ

(
∞∑
k=1

βZ(k − 1)tk−1

)
t

= 1 +
∑
Z⊆A

cZt

(
∞∑
k=0

βZ(k)tk

)

= 1 + cAt
∞∑
k=0

βA(k)tk +
∑
Z(A

cZt

(
∞∑
k=0

βZ(k)tk

)
= 1 + cAt.hA(t) +

∑
Z(A

cZt.hZ(t)

(Here, hZ(t) =
∞∑
k=0

βZ(k)tk)

(2.1)

Therefore
(1− cAt)hA(t) = 1 +

∑
Z(A

cZt.hZ(t) (2.2)

The above identity establishes rationality when A is a commutative algebra.
When A is commutative, A(k) = Ak. As A is commutative, ZA(a) = A for all
a ∈ A. Each element of A is a similarity class in A. Thus, sA = |A|, and sZ = 0
for Z ( A. We have, (1− |A|t)hA(t) = 1,

hence hA(t) =
1

1− |A|t
,

which is a rational function.

If A is not commutative, then from identity (2.2), we are reduced to the case of
algebras whose dimension is strictly less than that of A. The rationality of hA(t)
follows by induction on the dimension of A. When A is 1 dimensional, A = Fq,
which is commutative.

Now, if we replace A in the above lemma byMn(Fq), then we have, hMn(Fq)(t) =
hn(q, t). Hence, by Lemma 2.1.1, hn(q, t) is a rational function. Lemma 1.2.3 is
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proved.

2.2 Similarity Class Types

Given A ∈ Mn(Fq) and x ∈ Fn
q , define for any polynomial f(t) ∈ Fq[t], f(t).x =

f(A)x. This endows Fn
q with an Fq[t]-module structure, denoted by MA. It is easy

to check that, for matrices, A and B,

MA ∼= MB ⇔ A = gBg−1 for some g ∈ GLn(Fq).

We can easily see that EndFq [t](M
A) is ZMn(Fq)(A).

If A is a block diagonal matrix,
(
B 0
0 C

)
, where B and C are square matrices

whose respective characteristic polynomials are coprime, then we write A as B⊕C,
and

MB⊕C = MA ∼= MB ⊕MC .

It can easily be shown that ZMn(Fq)(A) is isomorphic to ZMl(Fq)(B)⊕ ZMn−l(Fq)(C),
where l is the order of B.

Next, we have the Jordan decomposition of MA, which will be explained in the
following para.

Definition 2.2.1. Let p be an irreducible polynomial in Fq[t], then the submodule

MAp =
{
x ∈MA : p(t)r.x = 0 for some r ≥ 1

}
,

is called the p-primary part of MA.

Let Irr(Fq[t]) denote the set of irreducibles in Fq[t]. Then by the primary de-
composition theorem, MA has the decomposition,

MA =
⊕

p∈Irr(Fq [t])

MAp ,

which is over a finite number of irreducibles, as MA is finitely generated. Then by
Structure Theorem of finitely generated modules over a PID (see Dummit and Foote
[3]), for each p, MAp has the decomposition,

Fq[t]

pλ1
⊕ Fq[t]

pλ2
⊕ · · · ,
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where (λ1 ≥ λ2 ≥ · · · ) is a partition, which is denoted by λ. The primary decom-
position, together with the Structure Theorem decomposition of each primary part,
gives the decomposition: ⊕

p∈Irr(Fq [t])

(
Fq[t]

pλ1
⊕ Fq[t]

pλ2
⊕ · · ·

)
.

This decomposition is the Jordan decomposition.

This gives a bijection between similarity classes in Mn(Fq), and the set of maps
from Irr(Fq[t]) to the set of partitions, Λ.

{Similarity classes of Mn(Fq)} ←→ {ν : Irr(Fq[t])→ Λ}

Now, for any ν : Irr(Fq[t]) → Λ, let Supp(ν) denote the set of irreducible poly-
nomials, p(t), for which ν(p) is a non-empty partition. Clearly, Supp(ν) is a finite
set. For each partition, µ, and each d ≥ 1, let rν(µ, d) be

rν(µ, d) = |{p(t) ∈ Irr(Fq[t]) : deg(p) = d and ν(p) = µ}|.

This puts us in a position to define Similarity Class Types.

Definition 2.2.2. Let A and B be two similarity classes in Mn(Fq), and let ν(A)
and ν(B) be the maps from Irr(Fq[t]) → Λ corresponding to A and B respectively.
We say that A and B are of the same Similarity Class Type, if for each partition
λ, and each d ≥ 1, rν(A)(d, λ) = rν(B)(d, λ) (See Green [6]).

We shall denote a similarity class type by

λ(1)d1 , . . . , λ
(l)
dl ,

where λ(1), . . . , λ(l) are partitions, and di ≥ 1 for 1 ≤ i ≤ l, such that

l∑
i=1

|λ(i)|di = n.

For example, in M2(Fq), there are four similarity class types which are described in
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the table below:
Type Description of the type

(1, 1)1 λ(1) = (1, 1), d1 = 1

(2)1 λ(1) = (2), d1 = 1

(1)1(1)1 λ(1) = (1), d1 = 1

λ(2) = (1), d2 = 1

(1)2 λ(1) = (1), d1 = 2

So, for all those similarity classes, ν : Irr(Fq[t])→ Λ, such that Supp(ν) = {f1, . . . , fl},
where deg(fi) = di and ν(fi) = λ(i), the similarity class type is

λ(1)d1 , . . . , λ
(l)
dl

Definition 2.2.3. 1. We say that a matrix, A, is of the Central type, if it is of
the similarity class type

(1, . . . , 1︸ ︷︷ ︸
n-ones

)1

2. And of the Regular/Cyclic type if it is of the class type

λ(1)d1 , . . . , λ
(l)
dl

where for each i = 1, . . . , l, the partition λ(i) has only one part.

So, now we shall define types for commuting tuples of matrices:

Definition 2.2.4. Let (A1, . . . , Ak) be a k-tuple and (B1, . . . , Bl), an l-tuple of com-
muting matrices. We say that they are of the same similarity class type if their
respective common centralizers,

ZMn(Fq)(A1, . . . , Ak) and ZMn(Fq)(B1, . . . , Bl),

are conjugate in Mn(Fq).

The above definition of types for tuples, is a precise version of Definition 1.2.4,
and is consistent with the Definition 2.2.2 because, A and B are of the same type
if and only if their centralizers, ZMn(Fq)(A) and ZMn(Fq)(B), are conjugate (see the
definition of orbit-equivalent by Ravi S. Kulkarni [10] or the definition of z-equivalent
by Rony Gouraige [5]). So, if the centralizer, ZMn(Fq)(A1, . . . , Ak), of a k-tuple,
(A1, . . . , Ak), for k ≥ 2, is conjugate to that of some matrix, A ∈ Mn(Fq) (of
some type τ), we say that the simultaneous similarity class of (A1, . . . , Ak) is of the
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type, τ . Suppose, the centralizer, ZMn(Fq)(B1, . . . , Bl) of (B1, . . . , Bl) is conjugate to
ZMn(Fq)(A1, . . . , Ak), then it is conjugate to ZMn(Fq)(A). Hence, (B1, . . . , Bl) too is
of type τ . If for some k > 1, ZMn(Fq)(A1, . . . , Ak) is not conjugate to the centralizer
of any matrix in Mn(Fq), we have a new type of similarity class.



Chapter 3

Asymptotic Behaviour of c(n, k, q)

3.1 Proof of Theorem 1.2.1

We defined c(n, k, q) in the Introduction and stated a theorem (Theorem 1.2.1)
about its asymptotic behaviour as a function of k. In this chapter we will prove that
theorem, and also state and prove a related simple result.

Before going ahead, we look at the asymptoticity in k of the number of simultane-
ous similarity classes in Mn(Fq)

k. Let a(n, k, q) denote the number of simultaneous
similarity classes in Mn(Fq)

k. Then we have the following lemma:

Lemma 3.1.1. For a fixed positive integer n and prime power q, a(n, k, q) is asymp-
totically qn2k up to some constant factor, as k goes to ∞.

Proof. We need to show that there exist positive constants m1 and m2 (constant
with respect to k) such thatm1q

n2k ≤ a(n, k, q) ≤ m2q
n2k. Using Burnside’s Lemma,

we know that a(n, k, q) is equal to:

a(n, k, q) =
1

|GLn(Fq)|
∑

g∈GLn(Fq)

|ZMn(Fq)(g)|k.

So, in this expansion of a(n, k, q), if we just consider all the g that are scalar matrices,
we have ZMn(Fq)(g) = Mn(Fq).

Let m1 =
q − 1

|GLn(Fq)|
.

then m1q
n2k ≤ a(n, k, q).

12
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Next, if g is a non-scalar matrix, then ZMn(Fq)(g) (Mn(Fq). We know from [1],
that the maximal dimension of a proper subalgebra of Mn(Fq) is, n2 − n+ 1.

So we have

a(n, k, q) =
1

|GLn(Fq)|
∑

g∈GLn(Fq)

|ZMn(Fq)(g)|k

=
1

|GLn(Fq)|
(q − 1)qn

2k +
∑

g∈GLn(Fq)
g/∈Fq .I

|ZMn(Fq)(g)|k

≤ 1

|GLn(Fq)|
(q − 1)qn

2k +
∑

g∈GLn(Fq)
g/∈Fq .I

q(n
2−n+1)k

=
1

|GLn(Fq)|
(q − 1)qn

2

k
(
1 + (|GLn(Fq)| − q + 1)q−(n−1)k

)
.

From this we get m2 such that a(n, k, q) ≤ m2q
n2k.

The technique used in the proof of the lemma above, using the Burnside’s
Lemma approach, fails to give the asymptoticity of c(n, k, q) because the matri-
ces, A1, ..., Ak ∈Mn(Fq) are no longer independently chosen.

To prove Theorem 1.2.1, it suffices to prove the existence of positive numbers,
C1 and C2, such that

C1q
m(n)k ≤ c(n, k, q) ≤ C2q

m(n)k

for large k. For this, we need to unravel c(n, k, q).

We first define the following:

Definition 3.1.2. For k > 0 and any subalgebra Z of Mn(Fq), let cZ(k, q) denote
the number of simultaneous similarity classes of k-tuples of commuting matrices in
Z, under conjugation by its group of units Z∗.

We claim:
c(n, k, q) =

∑
Z⊆Mn(Fq)

sZcZ(k − 1, q) (3.1)

where Z runs over subalgebras of Mn(Fq), and for each Z, sZ is the number of simi-
larity classes inMn(Fq), whose centralizer algebra is conjugate to Z; and cZ(0, q) = 1
for all Z ⊆Mn(Fq).
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Let (A1, . . . , Ak) ∈ Mn(Fq)
(k). Let Z = ZMn(Fq)(A1). Then (A2, . . . , Ak) ∈

Z(k−1). We know that, counting the number of simultaneous similarity classes in
Mn(Fq)

(k), which contain an element whose first component is A1, is the same as
counting the orbits for the conjugation action of Z∗ on Z(k−1) . Hence we get equa-
tion (3.1).

Now, in equation (3.1), for each subalgebra Z, we can expand cZ(k− 1, q) to get

cZ(k − 1, q) =
∑
Z′⊆Z

sZZ′cZ′(k − 2, q)( i.e., when k ≥ 2),

where sZZ′ is the number of orbits of matrices in Z for the action of Z∗ on it by
conjugation, whose centralizer algebra in Z is conjugate to Z ′. Proceeding this way,
we get the following expansion for c(n, k, q):

c(n, k, q) =
∑

Z1⊇···⊇Zk

sZ1sZ1Z2 · · · sZk−1Zk
, (3.2)

where, for 1 ≤ i ≤ k − 1, Zi = ZMn(Fq)(A1, . . . , Ai), for some i-tuple of commuting
matrices (A1, . . . , Ai). And sZiZi+1

denotes the number of orbits of matrices in Zi for
the conjugation action of Z∗i , whose centralizer algebra, ZZi

(x), in Zi, is conjugate
to Zi+1. For Zi+1 ⊆ Zi, we say that Zi+1 is a branch of Zi, iff sZiZi+1

> 0.

Here are some observations about these non-increasing sequences of subalgebras
which come up in the expansion of c(n, k, q). We shall state them as a lemma:

Lemma 3.1.3. Given a non-increasing sequence of centralizer subalgebras, which
appears in equation (3.2), say

Z1 ⊇ · · · ⊇ Zk,

we have the following:

1. If for some i, Zi is a commutative subalgebra, then

Zi+1 = · · · = Zk = Zi,

and for each j ∈ {i, . . . , k − 1}, sZjZj+1
= qdim(Zi).

2. If for some i, Zi is not necessarily commutative, but Zi+1 = Zi, then sZiZi+1
=

qdim(Z(Zi)), where Z(Zi) is the centre of Zi.

Proof. For i ≥ 1, let (A1, . . . , Ai) ∈Mn(Fq)
(i) such that,

ZMn(Fq)(A1, . . . , Ai) = Zi.
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Suppose Zi is commutative. For any x ∈ Zi, ZZi
(x) = Zi. So, if we take any

Ai+1 ∈ Zi, we have

Zi+1 = ZMn(Fq)(A1, . . . , Ai, Ai+1) = ZZi
(Ai+1) = Zi.

Therefore, sZiZi+1
= |Zi| = qdim(Zi). Similarly, Zj = Zi for i + 1 ≤ j ≤ k. Thus,

sZjZj+1
= qdim(Zi) ≤ qm(n) for i ≤ j ≤ k − 1.

If Zi is not necessarily commutative, but Zi+1 = Zi, then sZiZi+1
is the number

of matrices in Zi for which
ZZi

(Ai+1) = Zi.

Thus sZiZi+1
is the size of the centre ,Z(Zi), of Zi. So sZiZi+1

= qdim(Z(Zi)) ≤ qm(n)

(since Z(Zi) is a commutative subalgebra of Mn(Fq)).

Finding Crude Lower and Upper Bounds for c(n, k, q)

First, we need to show that there exists a tuple of commuting matrices whose com-
mon centralizer is a commutative algebra of dimension, m(n). Here are examples of
tuples of commuting matrices whose common centralizer is a commutative subalge-
bra of Mn(Fq), of dimension m(n).

Example 1. When n is even, let n = 2l, where l ≥ 1. Then m(n) = l2+1. Consider
the commuting tuple (A1, A2, . . . , Al+1) in which

A1 =

(
0l Il

0l 0l

)
(0l is the l × l 0-block)

for i ≥ 2,

Ai =

(
0l Ni

0l 0l

)
,

where, for i = 2, . . . , l + 1,

Ni =

(
0(l−1)×l

ei−1

)
( 0(l−1)×l is the (l − 1)× l 0-block)

and ei−1 is the 1× l row matrix,(
0 · · · 1

↓
(i−1)th place

· · · 0
)
.
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Its common centralizer algebra is

ZMn(Fq)(A1, . . . , Al+1) =

{
a0In +

(
0l B

0l 0l

)
| a0 ∈ Fq and B ∈Ml(Fq)

}
.

It is commutative and is of dimension l2 + 1 which is equal to m(n).

Example 2. When n is odd, let n = 2l + 1. Then m(n) = l(l + 1) + 1. Consider
the commuting tuple (A1, A2, . . . , Al+1) where

A1 =

(
0l+1 Il

0l×(l+1) 0(l+1)×l

)
,

and for i = 2, . . . , l + 1,

Ai =

(
0l+1 Ni

0l×(l+1) 0l×l

)
,

where for each i, Ni is a (l + 1)× l-matrix of the form(
0l

ei−1

)
.

The common centralizer of this tuple is{
a0In +

(
0(l+1)×(l+1) B

0l×(l+1) 0l×l

)
| a0 ∈ Fq and B ∈M(l+1)×l(Fq)

}
.

It is commutative and is of dimension l(l + 1) + 1, which is equal to m(n).

So we can find at least one ([n/2] + 1)-tuple of commuting n×n matrices, whose
common centralizer algebra is of dimension m(n).

Lemma 3.1.4. There exists C1 > 0, such that C1q
m(n)k ≤ c(n, k, q) for large k.

Proof. Let l0 = [n/2] + 1. Consider the k-tuple,

(A1, A2, . . . , Al0 , Al0+1, . . . , Ak),

whose first l0 entries are as in Examples 1 or 2 (depending on whether n is even or

odd). We have, for each i, Zi =
i⋂

j=1

ZMn(Fq)(Aj). So Zl0 is a commutative subalgebra



CHAPTER 3. ASYMPTOTIC BEHAVIOUR OF C(N,K,Q) 17

of dimension m(n) (as described in the examples). Hence, from Lemma 3.1.3, we
get that, for i = l0 + 1, . . . , k, Zi = Zl0 . Then,

c(n, k, q) ≥ sZ1sZ1Z2 · · · sZl0−1Zl0
qm(n)(k−l0).

Let
C1 =

sZ1sZ1Z2 · · · sZl0−1Zl0

qm(n)l0

then c(n, k, q) ≥ C1q
m(n)k for all large k.

To complete the proof of the main theorem, we need this observation (Lemma 3.1.5)
about the non-increasing sequences of subalgebras,

Z1 ⊇ · · · ⊇ Zk,

which appear in the expansion of c(n, k, q) given in equation (3.2).

Lemma 3.1.5. Z(Zi) ⊆ Z(Zi+1) for i ≥ 1, and if Zi+1 ( Zi, then Z(Zi) ( Z(Zi+1)

Proof. Let x ∈ Z(Zi). Then, for any y ∈ Zi such that ZZi
(y) = Zi+1, we have

xy = yx. Therefore x ∈ Zi+1. Now, as x ∈ Z(Zi), xz = zx for every z ∈ Zi+1. That
implies, x ∈ Z(Zi+1). So, Z(Zi) ⊆ Z(Zi+1), and thus, dim(Z(Zi+1)) ≥ dim(Z(Zi)).

If Zi ) Zi+1, then consider any y ∈ Zi for which ZZi
(y) = Zi+1. Clearly, y ∈

Z(Zi+1). But for x /∈ Zi+1, yx 6= xy. Hence, y /∈ Z(Zi). Therefore Z(Zi) ( Z(Zi+1).
Thus dim(Z(Zi+1)) > dim(Z(Zi)).

Now we are in a position to get a crude upper bound for c(n, k, q). Let k > n2.
Let us look at any summand of c(n, k, q). A summand of c(n, k, q) is of the form,

sZ1sZ1Z2 · · · sZk−1Zk
,

for the non-increasing sequence of subalgebras, Z1 ⊇ Z2 ⊇ · · · ⊇ Zk. Now, let
j be the number of distinct Zi’s in the non-increasing sequence. As Mn(Fq) is of
dimension n2, there cannot be more than n2 distinct Zi’s in Z1 ⊇ Z2 ⊇ · · · ⊇ Zk.
So 1 ≤ j ≤ n2.

We therefore rewrite c(n, k, q) as

c(n, k, q) =
n2−1∑
j=0

∑
Z1⊇···⊇Zk
j+1 distinct

sZ1sZ1Z2 · · · sZk−1Zk
(3.3)
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Now, for any j between 0 and n2 − 1, consider a non-increasing sequence Z1 ⊇
· · · ⊇ Zk, in which j + 1 of the Zi’s are distinct. Then it has a strictly decreasing
subsequence

Zi1 ) Zi2 ) · · · ) Zij ) Zk.

So, the non-increasing sequence Z1 ⊇ · · · ⊇ Zk looks like this:

Z1 = · · · = Zi1 ) Zi1+1 = · · · = Zi2 ) · · · = Zij ) Zij+1 = · · · = Zk. (3.4)

Then, from Lemma 3.1.3, sZ1sZ1Z2 · · · sZk−1Zk
is equal to:

sZ1q
dim(Z(Zi1

))(i1−1)sZi1
Zi2
qdim(Z(Zi2

))(i2−i1−1) · · · sZij
Zk
qdim(Z(Zk))(k−ij−1),

For 1 ≤ u ≤ j − 1, we have Ziu ) Ziu+1 , and Zij ) Zk. Thus, Ziu ) Zk for
all 1 ≤ u ≤ j. Hence, by Lemma 3.1.5, we have dim(Z(Ziu)) < dim(Z(Zk)) for all
1 ≤ u ≤ j. Hence, for 1 ≤ u ≤ j,

dim(Z(Ziu)) < dim(Z(Zk)) ≤ m(n).

Therefore,
dim(Z(Ziu)) ≤ m(n)− 1

for 1 ≤ u ≤ j. Hence sZ1sZ1Z2 · · · sZk−1Zk
is bounded above by

sZi1
sZi1

Zi2
· · · sZij

Zk
.q(m(n)−1)(ij).qm(n)(k−ij).

Now, each of sZi1
, sZi1

Zi2
, . . . , sZij

Zk
cannot be more than qn2 . Hence,

sZ1sZ1Z2 · · · sZk−1Zk
≤ qn

2(j+1).q[(m(n)−1)ij+m(n)(k−ij)]

= qn
2(j+1).q(m(n)k−ij)

Here are some observations:

• We know that, as Mn(Fq) is finite, it has only a finite number of distinct
subalgebras. Let that number be f(n). For each j, as 0 ≤ j ≤ n2 − 1, there
cannot be more than

(
f(n)
j+1

)
of them.

• Given a Z1 ⊇ · · · ⊇ Zk, in which j + 1 of the Zi’s are distinct, i.e., there is a
strongly decreasing subsequence of Z1 ⊇ · · · ⊇ Zk:

Zi1 ) Zi2 ) · · · ) Zij ) Zk,

such that Z1 ⊇ · · · ⊇ Zk, is as in expression (3.4). Given the subset, S =
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{i1, . . . , ij}, at which the descents occur, sZ1sZ1Z2 · · · sZkZk−1
is bounded above

by
qn

2(j+1).q(m(n)k−max(S)).

But this S could be any size j subset of {1, . . . , k−1}. So, c(n, k, q) is bounded
above by

n2−1∑
j=0

(f(n)

j + 1

)
qn

2(j+1)
∑

S⊆{1,...,k−1}
|S|=j

q(m(n)k−max(S))


which is equal to

n2−1∑
j=0


(
f(n)

j + 1

)
qn

2(j+1)

k−1∑
r=j

∑
S⊆{1,...,k−1}
|S|=j

max(S)=r

q(m(n)k−r)


but this is equal to

n2−1∑
j=0

((
f(n)

j + 1

)
qn

2(j+1)

k−1∑
r=j

(
r − 1

j − 1

)
q(m(n)k−r)

)
.

(Once r is chosen, the remaining j − 1 are chosen from 1, . . . , r − 1 in
(
r−1
j−1

)
ways.)

Now, as
(
r−1
j−1

)
≤ rj, we get,

c(n, k, q) ≤ qm(n)k

n2−1∑
j=0

((
f(n)

j + 1

)
qn

2(j+1)

k−1∑
r=j

rjq−r

)

≤ qm(n)k

n2−1∑
j=0

((
f(n)

j + 1

)
qn

2(j+1)

∞∑
r=0

rjq−r

)

Now, for any fixed j, we can see by any of the routine tests (either the root or
ratio test) that the series,

∞∑
r=0

rjq−r converges.
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Now let

C2 =
n2−1∑
j=0

((
f(n)

j + 1

)
qn

2(j+1)

∞∑
r=0

rjq−r

)
,

then we have

c(n, k, q) ≤ C2q
m(n)k.

So we have found positive constants C1 and C2 such that

C1q
m(n)k ≤ c(n, k, q) ≤ C2q

m(n)k.

Hence c(n, k, q), as a function of k is asymptotically qm(n)k (up to some constant
factor).

3.2 Asymptotic of Counting Tuples of Commuting
Matrices

In this section, instead of looking at simultaneous similarity classes of commuting
tuples, we will look at the asymptotic of counting total number of tuples of com-
muting matrices. Let C(n, k, q) denote the total number of k-tuples of commuting
n× n matrices over Fq i.e., the size of Mn(Fq)

(k). Then we have

C(n, k, q) =
∑

Z⊆Mn(Fq)

|GLn(Fq)|
|Z∗|

CZ , (3.5)

where Z varies over conjugacy classes of subalgebras of Mn(Fq), Z∗ is the group of
units of Z, and CZ is the total number of simultaneous similarity classes of k-tuples
of commuting matrices whose common centralizer algebra is conjugate to Z.

From the previous section, we see that

CZ =
∑

Z1⊇···⊇Zk
Zk=Z

sZ1sZ1Z2 · · · sZk−1Zk
.

We can therefore rewrite equation (3.5) as

C(n, k, q) =
∑

Z1⊇···⊇Zk

|GLn(Fq)|
|Z∗k |

sZ1sZ1Z2 · · · sZk−1Zk
. (3.6)
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Equation (3.6) is a modified version of equation (3.2).

If we consider tuples, (A1, . . . , Ak), where the first l0 (where l0 = [n/2] + 1)
coordinates are as in Examples 1 and 2, then we get |Zk| = qm(n) and |Z∗k | =

(q − 1)q

[
n2

4

]
. So we have

|GLn(Fq)|

(q − 1)q

[
n2

4

] sZ1sZ1Z2 · · · sZl0−1Zl0
qm(n)(k−l0) ≤ C(n, k, q)

Thus, choose

D1 =
|GLn(Fq)|

(q − 1)q

[
n2

4

] sZ1sZ1Z2 · · · sZl0−1Zl0
q−m(n)l0 .

Then we get D1q
m(n)k ≤ C(n, k, q).

Now we can find an upper bound for C(n, k, q). From equation (3.6) we have
C(n, k, q) equal to ∑

Z1⊇···⊇Zk

|GLn(Fq)|
|Z∗k |

sZ1sZ1Z2 · · · sZk−1Zk

Now, as GLn(Fq) has only a finite number of subgroups, |GLn(Fq)|
|Z∗k |

is bounded above.
Let that bound be G(q). So we have

C(n, k, q) ≤ G(q)
∑

Z1⊇···⊇Zk

sZ1sZ1Z2 · · · sZk−1Zk

= G(q)c(n, k, q)

≤ G(q)C2q
m(n)k (from Section 3.1)

So let D2 = G(q)C2, then we have D2 > 0 such that C(n, k, q) ≤ D2q
m(n)k. This

proves the theorem:

Theorem 3.2.1. The total number of k-tuples of commuting n × n matrices over
Fq, C(n, k, q) is asymptotic to qm(n)k as a function of k.

Keeping n and q fixed, we were able to find the asymptotic behaviour of c(n, k, q)
and C(n, k, q), as k goes to∞. We could instead keep k and q fixed and ask what are
the asymptotic behaviour of c(n, k, q) and C(n, k, q), as n goes to∞. We could also
keep k and n fixed and ask for the asymptotic behaviour of c(n, k, q) and C(n, k, q),
as a function of q.



Chapter 4

Explicit Calculation of c(n, k, q) for
n ≤ 4

We begin this chapter with the definition of a branch of a similarity class type.
(Similarity Class Types were defined in Chapter 2. See definition 2.2.2).

Definition 4.0.2. Given a matrix A of a type τ in Mn(Fq). We saw in the proof
of Theorem 2.1.1 in Chapter 2 that, counting the number of simultaneous similarity
classes of pairs of commuting matrices whose first coordinate is A, is the same as
counting the orbits in ZMn(Fq)(A) for the conjugation by ZGLn(Fq)(A) on it. Each
such orbit is called a branch of A.

Given a matrixA ∈Mn(Fq), whose similarity class type is τ . LetB ∈ ZMn(Fq)(A).
Then, the centralizer algebra ofB in ZMn(Fq)(A) is the common centralizer ZMn(Fq)(A,B),
of A and B. Let ρ be the similarity class type of the commuting pair, (A,B). Then
the number of branches of A, which are of type ρ is the number of matrices, B1 for
which ZMn(Fq)(A,B1) is conjugate to ZMn(Fq)(A,B).

4.1 The 2× 2 Case

We shall examine the similarity classes of k-tuples of commuting 2×2 matrices over
Fq in this section.

In M2(Fq), there are two kinds of similarity classes:

1. The Central type.

2. The Regular/Cyclic types, where F2
q has a cyclic vector.

22
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Lemma 4.1.1. For a matrix A, of the Central type, the branches are given in the
table below:

Type No. of Branches

Central q

Regular q2

Proof. When A is of the Central type, ZM2(Fq)(A) = M2(Fq). Enumeration the
similarity classes in M2(Fq) leads to the table shown above.

Lemma 4.1.2. A matrix of any of the Regular types has q2 Regular branches.

Proof. When A is of the Regular type,

ZM2(Fq)(A) = {a0I2 + a1A | a0, a1 ∈ Fq},

which is commutative. Hence, for any B ∈ ZM2(Fq)(A),

ZM2(Fq)(A,B) = ZM2(Fq)(A).

Thus, (A,B) is of the Regular type. Hence, each B ∈ ZM2(Fq)(A) is an orbit for the
conjugation of ZGL2(Fq)(A) on ZM2(Fq)(A). Thus, A has q2 branches of the Regular
type.

Arranging the two types in the order: {Central, Regular}, we shall write down
the branching matrix B2 = [bij], indexed by the types, where for each i and j, bij is
the number of type i branches of a tuple of type j. Here, the branching matrix is:

B2 =

(
q 0

q2 q2

)

We have
c(2, k, q) =

(
1 1

)
Bk2
(

1 0
)T

.

As B2 has entries that are polynomials in q with non-negative integer coefficients,
c(2, k, q) is a polynomial in q with non-negative integer coefficients. Thus, Theo-
rem 1.2.2 is proved for n = 2.

4.2 The 3× 3 Case

In M3(Fq) we have the following types of similarity classes:
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1. The Central type.

2. The (2, 1) nilpotent type: (2, 1)1.

3. The (2, 1) semi-simple type: (1, 1)1(1)1.

4. The Regular types.

We now proceed to explain the branching rules.

Lemma 4.2.1. For a matrix A of the Central type, the branching rules are shown
in the table below.

Type Number of Branches

Central q

(2, 1)1 q

(1, 1)1(1)1 q2 − q
Regular q3

Proof. Since A is of Central type, ZM3(Fq)(A) is M3(Fq). Enumeration of the simi-
larity class types in M3(Fq) gives us the table above.

Lemma 4.2.2. If A is a matrix of a Regular type, then it has q3 branches of that
same Regular type.

Proof. If A is of a Regular type,

ZM3(Fq)(A) = {a0I2 + a1A+ a2A
2 | a0, a1, a2 ∈ Fq},

which is a commutative algebra of dimension 3. Thus for any B ∈ ZM3(Fq)(A),
ZM3(Fq)(A,B) = ZM3(Fq)(A). Therefore (A,B) is Regular. The number of B for
which ZM3(Fq)(A,B) is ZM3(Fq)(A), is q3, we therefore have q3 Regular branches.

Lemma 4.2.3. For matrix A of the type (2, 1)1, the branching rules are given in
the table below.

Type Number of Branches

(2, 1)1 q2

Regular q3 + q

Proof. A matrix A, of the type (2, 1)1, has the canonical form,


a 1 0

0 a 0

0 0 a

, where
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a ∈ Fq. Then,

ZM3(Fq)(A) =



a0 a1 b

0 a0 0

0 c d

 | a0, a1, b, c, d ∈ Fq

 .

Let B =


a0 a1 b

0 a0 0

0 c d

 ∈ ZM3(Fq)(A), and X =


x0 x1 y

0 x0 0

0 z w

 ∈ ZGL3(Fq)(A)

(x0, w 6= 0). Let B′ =


a′0 a′1 b′

0 a′0 0

0 c′ d′

 be the conjugate, XBX−1 of B by X. So, we

have 
x0 x1 y

0 x0 0

0 z w



a0 a1 b

0 a0 0

0 c d

 =


a′0 a′1 b′

0 a′0 0

0 c′ d′



x0 x1 y

0 x0 0

0 z w

 . (4.1)

Equating the entries in the above equation gives us a′0 = a0, d′ = d and the following
equations:

x0a1 + cy = a′1x0 + b′z (4.2)
x0b+ yd = a0y + b′w (4.3)
a0z + wc = c′x0 + dz. (4.4)

We look at 2 cases: a0 = d and a0 6= d.

When a0 = d,

B =


a0 a1 b

0 a0 0

0 c a0

 and B′ =


a0 a′1 b′

0 a0 0

0 c′ a0

 .

From equations (4.3) and (4.4), we have: x0b = b′w and wc = c′x0. So we have two
subcases: b = c = 0 and (b, c) 6= (0, 0).

When b = c = 0, equation (4.2) is reduced to x0a1 = a′1x0, hence a′1 = a1.



CHAPTER 4. EXPLICIT CALCULATION OF C(N,K,Q) FOR N ≤ 4 26

Therefore, B =


a0 a1 0

0 a0 0

0 0 a0

 and ZM3(Fq)(A,B) = ZM3(Fq)(A). Therefore (A,B)

is of the type, (2, 1)1. The number of B such that

ZM3(Fq)(A,B) = ZM3(Fq)(A),

is q×q = q2 (as a0 and a1 are arbitrary). Hence, A has q2 branches of the type, (2, 1)1.

When (b, c) 6= 0. We may first assume that b 6= 0. With b 6= 0 and x0b = b′w,
we choose w such that b′ = 1. Replacing b by b′ = 1, we get x0 = w. From this,
equation (4.4) becomes x0c = c′x0, therefore c = c′. Equation (4.2) reduces to
x0a1 + cy = a′1x0 + z. Choose z such that a′1x0 = 0. Thus, a′1 = 0. So B is reduced

to


a0 0 1

0 a0 0

0 c a0

. Therefore

ZM3(Fq)(A,B) =



x0 x1 y

0 x0 0

0 cy x0

 | x0, x1, y ∈ Fq

 .

But if we conjugate this by an elementary matrix (switching the 2nd and 3rd rows
(resp. columns)), we get

ZM3(Fq)(A,B) ∼



x0 y x1

0 x0 cy

0 0 x0

 | x0, x1, y ∈ Fq

 = Z(3)1 ,

which is the centralizer of the type, (3)1, which is a Regular type. The number of
B such that ZM3(Fq)(A,B) ∼ Z(3)1 , is q × q = q2 (as a0 and c are arbitrary). Thus,
A has q2 branches of this Regular type.

When b = 0, c 6= 0, in the equation wc = c′x0, we choose x0 such that c′ = 1.
Replacing c by c′ = 1, we get w = x0 and equation (4.2) becomes x0a1 + y = a′1x0.
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So choose a y such that a′1 = 0. This reduces B to


a0 0 0

0 a0 0

0 1 a0

, and we get,

ZM3(Fq)(A,B) =



x0 x1 0

0 x0 0

0 z x0

 | x0, x1, z ∈ Fq

 ,

which is conjugate to

x0 0 x1

0 x0 z

0 0 x0

 | x0, x1, z ∈ Fq

 ∼ Z(3)1

Hence (A,B) is of a Regular type. The number of such B, for which ZM3(Fq)(A,B)
is as above, is q. So A has q more branches of this Regular type.

When a0 6= d: In equation (4.3) we choose y such that b′ = 0, and in equation (4.4),
we choose z such that c′ = 0. Replacing b by b′ = 0, and c by c′ = 0, equation (4.2)

is reduced to x0a1 = a′1x0, which implies a′1 = a1. Hence, B =


a0 a1 0

0 a0 0

0 0 d

, and

ZM3(Fq)(A,B) =



x0 x1 0

0 x0 0

0 0 w

 | x0, x1, w ∈ Fq

 ,

which is the centralizer of a matrix of type (2)1(1)1 (which we shall denote as
Z(2)1(1)1), which is a Regular type. The number of B for which ZM3(Fq)(A,B) ∼
Z(2)1(1)1 , is q(q−1)q = q3− q2 (as the entries of B: a0, a1 are arbitrary, and d 6= a0).
Thus, A has q3 − q2 branches of this Regular type. Adding up all the Regular
branches, we have a total of

q2 + q + q3 − q2 = q3 + q Regular branches.

Lemma 4.2.4. If A is a matrix whose similarity class is of the type (1, 1)1(1)1 i.e.,
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the (2, 1)-semisimple type, then it has

• q2 branches of the type, (1, 1)1(1)1.

• q3 branches of the Regular types.

Proof. A matrix A whose similarity class is of type (1, 1)1(1)1, is of the form, A′⊕A′′,
where A′ is a 2 × 2 matrix of the Central type, and A′′ is a 1 × 1 matrix. As
A = A′ ⊕ A′′, we know that ZM3(Fq)(A) = ZM2(Fq)(A

′) ⊕ ZM1(Fq)(A
′′), which is

M2(Fq) ⊕M1(Fq). The branches of A, being in ZM2(Fq)(A
′) ⊕ ZM1(Fq)(A

′′), will be
of the form,

B′ ⊕B′′,

where B′ is a branch of A′, and B′′ is a branch of A′′. A′ has q branches of the Central
type, and q2 branches of the Regular type (Lemma 4.1.1). A′′ has q branches of its
own type, i.e., (1)1 (as M1(Fq) = Fq). Therefore, we have q × q = q2 branches of
the type (1, 1)1(1)1 and q2 × q = q3 Regular branches.

We shall arrange the types in the order: {Central, (2, 1)1, (1, 1)1(1)1,Regular},
and write down the branching matrix B3 = [bij], indexed by the types in that order.
Each entry bij of B3, is the number of type i branches of a type j similarity class.
Then

B3 =


q 0 0 0

q q 0 0

q2 − q 0 q2 0

q3 q3 + q q3 q3


To make things easier, we shall interpret the branching rules in terms of rational
canonical form (rcf) types, which we shall briefly discuss now.

The similarity class types inMn(Fq) can be further classified into these rcf-types.
The definition of rcf types is given below:

Definition 4.2.5. Let A ∈Mn(Fq). As MA is a finitely generated Fq[t]-module, by
the Structure Theorem (see Jacobson [8]), MA has the decomposition

Fq[t]

f1(t)
⊕ · · · ⊕ Fq[t]

fr(t)
(4.5)

where fr(t) | fr−1(t) | · · · | f1(t). Let li be the degree of fi. Then λ = (l1, . . . , lr)
is a partition of n and we say that A is of rational canonical form (rcf)-type λ.
Thus, each rational canonical form of Mn(Fq) is a partition of n.
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Let A be a matrix with similarity class type, λ(1)d1 , . . . , λ(l)dl , where for each i,
λ(i) = (λ

(i)
1 , λ

(i)
2 , . . .). Then there are irreducible polynomials, p1(t), . . . , pl(t), with

degrees, d1, . . . , dl, respectively, such that,

MA =
l⊕

i=1

(
Fq[t]

pi(t)λ
(i)
1

⊕ Fq[t]

pi(t)λ
(i)
2

⊕ · · ·

)

Then, in the structure theorem decomposition of MA, as given in equation (4.5), we
have (see [8])

fj(t) = p1(t)
λ
(1)
j p2(t)

λ
(2)
j · · · pl(t)λ

(l)
j .

Hence for each j, the degree of fj is lj =
∑l

i=1 λ
(i)
j di. Hence, (l1, l2, . . .) is

µ =

(
l∑

i=1

λ
(i)
1 di,

l∑
i=1

λ
(i)
2 di, . . .

)
.

This partition µ is the rcf-type of the similarity class type

λ(1)d1 , . . . , λ
(l)
dl .

Now we get back to the 3 × 3 case. Here, the rcf types are (1, 1, 1), (2, 1) and
(3). We see that

1. The Central type (1, 1, 1)1 is the only class type with rcf type (1, 1, 1).

2. Similarity class types: (2, 1)1 and (1, 1)1(1)1 are of the rcf type (2, 1).

3. The Regular types are of rcf type (3)

We know that there are q2 classes with rcf-type (2, 1) in M3(Fq), of which q2 − q
of them are of the type (1, 1)1(1)1 and q of them are of the type (2, 1)1. Hence a
class of rcf type (2, 1), is of type (1, 1)1(1)1 with probability (q− 1)/q and is of type
(2, 1)1 with probability 1/q.
So, the number of Regular branches that a matrix of rcf type (2, 1), has on an
average is (

q − 1

q
× q3

)
+

(
1

q
× (q3 + q)

)
= q3 + 1

The average number of rcf type (2, 1) branches of the rcf type (2, 1) is

q − 1

q
× q2 +

1

q
× q2 = q2.
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So, our branching matrix is reduced to

B3 =


q 0 0

q2 q2 0

q3 q3 + 1 q3


Theorem 4.2.6. The number of similarity classes, c(3, k, q), of k-tuples of com-
muting matrices over Fq for k ≥ 2 is given by(

1 1 1
)
Bk3
(

1 0 0
)T

Table 4.1 shows c(3, k, q) calculated for k = 1, 2, 3.

k c(3, k, q)

1 q3 + q2 + q

2 q6 + q5 + 2q4 + q3 + 2q2

3 q9 + q8 + 2q7 + 2q6 + 3q5 + 2q4 + 2q3

Table 4.1: c(3, k, q) for k = 1, 2, 3

As a consequence of Theorem 4.2.6, we get that c(3, k, q) is a polynomial in q
with non-negative integer coefficients for all k. This proves Theorem 1.2.2 for this
case.

Before we close this chapter and move on to the 4 × 4 case, we shall give an
explanation of how to reduce the branching matrix (whose rows and columns are
indexed by the similarity class types) to a smaller matrix whose rows and columns
are indexed by the rcfs, for the general n× n case.

Let λ ` n. For the given rcf λ, let pλτ be the probability of a class of rcf type λ,
being of similarity class type, τ . Let µ be another partition of n. Then, for rcf types
µ and λ, the average number of rcf-type µ branches of an rcf-type λ similarity class
is

bµλ =
∑

rcf(τ)=λ

pλτ

 ∑
rcf(γ)=µ

bγτ

 .
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4.3 The 4× 4 Case

In the 4 × 4 case, we have 22 similarity class types. Table 4.2 shows the rcf types
and the similarity class types of each rcf-type listed below it

(1, 1, 1, 1) (2, 1, 1) (2, 2) (3, 1) (4)

(1, 1, 1, 1)1 (2, 1, 1)1 (2, 2)1 (3, 1)1 Regular types,
(1, 1, 1)1(1)1 (1, 1)1(1, 1)1 (2, 1)1(1)1 where F4

q

(1, 1)2 (2)1(1, 1)1 has a cyclic
(1, 1)1(1)1(1)1 vector.

(1)2(1, 1)1

Table 4.2: rcf’s and similarity class types of 4× 4 matrices

Before we move ahead, we give a broader definition of Regular type.

Definition 4.3.1. We say that a k-tuple of commuting matrices is of Regular type if
its common centralizer algebra is a commutative algebra of dimension 4 or conjugate
to that of the centralizer of a Regular type from M4(Fq) (note that, the centralizers
of Regular types in Mn(Fq) are 4-dimensional and commutative).

We shall first state the branching rules of the Regular and the Central types and
discuss the branching rules of the other types in different subsections of this section.

Lemma 4.3.2. If A is a matrix of a Regular type, then it has q4 branches of that
same regular type.

Proof. The centralizer ZM4(Fq)(A) of A, is the algebra of polynomials in A, which
is commutative. Since the characteristic polynomial of A is of degree 4, ZMn(Fq)(A)
is 4-dimensional. Hence, for each B ∈ ZM4(Fq)(A), (A,B) is a branch of the regular
type. Therefore we have q4 regular branches.

Lemma 4.3.3. For A of the Central type, its branches are given in the table below:

Type No. of Branches Type No. of Branches

Central q (3, 1)1 q

(2, 1, 1)1 q (2, 1)1(1)1 q2 − q
(1, 1, 1)1(1)1 q2 − q (1, 1)1(1)1(1)1

q(q−1)(q−2)
2

(2, 2)1 q (1, 1)1(2)1 q2 − q
(1, 1)1, (1, 1)1

q2−q
2

(1, 1)1(1)2
q3−q2

2

(1, 1)2
q2−q
2

Regular q4
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Proof. As A is of Central type, ZMn(Fq)(A) = M4(Fq). Enumerating the similarity
classes of M4(Fq) gives the above table.

4.3.1 Branching Rules of the Non-Primary, Non-Regular Types.

Any non-primary similarity class type of M4(Fq) is of the form

λ(1)d1 · · ·λ(l)dl

where l ≥ 2. Hence the centralizer algebra of matrices of such types consist of block
matrices of the form 

X1 · · · O
. . .

O · · · Xl


where Xi is in the centralizer of the primary type λ(i)di . Therefore, the branches of
such types are of the form

(B1 ⊕ · · · ⊕Bl)

where Bi is a branch of λ(i)di , like we saw in Lemma 4.2.4. Thus, with the help of
Lemmas 4.1.1, 4.1.2, 4.2.1 and 4.2.3, we have the following results:

Lemma 4.3.4. For A of the type (1, 1, 1)1(1)1, the branching rules are given below:

Type Number of Branches

(1, 1, 1)1(1)1 q2

(2, 1)1(1)1 q2

(1, 1)1(1)1(1)1 q3 − q2
Regular q4

Lemma 4.3.5. If A is of type (2, 1)1(1)1, then it has q2 branches of the type
(2, 1)1(1)1 and q4 + q2 branches of the Regular type.

Lemma 4.3.6. For matrix, A, of similarity class type, (1, 1)1(1, 1)1, the branching
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rules are given in the table below

Type Number of Branches

(1, 1)1(1, 1)1 q2

(1, 1)1(2)1 2q2

(1, 1)1(1)2 q3 − q2

(1, 1)1(1)1(1)1 q3 − q2

Regular q4

Lemma 4.3.7. If A is of type, (1, 1)1(2)1, then it has q3 branches of the type
(1, 1)1(2)1 and q4 Regular branches.

Lemma 4.3.8. If A is of the type, (1, 1)1(1)2, then it has q3 branches of the type
(1, 1)1(1)2 and q4 Regular branches.

Lemma 4.3.9. If A is of the type (1, 1)1(1)1(1)1, then it has q3 branches of the type
(1, 1)1(1)1(1)1 and q4 Regular branches.

4.3.2 Branching Rules of the Primary Types

We have three primary types of similarity classes in the 4 × 4 case: (3, 1)1, (2, 2)1
and (2, 1, 1)1. The proofs of the lemmas here will be done using the technique used
in the proof of Lemma 4.2.3 i.e., reducing a matrix in ZM4(Fq)(A) to its simplest
possible forms by conjugation by elements of ZGL4(Fq)(A).

Lemma 4.3.10. If A is of the type, (3, 1)1, it has q3 branches of the type (3, 1)1
and q4 + q2 regular branches.

Proof. Matrix A, of type (3, 1)1 has the canonical form:
0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

 .

Any matrix B ∈ ZM4(Fq)(A) is of the form

B =


a0 a1 a2 b

0 a0 a1 0

0 0 a0 0

0 0 c d

 .
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Let X ∈ ZGL4(Fq)(A).

X =


x0 x1 x2 y

0 x0 x1 0

0 0 x0 0

0 0 z w

 (x0, w 6= 0).

Let B′ =


a′0 a′1 a′2 b′

0 a′0 a′1 0

0 0 a′0 0

0 0 c′ d′

 be the conjugate of B by X i.e.,


x0 x1 x2 y

0 x0 x1 0

0 0 x0 0

0 0 z w



a0 a1 a2 b

0 a0 a1 0

0 0 a0 0

0 0 c d

 =


a′0 a′1 a′2 b′

0 a′0 a′1 0

0 0 a′0 0

0 0 c′ d′



x0 x1 x2 y

0 x0 x1 0

0 0 x0 0

0 0 z w


Then we have the following:

a′0 = a0, d′ = d and a′1 = a1,

and the following set of equations:

x0a2 + yc = a′2x0 + b′z (4.6)
x0b+ yd = b′w + a0y (4.7)
za0 + wc = c′x0 + dz (4.8)

We will count the number of branches by looking at the following cases:

a0 = d and a0 6= d.

When a0 = d: From equations 4.7 and 4.8, we get x0b = b′w and wc = c′x0. So,
we look at the cases b = c = 0 and (b, c) 6= (0, 0) separately.

b = c = 0: In this case equation (4.6) boils down to x0a2 = a′2x0, therefore
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a2 = a′2. Thus B is reduced to


a0 a1 a2 0

0 a0 a1 0

0 0 a0 0

0 0 0 a0

. Therefore, any matrix in

ZM4(Fq)(A) commutes with B. This means, ZM4(Fq)(A,B) = ZM4(Fq)(A). There-
fore the pair (A,B) is of the type (3, 1)1. We see that there are q × q × q = q3

branches of this type.

(b, c) 6= (0, 0): First we assume that b 6= 0. Then equation (4.7) boils down to
x0b = b′w. As b is non zero, choose x0 = w/b so that b′ = 1. Replacing b by b′ = 1,
we get x0 = w. Hence, equation (4.8) boils down to x0c = c′x0, which implies:
c′ = c. Thus, equation (4.6) becomes

x0a2 + yc = a′2x0 + z.

Choose z such that a2 = 0. Then B is reduced to
a0 a1 0 1

0 a0 a1 0

0 0 a0 0

0 0 c a0

 .

Therefore,

ZM4(Fq)(A,B) =




x0 x1 x2 y

0 x0 x1 0

0 0 x0 0

0 0 cy x0

 : x0, x1, x2, y ∈ Fq

 ,

which is 4 dimensional and commutative (by a routine check). Hence, (A,B) is of a
Regular type, and there are q × q2 = q3 such Regular branches.

Next, when b = 0 and c 6= 0, equation (4.8) boils down to wc = c′x0. Choose
an appropriate w such that c′ = 1. Replacing c by c′ = 1, we get x0 = w. Then
equation (4.6) gets reduced to a′2x0 = a2x0+y. Now, we choose y such that a2x0+y =
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0 . This gives us a′2 = 0. B is reduced to
a0 a1 0 0

0 a0 a1 0

0 0 a0 0

0 0 1 a0


and ZM4(Fq)(A,B) is


x0 x1 x2 0

0 x0 x1 0

0 0 x0 0

0 0 z x0

 : x0, x1, x2, z ∈ Fq

 ,

which is 4 dimensional and commutative. Thus (A,B) is of the Regular type and
there are q2 such branches.

When a0 6= d: As a0−d 6= 0, in equation (4.7), we choose y such that b′ becomes
0, and in equation (4.8), choose z such that c′ becomes 0. Therefore, equation (4.6)
boils down to x0a2 = a′2x0, thus giving us a2 = a′2. Hence,

B =


a0 a1 a2 0

0 a0 a1 0

0 0 a0 0

0 0 0 d

 , and

ZM4(Fq)(A,B) =




x0 x1 x2 0

0 x0 x1 0

0 0 x0 0

0 0 0 w

 : x0, x1, x2, w ∈ Fq

 ,

which is the centralizer of a matrix of the Regular type, (3)1(1)1. So, (A,B) is of a
Regular type. We see that there are q×(q−1)×q2 = q4−q3 such Regular branches.
So, adding up all the Regular branches, we get the total number of regular branches
of A to be

(q4 − q3) + q3 + q2 = q4 + q2.



CHAPTER 4. EXPLICIT CALCULATION OF C(N,K,Q) FOR N ≤ 4 37

Lemma 4.3.11. For a matrix A of similarity class type (2, 2)1, the branching rules
are given in the table below.

Type of branch Number of Branches

(2, 2)1 q2

Regular q4

New type NT1 q2

New type NT2 (q3−q2)
2

New type NT3 (q3−q2)
2

• The centralizer algebra of a pair of commuting matrices of type NT1 is:

x0 x1 y1 y2

0 x0 y3 y4

0 0 x0 x1

0 0 0 x0

 : x0, x1, y1, y2, y3, y4 ∈ Fq


and its group of units is therefore of size q6 − q5

• The centralizer algebra of NT2 is:{(
p(C) X

02 p(C)

)
: p(C) ∈ Fq[C] and X ∈M2(Fq)

}
,

and its group of units is therefore of size q6 − q4. Here C is a 2× 2 matrix of
the type (1)2.

• The centralizer algebra of NT3 is

x0 0 y1 y2

0 x1 y3 y4

0 0 x0 0

0 0 0 x1

 : x0, x1, y1, y2, y3, y4 ∈ Fq

 ,

and its group of units is therefore of size q4(q − 1)2.
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Proof. Matrix A of similarity class type, (2, 2)1, is of the form,

A =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 .

Observe that, conjugating A by an elementary matrix, (switching the 2nd and 3rd
rows(resp. columns) of A), gives us (

02 I2

02 02

)
,

where I2 is the 2× 2 identity matrix and 02 is the 2× 2 0-matrix. Thus,

ZM4(Fq)(A) =

{(
C D

02 C

)
| C,D ∈M2(Fq)

}
.

Two matrices, B =

(
C D

02 C

)
and B′ =

(
C ′ D′

02 C ′

)
, in ZM4(Fq)(A), are similar if

there is a matrix,

(
X Y

02 X

)
∈ ZGL4(Fq)(A) (X is invertible) such that,

(
C ′ D′

02 C ′

)(
X Y

02 X

)
=

(
X Y

02 X

)(
C D

02 C

)

⇒

(
C ′X C ′Y +D′X

02 C ′X

)
=

(
XC XD + Y C

02 XC

)
,

which means that C ′ and C have to be similar. So, we look at 2 cases:

1. C is of Central type.

2. C is of Regular type.

When C is of Central type, C ′Y +D′X = XD + Y C becomes D′X = XD. Hence,

to find out which matrix in ZM4(Fq)(A) commutes with B =

(
C D

02 C

)
, we need to
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know when X commutes with D. For that we look at the different types of D.

When D is of the central type, then X can be any 2× 2 invertible matrix.

Hence, ZM4(Fq)

(
A,

(
C D

02 C

))
= ZM4(Fq)(A) itself.

Therefore, (A,B) is a branch of type (2, 2)1. The number of such branches is
q × q = q2 (C and D are arbitrary 2× 2 scalar matrices).

WhenD is of the type (2)1 i.e.,D =

(
d 1

0 d

)
, thenXD = DX iffX =

(
x0 x1

0 x0

)
.

So B is


c 0 d 1

0 c 0 d

0 0 c 0

0 0 0 c

 (c, d ∈ Fq). Thus the centralizer group, ZGL4(Fq)(A,B), of B

in ZM4(Fq)(A) is 


x0 x1 y1 y2

0 x0 y3 y4

0 0 x0 x1

0 0 0 x0

 : x0 6= 0

 ,

and its size is (q − 1)× q5 = q6 − q5. But, none of the known types in M4(Fq) have
centralizer groups of size, q6 − q5. We thus have a new type of similarity class of
pairs of commuting matrices. This is our new type NT1. There are q × q = q2 such
branches (the entries, c and d of B are arbitrary).

Next, ifD is of type (1)2 then the matrices that commute withD are polynomials
in D, i.e., x0I + x1D, where x0, x1 ∈ Fq. So

ZM4(Fq)(A,B) =

{(
x0I2 + x1D Y

02 x0I2 + x1D

)
| x0, x1 ∈ Fq, Y ∈M2(Fq)

}
.

An element in ZM4(Fq)(A,B) is invertible if and only if (x0, x1) 6= (0, 0). Thus, the
centralizer group, ZGLn(Fq)(A,B) has q4 × (q2 − 1) = q6 − q4 matrices, which is
not the size of the centralizer group of any known type in M4(Fq). Thus we have(
q
2

)
× q = 1

2
(q3 − q2) branches of a new type, which we shall refer to as NT2.
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When D is of type (1)1(1)1 i.e., D =

(
d1 0

0 d2

)
where d1 6= d2: X commutes with

D iff X =

(
x0 0

0 x1

)
. So, the common centralizer, ZM4(Fq)(A,B) of (A,B) is




x0 0 y1 y2

0 x1 y3 y4

0 0 x0 0

0 0 0 x1

 : xi, yj ∈ Fq


and the size of the group, ZGL4(Fq)(A,B) is (q − 1)2 × q4, which is the same as that
of the centralizer group of (3, 1)1. But ZMn(Fq)(A,B) is not isomorphic to the cen-
tralizer of a matrix of type (3, 1)1, and in M4(Fq), there is no similarity class type
other than (3, 1)1 , whose centralizer group is of size q4(q − 1)2. Hence we have a
new type, which we shall call NT3. There are q ×

(
q
2

)
= 1

2
(q3 − q2) branches of this

new type.

Now, when C is any of the regular types of matrices:

C is of type (2)1, C is of the form,

(
a0 1

0 a0

)
. Here, X commutes with C iff

X =

(
x y

0 x

)
, where x 6= 0. So we have the following equation:


a0 1 d′1 d′2

0 a0 d′3 d′4

0 0 a0 1

0 0 0 a0



x y z1 z2

0 x z3 z4

0 0 x y

0 0 0 x

 =


x y z1 z2

0 x z3 z4

0 0 x y

0 0 0 x



a0 1 d1 d2

0 a0 d3 d4

0 0 a0 1

0 0 0 a0

 .

Then we get d3 = d′3 and the following equations:

d′1x+ z3 = xd1 + yd3 (4.9)
d′2x+ d′1y + z4 = xd2 + yd4 + z1 (4.10)

d′4x+ d3y = xd4 + z3 (4.11)

In Equation (4.9) choose z3 so that d′1 = 0. Replacing d1 by d′1 = 0, we have z3 = d3y.
Then equation (4.11) becomes d′4x = xd4, and therefore d′4 = d4. In equation (4.10),
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choose z4 such that d′2 = 0. Thus, B gets reduced to


a0 1 0 0

0 a0 d3 d4

0 0 a0 1

0 0 0 a0

 . Thus,

ZM4(Fq)(A,B) =




x y z1 z2

0 x c3y c4y + z1

0 0 x y

0 0 0 x

 : x, y, z1, z2 ∈ Fq

 ,

which is commutative and 4-dimensional. Hence, (A,B) is of a Regular type. The
number of B such that (A,B) is of this Regular type, is q × q × q = q3. Hence A
has q3 branches of this Regular type.

If C is of type (1)1(1)1, so C has the canonical form

(
a0 0

0 c

)
, where c 6= a0. So,

XC = CX iff X =

(
x 0

0 y

)
. Now we have


a0 0 d′1 d′2

0 c d′3 d′4

0 0 a0 0

0 0 0 c



x 0 z1 z2

0 y z3 z4

0 0 x 0

0 0 0 y

 =


x 0 z1 z2

0 y z3 z4

0 0 x 0

0 0 0 y



a0 0 d1 d2

0 c d3 d4

0 0 a0 0

0 0 0 c

 .

This gives us d′1 = d1 and d′4 = d4 and the following equations:

cz3 + d′3x = yd3 + a0z3 (4.12)
a0z2 + d′2y = xd2 + z2c. (4.13)

As c 6= a0, we can get rid of d2 and d3 (in equations (4.12) and (4.13)) and reduce
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B to


a0 0 d1 0

0 c 0 d4

0 0 a0 0

0 0 0 c

 . Then,

ZM4(Fq)(A,B) =




x 0 z1 0

0 y 0 z4

0 0 x 0

0 0 0 y

 : x, y, z1, z4 ∈ Fq

 .

If we conjugate the above algebra, by the elementary matrix (switching the 2nd and
3rd rows (resp. columns)), we get:


x z1 0 0

0 x 0 0

0 0 y z4

0 0 0 y

 : x, y, z1, z4 ∈ Fq

 ,

which is the centralizer algebra of a matrix of type (2)1(2)1. Hence, this branch,
(A,B), is of the Regular type (2)1(2)1. The number of branches of this type is
q2 ×

(
q
2

)
= 1

2
(q4 − q3).

When C is of type (1)2, we may take C to be the companion matrix of its
characteristic polynomial f (a degree 2 irreducible polynomial over Fq). Then from
the equation below,(

Cf D′

02 Cf

)(
X Y

02 X

)
=

(
X Y

02 X

)(
Cf D

02 Cf

)
,

we have CfY + D′X = XD + Y Cf (Here X is a polynomial in Cf ). We get 4
equations (by equating the 4 entries) and using the fact that the constant part of f

is non-zero (since it is irreducible), we can reduce

(
Cf D

02 Cf

)
to

B =

(
Cf D̃

02 Cf

)
,



CHAPTER 4. EXPLICIT CALCULATION OF C(N,K,Q) FOR N ≤ 4 43

where D̃ =

(
d1 0

0 d2

)
. Thus,

ZM4(Fq)(A,B) =

{(
x0I2 + x1Cf x1D̃ + y0I + y1Cf

02 x0I2 + x1Cf

)
: x0, x1, y0, y1 ∈ Fq

}
,

which is 4 dimensional, and is commutative (again a routine check). Therefore (A,B)

is of Regular type, and there are q2
(
q

2

)
=
q4 − q3

2
such branches. So, adding up the

regular branches gives us:
q4 − q3

2
+
q4 − q3

2
+ q3 = q4 regular types of branches.

Lemma 4.3.12. For A of similarity class type (2, 1, 1)1, the branching rules are
given in Table 4.3.

Type No. of Branches Type No. of Branches

(2, 1, 1)1 q2 NT1 q

(3, 1)1 q2 − q NT3 q2

(1, 1)1(2)1 q3 − q2 New type NT4 q

(2, 1)1(1)1 q3 − q2 New type NT5 q

Regular q4 + q2

Table 4.3: Branching Rules of type (2, 1, 1)1

• The centralizer algebra of the new type NT4 is of the form


x0 x1 x2 x3

0 x0 0 0

0 z1 z2 z3

0 0 0 x0

 | x0, x1, x2, x3, z1, z2, z3 ∈ Fq


• The centralizer algebra of the new type NT5 is of the form


x0 0 x1 x2

0 x0 x3 x4

0 0 y1 y2

0 0 0 x0

 | x0, x1, x2, x3, x4, y1, y2 ∈ Fq
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Proof. Matrix A of the type (2, 1, 1)1 has the canonical form


0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , Any

matrix B that commutes with A, is of the form,
a0 a1 a2 a3

0 a0 0 0

0 b1 b2 b3

0 c1 c2 c3

 .

On conjugating B by an elementary matrix (which we shall denote by E243), such
that the 2nd row (column) moves to the 4th row (resp. column), the 3rd row
(column) moves to the 2nd row (resp. column) and the 4th row (column) moves to
the 3rd row (resp. column), we get

B =


a0
−→
b T a1

−→
0 C

−→
d

0
−→
0 T a0

 ,

where
−→
b T =

[
b1 b2

]
,
−→
d =

[
d1

d2

]
, and C is a 2× 2 matrix.

Let

X =


x0
−→y T x1

−→
0 Z −→w
0
−→
0 T x0

 ∈ ZGL4(Fq)(A).

Let

B′ =


a′0
−→
b′ T a′1−→

0 C ′
−→
d′

0
−→
0 T a′0

 ,

be the conjugate of B by X. Then
x0
−→y T x1

−→
0 Z −→w
0
−→
0 T x0



a0
−→
b T a1

−→
0 C

−→
d

0
−→
0 T a0

 =


a′0
−→
b′ T a′1−→

0 C ′
−→
d′

0
−→
0 T a′0



x0
−→y T x1

−→
0 Z −→w
0
−→
0 T x0

 .
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From the above equation, we get a′0 = a0, and the following set of equations:

C ′Z = ZC (4.14)

a0
−→y T +

−→
b′ TZ = x0

−→
b T +−→y TC (4.15)

C ′−→w + x0
−→
d′ = Z

−→
d + a0

−→w (4.16)
−→
b′ T .−→w + a′1x0 = x0a1 +−→y T .

−→
d (4.17)

We replace C by C ′. Then Z is a matrix that commutes with C. Hence, for each
type of C, we find out Z, and with the help of equations (4.15) and (4.16), reduce
B to a simpler form. To begin with there are two main cases of what C is:

• When a0 is an eigenvalue of C. Here C could be of the types, Central (C =
a0I2), (2)1 and (1)1(1)1.

• When a0 is not an eigenvalue of C. Here C could be of the types, Central
(C = cI2, c 6= a0), (2)1, (1)1(1)1 and (1)2.

When a0 is an eigenvalue of C: We have the following subcases:

•
−→
b =

−→
d =

−→
0

• (
−→
b ,
−→
d ) 6= (

−→
0 ,
−→
0 )

Case:
−→
b =

−→
d =

−→
0 . In this case, equation (4.17) is reduced to x0a′1 = x0a1. This

implies a′1 = a1. Therefore, the matrix that commutes with C, and equations (4.15)
and (4.16), will help determine ZM4(Fq)(A,B).

When C is central

B =


a0
−→
0 T a1

−→
0 a0I2

−→
0

0
−→
0 T a0

 .

Here, equations (4.15) and (4.16) are void. Thus, any X ∈ ZM4(Fq)(A) com-
mutes with B. Thus ZM4(Fq)(A,B) = ZMn(Fq)(A). Therefore (A,B) is of type
(2, 1, 1)1 and the number of such branches is q × q = q2.

When C is of type (2)1 We have

C =

(
a0 1

0 a0

)
, and Z =

(
z1 z2

0 z1

)
,
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and B is reduced to 
a0 0 0 a1

0 a0 1 0

0 0 a0 0

0 0 0 a0

 .

Equations (4.15) and (4.16) become

(
a0y1 a0y2

)
=

(
y1 y2

)(a0 1

0 a0

)
(
a0w1

a0w2

)
=

(
a0 1

0 a0

)(
w1

w2

)

⇒ y1 = w2 = 0 and therefore,

ZM4(Fq)(A,B) =




x0 0 y2 x1

0 z1 z2 w1

0 0 z1 0

0 0 0 x0

 | x0, x1, y2, z1, z2, w1 ∈ Fq

 .

Conjugating this matrix by elementary matrices (by switching the 3rd and 4th
rows (resp. columns)), gives us


x0 0 x1 y2

0 z1 w1 z2

0 0 x0 0

0 0 0 z1

 | x0, x1, y2, z1, z2, w1 ∈ Fq

 ,

which is the centralizer of a pair of commuting matrices of the new type, NT3.
Thus the commuting pair (A,B) is of similarity class type, NT3. Thus, A has
q × q = q2 branches of this new type.

When C is of type (1)1(1)1 ,

C =

(
a0 0

0 c

)
(c 6= a0) and Z =

(
z1 0

0 z4

)
.
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So B, in this case, is


a0 0 0 a1

0 a0 0 0

0 0 c 0

0 0 0 a0

. From equations (4.15) and (4.16), we

have the following:

(
a0y1 a0y2

)
=

(
y1 y2

)(a0 0

0 c

)
(
a0w1

a0w2

)
=

(
a0 0

0 c

)(
w1

w2

)

which leaves us with y2 = w2 = 0 (since a0 6= c) and therefore

ZM4(Fq)(A,B) =




x0 y1 0 x1

0 z1 0 w1

0 0 z2 0

0 0 0 x0

 | x0, x1, y1, z1, z2, w1 ∈ Fq


conjugating this matrix by the elementary matrix, E234 (which moves the 2nd
row (resp. column) to the 3rd row (resp. column), 3rd row (resp. column) to
the 4th row (resp. column), and the 4th row (resp. column) to the 3nd row
(resp. column)), we get


x0 x1 y1 0

0 x0 0 0

0 w1 z1 0

0 0 0 z2

 | x0, x1, y1, z1, z2, w1 ∈ Fq


which is the centralizer algebra of a matrix of the type (2, 1)1(1)1. Hence the
(A,B) is of type, (2, 1)1(1)1, and we have q × q × (q − 1) = q3 − q2 (as a0, a1
arbitrary and c 6= a0) branches of this type.

Case: (
−→
b ,
−→
d ) 6= (

−→
0 ,
−→
0 ): In this case, we can find a suitable −→y or −→w in equa-
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tion (4.17) and get rid of the entry a1 of the matrix B. So B is:
a0

−→
b 0

−→
0 C

−→
d

0
−→
0 T a0


When C = a0I: Z is any 2× 2 invertible matrix. We first assume

−→
b 6= −→0 .

Equation (4.15) becomes
−→
b′ TZ = x0

−→
b T .

We may replace Z by x−10 Z so that we have

−→
b′ TZ =

−→
b T and Z

−→
d =

−→
d ′.

Since
−→
b 6= −→0 and Z is invertible, we can find a suitable Z such that

−→
b′ T =(

1 0
)
. Now, let

−→
b T =

−→
b′ T =

(
1 0

)
, then equation (4.15) gives us Z =(

1 0

z3 z4

)
. Hence, equation (4.16) boils down to

(
1 0

z3 z4

)(
d1

d2

)
=

(
d′1

d′2

)
(4.18)

therefore (
d′1

d′2

)
=

(
d1

z3d1 + z4d2

)

If
−→
d 6= −→0 , with d1 6= 0, then we can find z3 so that z4d2 + d1z3 = 0, which

leaves us with d′2 = 0. Hence, B is reduced to
a0 1 0 0

0 a0 0 d1

0 0 a0 0

0 0 0 a0

 ,
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and any X ∈ ZM4(Fq)(A,B) is of the form

X =


x0 y1 y2 x1

0 x0 0 d1y1

0 0 z4 w2

0 0 0 x0


Conjugate this by the elementary matrix (switching the 3rd and 4th rows
(resp. columns)). Then we get:

x0 y1 x1 y2

0 x0 d1y1 0

0 0 x0 0

0 0 w2 z4

 .

Thus, ZM4(Fq)(A,B) is conjugate to the centralizer of a matrix of type (3, 1)1.
Hence (A,B) is of type (3, 1)1. There are q(q−1) = q2−q branches of this type.

Now when
−→
d 6= 0 and d1 = 0, then equation (4.18) becomes(

d′1

d′2

)
=

(
0

z4d2

)
,

which can be reduced to

(
0

1

)
. Thus B is reduced to


a0 1 0 0

0 a0 0 0

0 0 a0 1

0 0 0 a0

 ,
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and ZM4(Fq)(A,B) is


x0 y1 y2 x1

0 x0 0 y2

0 z3 x0 w2

0 0 0 x0

 | x0, x1, y1, y2, z3, w2 ∈ Fq

 .

On conjugating X by the elementary matrices such that its 2nd and 3rd rows
and columns are switched, we get

ZM4(Fq)(A,B) ∼




x0 y2 y1 x1

0 x0 z3 w2

0 0 x0 y2

0 0 0 x0

 | x0, x1, y1, y2, z3, w2 ∈ Fq

 ,

which is the centralizer of a pair of commuting matrices of the new type NT1.
Hence (A,B) is of type NT1. So we have q branches of the new type NT1.

When
−→
d =

−→
0 , then

B =


a0 1 0 0

0 a0 0 0

0 0 a0 0

0 0 0 a0

 .

Hence ZM4(Fq)(A,B) contains matrices of the form

X =


x0 y1 y2 x1

0 x0 0 0

0 z3 z4 w2

0 0 0 x0

 .

Thus, ZM4(Fq)(A,B) is 7 dimensional. As there is no known type in M4(Fq)
whose centralizer is 7 dimensional, we have a new type, which we call NT4.
There are q branches of this type.

When
−→
b =

−→
0 and

−→
d 6= −→0 : From equation (4.16), we can find Z such that



CHAPTER 4. EXPLICIT CALCULATION OF C(N,K,Q) FOR N ≤ 4 51

Z
−→
d =

(
1

0

)
and our B is reduced to


a0 0 0 0

0 a0 0 1

0 0 a0 0

0 0 0 a0


and therefore ZM4(Fq)(A,B) has matrices of the form

x0 0 y2 x1

0 x0 z2 w1

0 0 z4 w2

0 0 0 x0


Hence, ZM4(Fq)(A,B) is 7 dimensional, but it is not conjugate to the centralizer
of NT4 and therefore, the branch is of a new type, which we shall call NT5.
There are q such branches.

When C is of type (2)1 i.e., C =
(
a0 1
0 a0

)
: We have Z =

(
z1 z2

0 z1

)
where z1 6= 0.

From equation (4.15), we get:

−→
b′ T

(
z1 z2

0 z1

)
+−→y T (a0I2 − C) = x0

−→
b T (4.19)

As a0I2 − C =

(
0 −1

0 0

)
, the LHS in equation (4.19) above boils down to

(
b′1z1 b′1z2 + b′2z1 − y1

)
Choose y1 so that

−→
b T =

(
b′1z1 0

)
. We now have two cases: b′1 6= 0 and

b′1 = 0.
When b′1 6= 0, we can choose z1 so that

−→
b T =

(
1 0

)
. Replacing

−→
b′ T with
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−→
b T =

(
1 0

)
, equation (4.15) becomes(

z1 z2 − y1
)

=
(

1 0
)

which implies: z1 = 1 and y1 = z2. So −→y T =
(
z2 y2

)
.

Then equation (4.16) is reduced to(
1 z2

0 1

)(
d1

d2

)
+

(
0 −1

0 0

)(
w1

w2

)
=

(
d′1

d′2

)

which implies that we can choose w2 appropriately so that(
d′1

d′2

)
=

(
0

d2

)
.

Thus B is reduced to
a0 1 0 0

0 a0 1 0

0 0 a0 d2

0 0 0 a0

 , and ZM4(Fq)(A,B) is




x0 y1 y2 x1

0 x0 y1 d2y2

0 0 x0 d2y1

0 0 0 x0

 : x0, x1, y1, y2 ∈ Fq

 ,

which is 4-dimensional and commutative. This branch (A,B) is of a Regular
type, and there are q × q = q2 such branches.

Now if b1 = 0, then we have
−→
b T =

−→
0 T . Then equation (4.16) becomes(

z1 z2

0 z1

)(
d1

d2

)
+

(
0 −1

0 0

)(
w1

w2

)
=
(
d′1 d′2

)
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which gives us
−→
d′ =

(
z1d1 + z2d2 − w2

z1d2

)

choose w2 such that
−→
d′ =

(
0

z1d2

)
.

If d2 6= 0, we can scale it to 1 and thus we have

B =


a0 0 0 0

0 a0 1 0

0 0 a0 1

0 0 0 a0


so in this case ZM4(Fq)(A,B) is:


x0 0 0 x1

0 x0 z2 w1

0 0 x0 z2

0 0 0 x0

 : x0, x1, w1, z2 ∈ Fq

 .

It is 4-dimensional and commutative. Therefore, this branch too is of a Regular
type and the number of branches is q. So we have a total of q2 + q branches
of Regular types in this case.

If d2 = 0, we are back to the case
−→
b =

−→
d =

−→
0 .

When C =

(
a0 0

0 c

)
(c 6= a0) , Z =

(
z1 0

0 z4

)
. So equation (4.15) becomes

(
b′1 b′2

)(z1 0

0 z4

)
+
(
y1 y2

)(0 0

0 a0 − c

)
=
(
b1 b2

)
We get from this (

z1b
′
1 z4b

′
2 + (a0 − c)y2

)
=
(
b1 b2

)
As a0 − c 6= 0, we can get rid of b′2 so that

−→
b T =

(
z1b
′
1 0

)
.
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If b′1 6= 0, then we can reduce
−→
b T to

(
1 0

)
. Replace

−→
b′ T by

−→
b T =

(
1 0

)
.

Then, from equation (4.15), we get
(
z1 (a0 − c)y2

)
=
(

1 0
)
. Thus z1 = 1

and y2 = 0. So Z =

(
1 0

0 z4

)
.

Equation (4.16) becomes(
d′1

d′2

)
=

(
1 0

0 z4

)(
d1

d2

)
+

(
0 0

0 a0 − c

)(
w1

w2

)

using a0 6= c, we can reduce
−→
d′ to

(
d1

0

)
. Thus

B =


a0 1 0 0

0 a0 0 d1

0 0 c 0

0 0 0 a0

 .

Then ZM4(Fq)(A,B) is


x0 y1 0 x1

0 x0 0 d1y1

0 0 z4 0

0 0 0 x0

 x0, x1, y1, z4 ∈ Fq

 ,

which is 4-dimensional and commutative. Therefore this branch is of a Regular
type. The number of such branches is q2(q − 1) = q3 − q2.

When b′1 = 0, then
−→
b T =

−→
0 T . Then equation (4.16) becomes(

d′1

d′2

)
=

(
z1 0

0 z4

)(
d1

d2

)
+

(
0 0

0 a0 − c

)(
w1

w2

)

=

(
z1d1

z4d2 + (a0 − c)w2

)

As a0 6= c, we can make z4d2 vanish by choosing w2 appropriately. So we have
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−→
d′ =

(
z1d1

0

)
. If d1 6= 0, then choose z1 so that

−→
d′ =

(
1

0

)
and B is reduced

to 
a0 0 0 0

0 a0 0 1

0 0 c 0

0 0 0 a0

 .

Hence ZM4(Fq)(A,B) =




x0 0 0 x1

0 x0 0 w1

0 0 z4 0

0 0 0 x0

 x0, x1, w1, z4 ∈ Fq

 ,

which is 4 dimensional and commutative. Thus the pair (A,B) is of Regular
type and there are q(q − 1) = q2 − q such branches. So we have a total of
(q3 − q2) + (q2 − q) + (q2 + q) = q3 + q2 branches of the Regular type so far.

When a0 is not an eigenvalue of C: In equations (4.15) and (4.16), using the
fact that C−a0I is invertible, we can reduce

−→
b and

−→
d to

−→
0 . Hence, equation (4.16)

is reduced to a′1x0 = x0a
′
1, thus a′1 = a1. So B is reduced to

a0
−→
0 T a1

−→
0 C

−→
0

0
−→
0 T a0


When C is of the Central type, C = cI2, where c 6= a0. We have

B =


a0
−→
0 T a1

−→
0 cI2

−→
0

0
−→
0 T a0



and ZM4(Fq)(A,B) =



x0
−→
0 T x1

−→
0 Z

−→
0

0
−→
0 T x0

 | x0, x1 ∈ Fq, Z ∈M2(Fq)

 .
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On conjugating ZM4(Fq)(A,B) by E234, we get

x0 x1

−→
0 T

0 x0
−→
0 T

−→
0
−→
0 Z

 | x0, x1 ∈ Fq, Z ∈M2(Fq)

 ,

which is the centralizer of a matrix of type, (1, 1)1(2)1. Hence, (A,B) is of type,
(1, 1)1(2)1. A has q × q × (q − 1) = q3 − q2 such branches.

When C is a matrix of Regular type, i.e, C =

(
c 1

0 c

)
, C =

(
c 0

0 s

)
(c 6= a0,

c 6= s and s 6= a0), and C = Cf , where f(t) is an irreducible polynomial in Fq[t] of

degree 2. So, B is of the form,


a0
−→
0 T a1

−→
0 C

−→
0

0
−→
0 T a0

, where C is of any one of the above

mentioned forms. Then

ZM4(Fq)(A,B) =



x0
−→
0 T x1

−→
0 Z

−→
0

0
−→
0 T x0

 | x0, x1 ∈ Fq, Z ∈ ZM2(Fq)(C)

 ,

which on conjugation by E234 becomes,

x0 x1

−→
0 T

0 x0
−→
0 T

−→
0
−→
0 Z

 | x0, x1 ∈ Fq, Z ∈ ZM2(Fq)(C)

 ,

which is the centralizer of a matrix which is of the type, (2)1τ , where τ is a Regular
type in M2(Fq). Hence, (A,B) is of the type (2)1τ , which is a Regular type. So A
has

q2(q − 1 + (q − 1)(q − 2)/2 + q(q − 1)/2) = q4 − q3

branches of these Regular type. So, adding up the number of all the Regular branches
gives

(q4 − q3) + (q3 + q2)

which is equal to q4 + q2 Regular branches and hence the Table 4.3
Lemma 4.3.13. If A is of type (1, 1)2, then it has q2 branches of the type (1, 1)2
and q4 regular branches.
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Proof. The proof is like that of the (1, 1)1 case for 2× 2 matrices over Fq2 .

4.3.3 Branching Rules of the New Types

While finding out the branching rules for the types, (2, 1, 1)1 and (2, 2)1, we got 5
new types of branches: NT1, NT2, NT3, NT4 and NT5. In this subsection, we will
see the branching rules of those new types.

Lemma 4.3.14. For a pair (A,B) of similarity class type NT1, the branching rules
are given in the table below:

Type of branch No. of Branches

NT1 q3

Regular q4 − q3

New Type NT6 q4 − q2

The centralizer of the new type NT6 is{(
a0I2 C

02 a0I2

)
| a0 ∈ Fq, C ∈M2(Fq)

}

Proof. In this case,

ZM4(Fq)(A,B) =

{(
a0I2 + a1D C

02 a0I2 + a1D

)
| C ∈M2(Fq), a0, a1 ∈ Fq

}
,

where D =

(
0 1

0 0

)
.

To see the branching rules here, we will use a different approach from what we

have been using so far. LetM =

(
a0I2 + a1D C

02 a0I2 + a1D

)
be an invertible matrix

and X =

(
x0I2 + x1D Y

02 x0I2 + x1D

)
. We have

MX =

(
(a0I2 + a1D)(x0I2 + x1D) (a0I2 + a1D)Y + C(x0I2 + x1D)

02 (a0I2 + a1D)(x0I2 + x1D)

)
,
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XM =

(
(x0I2 + x1D)(a0I2 + a1D) (x0I2 + x1D)C + Y (a0I2 + a1D)

02 (x0I2 + x1D)(a0I2 + a1D)

)
So, XM = MX if and only if

a1DY + x1CD = x1DC + a1Y D,

which implies
[a1Y − x1C,D] = 0 (4.20)

Thus we need to deal with 4 cases of what x1 and Y are, in equation (4.20).

When x1 = 0 and [Y,D] = 0: There are qq2 = q3 matrices X in this case and
Equation (4.20) holds for any a1 and any C. Thus the centralizer group, ZGL4(Fq)(A,B,X),
of X in ZGL4(Fq)(A,B) is ZGL4(Fq)(A,B) itself.
Thus, under conjugation by ZGL4(Fq)(A,B):

• Orbit size of X = 1.

• Number of orbits is q3/1 = q3.

Thus (A,B,X) is of type NT1 and the number of branches is q3

When x1 = 0 and [Y,D] 6= 0: The number of X’s is q(q4 − q2). Thus, equa-
tion (4.20) boils down to a1[Y,D] = 0. But [Y,D] 6= 0 implies a1 = 0.

Hence, ZGL4(Fq)(A,B,X) =

{(
a0I2 C

02 a0I2

)
| a0 6= 0, C ∈M2(Fq)

}
.

The size of ZGL4(Fq)(A,B,X) is, (q − 1)q4 = q5 − q4. But none of the so far known
types of similarity classes (the types inM4(Fq) and the new types NT1,NT2,NT3,NT4
and NT5), has a 5-dimensional centralizer algebra . So we have another new type,
which we shall call NT6. We get:

• Orbit size of X is (q6 − q5)/(q5 − q4) = q.

• Number of orbits is q(q4 − q2)/q = q4 − q2.

Thus (A,B,X) is of type NT6 and the number of such branches is q4 − q2.

When x1 6= 0 and [Y,D] = 0: The number of X’s is

q(q − 1)q2 = q4 − q3.
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Thus, Equation (4.20) boils down to x1[C,D] = 0 , which means that [C,D] is 0.
Thus, C = b0I2 + b1D. So

ZGL4(Fq)(A,B,X) =

{(
a0I2 + a1D b0I2 + b1D

02 a0I2 + a1D

)
| a0 6= 0 b0, b1 ∈ Fq

}
,

which is a commutative group of size q4− q3. So ZM4(Fq)(A,B,X) is 4-dimensional.
We get:

• Orbit size of X is (q6 − q5)/(q4 − q3) = q2.

• Number of orbits is (q4 − q3)/q2 = q2 − q.

Thus (A,B,X) is of a Regular type and the number of such Regular branches is
q2 − q.

When x1 6= 0 and [Y,D] 6= 0: The number of X ′s of this kind is q(q−1)(q4−q2).
In this case, equation (4.20) remains as it is. This implies, x1C − a1Y ∈ Fq[D], and
x1 6= 0 implies C = x−11 a1Y + b0I2 + b1D. So, ZGL4(Fq)(A,B,X) is{(

a0I2 + a1D x−11 a1Y + b0I2 + b1D

02 a0I2 + a1D

)
| a0 6= 0, a1, b0, b1 ∈ Fq

}
.

It is commutative, and is of size q4 − q3. So ZM4(Fq)(A,B,X) is 4-dimensional.
Hence, (A,B,X) is of a Regular type. We have:

• Orbit size of X = (q6 − q5)/(q4 − q3) = q2.

• Number of orbits is q(q − 1)(q4 − q2)/q2 = (q − 1)(q3 − q).

The total number of Regular branches is

(q2 − q) + (q − 1)(q3 − q) = q4 − q3 Regular branches.

Lemma 4.3.15. For (A,B) of similarity class type NT2, the branching rules are
given in the table below

Type Number of Branches

NT2 q3

Regular q4 − q3

NT6 q4 − q3
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Proof. ZM4(Fq)(A,B) is equal to{(
a0I2 + a1Cf D

02 a0I2 + a1Cf

)
| a0, a1 ∈ Fq, D ∈M2(Fq)

}

where Cf is a 2×2 matrix, whose characteristic polynomial is a degree 2 irreducible
polynomial f . A matrix in ZM4(Fq)(A,B) is invertible iff (a0, a1) 6= (0, 0) and hence
the size of the ZGL4(Fq)(A,B) is q6 − q4. To prove this lemma, we will use the steps
used in the proof of Lemma 4.3.14. Let

M =

(
a0I2 + a1Cf D

02 a0I2 + a1Cf

)
∈ ZGL4(Fq)(A,B),

and let X =

(
x0I2 + x1Cf Y

02 x0I2 + x1Cf

)
. Then M and X commute iff

[a1Y − x1D,Cf ] = 0 (4.21)

From equation (4.21), we have 4 cases of what x1 and Y should be: We shall analyze
the cases:

When x1 = 0 and [Y,Cf ] = 0: The number of X’s is qq2 = q3. Equation (4.21)
holds for any a1 and any D. Thus, ZGL4(Fq)(A,B,X) is ZGL4(Fq)(A,B) itself.
Thus there are q3 orbits under the conjugation by ZGL4(Fq)(A,B). Thus the triple
(A,B,X) is of type NT2. Hence we have q3 branches of type NT2.

When x1 = 0 and [Y,Cf ] 6= 0: The number of matrices X is q(q4 − q2). Equa-
tion (4.21) boils down to a1[Y,Cf ] = 0, which implies a1 = 0. Thus

ZGL4(Fq)(A,B,X) =

{(
a0I2 C

02 a0I2

)
| a0 ∈ Fq, C ∈M2(Fq)

}
.

So (A,B,X) is of type NT6. From this we get:

• Orbit size of X is (q6 − q4)/(q5 − q4) = q + 1.

• Number of such orbits is q(q4 − q2)/(q + 1) = q4 − q3.

The number of branches of type NT6 is q4 − q3.
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When x1 6= 0 and [Y,Cf ] = 0: The number of matrices X is

q(q − 1)q2 = q4 − q3.

From equation (4.21), x1[D,Cf ] = 0 , which implies [D,Cf ] = 0. Hence D =
d0I2 + d1Cf and therefore

ZGL4(Fq)(A,B,X) =

{(
a0I2 + a1Cf d0I2 + d1CF

02 a0I2 + a1Cf

)
| (a0, a1) 6= (0, 0), d0, d1 ∈ Fq

}

It is commutative and its size is (q2 − 1)q2 = q4 − q2. Hence, ZM4(Fq)(A,B,X) is of
dimension 4. So, the triple (A,B,X) is of a Regular type. We get:

• Orbit size of X = (q6 − q4)/(q4 − q2) = q2.

• Number of such orbits is (q4 − q3)/q2 = q2 − q.

Thus, the number of Regular branches is q2 − q.

When x1 6= 0 and [Y,Cf ] 6= 0: The number of matrices is

q(q − 1)(q4 − q2).

Equation (4.21) gives us D ∈ x−11 a1Y + Fq[Cf ]. So, ZGL4(Fq)(A,B,X) is:{(
a0I2 + a1Cf x−11 a1Y + d0I2 + d1Cf

02 a0I2 + a1Cf

)
| (a0, a1) 6= (0, 0), d0, d1 ∈ Fq

}
.

It is commutative and its size is (q2 − 1)q2 = q4 − q2. So ZM4(Fq)(A,B,X) is of
dimension 4. Thus, (A,B,X) is of a Regular type.

• Orbit size of X is (q6 − q4)/(q4 − q2) = q2.

• Number of such orbits is q(q − 1)(q4 − q2)/q2 = q(q − 1)(q2 − 1).

Therefore, the total number of Regular branches is

q(q − 1)(q2 − 1) + (q2 − q) = q4 − q3

Thus we have the table mentioned in the statement.



CHAPTER 4. EXPLICIT CALCULATION OF C(N,K,Q) FOR N ≤ 4 62

Lemma 4.3.16. If A is of similarity class type NT3, then its branching rules are
given in the table below:

Type Number of Branches

NT3 q3

Regular q4 − q3

New Type NT6 q4 + q3

Proof. The centralizer algebra of a pair (A,B) of type NT3, is

ZM4(Fq)(A,B) =

(
D(c0, c1) C

0 D(c0, c1)

)
,

where D(c0, c1) is a 2×2 diagonal matrix with c0 and c1 as its diagonal entries. This
D(c0, c1) can also be written as c0I2 + c1D(0, 1) (replace c1 − c0 by c1).

Let X =

(
x0I2 + x1D(0, 1) Y

02 x0I2 + x1D(0, 1)

)
, and

M =

(
c0I2 + c1D(0, 1) C

02 c0I2 + c1D(0, 1)

)
∈ ZGL4(Fq)(A,B).

As M is invertible, c0 6= 0 and c0 + c1 6= 0. So, XM = MX iff

[c1Y − x1C,D(0, 1)] = 0.

From this equation, we have four cases as to what x1 and Y have to be, i.e.,

When x1 = 0 and [Y,D(0, 1)] = 0: The number of such X’s is q3. Hence c1
can be anything and C can be any 2 × 2 matrix. Hence ZGL4(Fq)(A,B,X) is
ZGL4(Fq)(A,B) itself. Therefore the orbit of X is of size 1 and there are q3/1 = q3

such orbits. Hence q3 branches of type NT3.

When x1 = 0 and [Y,D(0, 1)] 6= 0: The number of suchX’s is q(q4−q2). c1[Y,D(0, 1)] =
0 implies c1 = 0. Thus,

ZGL4(Fq)(A,B,X) =

{(
c0I C

02 c0I

)
: c0 6= 0, C ∈M2(Fq)

}
.

Thus (A,B,X) is of the type NT6.
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• Orbit size of X is (q4(q − 1)2)/(q5 − q4) = q − 1.

• The number of such orbits is q3(q2 − 1)/(q − 1) = q4 + q3.

We therefore have q4 + q3 branches of the type NT6.

When x1 6= 0 and [Y,D(0, 1)] = 0: There are q(q − 1)q2 such matrices and we
have x1[C,D(0, 1)] = 0 which implies that C = d0I2 + d1D(0, 1). Hence,

ZGL4(Fq)(A,B,X) =

{(
c0I2 + c1D(0, 1) d0I2 + d1D(0, 1)

02 c0I + c1D(0, 1)

)
| c0, c1 + c0 6= 0

}
.

It is commutative, and is of size q2(q − 1)2. So, ZM4(Fq)(A,B,X) is 4-dimensional.
Therefore, (A,B,X) is of a Regular type.

• Orbit size of X is (q4(q − 1)2)/(q2(q − 1)2) = q2.

• Number of such orbits is q(q − 1)q2/q2 = q2 − q.

When x1 6= 0 and [Y,D(0, 1)] 6= 0: There are q(q − 1)(q4 − q2) such X and C ∈
x−11 c1Y+Fq[D(0, 1)]. Thus C = x−11 c1Y+d0I2+d1D(0, 1) and so the ZGL4(Fq)(A,B,X)
consists of matrices of the form(

c0I2 + c1D(0, 1) x−11 c1Y + d0I2 + d1D(0, 1)

02 c0I2 + c1D(0, 1)

)
.

It is commutative and its size is q2(q − 1)2. So, ZM4(Fq)(A,B,X) is 4-dimensional.
Thus (A,B,X) is a Regular branch.

• Orbit size of X is (q4(q − 1)2/(q2(q − 1)2) = q2.

• Number of such orbits is q(q − 1)(q4 − q2)/q2 = q(q − 1)(q2 − 1).

The total number of Regular branches is

q(q − 1)(q2 − 1) + q(q − 1) = q4 − q3.

Lemma 4.3.17. For the commuting pair (A,B) of similarity class type NT4 or
NT5, there are:

• q3 branches of its own type.

• q3 + q2 branches of the new type NT6.
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• q4 Regular type of branches.

Proof. The proof is the same for both NT4 and NT5. So it will suffice to prove for
any one of them. We shall prove it for NT4.
ZM4(Fq)(A,B) consists of matrices of the form

M =


a0 b1 b2 b3

0 a0 0 0

0 c1 c2 c3

0 0 0 a0


which, on conjugation by elementary matrices (which switches the 2nd and 3rd rows
and columns of M) becomes

M =


a0 b2 b1 b3

0 c2 c1 c3

0 0 a0 0

0 0 0 a0

 .

We shall rewrite M as 
a0 a1 b1 b2

0 b0 b3 b4

0 0 a0 0

0 0 0 a0

 ,

and let M ′ be a conjugate of M in ZM4(Fq)(A,B):

M ′ =


a′0 a′1 b′1 b′2

0 b′0 b′3 b′4

0 0 a′0 0

0 0 0 a′0

 .

Then there is an invertible X such that XM = M ′X. Let

X =


x0 x1 y1 y2

0 y0 y3 y4

0 0 x0 0

0 0 0 x0
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where x0, y0 6= 0. So we have
x0 x1 y1 y2

0 y0 y3 y4

0 0 x0 0

0 0 0 x0



a0 a1 b1 b2

0 b0 b3 b4

0 0 a0 0

0 0 0 a0

 =


a′0 a′1 b′1 b′2

0 b′0 b′3 b′4

0 0 a′0 0

0 0 0 a′0



x0 x1 y1 y2

0 y0 y3 y4

0 0 x0 0

0 0 0 x0

 .

From the above equation we get a′0 = a0, b′0 = b0, and the following equations:

a0x1 + a′1y0 = a1x0 + x1b0 (4.22)
a′1y3 + b′1x0 = x0b1 + x1b3 (4.23)
a′1y4 + b′2x0 = x1b4 + b2x0 (4.24)
b0y3 + b′3x0 = y0b3 + y3a0 (4.25)
b0y4 + b′4x0 = y0b4 + y4a0 (4.26)

We have two main cases: a0 6= b0 and a0 = b0.

If a0 6= b0. Then, in equation (4.22), using a suitable choice of x1, we can make a′1 =
0. With a suitable choice of y3 in equation (4.25), we can make b′3 = 0. Similarly,
in equation (4.26), choose a suitable y4 so that b′4 = 0. Then from equations (4.23)
and (4.24), we get b′1 = b1 and b′2 = b2. So

M =


a0 0 b1 b2

0 b0 0 0

0 0 a0 0

0 0 0 a0


Its centralizer, ZM4(Fq)(A,B,M), in ZM4(Fq)(A,B) is


x0 0 y1 y2

0 y0 0 0

0 0 x0 0

0 0 0 x0

 | x0, y0, y1, y2 ∈ Fq


which is 4-dimensional and commutative. Therefore, this branch (A,B,M) is of a
Regular type and there are q3(q − 1) = q4 − q3 such branches
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If a0 = b0. Then equation (4.22) becomes a′1y0 = a1x0. Here, there are two cases.

a1 6= 0 and a1 = 0

When a1 6= 0, choose y0 such that a′1 = 1. So, letting a1 = a′1 = 1, we have y0 = x0.
Then, from equations (4.25) and (4.26) we get b′3 = b3 and b′4 = b4. Equation (4.23)
becomes y3+b′1x0 = x0b1+x1b3 and equation (4.24) becomes y4+b′2x0 = x1b4+b2x0.
So we can choose y3 and y4 appropriately so that b′1 = b′2 = 0 So our M reduces to

a0 1 0 0

0 a0 b3 b4

0 0 a0 0

0 0 0 a0

 .

Hence,

ZM4(Fq)(A,B,M) =




x0 x1 y1 y2

0 x0 x1b3 x1b4

0 0 x0 0

0 0 0 x0

 | x0, x1, y1, y2 ∈ Fq

 ,

which is 4 dimensional and commutative. Thus the branch, (A,B,M), is of a Regular
type. The number of such branches is q3. So we have a total of q4 − q3 + q3 = q4

Regular branches.

When a1 = 0, equation (4.23) becomes b′1x0 = x0b1 + x1b3, equation (4.24) becomes
b′2x0 = x0b2 + x1b4, and from equations 4.25 and 4.26, we get b′3x0 = y0b3 and
b′4x0 = y0b4. So we can divide this into two cases.

(b3, b4) = (0, 0) and (b3, b4) 6= (0, 0)

When (b3, b4) = (0, 0) we have b′1 = b1 and b′2 = b2 and thus M reduces to
a0 0 b1 b2

0 a0 0 0

0 0 a0 0

0 0 0 a0

 .

Thus, ZM4(Fq)(A,B,M) is the whole of ZM4(Fq)(A,B). Thus (A,B,M) is of the type
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NT4 and we have q3 such branches.

When (b3, b4) 6= (0, 0) and b3 6= 0. Then we can make b3 = 1. Letting b′3 = b3 = 1,
we get y0 = x0 and therefore b′4 = b4. Equation (4.23) becomes b′1x0 = x0b1 + x1,
hence we can get b′1 = 0. Solving for x1 by putting b1 = 0, gives us x1 = 0, and we
get b′2 = b2. Thus M is reduced to

a0 0 0 b2

0 a0 1 b4

0 0 a0 0

0 0 0 a0


and ZM4(Fq)(A,B,M) is{(

x0I2 Y

02 x0I2

)
| x0,∈ Fq, Y ∈M2(Fq)

}
.

Therefore (A,B,M) is of type NT6, and we have q3 such branches.

If b3 = 0 and b4 6= 0. Then we can make b4 = 1 and by the arguments like in the
above case, we can make b2 = 0 and b′1 = b1. So

M =


a0 0 b1 0

0 a0 0 1

0 0 a0 0

0 0 0 a0

 .

So, ZM4(Fq)(A,B,M) is{(
x0I2 Y

02 x0I2

)
| x0,∈ Fq, Y ∈M2(Fq)

}

Thus this (A,B,M) too is a branch of the new type NT6 and there are q2 such
branches. So in total we have q3 + q2 branches of the new type NT6.

Lemma 4.3.18. For a triple (A,B,M) of similarity class type NT6, there are q5
branches of the type NT6.
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Proof. We know that

ZM4(Fq)(A,B,M) =

{(
a0I2 C

02 a0I2

)
| a0 ∈ Fq and C ∈M2(Fq)

}

It is easy to see that this algebra is commutative. Hence, there is only one branch
and it is of the type NT6 and there are q5 of them.

We therefore have no more new similarity class types.

4.3.4 Calculating c(4, k, q)

Now, that we have all the branching rules, we can form a matrix, B4 = [bij], with
rows and columns indexed by the types. For a given type j, bij is the number of sim-
ilarity class type i branches of a tuple of similarity class type j. B4 is our branching
matrix. Table 4.2 lists the rcfs, and under each rcf, it has a list of the types with
that rcf. Let each of the new types be treated as separate rcf’s. By the averaging
technique mentioned in the end of Section 4.2, we can reduce B4 to a 11×11 matrix
indexed by the 5 rcfs and the 6 new types.

rcf (1, 1, 1, 1): There is only one type with rcf (1, 1, 1, 1), i.e., the Central type
(1, 1, 1, 1)1. It has q branches of rcf (1, 1, 1, 1), q2 branches each of rcf types (2, 1, 1)
and (2, 2), q3 branches with rcf (3, 1), and q4 branches with rcf (4).

rcf (4): Each Regular type is of rcf type (4), and has q4 branches of rcf (4).

rcf (2, 1, 1): An element of rcf type (2, 1, 1) is of class type (1, 1, 1)1(1)1 with
probability 1/q and of class type (2, 1, 1)1 with probability (q − 1)/q. So, on an
average, a tuple of rcf type (2, 1, 1) has:

• q2 branches of rcf type (2, 1, 1).

• q3 + q2 − q − 1 branches of rcf type (3, 1).

• q4 + q Regular (rcf type (4)) branches.

• 1 branch each of types NT1, NT4 and NT5.

• q branches of type NT3.

rcf (2, 2): There are three similarity class types with rcf (2, 2). They are
(1, 1)1(1, 1)1, (2, 2)1 and (1, 1)2. An element of rcf type (2, 2) is of class type
(1, 1)1(1, 1)1 with probability (q − 1)/(2q), of class type (2, 2)1 with probability 1/q
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and is of class type (1, 1)2 with probability (q − 1)/(2q). So on an average, a tuple
of rcf-type (2, 2) has:

• q2 branches of rcf type (2, 2).

• q3 − q2 branches of rcf (3, 1).

• q4 branches of rcf (4).

• q branches of the new type NT1

• (q2 − q)/2 branches each of the new types NT2 and NT3.

rcf (3, 1): The similarity class types with rcf (3, 1) are:

• (3, 1)1

• (2, 1)1(1)1

• (1, 1)1(2)1

• (1, 1)1(1)2 and

• (1, 1)1(1)1(1)1

Their probabilities are mentioned in the table below.

Class Type Probability

(3, 1)1
1
q2

(2, 1)1(1)1
q−1
q2

(1, 1)1(2)1
q−1
q2

(1, 1)1(1)2
q−1
2q

(1, 1)1(1)1(1)1
(q−1)(q−2)

2q2

All these types have branches of their own respective types and Regular branches.
Hence we have on an average: q3 branches of rcf type (3, 1) and q4 + q branches of
rcf type (4).
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So our branching matrix B4 is equal to

q 0 0 0 0 0 0 0 0 0 0
q2 q2 0 0 0 0 0 0 0 0 0
q2 0 q2 0 0 0 0 0 0 0 0
q3 q3+q2−q−1 q3−q2 q3 0 0 0 0 0 0 0
q4 q4+q q4 q4+q q4 q4−q3 q4−q3 q4−q3 q4 q4 0
0 1 q 0 0 q3 0 0 0 0 0

0 0 q2−q
2

0 0 0 q3 0 0 0 0

0 q q2−q
2

0 0 0 0 q3 0 0 0

0 1 0 0 0 0 0 0 q3 0 0
0 1 0 0 0 0 0 0 0 q3 0
0 0 0 0 0 q4−q2 q4−q3 q4+q3 q3+q2 q3+q2 q5


Let e1 denote the 11× 1 column matrix with first entry being 1 and the rest, 0. Let
1′ denote the 1× 11 row matrix, whose entries are all 1’s. Then we have

c(4, k, q) = 1′Bk4 .e1

The table below lists c(4, k, q) for k = 1, 2, 3, 4. The calculations were done using
sage.

k c(4, k, q)

1 q4 + q3 + 2q2 + q

2 q8 + q7 + 3q6 + 3q5 + 5q4 + 3q3 + 3q2

3 q12 + q11 + 3q10 + 4q9 + 8q8 + 8q7 + 11q6 + 8q5 + 5q4 + 2q3

4 q16 + q15 + 3q14 + 5q13 + 9q12 + 12q11 + 16q10

+17q9 + 17q8 + 13q7 + 9q6 + 4q5 + 2q4

We can see that c(4, k, q) is a polynomial in q with non-negative integer coefficients
for k = 1, 2, 3, 4. But, we cannot say the same for k in general. So, we will have to
use the generating function for c(4, k, q):

h4(q, t) =
∞∑
k=0

c(4, k, q)tk = 1′(I − tB4)−1e1.

In the next subsection, we will look at the expression of h4(q, t) to prove Theo-
rem 1.2.2 in the case of n = 4.
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4.3.5 Non-Negativity of Coefficients of c(4, k, q)

Now it remains to check if the coefficients of h4(q, t) are non-negative. The rational
generating function h4(q, t) is:

h4(q, t) =
r+(q, t)− r−(q, t)

(1− qt)(1− q2t)(1− q3t)(1− q4t)(1− q5t)
,

where
r+(q, t) = 1 + q2t+ 2q2t2 + q3t2 + 2q4t2 + q6t3, and

r−(q, t) = q5t+ q7t2 + q3t3 + 2q7t3 + 2q9t3 + q10t4.

We have

1

(1− qt)(1− q2t)(1− q3t)(1− q4t)(1− q5t)
=

(
∞∑
k=0

(
5k∑
j=k

p5,k(j)q
jtk

))
,

where p5,k(j) denotes the number of partitions of j with k parts, with the maximum
part being ≤ 5. With this,

h4(q, t) = (r+(q, t)− r−(q, t))

[
1 +

(
∞∑
k=1

(
5k∑
j=k

p5,k(j)q
jtk

))]
.

Expanding this gives us(∑∞
k=0

(∑5k
j=k p5,k(j)q

jtk
))

−
(∑∞

k=0

(∑5k
j=k p5,k(j)q

j+5tk+1
))

+
(∑∞

k=0

(∑5k
j=k p5,k(j)q

j+2tk+1
))

−
(∑∞

k=0

(∑5k
j=k p5,k(j)q

j+7tk+2
))

+
(∑∞

k=0

(∑5k
j=k 2p5,k(j)q

j+2tk+2
))

−
(∑∞

k=0

(∑5k
j=k p5,k(j)q

j+3tk+3
))

+
(∑∞

k=0

(∑5k
j=k p5,k(j)q

j+3tk+2
))

−
(∑∞

k=0

(∑5k
j=k 2p5,k(j)q

j+7tk+3
))

+
(∑∞

k=0

(∑5k
j=k 2p5,k(j)q

j+4tk+2
))

−
(∑∞

k=0

(∑5k
j=k 2p5,k(j)q

j+9tk+3
))

+
(∑∞

k=0

(∑5k
j=k p5,k(j)q

j+6tk+3
))

−
(∑∞

k=0

(∑5k
j=k p5,k(j)q

j+10tk+4
))

.

(4.27)

The coefficient, djk, of qjtk in equation (4.27) is

djk = (p5,k(j)− p5,k−1(j − 5)) + (p5,k−1(j − 2)− p5,k−2(j − 7))

+(2p5,k−2(j − 2)− p5,k−3(j − 3)) + (p5,k−2(j − 3)− 2p5,k−3(j − 7))

+(2p5,k−2(j − 4)− 2p5,k−3(j − 9)) + (p5,k−3(j − 6)− p5,k−4(j − 10)).

(4.28)

Here are some observations which will be enough to prove that djk is non-negative.
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Lemma 4.3.19. For any k ≥ 1, any j : k ≤ j ≤ 5k, and any l such that, 1 ≤ l ≤ 5,
p5,k(j) ≥ p5,k−1(j − l).

Proof. We assume that j − l ≤ 5(k − 1) so that p5,k−1(j − l) 6= 0. Given a partition
of j − l with k − 1 parts with maximal part ≤ 5, we can attach the part l to
this partition to get a partition of j in k parts, with maximal part ≤ 5. Hence
p5,k(j) ≥ p5,k−1(j − l).

As a consequence of the above lemma, we have the following inequalities.

p5,k(j) ≥ p5,k−1(j − 5) (4.29)
p5,k−1(j − 2) ≥ p5,k−2(j − 7) (4.30)
p5,k−2(j − 2) ≥ p5,k−3(j − 3) (4.31)
p5,k−2(j − 3) ≥ p5,k−3(j − 7) (4.32)
p5,k−2(j − 4) ≥ p5,k−3(j − 9) (4.33)
p5,k−3(j − 6) ≥ p5,k−4(j − 10). (4.34)

Lemma 4.3.20. Let k ≥ 4. Then for j such that j−7 ≥ k−3 we have the following:

• If j − 7 = 5(k − 3), then

(p5,k(j)− p5,k−1(j − 5)) + (p5,k−2(j − 3)− 2p5,k−3(j − 7)) ≥ 0 (4.35)

• If j − 7 < 5(k − 3) then

p5,k−2(j − 3)− 2p5,k−3(j − 7) ≥ 0 (4.36)

Proof. When j − 7 = 5(k − 3), given the only partition of j − 7 with k − 3 parts,
we can attach two 1’s to it, to get a partition of j − 5 in k − 1 parts. Hence
p5,k−1(j − 5) ≥ p5,k−3(j − 7).

Therefore (p5,k(j)− p5,k−1(j − 5)) + (p5,k−2(j − 3)− 2p5,k−3(j − 7))

≥ p5,k(j)− 2p5,k−1(j − 5) + (p5,k−2(j − 3)− p5,k−3(j − 7)).

Observe: j − 7 = 5k − 15 ⇒ j − 5 = 5k − 13 = 5(k − 1)− 8. So any partition of
j − 5 with k − 1 parts, with maximal part ≤ 5, will have atleast two parts which
are strictly less than 5. So, to each of these, we can either attach a 5, or add 1 each
to the two parts which are less than 5 and attach 3 as the kth part. This gives 2
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partitions of j having k parts. So, p5,k(j)− 2p5,k−1(j − 5) ≥ 0 and therefore

(p5,k(j)− p5,k−1(j − 5)) + (p5,k−2(j − 3)− 2p5,k−3(j − 7))

≥ p5,k(j)− 2p5,k−1(j − 5) + (p5,k−2(j − 3)− p5,k−3(j − 7))

≥ 0 Since (p5,k−2(j − 3)− p5,k−3(j − 7)) ≥ 0 (from ineq. (4.32)).

Hence inequality (4.35) holds.

When j−7 < 5(k−3), then, for any partition of j−7 with k−3 parts with each
part being atmost 5, we have atleast one part which is strictly less than 5. Given
any such partition, we can either, add 1 to the part that’s < 5 and attach a 3, or just
attach a 4 to the existing partition, to get a partition of j − 3 in k− 2 parts. Hence
we get two partitions of j − 3 in k − 2 parts. Therefore inequality (4.36) holds.

Using Lemma 4.3.20 and inequalities (4.29) to (4.34) , we can show that the
coefficient of qjtk for each j, k ≥ 0, is non-negative. So for each k ≥ 1, the coefficients
of c(4, k, q) are the coefficients of qjtk as j varies, which are non-negative. Therefore,
the coefficients of c(4, k, q) are non-negative integers.
Thus, Theorem 1.2.2 is proved for n = 4.
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