Counting Similarity Classes of Tuples of Commuting Matrices Over a Finite Field

By

Uday Bhaskar Sharma
MATH10201104003

The Institute of Mathematical Sciences

A thesis submitted to the Board of Studies in Mathematical Sciences
In partial fulfillment of requirements for the Degree of
\section*{DOCTOR OF PHILOSOPHY

of}
HOMI BHABHA NATIONAL INSTITUTE

June, 2016

STATEMENT BY THE AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the Competent Authority of HBNI when in his or her judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.

Date:

DECLARATION

I, Uday Bhaskar Sharma, hereby declare that the investigation presented in this thesis has been carried out by me. The work is original and has not been submitted earlier as a whole or in part for a degree or diploma at this or any other Institution or University.

Date:

List of Publications

Journal

1. Uday Bhaskar Sharma, Simultaneous Similarity Classes of Commuting Matrices Over a Finite Field. Linear Algebra and its Applications 501(2016) Pages 48-97. DOI: 10.1016/j.laa.2016.03.015

Others

1. Uday Bhaskar Sharma, Asymptotic Behaviour of Number of Similarity Classes of Commuting Tuples. arXiv:1506.07678v4 (2015).

Available at: http://arxiv.org/pdf/1506.07678v4.pdf

Acknowledgments

I am extremely indebted to my supervisor, Prof. Amritanshu Prasad. Without his able guidance, constructive criticism, this thesis would have never been possible. I thank him for everything that I have learnt from him, the fruitful discussions that we had throughout this project, and his invaluable support during both the best and hardest of times during my tenure in IMSc.

I thank Prof. S Viswanath, for his feedback during a seminar on the proof of Theorem 1.2.1, which was helpful in giving a concrete proof of that theorem. I also thank all the faculty members for their help at various stages of my work.

I am indebted to many of my student colleagues, who provided an fun environment to grow and learn, and also for the great friends they are. I am especially indebted to Kamalakshya, Biswajit, Geetha, Rekha, Anish, Arunkumar, Narayanan, Souvik, Sridhar, Anuj, Dev Anand, and my friends from the nearby ACJ, Abhishek Shaw and Osama Salman, for their friendship and support. I am extremely grateful to my senior, Dr. Anil Kumar C. P., for the discussions we had, which helped me understand my basics better.

I cannot thank my beloved parents enough for their encouragement and their faith in me. A special thanks to my sister, Aabha, for keeping me updated with the day to day life, and providing the liveliness, humour and a strong mental support which I needed on a lot of occassions.

Last, but not the least, I am indebted to The Institute of Mathematical Sciences for providing the financial, academic support and the working environment it provides to its members.

Uday Bhaskar Sharma

Contents

Notations xiii
Synopsis xv
1 Introduction xv
$2 \quad$ Asymptotic Behaviour of $c(n, k, q)$ xv
$3 \quad$ Explicit Calculation of $c(n, k, q)$ for $n \leq 4$ xvi
1 Introduction 1
1.1 Overview. 1
1.2 The Main Results 2
1.3 Organization of the Thesis 3
2 Preliminaries 5
2.1 Generating Functions 5
2.2 Similarity Class Types 8
3 Asymptotic Behaviour of $c(n, k, q)$ 12
3.1 Proof of Theorem 1.2.1] 12
3.2 Asymptotic of Counting Tuples of Commuting Matrices 20
4 Explicit Calculation of $c(n, k, q)$ for $n \leq 4$ 22
4.1 The 2×2 Case 22
4.2 The 3×3 Case 23
4.3 The 4×4 Case 31
4.3.1 Branching Rules of the Non-Primary, Non-Regular Types. 32
4.3.2 Branching Rules of the Primary Types 33
4.3.3 Branching Rules of the New Types 57
4.3.4 Calculating $c(4, k, q)$ 68
4.3.5 \quad Non-Negativity of Coefficients of $c(4, k, q)$ 71
Bibliography 75

Notations

The following notation will be used throughout this thesis:

We denote a finite field of order q by \mathbf{F}_{q}. For any positive integer $n, M_{n}\left(\mathbf{F}_{q}\right)$ denotes the space of $n \times n$ matrices over \mathbf{F}_{q}.

For any matrix $A \in M_{n}\left(\mathbf{F}_{q}\right), Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A)$ denotes the centralizer algebra of A, and $Z_{G L_{n}\left(\mathbf{F}_{q}\right)}(A)$ denotes the group of units in $Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A)$ (i.e., the centralizer group of A).

For a positive integer, k, let $\left(A_{1}, \ldots, A_{k}\right) \in M_{n}\left(\mathbf{F}_{q}\right)^{(k)}$. The common centralizer of $\left(A_{1}, \ldots, A_{k}\right)$ is the intersection of the centralizer algebras of the A_{i} 's: $\bigcap_{i=1}^{k} Z_{M_{n}\left(\mathbf{F}_{q}\right)}\left(A_{i}\right)$. We denote this common centralizer algebra by $Z_{M_{n}\left(\mathbf{F}_{q}\right)}\left(A_{1}, \ldots, A_{k}\right)$, and $Z_{G L_{n}\left(\mathbf{F}_{q}\right)}\left(A_{1}, \ldots, A_{k}\right)$ denotes its group of units.

Synopsis

1 Introduction

This thesis concerns the problem of enumerating isomorphism classes of n dimensional modules over polynomial algebras $\mathbf{F}_{q}\left[x_{1}, \ldots, x_{k}\right]$, in k variables over a finite field of order q. This problem is the same as the classification of k-tuples of commuting $n \times n$ matrices over a finite field up to simultaneous similarity. Let $c(n, k, q)$ denote the number of isomorphism classes of n-dimensional $\mathbf{F}_{q}\left[x_{1}, \ldots, x_{k}\right]$-modules. In this thesis, we analyse the asymptotic behaviour of $c(n, k, q)$ as a function of k, keeping n and q fixed. We also give an explicit formula of $c(n, k, q)$ for $n \leq 4$.

This thesis is divided into four chapters. In the first chapter, we state our main results about $c(n, k, q)$. In the second chapter, we discuss the preliminaries required for understanding the thesis. In the third chapter, we discuss the asymptotic behaviour of $c(n, k, q)$ as a function of k, for a fixed n and q. In the fourth chapter, we explicitly calculate $c(n, k, q)$ for $n=2,3,4$, and any $k \geq 1$.

2 Asymptotic Behaviour of $c(n, k, q)$

We study the asymptoticity of $c(n, k, q)$ as a function of k.
A lot of work has been done in understanding asymptoticity properties within $M_{n}\left(\mathbf{F}_{q}\right)$, as a function of n. Most of this work concerns the probability of a matrix over a finite field, being of a certain kind. From the theory of the rational canonical form, for a fixed n, we can show that, $c(n, 1, q)$, the number of similarity classes in $M_{n}\left(\mathbf{F}_{q}\right)$, is asymptotically q^{n} up to multiplication by a constant factor, as a function of q. This is also the asymptotic behaviour of $c(n, 1, q)$ as a function of n, for a fixed q (see Stong [14, Corollary 5]). For a fixed q, Neumann and Praeger [11] proved that the probability of an $n \times n$ matrix over \mathbf{F}_{q}, being non-cyclic is asymptotically q^{-3} as a fucntion of n. They also proved that the probability of a matrix in $M_{n}\left(\mathbf{F}_{q}\right)$ being non-separable is asymptotically q^{-1}.

Now we shall fix both q and n, and look at k-tuples of $n \times n$ matrices over \mathbf{F}_{q}. Let $a(n, k, q)$ denote the number of simultaneous similarity classes of k-tuples of $n \times n$ matrices over \mathbf{F}_{q}. Using Burnside's lemma, the following can be easily shown:

Lemma 2.1. Keeping n and q fixed, $a(n, k, q)$ is asymptotically $q^{n^{2} k}$ up to some constant factor, as k goes to ∞.

The Burnside's lemma approach fails to give the asymptoticity of $c(n, k, q)$ as function of k, because the components of the k-tuples of $n \times n$-matrices over \mathbf{F}_{q} are no longer independently chosen. Nevertheless, we are able to prove the following theorem:

Theorem 2.2. For a fixed positive integer n, and prime power $q, c(n, k, q)$, as a function of k, is asymptotic to $q^{m(n) k}$ (up to some constant factor), where $m(n)$ is defined as

$$
m(n)=\left[\frac{n^{2}}{4}\right]+1
$$

3 Explicit Calculation of $c(n, k, q)$ for $n \leq 4$

We explicitly calculate $c(n, k, q)$ for $n=2,3,4$ and prove the following result:
Theorem 3.1. For each n in $\{2,3,4\}$, and $k \geq 1$, there exists a polynomial $Q_{n, k}(t) \in$ $\mathbb{Z}[t]$, with non-negative integer coefficients, such that $c(n, k, q)=Q_{n, k}(q)$, for every prime power q.

Enumeration of similarity classes of matrices over a discrete valuation ring R, with maximal ideal P, and residue field $R / P \cong \mathbf{F}_{q}$, has been a topic of interest in the past. Singla [13], Jambor and Plesken 9 showed that $c(n, 2, q)$ is also the number of similarity classes in $M_{n}\left(R / P^{2}\right)$. Comparing the results of the study of $c(n, k, q)$ in this thesis, with the results of Avni, Onn, Prasad and Vaserstein [2], and Prasad, Singla and Spallone [12, we find that the number of similarity classes in $M_{n}\left(R / P^{k}\right)$ is $c(n, k, q)$ for $n \leq 3$, and all $k \geq 1$. The results of this chapter, along with the above mentioned results lead us to conjecture the following:

- For all positive integers n, k, there exists a polynomial $Q_{n, k}(t)$ with nonnegative integer coefficients such that $c(n, k, q)=Q_{n, k}(q)$.
- $c(n, k, q)$ is the number of conjugacy classes in $M_{n}\left(R / P^{k}\right)$, for any two positive integers n and k.

Chapter 1

Introduction

1.1 Overview

Let \mathbf{F}_{q} be a finite field of order q, and n be a positive integer. Let $M_{n}\left(\mathbf{F}_{q}\right)$ denote the algebra of $n \times n$ matrices over \mathbf{F}_{q}. For a positive integer k, consider the algebra $\mathbf{F}_{q}\left[x_{1}, \ldots, x_{k}\right]$ of polynomials over \mathbf{F}_{q} in k variables. Let (V, ρ) be some n-dimensional representation of $\mathbf{F}_{q}\left[x_{1}, \ldots, x_{k}\right]$, i.e., ρ is a homomorphism:

$$
\rho: \mathbf{F}_{q}\left[x_{1}, \ldots, x_{k}\right] \rightarrow M_{n}\left(\mathbf{F}_{q}\right) .
$$

As the variables x_{1}, \ldots, x_{k} are pairwise commutative, we have for $i \neq j$:

$$
\rho\left(x_{i}\right) \rho\left(x_{j}\right)=\rho\left(x_{j}\right) \rho\left(x_{i}\right) .
$$

Hence, a representation of $\mathbf{F}_{q}\left[x_{1}, \ldots, x_{k}\right]$ is determined by a k-tuple of commuting $n \times n$ matrices over \mathbf{F}_{q}. Any two representations, ρ and η, are isomorphic if there is an invertible $n \times n$ matrix X, such that for each i,

$$
\eta\left(x_{i}\right)=X \rho\left(x_{i}\right) X^{-1}
$$

Thus, the problem of counting isomorphism classes of n-dimensional representations of $\mathbf{F}_{q}\left[x_{1}, \ldots, x_{k}\right]$, is the same as counting the number of orbits for the action of $G L_{n}\left(\mathbf{F}_{q}\right)$ on the set, $M_{n}\left(\mathbf{F}_{q}\right)^{(k)}$, of k-tuples of commuting $n \times n$ matrices over \mathbf{F}_{q}. The action is defined as follows: For $g \in G L_{n}\left(\mathbf{F}_{q}\right)$, and $\left(A_{1}, \ldots, A_{k}\right) \in M_{n}\left(\mathbf{F}_{q}\right)^{(k)}$,

$$
g \cdot\left(A_{1}, \ldots A_{k}\right)=\left(g A_{1} g^{-1}, \ldots, g A_{k} g^{-1}\right) .
$$

The orbits for this action are called simultaneous similarity classes.

1.2 The Main Results

Let $c(n, k, q)$ denote the number of simultaneous similarity classes of $M_{n}\left(\mathbf{F}_{q}\right)^{(k)}$. By the theory of the rational canonical form (explained in the end of Section 4.2), the number of similarity classes in $M_{n}\left(\mathbf{F}_{q}\right)$ is given by

$$
c(n, 1, q)=\sum_{\lambda \vdash n} q^{\lambda_{1}}
$$

where λ runs over partitions of n, and for each λ, λ_{1} denotes its largest part. For a fixed n, we can discuss the asymptotic behaviour of $c(n, 1, q)$, as a function of q. As a function of $q, c(n, 1, q)$ is asymtotically $c q^{n}$, where c is some constant. If we keep q fixed, and look at $c(n, 1, q)$ as a function of n, then also it is asymptotically q^{n} up to multiplication by some constant. This was proved by Stong [14, Corollary 5] in 1988. In 1995, Neumann and Praeger [11] proved that the probability of an $n \times n$ matrix over \mathbf{F}_{q} being non-cyclic, is asymptotically q^{-3} as a function of n, for a fixed q. They also proved that the probability of a matrix in $M_{n}\left(\mathbf{F}_{q}\right)$ being non-separable is asymptotically q^{-1}, as a function of n. Wall G. E. [15] proved that the probability of an $n \times n$ matrix over \mathbf{F}_{q} being cyclic is asymptotically $\left(1-q^{-5}\right) \prod_{r=3}^{\infty}\left(1-q^{-r}\right)$, as a function of n. In 1998, Girth [4] worked on certain probabilities for $n \times n$ upper triangular matrices and compared their asymptotic behaviour with that of corresponding probabilities for arbitrary $n \times n$ matrices over \mathbf{F}_{q}. He also did these comparisons of asymptotic behaviours as q goes to ∞, keeping n fixed. Most of the work cited above focused mainly on counting the numbers of certain kinds of matrices in $M_{n}\left(\mathbf{F}_{q}\right)$ and understanding their respective asymptotic behaviour as n goes to ∞.

Now, we shall fix n and q, and study the asymptotic behaviour of $c(n, k, q)$ as a function of k. We prove:

Theorem 1.2.1. For a fixed positive integer n, and prime power $q, c(n, k, q)$, as a function of k, is asymptotic to $q^{m(n) k}$ (up to some constant factor), where $m(n)$ is defined as

$$
m(n)=\left[\frac{n^{2}}{4}\right]+1
$$

The number $m(n)$, mentioned in Theorem 1.2.1, is the maximal dimension of any commutative subalgebra of $M_{n}\left(\mathbf{F}_{q}\right)$. This was proved by Jacobson [7] in 1944.

In this thesis, we also do an explicit calculation of $c(n, k, q)$ for $n=2,3$ and 4 . From our calculations, we prove that:

Theorem 1.2.2. For each n in $\{2,3,4\}$, and $k \geq 1$, there exists a polynomial, $Q_{n, k}(t) \in \mathbb{Z}[t]$, with non-negative integer coefficients such that, $c(n, k, q)=Q_{n, k}(q)$, for every prime power q.

To prove this, we need the help of the generating function of $c(n, k, q)$'s in k, which we shall denote by $h_{n}(q, t)$. So,

$$
h_{n}(q, t)=\sum_{k=0}^{\infty} c(n, k, q) t^{k} .
$$

$h_{n}(q, t)$ has a nice property (mentioned in Lemma 1.2 .3 below), which will be proved in Chapter 2 (for any finite dimensional algebra over \mathbf{F}_{q}).
Lemma 1.2.3. $h_{n}(q, t)$ is a rational function.
The most important tool we will need for proving Theorem 1.2 .2 is something called a Similarity Class Type, which is defined below:

Definition 1.2.4. We say that two simultaneous similarity classes of tuples of commuting matrices are of the same similarity class type (or just type), if their centralizers are conjugate.

The problem of counting of similarity classes of matrices over a discrete valuation ring R, with maximal ideal P, and residue field, $R / P \cong \mathbf{F}_{q}$, has been of interest to quite a few authors in the past. The results of Singla [13], Jambor and Plesken [9], show that, $c(n, 2, q)$ is also the number of simultaneous similarity classes of matrices in $M_{n}\left(R / P^{2}\right)$. From the results of Avni, Onn, Prasad and Vaserstein [2], and those of Prasad, Singla and Spallone [12], we find that, for $n \leq 3$, the number of similarity classes in $M_{n}\left(R / P^{k}\right)$ is equal to $c(n, k, q)$ for all k. Theorem 1.2.2 and the results of the papers cited above lead us to conjecture the following:

- For all positive integers n, k, there exists a polynomial $Q_{n, k}(t)$ with nonnegative integer coefficients such that $c(n, k, q)=Q_{n, k}(q)$.
- $c(n, k, q)$ is the number of similarity classes in $M_{n}\left(R / P^{k}\right)$ for $k \geq 1$.

1.3 Organization of the Thesis

In Chapter 2, we discuss the preliminaries that are required for understanding the thesis. The chapter has two sections. Section 2.1 is devoted to proving Lemma 1.2.3 for any general finite dimensional algebra over \mathbf{F}_{q}. Section 2.2 is devoted to explaining the concept of Similarity Class Types, which was defined earlier (see Definition 1.2.4).

In Chapter 3, we prove Theorem 1.2.1 and prove a related simple result (in Section (3.2) as a corollary.

In Chapter 4, we give a detailed proof of Theorem 1.2.2. The chapter has three sections. Section 4.1 is devoted to proving Theorem 1.2 .2 for the 2×2 case. Section 4.2 deals with the 3×3 case, and Section 4.3 deals with the 4×4 case.

Chapter 2

Preliminaries

2.1 Generating Functions

Let \mathcal{A} be a finite dimensional algebra over \mathbf{F}_{q}, and \mathcal{A}^{*} be the group of units of \mathcal{A}. For $k \geq 1$, let \mathcal{A}^{k} denote the set of k-tuples of elements of \mathcal{A}. \mathcal{A}^{*} acts on \mathcal{A}^{k} in the following way: For $g \in \mathcal{A}^{*}$ and $\left(a_{1}, \ldots, a_{k}\right) \in \mathcal{A}^{k}$,

$$
g \cdot\left(a_{1}, \ldots, a_{k}\right)=\left(g a_{1} g^{-1}, \ldots, g a_{k} g^{-1}\right)
$$

The orbits under this action are called simultaneous similarity classes. Let $\alpha_{\mathcal{A}}(k)$ denote the number of simultaneous similarity classes in \mathcal{A}^{k} and $H_{\mathcal{A}}(t)$ denote the generating function in k of $\alpha_{\mathcal{A}}(k)$.

Next, we define $\mathcal{A}^{(k)}$ as the subset of \mathcal{A}^{k} that consists of k-tuples whose entries commute with each other. Let $\beta_{\mathcal{A}}(k)$ denote the number of simultaneous similarity classes in $\mathcal{A}^{(k)}$. Let $h_{\mathcal{A}}(t)$ denote the rational function in k of $\beta_{\mathcal{A}}(k)$.

Lemma 2.1.1. Both $H_{\mathcal{A}}(t)$ and $h_{\mathcal{A}}(t)$ are rational functions of t.
Proof. By Burnside's lemma, $\alpha_{\mathcal{A}}(k)$ is

$$
\alpha_{\mathcal{A}}(k)=\frac{1}{\left|\mathcal{A}^{*}\right|} \sum_{g \in \mathcal{A}^{*}}\left|Z_{\mathcal{A}}(g)\right|^{k},
$$

where, for each $g \in \mathcal{A}^{*}, Z_{\mathcal{A}}(g)$ denotes the centralizer algebra of g. Thus $H_{\mathcal{A}}(t)$ is:

$$
\begin{aligned}
H_{\mathcal{A}}(t) & =1+\sum_{k=1}^{\infty} \alpha_{\mathcal{A}}(k) t^{k} \\
& =1+\sum_{k=1}^{\infty}\left(\frac{1}{\left|\mathcal{A}^{*}\right|} \sum_{g \in \mathcal{A}^{*}}\left|Z_{\mathcal{A}}(g)\right|^{k}\right) t^{k} \\
& =1+\frac{1}{\left|\mathcal{A}^{*}\right|} \sum_{g \in \mathcal{A}^{*}}\left(\sum_{k=1}^{\infty}\left|Z_{\mathcal{A}}(g)\right|^{k} t^{k}\right) \\
& =1+\frac{1}{\left|\mathcal{A}^{*}\right|} \sum_{g \in \mathcal{A}^{*}} \frac{\left|Z_{\mathcal{A}}(g)\right| t}{1-\left|Z_{\mathcal{A}}(g)\right| t},
\end{aligned}
$$

which is a finite sum of rational functions. Therefore $H_{\mathcal{A}}(t)$ is a rational function.
But the Burnside's lemma approach fails in the case of tuples with commuting entries, since the entries, a_{1}, \ldots, a_{k}, cannot be chosen independently.

We need to calculate $\beta_{\mathcal{A}}(k)$. Let $\left(a_{1}, \ldots, a_{k}\right) \in \mathcal{A}^{(k)}$. Then $\left(a_{2}, \ldots, a_{k}\right) \in$ $Z_{\mathcal{A}}\left(a_{1}\right)^{(k-1)}$. Hence the map,

$$
\left(a_{1}, a_{2}, \ldots, a_{k}\right) \mapsto\left(a_{2}, \ldots, a_{k}\right),
$$

induces a bijection from the set of \mathcal{A}^{*}-orbits in $\mathcal{A}^{(k)}$, which contain an element whose 1st coordinate is a_{1}, onto the set of $Z_{\mathcal{A}^{*}}\left(a_{1}\right)$-orbits in $Z_{\mathcal{A}}\left(a_{1}\right)^{(k-1)}$ for the action of simultaneous conjugation. Thus, we get, for $k \geq 1$:

$$
\beta_{\mathcal{A}}(k)=\sum_{Z \subseteq \mathcal{A}} c_{Z} \beta_{Z}(k-1)\left(\beta_{Z}(0)=1 \text { for all } Z \subseteq \mathcal{A}\right),
$$

where Z runs over subalgebras of $\mathcal{A}, \beta_{Z}(k-1)$ is the number of orbits under the action of Z^{*} on $Z^{(k-1)}$ by simultaneous conjugation, and c_{Z} is the number of elements
in \mathcal{A} whose centralizer is isomorphic to Z. Hence, we have

$$
\begin{align*}
h_{\mathcal{A}}(t) & =1+\sum_{k=1}^{\infty} \beta_{\mathcal{A}}(k) t^{k} \\
& =1+\sum_{k=1}^{\infty}\left(\sum_{Z \subseteq \mathcal{A}} c_{Z} \beta_{Z}(k-1)\right) t^{k} \\
& =1+\sum_{Z \subseteq \mathcal{A}} c_{Z}\left(\sum_{k=1}^{\infty} \beta_{Z}(k-1) t^{k-1}\right) t \\
& =1+\sum_{Z \subseteq \mathcal{A}} c_{Z} t\left(\sum_{k=0}^{\infty} \beta_{Z}(k) t^{k}\right) \tag{2.1}\\
& =1+c_{\mathcal{A}} t \sum_{k=0}^{\infty} \beta_{\mathcal{A}}(k) t^{k}+\sum_{Z \subseteq \mathcal{A}} c_{Z} t\left(\sum_{k=0}^{\infty} \beta_{Z}(k) t^{k}\right) \\
& =1+c_{\mathcal{A}} t . h_{\mathcal{A}}(t)+\sum_{Z \subsetneq \mathcal{A}} c_{Z} t . h_{Z}(t) \\
& \left(\text { Here, } h_{Z}(t)=\sum_{k=0}^{\infty} \beta_{Z}(k) t^{k}\right)
\end{align*}
$$

Therefore

$$
\begin{equation*}
\left(1-c_{\mathcal{A}} t\right) h_{\mathcal{A}}(t)=1+\sum_{Z \subsetneq \mathcal{A}} c_{Z} t \cdot h_{Z}(t) \tag{2.2}
\end{equation*}
$$

The above identity establishes rationality when \mathcal{A} is a commutative algebra. When \mathcal{A} is commutative, $\mathcal{A}^{(k)}=\mathcal{A}^{k}$. As \mathcal{A} is commutative, $Z_{\mathcal{A}}(a)=\mathcal{A}$ for all $a \in \mathcal{A}$. Each element of \mathcal{A} is a similarity class in \mathcal{A}. Thus, $s_{\mathcal{A}}=|\mathcal{A}|$, and $s_{Z}=0$ for $Z \subsetneq \mathcal{A}$. We have, $(1-|\mathcal{A}| t) h_{\mathcal{A}}(t)=1$,

$$
\text { hence } h_{\mathcal{A}}(t)=\frac{1}{1-|\mathcal{A}| t},
$$

which is a rational function.
If \mathcal{A} is not commutative, then from identity (2.2), we are reduced to the case of algebras whose dimension is strictly less than that of \mathcal{A}. The rationality of $h_{\mathcal{A}}(t)$ follows by induction on the dimension of \mathcal{A}. When \mathcal{A} is 1 dimensional, $\mathcal{A}=\mathbf{F}_{q}$, which is commutative.

Now, if we replace \mathcal{A} in the above lemma by $M_{n}\left(\mathbf{F}_{q}\right)$, then we have, $h_{M_{n}\left(\mathbf{F}_{q}\right)}(t)=$ $h_{n}(q, t)$. Hence, by Lemma 2.1.1, $h_{n}(q, t)$ is a rational function. Lemma 1.2.3 is
proved.

2.2 Similarity Class Types

Given $A \in M_{n}\left(\mathbf{F}_{q}\right)$ and $x \in \mathbf{F}_{q}^{n}$, define for any polynomial $f(t) \in \mathbf{F}_{q}[t], f(t) \cdot x=$ $f(A) x$. This endows \mathbf{F}_{q}^{n} with an $\mathbf{F}_{q}[t]$-module structure, denoted by M^{A}. It is easy to check that, for matrices, A and B,

$$
M^{A} \cong M^{B} \Leftrightarrow A=g B g^{-1} \text { for some } g \in G L_{n}\left(\mathbf{F}_{q}\right) .
$$

We can easily see that $\operatorname{End}_{\mathbf{F}_{q}[t]}\left(M^{A}\right)$ is $Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A)$.
If A is a block diagonal matrix, $\left(\begin{array}{cc}B & 0 \\ 0 & C\end{array}\right)$, where B and C are square matrices whose respective characteristic polynomials are coprime, then we write A as $B \oplus C$, and

$$
M^{B \oplus C}=M^{A} \cong M^{B} \oplus M^{C} .
$$

It can easily be shown that $Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A)$ is isomorphic to $Z_{M_{l}\left(\mathbf{F}_{q}\right)}(B) \oplus Z_{M_{n-l}\left(\mathbf{F}_{q}\right)}(C)$, where l is the order of B.

Next, we have the Jordan decomposition of M^{A}, which will be explained in the following para.

Definition 2.2.1. Let p be an irreducible polynomial in $\mathbf{F}_{q}[t]$, then the submodule

$$
M^{A_{p}}=\left\{x \in M^{A}: p(t)^{r} \cdot x=0 \text { for some } r \geq 1\right\},
$$

is called the p-primary part of M^{A}.
Let $\operatorname{Irr}\left(\mathbf{F}_{q}[t]\right)$ denote the set of irreducibles in $\mathbf{F}_{q}[t]$. Then by the primary decomposition theorem, M^{A} has the decomposition,

$$
M^{A}=\bigoplus_{p \in \operatorname{Irr}\left(\mathbf{F}_{q}[t]\right)} M^{A_{p}}
$$

which is over a finite number of irreducibles, as M^{A} is finitely generated. Then by Structure Theorem of finitely generated modules over a PID (see Dummit and Foote [3), for each $p, M^{A_{p}}$ has the decomposition,

$$
\frac{\mathbf{F}_{q}[t]}{p^{\lambda_{1}}} \oplus \frac{\mathbf{F}_{q}[t]}{p^{\lambda_{2}}} \oplus \cdots,
$$

where $\left(\lambda_{1} \geq \lambda_{2} \geq \cdots\right)$ is a partition, which is denoted by λ. The primary decomposition, together with the Structure Theorem decomposition of each primary part, gives the decomposition:

$$
\bigoplus_{p \in \operatorname{Irr}\left(\mathbf{F}_{q}[t]\right)}\left(\frac{\mathbf{F}_{q}[t]}{p^{\lambda_{1}}} \oplus \frac{\mathbf{F}_{q}[t]}{p^{\lambda_{2}}} \oplus \cdots\right) .
$$

This decomposition is the Jordan decomposition.
This gives a bijection between similarity classes in $M_{n}\left(\mathbf{F}_{q}\right)$, and the set of maps from $\operatorname{Irr}\left(\mathbf{F}_{q}[t]\right)$ to the set of partitions, Λ.

$$
\left\{\text { Similarity classes of } M_{n}\left(\mathbf{F}_{q}\right)\right\} \longleftrightarrow\left\{\nu: \operatorname{Irr}\left(\mathbf{F}_{q}[t]\right) \rightarrow \Lambda\right\}
$$

Now, for any $\nu: \operatorname{Irr}\left(\mathbf{F}_{q}[t]\right) \rightarrow \Lambda$, let $\operatorname{Supp}(\nu)$ denote the set of irreducible polynomials, $p(t)$, for which $\nu(p)$ is a non-empty partition. Clearly, $\operatorname{Supp}(\nu)$ is a finite set. For each partition, μ, and each $d \geq 1$, let $r_{\nu}(\mu, d)$ be

$$
r_{\nu}(\mu, d)=\mid\left\{p(t) \in \operatorname{Irr}\left(\mathbf{F}_{q}[t]\right): \operatorname{deg}(p)=d \text { and } \nu(p)=\mu\right\} \mid .
$$

This puts us in a position to define Similarity Class Types.
Definition 2.2.2. Let A and B be two similarity classes in $M_{n}\left(\mathbf{F}_{q}\right)$, and let $\nu^{(A)}$ and $\nu^{(B)}$ be the maps from $\operatorname{Irr}\left(\mathbf{F}_{q}[t]\right) \rightarrow \Lambda$ corresponding to A and B respectively. We say that A and B are of the same Similarity Class Type, if for each partition λ, and each $d \geq 1, r_{\nu^{(A)}}(d, \lambda)=r_{\nu^{(B)}}(d, \lambda)$ (See Green [6]).

We shall denote a similarity class type by

$$
\lambda^{(1)}{ }_{d_{1}}, \ldots, \lambda^{(l)}{ }_{d_{l}},
$$

where $\lambda^{(1)}, \ldots, \lambda^{(l)}$ are partitions, and $d_{i} \geq 1$ for $1 \leq i \leq l$, such that

$$
\sum_{i=1}^{l}\left|\lambda^{(i)}\right| d_{i}=n
$$

For example, in $M_{2}\left(\mathbf{F}_{q}\right)$, there are four similarity class types which are described in
the table below:

Type	Description of the type
$(1,1)_{1}$	$\lambda^{(1)}=(1,1), d_{1}=1$
$(2)_{1}$	$\lambda^{(1)}=(2), d_{1}=1$
$(1)_{1}(1)_{1}$	$\lambda^{(1)}=(1), d_{1}=1$ $\lambda^{(2)}=(1), d_{2}=1$
$(1)_{2}$	$\lambda^{(1)}=(1), d_{1}=2$

So, for all those similarity classes, $\nu: \operatorname{Irr}\left(\mathbf{F}_{q}[t]\right) \rightarrow \Lambda$, such that $\operatorname{Supp}(\nu)=\left\{f_{1}, \ldots, f_{l}\right\}$, where $\operatorname{deg}\left(f_{i}\right)=d_{i}$ and $\nu\left(f_{i}\right)=\lambda^{(i)}$, the similarity class type is

$$
\lambda^{(1)}{ }_{d_{1}}, \ldots, \lambda^{(l)}{ }_{d_{l}}
$$

Definition 2.2.3. 1. We say that a matrix, A, is of the Central type, if it is of the similarity class type

$$
(\underbrace{1, \ldots, 1}_{n \text {-ones }})_{1}
$$

2. And of the Regular/Cyclic type if it is of the class type

$$
\lambda^{(1)}{ }_{d_{1}}, \ldots, \lambda^{(l)}{ }_{d_{l}}
$$

where for each $i=1, \ldots, l$, the partition $\lambda^{(i)}$ has only one part.
So, now we shall define types for commuting tuples of matrices:
Definition 2.2.4. Let $\left(A_{1}, \ldots, A_{k}\right)$ be a k-tuple and $\left(B_{1}, \ldots, B_{l}\right)$, an l-tuple of commuting matrices. We say that they are of the same similarity class type if their respective common centralizers,

$$
Z_{M_{n}\left(\mathbf{F}_{q}\right)}\left(A_{1}, \ldots, A_{k}\right) \text { and } Z_{M_{n}\left(\mathbf{F}_{q}\right)}\left(B_{1}, \ldots, B_{l}\right),
$$

are conjugate in $M_{n}\left(\mathbf{F}_{q}\right)$.
The above definition of types for tuples, is a precise version of Definition 1.2.4, and is consistent with the Definition 2.2 .2 because, A and B are of the same type if and only if their centralizers, $Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A)$ and $Z_{M_{n}\left(\mathbf{F}_{q}\right)}(B)$, are conjugate (see the definition of orbit-equivalent by Ravi S. Kulkarni [10] or the definition of z-equivalent by Rony Gouraige [5]). So, if the centralizer, $Z_{M_{n}\left(\mathbf{F}_{q}\right)}\left(A_{1}, \ldots, A_{k}\right)$, of a k-tuple, $\left(A_{1}, \ldots, A_{k}\right)$, for $k \geq 2$, is conjugate to that of some matrix, $A \in M_{n}\left(\mathbf{F}_{q}\right)$ (of some type τ), we say that the simultaneous similarity class of $\left(A_{1}, \ldots, A_{k}\right)$ is of the
type, τ. Suppose, the centralizer, $Z_{M_{n}\left(\mathbf{F}_{q}\right)}\left(B_{1}, \ldots, B_{l}\right)$ of $\left(B_{1}, \ldots, B_{l}\right)$ is conjugate to $Z_{M_{n}\left(\mathbf{F}_{q}\right)}\left(A_{1}, \ldots, A_{k}\right)$, then it is conjugate to $Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A)$. Hence, $\left(B_{1}, \ldots, B_{l}\right)$ too is of type τ. If for some $k>1, Z_{M_{n}\left(\mathbf{F}_{q}\right)}\left(A_{1}, \ldots, A_{k}\right)$ is not conjugate to the centralizer of any matrix in $M_{n}\left(\mathbf{F}_{q}\right)$, we have a new type of similarity class.

Chapter 3

Asymptotic Behaviour of $c(n, k, q)$

3.1 Proof of Theorem 1.2 .1

We defined $c(n, k, q)$ in the Introduction and stated a theorem (Theorem 1.2.1) about its asymptotic behaviour as a function of k. In this chapter we will prove that theorem, and also state and prove a related simple result.

Before going ahead, we look at the asymptoticity in k of the number of simultaneous similarity classes in $M_{n}\left(\mathbf{F}_{q}\right)^{k}$. Let $a(n, k, q)$ denote the number of simultaneous similarity classes in $M_{n}\left(\mathbf{F}_{q}\right)^{k}$. Then we have the following lemma:

Lemma 3.1.1. For a fixed positive integer n and prime power $q, a(n, k, q)$ is asymptotically $q^{n^{2} k}$ up to some constant factor, as k goes to ∞.

Proof. We need to show that there exist positive constants m_{1} and m_{2} (constant with respect to k) such that $m_{1} q^{n^{2} k} \leq a(n, k, q) \leq m_{2} q^{n^{2} k}$. Using Burnside's Lemma, we know that $a(n, k, q)$ is equal to:

$$
a(n, k, q)=\frac{1}{\left|G L_{n}\left(\mathbf{F}_{q}\right)\right|} \sum_{g \in G L_{n}\left(\mathbf{F}_{q}\right)}\left|Z_{M_{n}\left(\mathbf{F}_{q}\right)}(g)\right|^{k} .
$$

So, in this expansion of $a(n, k, q)$, if we just consider all the g that are scalar matrices, we have $Z_{M_{n}\left(\mathbf{F}_{q}\right)}(g)=M_{n}\left(\mathbf{F}_{q}\right)$.

$$
\text { Let } m_{1}=\frac{q-1}{\left|G L_{n}\left(\mathbf{F}_{q}\right)\right|}
$$

then $m_{1} q^{n^{2} k} \leq a(n, k, q)$.

Next, if g is a non-scalar matrix, then $Z_{M_{n}\left(\mathbf{F}_{q}\right)}(g) \subsetneq M_{n}\left(\mathbf{F}_{q}\right)$. We know from [1], that the maximal dimension of a proper subalgebra of $M_{n}\left(\mathbf{F}_{q}\right)$ is, $n^{2}-n+1$.

So we have

$$
\begin{aligned}
a(n, k, q) & =\frac{1}{\left|G L_{n}\left(\mathbf{F}_{q}\right)\right|} \sum_{g \in G L_{n}\left(\mathbf{F}_{q}\right)}\left|Z_{M_{n}\left(\mathbf{F}_{q}\right)}(g)\right|^{k} \\
& =\frac{1}{\left|G L_{n}\left(\mathbf{F}_{q}\right)\right|}(q-1) q^{n^{2} k}+\sum_{\substack{g \in G L_{n}\left(\mathbf{F}_{q}\right) \\
g \notin \mathbf{F}_{q} \cdot I}}\left|Z_{M_{n}\left(\mathbf{F}_{q}\right)}(g)\right|^{k} \\
& \leq \frac{1}{\left|G L_{n}\left(\mathbf{F}_{q}\right)\right|}(q-1) q^{n^{2} k}+\sum_{\substack{g \in G L_{n}\left(\mathbf{F}_{q}\right) \\
g \notin \mathbf{F}_{q} \cdot I}} q^{\left(n^{2}-n+1\right) k} \\
& =\frac{1}{\left|G L_{n}\left(\mathbf{F}_{q}\right)\right|}(q-1) q^{n^{2}} k\left(1+\left(\left|G L_{n}\left(\mathbf{F}_{q}\right)\right|-q+1\right) q^{-(n-1) k}\right) .
\end{aligned}
$$

From this we get m_{2} such that $a(n, k, q) \leq m_{2} q^{n^{2} k}$.
The technique used in the proof of the lemma above, using the Burnside's Lemma approach, fails to give the asymptoticity of $c(n, k, q)$ because the matrices, $A_{1}, \ldots, A_{k} \in M_{n}\left(\mathbf{F}_{q}\right)$ are no longer independently chosen.

To prove Theorem 1.2.1, it suffices to prove the existence of positive numbers, C_{1} and C_{2}, such that

$$
C_{1} q^{m(n) k} \leq c(n, k, q) \leq C_{2} q^{m(n) k}
$$

for large k. For this, we need to unravel $c(n, k, q)$.
We first define the following:
Definition 3.1.2. For $k>0$ and any subalgebra Z of $M_{n}\left(\mathbf{F}_{q}\right)$, let $c_{Z}(k, q)$ denote the number of simultaneous similarity classes of k-tuples of commuting matrices in Z, under conjugation by its group of units Z^{*}.

We claim:

$$
\begin{equation*}
c(n, k, q)=\sum_{Z \subseteq M_{n}\left(\mathbf{F}_{q}\right)} s_{Z} c_{Z}(k-1, q) \tag{3.1}
\end{equation*}
$$

where Z runs over subalgebras of $M_{n}\left(\mathbf{F}_{q}\right)$, and for each Z, s_{Z} is the number of similarity classes in $M_{n}\left(\mathbf{F}_{q}\right)$, whose centralizer algebra is conjugate to Z; and $c_{Z}(0, q)=1$ for all $Z \subseteq M_{n}\left(\mathbf{F}_{q}\right)$.

Let $\left(A_{1}, \ldots, A_{k}\right) \in M_{n}\left(\mathbf{F}_{q}\right)^{(k)}$. Let $Z=Z_{M_{n}\left(\mathbf{F}_{q}\right)}\left(A_{1}\right)$. Then $\left(A_{2}, \ldots, A_{k}\right) \in$ $Z^{(k-1)}$. We know that, counting the number of simultaneous similarity classes in $M_{n}\left(\mathbf{F}_{q}\right)^{(k)}$, which contain an element whose first component is A_{1}, is the same as counting the orbits for the conjugation action of Z^{*} on $Z^{(k-1)}$. Hence we get equation (3.1).

Now, in equation (3.1), for each subalgebra Z, we can expand $c_{Z}(k-1, q)$ to get

$$
c_{Z}(k-1, q)=\sum_{Z^{\prime} \subseteq Z} s_{Z Z^{\prime}} c_{Z^{\prime}}(k-2, q)(\text { i.e., when } k \geq 2),
$$

where $s_{Z Z^{\prime}}$ is the number of orbits of matrices in Z for the action of Z^{*} on it by conjugation, whose centralizer algebra in Z is conjugate to Z^{\prime}. Proceeding this way, we get the following expansion for $c(n, k, q)$:

$$
\begin{equation*}
c(n, k, q)=\sum_{Z_{1} \supseteq \cdots \supseteq Z_{k}} s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{k-1} Z_{k}}, \tag{3.2}
\end{equation*}
$$

where, for $1 \leq i \leq k-1, Z_{i}=Z_{M_{n}\left(\mathbf{F}_{q}\right)}\left(A_{1}, \ldots, A_{i}\right)$, for some i-tuple of commuting matrices $\left(A_{1}, \ldots, A_{i}\right)$. And $s_{Z_{i} Z_{i+1}}$ denotes the number of orbits of matrices in Z_{i} for the conjugation action of Z_{i}^{*}, whose centralizer algebra, $Z_{Z_{i}}(x)$, in Z_{i}, is conjugate to Z_{i+1}. For $Z_{i+1} \subseteq Z_{i}$, we say that Z_{i+1} is a branch of Z_{i}, iff $s_{Z_{i} Z_{i+1}}>0$.

Here are some observations about these non-increasing sequences of subalgebras which come up in the expansion of $c(n, k, q)$. We shall state them as a lemma:
Lemma 3.1.3. Given a non-increasing sequence of centralizer subalgebras, which appears in equation (3.2), say

$$
Z_{1} \supseteq \cdots \supseteq Z_{k}
$$

we have the following:

1. If for some i, Z_{i} is a commutative subalgebra, then

$$
Z_{i+1}=\cdots=Z_{k}=Z_{i}
$$

and for each $j \in\{i, \ldots, k-1\}, s_{Z_{j} Z_{j+1}}=q^{\operatorname{dim}\left(Z_{i}\right)}$.
2. If for some i, Z_{i} is not necessarily commutative, but $Z_{i+1}=Z_{i}$, then $s_{Z_{i} Z_{i+1}}=$ $q^{\operatorname{dim}\left(Z\left(Z_{i}\right)\right)}$, where $Z\left(Z_{i}\right)$ is the centre of Z_{i}.
Proof. For $i \geq 1$, let $\left(A_{1}, \ldots, A_{i}\right) \in M_{n}\left(\mathbf{F}_{q}\right)^{(i)}$ such that,

$$
Z_{M_{n}\left(\mathbf{F}_{q}\right)}\left(A_{1}, \ldots, A_{i}\right)=Z_{i} .
$$

Suppose Z_{i} is commutative. For any $x \in Z_{i}, Z_{Z_{i}}(x)=Z_{i}$. So, if we take any $A_{i+1} \in Z_{i}$, we have

$$
Z_{i+1}=Z_{M_{n}\left(\mathbf{F}_{q}\right)}\left(A_{1}, \ldots, A_{i}, A_{i+1}\right)=Z_{Z_{i}}\left(A_{i+1}\right)=Z_{i} .
$$

Therefore, $s_{Z_{i} Z_{i+1}}=\left|Z_{i}\right|=q^{\operatorname{dim}\left(Z_{i}\right)}$. Similarly, $Z_{j}=Z_{i}$ for $i+1 \leq j \leq k$. Thus, $s_{Z_{j} Z_{j+1}}=q^{\operatorname{dim}\left(Z_{i}\right)} \leq q^{m(n)}$ for $i \leq j \leq k-1$.

If Z_{i} is not necessarily commutative, but $Z_{i+1}=Z_{i}$, then $s_{Z_{i} Z_{i+1}}$ is the number of matrices in Z_{i} for which

$$
Z_{Z_{i}}\left(A_{i+1}\right)=Z_{i} .
$$

Thus $s_{Z_{i} Z_{i+1}}$ is the size of the centre , $Z\left(Z_{i}\right)$, of Z_{i}. So $s_{Z_{i} Z_{i+1}}=q^{\operatorname{dim}\left(Z\left(Z_{i}\right)\right)} \leq q^{m(n)}$ (since $Z\left(Z_{i}\right)$ is a commutative subalgebra of $M_{n}\left(F_{q}\right)$).

Finding Crude Lower and Upper Bounds for $c(n, k, q)$

First, we need to show that there exists a tuple of commuting matrices whose common centralizer is a commutative algebra of dimension, $m(n)$. Here are examples of tuples of commuting matrices whose common centralizer is a commutative subalgebra of $M_{n}\left(\mathbf{F}_{q}\right)$, of dimension $m(n)$.

Example 1. When n is even, let $n=2 l$, where $l \geq 1$. Then $m(n)=l^{2}+1$. Consider the commuting tuple $\left(A_{1}, A_{2}, \ldots, A_{l+1}\right)$ in which

$$
A_{1}=\left(\begin{array}{ll}
0_{l} & I_{l} \\
0_{l} & 0_{l}
\end{array}\right) \quad\left(0_{l} \text { is the } l \times l \text {-block }\right)
$$

for $i \geq 2$,

$$
A_{i}=\left(\begin{array}{cc}
0_{l} & N_{i} \\
0_{l} & 0_{l}
\end{array}\right)
$$

where, for $i=2, \ldots, l+1$,

$$
N_{i}=\binom{0_{(l-1) \times l}}{e_{i-1}} \quad\left(0_{(l-1) \times l} \text { is the }(l-1) \times l \text {-block }\right)
$$

and e_{i-1} is the $1 \times l$ row matrix,

$$
\left(\begin{array}{ccc}
0 \cdots & 1 & \cdots 0 \\
& & (i-1) t h \text { place }
\end{array}\right) .
$$

Its common centralizer algebra is

$$
Z_{M_{n}\left(\mathbf{F}_{q)}\right)}\left(A_{1}, \ldots, A_{l+1}\right)=\left\{\left.a_{0} I_{n}+\left(\begin{array}{cc}
0_{l} & B \\
0_{l} & 0_{l}
\end{array}\right) \right\rvert\, a_{0} \in \mathbf{F}_{q} \text { and } B \in M_{l}\left(\mathbf{F}_{q}\right)\right\} .
$$

It is commutative and is of dimension $l^{2}+1$ which is equal to $m(n)$.
Example 2. When n is odd, let $n=2 l+1$. Then $m(n)=l(l+1)+1$. Consider the commuting tuple ($A_{1}, A_{2}, \ldots, A_{l+1}$) where

$$
A_{1}=\left(\begin{array}{cc}
0_{l+1} & I_{l} \\
0_{l \times(l+1)} & 0_{(l+1) \times l}
\end{array}\right),
$$

and for $i=2, \ldots, l+1$,

$$
A_{i}=\left(\begin{array}{cc}
0_{l+1} & N_{i} \\
0_{l \times(l+1)} & 0_{l \times l}
\end{array}\right),
$$

where for each i, N_{i} is a $(l+1) \times l$-matrix of the form

$$
\binom{0_{l}}{e_{i-1}} .
$$

The common centralizer of this tuple is

$$
\left\{\left.a_{0} I_{n}+\left(\begin{array}{cc}
0_{(l+1) \times(l+1)} & B \\
0_{l \times(l+1)} & 0_{l \times l}
\end{array}\right) \right\rvert\, a_{0} \in \mathbf{F}_{q} \text { and } B \in M_{(l+1) \times l}\left(\mathbf{F}_{q}\right)\right\} .
$$

It is commutative and is of dimension $l(l+1)+1$, which is equal to $m(n)$.
So we can find at least one $([n / 2]+1)$-tuple of commuting $n \times n$ matrices, whose common centralizer algebra is of dimension $m(n)$.

Lemma 3.1.4. There exists $C_{1}>0$, such that $C_{1} q^{m(n) k} \leq c(n, k, q)$ for large k.
Proof. Let $l_{0}=[n / 2]+1$. Consider the k-tuple,

$$
\left(A_{1}, A_{2}, \ldots, A_{l_{0}}, A_{l_{0}+1}, \ldots, A_{k}\right)
$$

whose first l_{0} entries are as in Examples 1 or 2 (depending on whether n is even or odd). We have, for each $i, Z_{i}=\bigcap_{j=1}^{i} Z_{M_{n}\left(\mathbf{F}_{q}\right)}\left(A_{j}\right)$. So $Z_{l_{0}}$ is a commutative subalgebra
of dimension $m(n)$ (as described in the examples). Hence, from Lemma 3.1.3, we get that, for $i=l_{0}+1, \ldots, k, Z_{i}=Z_{l_{0}}$. Then,

$$
c(n, k, q) \geq s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{l_{0}-1} Z_{l_{0}}} q^{m(n)\left(k-l_{0}\right)} .
$$

Let

$$
C_{1}=\frac{s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{l_{0}-1} Z_{l_{0}}}}{q^{m(n) l_{0}}}
$$

then $c(n, k, q) \geq C_{1} q^{m(n) k}$ for all large k.
To complete the proof of the main theorem, we need this observation (Lemma 3.1.5) about the non-increasing sequences of subalgebras,

$$
Z_{1} \supseteq \cdots \supseteq Z_{k}
$$

which appear in the expansion of $c(n, k, q)$ given in equation (3.2).
Lemma 3.1.5. $Z\left(Z_{i}\right) \subseteq Z\left(Z_{i+1}\right)$ for $i \geq 1$, and if $Z_{i+1} \subsetneq Z_{i}$, then $Z\left(Z_{i}\right) \subsetneq Z\left(Z_{i+1}\right)$
Proof. Let $x \in Z\left(Z_{i}\right)$. Then, for any $y \in Z_{i}$ such that $Z_{Z_{i}}(y)=Z_{i+1}$, we have $x y=y x$. Therefore $x \in Z_{i+1}$. Now, as $x \in Z\left(Z_{i}\right), x z=z x$ for every $z \in Z_{i+1}$. That implies, $x \in Z\left(Z_{i+1}\right)$. So, $Z\left(Z_{i}\right) \subseteq Z\left(Z_{i+1}\right)$, and thus, $\operatorname{dim}\left(Z\left(Z_{i+1}\right)\right) \geq \operatorname{dim}\left(Z\left(Z_{i}\right)\right)$.

If $Z_{i} \supsetneq Z_{i+1}$, then consider any $y \in Z_{i}$ for which $Z_{Z_{i}}(y)=Z_{i+1}$. Clearly, $y \in$ $Z\left(Z_{i+1}\right)$. But for $x \notin Z_{i+1}, y x \neq x y$. Hence, $y \notin Z\left(Z_{i}\right)$. Therefore $Z\left(Z_{i}\right) \subsetneq Z\left(Z_{i+1}\right)$. Thus $\operatorname{dim}\left(Z\left(Z_{i+1}\right)\right)>\operatorname{dim}\left(Z\left(Z_{i}\right)\right)$.

Now we are in a position to get a crude upper bound for $c(n, k, q)$. Let $k>n^{2}$. Let us look at any summand of $c(n, k, q)$. A summand of $c(n, k, q)$ is of the form,

$$
s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{k-1} Z_{k}},
$$

for the non-increasing sequence of subalgebras, $Z_{1} \supseteq Z_{2} \supseteq \cdots \supseteq Z_{k}$. Now, let j be the number of distinct Z_{i} 's in the non-increasing sequence. As $M_{n}\left(\mathbf{F}_{q}\right)$ is of dimension n^{2}, there cannot be more than n^{2} distinct Z_{i}^{\prime} 's in $Z_{1} \supseteq Z_{2} \supseteq \cdots \supseteq Z_{k}$. So $1 \leq j \leq n^{2}$.

We therefore rewrite $c(n, k, q)$ as

$$
\begin{equation*}
c(n, k, q)=\sum_{j=0}^{n^{2}-1} \sum_{\substack{Z_{1} \perp \ldots \supset Z_{k} \\ j+1 \text { distinct }}} s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{k-1} Z_{k}} \tag{3.3}
\end{equation*}
$$

Now, for any j between 0 and $n^{2}-1$, consider a non-increasing sequence $Z_{1} \supseteq$ $\cdots \supseteq Z_{k}$, in which $j+1$ of the Z_{i} 's are distinct. Then it has a strictly decreasing subsequence

$$
Z_{i_{1}} \supsetneq Z_{i_{2}} \supsetneq \cdots \supsetneq Z_{i_{j}} \supsetneq Z_{k} .
$$

So, the non-increasing sequence $Z_{1} \supseteq \cdots \supseteq Z_{k}$ looks like this:

$$
\begin{equation*}
Z_{1}=\cdots=Z_{i_{1}} \supsetneq Z_{i_{1}+1}=\cdots=Z_{i_{2}} \supsetneq \cdots=Z_{i_{j}} \supsetneq Z_{i_{j}+1}=\cdots=Z_{k} . \tag{3.4}
\end{equation*}
$$

Then, from Lemma 3.1.3, $s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{k-1} Z_{k}}$ is equal to:

$$
s_{Z_{1}} q^{\operatorname{dim}\left(Z\left(Z_{i_{1}}\right)\right)\left(i_{1}-1\right)} s_{Z_{i_{1}} Z_{i_{2}}} q^{\operatorname{dim}\left(Z\left(Z_{i_{2}}\right)\right)\left(i_{2}-i_{1}-1\right)} \cdots s_{Z_{i_{j}}} Z_{k} q^{\operatorname{dim}\left(Z\left(Z_{k}\right)\right)\left(k-i_{j}-1\right)}
$$

For $1 \leq u \leq j-1$, we have $Z_{i_{u}} \supsetneq Z_{i_{u+1}}$, and $Z_{i_{j}} \supsetneq Z_{k}$. Thus, $Z_{i_{u}} \supsetneq Z_{k}$ for all $1 \leq u \leq j$. Hence, by Lemma 3.1.5, we have $\operatorname{dim}\left(Z\left(Z_{i_{u}}\right)\right)<\operatorname{dim}\left(Z\left(Z_{k}\right)\right)$ for all $1 \leq u \leq j$. Hence, for $1 \leq u \leq j$,

$$
\operatorname{dim}\left(Z\left(Z_{i_{u}}\right)\right)<\operatorname{dim}\left(Z\left(Z_{k}\right)\right) \leq m(n) .
$$

Therefore,

$$
\operatorname{dim}\left(Z\left(Z_{i_{u}}\right)\right) \leq m(n)-1
$$

for $1 \leq u \leq j$. Hence $s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{k-1} Z_{k}}$ is bounded above by

$$
s_{Z_{i_{1}}} s_{Z_{i_{1}} Z_{i_{2}}} \cdots s_{Z_{i_{j}} Z_{k}} \cdot q^{(m(n)-1)\left(i_{j}\right)} \cdot q^{m(n)\left(k-i_{j}\right)} .
$$

Now, each of $s_{Z_{i_{1}}}, s_{Z_{i_{1}} Z_{i_{2}}}, \ldots, s_{Z_{i_{j}} Z_{k}}$ cannot be more than $q^{n^{2}}$. Hence,

$$
\begin{aligned}
s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{k-1} Z_{k}} & \leq q^{n^{2}(j+1)} \cdot q^{\left[(m(n)-1) i_{j}+m(n)\left(k-i_{j}\right)\right]} \\
& =q^{n^{2}(j+1)} \cdot q^{\left(m(n) k-i_{j}\right)}
\end{aligned}
$$

Here are some observations:

- We know that, as $M_{n}\left(\mathbf{F}_{q}\right)$ is finite, it has only a finite number of distinct subalgebras. Let that number be $f(n)$. For each j, as $0 \leq j \leq n^{2}-1$, there cannot be more than $\binom{f(n)}{j+1}$ of them.
- Given a $Z_{1} \supseteq \cdots \supseteq Z_{k}$, in which $j+1$ of the Z_{i} 's are distinct, i.e., there is a strongly decreasing subsequence of $Z_{1} \supseteq \cdots \supseteq Z_{k}$:

$$
Z_{i_{1}} \supsetneq Z_{i_{2}} \supsetneq \cdots \supsetneq Z_{i_{j}} \supsetneq Z_{k},
$$

such that $Z_{1} \supseteq \cdots \supseteq Z_{k}$, is as in expression (3.4). Given the subset, $S=$
$\left\{i_{1}, \ldots, i_{j}\right\}$, at which the descents occur, $s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{k} Z_{k-1}}$ is bounded above by

$$
q^{n^{2}(j+1)} \cdot q^{(m(n) k-\max (S))} .
$$

But this S could be any size j subset of $\{1, \ldots, k-1\}$. So, $c(n, k, q)$ is bounded above by

$$
\sum_{j=0}^{n^{2}-1}\left(\binom{f(n)}{j+1} q^{n^{2}(j+1)} \sum_{\substack{S \subseteq\{1, \ldots, k-1\} \\|S|=j}} q^{(m(n) k-\max (S))}\right)
$$

which is equal to

$$
\sum_{j=0}^{n^{2}-1}\left(\binom{f(n)}{j+1} q^{n^{2}(j+1)} \sum_{r=j}^{k-1} \sum_{\substack{S \subseteq\{1, \ldots, k-1\} \\| |=j \\ \max (S)=r}} q^{(m(n) k-r)}\right)
$$

but this is equal to

$$
\sum_{j=0}^{n^{2}-1}\left(\binom{f(n)}{j+1} q^{n^{2}(j+1)} \sum_{r=j}^{k-1}\binom{r-1}{j-1} q^{(m(n) k-r)}\right)
$$

(Once r is chosen, the remaining $j-1$ are chosen from $1, \ldots, r-1$ in $\binom{r-1}{j-1}$ ways.)

Now, as $\binom{r-1}{j-1} \leq r^{j}$, we get,

$$
\begin{aligned}
c(n, k, q) & \leq q^{m(n) k} \sum_{j=0}^{n^{2}-1}\left(\binom{f(n)}{j+1} q^{n^{2}(j+1)} \sum_{r=j}^{k-1} r^{j} q^{-r}\right) \\
& \leq q^{m(n) k} \sum_{j=0}^{n^{2}-1}\left(\binom{f(n)}{j+1} q^{n^{2}(j+1)} \sum_{r=0}^{\infty} r^{j} q^{-r}\right)
\end{aligned}
$$

Now, for any fixed j, we can see by any of the routine tests (either the root or ratio test) that the series,

$$
\sum_{r=0}^{\infty} r^{j} q^{-r} \text { converges. }
$$

Now let

$$
C_{2}=\sum_{j=0}^{n^{2}-1}\left(\binom{f(n)}{j+1} q^{n^{2}(j+1)} \sum_{r=0}^{\infty} r^{j} q^{-r}\right),
$$

then we have

$$
c(n, k, q) \leq C_{2} q^{m(n) k}
$$

So we have found positive constants C_{1} and C_{2} such that

$$
C_{1} q^{m(n) k} \leq c(n, k, q) \leq C_{2} q^{m(n) k}
$$

Hence $c(n, k, q)$, as a function of k is asymptotically $q^{m(n) k}$ (up to some constant factor).

3.2 Asymptotic of Counting Tuples of Commuting Matrices

In this section, instead of looking at simultaneous similarity classes of commuting tuples, we will look at the asymptotic of counting total number of tuples of commuting matrices. Let $C(n, k, q)$ denote the total number of k-tuples of commuting $n \times n$ matrices over \mathbf{F}_{q} i.e., the size of $M_{n}\left(\mathbf{F}_{q}\right)^{(k)}$. Then we have

$$
\begin{equation*}
C(n, k, q)=\sum_{Z \subseteq M_{n}\left(\mathbf{F}_{q}\right)} \frac{\left|G L_{n}\left(\mathbf{F}_{q}\right)\right|}{\left|Z^{*}\right|} C_{Z}, \tag{3.5}
\end{equation*}
$$

where Z varies over conjugacy classes of subalgebras of $M_{n}\left(\mathbf{F}_{q}\right), Z^{*}$ is the group of units of Z, and C_{Z} is the total number of simultaneous similarity classes of k-tuples of commuting matrices whose common centralizer algebra is conjugate to Z.

From the previous section, we see that

$$
C_{Z}=\sum_{\substack{Z_{1} \supset \ldots \supset Z_{k} \\ Z_{k}=Z}} s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{k-1} Z_{k}} .
$$

We can therefore rewrite equation (3.5) as

$$
\begin{equation*}
C(n, k, q)=\sum_{Z_{1} \supseteq \cdots \supseteq Z_{k}} \frac{\left|G L_{n}\left(\mathbf{F}_{q}\right)\right|}{\left|Z_{k}^{*}\right|} s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{k-1} Z_{k}} . \tag{3.6}
\end{equation*}
$$

Equation (3.6) is a modified version of equation (3.2).
If we consider tuples, $\left(A_{1}, \ldots, A_{k}\right)$, where the first l_{0} (where $l_{0}=[n / 2]+1$) coordinates are as in Examples 1 and 2, then we get $\left|Z_{k}\right|=q^{m(n)}$ and $\left|Z_{k}^{*}\right|=$ $(q-1) q^{\left[\frac{n^{2}}{4}\right]}$. So we have

$$
\frac{\left|G L_{n}\left(\mathbf{F}_{q}\right)\right|}{(q-1) q^{\left[\frac{n^{2}}{4}\right]}} s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{l_{0}-1} Z_{l_{0}}} q^{m(n)\left(k-l_{0}\right)} \leq C(n, k, q)
$$

Thus, choose

$$
D_{1}=\frac{\left|G L_{n}\left(\mathbf{F}_{q}\right)\right|}{(q-1) q^{\left[\frac{n^{2}}{4}\right]}} s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{l_{0}-1} Z_{l_{0}}} q^{-m(n) l_{0}} .
$$

Then we get $D_{1} q^{m(n) k} \leq C(n, k, q)$.
Now we can find an upper bound for $C(n, k, q)$. From equation (3.6) we have $C(n, k, q)$ equal to

$$
\sum_{Z_{1} \supseteq \cdots \supseteq Z_{k}} \frac{\left|G L_{n}\left(\mathbf{F}_{q}\right)\right|}{\left|Z_{k}^{*}\right|} s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{k-1} Z_{k}}
$$

Now, as $G L_{n}\left(\mathbf{F}_{q}\right)$ has only a finite number of subgroups, $\frac{\left|G L_{n}\left(\mathbf{F}_{q}\right)\right|}{\left|Z_{k}^{*}\right|}$ is bounded above. Let that bound be $G(q)$. So we have

$$
\begin{aligned}
C(n, k, q) & \leq G(q) \sum_{Z_{1} \supseteq \cdots \supseteq Z_{k}} s_{Z_{1}} s_{Z_{1} Z_{2}} \cdots s_{Z_{k-1} Z_{k}} \\
& =G(q) c(n, k, q) \\
& \leq G(q) C_{2} q^{m(n) k} \text { (from Section 3.1) }
\end{aligned}
$$

So let $D_{2}=G(q) C_{2}$, then we have $D_{2}>0$ such that $C(n, k, q) \leq D_{2} q^{m(n) k}$. This proves the theorem:

Theorem 3.2.1. The total number of k-tuples of commuting $n \times n$ matrices over $\mathbf{F}_{q}, C(n, k, q)$ is asymptotic to $q^{m(n) k}$ as a function of k.

Keeping n and q fixed, we were able to find the asymptotic behaviour of $c(n, k, q)$ and $C(n, k, q)$, as k goes to ∞. We could instead keep k and q fixed and ask what are the asymptotic behaviour of $c(n, k, q)$ and $C(n, k, q)$, as n goes to ∞. We could also keep k and n fixed and ask for the asymptotic behaviour of $c(n, k, q)$ and $C(n, k, q)$, as a function of q.

Chapter 4

Explicit Calculation of $c(n, k, q)$ for $n \leq 4$

We begin this chapter with the definition of a branch of a similarity class type. (Similarity Class Types were defined in Chapter 2. See definition 2.2.2).

Definition 4.0.2. Given a matrix A of a type τ in $M_{n}\left(\mathbf{F}_{q}\right)$. We saw in the proof of Theorem 2.1.1 in Chapter 2 that, counting the number of simultaneous similarity classes of pairs of commuting matrices whose first coordinate is A, is the same as counting the orbits in $Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A)$ for the conjugation by $Z_{G L_{n}\left(\mathbf{F}_{q}\right)}(A)$ on it. Each such orbit is called a branch of A.

Given a matrix $A \in M_{n}\left(\mathbf{F}_{q}\right)$, whose similarity class type is τ. Let $B \in Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A)$. Then, the centralizer algebra of B in $Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A)$ is the common centralizer $Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A, B)$, of A and B. Let ρ be the similarity class type of the commuting pair, (A, B). Then the number of branches of A, which are of type ρ is the number of matrices, B_{1} for which $Z_{M_{n}\left(\mathbf{F}_{q}\right)}\left(A, B_{1}\right)$ is conjugate to $Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A, B)$.

4.1 The 2×2 Case

We shall examine the similarity classes of k-tuples of commuting 2×2 matrices over \mathbf{F}_{q} in this section.

In $M_{2}\left(\mathbf{F}_{q}\right)$, there are two kinds of similarity classes:

1. The Central type.
2. The Regular/Cyclic types, where \mathbf{F}_{q}^{2} has a cyclic vector.

Lemma 4.1.1. For a matrix A, of the Central type, the branches are given in the table below:

Type	No. of Branches
Central	q
Regular	q^{2}

Proof. When A is of the Central type, $Z_{M_{2}\left(\mathbf{F}_{q}\right)}(A)=M_{2}\left(\mathbf{F}_{q}\right)$. Enumeration the similarity classes in $M_{2}\left(\mathbf{F}_{q}\right)$ leads to the table shown above.

Lemma 4.1.2. A matrix of any of the Regular types has q^{2} Regular branches.
Proof. When A is of the Regular type,

$$
Z_{M_{2}\left(\mathbf{F}_{q}\right)}(A)=\left\{a_{0} I_{2}+a_{1} A \mid a_{0}, a_{1} \in \mathbf{F}_{q}\right\}
$$

which is commutative. Hence, for any $B \in Z_{M_{2}\left(\mathbf{F}_{q}\right)}(A)$,

$$
Z_{M_{2}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{M_{2}\left(\mathbf{F}_{q}\right)}(A) .
$$

Thus, (A, B) is of the Regular type. Hence, each $B \in Z_{M_{2}\left(\mathbf{F}_{q}\right)}(A)$ is an orbit for the conjugation of $Z_{G L_{2}\left(\mathbf{F}_{q}\right)}(A)$ on $Z_{M_{2}\left(\mathbf{F}_{q}\right)}(A)$. Thus, A has q^{2} branches of the Regular type.

Arranging the two types in the order: \{Central, Regular\}, we shall write down the branching matrix $\mathcal{B}_{2}=\left[b_{i j}\right]$, indexed by the types, where for each i and $j, b_{i j}$ is the number of type i branches of a tuple of type j. Here, the branching matrix is:

$$
\mathcal{B}_{2}=\left(\begin{array}{cc}
q & 0 \\
q^{2} & q^{2}
\end{array}\right)
$$

We have

$$
c(2, k, q)=\left(\begin{array}{ll}
1 & 1
\end{array}\right) \mathcal{B}_{2}^{k}\left(\begin{array}{ll}
1 & 0
\end{array}\right)^{T}
$$

As \mathcal{B}_{2} has entries that are polynomials in q with non-negative integer coefficients, $c(2, k, q)$ is a polynomial in q with non-negative integer coefficients. Thus, Theorem 1.2.2 is proved for $n=2$.

4.2 The 3×3 Case

In $M_{3}\left(\mathbf{F}_{q}\right)$ we have the following types of similarity classes:

1. The Central type.
2. The $(2,1)$ nilpotent type: $(2,1)_{1}$.
3. The $(2,1)$ semi-simple type: $(1,1)_{1}(1)_{1}$.
4. The Regular types.

We now proceed to explain the branching rules.
Lemma 4.2.1. For a matrix A of the Central type, the branching rules are shown in the table below.

Type	Number of Branches
Central	q
$(2,1)_{1}$	q
$(1,1)_{1}(1)_{1}$	$q^{2}-q$
Regular	q^{3}

Proof. Since A is of Central type, $Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A)$ is $M_{3}\left(\mathbf{F}_{q}\right)$. Enumeration of the similarity class types in $M_{3}\left(\mathbf{F}_{q}\right)$ gives us the table above.

Lemma 4.2.2. If A is a matrix of a Regular type, then it has q^{3} branches of that same Regular type.

Proof. If A is of a Regular type,

$$
Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A)=\left\{a_{0} I_{2}+a_{1} A+a_{2} A^{2} \mid a_{0}, a_{1}, a_{2} \in \mathbf{F}_{q}\right\}
$$

which is a commutative algebra of dimension 3. Thus for any $B \in Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A)$, $Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A)$. Therefore (A, B) is Regular. The number of B for which $Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A, B)$ is $Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A)$, is q^{3}, we therefore have q^{3} Regular branches.

Lemma 4.2.3. For matrix A of the type $(2,1)_{1}$, the branching rules are given in the table below.

Type	Number of Branches
$(2,1)_{1}$	q^{2}
Regular	$q^{3}+q$

Proof. A matrix A, of the type $(2,1)_{1}$, has the canonical form, $\left(\begin{array}{ccc}a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right)$, where
$a \in \mathbf{F}_{q}$. Then,

$$
Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A)=\left\{\left.\left(\begin{array}{ccc}
a_{0} & a_{1} & b \\
0 & a_{0} & 0 \\
0 & c & d
\end{array}\right) \right\rvert\, a_{0}, a_{1}, b, c, d \in \mathbf{F}_{q}\right\}
$$

Let $B=\left(\begin{array}{ccc}a_{0} & a_{1} & b \\ 0 & a_{0} & 0 \\ 0 & c & d\end{array}\right) \in Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A)$, and $X=\left(\begin{array}{ccc}x_{0} & x_{1} & y \\ 0 & x_{0} & 0 \\ 0 & z & w\end{array}\right) \in Z_{G L_{3}\left(\mathbf{F}_{q)}\right)}(A)$
$\left(x_{0}, w \neq 0\right)$. Let $B^{\prime}=\left(\begin{array}{ccc}a_{0}^{\prime} & a_{1}^{\prime} & b^{\prime} \\ 0 & a_{0}^{\prime} & 0 \\ 0 & c^{\prime} & d^{\prime}\end{array}\right)$ be the conjugate, $X B X^{-1}$ of B by X. So, we have

$$
\left(\begin{array}{ccc}
x_{0} & x_{1} & y \tag{4.1}\\
0 & x_{0} & 0 \\
0 & z & w
\end{array}\right)\left(\begin{array}{ccc}
a_{0} & a_{1} & b \\
0 & a_{0} & 0 \\
0 & c & d
\end{array}\right)=\left(\begin{array}{ccc}
a_{0}^{\prime} & a_{1}^{\prime} & b^{\prime} \\
0 & a_{0}^{\prime} & 0 \\
0 & c^{\prime} & d^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
x_{0} & x_{1} & y \\
0 & x_{0} & 0 \\
0 & z & w
\end{array}\right) .
$$

Equating the entries in the above equation gives us $a_{0}^{\prime}=a_{0}, d^{\prime}=d$ and the following equations:

$$
\begin{align*}
x_{0} a_{1}+c y & =a_{1}^{\prime} x_{0}+b^{\prime} z \tag{4.2}\\
x_{0} b+y d & =a_{0} y+b^{\prime} w \tag{4.3}\\
a_{0} z+w c & =c^{\prime} x_{0}+d z \tag{4.4}
\end{align*}
$$

We look at 2 cases: $a_{0}=d$ and $a_{0} \neq d$.
When $a_{0}=d$,

$$
B=\left(\begin{array}{ccc}
a_{0} & a_{1} & b \\
0 & a_{0} & 0 \\
0 & c & a_{0}
\end{array}\right) \text { and } B^{\prime}=\left(\begin{array}{ccc}
a_{0} & a_{1}^{\prime} & b^{\prime} \\
0 & a_{0} & 0 \\
0 & c^{\prime} & a_{0}
\end{array}\right) .
$$

From equations (4.3) and (4.4), we have: $x_{0} b=b^{\prime} w$ and $w c=c^{\prime} x_{0}$. So we have two subcases: $b=c=0$ and $(b, c) \neq(0,0)$.

When $b=c=0$, equation (4.2) is reduced to $x_{0} a_{1}=a_{1}^{\prime} x_{0}$, hence $a_{1}^{\prime}=a_{1}$.

Therefore, $B=\left(\begin{array}{ccc}a_{0} & a_{1} & 0 \\ 0 & a_{0} & 0 \\ 0 & 0 & a_{0}\end{array}\right)$ and $Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A)$. Therefore (A, B) is of the type, $(2,1)_{1}$. The number of B such that

$$
Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A),
$$

is $q \times q=q^{2}$ (as a_{0} and a_{1} are arbitrary). Hence, A has q^{2} branches of the type, $(2,1)_{1}$.
When $(b, c) \neq 0$. We may first assume that $b \neq 0$. With $b \neq 0$ and $x_{0} b=b^{\prime} w$, we choose w such that $b^{\prime}=1$. Replacing b by $b^{\prime}=1$, we get $x_{0}=w$. From this, equation (4.4) becomes $x_{0} c=c^{\prime} x_{0}$, therefore $c=c^{\prime}$. Equation (4.2) reduces to $x_{0} a_{1}+c y=a_{1}^{\prime} x_{0}+z$. Choose z such that $a_{1}^{\prime} x_{0}=0$. Thus, $a_{1}^{\prime}=0$. So B is reduced to $\left(\begin{array}{ccc}a_{0} & 0 & 1 \\ 0 & a_{0} & 0 \\ 0 & c & a_{0}\end{array}\right)$. Therefore

$$
Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{ccc}
x_{0} & x_{1} & y \\
0 & x_{0} & 0 \\
0 & c y & x_{0}
\end{array}\right) \right\rvert\, x_{0}, x_{1}, y \in \mathbf{F}_{q}\right\}
$$

But if we conjugate this by an elementary matrix (switching the 2nd and 3rd rows (resp. columns)), we get

$$
Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A, B) \sim\left\{\left.\left(\begin{array}{ccc}
x_{0} & y & x_{1} \\
0 & x_{0} & c y \\
0 & 0 & x_{0}
\end{array}\right) \right\rvert\, x_{0}, x_{1}, y \in \mathbf{F}_{q}\right\}=Z_{(3)_{1}}
$$

which is the centralizer of the type, $(3)_{1}$, which is a Regular type. The number of B such that $Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A, B) \sim Z_{(3)_{1}}$, is $q \times q=q^{2}$ (as a_{0} and c are arbitrary). Thus, A has q^{2} branches of this Regular type.

When $b=0, c \neq 0$, in the equation $w c=c^{\prime} x_{0}$, we choose x_{0} such that $c^{\prime}=1$. Replacing c by $c^{\prime}=1$, we get $w=x_{0}$ and equation (4.2) becomes $x_{0} a_{1}+y=a_{1}^{\prime} x_{0}$.

So choose a y such that $a_{1}^{\prime}=0$. This reduces B to $\left(\begin{array}{ccc}a_{0} & 0 & 0 \\ 0 & a_{0} & 0 \\ 0 & 1 & a_{0}\end{array}\right)$, and we get,

$$
Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{ccc}
x_{0} & x_{1} & 0 \\
0 & x_{0} & 0 \\
0 & z & x_{0}
\end{array}\right) \right\rvert\, x_{0}, x_{1}, z \in \mathbf{F}_{q}\right\}
$$

which is conjugate to

$$
\left\{\left.\left(\begin{array}{ccc}
x_{0} & 0 & x_{1} \\
0 & x_{0} & z \\
0 & 0 & x_{0}
\end{array}\right) \right\rvert\, x_{0}, x_{1}, z \in \mathbf{F}_{q}\right\} \sim Z_{(3)_{1}}
$$

Hence (A, B) is of a Regular type. The number of such B, for which $Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A, B)$ is as above, is q. So A has q more branches of this Regular type.

When $a_{0} \neq d$: In equation (4.3) we choose y such that $b^{\prime}=0$, and in equation (4.4), we choose z such that $c^{\prime}=0$. Replacing b by $b^{\prime}=0$, and c by $c^{\prime}=0$, equation (4.2) is reduced to $x_{0} a_{1}=a_{1}^{\prime} x_{0}$, which implies $a_{1}^{\prime}=a_{1}$. Hence, $B=\left(\begin{array}{ccc}a_{0} & a_{1} & 0 \\ 0 & a_{0} & 0 \\ 0 & 0 & d\end{array}\right)$, and

$$
Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{ccc}
x_{0} & x_{1} & 0 \\
0 & x_{0} & 0 \\
0 & 0 & w
\end{array}\right) \right\rvert\, x_{0}, x_{1}, w \in \mathbf{F}_{q}\right\}
$$

which is the centralizer of a matrix of type $(2)_{1}(1)_{1}$ (which we shall denote as $Z_{\left.(2)_{1}(1)_{1}\right)}$, which is a Regular type. The number of B for which $Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A, B) \sim$ $Z_{(2)_{1}(1)_{1}}$, is $q(q-1) q=q^{3}-q^{2}$ (as the entries of $B: a_{0}, a_{1}$ are arbitrary, and $d \neq a_{0}$). Thus, A has $q^{3}-q^{2}$ branches of this Regular type. Adding up all the Regular branches, we have a total of

$$
q^{2}+q+q^{3}-q^{2}=q^{3}+q \text { Regular branches. }
$$

Lemma 4.2.4. If A is a matrix whose similarity class is of the type $(1,1)_{1}(1)_{1}$ i.e.,
the $(2,1)$-semisimple type, then it has

- q^{2} branches of the type, $(1,1)_{1}(1)_{1}$.
- q^{3} branches of the Regular types.

Proof. A matrix A whose similarity class is of type $(1,1)_{1}(1)_{1}$, is of the form, $A^{\prime} \oplus A^{\prime \prime}$, where A^{\prime} is a 2×2 matrix of the Central type, and $A^{\prime \prime}$ is a 1×1 matrix. As $A=A^{\prime} \oplus A^{\prime \prime}$, we know that $Z_{M_{3}\left(\mathbf{F}_{q}\right)}(A)=Z_{M_{2}\left(\mathbf{F}_{q}\right)}\left(A^{\prime}\right) \oplus Z_{M_{1}\left(\mathbf{F}_{q}\right)}\left(A^{\prime \prime}\right)$, which is $M_{2}\left(\mathbf{F}_{q}\right) \oplus M_{1}\left(\mathbf{F}_{q}\right)$. The branches of A, being in $Z_{M_{2}\left(\mathbf{F}_{q}\right)}\left(A^{\prime}\right) \oplus Z_{M_{1}\left(\mathbf{F}_{q}\right)}\left(A^{\prime \prime}\right)$, will be of the form,

$$
B^{\prime} \oplus B^{\prime \prime}
$$

where B^{\prime} is a branch of A^{\prime}, and $B^{\prime \prime}$ is a branch of $A^{\prime \prime} . A^{\prime}$ has q branches of the Central type, and q^{2} branches of the Regular type (Lemma 4.1.1). $A^{\prime \prime}$ has q branches of its own type, i.e., $(1)_{1}$ (as $\left.M_{1}\left(\mathbf{F}_{q}\right)=\mathbf{F}_{q}\right)$. Therefore, we have $q \times q=q^{2}$ branches of the type $(1,1)_{1}(1)_{1}$ and $q^{2} \times q=q^{3}$ Regular branches.

We shall arrange the types in the order: \{Central, $(2,1)_{1},(1,1)_{1}(1)_{1}$, Regular\}, and write down the branching matrix $\mathcal{B}_{3}=\left[b_{i j}\right]$, indexed by the types in that order. Each entry $b_{i j}$ of \mathcal{B}_{3}, is the number of type i branches of a type j similarity class. Then

$$
\mathcal{B}_{3}=\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
q & q & 0 & 0 \\
q^{2}-q & 0 & q^{2} & 0 \\
q^{3} & q^{3}+q & q^{3} & q^{3}
\end{array}\right)
$$

To make things easier, we shall interpret the branching rules in terms of rational canonical form (rcf) types, which we shall briefly discuss now.

The similarity class types in $M_{n}\left(\mathbf{F}_{q}\right)$ can be further classified into these rcf-types. The definition of rcf types is given below:

Definition 4.2.5. Let $A \in M_{n}\left(\mathbf{F}_{q}\right)$. As M^{A} is a finitely generated $\mathbf{F}_{q}[t]$-module, by the Structure Theorem (see Jacobson [8]), M^{A} has the decomposition

$$
\begin{equation*}
\frac{\mathbf{F}_{q}[t]}{f_{1}(t)} \oplus \cdots \oplus \frac{\mathbf{F}_{q}[t]}{f_{r}(t)} \tag{4.5}
\end{equation*}
$$

where $f_{r}(t)\left|f_{r-1}(t)\right| \cdots \mid f_{1}(t)$. Let l_{i} be the degree of f_{i}. Then $\lambda=\left(l_{1}, \ldots, l_{r}\right)$ is a partition of n and we say that A is of rational canonical form (rcf)-type λ. Thus, each rational canonical form of $M_{n}\left(\mathbf{F}_{q}\right)$ is a partition of n.

Let A be a matrix with similarity class type, $\lambda^{(1)}{ }_{d_{1}}, \ldots, \lambda^{(l)}{ }_{d_{l}}$, where for each i, $\lambda^{(i)}=\left(\lambda_{1}^{(i)}, \lambda_{2}^{(i)}, \ldots\right)$. Then there are irreducible polynomials, $p_{1}(t), \ldots, p_{l}(t)$, with degrees, d_{1}, \ldots, d_{l}, respectively, such that,

$$
M^{A}=\bigoplus_{i=1}^{l}\left(\frac{\mathbf{F}_{q}[t]}{p_{i}(t)^{\lambda_{1}^{(i)}}} \oplus \frac{\mathbf{F}_{q}[t]}{p_{i}(t)^{\lambda_{2}^{(i)}}} \oplus \cdots\right)
$$

Then, in the structure theorem decomposition of M^{A}, as given in equation (4.5), we have (see [8])

$$
f_{j}(t)=p_{1}(t)^{\lambda_{j}^{(1)}} p_{2}(t)^{\lambda_{j}^{(2)}} \cdots p_{l}(t)^{\lambda_{j}^{(l)}}
$$

Hence for each j, the degree of f_{j} is $l_{j}=\sum_{i=1}^{l} \lambda_{j}^{(i)} d_{i}$. Hence, $\left(l_{1}, l_{2}, \ldots\right)$ is

$$
\mu=\left(\sum_{i=1}^{l} \lambda_{1}^{(i)} d_{i}, \sum_{i=1}^{l} \lambda_{2}^{(i)} d_{i}, \ldots\right) .
$$

This partition μ is the rcf-type of the similarity class type

$$
\lambda^{(1)}{ }_{d_{1}}, \ldots, \lambda^{(l)}{ }_{d_{l}} .
$$

Now we get back to the 3×3 case. Here, the rcf types are $(1,1,1),(2,1)$ and (3). We see that

1. The Central type $(1,1,1)_{1}$ is the only class type with rcf type $(1,1,1)$.
2. Similarity class types: $(2,1)_{1}$ and $(1,1)_{1}(1)_{1}$ are of the ref type $(2,1)$.
3. The Regular types are of rcf type (3)

We know that there are q^{2} classes with rcf-type $(2,1)$ in $M_{3}\left(\mathbf{F}_{q}\right)$, of which $q^{2}-q$ of them are of the type $(1,1)_{1}(1)_{1}$ and q of them are of the type $(2,1)_{1}$. Hence a class of rcf type $(2,1)$, is of type $(1,1)_{1}(1)_{1}$ with probability $(q-1) / q$ and is of type $(2,1)_{1}$ with probability $1 / q$.
So, the number of Regular branches that a matrix of rcf type $(2,1)$, has on an average is

$$
\left(\frac{q-1}{q} \times q^{3}\right)+\left(\frac{1}{q} \times\left(q^{3}+q\right)\right)=q^{3}+1
$$

The average number of rcf type $(2,1)$ branches of the rcf type $(2,1)$ is

$$
\frac{q-1}{q} \times q^{2}+\frac{1}{q} \times q^{2}=q^{2} .
$$

So, our branching matrix is reduced to

$$
\mathcal{B}_{3}=\left(\begin{array}{ccc}
q & 0 & 0 \\
q^{2} & q^{2} & 0 \\
q^{3} & q^{3}+1 & q^{3}
\end{array}\right)
$$

Theorem 4.2.6. The number of similarity classes, $c(3, k, q)$, of k-tuples of commuting matrices over \mathbf{F}_{q} for $k \geq 2$ is given by

$$
\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \mathcal{B}_{3}^{k}\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)^{T}
$$

Table 4.1 shows $c(3, k, q)$ calculated for $k=1,2,3$.

k	$c(3, k, q)$
1	$q^{3}+q^{2}+q$
2	$q^{6}+q^{5}+2 q^{4}+q^{3}+2 q^{2}$
3	$q^{9}+q^{8}+2 q^{7}+2 q^{6}+3 q^{5}+2 q^{4}+2 q^{3}$

Table 4.1: $c(3, k, q)$ for $k=1,2,3$
As a consequence of Theorem 4.2.6, we get that $c(3, k, q)$ is a polynomial in q with non-negative integer coefficients for all k. This proves Theorem 1.2 .2 for this case.

Before we close this chapter and move on to the 4×4 case, we shall give an explanation of how to reduce the branching matrix (whose rows and columns are indexed by the similarity class types) to a smaller matrix whose rows and columns are indexed by the rcfs, for the general $n \times n$ case.

Let $\lambda \vdash n$. For the given $\operatorname{rcf} \lambda$, let p_{τ}^{λ} be the probability of a class of rcf type λ, being of similarity class type, τ. Let μ be another partition of n. Then, for rcf types μ and λ, the average number of rcf-type μ branches of an rcf-type λ similarity class is

$$
b_{\mu \lambda}=\sum_{r c f(\tau)=\lambda} p_{\tau}^{\lambda}\left(\sum_{r c f(\gamma)=\mu} b_{\gamma \tau}\right)
$$

4.3 The 4×4 Case

In the 4×4 case, we have 22 similarity class types. Table 4.2 shows the rcf types and the similarity class types of each rcf-type listed below it

$(1,1,1,1)$	$(2,1,1)$	$(2,2)$	$(3,1)$	(4)
$(1,1,1,1)_{1}$	$(2,1,1)_{1}$	$(2,2)_{1}$	$(3,1)_{1}$	Regular types,
	$(1,1,1)_{1}(1)_{1}$	$(1,1)_{1}(1,1)_{1}$	$(2,1)_{1}(1)_{1}$	where \mathbf{F}_{q}^{4}
		$(1,1)_{2}$	$(2)_{1}(1,1)_{1}$	has a cyclic
			$(1,1)_{1}(1)_{1}(1)_{1}$	vector.
			$(1)_{2}(1,1)_{1}$	

Table 4.2: rcf's and similarity class types of 4×4 matrices
Before we move ahead, we give a broader definition of Regular type.
Definition 4.3.1. We say that a k-tuple of commuting matrices is of Regular type if its common centralizer algebra is a commutative algebra of dimension 4 or conjugate to that of the centralizer of a Regular type from $M_{4}\left(\mathbf{F}_{q}\right)$ (note that, the centralizers of Regular types in $M_{n}\left(\mathbf{F}_{q}\right)$ are 4-dimensional and commutative).

We shall first state the branching rules of the Regular and the Central types and discuss the branching rules of the other types in different subsections of this section.
Lemma 4.3.2. If A is a matrix of a Regular type, then it has q^{4} branches of that same regular type.

Proof. The centralizer $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A)$ of A, is the algebra of polynomials in A, which is commutative. Since the characteristic polynomial of A is of degree $4, Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A)$ is 4-dimensional. Hence, for each $B \in Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A),(A, B)$ is a branch of the regular type. Therefore we have q^{4} regular branches.
Lemma 4.3.3. For A of the Central type, its branches are given in the table below:

Type	No. of Branches	Type	No. of Branches
Central	q	$(3,1)_{1}$	q
$(2,1,1)_{1}$	q	$(2,1)_{1}(1)_{1}$	$q^{2}-q$
$(1,1,1)_{1}(1)_{1}$	$q^{2}-q$	$(1,1)_{1}(1)_{1}(1)_{1}$	$\frac{q(q-1)(q-2)}{2}$
$(2,2)_{1}$	q	$(1,1)_{1}(2)_{1}$	$q^{2}-q$
$(1,1)_{1},(1,1)_{1}$	$\frac{q^{2}-q}{2}$	$(1,1)_{1}(1)_{2}$	$\frac{q^{3}-q^{2}}{2}$
$(1,1)_{2}$	$\frac{q^{2}-q}{2}$	Regular	q^{4}

Proof. As A is of Central type, $Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A)=M_{4}\left(\mathbf{F}_{q}\right)$. Enumerating the similarity classes of $M_{4}\left(\mathbf{F}_{q}\right)$ gives the above table.

4.3.1 Branching Rules of the Non-Primary, Non-Regular Types.

Any non-primary similarity class type of $M_{4}\left(\mathbf{F}_{q}\right)$ is of the form

$$
\lambda^{(1)}{ }_{d_{1}} \cdots \lambda^{(l)}{ }_{d_{l}}
$$

where $l \geq 2$. Hence the centralizer algebra of matrices of such types consist of block matrices of the form

$$
\left(\begin{array}{ccc}
X_{1} & \cdots & O \\
& \ddots & \\
O & \cdots & X_{l}
\end{array}\right)
$$

where X_{i} is in the centralizer of the primary type $\lambda^{(i)}{ }_{d_{i}}$. Therefore, the branches of such types are of the form

$$
\left(B_{1} \oplus \cdots \oplus B_{l}\right)
$$

where B_{i} is a branch of $\lambda^{(i)}{ }_{d_{i}}$, like we saw in Lemma 4.2.4. Thus, with the help of Lemmas 4.1.1, 4.1.2, 4.2.1 and 4.2.3, we have the following results:

Lemma 4.3.4. For A of the type $(1,1,1)_{1}(1)_{1}$, the branching rules are given below:

Type	Number of Branches
$(1,1,1)_{1}(1)_{1}$	q^{2}
$(2,1)_{1}(1)_{1}$	q^{2}
$(1,1)_{1}(1)_{1}(1)_{1}$	$q^{3}-q^{2}$
Regular	q^{4}

Lemma 4.3.5. If A is of type $(2,1)_{1}(1)_{1}$, then it has q^{2} branches of the type $(2,1)_{1}(1)_{1}$ and $q^{4}+q^{2}$ branches of the Regular type.

Lemma 4.3.6. For matrix, A, of similarity class type, $(1,1)_{1}(1,1)_{1}$, the branching
rules are given in the table below

Type	Number of Branches
$(1,1)_{1}(1,1)_{1}$	q^{2}
$(1,1)_{1}(2)_{1}$	$2 q^{2}$
$(1,1)_{1}(1)_{2}$	$q^{3}-q^{2}$
$(1,1)_{1}(1)_{1}(1)_{1}$	$q^{3}-q^{2}$
Regular	q^{4}

Lemma 4.3.7. If A is of type, $(1,1)_{1}(2)_{1}$, then it has q^{3} branches of the type $(1,1)_{1}(2)_{1}$ and q^{4} Regular branches.
Lemma 4.3.8. If A is of the type, $(1,1)_{1}(1)_{2}$, then it has q^{3} branches of the type $(1,1)_{1}(1)_{2}$ and q^{4} Regular branches.

Lemma 4.3.9. If A is of the type $(1,1)_{1}(1)_{1}(1)_{1}$, then it has q^{3} branches of the type $(1,1)_{1}(1)_{1}(1)_{1}$ and q^{4} Regular branches.

4.3.2 Branching Rules of the Primary Types

We have three primary types of similarity classes in the 4×4 case: $(3,1)_{1},(2,2)_{1}$ and $(2,1,1)_{1}$. The proofs of the lemmas here will be done using the technique used in the proof of Lemma 4.2.3 i.e., reducing a matrix in $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A)$ to its simplest possible forms by conjugation by elements of $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A)$.
Lemma 4.3.10. If A is of the type, $(3,1)_{1}$, it has q^{3} branches of the type $(3,1)_{1}$ and $q^{4}+q^{2}$ regular branches.
Proof. Matrix A, of type $(3,1)_{1}$ has the canonical form:

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Any matrix $B \in Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A)$ is of the form

$$
B=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & b \\
0 & a_{0} & a_{1} & 0 \\
0 & 0 & a_{0} & 0 \\
0 & 0 & c & d
\end{array}\right) .
$$

Let $X \in Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A)$.

$$
X=\left(\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & y \\
0 & x_{0} & x_{1} & 0 \\
0 & 0 & x_{0} & 0 \\
0 & 0 & z & w
\end{array}\right) \quad\left(x_{0}, w \neq 0\right)
$$

Let $B^{\prime}=\left(\begin{array}{cccc}a_{0}^{\prime} & a_{1}^{\prime} & a_{2}^{\prime} & b^{\prime} \\ 0 & a_{0}^{\prime} & a_{1}^{\prime} & 0 \\ 0 & 0 & a_{0}^{\prime} & 0 \\ 0 & 0 & c^{\prime} & d^{\prime}\end{array}\right)$ be the conjugate of B by X i.e.,

$$
\left(\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & y \\
0 & x_{0} & x_{1} & 0 \\
0 & 0 & x_{0} & 0 \\
0 & 0 & z & w
\end{array}\right)\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & b \\
0 & a_{0} & a_{1} & 0 \\
0 & 0 & a_{0} & 0 \\
0 & 0 & c & d
\end{array}\right)=\left(\begin{array}{cccc}
a_{0}^{\prime} & a_{1}^{\prime} & a_{2}^{\prime} & b^{\prime} \\
0 & a_{0}^{\prime} & a_{1}^{\prime} & 0 \\
0 & 0 & a_{0}^{\prime} & 0 \\
0 & 0 & c^{\prime} & d^{\prime}
\end{array}\right)\left(\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & y \\
0 & x_{0} & x_{1} & 0 \\
0 & 0 & x_{0} & 0 \\
0 & 0 & z & w
\end{array}\right)
$$

Then we have the following:

$$
a_{0}^{\prime}=a_{0}, d^{\prime}=d \text { and } a_{1}^{\prime}=a_{1},
$$

and the following set of equations:

$$
\begin{align*}
x_{0} a_{2}+y c & =a_{2}^{\prime} x_{0}+b^{\prime} z \tag{4.6}\\
x_{0} b+y d & =b^{\prime} w+a_{0} y \tag{4.7}\\
z a_{0}+w c & =c^{\prime} x_{0}+d z \tag{4.8}
\end{align*}
$$

We will count the number of branches by looking at the following cases:

$$
a_{0}=d \text { and } a_{0} \neq d
$$

When $a_{0}=d$: From equations 4.7 and 4.8, we get $x_{0} b=b^{\prime} w$ and $w c=c^{\prime} x_{0}$. So, we look at the cases $b=c=0$ and $(b, c) \neq(0,0)$ separately.
$\underline{b=c=0}$: In this case equation (4.6) boils down to $x_{0} a_{2}=a_{2}^{\prime} x_{0}$, therefore
$a_{2}=a_{2}^{\prime}$. Thus B is reduced to $\left(\begin{array}{cccc}a_{0} & a_{1} & a_{2} & 0 \\ 0 & a_{0} & a_{1} & 0 \\ 0 & 0 & a_{0} & 0 \\ 0 & 0 & 0 & a_{0}\end{array}\right)$. Therefore, any matrix in $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A)$ commutes with B. This means, $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A)$. Therefore the pair (A, B) is of the type $(3,1)_{1}$. We see that there are $q \times q \times q=q^{3}$ branches of this type.
$(b, c) \neq(0,0)$: First we assume that $b \neq 0$. Then equation 4.7) boils down to $x_{0} b=b^{\prime} w$. As b is non zero, choose $x_{0}=w / b$ so that $b^{\prime}=1$. Replacing b by $b^{\prime}=1$, we get $x_{0}=w$. Hence, equation (4.8) boils down to $x_{0} c=c^{\prime} x_{0}$, which implies: $c^{\prime}=c$. Thus, equation (4.6) becomes

$$
x_{0} a_{2}+y c=a_{2}^{\prime} x_{0}+z .
$$

Choose z such that $a_{2}=0$. Then B is reduced to

$$
\left(\begin{array}{cccc}
a_{0} & a_{1} & 0 & 1 \\
0 & a_{0} & a_{1} & 0 \\
0 & 0 & a_{0} & 0 \\
0 & 0 & c & a_{0}
\end{array}\right)
$$

Therefore,

$$
Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & y \\
0 & x_{0} & x_{1} & 0 \\
0 & 0 & x_{0} & 0 \\
0 & 0 & c y & x_{0}
\end{array}\right): x_{0}, x_{1}, x_{2}, y \in \mathbf{F}_{q}\right\}
$$

which is 4 dimensional and commutative (by a routine check). Hence, (A, B) is of a Regular type, and there are $q \times q^{2}=q^{3}$ such Regular branches.

Next, when $b=0$ and $c \neq 0$, equation (4.8) boils down to $w c=c^{\prime} x_{0}$. Choose an appropriate w such that $c^{\prime}=1$. Replacing c by $c^{\prime}=1$, we get $x_{0}=w$. Then equation (4.6) gets reduced to $a_{2}^{\prime} x_{0}=a_{2} x_{0}+y$. Now, we choose y such that $a_{2} x_{0}+y=$

0 . This gives us $a_{2}^{\prime}=0 . B$ is reduced to

$$
\left(\begin{array}{cccc}
a_{0} & a_{1} & 0 & 0 \\
0 & a_{0} & a_{1} & 0 \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 1 & a_{0}
\end{array}\right)
$$

and $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is

$$
\left\{\left(\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & 0 \\
0 & x_{0} & x_{1} & 0 \\
0 & 0 & x_{0} & 0 \\
0 & 0 & z & x_{0}
\end{array}\right): x_{0}, x_{1}, x_{2}, z \in \mathbf{F}_{q}\right\}
$$

which is 4 dimensional and commutative. Thus (A, B) is of the Regular type and there are q^{2} such branches.

When $a_{0} \neq d$: As $a_{0}-d \neq 0$, in equation (4.7), we choose y such that b^{\prime} becomes 0 , and in equation (4.8), choose z such that c^{\prime} becomes 0 . Therefore, equation (4.6) boils down to $x_{0} a_{2}=a_{2}^{\prime} x_{0}$, thus giving us $a_{2}=a_{2}^{\prime}$. Hence,

$$
\begin{gathered}
B=\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & 0 \\
0 & a_{0} & a_{1} & 0 \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & d
\end{array}\right), \text { and } \\
Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & 0 \\
0 & x_{0} & x_{1} & 0 \\
0 & 0 & x_{0} & 0 \\
0 & 0 & 0 & w
\end{array}\right): x_{0}, x_{1}, x_{2}, w \in \mathbf{F}_{q}\right\},
\end{gathered}
$$

which is the centralizer of a matrix of the Regular type, $(3)_{1}(1)_{1}$. So, (A, B) is of a Regular type. We see that there are $q \times(q-1) \times q^{2}=q^{4}-q^{3}$ such Regular branches. So, adding up all the Regular branches, we get the total number of regular branches of A to be

$$
\left(q^{4}-q^{3}\right)+q^{3}+q^{2}=q^{4}+q^{2} .
$$

Lemma 4.3.11. For a matrix A of similarity class type $(2,2)_{1}$, the branching rules are given in the table below.

Type of branch	Number of Branches
$(2,2)_{1}$	q^{2}
Regular	q^{4}
New type NT1	q^{2}
New type NT2	$\frac{\left(q^{3}-q^{2}\right)}{3}$
New type NT3	$\frac{\left(q^{3}-q^{2}\right)}{2}$

- The centralizer algebra of a pair of commuting matrices of type NT1 is:

$$
\left\{\left(\begin{array}{cccc}
x_{0} & x_{1} & y_{1} & y_{2} \\
0 & x_{0} & y_{3} & y_{4} \\
0 & 0 & x_{0} & x_{1} \\
0 & 0 & 0 & x_{0}
\end{array}\right): x_{0}, x_{1}, y_{1}, y_{2}, y_{3}, y_{4} \in \mathbf{F}_{q}\right\}
$$

and its group of units is therefore of size $q^{6}-q^{5}$

- The centralizer algebra of NT2 is:

$$
\left\{\left(\begin{array}{cc}
p(C) & X \\
0_{2} & p(C)
\end{array}\right): p(C) \in \mathbf{F}_{q}[C] \text { and } X \in M_{2}\left(\mathbf{F}_{q}\right)\right\}
$$

and its group of units is therefore of size $q^{6}-q^{4}$. Here C is a 2×2 matrix of the type (1) ${ }_{2}$.

- The centralizer algebra of NT3 is

$$
\left\{\left(\begin{array}{cccc}
x_{0} & 0 & y_{1} & y_{2} \\
0 & x_{1} & y_{3} & y_{4} \\
0 & 0 & x_{0} & 0 \\
0 & 0 & 0 & x_{1}
\end{array}\right): x_{0}, x_{1}, y_{1}, y_{2}, y_{3}, y_{4} \in \mathbf{F}_{q}\right\}
$$

and its group of units is therefore of size $q^{4}(q-1)^{2}$.

Proof. Matrix A of similarity class type, $(2,2)_{1}$, is of the form,

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Observe that, conjugating A by an elementary matrix, (switching the 2nd and 3rd rows(resp. columns) of A), gives us

$$
\left(\begin{array}{ll}
0_{2} & I_{2} \\
0_{2} & 0_{2}
\end{array}\right),
$$

where I_{2} is the 2×2 identity matrix and 0_{2} is the 2×20-matrix. Thus,

$$
Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A)=\left\{\left.\left(\begin{array}{cc}
C & D \\
0_{2} & C
\end{array}\right) \right\rvert\, C, D \in M_{2}\left(\mathbf{F}_{q}\right)\right\}
$$

Two matrices, $B=\left(\begin{array}{cc}C & D \\ 0_{2} & C\end{array}\right)$ and $B^{\prime}=\left(\begin{array}{ll}C^{\prime} & D^{\prime} \\ 0_{2} & C^{\prime}\end{array}\right)$, in $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A)$, are similar if there is a matrix, $\left(\begin{array}{ll}X & Y \\ 0_{2} & X\end{array}\right) \in Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A)(X$ is invertible) such that,

$$
\begin{aligned}
\left(\begin{array}{ll}
C^{\prime} & D^{\prime} \\
0_{2} & C^{\prime}
\end{array}\right)\left(\begin{array}{ll}
X & Y \\
0_{2} & X
\end{array}\right) & =\left(\begin{array}{cc}
X & Y \\
0_{2} & X
\end{array}\right)\left(\begin{array}{ll}
C & D \\
0_{2} & C
\end{array}\right) \\
\Rightarrow\left(\begin{array}{cc}
C^{\prime} X & C^{\prime} Y+D^{\prime} X \\
0_{2} & C^{\prime} X
\end{array}\right) & =\left(\begin{array}{cc}
X C & X D+Y C \\
0_{2} & X C
\end{array}\right),
\end{aligned}
$$

which means that C^{\prime} and C have to be similar. So, we look at 2 cases:

1. C is of Central type.
2. C is of Regular type.

When C is of Central type, $C^{\prime} Y+D^{\prime} X=X D+Y C$ becomes $D^{\prime} X=X D$. Hence, to find out which matrix in $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A)$ commutes with $B=\left(\begin{array}{cc}C & D \\ 0_{2} & C\end{array}\right)$, we need to
know when X commutes with D. For that we look at the different types of D.
When D is of the central type, then X can be any 2×2 invertible matrix.

$$
\text { Hence, } Z_{M_{4}\left(\mathbf{F}_{q}\right)}\left(A,\left(\begin{array}{cc}
C & D \\
0_{2} & C
\end{array}\right)\right)=Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A) \text { itself. }
$$

Therefore, (A, B) is a branch of type $(2,2)_{1}$. The number of such branches is $q \times q=q^{2}$ (C and D are arbitrary 2×2 scalar matrices).

When D is of the type $(2)_{1}$ i.e., $D=\left(\begin{array}{ll}d & 1 \\ 0 & d\end{array}\right)$, then $X D=D X$ iff $X=\left(\begin{array}{cc}x_{0} & x_{1} \\ 0 & x_{0}\end{array}\right)$. So B is $\left(\begin{array}{cccc}c & 0 & d & 1 \\ 0 & c & 0 & d \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & c\end{array}\right)\left(c, d \in \mathbf{F}_{q}\right)$. Thus the centralizer group, $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B)$, of B in $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A)$ is

$$
\left\{\left(\begin{array}{cccc}
x_{0} & x_{1} & y_{1} & y_{2} \\
0 & x_{0} & y_{3} & y_{4} \\
0 & 0 & x_{0} & x_{1} \\
0 & 0 & 0 & x_{0}
\end{array}\right): x_{0} \neq 0\right\}
$$

and its size is $(q-1) \times q^{5}=q^{6}-q^{5}$. But, none of the known types in $M_{4}\left(\mathbf{F}_{q}\right)$ have centralizer groups of size, $q^{6}-q^{5}$. We thus have a new type of similarity class of pairs of commuting matrices. This is our new type NT1. There are $q \times q=q^{2}$ such branches (the entries, c and d of B are arbitrary).

Next, if D is of type $(1)_{2}$ then the matrices that commute with D are polynomials in D, i.e., $x_{0} I+x_{1} D$, where $x_{0}, x_{1} \in \mathbf{F}_{q}$. So

$$
Z_{M_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left.\left(\begin{array}{cc}
x_{0} I_{2}+x_{1} D & Y \\
0_{2} & x_{0} I_{2}+x_{1} D
\end{array}\right) \right\rvert\, x_{0}, x_{1} \in \mathbf{F}_{q}, Y \in M_{2}\left(\mathbf{F}_{q}\right)\right\} .
$$

An element in $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is invertible if and only if $\left(x_{0}, x_{1}\right) \neq(0,0)$. Thus, the centralizer group, $Z_{G L_{n}\left(\mathbf{F}_{q}\right)}(A, B)$ has $q^{4} \times\left(q^{2}-1\right)=q^{6}-q^{4}$ matrices, which is not the size of the centralizer group of any known type in $M_{4}\left(\mathbf{F}_{q}\right)$. Thus we have $\binom{q}{2} \times q=\frac{1}{2}\left(q^{3}-q^{2}\right)$ branches of a new type, which we shall refer to as NT2.

When D is of type $(1)_{1}(1)_{1}$ i.e., $D=\left(\begin{array}{cc}d_{1} & 0 \\ 0 & d_{2}\end{array}\right)$ where $d_{1} \neq d_{2}: X$ commutes with D iff $X=\left(\begin{array}{cc}x_{0} & 0 \\ 0 & x_{1}\end{array}\right)$. So, the common centralizer, $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ of (A, B) is

$$
\left\{\left(\begin{array}{cccc}
x_{0} & 0 & y_{1} & y_{2} \\
0 & x_{1} & y_{3} & y_{4} \\
0 & 0 & x_{0} & 0 \\
0 & 0 & 0 & x_{1}
\end{array}\right): x_{i}, y_{j} \in \mathbf{F}_{q}\right\}
$$

and the size of the group, $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is $(q-1)^{2} \times q^{4}$, which is the same as that of the centralizer group of $(3,1)_{1}$. But $Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A, B)$ is not isomorphic to the centralizer of a matrix of type $(3,1)_{1}$, and in $M_{4}\left(\mathbf{F}_{q}\right)$, there is no similarity class type other than $(3,1)_{1}$, whose centralizer group is of size $q^{4}(q-1)^{2}$. Hence we have a new type, which we shall call NT3. There are $q \times\binom{ q}{2}=\frac{1}{2}\left(q^{3}-q^{2}\right)$ branches of this new type.

Now, when C is any of the regular types of matrices:
C is of type $(2)_{1}, C$ is of the form, $\left(\begin{array}{cc}a_{0} & 1 \\ 0 & a_{0}\end{array}\right)$. Here, X commutes with C iff $X=\left(\begin{array}{ll}x & y \\ 0 & x\end{array}\right)$, where $x \neq 0$. So we have the following equation:

$$
\left(\begin{array}{cccc}
a_{0} & 1 & d_{1}^{\prime} & d_{2}^{\prime} \\
0 & a_{0} & d_{3}^{\prime} & d_{4}^{\prime} \\
0 & 0 & a_{0} & 1 \\
0 & 0 & 0 & a_{0}
\end{array}\right)\left(\begin{array}{cccc}
x & y & z_{1} & z_{2} \\
0 & x & z_{3} & z_{4} \\
0 & 0 & x & y \\
0 & 0 & 0 & x
\end{array}\right)=\left(\begin{array}{cccc}
x & y & z_{1} & z_{2} \\
0 & x & z_{3} & z_{4} \\
0 & 0 & x & y \\
0 & 0 & 0 & x
\end{array}\right)\left(\begin{array}{cccc}
a_{0} & 1 & d_{1} & d_{2} \\
0 & a_{0} & d_{3} & d_{4} \\
0 & 0 & a_{0} & 1 \\
0 & 0 & 0 & a_{0}
\end{array}\right) .
$$

Then we get $d_{3}=d_{3}^{\prime}$ and the following equations:

$$
\begin{align*}
d_{1}^{\prime} x+z_{3} & =x d_{1}+y d_{3} \tag{4.9}\\
d_{2}^{\prime} x+d_{1}^{\prime} y+z_{4} & =x d_{2}+y d_{4}+z_{1} \tag{4.10}\\
d_{4}^{\prime} x+d_{3} y & =x d_{4}+z_{3} \tag{4.11}
\end{align*}
$$

In Equation (4.9) choose z_{3} so that $d_{1}^{\prime}=0$. Replacing d_{1} by $d_{1}^{\prime}=0$, we have $z_{3}=d_{3} y$. Then equation (4.11) becomes $d_{4}^{\prime} x=x d_{4}$, and therefore $d_{4}^{\prime}=d_{4}$. In equation (4.10),
choose z_{4} such that $d_{2}^{\prime}=0$. Thus, B gets reduced to $\left(\begin{array}{cccc}a_{0} & 1 & 0 & 0 \\ 0 & a_{0} & d_{3} & d_{4} \\ 0 & 0 & a_{0} & 1 \\ 0 & 0 & 0 & a_{0}\end{array}\right)$. Thus,

$$
Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}
x & y & z_{1} & z_{2} \\
0 & x & c_{3} y & c_{4} y+z_{1} \\
0 & 0 & x & y \\
0 & 0 & 0 & x
\end{array}\right): x, y, z_{1}, z_{2} \in \mathbf{F}_{q}\right\}
$$

which is commutative and 4 -dimensional. Hence, (A, B) is of a Regular type. The number of B such that (A, B) is of this Regular type, is $q \times q \times q=q^{3}$. Hence A has q^{3} branches of this Regular type.

If C is of type $(1)_{1}(1)_{1}$, so C has the canonical form $\left(\begin{array}{cc}a_{0} & 0 \\ 0 & c\end{array}\right)$, where $c \neq a_{0}$. So, $X C=C X$ iff $X=\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right)$. Now we have

$$
\left(\begin{array}{cccc}
a_{0} & 0 & d_{1}^{\prime} & d_{2}^{\prime} \\
0 & c & d_{3}^{\prime} & d_{4}^{\prime} \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & c
\end{array}\right)\left(\begin{array}{cccc}
x & 0 & z_{1} & z_{2} \\
0 & y & z_{3} & z_{4} \\
0 & 0 & x & 0 \\
0 & 0 & 0 & y
\end{array}\right)=\left(\begin{array}{cccc}
x & 0 & z_{1} & z_{2} \\
0 & y & z_{3} & z_{4} \\
0 & 0 & x & 0 \\
0 & 0 & 0 & y
\end{array}\right)\left(\begin{array}{cccc}
a_{0} & 0 & d_{1} & d_{2} \\
0 & c & d_{3} & d_{4} \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & c
\end{array}\right) .
$$

This gives us $d_{1}^{\prime}=d_{1}$ and $d_{4}^{\prime}=d_{4}$ and the following equations:

$$
\begin{align*}
c z_{3}+d_{3}^{\prime} x & =y d_{3}+a_{0} z_{3} \tag{4.12}\\
a_{0} z_{2}+d_{2}^{\prime} y & =x d_{2}+z_{2} c . \tag{4.13}
\end{align*}
$$

As $c \neq a_{0}$, we can get rid of d_{2} and d_{3} (in equations (4.12) and 4.13) and reduce
B to $\left(\begin{array}{cccc}a_{0} & 0 & d_{1} & 0 \\ 0 & c & 0 & d_{4} \\ 0 & 0 & a_{0} & 0 \\ 0 & 0 & 0 & c\end{array}\right)$. Then,

$$
Z_{M_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{cccc}
x & 0 & z_{1} & 0 \\
0 & y & 0 & z_{4} \\
0 & 0 & x & 0 \\
0 & 0 & 0 & y
\end{array}\right): x, y, z_{1}, z_{4} \in \mathbf{F}_{q}\right\} .
$$

If we conjugate the above algebra, by the elementary matrix (switching the 2nd and 3rd rows (resp. columns)), we get:

$$
\left\{\left(\begin{array}{cccc}
x & z_{1} & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & y & z_{4} \\
0 & 0 & 0 & y
\end{array}\right): x, y, z_{1}, z_{4} \in \mathbf{F}_{q}\right\}
$$

which is the centralizer algebra of a matrix of type $(2)_{1}(2)_{1}$. Hence, this branch, (A, B), is of the Regular type $(2)_{1}(2)_{1}$. The number of branches of this type is $q^{2} \times\binom{ q}{2}=\frac{1}{2}\left(q^{4}-q^{3}\right)$.

When C is of type $(1)_{2}$, we may take C to be the companion matrix of its characteristic polynomial f (a degree 2 irreducible polynomial over \mathbf{F}_{q}). Then from the equation below,

$$
\left(\begin{array}{cc}
C_{f} & D^{\prime} \\
0_{2} & C_{f}
\end{array}\right)\left(\begin{array}{ll}
X & Y \\
0_{2} & X
\end{array}\right)=\left(\begin{array}{ll}
X & Y \\
0_{2} & X
\end{array}\right)\left(\begin{array}{cc}
C_{f} & D \\
0_{2} & C_{f}
\end{array}\right),
$$

we have $C_{f} Y+D^{\prime} X=X D+Y C_{f}$ (Here X is a polynomial in C_{f}). We get 4 equations (by equating the 4 entries) and using the fact that the constant part of f is non-zero (since it is irreducible), we can reduce $\left(\begin{array}{cc}C_{f} & D \\ 0_{2} & C_{f}\end{array}\right)$ to

$$
B=\left(\begin{array}{cc}
C_{f} & \tilde{D} \\
0_{2} & C_{f}
\end{array}\right)
$$

where $\tilde{D}=\left(\begin{array}{rr}d_{1} & 0 \\ 0 & d_{2}\end{array}\right)$. Thus,

$$
Z_{M_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left(\begin{array}{cc}
x_{0} I_{2}+x_{1} C_{f} & x_{1} \tilde{D}+y_{0} I+y_{1} C_{f} \\
0_{2} & x_{0} I_{2}+x_{1} C_{f}
\end{array}\right): x_{0}, x_{1}, y_{0}, y_{1} \in \mathbf{F}_{q}\right\},
$$

which is 4 dimensional, and is commutative (again a routine check). Therefore (A, B) is of Regular type, and there are $q^{2}\binom{q}{2}=\frac{q^{4}-q^{3}}{2}$ such branches. So, adding up the regular branches gives us: $\frac{q^{4}-q^{3}}{2}+\frac{q^{4}-q^{3}}{2}+q^{3}=q^{4}$ regular types of branches.
Lemma 4.3.12. For A of similarity class type $(2,1,1)_{1}$, the branching rules are given in Table 4.3.

Type	No. of Branches	Type	No. of Branches
$(2,1,1)_{1}$	q^{2}	NT1	q
$(3,1)_{1}$	$q^{2}-q$	NT3	q^{2}
$(1,1)_{1}(2)_{1}$	$q^{3}-q^{2}$	New type NT4	q
$(2,1)_{1}(1)_{1}$	$q^{3}-q^{2}$	New type NT5	q
Regular	$q^{4}+q^{2}$		

Table 4.3: Branching Rules of type $(2,1,1)_{1}$

- The centralizer algebra of the new type NT4 is of the form

$$
\left\{\left.\left(\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & x_{3} \\
0 & x_{0} & 0 & 0 \\
0 & z_{1} & z_{2} & z_{3} \\
0 & 0 & 0 & x_{0}
\end{array}\right) \right\rvert\, x_{0}, x_{1}, x_{2}, x_{3}, z_{1}, z_{2}, z_{3} \in \mathbf{F}_{q}\right\}
$$

- The centralizer algebra of the new type NT5 is of the form

$$
\left\{\left.\left(\begin{array}{cccc}
x_{0} & 0 & x_{1} & x_{2} \\
0 & x_{0} & x_{3} & x_{4} \\
0 & 0 & y_{1} & y_{2} \\
0 & 0 & 0 & x_{0}
\end{array}\right) \right\rvert\, x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2} \in \mathbf{F}_{q}\right\}
$$

Proof. Matrix A of the type $(2,1,1)_{1}$ has the canonical form $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$, Any matrix B that commutes with A, is of the form,

$$
\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & a_{3} \\
0 & a_{0} & 0 & 0 \\
0 & b_{1} & b_{2} & b_{3} \\
0 & c_{1} & c_{2} & c_{3}
\end{array}\right) .
$$

On conjugating B by an elementary matrix (which we shall denote by E_{243}), such that the 2 nd row (column) moves to the 4th row (resp. column), the 3rd row (column) moves to the 2nd row (resp. column) and the 4th row (column) moves to the 3rd row (resp. column), we get

$$
B=\left(\begin{array}{ccc}
a_{0} & \vec{b}^{T} & a_{1} \\
\overrightarrow{0} & C & \vec{d} \\
0 & \overrightarrow{0}^{T} & a_{0}
\end{array}\right)
$$

where $\vec{b}^{T}=\left[\begin{array}{ll}b_{1} & b_{2}\end{array}\right], \vec{d}=\left[\begin{array}{l}d_{1} \\ d_{2}\end{array}\right]$, and C is a 2×2 matrix.
Let

$$
X=\left(\begin{array}{ccc}
x_{0} & \vec{y}^{T} & x_{1} \\
\overrightarrow{0} & Z & \vec{w} \\
0 & \overrightarrow{0}^{T} & x_{0}
\end{array}\right) \in Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A)
$$

Let

$$
B^{\prime}=\left(\begin{array}{ccc}
a_{0}^{\prime} & \vec{b}^{T} & a_{1}^{\prime} \\
\overrightarrow{0} & C^{\prime} & \overrightarrow{d^{\prime}} \\
0 & \overrightarrow{0}^{T} & a_{0}^{\prime}
\end{array}\right),
$$

be the conjugate of B by X. Then

$$
\left(\begin{array}{ccc}
x_{0} & \vec{y}^{T} & x_{1} \\
\overrightarrow{0} & Z & \vec{w} \\
0 & \overrightarrow{0}^{T} & x_{0}
\end{array}\right)\left(\begin{array}{ccc}
a_{0} & \vec{b}^{T} & a_{1} \\
\overrightarrow{0} & C & \vec{d} \\
0 & \overrightarrow{0}^{T} & a_{0}
\end{array}\right)=\left(\begin{array}{ccc}
a_{0}^{\prime} & \vec{b}^{T} & a_{1}^{\prime} \\
\overrightarrow{0} & C^{\prime} & \overrightarrow{d^{\prime}} \\
0 & \overrightarrow{0}^{T} & a_{0}^{\prime}
\end{array}\right)\left(\begin{array}{ccc}
x_{0} & \vec{y}^{T} & x_{1} \\
\overrightarrow{0} & Z & \vec{w} \\
0 & \overrightarrow{0}^{T} & x_{0}
\end{array}\right) .
$$

From the above equation, we get $a_{0}^{\prime}=a_{0}$, and the following set of equations:

$$
\begin{align*}
C^{\prime} Z & =Z C \tag{4.14}\\
a_{0} \vec{y}^{T}+{\overrightarrow{b^{\prime}}}^{T} Z & =x_{0} \vec{b}^{T}+\vec{y}^{T} C \tag{4.15}\\
C^{\prime} \vec{w}+x_{0} \overrightarrow{d^{\prime}} & =Z \vec{d}+a_{0} \vec{w} \tag{4.16}\\
\overrightarrow{b^{\prime} T} \cdot \vec{w}+a_{1}^{\prime} x_{0} & =x_{0} a_{1}+\vec{y}^{T} \cdot \vec{d} \tag{4.17}
\end{align*}
$$

We replace C by C^{\prime}. Then Z is a matrix that commutes with C. Hence, for each type of C, we find out Z, and with the help of equations (4.15) and (4.16), reduce B to a simpler form. To begin with there are two main cases of what C is:

- When a_{0} is an eigenvalue of C. Here C could be of the types, Central $(C=$ $\left.a_{0} I_{2}\right),(2)_{1}$ and $(1)_{1}(1)_{1}$.
- When a_{0} is not an eigenvalue of C. Here C could be of the types, Central $\left(C=c I_{2}, c \neq a_{0}\right),(2)_{1},(1)_{1}(1)_{1}$ and $(1)_{2}$.

When a_{0} is an eigenvalue of C : We have the following subcases:

- $\vec{b}=\vec{d}=\overrightarrow{0}$
- $(\vec{b}, \vec{d}) \neq(\overrightarrow{0}, \overrightarrow{0})$

Case: $\vec{b}=\vec{d}=\overrightarrow{0}$. In this case, equation (4.17) is reduced to $x_{0} a_{1}^{\prime}=x_{0} a_{1}$. This implies $a_{1}^{\prime}=a_{1}$. Therefore, the matrix that commutes with C, and equations 4.15) and 4.16), will help determine $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$.

When C is central

$$
B=\left(\begin{array}{ccc}
a_{0} & \overrightarrow{0}^{T} & a_{1} \\
\overrightarrow{0} & a_{0} I_{2} & \overrightarrow{0} \\
0 & \overrightarrow{0}^{T} & a_{0}
\end{array}\right)
$$

Here, equations 4.15 and 4.16 are void. Thus, any $X \in Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A)$ commutes with B. Thus $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)=Z_{M_{n}\left(\mathbf{F}_{q}\right)}(A)$. Therefore (A, B) is of type $(2,1,1)_{1}$ and the number of such branches is $q \times q=q^{2}$.

When C is of type $(2)_{1}$ We have

$$
C=\left(\begin{array}{cc}
a_{0} & 1 \\
0 & a_{0}
\end{array}\right), \text { and } Z=\left(\begin{array}{cc}
z_{1} & z_{2} \\
0 & z_{1}
\end{array}\right)
$$

and B is reduced to

$$
\left(\begin{array}{cccc}
a_{0} & 0 & 0 & a_{1} \\
0 & a_{0} & 1 & 0 \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & a_{0}
\end{array}\right) .
$$

Equations (4.15) and (4.16) become

$$
\begin{aligned}
\left(\begin{array}{ll}
a_{0} y_{1} & a_{0} y_{2}
\end{array}\right) & =\left(\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right)\left(\begin{array}{cc}
a_{0} & 1 \\
0 & a_{0}
\end{array}\right) \\
\binom{a_{0} w_{1}}{a_{0} w_{2}} & =\left(\begin{array}{cc}
a_{0} & 1 \\
0 & a_{0}
\end{array}\right)\binom{w_{1}}{w_{2}}
\end{aligned}
$$

$\Rightarrow y_{1}=w_{2}=0$ and therefore,

$$
Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{cccc}
x_{0} & 0 & y_{2} & x_{1} \\
0 & z_{1} & z_{2} & w_{1} \\
0 & 0 & z_{1} & 0 \\
0 & 0 & 0 & x_{0}
\end{array}\right) \right\rvert\, x_{0}, x_{1}, y_{2}, z_{1}, z_{2}, w_{1} \in \mathbf{F}_{q}\right\}
$$

Conjugating this matrix by elementary matrices (by switching the 3rd and 4th rows (resp. columns)), gives us

$$
\left\{\left.\left(\begin{array}{cccc}
x_{0} & 0 & x_{1} & y_{2} \\
0 & z_{1} & w_{1} & z_{2} \\
0 & 0 & x_{0} & 0 \\
0 & 0 & 0 & z_{1}
\end{array}\right) \right\rvert\, x_{0}, x_{1}, y_{2}, z_{1}, z_{2}, w_{1} \in \mathbf{F}_{q}\right\}
$$

which is the centralizer of a pair of commuting matrices of the new type, NT3. Thus the commuting pair (A, B) is of similarity class type, NT3. Thus, A has $q \times q=q^{2}$ branches of this new type.

When C is of type $(1)_{1}(1)_{1}$,

$$
C=\left(\begin{array}{cc}
a_{0} & 0 \\
0 & c
\end{array}\right) \quad\left(c \neq a_{0}\right) \text { and } Z=\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{4}
\end{array}\right) .
$$

So B, in this case, is $\left(\begin{array}{cccc}a_{0} & 0 & 0 & a_{1} \\ 0 & a_{0} & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & a_{0}\end{array}\right)$. From equations 4.15 and 4.16), we have the following:

$$
\begin{aligned}
\left(\begin{array}{ll}
a_{0} y_{1} & a_{0} y_{2}
\end{array}\right) & =\left(\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right)\left(\begin{array}{cc}
a_{0} & 0 \\
0 & c
\end{array}\right) \\
\binom{a_{0} w_{1}}{a_{0} w_{2}} & =\left(\begin{array}{ll}
a_{0} & 0 \\
0 & c
\end{array}\right)\binom{w_{1}}{w_{2}}
\end{aligned}
$$

which leaves us with $y_{2}=w_{2}=0\left(\right.$ since $\left.a_{0} \neq c\right)$ and therefore

$$
Z_{M_{4}\left(\mathbf{F}_{q)}\right)}(A, B)=\left\{\left.\left(\begin{array}{cccc}
x_{0} & y_{1} & 0 & x_{1} \\
0 & z_{1} & 0 & w_{1} \\
0 & 0 & z_{2} & 0 \\
0 & 0 & 0 & x_{0}
\end{array}\right) \right\rvert\, x_{0}, x_{1}, y_{1}, z_{1}, z_{2}, w_{1} \in \mathbf{F}_{q}\right\}
$$

conjugating this matrix by the elementary matrix, E_{234} (which moves the 2nd row (resp. column) to the 3rd row (resp. column), 3rd row (resp. column) to the 4th row (resp. column), and the 4th row (resp. column) to the 3nd row (resp. column)), we get

$$
\left\{\left.\left(\begin{array}{cccc}
x_{0} & x_{1} & y_{1} & 0 \\
0 & x_{0} & 0 & 0 \\
0 & w_{1} & z_{1} & 0 \\
0 & 0 & 0 & z_{2}
\end{array}\right) \right\rvert\, x_{0}, x_{1}, y_{1}, z_{1}, z_{2}, w_{1} \in \mathbf{F}_{q}\right\}
$$

which is the centralizer algebra of a matrix of the type $(2,1)_{1}(1)_{1}$. Hence the (A, B) is of type, $(2,1)_{1}(1)_{1}$, and we have $q \times q \times(q-1)=q^{3}-q^{2}$ (as a_{0}, a_{1} arbitrary and $c \neq a_{0}$) branches of this type.

Case: $(\vec{b}, \vec{d}) \neq(\overrightarrow{0}, \overrightarrow{0})$: In this case, we can find a suitable \vec{y} or \vec{w} in equa-
tion (4.17) and get rid of the entry a_{1} of the matrix B. So B is:

$$
\left(\begin{array}{ccc}
a_{0} & \vec{b} & 0 \\
\overrightarrow{0} & C & \vec{d} \\
0 & \overrightarrow{0}^{T} & a_{0}
\end{array}\right)
$$

When $C=a_{0} I: Z$ is any 2×2 invertible matrix. We first assume $\vec{b} \neq \overrightarrow{0}$.
Equation 4.15 becomes

$$
{\overrightarrow{b^{\prime}}}^{T} Z=x_{0} \vec{b}^{T}
$$

We may replace Z by $x_{0}^{-1} Z$ so that we have

$$
{\overrightarrow{b^{\prime}}}^{T} Z=\vec{b}^{T} \text { and } Z \vec{d}=\vec{d}^{\prime}
$$

Since $\vec{b} \neq \overrightarrow{0}$ and Z is invertible, we can find a suitable Z such that ${\overrightarrow{b^{\prime}}}^{T}=$ $\left(\begin{array}{ll}1 & 0\end{array}\right)$. Now, let $\vec{b}^{T}=\vec{b}^{T}=\left(\begin{array}{ll}1 & 0\end{array}\right)$, then equation 4.15 gives us $Z=$ $\left(\begin{array}{cc}1 & 0 \\ z_{3} & z_{4}\end{array}\right)$. Hence, equation 4.16 boils down to

$$
\left(\begin{array}{cc}
1 & 0 \tag{4.18}\\
z_{3} & z_{4}
\end{array}\right)\binom{d_{1}}{d_{2}}=\binom{d_{1}^{\prime}}{d_{2}^{\prime \prime}}
$$

therefore

$$
\binom{d_{1}^{\prime}}{d_{2}^{\prime}}=\binom{d_{1}}{z_{3} d_{1}+z_{4} d_{2}}
$$

If $\vec{d} \neq \overrightarrow{0}$, with $d_{1} \neq 0$, then we can find z_{3} so that $z_{4} d_{2}+d_{1} z_{3}=0$, which leaves us with $d_{2}^{\prime}=0$. Hence, B is reduced to

$$
\left(\begin{array}{cccc}
a_{0} & 1 & 0 & 0 \\
0 & a_{0} & 0 & d_{1} \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & a_{0}
\end{array}\right)
$$

and any $X \in Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is of the form

$$
X=\left(\begin{array}{cccc}
x_{0} & y_{1} & y_{2} & x_{1} \\
0 & x_{0} & 0 & d_{1} y_{1} \\
0 & 0 & z_{4} & w_{2} \\
0 & 0 & 0 & x_{0}
\end{array}\right)
$$

Conjugate this by the elementary matrix (switching the 3rd and 4th rows (resp. columns)). Then we get:

$$
\left(\begin{array}{cccc}
x_{0} & y_{1} & x_{1} & y_{2} \\
0 & x_{0} & d_{1} y_{1} & 0 \\
0 & 0 & x_{0} & 0 \\
0 & 0 & w_{2} & z_{4}
\end{array}\right)
$$

Thus, $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is conjugate to the centralizer of a matrix of type $(3,1)_{1}$. Hence (A, B) is of type $(3,1)_{1}$. There are $q(q-1)=q^{2}-q$ branches of this type.

Now when $\vec{d} \neq 0$ and $d_{1}=0$, then equation 4.18 becomes

$$
\binom{d_{1}^{\prime}}{d_{2}^{\prime}}=\binom{0}{z_{4} d_{2}}
$$

which can be reduced to $\binom{0}{1}$. Thus B is reduced to

$$
\left(\begin{array}{cccc}
a_{0} & 1 & 0 & 0 \\
0 & a_{0} & 0 & 0 \\
0 & 0 & a_{0} & 1 \\
0 & 0 & 0 & a_{0}
\end{array}\right)
$$

and $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is

$$
\left\{\left.\left(\begin{array}{cccc}
x_{0} & y_{1} & y_{2} & x_{1} \\
0 & x_{0} & 0 & y_{2} \\
0 & z_{3} & x_{0} & w_{2} \\
0 & 0 & 0 & x_{0}
\end{array}\right) \right\rvert\, x_{0}, x_{1}, y_{1}, y_{2}, z_{3}, w_{2} \in \mathbf{F}_{q}\right\}
$$

On conjugating X by the elementary matrices such that its 2 nd and 3rd rows and columns are switched, we get

$$
Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B) \sim\left\{\left.\left(\begin{array}{cccc}
x_{0} & y_{2} & y_{1} & x_{1} \\
0 & x_{0} & z_{3} & w_{2} \\
0 & 0 & x_{0} & y_{2} \\
0 & 0 & 0 & x_{0}
\end{array}\right) \right\rvert\, x_{0}, x_{1}, y_{1}, y_{2}, z_{3}, w_{2} \in \mathbf{F}_{q}\right\}
$$

which is the centralizer of a pair of commuting matrices of the new type NT1. Hence (A, B) is of type NT1. So we have q branches of the new type NT1.

When $\vec{d}=\overrightarrow{0}$, then

$$
B=\left(\begin{array}{cccc}
a_{0} & 1 & 0 & 0 \\
0 & a_{0} & 0 & 0 \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & a_{0}
\end{array}\right)
$$

Hence $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ contains matrices of the form

$$
X=\left(\begin{array}{cccc}
x_{0} & y_{1} & y_{2} & x_{1} \\
0 & x_{0} & 0 & 0 \\
0 & z_{3} & z_{4} & w_{2} \\
0 & 0 & 0 & x_{0}
\end{array}\right)
$$

Thus, $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is 7 dimensional. As there is no known type in $M_{4}\left(\mathbf{F}_{q}\right)$ whose centralizer is 7 dimensional, we have a new type, which we call NT4. There are q branches of this type.

When $\vec{b}=\overrightarrow{0}$ and $\vec{d} \neq \overrightarrow{0}$: From equation (4.16), we can find Z such that
$Z \vec{d}=\binom{1}{0}$ and our B is reduced to

$$
\left(\begin{array}{cccc}
a_{0} & 0 & 0 & 0 \\
0 & a_{0} & 0 & 1 \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & a_{0}
\end{array}\right)
$$

and therefore $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ has matrices of the form

$$
\left(\begin{array}{cccc}
x_{0} & 0 & y_{2} & x_{1} \\
0 & x_{0} & z_{2} & w_{1} \\
0 & 0 & z_{4} & w_{2} \\
0 & 0 & 0 & x_{0}
\end{array}\right)
$$

Hence, $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is 7 dimensional, but it is not conjugate to the centralizer of NT4 and therefore, the branch is of a new type, which we shall call NT5. There are q such branches.

When C is of type $(2)_{1}$ i.e., $C=\left(\begin{array}{cc}a_{0} & 1 \\ 0 & a_{0}\end{array}\right)$: We have $Z=\left(\begin{array}{cc}z_{1} & z_{2} \\ 0 & z_{1}\end{array}\right)$ where $z_{1} \neq 0$. From equation 4.15, we get:

$$
\vec{b}^{T}\left(\begin{array}{cc}
z_{1} & z_{2} \tag{4.19}\\
0 & z_{1}
\end{array}\right)+\vec{y}^{T}\left(a_{0} I_{2}-C\right)=x_{0} \vec{b}^{T}
$$

As $a_{0} I_{2}-C=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)$, the LHS in equation 4.19 above boils down to

$$
\left(\begin{array}{ll}
b_{1}^{\prime} z_{1} & b_{1}^{\prime} z_{2}+b_{2}^{\prime} z_{1}-y_{1}
\end{array}\right)
$$

Choose y_{1} so that $\vec{b}^{T}=\left(\begin{array}{ll}b_{1}^{\prime} z_{1} & 0\end{array}\right)$. We now have two cases: $b_{1}^{\prime} \neq 0$ and $b_{1}^{\prime}=0$.
When $b_{1}^{\prime} \neq 0$, we can choose z_{1} so that $\vec{b}^{T}=\left(\begin{array}{ll}1 & 0\end{array}\right)$. Replacing \vec{b}^{T} with
$\vec{b}^{T}=\left(\begin{array}{ll}1 & 0\end{array}\right)$, equation 4.15 becomes

$$
\left(\begin{array}{ll}
z_{1} & z_{2}-y_{1}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)
$$

which implies: $z_{1}=1$ and $y_{1}=z_{2}$. So $\vec{y}^{T}=\left(\begin{array}{ll}z_{2} & y_{2}\end{array}\right)$.
Then equation (4.16) is reduced to

$$
\left(\begin{array}{cc}
1 & z_{2} \\
0 & 1
\end{array}\right)\binom{d_{1}}{d_{2}}+\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right)\binom{w_{1}}{w_{2}}=\binom{d_{1}^{\prime}}{d_{2}^{\prime}}
$$

which implies that we can choose w_{2} appropriately so that

$$
\binom{d_{1}^{\prime}}{d_{2}^{\prime}}=\binom{0}{d_{2}}
$$

Thus B is reduced to

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{0} & 1 & 0 & 0 \\
0 & a_{0} & 1 & 0 \\
0 & 0 & a_{0} & d_{2} \\
0 & 0 & 0 & a_{0}
\end{array}\right), \text { and } Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B) \text { is } \\
\left\{\left(\begin{array}{cccc}
x_{0} & y_{1} & y_{2} & x_{1} \\
0 & x_{0} & y_{1} & d_{2} y_{2} \\
0 & 0 & x_{0} & d_{2} y_{1} \\
0 & 0 & 0 & x_{0}
\end{array}\right): x_{0}, x_{1}, y_{1}, y_{2} \in \mathbf{F}_{q}\right\}
\end{gathered}
$$

which is 4-dimensional and commutative. This branch (A, B) is of a Regular type, and there are $q \times q=q^{2}$ such branches.

Now if $b_{1}=0$, then we have $\vec{b}^{T}=\overrightarrow{0}^{T}$. Then equation 4.16 becomes

$$
\left(\begin{array}{cc}
z_{1} & z_{2} \\
0 & z_{1}
\end{array}\right)\binom{d_{1}}{d_{2}}+\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right)\binom{w_{1}}{w_{2}}=\left(\begin{array}{ll}
d_{1}^{\prime} & d_{2}^{\prime}
\end{array}\right)
$$

which gives us

$$
\overrightarrow{d^{\prime}}=\binom{z_{1} d_{1}+z_{2} d_{2}-w_{2}}{z_{1} d_{2}}
$$

choose w_{2} such that $\overrightarrow{d^{\prime}}=\binom{0}{z_{1} d_{2}}$.
If $d_{2} \neq 0$, we can scale it to 1 and thus we have

$$
B=\left(\begin{array}{cccc}
a_{0} & 0 & 0 & 0 \\
0 & a_{0} & 1 & 0 \\
0 & 0 & a_{0} & 1 \\
0 & 0 & 0 & a_{0}
\end{array}\right)
$$

so in this case $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is:

$$
\left\{\left(\begin{array}{cccc}
x_{0} & 0 & 0 & x_{1} \\
0 & x_{0} & z_{2} & w_{1} \\
0 & 0 & x_{0} & z_{2} \\
0 & 0 & 0 & x_{0}
\end{array}\right): x_{0}, x_{1}, w_{1}, z_{2} \in F_{q}\right\}
$$

It is 4-dimensional and commutative. Therefore, this branch too is of a Regular type and the number of branches is q. So we have a total of $q^{2}+q$ branches of Regular types in this case.

If $d_{2}=0$, we are back to the case $\vec{b}=\vec{d}=\overrightarrow{0}$.
When $C=\left(\begin{array}{cc}a_{0} & 0 \\ 0 & c\end{array}\right)\left(c \neq a_{0}\right), Z=\left(\begin{array}{cc}z_{1} & 0 \\ 0 & z_{4}\end{array}\right)$. So equation 4.15 becomes

$$
\left(\begin{array}{ll}
b_{1}^{\prime} & b_{2}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{4}
\end{array}\right)+\left(\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & a_{0}-c
\end{array}\right)=\left(\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right)
$$

We get from this

$$
\left(\begin{array}{ll}
z_{1} b_{1}^{\prime} & z_{4} b_{2}^{\prime}+\left(a_{0}-c\right) y_{2}
\end{array}\right)=\left(\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right)
$$

As $a_{0}-c \neq 0$, we can get rid of b_{2}^{\prime} so that $\vec{b}^{T}=\left(\begin{array}{ll}z_{1} b_{1}^{\prime} & 0\end{array}\right)$.

If $b_{1}^{\prime} \neq 0$, then we can reduce \vec{b}^{T} to $\left(\begin{array}{ll}1 & 0\end{array}\right)$. Replace ${\overrightarrow{b^{T}}}^{T}$ by $\vec{b}^{T}=\left(\begin{array}{ll}1 & 0\end{array}\right)$. Then, from equation 4.15, we get $\left(\begin{array}{ll}z_{1} & \left(a_{0}-c\right) y_{2}\end{array}\right)=\left(\begin{array}{ll}1 & 0\end{array}\right)$. Thus $z_{1}=1$ and $y_{2}=0$. So $Z=\left(\begin{array}{cc}1 & 0 \\ 0 & z_{4}\end{array}\right)$.
Equation 4.16 becomes

$$
\binom{d_{1}^{\prime}}{d_{2}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
0 & z_{4}
\end{array}\right)\binom{d_{1}}{d_{2}}+\left(\begin{array}{cc}
0 & 0 \\
0 & a_{0}-c
\end{array}\right)\binom{w_{1}}{w_{2}}
$$

using $a_{0} \neq c$, we can reduce $\overrightarrow{d^{\prime}}$ to $\binom{d_{1}}{0}$. Thus

$$
B=\left(\begin{array}{cccc}
a_{0} & 1 & 0 & 0 \\
0 & a_{0} & 0 & d_{1} \\
0 & 0 & c & 0 \\
0 & 0 & 0 & a_{0}
\end{array}\right)
$$

Then $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is

$$
\left\{\left(\begin{array}{cccc}
x_{0} & y_{1} & 0 & x_{1} \\
0 & x_{0} & 0 & d_{1} y_{1} \\
0 & 0 & z_{4} & 0 \\
0 & 0 & 0 & x_{0}
\end{array}\right) x_{0}, x_{1}, y_{1}, z_{4} \in \mathbf{F}_{q}\right\}
$$

which is 4-dimensional and commutative. Therefore this branch is of a Regular type. The number of such branches is $q^{2}(q-1)=q^{3}-q^{2}$.

When $b_{1}^{\prime}=0$, then $\vec{b}^{T}=\overrightarrow{0}^{T}$. Then equation 4.16 becomes

$$
\begin{aligned}
\binom{d_{1}^{\prime}}{d_{2}^{\prime}} & =\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{4}
\end{array}\right)\binom{d_{1}}{d_{2}}+\left(\begin{array}{cc}
0 & 0 \\
0 & a_{0}-c
\end{array}\right)\binom{w_{1}}{w_{2}} \\
& =\binom{z_{1} d_{1}}{z_{4} d_{2}+\left(a_{0}-c\right) w_{2}}
\end{aligned}
$$

As $a_{0} \neq c$, we can make $z_{4} d_{2}$ vanish by choosing w_{2} appropriately. So we have
$\overrightarrow{d^{\prime}}=\binom{z_{1} d_{1}}{0}$. If $d_{1} \neq 0$, then choose z_{1} so that $\overrightarrow{d^{\prime}}=\binom{1}{0}$ and B is reduced to

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{0} & 0 & 0 & 0 \\
0 & a_{0} & 0 & 1 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & a_{0}
\end{array}\right) \\
\text { Hence } Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left(\begin{array}{cccc}
x_{0} & 0 & 0 & x_{1} \\
0 & x_{0} & 0 & w_{1} \\
0 & 0 & z_{4} & 0 \\
0 & 0 & 0 & x_{0}
\end{array}\right) x_{0}, x_{1}, w_{1}, z_{4} \in \mathbf{F}_{q}\right\},
\end{gathered}
$$

which is 4 dimensional and commutative. Thus the pair (A, B) is of Regular type and there are $q(q-1)=q^{2}-q$ such branches. So we have a total of $\left(q^{3}-q^{2}\right)+\left(q^{2}-q\right)+\left(q^{2}+q\right)=q^{3}+q^{2}$ branches of the Regular type so far.

When a_{0} is not an eigenvalue of C : In equations (4.15) and 4.16), using the fact that $C-a_{0} I$ is invertible, we can reduce \vec{b} and \vec{d} to $\overrightarrow{\overrightarrow{0}}$. Hence, equation 4.16 is reduced to $a_{1}^{\prime} x_{0}=x_{0} a_{1}^{\prime}$, thus $a_{1}^{\prime}=a_{1}$. So B is reduced to

$$
\left(\begin{array}{ccc}
a_{0} & \overrightarrow{0}^{T} & a_{1} \\
\overrightarrow{0} & C & \overrightarrow{0} \\
0 & \overrightarrow{0}^{T} & a_{0}
\end{array}\right)
$$

When C is of the Central type, $C=c I_{2}$, where $c \neq a_{0}$. We have

$$
\begin{gathered}
B=\left(\begin{array}{ccc}
a_{0} & \overrightarrow{0}^{T} & a_{1} \\
\overrightarrow{0} & c I_{2} & \overrightarrow{0} \\
0 & \overrightarrow{0}^{T} & a_{0}
\end{array}\right) \\
\text { and } Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{ccc}
x_{0} & \overrightarrow{0}^{T} & x_{1} \\
\overrightarrow{0} & Z & \overrightarrow{0} \\
0 & \overrightarrow{0}^{T} & x_{0}
\end{array}\right) \right\rvert\, x_{0}, x_{1} \in \mathbf{F}_{q}, Z \in M_{2}\left(\mathbf{F}_{q}\right)\right\} .
\end{gathered}
$$

On conjugating $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ by E_{234}, we get

$$
\left\{\left.\left(\begin{array}{ccc}
x_{0} & x_{1} & \overrightarrow{0}^{T} \\
0 & x_{0} & \overrightarrow{0}^{T} \\
\overrightarrow{0} & \overrightarrow{0} & Z
\end{array}\right) \right\rvert\, x_{0}, x_{1} \in \mathbf{F}_{q}, Z \in M_{2}\left(\mathbf{F}_{q}\right)\right\},
$$

which is the centralizer of a matrix of type, $(1,1)_{1}(2)_{1}$. Hence, (A, B) is of type, $(1,1)_{1}(2)_{1}$. A has $q \times q \times(q-1)=q^{3}-q^{2}$ such branches.

When C is a matrix of Regular type, i.e, $C=\left(\begin{array}{ll}c & 1 \\ 0 & c\end{array}\right), C=\left(\begin{array}{ll}c & 0 \\ 0 & s\end{array}\right)\left(c \neq a_{0}\right.$, $c \neq s$ and $s \neq a_{0}$), and $C=C_{f}$, where $f(t)$ is an irreducible polynomial in $\mathbf{F}_{q}[t]$ of degree 2. So, B is of the form, $\left(\begin{array}{ccc}a_{0} & \overrightarrow{0}^{T} & a_{1} \\ \overrightarrow{0} & C & \overrightarrow{0} \\ 0 & \overrightarrow{0}^{T} & a_{0}\end{array}\right)$, where C is of any one of the above mentioned forms. Then

$$
Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{ccc}
x_{0} & \overrightarrow{0}^{T} & x_{1} \\
\overrightarrow{0} & Z & \overrightarrow{0} \\
0 & \overrightarrow{0}^{T} & x_{0}
\end{array}\right) \right\rvert\, x_{0}, x_{1} \in \mathbf{F}_{q}, Z \in Z_{M_{2}\left(\mathbf{F}_{q)}\right)}(C)\right\}
$$

which on conjugation by E_{234} becomes,

$$
\left\{\left.\left(\begin{array}{ccc}
x_{0} & x_{1} & \overrightarrow{0}^{T} \\
0 & x_{0} & \overrightarrow{0}^{T} \\
\overrightarrow{0} & \overrightarrow{0} & Z
\end{array}\right) \right\rvert\, x_{0}, x_{1} \in \mathbf{F}_{q}, Z \in Z_{M_{2}\left(\mathbf{F}_{q}\right)}(C)\right\}
$$

which is the centralizer of a matrix which is of the type, $(2)_{1} \tau$, where τ is a Regular type in $M_{2}\left(\mathbf{F}_{q}\right)$. Hence, (A, B) is of the type $(2)_{1} \tau$, which is a Regular type. So A has

$$
q^{2}(q-1+(q-1)(q-2) / 2+q(q-1) / 2)=q^{4}-q^{3}
$$

branches of these Regular type. So, adding up the number of all the Regular branches gives

$$
\left(q^{4}-q^{3}\right)+\left(q^{3}+q^{2}\right)
$$

which is equal to $q^{4}+q^{2}$ Regular branches and hence the Table 4.3
Lemma 4.3.13. If A is of type $(1,1)_{2}$, then it has q^{2} branches of the type $(1,1)_{2}$ and q^{4} regular branches.

Proof. The proof is like that of the $(1,1)_{1}$ case for 2×2 matrices over $\mathbf{F}_{q^{2}}$.

4.3.3 Branching Rules of the New Types

While finding out the branching rules for the types, $(2,1,1)_{1}$ and $(2,2)_{1}$, we got 5 new types of branches: NT1, NT2, NT3, NT4 and NT5. In this subsection, we will see the branching rules of those new types.

Lemma 4.3.14. For a pair (A, B) of similarity class type NT1, the branching rules are given in the table below:

Type of branch	No. of Branches
NT1	q^{3}
Regular	$q^{4}-q^{3}$
New Type NT6	$q^{4}-q^{2}$

The centralizer of the new type NT6 is

$$
\left\{\left.\left(\begin{array}{cc}
a_{0} I_{2} & C \\
0_{2} & a_{0} I_{2}
\end{array}\right) \right\rvert\, a_{0} \in \mathbf{F}_{q}, C \in M_{2}\left(\mathbf{F}_{q}\right)\right\}
$$

Proof. In this case,

$$
Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left\{\left.\left(\begin{array}{cc}
a_{0} I_{2}+a_{1} D & C \\
0_{2} & a_{0} I_{2}+a_{1} D
\end{array}\right) \right\rvert\, C \in M_{2}\left(\mathbf{F}_{q}\right), a_{0}, a_{1} \in F_{q}\right\}
$$

where $D=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
To see the branching rules here, we will use a different approach from what we have been using so far. Let $M=\left(\begin{array}{cc}a_{0} I_{2}+a_{1} D & C \\ 0_{2} & a_{0} I_{2}+a_{1} D\end{array}\right)$ be an invertible matrix and $X=\left(\begin{array}{cc}x_{0} I_{2}+x_{1} D & Y \\ 0_{2} & x_{0} I_{2}+x_{1} D\end{array}\right)$. We have

$$
M X=\left(\begin{array}{cc}
\left(a_{0} I_{2}+a_{1} D\right)\left(x_{0} I_{2}+x_{1} D\right) & \left(a_{0} I_{2}+a_{1} D\right) Y+C\left(x_{0} I_{2}+x_{1} D\right) \\
0_{2} & \left(a_{0} I_{2}+a_{1} D\right)\left(x_{0} I_{2}+x_{1} D\right)
\end{array}\right)
$$

$$
X M=\left(\begin{array}{cc}
\left(x_{0} I_{2}+x_{1} D\right)\left(a_{0} I_{2}+a_{1} D\right) & \left(x_{0} I_{2}+x_{1} D\right) C+Y\left(a_{0} I_{2}+a_{1} D\right) \\
0_{2} & \left(x_{0} I_{2}+x_{1} D\right)\left(a_{0} I_{2}+a_{1} D\right)
\end{array}\right)
$$

So, $X M=M X$ if and only if

$$
a_{1} D Y+x_{1} C D=x_{1} D C+a_{1} Y D
$$

which implies

$$
\begin{equation*}
\left[a_{1} Y-x_{1} C, D\right]=0 \tag{4.20}
\end{equation*}
$$

Thus we need to deal with 4 cases of what x_{1} and Y are, in equation 4.20.
When $x_{1}=0$ and $[Y, D]=0$: There are $q q^{2}=q^{3}$ matrices X in this case and Equation (4.20) holds for any a_{1} and any C. Thus the centralizer group, $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)$, of X in $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ itself.
Thus, under conjugation by $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B)$:

- Orbit size of $X=1$.
- Number of orbits is $q^{3} / 1=q^{3}$.

Thus (A, B, X) is of type NT1 and the number of branches is q^{3}
When $x_{1}=0$ and $[Y, D] \neq 0$: The number of X 's is $q\left(q^{4}-q^{2}\right)$. Thus, equation (4.20) boils down to $a_{1}[Y, D]=0$. But $[Y, D] \neq 0$ implies $a_{1}=0$.

$$
\text { Hence, } Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)=\left\{\left.\left(\begin{array}{cc}
a_{0} I_{2} & C \\
0_{2} & a_{0} I_{2}
\end{array}\right) \right\rvert\, a_{0} \neq 0, C \in M_{2}\left(\mathbf{F}_{q}\right)\right\} .
$$

The size of $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)$ is, $(q-1) q^{4}=q^{5}-q^{4}$. But none of the so far known types of similarity classes (the types in $M_{4}\left(\mathbf{F}_{q}\right)$ and the new types NT1, NT2, NT3, NT4 and NT5), has a 5 -dimensional centralizer algebra. So we have another new type, which we shall call NT6. We get:

- Orbit size of X is $\left(q^{6}-q^{5}\right) /\left(q^{5}-q^{4}\right)=q$.
- Number of orbits is $q\left(q^{4}-q^{2}\right) / q=q^{4}-q^{2}$.

Thus (A, B, X) is of type NT6 and the number of such branches is $q^{4}-q^{2}$.
When $x_{1} \neq 0$ and $[Y, D]=0$: The number of X 's is

$$
q(q-1) q^{2}=q^{4}-q^{3} .
$$

Thus, Equation (4.20 boils down to $x_{1}[C, D]=0$, which means that $[C, D]$ is 0 . Thus, $C=b_{0} I_{2}+b_{1} D$. So

$$
Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)=\left\{\left.\left(\begin{array}{cc}
a_{0} I_{2}+a_{1} D & b_{0} I_{2}+b_{1} D \\
0_{2} & a_{0} I_{2}+a_{1} D
\end{array}\right) \right\rvert\, a_{0} \neq 0 b_{0}, b_{1} \in \mathbf{F}_{q}\right\}
$$

which is a commutative group of size $q^{4}-q^{3}$. So $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)$ is 4-dimensional. We get:

- Orbit size of X is $\left(q^{6}-q^{5}\right) /\left(q^{4}-q^{3}\right)=q^{2}$.
- Number of orbits is $\left(q^{4}-q^{3}\right) / q^{2}=q^{2}-q$.

Thus (A, B, X) is of a Regular type and the number of such Regular branches is $q^{2}-q$.

When $x_{1} \neq 0$ and $[Y, D] \neq 0$: The number of $X^{\prime} s$ of this kind is $q(q-1)\left(q^{4}-q^{2}\right)$. In this case, equation (4.20) remains as it is. This implies, $x_{1} C-a_{1} Y \in \mathbf{F}_{q}[D]$, and $x_{1} \neq 0$ implies $C=x_{1}^{-1} a_{1} Y+b_{0} I_{2}+b_{1} D$. So, $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)$ is

$$
\left\{\left.\left(\begin{array}{cc}
a_{0} I_{2}+a_{1} D & x_{1}^{-1} a_{1} Y+b_{0} I_{2}+b_{1} D \\
0_{2} & a_{0} I_{2}+a_{1} D
\end{array}\right) \right\rvert\, a_{0} \neq 0, a_{1}, b_{0}, b_{1} \in \mathbf{F}_{q}\right\}
$$

It is commutative, and is of size $q^{4}-q^{3}$. So $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)$ is 4-dimensional. Hence, (A, B, X) is of a Regular type. We have:

- Orbit size of $X=\left(q^{6}-q^{5}\right) /\left(q^{4}-q^{3}\right)=q^{2}$.
- Number of orbits is $q(q-1)\left(q^{4}-q^{2}\right) / q^{2}=(q-1)\left(q^{3}-q\right)$.

The total number of Regular branches is

$$
\left(q^{2}-q\right)+(q-1)\left(q^{3}-q\right)=q^{4}-q^{3} \text { Regular branches. }
$$

Lemma 4.3.15. For (A, B) of similarity class type NT2, the branching rules are given in the table below

Type	Number of Branches
NT2	q^{3}
Regular	$q^{4}-q^{3}$
NT6	$q^{4}-q^{3}$

Proof. $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is equal to

$$
\left\{\left.\left(\begin{array}{cc}
a_{0} I_{2}+a_{1} C_{f} & D \\
0_{2} & a_{0} I_{2}+a_{1} C_{f}
\end{array}\right) \right\rvert\, a_{0}, a_{1} \in \mathbf{F}_{q}, D \in M_{2}\left(\mathbf{F}_{q}\right)\right\}
$$

where C_{f} is a 2×2 matrix, whose characteristic polynomial is a degree 2 irreducible polynomial f. A matrix in $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is invertible iff $\left(a_{0}, a_{1}\right) \neq(0,0)$ and hence the size of the $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is $q^{6}-q^{4}$. To prove this lemma, we will use the steps used in the proof of Lemma 4.3.14. Let

$$
M=\left(\begin{array}{cc}
a_{0} I_{2}+a_{1} C_{f} & D \\
0_{2} & a_{0} I_{2}+a_{1} C_{f}
\end{array}\right) \in Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B)
$$

and let $X=\left(\begin{array}{cc}x_{0} I_{2}+x_{1} C_{f} & Y \\ 0_{2} & x_{0} I_{2}+x_{1} C_{f}\end{array}\right)$. Then M and X commute iff

$$
\begin{equation*}
\left[a_{1} Y-x_{1} D, C_{f}\right]=0 \tag{4.21}
\end{equation*}
$$

From equation (4.21), we have 4 cases of what x_{1} and Y should be: We shall analyze the cases:

When $x_{1}=0$ and $\left[Y, C_{f}\right]=0$: The number of X 's is $q q^{2}=q^{3}$. Equation (4.21) holds for any a_{1} and any D. Thus, $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)$ is $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ itself. Thus there are q^{3} orbits under the conjugation by $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B)$. Thus the triple (A, B, X) is of type NT2. Hence we have q^{3} branches of type NT2.

When $x_{1}=0$ and $\left[Y, C_{f}\right] \neq 0$: The number of matrices X is $q\left(q^{4}-q^{2}\right)$. Equation (4.21) boils down to $a_{1}\left[Y, C_{f}\right]=0$, which implies $a_{1}=0$. Thus

$$
Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)=\left\{\left.\left(\begin{array}{cc}
a_{0} I_{2} & C \\
0_{2} & a_{0} I_{2}
\end{array}\right) \right\rvert\, a_{0} \in \mathbf{F}_{q}, C \in M_{2}\left(\mathbf{F}_{q}\right)\right\} .
$$

So (A, B, X) is of type NT6. From this we get:

- Orbit size of X is $\left(q^{6}-q^{4}\right) /\left(q^{5}-q^{4}\right)=q+1$.
- Number of such orbits is $q\left(q^{4}-q^{2}\right) /(q+1)=q^{4}-q^{3}$.

The number of branches of type NT6 is $q^{4}-q^{3}$.

When $x_{1} \neq 0$ and $\left[Y, C_{f}\right]=0$: The number of matrices X is

$$
q(q-1) q^{2}=q^{4}-q^{3} .
$$

From equation (4.21), $x_{1}\left[D, C_{f}\right]=0$, which implies $\left[D, C_{f}\right]=0$. Hence $D=$ $d_{0} I_{2}+d_{1} C_{f}$ and therefore
$Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)=\left\{\left.\left(\begin{array}{cc}a_{0} I_{2}+a_{1} C_{f} & d_{0} I_{2}+d_{1} C_{F} \\ 0_{2} & a_{0} I_{2}+a_{1} C_{f}\end{array}\right) \right\rvert\,\left(a_{0}, a_{1}\right) \neq(0,0), d_{0}, d_{1} \in \mathbf{F}_{q}\right\}$
It is commutative and its size is $\left(q^{2}-1\right) q^{2}=q^{4}-q^{2}$. Hence, $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)$ is of dimension 4. So, the triple (A, B, X) is of a Regular type. We get:

- Orbit size of $X=\left(q^{6}-q^{4}\right) /\left(q^{4}-q^{2}\right)=q^{2}$.
- Number of such orbits is $\left(q^{4}-q^{3}\right) / q^{2}=q^{2}-q$.

Thus, the number of Regular branches is $q^{2}-q$.
When $x_{1} \neq 0$ and $\left[Y, C_{f}\right] \neq 0$: The number of matrices is

$$
q(q-1)\left(q^{4}-q^{2}\right)
$$

Equation 4.21) gives us $D \in x_{1}^{-1} a_{1} Y+\mathbf{F}_{q}\left[C_{f}\right]$. So, $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)$ is:

$$
\left\{\left.\left(\begin{array}{cc}
a_{0} I_{2}+a_{1} C_{f} & x_{1}^{-1} a_{1} Y+d_{0} I_{2}+d_{1} C_{f} \\
0_{2} & a_{0} I_{2}+a_{1} C_{f}
\end{array}\right) \right\rvert\,\left(a_{0}, a_{1}\right) \neq(0,0), d_{0}, d_{1} \in \mathbf{F}_{q}\right\} .
$$

It is commutative and its size is $\left(q^{2}-1\right) q^{2}=q^{4}-q^{2}$. So $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)$ is of dimension 4. Thus, (A, B, X) is of a Regular type.

- Orbit size of X is $\left(q^{6}-q^{4}\right) /\left(q^{4}-q^{2}\right)=q^{2}$.
- Number of such orbits is $q(q-1)\left(q^{4}-q^{2}\right) / q^{2}=q(q-1)\left(q^{2}-1\right)$.

Therefore, the total number of Regular branches is

$$
q(q-1)\left(q^{2}-1\right)+\left(q^{2}-q\right)=q^{4}-q^{3}
$$

Thus we have the table mentioned in the statement.

Lemma 4.3.16. If A is of similarity class type NT3, then its branching rules are given in the table below:

Type	Number of Branches
NT3	q^{3}
Regular	$q^{4}-q^{3}$
New Type NT6	$q^{4}+q^{3}$

Proof. The centralizer algebra of a pair (A, B) of type NT3, is

$$
Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)=\left(\begin{array}{cc}
D\left(c_{0}, c_{1}\right) & C \\
0 & D\left(c_{0}, c_{1}\right)
\end{array}\right)
$$

where $D\left(c_{0}, c_{1}\right)$ is a 2×2 diagonal matrix with c_{0} and c_{1} as its diagonal entries. This $D\left(c_{0}, c_{1}\right)$ can also be written as $c_{0} I_{2}+c_{1} D(0,1)$ (replace $c_{1}-c_{0}$ by c_{1}).

$$
\begin{gathered}
\text { Let } X=\left(\begin{array}{cc}
x_{0} I_{2}+x_{1} D(0,1) & Y \\
0_{2} & x_{0} I_{2}+x_{1} D(0,1)
\end{array}\right), \text { and } \\
M=\left(\begin{array}{cc}
c_{0} I_{2}+c_{1} D(0,1) & C \\
0_{2} & c_{0} I_{2}+c_{1} D(0,1)
\end{array}\right) \in Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B) .
\end{gathered}
$$

As M is invertible, $c_{0} \neq 0$ and $c_{0}+c_{1} \neq 0$. So, $X M=M X$ iff

$$
\left[c_{1} Y-x_{1} C, D(0,1)\right]=0
$$

From this equation, we have four cases as to what x_{1} and Y have to be, i.e.,
When $x_{1}=0$ and $[Y, D(0,1)]=0$: The number of such X 's is q^{3}. Hence c_{1} can be anything and C can be any 2×2 matrix. Hence $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)$ is $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ itself. Therefore the orbit of X is of size 1 and there are $q^{3} / 1=q^{3}$ such orbits. Hence q^{3} branches of type NT3.

When $x_{1}=0$ and $[Y, D(0,1)] \neq 0$: The number of such X 's is $q\left(q^{4}-q^{2}\right) . c_{1}[Y, D(0,1)]=$ 0 implies $c_{1}=0$. Thus,

$$
Z_{G L_{4}\left(\mathbf{F}_{q)}\right)}(A, B, X)=\left\{\left(\begin{array}{cc}
c_{0} I & C \\
0_{2} & c_{0} I
\end{array}\right): c_{0} \neq 0, C \in M_{2}\left(\mathbf{F}_{q}\right)\right\}
$$

Thus (A, B, X) is of the type NT6.

- Orbit size of X is $\left(q^{4}(q-1)^{2}\right) /\left(q^{5}-q^{4}\right)=q-1$.
- The number of such orbits is $q^{3}\left(q^{2}-1\right) /(q-1)=q^{4}+q^{3}$.

We therefore have $q^{4}+q^{3}$ branches of the type NT6.
When $x_{1} \neq 0$ and $[Y, D(0,1)]=0$: There are $q(q-1) q^{2}$ such matrices and we have $x_{1}[C, D(0,1)]=0$ which implies that $C=d_{0} I_{2}+d_{1} D(0,1)$. Hence,

$$
Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)=\left\{\left.\left(\begin{array}{cc}
c_{0} I_{2}+c_{1} D(0,1) & d_{0} I_{2}+d_{1} D(0,1) \\
0_{2} & c_{0} I+c_{1} D(0,1)
\end{array}\right) \right\rvert\, c_{0}, c_{1}+c_{0} \neq 0\right\}
$$

It is commutative, and is of size $q^{2}(q-1)^{2}$. So, $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)$ is 4-dimensional. Therefore, (A, B, X) is of a Regular type.

- Orbit size of X is $\left(q^{4}(q-1)^{2}\right) /\left(q^{2}(q-1)^{2}\right)=q^{2}$.
- Number of such orbits is $q(q-1) q^{2} / q^{2}=q^{2}-q$.

When $x_{1} \neq 0$ and $[Y, D(0,1)] \neq 0$: There are $q(q-1)\left(q^{4}-q^{2}\right)$ such X and $C \in$ $x_{1}^{-1} \overline{c_{1} Y+\mathbf{F}_{q}[D(0,1)] \text {. Thus } C=x_{1}^{-1} c_{1} Y}+d_{0} I_{2}+d_{1} D(0,1)$ and so the $Z_{G L_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)$ consists of matrices of the form

$$
\left(\begin{array}{cc}
c_{0} I_{2}+c_{1} D(0,1) & x_{1}^{-1} c_{1} Y+d_{0} I_{2}+d_{1} D(0,1) \\
0_{2} & c_{0} I_{2}+c_{1} D(0,1)
\end{array}\right)
$$

It is commutative and its size is $q^{2}(q-1)^{2}$. So, $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B, X)$ is 4-dimensional. Thus (A, B, X) is a Regular branch.

- Orbit size of X is $\left(q^{4}(q-1)^{2} /\left(q^{2}(q-1)^{2}\right)=q^{2}\right.$.
- Number of such orbits is $q(q-1)\left(q^{4}-q^{2}\right) / q^{2}=q(q-1)\left(q^{2}-1\right)$.

The total number of Regular branches is

$$
q(q-1)\left(q^{2}-1\right)+q(q-1)=q^{4}-q^{3}
$$

Lemma 4.3.17. For the commuting pair (A, B) of similarity class type NT4 or NT5, there are:

- q^{3} branches of its own type.
- $q^{3}+q^{2}$ branches of the new type NT6.
- q^{4} Regular type of branches.

Proof. The proof is the same for both NT4 and NT5. So it will suffice to prove for any one of them. We shall prove it for NT4.
$Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ consists of matrices of the form

$$
M=\left(\begin{array}{cccc}
a_{0} & b_{1} & b_{2} & b_{3} \\
0 & a_{0} & 0 & 0 \\
0 & c_{1} & c_{2} & c_{3} \\
0 & 0 & 0 & a_{0}
\end{array}\right)
$$

which, on conjugation by elementary matrices (which switches the 2nd and 3rd rows and columns of M) becomes

$$
M=\left(\begin{array}{cccc}
a_{0} & b_{2} & b_{1} & b_{3} \\
0 & c_{2} & c_{1} & c_{3} \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & a_{0}
\end{array}\right)
$$

We shall rewrite M as

$$
\left(\begin{array}{cccc}
a_{0} & a_{1} & b_{1} & b_{2} \\
0 & b_{0} & b_{3} & b_{4} \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & a_{0}
\end{array}\right)
$$

and let M^{\prime} be a conjugate of M in $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$:

$$
M^{\prime}=\left(\begin{array}{cccc}
a_{0}^{\prime} & a_{1}^{\prime} & b_{1}^{\prime} & b_{2}^{\prime} \\
0 & b_{0}^{\prime} & b_{3}^{\prime} & b_{4}^{\prime} \\
0 & 0 & a_{0}^{\prime} & 0 \\
0 & 0 & 0 & a_{0}^{\prime}
\end{array}\right)
$$

Then there is an invertible X such that $X M=M^{\prime} X$. Let

$$
X=\left(\begin{array}{cccc}
x_{0} & x_{1} & y_{1} & y_{2} \\
0 & y_{0} & y_{3} & y_{4} \\
0 & 0 & x_{0} & 0 \\
0 & 0 & 0 & x_{0}
\end{array}\right)
$$

where $x_{0}, y_{0} \neq 0$. So we have

$$
\left(\begin{array}{cccc}
x_{0} & x_{1} & y_{1} & y_{2} \\
0 & y_{0} & y_{3} & y_{4} \\
0 & 0 & x_{0} & 0 \\
0 & 0 & 0 & x_{0}
\end{array}\right)\left(\begin{array}{cccc}
a_{0} & a_{1} & b_{1} & b_{2} \\
0 & b_{0} & b_{3} & b_{4} \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & a_{0}
\end{array}\right)=\left(\begin{array}{cccc}
a_{0}^{\prime} & a_{1}^{\prime} & b_{1}^{\prime} & b_{2}^{\prime} \\
0 & b_{0}^{\prime} & b_{3}^{\prime} & b_{4}^{\prime} \\
0 & 0 & a_{0}^{\prime} & 0 \\
0 & 0 & 0 & a_{0}^{\prime}
\end{array}\right)\left(\begin{array}{cccc}
x_{0} & x_{1} & y_{1} & y_{2} \\
0 & y_{0} & y_{3} & y_{4} \\
0 & 0 & x_{0} & 0 \\
0 & 0 & 0 & x_{0}
\end{array}\right) .
$$

From the above equation we get $a_{0}^{\prime}=a_{0}, b_{0}^{\prime}=b_{0}$, and the following equations:

$$
\begin{align*}
a_{0} x_{1}+a_{1}^{\prime} y_{0} & =a_{1} x_{0}+x_{1} b_{0} \tag{4.22}\\
a_{1}^{\prime} y_{3}+b_{1}^{\prime} x_{0} & =x_{0} b_{1}+x_{1} b_{3} \tag{4.23}\\
a_{1}^{\prime} y_{4}+b_{2}^{\prime} x_{0} & =x_{1} b_{4}+b_{2} x_{0} \tag{4.24}\\
b_{0} y_{3}+b_{3}^{\prime} x_{0} & =y_{0} b_{3}+y_{3} a_{0} \tag{4.25}\\
b_{0} y_{4}+b_{4}^{\prime} x_{0} & =y_{0} b_{4}+y_{4} a_{0} \tag{4.26}
\end{align*}
$$

We have two main cases: $a_{0} \neq b_{0}$ and $a_{0}=b_{0}$.
If $a_{0} \neq b_{0}$. Then, in equation (4.22), using a suitable choice of x_{1}, we can make $a_{1}^{\prime}=$ 0 . With a suitable choice of y_{3} in equation (4.25), we can make $b_{3}^{\prime}=0$. Similarly, in equation 4.26, choose a suitable y_{4} so that $b_{4}^{\prime}=0$. Then from equations 4.23) and (4.24), we get $b_{1}^{\prime}=b_{1}$ and $b_{2}^{\prime}=b_{2}$. So

$$
M=\left(\begin{array}{cccc}
a_{0} & 0 & b_{1} & b_{2} \\
0 & b_{0} & 0 & 0 \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & a_{0}
\end{array}\right)
$$

Its centralizer, $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B, M)$, in $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$ is

$$
\left\{\left.\left(\begin{array}{cccc}
x_{0} & 0 & y_{1} & y_{2} \\
0 & y_{0} & 0 & 0 \\
0 & 0 & x_{0} & 0 \\
0 & 0 & 0 & x_{0}
\end{array}\right) \right\rvert\, x_{0}, y_{0}, y_{1}, y_{2} \in \mathbf{F}_{q}\right\}
$$

which is 4 -dimensional and commutative. Therefore, this branch (A, B, M) is of a Regular type and there are $q^{3}(q-1)=q^{4}-q^{3}$ such branches

If $a_{0}=b_{0}$. Then equation 4.22) becomes $a_{1}^{\prime} y_{0}=a_{1} x_{0}$. Here, there are two cases.

$$
a_{1} \neq 0 \text { and } a_{1}=0
$$

When $a_{1} \neq 0$, choose y_{0} such that $a_{1}^{\prime}=1$. So, letting $a_{1}=a_{1}^{\prime}=1$, we have $y_{0}=x_{0}$. Then, from equations (4.25) and 4.26) we get $b_{3}^{\prime}=b_{3}$ and $b_{4}^{\prime}=b_{4}$. Equation (4.23) becomes $y_{3}+b_{1}^{\prime} x_{0}=x_{0} b_{1}+x_{1} b_{3}$ and equation (4.24) becomes $y_{4}+b_{2}^{\prime} x_{0}=x_{1} b_{4}+b_{2} x_{0}$. So we can choose y_{3} and y_{4} appropriately so that $b_{1}^{\prime}=b_{2}^{\prime}=0$ So our M reduces to

$$
\left(\begin{array}{cccc}
a_{0} & 1 & 0 & 0 \\
0 & a_{0} & b_{3} & b_{4} \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & a_{0}
\end{array}\right)
$$

Hence,

$$
Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B, M)=\left\{\left.\left(\begin{array}{cccc}
x_{0} & x_{1} & y_{1} & y_{2} \\
0 & x_{0} & x_{1} b_{3} & x_{1} b_{4} \\
0 & 0 & x_{0} & 0 \\
0 & 0 & 0 & x_{0}
\end{array}\right) \right\rvert\, x_{0}, x_{1}, y_{1}, y_{2} \in \mathbf{F}_{q}\right\}
$$

which is 4 dimensional and commutative. Thus the branch, (A, B, M), is of a Regular type. The number of such branches is q^{3}. So we have a total of $q^{4}-q^{3}+q^{3}=q^{4}$ Regular branches.

When $a_{1}=0$, equation (4.23) becomes $b_{1}^{\prime} x_{0}=x_{0} b_{1}+x_{1} b_{3}$, equation (4.24) becomes $b_{2}^{\prime} x_{0}=x_{0} b_{2}+x_{1} b_{4}$, and from equations 4.25 and 4.26, we get $b_{3}^{\prime} x_{0}=y_{0} b_{3}$ and $b_{4}^{\prime} x_{0}=y_{0} b_{4}$. So we can divide this into two cases.

$$
\left(b_{3}, b_{4}\right)=(0,0) \text { and }\left(b_{3}, b_{4}\right) \neq(0,0)
$$

When $\left(b_{3}, b_{4}\right)=(0,0)$ we have $b_{1}^{\prime}=b_{1}$ and $b_{2}^{\prime}=b_{2}$ and thus M reduces to

$$
\left(\begin{array}{cccc}
a_{0} & 0 & b_{1} & b_{2} \\
0 & a_{0} & 0 & 0 \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & a_{0}
\end{array}\right)
$$

Thus, $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B, M)$ is the whole of $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B)$. Thus (A, B, M) is of the type

NT4 and we have q^{3} such branches.
When $\left(b_{3}, b_{4}\right) \neq(0,0)$ and $b_{3} \neq 0$. Then we can make $b_{3}=1$. Letting $b_{3}^{\prime}=b_{3}=1$, we get $y_{0}=x_{0}$ and therefore $b_{4}^{\prime}=b_{4}$. Equation (4.23) becomes $b_{1}^{\prime} x_{0}=x_{0} b_{1}+x_{1}$, hence we can get $b_{1}^{\prime}=0$. Solving for x_{1} by putting $b_{1}=0$, gives us $x_{1}=0$, and we get $b_{2}^{\prime}=b_{2}$. Thus M is reduced to

$$
\left(\begin{array}{cccc}
a_{0} & 0 & 0 & b_{2} \\
0 & a_{0} & 1 & b_{4} \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & a_{0}
\end{array}\right)
$$

and $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B, M)$ is

$$
\left\{\left.\left(\begin{array}{cc}
x_{0} I_{2} & Y \\
0_{2} & x_{0} I_{2}
\end{array}\right) \right\rvert\, x_{0}, \in \mathbf{F}_{q}, Y \in M_{2}\left(\mathbf{F}_{q}\right)\right\} .
$$

Therefore (A, B, M) is of type NT6, and we have q^{3} such branches.
If $b_{3}=0$ and $b_{4} \neq 0$. Then we can make $b_{4}=1$ and by the arguments like in the above case, we can make $b_{2}=0$ and $b_{1}^{\prime}=b_{1}$. So

$$
M=\left(\begin{array}{cccc}
a_{0} & 0 & b_{1} & 0 \\
0 & a_{0} & 0 & 1 \\
0 & 0 & a_{0} & 0 \\
0 & 0 & 0 & a_{0}
\end{array}\right)
$$

So, $Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B, M)$ is

$$
\left\{\left.\left(\begin{array}{cc}
x_{0} I_{2} & Y \\
0_{2} & x_{0} I_{2}
\end{array}\right) \right\rvert\, x_{0}, \in \mathbf{F}_{q}, Y \in M_{2}\left(\mathbf{F}_{q}\right)\right\}
$$

Thus this (A, B, M) too is a branch of the new type NT6 and there are q^{2} such branches. So in total we have $q^{3}+q^{2}$ branches of the new type NT6.

Lemma 4.3.18. For a triple (A, B, M) of similarity class type NT6, there are q^{5} branches of the type NT6.

Proof. We know that

$$
Z_{M_{4}\left(\mathbf{F}_{q}\right)}(A, B, M)=\left\{\left.\left(\begin{array}{cc}
a_{0} I_{2} & C \\
0_{2} & a_{0} I_{2}
\end{array}\right) \right\rvert\, a_{0} \in \mathbf{F}_{q} \text { and } C \in M_{2}\left(\mathbf{F}_{q}\right)\right\}
$$

It is easy to see that this algebra is commutative. Hence, there is only one branch and it is of the type NT6 and there are q^{5} of them.

We therefore have no more new similarity class types.

4.3.4 Calculating $c(4, k, q)$

Now, that we have all the branching rules, we can form a matrix, $\mathcal{B}_{4}=\left[b_{i j}\right]$, with rows and columns indexed by the types. For a given type $j, b_{i j}$ is the number of similarity class type i branches of a tuple of similarity class type j. \mathcal{B}_{4} is our branching matrix. Table 4.2 lists the rcfs, and under each rcf, it has a list of the types with that rcf. Let each of the new types be treated as separate rcf's. By the averaging technique mentioned in the end of Section 4.2, we can reduce \mathcal{B}_{4} to a 11×11 matrix indexed by the 5 rcfs and the 6 new types.
$\operatorname{rcf}(1,1,1,1)$: There is only one type with $\operatorname{rcf}(1,1,1,1)$, i.e., the Central type $(1,1,1,1)_{1}$. It has q branches of $\operatorname{rcf}(1,1,1,1), q^{2}$ branches each of rcf types $(2,1,1)$ and $(2,2), q^{3}$ branches with $\operatorname{rcf}(3,1)$, and q^{4} branches with $\operatorname{rcf}(4)$.
rcf (4): Each Regular type is of rcf type (4), and has q^{4} branches of rcf (4).
$\operatorname{rcf}(2,1,1)$: An element of rcf type $(2,1,1)$ is of class type $(1,1,1)_{1}(1)_{1}$ with probability $1 / q$ and of class type $(2,1,1)_{1}$ with probability $(q-1) / q$. So, on an average, a tuple of rcf type $(2,1,1)$ has:

- q^{2} branches of rcf type $(2,1,1)$.
- $q^{3}+q^{2}-q-1$ branches of rcf type $(3,1)$.
- $q^{4}+q$ Regular (rcf type (4)) branches.
- 1 branch each of types NT1, NT4 and NT5.
- q branches of type NT3.
rcf $(2,2)$: There are three similarity class types with $\operatorname{rcf}(2,2)$. They are $(1,1)_{1}(1,1)_{1},(2,2)_{1}$ and $(1,1)_{2}$. An element of rcf type $(2,2)$ is of class type $(1,1)_{1}(1,1)_{1}$ with probability $(q-1) /(2 q)$, of class type $(2,2)_{1}$ with probability $1 / q$
and is of class type $(1,1)_{2}$ with probability $(q-1) /(2 q)$. So on an average, a tuple of rcf-type $(2,2)$ has:
- q^{2} branches of rcf type $(2,2)$.
- $q^{3}-q^{2}$ branches of rcf $(3,1)$.
- q^{4} branches of rcf (4).
- q branches of the new type NT1
- $\left(q^{2}-q\right) / 2$ branches each of the new types NT2 and NT3.
$\operatorname{rcf}(3,1)$: The similarity class types with $\operatorname{rcf}(3,1)$ are:
- $(3,1)_{1}$
- $(2,1)_{1}(1)_{1}$
- $(1,1)_{1}(2)_{1}$
- $(1,1)_{1}(1)_{2}$ and
- $(1,1)_{1}(1)_{1}(1)_{1}$

Their probabilities are mentioned in the table below.

Class Type	Probability
$(3,1)_{1}$	$\frac{1}{q^{2}}$
$(2,1)_{1}(1)_{1}$	$\frac{q-1}{q^{2}}$
$(1,1)_{1}(2)_{1}$	$\frac{q-1}{q^{2}}$
$(1,1)_{1}(1)_{2}$	$\frac{q-1}{2 q}$
$(1,1)_{1}(1)_{1}(1)_{1}$	$\frac{(q-1)(q-2)}{2 q^{2}}$

All these types have branches of their own respective types and Regular branches. Hence we have on an average: q^{3} branches of rcf type $(3,1)$ and $q^{4}+q$ branches of rcf type (4).

So our branching matrix \mathcal{B}_{4} is equal to

$$
\left(\begin{array}{ccccccccccc}
q & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
q^{2} & q^{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
q^{2} & 0 & q^{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
q^{3} & q^{3}+q^{2}-q-1 & q^{3}-q^{2} & q^{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
q^{4} & q^{4}+q & q^{4} & q^{4}+q & q^{4} & q^{4}-q^{3} & q^{4}-q^{3} & q^{4}-q^{3} & q^{4} & q^{4} & 0 \\
0 & 1 & q & 0 & 0 & q^{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{q^{2}-q}{2} & 0 & 0 & 0 & q^{3} & 0 & 0 & 0 & 0 \\
0 & q & \frac{q^{2}-q}{2} & 0 & 0 & 0 & 0 & q^{3} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & q^{3} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{3} & 0 \\
0 & 0 & 0 & 0 & 0 & q^{4}-q^{2} & q^{4}-q^{3} & q^{4}+q^{3} & q^{3}+q^{2} & q^{3}+q^{2} & q^{5}
\end{array}\right)
$$

Let e_{1} denote the 11×1 column matrix with first entry being 1 and the rest, 0 . Let 1^{\prime} denote the 1×11 row matrix, whose entries are all 1's. Then we have

$$
c(4, k, q)=\mathbf{1}^{\prime} \mathcal{B}_{4}^{k} \cdot e_{1}
$$

The table below lists $c(4, k, q)$ for $k=1,2,3,4$. The calculations were done using sage.

k	$c(4, k, q)$
1	$q^{4}+q^{3}+2 q^{2}+q$
2	$q^{8}+q^{7}+3 q^{6}+3 q^{5}+5 q^{4}+3 q^{3}+3 q^{2}$
3	$q^{12}+q^{11}+3 q^{10}+4 q^{9}+8 q^{8}+8 q^{7}+11 q^{6}+8 q^{5}+5 q^{4}+2 q^{3}$
4	$q^{16}+q^{15}+3 q^{14}+5 q^{13}+9 q^{12}+12 q^{11}+16 q^{10}$
	$+17 q^{9}+17 q^{8}+13 q^{7}+9 q^{6}+4 q^{5}+2 q^{4}$

We can see that $c(4, k, q)$ is a polynomial in q with non-negative integer coefficients for $k=1,2,3,4$. But, we cannot say the same for k in general. So, we will have to use the generating function for $c(4, k, q)$:

$$
h_{4}(q, t)=\sum_{k=0}^{\infty} c(4, k, q) t^{k}=\mathbf{1}^{\prime}\left(I-t \mathcal{B}_{4}\right)^{-1} e_{1} .
$$

In the next subsection, we will look at the expression of $h_{4}(q, t)$ to prove Theorem 1.2.2 in the case of $n=4$.

4.3.5 Non-Negativity of Coefficients of $c(4, k, q)$

Now it remains to check if the coefficients of $h_{4}(q, t)$ are non-negative. The rational generating function $h_{4}(q, t)$ is:

$$
h_{4}(q, t)=\frac{r_{+}(q, t)-r_{-}(q, t)}{(1-q t)\left(1-q^{2} t\right)\left(1-q^{3} t\right)\left(1-q^{4} t\right)\left(1-q^{5} t\right)},
$$

where

$$
\begin{aligned}
& r_{+}(q, t)=1+q^{2} t+2 q^{2} t^{2}+q^{3} t^{2}+2 q^{4} t^{2}+q^{6} t^{3}, \text { and } \\
& r_{-}(q, t)=q^{5} t+q^{7} t^{2}+q^{3} t^{3}+2 q^{7} t^{3}+2 q^{9} t^{3}+q^{10} t^{4}
\end{aligned}
$$

We have

$$
\frac{1}{(1-q t)\left(1-q^{2} t\right)\left(1-q^{3} t\right)\left(1-q^{4} t\right)\left(1-q^{5} t\right)}=\left(\sum_{k=0}^{\infty}\left(\sum_{j=k}^{5 k} p_{5, k}(j) q^{j} t^{k}\right)\right),
$$

where $p_{5, k}(j)$ denotes the number of partitions of j with k parts, with the maximum part being ≤ 5. With this,

$$
h_{4}(q, t)=\left(r_{+}(q, t)-r_{-}(q, t)\right)\left[1+\left(\sum_{k=1}^{\infty}\left(\sum_{j=k}^{5 k} p_{5, k}(j) q^{j} t^{k}\right)\right)\right] .
$$

Expanding this gives us

$$
\begin{array}{ll}
& \left(\sum_{k=0}^{\infty}\left(\sum_{j=k}^{5 k} p_{5, k}(j) q^{j} t^{k}\right)\right) \\
+\left(\sum_{k=0}^{\infty}\left(\sum_{j=k}^{5 k} p_{5, k}(j) q^{j+2} t^{k+1}\right)\right) & -\left(\sum_{k=0}^{\infty}\left(\sum_{j=k}^{5 k} p_{5, k}(j) q^{j+5} t^{k+1}\right)\right) \\
+\left(\sum_{k=0}^{\infty}\left(\sum_{j=k}^{5 k} 2 p_{5, k}(j) q^{j+2} t^{k+2}\right)\right) & \left.-\left(\sum_{j=k}^{5 k} p_{5, k}^{\infty}(j) q^{j+7} t^{k+2}\right)\right) \tag{4.27}\\
+\left(\sum_{k=0}^{\infty}\left(\sum_{j=k}^{5 k} p_{5, k}(j) q^{j+3} t^{k+3}\right)\right) \\
\left.+\left(\sum_{j=k}^{5 k} p_{5, k}(j) q^{j+3} t^{k+2}\right)\right) & -\left(\sum_{k=0}^{\infty}\left(\sum_{j=k}^{5 k} 2 p_{5, k}(j) q^{j+7} t^{k+3}\right)\right) \\
+\left(\sum_{k=0}^{\infty}\left(\sum_{j=k}^{5 k} 2 p_{5, k}(j) q^{j+4} t^{k+2}\right)\right) & \left.-\left(\sum_{j=k}^{5 k} p_{5, k}^{\infty}(j) q^{j+6} t^{k+3}\right)\right) \\
\left.+\left(\sum_{j=k}^{5 k} 2 p_{5, k}(j) q^{j+9} t^{k+3}\right)\right) \\
-\left(\sum_{k=0}^{\infty}\left(\sum_{j=k}^{5 k} p_{5, k}(j) q^{j+10} t^{k+4}\right)\right) .
\end{array}
$$

The coefficient, $d_{j k}$, of $q^{j} t^{k}$ in equation (4.27) is

$$
\begin{gather*}
d_{j k}=\left(p_{5, k}(j)-p_{5, k-1}(j-5)\right)+\left(p_{5, k-1}(j-2)-p_{5, k-2}(j-7)\right) \\
+\left(2 p_{5, k-2}(j-2)-p_{5, k-3}(j-3)\right)+\left(p_{5, k-2}(j-3)-2 p_{5, k-3}(j-7)\right) \tag{4.28}\\
+\left(2 p_{5, k-2}(j-4)-2 p_{5, k-3}(j-9)\right)+\left(p_{5, k-3}(j-6)-p_{5, k-4}(j-10)\right) .
\end{gather*}
$$

Here are some observations which will be enough to prove that $d_{j k}$ is non-negative.

Lemma 4.3.19. For any $k \geq 1$, any $j: k \leq j \leq 5 k$, and any l such that, $1 \leq l \leq 5$, $p_{5, k}(j) \geq p_{5, k-1}(j-l)$.

Proof. We assume that $j-l \leq 5(k-1)$ so that $p_{5, k-1}(j-l) \neq 0$. Given a partition of $j-l$ with $k-1$ parts with maximal part ≤ 5, we can attach the part l to this partition to get a partition of j in k parts, with maximal part ≤ 5. Hence $p_{5, k}(j) \geq p_{5, k-1}(j-l)$.

As a consequence of the above lemma, we have the following inequalities.

$$
\begin{align*}
p_{5, k}(j) & \geq p_{5, k-1}(j-5) \tag{4.29}\\
p_{5, k-1}(j-2) & \geq p_{5, k-2}(j-7) \tag{4.30}\\
p_{5, k-2}(j-2) & \geq p_{5, k-3}(j-3) \tag{4.31}\\
p_{5, k-2}(j-3) & \geq p_{5, k-3}(j-7) \tag{4.32}\\
p_{5, k-2}(j-4) & \geq p_{5, k-3}(j-9) \tag{4.33}\\
p_{5, k-3}(j-6) & \geq p_{5, k-4}(j-10) . \tag{4.34}
\end{align*}
$$

Lemma 4.3.20. Let $k \geq 4$. Then for j such that $j-7 \geq k-3$ we have the following:

- If $j-7=5(k-3)$, then

$$
\begin{equation*}
\left(p_{5, k}(j)-p_{5, k-1}(j-5)\right)+\left(p_{5, k-2}(j-3)-2 p_{5, k-3}(j-7)\right) \geq 0 \tag{4.35}
\end{equation*}
$$

- If $j-7<5(k-3)$ then

$$
\begin{equation*}
p_{5, k-2}(j-3)-2 p_{5, k-3}(j-7) \geq 0 \tag{4.36}
\end{equation*}
$$

Proof. When $j-7=5(k-3)$, given the only partition of $j-7$ with $k-3$ parts, we can attach two 1's to it, to get a partition of $j-5$ in $k-1$ parts. Hence $p_{5, k-1}(j-5) \geq p_{5, k-3}(j-7)$.

$$
\begin{aligned}
\text { Therefore } & \left(p_{5, k}(j)-p_{5, k-1}(j-5)\right)+\left(p_{5, k-2}(j-3)-2 p_{5, k-3}(j-7)\right) \\
\geq & p_{5, k}(j)-2 p_{5, k-1}(j-5)+\left(p_{5, k-2}(j-3)-p_{5, k-3}(j-7)\right)
\end{aligned}
$$

Observe: $j-7=5 k-15 \Rightarrow j-5=5 k-13=5(k-1)-8$. So any partition of $j-5$ with $k-1$ parts, with maximal part ≤ 5, will have atleast two parts which are strictly less than 5 . So, to each of these, we can either attach a 5 , or add 1 each to the two parts which are less than 5 and attach 3 as the k th part. This gives 2
partitions of j having k parts. So, $p_{5, k}(j)-2 p_{5, k-1}(j-5) \geq 0$ and therefore

$$
\begin{aligned}
& \left(p_{5, k}(j)-p_{5, k-1}(j-5)\right)+\left(p_{5, k-2}(j-3)-2 p_{5, k-3}(j-7)\right) \\
\geq & p_{5, k}(j)-2 p_{5, k-1}(j-5)+\left(p_{5, k-2}(j-3)-p_{5, k-3}(j-7)\right) \\
\geq & 0 \text { Since }\left(p_{5, k-2}(j-3)-p_{5, k-3}(j-7)\right) \geq 0 \quad \text { (from ineq. (4.32)). }
\end{aligned}
$$

Hence inequality 4.35 holds.
When $j-7<5(k-3)$, then, for any partition of $j-7$ with $k-3$ parts with each part being atmost 5, we have atleast one part which is strictly less than 5 . Given any such partition, we can either, add 1 to the part that's <5 and attach a 3 , or just attach a 4 to the existing partition, to get a partition of $j-3$ in $k-2$ parts. Hence we get two partitions of $j-3$ in $k-2$ parts. Therefore inequality (4.36) holds.

Using Lemma 4.3.20 and inequalities (4.29) to (4.34), we can show that the coefficient of $q^{j} t^{k}$ for each $j, k \geq 0$, is non-negative. So for each $k \geq 1$, the coefficients of $c(4, k, q)$ are the coefficients of $q^{j} t^{k}$ as j varies, which are non-negative. Therefore, the coefficients of $c(4, k, q)$ are non-negative integers.
Thus, Theorem 1.2.2 is proved for $n=4$.

Bibliography

[1] A. L. Agore. Parabolic subalgebras of matrix algebras. eprint http://arxiv. org/pdf/1403.0773.pdf, 2014.
[2] N. Avni, U. Onn, A. Prasad, and L. Vaserstein. Similarity classes of 3x3 matrices over a local principal ideal ring. Communications in Algebra, 37(no. 8):26012615, 2009.
[3] D. S. Dummit and R. M. Foote. Abstract algebra. John Wiley \& Sons, Inc., 3rd edition, 2004.
[4] F. Girth. Some asymptotics for triangular matrices over finite fields. Linear Algebra and its Applications, 282:249-261, 1998.
[5] R. Gouraige. Z-Classes in Central Simple Algebras. PhD thesis, The City University of New York, New York, April 2006.
[6] J. A. Green. The characters of the finite general linear groups. Trans. Amer. Math. Soc., 80:402-447, 1955.
[7] N. Jacobson. Schur's theorems on commutative matrices. Bull. Amer. Math. Soc., 1944.
[8] N. Jacobson. Basic Algebra I. W H. Freeman and Company, New York, 2nd edition, 1985.
[9] S. Jambor and W. Plesken. Normal forms for matrices over uniserial rings of length two. J. Algebra, 358:250-256, 2012.
[10] R. S. Kulkarni. Dynamics of linear and affine maps. Asian J. Math., 12(no. 3):321-344, 2008.
[11] P. Neumann and C. Praeger. Cyclic matrices over finite fields. J. London Math. Soc., 52(2):263-284, 1995.
[12] A. Prasad, P. Singla, and S. Spallone. Similarity of matrices over local rings of length two. Indiana Univ. Math. J., (to appear), 2014.
[13] P. Singla. On representations of general linear groups over principal ideal local rings of length two. J. Algebra., 324(no. 9):2543-2563, 2010.
[14] R. Stong. Some asymptotic results on finite vector spaces. Adv. App. Math, 9:167-199, 1988.
[15] G. E. Wall. Counting cyclic and separable matrices over a finite field. Bull. Austral. Math. Soc., 60:253-284, 1999.

