STUDIES IN MULTIPLIER PROBLEM

THESIS

SUBMITTED TO
THE UNIVERSITY OF MADRAS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

BY
G.N. KESHAVA MURTHY, MSc,

IH.&TSC!EHCE ', THE INSTITUTE OF MATHEMATICAL SCIENCES, MADRAS 20, INDIA,

APRIL 1974



This 15 a revised version of the author's
thesis submitted to the University of Madras in
January 1972, based upon the work done during the

years 1967 - '72, under the supervision of Professor
K. R.Unni,

Following the recoamendation of the Board
of Examiners to permit the suthor to resubmit his
thesis, it 1s hereby resubmitted after ineorporating
the modifications suggested by the Examiners and
making the necessary additions, The author wishes
to thank the Exsminers for their valuable suggestions,

(G.N,Kegshava Murthy)



The author ﬁﬂ.lhll to place on record his
deep sense of gratitude to Professor K.R.,Unni,
"MATSCIENCE'y, The Institute of Mathematical Sciences,
Madras, for his guidance throughout the preparation
of this work, He is grateful to Professor Alladi
Rsmakrishnan, Director, 'MATSCIENCE', for his
encouragement and to the Institute of Mathematical
Seiences for financial support.



CORTIENTLS
INTRODUCT ION e . .e .o X s
CHAPTER 1 Weighted Spaces .. . s

CHAPTER 2 3 Maltipliers on Weighted Spaces

P,e, P
CHAPTER 3 1+  Multipliers on L 1» 1(8) L 2 2(q)
CHAPTER 4 1 Multipliers on a Segal algebra
CHAPTER 65 1@ Segal algebras : Particular cases
CHAPTER 6 :  Multipliers om the Space 'V .

CHAPTER 7 1 A 8pace of functions of Zygmund,

Enma L ] L Ly ] - - L L]



Introdugtion

Let L1(R) be the Banach space of all real valued fune-
tions f on the real line R such that

el = ) \£(x)| ax < oo
R

Here we identity two functions which are equal almost every vhere.
If we define multiplication by convolution

(f*g) (x) = j f(x-u) glul)du

R
then 11(R) 1s a Bansch algedra, If
f (y) = J rit) -’ﬂ"" at
R

denotes the Pourier transform of f, then by Fubini's theorem

foegly) = £ (y). g (y)
Nowlet T : LI(R) —> 11(R) be a transformation such
that

(1) T(feg) = Teeg = ro1g £, g 1i(R).

That is, T comsutes with convolution. Applying Fourier trans-

fllll. ve have
o — =
“) T « E ® 4 . "

Then using the semisimplieity of LI(R) 1t is possidle to find

a unique funetion r.E) defined on R such that
P P
(3) " = ¢of rc 11(w),

On the other hand, if T 4is a transformation for vhich
(3) holds, them

Tfeg = (Tf)ug = £x(Tg) = ¢, 1¢g



and appealing to inverse Fourler transform it is easy to see
that T satisfies (1).

Such a transformation T 4is called a Pourier multinlier
Lransformation assoqlated with ¢ and T 48 galled the sultiplimr
function, The sultiplier problem consists in asking for suffi-
clent conditions on the funetion ¢ 1in order that the trans-
formation T 1s bounded,

It is easy to find exasples of such transformations. The
inverse Fourler transfors is given by the formula

-211tx
]

£(x) = 5 £(t)at

R
(Here the integral is to be interpreted in the proper sense).
Then we can write
(4) Tf(x) = f I (y) ? (y) l-'ﬁ - dy

R
For suitsble cholees of the function ¢ , we obtaln the partial
Fourier integral, the translate, the derivative and the Rlesz -
conjugate as special cases, Similar problems are set for Fourler
series instead of Fourier integrale, In 1939, J,Mareinkiewies
proved a very important sultiplier theorem on Fourlier series, It
gives a sufficient condition for a sequence of complex musbers

Eﬂﬂi to have the property that the mmltiplication of the Fourier
coefficlents of s periodie fumetion £ by ) /) will give a
periodie function g and the mapping f > g 1is bounded in LP,
There are various generaliszations of this result,
Thus we see that many important situations in eclassical

Fourier asnalysis can be regarded as probleas in multiplier theory,
In addition mmltipliers seems to appear in many important branches



such a8 Banach algebra, singular integrals and partial differ-
ential equations, The theory of multipliers can now be regarded
as one of the fashionable fields of hamsonie analysis,

Let 0 be a loeally eompact sbelian group and [ ' its
character group, Let dx and 4 v denote the elements of the
nornglized Haar measures on 0 and [’ respectively,

If 1 ¢ p <o, LP(G) 1is the Lebesgue space of equi-
valance classes of complex valued measurable funetions f on @

such that
/p
. (S le)P ax) < o
a

vhen p =00 , (If] denotes the essential supremum of |f| .
If £, g 1}(0), the eonvolution is given by
(£eg) () = | £(t-x) glxdax
G
M(G) 4s the Banach space of all bounded regular complex valued :
measures [ on G normed by I|“/= |}/ (38) = total variation
of (. If A 4 [FEN(G), then multiplication is defined by

Arpe) = | Aser) @ p ()
G

M(G) 1is then a Panach algedra and 11(0) 1s a eclosed 1desl in
(o), If y c 0, then the translation operator T _ is de-

4
fined on a space of functions f on O by the formla

’t’. f(x) = f(x-y) xXC0
A linear operator T s LP(0) —> L2(0) 1s translation invariant
if
TS w T, 8
for all x € 0. The natural question that arises is wvhether
there are sueh nontrivial bounled operators from LP(6) to 1%(a)



for various values of p aend q and to obtaln charscteriza-
tion of such operators if they exist, The vork of Horaander [9)
not only contains various fundasental results in this direction,
but has sotually given a lot of motivation for various generali-
zations by many authors,
Considering G = 5 y Horzander proved the following re

result.

TEHEOREN A, If T 4is a bounded translation invarisnt
operator froa L°(3) to L9(0) then there exists a unique
distribution 4 € 8 such that

(s) Ta = dey uc 8

If p <cooy, then T 1is the elosure of the operstor u — d*u,
If q ¢<p< o, the distribution 4 4s 0 gnd if p = q = oo the
distribution d 41s a bounded measure.

Here S denotes the space of C™ -functions on K° whieh
decrease rapidly at infinity snd S 1is the space of tempered
dlstridutions,

A dounded trenslation invarisnt operator from LP(C) $o
LU0) 1s termed a (p,q)-mltipller. In the case of 11(5) — 1lgg)
there are various equivalent definitions. A multiplier on L(3)
is either a contimuous linear operator T which commutes with
translation operators which comsutes with convolutions. Notice
that trenslation operators may be defined even though convolutions
may not., Another definition is the following. A funetion ¢
defined on the character group || 1is called a multiplier for
116) 1t 77 c12(0)" whenever £ € 11(0) where ~ de-
notes the Fourler transfora,

When G 4is a locally compact sbelian group and T: LP(0) —19(6)



is 2 bounded translation lmvariant operator thon the reprosentae
tion (8) given in Thoorem A talms the form

(G) T = g of

Here o 48 a quasimonsure vhen 1 < peg < 0 ond (6) holds
for all £ c¢ K (0), thea space of contimous functions on G

vith compact swport, Ifp=gq and 1 < p < ooy e quasie

measure o Dbocomes a psoulomcosure and £ vorles over

(o) n 1% A e, 12 7, M) > PO, then (&
i valid for all £ € LN® witho € MG) 42 p=1 amd
T ELNW 4f L < p £ e

The characterization of the spaco of multipliors on different
L? spaces wore also obtained by Piga Talamanca [47 , Figae
Tolamenca and Cewdry (6) amd Rieffel (20) , Using the 1dea
of the tonsor product these authors have cheracterized the multiplier
space as the dual of cartain Banach spaces,

In this thesis our object is to give represontation theoroms
corresponding to tho type (6 for the multiplier on several spaces
anl aloo to charectorize the spece of multipliers on various other
spaces, Throughout ve assume a multiplier to be 2 boundod lineny
opoerator vhich commtes with translations,

ucmwzwnmyMMMmuﬂMﬂm
of woightod Lebesgue spaces defined on a locally compact abelian group
with Hoor measuwre dx, For our stuly we comsider the class of woight
functions introduced by Pukree (12) , These ave precisely the funce
tions o € Q, satisfying the conlitions

1) o 15 measurable on G 4 positive almoot everywhere for
the Haor moasure dx,



l'. 8
2) for each p e (Lym) “mp“ﬂ.p“m

integrable,
Lot 020 1.p< ® « Then L7Y%(0) denote the eguivalence

class of complex valued measurable functions on G such that

(Sl%'rl:ax)'::u. First ve 1dentify tho dusl speces of the suns
uﬁmmautmammmm 1P,

For the studying of multipliers wo considor a subelass O,
of 0 econsisting of functions o on G which satlefy the conditions

oA2+y) € ofn) oky) 2y ¥ €O
We also in Shis give in this chmpter soveral proportiaos of the wveighted
Lebesgue spaces whero o €0, wieh w roquire for our futwre work,

For 1 < py q < oo lot M s i) denote the space of multie
pliers from b7 5 L%, In Cheptor IT wo consider the ropreoe
sentation thooven for the elawnts of M(LPY®, LU amd also give
the charactarisation of M(IM®, 199 i “%e Gual space, fove
nmdhuﬁmmmmmmMWu.enﬂ,

In Chaptor IIT wo consider the characterization of the space
of mltipliers for the spaco D, introduced in Chapter I which 1s
defined for 1 < py pp < @ to be the space DI-I.H*"J'H I.w
whore g my € O, .

Sogal algobras which aro cortain subalgsbras of L3(G) have
atquired considerable importance in recent yoars, Our interest horo io
to study multipliers on these subalgebras which wo denote by 8(0).

If () demoton the space of mitipliers on 5(8) end 12 1(s,LP)
demotes the multipliors fram 8 > 1P for 1< p < oo thon in the

I part of the Chapter IV we have given cortain abetract characterisation
theorem for 1M0S) amd in the second part we have given the dual spece
charectordisation theoren far the space M(3,1P),



In Chaptor V we consider two speeial cases of Segal algebras
and study the miltipliers on these spacess The algotwa AN(0)
(1492 oo) mmmdmmn"m whose Fourier
transforn 1s in the space L(ﬁ‘)m o 1s on even contimuous
function on [’ which satisfy the coniition

ot +y) £ OO L)

hhmwﬂ&tﬂuu‘awmmm
growp then the multipliers on A (¢) are precisely the bounded
regular measures on G, Later wve consider the Wiener space W(R)
vhich consists of contimivus functions £ on the real lime such that

=]
J Mo I%b-gl ety o ban T o Bk, M1
e 2 E

Ganel Je = °’i-l,tlJ‘. '
| Ths is a Banach algebra unlor the novm

[l —fu“

L1

Z_mg ]-{HHJ-'

2ET,

If T 435 o mutiplier from N —> W wo have showm that
I = foy

Vhere i belongs to the dual of \w

In Chapter VI wo have introduced a mew class of functions e=
¥, which happens to be a subclass of W . Tho claga W, ¢ Lot
0o < 1 and lot 1ip « donote the class of all functions £ on

- the real 1ine R such that |
Swg [$o+w) - J0) = ollkl ) h -0
AE

Let W denote the class of all funciions £ € 1ip o, such that

Kty - Lyt I e




”{IL:.E'__‘_;?ifkwm

g | |§-l?¢-+l~J "':II""--‘LJ;'
'még) = ‘W"“?‘E ;‘}:HI P T SN

ang T, R ki) w-o 3L H2 .. + This chepter is denoted
h-mmmsrurmmmmmm
the space . ‘

The last chapter (Chepter VI) 1s a dertvition fron the
moin content of this thesis, Hore wo prove a theorem on the
Zypaund classof functions which 4s anclogous o a famous thoorenm
of K.de Leuw for tho Lipchits condition,



Weighted Spgces

Here we consider certain Lebesgue spaces defined on a
locally compact abelisn group G. First we consider the welghts
introduced by P.Kree [13] and study the properties of suas

and intersections of weighted Lebesgue spaces, These spaces turn
out to be Banach spaces econtaining the space »f contimuous fune-
tions on 0 with compaet support, The results are analongous to
those obtained by Liu and Weng [18] . We have identified the
duals of these Banach spaces, Later we consider only a subclass
of these weights vhich are even eontlmu-us funections co defined
on 0 satisfying the sisple condition

D(x+Y) £ D) AlY)

for all x and y € Q.

Let G be a locally compact abelian group with [Haar
measure dx. Let ‘- be the set of all functions co satisfying '
the two conditions, |

(1) < i3 a measurable function on G positive slmost
every vhere for the laar measure dx,

(11) for each pE€ [,1.1::!). both mp and mFP are locally
integrable,

The slesents of <1 are called welghts (See P.Kree [13] ).

P =%
| If wel let | ¢G) denote the space of all equi-
‘wvalance class o o eosplex valued functions £ on G such that



Ifl> has its p*™™ power suzmzsble and has noras

Ilafllhm :(Ilﬁ'tx}mm)lgg :’t’-

-1
Then L. fﬁ) is a Banach space and its conjugate snsce is | E‘}c-.)

1
uh-rrF*F-i. However 1f 1/ p ¢ o, then L fg‘) is a
reflexive Banach space,

ZHEOREY Mole Let ) 0 €0 and let 1< pyypy < o
fucnose 5 is the set of all comnlex valued functions g which
ean be written gs

- 'Pf-..ar -P"
=2 +9. «®(9,9) ELH x L "(6)

If ve define a moraon 5, by

(1) “9"51 = Inf {H&H&P-: 3.0, ...:f

F L R

¥here the inflmus is taken ,ver all such represeptstions of g, -
Shen 8, becomes g Banach space.

| Ernof. It is easy to verify that 8, 1s a vector space
and that (1) defines a seminoras on 8;. We now clala it is

sctually a nora, To this end, let us suppose that || g
We have to show that g = 0 a,e, By definition we can choose

sequence {%;ﬂjCL(EdjldIgtmj = L"‘&"- such that
g. ﬁ'[n} (n)

.I.

ﬂ-.,,, I ‘31 ”b = H‘JL " =0

n =00 1,0y MIw P9

10



Lw)
This iwplies that Caiﬂm ‘3"' econverge to O  in measure,

Henee g = 0 a.e. as desired,
We now assert that 81 is eomplete in this nora, Let

b=

ﬁ h-ulumtlln 8, such that Z."'ﬂ lk’{.m o It

is encuzh to show that there exists g E 31 such that - 72 ?{“J

n=41
in 51. We can choose, for esch n, slexents 3.! ELP" )
(n) P,
and gt Li'm) such that
'I:'I"I
2 31 +3
with
tn) (n) Ln)
I I + I [ AN [T e TR 3
(2) 3 R, @, [i’;,“;. L Sy

Ml PI.l.'l J-
The completeness of LP"’{Q) gives the existence of 31_
in LYy  sueh that
L i 5= 990

n -y oo k=1 I’i:“f
for 1 =1,2, Let ‘3. ‘31"'31.' Then

Z_ 3[1!) " gfﬁfk)+ gfkﬁ (ﬁ,fg_)

R=1 PI.J b | k=1

Fron (20, it follows that Z I 31 “l; <o and 2__' “ﬂ j L00

“Zﬁ{kg‘é”sl allZﬂi —gll +"Z3 -3, .

11



from which we obtain

n
Lo 3 9%-4 I = o

VA S
This ecompletes the proof of Theorem 1,1,
We shall nw proeceed to find the conjugate space of '1"
For any bounded linear functi-nal T on 81 the restriec-
tions of T to LP"-:E’;} (1 = 1,2) are bounded linear func-

b{. Wy

tlonels on L 1{_(,,) « Hence there exist functions

§i € L‘t,?ﬁi) such that

19, = ggim) fovdx v=1.2

'I:J s Pi ,wi Pl atly

for all G C L (c) « If %EL Cyn L (&) we have

Ty = 900400 du s [Jo0 food
o G

P [P ;

(b)aL (&) °™
tains charaeteristic functions of sl! sets with finite measure,

This implies f; = fa a.e, If this common value is denoted by f,
| A

Al ' -4 P:.. =
| then IE:Dl_z LPJ“’N’- o A "(E) e A 3: ‘3_1_1-9:_ is a

decomposition of g as an element of 81, then




= _Yj, ) foydx + fﬂ;“‘) Fooodst
G

]

87 that
= d
() T4 ';‘BW FroodX

Conversely, suppose T 1s defined by (3). Let J = 3,49,
be a representation of g. Then

Tg - jgim Joodx + f‘j;bd :F[S‘.)dﬂ
G G

T30 < n'a_tuph 1“:“ f 4 + 19,0 Wl 5 4

pi Pl, b;, _:“

< (9, b THEN ) max (W4 o nJuP
e L E s L

Hence

i < max (i HL; 4, B _1)

Thus 4f T 4is given by (3), then T 4s a bounded linear func-
tional on Bll-
We shall now show that the equality

”T" -~ Nl (H}l'bllju;l) H;”P:,“_i)

i

actually holds., This is trivial vhen f = 0 ga,e, Othervise wve

)

. may suprose without loss of generality that || {|| P_,_I_.w'l > H—,Fn'lpi -
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" Let £ be a positive number less than |[5'FII> H'!- . Then

"thlrr- exists 9¢ 1.?1 i(e)C §, sueh that

1]31,,;“)&;; Hﬂl (u{u bl e) :
.:- 1 L,

Silnce g =g+ 0 is a representation of g as an element :r-sl
we have

ITungu > 1mgr 20 Fuyr E)iﬁﬂ = (ugu, =€) nd
9 b e 5

- '.I. 1 .'|..'I- 1

1)’_ s L

] Z?L:F" L, 4 -g) 3 Mmax (H;Fuh; i ﬁ{l!b, w'ﬂ) e
tiad

Bince £ 1s arbitrary we conclude that

Ty = mase (H*H toa, IF

I
1J Y P: e m’:d')

Thus we have proved
IHEOREM 1.8. Let <o, € and 1 £ PPy < . Then
the conjugate spage of 8, Ais isometrically isomorphic to the

gnace Dy wherxe
s )

b;.r""‘i P L
D, #LT MGy niLis )

with pora defined by

- e

| @ Il =l e (u iupr , UFI ,‘ﬁ)

The space D, mm;ww.nmm



10

miim:mﬂmmfmﬂlmmrena
48 given by

L jgm) Foclx

G
Now let us denote by Sy the set of all eomplex valued
functions g which can be written as

L. -
o= %t G, ©l (31;3,_) € LP)‘*"'ii'waP“ "(&J

end introduce 2 nora im 8, by

() "3"5._._ - Amf O ﬁ‘zﬂgn__ Ve L LI i

o

where the infimu=: is over all such d&mmltﬂm of g.

We denote by Py the space L‘” 1{{;1} N Pl"c.{nj with
a norm

lHn.JJiL . e (h;u ] u;np

b:lx’*‘i 1,-.'-‘:.,)

Since ve have not used any speeial property of WX in

the proofs of Theorem 1.1 and 1.2, the following result 1s also
valid, ,

LASOMH 1.3, ek @, €0 apdlet 4 <P, p i

Ihen the svaces 5, snd D, are Bansch svages and the coniuzate
Snace of S; 1is Asometrically isomorphie to Dy, Ihe morsms in
fhese svaces are respectively given by (5) and (),

We shall find the conjugate space of D1 where p, and py
are in [1,m) .



Proof, Let g ¢ Bz and consider the funetional T de-

fined by (7). 1If ﬁ:%i-p-%; is a decomposition of g as an ele-
ment of 52 then

| Tf1< l-f Sm}cgiwdﬂl +‘£?m3 .to A=
G

I
SEMEN o VAl o T By

and T 1is a bounded linear funetional on Dl'

8ince ‘.l:ll1 eontains the characteristie functions of all
sets of finite measure, the correspondence ¢ —> T 48 one to
one, To complete the proof it remains to show that | T = I ?H&
and the mapping is onto,

To this end, consider the Banach space |,
with norm

12 L‘J]_ blle

Uy, 500 = e (WA, A )

Now the space IJ1 is embedded in this ap space as its diagonal

by the mapping P (f) = (f,f) for fC nl and @ 18 an iso-

metrie mapping of Dy into Lp‘é‘?h&Lh”*- e« Let T be n

J..-'ml
S wFu (ng,|
D, G it Gl Bl
This implies that 8o that /Tl
s implies that |Tf| ¢ IETTEE 2 o thet I TIL <ugn

16
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bounded 1inear functional on Dl. Then Toq> tl a bounded

'P:,
linear functional on the subspace CP () of T “mi e

and hence can be extended by Hahn Banseh theorem as a bounded
linear functional to the whole space without chafiging its nnrn.

7
The eonjugate space of Lh “a P" e S LP“:" p‘-""i

=)
with the norm

Pl.r

I -4 ] =
There are functions 9y € LIL Hicg,) and 9, € I_.P"*(‘zb such
that

TF- ‘Jﬂ" TS d'r-!-j-}l-u} G, e

Define ¢ _ i + G Then g ¢ 5, and Tf is given by (7).
~ Bince T and 1ts extension have the Same norm we have

8) 1Ty =1 %iuta: e lr-a,,_nl.l o, 3“'3"5)_

s o

Thus ve have |ITU =G
comple ted,

S and the proof of the theorea is
F

Similarly we have the following
THEOREM 1.8, Let ©,, w ¢ -1 andlet 1< B, b'coo .

Zhen the coniugate soace of ﬂa is lsometrically isomorphic to 8.
As a gonsequence of all these results we have
THEQREM 1.8. Let «, ,o €L andlet 14 B .p, <

ihen_the four spaces 8,4 S, D; and D, are reflexive Banach
fnaces.

Bl
1G,, 9,30 = I3ty + 03, 4 EL =

374
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We shall nov consider the case when one of the P,;.; 1s 1
and show that the corresponding space D can be thought of as
a dusl,

Let coc{l be a fixed function, Then c,(6) will de-
note the elass »f all functions h sueh that hw €L () the
Space of contimuous funetions on G which vanish at infintity,
THEOREN 1,7, Let 1 < p¢ o andlet oo, w €N .

where 2,6C,(wamd 3, ¢ Lh?cqj » then 5 Dbegomes 5
Banach space with g nors given by

- (0) g0y = Vb J0g, e +0Np 0]

-1 -4
- L% a )

hfFn = max ("f",‘_‘_,;z > ”“r-',u-i)
and_the operatlon of f €D gn g € S Ais given by (3), Siallar
| Tesult s valld 1€ ve replace <, gnd < By . and -t
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Eroof. That the spaee 8 1s a Banach space is proved as

in Theorem 1,1, We shall here prove only that if T is a brunded

linear functional on 8, then T 4is given by (3) for some f € D,

. The rest of the proof of this theorem follows as in Theores 1.2.
Let us now suprose that T 41s a bounded linear funetional on 8.
Sinece C‘_%CG) C S y the restrietionof T on f;,,frn)
defines a bounded linear funetional on Co (@)

« lence there
exists a complex messure Y on 0 such that "’}1% is bounded

satisfying

T3 - [ oo dvio 3€Ce, )

P,,N a ’P{,L‘l 2

Sisllarly, since | (4] C S , there is a funetion FE€ L (&
such that

b
Tta = j%im}tmdx 36‘"%"‘)
q

If g 1s a continuous funetion with ecompaet support both the
above formulas are valid and hence we have

S‘g,ln}d)}tx} = j‘a!ﬂ-l F o) el x
(" G

- This implies that ) is absolutely eontimuous and
dpix) = o A

Since j’/un is bounded, we have f\'-?'l‘.'_‘-'lﬂ_l Z oo hence

A G Shiw
& 1, e, .
€ L (G) « Hence f € D, Now if g 1s an arbitrary

function in 8, let ﬁ:%q.-a, he a decomposition of g in the
.
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fornm (9). Then

T4 = T9, + TY, = ;31::-.) A9 +ﬁf‘3.}—*) } o x

= j“a'l’.":u,.} -Pf.ﬂ.]dx
(A
whieh is representation (3). This completes the proof,

Suppose now that < 1s a nonnegative function on G
satisfylng the inequality

(11) Llx+Y) € SO BLY)

for all X,YEG ., IfY, is .1» bounded avay from zero, then
« being loeally bounded, both r-ﬂ and < < 7 are locally inte-

grable, Hence <€ L . Here-after we shall assume that all

our welght funetions <> will satisfy (11).
We shall novw state several results that are needed later.

LEVMA 1.8. I “K (6) denots the space of continuous

functions on_ 0 wAth coupact sunoort and 1< p < o, khen
by P,

K(a) Lfm)at.fa)

Bm Trivial.
LEMMA 1.9, IK(0) Ls dense in L L’G)
Proof. This is Lemma 2 in Gaudry f2] .

LEMHA 10, L) has_sooroxizate identities, that is

o C&*F-‘r{ nLcc..) for each §€ L (0)
(1) @ Aebounted dn 1%



Exaof. This is Leama 2 of Gaudry [7] .

DEFINITION 1,11. Two weights defined on the same group
are sald to be equivalent if their quotient is bounded both
above and below by a strictly positive mumber,

LEWIA 1,12, Every weight is equivglent to g contimuous
welght.

Eroof, This is Prop 111, 1-3 of apeutur [m]eg

LEW 113, K (6) mmLfﬁ)mlcpém
Eroof. By Lemma 1.12, ve may assume that c> 1is eontinuous.

Let fe LP,LEG.) « Then fwEeE Lb f.hj « B8ince K (6) 1s
~ dense In LP((,) y Blven £>p , there exists f. ¢ K(4) such
that

ch-,fimup <E

Since « 18 assumed to be a2 eontinuous funection satisfying (11),

it follows that ““OF0for any X CG . Now we set ‘acz Jc/

Then G € 7< (i) snd 19, - 41 s {E . This completes the
proof,

Py
Cg(*-f —> £ 1l ()
for 1 £« pec m. ety
Pronf. Tirst we prove that q:_*g—‘pg in "L (64)
each FEX () o Mow

Cﬁ* 3914 -3[.1_,) - 5@0{-‘3) —3“9.) ‘Et‘-'i)d.j
G

for



ocn, ad £e1P, e firet show thot the mapping
T, £ is uniforaly contimwous from 0 e,

By Lemma 1,13, for any 0y there existsx a continuous
- function of such that

¢ 12 an unifommly contimwous functlon end « 413 locslly
ble there exists a neighdourhood of the identity V such that

Therefore ve have for any ¥ € V using theoven (2,1)

-
1
1

-

 Since o 45 locally bounied wo have forany y ¢V,
By we ehoose as in Lemma 1,10 and 80 as to have compact
~ swports in V. lolloving the arguments for the theoren

‘:m 1’ as inleomis’ 218 wo have for he 1P % o wsing
. Helder's inoquality

have compact supports in V amd
for yeV we have

Abatract Hamonde Anmalysis, Vem Nostrand (1059)
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2. Multipliers on Welghted Spgces

Let ] denote the subclass of _n consisting of those
even contimuous functions

(1) L +y) & Lx) wiy)
for all x,y € G.

satisfying the inequality

It then follows that
fp] B

£ tole) € walon)
'-ior all x € G, MNoreover

4 1 g StV
(3) :

—_—

) Lo La=)

for all Y £ a.

THEOREY Z.1. Let«€é. If y€ O then Ty 1s g bounded
: ) ?}"4 b_,m"”
‘linsar operator on both the Sogces ] (o) apd . (c) - laregver

(4) VTydll, ¢ S 0EN |

(5) Ty fh bsing o) NFhy, -1
Eraof. It is easy to verify that

is a linear operator,
1 fe P o then

b
!l'?.‘-j-f "hu = _S‘I-th--:) um)iiw < Lffu floffx-j) ulmﬂﬂ)lhdx

: q PJH-'I. Gl
| fron which follows (4), If Jé L (c) , then

P —
” TJ:F “' Eu - = f IM’ =
&

s < L-.:.j‘?EﬂJII t‘:ﬁ-’ l.;dx

cl DL~
gives (5),




.:}fr'
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mw Let ©¢0 and 1 < pyq ¢ m. A
mltipliers from L (cﬁ) to Li' "'Ec,.} is a bounded linear

operator from L Em to L, : tc-g vhich commutes with
l..: q.r Lk
translations and ht M(L (a), L (¢ ) denote the space ofa

miltipliers from L ) to L"’# )

LA 2. I g MM o), men

LW
Eroof. First ve notice that if A€ L Co)and k ¢ Lha.)

taen Aspe % . Por BReete) am kwe Lta)

8 that i x R)w | <lhw] xlkw) £700 vhich we obtain

lf(ﬁ*h)lll < Il&n ”h"bu_

Let TE Muca,; Léok I §.9€ ke o then TG*a)
41—4
-nd'rf*g both belong to [ (&) , Then if ke q'-"“i

b, o
and fc | (o) y then

| < TF. RS _-.Ifn-mhmdﬂ < WTHY kN,

9, -1
| < )TN ll«f"h uhnfp‘“ {
Bhows that { —> T/, gy 18 a bounded linear functional on
- P.-u P! m-i

L tw .« 8inee [ ““(cry 1s the econjugate space of

!
-1
Lht?f.,) s there exists { in LP;LE'L‘J such that

bw

B LTy Ly mrann . e L ”S .



290
Now ir [ g¢ kCew ad R¢ ;_q’"“'cic,) then
<TFaxg, kS > [qw <TyT f, kyey
f‘%tu) <TTyt, k> dy
f ‘3':1) < Ty { £> dy
R «:’Tf-‘f‘*a)
This implies that 1—;*3 & TC:F"“&) nrlll §.9€¢ K(Q)-
Now let —f,gg-;__ () an C¢,) + Then 'T'{:lrg
M”T{fmg) both belong to Lt'"{m « Choose {-:fh_i and
{93 1n (e suen tna UF-ful, =08 19-3,0,.,

Then
I T(f%3) "T’C*B"‘b n
L NT (fxg ) ~T(4,»3) p‘},u-}- I Th#y) -Tih29,0 k
. FUT (£,%9,) ~TH*»9y by 1T Ay ~'r}a3uqu
SHUTYN $%9 - f, %9 s TN Fp%g S »g)
r NTH. »9,-9) Il‘i ot ﬂT{J,‘--})*alli
Shrnuf-fm g i u}..u ME-ga,
+NT) nonlig 19 -9 Iy T }.H-,tu# Wl .

= 20T {ﬂ&r}llb Wgn, .. t+ h{, H "? anll w‘}

us



The right hand side tends to zero as n —> o and the

left hand side is ma-p.na-nf. of n. Henee T;‘*j =T (f»g)
for all #, § €1 {r;) m_",:c.).

IHEOHEY 2.4, Let O be a locally compact abelian group

and «wéen, ., If 1 < p, q <@ then there exists a linear

bu ﬂl,,ﬂ et Pliah
isometric isomorphism of MCL )anto M{'_Lq"“ L2 )

Proaof. Let T € M( h’"f:_q"). I f.9€RW

then Tf * g :nd ﬂr-.} both belong to Li" (v, For

every K¢ )'- CG-) » ¥o have

CTCExg) ,R> = LTH*3 k>
for a1l .G ¢ K(4). MWow let g be a fixed elenent of < (G).
Define a functional L‘ on X (0) by the formla

L'{fl n £a%sle)y—

| l_aii:l:}l = | TFx» glod] ¢ uﬂ:n "3”4,2“" SHTUUEN, VG,
80 that I.‘ 1- bounded in the [_,b -norm, Bince J (6) 1is

dense in 1‘_ c;:g we can extend Le

!nnntlem :n '}__k'c"a) vithout inereasing :I.t- norm, Since
3

L t&; 1- the eonjugate space of 'L (m s ¥e have

to a bounded linear

TﬁEL cagma MTﬂP " —Irl.ad.uglrr.qug,mjr
‘Thus the restrietionof T to K (GJ is a bounded :li.nur
transformation from X (3) to P “(a.,) which coamtes
with trmhﬂ.onl m! hence can ht -MH uniquely as a mlti-
&11“ from L‘*“"“ to L {;,). T™hus T M Y- p"

26

b.w gl 4




Moreover |7l , £ ||T)]. « The opposite inequality can
Y, p! Py
‘also be established similarly.

We need the following result of XKree ( [7) , Lenma 2, p.118).
TUEOREM 2,5, (Kree [7] , Leama 2, p.116). Let «w¢-L then
(1) &£ f, Ais a cosvlex vglued messurgble function on ©

then  {og Vfoll ¢ 18- somvex fumetlon of(* ) AL x € R

ad oc¢c !l 4 - wm(i_ﬁ) such that
of

b e o = &
B D - L%y o ' - 1V9%r ) ki
-—ip—: %f’_g— 2 aﬂ—:i’a‘r_i
& - : =
o 2 b Do fﬁ

fa«a Skd Af, gy ( for M, €1 UG, ¢1)
18 g convex function of O .

We are novw in a position to prove the following represen-
tation theoren,

Let 1 ¢ p ¢ o0 amd co¢c o IL
b,ia Pto
TEM(L ,L ) then there exists a unique psevdomegsure o
such that
T =g e+ ¢

by L
for 1. (WO Lce)nile) . In particular, this re-
n §e Kcwe



| bu

Proof. Let TC M(L L) ena 7Y, denote

the operator nora of T. Then by Theores 2.4 we also have
b! '1?’

TEM(CL | L )mﬂ llTHbu=llTH,P, ,+ Theoren

8.5 wvhen restated says that

. 4
03“‘1_“ P&,uiﬂ
:lllnnnrﬂ funetion of 6 . We put o, -1, o4=-1and 6=/,

vitn PozQo- P » pizqh:l,t

vhich implies

_IITII:’H“ < uTllb,u

';M for each f € K (G8) we have

WTdu, < wruy ovgn,

hus T when restricted to X (G) 1s a bounded linear trans-
gm-uun of %(0) into L2(0) which commtes with transla-
ons. BSince /< (G) 1s demse in 12(6), T can be extended
88 a mitiplier T, from L2(5) to L2(6) without echatying

the nora, Then there is a pseudomeasure o~ such that
Td = oxf

2

for each ¢ L"{g,)nj_m). Froa this follows our theorenm,

THEOREHM 2,7¢ Let €L, gnd sunpoge that 1 < p,q < ™.

eﬂg DT -0 Loy Ul 58 Loy "T"#‘Ju



Ihen
(a) 42 T € M(»*®,19°) and ps q ghen T = 9,

the zem operator when 6 is noncounget locally comngot sbelian
RIDUD.

() 4£ 1< p < q¢ m gnd T € H{L"'“.L"”J.m

£roof, We now apply Theorem 2.5 again. We now out H=1 ot

s 6=} wvith Pk 9,29 ad b oq Yy= b’
Then

d-a = '0

o ey S I ER =1

) bt p s L)

2 - Yy (4, = 1 N
R Do 1_(.,,;!’ b 1’,_(;—'?’1 _F-)

é fo P ara

D o= L (&) E = L™

A8 in the pmr or 'l"h-uru 2.6y we find that if T 1s g multi-
plier fm L u.g to L g.,) y then T 18 glso a multiplier

,!‘_lu L (C,) to L Cc,) and the representation (%) follows
from Oaudry's theores, HNow Hormander's theorem gencralized by
Mrr for a locally compact noncompact abelian group says that

20 1ir P# P q, This is indeed the case if p\ q for 1r

7 q then -"f: So and 8o 1"'31; .'F?:HF-:, which
| ¥
‘turn {mplies that - > i vhich 18 the same as p >q .

eompletes the proof of ‘th“m 2.7

29
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ﬁr,u)

|
We shall now give the characterization of M(L :.:: L as

the dual of a certaln Banach space,

THEOREM 2,8, Let <€, and1/lp < q< o. Let
OL(p,¢,») he the spgce of all thoge functions u which can be
represented as

(7) SR et ae

9
!hm fiek(w sl 9 e "“m) and _such that

Zﬂﬁll SN0, . Ye define s morm on OL(k.4,w) b
= , ‘b u

! L]
(8) han - I Ny
er{ E ;J-”.P,U H}J ”‘Dﬁm'j\}

vhere the Anfimum is taken over all such representations of u .
Then OL(p,¢,.) AS & Benach space ad AL -1 _1 , then
1 ]

= )
Oulh. 4, ) c 1> S0y
Proof. It is ecasy to verify that OL( P.q, ) is a vector
ax space and that (8) defines a seainorm on oL( .4, w). We now
clain 1t 1- mtuﬂlr a norm. First we notice that if &F = %._%_
then LCG)*L(G}C Llﬁ.). Nowdif £€ K(0) amd g¢ % m)

b !

Lah Lo ,[’Fp € L(5) and ﬁlmftfw o that S 9, € TS
fiow since -‘--'alx-i-j) < Lwwly) and wix) = (- 1t follows
thl.t . P r..-.:lx-f)

A ——

/u (0 = w B

1,1
Now 1f ;E‘i’fm and gg‘{j’(&) s we have

960 = J‘;m gL
G
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80 that
Hiﬁﬂ” < j\lgclmr-l’}ulz-}')“ﬂﬂ-‘”u[ﬁ'd*
LS L)
Cl £ %lalu])[-":’
from wvhich we deduce thlt.
el
Fx9¢ L” (e
and
I} % ) < 4
Udy S s v =
Now if L - Z;_; *9; 1s a representation of u in the given
J=)
form it follows that
oo ==
hany o € 2 05295 0 0 & ZNEn, He ,
J= J=) U, w

'r_,.u'i 'T_,m"'l
Thus U €L Cw endwehave OL(p, § w)c L~ (o)

Now show that (8) defines a mormon A (P.4y,w5) , let us .
suppose that |/|lullz=e , Then by definition we ean find olements

™ ' -t
f;‘h) E'k{&.,) and f }EL%JHC) such that
‘3 Z ‘:f.t -*3 a e
J=)
and

levfj Ilbultﬂ ", “:%H

u"1 4
)= 2
forn = 1,2,s4+ « This showe that } 3. eonverges to 0

in measure for each J and hence u = t.lr. This proved that
(8) 1s anormon CL(P,4 o) «



It remains to show that OL(p, 4, ) 1s a Banach space.
To this end, let {u,| be a Cauchy sequence in A(p.4,w) .
By the property of the Cauchy sequence it is enough to show that
a subsequence of E Unj eonverges to an element of OL(p S, W)

Therefore we may assure without loss of generality, that our
gaquence is such that

Il u
Let |l u"l!H « Then, by the definition »f the norm in we can
(R) tk) 4!
slvays find elements §; * . .f¢(() and 9 €L @)
such that

u [ - 5‘ M:“.IJJ'J-"
h-ﬂ‘ h] z“

with <
2 w v
) n.}jub 113]- 0.1 4, <Nt
& L3
ad =i
=1
brap
2 If; I ncalm.%“ p L'h+"l‘.,,£!
4= ; - ,U"d = - l“‘d
ol ‘L, ¥
Now define
L) )
12 L) () = (3 3
TR R TRRE S LT R A PIOT R P
Then
) Cy cL)
IR S E UBNE S E Pt I N T & T T e
L S 3 _,L-“ o s -
(s l) 1"“1
3 : < NT3
+ 0 fli u"%' “‘ii_,'u o



Thus (A € 6L P, wo)e We now clails that U > U 1n o1(p.gw.

Let £>0 be given, We can find an inteper N, such that n >Ny
PO

implies Z %FI (E o Then, for we have

e ot [~ !
Ut i @ 2535 Y T :;‘mhgtﬂ)” —17“*2;7"-“

Henece i-lh —u in ol p4,w0) and the proof is complete,

In a similar fashion ve have

THEORE 2,9, Let ¢ <1 and let 1 ¢ p < . Then
(b, b,o) 15 defined as in Theores 2.8 with q renlaced by »,
but (7) is assumed %o hold every where. Then oi( b, b, «) i5.a
subspace of C wmmm c. (y) AS_given by
(9) u441nrmw_‘l - Sb|B0) fy e S ca)

LE G r...:Ln-J

The tonology defined by the noxs (3) 13 stronger than the
tovology inherited frem  C.(u) .

Iroof. Proof 1is Illﬂ.:;' to that of Theorea 2.8, We only
observe that if §€ X(G) and 3 € LP Cli; then Wwin13[w |
is a continuous function vanlishing at Infinity on G, and hanse
f being continuous function with compset support, f*g 13 a
eontinuous funetions belonging to the elass C‘fs () « Sinee

. have
Z‘Hﬁ”buug.i” ! £ 0o we ha

= F -
=1 PJL}

"
“ et -
02 5% Gileg et & 2 Wiy B0 =79

j:'h'l < J="w

Y=t}
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ba

a8 myn —> o>. HRence U= Z}J ta eonverges in the nora of
C' {G) and the nors i}" is stronger than the nora given
m.

THEOREM 2,10, Let © be g locally compact abelisn groun
ad @€, with oG):12 o+ I 1 <p < q < o, then the
soace of miltinlier: HCJ-“ %°) 18 isosetrically isomorohie
qual G1 (4w gz 1'1(_])1, @) .

Prof. Let T¢ M ;%) end define a linear fune-

- =
im] t(w) - Z- 1—{{*3‘1‘{0)

L=1

o
for U - Z.';;u.g;_ in 61(b.q, ) » We claim now that 1s un-
\:Ll

‘asbiguously defined, To sece this, it is nm;h to show that 1if
e
= it in olL(p.q w) and Z.’[,ﬂu L ”%I i

't.-:l L=

=]
Ao ZT{i*ﬂ{[ﬂ) =0

L=
We first notice that if PEK(G) amd T ¢ is defined

by b
Tf = Pprf fel )

then T EM(L q"”) . To sce this , let P € K(4)

and fe ','__P ce) e From the relation

l¢* 5 oo wwr| < J‘l FOU9) wia-9)) (PLy) wiy)idy _
G




we obtain

epx f) @l <1 feol , P

and
Il & -«,f)mup < | s‘“"b’f‘f’””i
Then ' :
u(ryx;)muc:’ < k@*{)uu{"” WepefI=lly,
< Lo ﬁ.:ﬂ:" f Il qo;.:u]b !,fu:!f; :
8o that

i 1
JCER R e 3 (licpmu;b, Rl qauuip_)‘b el

Moreover Tj(°f¢{)=q>*r{ for each J?ef'?cd vhich

laplies that T ({; ‘Ptf{ « Thus € M(LP Lj!-% HJ

CIG
P
la, I- P[%_
] T‘q,lr < ilcfmui HCP””P

Pu

We nest show that every element of M (L L ) can be approwi-
mated boundedly in the strong operator topology by operators

b G
 of the fora Tcp,‘[’&?f‘-’a)- We show that if TE€ M( L .L
then there exists a net tn {<(6) sueh that g, f —=>Tf

9, b,w
in the norm of [ C{A) for every F& f 2 (6.,) and there exists

eonstants K.{ (w) whieh depends on <>  sueh that

LLCPd:I: ,Cu%u < Ki{m) u,tummf




vhere &w Kq{f'--‘)=l and {ff {w)j is bounded, It 1is

Q2
sufficient to show that o x| — T{ weakly in | (&)

and then a net of convex ecombinations of the cp s will satisfy

our requirements, Let [ﬁ { be an approximate identity in
1 b

b Gl o ﬁpe:k(m*m; v Wb n ct and £
vanishes outside some fixed eompact set rur .11 F. ek 5

i
be an approximate identity in | (/1) suech that FFEJE'(&) s

il kg”i -1 . Binee T ecoamutes with eonvolutions by functions
in (09) (Theorem 2,3), it easily follows that 'T'»ﬁp is econti-
nuous for all P « HNow we set a{ CPQFE) kg T} and

give ol : (B.§) the usual product ordering. Then ¢ & % ((,)
for each o « If {,5€K(6) we have

Eﬁﬂ‘p* f %4t0) - Ykgﬁ#(-jJ fxgly) 4y

={[ o5 v) (9
B GG
Binee Y (Y) = \/(-'-jj y ¥o have by Fubini's theoream

* {tgtuﬂ Lok f’kgif)w‘ffﬂ#(*:’) f4-+) j&)?tjjdl—dj
i 6 G

< 1l k1, &.f;f'rh (-9) v§ ¥Y3 (9) 4y

valy K
J‘f 'Tﬁp *{?aﬂﬂﬁ?'}):a”
= 5’
= B *y’ (o)
},“1 (?H{) ol

ST s Hﬁ Y4 uhw’ﬁﬂr )
= F p
L ‘Yy—y u.(.{..n nw.Ltn gy, &



using the relation

”"F"Lw < H’B[u) WAl =-_Kﬁfu)

where  ky(w) = e | e ‘Ifﬁ‘ﬂvh,i,u follows that
hCde fx3wl < Ty Kl H”b_,u ”3”1;;,3-1
5o that

I cg(#fum SATH K () hf U,

vhere Ku(' () = KPEN_J « It is eclear that {kd(m)j is

bounded and ﬂ;,.“&w); 1 since «(o)=1 ., The operators
of
T;Fd. satisfy

IIT;&n < K "-LH),"H TI‘L < K
Since each closed ball of M(L 6 ([ ’m) is compact in the
weak operator topology, the net T‘Eg has a 1limit point

b.i qa,'-‘
Le ML L,ae‘.. ) (for this same topology) with llU 1 ¢ UTI

We suppose that ﬂ_:n 1(; = U 1n the weak operator torology.

Then we have =

-~

by by s T
FaY

for §, 9€ & (4) sinee Rj—> 1 loeally untforaly {£,] 1s

an approximate identity and T cosmutes with eonvaolutions by

functions from K (0). Hemce T = U and our assertion is proved,
=]

Now suppose that 3 [ .4 A is a representation of 0

1=1
8s an eleaent of ;1 (,q ,) and consider the net ‘f‘.(l given in



3F

33

_ ‘preceding paragraph. Sinee the url.n 7_ * ,f.,; * 314;, )

28 uniforaly with respect to X and q’u(*'ﬁ _~,T{11n

o o2
2__'1'{1*31{::):: aLWZCF ‘r‘l*a Lo)
=] =

S cQ* N 9:6)" = "E _fcpnéi-'d) intg,;iti)dj

jq? (-4) Z {1*31 (9) <y

=1

| c}:{& % () amd hence un lu viewed as m element of
e 1 i 1

L (&) and %;&3‘-’5‘;__ (wuh-u ;,--;-_?: -« This
yoves that t 1is well defined,

he linearity of the mapping T —>t, is obvious, Now we show

that 1t is en isometry. From the relation
Lo 00
[ttwy) = | 1:2;_'1‘4{* gite) EUTU g, Wglly

it follows that
VEL) <y un
and henee ||{|| < ||[T!]+ On the other hand

nTu = Sep {ITFrg)l 7 “J"“huél.u%u%ldu_léij
<Sep {lblfxg) @ ufu bt g, 2]

< uen

Therefore | 77 =nkll*




Finglly we show that the mapping T —> ¢t 18 onto,
appose L& a(b.g, m,)*' Let § € 7<(() be fixed., Define

‘3 S tlf*g)
e 0o Space Lq“ cc.) . This is a bounded linear functional
3
Lm"u sinee
Lelsxg)] € htn sty Irﬁu
q, e I

Nov L (&) 1s the eonjugate spaee of [ (G) + Henee there
:_‘ujid.ltl a unigque element, call it Tf, in ;_"“' (G) such that
Tr * glo) = T(f*g) for all §¢ f":” '1{“
and TS “‘F Z t[n,f'u « Thus we have a cnnumuuihtiuur
operator T deflned on tlu dense subset K (G) of L ()
into Lc.ﬁ’ {tu) We nxtcnd T ecomtinuously and linearly to the
whole of L ;;.g.,_) without changing the nora, We elaim that
this extended T belongs to M ([ Ha q’*"“‘) Let YéGq o If '
fé‘ff(&-.}c:;__P(g) m?é (G),wh“-
"l'fct,f)*g—toj = tf't.J}u-g_J =tld vz 53
* T} x 7 3lo) FTYTE # Glo)

Hence T T f:- T4 for all 4 € X(¢) and hence the same

holds for all 4 C L”’L‘E'f,.). Thus . T ¢ (L hm %HJ and

our assertion 1is proved,
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CHAFPTER 3

P= Pl
A b
mittoterson L () n L6y
Let o ,wen end 1< PysPy < . We recall the

space DJ. def'ined by

D = L N L m_)
is a Banach space under the nora given by
(1) !I.fu = Mmox i"i’"hu Wn, ui

¥: 4 L T T
l

DEFINITION 3,1. When Wy ., €5 9 ve define a multiplier
on D, to be a bounded linear operator on D, vhich commtes
with translations. The space of all multipliers on D, 1s
denoted by M(Dy),

We shall here obtain a characterization of H(n1) as the
dual of a certain Banach space.

We first introduce the space C (G-) b XP 6

L
we denote by C‘ H[c,) the space of -11 funetions h which

.J

can be written as

U T e (B, %) €¢ (Q)KQ’@)
with a definition of norm || - |I given by

(2) lllﬂu] = 'nmf [u ﬁ;”m oy +IA N mﬁj
vhere the infimum is taken over all such dmmlltiunl of h,

then ve can prove as in earlier cases that Cm, L(G) 18
a Banach space under |-l .




We also recall that the space 5, is defined to be the
elass of all funetions g which can be represented as

S

Pt b, e
3= 0+3, ., (3..9) ¢ L e xL*
endoved with the norm
| - » hg |
) U U R XU u;:tj
vhere the infimum is taken over all such representations of g.
Now we define the space O1L - m.(h,u. 'P;_,_‘"";.) to be

the set of a2ll functions u which can be represented as
41

(4) R

R:!
o=
wnere | C K(¢) end F ES  wvith E"’C*"vi Ity < 00

otiece that K () 1is a dense subset of D,. Define a norm
4= Lty on SL by

() hun = nf [ 5 2 1y N9l §

vhere the infimum is taken over all such representations of u.
Then we have
THEOREM 3,2, Let o, , ¢ (1 + Ihen (S) defines anoma.
gn oo and oo Ais complete in this nors, Furthersore o is.a.

subsnage of Cﬁ_,,u,._tcc‘) and_the topology on Or 48 not
7 ok

weaker than the tovology induced from Co* (W .
Proof. The first part of the theorea is proved exactly
as before (see the proof of Theorea 2,8), Fow let {¢ k(n)

and Je 32. « Suppose %:%1"'%;_ is a decomposition of g




g

R~y b, w7
.'h’,ﬁl ?iE L < 1(61) and %1 €E L = 1{(‘) « Sinece

Py oy
Fe L™ o) for 1 =1,2, 1t follows that FxF e C  (a)
1

end {29 ¢ € (@) « Moreover

”*3,_”#-'0,“;’- x UEEFN

< hfy N, +0fy  Ug )
By et R b
< ¥l e ) 4+ ng.u
lpi( 4 bl % P;‘m:a)

which implies that -,F*g €c L, Co) and
" (.:’_ u"i

- (8) N £24 w < Wy NG
1 L
Purthermore if Ul (oL , then

vl i
2" foxg,.m < 2 nfn
Rzm

as mn,n 09,
WF RN =20 =

B=vn D.i. L
Prom these relations it is clear that o < C__, Cag and
R
i » K
that the topslogy of OL 48 not weaker than that induced from
C,_‘,,Ii L,E;%) 1

and let 1 < PpaPgy & ™. it o, L, efl, » then the space
of miltivliers M(D,) is isometrically isomorshie to O™ the
gonfugate space of OL .

Eroof, For any T € M(D,) define

MY = 3 TE %G, 00
R=1




43

U = Zfl*gw in Or . Pirst ve show that T 1is

R-1 ;
11 define, To this end 1t 1is sufficlent to show that 1f

+ e e - e
L ----Z :Fnd:gzohﬁt and :L;“’E“'Lv,,“@u"s,_‘”’”

Z"W * G, (0) o
;,.g Ef’ { ©be an approximate identity for L f(h) with
il %.“.L'i and {’h} an approximate identity for L. CG:_J
? ll'lqF =2 188 Py - %.9)’@*’]; ‘5,3 ;m A
YaCa, p) the usual product ordering. WNow let f ¢ U<(q)
d eonsider Cff*-F-g « From the relation
p Praf = E af+ofof —E XY d
it follows that
] F ;
fEFf*)C f" < “f *f - JH}, + li'VJ ¥4 g*v n;ﬁ

-1.1
11.

Hence S & 2

X hpyxf - filp, =0
Por taking the limit over the {ndex Y 4 Then

Ly

ITR 5, )% g to 1= THy ¥ G l0) =|T(P xS, -£) ¥ DY

E S Irn e xf -f, Iy 0g g —>0
I at 1 2

E‘,"W T(qJ,r* ';K)*gn_"“} = Tth 3!{‘9




o &0
= = and the serles 2 1. »*
u hz-t]_ ‘Fh E 31-( o i K BH
snverges uniformly, we get

0o o
Z TP * £)* g,lo) = S _frrj T £, )0 3;‘1‘1}4:
k=1 k=1
= jﬁj (g, * -Fk]rt-} fjnl‘j)d:l
k=1
(r's) =
= > T(Ppxfe*g o)
k=1 o
= T (@,% Z $.+3.0)
= Ral
) o
?fﬂlﬂl now show that ZTL(P-;“:FK)*B fﬂ) converges unli-
K= k

foraly with respect to T o

We may suppose that the support of E.,{ is contalned in
a fixed compact set K, for each o and the support of 719
is contained in a fixed compact set K, for all f . Since

|II J i
[ E.J and [';]Fj are bounded respectively in [ - E‘} , and
J w
L (& there exist M), My such that L gu 10, & My
_“ ll‘qFlli,ulé M, Set H-nl-rna. If y €0 then
rom k& the relations
llrtj&ll By o

S

(AR

L @,t9) ”’cl]lﬁ.y

e F s

Hf.J'f I by




a0

it follows that the translation operator "EJ on the space Dy
hes & norm bounded by ‘max fuy(y), w19} « Let m and
oy be the maxime of the econtinuous funetions ey
on the ecompact set K = Ky * Kge Set m = sax(m,,m5). Then =

L, respectively

and M are independent of X and S and hence of Y .« BHNow
if £ €7%(6), we have

g, x5 < ILE % £y + Iy wf + NE %y »f )
Y P’“*Hi " P =, Te P, < Py
ShE L nfy Ty af) N EY
] i';__;i Pi.,"":j_ 11F Pj,_, ‘-'I_t »d ‘.Jui’y’;f;I l.
r
We shall now caleulate u-ﬂ x5 » HNow, using the defi-
f Pj:m-j

nition of 'y]F,,; and Minkiowsky's inequality, we get
PR
W, * S fpen i)

< £u.4? {"Tt;uppui . ve Sﬂ"ff}
< .S‘JF { DTl llfuhhui : {:E—S# -7Fj

< M “';”PI'.ui
Then

IR 50, & ‘é"ﬁl“phu

Bl

£ i+ U £
I £ b m:- C 5 }1)-:3] hl!:H.!P

4 1+%y

G+ 1+ ) ™) ||

1,
fu 2%
+ Siallarly for fC “K(6), we also have

HL’P’.*JU I’J._,H:_ = [M* MCI*MJJ d Jc”P:"’ S
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flence

WPk £y (M4 o M)Il,fup
2
Then :

l stiffﬁor,, )29 10)] < gﬂ’r(? *Hu u'}nn

L
Z""’H NP+ 4+, H; NG, Vs,

-r:' ) (M+'*h+'m14) Z;,,t uD NG,

2=}

and the conve e of is unif
e rgenc k_Z"TC{P{*?F!.)*BL’:Q) 8 ﬂl‘l

.I_

with respect tu Y . Henee

zl THer Gelo) - ﬂlw Z TCP £, )% G 10) =0

¥=%
since TChyx £ ) * gktﬂ) S THe* Fu® for each k.
Thus t 1is well defined, It is elearly linear, The mapping
is an isometry. In fact

oo oo
3 5=ty Lyl £ uTh - nf 0 ng, le
[E(w) | kl:_i 'fg*-gk_ o) — ke, LD.-l I S,
implies
Ll < uThnub

0o that |11/ < Tl . On the other hand
: s llgy <1
uTH = 3-*;{]']';33;05]. Iifj?ll:p:i, L j

Sp{ltthegp) : UFlp <1 ugu%_sij &)

To seo that the mapping T —> t 18 onto, we proceed as
follovs., Let t ¢ u”, Let £ € -K(0) be fixed. HNow define
a functional L on aa by the egquation

L(g) = t(reg) g € 5,



47

Then |LIDI = |t (fxg)] < Wty 1y 1 Jug vhich shovs
that L 4is a bounded linear functional on S5«  Since D, 1is
the conjugate space of 5, (see Theorem 1:3) there exists a
unique element, call it Tf, in Dl such that

T * glo) = L(g) = t(r e+ g)

and ”TH'D, < It i1, « Thus to each £ 1n K (0), we
have Tf in Dl and the mapping T 1is a bounded operator from
K (8) into D, when -K(G) is considered as a subset of Dy
It is clear that the operator T 4is linear, Since K () 1is
dense in D1 we can extend T uniquely as a bounded linear
operator on Dl vithout inereasing its nors. We clalm that this
extended T 4s a mltiplier on Dye Let y € G and let

TyTF4 glo) = TH* Ty L) = t( 'f*TJE‘J =t "'-:'Jhg)
=T TJ -F*B o)

holds for all g € 53. lence
(7) TyTf =TTy f
Now (7) holds for each f in K (0) and hence the same is
valid for all f € Djs Thus T ¢ "(DIJ. This ecomplaotes the
proof of our theorem,

We shall now give the characterization of multipliers when
one of the py's 1s1, let co, wwéenandl <p <oo, lLet

s &
A i M%qu i’?ﬁj and supply a normon D by

(8) lI{lLD = mant (H’fﬂl TR J‘u}' )
Then D is a Banach space. Ve set i ; B! -4
» o

S= {g; L) c—“%:m;icc\)x L, o)



and the norn in 5 1s defined by
(9) I % ”5 = rmn.f {ilg'll 0o, L34 i “3"“ P'J w2 }
vhere the infimum is taken over all such representations of Ee
We have proved that D esn be thought of as the eonjugate space
of 8.

We now define G':.i to be the set of all functions u

which ean be represented as
o

W=7 +$.*3.

=1
e
vhere ‘Fk G *f"‘t} and %R (39 with Z I ;i. ”:p U 3“ “'5 o2
k=4

We introduce a norm on 51’_ by

Ynf { f"‘fn'b I %h.”dj

Il ui)

n

vhere the infimum is taken over all the admissible representations

of u,

THEOREM 3.4. Let © De a locally compact abelian groun.
fuppose 1 < p < gd o, €0 .+ Then the svace of multi-
Rliers M(0) on D 4s isometrically isozorohie to ov*,

She conlugate spage of O .

The proof is quite analogous to that of Theorem 3,3 above

and hence we shall omit it,
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SHAFTILER 4

Multipliers on g 3Sesal Algebras

There has been a consiicrable interest in reecent years in
the study of GSegal algebras. A llnear subspace 3(3) of L1(g)

is called a Sgeal glpgebrs if the following four eonditinns are
satisfied

(a) 8(3) 1s demse in 1l (0)
(b) 8(2) 1is a Banach epace under some nora II‘HS and

Il £ A ETH £ € s(0)
(e) Let y e G apd Ty denote the translation opera-

tors. For each f € 8(0), ‘I:J-f belongs to 5(0) and the map-
ping‘j—}ft:j{—' is continuous from G int> 5(0),

(@) Tu%lls = Mus for all f ¢ 8(C) and all y € G,

Various properties of a Segal algebra are collected below

in the form of lemaas,

LEWA 4,0, Foxrevery f€ 5(0) gnd arbitrary h € 11(0)

the veator valued integral ,jhfri Ty fdy gexists as an ele-
ment of 8(G) gnd G

jh(rJ-Turdy = hef
Yoreover &

]]—ﬁxfus < uﬁht-uﬁus
it follows immedliately that if h ¢ 8S(G), then

: IRxgUs < Wi I Fig < 0 ngn,

which shows that 5(G) 18 sctually a Banach algebra and it is
an ideal in L1 (0),



LEWIA 4,2, Let M be a bounded couplex valued zeasure
on. 0. Then for any f € 8(G) ghe vector valued intezral

I‘E:,f d M (y) exists as awelement of 5(G) ond
& J*‘I‘.‘J;d’-ll.j) = px*f
G
Barther

hpesfll, € lpn-1) £ug
Thus 58(3) 4ie also an idesl in M(8),

LEwia 4.3, S(0) gontalns all f € L'(0) guch that its
Eourier transfory r has compgct support.
LEMYA 4.4, To every compact set KC [ there 1s a con-

stant Cg > O guch that for every f € 8(0) whose Fourier
transfora vanishes outside K gatisfies '

L5MiA 4.5, Olven any £ € 5(0) there is for everv
a ¥ € 5(0) such that the Fourier tramsfors o  has Sompagt
suovort and IV £ - fu, <€

LEMYA 4,6, Lvery Sezal alzebra has aporoximate units of
Ll-pors 1.

The proofs of these lemuas can be found in Reiter ( (8]
pr.128-129 and [(13] pp. 18-20, p.37),

LESIA 4.7, let 1< p¢ ™. If f£€ 5(0) andhe LP(0)
then f*h € LP(0) and

I ¥*MIP < “Fl}iuﬂup SNFI_uAl,

DEFINITION 4,8. Let 3(0) be a Segal algebra on a locally
compact abelian group G. A multiplier om 5(3) 1is a bounded

1linear operator on 5(G) whieh comwutes with translations. We

)

5P

()



o1l

denote hy M(5) the set of all multipliers on 5(0),

LHeoixv 4.9, et T € M(5). If f,g € 5(G), then

T(f*sg)=Treg = £e1g

(see Unni [223 p

Eroof. BSuprose T € M(8), Then for each y £ G, we have
T ¥y =Ty T, We shall now show that T eommutes with eonvolu-
t?nn:. [f the space of eontinuous linesr funetionals sn 5(0)

is denotel by 5(0)}, we denote the pairing between 5(7) and

PN o2 <f, @

!
for £ c5(0) andp €s(a'), Let NTI denote the sperator
nors of T, Let @ C8(6) be fixed, If £C 5(0), the inequality

I<TS, 31 < THI hpu < WT 0 nfn gy
shows that the mapping f — (Tf,®> 1s a bounded linear func-
tional on 5(3) and there exists yw ¢ 5(0)/ such that
(1) {E, w> = Gf @5 for all £ ¢ 8(0),

low 1t 1s known (see Reiter (19 , pp52 ) that 1f € 11(0),
g €5(0) and ¥ € s5(0), then

(2) {Fxg, ¢y - ffl‘ﬂ) <t g .P> 4y
(n

holds, Now suppose f,g C 8(0). Then

i

S\g Ly) < TJT)(‘ gydy vy (2)
G

j $U9) <Te £, pody

<TG9

_j 3L3) LTy F, Wy by )
L% 4 wd by (2) again

= < TE%T, P by (1) azaln



lence the relation

(3) (Tr e g P> = T(* gy 92
is valid for every CF in 5(6)/, Hahn Banach m;omm now applies
to show that
Teeg = 1I(0 * g)
for all f,g € 8(0). By eonmtativity of the convolution product
we also have '
T(eeg) = Tgef) = Tg* ¢

This eompletes the proof,

A nalogous to Theorea A stated in the introduction the
following representation theorem was proved by Unni EEEJ .

TUGOREM 4,10, I£ T € M(8), then there oxists a unloue
pseudomensure o gueh that

Tt = o *f

forall ¢ € s(0)

Je shall show that 4(8) 1s isometrie and algebra iso-
sorphic to the multliplier algebra on an abstract Banach algebra.

Let G be a loeally compact abelian group and let a(n)
denote a Segal algebra on 8., The space of bounded linear
operators on 5(0) 1is denoted by B(S), Then M(S8) 1is a subset
of B(3) consisting of those elements in B(8) whiech commte
with translations, If T € B(5), then li’T{IS will denote the
operator nors of T.

It g € 13(0), ve define the operator W, on 5(a) by

wg(r} = g*f r € s

Then Wg is & linear operator esamting with translations.



Prom the inequality

It < hgu, usu,

it follows that V. E #(s) and ”‘#3*1‘5 -;;ugf; « Let

P = ):Hll gGI.l(GJj d

Then P 1s a lineer subspace of B(3), If U(S) denotes the
completion of P in B(S) then U(3) 1s a subspace of M(3),
TLEO®M 4,18. U(S) 1s actually a Banach algebra.

Eroof, It is casy to see that U(5) is a Banach space,
Let g,h € L1(6). Then g *h € 11(0) so that Wgr Wye Woup
all belang to P, Purther, Af f € 5(G), then

W ooh (f) = gepneyr = y o ()

‘ L]
80 that H! 2 "»‘h = H!.h- Hence Hl, 0 ﬂhe Pe Thus P 1s
closed under ecomposition as multliplication, Moreover

- > VA A
”“"3*.:.,"5‘ e TR S

It nov follows that U(5), being the eompletion of Py 1s itself
a Banach alpgebra.
S0 %.13. Ihere oxists g bounded aporoximate identity
for U(s) .
Pronf, Let H’"atj be an approxizate identity for '8(0) sueh
that fu  1s bounded in Li-nors and the Pourler transform of
fx,( has conpact suprort., Then W, € P since !:‘ € 8(o)
C 1i(e), i
Row

I ""ﬁ* w,,.,,a ,-waus < A * 9-3 Hi

£



This implies that &;dw I W.;;f't "’“’3 y ""-'3 Il =o0 for each

H‘E € P, Since P 1s dense in U(8), we also have

&;nll wﬁda W-kil. =0
for each W € U(8),
THEOREM 4,14, Let TE M(S) gnd h € 5(0)., Then
urh = Tul";-

Broof. Now Th ¢ 5(6)C LY(G) and so Wp C P. Then
we have

Hpp(f) = Thet = Ther) = {!uﬂhif!‘)

for each £ € 5(G), Therefore

Hm = To Hh
DEPINITION 4.18. Let A€ “(3) and consider the mapping
defined by

Fl(B} = | BA.IIS

for each B € M(8), Then P, 1is a seminorm on M(8), Wow
let H(M,U) denote the coarest topology on HM(8) with respect
to vhich each of the seminorms P, 1s contimuous for A € U(8)
and “(5) 1s a locally convex topological vector space with
respeet to the topology R(M,U) (see MeKennon [17] ,p.482 ).
LEMIA 4,16, Let r be any positive integer and let
M, = fné’ n(s) s ull!g 4 rj « If M, x M, 18 glven by
the relativized nroduct unifor: topology R(M,U) x R(M,U) then
the binary opcratbon defined by

(A,B) — A.B
is contimuous in R(M,U).



Exsof, Let g and r bhe fixed positive nuthers and
B be any element of U(5), Then if E£,7,0 and H are in
¥p Such that pH(E-FJ < q/2r, we have

Py (1-G)(E=-F) = | HER « GEB «{FR + umua

<alf Bllg Il EB - PBI; + NGAg; ) EB - PR)5

=(y Hliig + 1l ang) pnfh - F)

< gqf2r, 2r =q
from whleh follows the eontimuity,
LEYAA 4,17, Ine unit ball in VU(3) is dense in the unit
ball in_ M(8) in the R(%,U) topalogy.
Eroaf. Let T be any element of Hl‘ Let th be the
approximate identity given in Theoream 4.13. Then 'n:{ € 8
and W - Tow ~ « By the continuity given Leaua 4.16,

‘e:rw "N_rh e ] 7 To 'lv-o.."qt 2 ToT =T 1w -R(H,U_,Hu?b&gj
ol ol o
Moreover

On the sther hand



ﬂ: =4
unit ball in U(8). Thus “w IWg 1]~ e = T in the
of o m.-{

topology of R(M,U) and T 4s the R(4,U)-11nit of operators
in the unit ball of U(5),

LEXMA 4,23, Let [T} be any R(B,U)-Cauchy net in B(s)
sueh that {:HT,,III <e> , Then there is an onerator T
in B(3) suen that &7 -7 in both the strone onerator tono-
dogy and the tovology R(B,U),

Broof. Let f €5(6), if ge L1(G), then W € U(3)
and by hypothesis | T, W} 18 a Canchy net in B(S). Stnce
Tae: 0 wltrl = rn{ (g » r), 1"“L (g * £) 18 s Cauchy net in 5(0)
and converges to T(g*f) 4in the Segal norm. Sinece I1(G)*S
1s dense in 5(0) amd S::Jf: 1T lige olt follovs that T, =7
in the strong operator topology.

let g€ :.ltu), then by hrputhuil { T 0 W j is a
Canchy net in B(S5) and 80 has a 1imit V 1in the nurm of B(8).
Then for each f & 8(6), we have ‘

Vi) - & (Tyoh) § é T, (g%5) - 1—@%,
= Te b'uatJ-j
Hence V =To hr?nnd W, -1 I—vau - 0 implying that T 5T

in the topology of R(B, U}.
LEDIA 4,19, If T € 4(3), then

II'T‘US - S"'f i'“ ‘]‘ohz;,\js X NE'U(.L)H!MHE = 1}

Broof. Let T € M(5), Then if W € H(8) and Wil
then

UTehill, < NTU Nwie = Uty



from vhich it follows that
Ty > S { 1 Town, = weUL) Nl =af

Let £70 be glven, Choose f € 5(6), sueh that
and JI'T'}HS > U Tlé--'-“-;}_ o Let fl"‘ﬁj be an approximate

identity for U(5) (see Theorem 4.13). Then Hn(._;. I 1in the
topology of R(M,U) and therefors To W, Tor In the topology
of R(M,U), But Leama 4,18 iaplies that 7o l.,_;{ STaLE I

the strong operator topology also., Hence given £>o there
exists a 7' such that

N Tew ) - THI, < &,

Therefore _ =i
ITow ()l > UTFU; —ATow, (£) -T}-HJ‘-?.I' o ~&

Sinecell 'wfll&:'-_ 1 + we have
UTI -8 € Sepfll Tow y @ i 1]
£ Sp Ju Town, W EUW Iwlesf -
Since ¢ 1is arbitrsry ve obtain
. 3 : U
$:.JF {u Tow llg = WEUE) = N <1f> T,

This completes the proof.

(1) thewnit ball A of A 1is R(B,A) dense in the
unit ball B, of B.

o7



(11) ’III'.uIIB = &mE ”h-lllnl 8 & A for esch hE 1B

(111) B, s &(B,A)-gounlete.
Then #(A) 1s isomorphie to B,

Inis 1s Theorem 6 of Kelly MeKonnon [17] .

If we take “(3) in the place of B and U(3) in the place
of Ay we have proved that N(5) and ¥(8) satisfy the econdi-
tions of above theorem and thus ve have

LUEOEY 4,2). The multinlier algebrs M(3) 4s isometric
and_algebra isozoyhig %o M(U,(8)). Ihe {somorphiss is elven
by T 57 where 77 o * U(S) —> U(3) Ais defined by

Tytlw) = Tow

DEFINITION 4,22, A sultiplier from 38(0) to IP(0) 1s a
bounded 1linear operator which comwmutes with translations., The
spagde of all multipliers from 5(6) %o 1LP(0) 41s denoted by
u(s,1P),

THEOREM 4,23, Let T € A(s,tP). Thenif f,g € s(oy
¥e have
T(reg) = Tfeg = f*Tg

Eroof, Suppose T €& M(5.LP), Por each y & GI. we have
TT.J=TJT. If f,g € 8(C), then T(f*gz) and TP*g both be-
long to LP(B). Then if k € IP'(0) and £ € 5(0) the inequality

I<T
fF,R>| £ lt"riupulzuF. < NTU uﬁgsltkup;

shows that £ —, <Tf,k) is a bounded linear functional
on 8(0) and hence there exists P € 5(3)' such that

<Ifyk) = f, @5 for all f ¢ 8(0).
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How if f,g C 5(0) amd k € :."'{u:. then
j%t'd) {TyTH, RS>y

J39 (Tt f, R>ay =fﬁtﬂJ4tJ W}dj

=g @S> = {Thrg), k>
This implies Treg = T(f*g) for all f,g ¢ 8(0) by Hahn

sxx Banach theorenm,
We shall novw obtain a characterization of IIII,L’).
Let 1 < p< oo, Let & be the set of all funections

{T,g*a‘ k>

]

u vhich can be expressed as
o

(4) U =hZ F:‘e ¥ ‘gkg
=1

vhere f, c 5(0) amd g ¢ 1*'(a) sueh that

-]
Il In_n
RE {FK 5 ?R"Pl < 0o
We define a norm in OL by

(8) “u” - %f* {‘IZ;I":FZ}IS “%Rupli

vhere the infimum 1s taken over all such representations of u,
Then we have '

SHEOFEM 4.84. O 18 a Banach #nace with porm given by
{8). Joreover ol is a subspace of 1’ (0) and_the topology
on Ol 48 not wesker than the tomology induged from 1P’ (0).

Exoof, The first part of this theorea is proved exactly
28 before vhile the nr}ruﬂ part follows from the fact that if
£ - 8(0) and gc L7 (8) then foge IPI ‘0) and

I £x9 ”P’ < ufy g Uy
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Broof. Let T & M(8,1P), we define
Lo a]
ttw = 2___1‘&*3;@
’=1
Lo !
for U= « Bince Tf. € 1P(6) and ¥ (a)
r ‘5;-4 gk*guz - k ‘kE

it 1s clear that 7¢,%g (0) 1s properly defined, We have to
show that t 1 well defined, To this end, it is sufficient

hlhwth:ttfz;*g is a representation of O as an
= oo =
Clement of . and 2 Uf I g, U,, <% then Z’rr, g, (0)=0,

”.1
Let € L be an mpmu tdﬁutr for 8(0) muh thlt.

b€ 1l=1and Ede‘fc(ﬂ) + Then

| TCE* £ie) X Gte) ~The¥ 9,00)] = ITE, 44~ F %G, ()]

S T ~£. g0
i LB Ve s+ £, £ 00 3 Y, ,

Qd:m 'Tf-fd.*a}ﬂ) ka (o) ;!_.fkéték_{tj
Singe u= 3 f gk-ﬂ and the series Z "8, converges
in I-"'?(ﬂ) . -MTEAELP L..nr..g,.} !
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ed

Ve

Ty GLEm £ )% FRl2 0= 2 TS et hld
=4

A

]

T‘,{? ol 4k¥ggiﬂj
&=

o

m

We shall now show that ) T(¢ %{,)* g (o) eonverges uniforaly
vith respeet to of . This is immediate since

b
s T, x4 )%9.19)) ¢ 5
o o
k=1 2K 3" = EL__'H EEJJF FE}’?P H?JLHPJ
o=y
S 2 WTunes §.0 09y -
Eoa f R's %h P,
S Iy tZ he u Nl gl
=1
[« <]
= Iy E L Fe “'3-."|;,-'
Henge -
&0 (=]
Z T{ktau[ﬂ) = E;:m Ej_T{ Ea{ **k)* 3;:“0 &
=1

Sinee

T(é’d*ﬂ)*%nu} —> THe*xGel® for each k. Thus
t 18 well defined,

It is elearly linear,
1”‘"-

In fact
[tlw) =

The mapping 1is an

oo Lo
|2 T > G, Wz 0T 5" uf ung,v,,
R=12 k=1 X b



implies
LeCad| < 1TH ) al
8o that 1l ¢ll <IT) . On the other hand

T = Sup [ITfegee WPy ca Mg =

= Suwp [Itx )« nfug st “’3”,,;‘51}

< It
To see that the mapping T S5 t 1s onto, we proceed as

follows, Let [co” « Let f € 5(G) be fixed, Now define
1
a functional L on LP (G) bv the equation

1
L(g) = t(feg) g € 1P (o),

Then [L(g)! = 1s(feg)l <N Liig- | g vhieh shows

that L 1s a bdounded linear functional on LP'(!IJ. Since

1
1 ¢p < o uxktatz LP(3) 18 the dual of space of 1P ()
(1 < p! ¢ o), there exists a unique element, ecall it 1
in IP(0) such that

!
Treglo) = L(g) = t(reg) gc P (a)

and u!rn’ = UL < usy y rn. « Thus to each f £ 5(aG)

we have Tf in LP(0) and the mapping T 1s a dounded opera-
tor from B8(3) to LP(G). It is clear that T 4is linear. We
now elaim that T 1s a multiplier from 8(0) to LP(0),

Let y ¢ 0 and f & 8(0), If ;sl."]m. then

TyTF* Guo) = T Tyfo) = tlF ¥ oy p = Ll »y)

= Ttgt *40)
1
holds for all g L' (G)., Henee T ST T L for cach
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£ ¢ 8(6) which implies that Tty = TyT, that is, T¢ M(s,LP),
This completes the proof.

We shall nov conclude this section with a representation
theorem for multipliers from 1LP(G) to 8(a).

TAEOWENM 4.26. Let 5(0) Dhe a Segal algebra on a locally
gcoupaet sbellign syoun O, Supnose that 1 < pcoo gnd let 7€
(e’ 8)

@) If py 1 then M(1P,8) gopsists of only the zero onerator
AL © 4is noncospagt
B) If p =1 fhese exists a unigue measure [ € M(0) gugh that
e = pof
for all f € 1l(o),

Proof. If T ¢ M(tP,8) thenm UTSlg < uTh b fU),  for

each f € 8(a), Then

ITH, < ATHIg = UTUY £y,
shows that T ¢ MaP,ut), 1f p A 1, Hormander's theorem
generalized by Ogudry (see Larsen [14) p.149 ) shows that
T=0, If p =1, then there exists .mqunumf& ¢ M(a)
such that

T =p g

for all £ € 1}(0), This completes the proof,

t3

6.4
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CHAPITERS

£ezal aleebras: Particular Cases

Ve shall m&tmu the problea of multipliers on some
special cases ahlnhnl. Though Theoream 4.10 says that the
multipliers on 2 Segal algebra are given by pseudo-measures in
some special cases they reduce %o measures.

The algebra AP(G) econsisting of those fumetions £¢ Li(g)
vhose Fourier transfora ?‘ belongs to LP(F' ) 1s a Segal
algebra with Segal mora I fll, - lla‘tr £ u,tu The algebra
12(0) ") 1P(6) with morm | Sl = “;“ 0 ;” 1s also a Segal
algebra. In both these cases multiplier space e S e
M(G) wvhen O {8 mut. W8 shall consider nov the algebra
AP,(0) and show that if O 1s a locally ecompact mnt
nondiscrete abelian group then the nluplhrl on ndm to
bounded measures. In fact it is punm by Unni [24] that
there is a spectwum of Segal algebras for vhich multiplier space
reduces to H(GJ.. |

We nov state a lemsa which was first prived Udrmander [ 9/
vhen O = R°,

LENNA S.), Let O De a locally compset, nongomnsaet abelign
groun. Then for f ¢ LP(0), ve have

i +rydlp = 2F il
Al Y = 00,

Proof. See Larsen [ 14/p. 77 .

Let < be a real valued evem continuous function on |’
such that w f‘]{f} £ hJ(‘?Jw{f) for .117}'/{:}'1 s Ifl<ps @,

()



ve define AF (0) to be the set of all functions £ in 1L1(G)
such that ?f Lp“(f’l. We introduce a nora by

a) g = nfu, ur“um

Then A'(0) 1s a Sogal slgebra on G (see Reiter [19) p.25) and
hence is a semisimple commtative Banach algebra.

It 3@ s {£cil@ 1 £ c kK@ them B(D) is
dense in A°_(0) by Leama 4.5.

DEPINITION 5.2. A multiplier on AP(0) 1s a bounded linear
operator vhich commutes with translations and N(AP? ) will de-
note the space of multipliers on l'; ().

IMEOREM 5,3. Lat © De s nondiscrete. nmongompant, logally
abelian groue and 1 < p<®. XL T € M(AP (0)) ghen there exists
Alnigue measure [+ € M(G) gugh that

TP = [Leg

forall f ¢ A°(0). Purther M(a? ) 1is isometrically isomorshie
%o M(0), the spage of bounded regular Borel measures on 0.

Eroof. Let T c M(AP ) and £ ¢ B(0). Then there is a
compact set k C [ such that f wvanishes outside XK. 8ince
T¢ € AP (G), we have

(2) TSN, < nTF0 < 0T (H‘ui + Ilfﬁhm’)

Case (1), 2 <p¢o, Using Hausdorff Young inequality we compute
1 11 + 8ince f c B(G), ve have 2 compact set K C |7 outside

of which ?" vanishes, Nov L}(8)n 1Pl(a) 1s a Segal algebra

on G and hence B(a) C 11(3)C 1P (8), Therefore for £c B(m),

Ixerefar since 1. pl < 2 we have by Hasusdorff Young inequality

IlfllPs IIIHP;
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J-[f|bmpd‘f = f1f|mpdf
N K

P A Pr a
¢ (cik, @) [1£1d1 = (o) 11 e
K rn

vhere C(K, < ) is a constant depending on the compaet set K
and the weight funetion <> , This implies

W, gcfk‘,m)llfilb < ¢ (e nfiy,

Then (2) can be written as

(3) DT, < T (g, + C (ko) 1)
Now since 14:152 and G is noncompact, we have, by Lemma 5 {
.?_HITHI1 = &_;nm NTf T TR, - Lo WT(f+7 )
A= po 1

i-’-,f;w_rn NT (u,t-rv;;,;ul + N ,CHE;I,P,)

3
'UJFHP,J

-

= | | (zu{ni + ClK,w) ;'._

80 that
4 [

(4) I Tfu, < uro (I'Iftli + Ok w) 2P -”i*?”,br)
Repeating this process n times ve get

: 1
(5) Il Tf ”.L < T ("F”i + C(k,w) lh(_F-' l j—)-'f

{_.,f

LE



'h(—i—~ ~_1)
8ince pl > 1, we have Ll 2 P =0, HNow the left

" b=

hand side of (5) is independent of n, Hence taking the limit
as n > oo on the right hand side we conclude that

(8) I!TH1 < UTHNEN,

The inequality (6) holds for all f € B(G), Hence T wvhen res-
tricted to B(G) defines a linear transformation from B(G) to
11(G) which commtes with trenslations end which 1s bounded in
Li-nora, Sinece B(G) 1s dense in 1(G), we can exterd T uni-
quely as a multiplier T, from L'(6) to L!(3). Hence by
Theorem there exists a unique measure |« € M(G) sueh that

Tt =pef for £¢ L'(0) and hense Tf = pof for al)

£ ¢ B(0), Moreover [T/ <lfk Using the fact that B(3) is
dense in A (G), wehave Tf =/ *f and | pi <iT(+ But wve
also have froa the above that I *ll > i71/, Hence the theorea is
proved for the case 2 < p < o,

Case (1)t 1 ¢« pc 2, let q-g. Then q > 1. If Tc M(A® )
ve have the inequality (1) satisfied, Since f has compact
support, ve have

l|fu: o fiforfay = fif o by
J'u k-;

Using Holder's inequality and the fact that <o 1is loeally
bounded, we obtain

(7) |l:€|!P < C‘(’RLE-JPflfj Pd‘f
(AR i< :
¢ {:C{K,m))'b(f[f]%)%(fidf)%}r
K
sl S
¢ (cls=) ([d1'Y)%
I<

Irl"1
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vhere C(K, .0 ) 18 a constant depending on the weight func-
tion and the compact set K. From (7) we deduce that

(8) ~ A
IR s ¢k o) 0
S0, we have, by Plancherel's theores

(9) [ bo <COR.U e = eClsedilpi

Now (2) ecan be written as

(20) WTE 0y < il (nguy  + cCkw)ufi,)

from which argument as in case (1) gives

(11) I T«]'Lu1 < T (Hnl + Cliw) .z"f—i (u;uL)

Repeating the process n times we have

/
=R
irgn, < uTn (”’CHL L aC ) ”{’.&)

Now lettbng n — oo, we ob%ain

The rest of the argument is as before.

In comeetion with the study of tsuberian theorems Wiener
introduced eontinuous functions f on (-w,00) for whieh

[ 2=

2 oz, ) fuo) converges (28] . A systematie study of

R x
s A
the Izu- W of all such functions normed with this sum was
given by Goldberg (8] ., It turmed out to be a Banach algebra
under convolution and 18 an important sudalgedra of the Banash
algebra L1(-00,00). With a slight modification in the definition

of the norm, this Wiener class becomes an example of a Segal algebra.



In (3] , Edwards observed that if T 1s a bounded
linear operator from W to L (-m,00) which commtes with
translations, then T has a representation

(12) Tf = o f £ € W

for a suitably chosen pseudomeasure o— ., We shall now investigate
the representation and properties of contimuous linear opverators
on W which ecommtes with translations, We shall make more
precise the representation (12) of sueh operators,

Foreseh k =20, +1, + 2, ... 1let I. denote the closed
interval [k,k+1] and let W denote the space of all eontimuous
functions f on (-»,m) sueh that

>
o £ rk

[
D Mmax | fu] < oo
k=-

Anormon W 48 given by

=)

(13) o I )|
fu, = D e F
R=-~0O i

Various properties of the space W prowved by Goldderg can be sum-
marized as follows.

DUEOMEN S.4. (a) ¥ 1s n linear sudsoace of 1 (-00,0)
apd that lifu, < il for essh f € W,

() ¥ 1s a Banagh space under the pora (13)

(¢) If f and ¢ are sny two elemsmts of W then f * g
helongs to ¥ and || f * gly<2 ugly gl

fhere is a meqmure (+ on (-oo,) gatisfving

LS

6

k.
L1



o
(14) L(e) = S £(e)ap ()
-0
and
(15) KT < Y k = 0,1,2

for some )70 . Moreaver anv L gatisfving (14) and (15) is
a bounded linear functional on W.

It follows from (3) and (4) that

lL({'.}I = ,‘i :i:f{}d}-l“,}[ égéf;ﬁjf"ﬂiﬁ[ﬂl

8o that
L) < nfn, - Swb |pl (T,
W e
and henee
(1s) I Ly < i“PW'”h)

We donote Dy 71 the set of all measure P om (- y00) satis-
fying (15). The pairing between 7)1 sand W 4is denoted by

=]
(17) <Fo b 3 f%u;drfi)

- O

We remark that every continuous funetion defined on the
real line R having compact support belongs to W and hence W
15 actually dense in 1 (- 4 ) in the Li-nor,

It is easy to verify that, taking the group G to be R
all the axioms of a Segal algebra are satisfied in the case of W
execept the one which says that the translation operator has nora

one, If < C K amd I‘é_ilgﬂf-hﬁ)d od - b]fﬁrt =0y 21, 22400



“\
7l

it 1s clear that if f € ¥ then

to =
5“‘%2 ,¢|.fnt)! S >

dER R == W k-'ﬂ k-:--'

Thus if we introduce a nev morm on W by

(18) e, = Sub 3= max 1foyl
oLE N R=—po k-

then
!'.f-IIH < n}ns < 2 1,

(the W-nora and the S-norm are equivalent) and the translation
operator nov will have norm one, ¥ 13 then a Segal algebra on
R wvhere the Segal norm is given by (18).

If £ € 1MR), gc ¥ ama FEm 4 then we have

Wfxql, < 2\gun, ugn,

L = Kond.p £ oo od

DEPINITION 5.5. A bounded linear operator on W 4is called
a multiplier on W Aif it commutes with translations.

ZUBOHEM 6.8, Let Ty W — ¥ Dbe a bounded linear overa-
Sor, Then the following are eguivalent

(@) T7,=77T forall xch

(b) T(feg) = Treg = gporg £,gc W,

Eroof. B8Sappose (a) holds, Then if [* €1 , then the
inequalities

J<TLW| < N7 Ly cuTnnfua, npl.,,



$hovw that the mapping £ —) J(Tf, |0 1s a bounded linear
functional on W, Hemee there exists a A € m sueh that

STEPD = ££1)
Now let L€ and suppose f,g C W, Then ve have

<T“r*3.~.'u> = J-‘(TXT{,I-‘-,}BH(JdJ(

= f ST Toef, P35 300 el

4 J{ T f, .l)gfx}du

- <{"‘-‘?‘}A> = <TH*g), P
Thus (Treg, 1) ={T(t*g) 1> for all L€ o It them
follows that Tfeg = T(rfeg), Since f*g = g*f we have
Treg = T(reg) = 2(ger) = peg f.8C W,
This proves (a) implies (b),
We shall now prove the econverse, Suppose that

T(feg) = Treg el €W,

Let fc W amd Mt7lbe fixed, If g c W, then

"\.!ﬂl,’a} = r@‘-‘; T, KO gix)ax
' D

and
00
(!(f*.],}‘5 - (f*._l) = J(T,t £, 1) glx)ax
-
o
g L S [ elxlax
-0

Sinee Tfeg = T(f*g), we have T, )= 2(Peg), S
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lience
po 00

J < TxT{)H)alx,}dx : J.(Tr,{f_/-k} G dx

- o <
or equivalently

5o

(19) f <GNF - Tt 1‘..,1"') gx) cdx =0

gince (8) holds for every g ¢ W, it follows that

T T - Toxd, K> =0
for almost all x, Sinee =x —7 7, f 18 a continuous repre-
Sentation of R into W, it follows that

(20) <T>LT¥—.TT,{{,)-‘) =0
for each x € R lﬂ--hrlfaﬂ. This iuplies then that
ToIe T

This equation 18 valid foreach £ C W and hence

This completes the proof,
REPINITION 8,7, For £C W and ¢ 771, the eonwlution
is defined by o
te A (x) = f £(x-t)a J\ ()

- P

It is clear that
I+ 6ol <2 hfn, iup | AT, )
e A is actually a bounded contimuous funetion.

IHEOREM 5.8, Let T € M(W)., Then there exists a uniaque
H € b, sush that
e = fe [ £ew
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Ihus M(W,W) 4s isomorphig to a proper sybsvace of 771 and
ihis subspace is obviougly charagterised by the nroverty that
£ — f*f 1s boupded fyou ¥ %o W.

Broof, let T C N(W), If £ S W, the inequalities

[Tfel < AT, < u7uyfn,,
imply thet the mapping f — Tf(o) 4s a boynded linear fune-
tional on W, Hence there exists | ¢ 7. such that

20 o~
(o) = j P(e)a’\ (t) = £+ )\ (o)
-0

L

~J
vhere ‘| () = U\ (-B), We set - lC37, By the translation
invariance of T, we have

Tf(x) = £ +M (x)
Hence Tf = fo f‘ and the proof is coampleted,



CSHAFPTIER 6

Hulticliers on the spage M.

We shall now introduce a new class of fumstions whieh happens
to be a subelass of the space W considered earlier and show
that the structure and properties of this nev class arc similar
to those obtained by Goldberg for the space W (8] .

Lot 0L o<1 and let 1lip o denote the class of all con-
tinuous functions f on the real line R such that

mn [fx+h) =flx)| = 0 (nI™ ) a8 n > 0,
x

For each k =0, £ 1, + 2,,.. let Ik denote the closed inter-
val [k, k*1] . The space W _, then is the class of all those
funetions f in 1lip o suech that

(1) i, = 2= m (f)
ol b=-oo
is finite, vhere

"'"\“lk{.[) = ‘Max [ max | fro| | Sop |4 {lsulj

xeTe b xerT, LB o S T L

Ah f(x) = f(x+hn) - rix).

It 18 easy to verify that (1) defines a nors on ltwt and uqu a

norsed linear space, If we put

M (f) = maxifuol + Sep j4y Fol
e A AERES At

W 2 max | §)

IR neT,



1 HARET

9 | 4 fio)
Wf Z - —“—,,;
ol, LS Lhi

it follows that
lk(f.‘r < nlf) < 2a, (f)

and
|
Z'ﬂ §) = NEu 4 wfy .
= —bd
Thus if we u\t
=
(2) I Fur = 21,8
ol h =-0o
we See that
Il < WFw
““& ¥ v A 2UEN

W

and the norms |-l |,  and lIl- 1)
g ol

Moreover Hﬂ{c:il and

hfu,, < N ;“w
for each f & 'nﬂ. . %

LHEOREM 6,1. W . A8 a Banach space under the nopm (1),

Eraf, {f‘i':_l be a Cauchy sequence in Hm. Then,

given £70 , there exists a positve integer N such that if
m,n R then

WEs <Ilfly, W e SRS B Ay

ok B=-co

are equivalent on H-{



¥

7’7
Hence for any fixed k, :lgt | £a(x) = £ (x)| < m(f, - )<
and 80 max |f (x) -f,(x)|] <& ., Thus {f, ] must converge

x¢hR
uniforaly to some contimuous fumetion fon (-,0), We thus
have, for any k, because of the uniform convergence on Igy

max lf) = max Lovn | £..00) = B vees | £ 20|
REAS x €T, M n3e0 X €Ty

We claim that this function f belongs to Hﬁ end that f, >
in W « HNow
X

Sup 1ap ol s A 14, b
X, #ther, I by % X,‘lﬂfher,t*'_?_ Liag®

11

Liw 3,_.49 F‘h:futﬂl

n oo TXEWEIL %
é an i t‘fn}
" -3 oo
Thus we have
(f) ¢ 1im (r,).
" s "
Using Fatou's lemma we obtaln
= 1
U fyy, = e ¢ Ko vt 55, (4
-— 0o POFR St
< @w,;...} W,
M3 e a{

Since |f j is a Cauchy sequence in W , it follows that the

set of noras {nfhnj 18 bounded and hence f C W_ .
To see that £, —-a f in Im s¥e have for -gpl



Il fw—guwd = Z-'r“u,l'fm-l-]
R=z-b

= ze:m
o -5 <E

This completes the proof,

715
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Ma x |.fw, (n) -ff*x.)] = ﬁw... ok | Fa ) = £ 120)
KEI! = e xﬁ-r“
and ﬁ_ ::uﬂm“t}“; ‘ih)
SLJP 14, 12y -Ahgmi L EE | 21, fur ~ & fyiu
A, A+heT, Ty A T oo n,nt k€l T —
< &\.“"m G. -;J
- k'Y m 1
Thus "W so
o~ <
I.(f. f) _-n’:!; ‘ B (f‘ - fnl
and so

Z ﬁafw f“’“*‘_ﬂ!‘m*i{uj

LUEOREM 6.3, nfel’“ﬂ.legc thea f*gc W,

and
%
Il £ ﬁ"q 5L||'Fll1 "?""‘&
Ercof. Let u = feg gnd for each ky ve put
L : = max |Wiao|
A’n - J’H"“”dx Pe * ::a-‘,'_-x =l 2 » €T,
F3y =
£ - S-JP LW AC Y 17 = Sup |8 U
k 2, XrheT, TR R 2LXThET AT
Sinece

ulx) = g r(t) glx-t)dt

-0
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it follovs that

(4) |uwy) < 5 1§ (0] |Fe-D) dbE < ZT:; | % 12* D) 3.

'R: - 6o J J=-0o

Suppose x ¢ L. Then x - L,cr -1, = Lege1U Loy 80 that

maz | Gix-p) - "mﬂ#t 138)| ¢ max IGE)| + max | Jbl
teT; Le x-Tj teT, o teTe
P'te-jﬂ L '-L""'j'
Thus (4) gives
(5) J: A, ff*r_ -+ ¥ Pk*j)
bo
< A (g) +

Since JZ-;- 4 (MH*J;-H 9 - €3)

dh u(x) = ¢ '-dh:{l}

the adbove argument mlhﬂ to the funetion A nE Shows that

1 ZJ(E_**E.)

= k
{') i\ It
< Z A ('m ﬂh’i‘é)""‘ﬂ ;“&))
J'—.—-hﬂ

Thus from (4) and (5) we obtain

™, (W) < Z.Zlc-m_H Dt (D)

j=-vo




&)
80 that
wy Zm w) < Z Z (‘m 54t )
) R=-vo -
£ 2 (Z ;\J)(Z' " 13))
J= -0 fE oo
= Tl g,
Bemaric. ﬂiu- fc '9( implies ”FII < IH“W it follows
that if N(f) = ahmh ve have =

l(f‘[]é n(r) n(g)
for all f,g € Hd shewing that Hd_ is setually a Banach algebra,
IHEQREYN G.3. Every f c ¥ hat_a unique representation
feu+v whers wyve ¥ , vie) =0 for qll k =0, 31, #2,..
and_u 18 linear on each I,.
Emof. Let f¢ W, e Ve define u by the formula
ulk) = (k) K=0, 21,28 4000 :
and such that u 485 linear in esch lk' Define v now by sett-
ingv=f-wu, Then v(k) =0 for cach k., In Iy We have
u(x) = [(e0k*1) = £0k))] (x=kc) ¢ £0x)

8o that
Iﬁh““"'- | £0e*1) = £0c)| | n| |r{1:-11-r{k}| < oa (1)
. I
nax_ |u(x)|= menfietx)| leteo1))] < m (o),
% C Ik
Thus

(u) £ 2na ()
" R




mmnmn-tneud « B8ince fyu € W and v = fuy
it follows that v ¢ W, and v(k) =0 for all k = 0,+1, #2,...
The representation is clearly unique.

Hotationt Let n- denote the closed triangle given by

{t:,h) ! kc<cx { k¥, 0<h ¢ ‘t*l-:f
in the (!.hl-plml.

IHEOWEN 6,4. Every contimuous linear functionsl L on W
gan be represented by

o0
(7) L(e) = 5 M _‘?‘...‘.'.f.‘i d [ (x4h)

S | =%
where A is ameasure on (-o,) gatisCving
(8) |l‘(1‘1 P k=0, #1, *2,,..
and | isameasure D = UD, guch Shat
(9) |AIB) < M k=0, #1, #2,...
for some Mo «

Ercof. The previous theorem asserts that Hi is a direct
sun of two subspaces U and V where U 4is the set of all
u ¢ Ho{ such that u 4s linear in each I, and V i3 the set
of all v ¢ HO{ such that wv(k) =0 for all integers k. To
obtaln the representation of a continuous linear functional on Hu(
vwe consider contimuous linear funotionals on esch of the sub-

spaces U and V, If u ¢ V, ve have

U] € max [uvo) & m (u) <ULk +1UCeid]
X €T
and s0 4

po - X
a o Uw) < nuuwa{_é. z.%j:t )

R=-co



oo

u 1s completely deterained by the sequence {u (k}} « More-
over the inequalities (10) show that |-/l on U 1f Squivelent
to the .81 nora vhose eonjugate space u.E‘E .

Thus if L 1s e continuous lineer functional on U there
exists a bounded sequence [qf’!j . such that

R=-02

aun Llw = 2" Ul 9,

R=z-oo

We nov define a measure - on (- ,00) concentrated on the inte-
gers vith mass ¢ at the point k. That is V(({i}) = ¥ © Then
(11) becomes

(12) L{u) 'T ud v HeETU
-2

Bince [CRJ is a bounded sequence we have
['ﬁ(]:k) = | P\ + | Py ] €M A 20 5 R
for some !1 > Qe
We now look at the linear funetionals on the subspace V. de
do this by combining the ides of de Leeuv [15] with the method

of Goldberg (8] . Oiven v¢ V, let v, be the function that

agroes vith v on I, end is 0 outside of Ize Then

5 5]
Y = tz Ve Let 'l: be the space of econtimuous funetions on
=-m
boiwk
Ik with Ud"llll'l vhich vanish at the end of Ik and belong %o

Hp K in I, Let Ah be the disjoint unton I H_ vhere
B o= {{:,hl tk x4 k41, Och < k*l-:j

Then /\ 18 a locally convex space. To esch function Y% € 'k ve
4

f’_l’,q,



~
define a function v, on /\ by
R

k
X W, ( x€T
'Uhtv.,) = R :-J =
o _ A Ux)
Unt'ﬂ, F\-)' e ['J't)h) ¢ Hk
lhst
Then it is easy to verify that I Wy, = Su_,f;lﬂ('ni”t Let

i,
& fAJlm the Banech space of mtl.mull hnutl.aul on /\

vhich vanish at infinity with sup nora, then the mapping
vV, — E.(Ahi given by Jv, = '_1‘:‘ is a linear isometry
of V, with nora |l -ul_g{ tnto (, (A ) with sup nora on AL
It P 1s a continuous linear functional on Vi ‘then 1t can be
treated as a functional on the isometrie image J(V,)C €, (A )™
The Hahn Bansch theorem provides the existence of an extension
$ € Co(A,) ®ueh that || ) = || G4 - By the Mess tepresen-
tation theorem there is a corresponding regular Borel measure
on A\ with G/ = tot. var. 1 and

k
Pes) = PU) - fiolf FE Y,
Hence l{_ L is a continuous linear f'mnondn V 1its restrie-

tion Hﬁu a continuous linear functional on ‘l'k and hence there

exists a measure HK on Vk such that

18) Ltw j‘lﬁ 4"‘ t j £y "‘H' Py
!hl"‘
for all v, £ V. Ifﬂpnt?}__ l then (13) can be written
8s ; T
(14) 9 L f
L () Yy o+ [d_h“ﬂ?d (%)
I



where ' 18 a measure concentrated on Itnnl M. 1# a measure

coneentrated on H,., If v ¢ V, then ¢ zv‘
R =-8

L(w) - ZJ\“d‘j +ZI‘QU“‘*‘

ke ..-*‘m

80 that

Ly, h
L )
Ie-.-b.- [ a2

Thus we define two measure nllrl as follows, I-lt'l?'hll
measure on (=00 ,00) Mmuumq on I, and has 0O

mass at the integers, Ve define rt to h the measure on D which
agrees vith [, on H_ and assigns to I

x 26ro mass, Then wve
have
h{'u"'} d‘_r.rl Lot s i"‘)

(18) L{u) - fp:ﬂd'v’ 5 f[[,‘
=2 TYE

¥We now assert that "} and * have the following properties:
there exists My 7 0 such that
P]I u" < My k=0, 51, *3,...
;).q (llkl 4 ! k =0, 21, #2,...
It is suffiolient to prove [PH(A,) € M, » for k =0, 21, 22,...
Suppose not, Then there exists a sequence KyyKgyess Such that
}H ( Ay ))n « By Riess representation theores, the nomm of

h:,,.* ed as a linear functional on - Vh is equal to “AHAI?..)
Hence there exists 4 ( Ve vith |)

n
- A k"”w = u"]_ﬂh“ = i
such that ol

n A

| Ly = ¥ Bdtpe | >y

-
Now, 18t UV ¢ > 1

a0
h" E‘n . h-. ” ﬁ”w = Z“ ﬂ-ﬁl ”
[ S=] Nl o [ A “U‘{
. Z —}:—»L ll "‘Lﬁkﬂu Z 1o 80 that UEV .« Buat
M= #)

4

L ]



=]

L (U’) = Z-:::szUkﬂ> > Z%‘Ih ZL,,
LT | =1

e
Nn=1

which 1is a contradiction since L 1is a bouhded linear func-
tional on V., This proves our asscrtion,

If L 4s a continuous linear functional on ¥
that L restricted to V satisfies

L(v) = j”d‘j =+ fﬂhut@driﬂh’l UEy

L it follows

< Ihl""
and L ryestricted to U sgatisfies
o™
L(u) = Jul? MEU
-

Moreover there exists constants 'l.' Mg > 0 such that

1M @) < Mg I9i(E) < W, wma  p(B) <N
for all k =0, 21, * 2,...

m:rré‘g{.&- f=uty vhere ucU ad v(V
80 that

L(f) - LwrLlw) - judw’*‘fﬂdj f..ﬂ 1’”"".:![-'""3’

and so
o [~ 2

K16) Ll{):J.jclﬂi-jfahrfkt)drm)h}+fudﬂ
= T % s

__j u.d.v‘-'j'“-d"] i Jé}:l:)alru’m



Sb

26
Nov from the inequalitfes
L¥a od
\J- LaLd'j + J-‘ﬂ U w) df‘“‘ ) | j!u“d,“ - J':|AhLbe_-deth“l
5 LTI o= D I
< Z;(!lu_ndq] +ﬁ-dhul!}l]d}.«lmhjl‘
) I Dy ™
ax LU 6ol Ty + S T St 3
l=FC L s ":t"I frt Gl

=S Zf‘m (W M, +wm 2 LA I'u,L) _}_IUI HU.IJ

E=-bo n(
it follows that the mapping

[ Y]

wud A Ltmj
j t A k)
oo "') IHI‘* I

is a bounded linear funectional on U so that

L [+ 5]

5ud.v) + j A “‘“)d}-. 01, W) ,jud),

- D ¥ (o
vhere 131 is a measure concentrated on the integers and
Y(x,) ‘5”1' for all k. Thus from (16) ve obtaln

17) L'L'g) 5 54;!1,] + j ﬁ :"ll)dr Lﬂ'l;h) .f.-Lb{,:_-f{-,J }’)

L%
But -7, 18 a measure mnlum on the integers and 9

vanishes at the integers. Therefore
[ ]

(18) __5,;“9 L y- ¥,) =o
Hence, adding (17) and (18), wve get



L({) = f;dv] Jrj 2 *‘“}drtx,uJ +j;d£—»’ o)

) a1

and finally we have

LUF) = S}dV] A 5 1 Lfd.!-!"-“:"‘:)
-0 D | il
vhere ) - W #9-7, « BSinse
AMT,e) 2 IY|CT) +IDEL) + IVI(T,) €M tM+M,

We take N = ll3+l!1fllx and the proof is completed,

We have thus shown that if L 1s a cdntinuous linear funo-
tional on ¥ _, then there exists a pair (l.H) of measures
where )| 15 a measure on (-00,00) such that |[D\KT,) <M
for k=0, +1, *2,,... and [~ 18 defined on D such that
I(*1(B) < Mg forall k and L has a representation

Lif) = 5&«(151 + fﬁ’t{”d#uu) :
Dt
Moreover if L wsatisfies the sbove conditions then it is easy

to see that L 1s a bounded linear functional on H& .
Let J denote the set of all such pairs of measures,
DEFIRITION 6,5, A multiplier on W 48 a bounded linear

operator on Id vhich commutes with translations and let M(W_ )

denote the set of all multipliers on LI
THEOREM 6,.8. If T © ltllu().“ Teeg=T(r =g

Lorall f.gc W .

Exoof, Let T € MO, ), We first motice that if ¢t ¢ R,

f.8 € Hﬂ_ and .gs.h denotes the differense operator them we have

o7
87



Ttﬁh; Ath
and
dh{f"} = ahfi' = t"ﬂh'
If @,[&EJ“ g .E ¥ _( e use the motation
(P> = EE £(t) ao\(s)
-
and
A fun)
< - h d ['-!hl"tj
{Ahii,fo) :! S
Then .
a9 < {,0,m 3> =< A + << 445 p>
Now if f,6 € W, then
<Ixg, 15 = ¢t f. Al goodx
ad K
(< A drg pry = <CAg 5 [Bhm

D “ﬁ.l-‘
(%, b y
g:m b e j 4 fut-t) gl dr

R
- 5 adr([ 4.7 fo, TS
D L%

I?“’d" (j T 440 dp 7,0
.f“( T, 4§05 ;Sm—
(-‘\,)-l)r:j y then ve have
{fxg Ap)) = {4340 + << 4 dxg p>Y
2 [ Cof .2 g dr + [u gafpo)gdf
R R

* [ cnt, (Apygedr
R

Thus if f,g C If{nl

83
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oks,
Let (],p) €T be fized, Then the inequalities

1<TH (A2 £ “T*"wj( o). AT m‘“.elmm

shovs that the mapping { — / 14 (|, )18 bounded linear
functionsl on W _, and hence there exists a pair (f.vk J sueh that

B L ARy = <FL ES
forall fc ¥ . Wowlet fogc ¥ and Ul,p) €T Then

{Tfxg (ApS = Sa, 7 Q.p)gwat

(¢
“feree 5,000 §0AF = [T ARy godr

R :
=& Jxg B0 = LTExg) 0L}
Thus we have (If * g, A, = LT(r e g), (A, ) for each

(AP €7  and henece
T(teg) = TP eg
This completes the proof,
DEPDIITION 6.7, If £ ¥ amd () p)cg » Ve define o
function fe}* on R by the formula
E' fut-t-h) —fw-b

D N
It 18 elear that J—nr exists and

Sifa LX) = jdﬁi&ﬂ d.}k {,l'-'.:l".)
2 A
THEOMEM 6.8. IL T € 'm",,{ ﬂkmm
(9 ueh_that
Tt = e + foOP
whers f * )\ denotes the gonvolution nroduct defined earlier.

fop (2) = o plt, i




Erxoof. Froam the boundedness of T it follows that

| TH) £ KT, o« nrn b £,
ol =

and henee the mapping f — Tf(o) 1is a bounded linear fune-
tionel on ¥ , ., Hence there exists a pair Lﬁ.) such that

Theo) = [ 4bd A + [ AL ap (e
T 5
If ve set lm = )l (-8) end [F(ExHE)= [ (- xH) then

"F;Hu} = ,C:t?l f¢}+:}'@r[n)
H-tﬁlﬂﬂ and A = rt.‘l‘huﬂr}Jnﬂ )
FTe) = fad o + FOpLe)
The translation invariance of T then gives
®x) = £0 A(x) ¢ £xp (%)
for each x ¢ R, Thus
Tf = f e ¢ fop
This eompletes the proof,
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|
SHAPEER. 7.

A_space of functions of Zygmund

Let 0<x < 8, Let Aﬂ denote the eclass of all con-
tinuous eomplex valued funetions f on the real line R with
period 1 such that there exists a constant X satisfying
the condition

Q) Sup |flx*t) - 2f(x) ¢ £lx-t) < K. e ast —> 0
x

We demote by Ao{ the subset of f"\d econsisting of those

funetions f whieh satisfy the eondition

(2) Sup | fixtt) = ar(:g:_ f{:-!_)__
XE R t

We set

|-—}0 as t 50

£l f(x)l
\ T :?n |£(x)

Ve = Sup \_!'.(:ﬂ) - 2f(x) + f(x-t)
ol X, LER | T

and define
I el = max {m‘ o nen

for each f h)\d « Then we have
LIEOREN 7.1, A~ As_a Banach soace with noms /'l amd A,
Excof. It 1s easy to verify that |- 1is setually horm on
/A, + ¥e shell prove only the completensss. Let {f,] vea

S
cauchy sequence in Aa( o« Then || f, ~f, || >0 as mn oo .

This implies that | fa=fp — 0 end ur_-r‘h-—} 0 as
00
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™yn —) @, Now for each x € Ry, [f (x) - £,(x)| <) £, =~ 10

8o that { fn("j is a Cauchy sequence of complex mumbers and
hence there exists f(x) suech that f,(x) — f(x) ssn— o,
We define f by setting

f(x) = 1= £a(x)
n—>oo

We elaim that :FE/'\G( ad lIf, =fj| >0 a8 n > o, HNow

f (x) - fix)| = i |f (x) - T |
xhépli | £l w ::egpl:-a;ml n* a®®)

E 1im f (x) - £ (x)
l-—)-.'ll?%l‘ e

lia f,. -1 — 0 a8 ~> ®,
< ._‘}.“‘ ‘“ﬂ o
Thus llfn'ﬂl —> 0 as n-—>w, If x,y € R, then

o

|£(x) - £(y)| < |£(x) - falx)| + £, (x) = £, + [£,(y) - £(y))

E.llf-rnl * e (x) - 20! .

5
Now given £)o , we ean choose n, such that lf-fndlf:ﬁ(]

end using the econtinuity of ’n,, we can find a $>0 suech that

2A- -
|2¢-Y) <& implies ]fnu(xl r,,‘»tm-::'f:{I « Thenfor this §
we have

[£(x) - £(y)| < 2, If - r,,Ja * rr%tx) - r%(r}r:: n.a&+e§=a

This shows the contimuity of £, It is clear that £ 18 of period
of 1. To see that f¢ AQ( » 1t remains to show that lirlh—‘}n.
In fact

£ 0p, \Fxet) = 200x) ¢ £lx-t)| = ,’g".},’;;'m‘fn"*"‘“n“’*fn“"”
= lim BSup |fp(x+t)-2f (x)ef, (x-t)/
n—->oxEcR

Ha 1L . 18]%,
n > o
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Sinee {rlj is a Caunchy sequence there exists K > 0 such
that | fnll < K forall n, Hence
ok

e, < K
and rGf;«{ « HNow lnu-n Ar{:J = [f(x*t)-20(x) + f£(x-t)]
Then
2 Z
S Lt - Qcmp:s.} m)ﬂ-dgfhwj
x&:f 1ol 0 —~ 4 ol &;JE = LSty ¢
= &y, suhp 1A, 0 ﬁfwo:
) T2 H_L;.'-? ¥
¢ &:wn;‘h_;“ndltl"*
8o that

”J"h,-,ﬁud 2 é.;‘".‘; I £ fnll,
from which 1t follows that ) [ - 7oes m —) 00, Thus ve
have proved that bhoth || £, - fllm Illli[fn - ﬂi—-‘} af n — oo,
Hence f ~f| —> Oas n_>o and /A 15 a complete normed
linear space. It is clear that if § ¢ A u‘u does £ whieh
laplies that ) 15 a closed linear nm- of A, .

mnm_z.:. Mt olxlga'cz s Bemtady I and 111y
the noras in ’\L( and ) respegtively., Them

DA TC A
W) nfu < 4% ki - nin' FeN
Proof, Let }gﬂ,uln :El.lum-itl_{_4. Then
I ¢
(*) (4 foor e dool =% gy - 1%
Letet W o Lk ol

On the other hand, if |¢(X, . then

L !
'lﬁt Fovl ¢ A ]ﬁ::ﬂml < lfu,, =W
b
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w:},'d
Ii.nu144- s Ve may combine the last two results to
obtain :
(X -¢)
W, < 4 I nfn'
Hl
Sinece H{lum < 4 Ok ||.Fﬂ' « ¥We econclude that
- )
Wiz 4 lf?ﬂ‘
FProm the equation (*), ve have
i
A {0 ' o
t Lt
Lo < fu,

Letting ¢t — 0, ve see that ;E,Ad »
Nov consider the evaluation functionals P, defined for
each x € R by
P 0 = £(x) fe C(R)
LEMNA 7.3, Poremh x€ & ¢ umum
Slomal on A MARR NP.u<t .
Exoofs If fC A, 4 then [P (f)] = Lfwo] < lfll, UV
Hemee @, h <1 .
LEMMA 7.4 » Fox cach palr x,t 4in R, ¥e have
NPy 2P + Pl 16
Exoof. Let x , £ € R be fixed, For cach féA,
| cPLxH-j =2 QL H P S Ifact () -2400 + fa-B |
< £ 6™
v “cfx-tt 2P F oepll < -

For each F in the dual space fAI of a‘_i\o{)* s We define a
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funetion ? on R by
Px) = P(g) xE R
If £ isin A end Py 1s 1ts image under canonieal imbedd-
ingof 1 ta (A]% , the fumetton ¥, 1is simply f.
LENM 7,5, If T isa functional in (1) , $hen the fune-
Yon ?Eﬂu{.ﬂL Ir;::éftFu

 bmef, Let Fe())'" . stnce cexet;‘.#}" for each x & R,
F(x) 1s well defined and

Fal

IFGOl =FCP )1 < NFUlpu < Il Fil
Hm.ll?l!ﬂﬂ SNFI o If x, t C R, then

|4 F () = 1FCPy,, ~28, T Fed
< IFuu Pupt =~ 2P, + Pu-bl
<N FUlegx

s (|F) <) F1 e NE N <UFI

We next identify the conSinuous linear funotionals of .\ Lk
by econstrueting sn isomorphic imbedding of -\ |, into a space of
eontinuous functions with the sup nomm, mv-{rl-l_.r_.;rg u}

and V = {{z.t}lu&zgl. u.{td_‘g_i.ntﬂuﬂhﬁmﬂn
UU YV 1is denoted by W and it is locally compact topological
space, Let e'm denote the Banach space of complex valued
continuous funetions on W which vanish at infinity with the nomm

g, - Sﬁu (G i) gé Glw)
hr{e%{ define Jf = ¥ vhere
?CM} = feu Wweu
- F2
fan = JAH = A4 (8 bEV.

lE)*
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LEMAZ.8. ) 18 alinear sometryof A withnoxa I

into C (W) yith sup nopm -1, om W

Eroof. It is clear that § 1s a linear mapping of A into
C (W), It J}g) 9 £ has period 1 , s0

I, = Swb{ifeo]. ueR] = Sffewl = ueu]

and
= S Il
hfn, = S {iﬂ"—‘-bfim Y r{ﬁ “fﬂd_b_dlt:' EEE)EV}
e
e o o T Mn

LOGA 7.7, Por.every ?E(J)-mpm
¥ such that
| 1) @) :é?dr J;GAE{

W) ey = ok Vay p = 1pl(w)

Exoof. Let cpe{ll + Treating ¢ s a funotional on the
isometric image | [ ) )C ¢, (w)s the Hahn Im theorem pro-
vides the existence of an extemsion F( Cﬂ(w) such that

I ¢ll=1l¢)\e By the Rless representation theorem there is a
corresponding regular Borel measure [* on W with [T = tot,var.|r
and

() = P4 =Q4 P
W

Hgtation. Let MN(¥) denote the space of (regular Bomel)
measures on U, Every {C H(U) determine a bounded linear func-

tional cpﬂe{_lj‘ oy



PuCf) = [4dp fea,

We now define two subspaces of (_A)* » Let

= {CPPE@JYF : fat(_f M(_UJ}

and

{qu.(c‘ L;LP L€ Htﬂl.f-‘-hlllﬂu‘h mpurt}
Thus 1f CPCEP,M P = LF‘P rumﬁ . €C
wnd soms X, A, - Fey

LEA 7.8, %," i2nem fsmsetn (A )7
Emof, Let q:cu\. let (4 be a measure on W sueh that
oeh)- (Tap - fel,

Let {Hnﬁ be an m:'nlmwmmn of ecompact sets wvhose
T
union 18 W, That is ¥ = U"-ﬂfnul

¥, CV¥g C ¥y C eeee
For easch positive integer n , define

QL) jfdf-'- }‘é‘:‘a{

nmurﬂouhpm- that

V) IP-Pl o alm— e
and 1;1.) ane E?".:1F
It rf;ilg{ , then

@0k = | [ Taul
W\w

H;f'u \fq(wx W) = I Cw,)




Hence || ¢-q i “JHI’(M.W) » Sinee (A 18 countably
additive and W -UW y the right hand :ulntthiluquultr

M=\

tends to zero as n — o, 8o JICP-tPhH-——?o
l‘om(ﬂ);mlﬂuf&lﬂ{ + Then

P, f) = f%’tx}dzufx) “*ff’(&,éldﬁtd,u
Ur]w“ VAW,
The second integral can be written as

fff&f)dfué,l’) = ﬁ‘ﬂflﬁé) dﬁ{S.U
Vow, YT

Y,
Vaw, 1t

108 +¢)
s Tae AFOY = 38 dpa + [m0,
Vaw, Vaw, VAw, TE
8inee jtl""‘ is bounded avay from seroon VN W, m-u exist

lnnm'}"w)w? such that
JJ‘J

J‘-}M{»t)ltl .:irmféi') =y:{f5)d-.}ird)
Vaw, v

.“”)lfi dpls, b) = f:fia)dv(:sj

W 4050 |6 ap(st) = J508) dws)
Ml.n}.’nl mmmnluu.uabtnn

P, (f) - )’m)dgtﬁf )=2%, +9X

’Wﬁc&n .
7. B lsmmdesetn. (1)"
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AR %0, %, lasoma demsetn ()
2xoaf, Lot © € (A)° amd €5 0, By Lemma ¢ s Vo can
choose a i € M(U) puch that Hcp-cpru::[»f&_- Thus for overy
fak‘ ve have
Fule) = [fan.
Lot 4  donote tho mofm of & as an alemomt of O(1)° amt
lot s = {g:g-f’ s0FUS 1 Do the umt ball of 3,
v
Since 8 is an equicontimwus family of boumdel functions on UyS
umuummmtmwwwmranumm
Choose a finite set T = {&"a'""‘nl of functions &n &
uch that the spheres B(g, 4 %"f‘"ﬂ Gover G, Howe B(gyd)
® {85 Hgogy < 8{, e closed sphore B, s necm®: '
UaN® < npi® 18 woak” « compact, By Evein Milnan thoovem, I,
utham'-elmottMWMIarihnmm
uhich are ecasily scen to bo
MIS") = { Eﬂﬂﬂ.t‘lax po Iﬂul léﬂll}tﬁaﬂ@ )I
Mmmﬁmtmuwtmmk-th z“. The
weak neighbourhood I{u..ul.,uugn. E/JMnmm
'IIH.'" vith finite swport, that is,
1) It < tpnt

DT iy e
“L) 7 ;ZP“FH
bemote by @, the fumctional givenby PR = [ 2am (2 & C(0)).
low consider g€ S, Choso g €T such that < gy 4 < £

e -

Then Ellyy *




I =)l = 1 [gap — [gdy|
L

g!jja([-l - f?,‘:iﬁf-f‘{fjl-dj —Ij.;d,]
Wgidn- [y
S WF-Ginotpa* + &, +1g-g, i

hrwffl wvith Hfﬂ-:i,unt‘j,f/ Then

|G~y fB) 211G~ R)G)I <&,

Henee Il Py - Tyll€& o simee £ 1s amditrary, ve conelude
that E3 1s mndm-h Hﬂa)*

CORMLLARY 7,10, The mmaning ¥ — - nr.LJl) “tate A,
onéx to one,

Pmt._ Sinece llu mapping is linear, it is enough to eonsider
rcA Such that 7 = 0, 1 P 1s the zero funetion, then P
nauhu on the set of polnt evaluations ¥, and henee on its
elosed linear spen m +» But then F 1s the zero functional,
Thus the mepping P -—Jr umhm.

HENA Sl Temmolne P> P oof () ) iste A, e
onto _and norm ureserving

Eroof. To prove the lnpnlnl 1s onto, let %(.1 . We

econstruet an P h(\) Youeh that ¥ = g€ + Por this we
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101

eonvolute g with the Fegir's kemel
=

kK (x) = <= ( Siw{hﬂ)?""f)
4 n+ ) Sua T2t
85 that the convolution K, *¢e 1s the nth (0,1) partial sua

of the Fourier series of g and these eonverge uniformly to g,

That 1s
(4) < _:) K *elx) = g(x)
Moreover l:ll is positive and
1
(s) j k() ax = 1
0

Then we have I
/j' (l..lJ(:} = fl.(:-ul A:n‘.uh'l
t
8o that n =

I ‘.'IL- _«:;fl (x)ax, | lﬂ el '”

This shows that l": EA o BKNow ‘h" llo:l.lg a trigonometrie
polynomial, we have 5

Ko glx)| = 0(|81%) | ‘
pfl S Vi '

X €
Sineec! ¢ ; .\uth
| D¢ Kyglx) |
:?a 0Or: —> 0as $t— 0
This shovs that Ki*g€ )\ . We shall denote by F, the fune-

of
ttonal tn (2 )"* eorresponding to K *g under the ks

imbedding of 2, ta (7(&)” This weans that
7 R(P) = Pxep) P e )



nu-mmmo{l{) in 1ts second dual is an isometry,
ve obtaln from (8)

(8) ,I'J"F““ :I]IFH’F?!‘L( é”gﬂﬂ

If we set .. = ln.', ve have proved that E:nﬁ is a sequence
effuutlmln.ld sueh that
W S0 | gyl < @

(11) ‘1_1%1 Bn(x) exists for each xR

Moreover F, 1s the canonical image of g u(){) « We assert
nov that 11‘ CPE(}%.(J . tluu{'r tcp J_r is -uuhy ssquence

of complex mumbers, To prove our assertion let M = Bup || .n

and let £ 7C  be givea, hpuuqnétl)* . muu.:lqppe ~ ¥
such that Ilﬂp~q:rpug 5/4 « Thus CPP ZF‘P for some on-pll:
nusbers F, £ .. f,  and some x,x,,... X, ER. If m

and n are two positive integers, then we have

| FalP) - Finl )] =i‘Pf3.-.'§h.)l'
< NP2, X9 Gom )inP,,,ij“--‘g‘m)t
S - Py, g,,.u+ffﬁﬁgm) -3, ]]
2 £ b ( Y 1=
< £ 1B Jrmax 19,02~ &)
Choose an integer N such that l,n > K 1q11u"1'” i

| G (25) = Gm (%5 )l ‘- for 4 =1,2,...7. Then if

'ﬁ;D

myn > " ve have

| Fnlq) -Fmle)| £ & + § =&
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Since £ 1a arbitrary, fr.up)j is a eauchy sequence
of eomplex nusbers for each o[\ )* . Define
o

P(P) = 11a (7))
n—>o0

Since
Il El € Cown Ko ll Snll = '*“5“49 G gy ﬂﬁf&

n —J 80 n-=1%
We have r—e()d)‘“ « On the other hand, since for sagh >¢ ¢/°

F{Jt‘) = F( ()o:x,) '“4 Fn ‘-CP:-L) @Ji;’m ﬁ'hh‘] = 3!%)

n 70

¥e s6e that ?-.. ﬁhﬂthlp“mth-wmr—a?
1s onto From (9) 1t follows that || FIl < U F 1) éil?'lt « Thus te
to complete the proof , nmumun j“:'“ <HFI.
Por each y ¢ R .

|F£‘dH =IF (el & WFU NPyl < L=
80 that
(9) i};?uw < UFI
Moreover for any x,t € in R we gave

14 Fool = [Fo ) -2 FCR) + APy
rIFCCPx“-FZCFx*CPx—t)

o
SUFU NP, =2 Po T Pl &1 FUYES

Thus <

(10) ] Fu_, < | FU

From (9) ta and (10), it M1lows that m—n SHFIl -+, tnis
completes the proof,
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