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ARTRODUCTION

Polynomial splines, as defined by I.J.Schoenberg
( (18] ), consist of pieces of polynomials joined together
at certain partition points of a closed interval of the
real line. In recent years, the concept of 'spline' has
been generalised in various directions. Schoenberg ( (191 )
hinself initiated the departure by introducing the notion
of trigonometric splines, Ahlberg, ¥ilson and Walsh
(C[11 ,L27] ) studied the properties of splines associ-
ated with certain differential operators. In 1964,
Sohoenberg ([ 20 1) established a minimal property of the
polynomial spline interpolating prescribed values at the
partition points. Motivated by this optimsl property of
the polynomierl spline, Marc Atteda ( (5] ,[6 1 ) set the
theory of splines in a Hilbert ppace framework.

Let X and Y be two real Hilbert spaces. Suppose
that T is a continuous linear transformation of X onto
Y and ¢ 19 a prescribed set of elements of X, called
the conetraint set. For various choices of X, Y, T and &
Attela ([ 7] ,(81 ,(9 ] ), Anselone and Laurent (L 4] ),
Leurent ( (16 ] ), and Jerome and Schumaker ( [ 15] ) defined
a generaliged 'interpolating spline’ o as an element
of X wsatiefying




(11)

S ”'\.I - wMAim {HT:‘#—:H“_ 1#6@] .

The concept of a generalized 'smoothing spline' ([ 7])
aleo originated from an extremal property of the polynomial
spline given in ([ 21]).

In this thesis we study the mm‘lm of splines
in a Hilbert space under weaker assumptions than those
used by earlier authors. Our assumptions, though simpler,
are quite sufficient to establish the existence of a
minimal element for different types of constraint sets,
the minimel element being the image of a set of splines.
We prove the existence of, not just one (ss was generally
‘supposed) but, two distinct classes of splines. Various
interesting and new results for both interpolating and
smoothing splines are obtained. In many ceses (for
example see [ 4] ,[7] ,[81 ,[9] ) the existence
theorems also imply the uniqueness of the spline. But in

our case, the situation is more general and the problem
of uniqueness is to be distinguished from that of existence.

The significance of certain compact, convex sets is
brought out. An ordered class of constraint sets giving



(411)

rise to an ordered class of splines is slso constructed.

-

Chapter I deals with the reduction of the
constraint sets appearing in [4] , (7] , (8] , [9] ,
[15] end [16 ] to one of the following forms: (1) the
franslate of a closed subspmce, (2) the union over a closed
and convex set of translates of a closed subspace, (3) the
set of elements whose orthogonal projections on a closed
subspace is a singleton and (4) the set of elements whose
orthogonal projections on a closed subspace belong to a
closed and convex set.

In the second chapter, the notion of a generaliged
interpolating spline is introduced. The existence of two
classes of such esplines and the uniqueness criteria are
discussed., Various properties of the two classes are
investigated.

In chapter III, we have proved the existence of a
minimal element in a constraint set derived from compact,
convex sets of a Hilbert space, the minimal element being
the image of a set of interpolating splines. Interpolating
eplines belonging to a variety of constraint sets are
characterised and the problem of existence is studied in
dual forms.
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Chapter IV 1is concerned with the study of smooth-
ing splines. We show that every smoothing spline is also
an interpolating spline and obtain two classes of smoothing
splines coinciding with the two oclasses of interpolating
splines. The explicit relationship is given connecting the
two classes of splines through certain operators assocciated
with interpolating end smoothing splines.

A further generalisation of the concept of inter-
polating aspline is given in the last chapter. An analogue
of the existence theorem related to compaet, convex sets

is proved.



For the study of splines in lillbert spaces, various

congtraint seta were used by different authors. In this
chapter, we show that most of these constraint sets can be
brought to one of the following forms: (1) the translate
of a closed subspace, (2) the union over a closed and convex
set of transletes of a closed subspace, (3) the set of
elements whose orthogonal projection on a cloged subspace
is a singleton and (4) the set of elements whose projections
on a closed subspace belong to a closed and convex subset
of the subspace. This, in fact, is =2lso a motivation for
investigating splines under weaker assumptions in the later
chapters.
1.2. Definition of a spline:

¥We shall first recoall the definition of a spline
in some special cases.

a) Polynomisl spline: For each positive integer n,

let C'Ia,b] denote the class of all functions defined
on the closed intervel [ a,b ] having continuous nth
derivatives and let [l  denote the class of polynomials
of degree not exceeding n. Ifa = x, <% - -- - <xX,=b
is a partition of [ a,b] , then the pglynomial spline

of degree n, as defined by I.J.Schoenberyg in 1946 ([18] )
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is such that 3(x) e 217 in each of the intervals
71-1
(xipg, ), 0 stsn amd sco e (" [La;b],
b) bl ¢ Let us consider the space

q’ "
H = Hq' [a,b] consisting of these real valued functions

defined on [a,b] such that its (9 -1)%* derivative is

absolutely continuous and its fith derivative ia aquare

integrable on [ a,b] . HGL [a,b] Dbecomes a Hilbert space
if we define the inner product by

b
] . b
£959 e }i fvﬂ(”(u q¥ctrdt (f59 € Wb,
G -

We denote by L, =1, Ca,b] the Lebesgue space of square
integrable functions with the usual inner product

b
<69 = (s at R
4 G

Then the corresponding norms are given by

IS5 = <580y, o0 u;u‘;= <P 05

4 ¢ fR“ denotes the n-dimensional Buclidean space and

Y= CT‘I.J' -- 3"n) € RM™ , we define the gonatraint
set § by

¢ = {{EH‘%: :F@"-i)f—'ﬂ, )]sisnz.
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where the 'Xﬂs are the partition points of E“j b1,

For M) q » Schoenberg ( C20], [C21] ) proved the
existence and uniquenens of a polynomial spline o of
degree 2q-1 satinfying

lle= PRSI mn | L9
Ly,

§E§ 1] (1.2.1)

of degree 21-1 satisfying

+ PN =712 = min TUs@ui+ ¢ N-2".2 950

MRl R eopa Ly Gy g:e.a)

where {, = C_f(“_x.‘)). - >504)) and s, (3@‘1]; HSOG) .
O and 8 are respectively called the interpolating

epline and the smoothing spline.

Q) -apline: Consider the linear differential
operator £ of the form

£ gﬂ, (a_ c.Lq'Cx} o0 gn E.r;;j,lailJ aj ECJER)EJJ

b:stj:{ci, :

Denote by LT _ ﬁﬂq'[a.h] the Hilbert space of real-
valued functions J: € Cq'hi[n.h] such that :F(qf” is
absclutely continuous and {{ €
inner product



b
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Kfyad = Jifq} (@ oy iﬂ,a;aij

Let AL be a finite sequence of linearly

independent contimious linear functionals on :ﬁ{q' « The

&Qﬂ -spline of Jerome and Schumaker ( (157 ) is an element
£ of }-Eq' solving the following minimisation problem

[Paryl = min I £
; L Seuw 4 L2
where

U.C'ﬂ = {5 € }‘eq’ . ;‘tg_,j- = YL} 1< Ls ﬂz,JTzfﬁ,r;.:,geﬂ

d4) gp :
notion of a generalized spline in sbatract: Hilbert

Spaces was motivated by the minimal properties given in
(1.2.1) and (1.2.2). If T 48 a continuous linear trans-
formation of X onto Y, where X and Y are real
Hilbert spaces, an interpolating spline for a given
constraint set & relative to T 48 an element G- ¢ X
satisfying the minimal property

o = T
T ny = ;f@ LTen,

Various types of constraint sets P were considered
by Atteia ( [7] , [B1 , [9] ), Anselone and Laurent (4] ,




Let us now consider a third Hilbert space 7,

and a continuous linear tranaformation !'l of X onto 2.

if % is any element of %, tho smoothing spline, as
defined in [4] , [7] and [97] is an element .3 of
X eatisfying

unn; + Pl T% — %u; = -.::; C|1T1r1;+fll f.:-y;),
7o

1.3 Gonstraint setes

We shall collect below the different constraint
sets used by Attein ( [7] , [B] , [9] ), Anselone and
Leurent ( [3] ), Laurent ( [16] ) and Jerome and Schumaker
( 151).

Let La be the Hilbert space of square summable

sequences of real numbers. If X = (,%,- .. -- ) and
Y =(51}‘3£}”“ . ) are in -E:_ » then the inner product ia
given by

L= ]
Lxy4) = ﬁéxi’ji-
L=1
Let X, Y and % be three real Hilbert spaces,

T and !' continuous linear tranaformations of X onto Y

and 7 respectively. OConsider two sets of linearly inde-
pendent continuous linear functionals on X represented




by hi&x (azi s n) and I e X C‘j-‘-l_,&r-— -

Let T = Cﬁ.)-— . ‘jﬂrﬂ.]’ ) el = COG.'?' == nga ) and

f’°=(|3"1*"" -}Es-,,_)ﬂ.th o S By Casismn be
prescribed elements of R"’“) P=Cf¥y--) an
element of the Hilbert space -, , 9 en arbitrary
element of 5 and (' a closed and convex subset of 7.
The conatraint sets considered by Atteia ([7], [8],

[9)) are the following

B (e x @ <hi,g), =7 ,15tamY (44

Fo-igex <L > = f,i3-3  (13.2)

.: {gex + Tl¢ = 30 | (1.3.3)

B, - Tgex o & < <hipo, < poyrsiandting

it p

T - foex : Te e (1.3.5)

The constraint sets of the form

'@_hf'f = { 4”5“)( : <J‘E.LJ?S>X.$ ft}lsish} (1:3.6)

- were considered by P.J.Laurent ( [‘!B] )« Jerome and
Schumaker [15] have used the constraint sets



LLU]:{§E-LE‘1 :}l;_g :YL}JsLsng- (1.3.7)

and

we ,vo = {5 e " ; Ve S S S Vo asiend (1.3.8)

The constraint sets stated above can be represented
in one of the four forms mentioned in the introduction of
this chapter. We firet observe that the sets (1.3.7) and
(1.3.8) can be brought into the form (1‘.3-1] and (1.3.3)
uping the Riesz representation theorem. It is therefore
sufficient to consider the sets (1.3.1) to (1.3.6).

Let us consider (1.3.1). Let K be the subspace
apanned by {ki,;:; and § h; i a base of K such
that <Ri) hj) =Sy . ®hen F .= L, + k- where

A
}‘-T = 31 Yih; and K~ 1s the orthogonal
L=
complement of ¥ in X (see [7] ). Thus EY is the
translate of a closed subspace. Also

& - {¢€x : Pe¢ =hrl Pc  boing the projection

operator mapping X onto K, or in other words, § T’h




the set of elements of X whose orthogonal projection on
K 1is precisely L,

« The set (1.3.2) can be represented
anaslogously.

To consider the set of the type (1.3.3), we denote

by H(2' ) the kernel of (') and by X(2') its cokernel.
Then

= - { ¢giexi = Tid=308 = ket NEDH

= fgex : Rogt.s Ryh

where h% is the unique element of K(i") such that
‘I“'Ie,{Jr =3 amd [’y 48 the projeetion
operator mapping X onto K(2'). Thus }3’_'3 can also be
represented in the forms (1) end (3) mentioned in the

introduction.

How consider § 3

y the constraint set given
by (1.3.4).

It 1o eaay to see that

E‘[b: L CHT—t <)

where L, = ;grc.h;
Ye eyl =

is linear and continucua,
aubset of X. Then

. Bince Y —> h,
C is a compurect and convex

%P:h::)ec(‘h"r*‘j(l) = {?EX : PE?GC'S ‘




Thuse & 2 is the union over a compact, convex subset
of translates of a subspace, or equivalently, the set of
elements in X whose orthogonal projections on X belong
to the compnot convex subset C of K.
Now consider the conatraint set (1.3.5). EF
reduces %o
Bies e U i X inerTh= V%
I’ Ye
=N [ T0%s 5% NCT‘).)} ky € kKON
Yr:r‘

and T'Chy) =7

=  kRy + NCTYH)  where D ={R,: Ye['}
R,eD
= {q:'g._;q : 'P +f c DB

kKCTY)
If | 4@ compact and convex, then D is also compuot

and convex. If [ is just closed and convex, then so

ia D . 1In either case, @}, is the union over a closed

and convex set of tremslates of %(?') and has an equivalent

representation in terms of the projection operator Pk: Eriy

The set & 4y D88 the representation
§ = U C l'\- + K-L) = % hi
Sovi= o [—aa}-r; where K. = Yihi

= Ckf-i- &5) vwhere [ = fh,.r; Y ¢ C—MJ-T_'G
hyeE
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Now E 1is closed end convex. Thus $__,, has been
reduced to the form (2) mentioned in the introduction.

Further,

&

I

TR TR N

nl hence is the set of elements of X whose projections
Riv
on K belong to the closed and convaex subset & of K.
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We have observed in the previous chapter that

the constraint sets can be brought to one of the conve-

nient forms. We now define an interpolating spline when

the constraint set is the translate of a olosed subspace
and study the problem of its existence and uniqueness.

The existence of two classes of interpclating splines

under a simple condition is established and their

properties are inventigated. A mequencs of sets is

constructed such that the existence of an interpolating

spline in one set implies the existence of an interpolat-
ing spline in the succeeding set.

The following notation will be adopted through-
out this chapter: If H 4s a real Hilbert space, ' Il .

{»% 5 and. e,  denote the norm, inner product and
gero element respeotively in H.

If M 18 a closed
subspace of H, then I'L denotes its orthogonal comple-
ment in H and !! the projection operator which takes
H onto M., If T is a transformation of H onto

space n' y then N(%?) and X(T) denote
the kernel and co-kermel respectively of T,

another Hilbert




A

If M 1o a closed subspace of the Hilbert space

H and f € H, we denote by D (4 ; M) the translate of
M by oy ¥ 1-.‘-;

P(h;M)=htM

DEFINITION 2,2.1. Let T be & continuous

linear trannformation of a Hilbert space Il onto o

Hilbert space R . SBuppose that M 18 a closed gub-

space of H and ™M € M , If there exints an element

A e D(m; ML) satisfying

“T"!I"HI = Thin Z"T‘P"Hll :#E@(M-; "'f’.)}
is colled an interpolsting spline of $(m; M)
relstive %o T.

We now have the following

THEOWEM 2.2.2. Let X Dbe g real Hilbert gpace




1
WA = rmmﬂ{'ll‘tdi‘nz P P(as A )} Jov all 5 €5

a

and

I "'l't__..q—n—-bn‘i e iil-r'qu . e P(b; BLJ} for all € 2y ;

In order to prove theorem 2.2.2 we need the following

LmA 2,2.3. ( [9] p.195). I£ G is & closed
H gnd 7 ia
| nuousg 13 ransformetion of H onto a real
Hilbert space H' , then T(G) is closed if and only

4L G+ ¥ (?) is closed.

PROOF OF THEORMM 2.2.2. Under the hypotheses of
theorem 2.2.2, 1t 4s clear that N(1) = A and N(T) =
L 3 1 1
B . Since A" + B is closed, taking G = B in
lemma 2.2.3, we see that l’l* is a closed subspace of Y.

Similarly TA"' is a closed subspace of Z. Hence if
a€EA and be B, we have

&
: - ) b = Y — : I
Il To p‘tﬂ" (zadll ::2“1.“ Ta - T(x ) .

13



and

NS
NTp — E-,._Ex (B - ";':l'zﬁé*ll'l'b - T(x )11},

The required sets 8, and I, eare then given by

. M 4
S, =a-(A )ﬂ_

E’b = b "’(B.)b

{xJ'E; AT 2l ) = P,ma.(‘rn;)}

|
S
J
"

f5t) o fxtes g )= Py (0]

‘Then, for each e 35#. " and o€ Z, 4 we have

ST, = e fizén, ¢ e Plaz A

)

- ] : B et 1 ol j’
1]

This completes the proof of the theorem.
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It will be assumed throughout this chapter that
X, A, B, X, %, Tand T satiafy the conditions of theoren
2.2.2.

REMARK 2.2.4. We notice that the condition (2.2.1)
is satisfied if either A  or B is of finite dimension
(see [14] ). Hence it follows from theorem 2.2.2, that
interpolating splines relative to a continuous linear trans-
formation whose kernel is finite-dimensionsl always exist.

The following theorem gives a necessary and suffi-
eient condition for an interpolating spline to be unique.

for Sa amd ¥ red lement each ia
_ 4 g
that A 0 B = {e,]
PROOF. Ve shall prove that 5o reducedflo a single
element if and only if A*n B = {3 . The proof for
£ 4L
the cace Eh is similar. Assume that A N B'L-—-' {e,.,i
We shall show that Sg reduces to a single element., It is
enough to show that (n'L )a reduces to a singleton. If not,
A L L £E A
suppose there exists a; , 8 in (A )g with af x ap
4 L P =
ThenTay; = Tap which implies that aq - ap € B =
¥( T ). On the other hand a, - &' € A" . Thus
AJ' n Bt = 1 Enf which giveas a contradiction.
Now suppose that &g reduces to & single element.

W
Then {A'L ]. consiste of only one element 2:' E A and




T )= pu*(*t“) JitAa T 3t {04

ok X
then there exists a non-gzero element xf Eielic gl gee

Now 1_'(;(0‘" +;:.:IJ'J = "C[x;'} + TlaT) =_'ELI:J . Thus
L 3
20 ¥ xf belongs to (A J‘ and is different from
i 5
X

* « This is impossible since (hl')- consists of a
single element., Hence A N B = fe.d

te n ]

We now define the two classes & and 5 of

interpolating splines, as promised in the introduction,
by setting

(2.3.1)

16
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PROOF. We firet notice that the adjoint operator
*

T of T existe and is a linear continuous, one-to-one

map of %4 onto B.

(1) Let 2 ¢ 8.
that 45 € d4 .

Then there existe a € A such

By the definition of figs 1% follows that

3 L
TA € {TAJ' ) « This proves that = 1

TR {TKk ) .
To prove the converse, we proceed me foilows: Let
Cme(Tat )

T = T x

« Oince there exists 7t ex such that

s Wo have LT | ta‘):o

for all
4+ 15
a e A - mttinﬂ o

=a + a with a € A amd
.4 x 2l

" +

& ¢ A, 1% ia seen that {7a +Tay  Tal) =0

Bl 4 L

for all a“ € A . This implies that ( - TA, ) ig

L
the projection of Ta, on TA
.'ﬂ" = T=x € T .5% e TS

g0 that
Hence (TAY )" c Ts.

We shall now prove (ii). Let £ € 8.

TS = (TA*)  (by (1)), we have

Since

e
{TA ,TA 2 =0 forall 8" ¢ A"

or equivalently,

® 1
{5, titad>=0o forala e A"
, * izt sk oy -
Hence 'érEf'f't*"‘-) « This proves Sc (T'TA™)
¥¢  x e (T'TA) i Anen Cost LT AP S
: =
:_-mm-* € A , ®o that ‘:T"-,Ta‘*é:n for all
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a'c A", from which 1% follows that ¢ 'B. Hence
¢ ot s.

(433) 12 8 € S, then T4 € ( Ta')  and we
have

4'1'-'5,'50-}7-"0 furalll‘!'E Xk

which implies that

: i
< TTA, d3 =0 foranl st e A"

o that T T8 C A. On the other hand, T° maps %

onto B. Thus T TS C AN B. Conversely, let

X € ANB, o being a continuous, linear, one to one

map of % onto B, we cen find a unique %e % such that
T%=x .Let “r =Tx .Then z*a>x,c A

and so

'<T*Txo_ D=0 for all a- e A"
which is equivalent to

{T%x, ,Td D=0 forall a ¢ A*

 Tms X, ¢ Gandhence ANB C T TS

COROLLARY 2.3.2. 1) 5 is s oclosed subspace of X
} £
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2) I£ X € S, then thore exists a € A guch that
A € Sg and

4
P ; .
\Te —réni = u«r:cvn‘z‘ — U zAl for all ¢ € Plas A )_

fhis is en snelogue of "the first integral relation".
(see 131 )

!)Tﬂmmm_nzw

X =a, _+A, €X, A, €A alcat

Mu_maxc.a satisfying

| T2 - fz:.s,_uz_ = 111.61:1; I zoe - TR for all 4 €S,

I

L
§, = 6, —(A )]
Properties analogous to those given in theoren
2.3.1 and corollary 2.3.2 also hold for the class 5 .
Since the proof is similar, we shall state the results and
omit the proof.

THEOREM 2.3.3. Zhe olags 5 af intempolating
- aplines hae the following propertisg
B T - o)
gt
(1) Y = CTITH )
) Tt - 808
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where T is the adjoint overator of f.
COROLLARY 2.3.4. 1) 5 is a closed subspace. of
Xand A Cc S
2)I£f o € Z , %hen there exists b € B
guoh that o ¢ 2 and

T -T'a-u; = Il‘rcHl:; = |rr=rnf; foy alh «#EQECh;B*)
3) 5 ia o closed subgpace of Y and hence if

.+ b beB .. e then there

axisty z 2 gsatisfying

= min 1T = Tolly forall o> €2,

= a. =
| Toe - T T y hpats

It is an immediate consequence of the property
(111) given in theorems 2.3.1 and 2.3.3 that the two
- eclmsses 5 and 75 are connected by the relation

L TGS = T

(2.3.3)
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Ve shall now extend the result of Joly ( [7]
p«77) to our case in the following form

THEOREM 2.4.1. Let 8 be defined by (2.3.1)
I£ 5, s the projectionof S on K(T) and &, i
Mlﬂl[m,m',x_ézw
] i‘HLI. mhere x = R
| A e N(T) xek(r) Hem

&

i wa i = anim {iweu ¢ ed(a,; st)j
it
os
ﬂ',s'v-:¢.v-‘wa,_l'.i = T Wé —wall,  for all e P (a; 5:')
aeANng
|
- 1
PROOF. If A € § s then we have
4 g g
<'Naj_ 2 Wd‘*} = <T* Rz - (T s 'l.>2-
e eEn
where (£ )

3
is the projection of £ on K(T).

M ¥z = "c"'*"cst = AN B

an interpolating spline %'
on K{ T ) is such that

there exists
whose projection ( £ )
- .




R

| L
<Wa_wgty = <wes) |, TOa)D =8, K6 s <o
e v edi(a,; Sj) , we have

2 I 1 i I
Iwe - Wa, 0, = '-\wcﬂlz = wa, I

”Wn]_ﬂz = Mmin fl!wdmz . 9P (a, 5:)} (24-1)

f A, .04, € Anp o then A, -2t € ANZ. Thus
1 oM _‘.tl"l‘)' “h“

s o » £ S
. WA = Wl - "W-{“L““L)li

AR |

fovell & P(a -2, . S:J

i ﬁ(a,,-uel__; S:J. = ¢ (a,; 3:)_D¢
¢ above equation gives

|1'N¢ -;'wa,_'dz < hwe .—wae,_l'lz oy all ¢ € $(a,; 3:)
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This inequality holds for any 4 € AN B. Hence

e - Mm | {W¢ —wall HJovall $eE(a,, 5>)
.Iw# vty a€EANB i £ 4

1 An analogue of theorem 2.4.1 holde for the class
S~  of interpolating splines.

Let { €, iie: be an orthonormal basis for

--:'::" | olosed subspace A of X. The index set I is finite

nite. Any element a € A has the representation

B <o, e > e; « The set é{l;l)mm
‘LEI
| Wﬁuu-um in either of the followini two equivalent

$a:a") = {dex| <ei#> =<e ady, . i€

3 Casa) = {965 | T4 5] euy.ma
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Similar representations can be obtained for the
set D (g IJ-)

2.6. A seguence of splines:
We shall now construct a sequence of constraint sets
each of which contains an interpolating spline, We shall

assume in this section that A N B = 16x] 48 satisfied

Dby the olosed subspaces A and B @o that 5 and Z

reduce to single elements. Prom corollary 2.3.2, since

B3 c 8 8o N .- {a“i adil and B  being ortho-

gonal subspaces, s + B is oclosed. Thus, from theoren

2.2.2, (replacing A~ by 8 ) there exists s unique inter=

‘polating spline &: of & ( < S_LJ relative to T

and a clasa § = {.6 'ex %, € 5} of interpolating

#plines. Proceeding in this m we can construct a

sequence of sets & (8 - S ) (m=12,--),4€s suoh that
the existence of the interpolating spline in one set implies

" the existence of the interpolating spline in the succeeding

set. It is to be noted that each §_ is a class of inter-

- polating splines relative to T . Purther, for a positive

- integer m. , we have

1} The spline of (4 | S.) 18 the unique element of

ora in  F (4, .S ). This inplies, in parti-
that /) "S'ﬂ-"x is a monotonic increasing function.

Bc Qs

=1 "
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*
"CS_“ = SﬂﬁB

3 +1

e

B B8 )ns. - % $(A,25,)n st o

Wheve UV (8 the ewbly At
ke
* L
’] S'T'L-i'ﬂ. = ET T {S-n'):l

6) At the ~" stage

S ezt ) AT
n
B i (et ) et Y

applied " times.

2:1. Remarka:
1) The relation (2.3.3) gives the link between the

classes 8 and 2 of interpoluting splines. 'ie also have

o
8 ) e e

A
(e=)oc =5

2) It c B or 3Uc A, then A + 3 is
cloased and .I.'L g IFL- {e.} and the corresponding inter-
polating splines exist end are unique.

s B2 AT 0BT = [o. ], then A and 8 have




the same dimension and B and 5 are of the pame
dimension.

=
4) Bince B C § and A c 5

s Gny element
of A n B

can be considered either as a spline
relative to T or as a spline relative %o T

5) The existence and uniqueness of interpolating
gplines depend only on the kernels of the transfermation
under consideration. Hence if an interpolating spline
relative to a continuous linear trensformstion T exists,

ﬂhn htupulating splines relative to any continuous

llllnr transformation with the same kernel as that of T
'liiu exist.

6) The condition A" n B = {e, { which 1s
required for the uniqueness of the interpolating spline
' fogedher with the finite dimensionality of B has been
extensively used by Atteia ( (7], [8] ) end Anselone and
- Laurent ( [47] ) for the existence of the splines belonging

to the particular constraint sets considered by them. In

- 191 Atteia has used this nnnd:l.tl.un along with our exis-
tence requirement, namely A . n is closed, to prove
the existence of the spline. 0On the other hand, Jerome and
iolunaker ( [15] ) used the finite dimensionality of the

of the transformation for the existence of the i
-apline. We have studied interpolating splines under
S . Eql L

@ plmple condition that A™ + B Dbe e¢losed, which is

than the conditions of Atteis and Anselone and Laurent

26



and more general than the condition used by Jerome and
dchumaker .

2.8, Soume special cases:

We shall now study the sig -splines defined by

- Jerome and Schumeker ( [15] ). We have introduced
?2:3 =splines in section 2(¢) of chapter I. Recall that
& is a linear differential operator on the Hilbert space
ity {lif’ 18 a set of linearly inde-
pendent, continuous linear functionals on’| ¥

and
.'.}'-.T-{W:JT; L=

¥,) is a prescribed element of R =~ . An
-gpline interpolating ~

with respect to I\ (see
[15] ) 45 an element 5 ¢ =+’ solving the following
pinimisation problem

| Zsl = min{IZSI ¢ =U (v}

l (2.8.1)

e . 8.1
wiy) = {c[:E H%l Jl,l_‘!f Bl S 2

By the Riesz representation theorem, there exist a set

_ n

{ ™;} 4 of linearly independent elements in 7
1

guoh that for §e ('

.l{f =<fﬂ, my >

|,51.'-§.1‘L
-:H'“b

he set {‘ma}n spans a closed subspace M of %V ,
. b oM n '
¢ {43  veabase of N cuoh thet < R

hen the constraint set ér taken the form

2

i o Ridgd = 8y
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é.r = {&E.}tq'[{'miJ{}ﬁq" =N 151:5“3’

w L
=" 7 R M

differential operator X 4is a bounded linear trans-
formation from %t % onwo I [2b] .« Ite kernel U
4s spanned by functions {u,‘;}% in Cq’ Ca,v]

Now the extremal problem (2.8.1) can be studied
4n the frame"work introduced in this chapter. Consider
the trensformation "M of L' onte R™  defined vy

- =

| a
B () =" (i 3 200 1eet <m, #3.q) FeH

“m is continuous and linear,

L
M + W is closed since U is of finite dimension.
Thus from theorem 2.2.2, there exist two sets Hv_ and
Zu."‘ of interpolating splines satisfying

12681, = wnin {u:xML ;92 (Iwk s M)]
{ ) foy all €S,
{

I Mollon = min {n mall_w: PED (U w) |

m'l"l..

Aoyall o € Jyb
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The set E_‘r is in fact the met of ;fq -gplines inter-
polating v with reaspect to J/\. . Thus theorem 2.1
and corollary 2,2 of [15] can be deduced from our theorem
2.3.1. If 84 and 3, denote the class of interpolating
B8plines relative to J¢ and ~n reaspectively, then the
clasa 8 is precisely the class of % -splines
and all the results obtained in this chapter also hold for

the two classes Hip and zm »

2) We will now consider the constraint set
mentioned in sections 3 and 4 of chapter I. Under the
con@itions that (1) dim N(T) = q, (2) " » 9 and
(3K N M) = Te., atteia ( [7]) and Anselone and
Lourent ( [4] ) established the existence of a unique element
(L I satisfying

ITerhy = min {uwny 9P}

They defined o~ as the interpolating spline of E-r
relative to 7. By virtue of the famet that ir reduces to
the translate of a closed subspace (see section 4 of chapter
1), the constraint sets in T4] end [7] reduce to

the form studied in this chapter. 7The assumption (1) implies
"'_t M) + X i is closed. Thus tne existence of .:I.ntnr-
ing splines mininising the norm of 7 &_ is a




"'f,__; ? 1o unique (see theorem 2.2.5). Hence the results of
Attela in chapter VII (sections 1,2 and 4) of [7] and
hose of Anselone and Isurent [ 4] (propositions 2.1 and

1) follow either ss special cases or can be deduced from
srens 2.3.1 and 2.4.1.
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The purpose of this chapter is to extend the

ults obtained by us in the previous chapter when the
ponstraint sets are the union of translates of a closed
ubspace. If C  1is an arbitrary subset of a Hilbert
f X and N is a given oclosed subspace of X, then

P(c:mM) = U &(x;M)

HEC

| particular, we shall deal with the two cases when C
8 compact and convex and when C  is closed and

u We shall use the notation and terminology as in
Q\t ous chapter. A and B are two closed subspaces

¥

‘of & real Hilbert space X which are isomorphic to Y
and % respectively with corresponding isomorphisms
I, and I, « The operators T and T are defined as

:a. B
o

1a by T = Il. l"Jl and T = Il P.. We further
ssume that A~ + B 1s oclosed in X.




Let C Dbe a compact, convex subset of A. We

~ shall now consider the problem of finding the minimal
element when the constraint set is of the form & (¢ sa’ )
fhis includes, in particular, the problems considered by
Atteia ( (8] ) and Jerome and Schumaker ( [15] , p.45).
It may be mentioned that similar problems with different
assumptions have been studied by Daniel snd Schumaker

= rfEI‘I] » P.17) and Atteda ( [9] , p.195). The main result
m cen be stated as follows:

| THEOREM 3.2.1. If ¢ 4is a8 compsot, convex

5
!

gubget of A, Shen there exists . o cc  guoh that if

)

ﬁ $Ca,; A”) » then

| T80 = mn [ucﬂl#: ¢ e @(c; A'L)J

(3.2.1)
forall £ intheset / = [Ua,+8 ) N 3cc A"
T(A) = Ja, i the unique element of % gatis-

fging (3.2.1). Moreover, there exists a subset SpC X

124434 el LE

I T, & TSl fovall Sea, fovall op, € 2
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Hurther, A
2(2) xeduges %o 8 singleton and A N B

PROOF. We have already seen in theorem 2.3.1 that
gorresponding to each A E€C | we have the constraint
ot & (ajA~) and a set of interpolating splines
C @ (ajA ) satistying the relation

EOUCeT D B PXMEL 1L

T P oyl

: . - €s
s, = fiTen e e Flas AD] Jorall A5,

Weset Y,- T(S,) and define a contimious function
4§ on ¢ byesetting f(a ) = | Zall, for a ecd
he continuity of f follows from the fact that, if
;_‘i » 8 € C , then

|:an) - ftapl <N ra, -Ta I'|z+i'?tua.(’ta,)-EQ“J.[*EH]H
I 2
£ 20N T4, - 1’”1

£ 2\ T\ N a, "a':-'.-”_x_

§  1s continuous on the compuot set C
4% attains its minimum value so that there existe 4, €C




I Ya, 0 = main ll ally
e ac

mMin { Tl ° P € ECQLAJ—)}

o
=
1

I . e
min { neel: e E(C3A )] Levail 24,68,

x
N_
i

£ .
.;il'l;.-rtn_'s%ll.z = Mim E"'“l’um'- $ePlc,A )} Fovall Ra € .,'_?,.=an
(3-2-2)



A element of /A 1is an interpolating spline. Moreover,
®©)- 9, amd %,  1is the unique element of

‘minimal norm in TC®(c , A%)) since Z 1is a real

't space and (C  is comwex.

It 8 - {dex : zo=%5] thwmacd,

= é(bnﬁﬂi)

f' + IJ' is closed, there exists a set Zb of
L]
terpolating splines relative to T wsuch that

ITop, I, = min {u*rqnuY ¢ €T (by:B)} fovallop€3,,

I

Y

WT oyl < WT=81

v -;u.-rauu. T g € Zba, .Fnrm’jf&_

Y

|~ consists of a single element if and only if




D (a) = {23 ama  ATN BT = o

Sinee =1, 7 ,P (4)= (&) & 2(a)= {4}
where “j.ﬁ n Ta,

COROLLARY 3.2.2. If & (C 3 A~ ) and ~ are
82 in theorem 3.2.1, then

Iee - T8N & Weqn -NTal  fevall € H(CLA)

dov all RE A
PROOP.
S
| T - 7:511: = || -rq;.n: =31} a:,suz+z_4.rr-ﬂ'.J ¢a_m¢>z
and from theorem 3.2.1, g_rfz,rr:.r.in.-q:}zéﬂ
forall 4c F(c.A") , for all A€A

1) Since a closed and convex subset of a Hilbert
space containe a unique element of minimal norm, the
standard procedure adopted when looking for a minimal
element in & set 18 to prove that the set is closed and
convex. However, in order to eatablish the existence of
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A minimal element in T & (c Fes )y it has not been
found necessary to prove that T & (C A" ) 49 olosed.
In that sense, the proof of theorem 3.2.1 is a departure
from standard techniques. The oriterion leading to the
pterisation of the minimal element can be used since
it does not require that T3(C 3 A~ ) should be

""'" « (see [12] , p.99).

2) If we impose the additional condition that
u 3 - {9,,} y then m:npnndiﬁg to each

b ) C Flc 1 a), Dere exisrs s unicue apiine
¢ (a3 A™). Then A reduces to A =[K, +8)0Elc.a")]

N R A
w e& and A are closed and convex subsets of X
’ we have the following best approximation property.

dven xcx , Shere existsa 8 e  gnd S.cCa

— ™Tain E I - Balby - ’54555

| _
”x- gx”x =

PR : * : fs.s.ﬁ.j
Boe - B lly, = mua {1 w- 3l

: i
3) Prom theorem 2.3.1, we have % = TS ® TA

% 48 also interesting to note that the best approximation
TE(C A ) to any element in TS  1is the image




of a set of splines.llore precisely, we have

THROREM 3.3.1. If 7% € ©S  then there exists
Y € TE(CiA)guch that

L
Ny -el, =min {1y —cdlly = P edCc;at)]

Theorem 3.3.1 is a direct consequence of theorem

4) If 84, , Ha’_r; 8, by theorem %.3.1, there
exist two sets &, and o, of splines in & (C i)
‘such that

A
S | : : J
ﬁ_.',l'?-"gﬂ: ..."C‘(dl)nz_:r min fa Tha, - THI, ! e drca?)]

401*:!.’.’- ‘Sﬂl € -S::t,l

o e
-.-w-:mﬁ"u "Ednh-'ti#]l cpe LA JIT

- ‘&'w‘rn—u #'fm.z_E S'-'l,__

sets 8o, , 8a, , A and A of splines are
lated in the following manner




PV}
o

I=ta) = =@l & Neisy, ) - T8 )l
.
A 5 L b & ) A RS RIS

AONEB LOX i ' J-

is an orthonormal basis for
A end C is a compmct, convex subset of A.

L The set {ei']iﬁ.l

Hence for
" __'._,;"1- ie I , we can find two elements t:";-.” and
S |
i C

- € c such that
€13

CED
(Ei » €4 >K = <E,'_,ﬂ->x = (\E_{ ’ \':-.L

A
8 < C. Then we have the following representation
set & (03 A" ) :

' 1c'1 1E1}

(3.4.1)

M =2 (C). Then [’ 48 compact and convex.
- @ (CsA ™) oan also be represented as

P(c; AY) = {$eX: To e r'} (3.4.2)

é(d 3 ﬂJ') = {q& e Xt 'DA ‘# £ C} (5!"3}
sentations of ® (03A" ) in th- three equivalent
_4.1}. (3.4.2) and (3.4.3) allows for flexibility
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4n the study of the interpolating splines belonging to the
set 2 . The firet representation is useful in characte-
rising the splines of A (see remark 3.7.1), the second
in studying the case when 4 contains just one element
(8ee theorem 3.6.1) and the third in studying the minimi-
#ation problem of theorem 3.2.1 in a dual form (see

A 5.9).

Li

A Por any subset E of X, we define s function
X as follows

L o if x€E
3 ')C-F_tx) =
+

| To if x¢C

. bex) = L T2lls + % CPy%)

5

If G i @ convex function defined on X, its dusl 3" .
i3 defined by

3% () - Ao {E(H,ﬂ}x— gew ] : u.exj

. _a» 3 o % Tz ll;_ ' Blx) = lx'c & E‘j x)

k) e,

- 969 = ~[wbg + $7G0] . Using techniques
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pimilar to those in fﬁ] » We gan prove that

e {{x#—ﬁtﬂﬁ
] __,l_ufr*xll — A 4‘_)!'._,5.‘.)
a Z cecC

Lk G (1) = inf bCw)
VEX wEX

Thus the extremal problem of theorem 3.2.1 can be viewed
in any one of the following three equivalent formss

Y wMy

) Minimioe the normof T<¢ for ¢ € D (CjA )
j se Pix) - J'iil'txli;ﬂ-‘}tcff’dx_) for € X

@ q (x) = - [x¥ex) + ﬁ%x}]ﬂﬂ' X & ANB.

I;IJ"l "
1 1 P 1 -
o LA UGB DL ilegrems

pa

The last part of theorem 3.2.1 gives a necessary
sufficient condition for %a, %o be the image of a
unique spline. Since T'T § = 2% 7 Z (from 2.3.3),
exists a unique M, € TX such that T uq, =T Y,
Y, 18 the image of a set of interpolating splines
rela 'n. to 7, i.e., there exints a set 'z‘mc: 7 of

nterpolating splines such that 2 ( 7.+ A7) = v,

We shall now give in terms of _ a condition which is
h ne and sufficient for "r,,.lg to be the image
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vy = 'mi'ﬂ{<'ﬁu1€‘>¥ Ces 1"}

The proof of theorem 3.6.1 runs along the same lines
the proof of a similar theorem in

(9] (p.199) and
hence we omit it.

3.7. A special oase of the set & (Cga_)s

¥We shall now study in more detall the minimisation

problem of theorem 3.2.1 for a particular choice of the

constraint set & (CgA" ). Buppose that 1 1.2,--,2!}

- 48 the index set I so that the dimension of A 4is 2N
and the constraint set & (CjA" ) 48 such that

) (4
(e; ,e; >x= COienin o3 )x

(zd )
<E~ cj - e c :
| A ¥ >X.. < L4m 3 i >K |
QJ: = Ei‘,f_iéiﬁl\t) and Ei 2 1{\55.'&?-1'.) !

VRN ]T is a linearly independent set in
‘and spans a oclosed subspace, say A

o Kk
5
II,l. 1




r the net

& = {dex [ M £ <k, = L0 <&, 1sign]
e

@))] _ 0)

X " = <'C1,. 3 E{"'N)K 1515”':'

< C-I;{l); €Pn =Sy = Lt Cisnmly » § &V EN

« I% 18, however, a partiocular

t8 & minimal element in T £, which is the image of

£ interpolating splines (see theorem 3.2.1). Let
unique element of T &, such that

|i:ﬂ'1'|z = mMmin {II"E#HZ'. $c ‘;'!';Mi (3.7.1)

A=18ex| vg:-%} (3.7.2)

 We shall now characterise the set X of inter-
ing splines. Pirst we observe that

£T¢d%*%>z 2,0 ‘F&?da ‘Peéhl




is,

<2¥%, 9-38>,.30 fovall # By,
‘J~ﬁ'¥ adl -'555 (LT-S}

.‘.1 ,*ru-
theorem 2.3.1, T v belongas to A N B go that
* 2 3
=t

L =1

~N
P;fzﬁ-{hi'l' ‘z;'f"{,{‘i) = 8,



2 £ Cky+ b)) € ﬂfa) And qiéfi <%

1=

this we infer that

M
Z (51;_ +f"'-LJ{Y1; -1 >0
1=

{,* M4, 20 . Similarly for an index <, such

Thus there exists a unigue set of coefficients
g ( L s
l-‘-."_'} i .:.I.i ) 2 f“{-{_“-) 3 q’L}J {3" at least

L
ﬂ uJ ._.—
i are non-gero such that lil-i'.“-; Z”*”‘J"

: is) 7
i HL- <0, 'LEIL .-'1{ T FE‘S‘J:G LEI-?

-

splines given by (3.7.2) is characte-



5 (3.7.4)
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REMARK 3.7.1. The interpolating splines of
A =S, +820 &Cc, a)] can be
i in a similar menner. 1In fact, we have

characte-

"?.}Ja'-u = Z :I;li-E‘l- ¥ Z|| IA'I..E‘:*‘ }lq‘ ZO Pﬁ' ?' e
+1eT {7 A X

B[ Z2c - 7 Mie] -ox

1eT ier"

L |
: ¢)
fLE‘I/ <ei, 8>, = <ey,cy, ﬁarc«.ﬂdEA}r(

()
v

Vel | <oy, 8D = Le; Gy,

%rau‘gedj

J

A characterisation of the type (3.7.5) has been
4 by Atteia in [B] when the index et I =J! 2 --- N}_

We shall now study the mimimal problem (3.7.1) 4n
orm. We first define
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M
P A = 0T - 2 mE? R, -]

1=

N
L) i s
: —EI ne Loy, by =] *Z:T”EJE"E;“ ki s, ]

i=1

N
ELN S LS.
+ ' [& <ﬂ'j‘>,] +{§ e ) rfﬂa:J:'t}x—‘pr"Al

Lo

(3.7.6)
L L) =1 (1) ) () L2 (1)
= mlJ v mH‘ﬂi}t*"ﬂN‘*h' J"‘" WNJ
(2) tx) ¢ (x)
L D, D, D)
) ¥ w*w* w* * W
{.'h"l,l ”"MN._J '?]1_. ““hHJ 1”5.1}“.' _'ﬂi::}

M(:): lif-?-) cf e, :
i o ot ‘E¢IJ_ ‘
Ll
o Fy j el
o N S o
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2 (5] {z) £
N = { Jl./-}_= m¥. .. o S N - MR MR )

'ﬂ.'t,l} vin h&:}} sijer -*.3_)) "" “i 29,
‘H"ﬂ,f;‘}+ '*"L;L‘} 4,8 ] l'm.,-_ }a.-r'n:}m'rj 1 éléwj
problem of minimising 7¢ for ogc P is

alent to finding the value of (5 2F) for gc %
be techniques of Atteia in [8] we prove the

THEOREN 3.7.2.

) " - = — L2
nf A (x, )= -ﬁwb UYmf (. N) = WS AT)
xEX AEEL?- Ae i

fovall SCA

first prove the

3.7.3.

i@’(% D) T (8.2 2G(x,2*) foralt xex fovalt 2e
ﬂmdu;ﬂiﬂ e

Then t’-?o‘} reducea to




o0

' n
T(BA) = L NTAI] = Z (m®P ) Ceky, 855 -7,]
1!

4 Z( D% f”JE.'@{ - LRi, B3]

()
1 WTsis - Zomit+ ) ;8> -]

P twihns)) [, =

<RiL&5.]
1471,

that if e  , then

U5 A) < + li’tdi]; = -g—-(i}k*}

NT X+ TSNS =T ~u-r:8n: +{TE, THE_Txd

. . z
el Tsn <

Lycen®
L z

+{TE, TE —Ttx)

-':*?:L TE.Tx), = {'E*"C--S_, K->,

= (T (Wrc 1) *+ 5 2,4, )

iE‘I LEI

1.#':'-11'~5

STl LY
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or equivalently,

{ TH, TA= T=L>x =2 [« 5‘-;') + HEJ) Nt :1{11'14 Ri 52 - F"":if-f{,x>;

i€l

2 1) tz)
+ ZLA&+ piP) & - ATk, - K8 < i 0]

Y
- Y AP Rkixdy, — <l x0,]

i€T,
Eow
p 1)
T (2% = ey = 2 A7 Eeki, %, =]

v} L
- I p B x> -] + T ALY (8 - <R )]
€T, feT,

+ Zelg - <l - T AP My, - <L
.iET]_ Sl I_; *

Hence
gAY =L f:zu: < YlTxyl 448, TX - T,
= g (. AT
which implies that
T(52") £ T x,2%)

This completes the proof of the lemma,
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PROOF OF THROREM 3.7.2. The function [/ (x.))
is defined by equation (3.7.6). We shall consider separately
two cases mccording mas i is or is not an element of EHE

Gase (1): Suppose ¢ { P . Then there exists an integer
o ®uoh that (ky, xS, =¥ Y with
CRigs x0- My, 40 el & ¢k .,xy 5o
For the value of A guch that rmf;":’ 2 anfd) _ M Cpeven)

1

1

end  mP - w) ., for 1 41,

b . 0)
Y (2. A) = }_unuz +f'm.;n 4—'*‘1:,2'}) LE Tis

Then

Sup FoN -t Gxds,
Case (ii), x € &ht In this case we have

Chioxdy = <2, re sy, o S -<dRi, 2D S0



which implies that

‘5'--{5 “'_?'fx A) = jl':""tlll;- ’;or 2 E @ki

de A
Thus
+ 0o G x&3 ,
!'5 Y JL_,l Cori L o B i
l;:t‘f( ) > % “z { xggﬂ
It follows that
inf Lk T(x,1) = Luewiy = T (4 X) foral 4e X

HEX

This proves one part of the assertion.
To prove the aecond part, consider the Frechet
differential of W (x 6 »):

2T, _ i ~ ,27‘__(';-»-1“L % s ks

o %
= i@ﬁ;’m s b

{
vzl



b
A {F* e A T’L[H“‘:w**“ﬂ*“g‘: et ifﬂi"+w“‘11-f:})1 9*}
= v Bl as=t
3

If A€ /L, , then there exists a unique
¥ 5
x-ﬂ.fl) E B such that

N X k:
a*c 25( A) = Z(“E}+*“Etg-*ﬂ1}) R +Z§“ + ’*‘1&}+m?'33 bs

=

and so we have
v T (2, A) = ’l}'f}?a{ A),N) =T (% (), A)
for a11 (1) gueh that (2) - x .B (2) e~

Suppose now that Ak /g . Then

R L& s miplm®) 6 + £ mle 0] = Zge xe
3 1=l




_Q‘(E:;EBJ- 4 ;‘L) = -}_—" T (f ;BJ-)“l

‘E(ﬂm,, + "“1 -m.;”]J L R4 > § P [‘E[-m {.)"‘“553“'
+ 20 ﬂ‘%m‘ﬂ;e]}

- 2 ) L8 PR L s
1=1
+ ('?1 U-] {3) fi.
Z +m’) ]>x

o a %3
+ 2 (miu+ﬂf;u) i LY Z (s J+ﬂf"3) g
1 =0 x]

which gives, since Tff;EJ = Oy,

vzt

T (5%, 2) = = £ Bt P, PolFon midoi i)
1= 4

= '?<E(“LJ+“ Fms )f,__, Pa* EZ('VL,L +*r1“":'+mm)f;]>

az!

—-27P 4[2(%11 s Pem) ] Py EE'E“ e’ Pd?) (:'.)>x

s ' | N 2
— Z (mti}""’h‘f }}..V.Ll '!"Z EMF;}*'“E.)J é;i

=l =1
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[@p]

This is the same as

s ~ t i [ I3
T(f%. N = Zmenn, 4+ S (mf ) g
~ FlN X ant

which implies that

W;F 'LF"{'-F{_,J.):—-DG

HeEX
Then
A ; I — A
Ak Nix TlxA) = Sb TpRaya)
and

T . A) & P(8A) fovalt Aen,
Now for ¢\,

Y (8.A) ¢ G(5. 2%

| T (). 2) £T (3 X) foredt AN,

3 ; - =
}‘lﬁx HEw -'{f:(“‘ly = '}F(,gaj,*)

e - A o oo L]




Sinee A'eNg md s€ X(AY

KA _}L* :41* = w X. Jr‘.* < -'gl-lk v )
Thus

T4, £ Zwpinf F(x,A) ¢ T (4 2Y)
AE N mEx

We can now conclude that

Bub  Imf FTlxA) = T( LAY
AEA HEX

2.8, More general constraint setg:

The existence of a set of splines whose image under
T minimises Tl for ¢ ¢ P (0jA" ) has been
established in theorem 3.2.1, when ¢ was compact and
convex. HNow we prove that if, for a subset (L of A ,
the minimal element in T @ (U 3 .I.'LJ exists, then it
is the image of a set of interpolating eplines.

LEMMA 3.8.1. Le% (. De any gubset of A. Buppose
lhere existe % Cz  guch that

Iyl = ™Min {IJT‘?”Z ¢ eP(usa’)f




and ﬁl={xeém;f}fugy,}m
glement of A  1s en interpolating spline.

PROOP. Let =x,c4, . Then

WTxl, = min {I!Td)llz :c#@éf(u.;,q'n)j

2, Ex =) X, = ay +AX] where Ax CA  and
u:' & AS « Let Sa, be the set of splines of

P(ay ;A7) relative to = . How

F(ay.a) CHLUAT) Hence

. W 'L !
ll'txt“z = T ffi'~’-‘¢li'z‘. ¢ € @f@,@,,h }‘} =\|T *gaxiil
:Fﬂ‘rﬂﬂ gﬁ*}é qu,
m ‘JEI £ Sd.x} " Hlnﬁl th'. 1.-!'

Let us now consider the case when it is closed
and convex. Assume that

iy i
G o T e is oclosed.

Then Te (L g A*’) is a ecleosed and convex subset of

of %2 (from lemma >3 ) and the unique element of
minimal norm in 'r?,'? {{AILJ'} is the image of a set




e
D

of splines (from lemma 3.8.1)

BCUAY) =u+A
{¢EK/PA¢EH5
{.—,,-:exfﬂpEE} Whicve E=T(u)

i

!

and since iha set

{‘-'PEK/«{Et,c}'}x §.Lei, US>, . teT] W, EU

{@Ex/ {Eigq:}x;‘ <-EJ{JL"'L>X 'LEI} Ch, €l

are of the form & ( WU jA" ), all the results obtained
for the interpolating splines of A oan be extended with
suitable modifiecations to the splines of 3 .

RENARK 3.8.1, We remark that anslogous properties
hold for interpolating splines relative %o T.
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NG 8PL

4.1, Introduction:

Even as the definition of a generaliged inter-
polating spline has been based on an extremal property of
the polynomial spline and the fact that the constraint set
under consideration is the translate of a closed subspace
of a Hilbert space, the generaliszed smoothing spline owes
its origin to amother extremal property of the polynomial
spline (see equation (1.2.2)) and the pomsibility of
representing the same constraint set in terms of projeotion
operators. Precisely, the set @@ (lth) =a+A ean
also be represented as & (agA " ) = [dex [P, @ ='1}
where P, denotes the projection operator mapping X
onto the olosed subspace A of X ., In this chapter,
we introduce the concept of a smoothing epline and, as in
chapter II, establish the existence of two classes of
such splines., We further show that the two classes of
smoothing eplines coincide with the olaspes S and >

of interpolating splines. Hence g gpline is 'interpolating’

A L O B WELLSEL A W

satisfies in the partioular context. A relation linking

the two classes of splines and the operators asvociated
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\

with the smoothing and interpolating splines is derived.
Properties of smoothing splines related to a sequence
analogous to the sets constructed in chapter II are also
obtained.

The notations introduced in the second paragraph
of chapter II will be adhered to right through this
chapter also. The closed subspaces A and B, the cons-
traint sets (o1 AJand P, 5Y) and the transfor-
mations T and < are as in chapter II. In this
chapter also we shall assume throughout that A~ + 2
is closed.

A

Let us consider the product spaces G = 3 X A
and He=Y X B, If 3 =(%,a) and % =(%.4,)
are any two elements of G and o a real number, we
define addition and scalar multiplication in G by

0(]’.*'%:_ = (’?I.- a‘l) +(15:-j_; a‘-;) = {43’+'§;2_,a}+a.1)

Sq = x(Wma) =W, 24)

Further, the equation

<.%l : ?L>&=.,_:{13I t 1‘1.1}1 + f<a,, q,_bx

=

g N Date

W= e
N,

X MAURAS,
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where { 18 & fixed positive number, defines an inner
product on G. G then becomes a Hilbert space and the

norm in ¢ 4is given by
h
14, = T <% %]

Similarly, H ocan be made a Hilbert space by defining an
inner product in it suitably. Let L and Q be linear
transformations of X into O and H respectively,
defined by [ - (Tx,P,x) and §x = (Tx, Bx)
The linearity of L and Q follows from the linearity
of the operators T 4y P, T and Py . Since

W iz l"':.
el < {1|r:n"+f} el and NQuxl, < {u-ru+r} B4

L and Q are continuous transformations. We have

LEMMA 4.2.1. IX is g olosed gubspace of .

PROOF. Following the proof given by Atteia
([9] , p«206), let us consider a sequence {Llx,} cax
such that &i‘m hLx, -l = 0 with 9 =(%.,a) %wez
@ € A. In order to prove that LX is a closed subspace,
it is sufficient to show that <o c LX. We first notice
that since P, is a continuous linear mapping of X
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onto A, there exists, from a theorem of Banach (see [10] )
& sequence {.H“j of elements of X suoch that

&'m It Pt-n'f-‘-“x =a wheve pEX
n — ve

with

rPAi’L =.;E MGt ?H'ﬂr:—; fDAH“

A
Thus there exist - A
exists a sequence of elements d.nj C LA
such that
W, = Pt Ay,
Now
W tay — (7= el £ N Ta,-(g-THl,
F T, - TRl (4-2-1)
{-.'I]
As . 5o , we have Wi =l —> o and

Il Lx'“-‘ﬁllﬁ — 0 @#o that

ion I -r:at_ cl— TP, =

e R e T )

ny®

Hence from (4.2.1) we obtain




Liw WTa, - -TH)I, =0
3 2

iE
Since TA is a closed subspace, there exists an
element & c A suoh that %-tp = Ta ., Set

L L
2w = Ht+a « Then 7% - T +TA = Tx and

ﬂ.:%r&r. E{x-a.:".) = 'PAX « Thus

% =C.0) =(7tx Px)elLx
Hence L X is closed.

Analogously, we can prove

LEOIA 4.2.2. QX is a closed subepsce of H.

The operators L and Q have the same kernel,
namely A N B~ and the adjoint operators L' end Q*
exist. L' 1s a continuous linear transformstion of
L X onto (.LJ'H » )'L and Q" 1s & continuous linear
transformation of QX onmto (3° N & )7 .

Ve now establish two extremal properties in the
spaces G and H which are used for the definition of
smoothing splinesn.

THEOREM 4.2.3. If 4 -=06,.2)e G and

+ =(8y.b)eH Xhen ‘there exist two gets Sy

£

ad 7
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IIL% -t 3 | T m{nﬁle-ﬂllﬂﬁ‘, xexj fovall &?E Sg
2 G

A A~
I Qp/‘?b = -:bl,i_H = min {II QX -a“f".,lll_i v xexn] fovall S € 7,

Rurther, the sets S; and 5, xeduce to s eingle
element emoh 4f and omly if A'n 3= {o,}

PROOF. Using the faoct that LI 4is a closed
subspace of O, we find that if 9 =(e,,2)eG 1a given,
then there exists a unique element uﬁ € LX suoch that u?
is the best approximation in LX %o % « GOimilarly, if

ol (s‘i‘, b) € H is given, we oan find a unique
1_93 £ Qx giving the best approximation to A .
Hence, there exist two mets gﬂ and %ﬁ of elements
in X such that

'|'.|_fs’:(._,j =il = WfMEI]Lx-gHG e x] forall A€ S,
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A M
|_|Q£-ﬂ-ﬂuH = Mim EuQx -, ¢ s g x ] Fovall o, € 2,

A M
We assert that 52( and >,  are sets of interpolating

splines. We show this only for }S:a s the case of % 2
being similar. Now let 5

5 be any element of g « Since
e L) A
/%EK , we have %‘3 ..qg + & with ﬂ-aéﬁ

amd oy € AT . Denote by S;  the wet of inter-
polating splinea of & [n%; L.'L'J relative to T

Then

| - AT ) e S
II'r:nS% I, = in { Tl ¢£§faBJAJ]1C okt g,acj

Consequently

1) T'&%“z. £\ 123 N,

But

1\- R ES
NL8,-93M, £ '.|L.s%_3uﬁ foy alt 4, € 3q




9. 2 2 o il
R T [ L

or equivalently,

“ng ||Iz :"T&,a“z
Fa B = L e A
Thus &3 = 3‘3 + b where b E B and 5, € 5q
B ot omg LEY o B+ (AaB) =5
Sﬁ = 3% "!'(A n G = 3-

This proves our assertion,

The last part of the theorem is & consequence of
it
the fact that A N B 1is the kernel of L.

DEFINIZION 4.2.4. An element Sy 4s called g

gumoothing epline relative 8o L and 9 =(e,, Q)

A

and an element of 2, 4o g gmoothing spline relative
30 Q and 4 =(ey,b)

We shall now derive various properties of smooth-
ing splines.

A A
THEOREM 4.3.1. If s = U S and




Fa

Star = W
ﬁq&vxﬁ ®

Py P
1) 8 = 8 a4 T = Z
2) 1"5L18 = A gnd Q"Q I = 3.
PROOP. From theorem 4.2.3, it follows that if
A
8, ¢ 8, then ﬁgci_ﬂ so that 8 C &.

To prove the converse, consider ,gan ES
1t is gufficient to find some & € A guch that Gc (o, .«)

and '-'u.L»‘fu‘,,.gI —‘jfl'.E = '-'l‘h'l:ﬂ{” L‘x—-gllﬁ '»D{EXj fiince
TTS wANB (from theorem 2.3.1), there exists
@€ An® such that T TR, =4 . Let
'&z%ﬂ‘*_;i . e olaim that & dis the element

a we are looking for. To this and, we first notice that

L
£ g(a-a,), ay, =La ,ay, = ¢, a+a yy foyalla €A

L L

3

Substituting Q4 = T T A,  in the above equation,
we obtain

<f(&-a,), ay,

]

ie .
LT T 8, , a+a >y Foratt aeA

1 A
Cuncl 'fo'ra'umEA-




e3Y)

which implies that
((-T gﬂa__ E-ﬂn))' (Tﬂ,ﬂxj>ﬁ1=° {araﬂ.xfx

Consequently

s 1§
‘(= T8a, , a=-9c) € (LX)

From the relation

(EZ- ;E} = C_ T‘sﬂu 2 E‘a‘") ¥ (T‘gaﬂ - j?q’qu)J

it is clear that

3 = (0,,5) = LAa, + (- Tha,  Fxas)

L
But L4 € LX and (- Tha,, 3 -a,) €lx)

Hence

[ 'l'ILEo.n—F‘jllm = fmni—n.-[ ] Lx'—%“cﬁ : xsxﬂ

m.u:hn"mmupw-. S8imilarly, we can prove
that 5 = 5
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To prove the second part, we observe that for eSS
f_jla all MLEA.L
"L -
{ L"'“L, La){; = Lo, TAXE O i

and hence IL" L 8 C A.

2 b J=
Fow 1" mapa 1L.2X onto (A N HL} and so given
a € A, there exista xc X  guch that L Lx= a ., Thus

* B atent
( [ LJ!_' ﬂ""}x =0 4‘37 a EA
or equivalently,

'R =L
-<L!H'-J L_L'J.J-> il fﬂfa.ua- EA

We have
1 X
{lxxps) , cta’, Ra)), =0 Aoy alt a” €A

By the definition of the inner product, we get

= b
(:?.‘x,TﬂsJ-}Z ¥ f-él?hx,'PA“ >x = ©
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1 L ¥
Since for a ¢ A , Ppa = 6O, , this implies

" L
= = /‘gova.!la. e A
{"t‘xJ Ta >z"a

L )
Tus 2.¢c (TAb) 1.8y TXE TS

(by theorem:-31), Hence A C 1" L 8 .
S8imilerly, we can prove that Q" Q ¥ = B, This
completes the proof of the theorem.

COROLLARY 4.3.2. 1) 1L 9 - (g,,a) and Sa
- @ (agh")

N TH1, = -m'imfll T¢Ilzf ¢ed(a -,A"')S f andl
onky of

e 3a =4 )= van {1 L -9l - $€F(a:a")]

doy all ALE S,
and

II r § 1 2 .
L - Laall, =UL@U " LS ll " Lorai diE Flaza”)

an~dl 45:- all %, € Sq (431)
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Equation (4.3.1) is an analogue of the first integral
relation for smoothing splines.

2) Exon the identity (2.3.3) and theorem 4.3.1,
me have

ctrs =(L*LS) nlg¥er) = T'rs ’

In the following, it will be asgsumed that
A" a0 3" = {64} . In chapter II, we constructed s
oo
sequence of sets {@{Eﬂ;sﬂ‘]‘)}

n=q
CUorresponding to the operators L t X — % X A and
Q: X— Y x B, transformations L s XO4xX8,
and qn; X —) ¥YXZ  oan be constructed such that
Lx=(Tx, Bx ) sma Q (%)= (Tx » Py )
L., % and Q_ X are olosed subspaces of % X 8§,
57 it
and Y x F respectively since 8 _ + B and
Z;-r B (m=1,2,....) are closed subsets of X.

Noreover, for any positive integer ~ ,

Hence
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T*TZ = (Q:- @ Z“H)ﬂﬂ’!

ntl

1) It has been proved in theorem 4.3.1 that the
class Q of smoothing splines coincides with the class
8 of interpolating splines. But the kernel !'L of T
is a closed subapuce of 5 (from corollary 2.3.2). Hence
the image under L of any b € B~ must be the best
approximstion in LX %o an element of ©, X A . Hince
LY e (7o, Pyb ) = (8,P0) for any
L IJ-. L i# E D,XA « In other words, the closed
subspace O, % Py (IJ'} is precisely the set of all
those elements of ©, x A which are contained in 1LX.
2) The transformation L mapping X onto G
has been defined as Lx = (T, Ty x) . The existence
and uniqueness of :-'-_h- set of smoothing spline E%
L
Gepends only on A and B , i.,e., the kernels of T
gnd Pp- Let M and N be any two continuous linear
tranaformation of X onto two real Hilbert spaces W
end °\/ isomorphic to B and A mmuﬂlrlmnh that
the kernel of M 1is IJ’ and the kernel of N is A-L .

W %A is a Hilbert space with an inner product suitably
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defined. Consider a transformation J taking X %o UXx s
defined by Jx = (Mx , N> ). Then the existence of
smoothing splines relative to I guarantees the existence
of smoothing splines relative to J.

3) The transformation associnted with a smoothing
spline involves two continuous linear transformations.
For instance, the trensformetion I depends on T and
Py « It has already been remarked in chapter II that
A* ¢ 3 1s olowed 1f either A°  or B s of finite
dimension. Thus if either of the continuous linesr trans-
formations appearing in the definition of an operator of
the type I has a finite - dimensional kernel, then the

corresponding smoothing eplines exist.

4.5. Spepisl cames:

1) The i"ﬂ ~-gspline has been studied in [157]
and in chapter II as an interpolating spline. It can also
be ebtained as a smoothing spline. The product space
Lg X M 1s a Hilbert space with the inner product defined
i

< c §'| , L |) JGI- JWL)>L1"- M 1 LS :Ft s :FL>L:'+ e YLy F"“J}H"b

'§>



q,

The set L M X M 45 4 closed subspace of Lp X M
i ;

since M + W  1is olosed. Thus, given v € M, there

exists a set S of ;C% - splines matisfying

(Lo B0, Pt 80m) = (L, ™M, = W{Mi"@’“ Pu) F{E"J-’m)[il_xm: nex ]

L

Thus all the properties of the smoothing splines hold for
5’:3 -splines also. In particular, the set 35, oconsists
of a single lg-:plm if and only 4f M AW = {E.ij
The closed subspasce 5, of Jg-splines is the union
of 8§, as m veries in M . Turther, 4 is an
%4 ~spline if and only 1f

i 7+ .J..EMJ—
Ligltna P Bd, o dygnsO For et ™M

L
2) Let K be the subspace spanned by a set 1 R
of linearly independent elements in X and H = YxR™
the Hilbert space with the inner product

A >
(’ﬁbt; ‘ﬂ,}H -('3,,%;)2 + § L, Y opn o
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Consider the continuous linear operator F on X into
Z Gefined My  Fx = [Tx, (ko <kox )

v =, € R ana f - EEHr , (r, == vad]

then Atteia [?] and Anselone snd Laurent [ 4] defined
the smoothing spline relative to T and the point
as an element £ of X satisfying

lFs — &Ny, = '*:;: Il Fx -4y (3.5.1)
Assuning that (1) dim N(2) = q, (2) " 39 and
(3) K" n NT) = {6, , they proved the existence of a
unique smoothing spline satisfying (3.5.1). Ve observe that
N(?) + X~ 4is olosed since N(T) is of finite dimension.
Thus the existence of a set of smoothing splines satisfying
(3.5.1) 40 a consequence of theorem 4.2.% and remark 4.4.2.
Since it has also been mesumed in (4] and [7] that
KJFﬂ N (7)) = {Bx} » the smoothing spline is unique. Thus
the results in seotions 1 and 2 of chapter VIII in
[7] and propositions 8.1 and 8.2 of [4] are a direct
consequence of our theorems 4.2.75 and 4.3.1.



In defining interpolating and smoothing splines,
the best approximation property of closed subspaces of a
Hilbert space has been exploited. However, this property
is not restrioted to subspaces alone. It is sufficient
if the set under consideration is closed and convex. In
this ohapter, we shall define in a natural way what we
shall call c-splines in a Hilbert space when the set F
under consideration is closed and convex. If F happens
to be a closed subspace, our c-splines give the inter-
polating splines defined in chapter 1I.

The notations used in this chapter are the same
a8 those introduced in chapter II. As in the earlier
chapters, A and B are two closed subaspaces of a
Hilbert space X and Y and % are two Hilbert spaces
isomorphic to A @md B with isomorphisms I, and Ip
respectively. The transformations T and T are given
by T=IP and T =IgP.
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If 0 is e closed and convex subset of a Hilbert
space H and 'ﬁ.&‘ H, we set

?C‘ﬁ-’;d) :‘-’f"'c

DEFINITION 5.2.1. Let T ©be a continuous linear
transformation of a Hilbert space H onto a Hilbert space
Hr. Suppose that M is a closed subspace of H amnd O©
a closed and convex subset of I-L. If, for m € M,
there exists an element eV (m,c) gatiefying

NTEN, = min {TN, L ye P (msa]

then S  4s called g o - mpline of V(- C)
zelative to T.

We now have the following

THEOREM 5.2.2. Let 7 Dhe a closed and convex
el L
gubset of A . Assume that

(5.2.1)

(5.2.2)
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!Mnm a € A, Shere existe a unique element 5 of
X gatisfying

b TSN, = min {UTYI, . e Pla: F)§

PROOP. Trom lemma 2.2.3, T (P) 4s closed.
Since P 4im convex and T is linear, T(F¥) 4is also
convex. C(P) being a closed and convex subset of the
Hilbert space %, there exiets a unique element "a’FG T(F)
such that

) ca -7l = minfita-<fl, : 5€ F ]

Suppose that there exist P Pl = such that
o= L
T = e = OF, Then f,-f € B NnA -76.f
(from the assumption (5.2.2)). Hence there exists a unique
. EF such that T, = % « Now set
T = A-F

Then G5, 1s the unique element of T (a;F) satisfying

ll"'-'?-'qilz_ = mMin ﬁ!"[.‘ lJa'IIz " ye ¥(a, F)}
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COROLLARY 5.2,3. 1f &  is %the c-spline of
U (a3?) gzelative %o T, then

Ty - -zr:nu: < Nyt -nrgll forall ye @(a; F)

PROOP, We have

hzy - Tenl = NTYI; - NTGIS 42475, e -zyy
=

Since Tg is the unique element of minimal norm in
T - (a3®), it is charaoterised by the following inequality

4-1:5&-*1:"5‘" TIESS o -chmquZF'faLF)
: z

2) I£ L 1is the operator defined ms in chapter
11X and 3=(6, a) »ihen

[ THI_ = min SHzwll : ¢ e FT@5F)] chamd kg

f L"S'a—gum S fuj_w-'glf& .y €T (a:F)}
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2:3. A remark on theorem 3.2.1:
Using a result of Daniel and Schumaker (quoted
below), we can prove the following
THEOREM 5.3.1. Let E gnd ¥ Dbe olosed and
gonvex subgets of B gand A zespeotively. If
2k X
A + B 1is closed (5.3.1)
and
L i
AN B =foi (5.3.2)

hen for & € A and b € B, there exist two o-splineg
S5, @md §  satisfying

I Té;hz = -m.:ﬂ{utn,puz; yeE T(a; F).?I

NTEN = min ST y e CbiE)S

The result of Daniel and Schumaker is the following
LEMMA 5.3.2. ('|'_'u]. P. 4 )Let X be s

Banach space having N and X, @s closed subspaces such
Shat X + N is olosed in X. Let U Dbe a subset




Qo
of X  guch that W + (NNX ) is noxm olosed in X,
Zhen ‘WU + N 1is norm ologed in X.
2:4. Properties of c-splines:
THEOREM 5-‘-1- n ﬂ’ {"g' :ﬂ..EF'L IM

(1) H‘r is closed

m 4
(14) 3 ‘¢ 8y

- Fe A oL A
=lbeB b =a +a.  a.ch, (-ai)eF]

PROOF. Let ?,;M) be a sequence in B! converging
to & in X . Kow &5 ocan be represented as & =a+a

where a €A and a ¢ A . Since § € a,., for
n = 1,2, v , there exist sequences {_gf“’j

and 8 i such that f‘“} S e

where Ti, 1l the best approximation in TP o

zat™ |, Tmgs

T s . = a+a."ux —0 ab . — oo




0
Cad

which implies that

XL
W a™_al —yo and lify +o7l, —vo &k w e

Hence there exists £, EF such that § = a- 34

It remains to be shown that 7Tf, 1is the best approxi-
mation in TP %o Ta . Bince TJ,  is the best
approximation in TP %o Ta , we have for everyn

Since the inner product is a continuous function of its
arguments,

In other words, T {, 4is the best approximation in
TP % Ta . This proves (1).
To prove (ii), consider h‘r e :B"L « Then
there exists & € P such that b'l-: ar=F
1% 4 ’Efb:-‘“ is the beat approximation in TTF to
Ta,L , set b"L = Xl - ;'Fhr.:. . Suppose
that B x b . By definition, b s the

= ple e 2 .
o-spline of _g!(ﬂbl_]__’ F) Bt b E?P'fﬂlh,.uF)

LK



. 84

Hence
(0= il I I e
Fow b « !J‘ —— Ii th'Lsza which in turn
implies that
2™ | = e
= 2=,

A

From theorem 5.2.2, ‘l” = bt and consequently,

A
B \ C B'-

2.3. A more general constraint sets
If U and W are subsets of A and A"
respectively, we set

EER iy WO ST

Analogous to theorem 3.2.1, we have the following

THEOREM 5.5.1. lLet O be a gompact, convex
mubset of A sand P g olowed convex subset of A
Asgume that the gonditions (5.2.1) gnd (5.2.2) held.
Zhen there exigts cC.< C gugh $hat 42 *. denotes the




85

o-gpline belonging %o U (¢ s ¥ ), Shen

s, = minuTwl,: ¥ €T () F)]
(5.5.1)

forall S intheset I = [(§ +8) 2 T&F)]
Further <©(T) is the unique element of 7 gatiefying (5.5.1)

In order to prove theorem 5.5.1, we need the

LEMMA 5.5.2. I£ (U is any gubset of A, F g cloped
mmmmna* and Af there existe a set

Vi T(Wws P ) guch that

NTwll, = main {u-wnz o € (U r—‘)} forall vey

then every element of V is a c-spline.
PROOF, We are given that, for veEvy

| lZwll_ = minfliTyn, ; Y€ T(u; =)}

Let V.6V .+ Then there exists Uu_c (1 and {, CF

such that v, = w -{, « Let §  be the c-spline

of T (u 3 P )relative to T . Now T(u3?) cPly¥).




Since

I!Tﬂ,\‘u_z = Min {iltipu?_ : q:é—g_r('u;F)

we have

T, =mon fheen, ¢ € Wiw F)F = Tgu,

The uniqueness of the spline ¢ implies that = §

PROOF OF THEOREM 5.5.1. Since P + I-L is

clomed, T P 1is closed. Hence, givem V€ 8, a

'projection map' _‘,?E . can be associated with TF
defined by

I — iﬂ;arnz = min {ll";—’t-_f—ll_z: EEFj
Oorresponding to each a € O, there exists a oc-spline

§ € Y(a, F) satisfying

}I'L‘{:lhz = Mmin {II'EWIZ: ye ¥ (a; F)j

86
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Define f(a) = 1T &I for a € C and set

T o s Take Sz

For a,,a,  ¢C \e howe

| § o) =Flay e L ”Tg-n,l'rgnjlz

i grmg A T, ST ] jj-r;:{'tql) =P ftﬂ,_)uz
Since .. is Lipschitgz continuous,
| $¢a)> - giq;.) (g, Il Ta, - Tq-‘-.’-”z
2 2 I Thha, -a,ll,
Thus & is & continuous funotion on the compact set O.
Consequently, there existe C.€C  gatisfying
WEE I, - = M { I z§a1'|z aed] = min jnegh s eemj

But

}1’1:{&1\2 = 'm:‘.ﬂ{ “Tll'iizl = ?r_(“‘-_ F)_}
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Hence

NTE, llig.= Min tITYI, - ye U (¢ ) (s5.2)

Each element of the set "= E?:thr gJ-) O P (c, F]]lllo

satisfies (5.5.2) end from lemma 5.5.2, [' & B8p. Since
% 4s a Hilbert space and C 1s convex, if <T{ - 7

[+] o
then ™ is the unique element of minimal norm in

c

T g(c V7).

5.6. An extension of theorem 5.5.1

If TW gnd TF are closmed and convex, the
| prodlem of finding the minimal element in TV (U 3 F ) is
equivalent to the problem of finding the shortest distance
between the two closed and convex sets T U and TP .
| This point of view enables us %o obtain an extension of
treorem 5.5.1. We need two results from A.A.Goldstein ( 12 ).

THEOREM 5.6.1 ( [12] p.100) Let X, and K, he
| 4wo olosed and convex sets in g Hilbert space H. Let J .
demote the projection operator for K. , U =1,2 (1e0er

Given TR € H,

I - Behlly, = min [u*ﬁuh{,u ; Rk 1=12%)

ST il
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THEOREK 3.6.2. ( [12] p.101) Let K,,X, and
° ke aa in theorem 5.6.1 and +#, an axbitrary element
2% Ky . Comvergence of [(°"¢ ] 3o.a fixed point of
(7 in_sssured when either X, or K, is compaot.

By virtue of lemma 5.5.2, the problem of fimding
a set of splines whose image under = 48 the minimel
element of TP (U3 P), ( zu and < F being closed
and convex) is equivalent to the problem of finding a
fixed point of O’ (° _ ., Thus theorem 5.5.1. can be

G =i =

extended to the following

THROR'M 5.6.3. I the conditions (5.3.1) gnd
(5.3.2) hold, and either U gor P 4g compact, snd
Af both U and P gre oconvex then there exists a set
‘. _

W
e |, = minjle ¢ [+ @ e W F)

for all £e [V,

2.1, Connection with smoothing spliness

Smoothing splines relative to an operator L and
points of a Hilbert spmce ¢ were introduced in chapter IV.
If the conditions (5.3.1) mad (5.3.2) hold, it is proved
below that the smoothing splines relative to 1L md pointa
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belonging to a particular pubset of ¢ are also o-splines.
Ve met

i L A
£
G, = (9ca:g-Caa. §215 Vs, LgELx

g, A
Ve (LA et “aEAJf'“?)EFE

Ve have the

THEOREM 5.7.1. wm (5.5.1) and

(5-’-2) - i WA ddh LU AT S LE D BEIANA BUA LIS LOLS
3o L gnd any point of G, ip a c-gpline.

PROOF. Given 7 = (©,.Q)EG |, there exists
a unique smoothing spline X satisfying

'.|1_:\£§‘a -?rl}&l = Min {ll Lt -Gl - x EX]

=
Since %'3 is also an interpolating spline, 33 = “3 - a%

AL
where T 0o = .’Pm;[fraﬁ} « Denote by 5,  the

c-gpline of T (ag 3 P ) relative to T « 123 € 6,
then

I TEG, £ Tﬁaui



o

e

Since '@,ﬂ is e smoothing spline, we have

ILBg-g0, < nLg -9,

We can now conclude that t;'? = ;E, q .
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