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Synopsis

The development of Quantum mechanics lead to explanation of many phenomena and discovery

of many new effects. One of its immediate application was in explaining conduction in metals.

When semiconductor and doping started developing, conduction and insulation were hard to

explain. Anderson [6] developed a quantum mechanical theory to explain spin waves in doped

silicon. It was extended to explain metal insulator transition in disordered media. Since then a

lot of work has been done in this field to show localization as well as transmission.

The Quantum theory is a Hilbert space theory with self adjoint operators representing observ-

ables. Because of this representation, it is natural to ask question about the spectrum. Spectral

theorem is a natural theorem that is useful. Since multiplicity of spectrum is part of the spec-

tral theorem and occurs owing to symmetries in the system, it also throws light on presence of

symmetries. For example hydrogen spectrum has non-trivial multiplicity (the problem is spher-

ically symmetric), but presence of magnetic or electric field breaks it. So magnetic field can be

computed using the spectrum itself. This phenomenon is called Zeeman effect (for magnetic

field) and is used by astrophysicist to get an estimate of magnetic field for stars.

It is in general believed that, because of randomness, the point spectrum is simple, i.e the multi-

plicity of spectrum is one. This was proved by Barry Simon [84] for one dimension and related

to Poisson statistics for energy statistics in region of localization for Anderson tight binding

model. But simplicity is not proved in case of continuum random Schrödinger operator. The

content of this thesis is a step in that direction. In the case of continuum model, each of the
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perturbations are infinite rank operators, and most of the time are very hard to handle. For

example if one consider periodic potential over lattice, then any eigenvalue for which corre-

sponding eigenfunction has bounded support, has infinite multiplicity. Here we handle the case

when the perturbation is only finite rank projections.

The class of random operator that is handled here is of the form Aω = A +
∑

n∈N ωnPn, where

A is a bounded self adjoint operator on the separable Hilbert space H , N is a countable set,

{Pn}n∈N are rank N projections and {ωn}n∈N are independent real random variables with ab-

solutely continuous distribution. Anderson tight-binding model is an example of this type of

random operator for the case N = 1, and random dimer model is another (N = 2). For tight

binding model presence of localized regime is known in many setting and in case of Bethe

lattice presence of absolute continuous spectrum is known for low disorder. It is proved by

Jakšić-Last [43] that the spectral measure associated with Pn = |δn〉 〈δn| when {δn}n∈N is a basis

of H (i.e the rank of perturbation is one), for Anderson type Hamiltonian are equivalent and

singular spectrum is simple. Here similar type of results are shown for higher rank cases.

Let Eω be the spectral projection for the operator Aω and Eω
ac (similarly Eω

sing
) denotes the pro-

jection associated to absolutely continuous part (singular part) of the spectrum. Set

Ωn,m = {ω ∈ Ω : Qω
n Pm has full rank},

where Qω
n is the canonical projection from H onto H ω

n , which is the minimal closed Aω-

invariant subspace containing the vector space PnH , and σω
n (·) = tr(PnEω(·)Pn) is the trace

measure. The setM is maximal subset ofN such that for n ∈ M, the measure σω
n is not equiv-

alent to Lebesgue measure. The main result proved here is the following theorem:

Theorem : Let H be a separable Hilbert space, N be a countable set, (Ω,B, P) be a prob-

ability space and N ∈ N be given. Let {Pn}n∈N be a collection of rank N projections satis-

fying
∑

n∈N Pn = I and {ωn}n∈N are independent real bounded random variables on (Ω,B, P)

with absolutely continuous distribution. Let {Aω}ω∈Ω be a family of operators defined by Aω =

A +
∑

n∈N ωnPn, then
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1. For n,m ∈ M, we have P(Ωn,m) ∈ {0, 1}.

2. Let n,m ∈ M such that P(Ωn,m∩Ωm,n) = 1, then for almost all ω ∈ Ω the restrictions onto

absolutely continuous part Eω
acAω|Hω

n
and Eω

acAω|Hω
m

are equivalent.

3. Let n,m ∈ M such that P(Ωn,m ∩ Ωm,n) = 1, then for almost all ω ∈ Ω the trace measures

σω
n and σω

m are equivalent as Borel measures.

4. Let P(Ωn,m ∩ Ωm,n) = 1 for any n,m ∈ M, then for almost all ω ∈ Ω, Eω
sing
H = Eω

sing
Hω

n

for any n ∈ M.

The thesis is divided into four chapters:

1. In the first chapter, preliminaries on measure spaces, probability spaces, Hilbert spaces

and spectral theory for self adjoint operators is provided. The chapter is designed to be

self-contained. Most of the theorems stated are fairly standard and their proofs can be

found in [11, 21, 22, 28, 69, 73, 75, 94, 95].

2. In the second chapter, techniques related to identifying spectrum are kept. Most of the

work are done using Herglotz functions and their generalisation. So Holomorphic func-

tional calculus is an important tool. Results about zeros of holomorphic function are

needed for statements involving uniqueness and classification of the spectral measures.

Most of the results presented are from various sources, such as [8, 9, 10, 12, 16, 37, 44,

68, 74, 78, 82].

3. In the third chapter, an introduction is given to the Anderson Model and important results

related to spectral structure for certain class of random operators. Some important exam-

ples and results pertaining to a class of operators that we are interested in are given. In

addition some necessary conditions are also given.

4. In the fourth chapter, the theorem stated earlier is proved. The essential part of the proof

are:
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• Set of ω ∈ Ω where the analysis may not work is measure zero set.

• Next step is to set up a condition which will state when the two spectral measures

(say PnEω(·)Pn and PmEω(·)Pm) can be compared. The event Ωn,m gives this criteria,

hence first part of the theorem is important. The proof is done by showing that the

event Ωn,m is independent of any other perturbations.

• To show the equivalence of the absolute continuous part of measure, looking at

perturbations by two projection is enough. Since the perturbation involved are finite

ranked, the problem involve matrices only.

• In case of trace measure, the problem is handled by solving for two perturbations.

• For the multiplicity results, equivalence of trace measure is used, and cyclic vector

for each of the Hilbert subspace for singular part of measures are identified.
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Chapter 1

Preliminaries

In this chapter most of the basics are covered. This chapter has the definitions and some results

related to measure theory, probability theory and Hilbert space theory. In the last section Spec-

tral theorem for an unbounded self-adjoint operator is stated and continuous functional calculus

is defined. Most of these can be found in [11, 21, 22, 28, 69, 73, 75, 94, 95].

1.1 Measure theory

In this section σ-algebra and basic measure theory are presented. Some examples of measures

and the terminology which will be used later are stated. Since a probability space is a finite

measure space, many concepts which are used in the case of probability are given in this section

itself, but used as part of probability space.

1.1.1 σ-algebra

An algebra of sets of X is a non-empty collection G of subsets of X which is closed under finite

union and complements, i.e if A1, · · · , An ∈ G, then so is ∪n
i=1

Ai and ∩n
i=1

Ac
i
. A σ-algebra is an

17



algebra which is closed under countable union also. Theσ-algebra generated byΩ (a collection

of sets) is the smallest σ-algebra σ(Ω) containing Ω.

The Borel σ-algebra BR on R is the σ-algebra generated by open sets. Here we will only deal

with σ-algebra related to Borel σ-algebra of R.

The product σ-algebra on the set
∏

i∈I Xi where {Xi}i∈I is an indexed collection of sets andMi

are σ-algebra for each Xi, is the σ-algebra generated by

{p−1
i (Ai) : Ai ∈ Mi, i ∈ I},

where p j :
∏

i∈I Xi → X j is the projection map onto jth coordinate. The indexing set can be

uncountable (but we will deal with countable set only). Only the product Borel σ-algebra on

the space of real sequences are needed, i.e the space is RN := {{xi}i∈N : xi ∈ R} and the σ-

algebra B(RN )(also denoted as ⊗n∈NBR) is the product σ-algebra generated by Borel σ-algebra

BR.

1.1.2 Measures

Definition 1.1.1. LetM be a σ-algebra on a set X. A measure onM is a function µ : M →

[0,∞] such that

1. µ(φ) = 0

2. If {E j}
∞
j=1 is a sequence of disjoint sets inM, then µ(∪∞

i=1Ei) =
∑∞

i=1 µ(Mi)

Examples 1.1.2. (Dirac measure) One the space (R,BR), the Dirac measure δx : BR → {0, 1}

at x ∈ R, is given by

δx(A) =























1 x ∈ A

0 otherwise

.

Some other example are
∑

n∈Z δn and
∑

n∈N
0≤ j≤2n

2−(n+ j)δ j

2n
. One crucial difference between these

two example is that, in the first case the total measure is infinite, but the set supporting the

18



measure is discrete, and in the second case the total measure is finite, but the set supporting the

measure is dense in [0, 1].

A measure space is a triple (X,M, µ) where µ is a measure over a σ-algebraM for the set X.

If µ(X) < ∞, then µ is finite measure. If X = ∪∞
i=1Xi where Xi ∈ M and µ(Xi) < ∞, then µ

is σ-finite measure. A set E ∈ M such that µ(E) = 0 is called null set. If a statement about

points x ∈ X holds except for x in some null set, then that statement is true almost everywhere or

almost all x (when the measure needs to be specified µ-almost everywhere). A measure space is

complete if the σ-algebra contains all the subsets of null sets, i.e if N ∈ M such that µ(N) = 0,

then F ∈ M for all F ∈ P(N), where the notation P(N) denotes the power set of N.

Definition 1.1.3. An outer measure on a non-empty set X is a function µ∗ : P(X) → [0,∞]

satisfying

1. µ∗(φ) = 0

2. µ∗(A) ≤ µ∗(B) if A ⊂ B

3. µ∗(∪∞
i=1Ai) ≤

∑∞
i=1 µ

∗(Ai)

If µ∗ is an outer measure on X, a set A ⊂ X is µ∗-measurable if

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac) ∀ E ∈ P(X).

Theorem 1.1.4. [Carathéodary’s Theorem] If µ∗ is an outer measure on X, the collectionM

of µ∗-measurable sets is a σ-algebra and the restriction of µ∗ toM is a complete measure.

If µ∗ is an outer measure on X and M is the σ-algebra of µ∗-measurable sets, then denote

µ = µ∗|M, and the measure space is (X,M, µ). Some measures arising as a consequence of this

theorem are:

Examples 1.1.5. (Lebesgue measure) The outer measure is defined by

m∗(A) = inf















∞
∑

i=1

(bi − ai) : A ⊂

∞
⋃

i=1

(ai, bi), ai < bi ∀i
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and Borel sets are m∗-measurable.

Examples 1.1.6. (Hausdorff measure) Given 0 < α ≤ 1, one can define the outer measure

h∗α(A) = inf















∞
∑

i=1

(bi − ai)
α : A ⊂

∞
⋃

i=1

(ai, bi), ai < bi ∀i















here also Borel sets are h∗α-measurable.

The outer measures h∗
1

and m∗ are the same. The case α = 0 is defined as counting measure. A

larger class of measures arises by taking f : R+ → R+ such that f is increasing and f (0) = 0,

then defining the outer measure by

h∗f (A) = inf















∞
∑

i=1

f (bi − ai) : A ⊂

∞
⋃

i=1

(ai, bi), ai < bi ∀i















.

So there exists a uncountable family of measure spaces (R,BR, h f ).

Borel Measures on R are those measures whose domain is BR. So Dirac measure, Lebesgue

measure and Hausdorff measures are example of Borel measures. A large class of Borel mea-

sures can be constructed by:

Theorem 1.1.7. If F : R → R is an increasing, right continuous function, there is a unique

Borel measure µF on R such that µF((a, b]) = F(b) − F(a) for all a, b. Let G is another such

function, then µF = µG if and only if F −G is constant. Conversely if µ is a Borel measure on R

that is finite on all bounded Borel set, define

F(x) =







































µ((0, x]) x > 0

0 x = 0

−µ((x, 0]) x < 0

then F is increasing, right continuous and µ = µF.

In case of finite measure the theorem gives an one-to-one correspondence with bounded right

continuous increasing function which is zero at 0. For Lebesgue measure m the function is
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F(x) = x, and for Dirac measure δx it is:

Fx(t) =























1 t ≥ x

0 t < x

.

The Hausdorff measure space (R,BR, hα) for α < 1 are not σ-finite, so such function does not

exist, but the result holds when the measure is restricted onto a subset with finite measure.

Let (X,M, µ) and (Y,N , ν) be two measure spaces. Define the outer measure (µ ⊗ ν)∗ on the set

X × Y by

(µ ⊗ ν)∗(A) = inf















∞
∑

i=1

µ(Ei)ν(Fi) : A ⊂

∞
⋃

i=1

Ei × Fi, Ei ∈ M, Fi ∈ N ∀i















.

This set of (µ ⊗ ν)∗-measurable sets contains the σ-algebraM⊗ N and so define the product

measure space (X × Y,M⊗N , µ ⊗ ν).

1.1.3 Integration

Given two measure spaces (X,M, µ) and (Y,N , ν), a function f : X → Y is measurable if

f −1(E) := {x ∈ X : f (x) ∈ E} ∈ M for all E ∈ N . Now define

M+(X) = { f : X → [0,∞] : f is measurable},

here [0,∞] is equipped with the Borel σ-algebra. For any set A ∈ M define the characteristic

function as

χA(x) =























1 x ∈ A

0 otherwise

.

Define a linear functional Ψ such that for any A ∈ M

Ψ(χA) =

∫

χAdµ = µ(A).

This take care of any finite linear combination of characteristic functions (called simple func-

tions). Next for f ∈ M+(X) set

∫

f dµ = sup
{

Ψ(φ) : φ ≤ f , φ is simple function with positive coefficient
}

.
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A real measurable function f is called µ-integrable if
∫

| f |dµ is finite and extended µ-integrable

if at least one of
∫

f±dµ (here f±(x) = ± f (x)χ{x:± f (x)>0}(x)) is finite. In either of the cases define

the integral by

∫

f dµ =

∫

f+dµ −

∫

f−dµ.

Similarly a complex measurable function f is integrable if
∫

| f |dµ is finite and define

∫

f dµ =

∫

ℜ f dµ + ι

∫

ℑ f dµ.

Set of complex integrable functions is denoted by L1(X, µ).

Theorem 1.1.8. [Fubini-Tonelli Theorem] Suppose that (X,M, µ) and (Y,N , ν) are two σ-

finite measure space.

1. (Tonelli) If f ∈ M+(X × Y), then the functions g(x) =
∫

f (x, ·)dν and h(y) =
∫

f (·, y)dµ

are in M+(X) and M+(Y) respectively, and

∫

f d(µ × ν) =

∫

gdµ =

∫

hdν.

2. (Fubini) If f ∈ L1(µ × ν), then f (x, ·) ∈ L1(ν) for almost every x ∈ X, f (·, y) ∈ L1(µ) for

almost every y ∈ Y, the functions g(x) =
∫

f (x, ·)dν and h(y) =
∫

f (·, y)dµ are defined

almost everywhere and belong to L1(µ) and L1(ν) respectively. Finally

∫

f d(µ × ν) =

∫ (∫

f (x, y)dµ(x)

)

dν(y) =

∫ (∫

f (x, y)dν(y)

)

dµ(x).

1.1.4 Measure class

Definition 1.1.9. LetM be a σ-algebra on the set X. A signed measure on (X,M) is a function

ν :M→ [−∞,∞] such that

1. ν(φ) = 0.

2. ν assumes at most one of the values ±∞.
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3. If {E j} is a sequence of disjoint sets in M, then ν(∪∞
i=1

Ei) =
∑∞

i=1 ν(Ei), where the later

sum is absolutely convergent if ν(∪∞
i=1Ei) is finite.

The definition stated previously is a special case of this and can be viewed as positive measure.

Since for signed measure space (X,M, µ), the measure can take any value, a set E is null set if

µ(F) = 0 for all F ∈ P(E) such that F ∈ M.

Two signed measures µ and ν on (X,M) are mutually singular (µ is singular with respect to ν

and vice-versa), if there exists E, F ∈ M such that E∩F = φ, E∪F = X, E is a null set of µ and

F is a null set of ν. This relation is symmetric and will denote by µ⊥ν. Jordan decomposition

theorem states that any signed measure ν can be decomposed in terms of two unique positive

measures ν± such that ν = ν+ − ν− and ν+⊥ν−. The total variation measure denoted as |ν| is

defined by |ν| = ν+ + ν−.

Each of the Hausdorff measures hα restricted to finite measure subsets are mutually singular

with respect to each other. In the case of measures of the form
∑

i αiδxi
, two such measures are

mutually singular if the set of xi are disjoint.

Let ν be a signed measure and µ a positive measure on (X,M). The measure ν is absolutely

continuous with respect to µ if ν(E) = 0 for every E ∈ M such that µ(E) = 0. This is denoted

as ν≪ µ.

For a positive measure µ on the measure space (X,M), let f : X → R be an extended µ-

integrable function and define ν(E) =
∫

E
f dµ for E ∈ M. This makes ν a signed measure and

ν≪ µ. The notation f dµ will be used to denote ν(E) =
∫

E
f dµ.

Theorem 1.1.10. [Lebesgue-Radon-Nikodym Theorem] Let ν be a finite signed measure and

µ a σ-finite positive measure on (X,M). There exist unique σ-finite signed measures λ, ρ on

(X,M) such that

λ⊥µ, ρ ≪ µ, & ν = λ + ρ

moreover there exists an extended µ-integrable function f : X → R such that dρ = f dµ, and
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any two such functions are equal µ-almost everywhere.

The decomposition ν = λ + ρ where λ⊥µ and ρ ≪ µ is called Lebesgue decomposition of ν

with respect of µ. In case ν≪ µ, the theorem implies dν = f dµ for some extended µ-integrable

function. In this case, the function f is called Radon-Nikodym derivative of ν with respect to µ

and denoted by dν
dµ

.

Given a signed measure µ on R we will use the decomposition

µ = µac + µsing

to denote the Lebesgue-Radon-Nikodym decomposition for µ with respect to Lebesgue mea-

sure. The measure µac is absolutely continuous with respect to Lebesgue measure and µsing is

the singular with respect to Lebesgue measure.

1.2 Probability theory

In this section the basics of probability theory are recalled. Notion of independence and tail

events are defined for series of random variables.

A probability space is a measure space (Ω,B, P) where the measure P is positive and P[Ω] = 1.

Ω is called sample space and elements of σ-algebra B are called events.

A random variable X on the space (S ,M) is a measurable function from probability space Ω

to S . In case of real/complex random variable, the σ-algebra on R/C will always be Borel σ-

algebra. Later random variables are also denoted by Xω, which will also be used as evaluation

at ω ∈ Ω (most of the random variables are almost everywhere defined, so any evaluation is

always done in complement of some set of measure zero).

Expectation of a random variable X is the integration with respect to the probability measure
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and is denoted by

E[X] =

∫

XdP or E
ω

[Xω] =

∫

XωdP(ω).

Let X be a real random variable on the probability space (Ω,B, P), then the measure PX defined

by

PX(E) = P({ω : Xω ∈ E}) ∀E ∈ BR,

is a probability measure on R and is called distribution of X. When the distribution is absolutely

continuous with respect to Lebesgue measure, then the distribution is said to be absolutely

continuous distribution. For a sequence of real/complex random variables {Xi}
N
i=1

, define the

joint distribution by

PN[E1 × · · · × EN] = P[{ω : Xω
i ∈ Ei ∀i}] ∀Ei ∈ BR/C.

For a real/complex random variable X, the notation X−1(E) = {ω : Xω ∈ E} for E ∈ BR/C, will

be used.

Definition 1.2.1. For a probability space (Ω,B, P)

1. Two events E1, E2 ∈ B are independent if P[E1 ∩ E2] = P[E1]P[E2].

2. Two real/complex random variables X1, X2 are independent if for every E1, E2 ∈ BR/C,

we have

P[{ω : Xω
1 ∈ E1, X

ω
2 ∈ E2}] = P[X

−1
1 (E1)]P[X−1

2 (E2)].

3. Two sub-σ-algebra F and G are independent if for each F ∈ F and G ∈ F , F and G are

independent.

A sequence of real/complex random variables {Xi}
N
i=1

are independent if

P















N
⋂

i=1

X−1
i (Ei)















=

N
∏

i=1

PXi
[Ei] ∀ Ei ∈ BR/C.

A sequence of random variables {Xi}i is said to have identical distribution if the probability

measures PXi
are the same.
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Theorem 1.2.2. [Kolmogorov Extension theorem] Let I be a set (can be uncountable) and

let Pα1 ,··· ,αn
be a Borel probability measure on Rn for each α1, · · · , αn ∈ I and n ∈ N. Assume

that this family of measure satisfies:

1. If π ∈ S n be a permutation of set {1, · · · , n} and fπ : Rn → Rn defined as fπ(x1, · · · , xn) =

(xπ(1), · · · , xπ(n)), then

Pαπ(1),··· ,απ(n)
[S ] = Pα1 ,··· ,αn

[ f −1
π (S )]

for all S ∈ BRn .

2. Let σn+m,n : Rn+m → Rn be the projection σn+m,n(x1, · · · , xn+m) = (x1, · · · , xn), then

Pα1 ,··· ,αn+m
[σ−1

n+m,n(S )] = Pα1 ,··· ,αn
[S ]

for all S ∈ BRn .

Then there exists a probability space (Ω,B, P) and real random variables {Xα}α∈I such that for

any finite (α1, · · · , αn),

Pα1 ,··· ,αn
[S ] = P

[

φ−1
α1,··· ,αn

(S )
]

where φα1 ,··· ,αn
: Ω→ Rn is the map ω 7→ (Xω

α1
, · · · , Xω

αn
).

So given a sequence of probability measures {µn}n∈N on (R,BR), the above theorem gives the ex-

istence of a probability space (Ω,B, P) and a sequence of independent random variables {Xn}n∈N ,

such that PXn
= µn for each n ∈ N . Through the proof of the theorem the probability space turns

out to be (RN ,B(RN),⊗n∈Nµn) and so is called product probability space.

Given a sequence of events {En}n∈N define

lim sup
n

An =

∞
⋂

n=1

⋃

m≥n

Am and lim inf
n

An =

∞
⋃

n=1

⋂

m≥n

Am.

Lemma 1.2.3. [Borel-Cantelli] Let (Ω,B, P) be a probability space and An ∈ B for n ∈ N be

given. Then
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1. If
∑

n P[An] < ∞, then P[lim supn An] = 0.

2. If {An}n are independent and
∑

n P[An] = ∞, then P[lim supn An] = 1.

Given a sequence of real/complex random variables {Xi}i∈N , the σ-algebra generated {Xi}i∈I for

some I ⊆ N , is the σ-algebra generated by the collection {X−1
i

(E) : i ∈ I, E ∈ BR/C}, and it is

denoted asσ({Xi}i∈I). Given a sequence of real/complex random variables {Xi}i∈N, E ∈ σ({Xi}i∈N)

is a tail event if E ∈ σ({Xi}i≥n) for every n ≥ 0.

Theorem 1.2.4. [Kolmogorov Zero-One law] A tail event for a sequence of independent ran-

dom variables has probability either zero or one.

1.3 Hilbert space

The operators in consideration here are on separable complex Hilbert space. Some of the basic

properties are listed here.

For a vector space V over C, an inner product 〈·, ·〉 : V × V → C is a function satisfying:

1. 〈u, αv + βw〉 = α 〈u, v〉 + β 〈u,w〉 for all u, v,w ∈ V and α, β ∈ C,

2. 〈αu + βv,w〉 = ᾱ 〈u,w〉 + β̄ 〈v,w〉 for all u, v,w ∈ V and α, β ∈ C,

3. 〈u, u〉 ≥ 0 for u ∈ V and 〈u, u〉 = 0 ⇒ u = 0,

4. 〈u, v〉 = 〈v, u〉 for u, v ∈ V .

The norm of u ∈ V is defined by ‖u‖ = 〈u, u〉
1
2 . The pair (V, 〈, 〉) is called an inner product space.

Definition 1.3.1. A complex Hilbert space is a complex inner product space (H , 〈·, ·〉) such

that the metric d(x, y) = ‖x − y‖ induced by the norm makes H a complete metric space.

A separable Hilbert space is a Hilbert space which has a countable dense subset.
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Let S ⊆ H be a closed linear subspace, then the function pS(h) = inf{‖h − s‖ : s ∈ S} is

continuous and since S is convex the minimum is obtained for the map s 7→ ‖h − s‖ for s ∈ S.

Denote the minimum by Ph. The map h 7→ Ph is linear, continuous and ‖Ph‖ ≤ ‖h‖ for every

h ∈ H . The map P : H → H is called orthogonal projection of H onto S. To make the

dependence on S on the projection explicit PS is used.

Two vectors v,w in an Hilbert space (H , 〈, 〉) are orthogonal if 〈v,w〉 = 0 and is denoted as

v⊥w. For A, B ⊆H , if f⊥g for each f ∈ A and g ∈ B then the sets are orthogonal to each other

and is denoted as A⊥B.

A orthonormal subset O of a Hilbert space H is a subset with the properties:

1. ‖v‖ = 1 for each v ∈ O,

2. 〈v,w〉 = 0 if v , w for v,w ∈ O.

A orthonormal basis is a maximal orthonormal set. For a separable Hilbert space any orthonor-

mal basis is countable.

Theorem 1.3.2. Let {en}
∞
n=1 be an orthonormal basis of a separable Hilbert space H , then

1. If h ∈H and h⊥en for all n ∈ N, then h = 0.

2. For any h ∈H

h =

∞
∑

n=1

〈en, h〉 en, (1.1)

here the convergence is in norm.

3. For f , g ∈H

〈 f , g〉 =

∞
∑

n=1

〈 f , en〉 〈en, g〉 (1.2)
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Two Hilbert spaces H and K are isomorphic if a linear surjection U : H → K exists which

satisfies

〈U f ,Ug〉K = 〈 f , g〉H

for all f , g ∈ H . The map U is called isomorphism fromH to K . In particular U is a isometry

(norm preserving).

1.3.1 Linear functional

On a complex Hilbert space H , a linear functional L : H → C is continuous if and only if

there exists a constant c > 0 such that |L(h)| ≤ c ‖h‖ for every h ∈H . Since a continuous linear

functional follows the bound, it is also called bounded linear functional and

‖L‖ = sup{|L(h)| : ‖h‖ ≤ 1, h ∈H }.

Theorem 1.3.3. [Riesz Representation theorem] If L : H → C is a bounded linear functional

on a complex Hilbert space H , then there exists a unique vector l ∈H such that L(h) = 〈l, h〉

for every h ∈H . Moreover ‖L‖ = ‖l‖.

So this theorem guarantees that any bounded linear functional can be viewed as inner product

with some elements of the Hilbert space. Next theorem is about abundance of linear functionals.

Theorem 1.3.4. [complex Hahn-Banach theorem] Let H be a complex Hilbert space, p a

real-valued function defined on H satisfying p(αu + βv) ≤ |α|p(u) + |β|p(v) for all u, v ∈ H

and α, β ∈ C with |α| + |β| = 1. Let λ be a linear functional defined on a subspace S of H

satisfying |λ(u)| ≤ p(u) for u ∈ S. Then there exists a liner functional Λ defined on H , such

that |Λ(u)| ≤ p(u) for all u ∈H and Λ(u) = λ(u) for all u ∈ S.
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1.3.2 Bounded linear operator

Let H and K be two Hilbert spaces, then the linear transformation T : H → K is said to be

bounded if there exists c > 0 such that ‖Th‖K ≤ c ‖h‖H for each h ∈ H . Given a linear operator

T define

ker(T ) = {v ∈ H : Tv = 0} and range(T ) = {v ∈ K : v = Tw ∃w ∈ H}. (1.3)

A linear operator T is continuous if and only if it is bounded and one can define

‖T‖ = sup{‖Th‖ : ‖h‖ ≤ 1, h ∈ H}. (1.4)

The set of bounded linear operator fromH toK is denoted by B(H ,K) (set of bounded linear

operators from complex Hilbert space H to itself is denoted by B(H )). The space B(H ,K)

together with the operator norm (1.4) forms a complete metric space. There are two other

senses of convergence:

1. Given a sequence of operators {Tn}n∈N in B(H ), Tn is said to converge to T in the strong

operator topology if ‖(Tn − T )h‖ → 0 for each h ∈H .

2. Given a sequence of operators {Tn}n∈N in B(H ), Tn is said to converge to T in the weak

operator topology if 〈g, (Tn − T )h〉 → 0 for each h, g ∈H .

The equation (1.1) can be expressed as
∑N

n=1 |en〉 〈en|
N→∞
−−−−→ I in strong operator topology, where

following Dirac notation the object |φ〉 〈φ| is the orthogonal projection onto the subspace Cφ.

Definition 1.3.5. LetH and K be two complex Hilbert spaces, a function φ : H ×K → C is a

sesquilinear form if

1. φ(x, αu + βv) = αφ(x, u) + βφ(x, v) for all x ∈ H , u, v ∈ K and α, β ∈ C.

2. φ(αx + βy, u) = ᾱφ(x, u) + β̄φ(y, u) for all x, y ∈ H , u ∈ K and α, β ∈ C.

It is bounded if there exists a constant M such that |u(u, v)| ≤ M ‖u‖H ‖v‖K .
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The following theorem ensures that to define a bounded operator, one only needs to define a

sesquilinear form.

Theorem 1.3.6. If φ : H × K → C is a bounded sesquilinear form with bound M, then there

are unique operator S ∈ B(H ,K) and T ∈ B(K ,H) such that

φ(u, v) = 〈S u, v〉K = 〈u, Tv〉H (1.5)

for all u ∈ H , v ∈ K and ‖S ‖ , ‖T‖ ≤ M.

Definition 1.3.7. If T ∈ B(H ,K), then there exists a unique operator S ∈ B(K ,H) such that

(1.5) holds and is called the adjoint of T . The adjoint of an operator T is denoted by T ∗.

Given T ∈ B(H ), it can be decomposed as T = ℜT + ιℑT whereℜT = T+T ∗

2
and ℑT = T−T ∗

2ι
.

This decomposition has the property that (ℜT )∗ = ℜT and (ℑT )∗ = ℑT .

Definition 1.3.8. Let T ∈ B(H ),

1. T is self-adjoint operator if T ∗ = T.

2. T is normal operator if T ∗T = TT ∗.

3. T is unitary operator if T ∗T = I = TT ∗.

4. T is idempotent operator if T 2 = T.

If T ∈ B(H ) is a idempotent operator, then it is an orthogonal projection of H onto range(T ).

1.3.3 Unbounded linear operator

Definition 1.3.9. If H and K are complex Hilbert spaces, a linear operator T : H → K is a

function whose domain of definition is a linear subspace dom(T ) ⊂ H , such that T (αu + βv) =

αTu + βTv for u, v ∈ dom(T ) and α, β ∈ C. T is bounded if there is a constant c > 0 such that

‖Tu‖ ≤ c ‖u‖ for all u ∈ dom(T ).
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A linear operator T is said to be densely defined if dom(T ) is a dense subset ofH . The operator

S is called an extension of T if dom(T ) ⊂ dom(S ) and Tu = S u for all u ∈ dom(T ), it is denoted

by T ⊆ S . The graph of a linear operator T : H → K is the set:

graph(T ) = {(u, Tu) ∈ H × K : u ∈ dom(T )} (1.6)

An linear operator T : H → K is closed if its graph is closed inH ×K . T is called closable if

there exists a closed extension.

Here we will deal with operators of the form S +T where both S and T are densely defined. So,

let S , T be two linear operators fromH toK , then S +T is defined on the domain dom(S +T ) =

dom(S ) ∩ dom(T ).

Definition 1.3.10. If T : H → K is densely defined, let

dom(T ∗) = {u ∈ K : v 7→ 〈u, Tv〉 is a bounded linear functional on dom(T )}

Since dom(T ) is dense, for u ∈ dom(T ∗) there exists a unique v ∈ H such that

〈u, Tw〉 = 〈v,w〉 ∀w ∈ dom(T )

and so denote T ∗u = v.

Definition 1.3.11. A densely defined operator T : H → H is self-adjoint if dom(T ) =

dom(T ∗) and T = T ∗.

To define inverse one needs to define composition of two linear operators. Let T : H → K

and S : K → L be two linear operators, the linear operator S T : H → L is defined on

dom(S T ) = T−1dom(S ) (here T−1 is the set theoretic inverse).

Definition 1.3.12. An linear operator T : H → K is boundedly invertible if there is a bounded

operator S : K → H such that TS = I and S T ⊆ I (I is an extension of S T).

Definition 1.3.13. For a linear operator T : H → K , the resolvent set ρ(T ) is defined by

{λ ∈ C : T − λ is bounded invertible}. The spectrum of T is the set σ(T ) = C \ ρ(T ).
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1.4 Functional calculus and spectral theorem

Definition 1.4.1. A projection valued measure on a set X is a map E : M → P(H ), where

M is aσ-algebra on X and P(H ) is collection of projections on the separable complex Hilbert

space H , which satisfies:

1. E(φ) = 0 and E(X) = I,

2. E(Y ∩ Z) = E(Y)E(Z) for Y, Z ∈ M,

3. Let {Yn}n∈N be a sequence inM of pairwise disjoint sets, then

E















⋃

n

Yn















=
∑

n

E(Yn).

For a projection valued measure E on (R,BR,H ) and φ, ψ ∈H , the set function

Eφ,ψ(W) = 〈φ, E(W)ψ〉 ∀W ∈ BR

defines a signed Borel measure on R with total variation ≤ ‖φ‖ ‖ψ‖. For a bounded measurable

function f : R → C, one can define the sesquilinear form Ψ(φ, ψ) =
∫

f dEφ,ψ, and so there is

an operator A f ∈ B(H ) such that

Ψ(φ, ψ) =
〈

φ, A fψ
〉

∀φ, ψ ∈H .

The operator A f is denoted by
∫

f dE.

Theorem 1.4.2. [Spectral theorem for self-adjoint operators] For any self-adjoint operator

T on the Hilbert space H there exists exactly one projection valued measure E on (R,BR,H )

such that

1. T =
∫

tdE(t),

2. If A ∈ B(H ) such that AT = T A, then AE(Ω) = E(Ω)A for all Ω ∈ BR.

The measure E is called spectral measure for T and is denoted by ET .
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In particular any f ∈ C(σ(T )) we have

f (T ) =

∫

f (t)dET (t)

which defines the continuous functional calculus. One of the function that will keep appearing

is the resolvent which is

GT (z) = (T − z)−1 =

∫

1

t − z
dET (t) ∀z < σ(T ). (1.7)

For φ, ψ ∈H we have

GT (φ, ψ; z) =
〈

φ, (T − z)−1ψ
〉

=

∫

dET
φ,ψ(t)

t − z
∀ℑz , 0.

For a Borel measure space (R,BR, ν) and a Hilbert space (V, 〈·, ·〉) define

L2(R, ν,V) =

{

f : R→ V : f is measurable and

∫

‖ f (x)‖2 dν(x) < ∞

}

.

Next theorem helps in distinguishing the multiplicity from previous theorem.

Theorem 1.4.3. [Hahn-Hellinger Theorem] Let E be a spectral measure on (R,BR,H ).

Then there exist mutually singular σ-finite measures ν∞, ν1, ν2, · · · and an invertible isometry

U : H → L2(R, ν∞, ℓ
2(N)) ⊕

∞
∑

n=1

L2(R, νn,C
n),

such that for all A ∈ BR and f ∈ L2(R, ν∞, ℓ
2(N)) ⊕

∑∞
n=1 L2(R, νn,C

n),

UE(A)U−1 f = χA f .

If ν′∞, ν
′
1
, ν′

2
, · · · is another sequence of mutually singular measures then for each i, νi and ν′

i
are

absolutely continuous with respect to each other.

We will also need another decomposition of the Hilbert space under the action of a operator.

Definition 1.4.4. Given a self adjoint operator T on a the separable Hilbert space H , define

the linear subspace

Hpp = {φ ∈H : φ is a eigenvector of T },
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where the bar denotes the closed linear span of the set in the Hilbert space H , and

Hac =
{

φ ∈H :
〈

φ, ET (·)φ
〉

is absolutely continuous w.r.t Lebesgue measure
}

.

The set Hac is closed subspace of H (see [46, Chapter 10, Theorem 1.5]). Set Hsc = (Hpp ⊕

Hac)
⊥.

The canonical projections from H to Hpp, Hac and Hsc will be denoted by Epp, Eac and Esc

respectively. These subspaces are closed under the action of T . So the projections Eac, Epp and

Esc commutes with the spectral measure ET itself, which provides the Lebesgue decomposition

of the measure
〈

φ, ET (·)φ
〉

as

〈

φ, ET (·)φ
〉

=
〈

Eacφ, E
T (·)Eacφ

〉

+
〈

Escφ, E
T (·)Escφ

〉

+
〈

Eppφ, E
T (·)Eppφ

〉

,

where the measure
〈

Eacφ, E
T (·)Eacφ

〉

is absolutely continuous with respect to Lebesgue mea-

sure,
〈

Eppφ, E
T (·)Eppφ

〉

is sum of Dirac measures and
〈

Escφ, E
T (·)Escφ

〉

is mutually singular to

other two measures. The set σpp(T ) is spectrum of T restricted to Hpp and is called pure point

spectrum. Similarly σac(T ) is absolute continuous spectrum which is spectrum of T restricted

to Hac and σsc(T ) is the singular continuous spectrum which is spectrum of T restricted to Hsc.
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Chapter 2

Borel transform and its properties

In this chapter important properties of the Borel transform are listed. This is the main tool that

is used to determine the properties of the spectral measure. We will extract the information

about the spectral measures through the linear maps

P(A − z)−1P : PH → PH

for z ∈ C+, where A is a self-adjoint operator and P is a projection on the separable Hilbert

space H . These are termed as Matrix valued Herglotz function or Birman-Schwinger oper-

ators. Birman-Schwinger principle was developed for compact perturbation in [12, 81] and

some notable applications can be found in [16, 51, 82]. Since we will be focusing on the case

rank(P) = N, we will view them as matrix valued Herglotz functions.

In the first section we will setup the equations arising from single perturbation. These equations

are the main reason to look at matrix-valued Herglotz functions. We will be working with

Holomorphic functional calculus for self adjoint operators, so some properties of a class of

holomorphic functions are needed. These properties are recalled in the second section.

The definition of Borel transform is presented in third section along with all it’s properties.

Fourth section contains their generalisation to matrix valued measures.
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2.1 Perturbation by a single projection

Given the triple (A, {Pi}
3
i=1
,H ), where A is a self-adjoint operator on the separable Hilbert

space H and {Pi}
3
i=1

are three rank N projections with the property that PiP j = 0 if i , j, we

set Aλ = A + λP1. We will follow the notation

Gi j(z) = Pi(A − z)−1P j and Gλ
i j(z) = Pi(Aλ − z)−1P j ∀z ∈ C \ R. (2.1)

So Gi j(z) and Gλ
i j

(z) can be viewed as linear maps from P jH to PiH . In this section whenever

I appears, it is viewed as identity map on P1H . For example in case of I − λG11(z), it is used

as a linear map from P1H to P1H . It is easy to check

ℑG11(z) ≥ 0 and ‖G11(z)‖ ≤
1

ℑz
f or ℑz > 0.

Using the resolvent equation B−1 −C−1 = B−1(C − B)C−1, we have for ℑz > 0

Gλ
11(z) = G11(z)(I + λG11(z))−1, (2.2)

and

Gλ
i j(z) = Gi j(z) − λGi1(z)G1 j(z) + λ2Gi1(z)Gλ

11(z)G1 j(z) ∀(i, j) , (1, 1). (2.3)

Another way of writing (2.2) is

(I − λGλ
11(z))(I + λG11(z)) = I ⇔ (I + λG11(z))(I − λGλ

11(z)) = I. (2.4)

The equations (2.2),(2.3) and (2.4) will be used later for obtaining all the results related to

spectral measures.

2.2 Herglotz functions and uniqueness

In this section we will consider holomorphic functions on the domain C+ = {z ∈ C : ℑz > 0}.

The class of holomorphic functions f : C+ → C+ are called Herglotz functions. One of the

important properties for Herglotz functions is their uniqueness upto constant.
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The following theorems give such uniqueness for functions which are holomorphic inside the

unit disc. Let D = {z ∈ C : |z| < 1}, S 1 = {z ∈ C : |z| = 1} andM(D) (respectivelyH(D)) denote

the set of meromorphic (respectively holomorphic) functions f : D→ C.

Theorem 2.2.1. [9, Theorem 1] There exists a non-constant function f inM(D) (respectively

H(D)) such that limr→1 f (rz) = 0 for z ∈ E ⊂ S 1 if and only if the outer measure of E ∩ B is

zero for all open B ⊂ S 1.

For any Herglotz function f , we can define g : D → C by g(z) = f (ι z−1
z+1

) and use the above

theorem. So the set

Aα = {x ∈ R : lim
ǫ↓0

f (x + ιǫ) = α} ∀α ∈ C ∪ {∞},

has zero Lebesgue measure. Next theorem is a statement about the existence of the limit.

Theorem 2.2.2. [82, Theorem 11.4] For a Herglotz function f , the limit limǫ↓0 f (x + ιǫ) exists

and is finite for almost all x (with respect to Lebesgue measure).

We will denote

f (x + ι0) = lim
ǫ↓0

f (x + ιǫ), (2.5)

wherever the limit exists and the above theorem guarantees its existence almost everywhere.

Any Herglotz function f : C+ → C+ can be extended to f̃ : C \ R → C \ R by defining it as

follows

f̃ (z) =























f (z) ℑz > 0

f (z̄) ℑz < 0

.

2.3 Borel-Stieltjes transform

Since we are going to use matrix valued functions of the form (2.1), we are interested in their

relation to the spectral measures. This connection is through Nevanlinna-Reisz-Herglotz repre-
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sentation of measures (see theorem 2.3.5). But first we need to define Borel-Stieltjes transform

for a positive measure.

Definition 2.3.1. Let µ be a positive measure on R satisfying the condition:

∫

dµ(x)

1 + x2
< ∞,

then the Borel transform (or Borel-Stieltjes transform) of µ is the function:

Fµ(z) =

∫

R

(

1

x − z
−

x

1 + x2

)

dµ(x) ∀z ∈ C \ R.

The Borel transform of a measure is an holomorphic function on C± (= {z ∈ C : ±ℑz > 0}) and

maps each component to itself (i.e Fµ : C± → C±).

The definition does not guarantee uniqueness of Borel transform. The theorem F. and M. Riesz

[78] tells us when a Borel transform will be zero (since the map µ 7→ Fµ is linear, we only need

to look at the kernel). Here we state the following version of the theorem

Theorem 2.3.2. [79, Theorem 17.13] If µ is a Borel measure on the unit circle S 1 = {z ∈ C :

|z| = 1} and if

∫

eιnθdµ(θ) = 0 ∀n ∈ N,

then µ is absolutely continuous with respect to Lebesgue measure.

The theorem is stated for measures on S 1, but by using a simple transformation it can be used

for Borel measures on R. The version that will be used is

Corollary 2.3.3. The Borel transform of any complex measure which is zero in C+ has to be

absolutely continuous with respect to Lebesgue measure.

Remark 2.3.4. One can prove (see [45, Theorem 2.2]) that the total variation measure need to

be equivalent to Lebesgue measure.

Because of this we will work only with measures which are not equivalent to Lebesgue measure

and so the Borel transform will be unique.

39



Theorem 2.3.5. [Herglotz Representation Theorem][65, Theorem 1.4.2] Let F : C+ → C+

be a holomorphic function, then there exists a non-negative number a, a real number b and a

Borel measure µ satisfying

∫

dµ(x)

1 + x2
< ∞

such that

F(z) = az + b +

∫ (

1

x − z
−

x

1 + x2

)

dµ(x).

The triple (a, b, µ) is uniquely associated with F.

Next theorem provides some of the important properties of Borel transform:

Theorem 2.3.6. [82, Theorem 11.6] Let F be a Borel transform of a measure µ. Then

1. 1
π
ℑF(x + ιǫ)dx→ dµ(x) weakly, in the sense that

lim
ǫ↓0

1

π

∫

f (x)ℑF(x + ιǫ)dx =

∫

f dµ ∀ f ∈ Cc(R).

2. µsing is supported on {x : limǫ↓0 F(x + ιǫ) = ∞}.

3. dµac(x) = 1
π
ℑF(x + ι0)dx.

Above results give a way to extract results about the absolute continuous part of the measure

and provide the set where singular part of the measure lies. The only thing left is to extract the

type of singular measure. For that Poltoratskii’s theorem[74] is used. For the Borel measure µ

satisfying
∫

dµ(x)

1+|x|
< ∞, we will use the notation

Fµ(z) =

∫

dµ(x)

x − z
∀z ∈ C \ R,

that is a and b are zero in the representation obtained through the theorem 2.3.5.

Theorem 2.3.7. [Poltoratskii’s theorem] [44, Theorem 1.1] For any complex valued Borel

measure µ on R and f ∈ L1(R, dµ),

lim
ǫ↓0

F fµ(x + ιǫ)

Fµ(x + ιǫ)
= f (x)
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for almost all x with respect to µsing.

2.4 Matrix valued Herglotz functions

A Matrix valued Herglotz function M : C+ → Mn(C) is a function with each of the entries being

holomorphic on the domain and ℑ(M(z)) ≥ 0 for z ∈ C+.

Analogous version of theorem 2.3.5 and 2.3.6 can be stated as follows:

Theorem 2.4.1. [37, Theorem 5.4] Let M : C+ → Mn(C) be a matrix-valued Herglotz function,

then

1. M(z) has finite normal limits, i.e M(x + ι0) = limǫ↓0 M(x + ιǫ) exists for a.e x ∈ R (with

respect to Lebesgue measure).

2. If each diagonal element Mii(z), 1 ≤ i ≤ n, of M(z) has zero normal limit on a fixed

subset of R which has positive Lebesgue measure, then M(z) = C0 where C0 is a constant

self-adjoint n × n matrix with 0 on the diagonal.

3. There exists a matrix-valued measure Σ on bounded Borel set of R satisfying

∫

〈v, dΣ(x)v〉

1 + x2
< ∞ ∀v ∈ Cn,

such that the Nevanlinna-Reisz-Herglotz representation

M(z) = C + Dz +

∫

R

(

1

x − z
−

x

1 + x2

)

dΣ(x) ∀z ∈ C+,

holds where

C = M(ι) and D = lim
η→∞

1

ιη
M(ιη).

4. The Stieltjes inversion formula for Σ is

lim
ǫ↓0

1

π

∫ b

a

ℑ(M(x + ιǫ))dx =
1

2
(Σ({b}) + Σ({a})) + Σ((a, b)).
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5. The absolutely continuous part of the measure is given by

dΣac(x) =
1

π
ℑ(M(x + ι0))dx

6. Any poles of M(z) are simple and are located on the real axis.

Finally using the fact that Σ is absolutely continuous with respect to the trace measure σ(=

tr(Σ)), and using theorem 1.1.10 (Lebesgue-Radon-Nikodym theorem) we observe that there

exists MΣ ∈ L1(R, σ; Mn(C)) such that

dΣ(x) = MΣ(x)dσ(x). (2.6)

Using theorem 2.3.7 for each of the entries of Σ, we get

lim
ǫ↓0

1

Fσ(x + ιǫ)
FΣ(x + ιǫ) = MΣ(x) (2.7)

for almost all x w.r.t σsing. Here FΣ denotes the Borel transform of Σ. Since we are working

with non-negative measures, i.e the measures 〈u,Σ(·)u〉 are non-negative for all u ∈ Cn, we also

have MΣ(x) ≥ 0 for almost all x with respect to σ.

The only transformation that will be used, as seen in (2.2), is analogous to linear fractional

transform. For Ai j ∈ Mn(C), such that A∗
21

A11 = A∗
11

A21, A∗
22

A12 = A∗
12

A22 and A∗
11

A22 −A∗
21

A12 =

I, define the transformation

τ(M) = (A11 − A12M)(A21 − A22M)−1,

for M ∈ Mn(C) such that ℑM ≥ 0. This transformation is important because

ℑτ(M) =
(

(A21 − A22M)−1
)∗
ℑM

(

(A21 − A22M)−1
)

,

hence positivity of the imaginary part is preserved, so if M : C+ → Mn(C) is a matrix valued

Herglotz function, then so is τ(M(z)). One other property that will be used is:

Lemma 2.4.2. [66, Lemma A.1] Let Ai j ∈ Mn(C) i, j = 1, 2, such that

ℑ























A11 A12

A21 A22























≥ 0. (2.8)
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Then for u, v ∈ Cn

∣

∣

∣

∣

∣

∣

〈

u,
A12 − A∗21

2ι
v

〉
∣

∣

∣

∣

∣

∣

2

≤
〈

u, (ℑA11)u
〉 〈

v, (ℑA22)v
〉

. (2.9)

as a consequence of (2.9), let v ∈ Cn be such that (ℑA22)v = 0 then

A12v = A∗21v, (2.10)

and u ∈ Cn be such that (ℑA11)u = 0 then

A21u = A∗12u. (2.11)

So if tr(ℑA22) = 0 then A12 = A∗
21

and if tr(ℑA11) = 0 then A21 = A∗
12

.

Proof. For any u, v ∈ Cn. using (2.8) we have

〈























u

v























,























ℑA11
A12−A∗

21

2ι

A21−A∗
12

2ι
ℑA22













































u

v























〉

≥ 0

⇒ 0 ≤
〈

u, (ℑA11)u
〉

+
〈

v, (ℑA22)v
〉

+ 2ℜ

〈

u,
A12 − A∗

21

2ι
v

〉

Since we can choose v = 0 where as u ∈ Cn (similarly other way around) we require

〈

u, (ℑA11)u
〉

≥ 0 &
〈

v, (ℑA22)v
〉

≥ 0 ∀u, v ∈ Cn.

This implies ℑA11 ≥ 0 and ℑA22 ≥ 0. Next replacing u by tu for t ∈ R, we obtain

〈

u, (ℑA11)u
〉

t2 +
〈

v, (ℑA22)v
〉

+ 2tℜ

〈

u,
A12 − A∗

21

2ι
v

〉

≥ 0.

Since this is valid for all t, we have

4

(

ℜ

〈

u,
A12 − A∗

21

2ι
v

〉)2

− 4
〈

v, (ℑA22)v
〉 〈

u, (ℑA11)u
〉

≤ 0

giving us
∣

∣

∣

∣

∣

∣

ℜ

〈

u,
A12 − A∗21

2ι
v

〉
∣

∣

∣

∣

∣

∣

≤

√

〈

v, (ℑA22)v
〉 〈

u, (ℑA11)u
〉

. (2.12)

So in case
〈

u,
A12−A∗

21

2ι
v
〉

, 0, choosing α =

〈

u,
A12−A∗

21
2ι v

〉

∣

∣

∣

∣

∣

∣

〈

u,
A12−A∗

21
2ι

v

〉
∣

∣

∣

∣

∣

∣

and replacing u by αu we get (2.9).
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For proving (2.10) let v ∈ Cn to be such that (ℑA22)v = 0 then by (2.9), for any u ∈ Cn

〈

u,
A12 − A∗21

2ι
v

〉

= 0 ⇒ (A12 − A∗21)v = 0.

Similarly for proving (2.11) assuming u ∈ Cn be such that (ℑA11)u = 0, using (2.9) for any

v ∈ Cn,

〈

u,
A12 − A∗

21

2ι
v

〉

= 0 ⇒ (A∗12 − A21)u = 0.

Finally if tr(ℑA11) = 0 then ℑA11 = 0 because ℑA11 ≥ 0. So using (2.11) for any u ∈ Cn

(A21 − A∗12)u = 0.

Similarly if tr(ℑA22) = 0 we have (A12 − A∗21)v = 0 for any v ∈ Cn. �

2.5 Spectral projection results

The spectral theorem stated in previous chapter is the most general version but a restricted case

is only needed.

Theorem 2.5.1. [66, Theorem A.3] Let T be a self-adjoint operator on a separable Hilbert

space H , and P be a rank N projection. Let {δn}
N
n=1

be a basis of the vector space PH and HP

denotes the closed subspace generated by T containing PH . Let ET be the spectral projection

associated to T through theorem 1.4.2. Then the map

U : L2(R, PET P,CN)→HP

defined by

U( f1, · · · , fN) 7→

N
∑

i=1

fi(T )δi.

is unitary and

UId = TU,

where Id is multiplication by identity on L2(R, PET P,CN).
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Proof. This map U is an injection because

0 = ‖U( f1, · · · , fn)‖22 =

N
∑

i, j=1

〈

fi(T )δi, f j(T )δ j

〉

=

N
∑

i, j=1

∫

f̄i(x) f j(x)dµi j(x),

where µi j(·) are the measures
〈

δi, E
T (·)δ j

〉

, so the previous equation is giving us

∫

〈

f (x), d(PET P)(x) f (x)
〉

= 0 ⇒ ‖ f ‖22 = 0,

where f (x) = ( f1(x), · · · , fN(x)), and (PET (·)P)i j =
〈

δi, E
T (·)δ j

〉

. The map U is isometry,

because (for f = ( f1, · · · , fN), g = (g1, · · · , gN))

〈U f ,Ug〉HP
=

N
∑

i, j=1

〈

fi(T )δi, g j(T )δ j

〉

=

N
∑

i, j=1

∫

f̄i(x)g j(x)dµi j(x)

=

∫

〈

f (x), d(PET P)(x)g(x)
〉

= 〈 f , g〉L2(R,PET P,CN) .

Next we will prove that U is a surjection. Let φ ∈HP, then there exists a sequence {( f1m,··· , fNm
)}∞

m=1

where fim ∈ Cc(R) such that

N
∑

i=1

fim(T )δi

m→∞
−−−−→ φ

in norm, so

lim
m→∞
‖φ − U( f1m, · · · , fNm)‖2 = 0.

Finally

U(Id f ) =

N
∑

i=1

(T fi(T ))δi = T

N
∑

i=1

fi(T )δi = T (U f ),

giving us the identity UId = TU. �

Another result that will be used is the spectral averaging result.

Lemma 2.5.2. [Spectral Averaging][19, Corollary 4.2] Let Eλ(·) be the spectral projection

for the operator Aλ = A + λP, where A is a self-adjoint operator and P is a rank N projection.

Then for M ⊂ R such that |M| = 0 (lebesgue measure), we have PEλ(M)P = 0 for a.e λ w.r.t

Lebesgue measure.

As a consequence of this we can leave any fixed (Lebesgue) measure zero set from the analysis

and the results will still hold almost everywhere.
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Chapter 3

Random operators for certain disordered

systems

Disorder is part of almost every physical system. Every model developed to understand physical

system is some kind of idealisation. Sometime just studying the idealised model is not enough

to make prediction. So understanding the role of the disorder is an important topic in science.

Given the very meaning of the term disorder, it is important to verify if disorder fundamentally

changes the nature of solution from an idealised scenario. Whenever the solution does not

change drastically, it is enough to look at the idealised model and only correction are needed to

be estimated.

Any real life problem always has some amount of external noise and as part of modelling

that noise is ignored. But often this creates a significant difference between the predicted re-

sults from the model and the observed behaviour. One such case is the problem of explaining

conduction and insulation for materials. In a seminal work by P. W. Anderson [6] to explain

characteristic of spin waves over doped silicon, he proposed a quantum mechanical model and

showed that at high disorder the wave functions are exponentially localized at all energies. A

consequence of localized state is its inability to carry any kind of current over macroscopic
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distances. Thus, for complete description in such systems, one has to take into account of the

disorder.

3.1 Anderson model

The Anderson model is a simplified model to describe movement of a single electron through

a lattice of nuclei. Physically speaking, we are looking at some crystal, so we have a periodic

background and as a simplification we assume that only one electron is moving. The disorder

arises because of doping, which randomly replaces some nuclei of the lattice with some other

nuclei of different charges.

In case of usual lattice Zd, there is a potential at each lattice point {ωn}n∈Zd which is how the

disorder is introduced, and there is an interaction I : R→ R for each nucleus and the electron,

which only depends upon the distance, that is assumed to be constant (though in some cases this

can also be random). Evolution of the wave function {ψ(x, t)}x∈Zd is governed by the equation

ι
∂ψ

∂t
(x, t) = ωxψ(x, t) +

∑

y∈Zd

I(|x − y|)ψ(y, t) ∀x ∈ Zd. (3.1)

To understand the solution of above equation, it is important to study the operator

(Hωu)(x) =
∑

y∈Zd

I(|x − y|)u(y) + ωxu(x) ∀x ∈ Zd, |supp(u)| < ∞.

A further simplification can be done by taking I(1) = 1 and rest to be zero. This is the case

when the interaction effects only nearest neighbour. Then operator is of the form

(Hωu)(x) =
∑

|x−y|=1

u(y) + ωxu(x) ∀x ∈ Zd, |supp(u)| < ∞. (3.2)

The operator Hω can be written as ∆ + Vω where

(∆u)(x) =
∑

|x−y|=1

u(y) and (Vωu)(x) = ωxu(x) ∀x ∈ Zd.

The spectral properties of ∆ (discrete Laplacian) is well understood. Its spectrum is [−2d, 2d]

and the spectral measure is absolutely continuous. The operator Vω has pure point spectrum
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and is given by {ωx : x ∈ Zd}, the eigenvectors are {δx}x∈Zd (Kronecker delta function)

δx(y) =























1 i f x = y

0 otherwise

.

The set {δn}n∈Zd is also the canonical basis of ℓ2(Zd).

3.1.1 Anderson tight-binding model

For tight-binding Hamiltonian, the potential {ωx}x∈Zd are taken to be independent identically

distributed real random variables. Hence Hω is not a single operator but a family of operators.

This is because {ωx}x∈Zd can be viewed as identically distributed independent random variables

over some probability space (Ω,B, P) (by using theorem 1.2.2) and so we have the map

H· : Ω→ S(ℓ2(Zd)),

given by ω 7→ Hω, where S(ℓ2(Zd)) is set of essentially self-adjoint operators. The operator

Hω is unbounded whenever Vω is unbounded, which is the case when the distribution of ωx

has unbounded support. In case Hω is unbounded, the domain of definition always contains

all u ∈ ℓ2(Zd) with finite support. All the statements made for Hω are statements which holds

almost surely.

To study the effect of disorder an extra parameter is introduced and the Anderson Hamiltonian

is usually defined by

Hω
λ = ∆ + λVω. (3.3)

This way of defining it can be extended to case of graphs where the Laplacian is replaced by

adjacency operator for the graph.

Early work by Pasture [71, 72] showed that the spectrum of these operators are almost surely

constant and is given by σ(∆) + λsupp(µ) where µ is the distribution of the random variables

{ωx}.
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One of the main reason for developing this model is because the Green’s function are expo-

nentially decaying for high disorder (λ being large in (3.3)). Based on initial estimates by

Fröhlich-Spencer[31], Multi-scale analysis was developed by Fröhlich-Martinelli-Scoppola-

Spencer[30], Simon-Taylor-Wolff[87] and Delyon-Levy-Souillard [24] (see also Stollmann [89]

and Germinet-Klein[34] for Bootstrap multi-scale analysis) to give a rigorous proof of the ex-

ponential decay of Green’s function. Carmona-Klein-Martinelli[13] extended the method for

singular single site distribution. Later Aizenman-Molchanov [2] developed fractional moment

method.

For more comprehensive details see [35, 90, 91]. But as of yet no proof of absolute continuous

spectrum for Anderson tight-binding model on Zd exist. Abel Klein in [52] proved existence

of absolutely continuous spectrum for tight-binding model on Bethe lattice at low disorder (see

also Froese-Hasler-Spitzer[29]). recently Aizenman-Warzel[4] showed resonant delocalisation

on Bethe lattice, which implies the absence of point spectrum in the region. Another important

property is that the point spectrum is simple (i.e for almost ω any eigenvalue has unique eigen-

function), this was shown by Simon [84] and later Klein-Molchanov [55]. This is also proved

in more general setup by Jakšić-Last [45].

There are many important properties that are not listed here but can be found in surveys, such

as [5, 14, 48, 49, 92].

3.1.2 Multi-particle Anderson model

In recent years, study of multi-particle Anderson Hamiltonian has gained importance. The

N-particle Anderson Hamiltonian on Zd can be described as follows. The Hilbert space in

consideration is ⊗Nℓ2(Zd) (which is same as ℓ2(ZdN)) and the operator Hω is described by

(Hωu)(x) =















N
∑

n=1

[(∆un)(xn) + ωxn
un(xn)]

∏

m,n

um(xm)















+
∑

n<m

w(|xn − xm|)u(x) ∀x ∈ (Zd)N ,
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for functions of the form u(x) =
∏N

n=1 un(xn) where each un : Zd → C are finite supported. Here

{ωx}x∈Zd are i.i.d real random variables and w : R → R is the interaction between the electrons.

The functions of form
∏N

n=1 un(xn) are dense in ℓ2(ZdN) and so above operator is densely defined

operator. One can modify above equation and write

(Hωu)(x) =





























N
∑

n=1

(∆un)(xn)
∏

m,n

um(xm)















+
∑

n,m

w(|xn − xm|)u(x)















+















N
∑

n=1

ωxn















u(x) x ∈ (Zd)N .

In these models, the meaning of localization is not entirely clear. But exponential decay of

Green’s function are proved by many, for example by Chulaevsky-Boutet De Monvel-Suhov

[15], Aizenman-Warzel [3] and Klein-Nguyen [56]. Not much is known in these models and

lots of questions are still to be answered.

3.1.3 Non-Ergodic random operators

In all of the previous examples, there is a Zd action T on probability space (Ω,B, P) defined

by Tm({ωx}x∈Zd) = {ωx+m}x∈Zd for any m ∈ Zd (this action is measure preserving for above

examples), and on the Hilbert space the action is defined through translation, for example on

ℓ2(Zd) and L2(Rd) the action is (Umu)(x) = u(x+m). The operators in previous examples follows

UmHωU∗m = HT (ω) ∀m ∈ Zd.

There are few models developed to study certain aspect of random operators which are not

ergodic, for example on ℓ2(Zd) one can define the random operator

Hω
α = ∆ +

∑

n∈Zd

(1 + ‖n‖1)αωn |δn〉 〈δn|

for α ∈ R. As before {ωn}n are iid real random variables. Element u ∈ ℓ2(Zd) with finite support

lies in the domain of these operator and so is densely defined operator.

In the case α > 0, the operator is called unbounded random Schrödinger operator. The spectral

theory for this was studied by Gordon-Molchanov-Tsagani [38] for one-dimension and Gordon-

Jakšić-Molchanov-Simon [39] for higher dimensions. They showed that the spectrum is almost
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surely point spectrum and eigenfunctions are exponentially decaying.

When α < 0, the operator has much richer structure. In case of dimension one, Delyon-Simon-

Souillard [25] showed that for −1
2
< α < 0, the spectrum is pure point and for α < −1

2
the

spectrum in [−2, 2] is continuous (when distribution of random variable has bounded support).

For higher dimension, Kirsch-Krishna-Obermeit [47] showed that [−2d, 2d] has absolutely con-

tinuous spectrum for α < −1 (when second or higher moment exists for the distribution function

of randomness). Jakšić-Last[42] showed purity of absolute continuous spectrum in these mod-

els.

Another class of random models is the sparse potential. Given φ : Zd → R, and a set S ⊂ Zd

with the property

lim
R→∞

|S ∩ {x ∈ Zd : ‖x‖ < R}|

Rd
= 0,

and

|φ(x)| ≤
C0

(1 + ‖x‖)d+ǫ
,

for C0, ǫ > 0, define the operator

(Hωu)(x) = (∆u)(x) +
∑

p∈S

ωpφ(x − p)u(x) x ∈ Zd, |supp(u)| < ∞.

These kind of operators are densely defined and are also non-ergodic. Then under certain con-

ditions Krishna [62] showed the presence of absolutely continuous spectrum. Other result in-

cludes work by Molchanov-Vainberg[67], Simon-Stolz[86] and Remling[76, 77].

3.2 Other results

There are many result concerning the effect of perturbation on singular spectrum. Some ex-

amples of work involving rank one perturbations are Simon-Wolff[88], Donoghue[27], Rio-

Jitomirskaya-Last-Simon[23] and Gesztesy-Simon[36].
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The main result of this thesis is similar to results by Jakšić-Last from [43] and [45]. They

worked with Anderson type operators where the perturbations are rank one. When the spectral

subspace generated by perturbing vectors have non-trivial intersection, then their work showed

that the spectral measure associated with the perturbing vectors are absolutely continuous with

respect to each other, they also showed that the singular subspaces are equal. This result along

with other results from previous works shows simplicity of the singular part of the spectrum.

There are some work on higher rank perturbation like Naboko-Nichols-Stolz[68], and Sadel-

Schulz-Baldes[80]. In [68] the authors proved simplicity of point spectrum for some special

class of perturbing projections. In [80] the authors showed that based on dimension of the

underlying space, multiplicity of the spectrum can change for quasi one-dimensional Dirac

operators with matrix valued perturbations.

These results implies the possible limitation of any result that can be obtained in general sce-

nario. With these models in mind, we will restrict to certain class of random operators described

in next section.

3.3 Model in consideration

All of the above operators have the form:

Aω = A +
∑

n∈N

ωnCn, (3.4)

where A is self adjoint operator (or essentially self adjoint operator) on some separable Hilbert

space H ,N is countable a countable set, {Cn}n∈N is a countable collection of bounded operators

and {ωn}n∈N are independent real random variables. In case of tight binding Hamiltonian Cn’s

are rank one projection and in case of multi-particle Anderson Hamiltonian, they are infinite

rank projections. In case of continuum random Schrödinger operator Cn are compact relative to

the operator A.
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In this thesis, we are interested in class of operator Aω on the separable Hilbert space H of the

form

Aω = A +
∑

n∈N

ωnPn, (3.5)

where A is a bounded self-adjoint operator,N is a countable set, {Pn}n∈N are rank N projections

with the property
∑

n∈N Pn = I, and {ωn}n∈N are independent real random variables with ab-

solutely continuous distribution over the probability space (Ω,B, P). Following examples will

help in establishing some of the conditions for setting up the theorem.

Examples 3.3.1. Let N ∈ N be fixed. The Hilbert space in consideration is ℓ2(Z), and the

random operator is of the form

Hω = ∆ +
∑

n∈Z

ωnPn,

where

Pn =

N−1
∑

k=0

|δnN+k〉 〈δnN+k | .

When N = 1 and {ωn}n∈Z, this is one-dimensional Anderson tight binding model and for N = 2

(or higher) is called dimer (polymer respectively) model. The action of Hω can be described by

(Hωu)(x) = u(x + 1) + u(x − 1) + ω⌊ x
N
⌋u(x) ∀x ∈ Z

for any u ∈ ℓ2(Z). We use the notation ⌊x⌋ to denote the greatest integer less than x.

P0 P1 P2

δ0 δ1 δ5 δ6 δ7 δ8 δ12 δ13 δ14 δ15 δ19 δ20

Figure 3.1: Representation of action of the operator Hω on Z for the case N = 7. The lattice Z is viewed as a

graph where the lines indicating the edges between neighbours, and ∆ acts as adjacency operator on this graph.

The support of the projections Pi are indicated by the shaded rectangles.

The figure 3.1 gives a representation for the operator Hω acting over the Hilbert space of the

graph Z. Note that for any n,m ∈ Z, we have
〈

δn, (H
ω)|n−m|δm

〉

=
〈

δn,∆
|n−m|δm

〉

, 0, so the

spectral measure for any element δn will be influenced because of perturbation Pm for any m.
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Examples 3.3.2. Let N ∈ N be fixed. On the Hilbert space ℓ2(Z × {1, · · · ,N}) consider the

operator Hω defined by

(Hωu)(x, n) = u(x + 1, n) + u(x − 1, n) + ωπn(x)u(x, n) ∀(x, n) ∈ Z × {1, · · · ,N}.

for all u such that |supp(u)| < ∞. Here {ωx}x∈Z are independent random variables and πi : Z→

Z are bijections. Simplest case is when πi are shift (i.e they are defined by x 7→ x + m), then

above operator is a collection of N identical Anderson Hamiltonian and so the spectrum has

multiplicity N.

Figure 3.2: Here N = 2 with π1(x) = x and π2 switches odd and even numbers, i.e π2(2n) = 2n+ 1, π2(2n+ 1) =

2n. The line represent the edges between the vertices {(x, n)}x∈Z,n∈{1,2} giving a graph structure on Z × {1, 2}. The

action of the constant part of the operator is same as adjacency operator over the graph. Like figure 3.1, the support

of projections are represented by shaded rectangles.

The perturbation Pn can be written as

Pn =

N
∑

i=1

∣

∣

∣

∣

δ(π−1
i

(n),i)

〉 〈

δ(π−1
i

(n),i)

∣

∣

∣

∣

.

In this case for any basis vector δx,n, only basis vectors δy,n can be reached, i.e
〈

δx,n, (H
ω)kδy,m

〉

=

0 for any k if n , m. This in turn tells us that there are multiple cyclic subspaces (though if the

spectral measure are singular for each subspace, then we can write a single cyclic vector). So

to get complete information about spectral measure associated with some vector, say δx,n, we

need to focus on only the linear subspace generated by 〈δx,n : x ∈ Z〉. Hence to get the spectral

information for the entire operator, looking at {δπ−1
n (0),n}

N
n=1

is enough, which is associated to the

spectral measure associated with the projection P0.

These two example has something in common, the linear maps Pn(Hω − z)−1Pm are invertible

for all n,m (follows from the proof of lemma 4.3.1 in next chapter). The next example is a mix

of both and gives us cases that cannot be handled easily.
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Examples 3.3.3. Let N ∈ N be fixed and consider the Hilbert space ℓ2(Z × {1, · · · ,N}). Set the

projections

Pn(N+1)+m =























∑N
i=1

∣

∣

∣δn(N+1),i

〉 〈

δn(N+1),i

∣

∣

∣ m = 0

∑N
i=1

∣

∣

∣δn(N+1)+i,m

〉 〈

δn(N+1)+i,m

∣

∣

∣ m , 0

,

and define the operator Hω as

(Hωu)(x, n) = u(x + 1, n) + u(x − 1, n) +
∑

m∈Z

ωm(Pmu)(x, n) ∀(x, n) ∈ Z × {1, · · · ,N},

for u with finite support. The action of the operator Hω can be visualised by figure 3.3.

P0 P5

P4

P3

P2

P1

P9

P8

P7

P6

Figure 3.3: Here N = 4, we follow convention of figure 3.2. It can be seen that P0, P5, · · · behaves like example

3.3.2 and P1, P6, · · · (similarly P2, P7, · · · and others) behaves like example 3.3.1.

Here Pn(Hω − z)−1Pm is invertible if and only if n ≡ m mod (N +1). Since the linear subspaces

〈δx,n : x ∈ Z〉 are closed under the action of Hω for each n, it is clear that to get the spectral

measure one only need to look at {δ0,n}
N
n=1

. This is associated with the spectral measure (through

theorem 2.5.1) of P0.

As seen in previous example, even though spectral measure can be computed by looking at P0,

there is no way of making sure that it is enough. There can be exceptional cases. Next example

is one such case

Examples 3.3.4. Consider the Hilbert space ℓ2(N2), with the self adjoint operator

(∆̃u)(x, y) =























u(x + 1, y) + u(x − 1, y) x > 1, y ∈ N

u(2, y) x = 1, y ∈ N

and sequence of rank 2 projections Pn,m, j by

Pn,m, j =
∣

∣

∣δ(n,2nm+ j)

〉 〈

δ(n,2nm+ j)

∣

∣

∣ +
∣

∣

∣δ(n,2nm+ j+n)

〉 〈

δ(n,2nm+ j+n)

∣

∣

∣ .
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Let {ωn,m, j} be real iid random variables and define the operator

Hω = ∆̃ +
∑

n,m, j

ωn,m, jPn,m, j.

Figure 3.4: The operator described above is visualised here. The operator ∆̃ is the adjacency operator over the

graph N2 where the edges are denoted by the black lines. The red lines indicates the support of the projections.

In this case none of the matrix Pp,q,r(H
ω − z)−1Pm,n,o are invertible if (p, q, r) , (m, n, o). So here

looking at these matrices doesn’t help in getting the spectral measure and one has to focus on

spectral measures for each δn,m separately (even though the subspace 〈δn,m : n ∈ Z〉 are closed

under action of Hω for each m)

3.3.1 Notation

For the next chapter, we will set up the notation here itself. As stated in the beginning of the

section, we have a separable Hilbert space H and a probability space (Ω,B, P). We have a

class of essentially self adjoint operator A· : Ω→ S(H ) given by (3.5). For n ∈ N and ω ∈ Ω,

define H ω
n to be the closed Aω-invariant subspace containing PnH , i.e

H
ω

n = { f (Aω)φ : φ ∈ Cc(R), φ ∈ PnH },
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where the bar denotes the closed linear span in H . Set Qω
n : H → H ω

n to be the canonical

projection onto the subspace H ω
n . Let Eω denote the spectral measure EAω (obtained through

spectral theorem 1.4.2), set Σωn (·) = PnEω(·)Pn and σω
n (·) = tr(Σωn (·)) as the trace measures. Let

Eω
ac (similarly Eω

sing
) to be the orthogonal projection onto the absolutely continuous (respectively

singular) spectral subspace of Aω. For n,m ∈ N , define

Ωn,m = {ω ∈ Ω|Q
ω
n Pm has same rank as Pm}. (3.6)

We will be focusing on the set

M = {n ∈ N|σω
n is not equivalent to Lebesgue measure for a.a ω}.

This is because of F. and M. Riesz theorem (the result used here is corollary 2.3.3). Since we

will be working with Borel transform, on the set of indices M, the Borel transform will be

non-zero. Finally we will denote

Gω
nm(z) = Pn(Aω − z)−1Pm ∀n,m ∈ N , z ∈ C+.

Let A
ω,µ
p = Aω + µPp for some p ∈ N , and set

Gω,µ,p
nm (z) = Pn(Aω,µ

p − z)−1Pm ∀n,m ∈ N , z ∈ C+.

Observe that as a consequence of theorem 2.4.1 (5)

dΣωn,ac(x) =
1

π
Gω

nn(x + ι0)dx.

Finally for examples 3.3.1 and 3.3.2 we have P(Ωn,m) = 1 for any n,m ∈ N . For example 3.3.4

we have P(Ωn,m) = 0 if n , m, and for example 3.3.3 we have P(Ωn,m) = 1 if and only if n ≡ m

mod (N + 1) otherwise is zero.
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Chapter 4

Main Result

4.1 Statement

Most of the content of this chapter is from the work [66]. The main result of this thesis can be

summarised by the following theorem:

Theorem 4.1.1. Let H be a separable Hilbert space, (Ω,B, P) be a probability space, N be a

countable set and N ∈ N be given. Let {Pn}n∈N be a collection of rank N projections satisfying

∑

n∈N Pn = I and {ωn}n∈N are independent real random variables on (Ω,B, P) with absolutely

continuous distribution. Let {Aω}ω∈Ω be a family of operators defined by Aω = A +
∑

n∈N ωnPn,

then

1. For n,m ∈ M, we have P(Ωn,m) ∈ {0, 1}.

2. Let n,m ∈ M such that P(Ωn,m∩Ωm,n) = 1, then for almost all ω ∈ Ω the restrictions onto

absolutely continuous part Eω
acAω|Hω

n
and Eω

acAω|Hω
m

are equivalent.

3. Let n,m ∈ M such that P(Ωn,m ∩ Ωm,n) = 1, then for almost all ω ∈ Ω the trace measures

σω
n and σω

m are equivalent as Borel measures.
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4. Let P(Ωn,m ∩ Ωm,n) = 1 for any n,m ∈ M, then Eω
sing
H = Eω

sing
Hω

n for any n ∈ M for

almost all ω ∈ Ω.

Except for part (4) of the theorem, rest is same as in [66, Theorem 1.1].

Second and third part of the theorem 4.1.1 is consequence of perturbations by two projections.

For the first part, the event Ωn,m is shown to be independent of any finite collection of perturba-

tions, then the result follows through Kolmogorov 0-1 law. For the last part, individual cyclic

subspaces for the singular part of the operator are identified and then by the help of the third

part the equality of the cyclic subspaces are established. Lemma 4.3.5 is the primary step for

the first part of the theorem. It tells us that the event Ωn,m (Qω
n Pm has same rank as Pm), is in-

dependent of any other perturbation, whence Kolmogorov 0-1 law applies. For the second part,

whenever the condition is satisfied, we have to show that for x ∈ R in a full Lebesgue measure

set, density of the measure has same rank for both indices; this is done in corollary 4.3.7. For

the third part, the second part of the theorem 4.1.1 helps by asserting that absolute continuous

parts are equivalent. As for the singular part we only need to consider the lowest (Hausdorff)

dimensional part. This is the case because all the singular measures are singular with respect

to each other. Hence showing absolute continuity for each singular measure is enough, which

is done using Poltoratskii’s theorem [74]. This works because lowest (Hausdorff) dimensional

part of the spectrum contributes the maximum rate of growth to the Herglotz function as its ar-

gument approaches the boundary of C+ . Corollary 4.3.9 provides the equivalence for the lowest

dimensional parts of the measure. For the last part, first we show that if P(Ωn,m ∩ Ωm,n) = 1,

then Eω
sing

H ω
n = Eω

sing
H ω

m , which is done in corollary 4.3.12, then the result follows.

Before proving it one more result needed. This lemma helps in the proof of the main theorem

by ensuring that for almost all perturbation the functions in consideration does not vanish on

positive (Lebesgue) measure set (or else the analysis will fail), and so we can ignore because of

Spectral Averaging result (see lemma 2.5.2).
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4.2 Measure of zero set of certain polynomial

Following lemma is a result concerning the zero sets of polynomials. This is stated in some

generality, we only need it on reals with Lebesgue measure.

Lemma 4.2.1. [66, Lemma 2.1] For a σ-finite positive measure space (X,B,m), and a collec-

tion of measurable functions ai : X → C, define the function f (λ, x) = 1+
∑N

n=1 λ
nan(x). The set

defined by

Λ f = {λ ∈ C|m{x ∈ X| f (λ, x) = 0} > 0} (4.1)

is countable.

Proof. The proof is by induction on degree of f (as a polynomial of λ). We will use the notation:

S λ = {x ∈ X| f (λ, x) = 0} (4.2)

By definition the sets S λ are measurable.

Base case of induction is N = 1, so f (λ, x) = 1 + λa1(x). Clearly for λ1 , λ2 ∈ C we have

S λ1
∩ S λ2

= φ. Since, if x ∈ S λ1
∩ S λ2

then

1 + λ1a1(x) = 0 and 1 + λ2a1(x) = 0

⇒
1

λ1

= −a1(x) =
1

λ2

⇒ λ1 = λ2

but we assumed λ1 , λ2. Since (X,m) is σ-finite, we have a countable collection {Xi}i∈N such

that ∪iXi = X and for each i we have m(Xi) < ∞. Now for each λ ∈ C and n ∈ N define

S λ,n = S λ ∩ Xn, so we have ∪nS λ,n = S λ, and ∪λ∈Λ f
S λ,n ⊂ Xn. We have

∑

λ∈Λ f

m(S λ,n) = m(∪λ∈Λ f
S λ,n) ≤ m(Xn) < ∞,

so only for countably many λ ∈ Λ f we have m(S λ,n) , 0. Set Λn = {λ ∈ Λ f |m(S λ,n) > 0},

we have Λ f = ∪n∈NΛn, but since countable union of countable set is countable, we get Λ f

countable. This completes base case.
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Now assume the induction hypothesis, i.e for measurable functions ai : X → C, and f (λ, x) =

1 +
∑N

n=1 λ
nan(x), the set Λ f is countable.

We have to show for f (λ, x) = 1 +
∑N+1

n=1 λ
nan(x), the set Λ f is countable. First we define the

relation ∼ for elements of Λ f ; for µ, ν ∈ Λ f we define µ ∼ ν if there exists {λi}
k
i=1

such that

λ1 = µ, λk = ν and m(S λi
∩ S λi+1

) > 0 for i = 1, · · · , k − 1. For µ ∈ Λ f we have µ ∼ µ because

m(S µ) > 0 hence ∼ is reflexive. If µ ∼ ν for µ, ν ∈ Λ f , then we have a sequence {λi}
k
i=1

such

that λ1 = µ and λk = ν and m(S λi
∩ S λi+1) > 0, hence choosing λ̃i = λk−i+1 we get ν ∼ µ and

so ∼ is symmetric. If µ ∼ ν and ν ∼ η, then we have sequences {αi}
p

i=1
and {βi}

q

i=1
such that

α1 = µ, αp = β1 = ν and βq = η, so defining the sequence {λi}
p+q

i=1
defined as λi = αi for i ≤ p

and λi = βi−p for i > p we get µ ∼ η giving transitivity of ∼. So ∼ is a equivalence relation on

Λ f , and can break the set Λ f into equivalence classes indexed by Λ̃ = Λ f / ∼, where we view

[λ] ∈ Λ̃ as [λ] = {µ ∈ Λ f |µ ∼ λ} and define S [λ] = ∪µ∈[λ]S µ.

First we will show for any [λ] ∈ Λ̃, the set [λ] is countable. Let λ ∈ Λ f , so we have the

m(S λ) , 0. We will restrict to subspace S λ, on this space f (ν, x) can be written as f (ν, x) =

1
λ
(λ − ν)

(

1 +
∑N

n=1 ãn(x)νn
)

(since λ is a solution). So we have the new function f̃ (ν, x) =

1+
∑N

n=1 ãn(x)νn, and by our assumption (induction hypothesis) we get Λ f̃ is countable. For any

ν ∈ Λ f with m(S λ ∩ S ν) , 0 implies ν ∈ Λ f̃ , so for fixed λ ∈ Λ f the set of ν ∈ Λ f such that

m(S λ ∩ S ν) , 0 is countable.

Next choose λ ∈ Λ f , and set A0 = {λ}, and define

Ai = ∪β∈Ai−1
{ν ∈ Λ f |m(S ν ∩ S β) , 0} ∀i ∈ N

by previous step each Ai are countable. So ∪∞
i=0

Ai is countable. By definition of ∼ we have

[λ] = ∪∞
i=0Ai.

Now we will prove Λ̃ is countable. By definition m(S [λ]) > 0 for [λ] ∈ Λ̃, and for [λ] , [µ] ∈ Λ̃

we have m(S [λ] ∩ S [ν]) = 0. For n ∈ N define S [λ],n = S [λ] ∩ Xn, then we have

∑

n∈Λ̃

m(S [λ],n) = m(∪[λ]∈Λ̃S [λ],n) ≤ m(Xi) < ∞
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From last step only countably many [λ] can have m(S [λ],n) > 0. Call Λ̃n = {[λ] ∈ Λ̃|m(S [λ],n) > 0}

(which are countable); for any [λ] ∈ Λ̃ we have

0 < m(S [λ]) ≤
∑

n∈N

m(S [λ],n)

So [λ] ∈ Λ̃ for some n ∈ N we have m(S [λ],n) > 0, hence Λ̃ = ∪n∈NΛ̃n; giving us Λ̃ is countable.

Since Λ f = ∪[λ]∈Λ̃[λ] and both the sets are countable we get the countability of Λ f .

�

Remark 4.2.2. It should be clear that above result holds for function of the type f (λ, x) =

∑N
n=0 an(x)λn on the set {x ∈ X|a0(x) , 0}. It should be noted that one cannot extend the result

for whole of X.

We can view f (λ, x) = λN
(

∑N
n=0 aN−n(x)

(

1
λ

)n)

, and so the result also holds on the set {x ∈

X|aN(x) , 0}.

Corollary 4.2.3. [66, Corollary 2.3] For a σ-finite positive measure space (X,B,m) and a

collection of functions ai : X → C, bi : X → C, define the function f (λ, x) =
1+

∑N
i=1 ai(x)λi

1+
∑N

i=1 bi(x)λi , then

the set

Λ f = {λ ∈ C|m{x ∈ X| f (λ, x) = 0} , 0} (4.3)

is countable

Proof. Set g(λ, x) = 1+
∑N

n=1 an(x)λn, then {(x, µ) ∈ X×C| f (λ, x) = 0} ⊆ {(x, µ) ∈ X×C|g(λ, x) =

0}. So by lemma 4.2.1 we get the desired result.

�

4.3 Proof of main theorem

In this section we will be working with (H,H , {Pi}
3
i=1

), where H is a self adjoint operator on

the Hilbert space H , and {Pi}
3
i=1

are three rank N projections. We will work with the case that
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the measures tr(PiE
H(·)Pi) are not equivalent to Lebesgue measure (hence as consequence of

theorem 2.3.3, the Borel transform of these measures are non-zero on the upper half plane).

Define Hµ = H + µP1, Gi j(z) = Pi(H − z)−1P j and G
µ

i j
(z) = Pi(Hµ − z)−1P j for i, j = 1, 2, 3 and

z ∈ C+, and will use the notation

g(x + ι0) := lim
ǫ↓0

g(x + ιǫ)

for x ∈ R (whenever the limit exists). We recall the equations (2.2),(2.3) and (2.4) here:

G
µ

11
(z) = G11(z)(I + µG11(z))−1, (4.4)

(I + µG11(z))(I − µG
µ

11
(z)) = I, (4.5)

G
µ

i j
(z) = Gi j(z) − µGi1(z)(I + µG11(z))−1G1 j(z) (i, j) , (1, 1). (4.6)

For any x ∈ R such that G11(x+ι0) exists and finite and f : (0,∞)→ C be such that limǫ↓0 f (ǫ) =

0, using equation (4.5) observe

lim
ǫ↓0

f (ǫ)(I − µG
µ

11
(x + ιǫ))(I + µG11(x + ιǫ)) − f (ǫ)I = 0,

⇒ (I + µG11(x + ι0))

(

lim
ǫ↓0

f (ǫ)G
µ

11
(x + ιǫ)

)

= 0.

So

range

(

lim
ǫ↓0

f (ǫ)G
µ

11
(x + ιǫ)

)

⊆ ker(I + µG11(x + ι0)) ⊆ ker(ℑG11(x + ι0)), (4.7)

where left hand side can possibly be empty. The last inclusion comes because of the fact that

ℑG11(x + ι0) ≥ 0.

Since ℑG11(x+ ι0) ≥ 0 it decomposes the space P1H = ker(ℑG11(x+ ι0))⊕ker(ℑG11(x+ ι0))⊥

with range(ℑG11(x+ ι0)) = ker(ℑG11(x+ ι0))⊥, so on ker(ℑG11(x+ ι0))⊥ we haveℑGii(x+ ι0) >

0. This fact will be used in identifying appropriate subspaces.
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4.3.1 Proof of part (1)

The Following lemma relates the invertibility of the matrices G
µ

12
(z) with the ranks of Q1P2 and

P2.

Lemma 4.3.1. [66, Lemma 3.1] Let H be a self-adjoint operator on the Hilbert space H and

P1 and P2 be two projections of rank N. Let Hi denote the cyclic subspace generated by H and

PiH and Qi : H → Hi be the canonical projection onto that subspace, for i = 1, 2. If Q1P2

has same rank as P2, then P1(H − z)−1P2 is invertible for a.e z ∈ C+.

Proof. Let φ ∈ P2H \ {0}. Since Q1P2 has same rank as P2, we have 0 , Q1φ ∈ H1 (if it is

zero, then ker(Q1) ∩ P2H , {0} and so rank(Q1P2) < rank(P2)), so there is ψ ∈ P1H and

f ∈ L2(R, dµψ) such that Q1φ = f (H)ψ. So

0 , 〈Q1φ,Q1φ〉 = 〈ψ, f ∗(H)Q1φ〉 = 〈ψ, f ∗(H)φ〉 =

∫

f̄ (x)dµψ,φ(x)

since Q1 commutes with any functions of H. So the measure µψ,φ is non-zero, hence the Borel

transform

∫

dµψ,φ(x)

x − z
=

〈

ψ, (H − z)−1φ
〉

,

is almost surely non-zero on C+.

So for each vector φ ∈ P2H there exists a ψ ∈ P1H such that
〈

ψ, (H − z)−1φ
〉

is non-zero, in

other words P1(H − z)−1P2 is an injection, and since P1(H − z)−1P2 is an n × n matrix we get

invertibility.

�

Remark 4.3.2. By above lemma the holomorphic function det(P1(H− z)−1P2) is not zero on C+.

So using theorem 2.2.1 the normal limit limǫ↓0 det(P1(H− x− ιǫ)−1P2) cannot be zero on a set of

positive Lebesgue measure. So P1(H − x − ι0)−1P2 is invertible for almost all x w.r.t. Lebesgue

measure.
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For some z ∈ C+, the invertibility of P1(H − z)−1P2 give us Q1P2 has same rank as P2. This

is the case because if rank(Q1P2) < rank(P2) then there exists φ ∈ P2H such that Q1φ = 0,

which implies P1(H − z)−1φ = 0 for any z.

So by looking at det(Gmn(z)) we can obtain a statement about non-orthogonality of the subspace

{Hi}i=1,2.

Choose a basis of PiH , then Gi j(z) is a matrix in the basis. We can write

S = {x ∈ R| Entries of Gi j(x + ι0) exists and are finite ∀i, j = 1, 2, 3} (4.8)

Then by theorem 2.2.2 we know that S has full measure. Define

S i j = {x ∈ S |Gi j(x + ι0) is invertible} ∀i, j = 1, 2, 3 (4.9)

By lemma 4.3.1, S i j has full measure whenever QiP j has same rank as P j.

Remark 4.3.3. On the set S , the limit G11(x + ι0) exists and since det(I + µG11(x + ι0)) =

1 +
∑N

i=1 ai(x)µi, using lemma 4.2.1 for almost all µ the matrix I + µG11(x + ι0) is invertible for

µ in a set of full Lebesgue measure.

Remark 4.3.4. By using lemma 2.5.2 we can conclude that P1EHµ(R \ S )P1 = 0 for almost all

µ (with respect to Lebesgue measure), so we need to focus our analysis on the set S only.

Lemma 4.3.5. [66, Lemma 3.4] Let H be self adjoint operator on the Hilbert space H and

{Pi}
3
i=1

be rank N projections. Define Hµ = H + µP1, Gi j(z) = Pi(H − z)−1P j and G
µ

i j
(z) =

Pi(Hµ − z)−1P j. If G23(x + ι0) is invertible for almost all x (with respect to Lebesgue measure),

then G
µ

23
(x + ι0) is also invertible for a.e (x, µ) (with respect to Lebesgue measure).

Proof. From equations (4.4) and (4.6) and remark 4.3.3 we get for x in a set of full Lebesgue

measure

G
µ

23
(x + ι0) = G23(x + ι0) − µG21(x + ι0)(I + µG11(x + ι0))−1G13(x + ι0).
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Since we are only looking for invertibility, looking at determinant is enough. So

det(G
µ

23
(x + ι0)) =

det(G23(x + ι0)) +
∑N

n=1 an(x)µn

det(I + µG11(x + ι0))
.

Again by corollary 4.2.3 we get that for almost all µ the matrix G23(x + ι0) is invertible on a set

of full Lebesgue measure.

�

Proof of part (1) of main theorem [66]

For n,m ∈ M , let ω ∈ Ωn,m, using lemma 4.3.1 we get Gω
nm(z) is almost surely invertible. For

any p ∈ N , we have Hω
µ,p and using lemma 4.3.5 we get G

ω,µ,p
nm (z) is also almost surely invertible

for almost all µ (with respect to Lebesgue measure). So we get, if ω ∈ Ωn,m then so is ω̃ ∈ Ωn,m

(ω̃ is defined by ωn = ω̃n ∀n ∈M \ {p}) or in other words the event Ωn,m is independent of the

ωp for any p ∈ N . We can repeat the procedure and show that Ωn,m is independent of {ωpi
}K
i=1

for any finite collection of pi ∈ N . So we can use Kolmogorov 0-1 law (see theorem 1.2.4) to

conclude that P(Ωn,m) ∈ {0, 1}.

4.3.2 Proof of part (2)

Next lemma provide the relation between the absolute continuous component of the measures.

Lemma 4.3.6. [66, Lemma 3.5] On the Hilbert space H we have two rank N projections

P1, P2 and a self adjoint operator H. Set Hµ = H + µP1, Gi j(z) = Pi(H − z)−1P j and G
µ

i j
(z) =

Pi(Hµ − z)−1P j; set S and S 12 as (4.8),(4.9). Define

V
µ

x,i
= ker(ℑG

µ

ii
(x + ι0))⊥

for each x ∈ S ∩ {x ∈ R| limǫ↓0 G
µ

11
(x+ ιǫ) exists and finite}. Assume S 12 has full measure. Then

for almost all µ

(G12(x + ι0))−1 : V
µ

x,1
→ V

µ

x,2
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is injective and

(I + µG11(x + ι0)) : V0
x,1 → V

µ

x,1

is isomorphism.

Proof. From the equation (4.6) and (4.5) we get

G
µ

22
(z) = G22(z) − µG21(z)G12(z) + µ2G21(z)G

µ

11
(z)G12(z)

For x ∈ S ∩ {y ∈ R| limǫ↓0 G
µ

11
(y+ ιǫ) exists and finite}, let v ∈ V

µ

x,1
, and set φ = (G12(x+ ι0))−1v,

observe (every quantity in RHS below exists and finite so limit can be taken)

lim
ǫ↓0

〈

φ, (ℑG
µ

22
(x + ιǫ))φ

〉

= lim
ǫ↓0

[〈

φ, (ℑG22(x + ιǫ))φ
〉

− µ
〈

φ,ℑ(G21(x + ιǫ)G12(x + ιǫ))φ
〉

+ µ2
〈

φ, (ℑG21(x + ιǫ)G
µ

11
(x + ιǫ)G12(x + ιǫ))φ

〉]

Since ℑG
µ

22
(x + ι0) is positive matrix, looking at

〈

φ, (ℑG
µ

22
(x + ι0))φ

〉

is enough.

If
〈

φ, (ℑG22(x + ι0))φ
〉

= 0 which implies (ℑG22(x + ι0))φ = 0 so using (2.10) we have G12(x +

ι0)φ = G∗
21

(x + ι0)φ, so

lim
ǫ↓0

〈

φ, (ℑG
µ

22
(x + ιǫ))φ

〉

= µ2
〈

G12(x + ι0)φ, (ℑG
µ

11
(x + ι0))G12(x + ι0)φ

〉

− µ
〈

φ,ℑ(G21(x + ι0)G12(x + ι0))φ
〉

= µ2
〈

v, (ℑG
µ

11
(x + ι0))v

〉

So φ ∈ V
µ

E,2
and hence G12(x + ι0)−1 gives the injection.

For the other assertion, let v ∈ V0
x,1

observe

〈v, (I + µG11(x + ι0))v〉 = ‖v‖22 + µ(
〈

v,ℜG11(x + ι0)v
〉

+ ι
〈

v,ℑG11(x + ι0)v
〉

)

since
〈

v,ℑG11(x + ι0)v
〉

, 0, so the above equation cannot be zero for any µ ∈ R. So on V0
x,1

the

operator (I + µG11(x + ι0)) is invertible. Set φ = (I + µG11(x + ι0))v, observe

lim
ǫ→0

〈

φ, (ℑG
µ

11
(x + ιǫ))φ

〉

= lim
ǫ→0

〈

φ,ℑ(G11(x + ιǫ)(I + µG11(x + ιǫ))−1)φ
〉

=
〈

(I + µG11(x + ι0))−1φ, (ℑG11(x + ι0))(I + µG11(x + ι0))−1φ
〉
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=
〈

v, (ℑG11(x + ι0))v
〉

, 0

This gives the isomorphism (I + µG11(x + ι0)) : V0
x,1
→ V

µ

x,1
.

�

This only gives the injection between the absolutely continuous spectral subspaces. One cannot

expect more from this setting. By a second perturbation we obtain an isomorphism, which is

attained in the next corollary.

Corollary 4.3.7. [66, Corollary 3.6] Let H be self adjoint operator on the Hilbert space H ,

and P1, P2 are two rank N projections. Set Hµ = H + µ1P1 + µ2P2 and Gi j(z) = Pi(H − z)−1P j,

G
µ1,µ2

i j
(z) = Pi(Hµ1 ,µ2

− z)−1P j for i, j = 1, 2 and define the vector space

V
µ1,µ2

x,i
= ker(ℑG

µ1,µ2

ii
(x + ι0))⊥

for each x ∈ S ∩ {y ∈ R| limǫ↓0 G
µ1,µ2

ii
(y+ ιǫ) exists and finite for i = 1, 2}. Assume S 12, S 21 have

full measure. Then for a.e µ1, µ2 the two vector space V
µ1,µ2

x,1
and V

µ1,µ2

x,2
are isomorphic.

Proof. This is just application of lemma 4.3.6. For x in full Lebesgue measure set we have

V
µ1,µ2

x,2
֒→ V

µ1,µ2

x,1

where the map is (G
µ1,0

21
(x+ ι0))−1. Lemma 4.3.5 tells us G

µ1,0

21
(x+ ι0) is also invertible for almost

all µ1 (with respect to Lebesgue measure). Now we can do the same thing other way around:

V
µ1,µ2

x,1
֒→ V

µ1,µ2

x,2

Since we are working in finite dimensional spaces (V
µ1,µ2

x,i
are finite dimensional), injection in

both direction provides the isomorphism.

�
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Proof of part (2) of main theorem [66]

For any n ∈ M , we have (Aω,H ω
n ) is unitary equivalent to (Mid, L

2(R,Σωn ,C
N)) (see theorem

2.5.1). For m ∈M such that P(Ωn,m ∩Ωm,n) = 1, we have to show (Σωn )ac is equivalent to (Σωm)ac.

Using (5) of theorem 2.4.1 we have

d(Σωn )ac(x) =
1

π
ℑGω

nn(x + ι0)dE.

For ω ∈ Ωn,m, we can write the operator Aω̃ = Aω + µ1Pn + µ2Pm, and using corollary 4.3.7 we

get V ω̃
n are isomorphic to V ω̃

m , where

V ω̃
i = ker

(

Pi(A
ω̃ − x − ι0)−1Pi

)⊥

SinceℑGω
nn(x+ι0) = ℑ

(

Pn(Aω − x − ι0)−1Pn

)

, the isomorphism gives the equivalence. By proof

of part (1), we know Ωn,m is independent of ωn and ωm, so the result holds for almost all ω.

4.3.3 Proof of part (3)

The next lemma is similar to lemma 4.3.6 but for the singular part. The conclusion is for

subspaces where growth of the Herglotz function is maximum or equivalently, its associated

measure has lowest (Hausdorff) dimension. We will use the fact that a matrix valued measure

Σn(·) = PnEH(·)Pn is absolutely continuous with respect to the trace measure σn(·) = tr(Σn(·))

and so limǫ↓0
1

σn(x+ιǫ)
Σn(x + ιǫ) = M(x) is L1 w.r.t σn-singular (σn(z),Σn(z) are Borel transforms

of the measures σn and Σn respectively).

Lemma 4.3.8. [66, Lemma 3.7] On the Hilbert space H we have two rank N projections

P1, P2 and a self adjoint operator H. Set Hµ = H + µP1, Gi j(z) = Pi(H − z)−1P j and G
µ

i j
(z) =

Pi(Hµ − z)−1P j. Set fx(ǫ) = tr(G
µ

11
(x + ιǫ))−1 and x ∈ R be such that fx(ǫ)

ǫ↓0
−−→ 0, define

Ṽ
µ

x,i
= ker

(

lim
ǫ↓0

fx(ǫ)G
µ

ii
(x + ιǫ)

)⊥
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Assume S 12 defined as (4.9) has full measure, then for x ∈ S such that fx(ǫ)
ǫ↓0
−−→ 0 defined as in

(4.8) the map

(G12(x + ι0))−1 : Ṽ
µ

x,1
→ Ṽ

µ

x,2

is injective. So the measure σ
µ

2
(where σ

µ

i
(·) = tr

(

PiE
Hµ(·)Pi

)

) is absolutely continuous with

respect to σ
µ

1
-singular.

Proof. Using i, j = 2 in the equation (4.6), we have

G
µ

22
(z) = G22(z) − µG21(z)G12(z) + µ2G21(z)G

µ

11
(z)G12(z)

Since we are working with x ∈ S , the limits for Gi j(x+ ι0) exists for i, j = 1, 2. For φ, ψ ∈ P2H

we have

〈

ψ,G
µ

22
(x + ιǫ)φ

〉

= 〈ψ,G22(x + ιǫ)φ〉 − µ 〈ψ,G21(x + ιǫ)G12(x + ιǫ)φ〉

+ µ2
〈

ψ,G21(x + ιǫ)G
µ

11
(x + ιǫ)G12(x + ιǫ)φ

〉

lim
ǫ↓0

fx(ǫ)
〈

ψ,G
µ

22
(x + ιǫ)φ

〉

= µ2 lim
ǫ↓0

fx(ǫ)
〈

ψ,G21(x + ιǫ)G
µ

11
(x + ιǫ)G12(x + ιǫ)φ

〉

= µ2

〈

ψ,G21(x + ι0)

(

lim
ǫ↓0

fx(ǫ)G
µ

11
(x + ιǫ)

)

G12(x + ι0)φ

〉

And now using (4.7) and (2.11) we have

〈

ψ,G21(x + ι0)

(

lim
ǫ↓0

fx(ǫ)G
µ

11
(x + ιǫ)

)

G12(x + ι0)φ

〉

=

〈

ψ,G12(x + ι0)∗
(

lim
ǫ↓0

fx(ǫ)G
µ

11
(x + ιǫ)

)

G12(x + ι0)φ

〉

From above if φ = G12(x+ ι0)−1v for v ∈ Ṽ
µ

x,1
, then φ ∈ Ṽ

µ

x,2
, giving us that the map G12(x+ ι0)−1

is injection.

Finally

lim
ǫ↓0

tr
(

G
µ

22
(x + ιǫ)

)

tr
(

G
µ

11
(x + ιǫ)

) = tr

(

G12(x + ι0)∗
(

lim
ǫ↓0

fx(ǫ)G
µ

11
(x + ιǫ)

)

G12(x + ι0)

)

where RHS is L1 for σ
µ

1
-singular by lemma 2.3.7 (Poltoratskii’s theorem).

�
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Next lemma makes the injection to isomorphism by taking second perturbation in account.

Corollary 4.3.9. [66, Corollary 3.8] Let H be self adjoint operator on the Hilbert space H ,

and P1, P2 are two rank N projections. Set Hµ = H + µ1P1 + µ2P2, Gi j(z) = Pi(H − z)−1P j

and G
µ1,µ2

i j
(z) = Pi(Hµ1,µ2

− z)−1P j for i, j = 1, 2. Let x ∈ S 12 ∩ S 21 (defined as in (4.9)) and

tr(G
µ1,µ2

ii
(x + ιǫ))−1

ǫ↓0
−−→ 0 for either i = 1, 2, then

Ṽ
µ1,µ2

x,i
= ker

(

lim
ǫ↓0

tr(G
µ1,µ2

ii
(x + ιǫ))−1G

µ1,µ2

ii
(x + ιǫ)

)⊥

i = 1, 2

are isomorphic. In particular the singular part of trace measure associated with G
µ1,µ2

ii
are

equivalent to each other.

Proof. Define

Ṽ
µ1,µ2

x,i, j
= ker

(

lim
ǫ↓0

tr(G
µ1,µ2

j j
(x + ιǫ))−1G

µ1,µ2

ii
(x + ιǫ)

)⊥

This is exactly like corollary 4.3.7. By action of lemma 4.3.8 we have

V
µ1,µ2

x,1,1
֒→ V

µ1,µ2

x,2,1
and V

µ1,µ2

x,2,2
֒→ V

µ1,µ2

x,1,2

where first is given by G
0,µ2

12
(x + ι0)−1 and second is given by G

µ1,0

21
(x + ι0)−1 which are a.e

(with respect to perturbation µ1, µ2) invertible because of lemma 4.3.5. Because of the second

conclusion of the previous lemma 4.3.8 we have

lim
ǫ↓0

tr
(

G
µ

11
(x + ιǫ)

)

tr
(

G
µ

22
(x + ιǫ)

) exists for almost all x w.r.t tr(P2EHµ(·)P2)-singular,

lim
ǫ↓0

tr
(

G
µ

22
(x + ιǫ)

)

tr
(

G
µ

11
(x + ιǫ)

) exists for almost all x w.r.t tr(P1EHµ(·)P1)-singular.

So as a vector space V
µ1,µ2

x,i, j
= V

µ1,µ2

x,i,i
= V

µ1,µ2

x,i
for a.e tr(PiE

Hµ(·)Pi)-singular. Since we have the

injection both direction and finite dimensionality of the spaces involved, we get the isomor-

phism.

�
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Proof of part (3) of main theorem [66]

For n,m ∈ M such that P(Ωn,m ∩ Ωm,n) = 1. Let ω ∈ Ωn,m, define Aω̃ = Aω + µnPn + µmPm,

then corollary 4.3.9 gives the equivalence of the trace measure for singular part. As for absolute

continuous part, second part of the theorem gives the equivalence.

4.3.4 Proof of part (4)

Till now there was no need for specifying any basis for the PiH except for defining the sets S

and S i j. But for the following lemma we will work with a fixed basis. Though the result of the

lemma is presented in a basis independent form.

Lemma 4.3.10. On the Hilbert space H we have two rank N projections P1, P2 and a self

adjoint operator H. Set Hµ = H + µP1, Gi j(z) = Pi(H − z)−1P j and G
µ

i j
(z) = Pi(Hµ − z)−1P j;

set S and S 12 as (4.8),(4.9). Let E
µ

sing
denote the orthogonal projection onto the singular part

of spectral measure for Hµ and set H
µ

i,sing
denote the closed E

µ

sing
Hµ-invariant linear subspace

containing PiH . If S 12 has full Lebesgue measure, then H
µ

2,sing
⊆H

µ

1,sing
for almost all µ (with

respect to Lebesgue measure).

Proof. Let {ei j}
N
j=1

be a basis of PiH for i = 1, 2. In this basis the linear operators G
µ

i j
(z) and

Gi j(z) are matrices. Using Poltoratskii’s theorem for the matrix case (see (2.7)) we have

lim
ǫ↓0

1

tr(G
µ

11
(x + ιǫ))

G
µ

11
(x + ιǫ) = M

µ

1
(x),

for almost all x w.r.t. σ
µ

1
-singular (here σ

µ

i
denotes the trace measure tr(PiE

Hµ(·)Pi) and set

σ
µ

1,sing
to be singular part of the measure). Using non-negativity of the spectral measure we have

M
µ

1
(x) ≥ 0 for almost all x with respect to σ

µ

1,sing
. Using lemma 4.3.8 and following its proof,

we get

lim
ǫ↓0

1

tr(G
µ

11
(x + ιǫ))

G
µ

ii
(x + ιǫ) = M

µ

i
(x) ≥ 0
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for almost all x w.r.t. σ
µ

1,sing
. Let U

µ

i
(x) be the unitary matrix such that U

µ

i
(x)M

µ

i
(x)U

µ

i
(x)∗

is diagonal with entries f
µ

i1
(x), · · · , f

µ

iN
(x) for x in support of σ

µ

1,sing
(by using Hahn-Hellinger

Theorem 1.4.3, one can choose the U
µ

i
(·) to be Borel measurable function). For x not in the

support of σ
µ

1,sing
set U

µ

i j
(x) = 0 and define ψ

µ

i j
= U

µ

i j
(Hµ)

∗ei j.

We observe that

〈

ψ
µ

i j
, (Hµ − z)−1ψ

µ

kl

〉

=

∫

1

x − z

〈

ψ
µ

i j
, EHµ(dx)ψ

µ

kl

〉

=

∫

1

x − z

〈

U
µ

i
(x)∗ei j, E

Hµ(dx)U
µ

k
(x)∗ekl

〉

=

∫

1

x − z

∑

p,q

〈

ei j,U
µ

i
(x)eip

〉 〈

ekq,U
µ

k
(x)∗ekl

〉 〈

eip, E
Hµ(dx)ekq

〉

=

∫

1

x − z

∑

p,q

〈

ei j,U
µ

i
(x)eip

〉 〈

ekl,U
µ

k
(x)ekq

〉 〈

eip, E
Hµ(dx)ekq

〉

.

So as a consequence of Poltoratskii’s theorem

lim
ǫ↓0

〈

ψ
µ

i j
, (Hµ − x − ιǫ)−1ψ

µ

kl

〉

tr(G
µ

11
(x + ιǫ))

=
∑

p,q

〈

ei j,U
µ

i
(x)eip

〉 〈

ekl,U
µ

k
(x)ekq

〉

















lim
ǫ↓0

〈

eip, (Hµ − x − ιǫ)−1ekq

〉

tr(G
µ

11
(x + ιǫ))

















Therefore for j , k we have
〈

ψ
µ

i j
, (Hµ − z)−1ψ

µ

ik

〉

= 0, because the normal limit to R is zero

for all x. But the measure
〈

ψ
µ

i j
, EHµ(·)ψ

µ

ik

〉

cannot have any absolutely continuous component,

because by construction of {ψ
µ
pq}, the measure

〈

ψ
µ
pq, E

Hµ(·)ψ
µ
pq

〉

is supported on the support of

σ
µ

1,sing
which is a zero Lebesgue measure set. So as consequence of F. and M. Riesz theorem

(theorem 2.3.2) the Hilbert subspace H
µ

ψ
µ

i j

is orthogonal to H
µ

ψ
µ

ik

for j , k, where H
µ

φ denotes

the minimal closed Hµ-invariant subspace containing φ.

Using the steps of proof of lemma 4.3.8 we have

M
µ

2
(x) = lim

ǫ↓0

1

tr(G
µ

11
(x + ιǫ))

G
µ

22
(x + ιǫ) = µ2G12(x + ι0)∗M

µ

1
(x)G12(x + ι0)

for almost all x w.r.t. σ
µ

1,sing
, hence giving us

f
µ

2i
(x) = λ2

N
∑

j=1

∣

∣

∣

∣

〈

ψ
µ

1 j
,G12(x + ι0)ψ

µ

2i

〉

∣

∣

∣

∣

2

f1 j(x)
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for a.e x wrt σ
µ

1,sing
. This is important because

〈

ψ
µ

2i
, g(Hµ)ψ

µ

2i

〉

= lim
ǫ↓0

∫

g(x)
〈

ψ
µ

2i
, (Hµ − x − ιǫ)−1ψ

µ

2i

〉

dx ∀g ∈ Cc(R)

=

∫

g(x) f
µ

2i
(x)dσ

µ

1,sing
(x)

= λ2

N
∑

i=1

∫

g(x)
∣

∣

∣

∣

〈

ψ
µ

2i
,G12(x + ι0)ψ

µ

2i

〉

∣

∣

∣

∣

2

f1 j(x)dσ
µ

1,sing
(x)

for all 1 ≤ i ≤ N. Using the equality

lim
ǫ↓0

1

tr(G
µ

11
(x + ιǫ))

G
µ

12
(x + ιǫ) = −µM

µ

1
(x)G12(x + ι0),

for almost all x w.r.t. σ
µ

1,sing
, we have,

lim
ǫ↓0

〈

ψ
µ

1 j
, (Hµ − x − ιǫ)−1ψ

µ

2i

〉

tr(G
µ

11
(x + ιǫ))

=
∑

k,l

〈

e1 j,U
µ

1
(x)e1k

〉 〈

e2i,U
µ

2
(x)e2l

〉

〈

e1k,

(

lim
ǫ↓0

G
µ

12
(x + ιǫ)

tr(G
µ

11
(x + ιǫ))

)

e2l

〉

= −µ
∑

k,l

〈

e1 j,U
µ

1
(x)e1k

〉 〈

e2i,U
µ

2
(x)e2l

〉 〈

e1k, M
µ

1
(x)G12(x + ι0)e2l

〉

= −µ
〈

e1 j,U
µ

1
(x)M

µ

1
(x)G12(x + ι0)U

µ

2
(x)e2i

〉

= −µ f
µ

1 j
(x)

〈

ψ
µ

1 j
,G12(x + ι0)ψ

µ

2i

〉

for almost all x w.r.t σ
µ

1,sing
. On the support of f

µ

1 j
σ
µ

1,sing
set

lim
ǫ↓0

〈

ψ
µ

1 j
, (Hµ − x − ιǫ)−1ψ

µ

2i

〉

〈

ψ
µ

1 j
, (Hµ − x − ιǫ)−1ψ

µ

1 j

〉 = pi j(x).

Because of Poltoratskii’s theorem, the vector pi j(Hµ)ψ
µ

1 j
is the projection of ψ

µ

2i
onto E

µ

sing
H

µ

ψ
µ

1 j

.

Finally for almost all x w.r.t. f
µ

1 j
dσ

µ

1,sing
we have

pi j(x) = lim
ǫ↓0

〈

ψ
µ

1 j
, (Hµ − x − ιǫ)−1ψ

µ

2i

〉

〈

ψ
µ

1 j
, (Hµ − x − ιǫ)−1ψ

µ

1 j

〉

= lim
ǫ↓0

〈

ψ
µ

1 j
, (Hµ − x − ιǫ)−1ψ

µ

2i

〉

tr(G
µ

11
(x + ιǫ))

tr(G
µ

11
(x + ιǫ))

〈

ψ
µ

1 j
, (Hµ − x − ιǫ)−1ψ

µ

1 j

〉

= −µ
〈

ψ
µ

1 j
,G12(x + ι0)ψ

µ

2i

〉

.
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Giving us

f
µ

2i
(x) =

N
∑

j=1

|pi j(x)|2 f
µ

1 j
(x)

for almost all x w.r.t. σ
µ

1,sing
. So multiplication by pi j is not only projection but also an isometry

from E
µ

sing
H

µ

2i
to H

µ

1,sing
. Since this is valid for all ψ

µ

2 j
, we get

H
µ

2,sing
⊆H

µ

1,sing

for almost all µ (with respect to Lebesgue measure).

�

Remark 4.3.11. Since
〈

ψ
µ

ip
, EHµ(·)ψ

µ

iq

〉

≡ 0 for p , q, we have pip(x)piq(x) = 0 for a.a x w.r.t

σ
µ

1,sing
. So re-define

ψ̃
µ

1i
=

N
∑

j=1

χ{x:pi j(x),0}(Hµ)ψ
µ

1 j

and get f
µ

2i
(x) = |p̃i(x)|2 f1i(x), where p̃i is the projection defined using ψ̃

µ

1i
. So E

µ

sing
H

µ

ψ̃
µ

2i

is

contained in E
µ

sing
H

µ

ψ̃
µ

1i

.

Using a second perturbation we get the equality of the two Hilbert subspace. This is the state-

ment of the next corollary.

Corollary 4.3.12. On Hilbert space H we have two rank N projections P1, P2 and a self

adjoint operator H. Set Hµ1,µ2
= H + µ1P1 + µ2P2, Gi j(z) = Pi(H − z)−1P j and G

µ1,µ2

i j
(z) =

Pi(Hµ1,µ2
− z)−1P j; set S and S 12, S 21 as (4.8),(4.9). Let E

µ

sing
denote the orthogonal projection

to the singular part of spectral measure for Hµ1,µ2
and set H

µ

i,sing
denote the minimal closed

P
µ

sing
Hµ1,µ2

-invariant subspace containing PiH . If S 12 and S 21 have full Lebesgue measure,

then H
µ

2,sing
=H

µ

1,sing
for almost all (µ1, µ2) (with respect to Lebesgue measure).

Proof. Viewing Aµ1,µ2
as perturbation of P1 (i.e Aµ1,µ2

= A0,µ2
+ µ1P1) gives

H
µ

2,sing
⊆H

µ

1,sing
.
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Similarly considering Aµ1,µ2
as perturbation of P2 gives

H
µ

1,sing
⊆H

µ

2,sing
.

Combining both of them give us the desired result.

�

Proof of (4) of main theorem

Using corollary 4.3.12 we have H ω
n,sing
=H ω

m,sing
for any any n,m such that P(Ωn,m ∩Ωm,n) = 1.

So using P(Ωn,m ∩ Ωm,n) = 1 for all n,m ∈ M we get

Eω
singH = ∪n∈MH

ω
n,sing =H

ω
m,sing

for any m ∈ M.
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4.4 Summary and future directions

The result of the corollaries 4.3.7, 4.3.9 and 4.3.12 can be boiled down to the following Venn

diagrams.

Hω
n Hω

m�

Hω
n,sing

‖

Hω
m,sing

Hω
n,ac Hω

n,ac

Figure 4.1: When P(Ωn,m∩Ωm,n) = 1, we are able to show that the singular subspace H ω
n,sing

and

H ω
m,sing

are equal, but we can only prove the isomorphism for H ω
n,ac and H ω

m,ac.

The event Ωn,m provides the information about the event {ω : H ω
n ∩H ω

m , φ}. In case of rank

one, this condition boils down to the fact that the associated Green’s function is non-zero.

Definition of Ωn,m is independent of rank of Pn. But to prove P(Ωn,m) ∈ {0, 1}, we looked at

det(Gω
nm(z)) which can be defined for the case rank(Pn) = rank(Pm) only. Then we showed

that the polynomial det(G
ω,µ,p
nm (z)) is almost surely non-zero for almost all (µ, z) w.r.t Lebesgue

measure. And the result follows through Kolmogorov 0-1 law. But if rank(Pn) , rank(Pm),

then also the definition 3.6 is valid. In fact in the lemmas 4.3.1 and 4.3.5, “invertibility” can

be modified to “full rank”. The main problem arises in lemmas 4.3.6 and 4.3.8, where we used

invertibility of G12(x+ ι0). If those statements could be stated without the inverse, then possibly

the theorem can be proved for the case rank(Pn) < ∞ only (i.e we allow rank(Pn) , rank(Pm)).

This is probably true because of the way invertibility of G12(x + ι0) is used. Hence trying to

prove the theorem without the assumption rank(Pn) = rank(Pm) is a possible extension.
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Definition of Ωn,m is too strong, and it cannot give any extra result in cases like example 3.3.4.

For the operators of the form (3.5) where we do not assume rank(Pn) = rank(Pm), we can prove

that there exists a basis for PnH and PmH such that Gω
nm(z) can be written down as S n,m × S m,n

sub-matrix with rest of the entries being zero. Even more S i, j are independent of ω and z, and

only depends on i and j. While proving the preceding statement, one can get a projection Pi, j

(≤ Pi) with rank(Pi, j) = S i, j such that each entries of Pi, j(A
ω − z)−1P j,i (in some fixed basis) is

non-zero for almost every z. One can also show that the matrix Gω
nn(z) has a block diagonal form

(with the block being Pi, j(A
ω − z)−1Pi, j for any j). So Pi, j could be used to replace the set Ωi, j in

theorem 4.1.1 in certain way. And all the results for the spectral measure should be stated for

the closed Hilbert subspace generated by Aω and Pi, jH . If possible this kind of statement has

possibility of classifying all random operator of the form (3.5) whenever the rank of projections

are finite.

The next possible question that could be asked is if similar statement holds when the perturba-

tions are compact. Keeping the theme of finite rank situation, the next possibility is replacing

the projections Pn with self-adjoint finite ranked operators.

78



Index

σ-algebra, 17, 27

Absolutely continuous, 23

Absolutely continuous distribution, 25

Absolutely continuous spectrum, 35

Adjoint, 31

Algebra, 17

Almost everywhere, 19

Borel σ-algebra, 18

Borel measure, 20

Borel transform, 39

bounded linear operator, 30

Caratheodary’s Theorem, 19

Characteristic function, 21

Closable operator, 32

Closed linear operator, 32

Complete measure space, 19

Densely defined operator, 32

Dirac measure, 18

Dirac notation, 30

discrete Laplacian, 47

Distribution, 25

Event, 24

Expectation, 24

Extended integrable, 22

Extension, 32

Functional calculus, 34

Graph, 32

Hahn-Banach theorem, 29

Hausdorff measure, 20

Herglotz functions, 37

Hilbert space, 27

Idempotent operator, 31

Identical, 25

Independence, 25

Inner product, 27

Integrable, 22

Isometry, 29

Isomorphism, 29

Kernel, 30

Lebesgue decomposition, 24

Lebesgue measure, 19

liminf, 26
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limsup, 26

Matrix valued Herglotz function, 41

Measurable function, 21

Measure, 18

multi-particle Anderson Model, 49

Norm, 27

Normal operator, 31

Null set, 19, 23

Operator norm, 30

Orthogonal, 28

Orthogonal projection, 28

Orthonormal basis, 28

Outer measure, 19

Positive measure, 23

Probability space, 24

Product measure space, 21

Product probability space, 26

Projection valued measure, 33

Pure point spectrum, 35

Radon-Nikodym derivative, 24

Random variable, 24

Range, 30

Resolvent, 34

Resolvent set, 32

Riesz Representation theorem, 29

self-adjoint operator, 31, 32

Separable Hilbert space, 27

Sesquilinear form, 30

Signed measure, 22

Singular, 23

Singular continuous spectrum, 35

Spectral measure, 33

Spectrum, 32

Strong operator topology, 30

Tail event, 27

Tight-binding Hamiltonian, 48

Total variation measure, 23

Unitary operator, 31

Weak operator topology, 30
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[45] Vojkan Jakšić and Yoram Last. Simplicity of singular spectrum in anderson-type hamilto-

nians. Duke Mathematical Journal, 133(1):185–204, 05 2006.

[46] Tosio Kato. Perturbation theory for linear operators, volume 132. Springer Science &

Business Media, 2013.

85



[47] W Kirsch, M Krishna, and J Obermeit. Anderson model with decaying randomness: Mo-

bility edge. Mathematische Zeitschrift, 235(3):421–433, 2000.

[48] Werner Kirsch. An invitation to random schrödinger operators. arXiv preprint

arXiv:0709.3707, 2007.

[49] Werner Kirsch and Bernd Metzger. The integrated density of states for random schrödinger

operators. arXiv preprint math-ph/0608066, 2006.

[50] Werner Kirsch, Peter Stollmann, and Günter Stolz. Anderson localization for random

schrödinger operators with long range interactions. Communications in Mathematical

Physics, 195(3):495–507, 1998.

[51] Martin Klaus. Some applications of the Birman-Schwinger principle. Helv. Phys. Acta,

55(1):49–68, 1982/83.

[52] Abel Klein. Extended states in the anderson model on the bethe lattice. Advances in

Mathematics, 133(1):163–184, 1998.

[53] Abel Klein and Andrew Koines. A general framework for localization of classical waves:

I. inhomogeneous media and defect eigenmodes. Mathematical Physics, Analysis and

Geometry, 4(2):97–130, 2001.

[54] Abel Klein and Andrew Koines. A general framework for localization of classical waves:

Ii. random media. Mathematical Physics, Analysis and Geometry, 7(2):151–185, 2004.

[55] Abel Klein and Stanislav Molchanov. Simplicity of eigenvalues in the anderson model.

Journal of statistical physics, 122(1):95–99, 2006.

[56] Abel Klein and Son Nguyen. Bootstrap multiscale analysis and localization for multi-

particle continuous anderson hamiltonians. arXiv preprint arXiv:1311.4220, 2013.

[57] Abel Klein and Christian Sadel. Absolutely continuous spectrum for random schrödinger

operators on the bethe strip. Mathematische Nachrichten, 285(1):5–26, 2012.

86



[58] Frédéric Klopp. Localization for some continuous random schrödinger operators. Com-

munications in Mathematical Physics, 167(3):553–569, 1995.

[59] Frédéric Klopp, Shu Nakamura, Fumihiko Nakano, and Yuji Nomura. Anderson localiza-

tion for 2d discrete schrödinger operators with random magnetic fields. In Annales Henri
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