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SYNOPSIS

The mathematical objects known as current algebras are closely related to affine Lie

algebras which are some of the most interesting examples of Kac-Moody algebras. In

this thesis, we investigate an important class of representations of the current algebras,

the so-called Demazure modules. The work of several mathematicians over the past

decades has thrown much light on the structure of these modules. But, in very recent

work (2013), Vyjayanthi Chari, of the University of California at Riverside, and her

collaborators introduced a rather novel point of view which we may refer to as the

“Demazure flags approach”. Roughly speaking, this approach is a way of decomposing

a Demazure module into simpler Demazure modules, but of higher “level”. In this

document, we carry out a deeper analysis of Demazure flags.

It was observed in [23] that one could use the results of [17] and [21] to show the

following: for all integers m ≥ � > 0 and any non–negative integer s, the Demazure

module denoted by D(�, s), admits a Demazure flag of level m, i.e., there exists a

decreasing sequence of graded submodules of D(�, s) such that the successive quotients

are isomorphic to τ ∗pD(m,n) where p ≥ 0, 0 ≤ n ≤ s and s − n is even. The proof of

the statement requires taking the q = 1 limit of a result proved by A. Joseph [17] in

the quantum case using the theory of canonical bases. In [9], the authors gave a direct

proof of this result. Their methods also showed the existence of a level m Demazure

flag in a much wider class of modules for sl2[t]. The number of times a particular level

m–Demazure module appears as a quotient in a level m–flag is independent of the choice
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of the flag. We define a polynomial in an indeterminate q by,

[D(�, s) : D(m,n)]q =
�

p≥0

[D(�, s) : τ ∗pD(m,n)] qp,

where [D(�, s) : τ ∗pD(m,n)] is the multiplicity of τ ∗pD(m,n) in a levelm–Demazure flag of

D(�, s). The polynomial [D(�, s) : D(m,n)]q is called the graded multiplicity of D(m,n)

in the levelm-Demazure flag ofD(�, s) and the polynomial [D(�, s) : D(m,n)]q evaluated

at q = 1 is called the numerical multiplicity of D(m,n) in the level m-Demazure flag of

D(�, s). It is known that

[D(�, s) : D(m, s)]q = 1, [D(�, s) : D(m,n)]q = 0 s− n /∈ 2Z+.

Moreover, for m ≥ �� ≥ � we have

[D(�, s) : D(m,n)]q =
�

p∈Z≥0

[D(�, s) : D(��, p)]q [D(��, p) : D(m,n)]q. (0.0.1)

In [9], explicit recurrence relations were given for the multiplicity of a level (� + 1)–

Demazure module ocurring in a filtration of D(�, n). A closed form solution of these

recurrences was however only obtained in some special cases: the numerical multiplicities

(the q = 1 case) were computed for � = 2,m = 3, and the graded multiplicities for

� = 1,m = 2. The authors also showed that the graded multiplicities of level 3 Demazure

modules in level 2 Demazure module are related to partial theta series. In this thesis

we undertake a deeper study of the polynomials [D(�, s) : D(m,n)]q and the associated
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generating series: given �,m ∈ N with m ≥ �, set

A�→m
n (x, q) =

�

k≥0

[D(�, n+ 2k) : D(m,n)]q x
k, n ≥ 0.

We extend the results of [9], obtaining closed form expression of those generating series

in more general cases. We also relate the generating series to mock theta functions in

some special cases. This thesis consists of 5 chapters which we briefly describe below:

• In chapter 1, we give a brief introduction to the problems.

• In chapter 2, we recall some preliminaries that will help us present the results in

this thesis.

• In chapter 3, we establish a recursive formula for the polynomials [D(�, s) :

D(m,n)]q.

• In chapter 4, we study the series A�→m
n (x, 1) and give explicit formulae for

A1→m
n (x, 1) and A2→m

n (x, 1) involving Chebyshev polynomials.

• In chapter 5, we are concerned about the q-multiplicities when � = 1 and m = 3.

We prove that in this case, the generating series A1→3
n (x, q) when appropriately

specialized reduce to expressions involving the fifth order mock theta functions

φ0,φ1,ψ0,ψ1 of Ramanujan.

15



Chapter 1

Introduction

Let sl2[t] = sl2⊗C[t] be the Lie algebra of two by two matrices of trace zero with entries

in the algebra C[t] of polynomials with complex coefficients in an indeterminate t. The

degree grading of C[t] defines a natural grading on sl2[t]. Let D(�, s) be the graded

sl2[t]–module generated by an element vs with defining relations:

(x⊗ C[t])vs = 0, (h⊗ f(t))vs = sf(0)vs, (y ⊗ 1)s+1vs = 0, (1.0.2)

(y ⊗ ts1+1)vs = 0, (y ⊗ ts1)s0+1vs = 0, if s0 < �. (1.0.3)

Here, x, h, y is the standard basis of sl2 and s0 ∈ N and s1 ∈ Z with s1 ≥ −1 and s0 ≤ �

are such that s = �s1 + s0. The D(�, s) are called Demazure modules ; they are finite

dimensional and � is called the level of the Demazure module. If V is a graded sl2[t]-

module, let τ ∗r V denote the graded sl2[t]-module with the graded pieces shifted uniformly

by r and the action of sl2[t] unchanged. Let Z+ denote the set of non-negative integers.

For n ∈ Z+, the local Weyl module Wloc(n) is the sl2[t]-module generated by an element

16



wn with following defining relations:

(x⊗ C[t])wn = 0, (h⊗ ts)wn = nδs,0wn, (y ⊗ 1)n+1wn = 0. (1.0.4)

1.1. Recursive formulae for [D(�, s) : D(m,n)]q

In chapter 3 of the thesis, we give a recursive formula for the polynomials [D(�, s) :

D(m,n)]q, which could be viewed as giving the definition of these polynomials. This

recursive formula plays a critical role in studying A1→m
n (x, 1) and relating A1→3

n (x, q) to

mock theta functions.

Given integers m ≥ � > 0 and integers s, n, set

[D(�, s) : D(m,n)]q = 0, if s < 0 or n < 0. (1.1.1)

We have

[D(�, 0) : D(m,n)]q = δn,0, n ∈ Z+, (1.1.2)

where δj,k is the Kronecker delta function. More generally,

[D(�, s) : D(m,n)]q = 0, if s− n /∈ 2Z+, and (1.1.3)

[D(�, s) : D(m, s)]q = 1, s ∈ Z+. (1.1.4)

Given a non–negative integer n and a positive integer m let 0 ≤ r(n,m) < m be the

unique integer such that n = m� n
m
�+ r(n,m). We prove the following theorem:

17



Theorem 1.1.1. Let �,m be positive integers with m ≥ �. For all s, n ∈ Z+, we have

[D(�, s+ 1) : D(m,n)]q = [D(�, s) : D(m,n− 1)]q + (1− δr(n+1,m),0)[D(�, s) : D(m,n+ 1)]q

−(1− δr(s,�),0)[D(�, s− 1) : D(m,n)]q − q�
s
�
� r(s,�)(1− q�

s
�
�)[D(�, s− 2r(s, �)− 1) : D(m,n)]q

+ q(�
n
m
�+1)(m−r(n,m)−1)(1− q�

n
m
�+1)[D(�, s) : D(m,n+ 2m− 2r(n,m)− 1)]q.

This theorem can be viewed as giving a recursive definition of the polynomials [D(�, s) :

D(m,n)]q. Thus, (1.1.1) and (1.1.2) define [D(�, s) : D(m,n)]q for all s ≤ 0 and n ∈ Z.

For s ≥ 0, assume that we have defined [D(�, s�) : D(m,n)]q for all s� ≤ s and all

n ∈ Z. The right hand side in Theorem 1.1.1 only involves [D(�, s�) : D(m,n�)] with

s� ≤ s, n� ∈ Z and hence shows that [D(�, s + 1) : D(m,n)]q is defined for all n ∈ Z+,

and hence, by (1.1.1), for all n ∈ Z. To prove the above theorem, we study the tensor

product D(�, s)⊗D(�, 1) and write the graded character of the tensor product explicitly

as a linear combination of graded characters of level �-Demazure modules. If m > �, this

result allows us to write the graded character of D(�, s)⊗D(�, 1) as linear combination

of graded characters of level m-Demazure modules in two different ways. A comparison

of the coefficients then proves the theorem. We briefly explain the strategy of the proof

below. First we prove the following proposition:

18



Proposition 1.1.2. Let � be a positive integer and let s ∈ Z+. Write s = �s1 + s0 with

s1, s0 ∈ Z, s1 ≥ −1 and 0 < s0 ≤ �. We have,

chgrD(�, s) chgr D(�, 1) = chgr D(�, s+ 1) + (1− δs0,�) chgr D(�, s− 1)

+ qs1(s0−�δs0,�)(1− qs1+δs0,�) chgr D(�, s− 2(s0 − �δs0,�)− 1).

It is easy to see that if V is a finite dimensional graded sl2[t]-module and admits a

Demazure flag of level m, then

chgr V =
�

s∈Z
[V : D(m, s)]q chgr D(m, s). (1.1.5)

In particular, if D(�, s) admits a Demazure flag of level m, then we can write,

chgr D(�, s) =
�

p≥0

[D(�, s) : D(m, p)]q chgr D(m, p),

where m ∈ Z+ with m ≥ �. Multiplying both sides of the equation by chgr D(�, 1) gives,

chgr D(�, s) chgr D(�, 1) =
�

p≥0

[D(�, s) : D(m, p)]q chgr D(m, p) chgr D(m, 1). (1.1.6)

Here, we have used the fact that D(�, 1) ∼= D(m, 1) as sl2[t]-modules. Now, we know

that the product of graded characters is the graded character of the tensor product. We

can therefore apply Proposition 1.1.2 to both sides of the preceding equation . Applying

it to the right hand side gives us a linear combination of the graded characters of level

m–Demazure modules. Applying it to the left hand side, gives a linear combination

of graded characters of level �–Demazure modules. These can be further expressed as

19



a combination of the graded characters of level m–Demazure modules. Equating the

coefficients of a level m–Demazure module on both sides will prove Theorem 1.1.1.

1.2. Numerical multiplicities and Chebyshev polynomials

In chapter 4 of the thesis, we greatly extend the results for the numerical multiplicities

in [9] by using the recursive formula in Theorem 1.1.1. We prove that the generating

function for the numerical multiplicity when � = 1 is a rational function involving the

Chebyshev polynomials. A level one Demazure module is isomorphic to a local Weyl

module [7] and hence our result completely determines the numerical multiplicities of

a level m flag of a local Weyl module for any given m ≥ 1. We prove the following

recursion on the generating series A1→m
n (x, 1) using Theorem 1.1.1.

Theorem 1.2.1. For n ≥ −1 and m ≥ 1, the power series A1→m
n (x, 1) satisfies the

recurrence,

A1→m
n (x, 1) =





A1→m
n+1 (x, 1)− xA1→m

n+2 (x, 1) if m � n+ 2.

A1→m
n+1 (x, 1) if m | n+ 2.

(1.2.1)

Then we use the above theorem to give a closed form for A1→m
n (x, 1). We first recall

some relevant facts about Chebyshev polynomials. For n ≥ 0, the Chebyshev polynomial

Un(x) of the second kind, of degree n, is given by the recurrence relation:

Un+1(x) = 2xUn(x)− Un−1(x) for n ≥ 1, U0(x) = 1, U1(x) = 2x.

20



We define

Pn(x
2) = xn Un( (2x)

−1)

and then it is easy to see that Pn(x)’s satisfy the following recurence.

P0 = P1 = 1 and Pn+1(x) = Pn(x)− xPn−1(x) for n ≥ 1. (1.2.2)

We now establish the following corollary of Theorem 1.2.1 which gives the closed form

of A1→m
n (x, 1).

Corollary 1.2.2. For n ∈ Z+, let r, s be the unique non–negative integers such that

n = ms+ r with 0 ≤ r < m. Then

A1→m
n (x, 1) =

Pm−r−1(x)

Pm(x)s+1
.

Finally, we consider the general case, i.e., the multiplicities of level m Demazure

modules in level � Demazure modules for any m ≥ �. For n ≥ 0, define

�A�→m
n (x, q) =

�

s≥0

[D(�, s) : D(m,n)]q x
s.

Since the coefficient of xs is zero unless s− n is a non-negative even integer, we have

�A�→m
n (x, q) = xn �A�→m

n (x2, q) . We prove the following proposition which gives us a way

of computing �A�→m
n (x, 1) implicitly.
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Proposition 1.2.3. Let 1 ≤ � ≤ m and n ≥ 0. Let βr(x) ∈ C[[x]], 0 ≤ r < �, be the

unique power series such that

�A�→m
n (x, 1) =

�−1�

r=0

xr βr(x
�).

Then we have

�A1→m
n (x, 1) =

�−1�

r=0

�A1→�
r (x, 1) βr(y

�),

where y = x/P�(x
2)

1
� .

Using the above proposition, we obtain the following corollary which gives an explicit

expression for A2→m
n (x, 1).

Corollary 1.2.4. Let m ≥ 2, n ≥ 0. Then

A2→m
n (x, 1) =

�
1

1 + x

��n
2 �+1

A1→m
n

�
x

1 + x
, 1

�
.

1.3. Graded multiplicities and mock theta functions

In chapter 5 of the thesis, we focus on graded multiplicities. Our next main result

concerns the graded multiplicities when � = 1 and m = 3. In this case, we show that

the generating series when appropriately specialized reduce to expressions involving the

following fifth order mock theta functions φ0,φ1,ψ0,ψ1 of Ramanujan.

φ0(q) =
∞�

n=0

qn
2

(−q; q2)n φ1(q) =
∞�

n=0

q(n+1)2(−q; q2)n (1.3.1)

ψ0(q) =
∞�

n=0

q
(n+1)(n+2)

2 (−q; q)n ψ1(q) =
∞�

n=0

q
n(n+1)

2 (−q; q)n (1.3.2)
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The appearance of Ramanujan’s mock theta functions in this set-up is quite unexpected

and intriguing. Certain Hecke type double sums, which are closely related objects, have

previously appeared in Kac-Peterson’s work [19] on characters of integrable represen-

tations of �sl2. Further, mock theta functions (in the modern sense, following Zwegers

[30]) appear in Kac-Wakimoto’s theory of affine superalgebras and their characters [20].

Given any power series f in the indeterminate q, we define

f+(q) =
�

n≥0

c2n q
n =

f(q
1
2 ) + f(−q

1
2 )

2
, f−(q) =

�

n≥0

c2n+1 q
n =

f(q
1
2 )− f(−q

1
2 )

2q
1
2

,

so that f(q) = f+(q2) + q f−(q2). Then we prove the following results:

Theorem 1.3.1.

A1→3
0 (1, q) = φ+

0 (q) A1→3
0 (q, q) = φ−

1 (q)

A1→3
1 (1, q) = ψ1(q) A1→3

1 (q, q) = ψ0(q)/q

A1→3
2 (1, q) = φ−

0 (q) A1→3
2 (q, q) = φ+

1 (q)/q
2

We now consider the specializations A1→3
n (qk, q) for arbitrary k ∈ Z and 0 ≤ n ≤ 2.

We show that these are in fact linear combinations of the mock theta functions with

coefficients in Z[q, q−1]. More precisely, we have

Theorem 1.3.2. Let k ∈ Z. Then:

(1)

A1→3
1 (qk, q) = ak,0(q)ψ0(q) + ak,1(q)ψ1(q) + bk(q),
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for some ak,0, ak,1, bk ∈ Z[q, q−1].

(2)

A1→3
0 (qk, q) = ck,0(q)φ

±
0 (q) + ck,1(q)φ

±
1 (q) + dk(q),

for some ck,0, ck,1, dk ∈ Z[q, q−1]. The choice of signs (±) on the right hand side

is made as follows: both signs are (+) if k is even, and both are (−) if k is odd.

(3)

A1→3
2 (qk, q) = ek,0(q)φ

±
0 (q) + ek,1(q)φ

±
1 (q) + fk(q),

for some ek,0, ek,1, fk ∈ Z[q, q−1]. The choice of signs (±) on the right hand side

is now opposite to that above, with both signs (−) if k is even, and (+) if k is

odd.

Finally, we turn to A1→3
n (x, q) for arbitrary n ≥ 0. Let us define

Fn(x, q) = A1→3
n (x, q)

�n
3
��

i=1

(1− qi),

with F−1(x, q) = 0. Let Z((q)) denote the ring of Laurent series with integer coefficients.

We then have the following:

Proposition 1.3.3. Let R ⊂ Z((q)) denote the Z[q, q−1]-span of {1,φ±
0 ,φ

±
1 ,ψ0,ψ1}. Let

n ≥ 0, k ∈ Z. Then Fn(q
k, q) ∈ R.
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Chapter 2

Preliminaries

In this chapter, we recall certain well-known definitions and results which will be

used in this thesis. We begin with brief history. The theory of semisimple Lie alge-

bras and their representations lies at the heart of modern mathematics. The finite-

dimensional simple Lie algebras over the field of complex numbers were classified in the

works of Élie Cartan and Wilhelm Killing in the 1930’s. There are four infinite series

Ar (r ≥ 1);Br, Cr (r ≥ 2);Dr (r ≥ 4) which are called the classical Lie algebras, and

five exceptional Lie algebras E6, E7, E8, F4, G2. The Lie algebras of type A,D, and E are

called of type simply laced. The structure of these Lie algebras is uniformly described in

terms of certain finite sets of vectors in a Euclidean space called root systems. The theory

of finite-dimensional representations of semisimple Lie algebras is largely reduced to the

study of their irreducible representations, due to Weyl’s complete reducibility theorem.

The irreducibles are parametrized by their highest weights. In the late 1960’s, Victor

Kac and Robert Moody built on this work and independently defined and studied a class

of Lie algebras, now called the Kac-Moody Lie algebras. These are generalizations of
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the finite-dimensional simple Lie algebras. In the four decades since their discovery, the

theory of Kac-Moody Lie algebras and their representations has emerged as a field that

has deep and intriguing connections to diverse fields of mathematics and mathematical

physics, such as invariant theory, combinatorics, topology, modular forms and theta

functions, singularities, finite simple groups, Hamiltonian mechanics, soliton equations,

and quantum field theory. The reader is referred to, e.g., the books of Bourbaki [3],

Carter [4], Dixmier [12], Humphreys [15], or Kac [18] for a detailed exposition of the

theory. Throughout the thesis, C denotes the field of complex numbers, Z the set of

integers, Z+ the set of non-negative integers, N the set of positive integers, C[t] the

polynomial ring in an indeterminate t, C[t, t−1] the ring of Laurent polynomials, and

U(a) the universal enveloping algebra corresponding to a complex Lie algebra a.

2.4. The simple Lie algebra g

Let g be a finite-dimensional simple Lie algebra over C of rank r, with Cartan sub-

algebra h. Set I = {1, 2, . . . , r}. Let R (resp. R+) be the set of roots (resp. positive

roots) of g with respect to h and let θ ∈ R+ be the highest root in R. Let (. | .) be a

non-degenerate, symmetric, invariant bilinear form on h∗ normalized so that the square

length of a long root is two. For α ∈ R, let α∨ ∈ h be the corresponding co-root and

let gα be the corresponding root space of g. It is well-known that dim gα = 1, ∀ α ∈ R.

For each α ∈ R+, we fix non-zero elements x±
α ∈ g±α such that [x+

α , x
−
α ] = α∨. We

set n± = ⊕α∈R+ g±α. The weight lattice P (resp. the set of dominant weights P+)

is the Z-span (resp. Z+-span) of the fundamental weights ωi, i ∈ I of g. The root

lattice Q is the Z-span of the simple roots αi, i ∈ I of g. The dominant root lattice
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Q+ =
�

i∈I Z+αi. Set di = 2/(αi | αi), ∀ i ∈ I. We define L =
�

i∈I Zdiωi, a sub lattice

of P , and M =
�

i∈I Zdiαi, a sub lattice of Q. We note that L and M are the images

of the co-weight and co-root lattices respectively under the identification of h and h∗

induced by the form (. | .).

2.5. The Weyl group of g

For each i ∈ I, the fundamental reflection sαi
(or si) is given by

sαi
(λ) = λ− �λ,α∨

i �αi, ∀ λ ∈ h∗.

The subgroup W of GL(h∗) generated by all fundamental reflections si, i ∈ I is called

the Weyl group of g. Given w ∈ W, let �(w) be the length of a reduced expression for

w. Let w0 be the longest element in W .

2.6. The finite-dimensional irreducible g-modules

It is well-known that the finite-dimensional irreducible g-modules (up to isomorphism)

are indexed by the elements of P+. For λ ∈ P+, the corresponding finite-dimensional

irreducible g-module V (λ) is the cyclic g-module generated by an element vλ with the

following defining relations:

x+
α vλ = 0, h vλ = �λ, h� vλ, (x−

α )
�λ,α∨�+1 vλ = 0, ∀ α ∈ R+, h ∈ h.

27



2.7. The affine Lie algebra �g

Let g be a finite-dimensional simple Lie algebra over C as in §2.4. Let �g be the

corresponding (untwisted) affine Lie algebra defined by

�g = g⊗ C[t, t−1]⊕ Cc⊕ Cd,

where c is central and the other Lie brackets are given by

[x⊗ tm, y ⊗ tn] = [x, y]⊗ tm+n +mδm,−n(x|y)c,

[d, x⊗ tm] = m(x⊗ tm),

for all x, y ∈ g and integers m,n. The Lie subalgebras �h, �n+, and �b of �g are defined as

follows:

�h = h⊕ Cc⊕ Cd, �n+ = n+ ⊗ C[t]⊕ (n− ⊕ C)⊗ tC[t], �b = �h⊕ �n+.

We regard h∗ as a subspace of �h∗ by setting �λ, c� = �λ, d� = 0 for λ ∈ h∗. For ξ ∈ �h∗,

let ξ|h be the element of h∗ obtained by restricting ξ to h. Let δ,Λ0 ∈ �h∗ be given by

�δ, h+ Cc� = 0, �δ, d� = 1, �Λ0, h+ Cd� = 0, �Λ0, c� = 1.

Extend the non-degenerate form on h∗ to a non-degenerate symmetric bilinear form on

�h∗ by setting,

(h∗|Cδ + CΛ0) = (δ|δ) = (Λ0|Λ0) = 0 and (δ|Λ0) = 1.
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Set �I = I ∪ {0}. The elements αi, i ∈ �I where α0 = δ − θ are the set of simple roots of

�g, and the elements α∨
i , i ∈ �I where α∨

0 = c − θ∨ are the corresponding co-roots. The

Chevalley generators ei and fi (i ∈ �I) of �g are given by following:

e0 = x−
θ ⊗ t, f0 = x+

θ ⊗ t−1, ei = x+
αi
⊗ 1, fi = x−

αi
⊗ 1, (i ∈ I).

Let �R+ be the set of positive roots,

�R+ = {α + nδ : α ∈ R, n ∈ N} ∪ R+ ∪ {nδ : n ∈ N},

and �R− be the set of negative roots,

�R− = {α + nδ : α ∈ R, n ∈ −N} ∪R− ∪ {nδ : n ∈ −N}.

Let �Rre = {α+nδ : α ∈ R, n ∈ Z} be the set of real roots, and �Rim = {nδ : n ∈ Z\{0}}

be the set of imaginary roots. The set of roots �R of �g is given by �R = �Rre ∪ �Rim =

�R− ∪ �R+. The root space decomposition of �g is given by

g =
�

γ∈ �R

gγ ⊕ �h,

where gγ = {x ∈ �g : [h, x] = �γ, h�x, ∀ h ∈ �h}. It is well-known that dim �gγ =

1, ∀ γ ∈ �Rre. For each real root α + nδ, we have the Lie subalgebra of �g generated by

{x+
α ⊗ tn, x−

α ⊗ t−n} which is isomorphic to sl2. Let �Q =
�

i∈�I Zαi be the root lattice,

and �Q+ =
�

i∈�I Z+αi. The weight lattice (resp. the set of dominant integral weights) is
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defined by

�P (resp. �P+) = {λ ∈ �h∗ : �λ, α∨
i � ∈ Z (resp. Z+), ∀ i ∈ �I}.

For an element λ ∈ �P , the integer �λ, c� is called the level of λ.

2.8. The Weyl group of �g

For each i ∈ �I, the fundamental reflection sαi
(or si) is given by

sαi
(λ) = λ− �λ,α∨

i �αi, ∀ λ ∈ �h∗.

The subgroup �W of GL(�h∗) generated by all fundamental reflections si, i ∈ �I is called

the affine Weyl group or the Weyl group of �g. We regard W naturally as a subgroup of

�W . Given α ∈ h∗, let tα ∈ GL(�h∗) be defined by

tα(λ) = λ+ (λ | δ)α− (λ | α)δ − 1

2
(λ | δ)(α | α)δ for λ ∈ �h∗.

The translation subgroup TM of �W is defined by TM = {tα ∈ GL(�h∗) : α ∈ M} (where,

you may recall the definition of M from §2.4). The following proposition gives the

relation between W and �W . It is well-known and may be found in [18].

Proposition 2.8.1. [18, Proposition 6.5] �W = W � TM .

The extended affine Weyl group �W is the semi-direct product

�W = W � TL,
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where TL = {tα ∈ GL(�h∗) : α ∈ L}. Let �C = {Λ ∈ �h∗ : �Λ,α∨
i � ≥ 0 ∀ i ∈ �I} be the

fundamental Weyl chamber for �g. Let Σ = {σ ∈ �W : σ( �C) = �C}; it is a subgroup of

the group of diagram automorphisms of �g. Then Σ provides a complete system of coset

representatives of �W/�W and we have �W = �W �Σ (see [13], as also [3]). Given w ∈ �W,

let �(w) be the length of a reduced expression for w. The length function � is extended

to �W by setting

�(wσ) = �(w), (2.8.1)

for w ∈ �W and σ ∈ Σ.

2.9. The category O

A �g-module V is called �h-diagonalizable if it admits a weight space decomposition

V =
�

µ∈�h∗
Vµ,

where Vµ = {v ∈ V : h v = �µ, h�v, ∀ h ∈ �h}. A non-zero vector of Vµ is called a

weight vector of weight µ. Let P (V ) := {µ ∈ �h∗ : Vµ �= 0} denote the set of weights of

V . For Λ ∈ �h∗, let us denote D(Λ) := {µ ∈ �h∗ : µ ≤ Λ}. Recall that the partial order

≤ on �h∗ is defined by µ ≤ Λ iff Λ− µ ∈ �Q+.

Definition 2.9.1. A �g-module V is said to be in category O if

(1) It is �h-diagonalizable with finite-dimensional weight spaces, and

(2) There exist finitely many elements Λ1, · · · ,Λm ∈ �h∗ such that P (V ) ⊂ ∪m
i=1D(Λi).

The morphisms in O are homomorphisms of �g-modules. The category O is abelian.
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2.10. Highest-weight modules

Highest-weight modules are important examples of objects from the category O.

Definition 2.10.1. A �g-module V is said to be a highest-weight module with highest

weight Λ ∈ �h∗ if there exists a non-zero vector vΛ such that

�n+ vΛ = 0, h vΛ = �Λ, h�vΛ, ∀h ∈ �h, and U(�g) vΛ = V. (2.10.1)

Remark. By condition (2.10.1) it is easy to see that U(�n−) vΛ = V , and we have

V = ⊕µ≤ΛVµ, VΛ = CvΛ, dim Vµ < ∞ ∀µ ∈ �h∗. Therefore, a highest-weight module is

an object of category O. Now, we recall an important family of highest-weight modules

known as Verma modules.

Definition 2.10.2. A �g-module M(Λ) with highest weight Λ is called a Verma module

if every �g-module with highest weight Λ is a quotient of M(Λ).

The following proposition justifies the importance of Verma modules.

Proposition 2.10.3. [18, Proposition 9.2]

(1) For every Λ ∈ �h∗ there exists a unique (up to isomorphism) Verma module M(Λ).

(2) Viewed as a U(�n−)-module, M(Λ) is a free module of rank 1 generated by the

highest weight vector.

(3) M(Λ) contains a unique proper maximal submodule M �(Λ).

It follows from part 3 of the above proposition that for Λ ∈ �h∗, there is a unique

irreducible module of highest weight Λ which we denote by L(Λ) := M(Λ)/M �(Λ). The
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�g-modules L(Λ), for Λ ∈ �h∗, exhaust all irreducible modules of the category O [18,

Proposition 9.3].

2.11. Integrable modules

Definition 2.11.1. A �g-module V is said to be integrable if the following holds:

• It is �h-diagonalizable with finite-dimensional weight spaces.

• The Chevalley generators ei and fi (i ∈ �I) are locally nilpotent on V. i.e., given

any v ∈ V , there exists n ≥ 0 such that eni v = 0 = fn
i v.

We will further restrict our attention to the category Oint(�g) of integrable modules in

category O. We record the following fact from [18].

Proposition 2.11.2. [18, Lemma 10.1] The �g-module L(Λ) is integrable if and only if

Λ ∈ �P+.

The following Proposition gives the defining relations for the modules L(Λ),Λ ∈ �P+.

Proposition 2.11.3. [18, Corollary 10.4] Let Λ ∈ �P+. The �g-module L(Λ) is the cyclic

module generated by vΛ, with defining relations

h vΛ = �Λ, h�vΛ ∀ h ∈ �h,

ei vΛ = 0 (i ∈ �I),

f
�Λ,α∨

i �+1
i vΛ = 0 (i ∈ �I).

In particular, an integrable highest-weight module of �g is automatically irreducible.
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The �g-modules L(Λ), for Λ ∈ �P+, exhaust all irreducible integrable modules of the

category O [18, Corollary 10.7]. Denote by P (Λ) the set of weights of L(Λ).

The following proposition may be found in [18]. For g = sl2, see also [4, Proposition

20.22].

Proposition 2.11.4. [18, Lemma 12.6, Proposition 12.13] Assume that g is simply laced

of rank r. Let Λ ∈ �P+ be of level 1. Then

• P (Λ) = {tµ(Λ)− nδ : µ ∈ Q, n ∈ Z+},

• dim L(Λ)tµ(Λ)−nδ = the number of partitions of n into r colors, ∀ µ ∈ Q, n ∈

Z+.

2.12. Demazure modules

Let L(Λ) be the irreducible integrable highest-weight module of �g corresponding to a

dominant integral weight Λ. Given an element w of �W , define a �b-submodule Vw(Λ) of

L(Λ) by

Vw(Λ) = U(�b)
�
L(Λ)wΛ

�
.

We call the �b-module Vw(Λ) as a Demazure module. Since fi L(Λ)wΛ = 0 holds if and

only if �wΛ,α∨
i � ≤ 0, we see that Vw(Λ) is g-stable if and only if �wΛ, α∨

i � ≤ 0, ∀ i ∈ I.

The notion of Demazure module associated to an element of �W is defined by setting

Vwσ(Λ) = Vw(σΛ),

for σ ∈ Σ and w ∈ �W .

34



2.13. The current algebra g[t]

The current algebra g[t] associated to g is defined as g⊗ C[t], with the Lie bracket

[x⊗ tm, y ⊗ tn] = [x, y]⊗ tm+n ∀ x, y ∈ g, m, n ∈ Z+.

The degree grading on C[t] gives a natural Z+-grading on U(g[t]): the element (a1 ⊗

tr1) · · · (ak ⊗ trk), for ai ∈ g, ri ∈ Z+, has grade r1 + · · · + rk. A graded g[t]-module is a

Z-graded vector space V =
�

n∈Z V [n] such that

(g⊗ tm)V [n] ⊂ V [n+m], ∀m ∈ Z+, n ∈ Z.

Let ev0 : g[t] → g be the morphism of Lie algebras given by setting t = 0. The pull back

of any g-module V by ev0 defines a graded g[t]-module structure on V, and we denote

this module by ev∗0 V. We define the morphism of graded g[t]-modules as a degree zero

morphism of g[t]-modules. For m ∈ Z and a graded g[t]-module V, we let τmV be the

m-th graded shift of V, defined by setting (τmV )[n] = V [n−m].

2.14. The Weyl modules of g[t]

In [8], Chari and Pressley introduced the notion of local Weyl modules for the loop

algebra g ⊗ C[t, t−1]. In [14], a more general case was considered by replacing the

Laurent polynomial ring with the co-ordinate ring of an algebraic variety. Later in [5], a

functorial approach is used to study local Weyl modules associated with the Lie algebra

g⊗ A, where A is a commutative C-algebra with unit.
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Definition 2.14.1. Given λ ∈ P+, the local Weyl module W (λ) is the cyclic g[t]-module

generated by an element wλ, with following defining relations:

(n+ ⊗ C[t])wλ = 0, (h⊗ tC[t])wλ = 0, and hwλ = �λ, h�wλ, ∀ h ∈ h,

(x−
α ⊗ 1)�λ,α

∨�+1 wλ = 0, ∀ α ∈ R+. (2.14.1)

We set the grade of wλ to be zero. Since the defining relations of W (λ) are graded, it

inherits a Z+-grading from the grading on U(g[t]). For s ∈ N, the subspace of grade s

is given by

W (λ)[s] = span {(a1 ⊗ tr1) · · · (ak ⊗ trk)wλ : k ≥ 1, ai ∈ g, ri ∈ Z+,
�

ri = s},

and the subspace of grade zero is given by

W (λ)[0] = U(g)wλ.

The following proposition is well-known and the proof is analogous to that in [8, §§1-2].

Proposition 2.14.2. [8] For λ ∈ P+, we have the following:

• W (λ) has a unique finite-dimensional graded irreducible quotient, which is iso-

morphic to ev∗0V (λ). In particular, W (λ) �= {0}.

• The zeroth graded piece W (λ)[0] of W (λ) is isomorphic to V (λ).
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• W (λ) is finite-dimensional. Moreover, any finite-dimensional g[t]-module V gen-

erated by an element v ∈ V satisfying the relations

(n+ ⊗ C[t]) v = 0, (h⊗ tC[t]) v = 0, and h v = �λ, h�v, ∀ h ∈ h, (2.14.2)

is a quotient of W (λ).

Definition 2.14.3. For λ ∈ P+, an element v �= 0 of a g[t]-module satisfying the

relations (2.14.2) is said to be a highest weight vector of weight λ.

2.15. The graded character of local Weyl modules

For s ≥ 0, the subspace W (λ)[s] of grade s of the local Weyl module W (λ) is a

g-submodule, and we have the following weight space decomposition for W (λ):

W (λ) =
�

(µ,s)∈P×Z+

W (λ)µ,s,

where W (λ)µ,s := {w ∈ W (λ)[s] : hw = �µ, h�w, ∀h ∈ h}. For µ ∈ P, let

W (λ)µ :=
�

s≥0

W (λ)µ,s = {w ∈ W (λ) : hw = �µ, h�w, ∀h ∈ h}.

The µ for which W (λ)µ �= 0 are the weights of W (λ). The graded character chq W (λ)

of W (λ) is defined as,

chq W (λ) :=
�

(µ,s)∈P×Z+

dim W (λ)µ,s q
s eµ ∈ Z[P ][q]. (2.15.1)
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2.16. Local Weyl modules as level one Demazure modules

The following theorem gives the connection of local Weyl modules with Demazure

modules. For g = sl2, it follows from a result in [8]. For g = slr+1, it is proved in [7] by

using the result in [8]. For g simply laced, it is proved in [13] also by using the result in

[8].

Theorem 2.16.1. [13, Theorem 7] Assume that g is simply laced. Given λ ∈ P+, let

w ∈ �W, σ ∈ Σ and Λ ∈ �P+ such that

wσΛ ≡ w0λ+ Λ0 mod Zδ.

Then we have the following isomorphism of g[t]-modules,

W (λ) ∼= Vwσ(Λ).

Definition 2.16.2. Let � ∈ N, s ∈ Z+ and write s = �s1 + s0 with s1 ≥ −1 and s0 ∈ N

with s0 ≤ �. Then D(�, s) is defined as a graded sl2[t]-module generated by an element

vs(which lies in the zeroth grade piece of D(�, s) ) with the following defining relations:

(x⊗ C[t])vs = 0, (h⊗ f)vs = sf(0)vs, (y ⊗ 1)s+1vs = 0. (2.16.1)

(y ⊗ ts1+1)vs = 0, (y ⊗ ts1)s0+1vs = 0, if s0 < �. (2.16.2)

Let τ ∗rD(�, s) be the graded sl2[t]– module obtained defining the grade of the element vs

to be r.
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The following result is a special case of a result established in [11, Theorem 2, Propo-

sition 6.7 ] for s > 0.

Proposition 2.16.3. Let Λ be a dominant integral weight for �h and let w ∈ �W be such

that

Λ(c) = �, wΛ(h) = −s, wΛ(d) = r.

We have an isomorphism of graded sl2[t]–modules

Vw(Λ) ∼= τ ∗rD(�, s).

�
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Chapter 3

Recursive Formula

The goal in the first part of this chapter is to collect together the relevant definitions

and results that we shall need to prove our main Theorem 1.1.1. We begin this chapter

by briefly reminding the reader the definition of a Demazure module occurring in a

highest weight integrable irreducible representation of the affine Lie algebra �sl2. We are

interested only in stable Demazure modules and we recall several results from [11] about

this family.

3.17. The affine Lie algebra �sl2

Recall that sl2 is the complex simple Lie algebra of two by two matrices of trace

zero and that {x, h, y} is the standard basis of sl2, with [h, x] = 2x, [h, y] = −2y and

[x, y] = h. The associated affine Lie algebra �sl2 with canonical central element c and

scaling operator d can be realized as follows: as vector spaces we have

�sl2 = sl2 ⊗ C[t, t−1]⊕ Cc⊕ Cd,
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where C[t, t−1] is the Laurent polynomial ring in an indeterminate t, and the commutator

is given by

[a⊗ tr, b⊗ ts] = [a, b]⊗ tr+s+rδr,−s(a, b)c, [d, a⊗f ] = a⊗ tdf/dt, [c,�sl2] = 0 = [d, d],

where ( , ) : g × g → C is a nondegenerate invariant symmetric bilinear form which is

normalized so the root has squared length 2. The action of d can also be regarded as

defining a Z–grading on �sl2 where we declare the grade of d and c to be zero and the

grade of a⊗ tr to be r for a ∈ sl2. Let �h = Ch⊕Cc⊕Cd be the Cartan subalgebra and

define the Borel and the standard maximal parabolic subalgebras by

�b = sl2 ⊗ tC[t]⊕ Cx⊕ �h, �p = �b⊕ Cy = sl2 ⊗ C[t]⊕ Cc⊕ Cd.

Notice that �b and �p are Z+–graded subalgebras of �g. We identify sl2 with the grade

zero subalgebra sl2 ⊗ 1 of sl2 ⊗ C[t]. Define δ ∈ �h∗ by: δ(d) = 1, δ(h⊕ Cc) = 0. Let �W

be the affine Weyl group associated to �g and recall that it acts on �h and �h∗ and leaves

c and δ fixed.

3.18. Demazure modules of �sl2

Suppose that Λ ∈ �h∗ is dominant integral: i.e., Λ(h),Λ(c−h) ∈ Z+ and we assume that

Λ(d) ∈ Z. Let V (Λ) be the irreducible integrable highest weight �g–module generated by

a highest weight vector vΛ. The action of �h on V (Λ) is diagonalizable and the central

element c acts via the scalar Λ(c) on V (Λ). The non–negative integer Λ(c) is called the

level of V (Λ). For all w ∈ �W the element wΛ is also an eigenvalue for the action of �h
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on V (Λ) with corresponding eigenspace V (Λ)wΛ. The Demazure module associated to

w and Λ is defined to be

Vw(Λ) = U(�b)V (Λ)wΛ.

The Demazure modules are finite–dimensional and if wΛ(h) ≤ 0, then Vw(Λ) is a module

for �p. From now on, we shall only be interested in such Demazure modules. Notice that

these Demazure modules are indexed by the integers

−s = wΛ(h) ≤ 0, � = Λ(c), p = wΛ(d),

The action of d on the Demazure modules defines a Z–grading on them compatible with

Z+–grading on sl2[t]. Moreover, since w(Λ + pδ) = wΛ + pδ and (Λ + pδ)(h ⊕ Cc) =

Λ(h⊕Cc), it follows that for a fixed � and s the modules are just grade shifts. If s = 0

then D(�, 0) is the trivial sl2[t]–module.

3.19. Graded character of sl2[t]-modules

As the discussion in Section 3.18 shows, the proper setting for our study is the category

of finite–dimensional Z–graded sl2[t]–modules. We recall briefly some of the elementary

definitions and properties of this category. A finite–dimensional Z–graded sl2[t]–module

is a Z–graded vector space admitting a compatible graded action of sl2[t]:

V =
�

k∈Z
V [k], (a⊗ tr)V [k] ⊂ V [k + r] a ∈ sl2, r ∈ Z+.
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In particular, V [r] is a module for the subalgebra sl2 of sl2[t] and hence the action of h

on V [r] is semisimple, i.e.,

V [r] =
�

m∈Z
V [r]m, V [r]m = {v ∈ V [r] : hv = mv}.

The graded character of V is the Laurent polynomial in two variables e, q given by

chgr V =
�

m,r∈Z
dimV [r]me

mqr.

A map of graded sl2[t]–modules is a degree zero map of sl2[t]–modules. If V1 and

V2 are graded sl2[t]–modules, then the direct sum and tensor product are again graded

sl2[t]–modules, with grading,

(V1 ⊕ V2)[k] = V1[k]⊕ V2[k], (V1 ⊗ V2)[k] =
�

s∈Z
(V1[s]⊗ V2[k − s]).

The graded character is additive on short exact sequences and multiplicative on tensor

products. Given a Z–graded vector space V , we let τ ∗pV be the graded vector space

whose r–th graded piece is V [r + p]. Clearly, a graded action of sl2[t] on V also makes

τ ∗pV into a graded sl2[t]–module. It is now easy to prove (see [6] for instance) that an

irreducible object of this category must be of the form τ ∗p ev
∗
0V (n) where V (n) is the

unique (up to isomorphism) irreducible module for sl2 of dimension (n + 1). It follows

that if V is an arbitrary finite–dimensional graded sl2[t]–module, then chgr V can be

written uniquely as a non–negative integer linear combination of qp chgr τ
∗
0V (n), p ∈ Z,

n ∈ Z+.
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3.20. The sl2[t]-stable Demazure modules τ ∗rD(�, s)

We recall for the reader’s convenience, the graded sl2[t] module τ ∗rD(�, s) defined in

chapter 1. Let � ∈ N, s ∈ Z+ and write s = �s1 + s0 with s1 ≥ −1 and s0 ∈ N with

s0 ≤ �. Then D(�, s) is generated by an element vs and defining relations:

(x⊗ C[t])vs = 0, (h⊗ f)vs = sf(0)vs, (y ⊗ 1)s+1vs = 0. (3.20.1)

(y ⊗ ts1+1)vs = 0, (y ⊗ ts1)s0+1vs = 0, if s0 < �. (3.20.2)

Let τ ∗rD(�, s) be the graded sl2[t]– module obtained by defining the grade of the element

vs to be r. The following result is a special case of a result established in [11, Theorem

2, Proposition 6.7 ] for s > 0.

Theorem 3.20.1. Let Λ be a dominant integral weight for �h and let w ∈ �W be such

that

Λ(c) = �, wΛ(h) = −s, wΛ(d) = r.

We have an isomorphism of graded sl2[t]–modules

Vw(Λ) ∼= τ ∗rD(�, s).

�

Remark 3.20.2. A few remarks are in order here. In the case when s0 = � the second

relation in equation (3.20.2) is a consequence of the other relations. A presentation

of all Demazure modules was given in [17], [22] in the case of simple and Kac–Moody
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algebras respectively. However, it was shown in [11, Theorem 2] that in the case of the

sl2–stable Demazure modules the relations given in [17], [22] are all consequences of the

ones stated in the proposition.

We isolate further results from [11, Section 6] that will be needed for our study.

Proposition 3.20.3. Let �, s ∈ Z+ and write s = �s1 + s0 with s1 ≥ −1 and s0 ∈ N

with s0 ≤ �.

(i) For 0 ≤ s ≤ � we have

D(�, s) ∼= τ ∗0V (s), i.e. , (sl2 ⊗ tC[t])D(�, s) = 0.

(ii) For s > 0, we have dimD(�, s) = (�+ 1)s1(s0 + 1).

(iii) The sl2[t]–submodule of D(�, s) generated by the element (y⊗ ts1)s0vs is isomorphic

to τ ∗s1s0D(�, s−2s0). In particular, the quotient D(�, s)/τ ∗s1s0D(�, s−2s0) is generated

by an element v̄s with defining relations, (3.20.1) and,

(y ⊗ ts1+1)v̄s = 0, (y ⊗ ts1)s0 v̄s = 0. (3.20.3)

�

We note that Proposition3.20.3(iii) is a reformulation of [11, Theorem 5(i) and Propo-

sition 6.4]. The following is a straightforward application of the Poincare–Birkhoff–Witt

theorem.
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Lemma 3.20.4. Let � ∈ N and s ∈ Z+. The module τ ∗0V (s) is the unique irre-

ducible quotient of D(�, s) and occurs with multiplicity one in the Jordan–Holder series

of D(�, s). Moreover, if τ ∗pV (m), m �= s is a Jordan–Holder constituent of D(�, s) then

p ∈ N and s−m ∈ 2N. �

Let � ∈ N. It follows from the Lemma that if V is a graded finite–dimensional

module for sl2[t], then chgr V can be written uniquely as a Z[q, q−1] linear combination

of chgr D(�, s), s ∈ Z+.

3.21. Demazure flag of sl2[t]-stable Demazure modules

Let V be a finite–dimensional graded sl2[t]–module. We say that a decreasing sequence

F(V ) = {V = V0 � V1 � · · ·Vk � Vk+1 = 0}

of graded sl2[t]-submodules of V is a Demazure flag of level m, if

Vi/Vi+1
∼= τ ∗piD(m,ni), (ni, pi) ∈ Z+ × Z, 0 ≤ i ≤ k.

Given a flag F(V ) we say that the multiplicity of τ ∗pD(m,n) in F(V ) is the cardinality

of the set {j : Vj/Vj+1
∼= τ ∗pD(m,n)}. It is not hard to show that the cardinality of this

set is independent of the choice of the Demazure flag (see for instance [9, Lemma 2.1])

of V and we denote this number by [V : τ ∗pD(m,n)]. Define

[V : D(m,n)]q =
�

p∈Z
[V : τ ∗pD(m,n)]qp, n ≥ 0, [V : D(m,n)]q = 0, n < 0.
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It follows from the discussion in Section 3.19 and Section 3.20 that if V admits a De-

mazure flag of level m, then

chgr V =
�

s∈Z
[V : D(m, s)]q chgr D(m, s). (3.21.1)

The following result was first proved in [23] for Demazure modules for arbitrary simply–

laced simple algebras using the theory of canonical basis. An alternate more constructive

and self contained proof was given in [9] for sl2[t].

Proposition 3.21.1. Let � be a positive integer. For all non–negative integers s and m

with m ≥ �, the module D(�, s) has a Demazure flag of level m. �

This proposition along with Lemma 3.20 proves that the initial condition given in

(1.1.2) are satisfied.

3.22. Proof of Theorem 1.1.1

To prove the Theorem 1.1.1, we study the tensor product D(�, s)⊗D(�, 1) and write

the graded character of the tensor product explicitly as a linear combination of the

graded character of level �–Demazure modules. If m > �, this results allows us to write

the graded character of D(�, s)⊗D(�, 1) as a linear combination of the graded character

of level m Demazure modules in two different ways. A comparison of coefficients then

gives Theorem 1.1.1. The proof of the Proposition 1.1.2 can be found in Section 3.23.

47



Remark 3.22.1. Let s be as in the proposition. If we let r(s, �) be the unique integer

with 0 ≤ r(s, �) < � such that s = �
�
s
�

�
+ r(s, �), we have

δs0,� = δr(s,�), 0 , r(s, �) = s0 − �δs0,� ,
�s
�

�
= s1 + δs0,�.

In particular, this means r(s, �) δs0,� = 0 and hence r(s, �)
�
s
�

�
= r(s, �) s1. Using these

relations, Proposition 1.1.2 can be reformulated in terms of
�
s
�

�
and r(s, �) in place of

s1, s0.

We now prove Theorem 1.1.1. We first explain the strategy of the proof. Using

equation (3.21.1) and Proposition 3.21.1, we can write,

chgr D(�, s) =
�

p≥0

[D(�, s) : D(m, p)]q chgr D(m, p),

where m ∈ Z+ with m ≥ �. Multiplying both sides of the equation by chgr D(�, 1) gives,

chgr D(�, s) chgr D(�, 1) =
�

p≥0

[D(�, s) : D(m, p)]q chgr D(m, p) chgr D(m, 1). (3.22.1)

Here, we have used the fact that D(�, 1) ∼= D(m, 1) (see Proposition 3.20.3(i)) as sl2[t]-

modules. Now, recall that the product of graded characters is the graded character

of the tensor product. We can therefore apply Proposition 1.1.2 to both sides of the

preceding equation . Applying it to the right hand side gives us a linear combination of

the graded characters of level m–Demazure modules. Applying it to the left hand side,

gives a linear combination of graded characters of level �–Demazure modules. These can

be further expressed as a combination of the graded characters of level m–Demazure
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modules. Equating the coefficients of a level m–Demazure module on both sides will

prove Theorem 1.1.1. In this subsection, it will be more convenient to work with the

notation suggested by Remark 3.22.1. Let us collect the coefficients of chgr D(m,n)

which occur on the right hand side of equation (3.22.1) after applying Proposition 1.1.2.

It can occur with non–zero coefficients only in the products: chgr D(m,n±1) chgr D(m, 1)

and in chgr D(m, p) chgr D(m, 1), where

p− 2r(p,m)− 1 = n.

We claim that this implies

p = 2m+ n− 2r(n,m)− 1. (3.22.2)

To prove this, we consider x = p+n+1. Since x = 2 (p− r(p,m)), it is clearly a multiple

of 2m. Further, since p = n+ 1 + 2r(p,m), we have

n+ 1 ≤ p ≤ n+ 1 + 2(m− 1).

This implies

2n+ 2 ≤ x ≤ 2n+ 2m.

Thus, we deduce that x is the unique multiple of 2m that lies within these bounds; it is

given by

x = 2m

��
2n+ 2m

2m

��
= 2m

�� n
m

�
+ 1
�
,
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or equivalently by

x = 2m+ 2n− r(2m+ 2n, 2m) = 2m+ 2n− 2r(n,m).

Thus, p = x−n−1 is given by the required expression. Summarizing (and using Remark

3.22.1 again), we find that the coefficient of chgr D(m,n) on the right hand side is:

[D(�, s) : D(m,n− 1)]q + (1− δr(n+1,m), 0)[D(�, s) : D(m,n+ 1)]q (3.22.3)

+qr(p,m)� p
m�(1− q� p

m�)[D(�, s) : D(m, p)]q,

where p is as in (3.22.2). We note from (3.22.2) that

r(p,m) = m− r(n,m)− 1 and
� p
m

�
=

p− r(p,m)

m
= 1 +

� n
m

�
. (3.22.4)

Now, we apply Proposition 1.1.2 to the left hand side of equation (3.22.1). This gives

us a linear combination of graded characters of level �-Demazure modules which we can

then rewrite using (3.21.1). We find then that the resulting coefficient of chgr D(m,n)

is:

[D(�, s+ 1) : D(m,n)]q + (1− δr(s,�), 0)[D(�, s− 1) : D(m,n)]q (3.22.5)

+qr(s,�)� s
��(1− q� s

��)[D(�, s− 2r(s, �)− 1) : D(m,n)]q.

Setting (3.22.3) and (3.22.5) equal to each other and using (3.22.4), we obtain Theorem

1.1.1. �
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3.23. Proof of Proposition 1.1.2

The rest of the chapter is devoted to the proof of Proposition 1.1.2. If s = 0, then

D(�, 0) is the trivial module and the propostion is trivially true. So, from now on we

assume that s > 0. For the proof we consider three mutually exclusive cases and it is

helpful to write down the equality of characters according to these cases:

(i) If 0 < s = s0 < �, then

chgr D(�, s)⊗D(�, 1) = chgr D(�, s+ 1) + chgr D(�, s− 1). (3.23.1)

(ii) If s0 = � (in particular if � = 1), then

chgr(D(�, s)⊗D(�, 1)) = chgr D(�, s+ 1) + (1− qs1+1) chgr D(�, s− 1). (3.23.2)

(iii) If s > � > s0, then

chgr(D(�, s)⊗D(�, 1)) = chgr D(�, s+ 1) + chgr D(�, s− 1) + qs1s0(1− qs1) chgr D(�, s− 2s0 − 1).

(3.23.3)

By Proposition 3.20.3(i) we know that D(�, 1) ∼= τ ∗0V (1) for all � ∈ Z+. In particular,

the elements v1, yv1 are a basis of D(�, 1) where we have identified the element y ∈ sl2

with y ⊗ 1 in sl2[t]. From now on for ease of notation, we set

U0 = D(�, s)⊗D(�, 1).

Lemma 3.23.1. We have U0
∼= U(sl2[t])(vs ⊗ yv1).
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Proof. Since y2v1 = 0 we have

(y ⊗ tk)(vs ⊗ yv1) = (y ⊗ tk)vs ⊗ yv1, k ≥ 0.

Repeating this argument we get that the sl2[t]–submodule generated by vs⊗yv1 contains

the subspace D(�, s)⊗ yv1. Since x(D(�, s)⊗ yv1) = D(�, s)⊗ v1 + (xD(�, s))⊗ yv1, the

Lemma is established. �

Set U2 = U(sl2[t])(vs ⊗ v1). It is trivial to check that for all f ∈ C[t], we have

(x⊗ f)(vs ⊗ v1) = 0, (h⊗ f)(vs ⊗ v1) = f(0)(s+ 1)(vs ⊗ v1), (y ⊗ 1)s+2(vs ⊗ v1) = 0,

(3.23.4)

and also that

(x⊗ f)(vs ⊗ yv1) ∈ U2, (h⊗ f)(vs ⊗ yv1) = f(0)(s− 1)(vs ⊗ yv1), (y ⊗ 1)s(vs ⊗ yv1) ∈ U2.

(3.23.5)

We now prove that equation (3.23.1) is satisfied. Since s = s0 < �, we see by using

Proposition 3.20.3(i) that

(sl2 ⊗ tC[t])(vs ⊗ v1) = 0, U2
∼= τ ∗0V (s+ 1) ∼= D(�, s+ 1).

Since the graded character is additive on short exact sequences, it suffices now to prove

that U0/U2
∼= D(�, s− 1). Equation (3.23.5) and the fact that (sl2⊗ tC[t])(vs⊗ yv1) = 0

shows that that the image of vs⊗yv1 in U0/U2 satsifies the relations ofD(�, s−1) given in
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Section 3.20. Since D(�, s−1) ∼= τ ∗0V (s−1) is irreducible we see that U0/U2
∼= D(�, s−1)

and (3.23.1) follows. To prove the remaining two cases, we need the following result

established in [11, Lemma 2.3, Equation (2.10)]. For any m ∈ Z+ and a ∈ U(sl2[t]) let

a(m) = am/m!. Given a positive integer r and a non–negative integer p, define elements

y(r, p) ∈ U(sl2[t]) by

y(r, p) =
�

(y ⊗ 1)(b0) · · · (y ⊗ tp)(bp)

where the sum is over all p–tuples (b0, · · · , bp) such that r =
�

j bj, p =
�

j jbj.

Proposition 3.23.2. Let � be a positive integer and s = �s1 + s0 with s1, s0 ∈ Z+

and 0 < s0 ≤ �. Then D(�, s) is the sl2[t]–module generated by an element vs with the

relations given in (3.20.1) and the relation

y(r, p)vs = 0

for all r, p ∈ Z+ satisfying, p ≥ rs1 + 1 or r + p ≥ 1 + rk + �(s1 − k) + s0 for some

0 ≤ k ≤ s1. �

We now consider the case when s0 = �, i.e., s = �(s1 + 1). We shall prove that there

exists surjective maps of graded sl2[t]–modules

ϕ1 : D(�, s+ 1)/τ ∗s1+1D(�, s− 1) → U2 → 0, ϕ2 : D(�, s− 1) → U0/U2 → 0.
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Once this is done, the proof of (3.23.2) is completed as follows. By Proposition 3.20.3(ii),

we have

dimD(�, s+ 1) = 2(�+ 1)s1+1 = dimU0 = dimU0/U2 + dimU2,

and hence ϕ1 and ϕ2 must be isomorphisms. Using the additivity of chgr gives (3.23.2).

To prove the existence of ϕ1, use Theorem 3.20.1 and Proposition 3.20.3(iii) with s

replaced by s + 1 = �(s1 + 1) + 1. In view of (3.23.4) it suffices to prove that (y ⊗

ts1+1)(vs ⊗ v1) = 0. But this is obvious since (y⊗ ts1+1)vs = 0 = (y⊗ ts1+1)v1. To prove

the existence of ϕ2, note that s − 1 = �s1 + � − 1. In view of (3.23.5) we see that we

only have to prove that

(y ⊗ ts1+1)(vs ⊗ yv1) ∈ U2, � > 1, (y ⊗ ts1)�(vs ⊗ yv1) ∈ U2, � ≥ 1.

The idea in both cases is the same: namely for all p ≥ 0 and r ≥ 1, we have y2v1 = 0

and hence we can write

(y ⊗ tp)r(vs ⊗ yv1) = (y ⊗ tp)ry(vs ⊗ v1)− C((y ⊗ tp)ryvs)⊗ v1,

for some C ∈ C. Since the first term on the right hand side is in U2 the left hand side

will be in U2 iff the second term on the right hand side is also in U2. In other words, we

must prove that

(((y ⊗ ts1+1)yvs)⊗ v1) ∈ U2, � > 1, (((y ⊗ ts1)�yvs)⊗ v1) ∈ U2, � ≥ 1. (3.23.6)
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If � > 1, then ((y ⊗ ts1+1)yvs) ⊗ v1) = 0 since (y ⊗ ts1+1)vs = 0 and the first assertion

of (3.23.6) is established. To prove the second assertion suppose first that s1 = 0, i.e.,

s = � .Then equation (3.20.1) gives (y⊗ 1)�yv� = y�+1v� = 0 and we are done. If s1 > 0,

take r = �+ 1, p = �s1 and k = 0 in Proposition 3.23.2 and observe that

y(�+ 1, �s1)vs = 0.

Suppose that b0, · · · , b�s1 are such that
��s1

j=0 bj = � + 1 and
��s1

j=1 jbj = �s1. If bm > 0

for any m ≥ s1 + 1 then (y ⊗ tm)vs = 0 and so

(y ⊗ 1)(b0) · · · (y ⊗ t�s1)(b�s1 )vs = 0.

Suppose now that bj = 0 for all j > s1 and b0 > 1. Then, we have

s1�

j=1

bj < �, �s1 =

s1�

j=1

jbj ≤ s1

s1�

j=1

bj < �s1,

which is absurd. Hence b0 ≤ 1. If b0 = 1 and bm > 0 for 0 < m < s1, then we again

have

�s1 =

s1�

j=1

jbj ≤ s1

��

j �=m

bj

�
+mbm < s1

s1�

j=1

bj = �s1,

which is again absurd. Hence we find that

0 = y(�+ 1, �s1)vs = (y ⊗ 1)(y ⊗ ts1)�vs +Xvs
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where X ∈ U(sl2 ⊗ tC[t]) is an element of grade �s1 > 0. This gives,

((y ⊗ 1)(y ⊗ ts1)�vs)⊗ v1 = −Xvs ⊗ v1 = −X(vs ⊗ v1) ∈ U2

and the proof of (3.23.6) is complete. For the final case of s > � > s0, we need an

additional submodule,

U1 = U2 +U(sl2[t])(y ⊗ ts1)s0(vs ⊗ yv1) = U2 +U(sl2[t])((y ⊗ ts1)s0vs)⊗ yv1.

We will show the existence of three surjective morphisms of graded sl2[t]–modules:

ψ1 : D(�, s+ 1)/τ ∗s1(s0+1)D(�, s− 2s0 − 1) → U2 → 0,

ψ2 : τ
∗
s1s0

D(�, s− 2s0 − 1) → U1/U2 → 0, ψ3 : D(�, s− 1) → U0/U1 → 0.

The proof is then completed as in the preceding case: a dimension count shows that

the maps ψj, j = 1, 2, 3 must be isomorphisms and the equality of graded characters

follows. The proof of the existence of the maps is also very similar to the proofs given

for ϕj, j = 1, 2, and we provide the details only in the case of the module U1/U2 which

is more complicated. Thus, for ψ2 to exist we must prove that

(x⊗ C[t])((y ⊗ ts1)s0vs)⊗ yv1 ∈ U2, ((h⊗ tC[t])(y ⊗ ts1)s0vs)⊗ yv1 = 0, (3.23.7)

as well as: if s0 < �− 1,

(y ⊗ ts1)(y ⊗ ts1)s0(vs ⊗ yv1) ∈ U2, (y ⊗ ts1−1)�−s0(y ⊗ ts1)s0(vs ⊗ yv1) ∈ U2 (3.23.8)
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and if s0 = �− 1,

(y ⊗ ts1−1)(y ⊗ ts1)s0(vs ⊗ yv1) ∈ U2. (3.23.9)

For (3.23.7), it is enough to note that xyv1 = v1 and that Proposition 3.20.3(iii) implies

that

(x⊗ C[t])(y ⊗ ts1)s0vs = 0 = (h⊗ tC[t])vs.

Since s1 ≥ 1 we have,

(y ⊗ ts1)(y ⊗ ts1)s0(vs ⊗ yv1) = (y ⊗ ts1)s0+1vs ⊗ yv1 = 0,

where the last equality is from (3.20.2). This proves the first assertion in (3.23.8). To

prove the second assertion in (3.23.8) and (3.23.9), we argue as in the proof of the

existence of map ϕ2 that

(y ⊗ ts1−1)�−s0(y ⊗ ts1)s0(vs ⊗ yv1) ∈ U2 ⇐⇒ ((y ⊗ ts1−1)�−s0(y ⊗ ts1)s0yvs)⊗ v1 ∈ U2.

Taking r = �+ 1, p = s− � and k = 0 we see by using Proposition 3.23.2 that

y(�+ 1, s− �)vs = 0.

Suppose that ((y⊗ 1)(b0) · · · (y⊗ ts−�)(bs−�)), is an expression occurring in y(�+1, s− �).

Then its action on vs is zero if bj > 0 for some j ≥ s1 + 1. Moreover, by Proposition

3.20.3(iii), we have

(y ⊗ ts1)s0+1vs = 0, (y ⊗ ts1−1)�−s0+1(y ⊗ ts1)s0vs = 0,
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it follows that we may assume

bs1 ≤ s0, and bs1 = s0 ⇒ bs1−1 ≤ �− s0. (3.23.10)

The case s1 = 1 will not arise, because this forces b1 = s0 and b0 = � + 1 − s0 which

violates equation (3.23.10) Suppose that s1 > 1 and b0 > 0. Then
�s1

j=1 bj ≤ � and we

get the following inequalities,

s− � =

s1�

j=1

jbj ≤
�
(s1 − 2)

s1�

j=1

bj

�
+ bs1−1 + 2bs1 ≤ �(s1 − 2) + bs1−1 + 2bs1 ,

s− � =

s1�

j=1

jbj ≤
�
(s1 − 1)

s1�

j=1

bj

�
+ bs1 ≤ �(s1 − 1) + bs1 .

The first inequality implies that bs1−1+2bs1 ≥ �+s0, while the second inequality implies

that bs1 ≥ s0. It follows from (3.23.10) that we must have bs1 = s0 and bs1−1 = � − s0.

Hence b0 = 1 and bm = 0 if m /∈ {0, s1 − 1, s1}. This proves that,

0 = y(�+ 1, s− �)vs = ((y ⊗ ts1−1)�−s0(y ⊗ ts1)s0y)vs +Xvs

where X ∈ U(sl2 ⊗ tC[t]). Since Xvs ⊗ v1 = X(vs ⊗ v1) it follows that

((y ⊗ ts1−1)�−s0(y ⊗ ts1)s0y)vs ⊗ v1 ∈ U2.
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Chapter 4

Numerical Multiplicities

Given n ∈ Z+ and m ∈ Z, set

�
n

m

�

q

=
(1− qn)...(1− qn−m+1)

(1− q)...(1− qm)
, m > 0,

�
n

0

�

q

= 1,

�
n

m

�

q

= 0, m < 0.

4.24. Demazure Flags and generating series

Let sl2[t] ∼= sl2 ⊗ C[t] be the Lie algebra of two by two matrices of trace zero with

entries in the algebra C[t] of polynomials with complex coefficients in an indeterminate

t. The degree grading of C[t] defines a natural grading on sl2[t]. Let D(�, s) be the

sl2[t]–module generated by an element vs with defining relations:

(x⊗ C[t])vs = 0, (h⊗ f)vs = sf(0)vs, (y ⊗ 1)s+1vs = 0, (4.24.1)

(y ⊗ ts1+1)vs = 0, (y ⊗ ts1)s0+1vs = 0, if s0 < �. (4.24.2)

59



Here, x, h, y is the standard basis of sl2 and s0 ∈ N and s1 ∈ Z with s1 ≥ −1 and s0 ≤ �

are such that s = �s1+s0. These modules are finite–dimensional and � is called the level

of the Demazure module. We refer the reader to chapter 2 for the connection with the

more traditional definition of the Demazure modules. It was observed in [23] that one

could use the results of [17] and [21] to show the following: for all integers m ≥ � > 0

and any non–negative integer s, the module D(�, s) admits a Demazure flag of level m,

i.e., there exists a decreasing sequence of graded submodules of D(�, s) such that the

successive quotients of the flag are isomorphic to τ ∗pD(m,n) where p ≥ 0, 0 ≤ n ≤ s

and s−n is even. The number of times a particular level m–Demazure module appears

as a quotient in a level m–flag is independent of the choice of the flag and we define a

polynomial in an indeterminate q by,

[D(�, s) : D(m,n)]q =
�

p≥0

[D(�, s) : τ ∗pD(m,n)] qp,

where [D(�, s) : τ ∗pD(m,n)] is the multiplicity of τ ∗pD(m,n) in a level m–Demazure flag

of D(�, s). It is known that

[D(�, s) : D(m, s)]q = 1, [D(�, s) : D(m,n)]q = 0 s− n /∈ 2Z+.

Moreover, for m ≥ �� ≥ � we have

[D(�, s) : D(m,n)]q =
�

p∈Z≥0

[D(�, s) : D(��, p)]q [D(��, p) : D(m,n)]q. (4.24.3)
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Our primary goal in this thesis is to understand both the polynomials [D(�, s) : D(m,n)]q

and the associated generating series: given �,m ∈ N with m ≥ �, set

A�→m
n (x, q) =

�

k≥0

[D(�, n+ 2k) : D(m,n)]q x
k, n ≥ 0.

It will be convenient to set A1→m
−1 (x, 1) = 1.

4.25. Numerical Multiplicity and Chebyshev Polynomials

Preliminary work using [27] assisted in the formulation of the results in this chapter.

Theorem 1.2.1 is proved in Section 4.27. We now discuss how to use the theorem to

give a closed form for A1→m
n (x, 1). We first recall some relevant facts about Chebyshev

polynomials. For n ≥ 0, the Chebyshev polynomial Un(x) of the second kind, of degree

n, is defined as follows:

U0(x) = 1, U1(x) = 2x

and

Un+1(x) = 2xUn(x)− Un−1(x), for n ≥ 1.

It is known that the polynomials

Pn(x) =

�n
2 ��

k=0

(−1)k
�
n− k

k

�
xk

satisfy

Pn(x
2) = xn Un( (2x)

−1) =
n�

k=1

(1− 2x cos
kπ

n+ 1
),
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and also

P0 = P1 = 1 and Pn+1(x) = Pn(x)− xPn−1(x) for n ≥ 1. (4.25.1)

We now establish the following corollary of Theorem 1.2.1 which gives the closed form

of A1→m
n (x, 1).

Corollary 4.25.1. For n ∈ Z+, let r, s be the unique non–negative integers such that

n = ms+ r with 0 ≤ r < m. Then

A1→m
n (x, 1) =

Pm−r−1(x)

Pm(x)s+1
.

Proof. Set Fk = A1→m
k (x, 1) for k ≥ −1. The corollary follows if we prove that for all

k ≥ 0 and 0 ≤ p < m, we have

(a) Fmk+p = Pm−p−1(x)Fmk+m−1, (b) Fmk+m−1 =
1

Pm(x)k+1
.

We first prove (a). If p = m− 1 this is immediate from the fact that P0(x) = 1, and if

p = m− 2 it follows from the second case in (1.2.1). Assume now that we have proved

the equality for all 0 ≤ p� < m with p� > p and p < m − 2. To prove the equality for

p note that m � n + 2 and hence the first case of (1.2.1) applies. Together with the

induction hypothesis and (4.25.1), we get

Fmk+p = Fmk+p+1−xFmk+p+2 = (Pm−p−2(x)−xPm−p−3(x))Fmk+m−1 = Pm−p−1(x)Fmk+m−1,
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and the claim is established. To prove (b), observe that the first case of (1.2.1) again,

gives

Fm(k−1)+m−1 = Fmk−xFmk+1 = (Pm−1(x)−xPm−2(x))Fmk+m−1 = Pm(x)Fmk+m−1, k ≥ 0.

Since F−1 = 1 we get P k+1
m (x)Fmk+m−1 = 1 and the proof of the corollary is complete.

�

4.26. The functions A�→m
n (x, 1)

In this remaining part of this chapter we use Theorem 1.1.1 to analyze the functions

A�→m
n (x, 1). Thus, we first prove Theorem 1.2.1. Finally, we discuss the general case of

A�→m
n (x, 1).

4.27. Proof of 1.2.1

To prove Theorem 1.2.1 we use Theorem 1.1.1 with � = 1 and q = 1. Since r(p, 1) = 0

for all p ≥ 0, the recursion takes the following simpler form: for n ≥ −1 and k ≥ 1,

[D(1, n+ 1 + 2k) : D(m,n+ 1)]q=1 = [D(1, n+ 2k) : D(m,n)]q=1

+ (1− δr(n+2,m),)[D(1, n+ 2k) : D(m,n+ 2)]q=1.
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Since r(n+ 1,m) = m− 1 ⇐⇒ m | n+ 2, we get

[D(1, n+ 1 + 2k) : D(m,n+ 1)]q=1 =





[D(1, n+ 2k) : D(m,n)]q=1 + [D(1, n+ 2k) : D(m,n+ 2)]q=1 if m � n+ 2,

[D(1, n+ 2k) : D(m,n)]q=1 if m | n+ 2.

Multiply both sides of the equation by xk, sum over k ≥ 1 and add one to both sides of

the resulting equality of power series. Recalling from (1.1.1) and (1.1.4) that [D(1, p) :

D(m, p)]q = 1 and [D(1, p) : D(m,−1)]q = 0 for all p ≥ 0 now proves Theorem 1.2.1.

4.28. Numerical multiplicities for general case

Finally, we consider the general case, i.e., the multiplicities of level m Demazure

modules in level � Demazure modules for any m ≥ �. For n ≥ 0, define

�A�→m
n (x, q) =

�

s≥0

[D(�, s) : D(m,n)]q x
s.

Since the coefficient of xs is zero unless s − n is a non-negative even integer, we have

�A�→m
n (x, q) = xn A�→m

n (x2, q) .

Proposition 4.28.1. Let 1 ≤ � ≤ m and n ≥ 0. Let βr(x) ∈ C[[x]], 0 ≤ r < �, be the

unique power series such that

�A�→m
n (x, 1) =

�−1�

r=0

xr βr(x
�).

64



Then we have

�A1→m
n (x, 1) =

�−1�

r=0

�A1→�
r (x, 1) βr(y

�),

where y = x/P�(x
2)

1
� .

Proof. Let �A�→m
n (x, 1) =

�∞
k=0 ckx

k. For k ≥ 0, letting a(k), b(k) denote the unique

integers such that k = �a(k) + b(k) with 0 ≤ b(k) < �, we obtain

βr(x) =
�

{k: b(k)=r}
ck x

a(k) (4.28.1)

We now have

�A1→m
n (x, 1) =

�

s≥0

[D(1, s) : D(m,n)]q=1 xs =
�

s≥0

�

u≥0

[D(1, s) : D(�, u)]q=1 [D(�, u) : D(m,n)]q=1 xs

=
�

u≥0

cu �A1→�
u (x, 1) (4.28.2)

Corollary 4.25.1 implies that �A1→�
u (x, 1) = �A1→�

b(u) (x, 1)
�

x�

P�(x2)

�a(u)
. Substituting this into

equation (4.28.2):

�A1→m
n (x, 1) =

�−1�

r=0

�A1→�
r (x, 1)



�

u≥0
b(u)=r

cu

�
x�

P�(x2)

�a(u)

 .

From equation (4.28.1), the inner sum is just βr(y
�) with y = x/P�(x

2)
1
� , and the proof

is complete. �
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Corollary 4.28.2. Let m ≥ 2, n ≥ 0. Then

A2→m
n (x, 1) =

�
1

1 + x

��n
2 �+1

A1→m
n

�
x

1 + x
, 1

�
.

Proof. This follows by taking � = 2 in Proposition 4.28.1, and rewriting everything in

terms of the An. If n is even, then �A2→m
n (x, 1) = β0(x

2) which implies that

�A1→m
n (x, 1) = �A1→2

0 (x, 1)β0

�
x2

1− x2

�
=

�
1

1− x2

�
β0

�
x2

1 + x2

�
. (4.28.3)

Rewriting this equation in terms of An, we have

xnA1→m
n

�
x2

1 + x2
, 1

�
= (1 + x2)

n
2
+1β0(x

2). (4.28.4)

Substituting x1/2 for x, we obtain

�
1

1 + x

�n
2
+1

A1→m
n

�
x

1 + x
, 1

�
= x

−n
2 βo(x) = A2→m

n (x, 1), (4.28.5)

which completes the proof when n is even. When n is odd, it can be proved in the

similar way. �

Remark 4.28.3. Fix � ≥ 1. Let R denote the C-algebra C[[x]], and S be the subalgebra

C
��
x�
��
. Then, R is a free S-module of rank �. Further, for any units u0, u1, · · · , u�−1

in R, the set {ur x
r : 0 ≤ r < �} is an S-basis of R. Consider the following two choices

of basis:

B1 = {xr : 0 ≤ r < �}; B2 = { �A1→�
r (x, 1) : 0 ≤ r < �}.
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The latter forms a basis since �A1→�
r (x, 1) = xr A1→�

r (x2, 1) and A1→�
r (x2, 1) is a unit in

R since its constant term is 1. Now, the map

φ : C[[y]] → C[[x]] defined by y �→ x

P�(x2)
1
�

is an isomorphism of algebras. Since φ−1(x) = uy for some unit u ∈ C[[y]], it clear that

the pull-back B�
2 = {φ−1(b) : b ∈ B2} of B2 is of the form {ur y

r : 0 ≤ r < �} for some

units ur in C[[y]]. Hence B�
2 is a basis of R� = C[[y]] over S� = C

��
y�
��
. Now, suppose we

are given m ≥ � and n ≥ 0. To obtain the generating series �A�→m
n (x, 1) ∈ R, it is enough

to obtain its coordinates βr(x
�) ∈ S with respect to the basis B1. Proposition 4.28.1 gives

us a way of determining the βr (in principle). Consider F = �A1→m
n (x, 1) ∈ R; this is

known in closed form by Theorem 1.2.1. The coordinates of F � = φ−1(F ) ∈ R� with

respect to the basis B�
2 are precisely the βr(y

�).
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Chapter 5

Graded multiplicites

5.29. A closed form for A1→3
n (x, q)

The following closed form formula was obtained in [26, 2].

A1→3
3s+r(x, q) =

∞�

n=0

n�

p=0

p�

j=0
j≡p

(mod 2)

xn q
1
2
γ(n,p,j)

�
n+

�
3s+r
2

�

n− p

�

q

�p−j
2

+ s

s

�

q

�
s�

j

�

q

(5.29.1)

where γ(n, p, j) = (n2 + (n− p)2 + j2)+n (2s+r)+(n−p)
�
2� s−r

2
�+ r

�
+j
�
−2� r

2
�+ r

�
.

In this chapter, We discuss the relationship between certain specializations of the series
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A1→3
n (x, q) and the following fifth order mock theta functions of Ramanujan [25, 29]:

φ0(q) =
∞�

n=0

qn
2 �−q; q2

�
n
, (5.29.2)

φ1(q) =
∞�

n=0

q(n+1)2
�
−q; q2

�
n
, (5.29.3)

ψ0(q) =
∞�

n=0

q
(n+1)(n+2)

2 (−q; q)n , (5.29.4)

ψ1(q) =
∞�

n=0

q
n(n+1)

2 (−q; q)n . (5.29.5)

where the q-Pochammer symbols (a; q)n are defined by

(a; q)n =
n�

i=1

(1− aqi−1), n > 0, (a; q)0 = 1

Given any power series f in the indeterminate q, we define

f+(q) =
�

n≥0

c2n q
n =

f(q
1
2 ) + f(−q

1
2 )

2
, f−(q) =

�

n≥0

c2n+1 q
n =

f(q
1
2 )− f(−q

1
2 )

2q
1
2

,

(5.29.6)

so that f(q) = f+(q2) + q f−(q2). We shall prove the following theorem.

Theorem 5.29.1.

A1→3
0 (1, q) = φ+

0 (q) A1→3
0 (q, q) = φ−

1 (q)

A1→3
1 (1, q) = ψ1(q) A1→3

1 (q, q) = ψ0(q)/q

A1→3
2 (1, q) = φ−

0 (q) A1→3
2 (q, q) = φ+

1 (q)/q
2
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Moreover, for all n ∈ Z+ and k ∈ Z, we have (q; q)�n
3 � A1→3

n (qk, q) is in the Z[q, q−1]-

span of {1,φ±
0 ,φ

±
1 ,ψ0,ψ1}.

The proof of Theorem 5.29.1 is contained in Corollary 5.32.1, Theorem 5.32.2 and

Proposition 5.32.3.

5.30. Formulae of A1→3
n (x, q) for n = 0, 1, 2

The following formulae were obtained in [26, 2].

A1→3
0 (x, q) =

∞�

n=0

xn qn
2/2

n�

p=0
p≡n

(mod 2)

q p2/2

�
n

p

�

q

. (5.30.1)

A1→3
2 (x, q) = (xq

1
2 )−1

∞�

n=1

xn q
n2

2

n�

p=0
p�≡n

(mod 2)

q
p2

2

�
n

p

�

q

. (5.30.2)

A1→3
1 (x, q) =

∞�

n=0

xn q
n(n+1)

2

n�

p=0

q
p(p+1)

2

�
n

p

�

q

. (5.30.3)

5.31. specializations of A1→3
n (x, q)

For the rest of the chapter we shall be interested in the specializations A1→3
n (qk, q) for

k ∈ Z, n ∈ Z+. For this, it is convenient to define

Φ(x, q) =
∞�

n=0

xn qn
2 �−q; q2

�
n
. (5.31.1)

Ψ(x, q) =
∞�

n=0

xn q
n(n+1)

2 (−q; q)n . (5.31.2)

The following Lemma will be useful.
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Lemma 5.31.1.

Ψ(x, q) = xq2 Ψ(xq2, q) + xqΨ(xq, q) + 1. (5.31.3)

Φ(x, q
1
2 ) = xqΦ(xq2, q

1
2 ) + xq

1
2 Φ(xq, q

1
2 ) + 1. (5.31.4)

Proof. We will only prove (5.31.3), since (5.31.4) is similar. From (5.31.2), it follows

that the right hand side of (5.31.3) is the following sum:

1 +
∞�

n=0

xn+1 (−q; q)n qn(n+1)/2
�
q2n+2 + qn+1

�
.

Reindexing this sum with n� = n+ 1, it is clear that it equals Ψ(x, q). �

Proposition 5.31.2.

A1→3
0 (x, q) =

1

2

�
Φ(x, q

1
2 ) + Φ(x,−q

1
2 )
�

(5.31.5)

A1→3
2 (x, q) =

1

2xq
1
2

�
Φ(x, q

1
2 )− Φ(x,−q

1
2 )
�

(5.31.6)

A1→3
1 (x, q) = Ψ(x, q) (5.31.7)

Proof. For A1→3
0 (x, q), we first use the following q-binomial theorem

n�

p=0

q p(p−1)/2

�
n

p

�

q

xp = (−x; q)n , (5.31.8)

to obtain
n�

p=0

q p2/2

�
n

p

�

q

zn−p = zn
�
−z−1q

1
2 ; q
�
n
. (5.31.9)
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We obtain a second equation by replacing z by −z in (5.31.9). Adding these two

equations together and setting z = 1, we have

n�

p=0
p≡n

(mod 2)

q p2/2

�
n

p

�

q

=
1

2

�
−q

1
2 ; q
�
n
+

(−1)n

2

�
q

1
2 ; q
�
n
.

Replacing this summation in (5.30.1), we obtain (5.31.5). The proof for A1→3
2 (x, q) is

similar. For A1→3
1 (x, q), apply the q-binomial theorem to the inner sum in (5.30.3) to

obtain (5.31.7). �

5.32. Mock theta functions

We are now able to make the connection with mock theta functions and prove the

first assertions of Theorem 5.29.1.

Corollary 5.32.1. For the specializations x = 1 and x = q, we have

A1→3
0 (1, q) = φ+

0 (q) A1→3
0 (q, q) = φ−

1 (q)

A1→3
1 (1, q) = ψ1(q) A1→3

1 (q, q) = ψ0(q)/q

A1→3
2 (1, q) = φ−

0 (q) A1→3
2 (q, q) = φ+

1 (q)/q
2

Proof. We note from equations (5.31.1), (5.31.2),(5.29.2)-(5.29.5) that trivial calcula-

tions give

Ψ(1, q) = ψ1(q), Ψ(q, q) = ψ0(q)/q, Φ(1, q) = φ0(q), Φ(q2, q) = φ1(q)/q.

(5.32.1)
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Since A1→3
1 (x, q) = Ψ(x, q) from (5.31.7), we easily obtain the equalities

A1→3
1 (1, q) = ψ1(q) and A1→3

1 (q, q) = ψ0(q)/q.

Now, consider (5.31.5) with the equation for Φ(1, q1/2) from (5.32.1) above to obtain

A1→3
0 (1, q) =

1

2
(φ0(q

1/2) + φ0(−q1/2)).

Thus by (5.29.6), we obtain

A1→3
0 (1, q) = φ+

0 (q).

Similar calculations give

A1→3
0 (q, q) = φ−

1 (q).

For the last two equalities, we use Equations (5.31.6) and (5.32.1) and proceed as above.

�

We now consider the specializations A1→3
n (qk, q) for arbitrary k ∈ Z and 0 ≤ n ≤ 2.

We show that these are in fact linear combinations of the mock theta functions with

coefficients in Z[q, q−1]. More precisely, we have

Theorem 5.32.2. Let k ∈ Z. Then:

(1)

A1→3
1 (qk, q) = ak,0(q)ψ0(q) + ak,1(q)ψ1(q) + bk(q),

for some ak,0, ak,1, bk ∈ Z[q, q−1].

73



(2)

A1→3
0 (qk, q) = ck,0(q)φ

±
0 (q) + ck,1(q)φ

±
1 (q) + dk(q),

for some ck,0, ck,1, dk ∈ Z[q, q−1]. The choice of signs (±) on the right hand side

is made as follows: both signs are (+) if k is even, and both are (−) if k is odd.

(3)

A1→3
2 (qk, q) = ek,0(q)φ

±
0 (q) + ek,1(q)φ

±
1 (q) + fk(q),

for some ek,0, ek,1, fk ∈ Z[q, q−1]. The choice of signs (±) on the right hand side

is now opposite to that above, with both signs (−) if k is even, and (+) if k is

odd.

Proof. All three assertions hold for k = 0, 1 by Proposition 5.32.1. We first prove (1).

Let k ∈ Z; equations (5.31.7) and (5.31.3) imply:

1− A1→3
1 (qk, q) + qk+1 A1→3

1 (qk+1, q) + qk+2 A1→3
1 (qk+2, q) = 0. (5.32.2)

Consider A1→3
1 (qj, q) for j ∈ {k, k+1, k+2}; equation (5.32.2) shows that if the assertion

of the theorem holds for any two of these values of j, then it also holds for the third.

Since, as observed earlier, the assertion is true for k = 0, 1, it holds for all k ∈ Z by

induction. To prove (2) and (3), we observe that equations (5.31.4), (5.31.5) and (5.31.6)

imply:

A1→3
0 (x, q) = xq A1→3

0 (xq2, q) + x2q2 A1→3
2 (xq, q) + 1. (5.32.3)

A1→3
2 (x, q) = xq3 A1→3

2 (xq2, q) + A1→3
0 (xq, q). (5.32.4)
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The proof now follows by setting x = qk, and arguing by induction as in (1). �

Finally, we turn to A1→3
n (x, q) for arbitrary n ≥ 0. Let us define

Fn(x, q) = A1→3
n (x, q)

�n
3 ��

i=1

(1− qi),

with F−1(x, q) = 0. Let Z((q)) denote the ring of Laurent series with integer coefficients.

We then have the following:

Proposition 5.32.3. Let R ⊂ Z((q)) denote the Z[q, q−1]-span of {1,φ±
0 ,φ

±
1 ,ψ0,ψ1}.

Let n ≥ 0, k ∈ Z. Then Fn(q
k, q) ∈ R.

Proof. It is easy to check that the recursion for graded multiplicities obtained in Theorem

1.1.1 translates into the following relation for the generating series (taking n = 3p−(r+1)

and s = n+ 2k), valid for all p ≥ 1, r ∈ {0, 1, 2}:

qprxr+1 F3p+r(x, q) = (1+x)F3p−r−1(x, q)−F3p−r−2(x, q)−xq3p−rF3p−r−1(xq
2, q)+E3p+r(x, q),

where

E3p+r(x, q) =





0 if r = 0

−xF3p−1(x, q) if r = 1

−xF3p−2(x, q) + qp−1F3p−4(x, q)− δp,1 if r = 2.

Set x = qk for k ∈ Z, and let n ≥ 3; it is clear from these equations that Fn(q
k, q) lies

in the Z[q, q−1]-span of 1 and the Fm(q
p, q) for p ∈ Z, 0 ≤ m < n. Since by Theorem

5.32.2, we have that Fm(q
p, q) ∈ R for p ∈ Z, 0 ≤ m ≤ 2, our proposition now follows

by induction. �
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