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ZNTROLUCT LON

In recent years, there has been considerable
intorest in the algebra of metrices which obey restricted
polynomial equations., The simplest example ts the Dirpe
Clifford algebra where the molynomiasl is Just quedratie.
Another example is the generaligzed Clifford algebrs,
the general mathematical formulation of whiech has been
made by Horinaga and Nono, Yomazakl, and Morris, while
its relation to physies through a study of the spael fie
representations has been made systematically under the Litle
I-matrix theory by Alladi Ramokrishnan and his eollaborators 1),
This thesis desls with generalizations of the
L-natrix theory on the sne hand to more general polynomial
algebras and on the other to problems rolating to higher
spins. It 1 divided into five chapters as
indicated in the following.
Chapter I is concernrd with what are ealled
tPolynomial nlguhru'm a8 an extensisn of the work af
Ramekrishnan and his eallesgues on the rlgebra of matrices

1) Proceedings of tho Conference on C11fford Algebra, its

goneralizations and applications (1971) edited by

2) L.V.V,Raghavecharyulu and Nalini B. Menon, J. Math,
Hlyﬂ- n, anss (1““)1



R’ )
satisfying conditions ke ("-—T and L = L (hs R.
We consider a generalization of this by requiring L to

satisfy a polynomiel equation. When these matrices

show very special properties, we call the algebra sstisfied
by them as polynomial algebras. We show that some very
important algebras which physicists have found useful

can be obtained by various restrictions on the palynomial,
such as both ordinary and generalized Clifford and
Grassman algebras.

In Chapter II, we show that thls sort of gemeralization
of Lmatrix aporoach is useful in deriving in a simple
way the generating reletions for spin and parafield
nlnbrua}. Oneo interesting feature is that in the eourse
of the derivation, we make use of a set of permutation
identities, which are directly verified, ap® 2ré¢ true for any
set of mssociative operators.

In Chapter III‘) s we study general involutional
natrtets,‘l.u., matrices which are such that their -t'h
power is a smultiple of the unit matrix. A 2 x 2 tnvolutinnal
matrix ‘('F.'J will involve three independent parametars, If
this 1s regarded as an elament of the general linear group

3) L.V.V.Raghavacharyulu and Nalini B. Mepon, Proeeedings
of the First Mastech Conference (Bangalore, 1969).

4) T.5.8anthenam, P.8.Chandrasekaran and Nalini B, Menon,
J. Math, Phys. 12, 377 (1971)



in two dimensions, its matrix representation as a trans-
formation on = basls set of homogenerus rolynomials of
qtR degroe in two veriables will yield a (q*1) x (n+1)
involutional matrix with three parameters., This is

just the q“‘ induced matrix of lm) and sinee !ndueced
matrices are p special elass of invariant =matrices, the
property of involution 1s earried through for an arbitrary
nxn matrix. We have set up the generating equation
for the q®P {nduced matrix of an arbltrary n x n matrix
and diseussed the ease n = 8 1n some detail., It 1s
shown that 2 8 x 2 {awolutional matrix A“) sati{sfying
[A¢* 1% = 1 can be expanded in the basis of the
generalized Clifford algebra Cf with enefficients
which are the generalized hyperholie functions., WYe have
also ecalculated the elgenvalues of the matrix helonging
to GL(m) obtsined through induction, and speelalized
it to the onse of involutional matrices.

Chapter IV deals with a generalization of C1ifford
algebra relating to a hierarchy of 1linear relstivistie
wave equations for spln 1/2, whieh are inequivalent to
the Dirae aquntinn”. This hierarchy has been introduced
by Capri. We reexamine the work of Umezawa an? Viseouti on

§) P.8.Chandrnsekasran, Nalini B, Menon and T,5,Santhanam
Prog. Theoret. Phys. 47, 671 (1972).
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general linear relativistie wvave equatlions and show
that the condition on p. (matrix coefficient of the
fourth component of momentum in the linear equation)
given by them ¢an be relaxed to include wave equations
of the type given by Capri. Ve consider a partioular

casa of tm'hl-rmhr and show that there are two
possible algebras which the -na trices can satiafy,
The particular B -matrices given by Capri satisfy

one of these algebras. The other is a new algedbra. Both
however deseribe a spin 1/2 particle.

In Chapter V, we consider the spin 1/2 wave eguatisn
{avolving aatrices satisfylng the seecond algebra and
derive the solutions of this equation in the absenece of
any 1utaracttun5). Then the equation with s minimal
electromagnetic intersetion put in is studied end the
magnetic moment calcul sted,

6) Nalint B. Menon (to be published)




I. Introduction:

In a series of cantrih:tiuunn'm, Ramakrishnan
and his eolleagues have initiated and studied the
matrix algebras obteined by imposing restrietive
polynomial conditions 1like

R

W and L= L (1.2.1)

This entire theory of 'l-matrices' had its starting »oint
when Runkrtshuanm devised a method of building a
hierarchy of matrices which have the property

R g
L&n-ﬂ

CAZ+ AP+~ A T=ART (11.9)

where the matrix Lgj,.  contains (2n+1) parameters Aiy Moy -

o ﬂ'iI'H-j and I 18 a unit matrix of the same

dimension as Lan-u + The structure of this hierarshy
of matrices was studled in great detafl. Later, it was

ualtnd. that many conslderations of I-matrix theory are
applicable even to matrices obeying a generalized C14 fford

* 1.V.V,.Raghavacharyulu and Nalini B, Menon, J. Math, Phys,
11, 3085 (1970).

1)Alladi Ramakrishnan, R, Vasudevan, N.R,Ranganathan and
P.S,Chandrasekaran, J, Math. Anal. Appl. 23, 10 (1988).

2)Alladi Ramakrishnan and R,Vasudevan, J, Math. Anal,
Appl. 32, 141 (1970).

38)Alladi Ramakrishnan, J. Math, Anal. Appl. 20, 9 (1987).

ey w - i . - —



uandttisn.l which is defined as f1lows. If we ecall
Cq.(1.1.2) as the C1ifford condition, then it 1is
posasible to generallze this condition on the l-matrices
W by requiring that the m-th pover of the L-matrix 18 a

product of a nnit matrix and a pumber, i.e.,

™
LanT-. = NS ﬂlm e = = "‘ﬂn-ﬂ )T = AT (1,1.3)

This has bean done hy Horris‘) in a recent eontrihution.

The work presented in this chanter and the next
extends these studies by imposing more general polynomisl
eonditions, leading to what we shall eall polynomial

algebras.
Let L, be an m-dimensional linear space over a

field F. %Ye generate a class of assoeiative algebras

ealled polynomial algebras A [ediy odgy — — olm ]
with Ea{i [c=1,2, — m 3 as generating elements by

requiring that every elament

LAY = Asd+ Agea + - — - Amodm (1.1.4)

belonging to L, satisfy a polynomial equation
PLA LI = 4 pis - —4PaT=0 (LLH)

where n 1is independent of m . ‘e show that some very
important algebras in physies such as Cl1ifford and Orassman

W RA.oO. ﬁ.,.,ﬁsj Quart . T. Hath . (oxjavai)l_s;, F (1963) .-




algebras (ordinary and generalized) and spin and nnrar‘la‘l‘d

algebras are indeced polynomial algebras.

2. The Clifford ecopditions!

Suppose we take the set (i3 to be the set of basis
elements of the Clifford algebra, which is the algebra
satiasfied by the matrices occurring in the Dirse uuuatiﬁnm
for spin 1/2 particles. In this case, the & satisfy
the Clifford commutation relation

diodj + ook = 3y (1.2.1)

It can be seen that this eondition 1is really a consistency

relation. The L-matrix associated with the algebra defined
by the ol 1s then just given by

L= M+ Agews + - - Amedm (1.2.2)
It can be seen that
LR - Q\F‘-}- hzi-l- - - I"'-mL }'I (1-203}

due to the fact that the ol; satisfy (1.2.1). Since

8) P.AM.Dirac, Proe. FRoy. Soe. All7, 610 (1928).



the minimal matrix equation satisfied by the L-matrix

is the same as that satisfied by a basis element of

the Clifford algebra 1f S A=4 | when viewed

from this angle, the Clifford commutation relation is
nothing but a consistency relation satisfied by the hasis
elements such that the T-matrix satisfies the minimal
equation of a basis element. This minimal equation s

a quadratiec equation in the case of snin 1/2 particles,
When extending this to higher spins and internal symmetries
of particles, as discussed in detall in Chapter II, the
minimal equation becomes a polynomial equation, but the
L-matrix as such will not be sble to furnish the generalized

comnutation relations unless some additional eonditinns

are 1mposed,
3. Polynomial commutstion relationg:
Let &, oy —c m be the basis elements

of an algebra defined over either a real or eomplex fleld

O S O Y be m numbers from the field,
Following Ramakrishnan, we construet the T-matrix as

L= Ao+ Aoy + « — —+ Amody
Now let
PR P (L0 = P;ﬂ"'~+ — - 4 Pa = o

(1.8.1)



be the minimal polynomial equation satisfied by L
where the P; are symmetric homogeneous molynominls

of degree . 1in A, - _ y Am and are glven by

Pi= &l 2A

Pa = %ay 2AAj + Raa AR

2 .3
Po = G SAAAR + “-3151"‘1143* 43240 e

- e = s = e e ®

P‘n = Gl ElA.L‘ Aig—" =~ foo-ctn = ==7F Bnn g A

where the prime on the summation sign indicates that anly
terms with inequal indices are to he taken in the summation.

Obviously, if we take A; =1 and AJ =0 for J + n'.J

3 Eq- {1.3-11 reduces to

M+ @™ 4 — - dnn = o (1.2.3)
Substituting (1.3.2) in (1.3.1) and eollecting the
eoefficients of 'AEI —-.A, we obtain thé most general

commutation relations satisfied by the S whieh

we call "polynomial commutation relations.' The ecommutation
relations of the algebra Eoc.” - —5 dn3 should be
compatible with these polynomial eommutation relations.

In the general case, of course, these polynomial relstions

ara too eomplicated to ba interesting. In the following we



shall therefore consider some special cases which lead

to ecartaln well known algebras.

When n = 2, Bq.(1.3,1) reduces to

LY+ P+ PaT = o, (1.3.4)

which, when written out in full after substituting for
Ly Py and P, 1s as follows:

E_i ?ALEAJ. —+ 0_.212’455 =

(a2 & fq,_&f""‘&
S hAjesy v A 2 A SRR AT

L4

which becomes

—3&ﬂ Ay (s + k) Fg

@y £ AAy (it )
bj

= 0

4 ..L 3‘&-.5 AL /Ld‘ (\—~ JL&J —+ Gaa Q‘A"AJ E*ﬂ
4

when we rewrite it as a symmetric expression in {1 and

Jy with every term a complete summation over 1,j, so that
now we can compare eoefficients of AiA[ . « Doing

50 we obtain the polynomial commutation relation 1n this
case as

(ady —+ Kyele )+ B (it eq) (1.3.5)

== O (|- é:ld} —t Eﬂﬂa\ga& =




For n = 3, we confine ourselves to the case when

0..“ = Rm = {13[ = (1.317- o « Then L satisfies
L2+ @ SAR L+ Qa3 SAi® = ©

which when written in symmetric form becomes
L EAAAR (ol + daxpely + ofelidR Tt X R
< o%,gl.,z} + Ky iy ol )
~t-_’13_ gliliﬁxh&hh(aacf&k + cjm—i-adnc?;#)
e T
—+ Bga S ALAy ﬁ-kc‘ji& dir ki

Comparing coefficients of y‘L,;gLa; JLk_J s W8 get

Sog{gd-ozk-—i— I (L~ & ou t %R d) Rag

(1.3.6)

where the symbol 5 stands for all the terms obtained by
permuting the suffixes, If Aas = —I and 843 =~ ©

the polynomial equation satisfied by L reduces to
L2 CAT ey = 5 AR

which is the matrix equation considered by Bhahhaﬁj and
Ramakrishnan and ‘huudwan‘n. It 18 interesting to note

6) I.J.Bhabha, Rev. Mod. Phys. 17, 290 (1945).

7) Alledi Ramakrishnan and R,Vasudevan, Symposina 1in

Theoretical Physics and Mathematies, V1.9 (Plenum Pross)
New York.



that the Cl1ifford condition satisfied in (1.3.6) is
not identical with the Clifford condition satisfied
by the Duffin-Kemmer algebra, even after putting

Fgq =t and @33 = ., This ease is to be

contrasted vith the case when L satisfies a polvynomial
equation of the second degree, where putting & = %2,=°

Rag = =\ to get LR = sAfP automatically

reduces (1.2.5) to the Clifford commutation relation
(1.2.1). In fact, Bq.(1.3.6) and similar equations
correspond to an infinite algebra generated hy a fintte
number of elements 1f n>3 « To make this algehra
finite, we have to impose some more conditisns whieh
recover for us the spin algebras on the internal symmetry

algebras etec.

4. Polynominl algebras for n = 2t

let us consider th@ algebras when the L-matrix

satisfies a guadratic equation of the form
L8 ninPa T =2 © (1.4.1)

that 1s, we have put &4 =© . Now the eommutation
ralations of this algebra are obtained from Bq.(1.3.5),
which in this case reduces to

(1.4.2)
iy ~+ ofjoe = T GuT) tFj




In contrast to the general case n > 2; polynomial
algebras for n = 2 are finite algebras. All specinl
algebras with different values of 2,, and &, have
both mathematical and physieal significamnce. Ve shall
now consider the algebras that are obteined for different
values of Ay and A5,

When @&, - a,, =0 y then the Eqs,(1,4.2)

(1.4.3)

and the algebra having this commutation relation is
isomorphic with the Crassman algebra of differentinl
forms®)., when Gy =0 and A22%¢ , then, without

loss of generality, &,, may be put esual to -1, vhen the

Eqs.(1.4.2) becomes

e R
K . (1.4.4)
hodj + ool =0, T

In this case, then, the <4 give rise to the C11fford
algebra of order n, which is of {mportance in the study of
splpor representations of orthogonal groups.

8) W.Schonberg, Anales Aead, Ciene. (Brazil) 28, 11 (1957)

H.Flanders, Differential Forms (Academic Press, Naw York
1963).
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It 1s very interesting to note that the matrix

representation of these algebras can be set up very

easlly, by forming the direct products of the Panlti

triplet of matrices S, Oy 3 53, whare

] (=

ﬂ-_;:(p 1)} 552(?-—11)15-%:(&_1)}{1.4.5)

LR - < &

which satisfy the following commutation relations

a..‘___ L 1__1
e

5_?.5::1 - %Ex — d_.f;l'ﬁ—a a5 5._353_: ﬁﬁ-x_!.ﬁ_zﬁ}:ﬁj(lid'lﬁ)

Tx0y — OySm = Exymzy (%43 B

+
We forma O = 53 Ti-{‘-j and note that they satisfy

+ =+

)? =0
Consider now the Grassman algebra G,
eloments of this slgebra are denoted by @, - - g
then these elements satisfy the commutation relation

If the basis

: (1.4.8)
dids + 39 =o°
The =zlgebra generated by these basls elements then eonsists

elements, which are given by the distiret

of S|
The algebrate structure

products of the basis elements.
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of the Grassman algebra being well known, we may write
down the matrix representation of this algebra.

When n = 1, the only element 9, = & _er & . Far n=4
n =2, the basis elements of 6 are given by
+
g] = o ® =
(1.4.9)

da. = *‘5"3&5#
Obviously

%‘1_ = (C&'*@I};‘ — Cr:h}'? @ T =0

+i2 =0
5__1:1 = (:trstﬁﬂ:‘b,]:” = d}:{@(ﬂ' )

: ” =
992t 329 = =(og @ + L)

= iﬁﬁiﬁi.q-ﬂ'iri)@}gi:a

using Eqs.(1.4.7). BExtending the procedure for the case

when there are n basis elements we obtain

g,= G‘i,@ rTerT® --- @

M-t Eimes

Ja= = GO sT®IT® - - -3

(1.4.10)
3= 20 23850 T@-- OF

- p—

-+ . —2@T
@IT® -
B 6 @C

g = *W

-l Eimes

@o—
Gorim ;ra-;m:;rfz@‘"" &+
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From these the representative matrices for the other
elements of the Grassman algebra can be obtalned direetly,
Notice that since we can take either O or & in
each of the n basls elements, there are altogether En
distinet representations. It {s interesting to nnte
that any of these 2" distinet representations ean be
transformed into any other by taking its transform by a
sultable permutation matrix obtained by taking Aireet
products of

FEEAL — e
with P 1in suitadble pleces. For example, in the case
n =2, the four possibla representations for {5._, 4,9

W) {cfex, z @ 3y v {feoT y =@ 3]

— + i = —
(1) {OT, 309 35, {C®T)+53® 3 and

(1) 1s transformed into (11) by the matrix T & Py or

(11) tnto (111) by P BT , stnce Po™p = o  and -

'Pu*"? = o s 8s can be easily verified,

The method of getting representstisns of the
Clifford algebra in terms of direct product of the Paull
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matrices has already been discussed extensively by
Ramakri shnan and his group.

6. Generallized Grassman and Clifford algebras:

Let the minimal! polynomial equation satisfied
by the L-matrix be of degree three., Sunnose we mut

& =© 8o as to make L satisfy
=2
L2+ Pal-t f2x (1.5.1)

We shall only consider some simple specific eases of this
whleh lead to well known algebras. When OGga=—1 and
the res® of the @iy are zero, this polynomial algebra
eorresponds to the algebra of spin 1 particles used hy
Shebha to obtain the commutation relations of spin 1

particles, In this ecase Bq.(1.5.1) becomes

L® = (AP A2+ - - Am®) L. (1.6.2)

This equation has been also considered by Ramakrishnan
and Vasudevan when the extended the & -oaperation to
the spin 1 -lmhraﬂ.

If we put all the ay equal to zers except 4, ,

Eqs.(1.6.1) reduces to

132+ @y, 24i3 = o
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which in a symmetric form is just
2 MM Ak Syt ty + Ras S A AR ‘S;J.Jﬁ;kég; = o

80 that we get the { to satisfy the condition

Sehdyap = — G338 d5dn (1.5.3)
If we put &33-; — s this just becomes
Solioly ol = 8 Sk Ski ) (1.6.4)
or S‘M&Q —o unless { =3 =k . Obviously

this will be satisfied 1f the set of basis alements o&
satisfy the commutation relation of the generalized Cl1ifford
~ algebra, viz.,

g e 3 . (1.5.8)
sy = | W, € 2y

where " 1is a primitive cube root of unity. On the
other hend 1f we put Ggy =0 we obtain the relation

X (1.5.86)
59&9{'&9{4& =06 "‘i‘}#hj
which 13 satisfied when the of obey the relations
ﬁ'fia =0
) (1.5.7)

ik} = Wn(j_o(.c Ld.d' ]

)
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These are just the commutation relations of the
generalized Urassman algebra of the third order,

Now let an L-matrix satisfy an nh order minimal
equation. As usual we can write down the most general
polynomial equation in this case also, However, if a
set of basis elements of the algebra satisfy the commu-

tation relations
2 i i)
ey = Weyd C ey (1.6.8)

where (O 1is a primitive n®M root of unity, then

S“‘“-l i W y where & denotes the sum over all

permutations over the suffixes, is zero unless {,= "~ tn = ¢
s 1n which esse this term reduces

to o™ . In this case obviously we must set a1l the

a's other than &, to be equal to zero, when the minimal

equation satisfied by L 18 of the form

0 = Baa DA AS & = = Am™) (1.5.9)

ML e . + o y We can take Gnn = —  yithout loss
of generality, when the basis elements of this algebra

satisfy the commutation relations

i = 1 : (1.6.10)

ool = Wegol
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This 1s the generalized Clifford algebra. Consider now
the algebra obtalned when &nn, - © « Then the

generating elements satisfy commutation relatisns

™ = o )

(1.5.11)
This algebra is called the generalized Orassman algebra.
It has m" -1  basis elements exeluding the {dentity,

All th@se elcments are obteined by taking produeta of the

form
G'{iﬂ'n{iFL_ & nfnpn

]Ji SG ok
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CHAPTER II
VAT s GEHNERATING REL N
SPIR _AND PARAFICLD ALGEBRAS *
1. Iptroductions

In a elassiec pnparn

y Hadhava Rao has ohtatned
the generating relatlons of algebras of higher spins.
This method has been extended by Hulfuehl. and Takahashi
to parafield algebras®’. Madhava Rao's method eonsists

in imposing the Lie algebrate condition

Laiy ofhaq — elpe 1= Si}ﬂfh = gik"‘fé (2.1.1)

On the sequence of polynomial eonditions

(oﬂi— y:n..) ("('-' +21J' W o,

@i —1) odi (it ) = % (2.1.2)

(% —3) (ol = %) (o + %) (ti+3),) = O,

satisfied by each basis element o& of the algebra. We
now demonstrate that the generating relations ean be abtained

* I.V.V,Raghavacharyulu and Nalini B, Menon, Proceedings of
the First Mastech Conference, (Bangalore, 1969), ».211,

1] B, 5. Madhava R“' Pmﬂn Iﬂdilﬂ Acad, Setl. .1&1 139 (1949)-
2) S.Kemefuchi and Y.Takahashi, Nuel. Phys. 3§, 177 (1962).
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in a much simpler manner if we adopt the spirit of

the L-matrix approach first introduced by Ramakrt aﬂmlna"'
which consists of imposing on linear combinations of
matrlces conditions similar to those satlsfied hy the
individual matrices.

2. Spip Algebras:

The L-matrix associated with the algebra der{ned
by the «; 1s defined as

L = (Alﬂl =+ Al M‘. <+ - Amdm] {q'ﬁil}

Mﬁenrﬂsmnding to D0s.(2.1.2) we take the molynomial

unnditiuna“ satisfied by L as
(L_ ﬂé_) ( L+ A;l) = 0O {utﬁch]
QLH F LGl T (o C L=+ A) = O (2.2.2h)

(L= 3n)) (L= ALY (LA (LF3L) = O (2.2,%)

here. AT o AR L ARL e o At

(2.2.3)

3) Mladi Ramekrishnan, J. Math. Anal. Appl, 20, 9 (1987).

H) TV, Raghmﬂa:hﬂ.r‘sjulu. anol N'L'-Cﬁi 2. ﬁd.n::n,

T. Hath Phjs-_l_t_ﬂ) 3ess (1970)
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In order to compare coefficients of products of A's

in Eqs.(2.2.2) we expand these equations in terms of
L and A and rearrange in symmetriec form as fallows:

,{'[_ S A Aj rﬂj

|

l:'. S AN Sy

e o), i
T SALA Ak Sy i = Y BAIAG Ag (%R

e a{d-.,gw -'rr.\ffgéhj'
T SN A MRSt = 2 S A Aeng (L3 ke

+{atf-:_~,°fh35ci£*l' {ﬂfi_,#(ggc;'k"" Ed')"‘-’k3él£
+ foy, nngE.h-ﬁ-{'adh_,ndg}ég ¢
where {a& <3 » - 3 Eﬂ.ﬂéﬂhﬂg_(éa%oap-:rfm ot ciedg
= eciet d""‘ oy ol
the coefficients of ,. Aoy  Ai Ak and  A: AL AR g
in the first, sbeond and third of the ahove equations

respectively, we obtain

S L 5 (2.2, 4a)
S“‘ft"*’-& = R

(2.2, 4b)
Sl il = 2 (& dik+ SR + oo Sty )
2 y (2.2.4¢)
didjolpoly = a({gﬂ)x“g.ﬁ + fu, o35k

Ty, 3 Sie + Ly ote) S5m

= {eliy ar3 S + 1%, 4538R2)

-—j:f (31} Ehﬂ. -+ J;R_JJ,Q — S;ﬂ.{ih)
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These relations which are the di:;ut eonsenuences
of the conditions on the L-matrix simplify the
process for obtaining the generating relations.
Eqs. (2.2.4) are simplified using Eq.(2.1.1) along

with the following permutation identities, whieh are
directly verified, and are true for any set of

assoeclative operators:
(WYY + YRYY) — Spyun

= [.Y;}Léh]-rEYhJL&;]J (2.2.8)
GCYiYJYhYL—i-F;TEYhY& -+ )EVRYQ“"- - YEYkTé YL}
— Sviy; Yery

=2{ %, 0%, 1,13~ 2 (%, E‘«"’a,«iusll"‘“‘féﬁ’g%’ Ly 38

-2 ! A ;
{xd 5"["?{1 Lhij-? e [‘*;-) Cve, I—k.tjg e {Y'E-} r'Y"’ Lh'r}jj
— D%y 0%, 03] — (e, D7, L4513
whera [‘ﬁ,) l-—a-:h:] = Y L'&R— L&k‘r';_ and

Ly = 0w, %1 = %Y — %% (2.2.7)
Eq.(2.2.4a) directly gives the generating

relation of the spin 1/2 algebra. Egs.(2.2.4b) and

(2.2.4¢) lead to the generating relations of s»in 1 and

spin 3/2 algebras after simplifying using Bas.(2.2.5)

and (2,2.6) respectively. We shall give the steps involved
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in arriving at the generating relations in the ease

of spin 1 only. An exasctly similar method apnlies for
apin 3/2 also.

{1) Spin 1/2:
The commutation ralation is just Pqs.(2.2.4a)
which is

oy + ok = LS (2.2.8)

(11) Spin 1: Gubstituting << 1in the place of ¥, 1in
the permutation identity (2.2.5) we hsve

3(D£L°(J' “p + a{h_ﬂf}ﬂdi.] SSi %i ﬂfal“fh_
= DJ;_J il — LD+ [l ogjoli— ot 4j
which reduces to
3 (el oLjoly + oLk -éénd'::) S s ‘Sﬂff"'f} oL
= Etégh — é'fh“cj = é&&\“‘l’ == _é;kxd.
= Ji&nfk + SR — XSk
on using Eqs.(2.1.1). lNow adding this equation to
Lgs. (2. 2.4b) directly gives the generating relation for
the spin 1 algebra,

(oledljoln + olpotpoy) = oLiSip + % Jij (2.2.9)
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(111) Spin 3/2:

Hore again the permutation identity (2.2.8) put

in Terms of &% 1is simplified using Dq.(2.1.1) and
then added to Eq.(2.2.4c) to get the following

generating relation:

otp Kol
hilojolpaty + Hgogody) + (GXpesn + XECTRTY

=4 {oi o Sij + Ll oy, ad Sik + g 1) e3 Sid

) e

O ITakalild
+—_li{pc,-}a{h3d"&t -+ E{wiadﬁ‘%k*i‘{“{’ H(ah, 10)

_1(5"5 Jﬁ[ i Eﬁhéaﬂ.'b 512'%}"'-)'
3. Parafermi algebras:

By an exactly similar prodedure as for spin algebras,
the complete set of generating relations for parafermi
algebras can also be obtalned. The generating olements of
the parafield algebra are given by

a"i- —_ (O‘ﬂ.ﬁ—1+ Iﬂ{alj/ﬁ

m"-l- = (dll:-*t == ida;_)fﬂ ) cﬂ\; _— k. f?-a.l}

and the Iie algebraic conditions became generalized and
A2

Cai, aiap — >~ g = p
2 g R (2.3.2a)

Las, aj'op — akoytd = 25y0p (2.3.25)

+ :
Lo, oja, — ago; 1 = ﬂa;d;ah- 28k (23.%)
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and their ecomplex conjugates. The Lwmatrix written in
terms of tha & 2nd A" now looks like

L= Tats — - + Hr&R + Rrék )
(I‘ll‘-"vl'\* e * ]'“?- M (2.2.3)
where
o= (Agea = A0 /g3 (2,2,4)

We require L to satisfy the same equations (2,2,2),
Obviously, in the case of parafields n should he even
and equal to 2, A" expressed in terms of r o and f
is given by

M= AT+ Mafa+— = JRfR) (2,3.8)

(1) Parafield of Order 1! In this case L satisfies
the minimal eoquation 13= A®T ., Written in terms
Y

of Q; and Qf and rearranged {n symmetric form this

aquation bacomes . vy
LS iy Caiag oy au) ok ZRp (Al R
ol L s = e i G

Comparing coefficients of )-u r(” ﬁTI{d' and r{;" ﬁ
in turn, we directly get the commutation relations

.;‘,L;‘ﬂ..é -+ a.én.e = © )

X ®oi=14;.
Gfay —+ afaf=Ldy (2.3.8)

4.+
Bya + el = o,
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of the first order parafermi algebra,

(11) Perafield of Ordor 2t

We rawrite Eqs.(2.2,2b) in terms of and

as
— +
20 R ph,i:ﬁm “vj"*k'_k M }-\“lks a; & %k

e rreae Fay .'"ra_g
t G [ Sas aftert + T Rk 5%

=Rl u (o G+ 2
+ S a4 S+ ARG

Compare coefficients as bafora to get the following

equationss
Soiajop = O, (2.9,6a)
Saiaj o = @i dpp + &SR, (2.2.6b)
Sa; 0} eyt = off Sk + &K Iy, RAete)
Siaxtas e = = (2.3,64)

Note that Egs.(2,3.6c and d) are really not independent,
since they are just the econjugates of (2,3.6a and b)

respectively. Substituting @; or o/ as neesssary
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1n the permutation identity (2.2,6) we ean arrive at
the following enuations:

S@iajar + RR e AL) — Sapajoy = (2.3.7a)

3(1i1&+a}* -+ a_éa.h*a,;) — .S'q,,;au}auﬁ'

fy < +
= E"—&.J ﬁl..h"'a,d'_ — E\H_*QE"J—E‘ La‘gfvi @‘-ﬁrm"—ha’k J

-‘-&SLR&;"‘ 2 IGhAL (2.2,7b)

B od -+ et — Secejut
= [y aa'ah-i-—ﬂ—ifﬂé]*‘- [_“-E') S R

: .3.7¢)
= 2%ka — LSRG . -

'ﬂ““ add (Eaﬂ.ﬁl} to (2-3.7.}' and {E-B-“J to ‘9-3-“)
and (2,3.7¢) in turn to arrive at the following enmmutation
relations of the second order parafield:

Hiefok o+ anajoy = o,
5. (3.8
i Gr* G ~+ ajagar = &g Sig+ AiSfk)

Oiog agt =+ afajai = QAL&pw— oSk .
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Par d of O H

The minimal polynomisl equation satisfied by the
L-matrix in this case 13 just

Li*—-.iﬂll—l—l-j_f"*I = O
4 15

irt
As before this equation 1s written terms of the @i
and Q' and coefficlents of (a) fLiry rile
(B) Y 1y Pelte ) LG pae
are compared, This glves the following eguations

Qmaﬁ Augadiy = ° ) (2.3.9a)
Sa. aam_g ag = l° [::Yiﬁ,f&&'}ful:‘ =¥ CSJ.&?.MJMS
: okt 2
Saf oy adar = 1o Ly {ax, agd -+ Sietey,

+ -
Sepyars 43 ]

We now write the permutation identity (2,2,8) with
the identifiention ¥i = ok 3 Vi sap , YRs%k
and "J"?' = 0 which immediately gives

3 : a rag)
6(aiojmpag —+ AtobR% O R aL AL gy

' = D
— Sg; o apag ’




27

On making use of the first of Bqs.(2,2.8). Adding
this to Ens,(2.3.9a), we get the first of the generating
relations of the third order parafermi field

Qi O G Qi 0Q Ry OF —+ G O Gp AL
&a—h ¢ ¢ ” R7E (2.2.10a)
To get the second generating relation, we identlfy
(¥, y Yr,Ye) = (Gi,8,aKk)aL) in the permutation
identity. After simplifying using Eos.(2.3.8) we get

T
b(aigjofay + @agoRay + &afagac &g Ok af i

aim SD...‘,Q.&&FE&Q-
= 83k faiyaed —+ 8&prtai, a4 — 4 Sirfay, agd -

Mding this to Bes.(2.3.9b) we get the generating

relation

ax(aéak'*a{ iy Md-h*a.&) + (84 Groyg + agOp Gf) AL

= gm Eaa') apl-+ 35}#!.{ a.{J ag 3~ 35@‘{“1"?3 (2.3, 10b)

In a similar manner, with suitable rearrangements of the

G.‘S and '9:‘- ES in EQB- {'2- 2.6) and {E-B-g) we ¢an obtalin
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the rest of the generating relations:

[ ik Qg OR G ) &
: Gy + #P
i (axoy 2y + agoj ar’ )+ (9f oK

= Sk, a3+ 353115.&&; ag 3 (2.8.10¢)
4 W Ry Oke &g Ay
oy s ad —+ a_,{ﬂ.[&‘]ﬂiz
af(mddﬂaa\-agﬂah}"'(@g“a*ﬂ ¢
(2.2.104)

= 5]h{ﬁ&,ﬂ€3 —+ J&k{'ﬂ_f_) agl + J&E{M‘J%EJ

e (a5 okt og + RQ&EQ..& y + (ap :fﬁ'ﬂ-d-r-k aj ap agyail™

= ot : R b 74
S Sriada me DRIRES Sy (2.2.100)

& E&;)aei‘&é —+ 5{&'{} aj3die
—3 (0 8ky + 510_3;;&) )
o+
R (04 ay ax* + aitay aif) + (aif offoj+ af @R, o o
= 3ei, 0038 + faify a3+ for,4idu

+ ey Spe F 3 ey 0’ — 3 (8 dhe +hegR),
Q* (a5 agapt + aff agag) + (&) afag+agadey)al(z.s,100)

=37t aj 38R + ia-ﬁfj ag 3oy + {ag’ )0y 3:0




Rq(m_r&é&: + oRojai) C“ﬁ“ﬁ% e e ]
=30, a3 8y —+ 3 {ad) ag 38 + EaR, &30 29

+ St oy 35kg — 2aTagfir — 3(dgdke i)
(2.2.10h)

We notice that the Dgs.(2.3.10a-d) are the same
as those given by Kemefuchi and Takahashi, lowever, the
Bqs. (2.3.10e-h) which we have osbtained represent a
simpl! fication over the equations of Kamefuchl and
Takahashl, in that they have obtained only the sum of
Eqs. (2.8.10e) and (2.3.10f), and that of DBas, (2,2,10g)
and (2.3.10h).

It 1s to be noted that the four equations (2.3,1%-h)
are not distinet and mhe could be deduced from the other
by making use of the Lie slgebraic identity and some
trivial changes in the order of the indices, Further in
deriving some of these generating relations of the
third order paraficld, some slight algebraie modifientinns
making use of DBos.(2.3.8) have been made. This was done

snly to get the equations in exactly the same form as
those given by Kamefuchi and Takahashi.
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: v 0 TRANS T S T

REPRESENTATION OF _GL(n) *

1. Introduction:

Ueneral involutional transformations which inelude
homographic projective transformations (apart from sign)
have wide applications in ph;rﬂ.ul}. These are matrices
satisfying the relation A" =kx, » k = constant,
of which a partlculur‘uan is the set of Paull matrices,
The case when the set of matrices A ohay the
generalized C11ifford algebra Cnm (GCA) defined hy

€igj = wejei , i<cj,; Yiz=l— -y (3.1.1)

where w 135 a primitive nth root of unity, has been
studied exhaustively., The general mathematieanl formalnae

tion has been made by Morinaga and Hnnua}, 'fuu:l‘kta} and

-"‘l'.ﬂ.ﬂnnthnnu, ?.8.Chandrasekaran and Nalini B, Menon
J. Math, Phj’!- 13, 377 (19?1}-

1)Alladi Ramakrishnan et. al., J. Math. Anml. Appl. 27,
164 (1969);

L. A.Pipes, J. Franklin Inst. 287, 285 (1969);

S, K.Kim, J. Math, Phys. 9, 17056 (1968);

' M,E.Fisher, Phys. Rev, 113, 969 (1959);

See also A.Deepak et. al., Intern. J. Quant, Chem, 3
446 (1969).

2)K.Morinaga and T.Fono,J. Sei, Hiroshima Univ. A§, 13 (1952)
3)K, Tamazaki, J. Fac. Sei. Univ., Tokyo, See 1, 190, 147 (1964).




31

Morris?), while 1ts relation to physies through the
study of their specific representations has been made
systemat ically by H:uakrlshnnnﬁ) and &olluhurntnrllJ.
The present investigation, however, is on involutisnal
matrices which satisfy Eq.(3.1.2) and may or may not
satisfy Bqs.(3.1.1). In this sense, Bgs.(2.1.2) alone
envelops a wider elass of matrices than those implied
by both the Eqs.(2.1.1) and (3.1.2). The case when
m = 2 has been studied in detatl by Kim®. In this
chapter, we shall study general involutional matrices.
When m = 2, an involutional matrix has the general
form (except for trivial constant matrices)

. o
g e @
R s [ B A (3.1.9)

where a2, b and ¢ are arbitrary parameters. If this 1is
regarded as an element of the gndurll linear groun in two
dimensions, the matrix representation of at2) as a
transformation on a basis set of homogeneous polynomials

of q'h degree in two variables will yield a (q+*1) x (q*1)

4) Lu-“ﬂrH!' Quart. J. Math, {ﬂ!fﬂ!‘ﬂl (2) m, 7 'rlm):
19, 289 (1968).

6) Alladi Ramakrishnan, J. Math. Anal. Appl. 20, 9 (1967).
6) S.K.Kim, J. Math. Phys. 19, 1226 (1969).



involutional matrix with three arbitrary parameters.
gy th (2)?
this 1s just the q"" induced representation of A .

Since the above procedure can be recognised as =

very simple method of induction and since induced

iy

‘matrices are a special class of inveriant matrices,
0

‘the property of involution is carried through for an
_arbitrary n x n matrix8),

In this chapter the following are dealt with:

_:-‘ﬁ show that the eonditions on the 2 x 2 matrix

A‘%? guch that CA®MIM=kT are sufficient to make

_"..qth 1nduced m.utrix of A{EJ obey the eauatisn
" q
@gyam Rt
A =
C q (3.1.4)

(2) We set up generating equations for the gt {nduced
matrix of a @ x 38 matrix A(m. In particular, 1f the
matrix A{a) is involutional in the sense [A®'1™ = RI,

the "M fnduced matrix ."-’bfy satisfies the equation

CASIN: = ckix (3.1.5)

7) D.E.littlewood, The Theory of Group Characters and

Matrix Representations of Grouns (0xford Univerasity
Presa, Oxford, 1968), p.178.

8) It has been pointed out to us by Professor Alladi
Ramakrishnan that the method of induction ean be related
to taking the direct product of heliecity matrieces
defined by him. GSee Alladi Ramakrishnan, J. Math,

Anal. Appl. 26, 88 (1969).




33

8) It is now quite clear how to write down the generating

wuation for the qth induced matrix of an arbitrary
n x n matrix A(8) 2 particular ease of interest is

if’!h"' A(“) is involutional.

(3)

5'_5'!4'} The special case of a 3 x 3 matrix A sattsfying

L‘_ﬁ””la= 1 s discussed in detall. It is shown
that 1t can be expanded in the basis of the generalized

%
C1ifford algedra €’ with coeffictents which are the

‘generalized hyperboliec functions.

(6) We calculate the eigenvalues of the matrix belonging
to GL("Y)  obtailned through induction, and speelalize

it to the case of involutional matrices.

2. Involutional transformations of O L& :

The eomplete set of qP degree polynomials in two

varisbles x and y,

L -8 45
Frirtie o J (3.2.1)

y:-.C:_J:}}} s enl= = A ‘

{s teken as the basis set. /An element P-Eu of GLC(CRV

is given by the general 2 x 2 (nonsingular) matrix

2 a A L B L ER)

[ L c 4 ] G J (2.2.2)
Gd—bc F O

R(_’:u

LY
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1 8 b, ¢ and d are arbitrary parameters. The (q+1)-
nsional representation Ruv” 1s furnished by
qth induced matrix of R(E) and is gilven hyﬁj

1::u (R*y) = (a.1:+.ﬂs_3jq (ex ol-_-jJ

(3.2.3)
= 5 ER jl rFi—“ g

Tl-b

The explicit form of Rflﬂ is obtrined by develoning
Eqs. (3.2.3) 1n power series, and one gets

Re; = & f-’”’ waJ( )fs-”-'”

Now, en invariant matrix lq of amatrix A 15 defimed
by the relation’’

R"LB‘L = (A S (2.2.5)

where Aq is the matrix whose entries are mpolynomials
in the elements of the matrix A, from which 1t essily follows

that

4 & ) (3.2.8)

8t gl

(3.2.7)
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where A, 1s of dimension (a*l).

Therefore the conditions on the four parameters

~ of the 2 x 2 matrix, in order that Eqs.(3.2.7) is

~ satisfied, automatically leave Fiq""_"' involutinnal.

When k = 1, the involutional matrix A{m involves

anly two pnrmt;ru since in this case a+d=©

and  bc=)-a? , and thus it can be expreased
as
(&)
A (e = 3R, (3.2.8)
where
& = | o (3.2.9)
3 La =

and R(s) 15 the rotation matrix in two dimensions

given by
R(e) = (s46 Swmé

_sie  Ceto /) (3.2.10)

with & defined through

@L‘)%‘ = 81}?‘[9 (3.5‘.11)
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3. Geperating ecuations for the geperal involutional
matrices:

By an exsctly similar procedure as that
utilized for the case of m = 2, we now write down
the generating eaquations for the ecase m = 8, Ve
define the qP degree homogeneous polynomials in

three variables x, y, z as

q-ch—oy oy ol
P 5, X g LD (3.3.1)

where the nonnegetive integers ¢4 and of, obey

2
4 +eos. SS9 (3.2.2)
The linear homogeneous transformation H(a] in
threa dimensions is given by a 2 x 3 matrix
(3 @ Aoy % (3.3.3)
R - . i I W
dio ey Gy a
Gae aa - ER N

where the @i are arbitrary parsmeters. The qth
induced matrix of Rta} involving nine parameters is
then obtained from the following equatiom:
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: (s U b
Cndusclﬂ Zh (Boox + GQoryt %oa3)

-

* (ﬁqu""'—* Guy + 9"1?-3.:'0&

ol
% (@g, X+ Gaiy + @a23) *

(x)

|:
- s L RQCE}J (hq <) qunﬂf':.” (oly'ela) )
(' o5} )
(3.3.4)
Y= (%93

where the matrix R{’" is labeled by the different

partitions of the non-negetive integers (.-d;':_.,.-c'g) and
@1} «,) satisfying

Hley)) < 1, A+ oy £ 9 (3.3.5)

: .
Hence the dimension of R-Q.H is simply given by the
number of solutions (_a!.lj oly) of Fqs,(3:3:5 ), whieh

in this case is aqﬁll to L 1—*:) .

Obviously, Rafﬂ reduces to H(a} when q = 1.
For econvenience, we ¢an choose the partitions in
decreasing avder in & , for a given value of (o + o)
and increasing order in (o ++«) for labeling the

matrix. To make this clear, we caleulate R{» 1n the

following. &Since q = R, o4, "a,ﬂ'ﬂli) oLy ean each
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: ~any of the values (0,1,2), The partitions («,<2)

are then as follows:

A+ <, (o, @)
O (oy ©)
{1y @)

¢ (o)
(-1] o)

g 1y 0}
(o) )

'il_ln; the first set of values of (¥, ea) in
Bqs. (3.3.4) gives

- —ota! el )
S_ (2) i 3-.{:_

(Roox + @ b T sy = "

= ER:{.&JJ 3 2 i LKI'.!IJ xj_*_ [-_ !-Jng_

(e6e)(o o) (eo)lie) (oo) (o)
m a
& s i) T r_ R
i [R ](uamz o) ) [:R Jfﬂ el (I b fﬂ e)lo2)

from which one directly gets

L (&} = R 2
@) =" . 1
['Ei ]{'bqu_aﬂJ G [RE‘ J(“n::.w
= Rog %oa
&) -
Lﬁfﬁ]{t = 2%"%‘ ER"?- ]Chajillj
ee}{yp)
a
L?!Jj foa
[kzw = oo bon {nu‘.'fb:.?

Cuu][ul!
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Thus the first row of the matrix T.’RE‘:I 13 obtained,
Similarly the rest of the alements can be easily
read off from Egs.(3.3.4) by successively using the
different partitions (e, «5) . Explieitly the

matrix [sz] 1ooks like

ﬂ.g|L zﬂ-ﬂlﬂhl %"1

—

ﬂ,qﬂz 2 Gpo Ro) Ennc"'a:_
iﬂltlL MI-
i ol
Qoo &p Gopody+ Aeifgo oot “+ Raay
Go 2 4o
Gy Rorfad 0t
é Qon G+ PR A2° iy I dpr g
bo o 20 s oy aro a2
L
tio* A 0o At Qap M- '
+ by
apy Qnda
a. & péaxt it Rzl
Gin 2P BByt @nfee apq Gzo il

L 9,00 Y
R ogoPar— Ga

Bgo® 2 aq 0 Bea,

-

Eqs. (3.8.4) can be inverted to get explieit
expressions for the elements quﬁ:} by simply

expanding in power series,

— oy =t o) ‘
(Roox =+ Qoiy~+ ﬂunn_)q x‘ “(@ox + any + an}) (Bgx + RaY+Ra2d

2 (?—na = a1 I S B TR L
f‘t]“ﬂl"l— r_{ )( j‘lL) @w‘-" ) (ad?\'j Bz

M

L]

x (9)( 'f:,,_) (6™ (o0) "7 (ang) >

oy 1 1) Cogon) ™ (agg) M (20s3)™
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1

o (T GUGID )
Ahs

ag - 2

% (& pA-a= g T o) T (o)
X (1511,||}1'=l = (91!1?

—(Ma 2 V +A2) A-
R e L

X ot

Now we set (f -t »+A)—(ftat Efi;l'J andp, + V2t Aa= oLa!
and comparing with the righthandé-side of BEq.( .3.4) we
get gfter some resrrsngement
_.J‘- 2

L .
| e T o L(ai.) o) e
(Aesta) (! Fee

% 2 (q'-aqu{L)(j)(hojﬂftl*ﬂl“‘ﬂ)(g
oy m——— i)

Va

“ (Au il ru-—as.) oy

! ng_l-- f“?."' .

¢ttt

Ao @2y

) (o0 )




The above procedure of generating the indueed

;’ﬁ!ﬂ.: can be easlly generafized to the casd of an
arbitrary n xn matrix R given by

—

1 Bop Oo) - fdon-i
I ’R fl.'ll = R0 n-“ | - &1 a-l
[ T,
_ LR (3.8.7)
- Phajp By — — Tt

e - n{_n} in n varisbles Xy — - %Xn)
e D g
-
T q_'— % a o4 odn
%ﬁ g, SN ot e s e 97 Vhe 7
Rty = =
- - ('7(. x xn ) (3-3.33
Y = Ly g T D

‘with the non-negative integers o/ satisfying the
partition egquation

24  <Laq (3.3.9)
(=1

| —

9) J. Slater, Geperaligzed Hypergeometrie fupetions
~ (Camdbridge University Press, Cambridge, 1966), p.227

41
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The qP induced representation of g0 44 given by

the matrix R¢" defined by

[y == ) xﬁ)q L= (ﬁﬂgulh*a)
= C&uui’l-‘- el —'-!""‘an—'- J_-:.l h:a
Y )
) = 1__6(" §'_ )
= 0 E LR s ) (el (0

@.l} — st )

(3.3.10)

where the matrix is labeled by the distinet partitions
given by Eqs.(3.8.9). We can choose them in the decreasing

order (o4, — - o) for a given value of
(h+ —— -+ &) £ 9
The dimension of R{"‘l is just given by the

number of solutions to the partitions equation (23.9),

which is simply ecual to n-+q-! ) 03 ( n+“|,.—'-)
("o .
Let us know speclalize the method of induection
to the case of ILavolutional matrices satisfying the

equation

[_RWJH = RT (2.2.11)

(n)
As in the case of a (2 x 2) matrix, the comditions on R
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- 80 that 1t satisfies Eqs.(3.3.11) make its q°P induceq
representation obey

@) um _ e
[ Rqg = K (3.3.12)

- This follows directly from the property of induced
~ matrices, which form a speelal ease of iavariant matrices
satisfying Bgs.(3.2.5). The conditions on R{n] implied

h.'f Bos, (8.8.11), vhen m = n, follow from the characteristie
aequation of R‘“) and are:

_f
(n) = r.n:':]l 3 B TT’ E RE“]J'h ;ﬂ}
Tr R = TR (3.2.13)

det R®) = =" k.

Let us consider the special case of a 3 x 3 matrix
setisfying the equation

3
[.a®] =TI . (3.3.14)

The elgenvalues of A{m are then given by the cube rosts
of unity (1, w, w2) . As in the case of A(2) ,(8)

ean be reduced to the form

ot
&) = VASYV (3.3.15)

2 6,9 2.¢
J{fsl Ao QEIC:J ¥ =C33
WS 3P WS (U B

"




44
re the £’ are the generalized hyperholie fumetisns

o > being a primitive ecube

root of unity. It is inessential to compute the matrix

I whose existence can be inferred from the fact that both
1(33 and #2) are nonsingular and satisfy Pqs.(3.2,14),
The f's are functions of the entries of the matrix Am.)
"i!u‘f satisfy the determinantal cunditianm)

5_ : 2 41{31 gzﬂ'll
£,@ TRE) £Y [ = 1
£33, (3 £

(3.3.18)

The :_j,’..m are related to the trigonometric funetions of

order three .Ii‘.cm (see Appendix B) through the relation

(1=%) .
Ri®(e) = A FGAe) (3.3.17)
F3 (s) can be expressed as
FOLe) e  BHp%i0) (3.3.18)

New York, 1966), Vol. III, pn.212-17,

f order three with argument (A®) | with A= exp(4Wi)=

19) A.Erdélyi, Higher transcendental functions (HeGraw 117,

5 Yo

J



45

B {!] L 1 o o ]
& w @
[ 1 {3-3. 19)

and RLE}(BJ 1s the matrix

RO (e) = "fFl “i“‘ i._;'"_‘& (3.8.20)
wda
$a wf; &

(3
The interesting point is that R (5] can be expressed

3 3
RO (e) = _5_ = W (ABJ&I,E " (3.3.21)
L=\
- = 8 AT RT(0E, (3.3.22)
L=\

here the matrix

{ SR :I (3.3.23)
] o 1w
| o ©

a base element of the generalized Clifford algebra (it

5=
=
il
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(see Appendix A). The determinantal condition (2.2.16)

can also be written as

Ael' 535;{” CA.E}F;.—I 2 Gl.ek' i?-' EBJ(BU'\{-‘E;_‘(

L=t Lz

2.3.24)

= |

where thé matrix

& | ©
[ i ] (3.2.985)
| o @

is the other base element of ‘33’“ -

o2
fl

The above discussion ean now be carried for an

arbitrary (n x n) tnvolutional matrix
1 il R S = (2.2.26)
which can be transformed to the form

V) il e 05 e BRIy wiip. 5. 87)

where
(n) (1 6 6 - ~—- 0
B -
BT A sE o
(3.3.28)
| fe 3t 8 —_— —*—Wn-l




47

11)

R™ (o) = gﬂ 20 isig A
L=

and

(3.3.29)

M Y RS 4| L~
- E AL h-t (Ejgﬂ. ) A_ %r(n—'ln51

where the matrix

[FLgl A el =ia aee
9’“ = o o w? -~ - -9
&) pra Mot - n -
o o L R e (3!3030)
| (=] e — — @
=4 for n odd
= for n even,

n
1s an element of the generalized Clifford algebra (5 .
The determinantal conditisn osn the hyperbolie and
trigonometric functions of order n is simply given by

: e !
dek _z“;;‘“’(mr.v;"_._ deb ST RO =1, (s.0,01)
= L=t

11) It has been noted by Professor Allad{ Ramekrishnan
(Private communication) that 1f a matrix T(x) has the
form T(x) = MeHX | with the matrices M and N satis-

fying the relation un NM, 4® = N® = I. th
follows that [ T(x'jjm & ;_ ’ o = 1, en 1t




48

where the matrix

= B T S e e -

?n = g =l = = b (3.2.32)
o 6 ©— -
i e b = =P

is the other base eloment of CP ., The f£'s are

functions of the entries of the matrix A{'ﬂ, and the

explicit relation is of 1ittle concern to us. The

existence of ‘I(“} i3 again guaranteed hy the fact that

n)
A(“} and Fc (BJ are both nonsingular and satisfy

Eq‘- (2.3, Eﬁ)l‘

4. Bigenvalues of R{‘m and Pf,g:h.l:

In this section we first calculate the eigenvalues
of the o®P induced matrix R.l{""’ oftha aztrtx A%
given by Eqs. (3.2.10) and speciialize 1t to the ense when
R{-"-’-‘ is involutional, The esleculation 18 based on

the simple theorem that if the matrix R(“] is trimngular,

then 1ts induced matrix R,qf"" is #2180 triangular in

shape similar to R(n}. This theorem has been nroved hy

Kim®) for n =2, and it is true even in the general ecase.

Consider for example the case of n=3, If Rm has the




i

R{;jt oo O B
= [ ae -

Egs. (3.5.4) has the form

—ody—ol oy
(004 (an s agg)™ (oon + a0+ 0D

5 e I
= s etk g

eilo)) : CADICAY
and 1t follows that

[R{uﬂk ].:Jm'_' = 0O

unless oi;,lj Loy and o4\ oly| & o+ vhere = (edi;xa)
and E“Ml = @Glj K2!')

« These are

simply the conditions for the matrix qu:y to bhe
triangular in shape similar to Rm"'. It 18 not hard to

prove the same result for any n .

In fact it follows directly from BEgs.(2.3.10) that
1 the matrix R" is triangular, then, since aij=o0, <]
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n-l . n - s L e
.5;‘}" 7 -ﬁf‘ g (3.4,2)
= V= .

=
These are just the conditions for R{m} to be
triangular and similar in shape to RI“""!'_ y Egs, (2.4,2)

incidentally suggests a more convenient laheling of R 1(:11'
by (f:,} —-]3.-.-4) satisfving
68 Pn-t S == S i s )
' (3.4.3)
-\) .
it Pat = = THBan S @R
wvhere
. z =l =
3= _EL_“L": J=bias 2"
L='J,
The generating enuation (2.3.10) for the induced matrix
then simply becomes
! - S
T?. ( S aip ap.) R+
o R LRy N () =)
3= &eo ; ER_T— ]PF‘ M 3400
with
pr=asy Bu=o (2.4,5)
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" P}P‘ demte CF'-"" = Ph.-l) . ' (Pl |- - pn}-l )

rupactlfelr. Bouations (2.2.10) and (3.4.4) are
ecompletely enuivalent.
Now it 1s always possible to transform the matrix

r(®) into the trisngular matrix RWT ?

3
RL )T 4 €, o o Sidis)
?L é-;_ o ‘
Sin o
o b
through a suitable unitary transformation., Here the

g‘s are constants, and the E'Is are the eigenvalues

of B{B)t Substituting Equa {3-4-5) in EQHI {313!6)‘ we

obtaln

[R{Q} T J =

{2

65
X i(’f‘?)(&ﬁlﬁ)( i )
w

—oly —
¢ YA

G E VIS AL

E*: %1; E% ele

(2.4.7)

Qb = 0 e 34 ()72 8, 4t !

5:= 52 B =0

= (&)
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The eigenvalues of R~ are then given by

Qo = i, s -+ s
& SEEESRE el s e (3.4.8)

The determinant of th?ﬁ is given by

-y —oly. | W) ,
5 due.l: R‘L[m = n" é;q “ ég‘ l 63 2
oy
Aytely 4. KTl
—1) +- - pte r
hett éf_q_ﬁuéll-i-ﬁf’r‘#t 'G-‘:L)
~= —ud -\ )&
oz,i ﬁ_‘_i_,‘,_-—i-(q.ql
Y €3
q(q4+) (4%
=6 4 €3) &

therefore,

vy (e
det R® = (& ez_eg)(z) — A 27(3.4.9)




where A denotes the determinant of “{B)_ The trace
3
of Ké] is given by

TR = S & & €3
ﬂ'f-ll} "{L
q-=+' )
\ Cﬂ."’dl =7 J__ E...-'j
— S &q & Desee T BN
o &H— €3
4, L,y 9+ Jea a&]
| b
= : é\q_-+ 2 (—-—J:) & ECG?:)
é'.“EE °£1.:"P 7,
G o3
‘L“l‘r 0l é:_'_'g.(-éb
e cplest = & 2 e
c\—-€3 [ H‘H-—_‘;_'_ €a G &
which after simplifying and rearranging gives
-T-"f qu_ﬂ = l: *
(- €e) (2 —€) (a—€3)
‘i'_-'rL E_;l-ﬂ)

, oo QA A cr 63 (&
}‘-.Eft-, Ca (ézﬁ' — By~ =hieR ;&(%Q*lhé]%y
T @410 i



od

IT " ='ers €3 =€ s Wwe just have
o o5 @ = (tEh) e
R = (43
| ~ R4 LA g (2.4,11)
since ﬂ*.:— is the number of partitions @t; 1)

having &6 Lo, X249  and oh+ 4 L4,

The above formulaze can be immedistely generalized

to yleld

ek eqm L5 C&)@'-"nn_l) (8.4.12)

where

B s Gl = sen (2.4.18)

is the determinant of R{nj. Further we have
= e qtl 2 g+l ]
i<} Rt
{.j;\,_.}n & € "-HJ“"C
BEAETT | e deaigess AEER,

=

(3.4,14)
— QJ.-"I—I‘)(:LL} Eiis Bge= = ] R
n.—-

(n)
Rq

The eigenvalues of arae given by

n-
gi= igi L < a e -l n-t
& 2 = En 2 o4 Sq4

(3.4.15)
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Gn)
Another interesting property of Re which ean bhe

easily derived from Ens.(2.3.10) is that

—t 1

%0 S (2.4.16)

L Ly )

2 i
This directly follows on partially differentiat ing
Cas. (2.3.19) with respect to each ra.;d‘ y multinlying

G

the resulting oquntinnfn::d then adding up all the
Fa

equations for the different ﬁLLL_'J .

All that has been disecussed in this seetion can
be specialized to the case of the general invelutional
nxn matrix A{“}. The eigenvalues of A{") are given

by

. wh-le
Eize) @abe, & CReagl ) ens TR
p 4 (3.4.17)
L LY -
In this case we have
g
29
s Ptqtm = eotel (lx Wt v--v A2.4.18)
_ n
s0 that
T }q}m = for q # 0 mod n

—Ente?  for q A 0 mod n. (3.4.19)
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Cny
The determinant of Ra is given by
@ = )
det ALY = [e® ]
(2.4.20)

Appendix A:

We summarize here the relevant deteils of the
generalized Clifford alglbrng"“. The equation

(1

£ i
=

n i
Al (ﬁ' a(;_m:)"" (3.4.1)
Let

is satisfied 1f 9{1.5 ohey the relations

oﬁ.‘.n&"} = Nm"&a&i_ ) L {J 3 1:]};‘) ——2"y (a.A2)

“h:nm = IL
The set of elements defined by

M o™ - (3.A.3)

-

where the integers l:;_ satisfy
6P & m-l, (3.4.4)

{s linearly independent. They are m™ 1in number.
Obviously they form a vactor space of dimension =D,
and with the product defined by Eqs.(3:A-2) they form
an assocliative algebra called the generalized C11fford

algebra (' . The case whenm = 2 can be realized to be
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the Uirac Clifford algebra. The matrix representatinn
of ad's has been obtained by using the Dirac procedure
by Morinaga and Nono?) and has also been obteined by
Ramakrishnan, Santhanam and Ghanﬂraa!karillﬂ} by using

m
vector space methods, The results are: Cn for n =2V

O o,
has a faithful représentation by the matrix ring ™ X" )

when n 1is odd, it has agailn the matrix representatisn
AN

in terms of (M xm ) -dimensional matrices, which,

however, breasks up int> m sets of inequivalent matrix

"9
rings "‘mDr- m « That 1s, 1f the set E]?J furnishes

W
a representation of dimension ™ % M ghen

_ML EF’E 3 tzly -~ — ) m-—lI also furnish
inecuivalent representatisns of the same dimension,

1 being a primitive n""h root of unity. The ease

whenm = 2 {is, of course, very well knnwulm.

Appendix B:

We assumarize here some general pronerties of the
trigonometriec and hyperbslie funetions of srder nm}.
The n functions

noQ-Om

2L s Ww exp (wialy Tabi— Mg 5.9y
11. “m=l
W= Qﬂ‘..EJ a;%)]

12) Alladi H?akr{sh‘nnﬂ T.5. Santhanam apd P, 5,Chandra-
sekaran, J. Hath, s. Seil. (Hadras) B, 207 (1969).

13) See, for example, H.Hoerner h@ﬂnﬁnﬂaﬂuumm
(Torth-Holland, imsterdam, 1963), Chap. B.
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are called the hyperbolie funetions of order n .
The i satisfy the differential equation

9{“ - ] )5 = -0 (2.B.2)
ok %

£

solutions of Eqs.(3.8,2) and their Wronskian is equal

J':ﬁﬂ from a linearly independant set of

to unity. From the definition of fi{ 1t follows that
mn .
ok M) o= —im . . B,
f'("“’ x ;_iwﬂ ;F‘ (1,n1)m MG.?M (3.B.8)
From (3.B.3) it follows that

i ( s wG_i}”§; () = L. (3.8,4)
LA

Eqs. (3.B.4) can also be written as

n L -1
dickn Sadi Pt = ot (3.3.5)
L
where the permutation matrix
A 1 o =g )
& & | -=- -~ @&
L (2.B.6)
8/ 6 Bilerie =~
S vir.s he —igeiu )
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1s a base element of (" .

The functions

1

N f(Axyn) ) tely =y (g p g
Eratr (Wi/n)

R Oy
A

are called the trigonometriec functions of order n « They

T

are the solutions of the differentinal enuation

s LN e (3.8.8)
2 "t
From (3.B8.7) it is clear that
n o ({—C)(2mtr) QM.
Ri sy = L s A E’*ﬂ’( x) (2.8,9)

=1

and

ﬁL( ﬁ P Speniadn v I atebéf'”m ijlta.a.w)

Appendix C:

We demonstrate the use of the exnansion of a matrix

in the basis of the roots of the unit: matfix to find its
arbitrary power. The problem of finding the arbitrary power
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of an n x n matrix has already been considered be fore 14),
Wa belleve that the expansion of n matrix in terms of
the roots of the unit matrix will simplify the problem
very much. Since we have the results snly far the

case of a 2 x 2 matrix, which is very well ¥nown, we
content ourselves by just giving the results, Any 2 x 2

matrix X ecan be unlquely expanded as
X= L1+ £ | (3.C.1)

|
whére the < S are the Pauli matrices forming the

algebra f;: along with the upit matrix. If the

maetrix X has the form
a 4
X = [Cd])

then
= = _| a_-oU
L = —'if"-'l’F) ) Aq -g_{
g{: _l__{%-l;l‘:) ) 'Qg‘_:__\_[f_{-g*":]]
> 8 2

Then 1t 1s easy to see that

(3.C.2)

Xa LDl e b i@as D
e

m
d 1 (29 [R+d"— (2-87"J, (2.0,3)
- R
1shere Jﬁ: (U2 + 224 02) ™,

14) A Herpin, Compt, Rend., Acad. Sei. (Paris), 225, 17
(1947). Recently this nroblem has heen studied by

R, Bakarat, J. Math. and Phys. jﬁ: 332 {1554){
i, Bakarat and E, Baumann, J. Hath. Phys, 10, 1474 (19¢%).
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Equation (3.C.8) can also be written as

XM= L, X + 4, (pa) 4,

P = (a+d) =  Trx and q:(_&i-'ﬂ'd =€J~f-l"xita-u'4)

\
wvhere the UE are the Lucas polynomials given by

um(]’; a) e i [ EP-{- ([-37".- q.q_)lfz ]m

bl CF 3 L‘_qjyl_ % [_JJ — (4@ Irz“-]m ]

| Of course there are methods of Sylvester using the explieit
eigenvelues of X and the method of using the eharacteristice
equetion of X , But we hope that the expansion in terms

of the roots of the unit metrix can be much simpler,

as in the case of m = 2 demonstrated above. The simple
reason is that the (nontrivial) roots of the unit matrix

are traceless matrices, and hence their characteristie

is much simpler.

7,
< WAURRS:
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CHAPTER IV

5 SLATIVISTIC TIONS DESCRIBING
PARTICLES WITH SPIN 1/2*

1. Introduction:

In the year 1928 Dirac discovered the relativistie
anouation which now bears his nunuli, deseribing particles
with spin 1/2. In 1936, Dirac extended his relativistie
theory of electron to the case of general 5p1n3). This
theory was investigated in detall by Flerz and Pault
in 19393]. Since that time, several types of generaliza-
tions of the Dirae equations have heen attempted, The
generallzed equations of Dirase, Flerz and Pauli mentioned
above can be written in a linear form only {f additisnal
subsidiary conditions are imposed. The exlstence of
three subsidiary conditions has always been a di{fficulty
of the Dirac-Fiarz-Pauli formulation. This is partienlarly
merked 1f we introduce an interaction, say with the
electromagnetic field in the conventional way, when the
subsidiary conditions become inconsistent with the original

* P,5.Chandrasekaran, Nalini B, Menon and T,S,5anthanam
Prog. Theoret. Phys. 47, 671 (1972).

1)P, ALM,Dirac, Proc. Foy. Soec. AlLl7, 610 (1928)
P.ﬁ.ﬂ-mrﬂc, Proc. Rﬁrl Soe, M‘ asl {‘LMJu

2)P. ALK, Dirac, Proc. Hoy. Soc. ALB6, 447 (1936)
2)H.Fierz and ¥W,Paull, Proc. Roy. Soe. AL73, 211 (1939),
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equations. To get over this difficulty Bhabha®)
formulated a set of relativistiec wave equations, His
requirements were that these fundamentsl equations
must be first - order enuatinnsg and that all properties
of the particles deseribed by them must be derivahle
from the equations thomselves without the use of any
further subsidiary conditions. However this resulted
in multimass solutions for apins grester than 1, that
13, the particle has states of higher rest mass which
are simple rational multiples of the lowest value of
the rest mass, Hnriaehandrlﬁj tried a 1inear equation

of the type
(Byy +m)x = o (4.1.1)

which hes no subsldiary econditions, but sti111 deseribes
a partiele of unique mass m ., l!le derived minimal ?V
conditions on the matrices *PH entering into the
linear equation (}+J.|} y 1n order that the enuationg

is relativistically invariant. His condition {s simply
that

PD“+.' = Fp‘n-l ) 1’1;3,.'1 . (4.1-?1

4) H.;-Bhabha' Rev, Mod, H‘rﬂl n' 200 {19“5‘}-
6) Harish Chandra, Phys. Rev. 71, 793 (1047).
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Umezawa and ﬂ.scuuua} showed thnﬁ-n must be equal to
2f where f 1s the maximum spin eantained 1n the field
function. Such an analysis mekes it almost obwious
that a particle with spin 1/2 is deseribed uniquely
by the Dirasc equation.
Recently, ﬂnpri?"h]
for spin 1/2 particles different from and inequivalent
to the Dirac equation., He shows that there can exist

has obtalned an equation

first-order di fferential equations other than the Dirae
equation that are form invariant under Lorentz trans-
formations, irreducible and derivable from a Lagrangian,
and whose solutions eorrespond to mass m and spin 1/2,

The only additional condition satisfied by the Dirac
aouation is that PBo is disgonalizable. Capri's
argument is that there does not seem to he any sufficlently
strorg reason why pe should be diagonalizahle, beeaune
17 such a conditiontls imposed, it sutomatiecally excludes
all equations of the type (4.1.1) for all sonins execent

spin 0, 1/2 and 1. He drops the requirement that Bo Do
diagonalizable and obtains a hierarehy of apin 1/2 equations,

of which he diseusses a particular ease in some detall,

6) H.Umezawa and A.Viscouti, Nuel. Phys. 1, 348 (1966).
7) AZ.Capri, a) Phys. Rev. 178, 2427 (1969).
b) Phys. Rev. 187, 1811 (1969).
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glving an explieit reoresentation for the P  -matrices.
For this example, he gets four solutions for fo
of which he throws out two, since the equntion
satisfied by Po 1n these cases 1s pot minimal. A
elose look shows that the other tun solutions also do
ot satisfy the mintmal eonditfon p."=po , but
actually obey P°%=*Pv and hence 1s dlagonallzable.
In fact there are also tws more solutions where Po=1
and Ia;q;ﬂ respactively., From the general econsidara-
tions of Umezava and Viseout1®), 1t should thorefore
follow that the equation written by Capri eannot deacribe
a particle of spin 1/2.

Hovever, a re-examinstion of the work of Umezawa
and Viscouti shows that the condition n = 2f is only

@ special case of the more general inequaltty
5 zn 2 28,

when s = f, Hence we can admit a c¢lass of equations to
describe a particle of spin 1/2.

As a particuler example, we examine the work of
Umezawa and Viscouti for the ease when f = 3/2 and s = 1/2.
In this case, as will be seen later in the actual ealeulstion,
the condition ol\ypy =0 » where  lppa s the
third-order coefficlant matrix in the Klein-Gordon dtrtnjuﬂe)

8) H. Umegzawa, Quantum Field Theory (North Holland Publishing
Company, Amsterdam 1966) Chap. 5, pp.80-81.
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yields three distinet algebras satisfied by the p
matrices. One 1s the Duffin-femmer-Patiau nuﬂ:rum
deseribing particles of spin O and spin 1. The seeond
we realize to be simply the algebra obeyed by the matrices
occurring in the equation given by Capri. There is a
third distinet new algebra® agaln deseribing a partiele
of spin 1/2. If, however, we require the existence
of a hermitianizing matrix u—; such that Qﬁ-?_' = Bt
fhe latter two algebras coincide and yield a trivial
extension of the Dirac algebra as the only iadmissible
solution for a aspin 1/2 particle, since a renresentation
of the new aljebra is furnlshed by simply the adjoints
of the matrices given by Cepri. .

2. Algebra of Capri:

Form-invarianca of lgs.(4.1.1) under a homogeneous
lorentz transformation D(A  with »  transforming
as

-
L) —= NAGEH S Do AT =Y (4.2.1)

* That these two algebras are inequivalent may also be
inferred from the fact that a heraitiantizing matrix
does not exist in this cese. See for more details
AcR,Tekumallie and T, S,Sannthanem (Mateelence Pronrint ' I

q.)'-EvI-Du_Ffun) Ph':‘s : -REV; E:_lt ) 11]“[- Liﬂ;SJ
N: Kemmey, Proc . Roy. Soc- (Lomdon ) A1T3,41(193%

]

G-Pekimu, _H\E.siﬁ' 3 Pa'rus (1"135}
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reqgulires that the F’l" transform as

DN 'Brpoy = ANV pT (4.2.2)

Bqs.(4.2,2) written in terms of the geperators of the
lorentz group 1s just

L st i B g Fpf = gl es (4.2.3)

This resolves the problem of finding all esuations

invariant under homogeneous Lorentz Transformations into

the problem of finding all FF satisfying the

Cqse (4.2.58). Bhavha®) hes written all the solutions

of Zns.(4.2.8) in teras of the spinor-matrices W*(k) |
*1::-]‘3{_]:,) , which were first given by Dirmm and later

studled by Fiar:m. UJ‘(kJ is a rectangular matrix
of dimension (2k-+) x 2R  and AP (k) 1s of

dimension AR xR+ . They were introduced
by Diree in connection with the direct product of

_ch"’:.; ) ® DCk, L) * A short account of the
procedure adopted by Shabhaz to get the solutions for F‘F

is given in the appendix to this chapter. An exnlicit
represantation of n(k) and wCR) 15 as follows: For

k an integer, y
| 1..5

u,(mm - @-;.Fn é’ru ‘ u(h;m: G40 By,
=

2
wh(R) = @R-m =4,

-1

y :
“'l(k}-rig = (‘ih"”) 6"115)
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Far k o half-odd integer,
u' CR'-'T,& fie= CT}?L 'E’T_4. )3 )

W Ry 5 = EJ"')%JT’HJ‘ )

43
& R-2) 38

dhabha has obtained the spinor companents f!»gl; of
all solutions of (4.2.3) in terms of these spinor

matrices. These are of the form

COR, Oy | pep [ CR¥Y, o)y > = ¢ (ReL) ® vP (1+))

o ~+ Pcé)
LUk O pp ] (Rad) 4= Jadgy = G CRrn) @F

P (oY)
((h-ll)&\ly’{ﬁ'l(h__ii] £+lf;_),£->= C—_&t,'lffck] ® C 'f

L(R) & WP
Cry O, lpepl (Rt & > = Sk S

(4.2,4)

where the ()  are arbitrary coefficlents. The

indices (k,1) here refer to the indices in J)Lh'EJ
labelling the irreducihle representations. If one warks
in a basis in which J* s dizgonal, then as Hildlﬂj has

10) E.%11d, Proe. Koy, Goe. A191, 253 (1947).
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shown the eomponents of Po are given by

<(h ‘t] “3;' (h— l E'+ y:L {_,> }- (4.2,5a)
C}w-@y”'(ﬁ“' %

), I pol (k-1 4-¥) W (4,2.6b)
<(hj % I;.l) ( 1-’__ Liz'lln*l+}(fk+ -f'_rl'}ly‘l'(.k-t-ﬂ'f}ﬂl-‘l} ¥a édr}l
ai oA
q’H- ;(!4 .Eu)

3
(( ‘P“,j R Yq_:'g]Fol I:L'l'_"_) h")9:> C,,{PCJ
where 4 k and 4! - k! j

i& 1 A integral part of j ,

k-2 < i' < |R+ 2

For A=k or L= R we have

LCk=Ly R4y [Rol () RO/ (4.2, 84)
= %-b‘c-_” h#a#l{: qu"ca’rl} '-"-g 1

A1l the other components of F"' are obtalned frmn

<R, R IR S = &-Jak+i<b.[,~?;llppfk)£> (4.2, Fe)
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and

Chy Alpalk 215 = p Rigaeh RS (4.2.5¢)

In order to obtain the solutions for any half-ndd-

integral spin ﬂapri?'} uses a »renresentation of the
homogeneous lorentz transformation whiech contailns as tts
highest spin the value of the required snin and then
eliminates the lower values of the ﬂ!.'!il.'; by suitably
imposing the necessary conditions on the matrix Po -

On the other hand, in order to arrive at a hlerarchy

of linear equations inequivalent to the Dirae equation,

he reverses this procedurej that is, using a representa-
tion containing a maximum spin 2 1/2 and then eliminates
the highBr components of spin. If the maximum spin 1s
1/2 what one obtains is just the Dirse enuation. The next
possibility 1s when the highest spln contatned in the

representation 1s 3/2. In this ease D has the form

D (L4) ® (%) & (), @ () (4.2.6)

7a) A.Z.Capri, Phys. Rev, 178, 2427 (1969).



If we want to eonstruct the P m trices osecurring
in Egs.(4.1.1) for a particle with spin 3/2, B, Should
satisfy the following conditions:

Po To ot (4.2.7a)

Tha = ¥ (3a+) pot (4.2.7b)

where T~ s the square of the generator of rotations
in three dimensions. The explieit representation of e

has been glven by Caprl.'?ﬂ. Comdition (4.2.7b) eliminates

the spin 1/2 component from the mixture of spins 3/2 and
1/2.

On the other hand to get a class of linear relati-
vistic wvave equations for spin 1/2 particles, Capri
eliminates the spin 3/2 component by requiring F’“ ﬁa
satisfy

TRE = B+ Ped (4.2.8)

In addition, of eourse, P" should satisfy the minimal
condition '

(4.2,9)
an‘ . F’ﬂi



72

Because of the cholce of the representation D gas

in Cgs.(4.2.8) ?pm appears in bloek-diagonal form
with the different blocks being labelled by the values
of T ., Here the block corresponding to spin 3/9

1s mede nilpotent and that corresmonding to spin 1/2

is required to satisfy the minimal equation (4.2.9).
This imposes some conditions on the epeffielents Cst
oceurring in po . Your possible solutions are
possible, of which two are rejected since they do not
satisfy (4.2.9) minimally., Actually these two =olutians
are trivial, since for one of them, Peo becomes eqnal
to the null matrix and for the other, Po 1s just
the unit maetrix. It 13 however found that the other
two solutions again do not satisfy Lgs.(4.2.9) mininally.
Indeed we realize that the matrices constructed by
Capri obey the following equation:

= : 0, A=1,3,3 %)
ﬁl* Fur’h“' F’pﬁ(Fu T zgufﬁ’ [ * ’ 4.2.10)
and hence
k] l
Pﬂ ) %F]" Fl") % = —I"-i J (4.2.11a)

(4.2,11b)

Prbye = ﬁnhPr TIRAE: SR
FFP*&PA = = PaPoy) h'—l‘“‘%""

(4.2,11e)
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and

P FuPr\ = — ]3‘1‘]5” y pEv (4.2.114)

In these four equations (4,2.11a-d), there is no
summation over repeated indices. These equations

are @esily obtalned by using the explicit representation
af the PF . These matrices are of dimension 16 x 18.
We give below the explicit form of these matriees as
obtained by Capri:

(=] & T
Jac o
— & o
O c
0 =3¢
e} o
(4.2.1%a)
—\ o
o=l
—{ ®©
b —\
o o
—C ©
O —e
§%c o
o C
N 6 o Sl




fs'a."-

o —&id

| vae o
0 ¢
6 ¢
-_ o
O o
O —e
e —
. o
&L
L=
il &
o =
ad o
O o
G o
a'ﬂcf
Vdie ©
o (=]
6" Je
ic o
<2 o
C _fdie
g =g
L o
= &
—{ _©
—6e o
& —(c
o a
c o
—i¢ ©
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(4.2.12h)

(4.2.12¢)



(4.2.124d)

From the Bgs,(4.2.11) it is therefore obvious that 1f

the condition of Umezawa and Viseouti is striectly followed
then the solutions obtained for B, eannot admit an
ecuntion deseribing a partiele of spin 1/2, contrary

to what Caprl has envisaged. On the other hand, we

show in the next section that the Umezawa-Viseouti
eondition 1s only a special case of a more general
{necuality in the spirit of wave equations eonstructed

by Capri.



3. The Umezawa-Viscoutl condition.

Let us now briefly go through the proof given by
Umezawa and Viscoutl to show that n = 2f, The Klein-
Gordon divisor d(2) 1s defined as that operator which
when made to operate on a linear equstion of the type
(4.1.1) reduces it to the Klein-Gordon equation., d(&)

{5 assumed to be a polynomial in the derivative onerators
such that

d(d) A(d) = (0 — ) (4.3.1)

where

76

A = — (pdp + m), (4.3.2)

and 4 (9) 1s defined as

d(b} = o+t o-:'r‘(br( - '-'Nfr“_: EFBD"' - -

s &
= SR
(4.3.3)
It can be assumed, without any loss of generality, that
the Dd]‘*_"'l"i are symmetrical with respeet to the
exchange of their indices. d(& transforms like v @ ¥

whera \ is the fleld function which satisfies the
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Klein-Uordon equation, and hence it contalns spins
2f, 2f-1, ... 5, where f 1is the maximum spin contained
in the field function. Eqs.(4.3.3) enn be written as

i» = S fo v ==t Spum =S
= M=, s 37
:ur‘( h{ rl "e“'l}-l-i ¢

The terms for which 2y af ean be regrouped as

d‘(mdh—-—_‘g. Q—l}}fi

(
[ o o o kyRg
oLl ‘Né - éh} (a) = ol ML ¢

since 2f 1s the maximum spin in dA(2) and the rest of
the terms can only contribute to> a power of [I. .,
Obviously, "(T‘"_'E"E- must be zero for Q-Q} odd.
From Lgs. (4.3.1), it follows that

odom = ‘sz 3
(oo P m.nird = o)
S o 0
(tppo & Sopp)t mepp™ T o) g 4,

f
SCFW"N g ™ RO 7 X

where S denotes the summation over terms given by
taking all possible permutati-ns over the suffixes,
The solutions of the equations (4.3.4) ean be worked sut
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to glve

Ly = —Pp (4.3.5)
odrlu = .:r.'Lﬂ_ 3]_”? -"‘al: Spr_ Fu

........... e
¥ Jimeen 2 =l EII- SFF‘N— - F’Hg..g ﬁE-lJF{

Thus we have

A(®) = m+ P bv-»r__;_“([j__ﬁﬂpusrtau] (4.3.6)

_+-
Using these equetions, it follows that

= o 8 ¢ L5 2f (4.2.7)
o e )

even when ({- 2f) 1is even. Hence, the polynominl
A(Eﬂ should terminate at L_;{&'_,ﬁ . If, in addition,
we require the field function to eontaln the maximum

spin T, dl‘“"’ s Py = ¢ . Hence L=2f . This
{5 the proof of Umezawa and Visecouti, On the other hand,
{f we project spin 8 <§  contaimed in a field function

with maximum spin £, we have the inequality

The Harish Chandra condition on Pﬂ becomes

B s Ppl‘“i (4.2.9)

¥

£-1

Pul




In the spirit of the above discussion 1t follows

therefore that the approach of Capri is fully justified,

In the next section, we shall diseuss the
implications of Fes.(4.2.8) in the light of the strueture
of the Klein-Uordon divis{oy.

4. The new algebrat

Let us chaose the sequence of representatisns

(L e (05 W)@ (Y, ,00@ (Y, V) which
contains a maximum spin of 3/2 in addition to a sonin 1/2

components. We have in this cease

as the other terms vanish in view of Dgs.(4.2.7). If

the field function should have soin 3/2, then ac'ﬁﬂ A o,
On the other hand 1f QJ}WA": o » we find from

Eqs,. (4.3.4) that

and hence from the third of Eos.(4.3.4)

e o =i 7.0) =0
Sp«, = = Sp, (g, Db,
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dence
Bre by + B Pupo Po byl Bubr (4.4.3)
+
e Fﬂﬁ-l \?’ﬂ + F’*P"’Fﬁ = QST‘UF‘N' zgr“[:;g ?‘
Bquation (4.4.3) admits three distinct algebras of the palH

Duffin-Kemmer-Petiau type obeyed by the P =-matrices.
It has been polinted osut by Harish Ghandram that
by itself, the commutation relation (4.4.3) will not
gencerate a finite algebra. In order to make the algabra
finite, a stronger condition must be imposed an the

F'rf . There are open to us three possible ways of
imposing such a restrictive condition whieh is at the

same time consistent with Eqs.(4.4.3). The first leads
to the Duffin-Kemmer-Petiau algebra,

P (4.4,4)
1Poba Pf"PUFp* i %hﬂlgh+%ADFr(J
deseribirg particles with spin 1 and 0. The sercond
1s the algebra obeyed by the matrices of Capri.
P ( - .= &S
I F’,»\F’v F"b[""ﬁ. AL Fi“ (4.4.5)

Babo + BoPr 3 2940
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We find that a third new algebra is also possihlet

Ceao + PoPd R = 29, P
(4.4.6)

Prko ~+ PoPp # T0n0
Hoth (4.4.5) and (4.4.6) deseribe particles with
soin 1/2. This can be demonstrated by construeting
the J* operator as Capri has done and showing that

2 & a 2
=1 T,n':. - JEO;."'") g vhere 7 is the
square of the generator of rotations in three dimensions.
That these are the three algebras of the DKP type ean

he seen as follows. BSince the highest non-vanishing

term in d(2 , namely "fl‘mbr‘é’u , transforms
1ike a spin 2 objeet ( c‘.wr,_ - LY., ,]{1)) and
since ol (D) transforms like Vv @& ¥ where ¥ 1=
the field function, 4 can either be a combination

of spins 1 and 0, which ylelds the Duffin-Kemmer-Petian
algebra (4.4.4) or it can be a combination of spins 3/2

and 1/2, which ylelds the Capri and the new algebra,

Of course Eqf.(4.4.3) Ltsalf generatesan (infinite)

algebra if there are no subalgebras of the Duffin-Kemmer-
Petiau type. A representatiosn of the new algebra (4.4.6) is
furnished by the hermitian adjoints of the matrices given
by Capri.



The procedure discussed here is not altogether

new, since we are used to = spin O partiele deseribed
by a Duffin-Kemmer-Petiau algebra with P ond a{ﬁu{‘-ﬂ .
In eonclusion it thus looks remarkable that the algebra
of P -matrices for a particle with spin s scems to
remember the parentage of maximum soin in the ehoice 1
of the representation. In fact by choosing representa- |
tions with higher spins, for instance with ZXpoATo P
and  XHva PO, we ean get other equatiosns,
still describing a particle with spin 1/2. As Capri
has alresdy envisaged, all these equations deseribing
2 spin 1/2 particle (except Dirac's) lead to non-
renormalizable electrodynsmies and therefore are
inequivalent to the Dirae equation in the presence
of an interaetion. These different equatisns ean
possiblly b= used to deseribe the electron and the
muon, whose difference 1s very mysterious.

In the next chapter, we shall ealculate the
magnetic moment of a particle described by the new

equation.

Appendix A:

We indicate briefly the procedure followed by
Bhabha to obtaln the solutions of Lgs. (4.2,8), 1.e. the
equation

[RES T 3 g et gte o7 (4.4.1)




Bnabhe starts by noting that with each matrix pI* can

ol
be connected a spinor F. P and vice versa through
the eguations

: o n )
F‘u:[s__ F’ﬁ“-r 3 4 P“:%Erfb& rs""fb (4.A.2)

where ?_ﬁ_a.d?} ﬁTnzPJ 0-;?) G_EHIP 3 is just the |
sot of the 2 x 2 unit matrix and the three Paull matrices,

the rows and coluans of whieh have been labelled hy

the spinor indices » and F, « &Spinor indices take on

only the values 1 and 2. Raising and lowering of spinor

indices is carried out by the antisymmetrie sninors

v
épu and -::T\ according to

e IV
Bus Gt ) L% 2y (4.4.3)

~ & élL: — & :I.
where En. = — Sy =1 &= R =

o
Antisymmetric sninors éfﬁ-" and &T'“-' for relsting and
lowering dotted indices are defiped similarly. Now, an
antisymretric spinor H'® can be connected with tws

symmotric sotnors k('™ and LFY uy

LA . A4a)
él' K " = - T 'rf rfi"'”r el

(4, A.4p)
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Expanding Eqs. (4. A 4) leads to the following two sets

of equations

Kl =K =k K= KKy K=K+ Ky (4,0, 60)

L il iz Bl 2_ il (4. A, 6b)
L‘ = 1-1 'L3_ ) L:‘. — Lz_kt:j]LI:-L; }
where kz_, gj 3 ké and LzJ I:H; Li have heen
defined as
0| e
|<1 1 J{ (l.'.ﬁij"l" H:-'J'J ) I{_j = z (LH -+l JJ (4. A.6a)

Ky =i (in"™ 1)
2

H ﬂ‘-—}‘} {41 ﬁ‘lﬁh)
S L

Liz‘ !,;_C‘-H 3 G-

When the M's are the infinitesimal transformations of

A I
s Ijﬁ(iﬂla'—ﬂmjj L_'-_r: L;(LHJ,-..

a representation of the lorentz group, the X's and L's
form two sets of matrices of which the matrices of one
set commute with those of the other. Also, the members
of each set obey among themselves the commutation rules

of angular momentum operators, that is

. ey (8A07)
LK, Ky3 = ‘K3, Lky,Kpd= 1kx, [g,rcel=thy o
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I

and similarly for (La | Ly, Lg) . K= kat+ 1y Ky
and L= LBy Lo~ commute with all the
six M's and have values k(k+¢l) ana _L(&—+V) reapoctively,
1f we consider the irreducible resresentation 1  (R)£)
of the genoraters corresponding to the Pepresentatiosn
DCR &) of the homogeneous lorentz transformation.
The K's and L's have representations of degree (2k+1)
and (R0+!) , and their eigenvalues run from

Ry k-ty - . =kt =k, and £, &-1, - - - "_iH}_JE)

respectively. Choosing k'i to be diegonal and
labelling the rows and columns by m, where m takes values
from k to -k, the matrix elements of the k's are given
by

(mligim) = m
(’ru+1[|-(=,,_+ika]-i~n)= [:Ch-m,l(h-rm-uj_]g‘

('m—i | K= ‘-H-.Jlmj = C(R+m) (R—m —+ '.}.J"l’r;L (4. A. 8)

fow, the matrices Llffhj and 15T (R) satisfy

T e ol k) = () ulltRy = k4,
vﬁck}vh(“g&} = HT{CM‘»&I wi(k)y = © )
(4. A.9)

R
Rl ey (B = K+ G0 )

M hy — R
—w (R (R = Kvﬁ[m Re,
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Correspondinglyone has similar equations for (0
and (D yith K(k) replaced by L(2). From

(4. A.9) the following two equations can be deduced

£ Wlr)
O fruorle ®

v ¥ =
WP KPP R-y) — k"0 W = L
i f) = :ﬂ; F* E;CH w1 &
P k) kIP — KU R i = g =
Now considér DEqs.(4.A.1). With some algebraie
manipulations and using Eqs.(4.A.2) and (4,A.4) we can

deduce from this equation the fullwi.nz_ relations: =
; pY _ PA Bf . v
R
. s Lrl pv AV f’]"
44 LF‘M ) Lﬂfj S e P (4.A.11)

it
The matrices Hf can be written in the form

— f [ —
e [
1k, )
Ly
H' CReyly) (4, A.12)
[y
Kk, )

Corresponding to this representatiod of HYF' s both kﬂ?

and I_‘W take the same form. The matrices Pw‘ are

also divided into blocks eorresponding to the bloeks in t‘I'F"r]L
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A
these blocks being labelled as (k.” €4 “3% | R-F.-J '9'%)

Then Eqs. (4.A.11) just become

( ks, 261 pBA1 R, 40) KT (k) — KT ChR) (R 25! PP e L)

A < Bf ' fA[ kl::'fl
=1 eF'kaUEs | pf* ) ke, %) +fé{4gisl}a% ’

and

S ND /) 112P ke %)
- & — 170 (R Al
Che, 2l B*7 e, &) heity)

LS ' AV P
= _LEM (ke & fa kl:}%)_'_g]jé Chs,bslp

=
(4. A 14)

A
Because the index A of PP remains unaffeected

in (4.A.13), while index p  remains unaffeeted in
(4.A.14), the general solution may be written as a direnrt

product of two rectangular matfices of dimensions

@.‘s*‘))}(@-hyﬂ) and (A1) y (4 +1)

respectively, 1.e., we may write

(Rg, L) pPA LRy, & ) = Ckﬂ.fﬁ|h,,)(€s||siu4,)<4.n.m

Therefore (4.A.18) reduces to
(ks |pﬁ‘ | Ry ) KW(_M_.J = KYkaE.J ( Ry (AP ke )

=k éﬁf(ks],qf”.ht) (4. A.16)
=% E‘eﬁ{)( L, tAM &)
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and a similer equation holds for (4, Ii%ﬁlit ) .
Comparing this with Eqs.(4.A.10) it 15 clear thet they
are exactly of the some form if R = R Y .

It can be shown that ( Rl Pﬁ' [kRe) =0 unless

k{_ =Rg = }é‘ « A similar result holds for
C‘Eslpi 12) « This indicates tl:u.-.t the matrix
elements of the spinor components ’3PA may be written

as proportional to direct products of the 'h}s and '1-'3[-5')'

they are therafore given hy

(R, QI Ry -4 = coPr+y) Wt (L)
| A )
(Rey, &y 1pFAIRY) = i
CR 2| FP’& | R+Y ) £ 5;1) = (’Eﬂ}PCR*I-M M+ 5&)]
) 2 h
(R-*ry y A+ [lgf-‘*":'l k, L) = ali‘ui}(k'*'?,_) LLhC'E‘l‘yi)‘
] 2



CHAPTE R _V

SPIN 1/2 PARTICLE IN ELECTROMAGNETIC FIEID *

1-Itrd 3

In the last chapter we studieéd one nartieular
ease of a hierarchy.of linear spin-1/2 equations
inequivalent to the Dirac equation, which has been
obtatned by Capril) and we found that there extst two
possible algebras which the matrices b entering
into the equation can obey. One of these is the algebra
obeyed by the matrices given by Capri himself, The
other, we saw, was a new algebra which 1s distinot
from the first so long as the matrices are not hermitian.
In this chapter we consider the spin-1/2 wave aguptinn
involving matrices satisfying the second algebra and
derive the solutions of this equation in the asbsence
of nny intersction. Then the equation with a minimal
eleﬂtrnunn;tle interaction put in 1is studied and the
magnetic moment caleulated., It 1s shown that the expeetation
vslue of the magnetic moment operator is exaetly the

seme as in the Dirac case, in other words, just ¢h (Amc .

* Nalini B, Menon (to be published)
1) A 4.Capri, Phys. Rev. 187,(1969), 1811,




2. Free-field solutions:

The equation under consideration is of the form

(Bebp + )¢ = o, (5.2.1)

where the I"l""‘ satisfy
CPRpo = PoPa) Bre = 280 Fro
CFAPD + PoPr) F

The matrix representation for the [ﬁs i3 just given

(5.2,2)

by the hermitian conjugates of the matrices given by
Capri (see ChapteriV for the explieit form) and these
matrices are of dimension 16 x 16. The Klein-Gordnn
d!visurq) in this case is given by

/\(P) = [m— Fj" Fr( -L CF!" S Pﬂpﬁf—igﬁ%ﬁ.a.a)

as 1s easily seen from Egs.(4.3.3) and (4.3.5). We now
operate with /\(PJ on Lns.(5.2.1) to get the Klein -Gordon

eguation

D= Brpw r L [)3,439-#‘ [s,{pu fég,m) Prpo [ﬁ]%-._““ﬂj?‘

=l

2) H.Umezawa, Quant 610 Theary (North folland F’uhﬂahing
Company, /msterdam, 1966) Chap, 6, pn.B80-81.

I.Takahashi, ntroduction to Field O
(Pergamon Press, 1969) np, 9°-98,



i.e.

[ = B PaPrba T CPrPut Pof™ 2 8rw) Pafnbla

w2 (B Pt By ) i)Y

wileh reduces to just
(6.2.4)

I:'W'E-_ %HUPT‘F“]? = 2

on making use of Fqs, (65.2.2) and noting that 'i.:-.cl?’_rl Pait !3];, FT‘Jrr‘ Pis

is Just equal to ?’I" Pu FT‘ F'U . Therefore
we have

m— Pt P = o
where

- 2
-TL = T’F-‘r ‘P;_l"i' fz ) (alr g
_ (5.2.5)
FD = = “i"r,ﬁl ==
To obtaln the solutions of the equations, we use

the actial forms of the matrices and write Bg.(5.2,1)

in full as follows

(o
I |
b mI 0 ! o tt
o Tl e R
| I ; = ©
8 s e D_ ; Ca .'
| S R )
|
. J | g (5.2.8)
N ! : — 4 Lﬁ"ur'
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where the dimensions of the different bloeks are
as indieated and f; b DJ C:{ are given by

o o [ o [ ] o
C,I = o & & o e o
e - O o
UWRp- e~ —CE =
& o o (e —VE -Fp
i = +
C','L — *ﬂcf‘- -CcE o© ﬂcE+ ¢, ©
o -—r.’.‘d::_ —RE O "-’!E,‘_ g,
i) ] o (o] o o
) a o =
L Q = 0
/
and
I" _ 8l
a5 N = P+
D = Zatipal ree o —E¢
- o
_C'l' —Pr ™m .

Here the notation = P CPa s Eq = PoEfs
has been used. Provided ., 40 y Bq.(6.2.6) implies

that Yz o for {:1)_2} T j{’.-.J:ti,‘li, 2 I .

Therefore Bn.(6.2.6) essentially reduces to the following



equation for just four relevaent components

L% (o)
(o] m
— &4 —b
L, =0 —E-

—E
P—

™

o

P+

_E_+

(o

™m

—

7

,_‘,g_ — (&}

"'I."q' {50 2.7)
SFioi

The matrix block operating on [ ":J ] is seen to
1 |

be just the Dirsc Hamiltonian.

and it 1s eesily enrleulated that

s

o

i g at

E+ Q= ks s

Ia
En. (6.2,7) eonsists of
four equations of which only two are independent.
choose Y, and ‘g

We

as the two independent snlutinns

M“‘""E}

P P S
=

™

E'—EJ +g
Lt

Thus we get the solutions t"or positive energy ¢ Pe2 + &)

after normalizing to
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Jae (E+pa)
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+-+ has been chosen to be ( ')
{

and b{-I(T‘) 10, U

where ('F-) tn U
The szolutions for negative
energy are similar with B replaced by -E.

3. Magnetic loment:

The wave equation of a particle in an elertro-
magnetic flold i1s obtained from the free partiele
equation by repleeing p, by Po + _i. € and P
P+ € R o where &

= AL
potential.

by
is the scalar and A the vector
In short we make the replacement

Pre —7 Pty = B

(6.3.1)
where A, = & . Therefore the equation now looks
like

= (5.2.2)
CRo B ko =

As 1s done in the case of the Dirse equation (see for

example, Reference 3)), we operate on this equation with

the Klein-CGordon diviser given by Bq.(5.2.3) wherein again
P 1s replaced by ZDH

There we have

[™ = Ppdpe+ L

9 ( PuPo—t BoPr — iﬁﬁumﬁ?wj I:F’Apﬁ+m’]+

= &
3) H.E.Fose, Belativistic Electron Theory (John Wiley and
hﬂ!i II‘H.'-. ’ 1%1)&’“.116‘1%0




Due to the rather speciasl algebra satisfied by the pls

vanishes, since each factor in this summation is

separately zers and we are left with the followlng!

[an?— B a D Pa -+ yg,“c;sﬁpvpﬁbu+]3hpvpvpﬁ‘)

The third term in the above reduces to

]?zl_{ |3,L=r DT{ Dy,  —+ e, P-H Pu FF-(U

2% c
on using the relation
[ Pre D,1 = %LL—-F]-(U ) (5.3.3)
(ol

where ﬁ““ is the electromagnetic field temsor, 8o

we finally get
: (5.3.4)
L2y =" 2 P el
= O

The first two terms give the Klein-Gordon enuation with
the replacement of ?l"‘ by _'I)ﬁ . The 1ast term renrezents
the interaction with the field., The interaction energy 1is
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then given by

| ;
B o= T (e
in b 9 “i?ﬁ }31‘- ﬁ"u} F]-I."u)

5= __E ( F}* By, Fr{v) (5.3.5)

me
To get the coupling with the magnetie field, we use the

explieit form of FFU :

o M, =X, 47
Ff—lu : ‘};_j 6 pid _-.,{1_3\ FaE L2 oo
R K, o *J%l (5,3.6)
!__—L% ],% i.’g._j g '
"g and E belng the electric and magnetiec field veetors.
Then
Hgnt = f—ﬁ 2 - A — T.2] (6.3.7)
mc e
where
S, =rewd OBl = Baldy ik Ggete
and

E = (]_51]3@—- PDFL)
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The magnetic moment operator is therefore given by

_Ii = —eh =5

ch (5-3.81

Making use of the solutions as given by Eg, (5.7.8)
and the matrix representation of ﬁ?‘ as given in
Chapter IV, we can now ealeulate the exnectation value

of the z-component of B whén the motion of the partiesle
1s in the z-direetion. We see that

[y 5 -
ﬁmc

whaere 53 is given by

o—

MV

1
O p-cood | bp | [ &®cocoen

8 o Btod pb—| oy & B oo 6a

o @ “auq B 64l & p=Cosay

ﬁnﬂﬁﬂ bnh'—'l & e B ot




e

From the form of the solutions and of Ea y it is

easlly calculated that the expectation value of T«E}

is just =+ ek y which is the same as for a partiele

deseribed by ?I-fe Diraec equation. This {s as exrected.

The intrinsiec di fference between the eguatisn econsidared

here and the UMrac equation should however come out

wiicen one considers intersetions with other fields, such

as a weak intersction. This remains to be investigated,
Incidentally 1t should be made clear that though

the central blocks of the matricas }3"[" are identieal 1

with the Dirac matrices, the Pn are in no way |

equivalent to the Dirac matrices and satisfy an entirely

different algebrs. The matrices %1 eannot hore he

exoressed as commutators oft ho generators of the Torent:z

group and hence do not reopresent.spin onerators (unlike

the Dirae case where H = —(Ceh/e@mc)s, (o

being the spin matrices).




