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SYNOPSIS

This thesis deals with the mathematical objects known as planar algebras and

their connection with Hopf algebras and their Drinfeld doubles. The motivation

for this thesis comes from a series of talks delivered by Prof. Masaki Izumi at

IMSc., Chennai, during one of which he asserted that for a Kac algebra subfactor,

a related subfactor to its asymptotic inclusion comes from an outer action of its

Drinfeld double. This is a folklore result in subfactor theory and in the process of

trying to prove this, we noticed a purely algebraic result which also seemed quite

interesting and this is one of the main results in the thesis. The result is roughly the

following. Given a finite dimensional Hopf algebra H over any field, we associate

to it a very natural inclusion A ⊆ B of infinite iterated crossed product algebras,

namely, B = Hop(−∞,∞) = · · ·⋊Hop
⋊Hop∗

⋊Hop
⋊· · · and A = Hop(−∞,−1]⊗Hop[2,∞).

We then show that B is the crossed product of A by D(H) where D(H) denotes

the Drinfeld double of H . More significantly, we show that D(H) is the only finite-

dimensional Hopf algebra with this property and thus produce a context in which

the Drinfeld double arises very naturally.

While proving this, we identify an explicit algebra embedding of D(H) into

the iterated crossed product H∗
⋊ H ⋊ H∗ which, in case H is semisimple and

cosemisimple over an algebraically closed field, certainly may be regarded as a map

from D(H) = P2,+(D(H)) to P4,+(H
∗) = (2)P2,+(H

∗) where P (D(H)) denotes the

planar algebra of D(H). It is thus a natural question to ask whether the embedding

of D(H) into H∗
⋊ H ⋊ H∗ may be extended to a planar algebra map in some

canonical fashion, and it is the affirmative answer to this question that is the second

main result of this thesis. We further show that this planar algebra map is injective

and characterise the image of P (D(H)) in (2)P (H∗).

The thesis is divided into four chapters. Chapters 1 and 2 are devoted to a

discussion of preliminary notions, namely, Hopf algebras and planar algebras, while
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the main content of the thesis is contained in Chapters 3 and 4. In a little more

detail, the contents of the chapters are as follows.

Chapter 1: Hopf algebras. The goal of the first chapter is to summarise

relevant facts about Hopf algebras - particularly those that are finite-dimensional

and semisimple and cosemisimple. Beginning this chapter with a brief overview

of Hopf algebras, we then introduce the important notion of integrals for finite-

dimensional Hopf algebras and conclude the chapter with a discussion on semisimple

Hopf algebras.

Chapter 2: Planar algebras. We begin this chapter with a discussion of

planar tangles and two closely related notions of planar algebras. We then discuss the

generators and relations approach to planar algebras in some detail. As an important

example of this, we describe the planar algebra associated to a semisimple and

cosemisimple Hopf algebra over an algebraically closed field. The chapter concludes

with a discussion of cabled planar algebras.

Chapter 3: Infinite iterated crossed products and Drinfeld doubles.

The first section in this chapter introduces the notions of action of a finite-dimensional

Hopf algebra H on an algebra and that of infinite iterated crossed products. Using

this, we define an inclusion of (infinite-dimensional) algebras called the derived pair

of H which plays an important role in the main result of this chapter. The next,

short section summarises the Drinfeld double construction. The third section is de-

voted to a study of an algebraic basic construction and its application in proving

a recognition result for crossed products. The final section proves that the derived

pair of H arises from a crossed product action by the Drinfeld double.

Chapter 4: Cabling and Drinfeld doubles. This chapter has, as its take-off

point, a certain explicit algebra inclusion of D(H) into the iterated crossed product

H∗
⋊ H ⋊ H∗, that was established in the course of proving the main result of

Chapter 3. The first section of this chapter is devoted to proving that this map

11



extends to an injective planar algebra homomorphism from P (D(H)) to (2)P (H∗).

The next section shows that this planar algebra map is injective, thus identifying

the planar algebra of the Drinfeld double as a planar subalgebra of (2)P (H∗). The

remaining two sections characterise the image of P (D(H)) in (2)P (H∗).
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Chapter 1

Hopf algebras

1.1 Hopf algebras

The goal of this chapter is to introduce the mathematical objects called Hopf alge-

bras. For details we refer to [23], [13] and [19] and also to [1]. All the vector spaces

considered in this chapter will be over an arbitrary field k. We begin this chapter

with a brief overview of Hopf algebras. We then introduce the important notion of

integrals for finite-dimensional Hopf algebras and finally conclude the chapter with

a discussion on semisimple Hopf algebras and also recall several useful facts which

we will be using frequently in later chapters.

Definition 1.1.1. An algebra over a field k is a triple (A, µ, η) where A is a vector

space and µ : A⊗A −→ A and η : k −→ A are linear maps such that the following

diagrams commute.

A⊗A⊗A
µ⊗Id //

Id⊗µ

��

A⊗ A

µ

��
A⊗ A µ

// A

Figure 1.1: Associativity
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k ⊗ A
η⊗Id //

∼=

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑

A⊗A

µ

��

A⊗ k
Id⊗ηoo

∼=

yysss
ss
ss
ss
ss

A

Figure 1.2: Unit

Note that η(1k) serves as the unit of A where 1k denotes the multiplicative identity

of k.

Remark 1.1.2. For any algebra (A, µ, η), set µop = µ ◦ τA,A where τA,A : A⊗A −→

A⊗A is the flip map i.e. τ(a⊗ a′) = a′⊗ a for all a⊗ a′ in A⊗A. Then (A, µop, η)

is an algebra which we call the opposite algebra.

Definition 1.1.3. A coalgebra is a triple (C,∆, ǫ) consisting of a vector space C

together with two linear maps ∆ : C −→ C ⊗ C (called comultiplication) and ǫ :

C −→ k (called counit) such that the following diagrams commute.

C
∆ //

∆
��

C ⊗ C

∆⊗Id

��
C ⊗ C

Id⊗∆ // C ⊗ C ⊗ C

Figure 1.3: Coassociativity

k ⊗ C C ⊗ C
ǫ⊗Idoo Id⊗ǫ // C ⊗ k

C

∆

OO
∼=

ee❑❑❑❑❑❑❑❑❑❑❑

∼=
99sssssssssss

Figure 1.4: Counit

Remark 1.1.4. Given a coalgebra (C,∆, ǫ), if we set ∆op = τC,C◦∆, then (C,∆op, ǫ)

becomes a coalgebra which we call the opposite coalgebra.

Example 1.1.5. The following are some examples of coalgebras.
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(1) (Coalgebra of a set) Let X be a set and C = kX = ⊕x∈Xkx be the k-vector

space with basis X. Then C can be endowed with a coalgebra structure by

defining

∆(x) = x⊗ x and ǫ(x) = 1

for all x in X.

(2) The dual vector space of a finite-dimensional algebra has a coalgebra structure.

It relies on the basic fact that if V and W are two k-vector spaces and if

one of W or V is finite-dimensional, then V ∗ ⊗W ∗ is naturally isomorphic

to (V ⊗ W )∗ by the isomorphism TV,W : V ∗ ⊗ W ∗ −→ (V ⊗ W )∗ given by

TV,W (f⊗g)(v⊗w) = f(v)g(w). Thus if (A, µ, η) is a finite-dimensional algebra,

and we define ∆ := T−1
A,A ◦ µ∗ : A∗ −→ A∗ ⊗ A∗ and ǫ := η∗ : A∗ −→ k, one

can easily check that (A∗,∆, ǫ) is a coalgebra.

(3) (The matrix coalgebra) Let A =Mn(k) be the algebra of n by n matrices over

k. Then {Eij : 1 ≤ i, j ≤ n}, where Eij denotes the matrix whose (i, j)th entry

is 1 and all other entries are zero, is a basis of A. Let {xij}denote the dual

basis. Then by virtue of Example 1.1.5(2) above, A∗ becomes a coalgebra and

one can easily check that

∆(xij) =

n
∑

k=1

xik ⊗ xkj and ǫ(xij) = δij.

(4) (The tensor product of two coalgebras) The tensor product of two coalgebras

(C,∆, ǫ) and (C ′,∆′, ǫ′) has a coalgebra structure with the comultiplication

(IdC ⊗ τC,C′ ⊗ IdC′) ◦ (∆⊗∆′) and counit ǫ⊗ ǫ′.

We next define morphism of coalgebras.

Definition 1.1.6. Consider two coalgebras (C,∆, ǫ) and (C ′,∆′, ǫ′). A linear map

18



f from C to C ′ is a morphism of coalgebras if (f ⊗ f) ◦∆ = ∆′ ◦ f and ǫ = ǫ′ ◦ f .

We now present Sweedler’s notation which we shall use continually in the sequel.

Let (C,∆, ǫ) be a coalgebra. Let ∆n : C −→ C⊗n be defined inductively for n ≥ 2

by ∆2 = ∆ and

∆n = (∆⊗ IdC⊗(n−1)) ◦∆n−1 = (IdC⊗(n−1) ⊗∆) ◦∆n−1, n ≥ 3.

If x is an element of C, we shall further abbreviate the usual Sweedler notation

∆n(x) =
∑

i∈I x
i
1 ⊗ xi2 ⊗ ... ⊗ xin (the sum over a finite index set I) by omitting

explicit mention of both the summation symbol and the index, and write ∆n(x) =

x1 ⊗ x2 ⊗ ...⊗ xn.

We now describe a special class of elements of a coalgebra.

Definition 1.1.7. An element g of a coalgebra C is called a grouplike element if

g 6= 0 and ∆(g) = g ⊗ g. The set of grouplike elements of a coalgebra C is denoted

by G(C).

The counit property implies that ǫ(g) = 1 for any g ∈ G(C). Moreover, grouplike

elements are linearly independent. The following proposition shows that grouplike

elements of the dual coalgebra of a finite-dimensional algebra have a special feature.

For any algebra A over k, let Alg(A, k) be the set of all algebra homomorphisms

from A to k.

Proposition 1.1.8. Let A be a finite-dimensional algebra and let A∗ be the dual

coalgebra. Then, G(A∗) = Alg(A, k).

Proof. Let f ∈ G(A∗). Then ∆(f) = f ⊗ f implies that f(ab) = f(a)f(b) for all

a, b in A. Also, f(1) = ǫ(f) = 1. Thus, f ∈ Alg(A, k). The reverse inclusion is

similar.
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We next pass to a bialgebra, namely a vector space which is simultaneously an

algebra and a coalgebra with these two structures being compatible in the following

sense. Let H be a vector space equipped simultaneously with an algebra structure

(H, µ, η) and a coalgebra structure (H,∆, ǫ).

Theorem 1.1.9. The following two statements are equivalent:

(1) µ and η are morphisms of coalgebras.

(2) ∆ and ǫ are morphisms of algebras.

This leads to the following definition.

Definition 1.1.10. A bialgebra is a quintuple (H, µ, η,∆, ǫ) where (H, µ, η) is an

algebra and (H,∆, ǫ) is a colgebra satisfying the equivalent conditions of Theorem

1.1.9. A morphism of bialgebras is a morphism for the underlying algebra and coal-

gebra structures.

Suppose (H, µ, η,∆, ǫ) is a bialgebra. Using Sweedler’s notational convention we

see that the condition ∆(xy) = ∆(x)∆(y) is expressed by

(xy)1 ⊗ (xy)2 = x1y1 ⊗ x2y2, for all x, y in H.

We also have

∆(1) = 1⊗ 1, ǫ(xy) = ǫ(x)ǫ(y) and ǫ(1) = 1.

We now proceed to define Hopf algebras. Given an algebra (A, µ, η) and a coal-

gebra (C,∆, ǫ) we define a bilinear map, called convolution, on the vector space

Hom(C,A) of all linear maps from C to A. Given f, g in Hom(C,A), then the

convolution of f and g, denoted by f ⋆ g, is defined to be the composition of the

20



maps

C
∆
−→ C ⊗ C

f⊗g
−−→ A⊗ A

µ
−→ A.

Using Sweedler’s notation, we have

(f ⋆ g)(x) = f(x1)g(x2), for any element x in H.

Proposition 1.1.11. The triple (Hom(C,A), ⋆, η ◦ ǫ) is an algebra.

Let (H, µ, η,∆, ǫ) be a bialgebra. Then with C = A = H , we define the convo-

lution in the vector space End(H) of endomorphisms of H .

Definition 1.1.12. Let (H, µ, η,∆, ǫ) be a bialgebra. An element S in End(H) is

called an antipode for the bialgebra H if

S ⋆ IdH = IdH ⋆ S = η ◦ ǫ.

A Hopf algebra is a bialgebra with an antipode. A morphism of Hopf algebras is a

morphism of the underlying bialgebras commuting with the antipodes.

A bialgebra does not necessarily have an antipode. But if it has, then it is unique.

Indeed, if S and S ′ are antipodes, then

S = S ⋆ (η ◦ ǫ) = S ⋆ (IdH ⋆ S ′) = (S ⋆ IdH) ⋆ S
′ = (η ◦ ǫ) ⋆ S ′ = S ′.

A Hopf algebra with an antipode S will be denoted by (H, µ, η,∆, ǫ, S). Using

Sweedler’s notation, we see that an antipode satisfies the relations

Sx1x2 = x1Sx2 = ǫ(x)1, for all x in H.

Proposition 1.1.13. The antipode for a finite-dimensional Hopf algebra is bijective.
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Proof. For the proof we refer to [1, Corollary 5.2.6].

The next two propositions give ways of obtaining new Hopf algebras from old.

Proposition 1.1.14. Let H be a Hopf algebra with antipode S, then H∗ is a Hopf

algebra with antipode S∗.

Proposition 1.1.15. Let (H, µ, η,∆, ǫ, S) be a Hopf algebra. Then

Hop = (H, µop, η,∆, ǫ, S−1), Hcop = (H, µ, η,∆op, ǫ, S−1), Hop,cop = (H, µop, η,∆op, ǫ, S)

are Hopf algebras.

Example 1.1.16. The following are examples of Hopf algebras.

(1) If G is a finite group, then already we have mentioned in Example 1.1.5(1)

that the group algebra kG has also a coalgebra structure and one can check

that kG thus becomes a bialgebra. Further, the map S : kG −→ kG defined

by S(g) = g−1 for all g in G and then extended linearly, is the antipode of the

bialgebra kG. Thus, kG is a Hopf algebra.

It follows from the Proposition 1.1.14 that (kG)∗ also has a Hopf algebra struc-

ture.

(2) (Sweedler’s 4- dimensional Hopf algebra) Assume that char(k) 6= 2. Let H be

the algebra given by the generators and relations as follows: As a k-algebra,

H is generated by c and x satisfying the relations

c2 = 1, x2 = 0, xc = −cx.

Then H has dimension 4 as a k-vector space with basis {1, c, x, cx}. The

coalgebra structure is given by

∆(c) = c⊗ c,∆(x) = c⊗ x+ x⊗ 1, ǫ(c) = 1, ǫ(x) = 0.
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One sees that H thus becomes a bialgebra which also possesses an antipode

S defined by S(c) = c−1, S(x) = −cx. This was the first example of a non-

commutative and non-cocommutative Hopf algebra.

1.2 Integrals

We introduce the notion of integrals for a finite-dimensional Hopf algebra. Let

H(µ, η,∆, ǫ, S) be a finite-dimensional Hopf algebra over any field k.

Definition 1.2.1. An element h in H is said to be a left- (resp., right-) integral if

xh = ǫ(x)h (resp., hx = ǫ(x)h) for all x in H.

Similarly, an element p in H∗ is said to be a left- (resp., right-) integral if

fp = f(1)p (resp., pf = f(1)p) for all f in H∗.

Example 1.2.2. (1) Let G be a finite group and consider the Hopf algebra kG.

Then one can easily check that h =
∑

g∈G g is a left- (and right-) integral for

kG.

(2) If G is a finite group, consider the Hopf algebra (kG)∗, the dual of kG. It is

easy to see that the element p ∈ (kG)∗ defined by p(g) = δ1,g, is a left- (and

right-) integral for (kG)∗.

(3) If H denotes Sweedler’s 4-dimensional Hopf algebra as described in Example

1.1.16(2), then x+ cx is a left-integral in H and x− cx is a right-integral in

H.

Remark 1.2.3. If h is a left-integral for H, then Sh is a right-integral for H.

The following theorem ensures existence of nonzero integrals in a finite-dimensional

Hopf algebra.
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Theorem 1.2.4. (1) In any finite-dimensional Hopf algebra the space of left-

(resp., right-) integrals is one dimensional.

(2) Further, if h denotes a nonzero left- or right-integral for H and p denotes a

nonzero right- or left-integral for H∗, then p(h) 6= 0.

Proof. The proof of (1) can be found in [1, Corollary 5.2.6] and also in [23, Corollary

5.1.6], while for the proof of (2) the reader may look at [22, Corollary 1]. We also

refer to the beautiful pictorial treatment in [14, Theorem 1] which uses Kuperberg’s

diagrammatic formalism for Hopf objects which was first defined and developed in

[18].

It may happen that the spaces of left- and right-integrals for a finite-dimensional

Hopf algebra are the same. We have a name for such Hopf algebras.

Definition 1.2.5. A finite-dimensional Hopf algebra is said to be unimodular if the

spaces of left- and right-integrals are the same.

We now state several important facts concerning integrals and prove a few of

them which we will use frequently in the sequel.

Lemma 1.2.6. Let H be a finite-dimensional Hopf algebra over any field k with

antipode S.

(1) If h ∈ H is a right-integral, then h1a⊗ h2 = h1 ⊗ h2Sa for all a in H.

(2) If h ∈ H is a left-integral, then ah1 ⊗ h2 = h1 ⊗ S−1ah2 for all a in H.

(3) If h ∈ H and p ∈ H∗ are right-integrals, then p(h1a)h2 = p(h)Sa for all a in

H.

(4) If h ∈ His a left-integral and p ∈ H∗ is a right integral, then p(ah1)h2 =

p(h)S−1a for all a in H.
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Proof. To prove (1) we note that

h1a⊗ h2 = h1a1 ⊗ h2a2Sa3 = ∆(ha1)(1⊗ Sa2) = ∆(h)(1 ⊗ Sa) = h1 ⊗ h2Sa.

The proofs of (2), (3) and (4) are similar.

Corollary 1.2.7. Let H be a finite-dimensional unimodular Hopf algebra over a

field k with antipode S. Let h ∈ H be a nonzero integral. Then S(h) = h.

Proof. Let p ∈ H∗ be a nonzero right-integral. Suppose h is a nonzero integral in

H . Then the desired result follows from Lemma 1.2.6(3) with a = h.

Remark 1.2.8. A similar statement holds if H∗ is unimodular and in this case we

have that S∗p = p ◦ S = p where p is a nonzero integral in H∗.

If H is a finite-dimensional Hopf algebra over k, then consider the elements p, p′

in H∗ defined by

p(a) = trH(λaS
2), for all a ∈ H

and

p′(a) = trH(λaS
−2), for all a ∈ H

where λa ∈ Endk(H) denotes left multiplication by a.

Proposition 1.2.9. With the above notation, p is a left-integral and p′ is a right-

integral of H∗.

Proof. For the proof we refer to [21, Proposition 4].

We now need to recall Fourier transform maps.
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Definition 1.2.10. Suppose H is a finite-dimensional Hopf algebra over any field

k. If p denotes a nonzero integral (right- or left-) of H∗, consider the linear maps

Fp, F
p : H −→ H∗ defined by Fp(a) = p1(a)p2 and F p(a) = p2(a)p1 where a is in H.

Such maps are called the Fourier transform maps of H. Similarly we may define the

Fourier transform maps for H∗.

Remark 1.2.11. If H is a finite-dimensional Hopf algebra, we assert that the

Fourier transform maps of H are bijective. It follows from the observations that

if p is a nonzero integral in H∗, say right-integral, then FhFp = p(h)S−1, F pF h =

p(h)S−1 where h is a nonzero left-integral in H and also FpF
h′

= p(h′)S, Fh′F p =

p(h′)S if h′ is a nonzero right-integral of H and thus proving bijectivity of Fp as well

as F p. Similarly, we can show bijectivity of Fp, F
p in case p is a nonzero left-integral

of H∗.

1.3 Semisimple Hopf algebras

The purpose of this section is to briefly review semisimple Hopf algebras. We start

with the mention of an important result, known as Maschke’s theorem, which is an

important application of integrals in finite-dimensional Hopf algebras.

Theorem 1.3.1. Let H be a finite-dimensional Hopf algebra. Then H is a semisim-

ple algebra if and only if ǫ(h) 6= 0 for a left-integral h ∈ H.

Proof. The proof can be found in [23, Theorem 5.1.8].

Remark 1.3.2. Consider the Hopf algebra H = kG of Example 1.1.16(1). We have

already seen that h =
∑

g∈G g is a left-integral for H. Then ǫ(h) = |G|1k where |G|

denotes the order of the group. The preceding theorem tells that the Hopf algebra kG

is semisimple if and only if |G|1k 6= 0 in k, hence if and only if the characteristic

of the field k does not divides |G|. This is the well-known Maschke’s theorem for
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groups. For Sweedler’s Hopf algebra of Example 1.1.16(2), Theorem 1.3.1 shows

that it is not semisimple.

We next show that a finite-dimensional semisimple Hopf algebra is unimodular.

For this we need to introduce the notion of the distinguished grouplike element.

Given a nonzero left-integral h in a finite-dimensional Hopf algebra H , note that for

any x ∈ H, hx is a left-integral so that hx = α(x)h for α(x) ∈ k. Also note that

α ∈ Alg(H, k) and hence α ∈ G(H∗) (see Proposition 1.1.8). Now for any nonzero

right-integral h′, we observe that for any x in H , xh′ = α−1(x)h′.

Definition 1.3.3. The element α constructed above is called the distinguished grou-

plike element of H (For details, see [20]).

Remark 1.3.4. Clearly, H is unimodular if and only if α = ǫ.

Lemma 1.3.5. If H is semisimple, then it is unimodular.

Proof. Choose a left-integral h inH with ǫ(h) 6= 0. Then, for any x ∈ H , α(x)ǫ(h)h =

α(x)h2 = (hx)h = h(xh) = ǫ(x)h2 = ǫ(x)ǫ(h)h. Since ǫ(h) 6= 0, we see that

α(x) = ǫ(x), for all x in H . Thus, α = ǫ and so H is unimodular by the pre-

ceding remark.

Proposition 1.3.6. Let H be a semisimple Hopf algebra. Let p and p′ have the

same meaning as in Proposition 1.2.9.

(1) Then p is a nonzero left-integral and p′ is a nonzero right-integral of H∗.

(2) H∗ is semisimple if and only if trH(S
2) 6= 0.

Proof. (1) Let h denote the unique nonzero idempotent integral for H . Then

p(h) = p′(h) = 1. Hence the result.

(2) If H∗ is semisimple, denote by ψ the unique idempotent nonzero integral in H∗.

Note ψ = cp for some nonzero scalar c. Then ψ = ψ2 = c2p2 = c2p(1)p = c2trH(S
2)p.

Thus trH(S
2) 6= 0. Converse is obvious.
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Proposition 1.3.7. Let H be a unimodular finite-dimensional Hopf algebra over a

field k with antipode S such that H∗ is also unimodular. Let h ∈ H be a nonzero

integral. Then, h1 ⊗ h2 = S2h2 ⊗ h1.

Proof. Let p ∈ H∗ be a nonzero integral. Then Theorem 1.2.4(2) tells that p(h) is

nonzero. Denote this value by β. We also know that S(h) = h and S∗(p) = p by

Corollary 1.2.7 and Remark 1.2.8. Take arbitrary x in H and let f = p1(x)p2. Then,

repeated application of Lemma 1.2.6 and Remark 1.2.8 show that

f(h2)h1 = p1(x)p2(h2)h1 = p(xh2)h1 = p(h2)Sxh1 = βSx

and also,

βSx = p(h1)Sxh2 = p(S2h1)SxS
2h2 = p(h1)S

2(S−1xh2) = p(xh1)S
2h2 = f(h1)S

2h2.

Thus we conlude that f(h2)h1 = f(h1)S
2h2 and this holds for arbitrary f in H∗

since by the Remark 1.2.11 the Fourier transform map Fp is bijective. Therefore,

h1 ⊗ h2 = S2h2 ⊗ h1.

In the paper [4], authors proved Kaplansky’s 5th conjecture which is as follows.

Theorem 1.3.8. The square of the antipode of any finite-dimensional semisimple

and cosemisimple Hopf algebra over any field is the identity.

Proof. See [4, Theorem 3.1] for the proof.

And as a corollary to this the authors proved in [4] (see [4, Corollary 3.2]) various

facts about finite-dimensional semisimple and cosemisimple Hopf algebras over any

field which we state below.

Corollary 1.3.9. Let H be a finite-dimensional Hopf algebra with antipode S over

any field k. Then:
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(1) H is semisimple and cosemisimple if and only if S2 = I and dimkH 6= 0 in k.

(2) If H is semisimple and cosemisimple and k is algebraically closed, then for

any irreducible representation V of H, dimkV 6= 0 in k.

Corollary 1.3.10. Let H be a finite-dimensional semisimple and cosemisimple Hopf

algebra over any field. Let h be a nonzero integral in H. Then h1 ⊗ h2 = h2 ⊗ h1.

Proof. Follows immediately from the Proposition 1.3.7 and the Theorem 1.3.8.

Proposition 1.3.11. Let H be a finite-dimensional semisimple and cosemisimple

Hopf algebra over a field k. Let p (resp., h) denote the unique nonzero idempotent

integral in H∗ (resp., H). Then p(h) = 1
dimkH

.

Proof. Follows easily from the Theorem 1.3.8, Proposition 1.2.9 and Corollary 1.3.9.
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Chapter 2

Planar algebras

The notion of planar algebras has been evolving since Jones introduced it in [8]. This

chapter is devoted to a survey of some facts about planar algebras which we will

need in the sequel. We first recall the definition of planar tangles and then present a

brief overview of planar algebras and discuss some properties of it and finally discuss

the planar algebra associated to a semisimple and cosemisimple Hopf algebra over

an algebraically closed field and conclude the chapter with a brief discussion on the

notion of cabling of planar algebras.

2.1 Planar tangles and operations on tangles

Consider the set Col = {0, 1, 2, · · · }×{±1}, elements of which we refer to as colours.

We will typically write a colour as (k, ǫ) where ǫ is either + or − and stands for +1

or −1.

A tangle is a subset of the plane that is the complement of the union of the

interiors of a (possibly empty) collection of labelled internal discs in an external

disc, along with the following data.
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(1) Each disc has an even number (again, possibly 0) of points marked on its

boundary circles.

(2) There is also given a collection of disjoint curves on the tangle each of which

is either a simple closed curve, or joins a marked point on one of the circles to

another such. Each marked point on a disc must be the end-point of one of the

curves. For each disc, one of its boundary arcs (= connected components of

the complement of the marked points on the boundary circle) is distinguished

and marked with a ∗ placed near it. Further, strings are allowed to intersect

boundaries only transversally, not tangentially.

(3) Finally, there is given a chequerboard shading of the regions (= connected

components of the complement of the curves) such that across any curve, the

shading toggles.

A disc with 2n marked points on its boundary is said to be an (n,+) disc or

an (n,−) disc according as its ∗-arc is adjacent to a white or a black region. The

colour of a tangle is the colour of its external disc. Tangles are defined only up to a

planar isotopy preserving the ∗-arcs, the shading and the numbering of the internal

discs. As is usual, we will often refer to and draw the discs as boxes with their

∗-arcs being their leftmost arc and sometimes omit drawing the external disc/box.

We use the notation T
(k0,ǫ0)
(k1,ǫ1),(k2,ǫ2),··· ,(kb,ǫb)

to denote a tangle T of colour (k0, ǫ0) with b

internal discs (b may be zero also) such that i-th internal disc of T has colour (ki, ǫi).

We often omit the parantheses and denote an (n, ǫ)-tangle T by T n,ǫ without any

reference to internal discs and also use the notation T k1,ǫ1
k2,ǫ2

, instead of T
(k1,ǫ1)
(k2,ǫ2)

, to

denote a tangle T of colour (k1, ǫ1) with a single internal disc of colour (k2, ǫ2). We

also write Di(T ) to denote the i-th internal disc of T .

Two basic operations can be performed on tangles to produce new tangles from

the old ones.
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Renumbering: Let T = T
(k0,ǫ0)
(k1,ǫ1),(k2,ǫ2),··· ,(kb,ǫb)

be a tangle. Let σ be a permuta-

tion on the set {1, 2, · · · , b}. We define σ(T ) to be the tangle that is identical to

T as a subset of the plane, except for a numbering of the internal discs. The i-th

internal disc of T is the σ(i)-th internal disc of σ(T ), i.e., Di(σ(T )) = Dσ−1(i)(T ).

Substitution: Let T = T
(k0,ǫ0)
(k1,ǫ1),(k2,ǫ2),··· ,(kb,ǫb)

and S = S
(k̃0,ǫ̃0)

(k̃1,ǫ̃1),(k̃2,ǫ̃2),··· ,(k̃b̃,ǫ̃b̃)
be

tangles such that the colour of the i-th internal disc of T is same as the colour of the

external disc of S i.e., (k̃0, ǫ̃0) = (ki, ǫi). Then we obtain the composite tangle T ◦i S

by substituting the tangle S into the i-th internal disc of T appropriately such that

the ∗-arc of the external disc of S matches the ∗-arc of the i-th internal disc of T

and then deleting the boundary circle. Thus T ◦i S is a (k0, ǫ0)-tangle with b+ b̃− 1

internal discs. The numbering of the internal discs will be as follows:

If b̃ > 0, for each 1 ≤ j ≤ b+ b̃− 1, the j-th disc of T ◦i S is the































j-th disc of T, if 1 ≤ j ≤ i− 1

j − i+ 1-th disc of S, if i ≤ j ≤ i− 1 + b̃

j − b̃+ 1-th disc of T, if i− 1 + b̃ < j ≤ b+ b̃− 1.

If b̃ = 0, then T ◦i S has b− 1 internal discs and j-th internal disc of T ◦i S is the















j-th disc of T, if 1 ≤ j ≤ i− 1

j + 1-th disc of T, if i ≤ j ≤ b− 1.

2.2 Some examples of tangles

We illustrate several important tangles in Figure 2.1. We use the following notational

device for convenience in drawing tangles. A strand in a tangle with a non-negative

integer, say t, adjacent to it will indicate a t-cable of that strand, i.e., a parallel

cable of t strands, in place of the one actually drawn.
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Figure 2.1: Some important tangles (m,n, j ≥ 0)

2.3 Planar algebras

A planar algebra is a collection {P(k,ǫ) : (k, ǫ) ∈ Col} of vector spaces over a field

k such that given any tangle T = T
(k0,ǫ0)
(k1,ǫ1),(k2,ǫ2),··· ,(kb,ǫb)

, there is an associated linear

map ZT











P(k1,ǫ1) ⊗ P(k2,ǫ2) ⊗ · · · ⊗ P(kb,ǫb) −→ P(k0,ǫ0) if b > 0,

k −→ P(k0,ǫ0) if b = 0.

There are three axioms to be satisfied for this association.

Compatibility with Renumbering: Given a tangle T = T
(k0,ǫ0)
(k1,ǫ1),(k2,ǫ2),··· ,(kb,ǫb)

with b > 0 and a permutation σ on the set {1, 2, · · · , b}. Consider the tangle σ(T ).

Then the following diagram must commute:

P(k1,ǫ1) ⊗ P(k2,ǫ2) ⊗ · · · ⊗ P(kb,ǫb)
Uσ //

ZT

��

P(k
σ−1(1),ǫσ−1(1))

⊗ · · · ⊗ P(k
σ−1(b),ǫσ−1(b))

Zσ(T )
rr❢❢❢❢❢❢

❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢

P(k0,ǫ0)

Figure 2.2: Renumbering compatibility
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where Uσ : ⊗b
j=1P(kj ,ǫj) −→ ⊗b

j=1P(k
σ−1(j),ǫσ−1(j))

is the linear isomorphism given by

Uσ(⊗
b
j=1xj) = ⊗b

j=1xσ−1(j) for ⊗
b
j=1xj ∈ ⊗b

j=1P(kj ,ǫj).

Compatibility with Composition: Given tangles T = T
(k0,ǫ0)
(k1,ǫ1),(k2,ǫ2),··· ,(kb,ǫb)

and S = S
(k̃0,ǫ̃0)

(k̃1,ǫ̃1),(k̃2,ǫ̃2),··· ,(k̃b̃,ǫ̃b̃)
such that colour of the i-th internal disc of T is same

as the colour of the external disc of S i.e., (k̃0, ǫ̃0) = (ki, ǫi). Consider T ◦i S. Then

compatibility requirement for the tangle maps is that the following diagram com-

mutes:

When b̃ > 0 :

(⊗i−1
j=1P(kj ,ǫj))⊗ (⊗b̃

j=1P(k̃j ,ǫ̃j)
)⊗ (⊗b

j=i+1P(kj ,ǫj))

(⊗i−1
j=1IdP(kj,ǫj )

)⊗ZS⊗(⊗b
j=i+1IdP(kj,ǫj )

)

��

ZT◦iS

++❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱

(⊗b
j=1P(kj ,ǫj))

ZT // P(k0,ǫ0)

Figure 2.3: Compatibility condition when b̃ > 0

When b̃ = 0 :

(⊗i−1
j=1P(kj ,ǫj))⊗ C⊗ (⊗b

j=i+1P(kj ,ǫj))
∼= //

(⊗i−1
j=1IdP(kj ,ǫj)

)⊗ZS⊗(⊗b
j=i+1IdP(kj ,ǫj)

)

��

⊗b
j=1,
j 6=i

P(kj ,ǫj)

ZT◦iS

��
(⊗b

j=1P(kj ,ǫj))
ZT // P(k0,ǫ0)

Figure 2.4: Compatibility condition when b̃ = 0

Non-degeneracy axiom: This axiom says that ZP

I
k,ǫ
k,ǫ

= IdP(k,ǫ)
, for all (k, ǫ) ∈

Col.

We now define morphism of planar algebras.

Definition 2.3.1. If P,Q are planar algebras, a morphism from P to Q is a col-

lection {φ(k,ǫ) : P(k,ǫ) −→ Q(k,ǫ)}(k,ǫ)∈Col of linear maps such that given any tangle
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T = T
(k0,ǫ0)
(k1,ǫ1),(k2,ǫ2),··· ,(kb,ǫb)

, the following diagram commutes:

⊗b
j=1P(kj ,ǫj)

ZP
T //

⊗b
j=1φ(kj,ǫj )

��

P(k0,ǫ0)

φ(k0,ǫ0)

��
⊗b

j=1Q(kj ,ǫj)
Z

Q
T

// Q(k0,ǫ0)

Figure 2.5: Planar algebra morphism

We remark that the above definition of planar algebras is the most recent one.

We will refer to planar algebras in the older sense as restricted planar algebras. For

these, the set of colours is the subset {(0,±), (1,+), (2,+), · · · }, all discs (with the

exception of (0,−)-discs) have ∗-arcs abutting white regions and P is a collection of

vector spaces indexed only by the subset above. Clearly, a planar algebra naturally

yields a restricted planar algebra (which we will refer to as its restriction) in the

obvious manner. The converse holds too in the following form - see Remark 3.6 of

[5] (which treats the case when P has modulus).

Proposition 2.3.2. Let Q be a restricted planar algebra. There exists a planar

algebra P with restriction isomorphic to Q. Further P is unique in the sense that

if P 1 and P 2 are planar algebras with restrictions Q1 and Q2 that are isomorphic

(as restricted planar algebras) by the map φ : Q1 → Q2, then, there exists a unique

planar algebra isomorphism φ̃ : P 1 → P 2 that restricts to φ.

Proof. For existence, given Q, construct P as follows. Define P0,± = Q0,± and for

k > 0, set Pk,± = Qk,+.

To define the action by tangles, first consider for every colour (k, ǫ), the tan-

gle C(k,ǫ) which is defined to be the identity tangle of colour (k, ǫ) if (k, ǫ) ∈

{(0,±), (1,+), (2,+), · · · } and to be the one-rotation tangle with an internal disc

of colour (k,+) and external disc of colour (k,−) otherwise. Also consider the
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tangle D(k,ǫ) which is defined to be the identity tangle of colour (k, ǫ) if (k, ǫ) ∈

{(0,±), (1,+), (2,+), · · · } and to be the inverse one-rotation tangle with an internal

disc of colour (k,−) and external disc of colour (k,+) otherwise.

Now, for a (k0, ǫ0)-tangle T with internal discs of colours (k1, ǫ1), · · · , (kb, ǫb),

define ZP
T = ZQ

T̃
where T̃ = D(k0,ǫ0) ◦ T ◦(D1,··· ,Db) (C

(k1,ǫ1), C(k2,ǫ2), · · · , C(kb,ǫb)). It

is then easy to see that this defines a planar algebra structure on P , the main

observation being that C(k,ǫ) ◦D(k,ǫ) is the identity tangle of colour (k, ǫ).

For uniqueness of P , suppose that P 1, P 2 are planar algebras with restrictions

Q1, Q2 and φ : Q1 → Q2 is a restricted planar algebra isomorphism. We need to see

the existence and uniqueness of a unique planar algebra isomorphism φ̃ : P 1 → P 2

that restricts to φ.

The uniqueness of φ̃ is because, given a colour (k,−) with k > 0, the equation

φ̃k,−◦Z
P 1

C(k,−) = ZP 2

C(k,−) ◦φk,+, must hold and ZP
C(k,−) is an isomorphism for any planar

algebra P . As for existence, define φ̃k,− by the same equation and check that this

indeed gives a planar algebra isomorphism that restricts to φ.

Given a planar algebra P , the following proposition describes the unital algebra

structure on each vector space P(k,ǫ). See Figure 2.1 for the tangles referenced here.

Proposition 2.3.3. Let P be a planar algebra. Then for every colour (k, ǫ), the

vector space P(k,ǫ) has the natural structure of an associative unital algebra with

multiplication specified by the (k, ǫ)-multiplication tangle M
(k,ǫ)
(k,ǫ),(k,ǫ) and unit given

by ZUk,ǫ(1) where Uk,ǫ is the unit tangle (see figure 2.1 for definitions of M
(k,ǫ)
(k,ǫ),(k,ǫ)

and Uk,ǫ). Furthermore, inclusion tangles induce homomorphisms of unital algebras.

We now recall certain significant properties of planar algebras.

• Connectedness: A planar algebra P is said to be connected if dimP(0,±) = 1.

In this case, there are canonical identifications P(0,±)
∼= C.
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• Modulus: A connected planar algebra P is said to have modulus δ if there is

a scalar δ such that ZP
T 0,± = δIdC where T 0,+ (resp., T 0,−) denotes the (0,+) (resp.,

(0,−)) tangle with no internal disc and a single closed loop.

Remark 2.3.4. If a connected planar algebra has nonzero modulus, then inclusion

tangles induce injective maps.

• Finite-dimensionality: A planar algebra P is said to be finite dimensional

if dimP(k,ǫ) <∞, for all (k, ǫ) ∈ Col.

• Sphericality: A connected planar algebra is spherical if and only if ZP

EL
0,−
1,+

=

ZP

TR
0,+
1,+

(see figure 2.1 for definitions of EL0,−
1,+ and TR0,+

1,+), where both ZP

EL
0,−
1,+

and

ZP

TR
0,+
1,+

are regarded as linear functionals on P(1,+).

2.4 Universal planar algebras and presentations

Given a ‘label set’ L = ∐(k,ǫ)∈ColL(k,ǫ), an L-labelled tangle is a pair (T, f) where T is

a tangle, say, T = T
(k0,ǫ0)
(k1,ǫ1),(k2,ǫ2),··· ,(kb,ǫb)

and f is a function from {D1(T ), D2(T ), · · · , Db(T )}

to L such that f(Di(T )) ∈ L(ki,ǫi) for all i. Thus by an L-labelled tangle we simply

mean a tangle each of whose internal discs of colour (k, ǫ) is labelled by an element

of L(k,ǫ). Thus if L(k,ǫ) = φ for some colour (k, ǫ), then no L-labelled tangle can have

an internal disc of colour (k, ǫ).

The universal planar algebra on L, denoted by P (L), is defined by requiring

that P (L)(k,ǫ) is the vector space with basis all L-labelled (k, ǫ) tangles with the

action of a planar tangle on a tensor product of basis vectors is given by the obvious

L-labelled tangle obtained by substituting these basis vectors into the appropriate

internal discs.

We now introduce the notion of a planar ideal.

Definition 2.4.1. A planar ideal I of a planar algebra P is a collection {I(k,ǫ) :
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(k, ǫ) ∈ Col} of vector spaces where each I(k,ǫ) is a linear subspace of P(k,ǫ) such that

given any tangle T = T
(k0,ǫ0)
(k1,ǫ1),(k2,ǫ2),··· ,(kb,ǫb)

, ZT (⊗
b
j=1xj) ∈ I(k0,ǫ0) whenever xj ∈ I(kj ,ǫj)

for some j, 1 ≤ j ≤ b.

Given a planar ideal I in a planar algebra P , there is a natural planar algebra

structure on the quotient P/I = {(P/I)(k,ǫ) := P(k,ǫ)/I(k,ǫ) : (k, ǫ) ∈ Col} together

with a surjective planar algebra morphism from P to P/I.

Given a planar algebra P , let R = {R(k,ǫ) : (k, ǫ) ∈ Col} be a subset of P (i.e.,

each R(k,ǫ) is a subset of P(k,ǫ)). The planar ideal generated by R, denoted by I(R),

is the smallest planar ideal in P containing R. Equivalently, if we set I(k,ǫ) to be the

span of all ZT (x1⊗· · ·⊗xb) where T is a (k, ǫ)-tangle , say T = T
(k,ǫ)
(k1,ǫ1),(k2,ǫ2),··· ,(kb,ǫb)

,

and at least one xi ∈ R, then I = {I(k,ǫ) : (k, ǫ) ∈ Col} is the planar ideal generated

by R.

We now describe the notion of planar algebra presented with generators and

relations.

Definition 2.4.2. Given a label set L = ∐(k,ǫ)∈ColL(k,ǫ), consider the universal pla-

nar algebra P (L) on L. Let R be a subset of P (L) and suppose I(R) denotes the

planar ideal generated by R. The quotient planar algebra P (L)/I(R) is said to be the

planar algebra presented with generators L and relations R and is usually denoted

by P (L,R).

2.5 The planar algebra of a Hopf algebra

Throughout this section k will denote an algebraically closed field. We recall from

[16] the construction of the planar algebra associated to a finite dimensional semisim-

ple and cosemisimple Hopf algebraH of dimension n over k. The nonzero idempotent

integrals of H∗ and H are denoted by p and h respectively.
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However, the definition depends on the choice of a square root, denoted δ, of

n in k, which we will assume has been made and is fixed throughout. The planar

algebra P (H, δ) (which we will simply write as P (H)) is then defined to be the

planar algebra P (L,R) where

L(k,ǫ) =















H, if (k, ǫ) = (2,+)

∅, otherwise

and R being given by the set of relations in Figures 2.6 - 2.9 (where (i) we write the

relations as identities - so the statement a = b is interpreted as a− b ∈ R; (ii) ζ ∈ k

and a, b ∈ H ; and (iii) the external boxes of all tangles appearing in the relations

are left undrawn and it is assumed that all external ∗-arcs are the leftmost arcs.

** *
ζa + b = =a bζ + δ

Figure 2.6: The L(inearity) and M(odulus) relations

**
==1H h δ−1

Figure 2.7: The U(nit) and I(ntegral) relations

* *
ǫ(a) == δp(a)aa

Figure 2.8: The C(ounit) and T(race) relations

*

*

*
* *

*

==

a1

a
2
b

b

a

a

Sa

Figure 2.9: The E(xchange) and A(ntipode) relations
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In these figures, note that the shading is such that all the 2-boxes that occur are

of colour (2,+). Also note that the modulus relation is a pair of relations - one for

each choice of shading the circle.

The main result of [16] asserts the following.

Theorem 2.5.1. Let H be a semisimple and cosemisimple Hopf algebra H of di-

mension n. The planar algebra P (H, δ) associated to H is a connected, irreducible,

spherical, non-degenerate planar algebra with modulus δ and of depth two. Further,

dim P(k,ǫ) = nk−1 for all k ≥ 1.

Remark 2.5.2. The word ‘non-degenerate’ here refers not to the non-degeneracy

axiom (which must hold for any planar algebra) but to the condition that the trace

tangles for each colour specify non-degenerate traces.

We recall a result from [16]. Let T (k, ǫ) denote the set of (k, ǫ) tangles with k−1

(interpreted as 0 for k = 0) internal boxes of colour (2,+) and no ‘internal regions’.

The result then asserts:

Lemma 2.5.3. [Lemma 16 of [16]] For each tangle X ∈ T (k, ǫ), the map Z
P (H)
X :

(P(2,+)(H))⊗(k−1) → P(k,ǫ)(H) is an isomorphism.

While the statement in [16] assumes ǫ = 1 and k ≥ 3, it is easy to see that

neither restriction is really necessary.

The following lemma establishes algebra isomorphisms between P (H)k,± and

finite iterated crossed product algebras.

Lemma 2.5.4. Let H be a finite-dimensional, semisimple and cosemisimple Hopf

algebra over k with planar algebra P (H). For each k ≥ 2 the maps

H ⋊H∗
⋊H ⋊ · · · (k − 1 factors) −→ P (H)k,+ and

H∗
⋊H ⋊H∗

⋊ · · · (k − 1 factors) −→ P (H)k,−,
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defined as in Figure 2.10 are algebra isomorphisms where F (= Fδp) denotes the

*

*
*

*
*

*

a

a F
f

F
f

F
g

b

a⋊ f ⋊ b⋊ · · · 7→ f ⋊ a⋊ g ⋊ · · · 7→

· · ·

· · ·

Figure 2.10: Algebra isomorphisms

Fourier transform map from H to H∗ defined by F (a) = δp1(a)p2.

2.6 Cabling

For any positive integer m, consider the ‘operation T 7→ T (m) on tangles’ given by

m-cabling. Some care is needed in defining this for tangles involving (k, ǫ) boxes

with ǫ = −1. Take the tangle T , ignore its shading and thicken every strand to

a cable of m parallel strands without changing the ∗’s. Now introduce shading in

the result such that any (k, ǫ) box of T changes to a (mk, ǫm) box of T (m). A little

thought shows that this does give a consistent chequerboard shading as needed. For

a detailed definition of ‘operation on tangles’, see [15]. This gives an operation on

planar algebras P 7→ (m)P . Here, the planar algebra (m)P = Q, say, is defined by

setting the vector spaces Qk,± to be Pmk,(±)m and the action ZQ
T of a tangle T on Q

to be ZP
T (m).

In our case we will only be interested in the 2-cabling of a planar algebra P

whose spaces are specified by ((2)P )k,± = P2k,+ for any k ∈ {0, 1, 2, · · · }.
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Chapter 3

Infinite iterated crossed products

and Drinfeld doubles

The purpose of this chapter is to prove one of our main results which is roughly the

following: Given a finite dimensional Hopf algebra over any field, we associate to it

a very natural inclusion A ⊆ B of infinite iterated crossed product algebras, namely,

B = Hop(−∞,∞) = · · · ⋊ Hop
⋊ Hop∗

⋊ Hop
⋊ · · · and A = Hop(−∞,−1] ⊗ Hop[2,∞).

We then show that B is the crossed product of A by D(H) where D(H) denotes

the Drinfeld double of H . More significantly, we show that D(H) is the only finite-

dimensional Hopf algebra with this property and thus produce a context in which

the Drinfeld double arises very naturally.

Though motivated by a folklore result in subfactor theory which asserts that for

a Kac algebra subfactor, a related subfactor to its asymptotic inclusion comes from

an outer action of its Drinfeld double, it is worth noting that our main result is

purely algebraic in nature and applies to finite dimensional Hopf algebras over an

arbitrary field. In particular, it applies to Hopf algebras that are not semisimple, in

contrast to the analytic case.
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3.1 Iterated crossed products

Throughout we work over a fixed but arbitrary ground field k. All algebras consid-

ered here will be unital k-algebras and possibly infinite-dimensional. However, the

Hopf algebras we consider will always be finite-dimensional. Subalgebras will always

refer to unital subalgebras.

We begin with the definition of action of a finite-dimensional Hopf algebra on

an algebra.

Definition 3.1.1. Suppose that A is an algebra and H = (H, µ, η,∆, ǫ, S) is a

finite-dimensional Hopf algebra. By an action of H on A we will mean a linear

map α : H → End(A) (references to endomorphisms without further qualification

will be to k-linear endomorphisms) satisfying (i) α1 = idA, (ii) αxy = αx ◦ αy, (iii)

αx(1A) = ǫ(x)1A and (iv) αx(ab) = αx1(a)αx2(b), for all x, y ∈ H and a, b ∈ A. To

clarify notation, αx stands for α(x) and ∆(x) is denoted by x1 ⊗ x2.

Example 3.1.2. Given a finite-dimensional Hopf algebra H, consider the dual Hopf

algebra H∗. There is a natural action of H∗ on H given by βf (x) = f(x2)x1 for

f ∈ H∗, x ∈ H. Similarly we have action of H on H∗.

We draw the reader’s attention to a notational abuse of which we will often be

guilty. We denote elements of a tensor product as decomposable tensors with the

understanding that there is an implied omitted summation (just as in our simplified

Sweedler notation). Thus, when we write ‘suppose f ⊗ x ∈ H∗ ⊗ H ’, we mean

‘suppose
∑

i f
i ⊗ xi ∈ H∗ ⊗H ’ (for some f i ∈ H∗ and xi ∈ H , the sum over a finite

index set).

If H acts on A, we may define the crossed product algebra (or the smash product

algebra) as follows.

Definition 3.1.3. Given an acton α of H on A, the crossed product algebra, denoted

A⋊αH (or mostly, simply as A⋊H, when the action is understood) to be the algebra
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with underlying vector space A⊗H (where we denote a⊗x by a⋊x) and multiplication

defined by

(a⋊ x)(b⋊ y) = aαx1(b)⋊ x2y.

This is an algebra with unit 1A⋊ 1H and there are natural inclusions of algebras

A ⊆ A ⋊ H given by a 7→ a ⋊ 1H and H ⊆ A ⋊ H given by x 7→ 1A ⋊ x. We

note that while the crossed or smash product construction is a special case of one

that involves, in addition, twisting by a 2-cocyle of H , in our context, it suffices to

consider the case of the trivial cocycle, which is the one discussed above.

Borrowing terminology from subfactor theory, we define an inclusion A ⊆ B of

algebras to be irreducible if the relative commutant A′ ∩B (which is the centraliser

algebra of A in B, also denoted by CB(A) or B
A) is just k1B, i.e., if the only elements

of B that commute with all elements of A are scalar multiples of its identity element.

We also define an action of H on A to be outer if the inclusion A ⊆ A ⋊ H is

irreducible.

The following lemma, whose proof we omit, is a simple and useful characterisation

of crossed products without explicit reference to an action. We will say that two

algebras containing an algebra A are isomorphic as algebras over A, if they are

isomorphic by an isomorphism that restricts to the identity on A.

Lemma 3.1.4. Suppose that B is an algebra with subalgebras A and H, where H is

further equipped with a comultiplication and antipode that make it a Hopf algebra,

and such that:

(i) The restriction of the multiplication map µ : A ⊗H → B is a linear isomor-

phism, and

(ii) For all x ∈ H and a ∈ A, x1aSx2 ∈ A.

Then α : H → End(A) defined by αx(a) = x1aSx2 is an action of H on A and the

44



crossed product algebra A⋊α H is isomorphic to B as an algebra over A.

Observe that if α is an action of a Hopf algebra H on an algebra A, then there

is a natural action β of the dual Hopf algebra H∗ on the crossed product algebra

A⋊H defined by βf(a⋊ x) = f(x2)(a⋊ x1). In the sequel, we will use this action

without further specification.

We now review infinite iterated crossed products. Our treatment closely follows

that of [7] which treats the case when H is a Kac algebra. For i ∈ Z, define H i to

be H∗ or H according as i is even or odd. For i ≤ j define H [i,j] by induction on

j − i as H i if j = i and as H [i,j−1]
⋊ Hj otherwise (for the natural action). The

multiplication on H [i,j] is seen (by induction) to be given by the following formula

(when i, j are both even - similar formulae hold for the other three cases):

(f i
⋊ xi+1

⋊ · · ·⋊ f j)(gi ⋊ yi+1
⋊ · · ·⋊ gj) =

〈xi+1
1 |gi2〉〈f

i+2
1 |yi+1

2 〉 · · · 〈xj−1
1 |gj−2

2 〉〈f j
1 |y

j−1
2 〉 ×

f igi1 ⋊ xi+1
2 yi+1

1 ⋊ · · ·⋊ xj−1
2 yj−1

1 ⋊ f j
2g

j.

The multiplication is given pictorially in Figure 3.1. The interpretation of Figure

f i gi

xi+1 yi+1

f i+2
... gj−2

xj−1 yj−1

f j gj

Figure 3.1: Multiplication in H [i,j] for i, j even

3.1 is as follows. The dots are to be interpreted as multiplication (in H or in H∗),

the diagonal lines as contractions (between H and H∗ to get a constant) and the

forks as applications of ∆.
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Note that H [i,i+1] = H i
⋊H i+1 is known as the Heisenberg double of H i (and is

isomorphic to a matrix algebra of size dim(H)).

The multiplication rule shows that if p ≤ i ≤ j ≤ q, the natural inclusion of

H [i,j] into H [p,q] is an algebra map. Define the algebra B to be the ‘union’ of all

the H [i,j]. More precisely, B is the direct limit, over the subset of finite intervals in

Z directed by inclusion, of the H [i,j]. We may suggestively write B = H(−∞,∞) =

· · ·⋊H⋊H∗
⋊H⋊· · · and represent a typical element of B as · · ·⋊x−1

⋊f 0
⋊x1⋊· · · .

We repeat that this means that a typical element of B is in fact a finite sum of such

terms. Note that in any such term all but finitely many of the f i are ǫ and all but

finitely many of the xi are 1. One fact about the infinite iterated crossed product

that we will use is that H i and Hj commute whenever |i− j| ≥ 2.

Next, we define a subalgebra A of B which, in suggestive notation, is H(−∞,−1]⊗

H [2,∞). A little more clearly, it consists of all (finite sums of) elements · · ·⋊x−1
⋊f 0

⋊

x1 ⋊ · · · of B with f 0 = ǫ and x1 = 1. Strictly speaking, if H(−∞,−1] represents the

direct limit of all theH [−j,−1] for j ≥ 1 andH [2,∞) represents the direct limit of all the

H [2,j] for j ≥ 2, then, these algebras can be identified with commuting subalgebras

of B, with the multiplication map being an injective map from H(−∞,−1]⊗H [2,∞) to

B, and the image is denoted A. As an algebra, A is clearly generated by all the H i

for i ∈ Z\{0, 1}.

The main object of interest is the following pair of algebras.

Definition 3.1.5. For a finite-dimensional Hopf algebra H, the inclusion A ⊆ B

of (infinite-dimensional) algebras defined above will be called the derived pair of H.

The following proposition identifying the relative commutant of the derived pair

will be very useful. In case H is a Kac algebra, this appears in [6].

Proposition 3.1.6. For any p ∈ Z, the subalgebras H(−∞,p] and H [p+2,∞) are mutual

commutants in B. In particular, the derived pair of H is irreducible.
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The main observation in the proof of Proposition 3.1.6 is contained in the follow-

ing lemma, for the proof of which we need to recall a few facts regarding integrals

as well as Fourier transforms of a finite dimensional Hopf algebra for which we refer

to Theorem 1.2.4, Lemma 1.2.6, and Remark 1.2.11.

Lemma 3.1.7. For i ≤ j, the set of elements of H [i,j] that commute with a non-zero

left integral in H i−1 is precisely H [i+1,j].

Proof. First suppose that i is even, so that H i−1 = H . Since elements of H [i+1,j]

certainly commute with all elements of H i−1, it suffices to see that an arbitrary

element, say f i
⋊xi+1

⋊ · · · ∈ H [i,j] that commutes with a non-zero left integral, say

hi−1 ∈ H i−1, is actually in H [i+1,j].

The commutativity condition is equivalent to the equation

hi−1
⋊ f i

⋊ xi+1
⋊ · · · = f i

1(h
i−1
2 )hi−1

1 ⋊ f i
2 ⋊ xi+1

⋊ · · · .

Comparing coefficients of a basis of H [i+1,j] on both sides, we get hi−1
⋊ f i =

f i
1(h

i−1
2 )hi−1

1 ⋊f i
2. Evaluating the second component on 1 gives f i(1)hi−1 = f i(hi−1

2 )hi−1
1 .

But now, since f i(1)hi−1 = f i(1)ǫ(hi−1
2 )hi−1

1 , the injectivity of the Fourier transform

map implies that f i = f i(1)ǫ. Therefore f i
⋊ xi+1

⋊ · · · ∈ H [i+1,j], as desired.

A similar proof is valid if i is odd, replacing H with H∗.

Proof of Proposition 3.1.6. SinceH i andHj commute for |i−j| ≥ 2, the subalgebras

H(−∞,p] and H [p+2,∞) of B commute with each other and therefore are contained in

the commutants of one another.

To show that (H(−∞,p])′ ⊆ H [p+2,∞), take 1 6= b ∈ (H(−∞,p])′, and choose i largest

so that b ∈ H [i,j] for some j. It suffices to see that i ≥ p+2. Suppose that i ≤ p+1

so that i− 1 ≤ p. Now b ∈ H [i,j] and commutes with H i−1 (since H i−1 ⊆ H(−∞,p]).

By Lemma 3.1.7 it follows that b ∈ H [i+1,j] contradicting choice of i.
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To see that (H [p+2,∞))′ ⊆ H(−∞,p], note that the ‘flip map about p + 1’ from B

to B defined by

· · ·⋊ f p−1
⋊ xp ⋊ f p+1

⋊ xp+2
⋊ f p+3

⋊ · · ·

7→ · · ·⋊ Sf p+3
⋊ S−1xp+2

⋊ Sf p+1
⋊ S−1xp ⋊ Sf p−1

⋊ · · ·

(for p odd, with a similar definition for p even) is an anti-automorphism that inter-

changes H [p+2,∞) and H(−∞,p] and appeal to the previously proved case.

Finally, to see irreducibility of the derived pair, note that A′∩B = (H(−∞,−1])′∩

(H [2,∞))′ = H [1,∞) ∩H(−∞,0] = k1B - as desired.

3.2 The Drinfeld double construction

We next review the Drinfeld double construction from [19]. The Drinfeld double

of a Hopf algebra H , denoted D(H), is the Hopf algebra whose underlying vector

space is H∗ ⊗H and multiplication, comultiplication and antipode specified by the

following formulae.

(f ⊗ x)(g ⊗ y) = g1(Sx1)g3(x3)(g2f ⊗ x2y),

∆(f ⊗ x) = (f1 ⊗ x1)⊗ (f2 ⊗ x2), and

S(f ⊗ x) = f1(x1)f3(Sx3)(S
−1f2 ⊗ Sx2).

What we actually use is an isomorphic avatar of this, which we denote D̃(H) which

also has underlying vector space H∗⊗H and structure maps obtained by transport-

ing the structures on D(H) using the invertible map S ⊗ S−1 : D(H) = H∗ ⊗H →

H∗ ⊗ H = D̃(H). It is easily checked that the structure maps for D̃(H) are given
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by the following formulae.

(f ⊗ x)(g ⊗ y) = g1(x1)g3(Sx3)(fg2 ⊗ yx2),

∆(f ⊗ x) = (f2 ⊗ x2)⊗ (f1 ⊗ x1), and

S(f ⊗ x) = f1(Sx1)f3(x3)(S
−1f2 ⊗ Sx2).

The Hopf algebra D̃(H)cop is the Hopf algebra (also with underlying space H∗⊗H)

with structure maps given by:

(f ⊗ x)(g ⊗ y) = g1(x1)g3(Sx3)(fg2 ⊗ yx2),

∆(f ⊗ x) = (f1 ⊗ x1)⊗ (f2 ⊗ x2), and

S(f ⊗ x) = f1(Sx1)f3(x3)(Sf2 ⊗ S−1x2).

For ease of notation we will denote the Hopf algebra D̃(H)cop by L. By construction,

as a Hopf algebra, it is isomorphic to D(H)cop.

Lemma 3.2.1. D̃(Hcop) ∼= D̃(H)cop as Hopf algebras.

Proof. It follows from the above that the structure maps for D̃(Hcop) are given by:

(f ⊗ x)(g ⊗ y) = g1(x3)g3(S
−1x1)(g2f ⊗ yx2),

∆(f ⊗ x) = (f2 ⊗ x1)⊗ (f1 ⊗ x2), and

S(f ⊗ x) = f1(S
−1x3)f3(x1)(Sf2 ⊗ S−1x2).

A direct check now shows that the map S ⊗ idH : D̃(H)cop → D̃(Hcop) is a Hopf

algebra isomorphism.

49



3.3 Basic construction, crossed products and recog-

nition

This section is devoted to a few results that will be used in proving the uniqueness

part of our main theorem. We use the notion of ‘basic construction’ as the main

tool towards proving this uniqueness result.

Definition 3.3.1. The passage from a unital algebra inclusion A ⊆ B to the unital

algebra inclusion B ⊆ C = End(BA) (the algebra of right A-linear endomorphisms

of B) where the inclusion of B in C is via the left regular representation is called

the basic construction of A ⊆ B.

Many of the results of this section are known - sometimes in greater generality -

for Hopf-Galois extensions (in particular for twisted smash products) as in [9, 17],

including crossed product recognition theorems as in [3, 10]. Proofs are included

here only for completeness.

Lemma 3.3.2. Let A ⊆ B be a unital inclusion of algebras with associated basic

construction B ⊆ C. Then the centraliser algebras BA and CB are anti-isomorphic.

In particular, A ⊆ B is irreducible if and only if B ⊆ C is irreducible.

Proof. The map BA → CB given by b 7→ ρb where ρb(b̃) = b̃b is verified to be an

anti-isomorphism.

Before we prove the next theorem analysing the basic construction when A ⊆ B

is of the form A ⊆ A⋊H , we pause to observe the following.

Lemma 3.3.3. Every linear map H → A⋊H is of the form λa⋊xβf for a⊗x⊗f ∈

A⊗H ⊗H∗.

Proof. Clearly, any such linear map is necessarily of the form z 7→ a ⊗ g(z)y for

some a⊗ y⊗ g ∈ A⊗H ⊗H∗. Let p be a left integral for H∗ and h a left integral of
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H with p(h) = 1. Let a⊗x⊗ f = a⊗ (gp2)(h2)yS
−1h1⊗S−1p1. Now, computation,

using the properties of left integrals stated above Lemma 3.1.7 applied to both h

and p, shows that λa⋊xβf (z) = a⊗ g(z)y, as desired.

Theorem 3.3.4. Suppose that α is an action of the finite-dimensional Hopf algebra

H on an algebra A and B = A⋊H. Let B ⊆ C be the basic construction of A ⊆ B.

Then,

(1) C is isomorphic as an algebra over B to B ⋊H∗.

If, further, the action α is outer, then

(2) A′ ∩ C (= End(ABA)) = H∗ for the natural imbedding of H∗ in C, and

(3) Hom(ABA,AAA) is 1-dimensional and is identified in H∗ as the scalar multi-

ples of a(ny) non-zero left integral of H∗.

Proof. (1) Define a map θ : B ⋊H∗ → C by θ(b⋊ f) = λb ◦ βf and note that this a

well-defined map, i.e., is right A-linear, and, after a little calculation, is an algebra

homomorphism that restricts to the identity on B.

To see that θ is injective, take Z = b ⋊ y ⋊ g ∈ B ⋊ H∗ = A ⋊ H ⋊ H∗ in

ker(θ). To see that Z = 0, it will suffice to see that for arbitrary f ∈ H∗ and x ∈ H ,

(id⊗f⊗x)(Z) = 0. Computation shows that 0 = θ(Z)(1⋊z) = g(z2)(b⋊yz1), for all

z ∈ H . Hence, for all k ∈ H∗ and z ∈ H , g(z2)k(yz1)b = (id⊗k2(z1)k1⊗z2)(Z) = 0.

Now appeal to the well-known (and easily checked) fact that the map k ⊗ z 7→

k2(z1)k1⊗z2 of H
∗⊗H to itself is invertible (with inverse f⊗x 7→ f2(S

−1x1)f1⊗x2)

to produce k ⊗ z such that k2(z1)k1 ⊗ z2 = f ⊗ x, to finish the proof of injectivity.

For surjectivity, first note that the map x⊗a 7→ xa = (1⋊x)(a⋊1) = αx1(a)⋊x2 :

H⊗A→ A⋊H is a linear isomorphism with inverse given by a⋊x 7→ x2⊗αS−1x1
(a).

It follows that any right A-linear map from B to B is determined by its action on

51



elements of H . Now by Lemma 3.3.3, an arbitrary linear map from H to A⋊H can

be expressed in the form λa⋊xβf for a⊗ x⊗ f ∈ A⊗H ⊗H∗. Since λa⋊xβf is right

A-linear, surjectivity follows.

(2) Identify C with A ⋊ H ⋊ H∗. Observe first that 1 ⋊ 1 ⋊ f commutes with

A for all f ∈ H∗. Conversely, suppose that a ⋊ x ⋊ f ∈ A′ ∩ C. This implies that

ãa ⋊ x ⋊ f = aαx1(ã) ⋊ x2 ⋊ f for all ã ∈ A. Recalling that a ⋊ x ⋊ f actually

stands for a sum and comparing coefficients of a basis of H∗ on either side gives

ãa⋊x = aαx1(ã)⋊x2 for all ã ∈ A. This implies that a⋊x ∈ A′∩B and is therefore

a scalar by outerness of the action. Hence a⋊ x⋊ f ∈ H∗ ⊆ C.

(3) Hom(ABA,AAA) consists of those elements of End(ABA) whose range is

contained in A. Since End(ABA) = {βf : f ∈ H∗}, we need to see for what f ∈ H∗

is βf (A ⋊ H) ⊆ A. If f = p - a non-zero left integral of H∗, then βf (a ⋊ x) =

a⋊ p(x2)x1 = p(x)(a⋊ 1), by the defining property of a left integral of H∗. On the

other hand, if βf (A⋊H) ⊆ A, then, in particular, βf (1⋊ x) = 1⋊ f(x2)x1 ∈ A for

all x ∈ H . Thus f(x2)x1 must be a scalar multiple of 1H for all x ∈ H and applying

ǫ shows that this scalar is necessarily f(x). Thus f must be a left integral of H∗.

We omit the proof of the next proposition, the first three parts of which follow

directly from Lemma 3.3.2 and Theorem 3.3.4, while the fourth has a proof very

similar to that of Theorem 3.3.4(2).

Proposition 3.3.5. Suppose that α is an outer action of the finite-dimensional Hopf

algebra H on an algebra A and B = A ⋊ H. Let A ⊆ B ⊆ C ⊆ D be the iterated

basic construction of A ⊆ B. Then,

(1) D is isomorphic as an algebra over A to A⋊H ⋊H∗
⋊H,

(2) B′ ∩D (= End(BCB)) = H for the natural imbedding of H in D,

(3) Hom(BCB,B BB) is 1-dimensional and is identified in H as the scalar multiples
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of a(ny) non-zero left integral of H, and

(4) A′ ∩ D (= End(ACB)) = H∗
⋊ H for the natural imbedding of H∗

⋊ H in

D.

Note that Proposition 3.3.5(4) implies that the multiplication map (A′ ∩ C) ⊗

(B′ ∩ D) → (A′ ∩ D) is an isomorphism. We now show that the crossed product

by an outer action of a finite dimensional Hopf algebra recognizes the Hopf algebra.

More precisely, we have the following theorem.

Theorem 3.3.6. Let H be a finite-dimensional Hopf algebra acting outerly on an

algebra A. Then, the isomorphism class of the pair A ⊆ A⋊H determines H up to

isomorphism, i.e., if A ⊆ A⋊H ∼= A ⊆ A⋊K as pairs of algebras, for some finite

dimensional Hopf algebra K acting outerly on A, then H ∼= K as Hopf algebras.

Before beginning the proof we note that by an isomorphism of pairs of algebras

A ⊆ B and C ⊆ D, we mean an algebra isomorphism from B to D that restricts to

an isomorphism from A to C.

Proof of Theorem 3.3.6. Begin with a pair of algebras A ⊆ B known to be iso-

morphic to A ⊆ A ⋊ H . Perform the double basic construction to get the tower

A ⊆ B ⊆ C ⊆ D of algebras. It follows from Theorem 3.3.4(2) and Theorem

3.3.5(2) that A′ ∩ C ∼= H∗ and B′ ∩D ∼= H as algebras.

Now, Theorem 3.3.4(3) and Proposition 3.3.5(3) give distinguished 1-dimensional

subspaces Hom(ABA,AAA) ⊆ A′ ∩ C and Hom(BCB,B BB) ⊆ B′ ∩ D that are

identified with the spaces of left integrals in H∗ and H respectively.

Pick a non-zero element p ∈ Hom(ABA,AAA). Since p corresponds to a left-

integral of H∗, for any g ∈ H∗ = A′ ∩C, we have gp = g(1)p. Thus we get the map

g 7→ g(1) : A′ ∩ C = H∗ → k - which is the counit ǫH∗ of H∗. Similarly, we get the

map ǫH : B′ ∩D = H → k.
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Finally, given arbitrary f ∈ H∗ = A′ ∩ C and x ∈ H = B′ ∩ D, consider

xf ∈ A′ ∩ D. Identifying H∗ and H with their images in H∗
⋊ H , this is just the

element (ǫ⋊ x)(f ⋊ 1) = αx1(f)⋊ x2 = f2(x1)f1 ⋊ x2 ∈ H∗
⋊H . Pulling back this

element via the natural isomorphism from (A′ ∩C)⊗ (B′ ∩D) to (A′ ∩D) gives the

element αx1(f)⊗ x2 ∈ H∗ ⊗H . Now applying ǫH∗ ⊗ ǫH to this gives f(x).

Thus, if A ⊆ A⋊H ∼= A ⊆ A⋊K, we’ve seen that there are algebra isomorphisms

H → K and H∗ → K∗ that take the evaluation pairing between H and H∗ to

that between K and K∗. This shows that the algebra isomorphisms are bialgebra

isomorphisms and therefore also Hopf algebra isomorphisms.

3.4 The main theorem

We are now ready to state our main result.

Theorem 3.4.1. Let H be a finite-dimensional Hopf algebra and A ⊆ B be its

derived pair. Then B is isomorphic, as an algebra over A, to A ⋊ L (for some

(outer) action of L = D(H)cop on A) and further, up to isomorphism, L is the only

finite-dimensional Hopf algebra with this property.

We briefly sketch the proof of this theorem before going into the details. We

first exhibit L = D̃(H)cop ∼= D(H)cop (see 3.2) as a subalgebra of B, show that the

multiplication map A ⊗ L to B is an isomorphism and that A is stable under the

‘adjoint action’ of L. This suffices to see that B is isomorphic as an algebra over A

to A⋊ L. The uniqueness of L follows from Theorem 3.3.6.

While the following lemma is quite easy to prove, deriving the form of the ho-

momorphism from L to B took us the longest time and involved application of

the diagrammatics of Jones’ planar algebras. Having obtained the formula though,

verification is simple.
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Lemma 3.4.2. The map L → B defined as the composite map L → H [0,2] → B

where L→ H [0,2] = H∗
⋊H ⋊H∗ is defined by

f ⊗ x 7→ f1(Sx1)f3 ⋊ Sx2 ⋊ f2.

is an injective algebra homomorphism.

Proof. We omit the verification that the map defined is an algebra homomorphism.

To see that it is injective, we consider the map H [0,2] → L defined by f ⋊ x⋊ g 7→

f(1)g1(S
−1x2)(g2 ⊗ S−1x1) and verify that it is a left inverse.

Remark 3.4.3. In particular, Lemma 3.4.2 implies that L is a subalgebra of H∗
⋊

H⋊H∗
⋊H which is a matrix algebra of size dim(H)2 and also is the tensor square

of the Heisenberg double H∗
⋊H of H∗. This is one of the results of [11].

We will identify L with its image in B. Note that under this identification,

f ⊗ 1 7→ f2 ⋊ 1⋊ f1 ∈ H [0,2] and ǫ⊗ x 7→ Sx ∈ H1.

Lemma 3.4.4. The multiplication map of B restricted to A⊗L is an isomorphism.

Proof. Given · · ·⋊x−1
⋊ǫ⋊1⋊f 2 · · · ∈ A and f⊗x ∈ L (identified with f1(Sx1)f3⋊

Sx2 ⋊ f2 ∈ H [0,2] ⊆ B), their product is computed to be:

f1(Sx1)f
2
1 (Sx2)f3(x

3
1)(· · ·⋊ f−2

⋊ x−1
⋊ f4 ⋊ Sx3 ⋊ f 2

2 f2 ⋊ x32 ⋊ f 4
⋊ x5 ⋊ · · · )

Thus, to prove the lemma, it suffices to verify that the map

g ⊗ y ⊗ f ⊗ x 7→ f1(Sx1)g1(Sx2)f3(y1)(f4 ⊗ Sx3 ⊗ g2f2 ⊗ y2)

of H∗ ⊗ H ⊗ H∗ ⊗ H to itself is a linear isomorphism. We assert, and omit the
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straightforward but very computational proof, that the map

p⊗ z ⊗ q ⊗ w 7→ p1(Sw1)q1(S
−1z2)(q2Sp2 ⊗ w2 ⊗ p3 ⊗ S−1z1)

is its inverse.

Proposition 3.4.5. The map γ : L→ End(B) given by γ(f⊗x)(b) = (f⊗x)1bS((f⊗

x)2) maps A to itself.

Proof. The map γ : L→ End(B) is easily verified to be an action of L on B and so

it suffices to check for f ∈ H∗, x ∈ H and a ∈ A, that γ(f⊗1)(a), γ(ǫ⊗x)(a) ∈ A.

Taking a = · · ·⋊ x−3
⋊ f−2

⋊ x−1
⋊ ǫ⋊ 1⋊ f 2

⋊ x3 ⋊ f 4
⋊ x5 ⋊ · · · , we compute

γ(f⊗1)(a) = f2(x
−1
2 )f3(Sx

3
1)(· · ·⋊ f−2

⋊ x−1
1 ⋊ ǫ⋊ 1⋊ f1f

2Sf4 ⋊ x32 ⋊ f 4
⋊ · · · ),

γ(ǫ⊗x)(a) = f 2
1 (x)(· · ·⋊ f−2

⋊ x−1
⋊ ǫ⋊ 1⋊ f 2

2 ⋊ x3 ⋊ f 4
⋊ · · · ),

both of which are clearly in A.

Proof of Theorem 4.1.1. The hypotheses of Lemma 3.1.4 are satisfied by A ⊆ B and

L, by Lemma 3.4.4 and Proposition 3.4.5. Thus, by its conclusion, B is isomorphic

as an algebra over A to A⋊L, for some action of L on A. This action is outer since

A ⊆ B is irreducible by Proposition 3.1.6. Finally, by Theorem 3.3.6, L is unique

up to isomorphism.

The result asserted in our abstract is an easy corollary using Lemma 3.2.1.

Corollary 3.4.6. Let A ⊆ B be the derived pair of Hcop (∼= Hop) for a finite-

dimensional Hopf algebra H. Then B is isomorphic as an algebra over A to A ⋊

D(H) for some outer action of D(H) on A and further D(H) is the only finite-

dimensional Hopf algebra with this property.
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Chapter 4

Cabling and Drinfeld doubles

Throughout this chapter, k will be an arbitrary algebraically closed field, H =

(H, µ, η,∆, ǫ, S) a finite-dimensional, semisimple and cosemisimple Hopf algebra

over k, and h (resp. p) will always denote the unique nonzero idempotent integral

in H (resp. H∗). Recall that in the previous chapter we have explicitly identified

an algebra embedding of L = D̃(Hcop) in H∗
⋊H⋊H∗ (Lemma 3.4.2). SInce L and

D(H) are isomorphic as algebras, this may be regarded as a map of P (D(H))2,+

into P (H∗)4,+. Such maps are interesting for various reasons. For instance, one such

embedding of D(H) into the tensor square of H ⋊H∗ is discussed in [11] and used

in [12] to construct knot invariants in intrinsically three-dimensional terms.

It is thus a natural question to ask whether the embedding of D(H) into H∗
⋊

H ⋊H∗ may be extended to a planar algebra map in some canonical fashion, and

it is the affirmative answer to this question that is one of the main results of this

chapter. We further show that this planar algebra map is injective and characterise

the image of P (D(H)) in (2)P (H∗).
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4.1 The planar algebra morphism

The following proposition is the first part of the main result of this chapter.

Proposition 4.1.1. Let H be a finite-dimensional, semisimple and cosemisimple

Hopf algebra over k of dimension n = δ2 with Drinfeld double D̃(H). The map

D̃(H) ∼= P (D̃(H))2,+ −→ (2)P (H∗)2,+ = P (H∗)4,+ ∼= H∗
⋊H ⋊H∗

defined by linear extension of f ⊗ a 7→ f1(Sa1)f3 ⋊ Sa2 ⋊ f2 extends to a unique

planar algebra morphism from P (D̃(H)) to (2)P (H∗).

Before beginning the proof, we recall Lemma 2.5.4 to clarify the isomorphisms

occurring in the statement of the proposition. We also remark that we shall write

both the Fourier transform maps, one from H to H∗ given by a→ δp1(a)p2 and the

other one from H∗ to H given by f → δf(h1)h2, as F with the argument making it

clear which is meant.

The idea of the proof of Proposition 4.1.1 is very simple. Since we know a

presentation of the planar algebra of D̃(H) by generators and relations, in order to

define a planar algebra map of P (D̃(H)) into any planar algebra, it suffices to map

the generators to suitable elements in the target planar algebra in such a way that

the relations hold.

Proof of Proposition 4.1.1. Throughout this proof, we will use P to denote the pla-

nar algebra P (D̃(H)).

The map defined in the statement of Proposition 4.1.1 can also be expressed as

f ⊗ a 7→ (f2⋊ 1⋊ f1)(ǫ⋊S(a)⋊ ǫ), as a brief calculation shows. This map is shown

pictorially in Figure 4.1. Being bilinear in f and a, this map clearly admits a linear

extension to a map D̃(H) −→ P (H∗)4,+ = (2)P (H∗)2,+. Consider its extension to
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**

*

f2

F
S
a

f1

f ⊗ a 7→

Figure 4.1: Mapping D̃(H) to P4,+(H
∗)

a planar algebra map from the universal planar algebra on L = L2,+ = D̃(H) to

(2)P (H∗). We will now check that each of the 8 relations (L), (M), (U), (I), (C), (T),

(E), (A) in Figures 2.6 - 2.9 (applied to the Hopf algebra D̃(H)) is in the kernel of

this planar algebra map.

Relation L: This is a direct consequence of the linearity of the map D̃(H) −→

(2)P (H∗)2,+ = P (H∗)4,+ together with the multilinearity of tangle maps.

Relations M: The modulus relations for P = P (D̃(H)) depend on a choice of

square root of dim(D̃(H)) = n2 and we will choose n to be the modulus of P . Thus

the modulus relations for P assert that ZP
T 0,±(1) = n10,± where recall T 0,± are the

(0,±) tangles with just one internal closed loop and no internal discs and 10,± are

the unit elements of P0,±. Pushing this down to (2)P (H∗), what needs to be verified

is that, Z
(2)P (H∗)
T 0,± (1) = n10,± or equivalently that Z

P (H∗)

(T 0,±)(2)
(1) = n10,+.

Since the 2-cabled tangle (T 0,±)(2) is just the (0,+) tangle with two nested in-

ternal closed loops (and no internal discs), the asserted equality is a consequence of

(one application of each of) the modulus relations for P (H∗).

Relation U: This is the equality ZP

I
2,+
2,+

(1D̃(H)) = ZP
U2,+(1), where I

2,+
2,+ and U2,+ are

the identity and unit tangles of colour (2,+). In order to push this down to (2)P (H∗),

we note first that 1D̃(H) = ǫ ⊗ 1 (= ǫ ⊗ 1H) and that under the map of Figure 4.1

it goes to 14,+ - the unit element of P4,+(H
∗). This is because FS(1) = F (1) = δp

and by use of the integral relation in P (H∗).

Thus what needs to be verified is that Z
(2)P (H∗)

I
2,+
2,+

(14,+) = Z
(2)P (H∗)
U2,+ (1) or equiva-
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lently that Z
P (H∗)

(I2,+2,+ )(2)
(14,+) = Z

P (H∗)

(U2,+)(2)
(1). The last equality holds since (I2,+2,+ )

(2) =

I4,+4,+ , (U
2,+)(2) = U4,+ and, by definition, 14,+ = ZU4,+(1).

Relation I: This is the equality ZP

I
2,+
2,+

(hD̃(H)) = n−1ZP
E2,+(1), where hD̃(H) is the

integral in D̃(H) and E2,+ is the Jones projection tangle of colour (2,+) (see Figure

2.1). To push this down to (2)P (H∗), recall first that hD̃(H) = p⊗ h. Under the map

of Figure 4.1 this goes to the element of P4,+(H
∗) shown on the left in Figure 4.2,

**

*
=

p2
F
S
h

p1

n−1

Figure 4.2: Equality to be verified in P4,+(H
∗)

which needs to be shown to be equal to n−1Z
(2)P (H∗)

E2,+ (1) = n−1Z
P (H∗)

(E2,+)(2)
(1), which

is the element of P4,+(H
∗) shown on the right in Figure 4.2.

We prove this as follows. First note that FS(h) = F (h) = δp1(h)p2 = δp(h)ǫ =

δ−1ǫ. Now applying the unit relation in P (H∗) we reduce the element on the left

side of Figure 4.2 to that on the left side in Figure 4.3.

Then we calculate in P (H∗) as follows:

* *

=

*
=

p1

p

p2

δ−1δ−1 δ−2

Figure 4.3: Computation in P (H∗)

The first equality in Figure 4.3 follows from the exchange and antipode relations

in P (H∗) together with the fact that Sp = p and the Hopf algebra identity p1 ⊗
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p2 = p2 ⊗ p1 (which essentially expresses the traciality of p), while the second

equality follows from the integral relation. Now, comparison with the previous step

immediately yields the equality expressed in Figure 4.2, thus verifying Relation (I).

Relation C: Recalling that the counit of D̃(H) is given by 1 ⊗ ǫ, the verification

that Relation C is in the kernel of the planar algebra map from P to (2)P (H∗) is

easily seen to be equivalent to the truth of the equation of Figure 4.4 holding in

P (H∗). To prove this, observe that since the trace and antipode relations in P (H∗)

*

*

*

=

f2

F
S
(a
)

f1

f(1)ǫ(a)

Figure 4.4: Relation C

simplify the looped FS(a) to δF (a)(h) = δ2p(Sah) = ǫ(a). Now f2Sf1 = f(1)ǫ, so

the required equality follows using Relation U .

Relation T: Recalling that pD̃(H) = h⊗p, the verification that Relation T is in the

kernel of the planar algebra map from P to (2)P (H∗) is seen to be equivalent to the

truth of the equation of Figure 4.5 holding in P (H∗). The left hand side of Figure

**

*
=

f2

F
S
(a
)

f1

nf(h)p(a)

Figure 4.5: Relation T

4.5 simplifies, using the trace and counit relations in P (H∗), to δf1(h)FS(a)(1)f2 =
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δ2p(a)f1(h)f2 = np(a)f(h), as needed.

Relation E: This is equivalent to two relations - one for multiplication and the other

for comultiplication. These are shown in Figure 4.6. To prove that the multiplication

*

*

*

*

*

*

=
=

aa

ab

b a1 a2

Figure 4.6: Multiplication and comultiplication relations

relation is in the kernel, a little thought shows that it suffices to verify the equality

of Figure 4.7 in P (H∗). Using the exchange relation in P (H∗) twice, the equality in

* *
*

* *

*

f2

f2 f1

F
S
a f3

F
S
a
2

= f1(a1)f4(Sa3)

Figure 4.7: Equality to be verified for the multiplication relation

Figure 4.7 is equivalent to the Hopf algebraic identity:

f1 ⊗ f2 ⊗ FS(a) = f1(a1)f6(Sa3)f3 ⊗ f4 ⊗ f5SF (a2)Sf2.

To see this, it certainly suffices to see that

f ⊗ FS(a) = f1(a1)f5(Sa3)f3 ⊗ f4SF (a2)Sf2.

Evaluating both sides on an arbitrary element x⊗ y ∈ H⊗H , we need to verify the

equality

f(x)FS(a)(y) = f1(a1)f5(Sa3)f3(x)(f4SF (a2)Sf2)(y).
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The right hand side of the above equation may be written as:

RHS = f1(a1)f5(Sa3)f3(x)f4(y1)SF (a2)(y2)Sf2(y3)

= δf1(a1)f5(Sa3)f3(x)f4(y1)p1(Sa2)p2(y2)Sf2(y3)

= δf1(a1)f5(Sa3)f3(x)(f4p2Sf2)(y)p1(Sa2)

= δf1(a1)f5(Sa3)f3(x)p2(y)(Sf4p1f2)(Sa2)

= δf1(a1)f5(Sa5)f3(x)p2(y)Sf4(Sa4)p1(Sa3)f2(Sa2)

= δf(a1Sa2xa4Sa5)p2(y)p1(Sa3)

= δf(x)p(Say),

which clearly agrees with the left hand side, finishing the proof of the multiplication

relation.

Checking that the comultiplication relation is in the kernel is seen to be equiva-

lent to the identity of Figure 4.8 holding in P (H∗). This easily reduces to verifying

=

*

*

*

*

*

* *

*

*
f2

f2

f1

f1

F
S
a

F
S
a
2

f3

F
S
a
1

f4

Figure 4.8: Equality to be verified for the comultiplication relation

the relation of Figure 4.9. We leave this pleasant verification to the reader.

*

*

*
Fa

Fa2

Fa1

=

Figure 4.9: Equivalent equality to be verified
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Relation A: The easiest way to see that the antipode relation is in the kernel of

the planar algebra map from P to (2)P (H∗) is to appeal to the already proved multi-

plication relation. Since S is an anti-homomorphism as is the 2-rotation on 2-boxes,

compatibility with multiplication immediately reduces to checking the antipode re-

lation on an algebra generating set of D̃(H). These may be chosen to be f ⊗ 1 and

a⊗ ǫ, and on elements of this kind, the antipode relation is trivial to verify.

4.2 Injectivity

Proposition 4.2.1. The planar algebra morphism P (D̃(H)) (=P ) to (2)P (H∗) de-

fined in Proposition 4.1.1 is injective.

Proof. Let Ψ : P →(2) P (H∗) denote the planar algebra morphism of Proposition

4.1.1, which is a collection of maps Ψk,ǫ : Pk,ǫ → ((2)P (H∗))k,ǫ = P2k,+(H
∗) for

each colour (k, ǫ). To see that each of these is injective, it suffices to check this

when either k = 0 or when ǫ = 1 (since the one-rotation tangles for k > 0 give

isomorphisms). The cases when k = 0 (and ǫ = ±1) are obvious since both sides

are naturally isomorphic to k with the Ψ0,±’s reducing to the identity map under

these isomorphisms. Also, Ψ1,+ takes 11 ∈ P1,+ to 12 ∈ P2,+(H
∗), and is therefore

injective.

For k ≥ 2 (and ǫ = 1) consider the family of tangles Xk,+ with k − 1 internal

boxes of colour (2,+) defined inductively as in Figure 4.10. It is easy to see that

Xk,+ ∈ T (k,+). Thus ZP
Xk,+ : (D̃(H))⊗(k−1) → Pk,+ is an isomorphism by virtue of

Lemma 2.5.3, and to show that Ψk,+ is injective it suffices to see that Ψk,+ ◦ ZP
Xk,+

is injective.

Since Ψ is a planar algebra morphism defined by the extension of the map of

Figure 4.1, it follows easily that Ψk,ǫ◦Z
P
Xk,+((f

1⊗x1)⊗(f 2⊗x2)⊗· · ·⊗(f (k−1)⊗x(k−1)))
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*

*

*
. . . . . . 

. . . 

. . . 

Xk,+

k

X2,+ = Xk+1,+ =

Figure 4.10: Inductive definition of Xk+1,+

is given by the element of P2k,+(H
∗) shown in Figure 4.11. Some manipulation with

* * * *

* *

*

*

*

f 11 · · ·f 12 f 21f 22 fk−1
1fk−1

2

F
S
x
1

F
S
x
2

F
S
x
k
−
1

Figure 4.11: Ψk,ǫ ◦ Z
P
Xk,+((f

1 ⊗ x1)⊗ (f 2 ⊗ x2)⊗ · · · ⊗ (f (k−1) ⊗ x(k−1)))

the exchange relation in P (H∗) shows that this element is also equal to Z
P (H∗)

S2k,+ (f 1
2 ⊗

FSx1Sf 2
3 ⊗ f 1

1Sf
2
2 ⊗ f 2

4FSx
2Sf 3

3 ⊗ f 2
1Sf

3
2 ⊗ · · ·⊗ fk−2

4 FSxk−2Sfk−1
3 ⊗ fk−2

1 Sfk−1
2 ⊗

fk−1
4 FSxk−1 ⊗ fk−1

1 ) where S2k,+ is the (2k,+) tangle with 2k − 1 internal boxes of

colour (2,+) shown in Figure 4.12. Now observe that S2k,+ is in T (2k,+) and thus

* * *

* * *

*

31 5 2k − 1

2 4

2k
−
2

· · ·

Figure 4.12: The tangle S2k,+

the injectivity statement desired reduces to the Hopf algebra statement: for every

k ≥ 2 the map, say ηk : (H∗ ⊗H)⊗(k−1) → (H∗)⊗(2k−1) defined by

f 1 ⊗ x1 ⊗ f 2 ⊗ x2 ⊗ · · · ⊗ f (k−1) ⊗ x(k−1) ηk−→

f 1
2 ⊗ FSx1Sf 2

3 ⊗ f 1
1Sf

2
2 ⊗ f 2

4FSx
2Sf 3

3 ⊗ f 2
1Sf

3
2 ⊗ · · ·

· · · ⊗ fk−2
4 FSxk−2Sfk−1

3 ⊗ fk−2
1 Sfk−1

2 ⊗ fk−1
4 FSxk−1 ⊗ fk−1

1
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is injective. It is this statement that we will prove by induction on k.

The basis case when k = 2 asserts that η2 defined by η2(f
1⊗x1) = f 1

2⊗FSx
1⊗f 1

1

is injective which is clear. For the inductive step, assume that ηk is injective and

observe that with the linear map θ : H∗ ⊗ H ⊗ H∗ ⊗ H∗ → (H∗)⊗4 defined by

θ(f ⊗ x ⊗ k ⊗ q) = f2 ⊗ FSxSk2 ⊗ f1Sk1 ⊗ k3q, a short calculation shows that

ηk+1 = (θ ⊗ id⊗(2k−3)) ◦ (id ⊗ id ⊗ ηk). Thus to show ηk+1 is injective, it suffices to

see that θ is injective.

Finally, a lengthy but complete routine calculation shows that the map f ⊗ g ⊗

k ⊗ q 7→ f4 ⊗ F (gSk1f3)⊗ Sk3f1 ⊗ Sf2k2q is a (right inverse and hence) inverse of

θ, completing the proof of the inductive step and hence, of the proposition.

A much simpler proof of injectivity has been suggested by Prof. Shamindra

Kumar Ghosh which relies on the following lemma.

Lemma 4.2.2. Let P and Q be two connected planar algebras with the same non-

zero modulus such that the trace tangles TR0,ǫ
k,ǫ (see Figure 2.1 for the definition) yield

non-degenerate traces on Pk,ǫ for each color (k, ǫ). Any planar algebra morphism

from P to Q is then injective.

Proof. Let f = {fk,ǫ : Pk,ǫ → Qk,ǫ} be a planar algebra morphism from P to Q.

Given a non-zero element x in Pk,ǫ, by non-degeneracy of the trace, there exists an

element y in Pk,ǫ such that ZP

TR
0,ǫ
k,ǫ

(xy) 6= 0. Since P and Q are both connected,

the maps f0,ǫ : P0,ǫ → Q0,ǫ are isomorphisms and so f0,ǫ(Z
P

TR
0,ǫ
k,ǫ

(xy)) 6= 0. But

f0,ǫ(Z
P

TR
0,ǫ
k,ǫ

(xy)) = ZQ

TR
0,ǫ
k,ǫ

(fk,ǫ(x)fk,ǫ(y)). Thus fk,ǫ(x) 6= 0.

Second proof of Proposition 4.2.1. This follows directly from an application of Lemma

4.2.2.
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4.3 Characterisation of the image

Fix k ≥ 2. Consider the (algebra) maps α, β : H → End(P (H∗)2k,+) defined for

x ∈ H and X ∈ P (H∗)2k,+ by Figure 4.13.

* *

**

*

*

* *

* *

*

F
x
1

F
x
1

F
x
2

F
x
2

F
x
k
−
1

F
x
k
−
1

F
x
k
−
2

Fxk

F
x
k

· · ·

· · ·

· · ·

· · ·

XX

Figure 4.13: Definition of αx(X) and βx(X)

The main result of this section is the following proposition. We will use the

notation Q to denote the planar subalgebra of (2)P (H∗) that is the image of P =

P (D̃(H)). Thus Qk,± ⊆ P (H∗)2k,+.

Proposition 4.3.1. For every k ≥ 2,

Qk,+ = {X ∈ P (H∗)2k,+ : αh(X) = X},

Qk,− = {X ∈ P (H∗)2k,+ : βh(X) = X}.

We pave the way for a proof of this proposition by giving an alternate description

of the fixed points under αh. We will need some notation. For x ∈ H , let θk(x)

denote the element of P (H∗)4k,+ depicted in Figure 4.14. For X ∈ P (H∗)4k,+ (resp.

P (H∗)4k+2,+) let X̃ ∈ P (H∗)4k+4,+ denote the element on the left (resp. right) in

Figure 4.15.

Lemma 4.3.2. For X ∈ P (H∗)4k,+ or X ∈ P (H∗)4k+2,+, the following conditions

are equivalent:

(1) αh(X) = X, and
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** *

F
x
1

F
x
2

F
x
k· · ·

Figure 4.14: Definition of θk(x)

* *

· · ·

· · ·

· · ·

· · ·

X X

Figure 4.15: Definition of X̃

(2) X̃ commutes with θk+1(x) for all x ∈ H.

Proof. We prove the equivalence of the conditions only for X ∈ P (H∗)4k,+ leaving

the caseX ∈ P (H∗)4k+2,+ for the reader. Suppose that (1) holds so that αh(X) = X .

Then, using the definitions of αx(X) and of X̃ , we have that X̃ is given by Figure

4.16. With a little manipulation and using traciality of h, so that h1⊗h2⊗· · ·⊗h2k =

* *

**

*

*
*

F
h
1

F
h
2

F
h
2k

−
1

F
h
2k

−
2

Fh2k Fhk

· · ·

· · ·

X

Figure 4.16: X̃ when X ∈ P (H∗)4k,+ and αh(X) = X

h2k⊗h1⊗h2⊗· · ·⊗h2k−1, we see that X̃ is also given by Figure 4.17 below. Thus, X̃ =

θk+1(h1)X̃θk+1(Sh2). Hence, for any x ∈ H , X̃θk+1(x) = θk+1(h1)X̃θk+1(Sh2x) =

θk+1(xh1)X̃θk+1(Sh2) = θk+1(x)X̃ , so that (2) is verified to hold. Conversely suppose

that (2) holds for X ∈ P4k,+. It follows that the element in Figure 4.17 equals X̃ and

hence also the element of Figure 4.16. This then implies that αh(X) = X , proving

(1) as needed.

Next, we need some preliminary commutativity statements.
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* *

**

*

*

*

*

*

F
h
2

F
h
3

F
h
2k

F
h
k
+
1

F
h
k
+
2

F
h
2k

+
1

F
h
2k

+
2

F
h
1

· · ·

· · ·

X

Figure 4.17: Equivalent form of X̃ when X ∈ P (H∗)4k,+ and αh(X) = X

Lemma 4.3.3. The following two commutativity statements hold for all x ∈ H and

all X ∈ Q2,+.

* * *

*

*

F
x
1

F
x
2

F
xX X↔↔

Proof. To prove the first commutativity relation, from the form of a general gener-

ator of Q2,+ in Figure 4.1, it suffices to see that the commutativity in Figure 4.18

holds To see this, note that calculation - see the pictorial rule for multiplication in

*

* *

*

F
x
1

F
x
2

f2 f1↔

Figure 4.18: Equivalent form of the first commutativity relation

iterated cross products in [2] - shows that the elements ǫ⋊ 1⋊ f2 ⋊ 1⋊ f1 ⋊ 1 and

ǫ ⋊ x1 ⋊ ǫ ⋊ 1 ⋊ ǫ ⋊ x2 of H∗
⋊ H ⋊ H∗

⋊ H ⋊ H∗
⋊ H commute for all f ∈ H∗

and x ∈ H . Now applying the isomorphisms of Lemma 2.5.4 (to P (H∗)) proves the

desired commutativity.

As for the second commutativity relation, again from the form of a general

generator of Q2,+, it is easily seen to be equivalent to the equation in Figure 4.19

holding for all f ∈ H∗ and x, a ∈ H .

Setting Fx = g, this is equivalent to verifying the Hopf algebraic identity f2 ⊗
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=

* * * ** *
FxFxf2 f2 f1f1

Figure 4.19: Equivalent form of the second commutativity relation

(f1Sg1)(h)g2 = (f2Sg2)(h)g1⊗f1. Evaluate both sides on a⊗ b to get the equivalent

identity h1a⊗ Sh2b = bh1 ⊗ aSh2 - which is easy to see.

Proof of Proposition 4.3.1. We first prove the characterisation of Qk,+. Since Q is

the image of P (D̃(H)), it follows from Lemma 2.5.4 that any element X ∈ Q2k,+ ⊆

P (H∗)4k,+ is of the form shown in Figure 4.20, where there are 2k − 1 4-boxes and

*

*

*

X1

X = X
2

X3

. . .

Figure 4.20: Form of X ∈ Q2k,+

X1, X2, · · · , X2k−1 ∈ Q2,+. It now follows easily from Lemma 4.3.3 that X̃ commutes

with θk+1(x) for all x ∈ H . Similarly, if X ∈ Q2k+1,+ ⊆ P (H∗)4k+2,+, then too X̃

commutes with θk+1(x) for all x ∈ H . An appeal to Lemma 4.3.2 now shows that

Qk,+ ⊆ {X ∈ P (H∗)2k,+ : αh(X) = X}.

To prove the reverse inclusion, it suffices by Proposition 4.2.1 to see that dim({X ∈

P (H∗)2k,+ : αh(X) = X}) ≤ n2k−2. Consider the tangle V 2k,+ of Figure 4.21. Note

that V 2k,+ ∈ T (2k,+) and hence induces a linear isomorphism from (H∗)⊗(2k−1) →

P (H∗)2k,+. Further, we see that

αh(ZV 2k,+(Fa1 ⊗ Fa2 ⊗ · · · ⊗ Fa2k−1)) =

F (h1a
1)⊗ Fa2 ⊗ F (h2a

3)⊗ Fa4 ⊗ · · · ⊗ Fa2k−2 ⊗ F (hka
2k−1).
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*

* *

***
*

*

1 2 k − 2

k − 1

k2k − 42k − 32k − 2

2k − 1

· · ·

· · ·

Figure 4.21: The tangle V 2k,+

Thus it suffices to see that dim({a1 ⊗ · · · ⊗ a2k−1 ∈ H⊗(2k−1) : a1 ⊗ · · · ⊗ a2k−1 =

h1a
1⊗a2⊗h2a

3⊗a4⊗· · ·⊗a2k−2⊗hka
2k−1} ≤ n2k−2 or equivalently that dim({x1⊗

· · · ⊗ xk ∈ H⊗k : x1 ⊗ · · · ⊗ xk = h1x
1 ⊗ h2x

2 ⊗ · · · ⊗ hkx
k} ≤ nk−1. Now observe

that if x1 ⊗ · · · ⊗ xk = h1x
1 ⊗ h2x

2 ⊗ · · · ⊗ hkx
k, then

x1 ⊗ · · · ⊗ xk = h1x
1 ⊗ h2x

2 ⊗ · · · ⊗ hkx
k

= h1x
1 ⊗∆k−1(h2)(x

2 ⊗ · · · ⊗ xk)

= h1 ⊗∆k−1(h2Sx
1)(x2 ⊗ · · · ⊗ xk)

= h1 ⊗ h2Sx
1
k−1x

2 ⊗ · · · ⊗ hkSx
1
1x

k

This is clearly in the image of the map H⊗k−1 → H⊗k given by z1 ⊗ · · · ⊗ zk−1 7→

h1 ⊗ h2z
2 ⊗ · · · ⊗ hkz

k−1 and so the required dimension estimate follows.

Now note that, X ∈ Qk,− ⇔ ZR(X) ∈ Qk,+ (where R is the one-rotation tangle

on (k,−) boxes, since Q is a planar subalgebra of (2)P (H∗)). The action of R on Qk,−

is given by the two-rotation tangle on P (H∗)2k,+. Now the asserted characterisation

of Qk,− follows from that of Qk,+.

4.4 The main theorem

We collect the results of the previous statements into a single main theorem.
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Theorem 4.4.1. Let H be a finite-dimensional, semisimple and cosemisimple Hopf

algebra over k of dimension n = δ2 with Drinfeld double D̃(H). The map

P (D̃(H))2,+ −→ (2)P (H∗)2,+

defined in Proposition 4.1.1 extends to an injective planar algebra morphism P (D̃(H)) −→

(2)P (H∗) whose image Q is characterised as follows: Qk,+ (resp. Qk,−) is the set of

all X ∈ P2k,+ such the element on the left (resp. right) in Figure 4.22 equals X.

*

*

**

*
*

*

*

*

**

*

*

*
Fh1Fh1

Fh2Fh2

Fh3Fh3 Fhk−1Fhk−1

FhkFhk

X X

Figure 4.22: Characterisation of the image

Proof. This follows from Propositions 4.1.1, 4.2.1 and 4.3.1, after observing that

Figures 4.13 and 4.22 are equivalent.

Remark 4.4.2. It is worth noting that the main theorem above also allows us to

conclude that there is an explicitly characterised planar subalgebra of (2)P (Hop) that

is isomorphic to P (D̃(H)). This is because D̃(H) and D̃((Hop)∗) are isomorphic.
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