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Abstract

This thesis is a study of the Chari-Pressley-Loktev (CPL) bases [5, 7] for local Weyl

modules of the current algebra slr+1[t]. As convenient parametrizing sets of these bases,

we introduce the notion of partition overlaid patterns (POPs), which play a role analogous

to that played by (Gelfand-Tsetlin) patterns in the representation theory of the special

linear Lie algebra.

The notion of a POP leads naturally to the notion of area of a pattern. We observe that

there is a unique pattern of maximal area among all those with a given bounding sequence

and given weight. We give a combinatorial proof of this and discuss its representation

theoretic relevance.

We prove the “stability”, i.e., compatibility in the long range, of CPL bases with

respect to inclusions of local Weyl modules in the case r = 1 and state it as a conjecture

for r > 1. In order to state the conjecture, we establish a certain bijection between

colored partitions and POPs, which is of interest in itself.

Irreducible representations of the special linear Lie algebra occur as grade zero pieces

of the corresponding local Weyl modules. The CPL basis being homogeneous, those basis

elements that are of grade zero form a basis for the irreducible representation space. We

prove a triangular relationship between this basis and the classical Gelfand-Tsetlin basis.
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Synopsis

Let g be a finite-dimensional complex simple Lie algebra. Let g[t] = g⊗ C[t] denote the

corresponding current algebra, namely, the extension by scalars of g to the polynomial

ring C[t]. We think of g[t] as a Lie algebra over the complex numbers, graded by t, and are

interested in the representation theory of its graded finite-dimensional modules. Local

Weyl modules, introduced by Chari and Pressley in [7], are interesting graded finite-

dimensional representations of g[t] . Let us fix h a Cartan subalgebra of g and b = h⊕n+

a Borel subalgebra of g containing h.

Corresponding to every dominant integral weight λ of g, there is one local Weyl

module denoted by W (λ). Recall that an element u 6= 0 of a g[t]-module is said to be a

highest weight vector of weight λ if

(n+ ⊗ C[t])u = 0, (h⊗ tC[t])u = 0, and H u = 〈λ, H〉u, ∀ H ∈ h.

The W (λ) is universal among finite-dimensional g[t]-modules generated by a highest

weight vector of weight λ, in the sense that any such module is a quotient of W (λ) [7]. The

grade zero piece of the local Weyl module W (λ) is isomorphic to the finite-dimensional

irreducible representation V (λ) of g, and the h-weights of W (λ) are precisely those of

V (λ).

Let us now specialize to the type A case, i.e., when g is the special Linear Lie algebra

slr+1. Let h and b be respectively the diagonal and upper triangular subalgebras of

14



g = slr+1. In [7], Chari and Pressley produced nice monomial bases for local Weyl modules

in the case g = sl2. Chari and Loktev in [5] clarified and extended the construction of these

bases to the case g = slr+1, and used it to prove the conjecture [6] about the dimension

of local Weyl modules and to show that local Weyl modules are in fact isomorphic to

Demazure modules of certain representations of the affine Lie algebra ĝ. In this thesis,

we undertake a deeper study of these bases.

This thesis consists of six chapters, which we briefly describe below:

• In Chapter 1, we recall some basic concepts and preliminaries that will help present

our results in this thesis.

• In Chapter 2, we present our results on the “stability” of the Chari-Pressley bases

for local Weyl modules of sl2[t].

• In Chapter 3, we introduce the notion of a partition overlaid pattern (POP). We also

introduce the notion of area of a Gelfand-Tsetlin pattern and describe our results

on area maximizing Gelfand-Tsetlin patterns.

• In chapter 4, we give a bijection between colored partitions and POPs.

• In chapter 5, we state a conjecture about the “stability” of the Chari-Loktev bases

for sl3 and beyond, using the bijection in chapter 4.

• In chapter 6, we present our results on triangularity of Gelfand-Tsetlin and Chari-

Loktev bases for representations of slr+1.

The main results in this thesis are explained in the following sections.
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Stability of the Chari-Pressley-Loktev bases for local

Weyl modules of sl2[t]

In chapter 2 of the thesis, we investigate further the Chari-Pressley bases for local Weyl

modules of g = sl2, taking into account the perspective gained from the later work of

Chari and Loktev [5]. The dominant integral weights for g = sl2 being parametrized by

the non-negative integers, there is one local Weyl module W (n) for every integer n ≥ 0.

Let us restrict ourselves here, for the sake of simplicity, to the case when n is even. The

local Weyl modules then get identified with Demazure modules of the basic representation

L(Λ0) of the affine Lie algebra ŝl2. As such, they are related by a chain of inclusions:

(1) W (0) ↪→ W (2) ↪→ W (4) ↪→ · · · ↪→ W (n) ↪→ W (n+ 2) ↪→ · · · ↪→ L(Λ0).

First, we give the corresponding chain of inclusions of indexing sets of the Chari-Pressley

bases for these modules. Once the inclusion of indexing sets is established, it is natural

to ask if the Chari-Pressley bases respect these inclusions. In the first part of this thesis,

we focus on this question.

To state a little more precisely what we do, let P(n) denote the paremetrizing set of the

Chari-Pressley basis for W (n): the elements of P(n) are pairs (k, λ) where k is an integer

with 0 ≤ k ≤ n, and λ is a partition whose Young diagram fits into an (n−k)×k box. We

assign a weight for an element of P(n) as the weight of the corresponding Chari-Pressley

basis element of W (n) in L(Λ0). We first define a weight preserving embedding ψ of

P(n) into P(n+ 2) for each n, thereby obtaining a chain P(0) ↪→ P(2) ↪→ P(4) ↪→ · · · .

We study the compatibility of the Chari-Pressley bases with respect to this chain of

embeddings.

As a first step, we define a normalized version of the Chari-Pressley bases by replacing

the powers in the monomials by divided powers and introducing a sign factor. These

16



normalized bases, which we refer to throughout as the CPL (short for Chari-Pressley-

Loktev) bases. For ξ ∈ P(n), denote c(ξ) as the corresponding CPL basis element of

W (n). For ξ ∈ P(n), the CPL basis elements c(ξ) ∈ W (n) and c(ψ(ξ)) ∈ W (n+ 2) lie in

the same weight space of L(Λ0). However, it is not true in general that c(ξ) and c(ψ(ξ))

are equal as elements of L(Λ0), as the following example shows.

Example 0.0.1. Let λ be the partition 2 + 1, i.e., λ = (2, 1, 0, 0, · · · ). Let ξ =
(
2, λ
)
∈

P(4), then ψ(ξ) =
(
3, λ
)
∈ P(6). Using the commutation relations in ŝl2, it is easy to

compute:

c(ξ) =
1

3

(
h⊗ t−3 − (h⊗ t−1)3

)
vΛ0 ,

c(ψ(ξ)) =
(
h⊗ t−3 + (h⊗ t−2)(h⊗ t−1)

)
vΛ0 ,

where h =

1 0

0 −1

 is the element of the standard Cartan subalgebra of sl2 and vΛ0 is

an element of L(Λ0) of weight Λ0. Both these vectors have weight Λ0 − 3δ. It is well

known that the vectors (h ⊗ t−3) vΛ0, (h ⊗ t−2)(h ⊗ t−1) vΛ0, (h ⊗ t−1)3 vΛ0 form a basis

for the weight space L(Λ0)Λ0−3δ. Thus, we conclude c(ξ) 6= c(ψ(ξ)).

However, in our main result (Theorem 0.0.2) we show that c(ξ) = c(ψ(ξ)) for all

“stable” ξ. More precisely, let

Pstab(n) := {
(
k, λ
)
∈ P(n) : |λ| ≤ min(n− k, k)},

where |λ| is the sum of parts of the partition λ. We note that ξ ∈ Pstab(n) implies

ψ(ξ) ∈ Pstab(n + 2). The main theorem of this part of thesis is the following (see [20,

Theorem 6] for the journal version):

Theorem 0.0.2. For every ξ =
(
k, λ
)
∈ Pstab(n), we have

c(ξ) = c(ψ(ξ)),

17



i.e., they are equal as elements of L(Λ0).

The proof of Theorem 0.0.2 uses certain translation operators introduced by Frenkel

and Kac [11] for completely different purposes.

As a consequence of Theorem 0.0.2, we obtain a basis for L(Λ0) consisting of the

stable CPL basis elements. More precisely, given an element ξ of P(n), let ξk be its

image in P(n+2k) (where k is a non-negative integer), and let c(ξk) be the corresponding

CPL basis element. Consider the sequence c(ξk), k = 0, 1, 2, . . ., of elements in L(Λ0).

Our main result (Theorem 0.0.2) implies that this sequence stabilizes for large k. In

fact, it says that c(ξk) equals the stable value as soon as k is such that the weight space

of W (n+2k) corresponding to the weight of ξ equals that of L(Λ0). Passing to the direct

limit, we obtain a basis for L(Λ0) consisting of the stable CPL basis elements. Moreover,

we obtain an explicit description of the stable CPL basis in terms of elements of the Fock

space of the homogeneous Heisenberg subalgebra of ŝl2.

On area maximizing Gelfand-Tsetlin patterns

One of our tasks in this thesis is to reinterpret the paremetrizing set of the Chari-Loktev

basis for local Weyl modules of slr+1[t]. Towards this end we introduce the notion of

a partition overlaid pattern or POP . To define a POP, we first recall the notion of a

Gelfand-Tsetlin pattern. A Gelfand-Tsetlin pattern (or just pattern) P is an array of

18



integral row vectors λj = (λj1, . . . , λ
j
j), 1 ≤ j ≤ r + 1 :

λ1
1

λ2
1 λ2

2

· · · · · · · · ·

λr1 · · · λrr

λr+1
1 λr+1

2 · · · λr+1
r+1

subject to the following conditions:

λj+1
i ≥ λji ≥ λj+1

i+1 , ∀ 1 ≤ i ≤ j ≤ r.

We call the last sequence λr+1 of the pattern P is its bounding sequence. For example,

the pattern consisting of row vectors 5; 7, 4; and 7, 5, 3 is written (r = 2 here):

(2)

5

7 4

7 5 3

A partition overlaid pattern (POP for short) consists of a GT pattern P : λ1, . . . , λr+1,

and for every ordered pair (j, i) of integers with 1 ≤ j ≤ r and 1 ≤ i ≤ j, a partition π(j)i

that fits into the rectangle (λj+1
i − λji , λ

j
i − λ

j+1
i+1 ). Here, a partition fits into a rectangle

(a, b), where a and b are non-negative integers, means the number of (non-zero) parts is

at most a and the largest part is at most b. Example: a partition overlay on the pattern

displayed in (2) consists of three partitions π(1)1, π(2)1, and π(2)2 that fit respectively

into the rectangles (2, 1), (0, 2), and (1, 1).

Dominant integral weights for g = slr+1 may be identified with non-increasing se-

quences of non-negative integers of length r+1 with the last element of the sequence being
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0. Patterns with bounding sequence (corresponding to) λ parametrize the Gelfand-Tsetlin

(GT) basis for V (λ) [13]. Analogously, POPs with bounding sequence λ parametrize the

Chari-Loktev (CL) basis for W (λ). The weight of a pattern is the sequence of differences

of successive row sums; this gives the h-weight of the corresponding GT basis element of

V (λ). The weight of the underlying pattern of a POP equals the h-weight of the corre-

sponding CL basis element of W (λ), and further the number of boxes in the partition

overlay is its grade.

The notion of a POP leads naturally to the notion of the area of a pattern: For a

pattern P : λ1, . . . , λr+1, we define the number
∑

1≤i≤j≤r(λ
j+1
i −λji )(λ

j
i −λ

j+1
i+1 ) as its area.

Example: the area of the pattern displayed in (2) is 2 + 0 + 1 (= 3). For a weight µ

of V (λ), it turns out that the piece of highest grade in the µ-weight space of the local

Weyl module W (λ) is one dimensional. We give a representation theoretic proof of this

fact. This suggests—even proves albeit circuitously—that there must be a unique pattern

of highest area among all those with bounding sequence λ and weight µ. We give a direct,

elementary, and purely combinatorial proof of this.

To state our result more precisely, we recall the notion of majorization. For an element

x = (x1, . . . , xn) in Rr+1, let x↓ = (x↓1, . . . , x
↓
n) be the vector whose co-ordinates are

obtained by rearranging the xj in weakly decreasing order. For elements x and y in Rr+1,

we say that x majorizes y and write x <m y if

x↓1+· · ·+x↓k ≥ y↓1 +· · ·+y↓k, for all 1 ≤ k < r + 1, and x1+· · ·+xr+1 = y1+· · ·+yr+1.

We are now ready to state our main result in this direction (see [21]). In the following

theorem we will allow patterns to have real entries.

Theorem 0.0.3. Let λ = λ1 ≥ . . . ≥ λn be a non-increasing sequence of real numbers

and µ = (µ1, . . . , µr+1) an element of Rr+1 that is majorized by λ: λ <m µ. Then there

is a unique pattern P of maximum area among all those with bounding sequence λ and
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weight µ. More over, if λ and µ are integral, then the pattern P has integer entries.

The proof of Theorem 0.0.3 is purely combinatorial. In the course of the proof, we

also prove that the pattern P : λ1, . . . , λr+1, has the following properties:

• For any j, 1 ≤ j ≤ r + 1, its jth row λj majorizes the jth row κj of any pattern

with bounding sequence λ and weight µ: λj <m κj.

• Its area equals 1
2
(||λ||2 − ||µ||2), where || || is the Euclidean norm on Rr+1.

A bijection and the stability conjecture

In chapter 6 of the thesis, we state a conjecture about the “stability” of the Chari-Loktev

bases for sl3 and beyond. Note that the conjecture is proved for sl2 in Chapter 2. To

describe what is meant by stability, let θ be the highest root of g = slr+1. We then have

natural inclusions of local Weyl modules:

(3) W (λ) ↪→ W (λ+ θ) ↪→ W (λ+ 2θ) ↪→ . . . ,

for a dominant integral weight λ of g. For g = sl2, the above chain of inclusions is

just (1). We may ask if there are corresponding natural inclusions of indexing sets of

the Chari-Loktev bases for these modules. To prove that this is indeed the case, we first

establish a combinatorial bijection, which is a generalization of the construction of Durfee

squares [1]. Loosely speaking, the bijection identifies POPs with r-colored partitions. We

use this bijection to give inclusions of indexing sets of the Chari-Loktev bases. Once the

inclusion of indexing sets is established, we may ask if the Chari-Loktev bases respect

the inclusions. We believe that they do have this stability property, and in fact formally

commit ourselves to this effect (Conjecture 0.0.4).

We first describe below, a motivation for the bijection which identifies POPs with
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r-colored partitions. Given a dominant integral weight λ of g = slr+1, the local Weyl

modules W (λ+kθ), for every non-negative integer k, are identified as Demazure modules

of a fundamental representation L(Λ) of ĝ. Hence, we have the chain (3) of Demazure

submodules of L(Λ), whose union is L(Λ). Given a weight of L(Λ) (which corresponds to

a non-negative integer d), there exists large k such that the corresponding weight space

of W (λ + kθ) equals that of L(Λ). Hence, we have a bijection from certain POPs onto

the set of r-colored partitions of d. Indeed, the dimension of weight space of L(Λ) of the

weight corresponding to d is the number of r-colored partitions of d [16, §12.13], and the

Chari-Loktev basis for W (λ+ kθ) parametrized by POPs. We prove this by constructing

an explicit bijection, and use this construction to state a conjecture about the “stability”

of the Chari-Loktev bases.

We explain below what we do little more precisely. For the sake of simplicity, we

consider here the weight Λ − dδ of L(Λ) corresponding to a non-negative integer d. Let

L(Λ)Λ−dδ (resp. W (λ + kθ)Λ−dδ) denote the weight space of L(Λ) (resp. W (λ + kθ)) of

weight Λ− dδ. We find a positive integer K0, and construct a bijection Ωk, for k ≥ K0,

from the set of r-colored partitions of d onto the set Pk of POPs whose corresponding

Chari-Loktev basis elements lie in W (λ+kθ)Λ−dδ. We use the bijection Ψk := Ωk+1◦Ω−1
k ,

for k ≥ K0, from Pk to Pk+1, to state a conjecture about “stability” of the Chari-Loktev

bases.

As a first step, we slightly modify the definition of these bases as in [20, §3.2], by

normalizing the generators of the local Weyl modules and replacing the powers in the

monomials by divided powers. We call these modified bases as the CPL bases. For

ξ ∈ Pk, denote c(ξ) as the corresponding CPL basis element of W (λ + kθ)Λ−dδ. For

k ≥ K0, for ξ ∈ Pk and Ψk(ξ) ∈ Pk+1, the corresponding CPL bases elements respectively

c(ξ) ∈ W (λ+ kθ) and c(Ψk(ξ)) ∈ W (λ+ (k+ 1)θ), lie in the same weight space L(Λ)Λ−dδ

of L(Λ). We conjecture below that they are in fact equal as elements of L(Λ) up to a

sign factor (see [21]).
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Conjecture 0.0.4. Let ξ ∈ Pk. For k ≥ K0, we have

c(ξ) = ± c(Ψk(ξ)),

i.e., they are equal as elements of L(Λ) up to a sign factor.

Theorem 0.0.2 establishes the g = sl2 case of this conjecture. However, generalizing

our methods to g = sl3 and beyond presents formidable technical difficulties.

Triangularity of Gelfand-Tsetlin and Chari-Loktev bases

for representations of slr+1

We recall that Chari and Loktev [5], in their study of local Weyl modules of the cur-

rent algebra slr+1[t], constructed a nice monomial basis for these modules consisting

of homogeneous elements. Since the grade zero piece of the local Weyl module W (λ)

is just the finite-dimensional irreducible representation V (λ) of slr+1, the Chari-Loktev

basis elements of degree zero give a monomial basis for V (λ) [5, Corollary 2.1.3]. We

shall call this the Chari-Loktev (CL) basis for V (λ). Recall that for V (λ), we also have

the Gelfand-Tsetlin (GT) basis [13], which is paremetrized by the set of patterns with

bounding sequence λ.

In the last part of this thesis, we compare the Gelfand-Tsetlin and the Chari-Loktev

bases for the irreducible representation V (λ) of slr+1. In order to compare them, we will

assume that our bases are normalized such that the same highest weight vector belongs

to both bases. Note that Chari-Loktev basis elements of the grade zero piece of W (λ)

are corresponding to POPs with empty partition overlays or in other words simply to

patterns. Thus, the CL and GT bases for V (λ) are both parametrized by the set of

patterns with bounding sequence λ. We now ask a very natural question: is it true that
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one basis is upper triangular with respect to the other, relative to some partial order on

the set of patterns? We answer this question in the affirmative, and show that this holds

with respect to the row-wise dominance partial order on patterns. We also compute the

diagonal elements of the transition matrix. The row-wise dominance partial order ≥ on

patterns is defined by P ≥ Q if for every j, 1 ≤ j ≤ r + 1, the jth row λj of P succeeds

the jth row κj of Q in the dominance order on partitions, i.e.,

λj1 + · · ·+ λji ≥ κj1 + · · ·+ κji , ∀ 1 ≤ i ≤ j.

To state our result more precisely, let GT(λ) denote the set of patterns with bounding

sequence λ. For P ∈ GT(λ), let ζP (resp. CL(P)) denote the corresponding GT basis

(resp. CL basis) element of V (λ). We then prove (see [21]):

Theorem 0.0.5. Let λ be a dominant integral weight of slr+1. Let P ∈ GT(λ) with the

array of integral row vectors λj = (λj1, . . . , λ
j
j), for 1 ≤ j ≤ r + 1. Then we have the

following:

(4) CL(P) =
∑

Q∈GT(λ)
Q≥P

cQζQ, for some cQ ∈ C,

where the co-efficient cP of ζP in (4) is equal to

∏
1≤i<j≤r+1

λji−λ
j−1
i −1∏

dji=0

j−1∏
j′=i+1

1

(λj−1
i − λj−1

j′ + dji) + (j′ − i+ 1)
.
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Chapter 1

Preliminaries

In this chapter, we recall certain well-known definitions and results which will be used in

this thesis. We begin with brief history.

The theory of semisimple Lie algebras and their representations lies at the heart of

modern mathematics. The finite-dimensional simple Lie algebras over the field of complex

numbers were classified in the works of Elie Cartan and Wilhelm Killing in the 1930’s.

There are four infinite series Ar (r ≥ 1);Br, Cr (r ≥ 2);Dr (r ≥ 4) which are called

the classical Lie algebras, and five exceptional Lie algebras E6, E7, E8, F4, G2. The Lie

algebras of type A,D, and E are called of type simply laced. The structure of these Lie

algebras is uniformly described in terms of certain finite sets of vectors in a Euclidean

space called root systems. The theory of finite-dimensional representations of semisimple

Lie algebras is largely reduced to the study of their irreducible representations, due to

Weyl’s complete reducibility theorem. The irreducibles are parametrized by their highest

weights.

In the late 1960’s, Victor Kac and Robert Moody built on this work and independently

defined and studied a class of Lie algebras, now called the Kac-Moody Lie algebras. These

are generalizations of the finite-dimensional simple Lie algebras. The theory of Kac-
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Moody Lie algebras and their representations has numerous connections with other areas

of mathematics and physics. The reader is referred to, e.g., the books of Bourbaki [2],

Carter [3], Dixmier [8], Humphreys [14], or Kac [16] for a detailed exposition of the theory.

Throughout the thesis, C denotes the field of complex numbers, Z the set of integers,

Z≥0 the set of non-negative integers, N the set of positive integers, C[t] the polynomial ring

in an indeterminate t, C[t, t−1] the ring of Laurent polynomials, and U(a) the universal

enveloping algebra corresponding to a complex Lie algebra a.

1.1 The simple Lie algebra g

Let g be a finite-dimensional simple Lie algebra over C of rank r, with Cartan subalgebra

h. Set I = {1, 2, . . . , r}. Let R (resp. R+) be the set of roots (resp. positive roots)

of g with respect to h and let θ ∈ R+ be the highest root in R. Let (. | .) be a non-

degenerate, symmetric, invariant bilinear form on h∗ normalized so that the square length

of a long root is two. For α ∈ R, let α∨ ∈ h be the corresponding co-root and let gα

be the corresponding root space of g. It is well-known that dim gα = 1, ∀ α ∈ R. For

each α ∈ R+, we fix non-zero elements x±α ∈ g±α such that [x+
α , x

−
α ] = α∨. We set

n± = ⊕α∈R+ g±α.

The weight lattice P (resp. the set of dominant weights P+) is the Z-span (resp.

Z≥0-span) of the fundamental weights $i, i ∈ I of g. The root lattice Q is the Z-

span of the simple roots αi, i ∈ I of g. The dominant root lattice Q+ =
∑

i∈I Z≥0αi.

Set di = 2/(αi | αi), ∀ i ∈ I. We define L =
∑

i∈I Zdi$i, a sub lattice of P , and

M =
∑

i∈I Zdiαi, a sub lattice of Q. We note that L and M are the images of the

co-weight and co-root lattices respectively under the identification of h and h∗ induced

by the form (. | .).
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1.1.1 The Weyl group of g

For each i ∈ I, the fundamental reflection sαi (or si) is given by

sαi(λ) = λ− 〈λ, α∨i 〉αi, ∀ λ ∈ h∗.

The subgroup W of GL(h∗) generated by all fundamental reflections si, i ∈ I is called

the Weyl group of g. Given w ∈ W, let `(w) be the length of a reduced expression for w.

Let w0 be the longest element in W .

1.1.2 The finite-dimensional irreducible g-modules

It is well-known that the finite-dimensional irreducible g-modules (up to isomorphism)

are indexed by the elements of P+. For λ ∈ P+, the corresponding finite-dimensional

irreducible g-module V (λ) is the cyclic g-module generated by an element vλ with the

following defining relations:

x+
α vλ = 0, h vλ = 〈λ, h〉 vλ, (x−α )〈λ, α

∨〉+1 vλ = 0, ∀ α ∈ R+, h ∈ h.

1.2 The affine Lie algebra ĝ

Let g be a finite-dimensional simple Lie algebra over C as in §1.1. Let ĝ be the corre-

sponding (untwisted) affine Lie algebra defined by

ĝ = g⊗ C[t, t−1]⊕ Cc⊕ Cd,

where c is central and the other Lie brackets are given by

[x⊗ tm, y ⊗ tn] = [x, y]⊗ tm+n +mδm,−n(x|y)c,
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[d, x⊗ tm] = m(x⊗ tm),

for all x, y ∈ g and integers m,n. The Lie subalgebras ĥ, n̂+, and b̂ of ĝ are defined as

follows:

ĥ = h⊕ Cc⊕ Cd, n̂+ = n+ ⊗ C[t]⊕ (n− ⊕ h)⊗ tC[t], b̂ = ĥ⊕ n̂+.

We regard h∗ as a subspace of ĥ∗ by setting 〈λ, c〉 = 〈λ, d〉 = 0 for λ ∈ h∗. For ξ ∈ ĥ∗, let

ξ|h be the element of h∗ obtained by restricting ξ to h. Let δ,Λ0 ∈ ĥ∗ be given by

〈δ, h + Cc〉 = 0, 〈δ, d〉 = 1, 〈Λ0, h + Cd〉 = 0, 〈Λ0, c〉 = 1.

Extend the non-degenerate form on h∗ to a non-degenerate symmetric bilinear form on

ĥ∗ by setting,

(h∗|Cδ + CΛ0) = (δ|δ) = (Λ0|Λ0) = 0 and (δ|Λ0) = 1.

Set Î = I ∪ {0}. The elements αi, i ∈ Î where α0 = δ − θ are the set of simple roots

of ĝ, and the elements α∨i , i ∈ Î where α∨0 = c− θ∨ are the corresponding co-roots. The

Chevalley generators ei and fi (i ∈ Î) of ĝ are given by following:

e0 = x−θ ⊗ t, f0 = x+
θ ⊗ t

−1, ei = x+
αi
⊗ 1, fi = x−αi ⊗ 1, (i ∈ I).

Let R̂+ be the set of positive roots,

R̂+ = {α + nδ : α ∈ R, n ∈ N} ∪R+ ∪ {nδ : n ∈ N},

and R̂− be the set of negative roots,

R̂− = {α + nδ : α ∈ R, n ∈ −N} ∪R− ∪ {nδ : n ∈ −N}.
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Let R̂re = {α+nδ : α ∈ R, n ∈ Z} be the set of real roots, and R̂im = {nδ : n ∈ Z \ {0}}

be the set of imaginary roots. The set of roots R̂ of ĝ is given by R̂ = R̂re∪R̂im = R̂−∪R̂+.

The root space decomposition of ĝ is given by

g =
⊕
γ∈R̂

gγ ⊕ ĥ,

where gγ = {x ∈ ĝ : [h, x] = 〈γ, h〉x, ∀ h ∈ ĥ}. It is well-known that dim ĝγ =

1, ∀ γ ∈ R̂re. For each real root α + nδ, we have the Lie subalgebra of ĝ generated by

{x+
α ⊗ tn, x−α ⊗ t−n} which is isomorphic to sl2. Let Q̂ =

∑
i∈Î Zαi be the root lattice,

and Q̂+ =
∑

i∈Î Z≥0αi. The weight lattice (resp. the set of dominant integral weights) is

defined by

P̂ (resp. P̂+) = {λ ∈ ĥ∗ : 〈λ, α∨i 〉 ∈ Z (resp. Z≥0), ∀ i ∈ Î}.

For an element λ ∈ P̂ , the integer 〈λ, c〉 is called the level of λ.

1.2.1 The Weyl group of ĝ

For each i ∈ Î, the fundamental reflection sαi (or si) is given by

sαi(λ) = λ− 〈λ, α∨i 〉αi, ∀ λ ∈ ĥ∗.

The subgroup Ŵ of GL(ĥ∗) generated by all fundamental reflections si, i ∈ Î is called

the affine Weyl group or the Weyl group of ĝ. We regard W naturally as a subgroup of

Ŵ . Given α ∈ h∗, let tα ∈ GL(ĥ∗) be defined by

tα(λ) = λ+ (λ|δ)α− (λ|α) δ − 1

2
(λ|δ) (α|α) δ for λ ∈ ĥ∗.

The translation subgroup TM of Ŵ is defined by TM = {tα ∈ GL(ĥ∗) : α ∈ M} (where,

you may recall the definition of M from §1.1).
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The following proposition gives the relation between W and Ŵ . It is well-known and

may be found in [16].

Proposition 1.2.1. [16, Proposition 6.5] Ŵ = W n TM .

The extended affine Weyl group W̃ is the semi-direct product

W̃ = W n TL,

where TL = {tα ∈ GL(ĥ∗) : α ∈ L}. Let Ĉ = {Λ ∈ ĥ∗ : 〈Λ, α∨i 〉 ≥ 0 ∀ i ∈ Î} be the

fundamental Weyl chamber for ĝ. Let Σ = {σ ∈ W̃ : σ(Ĉ) = Ĉ}; it is a subgroup of

the group of diagram automorphisms of ĝ. Then Σ provides a complete system of coset

representatives of W̃/Ŵ and we have W̃ = Ŵ o Σ (see [10], as also [2]).

Given w ∈ Ŵ , let `(w) be the length of a reduced expression for w. The length

function ` is extended to W̃ by setting

(1.1) `(wσ) = `(w),

for w ∈ Ŵ and σ ∈ Σ.

1.2.2 The category O

A ĝ-module V is called ĥ-diagonalizable if it admits a weight space decomposition

V =
⊕
µ∈ĥ∗

Vµ,

where Vµ = {v ∈ V : h v = 〈µ, h〉v, ∀ h ∈ ĥ}. A non-zero vector of Vµ is called a weight

vector of weight µ. Let P (V ) := {µ ∈ ĥ∗ : Vµ 6= 0} denote the set of weights of V . For

Λ ∈ ĥ∗, let us denote D(Λ) := {µ ∈ ĥ∗ : µ ≤ Λ}. Recall that the partial order ≤ on ĥ∗ is

defined by µ ≤ Λ iff Λ− µ ∈ Q̂+.
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Definition 1.2.2. A ĝ-module V is said to be in category O if

1. It is ĥ-diagonalizable with finite-dimensional weight spaces, and

2. There exist finitely many elements Λ1, · · · ,Λm ∈ ĥ∗ such that P (V ) ⊂ ∪mi=1D(Λi).

The morphisms in O are homomorphisms of ĝ-modules. The category O is abelian.

1.2.3 Highest-weight modules

Highest-weight modules are important examples of objects from the category O.

Definition 1.2.3. A ĝ-module V is said to be a highest-weight module with highest weight

Λ ∈ ĥ∗ if there exists a non-zero vector vΛ such that

(1.2) n̂+ vΛ = 0, h vΛ = 〈Λ, h〉vΛ, ∀h ∈ ĥ, and U(ĝ) vΛ = V.

Remark 1.2.4. By condition (1.2) it is easy to see that U(n̂−) vΛ = V , and we have

V = ⊕µ≤ΛVµ, VΛ = CvΛ, dim Vµ < ∞ ∀µ ∈ ĥ∗. Therefore, a highest-weight module is

an object of category O.

Now, we recall an important family of highest-weight modules known as Verma mod-

ules.

Definition 1.2.5. A ĝ-module M(Λ) with highest weight Λ is called a Verma module if

every ĝ-module with highest weight Λ is a quotient of M(Λ).

The following proposition justifies the importance of Verma modules.

Proposition 1.2.6. [16, Proposition 9.2]

1. For every Λ ∈ ĥ∗ there exists a unique (up to isomorphism) Verma module M(Λ).
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2. Viewed as a U(n̂−)-module, M(Λ) is a free module of rank 1 generated by the highest

weight vector.

3. M(Λ) contains a unique proper maximal submodule M ′(Λ).

It follows from part 3 of the above proposition that for Λ ∈ ĥ∗, there is a unique

irreducible module of highest weight Λ which we denote by L(Λ) := M(Λ)/M ′(Λ). The

ĝ-modules L(Λ), for Λ ∈ ĥ∗, exhaust all irreducible modules of the category O [16,

Proposition 9.3].

1.2.4 Integrable modules

Definition 1.2.7. A ĝ-module V is said to be integrable if the following holds:

• It is ĥ-diagonalizable with finite-dimensional weight spaces.

• The Chevalley generators ei and fi (i ∈ Î) are locally nilpotent on V. i.e., given

any v ∈ V , there exists n ≥ 0 such that eni v = 0 = fni v.

We will further restrict our attention to the category Oint(ĝ) of integrable modules in

category O. We record the following fact from [16].

Proposition 1.2.8. [16, Lemma 10.1] The ĝ-module L(Λ) is integrable if and only if

Λ ∈ P̂+.

The following Proposition gives the defining relations for the modules L(Λ),Λ ∈ P̂+.

Proposition 1.2.9. [16, Corollary 10.4] Let Λ ∈ P̂+. The ĝ-module L(Λ) is the cyclic

module generated by vΛ, with defining relations

h vΛ = 〈Λ, h〉vΛ ∀ h ∈ ĥ,

ei vΛ = 0 (i ∈ Î),

f
〈Λ,α∨i 〉+1
i vΛ = 0 (i ∈ Î).
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In particular, an integrable highest-weight module of ĝ is automatically irreducible.

The ĝ-modules L(Λ), for Λ ∈ P̂+, exhaust all irreducible integrable modules of the

category O [16, Corollary 10.7]. Denote by P (Λ) the set of weights of L(Λ).

The following proposition may be found in [16]. For g = sl2, see also [3, Proposition

20.22].

Proposition 1.2.10. [16, Lemma 12.6, Proposition 12.13] Assume that g is simply laced

of rank r. Let Λ ∈ P̂+ be of level 1. Then

1. P (Λ) = {tµ(Λ)− nδ : µ ∈ Q, n ∈ Z≥0},

2. For µ ∈ Q, n ∈ Z≥0, we have

dim L(Λ)tµ(Λ)−nδ = the number of partitions of n into r colors.

1.2.5 Demazure modules

Let L(Λ) be the irreducible integrable highest-weight module of ĝ corresponding to a

dominant integral weight Λ. Given an element w of Ŵ , define a b̂-submodule Vw(Λ) of

L(Λ) by

Vw(Λ) = U(b̂)
(
L(Λ)wΛ

)
.

We call the b̂-module Vw(Λ) as a Demazure module. Since fi L(Λ)wΛ = 0 holds if and

only if 〈wΛ, α∨i 〉 ≤ 0, we see that Vw(Λ) is g-stable if and only if 〈wΛ, α∨i 〉 ≤ 0, ∀ i ∈ I.

The notion of Demazure module associated to an element of W̃ is defined by setting

Vwσ(Λ) = Vw(σΛ),

for σ ∈ Σ and w ∈ Ŵ .
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1.2.6 Inclusions of Demazure modules

We first recall the notion of Bruhat order on Ŵ . Let w1, w2 ∈ Ŵ . Bruhat order is

the partial order relation ≤ on Ŵ defined by w1 ≤ w2 if given a reduced expression

s1s2 · · · sr for w2, w1 can be obtained as a subexpression of this reduced expression. i.e.,

w1 = si1si2 · · · siq for some 1 ≤ i1 < i2 < · · · < iq ≤ r (see [15, §5.10]).

Let Λ ∈ P̂+ and ŴΛ := {w ∈ Ŵ : wΛ = Λ}. We now recall the notion of Bruhat

order on Ŵ/ŴΛ. For elements w1, w2 of Ŵ/ŴΛ, let w′1 (resp. w′2) is a minimal length

element of Ŵ in the coset w1 (resp. w2). Bruhat order ≤ on Ŵ/ŴΛ is defined by w1 ≤ w2

if w′1 ≤ w′2 in the usual Bruhat order on Ŵ .

For elements w1 ≤ w2 of Ŵ/ŴΛ, where ≤ denotes the Bruhat order on Ŵ/ŴΛ,

the Demazure module Vw1(Λ) is included in Vw2(Λ) (as submodules of L(Λ)) (see [17,

Proposition 3.2.4]).

1.3 The current algebra g[t]

The current algebra g[t] associated to g is defined as g⊗ C[t], with the Lie bracket

[x⊗ tm, y ⊗ tn] = [x, y]⊗ tm+n ∀ x, y ∈ g, m, n ∈ Z≥0.

The degree grading on C[t] gives a natural Z≥0-grading on U(g[t]): the element (a1 ⊗

tr1) · · · (ak ⊗ trk), for ai ∈ g, ri ∈ Z≥0, has grade r1 + · · · + rk. A graded g[t]-module is a

Z-graded vector space V =
⊕

n∈Z V [n] such that

(g⊗ tm)V [n] ⊂ V [n+m], ∀m ∈ Z≥0, n ∈ Z.

Let ev0 : g[t]→ g be the morphism of Lie algebras given by setting t = 0. The pull back

of any g-module V by ev0 defines a graded g[t]-module structure on V, and we denote
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this module by ev∗0 V. We define the morphism of graded g[t]-modules as a degree zero

morphism of g[t]-modules. For m ∈ Z and a graded g[t]-module V, we let τmV be the

m-th graded shift of V, defined by setting (τmV )[n] = V [n−m].

1.3.1 The local Weyl modules of g[t]

In [7], Chari and Pressley introduced the notion of local Weyl modules for the loop

algebra g⊗C[t, t−1]. In [9], a more general case was considered by replacing the Laurent

polynomial ring with the co-ordinate ring of an algebraic variety. Later in [4], a functorial

approach is used to study local Weyl modules associated with the Lie algebra g⊗A, where

A is a commutative C-algebra with unit.

Definition 1.3.1. Given λ ∈ P+, the local Weyl module W (λ) is the cyclic g[t]-module

generated by an element wλ, with following defining relations:

(n+ ⊗ C[t])wλ = 0, (h⊗ tC[t])wλ = 0, and hwλ = 〈λ, h〉wλ, ∀ h ∈ h,

(x−α ⊗ 1)〈λ,α
∨〉+1 wλ = 0, ∀ α ∈ R+.(1.3)

We set the grade of wλ to be zero. Since the defining relations of W (λ) are graded, it

inherits a Z≥0-grading from the grading on U(g[t]). For s ∈ N, the subspace of grade s

is given by

W (λ)[s] = span {(a1 ⊗ tr1) · · · (ak ⊗ trk)wλ : k ≥ 1, ai ∈ g, ri ∈ Z≥0,
∑

ri = s},

and the subspace of grade zero is given by

W (λ)[0] = U(g)wλ.

The following proposition is well-known and the proof is analogous to that in [7, §§1-2].
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Proposition 1.3.2. [7] For λ ∈ P+, we have the following:

1. W (λ) has a unique finite-dimensional graded irreducible quotient, which is isomor-

phic to ev∗0V (λ). In particular, W (λ) 6= {0}.

2. The zeroth graded piece W (λ)[0] of W (λ) is isomorphic to V (λ).

3. W (λ) is finite-dimensional. Moreover, any finite-dimensional g[t]-module V gener-

ated by an element v ∈ V satisfying the relations

(1.4) (n+ ⊗ C[t]) v = 0, (h⊗ tC[t]) v = 0, and h v = 〈λ, h〉v, ∀ h ∈ h,

is a quotient of W (λ).

Definition 1.3.3. For λ ∈ P+, an element v 6= 0 of a g[t]-module satisfying the relations

(1.4) is said to be a highest weight vector of weight λ.

1.3.2 The graded character of local Weyl modules

For s ≥ 0, the subspace W (λ)[s] of grade s of the local Weyl module W (λ) is a g-

submodule, and we have the following weight space decomposition for W (λ):

W (λ) =
⊕

(µ,s)∈P×Z≥0

W (λ)µ,s,

where W (λ)µ,s := {w ∈ W (λ)[s] : hw = 〈µ, h〉w, ∀h ∈ h}. For µ ∈ P, let

W (λ)µ :=
⊕
s≥0

W (λ)µ,s = {w ∈ W (λ) : hw = 〈µ, h〉w, ∀h ∈ h}.
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The µ for which W (λ)µ 6= 0 are the weights of W (λ). The graded character chqW (λ) of

W (λ) is defined as,

(1.5) chqW (λ) :=
∑

(µ,s)∈P×Z≥0

dim W (λ)µ,s q
s eµ ∈ Z[P ][q].

1.3.3 Local Weyl modules as level one Demazure modules

The following theorem gives the connection of local Weyl modules with Demazure mod-

ules. For g = sl2, it follows from a result in [7]. For g = slr+1, it is proved in [5] by using

the result in [7]. For g simply laced, it is proved in [10] also by using the result in [7].

Theorem 1.3.4. [10, Theorem 7] Assume that g is simply laced. Given λ ∈ P+, let

w ∈ Ŵ , σ ∈ Σ and Λ ∈ P̂+ such that

wσΛ ≡ w0λ+ Λ0 mod Zδ.

Then we have the following isomorphism of g[t]-modules,

W (λ) ∼= Vwσ(Λ).

1.4 The Lie algebra g = slr+1

Throughout this section g = slr+1, the Lie algebra of (r+ 1)× (r+ 1) trace zero matrices

over the field C of complex numbers.

1.4.1 Notation

Let h be the standard Cartan subalgebra of g consisting of trace zero diagonal matrices.

For 1≤ i ≤ r + 1, let εi ∈ h∗ be the projection to the ith co-ordinate. Let $i =
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ε1+· · ·+εi, 1 ≤ i ≤ r, be the set of fundamental weights of g. Let αi = εi−εi+1, 1 ≤ i ≤ r,

be a set of simple roots of g with respect to h, and αi,j = αi + · · ·+ αj, 1 ≤ i ≤ j ≤ r, be

the set positive roots of g. For 1≤ i, j ≤ r + 1, let Ei,j be the (r + 1) × (r + 1) matrix

with 1 in the (i, j)th position and 0 elsewhere. Define subalgebras n± of g by

n± =
⊕

1≤i≤j≤r

Cx±i,j,

where x+
i,j = Ei,j+1 and x−i,j = Ej+1,i. Now we have the following decomposition for g

g = n− ⊕ h⊕ n+.

1.4.2 The Gelfand-Tsetlin bases for irreducible representations

of slr+1

Definition 1.4.1. A Gelfand-Tsetlin pattern (or just pattern) P is an array of integral

row vectors λj = (λj1, . . . , λ
j
j), 1 ≤ j ≤ r + 1 :

λ1
1

λ2
1 λ2

2

· · · · · · · · ·

λr1 · · · λrr

λr+1
1 λr+1

2 · · · λr+1
r+1

subject to the following conditions:

λj+1
i ≥ λji ≥ λj+1

i+1 , ∀ 1 ≤ i ≤ j ≤ r.

We call the last sequence λr+1 of the pattern P is its bounding sequence. For a
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sequence λ of non-increasing integers, we let GT(λ) denote the set of patterns with

bounding sequence λ.

The following theorem is originally given in [13] (see [19, Theorem 2.3] for the current

formulation).

Theorem 1.4.2. [13] Given λ =
∑r

i=1mi$i ∈ P+, set λi = m1 + · · ·+mi ∀ 1 ≤ i ≤ r,

and consider the non-increasing sequence λ : λ1 ≥ · · · ≥ λr ≥ 0. Then there exists a

basis {ζP} for the irreducible representation V (λ) of g parametrized by the set of patterns

P ∈ GT(λ) such that the action of generators of g is given by the formulas

(Ek,k − Ek+1,k+1) ζP =
(
2

k∑
i=1

λki −
k−1∑
i=1

λk−1
i −

k+1∑
i=1

λk+1
i

)
ζP ,

Ek,k+1 ζP = −
k∑
i=1

(lk,i − lk+1,1) · · · (lk,i − lk+1,k+1)

(lk,i − lk,1) · · · (lk,i − lk,i−1)(lk,i − lk,i+1) · · · (lk,i − lk,k)
ζP+δk,i ,

Ek+1,k ζP =
k∑
i=1

(lk,i − lk−1,1) · · · (lk,i − lk−1,k−1)

(lk,i − lk,1) · · · (lk,i − lk,i−1)(lk,i − lk,i+1) · · · (lk,i − lk,k)
ζP−δk,i ,

where lk,i = λki − i + 1, and the arrays P ± δk,i are obtained from P by replacing λki by

λki ± 1. It is assumed that ζP = 0 if the array P is not a pattern.

We know Ej,i = [Ej,j−1, [Ej−1,j−2, [· · · , [Ei+2,i+1, Ei+1,i] · · · ]]], for i 6= j. Hence for

j > i, the action Ej,i ζP of Ej,i on ζP is a linear combination of elements ζκ, where κ is a

pattern obtained from P by decreasing each of indices λmrm , for i ≤ m ≤ j− 1, by 1 while

leaving all other indices unchanged. The action of Ej,i on ζP , for j < i, is defined in a

similar way.

We call the set {ζP : P ∈ GT(λ)} as the Gelfand-Tsetlin (GT) basis for V (λ). The

weight of a pattern is defined as the sequence of differences of successive row sums; this

gives the h-weight of the corresponding GT basis element of V (λ).
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1.4.3 The Chari-Pressley-Loktev bases for local Weyl modules

of slr+1[t]

In this subsection, we recall some results of Chari-Pressley [7] and Chari-Loktev [5]. We

begin by introducing some notation.

Given a non-negative integer l, for s = (s(l) ≥ · · · ≥ s(1)) ∈ Zl≥0 and 1 ≤ i ≤ j ≤ r,

let x−i,j(l, s) be the element of U(n− ⊗ C[t]) defined by

(1.6) x−i,j(l, s) = (x−i,j ⊗ ts(1)) · · · (x−i,j ⊗ ts(l)),

if l > 0 and x−i,j(0, ∅) = 1.

Fix λ =
∑r

i=1 mi$i ∈ P+. The set C(λ) consists of elements (li,j, si,j)1≤i≤j≤r with

li,j ∈ Z≥0, si,j = (si,j(li,j) ≥ · · · ≥ si,j(1)) ∈ Zli,j≥0 such that

either li,j = 0 or li,j > 0 and si,j(li,j) ≤ mi +
r∑

s=j+1

li+1,s −
r∑
s=j

li,s.

The set B(λ) consist of elements

(1.7) x−1,1(l1,1, s1,1)x−1,2(l1,2, s1,2)x−2,2(l2,2, s2,2)x−1,3(l1,3, s1,3) · · ·x−r,r(lr,r, sr,r)wλ,

in W (λ) with (li,j, si,j)1≤i≤j≤r ∈ C(λ).

The following theorem gives bases for the local Weyl modules of slr+1[t]. For g = sl2

it is proved by Chari and Pressley in [7]. Later, in [5], Chari and Loktev proved it for

g = slr+1 using the result in [7].

Theorem 1.4.3. [5, 7] For λ ∈ P+, the set B(λ) is a basis for the local Weyl module

W (λ).
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Chapter 2

Stability of the

Chari-Pressley-Loktev bases for local

Weyl modules of sl2[t]

The results of this chapter have appeared in [20].

2.1 Notation and Preliminaries

In this section, we recall results from chapter 1 which will be used in this chapter, for

g = sl2.
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2.1.1 The affine Lie algebra ŝl2

Let sl2 be the Lie algebra of 2×2 trace zero matrices over the field C of complex numbers

with standard basis

h =

1 0

0 −1

 , x =

0 1

0 0

 , y =

0 0

1 0

 .

Let h = Ch be the standard Cartan subalgebra and (A,B) 7→ trace(AB) the normalized

invariant bilinear form on sl2.

Let ŝl2 be the affine Lie algebra defined by

ŝl2 = sl2 ⊗ C[t, t−1]⊕ Cc⊕ Cd,

where c is central and the other Lie brackets are given by

[Atm, Btn] = [A,B] tm+n +mδm,−n (A,B) c,(2.1)

[d,Atm] = m (Atm) ,(2.2)

for all A,B ∈ sl2 and integers m, n: here, as throughout this chapter, Ats is shorthand

for A ⊗ ts. We let ĥ = Ch ⊕ Cc ⊕ Cd, and regard h∗ as a subspace of ĥ∗ by setting

〈λ, c〉 = 〈λ, d〉 = 0 for λ ∈ h∗.

Let α0, α1 denote the simple roots of ŝl2 and let α∨0 = c − h, α∨1 = h be the corre-

sponding coroots. Let ei, fi (i = 0, 1) denote the Chevalley generators of ŝl2; these are

given by

e1 = x, f1 = y, e0 = yt, f0 = xt−1.

We have

〈α1, h〉 = 2, 〈α1, c〉 = 0, 〈α1, d〉 = 0 and 〈α0, h〉 = −2, 〈α0, c〉 = 0, 〈α0, d〉 = 1.
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Let δ = α0 + α1 denote the null root, Q̂ = Zα0 + Zα1 the root lattice, and Q̂+ the non-

negative integer span of α0, α1. The weight lattice (resp. the set of dominant weights) is

defined by

P̂ (resp. P̂+) = {λ ∈ ĥ∗ : 〈λ, α∨i 〉 ∈ Z (resp. Z≥0), i = 0, 1}.

We define Λ0 ∈ P̂+ by 〈Λ0, h〉 = 0, 〈Λ0, c〉 = 1, 〈Λ0, d〉 = 0.

The Weyl group Ŵ of ŝl2 is the subgroup of GL(ĥ∗) generated by the simple reflections

s0, s1. These are defined by si(λ) = λ − 〈λ, α∨i 〉αi for λ ∈ ĥ∗, and i = 0, 1. There is

a non-degenerate, symmetric, bilinear Ŵ -invariant form (·|·) on ĥ∗, given by requiring

that Cα1 be orthogonal to Cδ + CΛ0, together with the relations (α1|α1) = 2, (δ|δ) =

(Λ0|Λ0) = 0, (δ|Λ0) = 1.

Given α ∈ h∗, we define tα ∈ GL(ĥ∗) by

(2.3) tα(λ) = λ+ (λ|δ)α− (λ|α) δ − 1

2
(λ|δ) (α|α) δ for λ ∈ ĥ∗.

Now let $1 = α1/2; then Q = Zα1 and P = Z$1 are the root and weight lattices of the

underlying sl2. We also let P+ = Z≥0$1 be the set of dominant weights of the underlying

finite-type diagram. The translation subgroup TQ of Ŵ is defined by TQ = {tjα1 : j ∈ Z}.

We have Ŵ = W n TQ, where W = {1, s1} is the underlying finite Weyl group.

The extended affine Weyl group W̃ is the semi-direct product

W̃ = W n TP ,

where TP = {tj$1 : j ∈ Z}. Now consider the element σ = s1t−$1 ∈ W̃ . This induces the
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diagram automorphism of the Dynkin diagram of ŝl2; we have

σα0 = α1, σα1 = α0, σρ = ρ.

Here, ρ ∈ ĥ∗ is the Weyl vector, defined by 〈ρ, α∨i 〉 = 1 for i = 0, 1 and 〈ρ, d〉 = 0. We

also have W̃ = Ŵ o Σ, where Σ = {1, σ} is the subgroup generated by σ.

2.1.2 The basic representation L(Λ0) of ŝl2

Given Λ ∈ P̂+, let L(Λ) be the irreducible ŝl2-module with highest weight Λ. It is the

cyclic ŝl2-module generated by vΛ, with defining relations

h vΛ = 〈Λ, h〉vΛ ∀h ∈ ĥ,(2.4)

ei vΛ = 0 (i = 0, 1),(2.5)

f
〈Λ,α∨i 〉+1
i vΛ = 0 (i = 0, 1).(2.6)

It has weight space decomposition L(Λ) = ⊕µ∈ĥ∗L(Λ)µ. The µ for which L(Λ)µ 6= 0 are

the weights of L(Λ). The module L(Λ0) is particularly well-understood; the following

well-known proposition describes the weight spaces of L(Λ0) (see Proposition 1.2.10).

Proposition 2.1.1. [16]

1. The set of weights of L(Λ0) is {tjα1(Λ0)− dδ | j ∈ Z, d ∈ Z≥0}.

2. dim
(
L(Λ0)tjα1 (Λ0)−dδ

)
= p(d), the number of partitions of d.

We let Λ1 = σΛ0. Then, Λ0,Λ1 are (a choice of) fundamental weights corresponding

to the coroots α∨0 , α
∨
1 , i.e., 〈Λi, α

∨
j 〉 = δij for i, j ∈ {0, 1}. We let vΛi denote a highest

weight vector of L(Λi) for i = 0, 1.
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2.1.3 The current algebra and its local Weyl modules

The current algebra sl2[t]=sl2 ⊗ C[t] is a Lie algebra with Lie bracket is obtained from

that of sl2 by extension of scalars to C[t]: [Atm, Btn] = [A,B]tm+n for all A, B in sl2 and

non-negative integers m, n. As such, it is a subalgebra of ŝl2.

Definition 2.1.2. (see §1.3.1) Given n ∈ Z≥0, the local Weyl module W (n) is the cyclic

sl2[t]-module with generator wn and relations:

(2.7)

(xts)wn = 0, (hts+1)wn = 0, hwn = nwn, yn+1wn = 0 for all s ≥ 0.

2.1.4 Local Weyl modules as Demazure modules

We recall that the standard Borel subalgebra of ŝl2 is

b̂ = sl2 ⊗ tC[t] ⊕ Cx⊕ ĥ.

Let w be in Ŵ and Λ in P̂+. The weight space L(Λ)wΛ of L(Λ) has dimension one (since

two weights that are Weyl group conjugates have the same multiplicities).

Define Vw(Λ) := U(b̂)
(
L(Λ)wΛ

)
. Then, Vw(Λ) is a U(b̂)-submodule of L(Λ), called

the Demazure module of L(Λ) associated to w. More generally, given an element w of

the extended affine Weyl group W̃ , we write w = uτ with u ∈ Ŵ , τ ∈ Σ and define the

associated Demazure module by Vw(Λ) := Vu (τ(Λ)) (see §1.2.5).

We will consider the modules Vtλ(Λ0) for λ ∈ P . It is convenient to use the notation

of [10] and set

D(1, λ) := Vt−λ(Λ0).

Since Σ = {1, σ}, the D(1, λ) are Demazure modules for L(Λ0) (when λ ∈ Q) or L(Λ1)

(when λ 6∈ Q). Further, D(1, λ) is sl2[t]-stable (not just b̂-stable) if, and only if, λ ∈ P+.
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The following theorem identifies the sl2[t]-stable Demazure modules with the local

Weyl modules of the current algebra (see Theorem 1.3.4):

Theorem 2.1.3. [5] The local Weyl module W (n) is isomorphic to the Demazure module

D(1, n$1), as modules of the current algebra sl2[t].

The isomorphism maps the generator wn of W (n) to a vector of L(Λn), which we will

also denote wn. Here n is 0 if n is even and 1 if n is odd. By [5, Corollary 1.5.1] (see

also [10, Corollary 1]), the weight γ of the vector wn ∈ L(Λn) is a Weyl conjugate of Λn.

Further, we must have 〈γ, h〉 = n. It follows from (2.3) that γ = tnα1/2(Λ0) (respectively

t(n−1)α1/2(Λ1)) if n is even (respectively, if n is odd).

Since the γ-weight space of L(Λn) is one-dimensional, this isomorphism identifying

the local Weyl module as a Demazure module is unique up to scaling. We will fix the

following choice of wn for the rest of this chapter:

(2.8) wn :=


(
xt−

n
2

)(n2 )
vΛ0 if n is even,(

xt−
n+1
2

)(n−1
2 )

vΛ1 if n is odd.

Here we have used the “divided power notation”: X(p) := Xp/p!. It is clear that wn has

weight γ; the fact that wn 6= 0 will follow from Proposition 2.3.8(1) for n even, and from

the arguments of §2.3.3 for n odd. We will henceforth identify W (n) with D (1, n$1) by

the isomorphism defined by this choice of wn, and think of W (n) as a subspace of L(Λn).

2.1.5 Inclusions of local Weyl modules

Let Λ ∈ P̂+ and ŴΛ := {w ∈ Ŵ |wΛ = Λ}. For elements w1 ≤ w2 of Ŵ/ŴΛ, where ≤

denotes the Bruhat order on Ŵ/ŴΛ, the Demazure module Vw1(Λ) is included in Vw2(Λ)

46



(as submodules of L(Λ)) (see §1.2.6). Specializing to our case, we have, for n even,

(2.9) W (n) = Vt−n$1
(Λ0) ⊆ Vt−(n+2)$1

(Λ0) = W (n+ 2),

since t−n$1 ≤ t−(n+2)$1 = s1s0t−n$1 . For n odd, we have W (n) = Vt−(n−1)$1
s1(Λ1), since

t−$1 = s1σ. A similar argument to the above establishes W (n) ⊂ W (n + 2) in this case

as well. We thus have the following chains of embeddings:

W (0) ↪→ W (2) ↪→ ... ↪→W (2n) ↪→ W (2n+ 2) ↪→ ... ↪→ L(Λ0).(2.10)

W (1) ↪→ W (3) ↪→ ... ↪→ W (2n+ 1) ↪→ W (2n+ 3) ↪→ ... ↪→ L(Λ1).(2.11)

2.2 The main results

2.2.1 Bases for local Weyl modules

We first recall some results of [7] (see §1.4.3) which give a basis for the local Weyl

module W (n). We begin by introducing some notation. Let Y denote the set of all

integer partitions. Elements of Y are infinite sequences λ = (λ1, λ2, λ3, · · · ) of non-

negative integers such that (i) λi ≥ λi+1 for all i ≥ 1 and (ii) λj = 0 for all sufficiently

large j. We let |λ| =
∑

i λi, and write λ ` r to mean λ ∈ Y with |λ| = r. Let

suppλ = min{j ≥ 0 : λj+1 = 0}. Given non-negative integers a, b, let

(2.12) Y(a, b) := {λ ∈ Y : λ1 ≤ b and suppλ ≤ a}.

We identify partitions with Young diagrams in the standard way: the Young diagram

corresponding to a partition λ is also denoted λ and consists of an arrangement of square

boxes, all of the same size (the sides are of unit length), numbering |λ| in all, arranged

left-and top-justified, λ1 on the first row, λ2 on the second row (which is below the first

47



row), and so on:

λ1

λs

λ2

λ3

. .
.

λ

where s = suppλ. In this language, Y(a, b) is the set of partitions whose Young diagrams

fit into a rectangular a× b box:
b

λ
a

Next, we define the set which will parametrize bases for local Weyl modules:

(2.13) P := {(m, k, λ) : m, k ∈ Z with m ≥ k ≥ 0, and λ ∈ Y(m− k, k)}.

In light of [5] a triple (m, k, λ) ∈ P should be thought of as the pair (GTm,k, λ) where

GTm,k =

 k

m 0


is a Gelfand-Tsetlin pattern for sl2 (see Definition 1.4.1). Associated to this pattern is a

box of size (m − k) × (k − 0), and the condition in (2.13) says that the Young diagram

of λ should fit into this box.

For each non-negative integer n, we also define

P(n) := {(m, k, λ) ∈ P : m = n}.

Given ξ = (n, k, λ) ∈ P(n) with λ = (λ1, λ2, λ3, · · · ), define the following element of
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W (n):

(2.14) B(ξ) :=

(
n−k∏
i=1

ytλi

)
wn.

We note that since [ytj, ytk] = 0 for all j, k ≥ 0, the order of terms in the product in

equation (2.14) is irrelevant. We now have the following important theorem due to Chari

and Pressley [7] (see Theorem 1.4.3):

Theorem 2.2.1. [7] Let n ≥ 0. Then {B(ξ) | ξ ∈ P(n)} is a basis for the local Weyl

module W (n).

2.2.2 The CPL basis elements c(ξ)

Our primary goal in this chapter is to study the compatibility of the Chari-Pressley bases

for W (n) with the chain of embeddings in equations (2.10) and (2.11). As a first step,

we slightly modify the definition of these bases, introducing normalization factors and

parametrizing them by the complements of partitions in Y(n− k, k), rather than by the

partitions themselves. More precisely, given ξ = (n, k, λ) ∈ P(n), define

(2.15) c(ξ) := z(ξ)

(
n−k∏
i=1

ytk−λi

)
wn.

where z(ξ) is a normalization factor. To specify z(ξ), we first let mj := #{i : λi = j}

denote the multiplicity of the part j in λ for each j ≥ 1, and let m0 := n − k − suppλ.

Then, we have
∏n−k

i=1 yt
k−λi =

∏k
j=0

(
ytk−j

)mj . The normalization factor is given by

z(ξ) :=
(−1)[n

4
]−[n−k

2
]∏k

j=0 mj!
.
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Here, [x] denotes the greatest integer less than or equal to x. We may also rewrite (2.15)

in terms of divided powers; we have

c(ξ) = sgn(ξ) y(mk) (yt1)(mk−1) · · · (ytk)(m0) wn,

where sgn(ξ) = (−1)[n
4

]−[n−k
2

].

Given ξ = (n, k, λ) ∈ P(n), with s = suppλ, define λc ∈ Y(n− k, k) by

λc := (k, k, · · · , k, k − λs, k − λs−1, · · · , k − λ1, 0, 0, · · · ),

where the initial string of k’s is of length n − k − s. The Young diagrams of λc and λ,

the latter rotated by 180◦ and appropriately translated, are complements of each other

in the (n− k)× k box:
k

n− k
λc

λ rotated

Letting ξc = (n, k, λc), it is clear that ξc ∈ P(n) and c(ξ) = z(ξ)B(ξc). This of course

implies that the set

C(n) := {c(ξ) : ξ ∈ P(n)}

is also a basis for W (n). We call this the CPL basis of W (n).

We now view W (n) as a subspace of L(Λn) as in equations (2.10) and (2.11). The

weight of c(ξ) in L(Λn) is given by the following lemma.

Lemma 2.2.2. Let ξ = (n, k, λ) ∈ P. Then

1. Weight of c(ξ) = t(k−n)α1 (weight of wn)− |λ|δ.

2. If n is even, the weight of c(ξ) in L(Λ0) is t(k−n
2

)α1(Λ0)− |λ|δ.
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3. If n is odd, the weight of c(ξ) in L(Λ1) is t(k−n+1
2

)α1
(Λ1)− |λ|δ.

Proof. From (2.15), we have

wt(c(ξ)) = wt(wn)− (n− k)α1 + δ
n−k∑
i=1

(k − λi)

= wt(wn) + (k − n)α1 + k(n− k)δ − |λ|δ.

Let β = n
2
α1 if n is even, and n−1

2
α1 if n is odd. Then wt(wn) = tβ(Λn). Since t(k−n)α1

and tβ commute, the first part of the lemma is implied by the following identity, which

can be verified directly using (2.3):

t(k−n)α1(Λn) = Λn + (k − n)t−β(α1) + k(n− k)δ.

Assertions (2) and (3) are obvious from (1).

2.2.3 The main theorem: stability of the CPL bases

We wish to study the compatibility of the bases C(n) and C(n + 2) with respect to the

embedding W (n) ↪→ W (n+ 2). As a first step, we define a weight preserving embedding

at the level of the parametrizing sets of these bases. Define the map ψ : P→ P by

ψ(n, k, λ) = (n+ 2, k + 1, λ).

This is well defined, since Y(n − k, k) is a subset of Y(n − k + 1, k + 1). Further, ψ is

injective, and maps P(n) to P(n + 2) for all n. Now, the following is immediate from

Lemma 2.2.2.

Lemma 2.2.3. Let ξ ∈ P(n). Then the basis vectors c(ξ) ∈ W (n) and c(ψ(ξ)) ∈ W (n+2)

lie in the same weight space of L(Λn).
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However, it is not true in general that c(ξ) and c(ψ(ξ)) are equal as elements of L(Λn),

as the following example shows.

Example 2.2.4. Let λ be the partition 2 + 1, i.e., λ = (2, 1, 0, 0, · · · ). Let ξ = (4, 2, λ).

Then ξ ∈ P(4), and ψ(ξ) = (6, 3, λ). Using (2.15), (2.8) and the commutation relations

in ŝl2, it is easy to compute:

c(ξ) =
1

3

(
ht−3 − (ht−1)3

)
vΛ0 ,

c(ψ(ξ)) =
(
ht−3 + ht−2ht−1

)
vΛ0 .

Both these vectors have weight Λ0 − 3δ. It is well known that the vectors ht−3 vΛ0 ,

ht−2ht−1 vΛ0 , (ht−1)3 vΛ0 form a basis for the weight space L(Λ0)Λ0−3δ. Thus, we conclude

c(ξ) 6= c(ψ(ξ)). 2

We will however see below that c(ξ) = c(ψ(ξ)) for all stable ξ. More precisely, let

(2.16) Pstab(n) :=


{(n, k, λ) ∈ P(n) : |λ| ≤ min(n− k, k)} if n is even,

{(n, k, λ) ∈ P(n) : |λ| ≤ min(n− k, k − 1)} if n is odd,

and Pstab =
⊔
n≥0 Pstab(n).

We note that ξ ∈ Pstab(n) implies ψ(ξ) ∈ Pstab(n + 2). The following is the main

result of this chapter.

Theorem 2.2.5. Let n be a non-negative integer and ξ = (n, k, λ) ∈ Pstab. Then

c(ξ) = c(ψ(ξ)),

i.e., they are equal as elements of L(Λn).

This theorem is proved in §§2.3.1-2.3.3.
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2.2.4 Passage to the direct limit: a basis for L(Λ0)

Theorem 2.2.5 allows us to construct a basis for L(Λp) (p = 0, 1) by taking the direct

limit of the C(n) (for n ≡ p (mod 2)). We explain this below for p = 0, the case p = 1

being similar. Consider L(Λ0), and let µ = tjα1(Λ0)− dδ (j ∈ Z, d ∈ Z≥0) be a weight of

this module. Define

(2.17) Pµ := {(n, k, λ) ∈ P : k − n

2
= j and |λ| = d}.

We note that ξ = (n, k, λ) ∈ Pµ forces n to be even; further, it is clear from Lemma 2.2.2

that c(ξ) has weight µ iff ξ ∈ Pµ.

Now, let Pµ(n) = Pµ ∩ P(n). This set parametrizes the basis elements of W (n) of

weight µ. By (2.17), the cardinality of Pµ(n) is the number of partitions of d which fit

into a (n
2
− j)× (n

2
+ j) box. Thus, for large enough n, Pµ(n) contains exactly p(d) (the

number of partitions of d) elements; in particular this implies that ψ induces a bijection

of the sets Pµ(n) and Pµ(n+2). Further, it is also clear that for large n, every ξ ∈ Pµ(n)

is stable. More precisely, we have

(2.18) |Pµ(n)| = p(d) and Pµ(n) ⊂ Pstab for all even n ≥ 2 (d+ |j|) .

Choosing any such n, say n = 2 (d+ |j|), we define the following (linearly independent)

subset of L(Λ0)µ:

Bµ := {c(ξ) : ξ ∈ Pµ(n)}.

By Theorem 2.2.5 and the remarks above, this is independent of the choice of n. Since

by Proposition 2.1.1, the dimension of L(Λ0)µ is also p(d), we conclude that Bµ is a basis

for the weight space L(Λ0)µ. Finally, to obtain a basis for L(Λ0), we take the disjoint

union over the weights of L(Λ0):

B :=
⊔
µ

Bµ.
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We may view B as a direct limit of the CPL bases C(n) (n even) for the Demazure

modules (=local Weyl modules) of L(Λ0).

2.2.5 A variation on the theme

We note that the generator wn of W (n) = D(1, n$1) is not a lowest weight vector of

the Demazure module D(1, n$1); while the lowest weight in D(1, n$1) is t−n$1(Λ0), the

weight of wn is in fact tn$1(Λ0). From the basis B(ξ) of equation (2.14), it is easy to

construct a basis consisting of monomials in the raising operators of the current algebra

acting on a lowest weight vector vn of the Demazure module. Given ξ = (n, k, λ) ∈ P(n),

with λ = (λ1, λ2, λ3, · · · ), define the following element of W (n):

(2.19) B(ξ) :=

(
n−k∏
i=1

xtλi

)
vn.

We now have:

Proposition 2.2.6. The set {B(ξ) | ξ ∈ P(n)} is a basis for the local Weyl module

W (n).

The proof appears in §2.3.3. This basis also admits a normalized version which exhibits

similar stabilization behavior as the CPL basis.

2.3 Proof of the main theorem

2.3.1 The key special case

In this subsection we prove Theorem 2.2.5 in the special case that ξ = (n, k, λ) ∈ Pstab

with n even and k = n/2. In this case, the weight of c(ξ) in L(Λ0) is Λ0 − |λ|δ. From
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equations (2.15) and (2.8), we have

(2.20) c(ξ) := z(ξ)

(
k∏
i=1

ytk−λi

)(
xt−k

)(k)
vΛ0 .

Now, let t = ⊕n∈ZChtn ⊕ C c denote the homogeneous Heisenberg subalgebra of

ŝl2. Recall that the subspace ⊕p≥0 L(Λ0)Λ0−pδ is invariant under t, and is isomorphic

to the canonical commutation relations representation (Fock space) of t. Thus, each

element of this subspace can be uniquely expressed as a polynomial in (the infinitely many

variables) ht−1, ht−2, · · · , acting on vΛ0 [11]. In particular, there is a unique polynomial

fξ(ht
−1, ht−2, · · · ) such that

c(ξ) = fξ(ht
−1, ht−2, · · · ) vΛ0 .

Our first goal is to determine fξ explicitly by applying the straightening rules in U(ŝl2)

to equation (2.20). We will then show that fξ = fψ(ξ) for ξ ∈ Pstab, thereby establishing

Theorem 2.2.5 in this case.

For r ≥ 1, we let [r]:= {1, 2, · · · , r}. Let π ∈ Y be a partition such that |π| = r and

supp π = s. A set partition of [r] of type π is a collection B = {B1, B2, · · · , Bs} of pairwise

disjoint subsets of [r] such that ∪si=1Bi = [r] and |Bi| = πi for all i ∈ [s]. We let Y(π)

denote the set of all set partitions of [r] of type π.

Now, let B = {B1, B2, · · · , Bs} ∈ Y(π); given σ ∈ Sr (the symmetric group on r

letters), p = (p1, p2, · · · , pr) ∈ Nr and q = (q1, q2, · · · , qr) ∈ Nr, define the following

element of U(t):

(2.21) W (B, σ; p, q) :=
s∏
j=1

ht
∑
i∈Bj(pi−qσ(i)).
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We also define

(2.22) H(π; p, q) :=
1

π1!...πs!

∑
B∈Y(π)
σ∈Sr

W (B, σ; p, q).

With these notations we can state the following theorem.

Theorem 2.3.1. Let r ≥ 1. For every triple (p, q, v) with p = (p1, p2, · · · , pr) ∈ Nr,

q = (q1, q2, · · · , qr) ∈ Nr and v ∈ L(Λ0), satisfying

1. pi < qj for all i, j ∈ [r],

2.
∑

i∈A pi ≥
∑

j∈B qj for all subsets A,B of [r] such that |A| = |B|+ 1,

3. yt(
∑
i∈A pi−

∑
j∈B qj) v = 0 for all subsets A,B of [r] such that |A| = |B|+ 1,

we have

(2.23)

(
r∏
i=1

ytpi

)(
r∏
j=1

xt−qj

)
v = (−1)r

∑
π`r

C(π)H(π; p, q) v,

where for π = (π1, π2, · · · ), C(π) =
∏suppπ

i=1 πi! (πi − 1)!.

Proof. We proceed by induction on r. First, for r = 1, consider ytp1xt−q1 v. Since

ytp1 v = 0 and p1 6= q1, we have

ytp1xt−q1 v = [ytp1 , xt−q1 ] v = −htp1−q1 v,

as required. Now let r ≥ 2, and assume the result for r−1. Consider (
∏r

i=1 yt
pi)(
∏r

j=1 xt
−qj) v.

Since ytpr v = 0 and pr 6= qj for all j, we may replace ytpr (
∏r

j=1 xt
−qj) v by

[ytpr ,
r∏
j=1

xt−qj ] v = (−1)
r∑
l=1

(
r∏

j=l+1

xt−qj

)
htpr−ql

(
l−1∏
j=1

xt−qj

)
v.
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Next, using [htpr−ql , xt−qj ] = 2xt−qj−ql+pr , we can commute the htpr−ql term past the(∏l−1
j=1 xt

−qj
)

. This yields

(−1)
r∏
i=1

ytpi
r∏
j=1

xt−qj v =
r∑
l=1

r−1∏
i=1

ytpi
r∏
j=1
j 6=l

xt−qj
(
htpr−ql v

)

+ 2
r∑

l,m=1
m<l

r−1∏
i=1

ytpi
r∏
j=1
j 6=l,m

xt−qj (xt−qm−ql+pr) v.

(2.24)

We now consider the first sum in equation (2.24). Fix l ∈ [r] and let p′ and q′ denote

the r − 1 tuples obtained by deleting pr from p and ql from q respectively. We also let

v′ = htpr−ql v. Then, we claim that the triple (p′, q′, v′) satisfies the hypotheses (1)-(3) of

the theorem. The first two hypotheses are clear; now given A ⊂ [r − 1] and B ⊂ [r]\{l}

with |A| = |B|+ 1, we have

yt(
∑
i∈A pi−

∑
j∈B qj)v′ =

[
yt(

∑
i∈A pi−

∑
j∈B qj), htpr−ql

]
v

= 2yt(
∑
i∈A∪{r} pi−

∑
j∈B∪{l} qj) v = 0,

(2.25)

thereby verifying hypothesis (3). By the induction hypothesis, we obtain

(2.26)
r−1∏
i=1

ytpi
r∏
j=1
j 6=l

xt−qj
(
htpr−ql v

)
= (−1)r−1

∑
π′`r−1

C(π′)H(π′; p′, q′)htpr−ql v.

The second sum in equation (2.24) is treated analogously. Fix l,m ∈ [r] with m < l

and let q′′ denote the r − 1 tuple obtained from q by deleting ql, qm and appending

ql+qm−pr. We also let p′′ = (p1, p2, · · · , pr−1) and v′′ = v. The triple (p′′, q′′, v′′) evidently

satisfies the hypotheses of the theorem. Again, the induction hypothesis implies

(2.27)
r−1∏
i=1

ytpi
r∏
j=1
j 6=l,m

xt−qj (xt−qm−ql+pr) v = (−1)r−1
∑

π′′`r−1

C(π′′)H(π′′; p′′, q′′) v.
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Fix a partition π ` r, with π = (π1, π2, · · · ) and s = supp π. We can now find the

coefficient C(π) that occurs in equation (2.23). Since the ytpi commute pairwise and

likewise the xt−qj , it is clear that the expression for (
∏r

i=1 yt
pi)(
∏r

j=1 xt
−qj) v is invariant

under the Sr × Sr action that permutes the pi and −qj among themselves. Thus, to find

C(π) it is enough to find the coefficient of the canonical word

(2.28) ht
∑π1
i=1(pi−qi)ht

∑π1+π2
i=π1+1(pi−qi) · · ·ht

∑r
i=π1+···+πs−1+1 (pi−qi) v

in the RHS of (2.24).

We consider two cases (a) πs = 1, and (b) πs ≥ 2. In case (a), it is clear from equations

(2.24), (2.26) and (2.27) that the canonical word above occurs only in
∏r−1

i=1 yt
pi
∏r−1

j=1 xt
−qj (htpr−qr v),

and with coefficient C(π′) where π′ = (π1, π2, · · · , πs−1) ` r − 1. Thus,

(2.29) C(π) = C(π′) =
s−1∏
i=1

πi!(πi − 1)! =
s∏
i=1

πi!(πi − 1)!,

since πs = 1.

In case (b), we have πs ≥ 2. Again, examining equations (2.24), (2.26) and (2.27), it

follows that the canonical word in this case occurs only in

r−1∏
i=1

ytpi
r∏
j=1
j 6=l,m

xt−qj (xt−qm−ql+pr) v,

for all l,m such that

π1 + · · ·+ πs−1 + 1 ≤ m < l ≤ r.

Each such pair (l,m) contributes a coefficient C(π′′) where π′′ = (π1, π2, · · · , πs−1, πs−1) `

r − 1. Since r −
∑s−1

i=1 πi = πs, we get

C(π) =

(
πs
2

)
2C(π′′) = πs(πs − 1)

(
s−1∏
i=1

πi!(πi − 1)!

)
(πs − 1)!(πs − 2)! =

s∏
i=1

πi!(πi − 1)!,
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as required. This proves Theorem 2.3.1.

Let λ = (λ1, λ2, · · · ) be a partition with suppλ = r ≥ 1. Let π ` r with supp π = s,

and let B={B1, B2, · · · , Bs} be an element of Y(π). Define the following elements of

U(h⊗ t−1C[t−1]):

W (B, λ) :=
s∏

p=1

ht−
∑
j∈Bp λj , and(2.30)

H(π, λ) :=
∑

B∈Y(π)

W (B, λ).(2.31)

Example 2.3.2. H(π = (3), λ = (λ1, λ2, λ3)) = ht−(λ1+λ2+λ3).

H(π = (2, 1), λ = (λ1, λ2, λ3)) = ht−(λ1+λ2)ht−λ3 + ht−(λ1+λ3)ht−λ2 + ht−(λ2+λ3)ht−λ1 .

H(π = (1, 1, 1), λ = (λ1, λ2, λ3)) = ht−λ1ht−λ2ht−λ3 . 2

We now have the following important corollary to Theorem 2.3.1:

Corollary 2.3.3. Let r ≥ 1. Fix a partition λ = (λ1, λ2, · · · ) with suppλ = r. Then, for

all k ≥| λ |, we have

(2.32)

(
r∏
i=1

ytk−λi

)(
xt−k

)(r)
vΛ0 = (−1)r

∑
π`r

C ′(π)H(π, λ) vΛ0 .

Here, for π = (π1, π2, · · · ), C ′(π) is given by

C ′(π) =

suppπ∏
i=1

(πi − 1)!.

Proof. Consider p = (p1, p2, · · · , pr) and q = (q1, q2, · · · , qr) with pi = k − λi and qi = k

for all i ∈ [r]. We claim that the triple (p, q, vΛ0) satisfies the hypotheses of Theorem

2.3.1. To see this, observe first that pi < qj for all i, j ∈ [r]. Further, if A is a non-empty
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subset of [r], we have

∑
i∈A

pi =
∑
i∈A

(k − λi) ≥ |A|k − |λ| ≥ (|A| − 1)k.

Finally, the highest weight vector vΛ0 ∈ L(Λ0) clearly satisfies ytp vΛ0 = 0 ∀ p ≥ 0. Thus,

by Theorem 2.3.1, we obtain

(2.33)

(
r∏
i=1

ytk−λi

)(
xt−k

)r
vΛ0 = (−1)r

∑
π`r

C(π)H(π; p, q).

with C(π) =
∏suppπ

i=1 πi!(πi − 1)!. Now since qj = k for all j, it is clear from equations

(2.22) and (2.31) that

(2.34) H(π; p, q) =
r!

π1!π2! · · · πs!
H(π, λ).

Equations (2.33) and (2.34) complete the proof.

We observe that while the expression on the left hand side of equation (2.32) depends

on k, the one on the right hand side is independent of it. The fact that these two

expressions are equal for k ≥| λ | is precisely what leads to the stability properties of

interest.

The following lemma collects together the straightening rules in L(Λ0) that are used in

the course of proving Theorem 2.2.5. In principle, these can all be proved directly by

working in the vertex operator realization of L(Λ0) [11]. The proofs below are simpler,

and are included here for the sake of completeness.

Lemma 2.3.4. Let vΛ0 denote a highest weight vector of L(Λ0). Then

1. (ytm)(l)(xt−m)(m) vΛ0 = (xt−m)(m−l) vΛ0 ∀ 1 6 l 6 m.
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2.
∏r

i=1 xt
2i−1

∏r
i=1 yt

−(2i−1) vΛ0 = vΛ0 ∀ r ∈ N.

3.
∏r

i=1 yt
2i−1

∏r
i=1 xt

−(2i−1) vΛ0 = vΛ0 ∀ r ∈ N.

4. Let p > q ≥ 0 and let v ∈ L(Λ0) satisfy ytp v = htp−q v = 0. Then

ytp (xt−q)(s) v = −(xt−q)(s−2) xtp−2q v ∀ s ≥ 2.

5. For r ∈ 2N and 0 ≤ j ≤ r
2
, we have

 r
2

+j∏
i=1

yt2i−1

 (xt−r)(2j)

 r
2
−j∏
i=1

xt−(2i−1)

 vΛ0 = (−1)jvΛ0 .

6. For r ∈ 2N− 1 and 0 ≤ j ≤ r−1
2

, we have

 r+1
2

+j∏
i=1

yt2i−1

 (xt−r)(2j+1)

 r−1
2
−j∏

i=1

xt−(2i−1)

 vΛ0 = (−1)jvΛ0 .

7. (
∏r

i=1 yt
2i−1) (xt−r)(r) vΛ0 = (−1)[ r

2
] vΛ0 ∀ r ∈ N.

8. (xt−r)(r) vΛ0 = (−1)[ r
2

] Trα1(vΛ0) 6= 0 ∀ r ∈ N.

Proof. (1) Consider the Lie subalgebra of ŝl2 spanned by E := ytm, F := xt−m and

H := −h + mc. This is isomorphic to sl2. Further, E,F act locally nilpotently on

L(Λ0), and we have HvΛ0 = mvΛ0 , EvΛ0 = 0. The standard sl2 calculation now shows

E(l)F (m)vΛ0 = F (m−l)vΛ0 .

(2) Using Proposition 2.3.7, it is easy to see that this is just a restatement of the identity

T−rα1Trα1vΛ0 = vΛ0 .

(3) As in (2), this is now the identity Trα1T−rα1vΛ0 = vΛ0 .
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(4) With the given hypotheses, we compute

ytp(xt−q)s v = [ytp, (xt−q)s] v = −
s−1∑
i=0

(xt−q)i htp−q (xt−q)s−1−i v.

We also have [htp−q, (xt−q)u] = 2u(xt−q)u−1 xtp−2q for all u ≥ 1. Applying this to the

above equation completes the proof.

(5) For j = 0, this is just the statement of (3). For 1 ≤ j ≤ r
2
, define vj :=

∏ r
2
−j

i=1 xt
−(2i−1) vΛ0 .

From weight considerations, it can be easily seen that vj satisfies ytr+2j−1 vj = 0 =

ht2j−1 vj. Thus, by (4), we obtain

ytr+2j−1(xt−r)(2j) vj = −(xt−r)(2j−2)xt−(r−2j+1) vj = −(xt−r)(2j−2) vj−1.

The result now follows by induction on j.

(6) This is analogous to (5).

(7) For r even, put j = r
2

in (5) to obtain

r∏
i=1

yt2i−1(xt−r)(r) vΛ0 = (−1)
r
2 vΛ0 .

Similarly, for r odd, put j = r−1
2

in (6):

r∏
i=1

yt2i−1(xt−r)(r) vΛ0 = (−1)
r−1
2 vΛ0 .

The equations above give us the desired result for all r ∈ N.

(8) Let r ∈ N. Then (xt−r)(r) vΛ0 and Trα1(vΛ0) =
∏r

i=1 xt
−(2i−1) vΛ0 belong to the 1-

dimensional space L(Λ0)Λ0+rα1−r2δ, and so we must have

(xt−r)(r) vΛ0 = a
r∏
i=1

xt−(2i−1) vΛ0 ,
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for some a ∈ C. But by (3) and (7), it follows that a = (−1)[ r
2

] and that these vectors

are non-zero.

We can now deduce the key special case of Theorem 2.2.5 that we are after, namely for ξ

of the form (n, n/2, λ) with n even. Firstly, given a partition λ ∈ Y , let r = suppλ and

mj(λ) = #{i : λi = j} denote the multiplicity of the part j in λ for each j ≥ 1. If r ≥ 1,

define the following element of U(h⊗ t−1C[t−1]):

(2.35) fλ(ht
−1, ht−2, · · · ) :=

(−1)r∏
j≥1 mj(λ)!

∑
π`r

C ′(π)H(π, λ),

where C ′(π) =
∏suppπ

i=1 (πi−1)! as in Corollary 2.3.3. If r = 0, i.e., λ is the empty partition,

we let fλ := 1.

Now, let ξ = (n, n
2
, λ) ∈ Pstab with n even. As mentioned before, the weight of c(ξ)

in this case is Λ0 − |λ|δ. The expression of c(ξ) as a polynomial in ht−1, ht−2, · · · acting

on vΛ0 is given by the following theorem.

Theorem 2.3.5. Let n be even and let ξ = (n, n/2, λ) ∈ Pstab. Then

(2.36) c(ξ) = fλ(ht
−1, ht−2, · · · ) vΛ0 .

Proof. Let r = suppλ and k = n/2. If r = 0, then c(ξ) = (ytk)(n−k)wn = (ytk)(k)(xt−k)(k) vΛ0 =

vΛ0 , by Lemma 2.3.4 (1). Now, for r ≥ 1,

(
r∏
i=1

ytk−λi)(ytk)(n−k−r)wn = (
r∏
i=1

ytk−λi)(ytk)(k−r)(xt−k)(k) vΛ0 = (
r∏
i=1

ytk−λi)(xt−k)(r) vΛ0 ,

again by Lemma 2.3.4 (1). The theorem now follows from this and equations (2.32),

(2.15) and (2.35).
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We now observe that fλ depends only on λ and not on n, thereby proving Theo-

rem 2.2.5 when ξ is of the form (n, n/2, λ):

Corollary 2.3.6. Let n be even and let ξ = (n, n/2, λ) ∈ Pstab. Then c(ξ) = c(ψ(ξ)).

2.3.2 The general case when n is even

We now turn to the remaining cases of Theorem 2.2.5 for even n, i.e., ξ = (n, k, λ) ∈ Pstab

with n even and k 6= n/2. We will now show how to reduce these to the case k = n/2 using

the translation operators of Frenkel and Kac. We recall the necessary facts from [11],

stated for our context.

Let ∆ := {α1,−α1} be the set of all roots of sl2, and set Eα1 := x and E−α1 := y.

Let (V, π) be an integrable representation of ŝl2 with weight space decomposition V =

⊕µ∈ĥ∗Vµ. For a real root α = γ + kδ (γ ∈ ∆, k ∈ Z) of ŝl2 we define

(2.37) rπα := e−π(Eα)eπ(E−α)e−π(Eα).

where Eα := Eγt
k. The operator rπα is a linear automorphism of V such that rπα(Vµ) =

Vsα(µ), where sα ∈ Ŵ is the reflection defined by α.

Next, we introduce the translation operators T πβ on V for each β ∈ Q = Z∆. For

γ ∈ ∆, define

(2.38) T πγ := rπδ−γ r
π
γ .

and let T πpγ := (T πγ )p ∀ p ∈ Z≥0. These operators satisfy T πβ (Vµ) = Vtβ(µ) for all µ ∈ ĥ∗,

β ∈ Q.

We will only need these operators in two cases, namely when (V, π) is either the

adjoint representation or the basic representation of ŝl2. We note that T ad
β is in fact a
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Lie algebra automorphism of ŝl2. For ease of notation, we will denote the translation

operators corresponding to the basic representation simply by Tβ, suppressing the π in

the superscript.

The key properties of the translation operators are given by Propositions 1.2 and 2.3

of [11]. We summarize them for our context below:

Proposition 2.3.7. (Frenkel-Kac)

1. T ad
pα1

(xtk) = xtk−2p ∀ p, k ∈ Z.

2. T ad
pα1

(ytk) = ytk+2p ∀ p, k ∈ Z.

3. Tpα1Tqα1 = T(p+q)α1 ∀ p, q ∈ Z.

4. Tpα1AT−pα1(v) = T ad
pα1

(A) v ∀ A ∈ ŝl2, v ∈ L(Λ0), p ∈ Z.

5. Tpα1(vΛ0) =
∏p

i=1 xt
−(2i−1) vΛ0 ∀ p ≥ 0.

6. Tpα1(vΛ0) =
∏−p

i=1 yt
−(2i−1) vΛ0 ∀ p ≤ 0.

The following is the key proposition that allows us to carry out a reduction to the

case k = n/2.

Proposition 2.3.8. Let n be even. Then, we have:

1. wn = (−1)[n
4

] Tnα1/2(vΛ0).

2. Given 0 ≤ k ≤ n, let γ = (k − n/2)α1. Then

(2.39) (−1)[n
4

] wn = (−1)[n−k
2

] Tγ(w2(n−k)).

3. Given ξ = (n, k, λ) ∈ Pstab, let ξ† = (2(n − k), n − k, λ) and γ(ξ) = (k − n/2)α1.

Then ξ† ∈ Pstab, and

(2.40) c(ξ) = Tγ(ξ)

(
c(ξ†)

)
.
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Proof. The proof of (1) will be given in the appendix (see Lemma 2.3.4(8)). Equation

(2.39) follows easily from (1) and Proposition 2.3.7 (3). To prove (3), we start with

equation (2.15) and use Proposition 2.3.7 again to obtain

(2.41) T−γ(ξ) (c(ξ)) = z(ξ)

(
n−k∏
i=1

T ad
−γ(ξ)

(
ytk−λi

)) (
T−γ(ξ)wn

)
.

Now, T ad
−γ(ξ)

(
ytk−λi

)
= ytn−k−λi . Further, it is clear from definition that z(ξ) = (−1)[n

4
]−[n−k

2
]z(ξ†).

Plugging these and (2.39) into (2.41), we obtain (2.40).

We can now complete the proof of Theorem 2.2.5 for n even. Given ξ = (n, k, λ) ∈

Pstab, recall that ψ(ξ) = (n+ 2, k + 1, λ). It is now immediate from the definitions that

γ(ξ) = γ(ψ(ξ)) and ψ(ξ†) = ψ(ξ)†.

Proposition 2.3.8 and Corollary 2.3.6 now imply Theorem 2.2.5 for the case that n is

even.

2.3.3 The proof for odd n

In this subsection, we show how to reduce the case of n odd to that of n even, using

automorphisms of ŝl2.

Let τ be an automorphism of ŝl2 such that τ ĥ = ĥ. We have the induced action of τ on

ĥ∗ by 〈τλ, h〉 = 〈λ, τ−1h〉. Given an ŝl2-module V , let V τ denote the module with the

twisted action

g ◦ v = τ−1(g) v for g ∈ ŝl2, v ∈ V.

Observe that for automorphisms τ1, τ2, we have V τ1τ2 ' (V τ2)τ1 .
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We now study the twisted actions on L(Λ0) by two specific automorphisms σ̃, φ̃ of ŝl2.

First, recall from §2.1 that σ = s1t−$1 ∈ Ŵex is an automorphism of the Dynkin diagram

of ŝl2; it swaps α0, α1 and fixes ρ. Consider the Lie algebra automorphism σ̃ of ŝl2 given

by the relations

σ̃(ei) = e1−i, σ̃(fi) = f1−i, σ̃(α∨i ) = α∨1−i (i = 0, 1) and σ̃(ρ∨) = ρ∨.

Here ρ∨ ∈ ĥ is the unique element for which 〈α0, ρ
∨〉 = 1, 〈α1, ρ

∨〉 = 1 and 〈Λ0, ρ
∨〉 = 0.

Clearly σ̃ is an involution, and

σ̃(ytm) = xtm−1, σ̃(xtm) = ytm+1, σ̃(htm) = −htm + δm,0 c ∀m ∈ Z.

Further, σ̃ leaves ĥ invariant, and its induced action on ĥ∗ coincides with σ.

To define the second automorphism φ̃, we employ the following simple lemma, which

follows directly from the Lie bracket relations (2.1), (2.2).

Lemma 2.3.9. Let φ be an automorphism of sl2, which preserves the Killing form. Then

φ can be extended to an automorphism φ̃ of ŝl2 by defining φ̃(c) = c, φ̃(d) = d and

φ̃(Atm) = φ(A) tm ∀A ∈ sl2,m ∈ Z.

Now, consider the involution φ of sl2 defined by

(2.42) φ(x) = y, φ(y) = x, φ(h) = −h.

This preserves the Killing form, so by Lemma 2.3.9, it extends to an automorphism (in

fact, an involution) φ̃ of ŝl2. It is again clear that (i) φ̃ preserves ĥ, and (ii) the induced

action of φ̃ on ĥ∗ coincides with the simple reflection s1.

Proposition 2.3.10. With notation as above, we have (i) L(Λ0)σ̃ ' L(Λ1), and (ii)

L(Λ0)φ̃ ' L(Λ0).
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Proof. To prove (i), consider the U(ŝl2)-linear map L(Λ1)→ L(Λ0)σ̃ which sends vΛ1 to

vΛ0 . To show this is well defined, we only need to check that vΛ0 ∈ L(Λ0)σ̃ satisfies the

relations (2.4)-(2.6) for Λ = Λ1. Since σ̃ interchanges each pair (e0, e1), (f0, f1) and acts

as σ on ĥ∗, all three relations follow. Now, this map is a surjection, since vΛ0 generates

L(Λ0)σ̃. Since L(Λ1) is irreducible, it must be an isomorphism.

A similar argument establishes (ii). We map L(Λ0) → L(Λ0)φ̃ by sending vΛ0 to

vΛ0 . To show that this extends to a well-defined U(ŝl2)-linear map on all of L(Λ0), we

verify that vΛ0 ∈ L(Λ0)φ̃ satisfies (2.4)-(2.6) for Λ = Λ0. As above, (2.4) holds since

the action of φ̃ on ĥ∗ coincides with s1, and s1Λ0 = Λ0. Further, in L(Λ0), we have

φ̃−1(e0)vΛ0 = xt vΛ0 = 0 and φ̃−1(e1)vΛ0 = yvΛ0 = 0. This establishes (2.5). Finally, for

(2.6), we compute in L(Λ0): φ̃−1(f1)vΛ0 = xvΛ0 = 0, and φ̃−1(f0)2vΛ0 = (yt−1)
2
vΛ0 . Since

yt−1 is in a real root space of ŝl2, it is easy to see that this last term is also zero by a

standard sl2 argument (using the sl2 spanned by xt, yt−1 and h + c). The fact that it is

an isomorphism follows as in (i).

Let τ = σ̃φ̃. Then Proposition 2.3.10 implies

L(Λ1) ' L(Λ0)σ̃ '
(
L(Λ0)φ̃

)σ̃
' L(Λ0)τ .

The isomorphism F : L(Λ1) → L(Λ0)τ maps vΛ1 7→ vΛ0 . It is then determined on all of

L(Λ1) by ŝl2-linearity, i.e., by the relation

F (Xv) = τ−1(X)F (v) ∀ X ∈ ŝl2, v ∈ L(Λ1).
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We now prove Theorem 2.2.5 for ξ = (n, k, λ) ∈ Pstab with n odd. From (2.15) and (2.8),

we have

c(ξ) = z(ξ)

(
n−k∏
i=1

ytk−λi

)
(xt−

n+1
2 )(

n−1
2 ) vΛ1 .

Applying the isomorphism F , we obtain

F (c(ξ)) = z(ξ)

(
n−k∏
i=1

ytk−λi−1

)
(xt−

n−1
2 )(

n−1
2 ) vΛ0 = c(n− 1, k − 1, λ),

since (−1)[n
4

] = (−1)[n−1
4

] for n odd. Observe by (2.16) that (n, k, λ) ∈ Pstab for n odd,

implies that (n − 1, k − 1, λ) is also in Pstab. Theorem 2.2.5 now follows for ξ since we

have already proved it for all even n. This completes the proof of that theorem in all

cases.

Finally, we observe that the above ideas also give us a proof of Proposition 2.2.6. With no-

tation as in that proposition, first let n be even. IfG : L(Λ0)→ L(Λ0)φ̃ is the isomorphism

constructed in the proof of Proposition 2.3.10, observe that G(wn) = (yt−
n
2 )(

n
2 ) vΛ0 = vn,

say, is a lowest weight vector of D(1, n$1). Further, for ξ ∈ P(n), we have G(B(ξ)) =

B(ξ), thereby proving Proposition 2.2.6 in this case. The stable basis elements in this set

up are simply the images of the c(ξ), ξ ∈ Pstab, under the appropriate isomorphism G.

The case of odd n is analogous, via the isomorphism G′ : L(Λ1)→ L(Λ1)σ̃φ̃σ̃
−1

.
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Chapter 3

On area maximizing Gelfand-Tsetlin

patterns

The results of this chapter will appear in [21].

3.1 Notation

This section establishes notation and terminology. The notion of a partition overlaid

pattern, or POP, is introduced in §3.1.8. POPs parametrize Chari-Loktev bases for

local Weyl modules of slr+1 (just as patterns parametrize the Gelfand-Tsetlin bases for

irreducible representations). The notion of area (triangular and trapezoidal) of a pattern

introduced in §3.1.3 plays an important role in what follows.

3.1.1 Interlacing condition on sequences

We will be dealing with finite non-increasing sequences of real numbers, like so: λ1 ≥

. . . ≥ λn. It is convenient to fix terminology and notation as follows:
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• A sequence such as λ1 ≥ . . . ≥ λn will be denoted for short by λ.

• The sequence λ1 ≥ . . . ≥ λn is integral if the λj are all integers. It is non-negative

integral if the λj are all non-negative integers.

• The number of elements in the sequence is the length of the sequence.

• Let λ and µ be sequences of lengths n and n − 1 respectively. We say that they

interlace and write λ ≷ µ if

(3.1) λ1 ≥ µ1 ≥ λ2, λ2 ≥ µ2 ≥ λ3, . . . , and λn−1 ≥ µn−1 ≥ λn.

The interlacing condition may be remembered easily if λ and µ are arranged like

so:

(3.2)
µ1 µ2 · · · · · · · · · µn−2 µn−1

λ1 λ2 λ3 · · · · · · λn−2 λn−1 λn

If we now imagine ≥ relations among numbers as we move in the north-easterly or

the south-easterly direction, that is precisely the condition for interlacing.

• Given sequences λ and µ of lengths n and n− 1 respectively, we will feel free to use

several alternative expressions to express the condition that they interlace:

µ ≷ λ; µ interlaces λ; λ interlaces µ; λ and µ are interlaced; etc.

Weak interlacing

Let λ : λ1 ≥ · · · ≥ λn be a non-increasing sequence of real numbers and µ = (µ1, . . . , µn−1)

be an element of Rn−1. We say that λ weakly interlaces µ and write λ≷wµ if for every j,

1 ≤ j ≤ n− 1, and every sequence 1 ≤ i1 < . . . < ij ≤ n− 1, we have:

(3.3) λ1 + · · ·+ λj ≥ µi1 + · · ·+ µij ≥ λn−j+1 + · · ·+ λn
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It is evident that, for non-increasing sequences λ and µ of lengths n and n − 1, if λ

interlaces µ then λ weakly interlaces µ.

3.1.2 Gelfand-Tsetlin patterns

A partial Gelfand-Tsetlin pattern, or partial GT pattern, or just partial pattern is a finite

sequence of interlacing sequences. More precisely, a pattern consists of a finite sequence

λj, . . . , λn of sequences, where j ≤ n are positive integers, such that

• the respective lengths of the sequences are j, . . . , n, and

• λj interlaces λj+1, . . . , λn−1 interlaces λn: that is, λj ≷ λj+1 ≷ · · · ≷ λn−1 ≷ λn.

Extending the arrangement as in the previous item of two interlacing sequences, the

sequences in a pattern are arranged one below the other, in a staggered fashion. For

example, the pattern consisting of the sequences 5; 7, 4; and 7, 5, 3 is written:

(3.4)

5

7 4

7 5 3

A Gelfand-Tsetlin pattern or GT pattern or just pattern is a partial pattern of a

particular kind. Namely, it consists of finite sequences λ1, . . . , λn of respective lengths

1, . . . , n. The last sequence of the pattern is its bounding sequence. For instance, the

bounding sequence of the pattern (3.4) is 7, 5, 3. When we speak of a pattern λ1, . . . ,

λn, it is often convenient to let λ0 denote the empty sequence.

Integral patterns

A pattern is integral if all its entries are integers.
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Rows of a pattern

Let P be the pattern λ1, . . . , λn. The entries of λk are sometimes referred to as the

entries in row k of P . The lone entry in the first row of the pattern (3.4) is 5; the entries

in its second row are 7, 4; and those in third are 7, 5, and 3.

The weight of a pattern

The weight of a pattern with bounding sequence of length n is the n-tuple (a1, . . . , an),

where aj is the difference of the sum of the entries in row j and the sum of the entries

in row j − 1. It is understood that the sum of the entries in the zeroth row is zero. The

weight of the pattern in (3.4), for instance, is (5, 6, 4).

3.1.3 Trapezoidal Area and (Triangular) Area of a pattern

Let λ and µ be two sequences of lengths n and n−1 respectively that are interlaced. The

triangular area or just area of the pair (λ, µ) is defined by:

(3.5) 4(λ, µ) :=
n−1∑
i=1

(λi − µi)(µi − λi+1)

And the trapezoidal area of the pair (λ, µ) is defined by:

(3.6) �(λ, µ) :=
∑

1≤i≤j≤n−1

(λi − µi)(µj − λj+1)

The above definitions make sense even when n = 1: µ is empty and both areas vanish

(since they are empty sums).

The (triangular) area of a pattern P with rows λ1, . . . , λn is defined by:

(3.7) 4(P) := 4(λn, λn−1) +4(λn−1, λn−2) + · · ·+4(λ2, λ1) +4(λ1, λ0)
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Its trapezoidal area is defined by:

(3.8) �(P) := �(λn, λn−1) +�(λn−2, λn−2) + · · ·+�(λ2, λ1) +�(λ1, λ0)

Observe that both areas are zero for a pattern with a single row (with only one entry).

3.1.4 Majorization

For an element x = (x1, . . . , xn) in Rn, let x↓ = (x↓1, . . . , x
↓
n) be the vector whose co-

ordinates are obtained by rearranging the xj in weakly decreasing order. For elements x

and y in Rn, we say that x weakly majorizes y and write x <wm y if

(3.9) x↓1 + · · ·+ x↓k ≥ y↓1 + · · ·+ y↓k for all 1 ≤ k ≤ n

The right hand side in the above equation is evidently the largest possible value of
∑k

i=1 yji

over all sequences 1 ≤ j1 < . . . < jk ≤ n. Thus (3.9) is equivalent to the a priori stronger

condition:

(3.10)

x↓1 + · · ·+ x↓k ≥ yj1 + · · ·+ yjk for all 1 ≤ k ≤ n and for all 1 ≤ j1 < . . . < jk ≤ n

We say that x majorizes y and write x <m y if x <wm y and x1 + . . .+xn = y1 + . . .+ yn.

Observe the following: for real n-tuples x and y with x <m y, given any k, 1 ≤ k ≤ n,

and any sequence 1 ≤ i1 < . . . < ik ≤ n, we have

(3.11) yi1 + · · ·+ yik ≥ x↓n−k+1 + · · ·+ x↓n

Indeed, let {ik+1, . . . , in} := {1, . . . , n} \ {i1, . . . , ik}. Then, on the one hand, when

yik+1
+ · · ·+ yin is added to the left hand side and x↓1 + · · ·+ x↓n−k to the right hand side

the resulting quantities are equal, and, on the other, yik+1
+ · · ·+ yin ≤ y↓1 + · · ·+ y↓n−k ≤
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x↓1 + · · · x↓n−k.

3.1.5 Majorization and weak interlacing

Let λ : λ1 ≥ . . . ≥ λn be a non-decreasing sequence of real numbers and µ = (µ1, . . . , µn) ∈

Rn such that λ <m µ. Then λ≷w(µ1, . . . , µn−1). (Proof: (3.10) and (3.11).)

3.1.6 Partitions

A partition consists of a finite sequence of non-negative integers, possibly with repetitions,

arranged in non-increasing order. Example: 6, 4, 4, 3, 1, 0, 0. The non-zero elements of

the sequence are called the parts of the partition. If the sum of the parts of a partition

π : π1 ≥ π2 ≥ . . . is n, the partition is said to be a partition of n, and we write |π| = n.

The example above is a partition of 18 with 5 parts.

The trailing zeros in a partition are non-significant. Thus 6, 4, 3, 3, 1, 0, 0 is the

same partition as 6, 4, 3, 3, 1. We allow the empty sequence to be a partition: it is the

only partition of 0.

Each partition has an associated shape. Given a partition π : π1 ≥ π2 ≥ . . . of n, its

associated shape consists of a grid of n squares, all of the same size, arranged top- and

left-justified, with π1 squares in the first row, π2 squares in the second, and so on (the

rows are counted from the top downwards). The shape corresponding to the partition 6,

4, 3, 3, 1, 0, 0, for example, is this:

(3.12)
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We say that a partition fits into a rectangle (a, b), where a and b are non-negative

integers, if the number of parts is at most a and the largest part (if it exists) is at most

b. The terminology should make sense if we think of the shape associated to a partition.

The partition whose shape is displayed above fits into the rectangle (a, b) if and only if

a ≥ 5 and b ≥ 6.

Complementary partitions

Let π : π1 ≥ π2 ≥ . . . be a partition that fits into the rectangle (a, b)—in other words,

b ≥ π1 and πj = 0 for j > a. The complement to π in the rectangle (a, b) is the partition

πc defined as follows: πc
j = b− πa+1−j for 1 ≤ j ≤ a and πc

j = 0 for j > a. For example,

the complement of the partition 6, 4, 3, 3, 1 in the rectangle (7, 6) is 6, 6, 5, 3, 3, 2.

3.1.7 Colored partitions

Let r be a positive integer. An r-colored partition or a partition into r colors is a partition

in which each part is assigned an integer between 1 and r. The number assigned to a

part is its color . We may think of an r-colored partition as just an ordered r-tuple of

(π1, . . . , πr) of partitions: the partition πj consists of all parts of color j of the r-colored

partition. An r-colored partition of n is an r-colored partition with |π1|+ · · ·+ |πr| = n.

3.1.8 Partition overlaid patterns

A partition overlaid pattern (POP for short) consists of an integral GT pattern λ1, . . . ,

λn, and, for every ordered pair (j, i) of integers with 1 ≤ j < n and 1 ≤ i ≤ j, a partition

π(j)i that fits into the rectangle (λj+1
i − λji , λ

j
i − λ

j+1
i+1 ). Example: a partition overlay on

the pattern displayed in (3.4) consists of three partitions π(2)1, π(2)2, and π(1)1 that fit

respectively into the rectangles (0, 2), (1, 1), and (2, 1).
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POPs parametrize bases of local Weyl modules of current algebras of type A (as proved

by Chari-Loktev [5] and recalled in §3.3.6) just as integral GT patterns parametrize bases

of irreducible representations of simple Lie algebras of type A (as proved by Gelfand-

Tsetlin and is well known).

The bounding sequence, (triangular) area, trapezoidal area, weight , etc. of a POP are

just the corresponding notions attached to the underlying pattern. The number of boxes

in a POP P is the sum
∑

(j,i) |π(j)i| of the number of boxes in each of its constituent

partitions. It is denoted by |P|. Among POPs with a fixed underlying pattern, the

maximum possible value of the number of boxes is evidently the (triangular) area of the

pattern. The depth of a POP P is defined by depthP := �(P) − |P|, where P is the

underlying pattern of P.

3.1.9 Weights identified as tuples

Let g = slr+1 be the simple Lie algebra consisting of (r + 1) × (r + 1) complex trace-

less matrices (r ≥ 1). Let h and b be respectively the diagonal and upper triangular

subalgebras of g. Linear functionals on h are called weights .

Let εi, 1 ≤ i ≤ r + 1, be the weight that maps a diagonal matrix to its entry in

position (i, i). Observe that ε1 + · · · + εr+1 = 0. Every weight may be expressed as

a1ε1 + · · · + ar+1εr+1, with a ∈ Cr+1. Two elements in Cr+1 are said to be equivalent

if their difference is a multiple of 1 := (1, . . . , 1), so that weights are identified with

equivalence classes in Cr+1.

We will use this identification often tacitly. For a weight η, we denote by η an element

in the corresponding equivalence class in Cr+1. Depending upon the context, this η may

denote a particular representative: we will see two instances of this below.

A weight is integral if there exists a tuple a in Cr+1 consisting of integers that corre-

sponds to it; it is dominant if a1 ≥ . . . ≥ ar+1. These notions correspond to the respective
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notions in the representation theory of g. Dominant integral weights are thus in bijection

with integer tuples of the form λ1 ≥ . . . ≥ λr ≥ λr+1 = 0. As an example, consider the

highest root θ of g. The corresponding element of Cr+1 is θ = (2, 1, . . . , 1, 0).

A weight µ is a weight of the irreducible representation V (λ) with highest weight a

dominant integral weight λ if and only if µ 4m λ, where the tuple µ = (µ1, . . . , µr+1)

representing µ is so chosen that λ1+· · ·+λr+1 = µ1+· · ·+µr+1. (See also Proposition 3.2.1

and Theorem 3.2.2 in §3.2 below.)

Fix an invariant form ( | ) on h? such that for every root α we have (α|α) = 2.

Given λ ∈ h?, how do we compute (λ|λ) in terms of the corresponding tuple λ? We have

(λ|λ) = ||λ||2 := λ2
1 + · · · + λ2

r+1 provided that λ is so chosen that λ1 + · · · + λr+1 = 0.

We will have occasion to compute (λ|λ)− (µ|µ) for λ, µ in h?. We observe that it equals

||λ||2 − ||µ||2 provided that λ and µ satisfy λ1 + · · ·+ λr+1 = µ1 + · · ·+ µr+1.

3.2 On area maximizing Gelfand-Tsetlin patterns

This section is elementary and combinatorial. Its purpose is to prove Theorem 3.2.2

below. The representation theoretic relevance of the theorem is discussed in §3.3. For

an n-tuple x := (x1, . . . , xn) of real numbers, the norm is defined as usual: ||x|| :=√
x2

1 + · · ·+ x2
n.

We begin with a proposition which should be well known. We state and prove it in

order to put things in context and in the interest of completeness.

Proposition 3.2.1. Let λ1, . . . , λn be a GT pattern with weight µ. Then λn <m µ.

Proof. Proceed by induction on n. In case n = 1, we have µ = λ1, and the result is

obvious.

Now suppose that n ≥ 2. By the induction hypothesis, λn−1 <m µn−1, where µn−1:
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µ1, . . . , µn−1 is the weight of λ1, . . . , λn−1. Since λn−1 = λn−1↓, this means the following:

for any k, 1 ≤ k ≤ n− 1, and any sequence 1 ≤ i1 < . . . < ik ≤ n− 1, we have:

(3.13) λn−1
1 + λn−1

2 + · · ·+ λn−1
k ≥ µi1 + · · ·+ µik

Since λn = λn↓, in order to show λn <m µ, we need to prove the following two sets of

inequalities: for any k, 0 ≤ k ≤ n− 1, and any sequence 1 ≤ i1 < . . . < ik ≤ n− 1:

(3.14) λn1 + λn2 + · · ·+ λnk ≥ µi1 + · · ·+ µik

(3.15) λn1 + λn2 + · · ·+ λnk+1 ≥ µi1 + · · ·+ µik + µn

Equation (3.14) follows by combining (3.13) with the inequalities λn1 ≥ λn−1
1 , . . . , λnk ≥

λn−1
k (which hold since λn−1 ≷ λn). As to (3.15), since µn = (λn1 + · · · + λnn) − (λn−1

1 +

· · ·+ λn−1
n−1), it is equivalent to:

(3.16) λn−1
1 +λn−1

2 + · · ·+λn−1
k + (λn−1

k+1−λ
n
k+2)+ · · ·+(λn−1

n−1−λnn) ≥ µi1 + · · ·+µik

But each of (λn−1
k+1 − λnk+2), . . . , (λn−1

n−1 − λnn) is non-negative (because λn−1 ≷ λn), and

thus (3.16) too follows from (3.13).

Here is the main result of this section:

Theorem 3.2.2. Let λ = λ1 ≥ . . . ≥ λn be a non-increasing sequence of real numbers

and µ = (µ1, . . . , µn) an element of Rn that is majorized by λ: λ <m µ. Then there is a

unique GT pattern P : λ1, . . . , λn with bounding sequence λn = λ, weight µ, and satisfying
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the following:

For any j, 1 ≤ j ≤ n, its jth row λj majorizes the jth row κj of any pattern with

bounding sequence λ and weight µ: λj <m κj.

(3.17)

This unique pattern P has the following properties:

(A) It is integral if λ and µ are integral.

(B) Its triangular area equals 1
2
(||λ||2−||µ||2), which is strictly more than the area of any

other pattern with bounding sequence λ and weight µ.

For the proof of the theorem, which appears in §3.2.1 below, we now make preparations.

Proposition 3.2.3. Let λ and λ′ be sequences of lengths n and n − 1 respectively that

are interlaced: λ ≷ λ′. Then the trapezoidal area �(λ, λ′) is given by

(3.18) 2�(λ, λ′) = ||λ||2 − ||λ′||2 − ((λ1 + · · ·+ λn)− (λ′1 + · · ·+ λ′n−1))2

Proof. Proceed by induction on n. In the case n = 1, both sides vanish (when correctly

interpreted). Now suppose that n ≥ 2. Let κ and κ′ be the sequences of length n− 1 and

n − 2 obtained by deleting respectively λn from λ and λ′n−1 from λ′: the sequence κ′ is

empty in case n = 2. Also, let

(3.19) T (n) := (λn +
n−1∑
j=1

(λj − λ′j)) T (n− 1) := (λn−1 +
n−2∑
j=1

(λj − λ′j))

so that the last term in the desired equation (3.18) is −T (n)2.

Then, firstly, by induction:

(3.20) 2�(κ, κ′) = ||κ||2 − ||κ′||2 − T (n− 1)2
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Secondly, as is easily seen:

�(λ, λ′) = �(κ, κ′) + (λ′n−1 − λn)
n−1∑
j=1

(λj − λ′j)(3.21)

= �(κ, κ′) + (λ′n−1 − λn)(T (n− 1)− λ′n−1)(3.22)

Finally, since T (n) = T (n− 1)− (λ′n−1 − λn):

(3.23) T (n)2 = T (n− 1)2 + (λ′n−1 − λn)2 − 2(λ′n−1 − λn)T (n− 1)

Adding twice of (3.22) with (3.20) and (3.23), we get

2�(λ, λ′) + T (n)2 = ||κ||2 − ||κ′||2 − (λ′n−1 − λn)(λ′n−1 + λn)

= (||κ||2 + λ2
n)− (||κ′||2 + λ′n−1

2
)

= ||λ||2 − ||λ′||2

and the proposition is proved.

Corollary 3.2.4. The trapezoidal area of a pattern P: λ1, λ2, . . . , λn is given by

(3.24) �(P) =
1

2
(||λ||2 − ||µ||2)

where λ = λn is the bounding sequence and µ the weight of P.

Proof. By the proposition:

(3.25) �(λj, λj−1) =
1

2
(||λj||2 − ||λj−1||2 − µ2

j) for j = n, n− 1, . . . , 1

Adding these n equations gives us the desired result.

Lemma 3.2.5. Let λn : λn1 ≥ . . . ≥ λnn and λn−1 : λn−1
1 ≥ . . . ≥ λn−1

n−1 be non-increasing

sequences of real numbers that are interlaced: λn ≷ λn−1. Suppose that
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1. λn is integral;

2. λn−1
1 + · · ·+ λn−1

n−1 is an integer; and

3. �(λn, λn−1) = 4(λn, λn−1).

Then λn−1 is integral.

Proof. Let k be the largest integer, 1 ≤ k ≤ n − 1, such that λn−1
j = λnj for all j < k.

From (3) it follows that λn−1
j = λnj+1 for all j > k. From (1) it follows that λn−1

j is an

integer for j 6= k. From (2) it follows that λn−1
k is also an integer.

Corollary 3.2.6. Let λ : λ1 ≥ . . . ≥ λn be a non-increasing sequence of integers. Let µ

be in Zn such that λ <m µ. Let P be a GT pattern with bounding sequence λ, weight µ,

and triangular area 1
2
(||λ||2 − ||µ||2). Then P is integral.

Proof. Let λj denote the jth row of P . By Corollary 3.2.4, �(P) = 4(P), so�(λj, λj−1) =

4(λj, λj−1) for all j, n ≥ j ≥ 1. Since µj = (λj1 + · · · + λjj) − (λj−1
1 + · · · + λj−1

j−1),

it follows (by an easy decreasing induction) that λj1 + · · · + λjj is an integer for all j,

n ≥ j ≥ 1. By applying Lemma 3.2.5 repeatedly, we see successively that λn−1, . . . , λ1

are all integral.

3.2.1 Proof of Theorem 3.2.2

Lemma 3.2.7. Let λn : λn1 ≥ . . . ≥ λnn be a non-increasing sequence of length n of real

numbers and µ = (µ1, . . . , µn) an element of Rn such that λn <m µ. Then there exists a

unique non-increasing sequence λn−1 : λn−1
1 ≥ . . . ≥ λn−1

n−1 of length n− 1 of real numbers

such that the following hold:

1. λn−1 ≷ λn

2. λn−1
1 + · · ·+ λn−1

n−1 = µ1 + · · ·+ µn−1
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3. Let κn : κn1 ≥ . . . ≥ κnn be a non-increasing sequence of length n of real numbers and

κn−1 = (κn−1
1 , . . . , κn−1

n−1) an element of Rn−1 such that:

(i) λn <m κn, (ii) κn≷wκ
n−1, and

(iii) κn−1
1 + · · ·+ κn−1

n−1 = µ1 + · · ·+ µn−1.

Then λn−1 <m κn−1.

Moreover, the unique sequence λn−1 has the following properties:

(a) λn−1 is integral if λn and µ are integral.

(b) �(λn, λn−1) = 4(λn, λn−1).

(c) Let κn−1 : κn−1
1 ≥ . . . ≥ κn−1

n−1 be a non-increasing sequence of real numbers such that:

(i’) κn−1 ≷ λn, (ii’) κn−1
1 + · · ·+ κn−1

n−1 = µ1 + · · ·+ µn−1, and

(iii’) λn−1 6= κn−1.

Then �(λn, κn−1)  4(λn, κn−1).

Proof. The uniqueness of λn−1 is easy to see. Indeed, if ηn−1 be a another sequence

with properties (1)–(3), then by applying (3) with κn = λ and κn−1 = ηn−1, we see that

λn−1 <m ηn−1. By the same argument with the roles of ηn−1 and λn−1 switched, we see

that ηn−1 <m λn−1. It follows from the definition of <m that it is a partial order, so we

conclude ηn−1 = λn−1.

We now turn to the existence of λn−1. Consider the auxiliary non-decreasing sequence

of terms λ̃
n

: λ̃n1 ≤ . . . ≤ λ̃nn, where

(3.26) λ̃nk := (λn1 + · · ·+ λnn) − λnk
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Since λn↓ = λn, it follows from equations (3.11) and (3.10) that

(3.27) λ̃n1 ≤ µ1 + · · ·+ µn−1 ≤ λ̃nn

Fix a j0, 1 ≤ j0 ≤ n− 1, such that

(3.28) λ̃nj0 ≤ µ1 + · · ·+ µn−1 ≤ λ̃nj0+1

In fact, there is a unique such j0 except when µ1 + · · ·+ µn−1 = λ̃nj for some j.

Set

(3.29) λn−1
j :=

 λnj for j < j0

λnj+1 for j > j0

(3.30) λn−1
j0

:= (µ1 + · · ·+ µn−1)− (λn1 + · · ·+ λnj0−1 + λnj0+2 + · · ·+ λnn)

From (3.30) and (3.28), we see that

(3.31)

λnj0−λ
n−1
j0

= λ̃nj0+1− (µ1 + · · ·+µn−1) ≥ 0 & λn−1
j0
−λnj0+1 = (µ1 + · · ·+µn−1)− λ̃nj0 ≥ 0

To observe that λn−1 is a non-decreasing sequence, first note that, from (3.29) and the

fact that λn is non-decreasing, we have:

(3.32) λn−1
1 ≥ . . . ≥ λn−1

j0−1 λn−1
j0+1 ≥ . . . ≥ λn−1

n−1

And, combining (3.29), (3.31), and the non-decreasing property of λn, we have:

(3.33) λn−1
j0−1 = λnj0−1 ≥ λnj0 ≥ λn−1

j0
λn−1
j0
≥ λnj0+1 ≥ λnj0+2 = λn−1

j0+1
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Item (1) follows from (3.29) and (3.31), item (2) from (3.29) and (3.30). As to item

(3), we must show that for any j, 1 ≤ j ≤ n−1, and any choice 1 ≤ i1 < . . . < ij ≤ n−1,

the following holds:

(3.34) λn−1
1 + · · ·+ λn−1

j ≥ κn−1
i1

+ · · ·+ κn−1
ij

For j < j0, we have, by successively using (3.29), (i), and (ii):

(3.35) λn−1
1 + · · ·+λn−1

j = λn1 + · · ·+λnj ≥ κn1 + · · ·+κnj ≥ κn−1
i1

+ · · ·+κn−1
ij

For j ≥ j0, substituting for λn−1
i from (3.29) and (3.30), the left hand side of (3.34)

becomes:

λn−1
1 + · · ·+ λn−1

j = (µ1 + · · ·+ µn−1)− (λnj+2 + · · ·+ λnn)

Using (iii), we get

λn−1
1 + · · ·+ λn−1

j = (κn−1
1 + · · ·+ κn−1

n−1)− (λnj+2 + · · ·+ λnn)

Letting {ij+1, . . . , in−1} denote the complement {1, . . . , n−1}\{i1, . . . , ij}, the right hand

side of the last equation may be rewritten as

(κn−1
i1

+ · · ·+ κn−1
ij

) +
(

(κn−1
ij+1

+ · · ·+ κn−1
in−1

)− (λnj+2 + · · ·+ λnn)
)

The second parenthetical term here is non-negative, for by (ii) and (i)

κn−1
ij+1

+ · · ·+ κn−1
in−1

≥ κnj+2 + · · ·+ κnn ≥ λnj+2 + · · ·+ λnn

and the proof of item (3) is complete.

Assertion (a) is immediate from the definitions (3.29) and (3.30) of λn−1. As to
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(b), it is clear from definitions (3.5) and (3.6) that it holds, since either λnj = λn−1
j or

λn−1
j = λnj+1 for every j 6= j0. Towards the proof of (c), let ` and ρ be respectively the

smallest and largest j, 1 ≤ j ≤ n − 1, such that λn−1
j 6= κn−1

j . Taking κn to be λn in

(3), we obtain λn−1 <m κn−1, which implies that λn−1
` > κn−1

` and κn−1
ρ > λn−1

ρ . In

particular, ` < ρ. From (1), we have λn` ≥ λn−1
` > κn−1

` and κn−1
ρ > λn−1

ρ ≥ λnρ+1, so that

(λn` − κn−1
` )(κn−1

ρ − λnρ+1) is a non-trivial contribution to �(λn, κn−1)−4(λn, κn−1).

Corollary 3.2.8. With hypothesis and notation as in the lemma, λn−1 <m (µ1, . . . , µn−1).

Proof. Put κn = λn and κn−1 = (µ1, . . . , µn−1) in item (3). Hypothesis (ii) holds by the

observation in §3.1.5.

Proof of Theorem 3.2.2

The uniqueness of the pattern P being obvious, it is enough to prove its existence. Apply

Lemma 3.2.7 to the given pair λ and µ (by taking λn in the statement of the lemma to be

λ). The λn−1 we obtain as a result is such that λn−1 <m (µ1, . . . , µn−1) (Corollary 3.2.8) so

we can apply the lemma again, this time to the pair λn−1 and (µ1, . . . , µn−1). Continuing

thus, we obtain, by items (1) and (2) of the lemma, a GT pattern—let us denote it P—

with bounding sequence λ and weight µ.

We claim that the pattern P satisfies (3.17). To prove this, proceed by reverse in-

duction on j. For j = n, we have λn = κn = λ, so the statement is evident. For the

induction step, suppose we have proved that λj <m κj. Note that λj−1 is constructed

by applying Lemma 3.2.7 with λj in place of λn (in the notation of the lemma). Asser-

tion (3.17) follows from item (3) of the lemma, by substituting respectively κj, κj−1, and

(µ1, . . . , µj−1) for κn, κn−1, and (µ1, . . . , µn−1).

The pattern P is integral if λ and µ are so (Lemma 3.2.7 (a)), so (A) is clear.

Finally we prove (B). Let P ′ be a pattern distinct from P with bounding sequence λ
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and weight µ. By Corollary 3.2.4, �(P) = �(P ′) = (||λ||2−||µ||2)/2. By Lemma 3.2.7 (b),

�(P) = 4(P). Let j be largest, 1 ≤ j ≤ n, such that the jth row κj of P ′ is distinct

from the jth row of P . Then j < n and, by Lemma 3.2.7 (c), �(κj+1, κj)  4(κj+1, κj),

so �(P ′)  4(P ′), and (B) is proved. 2

3.3 Relevance of the main theorem to the theory of

Local Weyl modules

In this section we discuss the relevance of our main theorem (Theorem 3.2.2) of §3.2 to

representation theory. We do this by means of giving a representation theoretic proof

of a version of the theorem: see §3.3.7 below. The proof is based on the theory of local

Weyl modules for current algebras. We first recall the required results from Chapter 1.

3.3.1 The current algebra g[t] and the affine algebra ĝ

Let g be a complex simple finite dimensional Lie algebra. The corresponding current

algebra, denoted g[t], is merely the extension of scalars to the polynomial ring C[t] of g.

There is a natural grading on g[t] given by the degree in t: thus X⊗ ts has degree s (here

X is in g and s is a non-negative integer). There is an induced grading by non-negative

integers on the universal enveloping algebra U(g[t]). We can talk about graded modules

(graded by integers) of g[t].

Let ĝ = g⊗C[t, t−1]⊕Cc⊕Cd be the affine algebra corresponding to g. The current

algebra g[t] is evidently a subalgebra of ĝ.
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3.3.2 Fixing notation

Fix a Cartan subalgebra h of g and a Borel subalgebra b containing h of g. Let g =

n− ⊕ h⊕ n+ be the triangular decomposition of g with b = h⊕ n+. Let ( | ) denote the

invariant form on h? such that (α|α) = 2 for all long roots α.

Put ĥ := h⊕Cc⊕Cd and b̂ := g⊗ tC[t]⊕ b⊕Cc⊕Cd. Denote by Λ0 and δ elements

of ĥ? such that 〈Λ0, c〉 = 〈δ, d〉 = 1 and 〈Λ0, h〉 = 〈Λ0, d〉 = 〈δ, h〉 = 〈δ, c〉 = 0. Extend

( | ) to ĥ? by setting (h?|Λ0) = (h?|δ) = (Λ0|Λ0) = (δ|δ) = 0, (Λ0|δ) = 1, where h? is

identified as the subspace of ĥ? that kills c and d.

Fix a dominant integral weight λ of g (with respect to h and b).

3.3.3 The local Weyl module W (λ)

An element wλ of a g[t]-module is of highest weight λ if:

(3.36) (n+ ⊗ C[t])wλ = 0, (h⊗ tC[t])wλ = 0, H wλ = 〈λ,H〉wλ for H ∈ h

The local Weyl module W (λ) corresponding to λ is the cyclic g[t]-module generated by

an element wλ of highest weight λ (in other words, subject to the relations (3.36)) and

further satisfying:

(3.37) g
〈λ,α∨〉+1
−α wλ = 0 for every simple root α of g

where α∨ the co-root corresponding to α and g−α is the root space in g corresponding

to −α. It is evident that W (λ) is graded (since the relations in (3.36) and (3.37) are all

homogeneous). We let the generator wλ have grade 0, so that W (λ) = U(n−⊗C[t])wλ is

graded by the non-negative integers. It is well known—the proofs are analogous to those

in [7, §2]—that W (λ) is finite dimensional and moreover that it is maximal among finite
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dimensional modules generated by an element of highest weight λ (which means, more

precisely, that for any finite dimensional cyclic g[t]-module W generated by an element w

of highest weight λ, there exists a unique g[t]-module map from W (λ) onto W mapping u

to w).

3.3.4 Local Weyl modules as Demazure modules

Let w0 be the longest element of the Weyl group W of g. Let Λ be the dominant integral

weight of ĝ and w an element of the affine Weyl group such that

(3.38) wΛ = tw0λΛ0 (w in the affine Weyl group, Λ dominant)

where (see [16, (6.5.2)]):

(3.39) tγζ := ζ + 〈ζ, c〉γ − ((ζ|γ) +
1

2
(γ|γ)〈ζ, c〉)δ for γ in h? and ζ in ĥ?

From the above two equations, we obtain that Λ has level 1, or, in other words 〈Λ, c〉 = 1:

(3.40) 〈Λ, c〉 = (Λ|ν(c)) = (Λ|δ) = (wΛ|wδ) = (wΛ|δ) = (tw0λΛ0|δ) = (Λ0|δ) = 1

where ν : ĥ → ĥ∗ is the isomorphism as in [16, §2.1]: (wΛ|wδ) = (wΛ|δ) because of the

invariance of the form under the action of the affine Weyl group and the fact that δ is

fixed by the affine Weyl group; the penultimate equality holds because of (3.39).

Let L(Λ) be the integrable ĝ-module with highest weight Λ. With w as above, denote

by Vw(Λ) the Demazure submodule U(b̂)(L(Λ)wΛ) of L(Λ): here L(Λ)wΛ denotes the

(one-dimensional) ĥ-weight space of L(Λ) of weight wΛ.

We recall the identification of local Weyl modules as Demazure modules (see Theorem

1.3.4):
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Theorem 3.3.1. ( [5, 1.5.1 Corollary] for type A and [10, Theorem 7] in general) Let g be

simply laced and λ be a dominant integral weight of g. With w and Λ as in (3.38), let v be

a non-zero element of the one-dimensional ĥ-weight space of the Demazure module Vw(Λ)

of weight w0wΛ = tλw0Λ0 = tλΛ0. Then v satisfies the relations (3.36) and therefore,

since Vw(Λ) is finite dimensional, there exists a unique g[t]-map from the local Weyl

module W (λ) onto Vw(Λ) mapping the generator to v. This map is an isomorphism.

3.3.5 The key proposition

The following lemma will be useful in proving the main proposition of this section. It

may be well known, we give a proof here for completeness.

Lemma 3.3.2. Assume that g is simply laced and λ be a dominant integral weight of

g. Let Λ ∈ P̂+ is of level 1 such that the local Weyl module W (λ) is isomorphic to a

g[t]-submodule of L(Λ). Let µ ∈ ĥ∗ is a weight of W (λ). If µ+ δ is not a weight of W (λ),

then it is also not a weight of L(Λ).

Proof. We know that any weight of L(Λ) is of the form tγ(Λ) − dδ, where γ ∈ Q and

d ∈ Z≥0 [16, §12.6]. Therefore, we take µ = tγ(Λ) − dδ, for some γ ∈ Q and d ∈ Z≥0.

Let vtγ(Λ) be a non-zero element of L(Λ) of weight tγ(Λ). Let vµ be a non-zero element

of W (λ) of weight µ. Consider the Lie subalgebra a = ⊕m∈Z (h ⊗ tm) of ĝ, and also

its representation V = ⊕n∈Z L(Λ)tγ(Λ)−nδ. It is well-known that V is an irreducible a-

module [16, Proposition 9.13]. This gives that V is the cyclic a-module generated by

vtγ(Λ). Since vµ ∈ V and (h⊗ tm) vtγ(Λ) = 0 ∀ m ∈ N, we get

vµ = (h1 ⊗ t−m1) · · · (hp ⊗ t−mp) vtγ(Λ),

for some hi ∈ h and mi ∈ Z≥0. Thus, we have

(hp ⊗ tmp) · · · (h1 ⊗ tm1)vµ = (hp ⊗ tmp) · · · (h1 ⊗ tm1)(h1 ⊗ t−m1) · · · (hp ⊗ t−mp) vtγ(Λ),
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which is a non-zero scalar multiple of vtγ(Λ). Hence, we get that vtγ(Λ) ∈ W (λ), i.e., tγ(Λ)

is a weight of W (λ). Suppose µ+ δ is not a weight of W (λ), then we get that µ = tγ(Λ)

and therefore µ+ δ is not a weight of L(Λ). This completes the proof.

We now state and prove the main proposition of this section. Observe that the

g-weights of the local Weyl module W (λ) are precisely the weights of the irreducible

g-module V (λ) with highest weight λ: indeed this follows from the finite dimensionality

of W (λ) and the fact that W (λ) = U(n−[t])w, where w is the generator.

Proposition 3.3.3. Let λ be a dominant integral weights of g and µ a weight of the

irreducible g-module V (λ). Let M be the maximal integer such that the M th-graded

piece W (λ)µ[M ] of the µ-weight space of the local Weyl module W (λ) is non-zero. Then,

under the assumption that g is simple of simply laced type, we have:

1. M = 1
2
· ((λ|λ)− (µ|µ))

2. W (λ)µ[M ] has dimension 1

Proof. Fix notation as in §3.3.4. Identify W (λ) with the Demazure module Vw(Λ) as

explained there. Since W (λ) = U(n−[t]) · w and the generator w is identified with an

element of Vw(Λ)tλΛ0 , the ĥ-weights of W (λ) are of the form

(3.41) tλΛ0 − η + dδ

where η is a positive integral linear combination of the simple roots of g, and d is a

non-negative integer. From (3.39) we have:

(3.42) tλΛ0 = Λ0 + λ− 1

2
(λ|λ)δ
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so we may rewrite (3.41) as:

(3.43) λ− η + Λ0 −
1

2
(λ|λ)δ + dδ

Observe that this weight acts on h as λ− η.

Let η be such that λ− η = µ. Then by the hypothesis of maximality of M , we have:

• κ := tλΛ0 + (µ− λ) +Mδ is a weight of W (λ)

• but κ1 := tλΛ0 + (µ− λ) +M ′δ is not (a weight of W (λ)) for M ′ > M .

Then κ1 is not a weight of L(Λ) either (see Lemma 3.3.2). Thus κ is a maximal weight

of L(Λ) in the sense of [16, §12.6]. Since Λ is of level one (3.40), there exists, by [16,

Lemma 12.6], an element γ of the root lattice of g such that κ = tγΛ. In particular, κ

is a Weyl group translate of the highest weight Λ of L(Λ), and so the multiplicity of the

κ-weight space in the Demazure module Vw(Λ) (and so also in W (λ)) cannot exceed 1.

This proves (2).

We now prove (1), by equating two expressions for κ. On the one hand, by the

definition of κ and (3.42), we get

(3.44) κ = Λ0 + µ− 1

2
(λ|λ)δ +Mδ

On the other hand we have κ = tγΛ. Since Λ is of level 1, we obtain using [16, (6.5.3)]

that

(3.45) κ = tγΛ = Λ0 + (Λ + γ) +
1

2
((Λ|Λ)− (Λ + γ|Λ + γ))δ

where Λ denotes the restriction to h of Λ. We have (Λ|Λ) = (wΛ|wΛ) = (tw0λΛ0|tw0λΛ0) =

0, where the last equality follows from (3.42).
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Equating the h? components on the right hand sides of (3.44) and (3.45), we get

µ = Λ + γ; now equating the coefficients of δ, we get (1).

We now derive a consequence of the proposition above (Corollary 3.3.5) by combining

it with a result of Kodera-Naoi [18], which we first recall. While Corollary 3.3.5 may be

well known to experts, including a proof of it here is not out of place, particularly since

we use it crucially later in the later sections. For a dominant integral weight ν of g, let bν

denote the minimum value of (χ|χ) for a weight χ of the irreducible representation V (ν).

It is clear from item (1) of the proposition that the maximum grade in which the local

Weyl module W (ν) lives is ((ν|ν)− bν)/2.

Recall that the socle of a module is by definition the largest semisimple submodule.

Theorem 3.3.4 ( [18, §3]). For a dominant integral weight ν of a simply laced simple Lie

algebra g, the socle (as a g[t]-module) of the local Weyl module W (ν) is its homogeneous

piece of largest possible grade, namely ((ν|ν)− bν)/2. Moreover, the socle is simple.

Corollary 3.3.5. Let g be a simple algebra of simply laced type. Let λ and µ be dominant

integral weights of g such that µ is a weight of the irreducible representation V (λ) of g

with highest weight λ. Then the space Homg[t](W (µ),W (λ)) of g[t]-homomorphisms from

the local Weyl module W (µ) to the local Weyl module W (λ) is one dimensional. Any

non-zero element of this space is an injection.

Proof. Let ϕ be an element of Homg[t](W (µ),W (λ)). Write ϕwµ = v0 +v1 + · · · , where wµ

is the generator ofW (µ), and vj are homogeneous elements of weight µ and pairwise differ-

ent grades, with v0 being of maximum possible grade M := ((λ|λ)− (µ|µ))/2. Then each

vj is a highest weight vector in the sense of (3.36), so there exists a g[t]-homomorphism

ϕj : W (µ) → W (λ) defined by ϕ(wµ) = vj. The image of ϕj is homogeneous and the

maximum possible grade in it is at most M + ((µ|µ) − bµ))/2 = ((λ|λ) − bλ)/2 (since

bµ = bλ from the hypothesis). Thus the image of ϕj, for j > 0, does not meet the socle of

W (λ) (by the theorem) and hence is zero. This proves that the vj are all zero (for j > 0).
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Thus ϕwµ = v0. By (2) of Proposition 3.3.3, the M th graded piece W (λ)µ[M ] of

the weight space W (λ)µ is 1-dimensional. This proves that Homg[t](W (µ),W (λ)) has

dimension at most 1.

On the other hand, it is clear that h⊗C[t] kills W (λ)µ[M ] since M is maximal. Since

µ is dominant, (µ|α) ≥ 0 for every positive root α, so that (µ + α|µ + α) > (µ|µ). By

item (1) of the proposition, W (λ)µ+α[M ] = 0, so n+ ⊗ C[t] kills W (λ)µ[M ]. Thus the

space W (λ)µ[M ] consists of highest weight vectors of weight µ in the sense of (3.36). We

thus obtain dim Homg[t](W (µ),W (λ)) = dimW (λ)µ[M ] = 1.

Let ϕ 6= 0 be a g[t]-homomorphism from W (µ) to W (λ). To show that it is injective,

it is enough to show that its restriction ϕ′ to the socle of W (µ) is injective (because every

non-zero submodule meets the socle). Since ϕ is homogeneous of degree ((λ|λ)−(µ|µ))/2

(that is, it shifts grades up by that amount), and the socles are the pieces of highest

grade (by the theorem), it follows that Imϕ′ = Imϕ ∩ socleW (λ). But Imϕ meets the

socle (since ϕ 6= 0), so it follows that Imϕ′ 6= 0, so ϕ′ 6= 0, and so ϕ′ is injective (by the

simplicity of the socle of W (µ)).

3.3.6 The Chari-Loktev bases for local Weyl modules in type A

We now recall, in the language of partition overlaid patterns or POPs (see §3.1.8), the

result about bases of local Weyl modules in type A proved by Chari-Loktev [5] (see

§1.4.3).

We tacitly use the correspondence as in §3.1.9 between weights and tuples. Fix a

dominant integral weight λ with corresponding tuple λ : λ1 ≥ . . . ≥ λr ≥ λr+1 = 0.

The local Weyl module W (λ) has a homogeneous weight basis indexed by POPs with

bounding sequence λ. The h-weight of a basis element indexed by a POP equals the

weight of the pattern underlying the POP; the grade of the basis element equals the

number of boxes in the POP. Thus we obtain a formula for the graded character of W (λ)
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(see §1.3.2):

(3.46) chqW (λ) =
∑
λ

eweight(P) q|P|

where the subscript λ in the summation indicates that the sum is over all POPs with

bounding sequence λ.

Chari-Loktev (CL) monomials and basis elements

Let x−ij, for 1 ≤ i ≤ j ≤ r, denote the (r+1)× (r+1) complex matrix all of whose entries

are zero except the one in position (j + 1, i) which is 1. Let a, b be non-negative integers

and π a partition that fits into the rectangle (a, b). For k an integer with 1 ≤ k ≤ b,

let m(a, b, π, k) denote the number of parts of π that equal k. Let m(a, b, π, 0) denote

a−
∑b

k=1 m(a, b, π, k). Let x−ij(a, b, π) denote

(x−ij ⊗ 1)(m(a,b,π,0)) · (x−ij ⊗ t1)(m(a,b,π,1)) · · · · · (x−ij ⊗ tb)(m(a,b,π,b)) =
b∏
i=0

(x−ij ⊗ ti)(m(a,b,π,i)),

where X(p) denotes the divided power Xp/p!. The order of factors in the above product

is immaterial since they commute with each other.

Let P be a POP with bounding sequence λ. Let λ1, . . . , λr, λr+1 = λ be the rows

of the underlying pattern of P, and π(j)i, 1 ≤ i ≤ j ≤ r, be the partition overlay. For

1 ≤ j ≤ r, denote by ρjP the monomial

j∏
i=1

x−ij(λ
j+1
i − λji , λ

j
i − λ

j+1
i+1 , π(j)i)

where again the order is immaterial in the product. We finally let

(3.47) ρP := ρ1
P · ρ2

P · · · · · ρr−1
P · ρrP
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where now the order of the factors matters. The monomial (3.47) is called the Chari-

Loktev (or CL) monomial corresponding to P.

Theorem 3.3.6. [5, Theorem 2.1.3] The elements vP := ρPwλ, as P varies over all

POPs with bounding sequence λ, form a basis for the local Weyl module W (λ).

We call vP the Chari-Loktev (or CL) basis element corresponding to P.

3.3.7 Representation theoretic proof of Theorem 3.2.2

We are now ready to give a representation theoretic proof of the following version of our

main theorem (Theorem 3.2.2):

Let λ : λ1 ≥ . . . ≥ λn be a non-increasing sequence of integers. Let µ ∈

Zn such that λ <m µ. Then there is a unique pattern (with real entries)

with bounding sequence λ, weight µ, and (triangular) area 1
2
(||λ||2 − ||µ||2).

This pattern is integral. Any other pattern (with real entries) with bounding

sequence λ and weight µ has (triangular) area strictly less than 1
2
(||λ||2−||µ||2).

Subtracting λn from all entries of a pattern sets up an area and integrability preserving

bijection between patterns with bounding sequence λ and weight µ on the one hand and

those with bounding sequence λ1−λn ≥ . . . ≥ λn−1−λn ≥ 0 and weight µ− (λn, . . . , λn)

on the other. Moreover passing from λ and µ to λ1 − λn ≥ . . . λn−1 − λn ≥ 0 and

µ − (λn, . . . , λn) does not affect the hypothesis λ <m µ. We may therefore assume

without loss of generality that λn = 0.

Let M be the maximal (triangular) area attained among all integral patterns with

bounding sequence λ and weight µ. Then by the theorem of Chari-Loktev recalled above

in §3.3.6, it follows that M is the maximal such that W (λ)µ[M ] 6= 0 and moreover that the

dimension of W (λ)µ[M ] equals the number of integral patterns with bounding sequence
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λ, weight µ, and (triangular) area M . It now follows from Proposition 3.3.3 that the

number of such patterns is 1 and that M = 1
2
(||λ||2 − ||µ||2).

Now suppose that we have a pattern with real entries with bounding sequence λ and

weight µ. Then its trapezoidal area is 1
2
(||λ||2−||µ||2) (Corollary 3.2.4). So its triangular

area is at most this number. Moreover, if its triangular area equals this number, then it

is integral (Corollary 3.2.6).
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Chapter 4

A bijection between colored

partitions and POPs

The results of this chapter will appear in [21]. This chapter is entirely combinatorial and

may be read independently of the rest of the thesis. Its goal is Theorem 4.5.2, which gives

a certain bijection between colored partitions of a number and POPs of a certain kind.

Quite apart from any interest this bijection may have in its own right, we use it in the

next section to state the conjectural stability of the Chari-Loktev bases. The stability

property expresses compatibility of the bases with inclusions of local Weyl modules, and

in order to make sense of this there must be in the first place an identification of the

indexing set of the basis of the included module as a subset of the indexing set of the

basis of the ambient module. The combinatorial bijection of this section establishes the

desired identification.

4.1 Breaking up a partition

In this section, we describe a procedure to break up a partition into smaller partitions

depending upon some input. This can be viewed as a generalization of the construction
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of Durfee squares. We first treat the case when the input is a single integer. We then

treat the general case when the input is a non-decreasing sequence of integers.

4.1.1 The case when a single integer is given

First suppose that we are given:

• a partition π : π1 ≥ π2 ≥ . . . , and

• an integer c.

It is convenient to put π0 =∞. Consider the function m 7→ πm + c−m on non-negative

integers. It is decreasing, takes value∞ at 0, is non-negative at c if c is non-negative, and

is negative for large m. Let a be the largest non-negative integer such that πa ≥ a − c.

Note that a ≥ c.

Put b := a − c. Consider the partitions π1 : π1 − b ≥ . . . ≥ πa − b and π2 : πa+1 ≥

πa+2 ≥ . . .. The former has at most a parts; the latter has largest part at most b (since

πa+1 < (a+ 1)− c by choice of a). The last assertion can be stated as follows:

(4.1) πd ≤ b for d > a

It is easily seen that

(4.2) |π| = ab+ |π1|+ |π2|

Consider the association (c, π) 7→ (a, b; π1, π2). Since (c, π) can be recovered from

(a, b; π1, π2), the association is one-to-one. Its image, as c varies over all integers and π

over all partitions, consists of all (a, b; π1, π2) such that a, b are non-negative integers,

π1 is a partition with at most a parts, and π2 is a partition with largest part at most b.
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Figure 4.1 illustrates the procedure just described. Note that the c = 0 case is the

Durfee square construction.
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case when c is positive case when c is negative

Figure 4.1: Illustration of the procedure in §4.1.1

4.1.2 The case when a non-decreasing sequence of integers is

given

Now suppose that we are given, for t ≥ 2 an integer, the following:

• a partition π : π1 ≥ π2 ≥ . . . , and

• a sequence c : c1 ≤ . . . ≤ ct−1 of integers.

As before, it is convenient to set π0 = ∞. For 1 ≤ j ≤ t − 1, let aj be the largest

non-negative integer such that πaj ≥ aj − cj. Since the cj are non-decreasing, it is clear

that the aj are also non-decreasing: a1 ≤ . . . ≤ at−1. Set bj := aj − cj.

Proposition 4.1.1. The bj thus defined are non-increasing: b1 ≥ . . . ≥ bt−1.

Proof. Fix j such that 1 ≤ j ≤ t − 2 (there is nothing to prove in case t = 2). If

aj+1 = aj, then bj+1 = aj+1 − cj+1 = aj − cj+1 ≤ aj − cj = bj. If aj+1 > aj, then, on the
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one hand, πaj+1
≤ bj by (4.1); and, on the other, bj+1 ≤ πaj+1

(by the definitions of aj+1

and bj+1).

We define t partitions π1, π2, . . . , πt as follows. Set a0 = 0, at =∞; b0 =∞, bt = 0; and

for j, 1 ≤ j ≤ t:

(4.3) πj : πaj−1+1 − bj ≥ πaj−1+2 − bj ≥ . . . ≥ πaj − bj

The above equation can be rewritten as follows:

(4.4) πjk−aj−1
:= πk − bj for k such that aj−1 < k ≤ aj

Note that πj fits into the rectangle (aj − aj−1, bj−1 − bj) in the sense of §3.1.6 (since

πaj−1+1 ≤ bj−1 by (4.1)). We have

(4.5) |π| = |π1|+· · ·+|πt|+
t−1∑
j=1

(aj−aj−1)bj = |π1|+· · ·+|πt|+
t−1∑
j=1

aj(bj−bj+1)

Consider the association (c, π) 7→ (a, b; π1, . . . , πt), where a, b refer respectively to

the sequences a1 ≤ . . . ≤ at−1 and b1 ≥ . . . ≥ bt−1. Since (c, π) can be recovered

from (a, b; π1, . . . , πt), the association is one-to-one. Its image, as c varies over all non-

decreasing integer sequences of length t − 1 and π over all partitions, consists of all

(a, b; π1, . . . , πt) such that a, b are non-negative integer sequences of length t − 1 with a

non-decreasing and b non-increasing, and for every j, 1 ≤ j ≤ t, πj is a partition that fits

into the rectangle (aj − aj−1, bj−1 − bj).

The picture in Figure 4.2 describes the procedure just described.

101



@
@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

-�........................................................................................................................................................................................................................................................................................................... -�........................................................................................................................................................................................................................................................................................................... -�........................................................................................................................................................................................................................................................................................................... -�...........................................................................................................................................................................................................................................................................................................

?

6
.......................................................................................................................................................................................................

?

6
.....................................................................................................................................................

?

6
.....................................................................................................................................................

?
6
...................................................................................................

a′3 = 0

a′1

a′2

b′t b′t−1
b′t−2 = 0

b′3 b′2

a′t−2

a′t−1

πt

πt−1

π2

π1c1c2c3

ct−3

ct−2

ct−1 In this instance, c1, c2, c3 are negative,
and ct−3, ct−2, ct−1 are positive

a′j := aj − aj−1 and b′j := bj−1 − bj
so that πj fits into (a′j, b

′
j)

. .
.

πt−2 is empty

π3 is empty

Figure 4.2: Illustration of the procedure in §4.1.2

4.2 Producing nearly interlacing sequences with ap-

proximate partition overlays

Fix an integer s ≥ 1 and an integer sequence η: η1, . . . , ηs+1 with η2 ≥ . . . ≥ ηs. An

integer sequence η′: η′1, . . . , η′s with η′2 ≥ . . . ≥ η′s is said to nearly interlace η if either

s = 1 (in which case no further condition is imposed) or s ≥ 2 and

(4.6) η1 ≥ η′1, η′s ≥ ηs+1, and η′2 ≥ . . . ≥ η′s−1 interlaces η2 ≥ · · · ≥ ηs.
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The following is a pictorial depiction of this definition (where x −→ y means x ≥ y, and

× indicates the absence of any relation):

η′1 η′2 . . . η′s−1 η′s

↗ × ↗ ↘ ↗ ↘ ↗ ↘ × ↘

η1 η2 η3 ηs−1 ηs ηs+1

In case s = 1, the definition imposes no further constraint on η′ and so the pictorial

depiction is:

η′1

× ×

η1 η2

We define the proper trapezoidal area of the nearly interlacing sequences η, η′ as above

by:

(4.7) �prop(η, η′) :=
∑

1≤i<j≤s

(ηi − η′i)(η′j − ηj+1)

Given sequences η, η′ as above that nearly interlace, a sequence π1, . . . , πs of partitions

is said to approximately overlay η, η′, if either s = 1 (in which case no further condition

is imposed) or s ≥ 2 and

(4.8) π1 has at most η1 − η′1 parts, πs has largest part at most η′s − ηs+1, and

for j = 2, . . . , s− 1, the partition πj fits into the rectangle (ηj − η′j, η′j − ηj+1).

Now suppose that we are given:

• a partition π : π1 ≥ π2 ≥ . . . , and

• an integer µ.

Our goal first of all in this section is to associate to the data (µ, π) a nearly interlacing
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sequence with an approximate partition overlay (s and η are fixed once and for all). The

map is denoted by Ξη. We then investigate the nature of Ξη (Lemma 4.2.2).

Put c1 := µ− η2, . . . , cs−1 := µ− ηs. Then c1 ≤ . . . ≤ cs−1. We apply the procedure

of §4.1.2 with t = s and c as above to obtain (a, b, π1, . . . , πs). In case s = 1, we take a

and b to be empty and set π1 := π. In case s = 2, the procedure of §4.1.2 reduces to that

of §4.1.1.

We now define the sequence η′. In case s = 1, set

(4.9) η′1 := η1 + η2 − µ (case s = 1)

Now suppose s ≥ 2. As before, it is convenient to set a0 = bs = 0 and as = b0 = ∞.

Define

(4.10)

η′j := ηj − (aj − aj−1) for j = 1, . . . , s− 1 and η′s := ηs+1 + bs−1 (case s ≥ 2)

Proposition 4.2.1. Suppose that s ≥ 2. Then:

1. For j = 2, . . . , s, we have η′j = ηj+1 + (bj−1 − bj).

2. η and η′ are nearly interlaced.

3. The sequence π1, . . . , πs of partitions approximately overlays η, η′.

4. (η1 + · · ·+ ηs+1)− (η′1 + · · ·+ η′s) = µ

5. �prop(η, η′)|+ (|π1|+ · · ·+ |πs|) = |π|

6.
∑j

i=1(ηi − η′i) = aj for 0 ≤ j < s and
∑s

i=j+1(η′i − ηi+1) = bj for 1 ≤ j ≤ s.
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Proof. For j = s, (1) is just the definition of η′s. Fix j in the range 2, . . . , s−1. We have:

η′j = ηj − (aj − aj−1) definition of η′j

= ηj − ((cj + bj)− (cj−1 + bj−1)) definition of b

= ηj − ((µ− ηj+1 + bj)− (µ− ηj + bj−1)) definition of c

= ηj+1 + (bj−1 − bj)

This proves (1). For (2), we observe:

• For 1 ≤ j ≤ s − 1, we have ηj ≥ ηj − (aj − aj−1) = η′j since a is a non-decreasing

sequence.

• For 2 ≤ j ≤ s, we have η′j = ηj+1 + (bj−1 − bj) ≥ ηj+1 by (1) and the fact that b is

a non-increasing sequence (Proposition 4.1.1).

Assertion (3) follows since πj fits into (aj − aj−1, bj−1 − bj) by construction.

Assertion (4) is just the definition (4.9) in case s = 1. Now suppose s ≥ 2. By the

definition (4.10) of η′j, we have

η′1 + · · ·+ η′s = (η1 − (a1 − a0)) + · · · + (ηs−1 − (as−1 − as−2)) + (ηs+1 + bs−1)

= η1 + · · ·+ ηs−1 + ηs+1 − as−1 + bs−1

= η1 + · · ·+ ηs−1 + ηs+1 − cs−1 (since bs−1 = as−1 − cs−1 by definition)

= η1 + · · ·+ ηs−1 + ηs + ηs+1 − µ (since cs−1 = µ− ηs by definition)

For (5), first rewrite the definition (4.7) to get:

�prop(η, η′) =
∑

1≤i≤s−1

(ηi − η′i)

( ∑
i+1≤j≤s

(η′j − ηj+1)

)
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Substituting from (4.10) and item (1) into the right hand side above, we get

�prop(η, η′) =
∑

1≤i≤s−1

(ai − ai−1)

( ∑
i+1≤j≤s

(bj−1 − bj)

)
=

∑
1≤i≤s−1

(ai − ai−1)bi

Assertion (5) now follows from (4.5).

For (6), using (4.10) we obtain
∑j

i=1(ηi− η′i) =
∑j

i=1(ai− ai−1) = aj. Similarly, using

(1) we obtain
∑s

i=j+1(η′i − ηi+1) =
∑s

i=j+1(bi−1 − bi) = bj.

Lemma 4.2.2. Fix an integer s ≥ 1 and an integer sequence η: η1, . . . , ηs+1 with

η2 ≥ . . . ≥ ηs. Let Ξη denote the association described above:

• from the set of all pairs (µ, π), where µ is an integer and π a partition

• to the set of all tuples (η′, π1, . . . , πs), where η′: η′1, . . . , η′s is an integer sequence

nearly interlacing η, and π1, . . . , πs a sequence of partitions approximately over-

laying η, η′

The association Ξη is a bijection. More precisely, the association Ξ′η in the other direction

to be defined below (in the course of the proof of this lemma) is the two-sided inverse of

Ξη.

Proof. We define Ξ′η. Let η′ and π1, . . . , πs with the specified properties be given. The

image of (η′, π1, . . . , πs) under Ξ′η is defined to be (µ?, π?) where µ? and π? are as defined

below. Set

(4.11) µ? := (η1 + · · ·+ ηs+1)− (η′1 + · · ·+ η′s)

To define π?, we take k to be a positive integer and define π?k. For j, 0 ≤ j ≤ s− 1, set

a?j :=
∑j

i=1(ηi − η′i). Put a?s := ∞. We have 0 = a?0 ≤ a?1 ≤ . . . ≤ a?s−1 < a?s = ∞. Thus
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there exists unique j, 1 ≤ j ≤ s, such that a?j−1 < k ≤ a?j . Set

(4.12) π?k := πjk−a?j−1
+ b?j where b?j :=

s∑
i=j+1

(η′i − ηi+1)

Since η′i ≥ ηi+1 for all i ≥ 2, it is clear that b?j and hence also π?k is non-negative.

Let us verify that π?k ≥ π?k+1 for all k. If a?j−1 < k < a?j , then a?j−1 < k + 1 ≤ a?j ,

so that, from (4.12), π?k − π?k+1 = πjk−a?j−1
− πjk+1−a?j−1

≥ 0 (since πj is a partition). Now

suppose that k = a?j . Then, from (4.12),

π?k − π?k+1 = (πjk−a?j−1
+ b?j)− (πj+1

1 + b?j+1) = πja?j−a?j−1
+ ((η′j+1 − ηj+2)− πj+1

1 ) ≥ 0

where the last inequality holds since πj+1 has largest part at most η′j+1−ηj+2 by hypoth-

esis. This proves that π? is a partition and finishes the definition of Ξ′η.

We now verify that Ξ′η ◦ Ξη is the identity. Suppose we first apply Ξη to (µ, π) to get

(η′, π1, . . . , πs) to which in turn we apply Ξ′η to get (µ?, π?). From (4) of Proposition 4.2.1

and (4.11) it follows that µ? = µ. It follows from the definitions of a? and b? above and

(6) of Proposition 4.2.1 that a? = a and b? = b. It now follows from the definitions (4.4)

and (4.12) respectively of πj and π? that π? = π.

Finally we verify that Ξη ◦ Ξ′η is the identity. Let (µ?, π?) be the result of application

of Ξ′η to (η′, π1, . . . , πs). To calculate the action of Ξη on (µ?, π?), we must compute c, a,

and b as in §4.1.2. From the definition of c at the beginning of this section and those of

µ?, a?, and b? above, we have:

(4.13) cj = µ? − ηj+1 = (

j∑
i=1

(ηi − η′i))− (
s∑

i=j+1

(η′i − ηi+1)) = a?j − b?j

We claim that a? = a. Assuming this claim, it follows from (4.13) and the definition of b

in §4.1.2 that b = b?. From (4.10) and the definition of a? above, it follows that the nearly

interlacing sequence part of the image of Ξη is η′. From (4.4), (4.12), and the equalities
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a = a?, b = b?, it now follows that the image under Ξη of (µ?, π?) equals (η′, π1, . . . , πs).

It remains only to prove the claim above that a = a?, or in other words that for j,

1 ≤ j ≤ s− 1, a?j is the largest integer such that π?a?j ≥ a?j − cj. From (4.12) and (4.13),

we have

π?a?j = πja?j−a?j−1
+ b?j ≥ b?j = a?j − cj

We now show that π?a?j+1 < a?j + 1 − cj. Fix `, j + 1 ≤ ` ≤ s, such that a?j = a?l−1 <

a?j + 1 ≤ a?` . From (4.12) and (4.13), we get

1 + a?j − cj − π?a?j+1 = 1 + (a?j − cj)− π`1 − b?`

= 1 + (b?j − b?`)− π`1

= 1 + (η′j+1 − ηj+2) + · · ·+ (η′`−1 − η`) + ((η′` − η`+1)− π`1)

Since (η′i − ηi+1) ≥ 0 for 2 ≤ i ≤ s and the largest part π`1 of π` is at most (η′` − η`+1),

the right hand side in the last line of the above display is positive.

4.3 Near patterns with approximate partition over-

lays

Fix an integer r ≥ 1. Suppose that, for every j, 1 ≤ j ≤ r + 1, we have an integer

sequence λj: λj1, . . . , λjj of length j with λj2 ≥ . . . ≥ λjj−1. We say that this collection of

sequences forms a near pattern if λj nearly interlaces λj+1 for every j, 1 ≤ j ≤ r. The

last sequence λr+1 is called the bounding sequence of the near pattern. The following is

a pictorial depiction of this definition for r = 4 (where x −→ y means x ≥ y, and ×
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indicates the absence of any relation):

λ1
1

× ×

λ2
1 λ2

2

↗ × × ↘

λ3
1 λ3

2 λ3
3

↗ × ↗ ↘ × ↘

λ4
1 λ4

2 λ4
3 λ4

4

↗ × ↗ ↘ ↗ ↘ × ↘

λ5
1 λ5

2 λ5
3 λ5

4 λ5
5

The proper trapezoidal area of a near pattern P = {λj | 1 ≤ j ≤ r + 1} is defined by:

(4.14) �prop(P) :=
r∑
j=2

�prop(λj+1, λj) =
r∑
j=2

∑
1≤i<h≤j

(λj+1
i − λji )(λ

j
h − λ

j+1
h+1)

The weight of a near pattern P as above is the tuple (µ1, . . . , µr+1), where

µj+1 :=

j+1∑
i=1

λj+1
i −

j∑
i=1

λji for 1 ≤ j ≤ r and µ1
1 := λ1

1

Let P = {λj | 1 ≤ j ≤ r + 1} be a near pattern. Suppose that we are given partitions

π(j)i, for 1 ≤ j ≤ r and 1 ≤ i ≤ j. We say that this collection of partitions approximately

overlays the near pattern P if:

• for 2 ≤ j ≤ r, the partition π(j)1 has at most λj+1
1 − λj1 parts

• for 2 ≤ j ≤ r, the partition π(j)j has largest part at most λjj − λ
j+1
j+1

• for 3 ≤ j ≤ r and 2 ≤ i ≤ j − 1, the partition π(j)i fits into the rectangle

(λj+1
i − λji , λ

j
i − λ

j+1
i+1 )
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The above conditions can also be expressed by saying that for every j, 1 ≤ j ≤ r, the

sequence π(j)i, 1 ≤ i ≤ j, of partitions approximately overlays the nearly interlacing

sequences λj+1, λj in the sense of (4.8).

The number of boxes in an approximate partition overlay as above of a near pattern is

defined to be
∑

1≤i≤j≤r |π(j)i|. The terminology is justified by thinking of the partitions

in terms of their shapes.

We sometimes use the the term approximately overlaid near pattern, AONP for short,

for a near pattern with an approximate partition overlay.

4.3.1 A bijection on AONPs

Fix an integer s ≥ 1 and an integer sequence λr+1: λr+1
1 , . . . , λr+1

r+1 with λr+1
2 ≥ . . . ≥ λr+1

r .

LetM denote the set of tuples (µ; π(1), . . . , π(r)), where µ: µ2, . . . , µr+1 is a sequence of

r integers and π(1), . . . , π(r) is a sequence of r partitions (the reason for the indexing of

µj starting with 2 will become clear presently). Let Nλr+1 denote the set of all AONPs

with bounding sequence λr+1.

Given an element of (µ; π(1), . . . , π(r)) inM, set (λr, π(r)1, . . . , π(r)r) := Ξλr+1(µr+1, π(r)),

where Ξλr+1 is as defined in §4.2. By (2) of Proposition 4.2.1, it follows that λr is such

that λr2 ≥ . . . ≥ λrr−1. We may thus inductively define:

(4.15) (λj, π(j)1, . . . , π(j)j) := Ξλj+1(µj+1, π(j))

From (2) and (3) of Proposition 4.2.1, it follows that the sequences λj (1 ≤ j ≤ r + 1)

and partitions π(j)i (1 ≤ j ≤ r, 1 ≤ i ≤ j) form an AONP with bounding sequence λr+1.

Thus we have defined a map from M to Nλr+1 , which too we denote by Ξλr+1 by abuse

of notation.

Lemma 4.3.1. The map Ξλr+1 from M to Nλr+1 just defined is a bijection.
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Proof. We construct a two sided inverse. For an element {λj; π(j)i | 1 ≤ j ≤ r, 1 ≤ i ≤ j}

of Nλr+1 , set

(µ?j+1, π(j)?) := Ξ′
λj+1(λ

j, π(j)1, . . . , π(j)j)

where Ξ′
λj+1 is as defined in the proof of Lemma 4.2.2. Since Ξ′

λj+1 is the two sided inverse

of Ξλj+1 (by the assertion of that lemma), it follows that the map

{λj; π(j)j} 7→ (µ?2, . . . , µ
?
r+1; π(1)?, . . . , π(r)?)

is the required two sided inverse. By abusing notation again, we denote it by Ξ′
λr+1 .

Proposition 4.3.2. The underlying near pattern P in the image of (µ2, . . . , µr+1; π(1), . . . , π(r))

under Ξλr+1 has bounding sequence λr+1 and weight (µ1, µ2, . . . , µr+1) where µ1 := (
∑r+1

j=1 λ
r+1
j )−

(
∑r+1

j=2 µj). The number n of boxes in the approximate partition overlay satisfies:

(4.16) �prop(P) + n = |π(1)|+ · · ·+ |π(r)|

Proof. The first assertion is immediate from the definition. From the definition of Ξλr+1

and Proposition 4.2.1 (4) and (5), we obtain, for j such that 1 ≤ j ≤ r, (
∑j+1

i=1 λ
j+1
i ) −

(
∑j

i=1 λ
j
i ) = µj+1 and �prop(λj+1, λj) +

∑j
i=1 |π(j)i| = |π(j)|. Adding the first set of

equations, we get λ1
1 = (

∑r+1
j=1 λ

r+1
j ) − (

∑r+1
j=2 µj) = µ1. Adding the second, we get

(4.16).

4.4 Shift by k

Let an integer k be fixed. Given a sequence η: η1, . . . , ηs+1, where (s ≥ 0 is an integer)

we denote by η̃ the sequence η̃1, . . . , η̃s+1, where

(4.17) η̃1 := η1 + 2k η̃j := ηj + k for 2 ≤ j ≤ s and η̃s+1 := ηs+1 (if s ≥ 1)

η̃1 := η1 + k (if s = 0)
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We refer to η̃ as the shift by k (or just shift if k is clear from the context) of η. The

suppression of the dependence on k in the notation η̃ should cause no confusion.

The shift η̃, η̃′ of a pair η̃, η̃′ of nearly interlacing sequences is also nearly interlacing.

A sequence of partitions approximately overlays η, η′ if and only if it approximately

overlays η̃, η̃′.

The shift of a near pattern consists of the shifts of the constituent sequences of the

pattern. It is also a near pattern. A collection of partitions approximately overlays a

near pattern if and only if it approximately overlays the shifted pattern.

To shift a near interlacing sequence or near pattern with an approximate partition

overlay, we just shift the constituent sequences. The partitions in the overlay stay as they

are.

Shift preserves proper trapezoidal area (of a near interlacing sequence or near pattern).

If a near pattern has weight (µ1, . . . , µs+1), the near pattern shifted by k has weight

(µ1 + k, . . . , µs+1 + k). Positive shifts of interlacing sequences (respectively patterns)

continue to be interlacing (respectively patterns).

Proposition 4.4.1. Let an integer s ≥ 1 and an integer sequence η: η1, . . . , ηs+1 with

η2 ≥ . . . ≥ ηs be fixed. For µ an integer and π a partition, if Ξη(µ, π) = (η′, π1, . . . , πs),

then Ξη̃(µ+ k, π) = (η̃′, π1, . . . , πs).

Proof. Indeed, the sequences c, a, and b involved in the calculation of Ξη(µ, π) (see §4.1.2)

are the same as the corresponding ones involved in the calculation of Ξη̃(µ + k, π). The

result now follows from the definition (4.3) of πj and (4.9), (4.10) of η′.

Lemma 4.4.2. Let η: η1, . . . , ηs+1 and η′: η′1, . . . , η′s be integer sequences (for some

s ≥ 1), let µ = (µ1, . . . , µs+1) be a tuple of integers, and π1, . . . , πs a sequence of

partitions. Assume that:

1. η is non-increasing: η1 ≥ . . . ≥ ηs+1
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2. η, η′ nearly interlace and π1, . . . , πs is an approximate partition overlay on η, η′

3. µ 4m η

4. (η1 + · · ·+ ηs+1)− (η′1 + · · ·+ η′s) = µs+1

Let k be an integer and η̃, η̃′ be the shifts by k of η, η′. If k ≥ �prop(η, η′) + |π1| + |πs|,

then

(a) η̃, η̃′ interlace (which in particular implies that η̃′ is non-increasing: η̃′1 ≥ . . . ≥ η̃′s)

(b) π1, . . . , πs overlays η̃, η̃′ (i.e., πj fits into the rectangle (η̃j − η̃′j, η̃
′
j − η̃j+1) for

1 ≤ j ≤ s)

(c) (µ1 + k, . . . , µs + k) 4m η̃′

Proof. For (b), since π1, . . . , πs approximately overlays η̃, η̃′, it is enough to show:

(4.18) π1 has largest part at most η̃′1 − η̃2 and πs has at most η̃s − η̃′s parts

These assertions imply in particular that η̃′1 ≥ η̃2 and η̃s ≥ η̃′s, from which (a) follows

(since η̃, η̃′ nearly interlace).

To prove (4.18), we first show that η̃′1− η̃2 ≥ π1
1. Putting η̃′1 = η′1 +2k and η̃2 = η2 +k,

we see that the desired inequality is equivalent to

(4.19) (η1 − η2) + k ≥ (η1 − η′1) + π1
1

We consider two cases. First suppose that η′j − ηj+1 ≥ 1 for some 2 ≤ j ≤ s. Then, since

k ≥ �prop(η, η′) + |π1| ≥ (η1 − η′1)(η′j − ηj+1) + π1
1 ≥ (η1 − η′1) + π1

1

and (η1 − η2) ≥ 0 by hypothesis (1), we obtain (4.19). In the second case, we have

η′j = ηj+1 for all j ≥ 2. Then, by hypothesis (4), we get η1− η′1 = µs+1− η2. Substituting

113



this into (4.19), we get

(4.20) (η1 − µs+1) + k ≥ π1
1

But since k ≥ |π1| ≥ π1
1 and η1 ≥ µs+1 by hypothesis (3), we obtain (4.20).

The proof of the latter half of (4.18), namely that η̃′s− η̃s+1 ≥ p (where p denotes the

number of parts in πs), is analogous to that of the former half above. Putting η̃2 = ηs+k

η̃′s = η′s, we see that the desired inequality is equivalent to

(4.21) (ηs − ηs+1) + k ≥ (η′s − ηs+1) + p

We consider two cases. First suppose that ηj − η′j ≥ 1 for some 1 ≤ j < s. Then, since

k ≥ �prop(η, η′) + |πs| ≥ (ηj − η′j)(η′s − ηs+1) + p ≥ (η′s − ηs+1) + p

and (ηs − ηs+1) ≥ 0 by hypothesis (1), we obtain (4.21). In the second case, we have

ηj = η′j for all j < s. Then, by hypothesis (4), we get η′s− ηs+1 = ηs−µs+1. Substituting

this into (4.21), we get

(4.22) (µs+1 − ηs+1) + k ≥ p

But since k ≥ |πs| ≥ p and µs+1 ≥ ηs+1 by hypothesis (3), we obtain (4.22).

We now turn to (c). That η̃′1 + · · · + η̃′s = (µ1 + k) + · · · + (µs + k) follows from the

definition of η̃′, hypothesis (4), and the fact implied by hypothesis (3) that η1+· · ·+ηs+1 =

µ1 + · · · + µs+1. It follows from (a) that η̃′1 ≥ . . . ≥ η̃′s. It only remains to show that for

any j < s and 1 ≤ i1 < . . . < ij ≤ s we have

(4.23) η̃′1 + · · ·+ η̃′j ≥ (µi1 + k) + · · ·+ (µij + k)
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Substituting the definitions η̃′1 = η′1 + 2k and η̃′i = η′i + k for 1 < i ≤ j, we may rewrite

(4.23) equivalently as

(4.24) (η1 + · · ·+ ηj)− (µi1 + · · ·+ µij) + k ≥ (η1 − η′1) + · · ·+ (ηj − η′j)

We consider two cases. First suppose that η′i − ηi+1 ≥ 1 for some j < i ≤ s. Then, since

k ≥ �prop(η, η′) ≥
(
(η1 − η′1) + · · ·+ (ηj − η′j)

)
(η′i− ηi+1) ≥ (η1− η′1) + · · ·+ (ηj− η′j)

and (η1 + · · · + ηj) − (µi1 + · · · + µij) ≥ 0 by hypothesis (3), we obtain (4.24). In

the second case, we have η′i = ηi+1 for all i > j. Then, by hypothesis (4), we get

(η1 − η′1) + · · ·+ (ηj − η′j) = µs+1 − ηj+1. Substituting this into (4.24), we get

(4.25) (η1 + · · ·+ ηj+1)− (µi1 + · · ·+ µij + µs+1) + k ≥ 0

But since k ≥ 0 and (η1 + · · ·+ ηj+1) ≥ (µi1 + · · ·+ µij + µs+1) by hypothesis (3), we are

done.

Corollary 4.4.3. Let λ : λ1 ≥ . . . ≥ λr+1 be a non-increasing integer sequence (where

r ≥ 1 is an integer). Let µ ∈ Zr+1 be such that λ <m µ. Let P be a near pattern

with bounding sequence λ and weight µ. Let {π(j)i | 1 ≤ i ≤ j ≤ r} be an approximate

partition overlay on P. Then the shift by �prop(P) +
∑

1≤j≤r(|π(j)1| + π(j)j|) of the

AONP (P , {π(j)i}) is a POP.

Proof. We proceed by induction on r. Let λj, 1 ≤ j ≤ r+1, be the constituent sequences

of P . We have λ = λr+1. Consider the shift P̃ of P by k, where

k = �prop(λr+1, λr) + |π(r)1|+ |π(r)r|.

By the lemma, we obtain:
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(a) λ̃
r+1

, λ̃
r

interlace

(which in particular implies that λ̃
r

is non-increasing: λ̃r1 ≥ . . . ≥ λ̃rr)

(b) π(r)1, . . . , π(r)s overlays λ̃
r+1

, λ̃
r

(c) (µ1 + k, . . . , µr + k) 4m λ̃
r

In particular, this gives a proof in the base case r = 1 of the induction.

Now suppose r ≥ 2. Let P1 denote the pattern obtained from P by omitting its last

row. We may apply the induction hypothesis to λ̃
r
, (µ1 + k, . . . , µr + k), and the AONP

(P̃1, {π(j)i | 1 ≤ i ≤ j ≤ r−1}), to conclude that the shift by �prop(P̃1)+
∑

1≤j<r(|π(j)1|+

|π(j)j|) of this AONP is a POP.

Note the following:

• �prop is preserved under shifts

• �prop(P) = �prop(λr+1, λr) +�prop(P1)

• upward shifts of λ̃
r+1

, λ̃
r

do not affect (a) and (b)

• shift by �prop(P1) +
∑

1≤j<r(|π(j)1| + |π(j)j|) of P̃1 (respectively λ̃
r+1

, λ̃
r
) equals

shift by �prop(P) +
∑

1≤j≤r(|π(j)1|+ |π(j)j|) of P1 (respectively λr+1, λr)

The result follows.

4.5 Bijection between r-colored partitions and POPs

We are at last ready to state and prove the desired theorem. Fix integers r ≥ 1 and

d ≥ 0. Let Pr(d) denote the set of all r-colored partitions of d.

Fix λr+1 = λ : λ1 ≥ . . . ≥ λr+1 a non-increasing sequence of integers, and µ =

(µ1, . . . , µr+1) ∈ Zr+1 such that λ <m µ. Let us denote a general AONP with bounding
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sequence of length r + 1 by (P , {π(j)i | 1 ≤ i ≤ j ≤ r}), where P denotes the underlying

near pattern and π(j)i the partitions in the approximate overlay. Let Nλ,µ(d) denote

the set of all AONPs where P has bounding sequence λr+1, weight (µ1, . . . , µr+1), and

satisfies the following condition:

(4.26) �prop(P) +
∑

1≤i≤j≤r

|π(j)i| = d

Let Φλ,µ be the map from Pr(d) to the set of AONPs given by

π(1), . . . , π(r) 7→ Ξλr+1(µ2, . . . , µr+1; π(1), . . . , π(r))

where Ξλr+1 is as defined in §4.3.1.

Proposition 4.5.1. The map Φλ,µ is a bijection from Pr(d) to Nλ,µ(d).

Proof. It follows from Proposition 4.3.2 that the image of Φλ,µ lies in Nλ,µ(d). Since Ξλr+1

is a bijection (Lemma 4.3.1), it follows that Φλ,µ is an injection. We now show that is also

onto Nλ,µ(d). Given an element of Nλ,µ(d), its image under Ξ′
λr+1 maps to that element

under Ξλr+1 (see the proof of Lemma 4.3.1), so it is of the form (µ2, . . . , µr+1; π(1), . . . , π(r)),

where π(1), . . . , π(r) is an r-colored partition of d (Proposition 4.3.2).

For an integer k, let Sk denote the “shift by k” operator (§4.4). Let N k
λ,µ(d) (respec-

tively Pkλ,µ(d)) denote the set of all AONPs (respectively POPs) where P has bounding

sequence λ̃ (the shift by k of λ), weight (µ1 + k, . . . , µr+1 + k), and (4.26) is satisfied.

Theorem 4.5.2. For k ≥ d, the composition Sk ◦Φλ,µ defines a bijection from Pr(d) to

Pkλ,µ(d).

Proof. The operator Sk is evidently a bijection from Nλ,µ(d) to N k
λ,µ(d) (see §4.4). By

Corollary 4.4.3, its image lies in Pkλ,µ(d), so N k
λ,µ(d) = Pkλ,µ(d). The result follows from

Proposition 4.5.1.
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4.6 The complementation involution C

For P = (P , π(j)i | 1 ≤ i ≤ j ≤ r) a POP with ηj being the jth row of the pattern P , let

P denote the POP (P , πc(j)i | 1 ≤ i ≤ j ≤ r), where πc(j)i denotes the complement of

π(j)i in the rectangle (ηj+1
i − ηji , η

j
i − η

j+1
i+1 ) (see §3.1.6). For P in Pkλ,µ(d), we have

∑
1≤i≤j≤r

|πc(j)i| = 4(P)−
∑

1≤i≤j≤r

|π(j)i| = 4(P) +�prop(P)− d = �(P)− d

The association C : P 7→ P is evidently reversible. The above calculation shows that C

defines a bijection from Pkλ,µ(d) onto Pkλ,µ[d], where Pkλ,µ[d] denotes the set of POPs with

bounding sequence λ̃, weight (µ1 + k, . . . , µr+1 + k), and depth d (see §3.1.8 for the

definition of depth).

Precomposing the bijection of Theorem 4.5.2 with C continues to be a bijection:

Corollary 4.6.1. For k ≥ d, the composite map C ◦ Sk ◦ Φλ,µ is a bijection from Pr(d)

to Pkλ,µ[d].

Proposition 4.6.2. The bijections of Theorem 4.5.2 and Corollary 4.6.1 are compatible.

More precisely, for j ≥ 0, we have:

Sj+k ◦ Φλ,µ = Sj ◦ Φλ̃,(µ1+k,...,µr+1+k) in the theorem(4.27)

C ◦ Sj+k ◦ Φλ,µ = C ◦ Sj ◦ Φλ̃,(µ1+k,...,µr+1+k) in the corollary(4.28)

Proof. The left hand side of (4.28) may be written as C ◦ Sj ◦ (Sk ◦ Φλ,µ). Now, by

Proposition 4.4.1, Sk ◦ Φλ,µ = Φλ̃,(µ1+k,...,µr+1+k). The proof of (4.27) is similar.

Corollary 4.6.3. For k ≥ d and j ≥ 0, the map C ◦ Sj ◦ C : Pkλ,µ[d] → Pk+j
λ,µ [d] is a

bijection.

Proof. C ◦Sj ◦ C is equal to the composition of two bijections: the inverse of C ◦Sk ◦Φλ,µ

followed by C ◦ Sj+k ◦ Φλ,µ.
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Chapter 5

The stability conjecture for sl3 and

beyond

The results of this chapter will appear in [21].

5.1 The stability conjecture: first version

In this section and the next, we state the conjecture about stability of Chari-Loktev bases

under a chain of inclusions of local Weyl modules (for g = slr+1). The conjecture has

been proved in Chapter 2 in the case r = 1. We begin by recalling details about the

chain of inclusions. The theorem of the previous section (§4) gives us an identification

of the indexing set of the basis for an included module as a subset of the indexing set

of the basis of the larger module. It then makes sense to ask whether the bases are well

behaved with respect to inclusions. The stability conjecture says that this is so in the

stable range.

We state two versions of the conjecture. The first version has the advantage that

it can be stated quickly (assuming only the result in Corollary 3.3.5, and without any
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further reference to the details in §3.3 about the identification of local Weyl modules as

Demazure modules). The second version, stated in the next section, is more involved but

provides also motivation.

5.1.1 The set up

Let λ be a dominant integral weight and θ the highest root of g = slr+1. We identity λ and

θ with (r+1)-tuples of integers λ and θ respectively as in §3.1.9: λ: λ1 ≥ · · ·λr ≥ λr+1 = 0

and θ = (2, 1, . . . , 1, 0).

5.1.2 Chains of inclusions

Consider the chain of g[t]-module inclusions (see Corollary 3.3.5), each of which is defined

uniquely up to scaling:

(5.1) W (λ) ↪→ W (λ+ θ) ↪→ W (λ+ 2θ) ↪→ . . .

The Chari-Loktev basis for W (λ + kθ) is indexed by the set Pkλ of POPs with bounding

sequence λ+ kθ (§3.3.6). Mirroring the above chain of inclusions of local Weyl modules,

we have a chain of inclusions of these indexing sets:

P0
λ ↪→ P2

λ ↪→ P1
λ ↪→ . . .

Indeed, the map CSkC, where C is the complementation (§4.6) and Sk is the shift by k

(§4.4), defines an injection Pjλ ↪→ Pj+kλ . These injections are compatible as j and k vary

(since C is an involution and SkSk′ = Sk+k′).
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5.1.3 Fixing the inclusions

For a POP P, let vP and ρP denote respectively the Chari-Loktev basis element and the

Chari-Loktev monomial corresponding to P (see §3.3.6). We fix the chain of inclusions

(5.1) such that for every j ≥ 0, let the generator wλ+jθ of W (λ+ jθ) be mapped to:

(5.2)

wλ+jθ 7→ vP1
j

= ρP1
j
wλ+(j+1)θ under the inclusion W (λ+ jθ) ↪→ W (λ+ (j + 1)θ)

where Pj denotes the unique element of Pjλ of weight λ+ jθ (corresponding to the gener-

ator of W (λ + jθ)), and Pk denotes the image of P under the inclusion Pjλ ↪→ Pj+kλ (for

P in Pjλ, k ≥ 0).

5.1.4 The stability conjecture: first version

It is now natural to ask whether, for all j ≥ 0, for all k ≥ 0, and for all P ∈ Pjλ, we have

(5.3) vP 7→ ±vPk under the inclusion W (λ+ jθ) ↪→ W (λ+ (j + k)θ)

Simple instances (see Example 2.2.4) show that (5.3) is too much to expect in general.

We do however conjecture that it holds in the “stable range”:

Conjecture 5.1.1 (Stability of Chari-Loktev bases). With notation as above, let P be

a POP in Pjλ. Let µ be the weight of P and d its depth. Note that µ 4m λ + jθ and in

particular
∑r+1

i=1 µi = (
∑r+1

i=1 λi) + j(r + 1). The assertion (5.3) holds if j ≥ `+ d, where

` be the least non-negative integer such that µ − (j − `)1 4m λ + `θ. Here 1 stands for

the element (1, . . . , 1) ∈ Rr+1.

121



5.2 The stability conjecture: second version

In this section, we state the second version of the conjecture about stability of Chari-

Loktev bases under a chain of inclusions of local Weyl modules (for g = slr+1). For a

brief description of what the conjecture is about, see the introduction to §5.1, where the

first version is stated. The conjecture has been proved in Chapter 2 in the case r = 1.

5.2.1 The set up

Let θ be the highest root and λ a dominant integral weight of g = slr+1.

5.2.2 Local Weyl modules as Demazure modules

Adopt the notation of §3.3. There exists a unique dominant integral weight Λ of ĝ such

that tw0(λ)(Λ0) = wΛ, with w in the affine Weyl group. By results of Chari-Loktev and

Fourier-Littelmann recalled in Theorem 3.3.1 above, for k a non-negative integer, the

local Weyl module W (λ+kθ) is isomorphic as a g[t]-module to the Demazure submodule

Vtw0(λ+kθ)
(Λ0) = Vtw0(kθ)

w(Λ) of L(Λ). The isomorphism is unique up to scaling. (At the

moment we choose the scaling arbitrarily. Later on, we will fix the scaling, so that the

isomorphism is fixed.) The isomorphism maps the generator wλ+kθ of W (λ + kθ) to a

vector of L(Λ) of weight tλ+kθ(Λ0). We denote the image of wλ+kθ also by the same

symbol.

5.2.3 A chain of local Weyl modules

Since λ and θ are both dominant, `(tw0(λ+kθ)) = `(tw0λ)+k·`(tw0θ), so tw0(λ+kθ) ≤ tw0(λ+mθ)

in the Bruhat order (on the extended affine Weyl group) for k ≤ m. Consider the following
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chain:

tw0(λ) ≤ tw0(λ+θ) ≤ · · · ≤ tw0(λ+kθ) ≤ tw0(λ+(k+1)θ) ≤ · · ·

and the corresponding chain of Demazure submodules of L(Λ):

(5.4) W (λ) ↪→ W (λ+ θ) ↪→ · · · ↪→ W (λ+ kθ) ↪→ W (λ+ (k + 1)θ) ↪→ · · · (↪→ L(Λ))

The union of the modules in the above chain equals L(Λ) (because tθ = s0sθ and every

simple reflection of g occurs in any reduced expression for sθ).

5.2.4 Weights of local Weyl modules

It is well known (see Theorem 1.2.10) that any weight of L(Λ) is of the form tγ(Λ)− dδ,

where γ is an integral linear combination of the simple roots of g, and d is a non-negative

integer (Λ is of level 1 as observed in (3.40)). Fix such a weight. The dimension of the

corresponding weight space is given by (see Theorem 1.2.10):

(5.5) dimL(Λ)tγ(Λ)−dδ = the number of partitions of d into r colors.

Since the union of the local Weyl modules in (5.4) is L(Λ), there exists K0 such that, for

all k ≥ K0, we have the equality W (λ + kθ)tγ(Λ)−dδ = L(Λ)tγΛ−dδ of weight spaces. In

particular, for k ≥ K0, the dimension of W (λ+ kθ)tγΛ−dδ equals the number of r colored

partitions of d.

5.2.5 Parametrizing set of the Chari-Loktev basis for the weight

space W (λ+ kθ)tγ(Λ)−dδ

Following §3.1.9, identify λ with a non-decreasing sequence λ : λ1 ≥ . . . ≥ λr ≥ λr+1 = 0,

and the highest root θ with θ. Let µ denote the restriction to h of tγ(Λ)− dδ. Identify µ
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with the tuple µ = (µ1, . . . , µr+1) in its equivalence class such that
∑r+1

i=1 λi =
∑r+1

i=1 µi.

Proposition 5.2.1. The CL basis of W (λ+ kθ)tγ(Λ)−dδ is parametrized by the set Pkλ,µ[d]

of POPs with bounding sequence λ+ kθ, weight µ+ k1 (where 1 denotes (1, . . . , 1)), and

depth d.

Proof. By Corollary 3.2.4, the number n of boxes in any POP in Pkλ,µ[d] is constant and

given by:

n =
1

2
(||λ+ kθ||2 − ||µ+ k1||2)− d

Now, by the result of Chari-Loktev recalled in §3.3.6, the set Pkλ,µ[d] parametrizes the CL

basis for W (λ+kθ)µ[n], the n-graded piece of the µ-weight space of W (λ+kθ). Thus it is

enough to observe that the weight space W (λ+ kθ)tγ(Λ)−dδ has grade n, or, equivalently,

that the weight space W (λ+ kθ)tγΛ has grade n+ d.

We now argue that in order to prove the last claim we may assume k to be large.

Suppose we know that W (λ+(k+ `)θ)tγΛ has grade (||λ+(k+ `)θ||2−||µ+(k+ `)1||2)/2

for some ` ≥ 0. Since the inclusion W (λ + kθ) ↪→ W (λ + (k + `)θ) increases degree by

(||λ + (k + `)θ||2 − ||λ + kθ + `1||2)/2—see Corollary 3.3.5—we conclude that the grade

of W (λ + kθ)tγΛ is given by (||λ + kθ + `1||2 − ||µ + (k + `)1||2)/2, which as an easy

calculation shows is equal to (||λ+ kθ||2 − ||µ+ k1||2)/2.

Since the union of the chain (5.4) of local Weyl modules is L(Λ), it follows that

W (λ + kθ)tγΛ = L(Λ)tγΛ for all large k. Since L(Λ)tγΛ is the highest grade piece of the

µ-weight space of L(Λ), it follows that W (λ + kθ)tγΛ is the highest grade piece of the

µ-weight space of W (λ+ kθ). It now follows from Proposition 3.3.3 (1) that the grade of

W (λ+ kθ)tγΛ is n+ d.
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5.2.6 An explicit value for the bound K0 in §5.2.4

Let ` be large enough so that µ is a weight of λ + `θ (it is easy to see that λ and µ are

equal modulo the root lattice of g, so that such an ` exists). Then λ+ `θ <m µ+ `1, and

we may apply the results of §4.5. From Corollary 4.6.1, we conclude that, for k ≥ d, the

map C ◦ Sk ◦ Φλ+`θ,µ+`1 is a bijection from Pr(d) to the set P`+kλ,µ [d] of POPs bounding

sequence λ+ (`+ k)θ, weight µ+ (`+ k)1, and depth d. Thus we may take K0 = `+ d.

5.2.7 Fixing the scaling

With notation as in §5.2.2, fix arbitrarily an embedding of W (λ) in L(Λ), and identify

W (λ) with its image in L(Λ). For k ≥ 1, fix the embedding of Wλ+kθ in L(Λ) such that

the generator wλ+kθ is identified with

(
x+
θ ⊗ t

−((λ|θ)+k)
)(k)

wλ

where X(p) denotes the divided power Xp/p!. It is clear that wλ+kθ has weight tλ+kθ(Λ0);

that wλ+kθ 6= 0 follows from the following observation:

(5.6)
(
x−θ ⊗ t

((λ|θ)+k)
)(k)(

x+
θ ⊗ t

−((λ|θ)+k)
)(k)

wλ = wλ.

The proof of (5.6) follows by standard sl2 calculations, using the following relations

in W (λ): (
x−θ ⊗ t

((λ|θ)+k)
)
wλ = 0, for all k ∈ N

We will identify W (λ + kθ) with its image Vtw0(λ+kθ)
(Λ0) in L(Λ) via the isomorphism

fixed as above.
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5.2.8 The stability conjecture: second version

We now state the stability conjecture. Let λ be a dominant integral weight and θ the

highest root of g = slr+1. Identity λ with λ: λ1 ≥ . . . ≥ λr ≥ λr+1 = 0 and θ with

θ = (2, 1, . . . , 1, 0) as in §3.1.9. Let γ be an element of the root lattice of g and d ≥ 0 a

non-negative integer. Let µ denote the restriction to the diagonal subalgebra h of g of the

weight tγΛ− dδ of the integrable highest weight module L(Λ) of the affine Lie algebra ĝ,

where Λ is as in §5.2.2. Choose the tuple µ corresponding to µ so that
∑r+1

i=1 µi =
∑r+1

i=1 λi.

For any integer k ≥ 0, the set Pkλ,µ[d] (of POPs with bounding sequence λ + kθ,

weight µ + k1, and depth d) indexes the CL basis of W (λ + kθ)tγ(Λ)−dδ. For P in

Pkλ,µ[d] and j ≥ 0 an integer, let Pj denote the image of P in Pk+j
λ,µ [d] under the map

C ◦ Sj ◦ C : Pkλ,µ[d]→ Pk+j
λ,µ [d] (§4.4, 4.6).

Conjecture 5.2.2 (Stability of CL basis; second version). Let ` be the least non-

negative integer such that µ+ `1 4m λ+ `θ. Then for all k ≥ `+d, for all j ≥ 0, and for

all P ∈ Pkλ,µ[d], we have the equality vP = ±vPj of CL basis elements up to sign in L(Λ)

under the identification of local Weyl modules W (λ+mθ) with their images in L(Λ) under

isomorphisms fixed as in §5.2.7.

The conjecture mirrors the fact that C ◦ Sj ◦ C is an isomorphism for k ≥ ` + d

(Corollary 4.6.3).
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Chapter 6

Triangularity of Gelfand-Tsetlin and

Chari-Loktev bases for

representations of slr+1

The results of this chapter will appear in [21]. Throughout this chapter, we will assume

that the simple Lie algebra g = slr+1. We adopt the notation of §1.4.

6.1 The main result

We first recall Chari-Loktev bases for irreducible representations of g = slr+1. Given

λ =
∑r

i=1mi$i ∈ P+, set λi = m1 + · · · + mi ∀ 1 ≤ i ≤ r, and consider the non-

increasing sequence λ : λ1 ≥ · · · ≥ λr ≥ λr+1 = 0. For a pattern P : λ1, . . . , λr, λr+1 = λ

in the set GT(λ) of GT patterns with bounding sequence λ, define an element CL(P) of

V (λ) as follows:

CL(P) := (x−1,1)λ
2
1−λ11(x−1,2)λ

3
1−λ21(x−2,2)λ

3
2−λ22(x−1,3)λ

4
1−λ31(x−2,3)λ

4
2−λ32 · · · (x−r,r)λ

r+1
r −λrr vλ.
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The following theorem is proved in [5] (see also §3.3.6 for the current formulation).

Theorem 6.1.1. [5, Corollary 2.1.3] The set {CL(P) : P ∈ GT(λ)} forms a basis for

V (λ).

The Gelfand-Tsetlin (GT) basis for V (λ) is given in §1.4.2: corresponding to pat-

tern P the GT basis vector is denoted by ζP . The pattern Λ with the jth row Λj =

(λ1, . . . , λj), ∀ 1 ≤ j ≤ r + 1, is the unique pattern in GT(λ) whose corresponding GT

basis element ζΛ has weight λ. We assume ζΛ = vλ, with out loss of generality, by suitably

normalizing the GT basis for V (λ).

The row-wise dominance partial order ≥ on the set GT(λ) is defined by P ≥ Q if for

every j, 1 ≤ j ≤ r+ 1, the jth row λj of P succeeds the jth row κj of Q in the dominance

order on partitions, i.e.,

λj1 + · · ·+ λji ≥ κj1 + · · ·+ κji , ∀ 1 ≤ i ≤ j.

If P ≥ Q, then we say that P dominates Q. If P ≥ Q and P 6= Q, then we say that P

strictly dominates Q and write P  Q.

We are now in a position to state our main result of this chapter.

Theorem 6.1.2. Given λ =
∑r

i=1mi$i ∈ P+, set λi = m1 + · · · + mi ∀ 1 ≤ i ≤ r,

and consider the non-increasing sequence λ : λ1 ≥ · · · ≥ λr ≥ 0. For a pattern P :

λ1, . . . , λr, λr+1 = λ in GT(λ) we have the following:

(6.1) CL(P) =
∑

Q∈GT(λ)
Q≥P

cQζQ, for some cQ ∈ C,

where the co-efficient cP of ζP in (6.1), is equal to,

(6.2)
∏

1≤i<j≤r+1

λji−λ
j−1
i −1∏

dji=0

j−1∏
j′=i+1

1

(λj−1
i − λj−1

j′ + dji) + (j′ − i+ 1)
.
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6.2 Proof of the main result

We first, define the notion of length of a pattern. For a pattern P : λ1, . . . , λr, λr+1, we

define the length `(P) of P as follows:

`(P) :=
∑

1≤i≤j≤r

(λj+1
i − λji ).

We now prove Theorem 6.1.2, proceeding by induction on length `(P) of P . If `(P) =

0, then P = Λ and nothing to prove. Let `(P) ≥ 1. We assume Theorem 6.1.2 for all P ′ ∈

GT(λ) with `(P ′) < `(P), and prove it for P . Let j0 = min{j : λji −λ
j−1
i 6= 0 for some i}

and i0 = min{i : λj0i − λ
j0−1
i 6= 0}.
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Figure 6.1: The figure shows the first j0 rows of the pattern of P . The double lines

indicate equalities, while the single lines are ≥ relations.
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Now we define P̃ ∈ GT(λ) as follows:

(6.3) P̃ : λ̃
1
, . . . , λ̃

r+1
, with λ̃

j

i :=


λji + 1, if i = i0 and i0 ≤ j ≤ j0 − 1,

λji , otherwise.

It is easy to observe that

(6.4) P̃ ≥ P , `(P̃) = `(P)− 1, and CL(P) = x−i0,j0−1CL(P̃) = Ej0,i0CL(P̃).

By induction hypothesis, we have

(6.5) CL(P̃) =
∑

R∈GT(λ)

R≥P̃

c′RζR, for some c′R ∈ C,

and the co-efficient c′P̃ of ζP̃ in (6.5), is equal to,

∏
1≤i<j≤r+1

λ̃ji−λ̃
j−1
i −1∏

dji=0

j−1∏
j′=i+1

1

(λ̃j−1
i − λ̃j−1

j′ + dji) + (j′ − i+ 1)
.(6.6)

Using (6.4) and (6.5), we get

(6.7) CL(P) =
∑

R∈GT(λ)

R≥P̃

c′REj0,i0 ζR.

We now prove Theorem 6.1.2 for P starting with proving (6.1). To prove (6.1), it is

enough to show by (6.7) that

(6.8) Ej0,i0 ζR =
∑

Q∈GT(λ)
Q≥P

c′′QζQ, for some c′′Q ∈ C, ∀ R ≥ P̃ .

We now prove (6.8). Let R : τ 1, · · · , τ r+1 be such that R ≥ P̃ . Let Q : κ1, · · · , κr+1 be
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a pattern obtained from R such that

κji :=


τ ji − 1, i = rj and i0 ≤ j ≤ j0 − 1,

τ ji , otherwise,

for some 1 ≤ rj ≤ j. We only need to show that Q ≥ P (see §1.4.2 for the action of Ej0,i0

on ζR). For 1 ≤ j < i0 and j0 ≤ j ≤ r + 1, we have κj = τ j ≥ λ̃
j

= λj. Hence we need

to show the following:

(6.9) κj1 + · · ·+ κjm ≥ λj1 + · · ·+ λjm, ∀ i0 ≤ j ≤ j0 − 1, ∀ 1 ≤ m ≤ j.

We prove (6.9) by splitting 1 ≤ m ≤ j into three parts; (i) 1 ≤ m < rj (ii) rj ≤ m < i0

(possibly empty), and (iii) i0 ≤ m ≤ j. For 1 ≤ m < rj, (6.9) follows from the observation

that τ j ≥ λj. Similarly for i0 ≤ m ≤ j, it follows from the observation that τ j ≥ λ̃
j
.

We now show (6.9) for rj ≤ m < i0. Since Q is a pattern and m < i0 ≤ j, we have

κji ≥ κmi = τmi , ∀ 1 ≤ i ≤ m. This gives that

(6.10) κj1 + · · ·+ κjm ≥ τm1 + · · ·+ τmm .

Now τm ≥ λ̃
m

and m < i0 ≤ j ≤ j0 − 1 gives,

(6.11) τm1 + · · ·+ τmm ≥ λ̃m1 + · · ·+ λ̃mm = λm1 + · · ·+ λmm = λj1 + · · ·+ λjm.

Combining (6.10) and (6.11), we get (6.9) in this case. This completes the proof of (6.1)

for P . We now prove (6.2) for P . We observe that ζP occurs in Ej0,i0 ζP̃ and it does not

occur in Ej0,i0 ζR, ∀ R  P̃ . Indeed, the patterns getting by adding 1 to an element of

jth row λj of P , ∀ i0 ≤ j ≤ j0 − 1, and dominates P̃ are the only P̃ . Hence we get by
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(6.7) that

(6.12)

the co-efficient of ζP in CL(P), is equal to, (c′P̃)(the co-efficient of ζP in Ej0,i0 ζP̃).

It is easy to observe that

the co-efficient of ζP in Ej0,i0 ζP̃ , is equal to,

the co-efficient of ζP in Ej0,j0−1Ej0−1,j0−2 · · ·Ei0+1,i0 ζP̃ ,

which is also equal to

j0−1∏
j=i0

(
the co-efficient of ζP̃−δi0,i0−δi0+1,i0

−···−δj,i0
in Ej+1,j ζP̃−δi0,i0−δi0+1,i0

−···−δj−1,i0

)

= (1)
( j0−1∏
j=i0+1

1

lj,i0 − lj,j
)

=

j0−1∏
j=i0+1

1

(λji0 − λ
j
j) + (j − i0 + 1)

=

j0−1∏
j=i0+1

1

(λj0−1
i0
− λj0−1

j ) + (j − i0 + 1)
,

(6.13)

(see Theorem 1.4.2 for the action of Ej+1,j). Now the proof of (6.2) for P follows from

(6.12) by using (6.3), (6.6), and (6.13). This completes the proof of Theorem 6.1.2.
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