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Synopsis

In this thesis we study algorithms mainly in the parameterized complexity frame-
work. The thesis has three conceptual parts – (i) efficient computation of representa-
tive families, and its application in FPT and exact algorithms, (ii) study of Matroid
Girth and Matroid Connectivity problems under various natural parameters
and (iii) single exponential polynomial space FPT algorithm for Steiner Tree
parameterized by the number of terminals.

Let S be a family of p sized sets over a universe U . A subfamily Ŝ ⊆ S is called a
q-representative family of S, if Ŝ satisfies the following condition: if there is a q sized
set Y ⊆ U such that there is a set S ∈ S and S ∩ Y = ∅, then there is a set Ŝ ∈ Ŝ
and Ŝ∩Y = ∅. The definition of representative family can be extended to matroids.
We give efficient computation of representative family both for set systems and
matroids. We demonstrate how the efficient construction of representative families
can be a powerful tool for designing single-exponential parameterized and exact
exponential time algorithms. We also use representative family together with other
algorithmic techniques to get (fast) FPT algorithms. All the algorithms we designed
using representative family are based on dynamic programming. Often, in dynamic
programming, the family of partial solutions can have a representation with size
sublinear in the size of the family of partial solutions. One such families are product
families; a family F is the product of A and B if F = {A ∪ B : A ∈ A, B ∈
B, A ∩ B = ∅}. We give an algorithm for the computation of representative family
for product families. Our algorithm, on input an integer q and families A, B of sets
of sizes p1 and p2 over a universe of size n, computes a q-representative family F ′
of F . The running time of our algorithm is sublinear in |F| for many choices of A,
B and q which occur naturally in several dynamic programming algorithms. Using
representative families we obtain the following deterministic algorithms.

1. Long Directed Cycle. In the Long Directed Cycle problem we are
interested in finding a cycle of length at least k in a directed graph. We give
an algorithm of running time O(6.75k+o(k)mn2 log n) for this problem.

2. Short Cheap Tour. In this problem we are given an undirected n-vertex
graph G, w : E(G) → N and an integer k. The objective is to find a path
of length k with minimum weight. We give a O(2.619knO(1) logW ) time algo-
rithm for Short Cheap Tour, where W is the largest edge weight in the

vii



given input graph. We show that our algorithm can be generalized to the more
general problem, k-Tree.

3. r-Dimensional Matching. Given a universe U := U1 ] · · · ] Ur, and a
r-uniform family F ⊆ U1 × · · · × Ur, the r-Dimensional Matching ((r, k)-
DM) problem asks if F admits a collection of k mutually disjoint sets. We
give an algorithm for the problem running in time 2.619(r−1)k|F|O(1).

4. Multilinear Monomial Detection. Here the input is an arithmetic
circuit C over Z+ representing a polynomial P (X) over Z+. The objective is
to test whether P (X) construed as a sum of monomials contain a multilinear
monomial of degree k. For this problem we give an algorithm of running time
O(3.8408k2o(k)s(C)n log2 n), where s(C) is the size of the circuit.

5. Minimum Equivalent Graph(MEG). In this problem we are seeking a
spanning subdigraph D′ of a given n-vertex digraph D with as few arcs as
possible in which the reachability relation is the same as in the original digraph
D. We give a single-exponential exact algorithm, i.e. of running time 2O(n),
for the problem.

6. Editing to Connected f-Degree Graph. In this problem we are given
a graph G, an integer k and a function f assigning integers to vertices of G.
The task is to decide whether there is a connected graph F on the same vertex
set as G, such that for every vertex v, its degree in F is f(v) and the number
of edges in the symmetric difference of E(G) and E(F ), is at most k. We
show that Editing to Connected f-Degree Graph parameterized by k
is FPT by providing an algorithm solving the problem on an n-vertex graph
in time 2O(k)nO(1).

7. Dynamic Programming over graphs of bounded treewidth. We give al-
gorithms with running time O

(
(1 + 2ω−1 · 3)twtwO(1)n

)
for Feedback Ver-

tex Set and Steiner Tree, where tw is the treewidth of the input graph, n
is the number of vertices in the input graph and ω is the matrix multiplication
exponent.

We study Matroid Girth and Matroid Connectivity problems on linear ma-
troids representable over a field Fq in the parameterized complexity framework. We
consider the parameters – (i) solution size, k, (ii) rank(M), and (iii) rank(M) + q,
where M is the input matroid. We show that these problems are unlikely to be in
FPT when parameterized by k or rank(M). We give fast FPT algorithm for these
problems when parameterized by rank(M) + q. We also study Matroid Girth on
specific matroids like transversal matroids and gammoids.

Finally, we study Steiner Tree problem parameterized by the number of termi-
nals. We give the first single-exponential time, polynomial-space FPT algorithm
for the weighted Steiner Tree problem.

viii
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Chapter 1

Computational Framework

One of the main research in theoretical computer science is designing algorithms to
solve problems “efficiently”. Formally a (decision) problem Π is defined as a subset
of Σ∗, where Σ is a finite alphabet. An algorithm A for a problem Π is a finite
and ordered set of instructions given to a machine (a computer), which takes as
input x ∈ Σ∗ (also called an instance of Π) and decides whether x ∈ Π or not. The
efficiency of an algorithm is evaluated using various measures. Two such measures
are how fast the algorithm runs and how much memory (space) the algorithm uses.
In classical complexity theory the running time and space usage of an algorithm is
measured in terms of the length of the input string x, denoted by |x|. To analyze
the running time and space usage theoretically we need to define big-O notation.
Given two functions f(n) and g(n), we say f(n) ∈ O(g(n)) (or f(n) = O(g(n))),
if there exists constants C and n0 such that f(n) ≤ Cg(n) for all n ≥ n0. For
more details about the asymptotic notations the reader is referred to monographs of
algorithms like [75, 36]. If there is an algorithm for a problem Π, which runs in time
nO(1), where n is the length of the input (also called the input size), then we say Π
is polynomial time solvable. If the space usage of an algorithm is bounded by nO(1),
where n is the length of the input, then we say that the algorithm is a polynomial
space algorithm. In the classical complexity theory, the class P is defined as the set
of problems that can be solved in polynomial time. For many problems, despite the
intense effort, we were not able to come up with polynomial time algorithms.

For many problems, even though we were not able to get polynomial time algorithm,
a polynomial time “verifier” exists– a polynomial time verifier for a problem Π is a
polynomial time algorithm that takes an instance x of Π, and a string y ∈ Σ∗ (called
a certificate for x) such that |y| ∈ |x|O(1) as input and decides whether x ∈ Π or not.
The class of problems which has a polynomial time verifier is defined to be the class
NP and clearly P ⊆ NP. But the question of “is NP ⊆ P?” remains as a notorious
open problem in computer science. This leads to the study of intractability theory
in algorithms. The intractability theory allows us to group together problems based
on its hardness. One of the greatest discovery in computer science is the notion of
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“reduction” and “completeness” for the class NP. The notion of reduction from a
problem Π1 to a problem Π2 helps us to solve the problem Π1 using an algorithm
for Π2 and thus to conclude that Π2 is at least as hard as Π1. We briefly explain
two kinds of reductions used in the literature.

• A many-one reduction (also called Karp-reduction) from a problem Π1 to a
problem Π2 is an algorithm which takes an instance x of Π1 as input and
produces an instance y of Π2 with the property that x ∈ Π1 if and only if
y ∈ Π2. If the algorithm runs in polynomial time, then we say the reduction
is a polynomial time Karp-reduction

• A Turing-reduction from a problem Π1 to a problem Π2 is an algorithm which
solves Π1 using a subroutine for Π2. If the number of steps the algorithm takes
excluding the number of steps of the subroutine, but including the number of
times the subroutine is called is polynomial in the input size, then we say the
reduction is a polynomial time Turing-reduction

A problem Π is hard for the class NP (or NP-hard), if any problem in NP can be
polynomial time many one reducible to Π and the problem Π is called NP-Complete
if it is in NP as well. Unfortunately many interesting combinatorial problems are NP-
Complete. One could observe that any problem in NP can be solved by enumerating
all the certificates of the polynomial time verifier (brute force algorithm) for the
problem. But can we do better than the brute force algorithm? This leads to study
of algorithms in different frameworks rather than focusing only on algorithms which
runs in polynomial time and always producing the correct solution. Some such
frameworks are exact exponential time algorithms, approximation algorithms, fixed
parameter tractability, randomized algorithms etc. Here we would like to mention
that approximation algorithms are defined for optimization problems.

In this thesis we mainly study the algorithms in the realm of fixed parameter
tractability. For brief overview of fixed parameter tractability see Section 1.1. We
also design an exact exponential time algorithm for a problem and a brief overview
of exact exponential time algorithms is given in Section 1.2. For ease of presentation
for some problems we first design a randomized algorithm and then derandomize it.
A brief overview of randomized algorithms is given in Section 1.3.

1.1 Fixed Parameter Tractability

In the classical computational complexity theory the running time of an algorithm
is measured in terms of input size and classify problems based on whether they
are polynomial time solvable or NP-hard. But in many natural problems, a small
parameter compared to the input size may be associated with the input, like solution
size of a problem, treewidth of a graph etc, and this can be exploited while designing
an algorithm. Formally a parameterized problem Π is a subset of Σ∗ × N+, where
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Σ is a finite alphabet and N+ is the set of positive natural numbers. The second
component of the input is called the parameter. We say a parameterized problem Π
is fixed parameter tractable (FPT) if there is an algorithm for the problem, runs in
time f(k)|x|O(1) on input (x, k) where f is an arbitrary function depending only on
k. The study of algorithms where the running time of the algorithms measured in
terms of multiple variables are referred as Parameterized Complexity in literature.

Like the P verses NP classification in the classical computational complexity theory,
parameterized complexity is also enriched with an intractability theory. But for
the analog of the complexity class NP, parameterized complexity contains a set of
complexity classes which forms a hierarchy, called W-hierarchy. To define the classes
in W-hierarchy, we need to define boolean circuits.

Definition 1.1. A boolean circuit is a directed acyclic graph with one out-degree 0

node (called the output node) and each node is labeled in the following way.

• Every node of in-degree 0 is an input node

• Every node of in-degree at least 2 is either an AND-node or an OR-node

• Every node of in-degree 1 is a NOT-node (negation node).

The nodes of in-degree strictly more than 2 is called large nodes. The depth of the

circuit is the maximum length of a path from an input node to the output node and

the weft of the circuit is the maximum number of large nodes on a path from an

input node to the output node.

Assigning 0-1 values to the input nodes of a boolean circuit determines the value of
every node in the natural way. If the value of the output node is 1 in an assignment
to the input nodes, then we say that the assignment satisfies the circuit. The weight
of an assignment is the number of ones assigned to input nodes. Note that given a
circuit and an assignment to the input nodes in the circuit, we can check whether
the assignment satisfies the circuit in polynomial time. Now we define a class of
Weighted Circuit Satisfiability problem and parameterized reduction which
is crucial to define the W-hierarchy.

Weighted Circuit Satisfiability[t, d] (WCS[t, d]) Parameter: k
Input: A boolean circuit C of depth d and weft t and an integer k
Question: Is there a satisfying assignment of weight k for the circuit C
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Definition 1.2. Let Π1,Π2 ⊆ Σ∗ × N+ be two parameterized problems. A parame-

terized reduction from Π1 to Π2 is an algorithm which takes an instance (x1, k1) of

Π1 and outputs an instance (x2, k2) of Π2 such that

• (x1, k1) ∈ Π1 if and only if (x2, k2) ∈ Π2,

• k2 ≤ g(k1) for some computable function g, and

• the running time of the algorithm is bounded by f(k1)|x1|O(1) for some com-

putable function f .

Similar to the Turing reduction in the classical computational complexity, a pa-
rameterized Turing reduction from a parameterized problem Π1 to a parameterized
problem Π2 is an FPT algorithm for Π1, which takes an instance (x, k) of Π1 as input
and decides (x, k) ∈ Π1 or not, using a subroutine for Π2, where the parameter of
each subroutine call is bounded by a computable function of k.

Proposition 1.1. Let Π1 and Π2 be two parameterized problems and there is a

parameterized (Turing) reduction from Π1 to Π2. If Π2 is FPT, then Π1 is also

FPT.

Now we define the W-hierarchy.

Definition 1.3 (W-hierarchy). For t ≥ 1, a parameterized problem Π belongs to

the class W[t], if there is parameterized reduction from Π to WCS[t, d] for some

constant d ≥ t.

A parameterized problem Π is W[t]-hard for any t, d ≥ 1, if there is a parameterized
reduction from WCS[t, d] to Π and Π is W[t]-complete if Π is in W[t] as well. The
classes FPT ⊆ W[1] ⊆ W[2] ⊆ · · · forms a hierarchy. The following proposition is
easy to see.

Proposition 1.2. Let Π1 and Π2 be two parameterized problems. If Π1 is W[t]-hard

for some t ≥ 1, there is parameterized (Turing) reduction from Π1 to Π2 and Π2 is

FPT, then FPT = W[t]

As like the P verses NP question, the questions “Is FPT = W[1]?” and “Is W[t] =
W[t + 1] for some t ≥ 1?” are long standing open problems. It is believed that

6



FPT 6= W[t] for any t ≥ 1 and it is backed by standard complexity theory assump-
tions like Exponential Time Hypothesis [29].

Parameterized complexity also contains study of compression of problem instances
called kernelization. But in this thesis we are only dealing with FPT algorithms and
W-hardness. For more detailed reading about parameterized complexity we refer to
monographs [48, 41, 37].

1.2 Exact Exponential Time Algorithms

One of the area of study in algorithms is Exact Exponential Time Algorithms. We
have mentioned that each problem in NP can be solved by a brute force algorithm.
Consider the Hamiltonian Cycle problem, where the objective is to test whether
the given n-vertex m-edge graph has a simple cycle containing all the vertices. This
can be solved in time O(n!) time by enumerating all the permutation of the vertex
set or in time 2mnO(1) by enumerating all the edge subsets. But the algorithms of
Bellman [9] and Held and Karp [69] from 1960s solves Hamiltonian Cycle in
time O(2nn2), which significantly outperforms the brute force algorithm. In exact
algorithms we try to design algorithms which is better than the brute force. In the
case of polynomial time algorithm we measure the quality of algorithm in terms of
input size. How do we measure the quality of an exact exponential time algorithm?
Consider any graph problem, where the input is a graph on n vertices and m edges.
Here the input size is bounded bounded by O((m + n) log(m + n)). Most of the
combinatorial problems on graphs has a simple brute force algorithm running in
time 2O(n+m)nO(1). So, for any graph problem the quality of exact algorithms are
measured in terms the number of vertices. If an algorithm for a graph problem runs
in time 2O(n)nO(1), then we say it is an Exact Exponential Time algorithm. For more
details about the exact exponential time algorithm we refer to the monograph [53].

1.3 Randomized Algorithms

In randomized algorithms, algorithm will have access to random bits and it uses
these random bits to produce the output. There are mainly two kinds of randomized
algorithms studied in the literature.

• Monte Carlo algorithms. In Monte Carlo algorithms, the algorithm runs in
bounded time or space, but have a chance of producing incorrect output. The
most basic randomized complexity class is RP, which is the class of decision
problems for which there is a polynomial time randomized algorithm which
recognizes No-instances with probability 1 and recognizes Yes-instances with
a probability of at least 1/2.

7



• Las Vegas algorithms. In Las Vegas algorithms, the algorithm always pro-
duces correct output and the expected running time is bounded. The class
of decision problems having algorithms with polynomial time average case
running time whose output is always correct are said to be ZPP.

In this thesis we design Monte Carlo algorithms for parameterized problems run-
ning in FPT time, with one sided error. That is the algorithm will recognizes
No-instances with probability 1 and recognizes Yes-instances with a probability of
at least 1/2. For more details about randomized algorithms we refer to the mono-
graph [96].
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Chapter 2

Organization of the thesis

In this chapter we explain how the rest of the thesis is organized. In Chapter 3
we give basic definitions and notations used in the thesis, which include notations
from sets, functions, graphs and polynomials. In Chapter 4, we give basics about
matroids, linear representation of matroids and lists some examples of matroids
which we used in our algorithmic applications. In Chapter 5, we define and give
known constructions about coloring families like family of perfect hash functions
and universal sets, which are used extensively to derandomize algorithms. In this
chapter we also define lopsided universal sets and generalized universal sets. Both
the coloring families and the ideas used to construct these families are used in
later chapters in the thesis like to construct representative family in set systems
(Chapter 7) and derandomization of algorithm in Chapter 15. In Chapter 6, we
define the main algorithmic tool used in the thesis, representative families, and give
motivation to study it. We also talk about previous results about the construction
representative families both in set systems and linear matroids.

In Part II we give efficient construction and many applications of representative
families in set system. In Chapter 7 we give an efficient algorithm to compute repre-
sentative families in set system and in Chapters 8,9 and 10 we show its applicability
in the field of parameterized algorithms. The results in Chapters 7, 8 and 9 are from
the paper [54] and its preliminary versions appeared in the proceedings of SODA
2014([57]) and ESA 2014 [55]. The Chapter 10 is based on the paper [66] and its
conference version appeared in the proceedings of FSTTCS 2013 [65]. In Chapter 11,
we give a faster algorithm to compute representative family for a product family.
This computation can be used to design fast FPT algorithms. We show such an
example in Chapter 12 by giving an algorithm for detecting a multilinear term on k
variables, given an arithmetic circuit C representing n-variate polynomial over Z+,
running in time O(3.8408k2o(k)s(C)n log n), where s(C) is the size of the circuit C.
The results in chapters 11 and 12 are from the paper [55].

In Part III, we generalizes representative families to matroids and see many applica-
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tions using representative families in matroids which have linear representations. In
Chapter 13 we give a fast algorithm to compute a representative family of a family
of independent sets in a linear matroid. In Chapter 14, we give an exact exponential
time algorithm for a problem Minimum Equivalent Graph using representative
families in linear matroids. In Chapter 15, we prove that Editing to Connected
f-Degree Graph is FPT(we refer to the chapter for definition of the problem)
using an algorithm which uses both representative family in a linear matroid and
color coding. The results in the Chapters 13 and 14 are based on the paper [54].
The results in the Chapter 15 are from the paper [49]. In Chapter 16 we give faster
algorithm to compute representative family of a product family in a linear matroid
and in Chapters 17 and 18 we show its applications. The results in Chapters 16, 17
and 18 are from the paper [55].

In Part IV we study problems on matroids like Matroid Girth and Matroid
Connectivity in linear matroids for various natural parameters like solution size,
rank of the input matriod and field size. For these parameters we either prove
W[1]-hardness or give fast FPT algorithms. We had a fast FPTalgorithm for Ma-
troid Girth in linear matroids when parameterized by the rank of the matroid
and field size of the underlying linear representation of the matroid, using repre-
sentative family. Later we designed a faster FPTalgorithm for the problem using
MacWilliams identity from coding theory. In Chapter 19 we included the algorithm
using MacWilliams identity and studied the same problem on specific matroids like
transversal matroids and gammoids. In Chapter 20 we study Matroid Connec-
tivity in linear matroids for various natural parameters. The results in Part IV
are from the paper [104].

In Part V we give the first polynomial space single exponential FPT algorithm for
weighted Steiner Tree algorithm. Our algorithm is a combination of branching
and dynamic programming using combinatorial facts about balanced separators in
trees. This part is based on the paper [52].

In Chapter 22, we conclude the thesis by giving some open problems.
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Chapter 3

Preliminaries

3.1 Sets, Families and Functions

Let U be a set. We use 2U ,
(
U
i

)
and

(
U
≤i

)
to denote the family of all subsets of U ,

the family of all subsets of size i of U and the family of all subsets of size at most i
of U respectively. A family F of subsets of U is called a p-family if for all X ∈ F ,
|X| = p. We use N and N+ to denote the set of natural numbers and the set of
positive natural numbers respectively. We use [n] to denote the set {1, . . . , n}. For
an integer n, we use Zn to denote the set {0, 1, . . . , n − 1}. For a prime number p,
Zp form a field with field addition and multiplication operations being addition and
multiplication modulo p respectively.

Definition 3.1. Given two families of sets L1 and L2, we define

L1 ◦ L2 = {X ∪ Y | X ∈ L1, Y ∈ L2}

L1 • L2 = {X ∪ Y | X ∈ L1, Y ∈ L2, X ∩ Y = ∅}

For a function f from a domain D to a range R and y ∈ R, we use f−1(y) to denote
the set {x ∈ D | f(x) = y}. If f is a function from a set X to a set Y and g is a
function from the set Y to a set Z, then the composite function denoted by g◦f , from
X to Z is defined as (g◦f)(x) = g(f(x)). We call a function f : 2U → N, additive if
for any subsets X and Y of U we have that f(X)+f(Y ) = f(X∪Y )−f(X∩Y ). For
a function w : U → N and S ⊆ U , we use w(S) to denote the number

∑
s∈S w(s).

We use ω to denote the matrix multiplication exponent. The current best known
bound on ω < 2.373 [120].
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3.2 Graphs and Directed Graphs

We use “graph” to denote simple graphs without self-loops, directions, or labels,
and “directed graph” or “digraph” for simple directed graphs without self-loops or
labels. We use standard terminology from the books of Diestel [39], and Bang-Jensen
and Gutin [7] for graph-related terms about undirected graphs and directed graphs
respectively, which we do not explicitly define here. In general we use G to denote
a graph and D to denote a digraph.

We use V (G) and E(G), respectively, to denote the vertex and edge sets of a graphG.
We also useG = (V,E) to denote a graphG with vertex set V and edge set E. We use
E(G) to denote the set

(
V (G)

2

)
\E(G). For a vertex v ∈ V (G), we use EG(v) to denote

the set of edges of E(G) incident to v, EG(v) to denote the set of non-edges of E(G)
incident to v, and dG(v) to denote |EG(v)|, i.e the degree of vertex v. A graph G′ is
a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The subgraph G′ is called an
induced subgraph of G if E(G′) = {uv ∈ E(G) | u, v ∈ V (G′)}, in this case, G′ is also
called the subgraph induced by V (G′) and denoted by G[V (G′)]. For a vertex set S,
by G−S we denote G[V (G)\S]. By NG(u) we denote (open) neighborhood of u, that
is, the set of all vertices adjacent to u. Similarly, by NG[u] = NG(u)∪{u} we define
the closed neighborhood. For a subset S ⊆ V (G), we define NG[S] = ∪v∈SNG[v]
and NG(S) = NG[S] \ S. If the graph G is clear in the context then we may remove
the subscript G from the notation. For an edge set E ′ ⊆ E(G), we use (i) V (E ′) to
denote the set of end vertices of the edges in E ′, (ii) G−E ′ to denote the subgraph
G′ = (V (G), E(G)\E ′) of G, and (iii) G[E ′] to denote the subgraph (V (E ′), E ′) of G.
For a subset B ⊆ E(G), we use G+B to denote the graph G′ = (V (G), E(G)∪B).
We say an edge e ∈ E(G) is a bridge if G − {e} has more connected components
than G.

We use V (D) and A(D) respectively, to denote the vertex and arc sets of a digraph
D. We use U(D) denote the underlying undirected graph of D. A vertex u of D is an
in-neighbor (out-neighbor) of a vertex v if uv ∈ A(D) (vu ∈ A(D), respectively). We
denote the set of in-neighbors and out-neighbors of a vertex v by N−D (v) and N+

D (v)
correspondingly. The in-degree d−D(v) (out-degree d+

D(v)) of a vertex v is the number
of its in-neighbors (out-neighbors). For v ∈ V (D) we use InD(v) and OutD(v) to
denote the sets of in-coming and out-going arcs incident with v respectively. If the
digraph D is clear from the context, then we may remove the subscript D from
the notation. Given a subset V ′ ⊆ V (D) of a digraph D, let D[V ′] denote the
digraph induced by V ′. A digraph D is strong if for every pair x, y of vertices there
are directed paths from x to y and from y to x. A maximal strongly connected
subdigraph of D is called a strong component. A closed directed walk in a digraph D
is a sequence v0v1 · · · v` of vertices of D, not necessarily distinct, such that v0 = v`
and for every 0 ≤ i ≤ `− 1, vivi+1 ∈ A(D).

If P is a path from vertex u to vertex v in graph G (or in digraph D) then we say
that (i) P connects u and v, (ii) u, v are, respectively, the initial vertex and the
final vertex of P , and (iii) u, v are the end vertices of path P . Let P1 = x1x2 . . . xr
and P2 = y1y2 . . . ys be two edge-disjoint paths in a graph G. If xr = y1 and
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V (P1) ∩ V (P2) = {xr}, then we use P1P2 to denote the path x1x2 . . . xry2 . . . ys.

For a path P = u1u2 · · ·u` in a graph G, we use
←−
P to denote the reverse path

u`u`−1 · · ·u1. A path system P in graph G (resp., digraph D) is a collection of paths
in G (resp. in D), and it is edge-disjoint if no two paths in the system share an edge.
We use V (P) and E(P) (A(P) for path system in digraph) for the set of vertices
and edges, respectively, in a path system P .

3.3 Polynomials

A polynomial over a field F is an expression consisting of variables and coefficients
from the field F, that involves the operations of additions and multiplications. An
example of a polynomial on two variables x and y over the field of irrational numbers
is P (x, y) = x2 +xy−3y. A monomial Z = xs11 · · ·xsnn of a polynomial P (x1, . . . , xn)
is called multilinear if si ∈ {0, 1} for all i ∈ {1, . . . , n}. We say a monomial Z =
xs11 · · ·xsnn as k-multilinear term, if Z is multilinear and

∑n
i=1 si = k. In algorithms,

polynomials are generally represented using arithmetic circuits.

Definition 3.2. An arithmetic circuit C over a commutative ring R is a simple

labelled directed acyclic graph with its internal nodes are labeled by + or × and

leaves (in-degree zero nodes) are labeled from X ∪ R, where X = {x1, x2, . . . , xn},
a set of variables. There is a node of out-degree zero, called the root node or the

output gate. The size of C, s(C) is the number of vertices in the graph.
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Chapter 4

Matroids

In this chapter we give definitions related to matroids. For a broader overview on
matroids we refer to [103].

Definition 4.1. A pair M = (E, I), where E is a ground set and I is a family

of subsets (called independent sets) of E, is a matroid if it satisfies the following

conditions:

(I1) ∅ ∈ I.

(I2) If A′ ⊆ A and A ∈ I then A′ ∈ I.

(I3) If A,B ∈ I and |A| < |B|, then there is e ∈ (B \ A) such that A ∪ {e} ∈ I.

The axiom (I2) is also called the hereditary property and a pair (E, I) satisfying
only (I2) is called hereditary family. An inclusion wise maximal set of I is called
a basis of the matroid. Using axiom (I3) it is easy to show that all the bases of a
matroid have the same size. A set D ⊆ E is called a dependent set if D is not an
independent set in M , i.e, D /∈ I. The cardinality of the smallest dependent set of
a matroid M is called the girth of M , denoted by g(M).

Rank and rank function of a matroid. Let M = (E, I) be a matroid. The
rank of a subset S ⊆ E is the maximum cardinality of an independent set contained
in S. The rank function rM of M maps each subset of its ground set to its rank.
That is rM : 2E → N+∪{0} such that rM(S) = max{|S ′| : S ′ ⊆ S, S ′ ∈ I}. From
the definition of rank function rM of M , it is clear that rM(E) is the cardinality
of a basis of M . This number is called the rank of the matroid M , and is denoted

15



by rank(M). That is, rank(M)= rM(E). Some times we use r to denote the rank
function of a matroid M instead of rM , if it is clear from the context. The closure
cl(A) of a subset A of E is the set cl(A) = {x ∈ E : rM(A) = rM(A) ∪ {x}}.

Contraction. For X ⊆ E, the contraction of M by X, written M/X, is the
matroid on the underlying set E \X whose rank function rM/X : 2E\X → N+ ∪ {0}
is defined as follows. For all A ⊆ E \X, rM/X(A) = rM(A ∪X)− rM(X).

Dual of a matroid. The dual of a matroid M = (E, I) is a matroid, denoted
by M∗, which has the same ground set as M and a subset A ⊆ E is independent
in M∗ if and only if there is a basis of M which is disjoint from A. In other
words, a set B is a basis of M∗ if and only if E \ B is a basis of M . For a matroid
M = (E, I), it follows from the definition of dual of a matroid and rank of a matroid
that rank(M)+rank(M∗)= |E|. The following proposition gives the relation between
the rank function of a matroid and that of its dual.

Proposition 4.1 ([103]). Let rM and rM∗ be the rank functions associated with a

matroid M = (E, I) and its dual respectively. Then for any S ⊆ E, rM∗(S) =

|S| − rM(E) + rM(E \ S).

k-separation and connectivity of a matroid. Let M = (E, I) be a matroid
and r be the rank function associated with it. A k-separation of M is a partition
(X, Y ) of E such that |X| ≥ k, |Y | ≥ k and r(X) + r(Y ) − r(E) ≤ k − 1. The
connectivity ofM , denoted by κ(M), is the smallest k such that M has a k-separation.

4.1 Linear Matroids and Representable Matroids

Let A be a matrix over an arbitrary field F and let E be the set of columns of A.
For A, we define matroid M = (E, I) as follows. A set X ⊆ E is independent
(that is X ∈ I) if the corresponding columns are linearly independent over F. The
matroids that can be defined by such a construction are called linear matroids, and if
a matroid can be defined by a matrix A over a field F, then we say that the matroid
is representable over F. That is, a matroid M = (E, I) of rank d is representable
over a field F if there exist vectors in Fd corresponding to the elements such that
linearly independent sets of vectors correspond to independent sets of the matroid.
A matroid M = (E, I) is called representable or linear if it is representable over
some field F. Following lemma shows that, we can get a linear representation of a
matroid from its dual in polynomial time.
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Lemma 4.1 ([103]). If M is a representable matroid over a field F, then the dual of

M is also representable over F. Moreover, given a linear representation of M over

F, we can compute a linear representation of M∗ over the same field in polynomial

time.

4.2 Direct Sum of Matroids.

Let M1 = (E1, I1), M2 = (E2, I2), . . . , Mt = (Et, It) be t matroids with Ei∩Ej = ∅
for all 1 ≤ i 6= j ≤ t. The direct sum M1 ⊕ · · · ⊕Mt is a matroid M = (E, I) with
E :=

⋃t
i=1 Ei and X ⊆ E is independent if and only if X ∩Ei ∈ Ii for all i ≤ t. Let

Ai be the representation matrix of Mi = (Ei, Ii). Then,

AM =


A1 0 0 · · · 0
0 A2 0 · · · 0
...

...
...

...
...

0 0 0 · · · At


is a representation matrix of M1 ⊕ · · · ⊕Mt. The correctness of this construction is
proved in [93].

Proposition 4.2 ([93, Proposition 3.4]). Given linear representations of matroids

M1, . . . ,Mt over the same field F, a representation of their direct sum can be found

in polynomial time.

4.3 Truncation and elongation of a Matroid.

Definition 4.2. The t-truncation of a matroid M = (E, I) is a matroid M ′ =

(E, I ′) such that S ⊆ E is independent in M ′ if and only if |S| ≤ t and S is

independent in M (that is S ∈ I). We use Mt to denote the t-truncation of a

matroid M .

Definition 4.3. The `-elongation of a matroid, where ` > rank(M) is defined as a

matriod M ′ = (E, I ′) such that S ⊆ E is a basis in M ′ if and only if, rM(S) = rM(E)

and |S| = `. We use M(`) to denote the `-elongation of a matroid M .
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Lemma 4.2 ([85]). Given a n × m matrix AM over a field F, which is a linear

representation of a matroid M , there is a deterministic algorithm running in O(nmt)

field operations over F and computes linear representations of t-truncation of M , Mt

and t-elongation of M , M(t) over a field F(X).

4.4 Examples of Matroids

4.4.1 Uniform and Partition Matroids

A pair M = (E, I) over an n-element ground set E, is called a uniform matroid if
the family of independent sets is given by I = {A ⊆ E | |A| ≤ k}, where k is some
constant. This matroid is also denoted as Un,k. Every uniform matroid is linear and
can be represented over a finite field by a k×n matrix AM where the AM [i, j] = ji−1.

AM =


1 1 1 · · · 1
1 2 3 · · · n
1 22 32 · · · n2

...
...

...
...

...
1 2k−1 3k−1 · · · nk−1



Matrix AM is called Vandermonde matrix. Observe that for Un,k to be representable
over a finite field F, we need that the determinant of each k × k submatrix of AM
must not vanish over F. Observe that any k columns corresponding to xi1 , . . . , xik
itself form a Vandermonde matrix, whose determinant is given by

∏
1≤j<`≤k

(xij − xi`).

Combining this with the fact that x1, . . . , xn are n distinct elements of F, we conclude
that every subset of size at most k of the ground set is independent, while clearly
each larger subset is dependent. Thus, choosing a field F of size larger than n
suffices. Note that this means that a representation of the uniform matroid Un,k can
be stored using O(log n) bits.

A partition matroid M = (E, I) is defined by a ground set E being partitioned into
(disjoint) sets E1, . . . , E` and by ` non-negative integers k1, . . . , k`. A set X ⊆ E
is independent if and only if |X ∩ Ei| ≤ ki for all i ∈ {1, . . . , `}. Observe that a
partition matroid is a direct sum of uniform matroids U|E1|,k1 , · · · , U|E`|,k` . Thus, by
Proposition 4.2 and the fact that a uniform matroid Un,k is representable over a field
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F of size larger than n, we have that.

Proposition 4.3 ([93, Proposition 3.5]). A representation over a field of size O(|E|)
of a partition matroid can be constructed in polynomial time.

4.4.2 Graphic and Co-graphic Matroids

Definition 4.4. Given a graph G, a graphic matroid M = (E, I) is defined by

taking elements as edges of G (that is E = E(G)) and F ⊆ E(G) is in I if it forms

a spanning forest in the graph G. The dual of graphic matriod is called co-graphic

matroid. For a graph G, we use MG and M∗
G to denote the graphic matriod and

co-graphic matriod associated with the graph G respectively.

The graphic matroid and co-graphic matroid are representable over any field of size
at least 2. Consider the matrix AM with a row for each vertex i ∈ V (G) and a
column for each edge e = ij ∈ E(G). In the column corresponding to e = ij, all
entries are 0, except for a 1 in i or j (arbitrarily) and a −1 in the other. This is
a representation over reals. To obtain a representation over a field F, one simply
needs to take the representation given above over reals and simply replace all −1 by
the additive inverse of 1.

Proposition 4.4 ([103]). Graphic matroids and co-graphic matroids are repre-

sentable over any field of size at least 2.

Let G be a graph with ` connected components. Then from the definition of the
graphic matroid MG and the dual of a matroid, we have that any set F ⊆ E(G)
is independent in the co-graphic matroid M∗

G if and only if G − F has exactly `
connected components. If G is a connected graph, then F ⊆ E(G) is independent
in M∗

G if and only if G− F is connected.

4.4.3 Transversal matroids

Let G be a bipartite graph with the vertex set V (G) being partitioned as A and B.
The transversal matroid M of G has A as its ground set, and a subset X ⊆ A is
independent in M if and only if there is a matching that covers X. That is, X is
independent if and only if there is an injective mapping φ : X → B such that φ(v)
is a neighbor of v for every v ∈ X.
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4.4.4 Gammoid and Strict Gammoid

Let D be a directed graph. For S, T ⊆ V (D), the set T is linked to S if there exist
|T | vertex-disjoint paths from S to T , where the end points of the paths are also
disjoint. For a fixed S, V ′ ⊆ V (D), a gammoid is a matroid with ground set V ′,
where A ⊆ V ′ is independent if and only if A is linked to S. When V ′ = V (D), the
gammoid is called strict gammoid, and is denoted by the pair (D,S).
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Chapter 5

Pseudo Random Objects

In this chapter we discuss the (n, k, l)-family of perfect hash functions and (n, k)-
universal sets which are family of functions satisfying some properties. Here we are
interested in constructing an (n, k, k)-family of perfect hash functions and (n, k)-
universal sets of size as small as possible, because we want to use these objects to
derandomize algorithms whose running time will depend on the size of these ob-
jects. FKS Hashing can be used to create (n, k, k)-family of perfect hash functions
of size 2O(k) log2 n [59, 113]. Since in parameterized complexity we are concerned
about the the base of the exponential function, we describe another construction of
(n, k, k)-family of perfect hash functions of size ekkO(log k) log2 n via splitters [100].
In Section 5.1, we define these objects and splitters. Since construction of (n, k, k)-
family of perfect hash functions using splitters uses the (n, k, k2)-family of perfect
hash functions constructed using FKS Hashing, we describe this construction in
Section 5.2. In Section 5.3, we describe the construction of (n, k, k)-family of perfect
hash functions and (n, k)-universal sets using splitters. In Section 5.4 we define
lopsided universal sets and generalized universal sets and explain its efficient con-
struction. The lopsided universal sets and generalized universal sets can be used to
derandomize algorithms more efficiently in some situations.

5.1 Definitions

Definition 5.1. An (n, k, l)-splitter H is a family of functions from [n] to [l] such

that for all S ∈
(

[n]
k

)
, there is an h ∈ H that splits S perfectly, i.e., into equal sized

parts h−1(j) ∩ S, j = 1, 2, ..., l (or as equal as possible, if l does not divide k).

Definition 5.2. Let H be a family of functions from [n] to [l]. The family H is
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an (n, k, l)-family of perfect hash functions if for all S ∈
(

[n]
k

)
, there is an h ∈ H

which is one-to-one on S. Notice that an (n, k, l)- family of perfect hash functions

is a (n, k, l)-splitter, where l ≥ k

Definition 5.3. A set of vectors T ⊆ {0, 1}n is called (n, k)-universal sets (or n-k-

universal family), if for any index set S ⊆ [n] with |S| = k, the projection of T on

S contains all possible 2k configurations. In other words, a family F of sets over a

universe U of size n, is an n-k-universal family if for every set A ∈
(
U
k

)
and every

subset A′ ⊆ A there is some set F ∈ F whose intersection F ∩ A is exactly A′.

For the construction of pseudo random objects we need to define the notion of k-wise
independent random variables from the probability theory.

Definition 5.4 (k-wise independent). Random variables X1X2...Xn from a sample

space A1× . . .×An is said to be k-wise independent if for any k positions i1 < i2 <

... < ik and a1 ∈ Ai1 , . . . , ak ∈ Aik , we have

Pr[Xi1 = a1 ∧ . . . ∧Xik = ak] =
k∏
j=1

Pr[Xij = aj]

Proposition 5.1 ([3]). There exists a k-wise independent probability space Hn,k,b ⊆
[b]n, with each random variable taking values from [b], of size O(nk), and it can be

constructed in time linear in the output size.

5.2 FKS Hashing

In this section we discuss about an explicit construction of an (n, k, k2)-family of
perfect hash functions developed in [59]. Consider the case where we want to con-
struct a family of hash functions H from [n] to [l], where l ≥ k, such that for any
subset S ∈

(
[n]
k

)
, there exists h ∈ H such that h is one-to-one on S.

Lemma 5.1 ([59]). Fix a prime number p, such that n < p < 2n. Let S ∈
(

[n]
k

)
and a ∈ Z∗p and l ≥ k. Let B(l, S, a, j) = |{x|x ∈ S and (ax mod p) mod l = j}| for

all 0 ≤ j ≤ l − 1. In other words, B(l, S, a, j) is the number of times the value j
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is attained by the function x → (ax mod p) mod l when x is restricted to S. Then

there exists a ∈ Z∗p such that

l−1∑
j=0

(
B(l, S, a, j)

2

)
<
k2

l
(5.1)

Hence we get the following corollary.

Corollary 5.1 ([59]). For all S ∈
(

[n]
k

)
, there exist a ∈ Z∗p such that the mapping x→

(ax mod p) mod k2 is one-to-one when restricted to S. In other words there exists

an (n, k, k2)-family of perfect hash functions of size O(n) and it can be constructed

in time O(n).

The following lemma can be proved using Lemma 5.1.

Lemma 5.2 ([59]). For all S ∈
(

[n]
k

)
, there exists a ∈ Z∗p such that

k−1∑
j=0

B(k, S, a, j)2 < 3k.

Using prime number theorem one can prove that an (n, k, l)-family of perfect hash
functions of size O(k2 log n) can be constructed in time (k · log n)O(1), where l <
k2 log n.

Lemma 5.3 ([59]). Let S ∈
(

[n]
k

)
. Then there exists a prime p < k2 log n such that

the function λp : x→ x mod p is one-to-one on S, i.e., for all x, y ∈ S with x 6= y,

x mod p 6= y mod p.

Since primality testing can be done in polynomial time [1] and number of primes
less than x is approximately equal to x

log x
, we get the following corollary.

Corollary 5.2. An (n, k, l)-family of perfect hash functions of size O( k2 logn
log(k logn)

) can

be constructed in time k2 log n · (log(k log n))O(1), where l < k2 log n.

Theorem 5.1. An (n, k, k2)-family of perfect hash functions of size O( k4 log2 n
log(k logn)

)

can be constructed in time kO(1)n log2 n.

23



Proof. Let H1 be (n, k, k2 log n)-family of perfect hash functions of size O( k2 logn
log(k logn)

)

constructed as mentioned in Corollary 5.2. Let H2 be (k2 log n, k, k2)-family of

perfect hash functions of size O(k2 log n) constructed as mentioned in Corollary 5.1.

Now consider the family of functions H = {g ◦ f |f ∈ H1, g ∈ H2}. we claim that

H is (n, k, k2)-family of perfect hash functions because for any S ∈
(

[n]
k

)
there exist

a function that maps elements of S to distinct values in [k2 log n] and there exist

a function in H2 that maps these distinct values to distinct values in [k2]. Since

|H1| = O( k2 logn
log(k logn)

) and |H2| = O(k2 log n), the size of H is O( k4 log2 n
log(k logn)

). The

time to output H1 and H2 is bounded by k2 log n · (log(k log n))O(1). The time to

output all the functions in H is equal to O(|H| · n) = kO(1)n log2 n multiplication

operations.

Alon et al. [4] give another efficient constructions of (n, k, k2)-perfect families of hash
functions:

Theorem 5.2 ([4]). For any universe U of size n there is a (n, k, k2)-perfect family

f1, . . . , ft of hash functions from U to [k2] with t = O(kO(1) · log n). Such a family

of hash functions can be constructed in time O(kO(1)n log n).

5.3 Splitters

In this section we describe about the construction of (n, k, k)-family of perfect hash
functions and (n, k)-universal sets using (n, k, l)-splitters. In all three combinatorial
objects- (n, k, k)-family of perfect hash functions, (n, k) -universal sets and (n, k, l)-
splitters, our objective is to find a set of vectors of length n over an alphabet of
size b (in case of (n, k, k)-family of perfect hash functions b = k, in case of (n, k)-
universal sets b = 2 and in case of (n, k, l)-splitters b = l) such that for any k
out of n indices, we will find some “nice” configurations. This generalized problem
is called k-restriction problem. We will describe it formally in Section 5.3.1 and
explain how these problems will fall into k-restriction problem. In Section 5.3.3
and Section 5.3.4 we construct (n, k, k)-family of perfect hash functions and (n, k)-
universal sets respectively using the solution of k-restriction problem developed in
Section 5.3.2 and using FKS hashing.
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5.3.1 k-restriction problem

k-restriction problem is formally defined as follows

k-restriction problem

Input: Positive integers b, k, n and a list C = C1, C2, ..., Cm where Ci ⊆ [b]k

and with the collection C being invariant under permutation of [k]
Output: Collection of vectors V ⊆ [b]n such that ∀S ⊆ [n] with |S| = k and

∀j : 1 ≤ j ≤ m, ∃v ∈ V such that projection of v on S, v(S) ∈ Cj

An important parameter of k-restriction problem is c = min1≤j≤m |Cj|. We call c/bk

the density of the problem. Now we explain how the combinatorial objects which
we defined in Section 5.1, fall into the category of k-restriction problem.

1. (n, k, l)-splitters. To specify splitters as k-restriction problem, let b = l and
let C consist of one set C1 containing all vectors from [b]k such that each value
in [b] appears exactly k/l times (if l does not divide k, then some values in [b]
appear dk/le times and some appear bk/lc times)

2. (n, k, k)-family of perfect hash functions. In this case, b = k and C consist
of only one set C1 containing all permutations of [k]

3. (n, k)-universal sets. In this case, b = 2 and C consists of Cx = {x} for all
x ∈ {0, 1}k

5.3.2 Solving k-restriction problem

We introduced the k-restriction problem to construct a family of perfect hash func-
tions and universal sets of size as small as possible. So first we find the number of
vectors that suffices to become a solution of k-restriction problem using probabilistic
argument. If a vector v ∈ [b]n is chosen uniformly at random, then for any S ∈

(
[n]
k

)
and Cj the probability that v(S) ∈ Cj is

|Cj |
bk
≥ c

bk
, where c = min1≤i≤m|Ci|. There-

fore, if we choose t random vectors, Vt = {v1, v2, ..., vt}, we get via union bound
that

Pr[Vt is not a solution] ≤
∑

S∈([n]
k )

m∑
j=1

Pr[∀v : v ∈ Vt and v(S) /∈ Cj]

≤
(
n

k

) m∑
j=1

(
1− |Ci|

bk

)t
≤

(
n

k

)
m
(

1− c

bk

)t
(5.2)
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Restricting equation (5.2) to be less than 1 implies that

t ≥ d k lnn+ lnm

ln(bk/(bk − c))e (5.3)

Thus for k-restriction problem, there exist a solution of at most the size mentioned
in the Equation 5.3. We will refer to (5.3) as the union bound. Let Hn,k,b be a k-wise
independent probability space with n random variables taking values in [b], such as
the one mentioned in Proposition 5.1. Note that the union bound (5.3) is applicable
even when the vectors are not chosen uniformly at random from [b]n, but chosen
uniformly at random from a k-wise independent space Hn,k,b because probability
calculation only examines k sized sets of [n].

Now we discuss about the construction of a solution of size equaling the union bound.
This construction is computationally expensive, i.e, not in polynomial time or even
in FPT time in parameter k. But we will use this construction for making a family
of perfect hash functions and universal sets after reducing the size of the universe.
Since we are discussing the general k-restriction problem, we assume that we have
a membership oracle: a procedure that, given v ∈ [b]n, S ∈

(
[n]
k

)
and j ∈ [m], says

whether or not v(S) ∈ Cj, within some time bound T . For the examples we are
interested in, this oracle computation will be easy, usually taking just O(k) time.

Theorem 5.3 ([100]). For k-restriction problem with b ≤ n, there is a deterministic

algorithm that outputs a collection obeying the k-restrictions, with the size of the

collection equaling the union bound. The time taken to output the collection is

O
(
bk

c
·
(
n

k

)
·m · T · |Hn,k,b|

)
(5.4)

where T is the time complexity of the membership oracle.

Proof. Consider a set-system in which the universe (ground set) is Hn,k,b. The sets

are TS,j, indexed by pairs (S, j) such that S ∈
(

[n]
k

)
and 1 ≤ j ≤ m. TS,j consists of

all h ∈ Hn,k,b such that h(S) ∈ Cj. We do not explicitly list out the sets TS,j: note

that any given h can be tested for membership in TS,j in time T , using the given

membership oracle. Any subset of Hn,k,b that hits (intersects) all subsets TS,j is a

good collection (i.e., is a collection satisfying the k-restriction problem). This is the

well-known hitting set problem.

We can find such a collection by a greedy algorithm via a simple observation, which
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follows fairly easily by inspecting (5.2) and by using the fact that (5.2) holds even if

we pick vectors at random from Hn,k,b; the observation is that there must be an h ∈
Hn,k,b such that h hits at least fraction c/bk of the sets TS,j. The obvious idea then

is to find such an h using the membership oracle and add it to our current(partial)

hitting set, removing the sets hit by h from the set system, and repeating this step.

Finding such an h takes time at most O
((
n
k

)
·m · T · |Hn,k,b|

)
; also, the number

of sets in our set-system is effectively “shrunk” to at most m
(
n
k

)
(1 − c/bk) after

picking h. Therefore the results of a greedy algorithm will produce a solution of size

d k lnn+lnm
ln(bk/(bk−c))e, same as that of (5.3). So, the total time taken is at most

O
((

n

k

)
·m · T · |Hn,k,b|

(
∞∑
i=0

(1− c/bk)i
))

= O
(
bk

c
·
(
n

k

)
·m · T · |Hn,k,b|

)
(5.5)

For family of perfect hash functions and universal sets, we explicitly state the size
and time complexity by substituting proper values (Note that |Hn,k,b| ≤ nk as men-
tioned in Proposition 5.1) in Theorem 5.3 and get Theorem 5.4 as follows

Theorem 5.4 ([100]). (1) An (n, k, k)-family of perfect hash functions of cardinality

O(ek
√
k log n) can be constructed deterministically in time O(kk+1

(
n
k

)
nk/k!). (2) An

(n, k)-universal sets of cardinality O(k2k log n) can be constructed deterministically

in time O(
(
n
k

)
k22knk).

5.3.3 (n, k, k)-family of perfect hash functions

First we give a brief overview of construction of (n, k, k)-family of perfect hash func-
tions. Starting with the universe size n, we first reduce our problem to one with
universe size k2 by finding a polynomial time computable family A of (n, k, k2)-
family of perfect hash functions (Theorem 5.1). A construction of (k2, k, k)-family
of perfect hash functions will then be pulled back to (n, k, k)-family of perfect hash
functions at a cost of kO(1) log2 n in the size of the family. Towards the construction
of (k2, k, k)-family of perfect hash functions, we will first find (k2, k, l)-splitters for

l = O(log k). This guarantees us, for each S ∈
(

[k2]
k

)
, there exists a function which

partitions S equally in l blocks. Then for each block we construct (k2, k/l, k/l)-
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family of perfect hash functions by applying Theorem 5.4. We need splitters with
universe size k2.

Lemma 5.4. For any k ≤ n and for all l ≤ n, there is an explicit family B(n, k, l)

of (n, k, l)-splitters of size
(
n
l−1

)
Proof. For every choice of 1 ≤ i1 < i2 < ... < il−1 ≤ n, define a function h : [n]→ [l]

by h(s) = j if and only if ij−1 < s ≤ ij, for all s ∈ [n] (taking i0=0 and il=n).

Construction. Let l = c log k for some constant c (we will fix c later). Let A =
A(n, k, k2), B = B(k2, k, l) and C = C(k2, k/l, k/l) be respective function families
presented by Theorem 5.1, Lemma 5.4 and (1) of Theorem 5.4. Then our required
family of perfect hash functions H can be defined as

H = {(a, b, c1, c2, ...cl)|a ∈ A, b ∈ B, ∀i ∈ [l] : ci ∈ C}

where each (a, b, c1, c2, ..., cl) ∈ H is defined by

(a, b, c1, c2, ..., cl)(x) = cb(a(x)) (a(x)) +
k

l
(b (a(x))− 1)

Correctness. It can be easily verified that each h ∈ H maps [n] to [k]. Let
S ∈

(
[n]
k

)
. We need to show that there exist a function in H which is one-to-one

on S. By the property of A there exist a function a ∈ A which is one-to-one on
S. Let S ′ = {i|∃j ∈ S : a(j) = i}. Since a is one-to-one on S, |S ′| = k. By the
property of B, there exist b ∈ B such that b splits S ′ equally into l blocks. Let
S ′i = {j|j ∈ S ′ and b(j) = i} for all i ∈ [l]. Now by the property of C, we have
ci ∈ C for all i such that ci is one-to-one on S ′i

Size and Time We know that, by Theorem 5.1, |A| = O
(

k4 log2 n
log(k logn)

)
and A can be

constructed in time kO(1)n log2 n. By Lemma 5.4, |B| =
(
k2

l−1

)
= kO(log k) and B can

be constructed in time kO(log k). By Theorem 5.4, |C| = O(ek/l
√
k/l log k) and can

be constructed in time kO(k/l), which is equal to 2k for a suitable choice of c. Hence
the size of H is,

|H| = |A| · |B| · |C|l

= O
(

k4 log2 n

log(k log n)

)
· kO(log k) · (ekkO(log k))

= ekkO(log k) log2 n

The running time to output H is O(|H| · n). Thus we have the following theorem.
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Theorem 5.5 ([100]). An (n, k, k)-family of perfect hash functions of size ekkO(log k) log2 n

can be constructed in time linear in the output size.

5.3.4 (n, k)-universal sets

The idea for (n, k)-universal sets is similar to that behind Theorem 5.5, with the
only modification being that we now need the universal sets guaranteed by (2) of
Theorem 5.4. Thus we get

Theorem 5.6 ([100]). An (n, k)-universal sets of size 2kkO(log k) log2 n can construed

in time linear in the output size

Remark 5.1. In the construction of (n, k, k)-family of perfect hash functions and

(n, k)-universal sets, if we use Theorem 5.2 instead Theorem 5.1, then we can reduce

the family size and running time in Theorem 5.5 and Theorem 5.6 by a factor of

log n.

5.4 Lopsided universal sets and generalized uni-

versal sets

We tweak the notion of universal families as follows and it can be computed efficiently
by slightly changing the construction of Naor et al. [100].

Definition 5.5. A family F of sets over a universe U of size n is an n-p-q-lopsided-

universal family if for every A ∈
(
U
p

)
and B ∈

(
U\A
q

)
there is an F ∈ F such that

A ⊆ F and B ∩ F = ∅.

It follows form the definition of n-p-q-lopsided-universal that a n-(p + q)-universal
family is also n-p-q-lopsided-universal. By slightly changing the construction of Naor
et al. [100], one can prove the following result.

Lemma 5.5. There is an algorithm that given n, p and q constructs an n-p-q-

lopsided-universal family F of size
(
p+q
p

)
·2o(p+q)·log n in time O(

(
p+q
p

)
·2o(p+q)·n log n).
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Lemma 5.5 is a direct corollary of Lemma 7.4 proved in Chapter 7.

We generalizes universal sets and show that the construction by Naor et al. [100]
can be generalized to create generalized universal sets.

Definition 5.6. An (n, k, q)-universal set is a set of vectors V ⊆ [q]n such that for

any index set S ⊆
(

[n]
k

)
, the projection of V on S contains all possible qk configura-

tions.

An (n, k, q)-universal set is a special case of k-restriction problem. To specify
(n, k, q)-universal set as k-restriction problem, let b = q and C consist of Cx = {x}
for all x ∈ [q]k. By substituting values for (n, k, q)-universal sets in Theorem 5.3 we
get the following corollary.

Corollary 5.3. An (n, k, q)-universal set of cardinality O(kqk log n) can be con-

structed deterministically in time O(q2k
(
n
k

)
nkk).

5.4.1 Efficient Construction of (n, k, q)-universal sets

In this subsection we generalizes the construction of universal sets (where q=2) by
M. Naor et al. [100].
Construction. Let l = c log k for some constant c (we will fix c later). Let A =
A(n, k, k2), B = B(k2, k, l) and C = C(k2, k/l, q) be respective function families
presented by Theorem 5.1, Lemma 5.4 and Corollary 5.3. Then our required (n, k, q)-
universal sets is a family of functions H,

H = {(a, b, c1, c2, ...cl)|a ∈ A, b ∈ B, ∀i ∈ [l] : ci ∈ C}

where each (a, b, c1, c2, ..., cl) ∈ H is defined by

(a, b, c1, c2, ..., cl)(x) = cb(a(x)) (a(x))

Correctness. It can be easily verified that each h ∈ H maps [n] to [k]. Let
S ∈

(
[n]
k

)
. We need to show that the restriction of functions in H on S gives all

possible functions from S → [q]. By the property of A there exist a function a ∈ A
which is one-to-one on S. Let S ′ = {i|∃j ∈ S : a(j) = i}. Since a is one-to-one on
S, |S ′| = k. By the property of B, there exist b ∈ B such that b splits S ′ equally
into l blocks. Let S ′i = {j|j ∈ S ′ and b(j) = i} for all i ∈ [l]. Now by the property
of C, we have restriction of functions from C on S ′i is all possible functions from
S ′i → [q].

Size and Time We know that |A| = O
(

k4 log2 n
log(k logn)

)
and A can be constructed in
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time kØ(1)n log n. By Lemma 5.4, |B| =
(
k2

l−1

)
= kO(log k) and B can be constructed

in time kO(log k). By Corollary5.3, |C| = O(qk/lk log k) and can be constructed in
time qO(k/l)kO(k/l), which is bounded by qk for a suitable choice of c. Hence size of
H is,

|H| = |A| · |B| · |C|l

= O
(

k4 log2 n

log(k log n)

)
· kO(log k) · (qkkO(log k))

= qkkO(log k) log2 n

We can output the family H in time O(|H| · n).
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Chapter 6

Representative Family:

Motivation, Definition and History

Representative families are used in literature to design FPT algorithms. In this
thesis we mainly study efficient construction these families and show that indeed it
is a powerful algorithmic tool in the field of parameterized and exact algorithms by
designing efficient algorithms for many important problems.

In fact the definition of representative family, naturally comes when we try to de-
sign algorithms for problems where ‘disjointness’ is a requirement for solutions. To
explain this, we first consider k-Path problem. In this problem we are given an
n-vertex graph G and a positive integer k, and the objective is to check whether
there is a simple path on k vertices (path of length k − 1), called k-path, in G.
A simple dynamic programming algorithm for k-Path computes a table A, where
each table entry in A is indexed by a vertex v ∈ V (G) and i ∈ [k], and it stores
the following information. For any v ∈ V (G) and i ∈ [k], A[v, i] contains all sets
X ⊆ V (G) such that there is path of length i−1 ending at v using all the vertices of
X. The algorithm can compute the DP table entries A[v, i] in the increasing order
of i using the following recurrence relation.

A[v, i] =

{ {{v}} if i = 1⋃
u∈NG(v)(A[u, i− 1] • {v}) if i ∈ [k] \ {1}

Clearly the graph G has a k-path, if and only if there is a vertex v ∈ V (G) such
that A[v, k] 6= ∅. Notice that the cardinality of A[v, i] for any v ∈ V (G) and i ∈ [k],
is potentially be

(
n
k

)
, and the algorithm runs in time nO(k).

Note that the table entries A[v, i] in our dynamic programming stores potential
partial solutions such that one of them leads to a final solution. Perhaps we do
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not need to store all the all partial solutions, instead store some partial solutions
such that one of them leads to a final solution. To maintain the correctness of the
algorithm it is enough keep a subfamily Â[v, i] of A[v, i] with following property.

Property 1: For every Y ∈
(
V (G)
k−i

)
, if there is a set X ∈ A[v, i] such that X is

disjoint from Y , then there is a set X̂ ∈ Â[v, i] which is disjoint from Y .

Notice that Property 1 ensures that if there is a set X ∈ A[v, i] and Y ∈
(
V (G)
k−i

)
such

that there is a simple path of length k− 1 using the vertices of X ∪ Y , then there is
a set X̂ ∈ Â[v, i] such that there is a simple path of length k − 1 using the vertices

of X̂ ∪ Y .

Alon et al [4] introduced the famous algorithmic technique color coding which does
the pruning of A[v, i] as follows. We first uniformly at random color the vertices of G
using k colors. Then for any fixed k-path P , all the vertices in P will be colored with
different colors with probability ≥ e−k and the above algorithm is modified to output
such a k-path (colorful k-path). Now in Â[v, i], for each subset C of i colors it is
enough to keep one partial solution X such that the colors of X is exactly same as C.
Note that, since the number of colors is k, the number of partial solutions stored in
Â[v, i] is at most

(
k
i

)
. This modification to the DP table entries gives an algorithm of

running time 2O(k)nO(1). This algorithm may have one-sided error, outputs a correct
solution with probability at least e−k and its success probability can be increased
to a constant by running the above algorithm ek times. This leads to a randomized
algorithm for k-Path running in time 2O(k)nO(1) with constant success probability.
This algorithm can be derandomized using (n, k, k)-family of perfect hash functions
F , where the random coloring is replaced with colorings specified by the functions
in the F . In fact one can think this step as another way of pruning the DP table
entries A[v, i] which leads to a deterministic algorithm for k-Path. That is for each

coloring specified by a function f ∈ F , a set C of i colors we keep one set X ∈ Â[v, i]
such that f(X) = C.

The concept of representative family captures Property 1, which is implicitly used
by the color coding technique. That is, if Â[v, i] satisfies Property 1, then we say

that Â[v, i] is a (k − i)-representative family of A[v, i].

Definition 6.1 ([97, 92]). Let S is a p-family over a universe U . A subfamily Ŝ of

S is called a q-representative family of S if it satisfies the following condition. For

every Y ∈
(
U
q

)
, if there is a set X ∈ S such that X ∩ Y = ∅, then there is a set

X̂ ∈ Ŝ such that X̂ ∩ Y = ∅.

The basic questions regarding representative families are : “what is the smallest car-
dinality of a representative family of a family of sets and how fast we can compute
these representative family?” The derandomization of the above mentioned algo-
rithm of Alon et al. [4] implies that there is a q-representative family of a p-family
S over a universe U , of cardinality

(
p+q
p

)
ep+q+o(p+q) log2 n and it can be computed
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in time |S|
(
p+q
p

)
ep+q+o(p+q) log2 n, where n = |U |. In fact the classic Two-Families

Theorem of Bollobás [24] for extremal set systems imply that every p-family has a
q-representative family with at most

(
p+q
p

)
sets. In fact we can show that the size of

a q-representative family of a p-family is lower bounded by
(
p+q
p

)
:

Lemma 6.1. Let U be a universe of size p + q and S =
(
U
p

)
. Then the only q-

representative family of S is S itself.

Proof. Suppose there is a q-representative family Ŝ of S such that Ŝ 6= S. This

implies that there is a set S ∈ S \ Ŝ. Let Y = U \ S. Note that |Y | = q and the

only set in S which is disjoint from Y is S. This contradicts the fact that Ŝ is a

q-representative family of S.

Monien provided an algorithm computing a q-representative family of size at most∑q
i=0 p

i in time O(pq ·∑q
i=0 p

i · |S|) [97]. Marx in [92] provided another algorithm,
for finding q-representative family of size at most

(
p+q
p

)
in time O(pq · |S|2). We give

a faster algorithm to compute representative family.

Theorem 6.1. Let S be a p-family of sets over a universe of size n and let 0 < x < 1.

For a given q, a q-representative family Ŝ ⊆ S for S with at most x−p(1− x)−q ·
2o(p+q) sets an be computed in time O((1− x)−q · 2o(p+q) · |S| · log n).

When x = p
p+q

, the size of the q-representative family in Theorem 6.1 is upper

bounded by
(
p+q
p

)
2o(p+q). See chapter 7 for more details.

Marx [93], generalized the concept of representative families to matroids and used to
design FPT algorithms for problems like finding a k-element set in the intersection
of ` linear matroids.

Definition 6.2 ([93]). Let M = (E, I) be a matroid and S be a family of subsets

of E. A subfamily Ŝ ⊆ S is called a q-representative for S if the following holds:

for every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y with

X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I

The generalization Two-Families Theorem of Bollobás [24] to subspaces of a vector
space of Lovász [87] (see also [58]) imply that every family of sets of size p has a
q-representative family with at most

(
p+q
p

)
sets. Marx [93] has shown how Lovász’s

proof can be transformed into an algorithm computing a q-representative family.
However, the running time of the algorithm given in [93] is f(p, q)(||AM ||t)O(1), where
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f(p, q) is a polynomial in (p+q)p and
(
p+q
p

)
, that is, f(p, q) = 2O(p log(p+q)) ·

(
p+q
p

)O(1)
,

and AM is the matroid’s representation matrix. Thus, when p is a constant, we
have that f(p, q) = (p + q)O(1). However, for unbounded p (for an example when
p = q = k

2
) the running time of this algorithm is bounded by 2O(k log k)(||AM ||t)O(1).

We give faster algorithm to compute representative family in linear matroids and
its proof is based on the exterior algebra based proof of Lovász [87] and exploits the
multi-linearity of the determinant function.

Theorem 6.2. Let M = (E, I) be a linear matroid of rank p + q = k, S =

{S1, . . . , St} be a p-family of independent sets. Given a representation AM of M

over a field F, we can find a q-representative family Ŝ for S, of size at most
(
p+q
p

)
in O

((
p+q
p

)
tpω + t

(
p+q
q

)ω−1
)

operations over F.

We show that the concept of representative family in linear matroids is a powerful
algorithmic tool by designing FPT and exact algorithms for many basic problems
in graph theory (See Part III for more details). The algorithmic tool representative
family can be used as a better alternative for the linear algebra based approach of
Bodlaender et al. [23] in many cases like solving “connectivity” problems such as
Steiner Tree in bounded treewidth graphs. In the Steiner Tree problem the
input is a graph G and a set of terminals T ⊆ V (G), and the objective is to output
a connected subgraph containing T with minimum number of edges. The approach
of Bodlaender et al. [23] for solving Steiner Tree in bounded treewidth graphs
is to do a dynamic programming over the tree decomposition of the input graph
G. At each step the algorithm prune the set of partial solutions S computed so
far by computing linearly independent rows in a |S| × 2tw matrix. These linearly
independent rows corresponds a subset of S and which will form a small set of
representative partial solutions. In our approach we relate each partial solution
to an independent set in a graphic matroid of an auxiliary graph. By replacing
the partial solution pruning step of the algorithm by Bodlaender et al. [23] with
that of representative families in a graphic matroid (Theorem 6.2), we get another
algorithm with same running time. Here the bottle neck of the running time is the
pruning of the partial solution in the join node of the tree decomposition. This
motivate us to study about the computation of representative family for families
that arise naturally in the dynamic programming. One such family, like the one
arise in the join node of tree decomposition, is product family. A family F is the
product of two families of independent sets A and B of a matroid M = (E, I),
if A = {A ∪ B ∈ I : A ∈ A, B ∈ B, A ∩ B = ∅}. For many computational
problems on graphs of bounded treewidth in the join nodes of the decomposition,
the family of partial solutions is the product of the families of its children, and we
wish to store a representative set (for a graphic matroid) for this product family.
In chapter 16 we design a faster algorithm to compute representative family for a
product family in a linear matroid. By making use of this algorithm one can obtain
faster deterministic algorithms for many connectivity problems. We exemplify this
by providing algorithms with running time O(1+2ω1 ·3)twtwO(1)n) for and Steiner
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Tree and Feedback Vertex Set on n-vertex graph with treewidth at most tw,
where ω is the matrix multiplication constant (See chapter 17 for algorithms and
definition of Feedback Vertex Set). In fact we don’t know how to get the same
running time improvement for algorithms of Bodlaender et al. [23] for Steiner
Tree and Feedback Vertex Set. We would like to remark that the algorithm
of Bodlaender et al. [23] for Hamiltonian Cycle is better than that of the one
using representative family.

In fact all our computations of representative families are for weighted versions,
which allows sets to have weights, with an additional logW overhead in the compu-
tation where W is the maximum weight assigned to any set. This allows us to solve
weighted version of the problems in many representative set based algorithms. We
also show that the algorithmic tool representative family can be combined with other
algorithmic technique like color coding to design FPTalgorithms (see chapter 15 for
example).
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Part II

Representative Family in Set

Systems
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Chapter 7

Computation of Representative

Family in Set Systems

Let S be a p-family of subsets of a universe U . Recall the definition of a represen-
tative family. A subfamily Ŝ ⊆ S is q-representative for S (denoted by Ŝ ⊆qrep S),
if for every set Y ⊆ U of size at most q, if there is a set X ∈ S disjoint from Y ,
then there is a set X̂ ∈ Ŝ disjoint from Y . We give a faster algorithm for computing
representative families and in subsequent chapters we show how they can be used to
obtain improved parameterized algorithms for several fundamental and well studied
problems. Essentially we prove the following theorem.

Theorem 7.1. Let S be a p-family of sets over a universe of size n and let 0 < x < 1.

For a given q, a q-representative family Ŝ ⊆ S for S with at most x−p(1− x)−q ·
2o(p+q) sets an be computed in time O((1− x)−q · 2o(p+q) · |S| · log n).

In fact, we prove a variant of Theorem 7.1, which allows sets to have weights, with
an addictive factor |S| · log |S| · logW in the running time. This extension will be
used in several applications. This theorem uses the notion of weighted represen-
tative families and computes a weighted q-representative family of size claimed in
Theorem 7.1.

Definition 7.1 (Min/Max q-Representative Family). Given a family S of sub-

sets of a universe U and a non-negative weight function w : S → N, we say that a

subfamily Ŝ ⊆ S is min q-representative (max q-representative) for S if the follow-

ing holds: for every set Y ⊆ U of size at most q, if there is a set X ∈ S disjoint from

41



Y , then there is a set X̂ ∈ Ŝ disjoint from Y with w(X̂) ≤ w(X) (w(X̂) ≥ w(X)).

We use Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) to denote a min q-representative (max q-

representative) family for S.

When x = p
p+q

, the size of the q-representative family in Theorem 7.1 is bounded by(
p+q
p

)
2o(p+q). Based on the values for x, we can get an interesting trade-off between

the size of the computed representative family and the time taken to compute the
representative family. This trade-off can be exploited algorithmically to speed up
“representative families based” algorithms (see Chapters 8, 9 and 10).

The proof of Theorem 7.1 is essentially an algorithmic variant of the “random per-
mutation” proof of Bollobás Lemma (see [72, Theorem 8.7]). A slightly weaker
variant of Bollobás Lemma can be proved using random partitions instead of ran-
dom permutations, the advantage of the random partitions proof being that it can
be de-randomized using efficient constructions of universal sets [100]. In Section 7.1
we give an algorithm for computing q-representative family of size approximately(
p+q
p

)
using lopsided universal sets.

To obtain our result we define separating collections and give efficient constructions
of them (see Section 7.2). Separating collections can be seen as a variant of universal
sets. In its simplest form, an n-p-q-separating collection C is a pair (F , χ), where F
is a family of sets over a universe U of size n and χ is a function from

(
U
p

)
to 2F

such that the following two properties are satisfied; (a) for every A ∈
(
U
p

)
and every

F ∈ χ(A), A ⊆ F , (b) for every A ∈
(
U
p

)
and B ∈

(
U\A
q

)
, there is an F ∈ χ(A) such

that A ⊆ F and F ∩ B = ∅. The size of (F , χ) is |F|, whereas the max degree of
(F , χ) is maxA∈(Up)

|χ(A)|. An efficient construction of separating collections is an

algorithm that given n, p and q outputs the family F of a separating collection (F , χ)
and then allows queries χ(A) for A ∈

(
U
p

)
. In Section 7.2, we first give constructions

of separating collections with construction and query time bounded by linear in the
size of the output. The size of the separating collections produced is optimal up to
subexponential factors in p+ q (for x = p

p+q
). Then using separating collections we

prove weighted version of the Theorem 7.1.

Theorem 7.1 is a generalization of a result in [57]. In the paper [57] Theorem 7.1
is proved for x = p

p+q
. Independently, at the same time, Shachnai and Zehavi [114]

also observed that the initial proof in [57] could be generalized in essentially the
same way as what is stated in Theorem 7.1, and this generalization is used to speed
up the algorithms for k-Path and Long Directed Cycle (see Chapters 8 and 9
for definitions of k-Path and Long Directed Cycle).

Basic properties of Representative Family. Before giving computations of rep-
resentative families in the subsequent sections of this chapter, we first give three lem-
mata providing basic results about representative families. We prove them for un-
weighted representative families but they can be easily modified to work for weighted
variant.
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Lemma 7.1. Let S be a family of subsets of a universe U . If S ′ ⊆qrep S and

Ŝ ⊆qrep S ′, then Ŝ ⊆qrep S.

Proof. Let Y ⊆ U of size at most q such that there is a set X ∈ S disjoint from

Y . By the definition of q-representative family we have that there is a set X ′ ∈ S ′

disjoint from Y . Now the fact that Ŝ ⊆qrep S ′ yields that there exists a X̂ ∈ Ŝ
disjoint from Y .

Lemma 7.2. Let S be a family of subsets of a universe U . If S = S1 ∪ · · · ∪ S` and

Ŝi ⊆qrep Si, then ∪`i=1Ŝi ⊆qrep S.

Proof. Let Y ⊆ U of size at most q such that there is a set X ∈ S disjoint from Y .

Since S = S1 ∪ · · · ∪ S`, there exists an i such that X ∈ Si. This implies that there

exists a X̂ ∈ Ŝi ⊆ ∪`i=1Ŝi disjoint from Y .

Lemma 7.3. Let S1 be a p1-family and S2 be a p2-family of subsets of a universe

U . Let Ŝ1 ⊆k−p1rep S1 and Ŝ2 ⊆k−p2rep S2. Then Ŝ1 • Ŝ2 ⊆k−p1−p2rep S1 • S2.

Proof. Let Y ⊆ U of size at most q = k−p1−p2 such that there is a set X ∈ S1 •S2

disjoint from Y . This implies that there exist X1 ∈ S1 and X2 ∈ S2 such that

X1 ∪ X2 = X and X1 ∩ X2 = ∅. Since Ŝ1 ⊆k−p1rep S1, we have that there exists a

X̂1 ∈ Ŝ1 such that X̂1 ∩ (X2 ∪ Y ) = ∅. Now since Ŝ2 ⊆k−p2rep S2, we have that there

exists a X̂2 ∈ Ŝ2 such that X̂2 ∩ (X̂1 ∪ Y ) = ∅. This shows that X̂1 ∪ X̂2 ∈ Ŝ1 • Ŝ2.

Thus Ŝ1 • Ŝ2 ⊆k−p1−p2rep S1 • S2.

7.1 Computation using Lopsided Universal Sets

Our aim in this subsection is to prove the following theorem using Lemma 5.5
(computation of n-p-q-lopsided universal family).

Theorem 7.2. There is an algorithm that given a family A of p-sets over a universe

U of size n and an integer q, computes in time |A| ·
(
p+q
p

)
· 2o(p+q) · log n a subfamily

A′ ⊆ A such that |A′| ≤
(
p+q
p

)
· 2o(p+q) · log n and A′ q-represents A.
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Proof. The algorithm starts by constructing an n-p-q-lopsided universal family F
as guaranteed by Lemma 5.5. If |A| ≤ |F| the algorithm outputs A and halts.

Otherwise it builds the set A′ as follows. Initially A′ is equal to ∅ and all sets in F
are marked as unused. The algorithm goes through every A ∈ A and unused sets

F ∈ F . If an unused set F ∈ F is found such that A ⊆ F , the algorithm marks

F as used, inserts A into A′ and proceeds to the next set in A. If no such set F is

found the algorithm proceeds to the next set in A without inserting A into A′.

The size of A′ is upper bounded by |F| ≤
(
p+q
p

)
· 2o(p+q) · log n since every time

a set is added to A′ an unused set in F is marked as used. For the running time

analysis, constructing F takes time
(
p+q
p

)
·2O( p+q

log log(p+q)
) ·n log n. Then we run through

all of F for each set A ∈ A, spending time |A| · |F| · (p + q)O(1), which is at

most |A| ·
(
p+q
p

)
· 2o(p+q) · log n. Thus in total the running time is bounded by

|A| ·
(
p+q
p

)
· 2o(p+q) · log n.

Finally we need to argue that A′ q-represents A. Consider any set A ∈ A and B

such that |B| = q and A ∩ B = ∅. If A ∈ A′ we are done, so assume that A /∈ A′.
Since F is n-p-q-lopsided universal there is a set F ∈ F such that A ⊆ F and

F ∩B = ∅. Since A /∈ A′ we know that F was already marked as used when A was

considered by the algorithm. When the algorithm marked F as used it also inserted

a set A′ into A′. For the insertion to be made, F must satisfy A′ ⊆ F . But then

A′ ∩B = ∅, completing the proof.

One of the factors that drive up the running time of the algorithm in Theorem 7.2
is that one needs to consider all of F for each set A ∈ A. Doing some computations
it is possible to convince oneself that in an n-p-q-lopsided universal family F the
number of sets F ∈ F containing a fixed set A of size p should be approximately
|F| ·

(
p
p+q

)p
. Thus, if we could only make sure that this estimation is in fact correct

for every A ∈ A, and we could make sure that for a given A ∈ A we can list all of
the sets in F that contain A without having to go through the sets that don’t, then
we could speed up our algorithm by a factor

(
p+q
p

)p
. This is exactly the strategy

behind the main theorem of Section 7.2.
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7.2 Computation using Separating Collections

In this section we design a faster algorithm to find q-representative family. Our
main technical tool is a construction of n-p-q-separating collection. We start with
the formal definition of n-p-q-separating collection.

Definition 7.2. An n-p-q-separating collection C is a tuple (F , χ, χ′), where F is a

family of sets over a universe U of size n, χ is a function from
⋃
p′≤p

(
U
p′

)
to 2F and

χ′ is a function from
⋃
q′≤q

(
U
q′

)
to 2F such that the following properties are satisfied

1. for every A ∈ ⋃
p′≤p

(
U
p′

)
and F ∈ χ(A), A ⊆ F ,

2. for every B ∈ ⋃
q′≤q

(
U
q′

)
and F ∈ χ′(B), F ∩B = ∅,

3. for every pairwise disjoint sets A1 ∈
(
U
p1

)
, A2 ∈

(
U
p2

)
, · · · , Ar ∈

(
U
pr

)
and B ∈(

U
q

)
such that p1 + · · ·+ pr = p, ∃F ∈ χ(A1) ∩ χ(A2) . . . χ(Ar) ∩ χ′(B).

The size of (F , χ, χ′) is |F|, the (χ, p′)-degree of (F , χ, χ′) for p′ ≤ p is

max
A∈(Up′)

|χ(A)|,

and the (χ′, q′)-degree of (F , χ, χ′) for q′ ≤ q is

max
B∈(Uq′)

|χ′(B)|.

A construction of separating collections is a data structure, that given n, p and q
initializes and outputs a family F of sets over the universe U of size n. After the
initialization one can query the data structure by giving it a set A ∈ ⋃p′≤p

(
U
p′

)
or

B ∈ ⋃q′≤q
(
U
q′

)
, the data structure then outputs a family χ(A) ⊆ 2F or χ′(B) ⊆ 2F

respectively. Together the tuple C = (F , χ, χ′) computed by the data structure
should form a n-p-q-separating collection.

We call the time the data structure takes to initialize and output F the initialization
time. The (χ, p′)-query time, p′ ≤ p, of the data structure is the maximum time the
data structure uses to compute χ(A) over all A ∈

(
U
p′

)
. Similarly, the (χ′, q′)-query

time, q′ ≤ q, of the data structure is the maximum time the data structure uses to
compute χ′(B) over all B ∈

(
U
q′

)
. The initialization time of the data structure and the
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size of C are functions of n, p and q. The initialization time is denoted by τI(n, p, q),
size of C is denoted by ζ(n, p, q). The (χ, p′)-query time and (χ, p′)-degree of C,
p′ ≤ p, are functions of n, p′, p, q and is denoted by Q(χ,p′)(n, p, q) and ∆(χ,p′)(n, p, q)
respectively. Similarly, the (χ′, q′)-query time and (χ′, q′)-degree of C, q′ ≤ q, are
functions of n, q′, p, q and are denoted by Q(χ′,q′)(n, p, q) and ∆(χ′,q′)(n, p, q) respec-
tively. We are now ready to state the main technical tool of this subsection.

Lemma 7.4. Given 0 < x < 1, there is a construction of n-p-q- separating collection

with the following parameters

• size, ζ(n, p, q) ≤ 2O( p+q
log log(p+q)

) · 1
xp(1−x)q

· (p+ q)O(1) · log n

• initialization time, τI(n, p, q) ≤ 2O( p+q
log log(p+q)

) · 1
xp(1−x)q

· (p+ q)O(1) · n log n

• (χ, p′)-degree, ∆(χ,p′)(n, p, q) ≤ 2O( p+q
log log(p+q)

) · 1
xp−p′ (1−x)q

· (p+ q)O(1) · log n

• (χ, p′)-query time, Q(χ,p′)(n, p, q) ≤ 2O( p+q
log log(p+q)

) · 1
xp−p′ (1−x)q

· (p+ q)O(1) · log n

• (χ′, q′)-degree, ∆(χ′,q′)(n, p, q) ≤ 2O( p+q
log log(p+q)

) · 1
xp(1−x)q−q′

· (p+ q)O(1) · log n

• (χ′, q′)-query time, Q(χ′,q′)(n, p, q) ≤ 2O( p+q
log log(p+q)

) · 1
xp(1−x)q−q′

· (p+ q)O(1) · log n

We first give the road map that we take to prove Lemma 7.4. The proof of Lemma 7.4
uses three auxiliary lemmata.

(a.) Existential Proof (Lemma 7.5). This lemma shows that there is indeed
a n-p-q-separating collection with the required sizes, degrees and query time.
Essentially, it shows that if we form a family F = {F1, . . . , Ft} of sets of U
such that each Fi is a random subset of U where each element is inserted into
Fi with probability x, then F has the desired sizes, degrees and query time.
Thus, this also gives a brute force algorithm to design the family F by just
guessing the family of desired size and then checking whether it is indeed a
n-p-q-separating collection.

(b.) Universe Reduction (Lemma 7.6). The construction obtained in Lemma 7.5
has only one drawback that the initialization time is much larger than claimed
in Lemma 7.4. To overcome this lacuna, we do not apply the construction in
Lemma 7.5 directly. We first prove a Lemma 7.6 which helps us in reducing
the universe size to (p + q)2. This is done using the known construction of
k-perfect hash families of size (p+ q)O(1) log n. However, Lemma 7.6 alone can
not reduce the universe size sufficiently, that we can apply the construction of
Lemma 7.5.

(c.) Splitting Lemma (Lemma 7.7). We give a splitter type construction
in Lemma 7.7 that when applied with Lemma 7.6 makes the universe and
other parameters small enough that we can apply the construction given in
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Lemma 7.5. In this construction we consider all the “consecutive partitions”
of the universe into t parts, assume that the sets A ∪ B, A = ∪ri=1Ai, are
distributed uniformly into t parts and then use this information to obtain a
construction of separating collections in each part and then take the product
of these collections to obtain a collection for the original instance.

We start with the existential proof.

Lemma 7.5. Given 0 < x < 1, there is a construction of n-p-q-separating collections

with

• size ζ(n, p, q) = O
(

1
xp(1−x)q

· (p2 + q2 + 1) log n
)

• initialization time τI(n, p, q) = O(
(

2n

ζ(n,p,q)

)
· 1
xp(1−x)q

· nO(p+q))

• (χ, p′)-degree for p′ ≤ p, ∆(χ,p′)(n, p, q) = O
(

1
xp−p′

· (p2+q2+1)
(1−x)q

· log n
)

• (χ, p′)-query time Q(χ,p′)(n, p, q) = O( 1
xp(1−x)q

· nO(1))

• (χ′, q′)-degree ∆(χ′,q′)(n, p, q) = O
(

1
xp(1−x)q−q′

· (p2 + q2 + 1) · log n
)

• (χ′, q′)-query time Q(χ′,q′)(n, p, q) = O( 1
xp(1−x)q

· nO(1))

Proof. We start by giving a randomized algorithm that with positive probability

constructs a n-p-q-separating collection C = (F , χ, χ′) with the desired size and

degree parameters. We will then discuss how to deterministically compute such a C
within the required time bound. Set t = 1

xp(1−x)q
·(p2 +q2 +1) log n and construct the

family F = {F1, . . . , Ft} as follows. Each set Fi is a random subset of U , where each

element of U is inserted into Fi with probability x. Distinct elements are inserted

(or not) into Fi independently, and the construction of the different sets in F is also

independent. For each A ∈ ⋃p′≤p
(
U
p′

)
we set χ(A) = {F ∈ F : A ⊆ F} and for

each B ∈ ⋃q′≤q
(
U
q′

)
we set χ′(B) = {F ∈ F : F ∩B = ∅}.

The size of F is within the required bound by construction. We now argue that with

positive probability (F , χ, χ′) is indeed a n-p-q-separating collection, and that the

degrees of C is within the required bounds as well. For fixed sets A ∈
(
U
p

)
, B ∈

(
U\A
q

)
,

and integer i ≤ t, we consider the probability that A ⊆ Fi and B ∩ Fi = ∅. This
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probability is xp(1− x)q. Since each Fi is constructed independently from the other

sets in F , the probability that no Fi satisfies A ⊆ Fi and B ∩ Fi = ∅ is

(1− xp(1− x)q)t ≤ e−(p2+q2+1) logn =
1

np2+q2+1
.

For a fixed A1, . . . , Ar and B (choices in condition 3), the probability that no Fi

in χ(A1) ∩ χ(A2) ∩ · · · ∩ χ(Ar) ∩ χ′(B) is equal to the probability that no Fi is in

χ(A1 ∪A2 · · · ∪Ar) ∩ χ′(B) (since χ(A′) contains all the sets in F that contains A′

and χ′(B) contains all the sets in F that are disjoint from B). Hence the probability

that condition 3 fails is upper bounded by

Y · 1

np2+q2+1

where Y is the number of choices for A1, . . . , Ar and B in condition 3. We upper

bound Y as follows. There are
(
n
p

)
choices for A1 ∪ · · · ∪ Ar and

(
n
q

)
choices for B.

For each choice of A1 ∪ · · · ∪ Ar there are at most rp choices of making A1, . . . , Ar

with some of them being empty as well. Note that r ≤ p. Therefore the number

of possible choices of sets A1, A2, . . . , Ar and B in condition 3 is upper bounded by(
n
p

)(
n
q

)
pp ≤ n2p+q ≤ np

2+q2 . Hence the probability that condition 3 in Definition 7.2

fails is at most 1
n
.

We also need to upper bound the maximum degree of C. For every A ∈
(
U
p′

)
, |χ(A)|

is a random variable. For a fixed A ∈
(
U
p′

)
and i ≤ t the probability that A ⊆ Fi

is exactly xp
′
. Hence |χ(A)| is the sum of t independent 0/1-random variables that

each take value 1 with probability xp
′
. Hence the expected value of |χ(A)| is

E[|χ(A)|] = t · xp′ =
1

xp−p′(1− x)q
· (p2 + q2 + 1) log n

For every B ∈
(
U
q′

)
, |χ′(B)| is also a random variable. For a fixed B ∈

(
U
q′

)
and i ≤ t

the probability that A ∩ Fi = ∅ is exactly (1 − x)q
′
. Hence the expected value of
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|χ′(B)| is,

E[|χ′(B)|] = t · (1− x)q
′
=

1

xp(1− x)q−q′
· (p2 + q2 + 1) log n.

Standard Chernoff bounds [96, Theorem 4.4] show that the probability that for any

A ∈
(
U
p′

)
, |χ(A)| is at least 6E[|χ(A)|] is upper bounded by 2−6E[|χ(A)|] ≤ 1

np2+q2+1
.

Similarly the probability that for any B ∈
(
U
q′

)
, |χ′(B)| is at least 6E[|χ′(B)|] is

upper bounded by 2−6E[|χ′(B)|] ≤ 1

np2+q2+1
. There are

∑
p′≤p

(
n
p′

)
≤ np

2
choices for

A ∈ ⋃p′≤p
(
U
p′

)
and

∑
q′≤q

(
n
q′

)
≤ nq

2
choices for B ∈ ⋃q′≤q

(
U
q′

)
. Hence the union

bound yields that the probability that there exists an A ∈ ⋃p′≤p
(
U
p′

)
such that

|χ(A)| > 6E[|χ(A)|] or there exists B ∈ ⋃q′≤q
(
U
q′

)
such that |χ′(B)| > 6E[|χ′(B)|]

is upper bounded by 1
n
. Thus C is a family of n-p-q-separating collections with

the desired size and degree parameters with probability at least 1 − 2
n
> 0. The

degenerate case that 1 − 2
n
≤ 0 is handled by the family F containing all (at most

four) subsets of U .

To construct F within the stated initialization time bound, it is sufficient to try all

families F of size t and for each of the
(

2n

ζ(n,p,q)

)
guesses, test whether it is indeed a

family of n-p-q-separating collections in time O(t · nO(p+q)) = O( 1
xp(1−x)q

· nO(p+q)).

For the queries, we need to give an algorithm that givenA, computes χ(A) (or χ′(A)),

under the assumption that F has already has been computed in the initialization

step. This is easily done within the stated running time bound by going through

every set F ∈ F , checking whether A ⊆ F (or A ∩ F = ∅), and if so, inserting F

into χ(A) (χ′(A)). This concludes the proof.

We will now work towards improving the time bounds of Lemma 7.5.

Lemma 7.6. If there is a construction of n-p-q-separating collections (F̂ , χ̂, χ̂′)
with initialization time τI(n, p, q), size ζ(n, p, q), (χ̂, p′)-query time Q(χ̂,p′)(n, p, q),

(χ̂′, q′)-query time Q(χ̂′,q′)(n, p, q), (χ̂, p′)-degree ∆(χ̂,p′)(n, p, q), and (χ̂′, q′)-degree

∆(χ̂′,q′)(n, p, q) then there is a construction of n-p-q-separating collections with fol-
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lowing parameters.

• ζ ′(n, p, q) ≤ ζ ((p+ q)2, p, q) · (p+ q)O(1) · log n,

• τ ′I(n, p, q) = O
(
τI ((p+ q)2, p, q) + ζ ((p+ q)2, p, q) · (p+ q)O(1) · n log n

)
,

• ∆′(χ,p′)(n, p, q) ≤ ∆(χ̂,p′) ((p+ q)2, p, q) · (p+ q)O(1) · log n,

• Q′(χ,p′)(n, p, q) =

O
((
Q(χ̂,p′) ((p+ q)2, p, q) + ∆(χ̂,p′) ((p+ q)2, p, q)

)
· (p+ q)O(1) · log n

)
,

• ∆′(χ′,q′)(n, p, q) ≤ ∆(χ̂′,q′) ((p+ q)2, p, q) · (p+ q)O(1) · log n,

• Q′(χ′,q′)(n, p, q) =

O
((
Q(χ̂′,q′) ((p+ q)2, p, q) + ∆(χ̂′,q′) ((p+ q)2, p, q)

)
· (p+ q)O(1) · log n

)
Proof. We give a construction of n-p-q-separating collections with initialization time,

query time, size and degree τ ′I , Q
′, ζ ′ and ∆′ respectively using the construction with

initialization time, query time, size and degree τI , Q, ζ and ∆ as a black box.

We first describe the initialization of the data structure. Given n, p, and q, we

construct using Theorem 5.2 a (p+q)-perfect family f1, . . . ft of hash functions from

the universe U to [(p + q)2]. The construction takes time O((p + q)O(1)n log n) and

t ≤ (p + q)O(1) · log n. We will store these hash functions in memory. We use the

following notations.

• For a set S ⊆ U and T ⊆ [(p+ q)2],

fi(S) = {fi(s) : s ∈ S} and f−1
i (T ) = {s ∈ U : f(s) ∈ T}.

• For a family Z of sets over U and family W of sets over [(p+ q)2],

fi(Z) = {fi(S) : S ∈ Z} and f−1
i (W) = {f−1

i (T ) : T ∈ W}.

We first use the given black box construction for (p+ q)2-p-q-separating collections

(F̂ , χ̂, χ̂′) over the universe [(p + q)2]. We run the initialization algorithm of this
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construction and store the family F̂ in memory. We then set

F =
⋃
i≤t

f−1
i (F̂).

We spent O((p + q)O(1)n log n) time to construct a (p + q)-perfect family of hash

functions, O(τI((p+ q)2, p, q)) to construct F̂ of size ζ((p+ q)2, p, q), and O(ζ((p+

q)2, p, q) · (p+ q)O(1) · n log n) time to construct F from F̂ and the family of perfect

hash functions. Thus the upper bound on τ ′I(n, p, q) follows. Furthermore, |F| ≤
|F̂| · (p+ q)O(1) · log n, yielding the claimed bound for ζ ′.

We now define χ(A) for every A ∈ ⋃p′≤p
(
U
p′

)
and describe the query algorithm. For

every A ∈ ⋃p′≤p
(
U
p′

)
we let

χ(A) =
⋃
i≤t

|fi(A)|=|A|

f−1
i (χ̂(fi(A))).

Since for every F̂ ∈ χ̂(fi(A)), fi(A) ⊆ F̂ , it follows that A ⊆ F for every F ∈ χ(A).

Furthermore we can bound |χ(A)| for any A ∈ ⋃p′≤p
(
U
p′

)
, as follows

|χ(A)| ≤
∑
i≤t

|fi(A)|=|A|

|χ̂(fi(A))| ≤ ∆(χ̂,p′)((p+ q)2, p, q) · (p+ q)O(1) · log n.

Thus the claimed bound for ∆′(χ,p′) follows. Similarly, way can define χ′(B) for every

B ∈ ⋃q′≤q
(
U
q′

)
as

χ′(B) =
⋃
i≤t

|fi(A)|=|A|

f−1
i (χ̂′(fi(A))).

|χ′(B)| ≤
∑
i≤t

|fi(A)|=|A|

|χ̂′(fi(A))| ≤ ∆(χ̂′,q′)((p+ q)2, p, q) · (p+ q)O(1) · log n.
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To compute χ(A) for any A ∈ ⋃p′≤p
(
U
p′

)
, we go over every i ≤ t and check whether

fi is injective on A. This takes time O((p + q)O(1) · log n). For each i such that

fi is injective on A, we compute fi(A) and then χ̂(fi(A)) in time O(Q(χ̂,p′)((p +

q)2, p, q)). Then we compute f−1
i (χ̂(fi(A))) in time O(| ˆ̂χ(fi(A))| · (p + q)O(1)) =

O(∆(χ̂,p′)((p + q)2, p, q) · (p + q)O(1)) and add this set to χ(A). As we need to do

this O((p + q)O(1) · log n) times, the total time to compute χ(A) is upper bounded

by O((Q(χ̂,p′)((p+ q)2, p, q) + ∆(χ̂,p′)((p+ q)2, p, q)) · (p+ q)O(1) · log n), yielding the

claimed upper bound on Q′(χ,p′). Similar way we can bound Q′(χ′,q′).

It remains to argue that (F , χ, χ′) is in fact a n-p-q-separating collection. For any

r, consider pairwise disjoint sets A1 ∈
(
U
p1

)
, . . . , Ar ∈

(
U
pr

)
, and B ∈

(
U
q

)
such that

p1 + . . . + pr = p. We need to show that there is F ∈ χ(A1) ∩ · · · ∩ χ(Ar) ∩ χ′(B).

Since f1, . . . , ft is a (p+q)-perfect family of hash functions, there is an i such that fi

is injective on A1∪· · ·∪Ar∪B. Since (F̂ , χ̂, χ̂′) is a (p+q)2-p-q-separating collection,

∃F̂ ∈ χ̂(fi(A1)) ∩ · · · χ̂(fi(Ar)) ∩ χ̂′(fi(B)). Since fi is injective on A1, . . . , Ar and

B, f−1
i (F̂ ) ∈ χ(A1) ∩ · · ·χ(Ar) ∩ χ′(B). This concludes the proof.

We now give a splitting lemma, which allows us to reduce the problem of finding
n-p-q-separating collections to the same problem, but with much smaller values for
p and q.

A partition of U is a family UP = {U1, U2, . . . Ut} of sets over U such that Ui∩Uj = ∅
for every i 6= j and U =

⋃
i≤t Ui. Each of the sets Ui are called the parts of the

partition. A consecutive partition of {1, . . . , n} is a partition UP = {U1, U2, . . . Ut}
of {1, . . . , n} such that for every integer i ≤ t and integers 1 ≤ x ≤ y ≤ z, if x ∈ Ui
and z ∈ Ui then y ∈ Ui as well. In other words, in a consecutive partition each part
is a consecutive interval of integers. For every integer t, let Pn

t denote the collection
of all consecutive partitions of {1, . . . , n} with exaclty t parts. We do not demand
that all of the parts in a partition in Pt are non-empty. Simple counting arguments
show that for every t, |Pn

t | =
(
n+t−1
t−1

)
.

We will denote by Zps,t the set of all t-tuples (p1, p2, . . . , pt) of integers such that∑
i≤t pi = p and 0 ≤ pi ≤ s for all i. Clearly |Zps,t| ≤

(
p+t−1
t−1

)
, since this counts all

the ways of writing p as a sum of t non-negative integers, without considering the
upper bound on each one. For an ease of convenience we summarize the above in
the next definition and the proposition.

Definition 7.3. A partition of U is a family UP = {U1, U2, . . . Ut} of sets over
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U such that ∀i 6= j, Ui ∩ Uj = ∅ and U =
⋃
i≤t Ui. Each of the sets Ui are

called the parts of the partition. A consecutive partition of {1, . . . , n} is a partition

UP = {U1, U2, . . . Ut} of {1, . . . , n} such that for every integer i ≤ t and integers

1 ≤ x ≤ y ≤ z, if x ∈ Ui and z ∈ Ui then y ∈ Ui as well.

Proposition 7.1. Let Pn
t denote the collection of all consecutive partitions of

{1, . . . , n} with exactly t parts. Let Zps,t be the set of all t-tuples (p1, p2, . . . , pt)

of integers such that
∑

i≤t pi = p and 0 ≤ pi ≤ s for all i. Then for every t,

|Pn
t | =

(
n+t−1
t−1

)
and |Zps,t| ≤

(
p+t−1
t−1

)
.

Lemma 7.7. For any p, q let s = b(log(p + q))2c and t = dp+q
s
e. If there is a

construction of n-p-q-separating collections (Fp, χp, χ′p)

• with size ζ(n, p, q) and initialization time τI(n, p, q),

• (χp, p
′)-degree ∆(χp,p′)(n, p, q) and (χ′p, q

′)-degree ∆(χ′p,q
′)(n, p, q), and

• query times Q(χp,p′)(n, p, q) and Q(χ′p,q
′)(n, p, q),

then there is a construction of n-p-q-separating collection with following parameters

•
ζ ′(n, p, q) ≤ |Pn

t | ·
∑

(p1,...,pt)∈Zps,t

∏
i≤t

ζ(n, pi, s− pi),

•
τ ′I(n, p, q) = O

(( ∑
p̂≤s,p
s−p̂≤q

τI(n, p̂, s− p̂)
)

+ ζ ′(n, p, q) · nO(1)
)
,

•

∆′(χ,p′)(n, p, q) ≤ ∆∗(χ,p′)(n, p, q) = |Pn
t |·|Zps,t|· max

(p1,...,pt)∈Zps,t
p′1≤p1,...,p′t≤pt
p′1+···+p′t=p′

∏
i≤t

∆(χpi ,p
′
i)

(n, pi, s−pi),
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•

Q′(χ,p′)(n, p, q) = O
(

∆∗(χ,p′)(n, p, q) · nO(1) +

|Pn
t | · |Zps,t|· t ·

(
max
p̂′≤p̂≤s

p̂−p̂′≤p−p′
s−p̂≤q

Q(χp̂,p̂′)(n, p̂, s− p̂)
))
,

•

∆′(χ′,q′)(n, p, q) ≤ ∆∗(χ′,q′)(n, p, q)

= |Pn
t | · |Zps,t| · max

(p1,...,pt)∈Zps,t
q′1≤s−p1,...,q′t≤s−pt

q′1+...+q′t=q
′

∏
i≤t

∆(χ′pi ,q
′
i)

(n, pi, s− pi),

•

Q′(χ′,q′)(n, p, q) = O
(

∆∗(χ′,q′)(n, p, q) · nO(1) +

|Pn
t | · |Zps,t| · t ·

(
max
q̂′≤q̂≤s

q̂−q̂′≤q−q′
s−q̂≤p

Q(χ′s−q̂ ,q̂
′)(n, s− q̂, q̂)

))
.

Proof. Set s = b(log(p + q))2c and t = dp+q
s
e. We will give a construction of n-p-

q-separating collections with initialization time, query time, size and degree within

the claimed bounds above. In this construction we will use the given construction

as a black box. We may assume without loss of generality that U = {1, . . . , n}.
Our algorithm first runs for every p̂, 0 ≤ p̂ ≤ s, p̂ ≤ p, s − p̂ ≤ q, and initializes

n-p̂-(s− p̂)-separating collections,

(Fp̂, χp̂, χ′p̂).

These will be be the building blocks of our construction. For a family of sets A over

a universe U and subset U ′ ⊆ U we define A u U ′ = {A ∩ U ′ : A ∈ A}. We now
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define F as follows.

F =
⋃

{U1,...,Ut}∈Pn
t

(p1,...,pt)∈Zps,t such that

∀i : s−pi≤q

(Fp1 u U1) ◦ (Fp2 u U2) ◦ . . . ◦ (Fpt u Ut) (7.1)

It follows directly from the definition of F that |F| is within the claimed bound for

ζ ′(n, p, q). For the initialization time, the algorithm spendsO
(∑

p̂≤s,p
s−p̂≤q

τI(n, p̂, s− p̂)
)

time to initialize the constructions of the n-p̂-(s − p̂)-separating collections for all

p̂ ≤ s such that p̂ ≤ p and s − p̂ ≤ q together. Now the algorithm can output

the entries of F one set at a time by using Equation (7.1), spending nO(1) time per

output set. Hence the time bound for τ ′I(n, p, q) follows.

For every set A ∈ ⋃p′≤p
(
U
p′

)
we define χ(A) as follows.

χ(A) =
⋃

{U1,...,Ut}∈Pn
t

(p1,...,pt)∈Zps,t such that

∀Ui : |Ui∩A|≤pi,s−pi≤q

[
(χp1(A ∩ U1) u U1) ◦ (χp2(A ∩ U2) u U2) ◦ . . . (7.2)

... ◦ (χpt(A ∩ Ut) u Ut)
]

Now we show that χ(A) ⊆ F . From the definition of n-pi-(s − pi)-separating col-

lections (Fpi , χpi , χ′pi), each family χpi(A ∩ Ui) in Equation (7.2) is a subset of Fpi .
This implies that χpi(A ∩ Ui) u Ui ⊆ Fpi u Ui. Hence χ(A) ⊆ F . Similarly we can

define χ′(B) for any B ∈ ⋃q′≤q
(
U
q′

)
as

χ′(B) =
⋃

{U1,...,Ut}∈Pn
t

(p1,...,pt)∈Zps,t such that

∀Ui : |Ui∩B|≤s−pi≤q

[
(χ′p1(B ∩ U1) u U1) ◦ (χ′p2(B ∩ U2) u U2) ◦ · · · (7.3)

· · · ◦ (χ′pt(B ∩ Ut) u Ut)
]

Similar to the proof of χ(A) ⊆ F , we can show that χ′(B) ⊆ F . It follows di-

rectly from the definition of χ(A) and χ′(B) that |χ(A)| and |χ′(B)| is within the
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claimed bound for ∆′(χ,p′)(n, p, q) and ∆′(χ′,q′)(n, p, q) respectively. We now describe

how queries χ(A) can be answered, and analyze how much time it takes. Given A we

will compute χ(A) using Equation (7.2). Let |A| = p′. For each {U1, . . . , Ut} ∈Pn
t

and (p1, . . . , pt) ∈ Zps,t such that p′i = |Ui ∩ A| ≤ pi, s − pi ≤ q for all i ≤ t, we

proceed as follows. First we compute χpi(A ∩ Ui) for each i ≤ t, spending in total

O(
∑

i≤tQ(χpi ,p
′
i)

(n, pi, s− pi)) time. Now we add each set in

(χp1(A ∩ U1) u U1) ◦ (χp2(A ∩ U2) u U2) ◦ . . . ◦ (χpt(A ∩ Ut) u Ut)

to χ(A), spending nO(1) time per set, yielding the bound below,

Q′(χ,p′)(n, p, q) ≤ O
(

∆∗(χ,p′)(n, p, q) · nO(1) +∑
{U1,...,Ut}∈Pt

(p1,...,pt)∈Zps,t such that

∀Ui : p′i=|Ui∩A|≤pi,s−pi≤q

[∑
i≤t

Q(χpi ,p
′
i)

(n, pi, s− pi)
])

≤ O
(

∆∗(χ,p′)(n, p, q) · nO(1) +

|Pn
t | · |Zps,t| · max

(p1,...,pt)∈Zps,t
p′1≤p1,··· ,p′t≤pt such that
p′1+···+p′t=p′,∀i:s−pi≤q

(∑
i≤t

Q(χpi ,p
′
i)

(n, pi, s− pi)
))

≤ O
(

∆∗(χ,p′)(n, p, q) · nO(1) +

|Pn
t | · |Zps,t| · t · max

(p1,...,pt)∈Zps,t
p′1≤p1,··· ,p′t≤pt such that
p′1+···+p′t=p′,∀i:s−pi≤q

(
Q(χpi ,p

′
i)

(n, pi, s− pi)
))

≤ O
(

∆∗(χ,p′)(n, p, q) · nO(1) +

|Pn
t | · |Zps,t| · t ·

(
max
p̂′≤p̂≤s

p̂−p̂′≤p−p′
s−p̂≤q

Q(χp̂,p̂′)(n, p̂, s− p̂)
))

For any (p1, . . . , pt) ∈ Zps,t and p′1 ≤ p1, . . . , p
′
t ≤ pt such that

∑t
i=1 p

′
i = p′, we have

that
∑t

i=1 pi−p′i = p−p′ and so pi−p′i ≤ p−p′ for all i. This shows the correctness

of the last inequality in the above query time analysis.

By doing similar analysis, we get required bound for Q′(χ′,q′). We now need to argue
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that (F , χ, χ′) is in fact a n-p-q-separating collection. For any r, consider pairwise

disjoint sets A1 ∈
(
U
b1

)
, . . . , Ar ∈

(
U
br

)
and B ∈

(
U
q

)
such that b1 + · · · + br = p.

Let A = A1 ∪ · · · ∪ Ar. There exists a consecutive partition {U1, . . . , Ut} ∈ Pn
t

of U such that for every i ≤ t we have that |(A ∪ B) ∩ Ui| ≤ dp+qt e = s. For

each i ≤ t set pi = |A ∩ Ui| and qi = |B ∩ Ui| = s − pi. Note that pi ≤ p and

qi ≤ q for all i. For every i ≤ t the tuple (Fpi , χpi , χ′pi) form a n-pi-qi-separating

collection. Hence there exists a Fi ∈ χpi(A1 ∩ Ui) ∩ · · · ∩ χpi(Ar ∩ Ui) ∩ χ′pi(B ∩ Ui)
because |A1 ∩ Ui|+ · · ·+ |Ar ∩ Ui| = pi, |B ∩ Ui| = qi and (Fpi , χpi , χ′pi) is a n-pi-qi-

separating collection. That is Fi ∈ χpi(Aj ∩ Ui) for all j ≤ r and Fi ∈ χ′pi(B ∩ Ui).
Let F =

⋃
i≤t Fi ∩ Ui. By construction of χ and χ′, F ∈ χ(Aj) for all j ≤ r and

F ∈ χ′(B). Hence F ∈ χ(A1) ∩ · · · ∩ χ(Ar) ∩ χ′(B). This completes the proof

Now we are ready to prove Lemma 7.4. We restate the lemma for easiness of
presentation.

Lemma 7.4 Given 0 < x < 1, there is a construction of n-p-q- separating collection

with the following parameters

• size: ζ(n, p, q) ≤ 2O( p+q
log log(p+q)

) · 1
xp(1−x)q

· (p+ q)O(1) · log n

• initialization time: τI(n, p, q) ≤ 2O( p+q
log log(p+q)

) · 1
xp(1−x)q

· (p+ q)O(1) · n log n

• (χ, p′)-degree: ∆(χ,p′)(n, p, q) ≤ 2O( p+q
log log(p+q)

) · 1
xp−p′ (1−x)q

· (p+ q)O(1) · log n

• (χ, p′)-query time: Q(χ,p′)(n, p, q) ≤ 2O( p+q
log log(p+q)

) · 1
xp−p′ (1−x)q

· (p+ q)O(1) · log n

• (χ′, q′)-degree: ∆(χ′,q′)(n, p, q) ≤ 2O( p+q
log log(p+q)

) · 1
xp(1−x)q−q′

· (p+ q)O(1) · log n

• (χ′, q′)-query time: Q(χ′,q′)(n, p, q) ≤ 2O( p+q
log log(p+q)

) · 1
xp(1−x)q−q′

· (p+ q)O(1) · log n

Proof. We first explain a brute force construction of n-p-q-separating collection when

the value of x is close to 0 or close to 1. These are discussed in Cases 1 and 2 and

the result for all other values of x is explained in Case 3. Let U be the universe.
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Case 1: x ≤ 1
n
. In this case the algorithm will output all subset of size p of

the universe as the family F of sets in the n-p-q- separating collection. That is

F = {F ⊆ U | |F | = p}. We define χ and χ′ as follows. For any A ∈ ⋃p′≤p
(
U
p′

)
,

χ(A) = {F ∈ F | A ⊆ F}. For any B ∈ ⋃q′≤q
(
U
q′

)
, χ′(B) = {F ∈ F | B∩F = ∅}. It

is easy to see that (F , χ, χ′) is a n-p-q- separating collection. Note that |F| =
(
n
p

)
≤

np. Since n ≤ 1
x
, the size of the n-p-q- separating collection is upperbound by the

claimed bound. Since we can list all the elements in F in np time, the initialization

time is upper bounded by the claimed bound. For any A ⊆ U , |A| = p′, the

cardinality of χ(A) is exactly equal to
(

n
p−p′
)

which is upper bounded by 1
xp−p′

. Thus

the (χ, p′)-degree and (χ, p′)-query time is bounded by the claimed bound. For any

B ⊆ U , |B| = q′, the cardinality of χ′(B) is at most |F|, which is upper bounded

by 1
xp

. Thus the (χ′, q′)-degree and (χ′, q′)-query time is bounded by the claimed

bound.

Case 2: 1 − x ≤ 1
n
. In this case the algorithm will output all subset of size n − q

of the universe as the family F of sets in the n-p-q- separating collection. That is

F = {F ⊆ U | |F | = n− q}. We define χ and χ′ as follows. For any A ∈ ⋃p′≤p
(
U
p′

)
,

χ(A) = {F ∈ F | A ⊆ F}. For any B ∈ ⋃q′≤q
(
U
q′

)
, χ′(B) = {F ∈ F | B ∩ F =

∅}. It is easy to see that (F , χ, χ′) is a n-p-q- separating collection. Note that

|F| =
(
n
n−q

)
≤ nq. Since n ≤ 1

1−x , the size of the n-p-q- separating collection

is upperbound by the claimed bound. Since we can list all the elements in F in

nq time, the initialization time is upper bounded by the claimed bound. For any

A ⊆ U , |A| = p′, the cardinality of χ(A) is is at most |F| which is upper bounded

by 1
(1−x)q

. Thus the (χ, p′)-degree and (χ, p′)-query time is bounded by the claimed

bound. For any B ⊆ U , |B| = q′, the cardinality of χ′(B) is exactly equal to
(

n
q−q′
)
,

which is upper bounded by 1
(1−x)q−q′

. Thus the (χ′, q′)-degree and (χ′, q′)-query time

is bounded by the claimed bound.

Case 3: x, 1− x > 1
n
. The structure of the proof in this case is as follows. We first

create a collection using Lemma 7.5. Then we apply Lemma 7.6 and obtain another
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construction. From here onwards we keep applying Lemma 7.7 and Lemma 7.6 in

phases until we achieve the required bounds on size, degree, query and intializitaion

time.

We first apply Lemma 7.5 and get a construction of n-p-q-separating collections with

the following parameters.

• size, ζ1(n, p, q) = O
(

1
xp(1−x)q

· (p2 + q2 + 1) log n
)

,

• initialization time, τ 1
I (n, p, q) = O(

(
2n

ζ(n,p,q)

)
· 1
xp(1−x)q

· nO(p+q)),

• (χ1, p
′)-degree for p′ ≤ p, ∆1

(χ1,p′)
(n, p, q) = O

(
1

xp−p′
· (p2+q2+1)

(1−x)q
· log n

)
• (χ1, p

′)-query time Q1
(χ1,p′)

(n, p, q) = O( 1
xp(1−x)q

· nO(1)) = O(2nnO(1))

• (χ′1, q
′)-degree for q′ ≤ q, ∆1

(χ′1,q
′)(n, p, q) = O

(
1

xp(1−x)q−q′
· (p2 + q2 + 1) · log n

)
• (χ′1, q

′)-query time, Q1
(χ′1,q

′)(n, p, q) = O( 1
xp(1−x)q

· nO(1)) = O(2nnO(1))

We apply Lemma 7.6 to this construction to get a new construction with the fol-

lowing parameters.

• size, ζ2(n, p, q) = O
(

1
xp(1−x)q

· (p+ q)O(1) · log n
)

• initialization time,

τ 2
I (n, p, q) = O

(
τ 1
I

(
(p+ q)2, p, q

)
+ ζ1

(
(p+ q)2, p, q

)
· (p+ q)O(1) · n log n

)
= O

(
22(p+q)

2

xp(1− x)q
· (p+ q)O(p+q) +

(
1

xp(1− x)q
· (p+ q)O(1) · n log n

))

= O
(

(p+ q)O(p+q)

xp(1− x)q

(
22(p+q)

2

+ n log n
))

• (χ2, p
′)-degree, ∆2

(χ2,p′)
(n, p, q) = O

(
1

xp−p′ (1−x)q
· (p+ q)O(1) · log n

)
• (χ2, p

′)-query time,

Q2
(χ2,p′)

(n, p, q) = O
((

2(p+q)2 + 1
xp−p′ (1−x)q

)
(p+ q)O(1) · log n

)
• (χ′2, q

′)-degree, ∆2
(χ′2,q

′)(n, p, q) = O
(

1
xp(1−x)q−q′

· (p+ q)O(1) · log n
)
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• (χ2, q
′)-query time,

Q2
(χ′2,q

′)(n, p, q) = O
((

2(p+q)2 + 1
xp(1−x)q−q′

)
(p+ q)O(1) · log n

)

We apply Lemma 7.7 to this construction. Recall that in Lemma 7.7 we set s =

b(log(p+ q))2c and t = dp+q
s
e.

ζ3(n, p, q) ≤ |Pn
t | ·

∑
(p1,...,pt)∈Zps,t

∏
i≤t

ζ2(n, pi, s− pi)

≤ nO(t) · |Zps,t| · max
(p1,...,pt)∈Zps,t

∏
i≤t

ζ2(n, pi, s− pi)

≤ nO(t) · (p+ q)O(t) · 1

xp(1− x)q+s
· sO(t) · (log n)O(t)

≤ n
O( p+q

log2(p+q)
) · 1

xp(1− x)q

(
Because

(
1

1− x

)s
≤ ns ≤ nO(t)

)

τ 3
I (n, p, q) = O


∑

p̂≤s,p
s−p̂≤q

τ 2
I (n, p̂, s− p̂)

+ ζ3(n, p, q) · nO(1)



= O


∑

p̂≤s,p
s−p̂≤q

sO(s)

xp̂(1− x)s−p̂

(
22s

2

+ n log n
)+ ζ3(n, p, q) · nO(1)


= O

(
(log(p+ q))O(log2(p+q))

xp(1− x)q

(
22log

4(p+q)

+ n log n
)

+
n
O( p+q

log2(p+q)
)

xp(1− x)q

)
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∆3
(χ3,p′)(n, p, q) ≤ ∆∗3(χ3,p′)(n, p, q)

= |Pn
t | · |Zps,t| · max

(p1,...,pt)∈Zps,t
p′1≤p1,...,p′t≤pt
p′1+...+p′t=p

′

∏
i≤t

∆2
(χ,p′)(n, pi, s− pi)

≤ nO(t) · (p+ q)O(t) · 1

xp−p′(1− x)q+s
· sO(t) · (log n)O(t)

≤ n
O( p+q

log2(p+q)
) · 1

xp−p′(1− x)q

(
Because

(
1

1− x

)s
∈ nO(t)

)
∆3

(χ′3,q
′)(n, p, q) ≤ ∆∗3(χ′3,q

′)(n, p, q)

= |Pn
t | · |Zps,t| · max

(p1,...,pt)∈Zps,t
q′1≤s−p1,...,q′t≤s−qt

q′1+...+q′t=q
′

∏
i≤t

∆2
(χ′,q′i)

(n, pi, s− pi)

≤ nO(t) · (p+ q)O(t) · 1

xp(1− x)q+s−q′
· sO(t) · (log n)O(t)

≤ n
O( p+q

log2(p+q)
) · 1

xp(1− x)q−q′

(
Because

(
1

1− x

)s
∈ nO(t)

)

Q3
(χ3,p′)(n, p, q) ≤ O

(
∆∗3(χ3,p′)(n, p, q) · nO(1) +

|Pn
t | · |Zps,t| · t · max

p̂′≤p̂≤s
p̂−p̂′≤p−p′
s−p̂≤q

Q2
(χ2,p̂′)(n, p̂, s− p̂)

)

≤ O
(

∆∗3(χ3,p′)(n, p, q) · nO(1) +

nO(t) · max
p̂′≤p̂≤s

p̂−p̂′≤p−p′
s−p̂≤q

(
2s

2

+
1

xp̂−p̂′(1− x)s−p̂

)
sO(1) log n

)

≤ O
(

n
O( p+q

log2(p+q)
)

xp−p′(1− x)q
+ nO(t) · sO(1) · log n

(
2s

2

+
1

xp−p′(1− x)q

))

≤ O
(

n
O( p+q

log2(p+q)
)

xp−p′(1− x)q

)

Similar way we can bound Q3
(χ′3,q

′) as,

Q3
(χ′3,q

′)(n, p, q) ≤ O
(

n
O( p+q

log2(p+q)
)

xp(1− x)q−q′

)
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We apply Lemma 7.6 to this construction to get a new construction with the fol-

lowing parameters.

• size, ζ4(n, p, q) ≤ 2O( p+q
log(p+q)

) · 1
xp(1−x)q

· (p+ q)O(1) · log n,

• initialization time,

τ 4
I (n, p, q) ≤ O

(
τ 3
I

(
(p+ q)2, p, q

)
+ ζ3

(
(p+ q)2, p, q

)
· (p+ q)O(1) · n log n

)
≤ 22log

4(p+q) · (log(p+ q))O(log2(p+q))

xp(1− x)q
+

2O( p+q
log(p+q)

)

xp(1− x)q
· (p+ q)O(1)n log n

• (χ4, p
′)-degree,

∆4
(χ4,p′)(n, p, q) ≤ ∆3

(χ3,p′)

(
(p+ q)2, p, q

)
· (p+ q)O(1) · log n

≤ 2O( p+q
log(p+q)

)

xp−p′(1− x)q
· (p+ q)O(1) · log n

• (χ′4, q
′)-degree,

∆4
(χ′4,q

′)(n, p, q) ≤ ∆3
(χ′3,q

′)

(
(p+ q)2, p, q

)
· (p+ q)O(1) · log n

≤ 2O( p+q
log(p+q)

)

xp(1− x)q−q′
· (p+ q)O(1) · log n

• (χ4, p
′)-query time,

Q4
(χ4,p′)(n, p, q) ≤ O

( (
Q3

(χ3,p′)

(
(p+ q)2, p, q

)
+ ∆3

(χ3,p′)

(
(p+ q)2, p, q

))
·

(p+ q)O(1) · log n
)

≤ 2O( p+q
log(p+q)

)

xp−p′(1− x)q
· (p+ q)O(1) log n

62



• (χ′4, q
′)-query time,

Q4
(χ′4,q

′)(n, p, q) ≤
2O( p+q

log(p+q)
)

xp(1− x)q−q′
· (p+ q)O(1) log n

We apply Lemma 7.7 to this construction by setting s = b(log(p + q))2c and t =

dp+q
s
e.

• size,

ζ5(n, p, q) ≤ |Pn
t | ·

∑
(p1,...,pt)∈Zps,t

∏
i≤t

ζ4(n, pi, s− pi)

≤ nO(t) · (p+ q)O(t) · sO(t) · 2O( st
log s

) · (log n)O(t) · 1

xp(1− x)q+s

≤ n
O( p+q

log2(p+q)
) · 2O( p+q

log log(p+q)
) 1

xp(1− x)q(
Because

(
1

1− x

)s
∈ nO(t)

)
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• initialization time,

τ 5
I (n, p, q) ≤ O


∑

p̂≤s,p
s−p̂≤q

τ 4
I (n, p̂, s− p̂)

+ ζ5(n, p, q) · nO(1)


≤ O

(
s

22log
4 s · (log s)O(log2 s)

xp(1− x)q
+

2O( s
log s

)

xp(1− x)q
· n log n+

n
O( p+q

log2(p+q)
) · 2O( p+q

log log(p+q)
)

xp(1− x)q

)
≤ O

(
s

22log
4 s · (log s)O(log2 s)

xp(1− x)q
+ n

O( p+q

log2(p+q)
) · 2O( p+q

log log(p+q)
)

xp(1− x)q

)

≤ O
(

22log
4 s · (s)O(s)

xp(1− x)q
+ n

O( p+q

log2(p+q)
) · 2O( p+q

log log(p+q)
)

xp(1− x)q

)

≤ O
(22(2 log log(p+q))4 · (log(p+ q))O((log(p+q))2)

xp(1− x)q
+

n
O( p+q

log2(p+q)
) · 2O( p+q

log log(p+q)
)

xp(1− x)q

)
≤ O

(
n
O( p+q

log2(p+q)
) · 2O( p+q

log log(p+q)
)

xp(1− x)q

)
(

Because 22(2 log log(p+q))4

, (log(p+ q))O(log2(p+q)) ≤ 2O( p+q
log log(p+q)

)
)

• (χ5, p
′)-degree,

∆5
(χ5,p′)(n, p, q) ≤ ∆∗5(χ5,p′)(n, p, q)

= |Pn
t | · |Zps,t| · max

(p1,...,pt)∈Zps,t
p′1≤p1,...,p′t≤pt
p′1+...+p′t=p

′

∏
i≤t

∆4
(χ4,p′i)

(n, pi, s− pi)

≤ nO(t) · (p+ q)O(t) · 2O( st
log s

)

xp−p′(1− x)q+s
· sO(t) · (log n)O(t)

≤ n
O( p+q

log2(p+q)
) · 2O( p+q

log log(p+q)
) · 1

xp−p′(1− x)q(
Because

(
1

1− x

)s
∈ nO(t)

)
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• (χ′5, q
′)-degree,

∆5
(χ′5,q

′)(n, p, q) ≤ ∆∗5(χ′5,q
′)(n, p, q)

≤ n
O( p+q

log2(p+q)
) · 2O( p+q

log log(p+q)
) · 1

xp(1− x)q−q′

• (χ5, p
′)-query time,

Q5
(χ5,p′)(n, p, q) ≤ O

(
∆∗5(χ5,p′)(n, p, q) · nO(1) +

|Pn
t | · |Zps,t| · max

p̂′≤p̂≤s
p̂−p̂′≤p−p′
s−p̂≤q

Q4
(χ4,p̂′)(n, p̂, s− p̂)

)

≤ n
O( p+q

log2(p+q)
) · 2O( p+q

log log(p+q)
) · 1

xp−p′(1− x)q

• (χ′5, q
′)-query time,

Q5
(χ′5,q

′)(n, p, q) ≤ n
O( p+q

log2(p+q)
) · 2O( p+q

log log(p+q)
) · 1

xp(1− x)q−q′

We apply Lemma 7.6 to this construction to get a new construction with the fol-

lowing parameters.

• size,

ζ(n, p, q) ≤ ζ5
(
(p+ q)2, p, q

)
· (p+ q)O(1) · log n

≤ 2O( p+q
log log(p+q)

) · 1

xp(1− x)q
· (p+ q)O(1) log n

• initialization time,

τI(n, p, q) ≤ O
(
τ 5
I

(
(p+ q)2, p, q

)
+ ζ5

(
(p+ q)2, p, q

)
· (p+ q)O(1) · n log n

)
= O

(
2O( p+q

log log(p+q)
) · 1

xp(1− x)q
· (p+ q)O(1)n log n

)
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• (χ, p′)-degree,

∆(χ,p′)(n, p, q) ≤ ∆5
(χ5,p′)

(
(p+ q)2, p, q

)
· (p+ q)O(1) · log n

≤ O
(

2O( p+q
log log(p+q)

) · 1

xp−p′(1− x)q
· (p+ q)O(1) · log n

)

• (χ, p′)-query time,

Q(χ,p′)(n, p, q) ≤ O
( (
Q5

(χ5,p′)

(
(p+ q)2, p, q

)
+ ∆5

(χ5,p′)

(
(p+ q)2, p, q

))
·

(p+ q)O(1) · log n
)

≤ O
(

2O( p+q
log log(p+q)

) · 1

xp−p′(1− x)q
· (p+ q)O(1) · log n

)

• (χ′, q′)-degree,

∆(χ′,q′)(n, p, q) = ∆5
(χ′5,q

′)

(
(p+ q)2, p, q

)
· (p+ q)O(1) · log n

≤ O
(

2O( p+q
log log(p+q)

) · 1

xp(1− x)q−q′
· (p+ q)O(1) · log n

)

• (χ′, q′)-query time,

Q(χ′,q′)(n, p, q) = O
((

Q5
(χ′5,q

′)

(
(p+ q)2, p, q

)
+ ∆5

(χ′5,q
′)

(
(p+ q)2, p, q

))
·

(p+ q)O(1) · log n
)

≤ O
(

2O( p+q
log log(p+q)

) · 1

xp(1− x)q−q′
· (p+ q)O(1) · log n

)

The final construction satisfies all the claimed bounds. This concludes the proof.

Now using n-p-q-separating collections we give a fast computation of representative
family (Theorem 7.1). Towards that consider the following lemma.

Lemma 7.8. There is an algorithm that given a p-family A of sets over a universe U

of size n, an integer q, a 0 < x < 1, and a non-negative weight function w : A → N
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with maximum value at most W , computes in time

O(x−p(1− x)−q · 2o(p+q) ·n log n+ |A| · log |A| · logW + |A| · (1− x)−q · 2o(p+q) · log n)

a subfamily Â ⊆ A such that |Â| ≤ x−p(1− x)−q · 2o(p+q) · log n and Â ⊆qminrep A
(Â ⊆qmaxrep A).

Proof. The algorithm first checks whether |A| ≤ x−p(1− x)−q · 2o(p+q) · log n. If yes

then it outputs A (as Â) and halts. So we assume that |A| > x−p(1− x)−q · 2o(p+q) ·
log n. The algorithm starts by constructing a generalized n-p-q-separating collection

(F , χ, χ′) as guaranteed by Lemma 7.4. If |A| ≤ |F| the algorithm outputs A and

halts. Otherwise it builds the set Â as follows. Initially Â is equal to ∅ and all sets

in F are marked as unused. Now we sort the sets in A in the increasing order of

weights, given by w : A → N. The algorithm goes through every A ∈ A in the

sorted order and queries the separating collection to get the set χ(A). It then looks

for a set F ∈ χ(A) that is not yet marked as used. The first time such a set F is

found the algorithm marks F as used, inserts A into Â and proceeds to the next set

in A. If no such set F is found the algorithm proceeds to the next set in A without

inserting A into Â.

The size of Â is upper bounded by |F| ≤ x−p(1− x)−q · 2o(p+q) · log n since every

time a set is added to Â an unused set in F is marked as used. For the running time

analysis, the initialization of (F , χ) takes time x−p(1− x)−q·(p+q)O(1)·2o(p+q)·n log n.

Sorting A takes O(|A| · log |A| · logW ) time. For each element A ∈ A the algorithm

first queries χ(A), using time (1− x)−q · 2o(p+q) · (p + q)O(1) · log n. Then it goes

through all sets in χ(A) and checks whether they have already been marked as used,

taking time (1− x)−q · (p + q)O(1) · 2o(p+q) · log n. Thus in total, the running time

for these steps is bounded by O(|A| · (1− x)−q · 2o(p+q) · log n+ |A| · log |A| · logW ).

Adding the initialization time to this gives the claimed running time.

Finally we need to argue that Â ⊆qminrep A. Consider any set A ∈ A and B such
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that |B| = q and A ∩ B = ∅. If A ∈ Â we are done, so assume that A /∈ Â. Since

(F , χ, χ′) is a n-p-q-separating collection, we have that there exists F ∈ χ(A)∩χ′(B),

i.e, A ⊆ F and F ∩B = ∅. Since A /∈ Â we know that F was marked as used when

A was considered by the algorithm. When the algorithm marked F as used it also

inserted a set A′ into Â, with the property that F ∈ χ(A′). Thus A′ ⊆ F and hence

A′ ∩B = ∅. Furthermore, A′ was considered before A and thus w(A′) ≤ w(A). But

A′ ∈ Â, completing the proof.

Next we prove a “faster version of Lemma 7.8”, that speeds up the running time to
compute the representative families.

Lemma 7.9. There is an algorithm that given a p-family A of sets over a universe U

of size n, an integer q, a 0 < x < 1, and a non-negative weight function w : A → N

with maximum value at most W , computes in time

O((p+ q)O(1)n log n+ |A| · log |A| · logW + |A| · (1− x)−q · 2o(p+q) · log n)

a subfamily Â ⊆ A such that |Â| ≤ x−p(1− x)−q · 2o(p+q) · log n and Â ⊆qminrep A
(Â ⊆qmaxrep A).

Proof. The algorithm first checks whether |A| ≤ x−p(1− x)−q · 2o(p+q) · log n. If yes

then it outputs A (as Â) and halts. So we assume that |A| > x−p(1− x)−q · 2o(p+q) ·
log n.

We start by constructing a (p+ q)-perfect family f1, . . . , ft of hash functions from U

to [(p+q)2] with t = O((p+q)O(1) · log n) in time O(kO(1)n log n) using Theorem 5.2.

Now we sort the sets in A in the increasing order of weights, given by w : A → N.

For every fj, 1 ≤ j ≤ t, we construct a family Âj as follows. The algorithm

starts by constructing a generalized [(p + q)2]-p-q-separating collection (Fj, χj, χ′j)
as guaranteed by Lemma 7.4. It builds the set Âj as follows. Initially Âj is equal to

∅ and all sets in F are marked as unused. The algorithm goes through every A ∈ A
in the sorted order and does as follows.
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• It first check whether every element in A gets mapped to distinct integers by

fj. That is, |{fj(a) | a ∈ A}| = |A|. If |{fj(a) | a ∈ A}| < |A| then the

algorithm proceeds to the next set in A without inserting A into Â. Else, we

move to the next step.

• It queries the separating collection to get the set χ(A). It looks for a set

F ∈ χj(A) that is not yet marked as used. The first time such a set F is found

the algorithm marks F as used, inserts A into Âj and proceeds to the next

set in A. If no such set F is found the algorithm proceeds to the next set in

A without inserting A into Âj.

Finally, we return Â =
⋃t
j=1 Âj.

The size of Âj is upper bounded by |F| ≤ x−p(1− x)−q · 2o(p+q) · log(p + q) since

every time a set is added to Â an unused set in F is marked as used. Thus, the size

of Â is upper bounded by |F| ≤ x−p(1− x)−q ·2o(p+q) · log(p+ q) · (p+ q)O(1) · log n ≤
x−p(1− x)−q · 2o(p+q) · log n. The running time analysis follows similar to the one

given in Lemma 7.8.

Finally we need to argue that Â ⊆qminrep A. Consider any set A ∈ A and B such

that |B| = q and A ∩ B = ∅. If A ∈ Â we are done, so assume that A /∈ Â. By the

properties of (p+ q)-perfect family f1, . . . , ft of hash functions from U to [(p+ q)2],

there exists an integer j ∈ {1, . . . , t} such that fj is injective on A∪B. We focus now

on the construction of Âj. Since (Fj, χj, χ′j) is a [(p+ q)2]-p-q-separating collection,

we have that there exists F ∈ χj(A) ∩ χ′j(B), i.e, A ⊆ F and F ∩ B = ∅. Since

A /∈ Âj (as A /∈ Â) we know that F was marked as used when A was considered

by the algorithm. When the algorithm marked F as used it also inserted a set A′

into Â, with the property that F ∈ χ(A′). Thus A′ ⊆ F and hence A′ ∩ B = ∅.
Furthermore, A′ was considered before A and thus w(A′) ≤ w(A). But A′ ∈ Âj ⊆ Â,

completing the proof.

While applying Lemma 7.9 we can reduce the universe size to at most |A|p+ q. The
next lemma formalizes this.

69



Lemma 7.10. There is an algorithm that given a p-family A of sets over a universe

U of size n, an integer q, 0 < x < 1 and a non-negative weight function w : A → N

with maximum value at most W , computes in time

O(|A| · log |A| · logW + |A| · (1− x)−q · 2o(p+q) · log n)

a subfamily Â ⊆ A such that |Â| ≤ x−p(1− x)−q · 2o(p+q) · log |A| and Â ⊆qminrep A
(Â ⊆qmaxrep A).

Proof. We first construct a new universe U ′ as follows. If n ≤ |A|p+ q, then we set

U ′ = U , otherwise U ′ will consist of elements from U , which are part of any set in A
and q new elements. The universe U ′ can be constructed in O(|A|p+ q) time. Also

note that |U ′| ≤ |A|p+ q and |U ′| ≤ n. Now we claim that a q-representative family

Â of A with respect to the universe U ′ is also the required representative family

over U . Suppose X ∈ A and Y ⊆ U , |Y | ≤ q such that X ∩ Y = ∅. Let Y ′ = Y \U ′

and let Y ′′ be an arbitrary subset of size |Y ′| of U ′ \ U . Let Z = (Y \ Y ′) ∪ Y ′′. It

is easy to see that |Z| = |Y | and X ∩ Z = ∅. By the definition of q-representative

family, there exists X̂ ∈ Â such that X̂ ∩ Z = ∅. Since Y ′ ∩ X̂ = ∅, we have that

X̂ ∩ Y = ∅.

Thus we apply Lemma 7.9 to compute q-representative family Â of A with respect

to the universe U ′ and output it as the desired family. The claimed running time

as well as the size bound on the output representative family follow by substituting

the upper bound on |U ′| in the bounds coming from Lemma 7.9.

Finally, we give our main theorem.

Theorem 7.3. There is an algorithm that given a p-family A of sets over a universe

U of size n, an integer q, 0 < x < 1 and a non-negative weight function w : A → N

with maximum value at most W , computes in time

O(|A| · log |A| · logW + |A| · (1− x)−q · 2o(p+q) · log n)
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a subfamily Â ⊆ A such that |Â| ≤ x−p(1− x)−q·2o(p+q) and Â ⊆qminrep A (Â ⊆qmaxrep
A).

Proof. Let A = A1. We compute a sequence of representative families

A2 ⊆qminrep A1, · · · ,Am ⊆qminrep Am−1

using Lemma 7.10, such that m is the least integer with the property that |Am| ≥
|Am−1|/2. In other words, for all i < m we have that |Ai| ≤ |Ai−1|/2 and |Am| ≥
|Am−1|/2. We output Am as the q-representative family for A. The correctness of

this following from Lemma 7.1. By Lemma 7.10,

|Am| ≤ x−p(1− x)−q · 2o(p+q) · log |Am−1|

≤ x−p(1− x)−q · 2o(p+q) · log 2|Am|

Thus,
|Am|

log |Am|
≤ x−p(1− x)−q · 2o(p+q).

We know that for some number a and b, if a ≤ b then a log2 a ≤ b log2 b. Applying

this identity we get the following.

|Am|
log |Am|

log2

( |Am|
log |Am|

)
≤ x−p(1− x)−q · 2o(p+q)

The above inequality implies that

|Am| ≤
|Am|

log |Am|
log2

( |Am|
log |Am|

)
≤ x−p(1− x)−q · 2o(p+q)

and thus |Am| ≤ x−p(1− x)−q · 2o(p+q). By Lemma 7.10, the total running time T
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to compute Am is,

T =
m−1∑
i=1

|Ai| · log |Ai| · logW + |Ai| · (1− x)−q · 2o(p+q) · log n)

=
m−1∑
i=1

O
( |A|

2i−1
· log |A| · logW +

|A|
2i−1
· (1− x)−q · 2o(p+q) · log n

)
(since |Ai| ≤

|A|
2i−1

)

= O(|A| · log |A| · logW + |A| · (1− x)−q · 2o(p+q) · log n)

This concludes the proof.

The size of the output representative family in Theorem 7.3 is minimized when
x = p

p+q
. By substituting x = p

p+q
in Theorem 7.3 we get the following corollary.

Corollary 7.1. There is an algorithm that given a p-family A of sets over a universe

U of size n, an integer q, and a non-negative weight function w : A → N with

maximum value at most W , computes in time

O
(
|A| · log |A| · logW + |A| ·

(
p+ q

q

)q
· 2o(p+q) · log n

)

a subfamily Â ⊆ A such that |Â| ≤
(
p+q
p

)
· 2o(p+q) and Â ⊆qminrep A (Â ⊆qmaxrep A).
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Chapter 8

Long Directed Cycle

In the Long Directed Cycle problem we are interested in finding a cycle of
length at least k in a directed graph. The problem Long Directed Cycle is
formally defined as follows.

Long Directed Cycle Parameter: k
Input: A n-vertex and m-arc directed graph D and a positive integer k.
Question: Does there exist a directed cycle of length at least k in D?

In this chapter we prove that Long Directed Cycle can be solved in parame-
terized single exponential time. While at the first glance the problem is similar to
the problem of finding a cycle or a path of length exactly k, it is more tricky. The
reason is that the problem of finding a cycle of length ≥ k may entail finding a much
longer, potentially even a Hamiltonian cycle. This is why color-coding, and other
techniques applicable to k-Path do not seem to work here. Even for undirected
graphs color-coding alone is not sufficient, and one needs an additional clever trick
to make it work. The first fixed-parameter tractable algorithm for Long Directed
Cycle is due to Gabow and Nie [61], who gave algorithms with expected running
time k2k2O(k)nm and worst-case times O(k2k2O(k)nm log n) or O(k3knm). These
running times allow them to find a directed cycle of length at least log n/ log log n in
expected polynomial time, if it exists. Let us note, that our result implies that one
can find in polynomial time a directed cycle of length at least log n if there is such a
cycle. On the other hand, Björklund et al. [18] have shown that assuming Exponen-
tial Time Hypothesis (ETH) of Impagliazzo et al. [71], there is no polynomial time
algorithm that finds a directed cycle of length Ω(f(n) log n), for any nondecreasing,
unbounded, polynomial time computable function f that tends to infinity. Thus,
our work closes the gap between the upper and lower bounds for this problem.

In Section 8.1, we give an algorithm running in time O(8k+o(k)mn2) for Long Di-
rected Cycle. In Section 8.2, we give a faster algorithm for the problem which
runs in time O(6.75k+o(k)mn2).
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Figure 8.1: Illustration to the proof of Lemma 8.1.

8.1 Algorithm for Long Directed Cycle

First we define some notations. We use Tum(t, p, q) to denote the time required to

compute a family Ŝ ⊆qrep S of size
(
p+q
p

)
· 2o(p+q), where S is a p-family of size t over

a universe of size n. By Corollary 7.1, Tum(t, p, q)= O(t · (p+q
q

)q · log n). For a pair

of vertices u, v ∈ V (D), we define

P iuv =
{
X
∣∣∣ X ⊆ V (D), u, v ∈ X, |X| = i, and there is a directed uv-path in D

of length i− 1 with all the vertices belonging to X.
}

Now we start with a structural lemma providing the key insight to our algorithm.

Lemma 8.1. Let D be a directed graph. Then D has a directed cycle of length at

least k if and only if there exists a pair of vertices u, v ∈ V (D) and X ∈ P̂kuv ⊆krep Pkuv
such that D has a directed cycle C and in this cycle vertices of X induce a directed

path (that is, vertices of X form a consecutive segment in C).

Proof. The reverse direction of the proof is straightforward—if cycle C contains a

path of length k, the length of C is at least k. We proceed with the proof of the

forward direction. Let C∗ = v1v2 · · · vrv1 be a smallest directed cycle in D of length

at least k. That is, r ≥ k and there is no directed cycle of length r′ where k ≤ r′ < r.

We consider two cases.
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Case A: r ≤ 2k. If r ≤ 2k, then we take u = v1 and v = vk. We define paths

P = v1v2 · · · vk and Q = vk+1 · · · vr. Because |Q| ≤ k, by the definition of P̂kuv ⊆krep
Pkuv, there exists a directed uv-path P ′ such that X = V (P ′) ∈ P̂kuv and X ∩Q = ∅.
By replacing P with P ′ in C∗ we obtain a directed cycle C of length at least k

containing P ′ as a subpath.

Case B: r ≥ 2k + 1. In this case we set u = v1, v = vk, and split C∗ into three

paths P = v1 · · · vk, Q = vk+1 · · · v2k, and R = v2k+1 · · · vr. Since |Q| = k and

P̂kuv ⊆krep Pkuv, it follows that there exists an uv-path P ′ such that X = V (P ′) ∈ P̂kuv
and X ∩ Q = ∅. However, P ′ is not necessarily disjoint with R and by replacing

P with P ′ in C∗ we can obtain a closed walk C ′ containing P ′ as a subpath. See

Fig. 8.1 for an illustration.

If X ∩ R = ∅, then C ′ is a simple cycle and we take C ′ as the desired C. We claim

that this is the only possibility. Let us assume targeting towards a contradiction

that X ∩ R 6= ∅. We want to show that in this case there is a cycle of length at

least k but shorter than C∗, contradicting the choice of C∗. Let vα be the last

vertex in X ∩R when we walk from v1 to vk along P ′. Let P ′[vα, vk] be the subpath

of P ′ starting at vα and ending at vk. If vα = v2k+1, we set R′ = ∅. Otherwise

we put R′ = R[v2k+1, vα−1] to be the subpath of R starting at v2k+1 and ending

at vα−1. Observe that since the arc vα−1vα is present in D (in fact it is an arc

of the cycle C∗), we have that C = P ′[vα, vk]QR
′ is a simple cycle in D. Clearly,

|C| ≥ |Q| ≥ k. Furthermore, since v1 is not present in P ′[vα, vk] we have that

|P ′[vα, vk]| < |P ′| = |P |. Similarly since vα is not present in R′, we have that

|R′| < |R|. Thus we have

k ≤ |C| = |P ′[vα, vk]|+ |Q|+ |R′| < |P |+ |Q|+ |R| = |C∗|.

This implies that C is a directed simple cycle of length at least k and strictly smaller

than r. This is a contradiction. Hence by replacing P with P ′ in C∗ we obtain a
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directed cycle C containing P ′ as a subpath. This concludes the proof.

Next lemma provides an efficient computation of family P̂kuv ⊆krep Pkuv. The next
lemma is provided to give a simple exposition of representative families based dy-
namic programming algorithm.

Lemma 8.2. Let D be a directed/unidrected graph with n vertices and m edges ,

and u ∈ V (D). Let ` be a positive integer. Then for every p ≤ ` and v ∈ V (D)\{u},
a family P̂puv ⊆`−prep Ppuv of size at most

(
`

p

)
· 2o(`)

can be found in time

O
(

2o(`)m log nmax
i∈[p]

{(
`

i− 1

)(
`

`− i

)`−i})
.

Furthermore, within the same running time every set in P̂puv can be ordered in a way

that it corresponds to a directed (undirected) path in D.

Proof. We prove the lemma only for digraphs. The proof for undirected graphs is

analogous and we only point out the differences with the proof for the directed case.

We describe a dynamic programming based algorithm. Let V (D) = {u, v1, . . . , vn−1}
and D be a (p − 1) × (n − 1) matrix where the rows are indexed from integers in

{2, . . . , p} and the columns are indexed from vertices in {v1, . . . , vn−1}. The entry

D[i, v] will store the family P̂ iuv ⊆`−irep P iuv. We fill the entries in the matrix D in

the increasing order of rows. For i = 2, D[2, v] = {{u, v}} if uv ∈ A(D) (for an

undirected graph we check whether u and v are adjacent). Assume that we have

filled all the entries until the row i. Let

N i+1
uv =

⋃
w∈N−(v)

P̂ iuw • {v}.
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For undirected graphs we use the following definition

N i+1
uv =

⋃
w∈N(v)

P̂ iuw • {v}.

Claim 8.1. N i+1
uv ⊆`−(i+1)

rep P i+1
uv .

Proof. Let S ∈ P i+1
uv and Y be a set of size ` − (i + 1) (which is essentially an

independent set of Un,`) such that S ∩ Y = ∅. We will show that there exists a set

S ′ ∈ N i+1
uv such that S ′ ∩ Y = ∅. This will imply the desired result. Since S ∈ P i+1

uv

there exists a directed path P = ua1 · · · ai−1v in D such that S = {u, a1, . . . , ai−1, v}
and ai−1 ∈ N−(v). The existence of path P [u, ai−1], the subpath of P between

u and ai−1, implies that X∗ = S \ {v} ∈ P iuai−1
. Take Y ∗ = Y ∪ {v}. Observe

that X∗ ∩ Y ∗ = ∅ and |Y ∗| = ` − i. Since P̂ iuai−1
⊆`−irep P iuai−1

there exists a set

X̂∗ ∈ P̂ iuai−1
such that X̂∗∩Y ∗ = ∅. However, since ai−1 ∈ N−(v) and X̂∗∩{v} = ∅

(as X̂∗ ∩ Y ∗ = ∅), we have X̂∗ • {v} = X̂∗ ∪ {v} and X̂∗ ∪ {v} ∈ N i+1
v . Taking

S ′ = X̂∗ ∪ {v} suffices for our purpose. This completes the proof of the lemma.

We fill the entry for D[i+ 1, v] as follows. Observe that

N i+1
uv =

⋃
w∈N−(v)

D[i, w] • {v}.

We already have computed the family corresponding to D[i, w] for w ∈ N−(v). By

Corollary 7.1, |P̂ iuw| ≤
(
`
i

)
2o(`) and thus |N i+1

uv | ≤ d−(v)
(
`
i

)
2o(`). Furthermore, we

can compute N i+1
uv in time O

(
d−(v)

(
`
i

)
2o(`)

)
. Now using Corollary 7.1, we compute

N̂ i+1
uv ⊆`−i−1

rep N i+1
uv in time Tum(t, i+ 1, `− i− 1), where t = d(v)

(
`
i

)
2o(`). By

Claim 8.1, we know that N i+1
uv ⊆`−i−1

rep P i+1
uv . Thus Lemma 7.1 implies that N̂ i+1

uv =

P̂ i+1
uv ⊆`−i−1

rep P i+1
uv . We assign this family toD[i+1, v]. This completes the description

and the correctness of the algorithm. We give ordering to the vertices of the sets

in P̂puv in the following way so that it corresponds to a directed (undirected) path

in D. We keep the sets in the order in which they are built using the • operation.
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That is, we can view these sets as strings and • operation as concatenation. Then

every ordered set in our family represents a path in the graph. The running time of

the algorithm is bounded by

O
(

p∑
i=2

n−1∑
j=1

Tum
(
d−(vj)

(
`

i− 1

)
2o(`), i, `− i

))

= O
(

p∑
i=2

n−1∑
j=1

d−(vj)

(
`

i− 1

)(
`

`− i

)`−i
2o(`) log n

)

= O
(

2o(`) log n

p∑
i=2

n−1∑
j=1

d−(vj)

(
`

i− 1

)(
`

`− i

)`−i)

= O
(

2o(`)m log nmax
i∈[p]

{(
`

i− 1

)(
`

`− i

)`−i})

This completes the proof

Finally, we are ready to state the main result of this section.

Theorem 8.1. Long Directed Cycle can be solved in time O(8k+o(k)mn2).

Proof. Let D be a directed graph. We solve the problem by applying the structural

characterization proved in Lemma 8.1. By Lemma 8.1, D has a directed cycle of

length at least k if and only if there exists a pair of vertices u, v ∈ V (D) and a path

P ′ with V (P ′) ∈ P̂kuv ⊆krep Pkuv such that D has a directed cycle C containing P ′ as

a subpath.

We first compute P̂kuv ⊆krep Pkuv for all u, v ∈ V (D). For that we apply Lemma 8.2 for

each vertex u ∈ V (D) with ` = 2k and p = k. Thus, we can compute P̂kuv ⊆krep Pkuv
for all u, v ∈ V (D) in time O

(
8k+o(k)mn log n

)
. Moreover, for every X ∈ P̂kuv we

also compute a directed uv-path PX using vertices of X. Let

Q =
⋃

u,v∈V (D)

P̂kuv.

Now for every set X ∈ Q and the corresponding uv-path PX with endpoint, we check

if there is a uv-path in D avoiding all vertices of X but u and v. This check can be
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done by a standard graph traversal algorithm like BFS/DFS in time O(m + n). If

we succeed in finding a path for at least one X ∈ Q, we answer YES and return the

corresponding directed cycle obtained by merging PX and another path. Otherwise,

if we did not succeed to find such a path for any of the sets X ∈ Q, this means that

there is no directed cycle of length at least k in D. The correctness of the algorithm

follows from Lemma 8.1. By Corollary 7.1, the size of Q is upper bounded by

n2
(

2k
k

)
2o(k) ≤ n24k+o(k). Thus the overall running time of the algorithm is upper

bounded by

O(8k+o(k)mn log n+ 4k+o(k)(n2m+ n3)).

This concludes the proof.

8.2 Faster Algorithm for Long Directed Cycle

In this section we design a faster algorirthm for Long Directed Cycle. In
Section 8.1 we have seen an algorithm for Long Directed Cycle where the
running time mainly depend on the computation of representative families P̂puv ⊆qrep
Ppuv for 2 ≤ p ≤ k and q = 2k − p. We used Theorem 7.8 with x = p

p+q
(i.e,

Corollary 7.1) to compute representative families. The choice x = p
p+q

minimizes
the size of representative family. But in fact, we can choose x that minimizes the
running time instead.

Now we find out the choice of x which minimizes the computation of P̂puv ⊆qrep Ppuv
for 2 ≤ p ≤ k and q = 2k − p. Let sp,q denote the size of P̂puv. We know that

the computation of P̂puv ⊆qrep N p
uv ⊆qrep Ppuv depends on |N p

uv|, which depends on

the size of the representative families P̂p−1
uw . That is |N p

uv| ≤ sp−1,q+1 · n. Thus the
value of sp−1,q+1 and sp,q are “almost equal” and we denote it by sp−1,q+1 ≈ sp,q. By

Theorem 7.3, the running time to compute P̂puv ⊆qrep N p
uv ⊆qrep Ppuv is,

O
(
|N p

uv| · (1− x)−q · 2o(p+q) · log n
)

= O
(
sp,q · (1− x)−q · 2o(p+q) · n log n

)
= O

(
x−p · (1− x)−2q · 2o(p+q) · n log n

)

To minimize the above running time it is enough to minimize the function f(x) =
x−p · (1 − x)−2q. Using methods from calculus we know that the value x∗ of x for
which f ′(x∗) = 0 corresponds to a minimum value of the function f(x) if f ′′(x∗) > 0.

79



The derivative of f(x) is, f ′(x) = −px−p−1(1 − x)−2q + 2q · x−p(1 − x)−2q−1. Now
consider the value of x for which f ′(x) = 0.

−px−p−1(1− x)−2q + 2q · x−p(1− x)−2q−1 = 0

−p(1− x) + 2q · x = 0

x =
p

p+ 2q

Set x∗ = p
p+2q

. To prove f(x) is minimized at x∗, it is enough to show that f ′′(x∗) >
0.

f ′(x) = −px−p−1(1− x)−2q + 2q · x−p(1− x)−2q−1

= x−p(1− x)−2q(−p · x−1 + 2q · (1− x)−1)

= f(x) · (−p · x−1 + 2q · (1− x)−1)

f ′′(x) = f(x) · (p · x−2 + 2q · (1− x)−2) + f ′(x) · (−p · x−1 + 2q · (1− x)−1)

f ′′(x∗) = f(x∗) · (p · (x∗)−2 + 2q · (1− (x∗))−2) > 0

Hence the run time to compute P̂puv ⊆qrep Ppuv is minimized when x = p
p+2q

.

Lemma 8.3. Let D be a directed graph with n vertices and m edges, and u ∈ V (D).

Let ` be a positive integer. Then for every v ∈ V (D)\{u} and integer 2 ≤ p ≤ ` there

is an algorithm that computes a family P̂puv ⊆`−prep Ppuv of size
(

2`−p
p

)p (
2`−p
2`−2p

)`−p
·2o(`)

in time O
(

2o(`) ·m log n ·maxi∈[p]

{(
2`−i
i

)i ( 2`−i
2`−2i

)2`−2i
})

Proof. The proof is same as the proof of Lemma 8.2, except the choice of x while

applying Theorem 7.8 (instead of Corollary 7.1). As in the proof of Lemma 8.2, we

have a dynamic programming table D where the rows are indexed from integers in

{2, . . . , p} and the columns are indexed from vertices in {v1, . . . , vn−1}. The entry

D[i, v] will store the family P̂ iuv ⊆`−irep P iuv. We fill the entries in the matrix D in the

increasing order of rows. For i = 2, D[2, v] = {{u, v}} if uv ∈ A(D). Assume that

we have filled all the entries until the row i. Let

N i+1
uv =

⋃
w∈N−(v)

P̂ iuw • {v}.

Due to Claim 8.1, we have that N i+1
uv ⊆`−(i+1)

rep P i+1
uv . Lemma 7.1 implies that N̂ i+1

uv =
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P̂ i+1
uv ⊆`−i−1

rep P i+1
uv . We assign this family to D[i+ 1, v].

Now we explain the computation of N̂ i+1
uv = P̂ i+1

uv . For any j, to compute N̂ j
uv = P̂juv,

we apply Theorem 7.3 with the value xj for x, where

xj =
j

j + 2(`− j) =
j

2`− j

Let sj,`−j be the size of the representative family N̂ j
uv = P̂juv when we apply The-

orem 7.3 with the value xj. That is sj,`−j = (xj)
−j(1 − xj)

−`+j · 2o(`). Assume

that we have computed P̂juw of size sj,`−j and stored it in D[j, w] for all j ≤ i

and w ∈ {v1, . . . , vn−1}. Now consider the computation of N̂ i+1
uv = P̂ i+1

uv . We

apply Theorem 7.3 with value xi+1 for x to compute N̂ i+1
uv ⊆`−(i+1)

rep N i+1
uv . Since

N i+1
uv =

⋃
w∈N−(v) P̂ iuw • {v}, we have that

|N i+1
uv | ≤ si,`−i · d−(v)

≤ (xi)
−i(1− xi)−`+i · 2o(`)d−(v)

By Theorem 7.3, the running time to compute N̂ i+1
uv is,

si,`−i · (1− xi+1)−`+(i+1) · 2o(`) · d−(v) · log n (8.1)

To analyze the running time further we need the following claim.

Claim 8.2. For any 3 < i < p, si,`−i ≤ e2 · (i+ 1) · si+1,`−i−1.
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Proof. By applying the definition of si and xi+1 we get he following inequality.

si,`−i
si+1,`−i−1

=
x−ii (1− xi)−`+i

x
−(i+1)
i+1 (1− xi+1)−`+(i+1)

=

(
2`− i
i

)i(
2`− i
2`− 2i

)`−i(
i+ 1

2`− (i+ 1)

)i+1(
2`− 2(i+ 1)

2`− (i+ 1)

)`−(i+1)

=

(
2`− i

2`− (i+ 1)

)`
· (i+ 1)i+1

ii
· (2`− 2(i+ 1))`−(i+1)

(2`− 2i)`−i

≤
(

1 +
1

2`− (i+ 1)

)2`−(i+1)

· (i+ 1) ·
(

1 +
1

i

)i
≤ e2 · (i+ 1).

In the last transition we used that (1 + 1/x)x < e for every x > 0.

From Equation 8.1 and Claim 8.2 we have that the running time for computing P̂puv
is bounded by

O
(

p∑
i=2

n−1∑
j=1

si,`−i · d−(vj) · (1− xi)−`+i · 2o(`) · log n

)

= O
(

2o(`) ·m log n ·max
i∈[p]

{(
2`− i
i

)i(
2`− i
2`− 2i

)2`−2i
})

The size of the family P̂puv ⊆`−prep N p
uv ⊆`−prep Ppuv is,

sp,`−p = (xp)
−p(1− xp)−`+p · 2o(`) =

(
2`− p
p

)p(
2`− p
2`− 2p

)`−p
· 2o(`).

This completes the proof.

We now have a faster algorithm to compute the representative family P̂kuv ⊆krep Ppuv.
Using Lemma 8.3, we can compute P̂kuv, for all v ∈ V (D) \ {u} in time

O
(

2o(k) ·m log n ·max
i∈[p]

{(
4k − i
i

)i(
4k − i
4k − 2i

)4k−2i
})

.

Simple calculus shows that the maximum is attained for i = k. Hence the running
time to compute P̂kuv for all u, v ∈ V (D) is upper bounded by O(6.75k+o(k)nm log n).
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This yields an improved bound for the running time of our algorithm for Long
Directed Cycle.

We apply Lemma 8.3 for each u ∈ V (D) with ` = 2k and p = k. Thus, we can

compute P̂kuv ⊆krep Ppuv for all u, v ∈ V (D) in time O(6.75k+o(k)nm log n). The size

of the family P̂kuv for any u, v ∈ V (D) is upper bounded by O(4.5k+o(k)). Thus,
if we now loop over every set in the representative families and run a breadth
first search algorithm, just as in the proof of Theorem 8.1, this will take at most
O(6.75k+o(k)nm log n + 4.5k+o(k)(n3 + n2m)) time. Hence we arrive at the following
theorem.

Theorem 8.2. There is a O(6.75k+o(k)mn2) time algorithm for Long Directed

Cycle
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Chapter 9

k-Path and k-Tree

In this chapter we study k-Path, k-Tree and k-Subgraph Isomorphism prob-
lems. In the k-Path problem we are given an undirected n-vertex graph G and
integer k. The question is if G contains a path of length k. k-Path is a special
case of the k-Subgraph Isomorphism problem, where for given n-vertex graph G
and k-vertex graph F , the question is whether G contains a subgraph isomorphic to
F . Another special case of the k-Subgraph Isomorphism is k-Tree, where the
given k-vertex graph F is a tree.

Previous Work. k-Path was studied intensively within the parameterized com-
plexity paradigm. For n-vertex graphs the problem is trivially solvable in time
O(nk). Monien [97] showed that the problem is fixed parameter tractable. Monien
used representative families in set systems for his k-Path algorithm [97] and Plehn
and Voigt extended this algorithm to Subgraph Isomorphism in [109]. This led
Papadimitriou and Yannakakis [105] to conjecture that the problem is solvable in
polynomial time for k = log n. This conjecture was resolved in a seminal paper of

Reference Randomized Deterministic
Monien [97] - O(k!nm)

Bodlaender [21] - O(k!2kn)
Alon et al. [4] O(5.44kn) O(ckn log n) for a large c

Kneis at al. [77] O∗(4k) O∗(16k)

Chen et al. [30] O(4kk2.7m) 4k+O(log3 k)nm
Koutis [80] O∗(2.83k) -

Williams [119] O∗(2k) -
Björklund et al. [17] O∗(1.66k) -

Fomin et al. [57] - O(2.851kn log2 n)
Theorem 9.1 - O(2.619kn log n)

Table 9.1: Results for k-Path
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Alon et al. [4], who introduced the method of color-coding and obtained the first sin-
gle exponential algorithm for the problem. Actually, the method of Alon et al. can
be applied for more general problems, like finding a k-path in directed graphs, or to
solve the Subgraph Isomorphism problem in time 2O(k)nO(t), when the treewidth
of the pattern graph is bounded by t. There has been a lot of efforts in parameter-
ized algorithms to reduce the base of the exponent of both deterministic as well as
the randomized algorithms for the k-Path problem, see Table 9.1. After the work
of Alon et al. [4], there were several breakthrough ideas leading to faster and faster
randomized algorithms. Concerning deterministic algorithms, no improvements oc-
curred since 2007, when Chen et al. [33] showed a clever way of applying universal
sets to reduce the running time of color-coding algorithm to O∗(4k+o(k)).

The weighted version of k-Path is known as Short Cheap Tour. Let G be a
graph with maximum edge cost W , then the problem is to find a path of length
at least k where the total sum of costs on the edges is minimized. The algorithm
of Björklund et al. [17] can be adapted to solve Short Cheap Tour in time
O(1.66knO(1)W ), however, their approach does not seem to be applicable to obtain
algorithms with polylogarithmic dependence on W . Williams in [119] observed that
a divide-and-color approach from [30] can be used to solve Short Cheap Tour
in time O(4knO(1) logW ). As it was noted by Williams, the O(2knO(1)) algorithm
of his paper does not appear to extend to weighted graphs.

In addition to k-Path problem, parameterized algorithms for two other variants
of k-Subgraph Isomorphism, when F is a tree, and more generally, a graph of
treewidth at most t, were studied in the literature. Alon et al. [4] showed that
k-Subgraph Isomorphism, when the treewidth of the pattern graph is bounded
by t, is solvable in time 2O(k)nO(t). Cohen et al. gave a randomized algorithm
that for an input digraph D decides in time 5.704knO(1) if D contains a given out-
tree with k vertices [35]. They also showed how to derandomize the algorithm in
time 6.14knO(1). Amini et al. [5] introduced an inclusion-exclusion based approach
in the classical color-coding and gave a randomized 5.4knO(t) time algorithm and
a deterministic 5.4k+o(k)nO(t) time algorithm for the case when F has treewidth at
most t. Koutis and Williams [82] generalized their algebraic approach for k-Path to
k-Tree and obtained a randomized algorithm running in time 2knO(1) for k-Tree.
Fomin et al. [56], extended this result by providing a randomized algorithm for k-
Subgraph Isomorphism running in time 2k(nt)O(t), when the treewidth of F is
at most t.

Our results. We give deterministic algorithms for k-Path and k-Tree that run
in time O(2.619kn log n) and O(2.619knO(1)). The algorithm for k-Tree can be
generalized to k-Subgraph Isomorphism for the case when the pattern graph
F has treewidth at most t. This algorithm will run in time O(2.619knO(t)). Our
approach can also be applied to find directed paths and cycles of length k in time
O(2.619km log n) and O(2.619knO(1)) respectively, where m is the number of edges
in the input graph. Another interesting feature of our approach is that due to
using weighted representative families, we can handle the weighted version of the
problem as well. Our approach provides deterministic O(2.619knO(1) logW ) time

86



algorithm for Short Cheap Tour and partially resolves an open question asked
by Williams.

Organization of the chapter In Section 9.1 we prove our result on k-path. In
section 9.2 we give an algorithm for k-Tree. This algorithm can be generalized
to solve k-Subgraph Isomorphism when the treewidth of the pattern graph is a
constant.

9.1 k-Path

In this section we give an algorithm for k-Path. We start by modifying the graph
slightly. We add a new vertex, say s not present in V (G), to G by making it adjacent
to every vertex in V (G). Let the modified graph be called G′. It is clear that G has
a path of length k if and only if G′ has a path of length k+ 1 starting from s. Hence
we redefine the problem k-Path as follows.

k-Path Parameter: k
Input: An undirected n-vertex and m-edge graph G, s ∈ V (G) and a positive
integer k.
Question: Does there exist a simple path of length k + 1 in G?

For a given pair of vertices s, v ∈ V (G), recall that we defined (in Chapter 8)

P isv =
{
X
∣∣∣ X ⊆ V (G), v, s ∈ X, |X| = i and there is a path from s to v of

length i in G with all the vertices belonging to X.
}

The problem can be reformulated to asking whether there exists v ∈ V (G) such that
Pk+2
sv is non-empty. Our algorithm will check whether Pk+2

uv is non-empty by com-

puting P̂k+2
sv ⊆0

rep Pk+2
sv and checking whether P̂k+2

sv is non-empty. The correctness
of this algorithm is as follows. If Pk+2

sv is non-empty then Pk+2
sv contains some set

A which does not intersect the empty set ∅. But then P̂k+2
sv ⊆0

rep Pk+2
sv must also

contain a set which does not intersect with ∅, and hence P̂k+2
sv must be non-empty

as well. Thus, having computed the representative familes P̂k+2
sv all we need to do is

to check whether there is a vertex v such that P̂k+2
sv is non-empty. All that remains

is an algorithm that computes the representative families P̂k+2
sv ⊆0

rep Pk+2
sv for all

v ∈ V (G) \ {s}.

Now using Lemma 8.3 (by setting ` = p = k + 2) we compute P̂k+2
sv ⊆0

rep Pk+2
sv for
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all v ∈ V (G) \ {s} in time

2o(k) ·m log n · max
i∈[k+2]

{(
2(k + 2)− i

i

)i(
2(k + 2)− i
2(k + 2)− 2i

)2(k+2)−2i
}
.

Simple calculus shows that the running time is maximized for i = (1− 1√
5
)(k+2), and

thus the running time to compute P̂k+2
sv ⊆0

rep Pk+2
sv for all v ∈ V (G) \ {s} together is

upper bounded by φ2k+o(k)m log n = O(2.619km log n), where where φ is the golden

ratio 1+
√

5
2

. Furthermore, in the same time every set in P̂psv can be ordered in a way
that it corresponds to an undirected path in G. A graph G has a path of length
k+ 1 starting from s if and only if for some v ∈ V (G) \ {s}, we have that P̂k+2

sv 6= ∅.
Thus the running time of this algorithm is upper bounded by O(2.619km log n). Let
us remark that almost the same arguments show that the version of the problem on
directed graphs is solvable within the same running time. However on undirected
graphs we can speed up the algorithm slightly by using the following standard trick.
We need the following result.

Proposition 9.1 ([21]). There exists an algorithm, that given a graph G and an

integer k, in time O(k2n) either finds a simple path of length ≥ k or computes a

DFS (depth first search) tree rooted at some vertex of G of depth at most k.

We first apply Proposition 9.1 and in time O(k2n) either find a simple path of length
≥ k in G or compute a DFS tree of G of depth at most k. In the former case we
simply output the same path. In the later case since all the root to leaf paths are
upper bounded by k and there are no cross edges in a DFS tree, we have that the
number of edges in G is upper bounded by O(k2n). Now on this G we apply the
representative set based algorithm described above. This results in the following
theorem.

Theorem 9.1. k-Path can be solved in time O(2.619kn log n).

Our algorithm for k-Path can be used to solve the weighted version of the problem,
i.e, Short Cheap Tour. In this problem a graph G with maximum edge cost W
is given, and the objective is to find a path of length at least k where the total sum
of costs on the edges is minimized.

Theorem 9.2. Short Cheap Tour can be solved in time O(2.619knO(1) logW ).

9.2 k-Tree and k-Subgraph Isomorphism

In this section we consider the following problem.
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k-Tree Parameter: k
Input: An undirected n-vertex, m-edge graph G and a tree T on k vertices.
Question: Does G contains a subgraph isomorphic to T?

The algorithm for k-Tree is more involved than for k-Path. The reason to that
is due to the fact that paths poses perfectly balanced separators of size one while
trees not. We select a leaf r of T and root the tree at r. For vertices x,y ∈ V (T )
we say that y ≤ x if x lies on the path from y to r in T (if x = r we also say that
y ≤ x). For a set C of vertices in T we will say that x �C y if x ≤ y and there is no
z ∈ C such that x ≤ z and z ≤ y. For a pair x, y of vertices such that y ≤ x in T
we define

Cxy =

{
∅ if xy ∈ E(T ),

The unique component C of T \ {x, y} s.t N(C) = {x, y} otherwise.

We also define T uv = T [Cuv∪{u, v}]. We start by making a few simple observations
about sets of vertices in trees.

Lemma 9.1. For any tree T , a pair {x, y} of vertices in V (T ) and integer c ≥ 1

there exists a set W of vertices such that {x, y} ⊆ W , |W | = O(c) and every

connected component U of T \W satisfies |U | ≤ |V (T )|
c

and |N(U)| ≤ 2.

Proof. We first find a set W1 of size at most c such that every connected component

U of T \W1 satisfies |U | ≤ |V (T )|
c

. Start with W1 = ∅ and select a lowermost vertex

u ∈ V (T ) such that the subtree rooted at u has at least |V (T )|
c

vertices. Add u

to W1 and remove the subtree rooted at u from T . The process must stop after c

iterations since each iteration removes |V (T )|
c

vertices of T . Each component U of

T \W1 satisfies |U | ≤ |V (T )|
c

because (a) whenever a vertex u is added to W1, all

components below u have size strictly less than |V (T )|
c

and (b) when the process ends

the subtree rooted at r has size at most |U | ≤ |V (T )|
c

. Now, insert x and y into W1

as well.

We build W from W1 by taking the least common ancestor closure of W1; start with

W = W1 and as long as there exist two vertices u and v in W such that their least

common ancestor w is not in W , add w to W . Standard counting arguments on

trees imply that this process will never increase the size of W by more than a factor
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2, hence |W | ≤ 2|W1| = O(c).

We claim that every connected component U of T \W satisfies N(U) ≤ 2. Suppose

not and let u be the vertex of u closest to the root. Since N(U) > 2 at least two

vertices v and w in N(U) are descendants of u. Since U is connected v and w can’t

be descendants of each other, but then the least common ancestor of v and w is in

U , contradicting the construction of W .

Observation 9.1. For any tree T , set W ⊆ V (T ) and component U of T \W such

that |N(U)| = 1, U contains a leaf of T .

Proof. T [U ∪N(U)] is a tree on at least two vertices and hence it has at least two

leaves. At most one of these leaves is in N(U), the other one is also a leaf of T .

Lemma 9.2. Let W ⊆ V (T ) be a set of vertices such that for every pair of vertices

in W their least common ancestor is also in W . Let X be a set containing one leaf

of T from each connected component U of T \W such that |N(U)| = 1. Then, for

every connected component U such that |N(U)| = 1 there exist x ∈ W , y ∈ X such

that U = Cxy ∪ {y}. For every other connected component U there exist x, y ∈ W
such that U = Cxy.

Proof. It follows from the argument at the end of the proof of Lemma 9.1 that every

component U of T \W satisfies |N(U)| ≤ 2. If |N(U)| = 2, let N(U) = {x, y}. We

have that x ≤ y or y ≤ x since least common ancestor of x and y can not be in U and

would therefore be in N(U), contradicting |N(U)| = 2. Without loss of generality

y ≤ x. But then U = Cxy. If N(U) = 1, let N(U) = {x}. By Observation 9.1 U

contains a leaf y of T . Then U = Cxy ∪ {y}.

Given two graphs F and H, a graph homomorphism from F to H is a map f
from V (F ) to V (H), that is f : V (F ) → V (H), such that if uv ∈ E(F ), then
f(u)f(v) ∈ E(H). Furthermore, when the map f is injective, f is called a subgraph
isomorphism. For every x, y ∈ V (T ) such that y ≤ x, and every u,v in V (G) we
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define

Fxyuv =
{
F ∈

(
V (G) \ {u, v}
|Cxy|

)
: ∃ subgraph isomorphism f

from T xy to G[F ∪ {u, v}] such that f(x) = u and f(y) = v
}

Let us remind that for a set X and a family A, we use A+X to denote {A∪X : A ∈
A}. For every x, y ∈ V (T ) such that y ≤ x, and every u in V (G) we define

Fxyu∗ =
⋃

v∈V (G)\{u}

Fxyuv + {v} (9.1)

In order to solve the problem it is sufficient to select an arbitrary leaf ` of T and de-
termine whether there exists a u ∈ V (G) such that the family F r`u∗ is non-empty. We
show that the collections of families {Fxyuv } and {Fxyu∗} satisfy a recurrence relation.
We will then exploit this recurrence relation to get a fast algorithm for k-Tree.

Lemma 9.3. For every x,y ∈ V (T ) such that y ≤ x, every Ŵ = W ∪ {x, y} where

W ⊆ Cxy, such that for every pair of vertices in Ŵ their least common ancestor is

also in Ŵ , every X ⊆ Cxy \W such that X contains exactly one leaf of T in each

connected component U of T xy \ Ŵ with |N(U)| = 1, the following recurrence holds.

Fxyuv =
⋃

g:Ŵ→V (G)
g(x)=u∧g(y)=v




•∏
x′,y′∈Ŵ
y′�

Ŵ
x′

Fx′y′g(x′)g(y′) •
•∏

x′∈Ŵ , y′∈X
y′�

Ŵ
x′

Fx′y′g(x′)∗

+ g(W )

 (9.2)

Here the union goes over all O(n|W |) injective maps g from Ŵ to V (G) such that

g(x) = u and g(y) = v, and by g(W ) we mean {g(c) : c ∈ W}.

Proof. For the ⊆ direction of the equality consider any subgraph isomorphism f

from T xy to V (G) such that f(x) = u and f(y) = v. Let g be the restriction of

f to W . The map f can be considered as a collection of subgraph isomorphisms

with one isomorphism for each x′, y′ ∈ Ŵ such that y′ �Ŵ x from T x
′y′ to G such

that f(x′) = g(x′) and f(y′) = g(y′), and one isomorphism for each x′ ∈ Ŵ , y′ ∈ X
such that y′ �Ŵ x from T x

′y′ to G such that f(x′) = g(x′). Taking the union of the
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ranges of each of the small subgraph isomorphisms clearly give the range of f . Here

we used Lemma 9.2 to argue that for every connected component U of T xy \ Ŵ we

have that T [U ∪N(U)] is in fact on the form T x
′y′ for some x′, y′.

For the reverse direction take any collection of subgraph isomorphisms with one

isomorphism f for each x′, y′ ∈ Ŵ such that y′ �Ŵ x from T x
′y′ to G such that

f(x′) = g(x′) and f(y′) = g(y′), and one isomorphism for each x′ ∈ Ŵ , y′ ∈ X such

that y′ �Ŵ x from T x
′y′ to G such that f(x′) = g(x′), such that the range of all of

these subgraph isomorphisms are pairwise disjoint (except on vertices in Ŵ ). Since

all of these subgraph isomorphisms agree on the set W they can be glued together

to a subgraph isomorphism from T xy to G.

Our goal is to compute for every x, y ∈ V (T ) such that y ≤ x and u, v ∈ V (G) a

family F̂xyuv such that F̂xyuv ⊆k−|C
xy |

rep Fxyuv and for every x, y ∈ V (T ) such that y ≤ x

and u ∈ V (G) a family F̂xyu∗ such that F̂xyu∗ ⊆k−|C
xy |−1

rep Fxyuv . We will also maintain
the following size invariants.

|F̂xyuv | ≤
(

2k − |Cxy|
|Cxy|

)|Cxy |(
2k − |Cxy|
2k − 2|Cxy|

)k−|Cxy |
2o(k) (9.3)

|F̂xyu∗ | ≤
(

2k − |Cxy| − 1

|Cxy|+ 1

)|Cxy |+1(
2k − |Cxy| − 1

2k − 2|Cxy| − 2

)k−|Cxy |−1

2o(k) (9.4)

Let the right hand side of equation 9.3 be sxy and the right had side of equation 9.4

be s∗xy. We first compute such families F̂xyuv for all x, y ∈ V (T ) such that y ≤ x and
xy ∈ E(T ). Observe that in this case we have

Fxyuv =

{
{∅} if uv ∈ E(G),

∅ if uv /∈ E(G).

For each x, y ∈ V (T ) such that y ≤ x and xy ∈ E(T ) and every u, v ∈ V (G) we set
F̂xyuv = Fxyuv . We can now for compute F̂xyu∗ for every x, y ∈ V (T ) such that y ≤ x and
xy ∈ E(T ) and every u ∈ V (G) by applying Equation 9.1. Clearly the computed
families are within the required size bounds.

We now show how to compute a family F̂xyuv of size sxy for every x, y ∈ V (T ) such

that y ≤ x and u, v ∈ V (G) and |Cxy| = t, assuming that the families F̂xyuv and
F̂xyu∗ have been computed for every x, y ∈ V (T ) such that y ≤ x and u, v ∈ V (G)
and |Cxy| < t. We also assume that for each family F̂xyuv that has been computed,
|F̂xyuv | ≤ sxy. Similarly we assume that for each family F̂xyu∗ that has been computed,
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|F̂xyu∗ | ≤ s∗xy.

We fix a constant c whose value will be decided later. First apply Lemma 9.1 on
T xy, vertex pair {x, y} and constant c and obtain a set Ŵ such that {x, y} ⊆ Ŵ

and every connected component U of T \ Ŵ satisfies |U | ≤ |V (T )|
c

and |N(U)| ≤ 2.

Select a set X ⊆ V (T x,y) \ Ŵ such that each connected component U of T \ Ŵ with

|N(U)| = 1 contains exactly one leaf which is in X. Now, set W = Ŵ \ {x, y} and
consider Equation 9.2 for F̂xyuv for this choice of x,y,W and X. Define

F̃xyuv =
⋃

g:Ŵ→V (G)
g(x)=u∧g(y)=v




•∏
x′,y′∈Ŵ
y′�

Ŵ
x′

F̂x′y′g(x′)g(y′) •
•∏

x′∈Ŵ , y′∈X
y′�

Ŵ
x′

F̂x′y′g(x′)∗

+ g(W )

 (9.5)

Lemma 9.3 together with Lemmata 7.2 and 7.3 directly imply that F̃xyuv ⊆k−|C
xy |

rep

Fxyuv . Furthermore, each family on the right hand side of Equation 9.5 has already
been computed, since Cx′y′ ⊂ Cxy and so |Cx′y′| < t. For a fixed injective map
g : W → V (G) we define

F̃xyg =


•∏

x′,y′∈Ŵ
y′�

Ŵ
x′

F̂x′y′g(x′)g(y′) •
•∏

x′∈Ŵ , y′∈X
y′�

Ŵ
x′

F̂x′y′g(x′)∗

+ g(W ) (9.6)

It follows directly from the definition of F̃xyuv and F̃xyg that

F̃xyuv =
⋃

g:Ŵ→V (G)
g(x)=u∧g(y)=v

F̃xyg .

Our goal is to compute a family F̂xyuv ⊆k−|C
xy |

rep F̃xyuv such that |F̂xyuv | ≤ sxy. Lemma 7.1

then implies that F̂xyuv ⊆k−|C
xy |

rep Fxyuv . To that end, we define the function reduce.
Given a family F of sets of size p, the function reduce will run the algorithm of The-

orem 7.3 on F with x = p
2k−p and produce a family of size

(
2k−p
p

)p (
2k−p
2k−2p

)k−p
2o(k)

that k − p represents F .

We will compute for each g : Ŵ → V (G) such that g(x) = u and g(y) = v a family

93



F̂xyg of size at most sxy such that F̂xyg ⊆k−|C
xy |

rep F̃xyg . We will then set

F̂xyuv = reduce

 ⋃
g:Ŵ→V (G)

g(x)=u∧g(y)=v

F̂xyg

 . (9.7)

To compute F̂xyg , inspect Equation 9.6. Equation 9.6 shows that F̃xyg basically is a
long chain of • operations, specifically

F̃xyg =
(
F̂1 • F̂2 • F̂3 . . . • F̂`

)
+ g(W ) (9.8)

We define (and compute) F̂xyg as follows

F̂xyg = reduce
(
reduce

(
. . . reduce

(
reduce

(
F̂1 • F̂2

)
• F̂3

)
• . . .

)
• F̂`

)
+ g(W )

(9.9)

F̂xyg ⊆k−|C
xy |

rep F̃xyg and thus also F̂xyuv ⊆k−|C
xy |

rep F̃xyuv ⊆k−|C
xy |

rep Fxyuv follows from Lemma 7.3

and Theorem 7.3. Since the last operation we do in the construction of F̂xyuv is a call
to reduce, |F̂xyuv | ≤ sxy follows from Theorem 7.3. To conclude the computation we
set

F̃xyu∗ = reduce

 ⋃
v∈V (G)\{u}

F̂xyuv + {v}

 (9.10)

Lemma 7.3 and Theorem 7.3 imply that F̃xyu∗ ⊆k−|C
xy |−1

rep Fxyu∗ and that |F̂xyu∗ | ≤ s∗xy.

The algorithm computes the families F̂xyu∗ and F̂xyuv for every x, y ∈ V (T ) such that
y ≤ x. It then selects an arbitrary leaf ` of T and checks whether there exists a
u ∈ V (G) such that the family F̂ r`u∗ is non-empty. Since F̂ r`u∗ ⊆0

rep F r`u∗ there is a

non-empty F r`u∗ if and only if there is a non empty F̂ r`u∗. Thus the algorithm can
answer that there is a subgraph isomorphism from T to G if some F̂ r`u∗ is non-empty,
and that no such subgraph isomorphism exists otherwise.

It remains to bound the running time of the algorithm. Up to polynomial factors,
the running time of the algorithm is dominated by the computation of F̂xyuv . This

computation consists of nO(|̂W |) independent computations of the families F̂xyg . Each

computation of the family F̂xyg consists of at most k repeated applications of the
operation

F̂ i+1 = reduce(F̂ i • F̂i+1).
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Here F i is a family of sets of size p, and so |F i| ≤
(

2k−p
p

)p (
2k−p
2k−2p

)k−p
2o(k) log n. On

the other hand F̂i+1 is a family of sets of size p′ ≤ k
c

since we used Lemma 9.1 to

construct Ŵ . Thus,

|F̂i+1| ≤
(

2k − p′
p′

)p′ (
2k − p′
2k − 2p′

)k−p′
2o(k)

≤
(

2k

p′

)p′ (
2k

2k − 2p′

)k−p′
2o(k)

≤
(
k

p′

)
· 2p′ · 2o(k)

≤
(
k

k/c

)
· 2k/c · 2o(k)

≤ 2(ε+1/c)k · 2o(k)

Thus |F̂ i • F̂i+1| ≤
(

2k−p
p

)p (
2k−p
2k−2p

)k−p
2(ε+1/c)k+o(k). Hence, when we apply Theo-

rem 7.3 with x = p+p′

2k−p−p′ to compute reduce(F̂ i • F̂i+1), this takes time

|F̂ i • F̂i+1|
(

2k − p− p′
2k − 2p− 2p′

)k−p−p′
2o(k) log n

≤ |F̂ i • F̂i+1|
(

2k − p
2k − 2p

)k−p(
2k − 2p

2k − 2p− 2p′

)k−p−p′
2o(k) log n

≤ |F̂ i • F̂i+1|
(

2k − p
2k − 2p

)k−p(
1 +

p′

k − p− p′
)k−p−p′

2o(k) log n

≤ |F̂ i • F̂i+1|
(

2k − p
2k − 2p

)k−p
ep
′
2o(k) log n

≤
(

2k − p
p

)p(
2k − p
2k − 2p

)2k−2p

2(ε+3/c)k+o(k) log n

Since there are nO(|̂W |) (which is equal to nO(c), where c is a constant) independent
computations of the families F̂xyg , the total running time is upper bounded by

(
2k − p
p

)p(
2k − p
2k − 2p

)2k−2p

2(ε+3/c)k+o(k)nO(1)

The maximum value of
(

2k−p
p

)p (
2k−p
2k−2p

)2k−2p

is when p = (1− 1√
5
)k and the maxi-

mum value is φ2k, where φ is the golden ratio 1+
√

5
2

. Now we can choose the value of
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c in such a way that ε+ 3/c is small enough and the above running time is bounded
by 2.619k+o(k)nO(1). This yields the following theorem.

Theorem 9.3. k-Tree can be solved in time 2.619k+o(k)nO(1).

The algorithm for k-Tree can be generalized to k-Subgraph Isomorphism for
the case when the pattern graph F has treewidth at most t. Towards this we need a
result analogous to Lemma 9.1 for trees, which can be proved using the separation
properties of graphs of treewidth at most t. This will lead to an algorithm with
running time 2.619k+o(k) · nO(t).
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Chapter 10

r-Dimensional k-Matching

Given a universe U := U1] · · ·]Ur, and an r-uniform family F ⊆ U1×· · ·×Ur, the
r-Dimensional k-Matching ((r, k)-DM) problem asks if F admits a collection
of k mutually disjoint sets. The special case in which r = 3 can be viewed as
an immediate generalization of the matching problem on bipartite graphs to three-
partite, three-uniform hypergraphs. The question of finding the largest 3D-Matching
is a classic optimization problem, and the decision version is listed as one of the
six fundamental NP-Complete problems in Garey and Johnson [62]. The (r, k)-
DM problem may be thought as a restricted version of the more general r-Set k-
Packing ((r, k)-SP) problem, where no restrictions are assumed on the universe.
More precisely, given a universe U , and an r-uniform family F ⊆ 2U , the (r, k)-SP
problem asks if F admits a collection of k mutually disjoint sets. In this chapter we
study the weighted version of (r, k)-DM.

Weighted r-Dimensional k-Matching ((r, k)-WDM) Parameter: r · k
Input: A universe U := U1]· · ·]Ur, a family F ⊆ U1×· · ·×Ur, a non-negative
weight function w : F → N, and positive integers k,W .
Question: Does F have a collection M of k mutually disjoint sets such that
w(M) ≥ W?

Prior Work and Our Result. The problem (r, k)-DM, including their weighted
versions, have enjoyed substantial attention in the context of exact parameterized
algorithms, and there have been several deterministic and randomized approaches
to these problems (see Table 10.1). One of the earliest approaches [42] used the
color-coding technique [4]. Further, in [46], a kernel was developed , and the color-
coding was combined with dynamic programming on the structure of the kernel
to obtain an improvement. In [79], Koutis used an algebraic formulation of (r, k)-
SP and proposed a randomized algorithm (derandomized with hash families). The
randomized approaches saw further improvements in subsequent work [80, 82, 17],
also based on algebraic techniques. The common theme in these developments
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Reference Weighted? Algorithm Running Time

Chen et al. [28] No D O∗((rk)O(rk))

Downey et al. [42] Yes D O∗((rk)O(rk))

Fellows et al. [46] Yes D O∗(2O(rk))

Liu et al. [83] Yes D O∗(12.8(r−1)k)

Koutis [79] No D O∗(2O(rk))
No R O∗(10.874rk)

Chen et al. [34] No D O∗(5.44(r−1)k)

Chen et al. [31] Yes D O∗(4rk+o(rk))

Yes R O∗(4(r−1)k+o(rk))

Chen et al. [27] Yes D O∗(4(r−1)k+o(rk))

Koutis [80] No R O∗(2rk)
Koutis et al. [82] No R O∗(2(r−1)k)

Björklund et al. [17] No R O∗(2(r−2)k)

Goyal et al. [65] Yes D O∗(2.851(r−1)k)

Theorem 10.1 Yes D O∗(2.619(r−1)k)

Table 10.1: Algorithms for (r, k)-DM, with D denoting deterministic algorithms
and R denoting randomized algorithms.

is to express a parameterized problem in an algebraic framework by associating
monomials with the combinatorial structures that are sought, ultimately arriving at
a multilinear monomial testing problem or a polynomial identity testing problem.
In a recent development [34], a derandomization method was proposed for these
algebraic approaches, leading to deterministic algorithms that solve (r, k)-DM in
time O∗(5.44(r−1)k).

Prior to our work, the running time of the best deterministic algorithm for (r, k)-
DM was O∗(4(r−1)k+o(rk)) [27]. This algorithm, based on the randomized divide-
and-conquer technique [31], also achieved the previous best running times for the
weighted version of (r, k)-DM. Many algorithms have been designed for the special
cases of (3, k)-DM (see Table 10.2). In particular, the approach in [32] uses a clever
combination of dynamic programming (embedded in a color coding framework) and
iterative expansion, derandomized using hash families. However, the specialized
algorithms achieve neither the previous best deterministic running times for (3, k)-
DM, nor the previous best running times for the weighted versions of these problems.
These are achieved by the above mentioned algorithms of Chen et al. [27], which, in
the special cases of (3, k)-DM, run in times O∗(16k+o(k)).

In [65], we gave an algorithm for (r, k)-WDM running in time O∗(2.851(r−1)k) and
an algorithm for (3, k)-DM running in time O∗(8.042k). In this thesis we give an
algorithm for (r, k)-WDM running in time O∗(2.619(r−1)k) by incorporating the
time-size trade off of representative family. This algorithm runs in time O∗(6.86k)
for (3, k)-WDM.

Algorithm. We give a dynamic programming algorithm for the problem (r, k)-
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Reference Weighted? Algorithm Running Time

Wang et al. [117] Yes D O∗(432.082k)

Chen et al. [32] No D O∗(21.907k)

Liu et al. [84] No D O∗(21.254k)
No R O∗(12.488k)

Wang et al. [118] No D O∗(43.615k)

Goyal et al. [65] No D O∗(8.042k)
Theorem 10.1 Yes D O∗(6.86k)

Table 10.2: Algorithms for (3, k)-DM, with D denoting deterministic algorithms
and R denoting randomized algorithms.

WDM. Let (U1, . . . , Ur,F , w : F → N, k,W ) be an instance of (r, k)-WDM. Recall
that F ⊆ U1×. . .×Ur, and the problem involves finding k mutually disjoint sets in F
whose weight is at least W . Before explaining the algorithm consider the following
lemma regarding the computation of the representative families, which is useful for
designing our algorithm.

Lemma 10.1. Let k, p′, q′ be integers and let p = p′+q′. Let P be a p′-family of size

y−p
′
(1 − y)−(k−p′)2o(k) over a universe U of size n, where y = p′

2k−p′ , and let S ⊆ U

of size q′. Let w : P → N be a non-negative weight function with maximum value

at most W . Then we can compute P̂ • {S} ⊆k−p′−q′maxrep P • {S} of size

(
2k − p
p

)p(
2k − p

2(k − p)

)k−p
2o(k)

in time

O
(

2o(k) log n · logW ·max
j∈[p]

{(
2k − j
j

)j (
2k − j
2k − 2j

)2k−2j
})

Proof. Let S = {s1, . . . , sq′}. Remove from P the sets that are not disjoint from

S. First, we compute P1 = ̂P • {s1} ⊆k−p′−1
maxrep P • {s1} ; then, we compute P2 =

̂P1 • {s2} ⊆k−p′−2
maxrep P1 • {s2} , and so on. For all j ∈ {1, . . . , q′}, we compute Pj =

̂Pj−1 • {sj} ⊆k−p′−jmaxrep Pj−1 • {sj} by applying Theorem 7.3 with the value xj for x,

where

xj =
p′ + j

2k − (p′ + j)
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We output Pq′ as the (k−p′−q′)-representative family for P •{S}. Using induction

on i, we prove that for i ∈ {0, . . . q′}, Pi ⊆k−p′−imaxrep P • {{s1, . . . si}} where P0 = P .

The statement is trivially true for i = 0. Now, suppose the statement is true

for all values of j < i. We need to show that Pi ⊆k−p′−imaxrep P • {{s1, . . . si}}. Let

X ∈ P•{{s1, . . . si}}, and Y ⊆ U such that |Y | = k−p′−i and X∩Y = ∅. We need

to show that there exists X∗ ∈ Pi such that X∗∩Y = ∅ and w(X∗ \S) ≥ w(X \S).

Consider the setsXi = X\{si} and Yi = Y ∪{si}. Note thatXi ∈ P•{{s1, . . . , si−1}}
and Xi ∩ Yi = ∅. By induction hypothesis, Pi−1 ⊆k−p

′−(i−1)
maxrep P • {{s1, . . . si−1}}, and

thus there exists X∗i ∈ Pi−1 such that X∗i ∩ Yi = ∅ and w(X∗i \ S) ≥ w(Xi \ S). Let

X ′ = X∗i ∪ {si}. Note that X ′ ∈ Pi−1 • {{si}} and X ′ ∩ Y = ∅. Hence, there exists

X∗ ∈ Pi = ̂Pi−1 • {{si}} as desired.

The cardinality of (k − p′ − q′)-representative family Pq′ of P • {S} follows from

Theorem 7.3. Let sj be the size of the representative family Pj = ̂Pj−1 • {sj} when

we apply Theorem 7.3 with the value xj. That is sj = (xj)
−p′−j(1−xj)−k+p′+j ·2o(k).

By the assumption of the cardinality of P , we have that |P| = s0. Now we have

that |Pj+1| = ̂Pj−1 • {sj} = sj. By Theorem 7.3, the running time to compute Pj+1

is bounded by,

sj · (1− xj+1)−k+(j+1) · 2o(k) log n · logW (10.1)

We need the following claim to analyse the running time and its proof is similar to

the proof of Claim 8.2.

Claim 10.1. For any 3 < p′ + i < p, si ≤ e2 · (p′ + i+ 1) · si+1.

From Equation 10.1 and Claim 10.1 we have that the running time for computing
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Pq′ is bounded by

O
(

q′∑
i=1

si · (1− xi)−k+p′+i · 2o(k) · log n · logW

)

= O
(

2o(k) log n · logW ·max
j∈[p]

{(
2k − j
j

)j (
2k − j
2k − 2j

)2k−2j
})

This completes the proof.

Now we define some notation which is helpful to design the algorithm and its cor-
rectness. For a set S ∈ F , we let S[i] denote the element in S ∩ Ui, that is, S[i]
is the element of S that is from Ui. We sometimes refer to the element S[i] as the
ith coordinate of S. The dynamic programming approach involves iterating over the
elements in Ur. To this end, let Ur := {c1, c2, . . . , cn} (for the discussion in this
section, the index i of each element ci is an arbitrary and fixed choice). Moreover,
let M := {S1, S2, . . . , St} be an rD-Matching, and let Mr := {Si[r] | i ∈ [t]} ⊆ Ur
and M[r−1] := {Si[j] | i ∈ [t], j ∈ [r − 1]}. We define the maximum last index
of M, denoted by λ(M), as the largest index i for which ci ∈ Mr. For the empty
matching ∅, λ(∅) = 0. In the ith iteration of our algorithm, we would like to store
representative sub family of all matchings whose maximum last index is at most i.
We let Q(i) := {M | λ(M) ≤ i} and Q(i)

j := {M | M ∈ Q(i), |M| = j}. No-

tice that the Q(i)
j ’s constitute a partition of the set Q(i) based on matching size;

in other words, Q(i) :=
⋃n
j=0Q

(i)
j . Let X (i)

j := {M[r−1] | M ∈ Q(i)
j }. We as-

sign a weight function w′ : X (i)
j → N as follows. For every M[r−1] ∈ X (i)

j ,

w′(M[r−1]) = max{w(M?) | M? ∈ Q(i)
j ,M[r−1] =M?

[r−1]}.
We are now ready to describe our algorithm, Algorithm 1, whose outline is given
below. The heart of Algorithm 1 consists of two modules – Compute Partial
Solutions L(i) and Prune Partial Solutions L(i). In L(i), we store carefully chosen
rD-Matchings whose maximum last index is at most i. To use the representative
families more efficiently, we would like to split the elements of the matchings into two
parts. We will first collect the parts of the matching that come from (

⋃r−1
i=1 Ui), and

then store separately a map that completes the first part to the complete matching.
This will allow us to apply the dynamic programming approach. let

γj := {(M,M[r−1]) | M is a matching of size j in F}.

In γj, we are merely storing the associations ofM[r−1] with the matchings that they
“came from”. Observe that γj might (by definition) contain multiple entries with
the same second coordinate. On the other hand, when the algorithm stores the
associations in γj, we will see that it is enough to maintain one maximum weighted
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Algorithm 1: Algorithm for (r, k)-WDM

1 L(0) ← {∅}
2 for i ∈ {1, 2, . . . , n} do
3 Compute Partial solutions L(i)

4 Prune Partial Solutions L(i)

5 if ∃M ∈ L(n) such that |M| = k and w(M) ≥ W then
6 returnM.

7 else
8 returnNo

Algorithm 2: Compute Partial Solutions L(i)

1 L(i−1)
j ← {M | M ∈ L(i−1), |M| = j}

2 R(i−1)
j ← {M[r−1] | M ∈ L(i−1)

j }
3 γj := {(M,M[r−1]) | M is a matching in L(i−1)

j }
4 for j ∈ {1, . . . , k}, S ∈ F such that S[r] = ci do

5 Compute Rj(S) ⊆(r−1)(k−j)
maxrep R(i−1)

j−1 • {S[r−1]} using Lemma 10.1

6 L(i) ←
k⋃
j=1

({
γ̃j(M[r−1]) ∪ S | M[r−1] ∪ S[r−1] ∈ Rj(S), S[r] = ci}

})
∪ L(i−1)

entry for each M[r−1]. To this end, we define the function γ̃j as follows. Let � be

an arbitrary total order on the set of all matchings in F . For a set S ⊆ ⋃r−1
i=1 Ui, we

define γ̃(S) as the smallest matching M (with respect to �) among the maximum
weighted matchings in the set {M′ | (M′, S) ∈ γj}. If γ̃j(S) is M, then we say
that M is the matching associated with S. Finally, for a set S and a matching M,
we abuse notation and say that M is disjoint from S (notationally, M∩ S = ∅) to
mean that T ∩ S = ∅ for all T ∈M.

The module Compute Partial Solutions L(i), whose pseudocode is given in Al-
gorithm 2, computes subfamily of matchings of size i from L(i−1) and F using
Lemma 10.1 to perform an initial pruning of L(i) (while computing it from L(i−1)

and F). In Algorithm 2, the collection of sets corresponding to matchings in L(i−1)
j

are stored in R(i−1)
j . By computing Rj(S) ⊆(r−1)(k−j)

maxrep R(i−1)
j−1 • {S[r−1]} for any set S

such that S[r] = ci, we are computing a representative family of L(i−1)
j • S, which

can be recovered from Rj(S) using the map γ̃j. for X (i−1)
j • {S}; then, in the last

step, the matchings are recovered from Rj(S) via the map γ̃j.

The pseudocode of the second module, Prune Partial Solutions L(i), is given in
Algorithm 3. In this module, we compute a representative family for L(i). We first
partition the set L(i) — the part denoted by L(i)

j contains all matchings from L(i)

of size j. Note that this is simply done to ensure uniformity of size. Next, we
associate with every matching M ∈ L(i)

j , a set that consists of the first (r − 1)
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Algorithm 3: Prune Partial Solutions L(i)

1 R(0)
0 ← {∅}

2 R(0)
j ← ∅, for all 1 ≤ j ≤ k

3 L(i)
j ← {M | M ∈ L(i), |M| = j}

4 P(i)
j ← {M[r−1] | M ∈ L(i)

j }
5 γj := {(M,M[r−1]) | M is a matching in L(i)

j }
6 for j ∈ {0, 1, . . . , k} do

7 w′ ← {(M[r−1], w(γ̃j(M[r−1]))) | M[r−1] ∈ P(i)
j }

8 Compute R(i)
j ⊆(r−1)(k−j)

maxrep P(i)
j using Theorem 7.3 with x = (r−1)j

2(r−1)k−(r−1)j

9 L(i)
j ← {γ̃j(M[r−1]) | M[r−1] ∈ R(i)

j }
10 L(i) ← ⋃k

j=0 L
(i)
j

indices of every set in M. Recall that this is denoted by M[r−1]. The collection of

sets that correspond to matchings in L(i)
j is denoted by P(i)

j . We use γj to store the
associations between the sets and the original matchings. Note that γj might have
multiple pairs with the same second index and the same weight w for the first index,
but this will be irrelevant (it would simply mean thatM[r−1] can be “pulled back” to
multiple matchings, each of which would be equally valid). We then define a weight

function w′ : P(i)
j → N. For all M[r−1] ∈ P(i)

j , we set w′(M[r−1]) = w(γ̃(M[r−1])).
Now, the central step of this module is to compute a max (r−1)(k−j)-representative

family R(i)
j for P(i)

j . Once we have the representative family, we revise L(i)
j to only

include the matchings associated with the sets in R(i)
j .

The correctness of the algorithm relies on the fact that at each step, instead of the
complete family of partial solutions Q(i), it suffices to store only a representative
family for Q(i). Also, we will show that the family computed by the algorithm, L(i),
is indeed a representative family for Q(i). We next prove the following lemma.

Lemma 10.2. For all 0 ≤ i ≤ n, and 0 ≤ j ≤ k − 1, the set P(i)
j is a max ((r −

1)k − (r − 1)j)-representative family for X (i)
j , where P(0)

j = R(0)
j

Proof. To prove this lemma, we need to show that for all Y ⊆ U1 ∪ U2 ∪ . . . ∪ Ur−1

such that |Y | ≤ (r − 1)(k − j), if there exists a set Z ∈ X (i)
j such that Y ∩ Z = ∅,

then there also exists Z? ∈ P (i)
j such that Z? ∩ Y = ∅ and w′(Z?) ≥ w′(Z). Recall

that in this situation, we say that Z? is a max (r − 1)(k − j)-representative for Z

with respect to Y . The proof is by induction on i. The base case is when i = 0.
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Observe that:

P(0)
j = X (0)

j =

 {∅} if j = 0

∅ Otherwise.

Hence P(0)
j is an (r−1)(k−j)-representative family for X (0)

j for all 0 ≤ j ≤ k−1. The

induction hypothesis states that P(i−1)
j is a max (r− 1)(k− j)-representative family

for X (i−1)
j , for all 0 ≤ j ≤ k− 1. We will now show that P(i)

j is a max (r− 1)(k− j)-
representative family for X (i)

j , for all 0 ≤ j ≤ k − 1. Note that the case when

j = 0 is easily handled, since ∅ ∈ P(i)
0 . For the rest of this proof we assume that

j ∈ {1, . . . , k − 1}. Let Y ⊆ U1 ∪ U2 ∪ . . . ∪ Ur−1 such that |Y | ≤ (r − 1)(k − j),
and suppose there exists a set Z ∈ X (i)

j such that Z ∩ Y = ∅. Let MZ be the

matching associated with Z and hence w′(Z) = w(MZ). Since MZ is derived from

an element of X (i)
j , note that λ(MZ) ≤ i. We distinguish two cases, depending on

whether MZ contains a set with ci as the rth coordinate.

Case 1.MZ contains a set with ci as the last coordinate.

Let S ∈ MZ be such that ci ∈ S. Define the smaller matching MZ\S := MZ \ S.

Note that |MZ\S| = j−1 and λ(MZ\S) ≤ i−1. Hence,MZ\S ∈ Q(i−1)
j−1 andMZ\S

[r−1] ∈
X (i−1)
j−1 . Let A =MZ\S

[r−1]. By definition of w′, w′(A) ≥ w(MZ\S). Now consider the

set Y S = Y ∪S[r−1]. Note that |Y S| ≤ (r− 1)(k− j + 1), since |Y | ≤ (r− 1)(k− j).
It is also easy to check that A ∩ Y S = ∅. By the induction hypothesis, we have

that P(i−1)
j−1 contains an (r − 1)(k − j + 1)-representative of A with respect to Y S.

Let us denote this representative by B. Note that B ∩ Y S = ∅ and w′(B) ≥ w′(A)

by definition. Since R(i−1)
j−1 is an (r − 1)(k − j + 1)-representative family for P(i−1)

j−1 ,

there exists C ∈ R(i−1)
j−1 such that C ∩ Y S = ∅ and w′(C) ≥ w′(B) ≥ w′(A). Since

C ∩ S[r−1] = ∅, C ∪ S[r−1] ∈ R(i−1)
j−1 • S[r−1]. Note that C ∪ S[r−1] is disjoint from Y .

Since Rj(S) ⊆(r−1)(k−j)
maxrep R(i−1)

j−1 • {S[r−1]}, there exists D ∪ S[r−1] ∈ Rj(S) such that

D∪S[r−1] is disjoint from Y and w′(D) ≥ w′(C) ≥ w′(A). LetMD′ be the matching

associated with D ∪ S[r−1]. Since D ∪ S[r−1] ∈ Rj(S), we have thatMD′ ∈ L(i)
j , and

thus D∪S[r−1] ∈ P(i)
j . Hence D∪S[r−1] is the required (r− 1)(k− j)-representative
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with respect to Y .

Case 2.MZ contains no set with ci as the last coordinate.

In this case, we have that λ(MZ) ≤ i − 1. Clearly, MZ is contained in Q(i−1)
j and

consequently, Z =MZ
[r−1] ∈ X

(i−1)
j . By the induction hypothesis, let B be the max

(r − 1)(k − j)-representative for Z in P(i−1)
j with respect to Y . So B ∩ Y = ∅ and

w′(B) ≥ w′(MZ
[r−1]) ≥ w(MZ) = w′(Z). Since B ∈ P(i−1)

j , by the definition of a

representative set and Step 15, there exists C ∈ R(i−1)
j such that C ∩ Y = ∅ and

w′(C) ≥ w′(B) ≥ w′(Z). Since C ∈ R(i−1)
j , the matching associate with C, sayMC ,

belongs to L(i−1)
j , and w(MC) = w′(C). Further, since L(i)

j ⊇ L(i−1)
j , we have that

MC is also present in L(i)
j . This implies that C = MC

[r−1] ∈ P
(i)
j . Hence C is the

required (r − 1)(k − j)-representative with respect to Y .

Now, by the transitivity of representative family (Lemma 7.1), we get the following
lemma.

Lemma 10.3. For all 0 ≤ i ≤ n, and 0 ≤ j ≤ k − 1, the set R(i)
j is a max ((r −

1)k − (r − 1)j)-representative family for X (i)
j .

Observe that any solution constructed by Algorithm 1 is always a valid matching.
Therefore, if there is no matching of size k, Algorithm 1 always returns No. On the
other hand, if given a Yes-instance, we now show that Algorithm 1 always finds a
rD-Matching of size k with weight at least W .

Lemma 10.4. Let (U1, . . . , Ur,F , w : F → N, k,W ) be a Yes-instance of (r, k)-

WDM. Then, Algorithm 1 successfully computes a rD-Matching of size k with

weight at least W .

Proof. Let (U1, . . . , Ur,F , w : F → N, k,W ) be a Yes-instance of (r, k)-WDM.

Let M be a k-sized rD-Matching in F such that w(M) ≥ W . Recall that Q(i)
j

is the set of all rD-Matchings of size j with maximum last index at most i, and

X (i)
j contains the projections of these matchings on their first (r − 1) coordinates.

Therefore, M ∈ Q(n)
k and M[r−1] ∈ X (n)

k . By Lemma 10.2, we have that R(n)
k is a

max 0-representative family for X (n)
k . Since R(n)

k ⊆0
maxrep X (n)

k , we have that R(n)
k
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Z

ci+1S

MZ

Y

Y

S

B

ci+1

MZ\S

Y [ {S[1], S[2]}

S ci+1

Y [ {S[1], S[2]}

A

MB

,,

MB|S 2 L(i+1)
j

Z?

W

Figure 10.1: A schematic view of the proof of Lemma 10.2 when r = 3. It is meant
to be read in clockwise order. Note that B is a representative for A with respect
to Y ∪ {S[1], S[2]}, and Z? is a representative for B ∪ S with respect to Y . This
eventually implies that Z? is a representative for Z with respect to Y .
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contains a 0-representative Z? for M[r−1] with respect to ∅. So we have w′(Z?) ≥
w′(M[r−1]). Let M? be the matching associated with Z?. Therefore w(M?) =

w′(Z?) ≥ w′(M[r−1]) = w(M). Therefore, in Step 10 of Algorithm 3, we have

that L(n) contains the matching M?, which is then returned as output in Step 6 of

Algorithm 1.

Lemma 10.5. The running time of Algorithm 1 is bounded by O(2.619(r−1)k|F| ·
n log(n+W )).

Proof. Let 1 ≤ i ≤ n be and 1 ≤ j ≤ k be fixed. First, consider the running time of

Step 5 in Algorithm 2. Since R(i−1)
j−1 is derived from L(i−1)

j−1 in the previous iteration

of the module Algorithm 3, by Theorem 7.3, we have that

|R(i−1)
j−1 | =

(
(r − 1)(2k − j′)

(r − 1)j′

)(r−1)j′ (
(r − 1)(2k − j′)
2(r − 1)(k − j′)

)(r−1)(k−j′)

2o(rk)

where j′ = j−1. Note that the cardinality of each set in R(i−1)
j−1 is (r−1)(j−1). The

cardinality of R(i−1)
j−1 satisfy the premise of Lemma 10.1. Let k′ = (r − 1)k. Thus,

due to Lemma 10.1, the running time of Step 5 in Algorithm 2 is bounded by

O
(

2o(rk) log(n+W ) · max
j′′∈[(r−1)j]

{(
2k′ − j′′
j′′

)j′′ (
2k′ − j′′
2k′ − 2j′′

)2k′−2j′′
})

Now we consider the running time of Step 8 of Algorithm 3 for the fixed i and

j. Let xj = (r−1)j
2(r−1)k−(r−1)j

= j
2k−j and sj = x

−(r−1)j
j (1 − xj)−(r−1)(k−j)2o(k) for all j.

Since the construction of Rj(S) in iteration i uses Lemma 10.1, the size of |Rj(S)| is
bounded by sj. Since L(i−1)

j is a pruned sub family of matching obtained by applying

Theorem 7.3 in Step 8 of Algorithm 3 in the iteration i− 1, |L(i−1)
j | is bounded by

sj. This implies that the cardinality of Pj in iteration i is bounded by O(|F|sj).
Thus by Theorem 7.3, the running time of Step 8 of Algorithm 3 in the iteration i
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is bounded by,

O(sj ·(1−xj)−(r−1)(k−j)·log(n+W )) = O(x
−(r−1)j
j (1−xj)−2(r−1)(k−j)2o(k)·log(n+W )).

Thus the total running time of Algorithm 1 is bounded by

O
(

2o(rk)|F| · n log(n+W ) max
j′′∈[k′]

{(
2k′ − j′′
j′′

)j′′ (
2k′ − j′′
2k′ − 2j′′

)2k′−2j′′
})

.

The above running time is maximized when j′′ =
(

1− 1√
5

)
k′. Thus the total

running time is bounded by O(2.619(r−1)k|F| · n log(n+W )).

Thus we have the following theorem.

Theorem 10.1. (r, k)-WDM can be solved in deterministic time O(2.619(r−1)k|F| ·
n log(n+W )).
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Chapter 11

Representative Family

computation for product family

We have seen many dynamic programming algorithms using fast computation of
representative families. It is therefore very tempting to ask whether it is possible to
compute representative families faster for families that arise naturally in dynamic
programs, than for general families. A class of families which often arises in dynamic
programs is the class of product families. A family F is the product of A and B if
F = {A ∪ B : A ∈ A, B ∈ B ∧ A ∩ B = ∅}, that is, F = A • B. Product families
naturally appear in dynamic programs where sets represent partial solutions and
two partial solutions can be combined if they are disjoint. For an example, in the k-
Path problem partial solutions are vertex sets of paths starting at a particular root
vertex v, and two such paths may be combined to a longer path if and only if they
are disjoint (except for overlapping at v). Many other examples exist—essentially
product families can be thought of as a subset convolution [10, 11], and the wide
applicability of the fast subset convolution technique of Bjorklund et al [16] is largely
due to the frequent demand to compute product families in dynamic programs.

In this chapter we give an algorithm for the computation of representative family
for a product family in set systems. We give an algorithm which given an integer
q and families A, B of sets of sizes p1 and p2 over a universe of size n, computes
a q-representative family F ′ of F . The running time of our algorithm is sublinear
in |F| for many choices of A, B and q which occur naturally in several dynamic
programming algorithms. For example, let q, p1, p2 be integers. Let k = q+ p1 + p2

and suppose that we have families A and B, which are (k − p1) and (k − p2)-
representative families. Then the sizes of these families are roughly |A| =

(
k
p1

)
and

|B| =
(
k
p2

)
. In particular, when p1 = p2 = dk/2e both families are of size roughly

2k, and thus the cardinality of F is approximately 4k. On the other hand, for any
choice of p1, p2, and k, our algorithm outputs a (k − p1 − p2)-representative family
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of F of size roughly
(

k
p1+p2

)
in time 3.8408knO(1). For many choices of p1, p2 and q

our algorithm runs significantly faster than 3.8408knO(1). The expression capturing
the running time dependence on p1, p2 and q can be found in Theorem 11.1 and
Corollary 11.1. This algorithm considerably outperforms the naive approach where
one first computes F from A and B, and then computes a q-representative family
F ′ from F . Following is the main theorem in this chapter.

Theorem 11.1. Let L1 be a p1-family of sets and L2 be a p2-family of sets over

a universe U of size n. Let w : 2U → N be an additive weight function. Let

L = L1 • L2 and p = p1 + p2. For any 0 < x1, x2 < 1, there exist L̂ ⊆k−p1−p2minrep L of

size x−p1 (1− x1)−(k−p) · 2o(k) · log n and it can be computed in time

O
(
z(n, k,W )

xp1(1− x1)q
+

z(n, k,W )

xp12 (1− x2)p2
+

|L1| · z(n, k,W )

xp21 (1− x1)q(1− x2)p2
+
|L2| · z(n, k,W )

xp11 (1− x1)qxp12

)
,

where z(n, k,W ) = 2o(k)n log n · logW and W is the maximum weight defined by w.

Proof. We set p = p1 + p2 and q = k − p. To obtain the desired construction we

first define an auxiliary graph and then use it to obtain the q-representative for the

product family L. Recall the definition separating collections from Chapter 7 We

first obtain two families of separating collections.

• Apply Lemma 7.4 for 0 < x1 < 1 and construct a n-p-q-separating collection

(F , χF , χ′F) of size 2O( p+q
log log(p+q)

) · 1
xp1(1−x1)q

· (p+ q)O(1) log n in time linear in the

size of F .

• Apply Lemma 7.4 for 0 < x2 < 1 and construct a n-p1-p2-separating collection

(H, χH, χ′H) of size 2
O(

p1+p2
log log(p1+p2)

) · 1
x
p1
2 (1−x2)p2

· (p1 + p2)O(1) log n in time linear

in the size of H.

Now we construct a graph G = (V,E) where the vertex set V contains a vertex each

for sets in F ] H ] L1 ] L2. For clarity of presentation we name the vertices by

the corresponding set. Thus, the vertex set V = F ] H ] L1 ] L2. The edge set

E = E1 ] E2 ] E3 ] E4, where each Ei for i ∈ {1, 2, 3, 4} is defined as follows (see
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F F1 · · · Fr · · ·

L1

A1 · · · Ai · · ·

L2

B1 · · · Bj · · ·

HH1 · · · H` · · ·

F r
∈ χ
F
(A

i)

F
r ∈

χ
F (B

j )

H
` ∈

χ
H (A

i )

H `
∈ χ
′
H
(B

j
)

Figure 11.1: Graph constructed from L1,L2,F and H

Figure 11.1).

E1 =
{

(A,F )
∣∣∣ A ∈ L1, F ∈ χF(A)

}
E2 =

{
(B,F )

∣∣∣ B ∈ L2, F ∈ χF(B)
}

E3 =
{

(A,H)
∣∣∣ A ∈ L1, H ∈ χH(A)

}
E4 =

{
(B,F )

∣∣∣ B ∈ L2, F ∈ χ′H(B)
}

Thus G is essentially a 4-partite graph.

Algorithm. The construction of L̂ is as follows. For a set F ∈ F , we call a pair

of sets (A,B) cyclic, if A ∈ L1, B ∈ L2 and there exists H ∈ H such that FAHB

forms a cycle of length four in G. Let J (F ) denote the family of cyclic pairs for a

set F ∈ F and

wF = min
(A,B)∈J (F )

w(A) + w(B).

We obtain the family L̂ by adding A∪B for every set F ∈ F such that (A,B) ∈ J (F )

and w(A) + w(B) = wF . Indeed, if the family J (F ) is empty then we do not add
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any set to L̂ corresponding to F . The procedure to find the smallest weight A ∪ B
for any F is as follows. We first mark the vertices of NG(F ) (the neighbors of F ).

Now we mark the neighbors of P = (NG(F ) ∩ L1) in H. For every marked vertex

H ∈ H, we associate a set A of minimum weight such that A ∈ (P ∩NG(H)). This

can be done sequentially as follows. Let P = {S1, . . . , S`}. Now iteratively visit the

neighbors of Si in H, i ∈ [`], and for each vertex of H store the smallest weight

vertex S ∈ P it has seen so far. After this we have a marked set of vertices in

H such that with each marked vertex H in H we stored a smallest weight marked

vertex in L1 which is a neighbor of H. Now for each marked vertex B in L2, we

go through the neighbors of B in the marked set of vertices in H and associate (if

possible) a second vertex (which is a minimum weighted marked neighbor from L2)

with each marked vertex in H. We obtain a pair of sets (A,B) ∈ J (F ) such that

w(A) + w(B) = wF . This can be easily done by keeping a variable that stores a

minimum weighted A∪B seen after every step of marking procedure. Since for each

F ∈ F we add at most one set to L̂, the size of L̂ follows.

Correctness. We first show that L̂ ⊆ L. Towards this we only need to show that

for every A∪B ∈ L̂ we have that A∩B = ∅. Observe that if A∪B ∈ L̂ then there

exists a F ∈ F , H ∈ H such that FAHB forms a cycle of length four in the graph G.

So H ∈ χH(A) and H ∈ χ′H(B). This means A ⊆ H and B∩H = ∅. So we conclude

A and B are disjoint and hence L̂ ⊆ L. We also need to show that if there exist

pairwise disjoint sets A ∈ L1, B ∈ L2, C ∈
(
U
q

)
, then there exist Â ∈ L1, B̂ ∈ L2 such

that Â∪ B̂ ∈ L̂, Â, B̂, C are pairwise disjoint and w(Â) +w(B̂) ≤ w(A) +w(B). By

the property of separating collections (F , χF , χ′F) and (H, χH, χ′H), we know that

there exists F ∈ χF(A) ∩ χF(B) ∩ χ′F(C), H ∈ χH(A) ∩ χ′H(B). This implies that

FAHB forms a cycle of length four in the graph G. Hence in the construction

of L̂, we should have chosen Â ∈ L1 and B̂ ∈ L2 corresponding to F such that

w(Â)+w(B̂) ≤ w(A)+w(B) and added to L̂. So we know that F ∈ χF(Â)∩χF(B̂).

Now we claim that Â, B̂ and C are pairwise disjoint. Since Â ∪ B̂ ∈ L̂, Â ∩ B̂ = ∅.
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Finally, since F ∈ χF(Â)∩χF(B̂) and F ∈ χ′F(C), we get Â, B̂ ⊆ F and F ∩C = ∅
which implies C is disjoint from Â and B̂. This completes the correctness proof.

Running Time Analysis. We first consider the time TG to construct the graph

G. We can construct F in time 2O( k
log log k

) · 1
xp1(1−x1)q

· (p + q)O(1) · n log n. We can

construct H in time 2O( p
log log p

) · 1
x
p1
2 (1−x2)p2

· (p1 +p2)O(1) ·n log n. Now to add edges in

the graph we do as follows. For each vertex in L1 ∪L2, we query the data structure

created, spending the query time mentioned in Lemma 7.4, and add edges to the

vertices in F ∪H from it. So the running time to construct G is,

TG ≤ 2O( k
log log(k)

)kO(1)n log n
( 1

xp1(1− x1)q
+

1

xp12 (1− x2)p2
+

|L1|
xp21 (1− x1)q

+
|L2|

xp11 (1− x1)q
+

|L1|
(1− x2)p2

+
|L2|
xp12

)
.

Now we bound the time TC taken to construct L̂ from G. To do the analysis we see

how may times a vertex A in L1∪L2 is visited. It is exactly equal to the product of

the degree of A to F (denoted by degreeF(A)) and the degree of A to H (denoted

by degreeH(A)). Also note that two weights can be compared in O(logW ) time.

Then

TC ≤ logW

(∑
A∈L1

degreeF(A) · degreeH(A) +
∑
A∈L2

degreeF(A) · degreeH(A)

)
≤ logW

( ∑
A∈L1

∆(χF ,p1)(n, p, q) ·∆(χH,p1)(n, p1, p2) +

∑
A∈L2

∆(χF ,p2)(n, p, q) ·∆(χ′H,p2)(n, p1, p2)
)

≤ 2O( k
log log(k)

)kO(1) log2 n logW

( |L1|
xp21 (1− x1)q(1− x2)p2

+
|L2|

xp11 (1− x1)qxp12

)
.

113



So the total running time T is,

T = TG + TC

≤ 2O( k
log log(k)

)kO(1)n log n · logW
( 1

xp1(1− x1)q
+

1

xp12 (1− x2)p2

+
|L1|

xp21 (1− x1)q(1− x2)p2
+

|L2|
xp11 (1− x1)qxp12

)
.

This completes the proof of the theorem.

Now we give a ready to use corollary for Theorem 11.1.

Corollary 11.1. Let L1 be a p1-family of sets and L2 be a p2-family of sets over

a universe U of size n. Furthermore, let w : 2U → N be an additive weight

function, |L1| =
(
k
p1

)
· 2o(k), |L2| =

(
k
p2

)
· 2o(k), L = L1 • L2, p = p1 + p2 and

q = k− p. There exists L̂ ⊆qminrep L of size
(
k
p

)
· 2o(k) and it can be computed in time

O(3.8408k2o(k)n log n · logW ), where W is the maximum weight defined by w.

Proof. We apply Theorem 11.1 for 0 < x1, x2 < 1 and find L′ ⊆qminrep L of cardinality

x−p1 (1− x1)−q2o(k) · log n in time,

T1 = O(
z(n, k,W )

xp1(1− x1)q
+

z(n, k,W )

xp12 (1− x2)p2
+

z(n, k,W ) · |L1|
xp21 (1− x1)q(1− x2)p2

+
z(n, k,W ) · |L2|
xp11 (1− x1)qxp12

).

Now we apply Corollary 7.1 and get L̂ ⊆qminrep L′ of cardinality
(
k
p

)
· 2o(k) in time

T2 = O
(
x−p1 (1− x1)−q

(
k

q

)q
2o(k) · log2 n · logW

)
.

Due to Lemma 7.1, L̂ ⊆qminrep L. Now we choose x1, x2 such that T1+T2 is minimized.
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Let z(n, k,W ) = 2o(k)n log n · logW So the total running time T to construct L̂ is,

T = min
x1,x2

(T1 + T2)

= min
x1,x2
O
( z(n, k,W )

xp12 (1− x2)p2
+

z(n, k,W ) · |
(
k
p1

)
|

xp21 (1− x1)q(1− x2)p2
+

z(n, k,W ) · |
(
k
p2

)
|

xp11 (1− x1)qxp12

+
z(n, k,W ) · (k

q
)q

xp1(1− x1)q

)
.

The above running time is upper bounded by O(3.8408k2o(k)n log n · logW ). This

completes the proof.
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Chapter 12

Multilinear Monomial Detection

In this chapter we give an algorithm for parameterized version of multilinear mono-
mial detection, using fast computation of representative family of a product family.

The problem Multilinear Monomial Detection is defined as follows.

Multilinear Monomial Detection (k-MlD) Parameter: k
Input: An arithmetic circuit C over Z+ representing a polynomial P (X) over
Z+.
Question: Does P (X) construed as a sum of monomials contain a multilinear
monomial of degree k?

It is well known that we can replace any arithmetic circuit C with an equivalent
circuit with fan-in two for all the internal nodes with quadratic blow up in the size.
For an example, by replacing each node of in-degree greater than 2, with at most
s(C) many nodes of the same label and in-degree 2, we can convert a circuit C to
a circuit C ′ of size s(C ′) = s(C)2. So from now onwards we always assume that we
are given a circuit of this form. We assume W be the maximum weight defined by
w.

Multilinear Monomial Detection is the central problem in the algebraic ap-
proach of Koutis and Williams for designing fast parameterized algorithms [80, 81,
82, 119]. The idea behind the approach is to translate a given problem into the
language of algebra by reducing it to the problem of deciding whether a constructed
polynomial has a multilinear monomial of degree k. As it is mentioned implicitly
by Koutis in [80], k-MlD can be solved in time (2e)knO(1), where n is the input
length, by making use of color coding. The color coding technique of Alon, Yuster
and Zwick [4] is a fundamental and widely used technique in the design of parame-
terized algorithms. It appeared that most of the problems solvable by making use
of color coding can be reduced to a multilinear monomial testing. Williams [119]
gave a randomized algorithm solving k-MlD in time 2knO(1). The algorithms based

117



on the algebraic method of Koutis-Williams provide a dramatic improvement for a
number of fundamental problems [19, 17, 56, 67, 80, 81, 82, 119].

The advantage of the algebraic approach over color coding is that for a number of
parameterized problems, the algorithms based on this approach have much better
exponential dependence on the parameter. On the other hand color coding based
algorithms admit direct derandomization [4] and are able to handle integer weights
with running time overhead poly-logarithmic in the weights. Obtaining deterministic
algorithms matching the running times of the algebraic methods, but sharing these
nice features of color coding remain a challenging open problem.

Our deterministic algorithm for k-MlD is the first non-trivial step towards resolving
this problem. In fact, our algorithm solves a weighted version of k-MlD, where the
elements of X are assigned weights and the task is to find a k-multilinear term with
minimum weight. In the weighted version of k-MlD in addition to an arithmetic
circuit C over variables X = {x1, x2, . . . , xn} representing a polynomial P (X) over
Z+, we are also given an additive weight function w : 2X → N as an oracle. The
task is that if there exists a k-multilinear term then find one with minimum weight.
We call the weighted variant by k-wMlD. The running time of our deterministic
algorithm is O(3.8408k2o(k)s(C)n log n · logW ), where s(C) is the size of the circuit
and W is the maximum weight of an element from X.

Theorem 12.1. k-wMlD can be solved in time O(3.8408k2o(k)s(C)n log n · logW ).

Proof. An arithmetic circuit C over Z+ with all leaves labelled from X ∪ Z+ will

represent sum of monomials with positive integer coefficients. With each multilinear

term Π`
j=1xij we associate a set {xi1 , . . . , xil} ⊆ X. With any polynomial we can

associate a family of subsets of X which corresponds to the set of multilinear terms

in it. Since C is a directed acyclic graph, there exists a topological ordering π =

v1, . . . , vn, such that all the nodes corresponding to variables appear before any

other gate and for every directed arc uv we have that u <π v. For a node vi of

the circuit let Pi(X) be the multivariate polynomial represented by the subcircuit

containing all the nodes w such that w ≤π vi. At every node we keep a family F jvi
of j-multilinear term, where j ∈ {1, . . . , k}. Let Fvi =

⋃k
x=1Fxvi . Given a circuit

C, if we compute associated family of subsets of X for each node we can answer

the question of having a k-multilinear term of minimum weight in the polynomial

computed by C. But the size of the family of subsets could be exponential in n, the

number of variables. That is, the size of F jvi could be
(
n
j

)
. So instead of storing all
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subsets, we store a representative family for the associated family of subsets of each

node. That is, we store F̂ jvi ⊆k−jminrep F jvi . The correctness of this step follows from

the definition of k − j-representative family.

We make a dynamic programming algorithm to detect a multilinear monomial of

order k as follows. Our algorithm goes from left to right following the ordering

given by π and computes Fvi from the families previously computed. The algorithm

computes an appropriate representative family corresponding to each node of C. We

show that we can compute a representative family Fv associated with any node v,

where the number of subsets with p elements in Fv is at most
(
k
p

)
2o(k). When v is an

input node then the associated family contains only one set. That is, if v is labelled

with xi then Fv = {{xi}} and if v is labelled from Z+ then Fv = {∅}. When v is

not an input node, then we have two cases.

Addition Gate. v = v1 + v2

Due to the left to right computation in the topological order, we have a rep-

resentative families Fv1 and Fv2 for v1 and v2 respectively, where the number

of subsets with p elements in Fv1 as well as in Fv2 will be at most
(
k
p

)
2o(k).

The representative family corresponding to v will be the representative family

of Fv1 ∪ Fv2 . We partition Fv1 ∪ Fv2 based on the size of subsets in it. Let

Fv1 ∪ Fv2 =
⊎
p≤kHp, where Hp contains all subsets of size p in Fv1 ∪ Fv2 .

Note that |Hp| ≤ 2
(
k
p

)
2o(k). Now using Corollary 7.1, we can compute all

Ĥp ⊆k−pminrep Hp in time

O
(

2o(k) log n · logW ·
∑
p<k

{
2

(
k

p

)
·
(

k

k − p

)k−p})

where W is the maximum weight defined by weight function w. The above run-

ning time is upper bounded by O(2.851k2o(k) log n logW ). We output
⋃
p≤k Ĥp

as the representative family corresponding to the node v. By Corollary 7.1,

|Ĥp| ≤
(
k
p

)
2o(k) and hence the number of subsets with p elements in the repre-
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sentative family corresponding to v is at most
(
k
p

)
2o(k).

Multiplication Gate. v = v1 × v2

Similar to the previous case we have a representative families Fv1 and Fv2
for v1 and v2 respectively, where the number of subsets with p elements in

Fv1 as well as in Fv2 , is at most
(
k
p

)
2o(k). Here, the representative family

corresponding to v will be the representative family of Fv1 • Fv2 . The idea

is to get representative families using Corollary 11.1 for different values of p1

and p2. We have that

Fv1 • Fv2 =
⋃
p1,p2

Fp1v1 • Fp2v2 ,

where Fpivi contains all the subsets of size pi in Fvi . We know that |Fpivi | ≤(
k
pi

)
2o(k). Now by using Corollary 11.1, we compute ̂Fp1v1 • Fp2v2 ⊆k−p1−p2minrep Fp1v1 •

Fp2v2 of size
(

k
p1+p2

)
·2o(k) for all p1, p2 such that p1 +p2 ≤ k. Let q = k−p1−p2,

then all these computation can be done in time

∑
p1,p2

O(3.8408k2o(k)n log n · logW ) = O(3.8408k2o(k)n log n · logW ).

We output
⋃
p1,p2

̂Fp1v1 • Fp2v2 as the representative family corresponding to the

node v. Note that the number of sets of size p in
⋃
p1,p2

̂Fp1v1 • Fp2v2 is bounded

by k ·
(
k
p

)
2o(k) ≤

(
k
p

)
2o(k).

Now we output a minimum weight set of size k (if exists) among the representative

family corresponding to the root node, otherwise we output No. Since there are s(C)

nodes in C, the total running time is bounded by O(3.8408k2o(k)s(C)n log n · logW ).

This completes the proof.
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Part III

Representative Family in Linear

Matroids
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Chapter 13

Computing Representative Family

in Linear Matroids

The notion of representative family can be extended to matroids. Let M = (E, I)
be a matroid and let S = {S1, . . . , St} be a p-family of subsets of E. A subfamily

Ŝ ⊆ S is q-representative for S if for every set Y ⊆ E of size at most q, if there
is a set X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ
disjoint from Y and X̂ ∪ Y ∈ I. In other words, if a set Y of size at most q
can be extended to an independent set of size |Y | + p by adding a subset from
S, then it also can be extended to an independent set of size |Y | + p by adding

a subset from Ŝ as well. We can easily show that the Lemmata 7.1,7.2 and 7.3
also holds for representative families in matroids. In this chapter we give a fast
algorithm for computing representative families and in subsequent chapters of this
Part we show how they can be used to obtain improved parameterized and exact
exponential algorithms for several fundamental and well studied problems. We prove
the following theorem.

Theorem 13.1. Let M = (E, I) be a linear matroid of rank p+q = k given together

with its representation matrix AM over a field F. Let S = {S1, . . . , St} be a family

of independent sets of size p. Then a q-representative family Ŝ ⊆ S for S with at

most
(
p+q
p

)
sets can be found in O

((
p+q
p

)
tpω + t

(
p+q
q

)ω−1
)

operations over F. Here,

ω < 2.373 is the matrix multiplication exponent.

Actually, we will prove a variant of Theorem 13.1 which allows sets to have weights.
The notion of weighted variant of representative family can be extend to matroids
as well.
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Definition 13.1 (Min/Max q-Representative Family). Given a matroid M =

(E, I), a family S of subsets of E and a non-negative weight function w : S → N,

we say that a subfamily Ŝ ⊆ S is min q-representative (max q-representative) for S
if the following holds: for every set Y ⊆ E of size at most q, if there is a set X ∈ S
disjoint from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with

1. X̂ ∪ Y ∈ I; and

2. w(X̂) ≤ w(X) (w(X̂) ≥ w(X)).

We use Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) to denote a min q-representative (max q-

representative) family for S.

In this chapter we prove the following theorem.

Theorem 13.2. Let M = (E, I) be a linear matroid of rank p + q = k, S =

{S1, . . . , St} be a p-family of independent sets and w : S → N be a non-negative

weight function. Then there exists Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) of size
(
p+q
p

)
. More-

over, given a representation AM of M over a field F, we can find Ŝ ⊆qminrep S
(Ŝ ⊆qmaxrep S) of size at most

(
p+q
p

)
in O

((
p+q
p

)
tpω + t

(
p+q
q

)ω−1
)

operations over

F.

The proof for Theorem 13.2 is obtained by making the known exterior algebra based
proof of Lovász [87, Theorem 4.8] algorithmic. For our proof we also need the fol-
lowing well-known generalized Laplace expansion of determinants. For a matrix
A = (aij), the row set and the column set are denoted by R(A) and C(A) respec-
tively. For I ⊆ R(A) and J ⊆ C(A), A[I, J ] =

(
aij | i ∈ I, j ∈ J

)
means the

submatrix (or minor) of A with the row set I and the column set J . For I ⊆ [n] let
Ī = [n] \ I and

∑
I =

∑
i∈I i.

Proposition 13.1 (Generalized Laplace expansion). For an n × n matrix A and

J ⊆ C(A) = [n], it holds that

det(A) =
∑

I⊆[n],|I|=|J |

(−1)
∑
I+

∑
J det(A[I, J ]]) det(A[Ī , J̄ ])
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We refer to [99, Proposition 2.1.3] for a proof of the above identity. We always
assume that the number of rows in the representation matrix AM of M over a field
F is equal to rank(M)=rank(AM). Otherwise, using Gaussian elimination we can
obtain a matrix of the desired kind in polynomial time. See [93, Proposition 3.1] for
details.

Proof of Theorem 13.2. We only show how to find Ŝ ⊆qminrep S in the claimed run-

ning time. The proof for Ŝ ⊆qmaxrep S is analogous, and for that case we only point

out the places where the proof differs. If t ≤
(
k
p

)
, then we can take Ŝ = S. Clearly,

in this case Ŝ ⊆qminrep S. So from now onwards we always assume that t >
(
k
p

)
. For

the proof we view the representation matrix AM as a vector space over F and each

set Si ∈ S as a subspace of this vector space. For every element e ∈ E, let xe be

the corresponding k-dimensional column in AM . Observe that each xe ∈ Fk. For

each subspace Si ∈ S, i ∈ {1, . . . , t}, we associate a vector ~si =
∧
j∈Si xj in F(kp)

as follows. In exterior algebra terminology, the vector ~si is a wedge product of the

vectors corresponding to elements in Si. For a set S ∈ S and I ∈
(

[k]
p

)
, we define

s[I] = det(AM [I, S]).

We also define

~si = (si[I])
I∈([k]

p ) .

Thus the entries of the vector ~si are the values of det(AM [I, Si]), where I runs

through all the p sized subsets of rows of AM .

Let HS = (~s1, . . . , ~st) be the
(
k
p

)
× t matrix obtained by taking ~si as columns. Now

we define a weight function w′ : C(HS) → R+ on the set of columns of HS . For

the column ~si corresponding to Si ∈ S, we define w′(~si) = w(Si). Let W be a set

of columns of HS that are linearly independent over F, the size of W is equal to

the rank(HS) and is of minimum total weight with respect to the weight function

w′. That is, W is a minimum weight column basis of HS . Since the row-rank of a

matrix is equal to the column-rank, we have that |W| =rank(HS)≤
(
k
p

)
. We define

Ŝ = {Sα | ~sα ∈ W}. Let |Ŝ| = `. Because |W| = |Ŝ|, we have that ` ≤
(
k
p

)
.

Without loss of generality, let Ŝ = {Si | 1 ≤ i ≤ `} (else we can rename these
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sets) and W = {~s1 . . . , ~s`}. The only thing that remains to show is that indeed

Ŝ ⊆qminrep S.

Let Sβ ∈ S be such that Sβ /∈ Ŝ. We show that if there is a set Y ⊆ E of size

at most q such that Sβ ∩ Y = ∅ and Sβ ∪ Y ∈ I, then there exists a set Ŝβ ∈ Ŝ
disjoint from Y with Ŝβ ∪ Y ∈ I and w(Ŝβ) ≤ w(Sβ). Let us first consider the case

|Y | = q. Since Sβ ∩ Y = ∅, it follows that |Sβ ∪ Y | = p+ q = k. Furthermore, since

Sβ ∪ Y ∈ I, we have that the columns corresponding to Sβ ∪ Y in AM are linearly

independent over F; that is, det(AM [R(AM), Sβ ∪ Y ]) 6= 0.

Recall that, ~sβ = (sβ[I])
I∈([k]

p ) , where sβ[I] = det(AM [I, Sβ]). Similarly we define

y[L] = det(AM [L, Y ]) and

~y = (y[L])
L∈([k]

q ) .

Let
∑
J =

∑
j∈Sβ j. Define

γ(~sβ, ~y) =
∑
I∈([k]

p )

(−1)
∑
I+

∑
Jsβ[I] · y[Ī].

Since
(
k
p

)
=
(
k
k−p

)
=
(
k
q

)
the above formula is well defined. Observe that by Proposi-

tion 13.1, we have that γ(~sβ, ~y) = det(AM [R(AM), Sβ ∪Y ]) 6= 0. We also know that

~sβ can be written as a linear combination of vectors in W = {~s1, ~s2, . . . , ~s`}. That

is, ~sβ =
∑`

i=1 λi~si, λi ∈ F, and for some i, λi 6= 0. Thus,

γ(~sβ, ~y) =
∑
I

(−1)
∑
I+

∑
Jsβ[I] · y[Ī]

=
∑
I

(−1)
∑
I+

∑
J

(∑̀
i=1

λisi[I]

)
y[Ī]

=
∑̀
i=1

λi

(∑
I

(−1)
∑
I+

∑
Jsi[I]y[Ī]

)

=
∑̀
i=1

λi det(AM [R(AM), Si ∪ Y ]) (by Proposition 13.1)
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Define

sup(Sβ) =
{
Si

∣∣∣ Si ∈ Ŝ, λi det(AM [R(AM), Si ∪ Y ])) 6= 0
}
.

Since γ(~sβ, ~y) 6= 0, we have that (
∑`

i=1 λi det(AM [R(AM), Si ∪ Y ])) 6= 0 and thus

sup(Sβ) 6= ∅. Observe that for all S ∈ sup(Sβ) we have that det(AM [R(AM), S ∪
Y ]) 6= 0 and thus S ∪ Y ∈ I. We now show that w(S) ≤ w(Sβ) for all S ∈ sup(Sβ).

Claim 13.1. For all S ∈ sup(Sβ), w(S) ≤ w(Sβ).

Proof. For a contradiction assume that there exists a set Sj ∈ sup(Sβ) such that

w(Sj) > w(Sβ). Let ~sj be the vector corresponding to Sj andW ′ = (W∪{~sj})\{~sβ}.
Since w(Sj) > w(Sβ), we have that w(~sj) > w(~sβ) and thus w′(W) > w′(W ′). Now

we show that W ′ is also a column basis of HS . This will contradict our assumption

that W is a minimum weight column basis of HS . Recall that ~sβ =
∑`

i=1 λi~si,

λi ∈ F. Since Sj ∈ sup(Sβ), we have that λj 6= 0. Thus ~sj can be written as linear

combination of vectors in W ′. That is,

~sj = λβ~sβ +
∑̀

i=1,i 6=j

λ′i~si. (13.1)

Also every vector ~sγ /∈ W can be written as a linear combination of vectors in W

~sγ =
∑̀
i=1

δi~si, δi ∈ F. (13.2)

By substituting (13.1) into (13.2), we conclude that every vector can be written as

linear combination of vectors in W ′. This shows that W ′ is also a column basis of

HS , a contradiction proving the claim.

Claim 13.1 and the discussions preceding above it show that we could take any set

S ∈ sup(Sβ) as the desired Ŝβ ∈ Ŝ. Also, since det(AM [R(AM), S ∪ Y ]) 6= 0, we

have that S ∩ Y = ∅. This shows that indeed Ŝ ⊆qminrep S for each Y of size q. This

completes the proof for the case |Y | = q.
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Suppose that |Y | = q′ < q. Since M is a matroid of rank k = p + q, there exists

a superset Y ′ ∈ I of Y of size q such that Sβ ∩ Y ′ = ∅ and Sβ ∪ Y ′ ∈ I. This

implies that there exists a set Ŝ ∈ Ŝ such that det(AM [R(AM), Ŝ ∪ Y ′]) 6= 0 and

w(Ŝ) ≤ w(S). Thus the columns corresponding to Ŝ ∪ Y are linearly independent.

We now consider the running time of the algorithm. To make the above proof

algorithmic we need to

(a) compute determinants and

(b) apply fast Gaussian elimination to find a minimum weight column basis.

It is well known that one can compute the determinant of a n × n matrix in time

O(nω) [25]. For a rectangular matrix A of size d × n (with d ≤ n), Bodlaender

et al. [23] outline an algorithm computing a minimum weight column basis in time

O(ndω−1). Thus given a p-family of independent sets S we can construct the matrix

HS as follows. For every set Si, we first compute ~si. To do this we compute

det(AM [I, Si]) for every I ∈
(

[k]
p

)
. This can be done in timeO(

(
p+q
p

)
pω). Thus, we can

obtain the matrix HS in time O(
(
p+q
p

)
tpω). Given matrix HS we can find a minimum

weight column basisW of HS in time O(t
(
p+q
p

)ω−1
). GivenW , we can easily recover

Ŝ. Thus, we can compute Ŝ ⊆qminrep S in O
((

p+q
p

)
tpω + t

(
p+q
q

)ω−1
)

field operations.

This concludes the proof for finding Ŝ ⊆qminrep S. To find Ŝ ⊆qmaxrep S, the only

change we need to do in the algorithm for finding Ŝ ⊆qminrep S is to find a maximum

weight column basis W of HS . This concludes the proof.

In Theorem 13.2 we assumed that rank(M)= p + q. However, one can obtain a
similar result even when rank(M)> p + q by computing the representation matrix
of a k-truncation of M = (E, I) using Lemma 4.2.

Theorem 13.3 ([85]). Let M = (E, I) be a linear matroid of rank n and let S =

{S1, . . . , St} be a family of independent sets, each of size b. Let A be an n×|E| matrix

representing M over a field F, where F = Fp` or F is Q. Then there is deterministic

algorithm which computes a representative set Ŝ ⊆qrep S of size at most nb
(
b+q
b

)
,

using O
((

b+q
b

)
tb3n2 + t

(
b+q
b

)ω−1
(bn)ω−1

)
+ (n+ |E|)O(1) operations over the field F.
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A proof of Theorem 13.3 can be found in [85].
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Chapter 14

Minimum Equivalent Graph

In this chapter we show that representative families can be used to design exact
exponential algorithms as well. For a given digraph D, a subdigraph D′ of D is said
to be an equivalent subdigraph of D if for any pair of vertices u, v ∈ V (D) if there
is a directed path in D from u to v then there is also a directed path from u to v in
D′. That is, reachability of vertices in D and D′ is same. In this section we study a
problem where given a digraph D the objective is to find an equivalent subdigraph
of D′ of D with as few arcs as possible. Equivalently, the objective is to remove the
maximum number of arcs from a digraph D without affecting its reachability. More
precisely the problem we study is as follows.

Minimum Equivalent Graph (MEG)
Input: A directed graph D
Task: Find an equivalent subdigraph of D with the minimum number of arcs.

Previous Work. MEG is a classical NP-hard problem generalizing the Hamil-
tonian Cycle problem, see Chapter 12 of the book [7] for an overview of combi-
natorial and algorithmic results on MEG. The algorithmic studies of MEG can be
traced to the work of Moyles and Thompson [98] from 1969, who gave a (non-trivial)
branching algorithm solving MEG in time O(n!). In 1975, Hsu in [70] discovered a
mistake in the algorithm of Moyles and Thompson, and designed a different branch-
ing algorithm for this problem. Martello [90] and Martello and Toth [91] gave
another branching based algorithm with running time O(2m).

As it was already observed by Moyles and Thompson [98] the hardest instances of
MEG are strong digraphs. A digraph is strong if for every pair of vertices u 6= v,
there are directed paths from u to v and from v to u. MEG restricted to strong
digraphs is known as the Minimum SCSS (strongly connected spanning subgraph)
problem. It is known that the MEG problem reduces in linear time to Minimum
SCSS, see e.g. [36].

Our Result. We show that MEG is solvable in time O(24ωnmn), where n is the
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number of vertices and m is the number of arcs in D.

14.1 Algorithm for MEG

The following proposition is due to Moyles and Thompson [98], see also [7, Sections
2.3], reduces the problem of finding a minimum equivalent subdigraph of an arbitrary
D to a strong digraph.

Proposition 14.1. Let D be a digraph on n vertices with strongly connected com-

ponents C1, . . . , Cr. Given a minimum equivalent subdigraph C ′i for each Ci, i ∈ [r],

one can obtain a minimum equivalent subdigraph D′ of D containing each of C ′i in

O(nω) time.

Observe that for a strong digraph D any equivalent subdigraph is also strong. By
Proposition 14.1, MEG reduces to the following problem.

Minimum Strongly Connected Spanning Subgraph (Minimum SCSS)
Input: A strongly connected directed graph D
Task: Find a strong spanning subdigraph of D with the minimum number of
arcs.

A digraph T is an out-tree (an in-tree) if T is an oriented tree with just one vertex s
of in-degree zero (out-degree zero). The vertex s is the root of T . If an out-tree (in-
tree) T is a spanning subdigraph ofD, T is called an out-branching (an in-branching).
We use the notation B+

s (B−s ) to denote an out-branching (in-branching) rooted at
s of the digraph.

It is known that a digraph is strong if and only if it contain an out-branching and
an in-branching rooted at some vertex v ∈ V (D) [7, Proposition 12.1.1].

Proposition 14.2. Let D be a strong digraph on n vertices, let v be an arbitrary

vertex of V (D), and ` ≤ n − 2 be a natural number. Then there exists a strong

spanning subdigraph of D with at most 2n− 2− ` arcs if and only if D contains an

in-branching B−v and an out-branching B+
v with root v so that |A(B+

v )∩A(B−v )| ≥ `

(that is, they have at least ` common arcs).

Proposition 14.2 implies that the Minimum SCSS problem is equivalent to finding,
for an arbitrary vertex v ∈ V (D), an out-branching B+

v and an in-branching B−v

132



that maximizes |A(B+
v )∩A(B−v )|. For our exact algorithm for Minimum SCSS we

implement this equivalent version using representative sets.

Let D be a strong digraph and s ∈ V (D) be a fixed vertex. By D−s we denote
the digraph D − OutD(s), i.e, the digraph obtained from D by deleting the arcs in
OutD(s). Similarly, by D+

s we denote the digraph D − InD(s).

First we construct four matroids. Recall that U(D) denote the underlying undirected
graph of D. The first two matroids M1 = (E1, I1), M2 = (E2, I2) are the graphic
matroids on U(D). Observe that

A(D+
s ) =

⊎
v∈V (D+

s )

InD+
s

(v) and A(D−s ) =
⊎

v∈V (D−s )

OutD−s (v).

Thus the arcs of D+
s can be partitioned into sets of in-arcs and similarly the arcs

of D−s into sets of out-arcs. Let E3 = A(D+
s ) and E4 = A(D−s ). The other two

matroids are the following partition matroids M3 = (E3, I3), M4 = (E4, I4), where

I3 = {I | I ⊆ A(D+
s ), for every v ∈ V (D+

s ) = V (D), |I ∩ InD+
s

(v)| ≤ 1},

and

I4 = {I | I ⊆ A(D−s ), for every v ∈ V (D−s ) = V (D), |I ∩ OutD−s (v)| ≤ 1}.

Let n = |V (D)|. We define the matroid M = (E, I) as the direct sum M =
M1⊕M2⊕M3⊕M4. By Proposition 4.3, the matroids M3 and M4 are representable
over a field of size O(n2) and these representations can be constructed in polynomial
time. Since D is strongly connected and InD+

s
(s) = ∅, the rank of M3 is n − 1. By

similar arguments, we have that the rank of M4 is n − 1. By Proposition 4.4, we
know that graphic matroid is representable over any field of size at least 2. So the
matroids M1 and M2 are also representable over a field of size O(n2). Also note
that the rank of both M1 and M2 are n− 1, because U(D) is connected. Hence, by
Proposition 4.2, the matroid M is representable over a field of size O(n2). The rank
of the matroid M is 4n− 4.

Let us note that for each arc e ∈ A(D) which is not incident with s, we have four
elements in the matroid M , corresponding to the copies of e in Mi, i ∈ {1, . . . , 4}.
We denote these elements by ei, i ∈ {1, . . . , 4}. For every edge e ∈ A(D) incident
with s, we have three corresponding elements. We denote them by e1, e2, e3, or
e1, e2, e4, depending on the case when e is in-arc or out-arc for s.
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For i ∈ {1, . . . , n− 1}, we define

B4i =
{
W
∣∣∣ W ∈ I, |W | = 4i,

∀ e ∈ A(D) either W ∩ {e1, e2, e3, e4} = ∅ or {e1, e2, e3, e4} ⊆ W
}
.

For W ∈ I, by AW we denote the set of arcs e ∈ A(D) such that {e1, e2, e3, e4}∩W 6=
∅. Now we are ready to state the lemma that relates representative sets and the
Minimum SCSS problem.

Lemma 14.1. Let D be a strong digraph on n vertices and ` ≤ n− 2 be a natural

number. Then there exists a strong spanning subdigraph D′ of D with at most

2n − 2 − ` arcs if and only if there exists a set F̂ ∈ B̂4` ⊆n′−4`
rep B4` such that

there is an out-branching D+
s containing AF̂ rooted at s and an in-branching D−s

containing AF̂ rooted at s. Here, n′ = 4n− 4.

Proof. (⇒) Let s ∈ V (D) be a fixed vertex and M is the matroid constructed as

above with respect the vertex s. Let D′ be a strong spanning subdigraph of D with

at most 2n − 2 − ` arcs. Thus, by Proposition 14.2 we have that there exists an

out-branching B+
s and an in-branching B−s in D′ such that |A(B+

s ) ∩ A(B−s )| ≥ `.

Observe that the arcs in A(B+
s )∩A(B−s ) form an out-forest (in-forest). Let F ′ be an

arbitrary subset of A(B+
s )∩A(B−s ) containing exactly ` arcs. Take X ′ = A(B+

v )\F ′

and Y ′ = A(B−v ) \ F ′. Observe that X ′ and Y ′ need not be disjoint. Clearly,

|X ′| = |Y ′| = n− 1− `.

In matroid M , one can associate with D′ an independent set ID′ of size 4n − 4 as

follows:

ID′ =
⋃
e∈F ′
{e1, e2, e3, e4}

⋃
e∈X′
{e1, e3}

⋃
e∈Y ′
{e2, e4}.

By our construction, we have that ID′ is an independent set in I and |ID′ | = 4` +

4(n − 1 − `) = n′. Let F =
⋃
e∈F ′{e1, e2, e3, e4}, X =

⋃
e∈X′{e1, e3} and Y =⋃

e∈Y ′{e2, e4}. Then notice that F ∈ B4` and F ⊂ ID′ . This implies that there

exists a set F̂ ∈ B̂4` ⊆n′−4`
rep B4` such that ID̄ = F̂ ∪ X ∪ Y ∈ I. Consider the

following four sets.
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1. Let W1 = {e1 | e ∈ X ∪ AF̂} then we have that W1 ⊆ ID̄ and thus W1 ∈ I1.

This together with the fact that |W1| = n − 1 implies that X ′ ∪ AF̂ forms a

spanning tree in U(D).

2. Let W2 = {e2 | e ∈ Y ∪ AF̂}. Similar to the first case, then Y ′ ∪ AF̂ forms a

spanning tree in U(D).

3. Let W3 = {e3 | e ∈ X ∪ AF̂} then we have that W3 ⊆ ID̄ and thus W3 ∈ I3.

This together with the fact that |W1| = |W3| = n − 1 and that X ′ ∪ AF̂ is a

a spanning tree in U(D) implies that X ′ ∪AF̂ forms an out-branching rooted

at s in D+
s .

4. Let W4 = {e3 | e ∈ Y ′∪AF̂}. Similar to the previous case, then Y ′∪AF̂ forms

an in-branching rooted at s in D−s .

Thus we have shown that D+
s and D+

s are the required out-branching and in-

branching respectively.

(⇐) Suppose there exists a set F̂ ∈ B̂4` ⊆n′−4`
rep B4` such that there is an out-

branching D+
s containing AF̂ rooted at s and an in-branching D−s containing AF̂

rooted at s. Note that |AF̂ | = `. Then by Proposition 14.2, there exists a strong

spanning subdigraph of D with at most 2n − 2 − ` arcs. This concludes the proof

of the lemma.

Define Trm(t, p, q) be the time required to compute a family Ŝ ⊆qrep S of size
(
p+q
q

)
,

in a linear matroid M of rank p + q. By Theorem 13.1, Trm(t, p, q) is bounded

by O
((

p+q
p

)
tpω + t

(
p+q
q

)ω−1
)

multiplied by the time required to perform operations

over the field in which the linear matroid M is representable.

Lemma 14.2. Let D be a strong digraph on n vertices and ` ≤ n− 2 be a natural

number. Then in time O
(

maxi∈[`]

(
n′

4i

)ω
m log n

)
we can compute B̂4` ⊆n′−4`

rep B4` of

size
(
n′

4`

)
. Here, n′ = 4n− 4.

Proof. We describe a dynamic programming based algorithm. Let D be an array of

size `. The entry D[i] will store the family B̂4i ⊆n′−4i
rep B4`. We fill the entries in the
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array D in the increasing order of its index, that is, from 0, . . . , `. For the base case

define B̂0 = {∅} and let W = {{e1, e2, e3, e4}| e ∈ A(D)}. Given that D[i] is filled

for all i′ ≤ i, we fill D[i+ 1] as follows. Define N 4(i+1) =
(
B̂4i •W

)
∩ I.

Claim 14.1. For all 0 ≤ i ≤ `− 1, N 4(i+1) ⊆n′−4(i+1)
rep B4(i+1).

Proof. Let S ∈ B4(i+1) and Y be a set of size n′ − 4(i+ 1) such that S ∩ Y = ∅ and

S ∪ Y ∈ I. We will show that there exists a set Ŝ ∈ N 4(i+1) such that Ŝ ∩ Y = ∅
and Ŝ ∪ Y ∈ I. This will imply the desired result.

Let e ∈ A(D) such that {e1, e2, e3, e4} ⊆ S. Define S∗ = S \ {e1, e2, e3, e4} and

Y ∗ = Y ∪{e1, e2, e3, e4}. Since S∪Y ∈ I we have that S∗ ∈ I and Y ∗ ∈ I. Observe

that S∗ ∈ B4i, S∗ ∪ Y ∗ ∈ I and the size of Y ∗ is n′ − 4i. This implies that there

exists Ŝ∗ in B̂4i ⊆n′−4i
rep B4` such that Ŝ∗ ∪ Y ∗ ∈ I. Thus Ŝ∗ ∪ {e1, e2, e3, e4} ∈ I and

also in B̂4i •W and thus in N 4(i+1). Taking Ŝ = Ŝ∗ ∪ {e1, e2, e3, e4} suffices for our

purpose. This completes the proof of the claim.

We fill the entry for D[i + 1] as follows. Observe that N 4(i+1)
uv = (D[i, w] •W ) ∩ I.

We already have computed the family corresponding to D[i]. By Theorem 13.1,

|B̂4i| ≤
(
n′

4i

)
and thus |N 4(i+1)| ≤ 4m

(
n′

4i

)
. Furthermore, we can compute N 4(i+1) in

time O
(
mn
(
n′

4i

))
. Using Theorem 13.1, we can compute N̂ 4(i+1) ⊆n′−4(i+1)

rep N 4(i+1)

in time Trm(t, 4i+ 4, n′ − 4(i+ 1)), where t = 4m
(
n′

4i

)
.

By Claim 14.1 we know that N 4(i+1) ⊆n′−4(i+1)
rep B4(i+1). Thus Lemma 7.1 implies

that N̂ 4(i+1) = B̂4(i+1) ⊆n′−4(i+1)
rep B4(i+1). We assign this family to D[i + 1]. This

completes the description and the correctness of the dynamic programming. The

field size for uniform matroids are upper bounded by O(n2) and thus we can perform

all the field operations in time O(log n). Thus, the running time of this algorithm

is upper bounded by

O
(∑̀

i=1

Trm
(

4m

(
n′

4(i− 1)

)
, 4i, n′ − 4i

))
= O

(
max
i∈[`]

(
n′

4i

)ω
m log n

)
.
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This completes the proof.

Lemma 14.3. Minimum SCSS can be solved in time O(24ωnm log n).

Proof. Let us fix n′ = 4n − 4. Proposition 14.2 implies that the Minimum SCSS

problem is equivalent to finding, for an arbitrary vertex s ∈ V (D), an out-branching

B+
v and an in-branching B−v that maximizes |A(B+

v )∩A(B−v )|. We guess the value of

|A(B+
v ) ∩A(B−v )| and let this be `. By Lemma 14.1, there exists a strong spanning

subdigraph D′ of D with at most 2n − 2 − ` arcs if and only if there exists a

set F̂ ∈ B̂4` ⊆n′−4`
rep B4` such that D has a strong spanning subdigraph D̄ with

AF̂ ⊆ A(D̄). Recall that for X ∈ I, by AX we denote the set of arcs e ∈ A(D) such

that {e1, e2, e3, e4} ∩X 6= ∅. Now using Lemma 14.2 we compute B̂4` ⊆n′−4`
rep B4` of

size
(
n′

4`

)
in time O

(
maxi∈[`]

(
n′

4i

)ω
m log n

)
.

For every F̂ ∈ B̂4` we test whether AF̂ can be extended to an out-branching in

D+
s and to an in-branching in D−s . We can do it in O(n(n + m))-time by putting

weights 0 to the arcs of AF̂ and weights 1 to all remaining arcs and then by running

the classical algorithm of Edmonds [45]. Since ` ≤ n − 2, the running time of this

algorithm is upper bounded by O(24ωnm log n). This concludes the proof.

Finally, we are ready to prove the main result of this section

Theorem 14.1. Minimum Equivalent Graph can be solved in O(24ωnm log n)

time.

Proof. Given an arbitrary digraph D we first find its strongly connected components

C1, . . . , Cs. Now on each Ci, we apply Lemma 14.3 and obtain a minimum equiv-

alent subdigraph C ′i. After this we apply Proposition 14.1 and obtain a minimum

equivalent subdigraph of D. Since all the steps except Lemma 14.3 takes polynomial

time we get the desired running time. This completes the proof.

A weighted variant of Minimum Equivalent Graph has also been studied in
literature. More precisely the problem is defined as follows.
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Minimum Weight Equivalent Graph (MWEG)
Input: A directed graph D and a weight function w : A(D)→ N.
Task: Find a minimum weight equivalent subdigraph of D.

MWEG can be solved along the same line as MEG but to do this we need to use the
notion of min q-representative family and use Theorem 13.2 instead of Theorem 13.1.
These changes give us the following theorem.

Theorem 14.2. Minimum Weight Equivalent Graph can be solved in O(24ωnm log n·
logW ) time. Here, W is the maximum value assigned by the weight function

w : A(D)→ N.
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Chapter 15

Editing to Connected f-Degree

Graph

A subgraph F of a graph G is a factor of G, if F is a spanning subgraph of G.
When a factor F is described in terms of its degrees, it is called a degree-factor.
For example, one of the most fundamental notions in Graph Theory is 1-factor (or a
perfect matching), the case when a factor F has all of its degrees equal to 1. Another
example is r-factor, a regular spanning subgraph of degree r. More generally, for
a function f : V (G) → N, subgraph F is a f -factor of G if for every v ∈ V (G),
dF (v), the degree of v in F is exactly f(v). The study of degree factors is one of the
mainstreams in combinatorics with long history dating back to 1847 to the works of
Kirkman [74], and Petersen [106]. We refer to surveys [2, 110], as well as the book
of Lovász and Plummer [88] for an extensive overview of degree factors.

Another broad set of degree-factor problems is obtained by requesting the factor to
be connected. The most famous examples are another old classical Graph Theory
notions, namely Hamiltonian cycle, which is a connected 2-factor, and Eulerian
subgraph, which is a connected even-degree factor. We refer to the survey of Kouider
and Vestergaard [78] on connected factors, as well as to the book of Fleischner [47]
for a thorough study of Eulerian graphs and related topics.

A natural algorithmic problem concerning (connected) f -factors is for a given graph
G and a function f , to decide if G contains a (connected) f -factor. While deciding if
a given graph contains an f -factor can be done in polynomial time for any function
f [6], deciding the existence of even a connected 2-factor (Hamiltonian cycle) is
NP-complete. In this chapter we study parameterized complexity of the following
algorithmic generalization of the problem of finding a connected f -factor.
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Editing to Connected f-Degree Graph (ECG) Parameter: k
Input: An undirected graph G, a function f : V (G) → {1, 2, . . . , d} and an
integer k
Question: Does there exist a connected graph F such that for every vertex v,
dF (v) = f(v), and the size of the symmetric difference |E(G)4E(F )| ≤ k?

The main result of this chapter is the following theorem

Theorem 15.1. ECG is solvable in time 2O(k)nO(1) deterministically.

The proof of our theorem is based on (i) color-coding and (ii) fast computation of
representative family over a linear matroid. Our proof requires the usage representa-
tive family in some non-standard matroids. In particular, we use fast representative
family computations over direct sum matroid of `-elongation of co-graphic matroid
associated with G and uniform matroid over E(G). We believe that this combina-
tion could be useful for designing parameterized algorithms for other edge editing
problems. To the best of our knowledge this is the first uses of elongation of matroids
in designing parameterized algorithms.

In previous chapters we have seen many algorithms using representative families
and these algorithms can modified to solve the weighted version the problems. So
it would be natural to suggest that the nice properties of matroids would help us
with the “weighted” version of ECG as well.

Editing to Connected f-Degree Graph with Costs Parameter:k+d

Input: A graph G, functions f : V (G) → {1, 2, . . . , d} and c :
(
V (G)

2

)
→ N and

k, C ∈ N
Question: Does there exist a connected graph F such that for every vertex v,
dF (v) = f(v), |E(G)4E(F )| ≤ k, and c(E(G)4E(F )) ≤ C?

However, in spite of our attempts, we could not extend the results of Theorem 21.1
to Editing to Connected f-Degree Graph with Costs. The following
Theorem explains why our initial attempts failed.

Theorem 15.2. Editing to Connected f-Degree Graph with Costs (pa-

rameterized by k + d) is W[1]-hard even when the input graph G is a tree and costs

are restricted to be 0 or 1.

Previous work. It was shown by Mathieson and Szeider [94] that the problem
of deleting k vertices to transform an input graph into an r-regular graph, where
r ≥ 3 is W[1]-hard parameterized by k. For edge-modification problems to a graph
with certain degrees, Mathieson and Szeider have shown in [94] that Editing to
f-Degree Graph, the case when the requirement that the resulting graph F is
connected is omitted, is solvable in polynomial time. As with the f -factor problem,
the situation changes drastically when one adds the requirement that the resulting
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graph F is connected. A simple reduction from Hamiltonian cycle shows that in
this case deciding if a graph can be edited into a connected 2-degree graph, i.e. a
cycle, by changing at most k adjacencies, is NP-complete [64].

Golovach in [64] have shown that when parameterized by the maximum vertex de-
gree d in the resulting graph plus the number of editing operations k, the problem
Editing to Connected f-Degree Graph is FPT. In the same paper, it was
shown that the variant when the resulting graph F is regular, the problem is FPT
parameterized by k. However, prior to our work the complexity status of Editing
to Connected f-Degree Graph remained open. Thus Theorem 21.1 resolves
the problem in affirmative. However, we still do not know the kernelization status
of this problem and leave it as an interesting open problem.

Our Approach. Any solution to our problem is of the form D ∪ A ∈
(
V (G)

2

)
where D ⊆ E(G) and A ⊆ E(G). The sets D and A are called a deletion set
and an addition set, respectively, corresponding to the solution D ∪ A. We start
by characterizing our solution in terms of deletion set D (called nice deletion set),
satisfying certain properties and has an accompanying map ψ. This map together
with other properties of nice deletion set allows us to recover the addition set A
in polynomial time. Thus, our whole effort is in finding this nice deletion set D.
This viewpoint is useful as this allows us to “forget about the addition set” and
concentrate on finding a nice deletion set. However, this is not useful for designing
the dynamic programming algorithm. To achieve this we view the solution D∪A as
a system of “alternating walks and alternating even closed walks”. An alternating
walks and closed walks are essentially normal walks and closed walks with edges from
D ∪ A and they do not have consecutive edges from either D or A. We take this
view point to construct the dynamic programming algorithm as this allows us to go
from one state to other using one edge (either of an addition set or of a deletion set).
The number of states can be upper bounded by 2O(k). However, the number of sets
D′ ∪A′ that could satisfy the prerequisite of being in a particular table entry could
be as large as nO(k) and thus this would not lead to an FPT algorithm. However,
we follow this template for our algorithm and use some more structural properties
to prune this deletion set.

Our first observation towards an FPT algorithm is that after we delete the edges
in D then the number of components can at most be |D| − k + 1. This allows
us to show that in fact we can think of D being an independent in a independent
set in the matroid M∗

G(`), `-elongation of the co-graphic matroid, M∗
G, associated

with G, where ` = |E(G)| − |V (G)|+ k − |D|+ 1 (we refer to preliminaries for the
definition). Next we show that for addition set A, all we need is to store some form of
disjointness and that can be captured using uniform matroid over the universe E(G).
Let Um′,k−k′ be a uniform matroid with ground set E(G), where m′ = |E(G)|. From
the definition of Um′,k−k′ , any set A of size at most k− k′ is independent in Um′,k−k′ .
We have already explained that we view the deletion set D as an independent set in
M∗

G(`) where ` = |E(G)| − |V (G)|+ k − k′ + 1. Thus, to see the solution set D ∪A
as an independent set in a single matroid, we consider direct sum of M∗

G(`) and
Um′,k−k′ . That is, let M = M∗

G(`)⊕ Um′,k−k′ . In M , a set I is an independent set if
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and only if I ∩E(G) is an independent set in M∗
G(`) and I ∩E(G) is an independent

set in Um′,k−k′ . This ensures that any solution D∪A is an independent set in M . By
viewing any solution of the problem as an independent set in a matroid M (which
is linear), we can use the q-representative families to prune the table. However, we
still need to take care of a technical requirement in the definition of a nice deletion
set. Towards this, we show that for every deletion set D there exists a set of edges
WD ⊆ E(G) (disjoint from D) of size at most 6k such that if these edges are not
picked then we can satisfy that technical requirement. To achieve this we apply
color coding technique and this can be derandomized using universal sets.

Organization of the chapter. In Section 15.1 we give an brief overview of our
algorithm and in Section 15.2 we explain our algorithm formally.

15.1 An overview of our algorithm

Any solution to our problem is of the form D ∪ A ∈
(
V (G)

2

)
where D ⊆ E(G)

and A ⊆ E(G). The sets D and A are called a deletion set and an addition set,
respectively, corresponding to the solution D ∪ A.

15.1.1 Characterizing the solution.

Starting point of our algorithm is a characterization of solution in terms of a deletion
set D satisfying certain properties (such deletion sets are called nice deletion set).
This, allows us to focus on finding nice deletion sets. To describe the main steps
and ideas involved in our algorithm we first give a semi-informal definition of a nice
deletion set. Towards this we need the definition of following two sets .

def(G, f) = {v | v ∈ V (G), f(v) > dG(v)} − set of deficient vertices

S(G, f) = {v(i) | v ∈ V (G), f(v) > dG(v), i ∈ {1, . . . , f(v)− dG(v)}}

The second set specifies for every vertex v ∈ def(G, f) how many edges in addition
set must be adjacent to v. Let ψ : S(G, f) → S(G, f) be a bijection. Given ψ,
we define a multiset Eψ as follows. For each u(i) ∈ S(G, f) we add (u, v) to Eψ
if ψ(u(i)) = v(j) for some j ≥ i. Essentially, the map ψ will allow us to get our
addition set A. We say that ψ is a proper deficiency map if ψ is involution, for any
u ∈ V (G) (u, u) /∈ Eψ, Eψ is a set and not a multiset and Eψ ∩ E(G) = ∅. Finally,
a set D ⊆ E(G) is called nice deletion set if

(i) for all v ∈ V (G), dG−D(v) ≤ f(v) and |S(G−D, f)| = 2(k − |D|);
(ii) G−D has at most k − |D|+ 1 connected components;
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(iii) each connected component in G−D contains a vertex v such that dG−D < f(v)
(i.e, for each connected component F in G −D, V (F ) ∩ def(G −D, f) 6= ∅);
and

(iv) there exists a proper deficiency map ψ : S(G−D, f)→ S(G−D, f).

Let D ⊆ E(G). Then there exists A ⊆ E(G), |A| = k − |D| such that A ∪ D is
a solution to ECG if and only if D is a nice deletion set. Furthermore, given a
nice deletion set we can find an addition set, if exists, in polynomial time. Thus,
our problem reduces to finding a nice deletion set D ⊆ E(G) and an accompanying
proper deficiency map ψ on S(G − D, f), if it exists, using dynamic programming
(DP).

15.1.2 Towards the states of DP algorithm.

The next question that arises is: how are we going to find a nice deletion set D?
Throughout this section we will work with a hypothetical deletion set D. We start
with coloring the vertices ofG, green and red in the following way. We color v ∈ V (G)
green if dG(v) > f(v), otherwise we color v red. Let Er = E(G[Red]) and Eg =
E(G) \ Er. One first does a quick sanity check. That is, if

∑
{v:dG(v)6=f(v)} |dG(v) −

f(v)| > 2k then we output No, because in this case any solution to ECG requires
more than k edge edits (addition/deletion operations). Now we guess the size k′ ≤ k
of D such that 2k′ ≥∑v:dG(v)>f(v) dG(v)−f(v). Since D is our hypothetical deletion
set, we have that for any v ∈ Green, the number of edges in D which are incident
to v is at least dG(v)− f(v). Now we guess the number k1 of edges in D which are
incident to only green vertices and the number k2 of edges in D which are incident
to at least one vertex in Red. Note that k1 + k2 = k′. Also note that the number of
ways we can guess (k′, k1, k2) is at most k2. Now for every v ∈ Green, we guess the
number of edges in D which are incident to v. In particular, we guess a function
Φ : Green → N such that for all v ∈ Green we have that Φ(v) ≥ dG(v) − f(v). The
number of possible functions Φ(v) is upper bounded by O(4kk). From now onwards
we will assume that we are given a Φ. In other words we have guessed the function
Φ corresponding to the hypothetical solution D. We say that a solution D ∪ A to
ECG satisfies the function Φ if for every vertex v ∈ Green the number of edges
incident to v in D is exactly equal to Φ(v).

We start with an intuitive explanation of the structure of the solution that helps us in
designing partial solution for the DP algorithm we are trying to give for our problem.
Given D∪A, we first define a notion of an alternating walk. An alternating walk is a
sequence of vertices u1, u2, . . . , u` such that consecutive pairs ((ui, ui+1), (ui+1, ui+2))
either belong to D × A or A ×D. That is, an edge from D is followed by an edge
from A or vice-versa. In an alternating even length closed walk, u1 = u` and ` is
even. One might wonder about the definition of alternating odd length closed walk.
For our purposes we will think of them as alternating walks that start and end at the
same vertex. Essentially, these will be alternating walks that start and end with the
same vertex and the first and the last edge either both belong to D or both belong
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to A. From now onwards whenever we say an alternating closed walk, we mean an
alternating even length closed walk. For any intermediate vertex in the alternating
walk or in the alternating closed walk, one of the edges incident to it belongs to D
and the other edge belongs to A. Thus the degree of any intermediate vertex is not
disturbed either by an alternating walk or alternating closed walk. Our reasons to
define these notions are as follows. Let D ∪ A be a solution of ECG that satisfies
Φ. We can think of edges in D ∪ A forming a family, P, of alternating walks and
alternating closed walks with the following properties.

• For every vertex v ∈ V (G) and a set Z ∈ {D,A}, we define apdeg(P , Z, v) as
the number of edges from Z that are incident to v and appear as (i) the first
edge in alternating walks from P that start with v; and (ii) the last edge in
alternating walks from P that end in v. Note that, if there is an alternating
walk that both starts and ends in v and the start edge as well as the last
edge belong to Z then this path contributes two to apdeg(P , Z, v). For every
vertex v ∈ Green, apdeg(P , D, v) = dG(v)− f(v) and apdeg(P , A, v) = 0. Fur-
thermore, for every vertex v ∈ Red, apdeg(P , D, v) = 0 and apdeg(P , A, v) =
f(v)− dG(v).

• Every vertex v ∈ Green, the number of times it appear as an intermediate
vertex in an alternating walk or in an alternating closed walk of P is exactly
equal to Φ(v)− (dG(v)− f(v)).

This path system view allows us to make a dynamic programming algorithm where
we can move from one state to another using one edge addition or deletion. In par-
ticular, the algorithm works by constructing all alternating walks P1, . . . , Pη first and
then construct alternating closed walks Pη+1, . . . , Pα. Given a partially constructed
path system we try to append an edge to the current path we are constructing by
adding an edge to it; or declaring that we are finished with the current path system
and move to obtain a new path. During this process we also keep a partial proper
deficiency map ψ′ such that Eψ′ is the addition edges in the current partial solution.
Thus, a state in the dynamic programming algorithm is given by our current guesses
and a subset of domain of partial proper deficiency map. It can be shown that the
number of states is upper bounded by 2O(k). However, the number of sets D′ ∪ A′
that could satisfy the prerequisite of being in a particular table entry could be as
large as nO(k) and thus this would not lead to an FPT algorithm. However, this in
indeed a template for our algorithm. Next we observe that we can prune the table
size to 2O(k)nO(1) and thus lead to an FPT algorithm.

15.1.3 Pruning the DP table entry and an FPT algorithm.

We need to prune the DP table in a way that we do not change the answer to the
given instance (G, f, k). Towards this we show that if some subset we have stored in
a DP table entry could lead to a nice deletion set then we do have at least one such
set after the pruning operation. Our guessing of k1, k2 and φ allows us to satisfy the
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property (i) of nice deletion set. The property (ii) of nice deletion set imply that D
is an independent set in the matroid M∗

G(`). That is, `-elongation of the co-graphic
matroid, M∗

G, associated with G, where ` = |E(G)| − |V (G)|+ k− |D|+ 1 (we refer
to preliminaries for the definition). Thus, by only considering those D which are
independent sets in M∗

G(`) we ensure that property (ii) of the nice deletion set is
satisfied. Now consider the property (iv) of the nice deletion set, i.e, there exists
a proper deficiency map ψ : S(G − D, f) → S(G − D, f). Our objective is to get
a set D ∪ A such that there is a proper deficiency map ψ over S(G − D, f) such
that Eψ = A, along with other properties as well. Let D1 ∪ A1, D2 ∪ A2 be two
partial solutions belonging to the same equivalence class where D1, D2 ⊆ E(G) and
A1, A2 ⊆ E(G). Suppose D′ ⊆ E(G), A′ ⊆ E(G), (D1∪D′)

⋃
(A1∪A′) is a solution

and A2 ∩ A′ = ∅. Since D1 ∪ A1, D2 ∪ A2 belongs to same equivalence class and
A2 ∩ A′ is disjoint, there is a proper deficiency map ψ′ over S(G − (D2 ∪ D′), f)
such that Eψ′ = A2 ∪ A′. To take care of the disjointness property between the
current addition set and the future addition set while doing the DP, we view the
the addition set A of the solution as an independent set in a uniform matroid over
the universe E(G). Let Um′,k−k′ be a uniform matroid with ground set E(G), where

m′ = |E(G)|. From the definition of Um′,k−k′ , any set A of size at most k − k′ is
independent in Um′,k−k′ . We have already explained that we view the deletion set
D as an independent set in M∗

G(`) where ` = |E(G)| − |V (G)| + k − k′ + 1. Thus,
to see the solution set D ∪A as an independent set in a single matroid, we consider
direct sum of M∗

G(`) and Um′,k−k′ . That is, let M = M∗
G(`) ⊕ Um′,k−k′ . In M , a

set I is an independent set if and only if I ∩ E(G) is an independent set in M∗
G(`)

and I ∩ E(G) is an independent set in Um′,k−k′ . This ensures that any solution
D ∪ A is an independent set in M . By viewing any solution of the problem as an
independent set in a matroid M (which is linear), we can use the q-representative
families to prune the table. However, we still need to ensure that property (iii) of
nice deletion set is satisfied. In what follows we explain how we achieve this.

We show that for every deletion set D there exists a set of edges WD ⊆ E(G)
(disjoint from D) of size at most 6k such that if these edges are not picked then we
can guarantee that each connected component in G − D contains a vertex v such
that dG−D < f(v). To achieve this we apply color coding. That is, if we randomly
color each edge orange with probability 6/7 and black with probability 1/7, then
with probability at least (1/7)k(6/7)6k, all the edges of the deletion set D will be
colored with orange and all the edges in WD will be colored with black. If we repeat
our algorithm (77k/66k) times we can increase the success probability to a constant.
This step can be derandomized using universal sets.

15.2 Algorithm

For a given graph G, a solution to ECG comprises a deletion set D ⊆ E(G) and
an addition set A ⊆ E(G). That is, F = G −D + A. In particular, we denote the
solution set as a pair (D,A), where D ⊆ E(G) and A ⊆ E(G).
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15.2.1 Structural Characterization

In this subsection we give a structural characterization of solution that is central
to our parameterized algorithm. In particular we give a necessary and sufficient
conditions on D ⊆ E(G) for being a deletion set of an optimum solution to ECG.
Furthermore, we show that if we have D that satisfies the desired conditions then
we can obtain the corresponding addition set A in polynomial time. We start with
few definitions that will setup a useful language to speak about different aspects of
the sets we will be considering throughout the paper.

Definition 15.1. Let G be a graph and f : V (G) → {1, 2, . . . , d} be a function.

We call a vertex v ∈ V (G) deficient with respect to G and f , if f(v) > dG(v).

We define deficiency vertex set of G and f , denoted by def(G, f), as the set of

deficient vertices with respect to G and f . We define deficiency set of G and f ,

denoted by S(G, f), as a set containing max{0, f(v)− dG(v)} vertices corresponding

to each vertex v ∈ V (G). Notice that S(G, f) contains non-zero vertices correspond-

ing to a vertex v only if f(v) > dG(v) and the cardinality of S(G, f) is equal to∑
{v:f(v)>dG(v)} f(v)− dG(v). In particular these sets are defined as:

def(G, f) = {v | v ∈ V (G), f(v) > dG(v)}

S(G, f) = {v(i) | v ∈ V (G), f(v) > dG(v), i ∈ [f(v)− dG(v)]}

Let W ⊆ V (G)×N+. Recall that we denote a pair (v, i) ∈ V (G)×N+ (or in W ) by
v(i). Let ψ : W → W be a bijection. Given ψ, we define a multiset Eψ as follows.
For each u(i) ∈ W we add (u, v) to Eψ if ψ(u(i)) = v(j) for some j ≥ i.

Definition 15.2. Let G be a graph and W ⊆ V (G)× N+. A bijection ψ : W → W

is called a proper deficiency map if it satisfies the following properties.

1. Involution: For any x ∈ W , ψ(ψ(x)) = x.

2. Non-Loop Property: For any u ∈ V (G), (u, u) /∈ Eψ

3. Simple Edge Property: Eψ is a set, not a multiset. That is, there does not exists

u, v ∈ V (G) such that ψ(u(i1)) = v(j1) and ψ(u(i2)) = v(j2) for some i1 6= i2

and j1 6= j2.

4. Non-Edge Property: Eψ ∩ E(G) = ∅.
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In general we will have proper deficiency map over the domain S(G, f) or some set
related to this. Finally, we define a notion of nice deletion set.

Definition 15.3. Let (G, f, k) be an instance of ECG and let D ⊆ E(G). We say

that D is a nice deletion set if the following properties are satisfied.

(i) For all v ∈ V (G), dG−D(v) ≤ f(v).

(ii) |S(G−D, f)| = 2(k − |D|).

(iii) G−D has at most k − |D|+ 1 connected components.

(iv) Each connected component in G−D contains a vertex v such that dG−D < f(v)

(i.e, for each connected component F in G−D, V (F ) ∩ def(G−D, f) 6= ∅).

(v) There exists a proper deficiency map ψ : S(G−D, f)→ S(G−D, f).

Lemma 15.1. Let (G, f, k) be an instance of ECG and let D ⊆ E(G). Then there

exists A ⊆ E(G), |A| = k−|D| such that A∪D is a solution to ECG if and only if

D is a nice deletion set. Moreover, given a nice deletion set D ⊆ E(G) we can find

A ⊆ E(G) such that |A| = k − |D| and D ∪ A is a solution to ECG in polynomial

time.

Proof. (⇒) Let A ⊆ E(G), |A| = k−|D| such that A∪D is a solution to ECG. We

need to show that D ⊆ E(G) is a nice deletion set. Since A∪D is a solution to ECG,

we have that dG−D(v) ≤ f(v) for all v ∈ V (G), satisfying condition (i). Furthermore,

A∪D being a solution also implies that
∑
{v : f(v)>dG−D(v)} f(v)−dG−D(v) = 2|A| =

2(k−D). Hence |S(G−D, f)| = 2(k−|D|), satisfying condition (ii). Since G−D+A

is a connected graph, G − D can have at most |A| + 1 = k − |D| + 1 connected

components, satisfying condition (iii) in the definition. The graph G − D + A

is connected and thus each connected component F in G − D contains a vertex

v ∈ V (F ) such that (v, u) ∈ A for some u ∈ V (G). Since D ∪ A is a solution

to ECG, dG−D+A(v) = f(v) and hence dG−D(v) < f(v) (because (v, u) ∈ A),

satisfying condition (iv). Finally, we show that D satisfies the last property. Let

A = {e1, e2, . . . , er} ⊆ E(G) where r = k − |D|. Since D ∪A is a solution to ECG,
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we have that for any vertex v, there are exactly f(v) − dG−D(v) edges in A which

are adjacent to v. Now we define a bijection ψ : S(G − D, f) → S(G − D, f) as

follows: ψ(u(i)) = v(j) if (u, v) = e` such that there are exactly i − 1 edges from

{e1, . . . , e`−1} are incident on u and there are exactly j−1 edges from {e1, . . . , e`−1}
are incident on v. That is, we traverse the edges e1, . . . , er from left to right and

find the ith edge incident to u, say e` = (u, v), and then we assign it v(j), if there

are exactly j edges incident to v present among {e1, . . . , e`−1}.

Claim 15.1. ψ : S(G−D, f)→ S(G−D, f) is a proper deficiency map.

Proof. By the definition of ψ, if ψ(u(i)) = v(j) then ψ(v(j)) = u(i), and so ψ is

an involution. Since G −D + A is a simple graph, for any u ∈ V (G), (u, u) /∈ Eψ.

Now we need to show that Eψ is not a multiset. Suppose not, then there exists

u, v ∈ V (G) such that ψ(u(i1)) = v(j1) and ψ(u(i2)) = v(j2) for some i1 6= i2 and

j1 6= j2. This implies that there exist ei, ej ∈ A, i 6= j such that ei = ej = (u, v).

This contradicts the fact that G−D+A is a simple graph. Since A is disjoint from

E(G), Eψ ∩ E(G) = ∅. This completes the proof.

(⇐) Let D ⊆ E(G) be a nice deletion set. We need to show that we can find

A ⊆ E(G) such that |A| = k−|D| and G−D+A is a solution to ECG. Properties (i)

and (ii) imply that dG−D(v) ≤ f(v) for all v ∈ V (G) and |S(G−D, f)| = 2(k−|D|).
Due to the property (v) in the definition of nice deletion set, we know that there

exists a proper deficiency map ψ : S(G − D, f) → S(G − D, f). Define A1 = Eψ.

By the definition of Eψ, |A1| = |Eψ| = |S(G − D, f)|/2 = k − |D|. Also note that

A1 ∩ E(G) = ∅ because ψ is a proper deficiency map. Now consider the graph

G1 = G − D + A1. Note that G1 is simple graph because ψ is a proper deficiency

map. Also by the definition of Eψ, dG−D+A1(v) = f(v) for all v ∈ V (G). So G1

satisfies the degree constraints. If G1 is connected then D ∪ A1 is a solution to

ECG. Thus, we assume that G1 is not connected. In what follows we give an

iterative procedure that finds the desired A. Suppose we are in ith iteration and we
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have a set Ai such that G−D+Ai satisfies all degree constraints but G−D+Ai is

not connected. Then in the next iteration we find another addition set of size k−|D|,
say Ai+1, such that G−D+Ai+1 satisfies all degree constraints and G−D+Ai+1 has

strictly less number of connected components than in G −D + Ai. The procedure

is started with A1 = Eψ. Let i ≥ 1 and we have Ai such that G −D + Ai satisfies

all degree constraints but G − D + Ai is not connected. Since |Ai| = k − |D| and

G − D has at most k − |D| + 1 connected components, Gi = G − D + Ai has

a component F such that there is an edge (u1, v1) ∈ Ai with the property that

u1, v1 ∈ V (F ) and (u1, v1) is not a bridge in F . Let F ′ be another connected

component in Gi. Since each connected component in G − D contains a vertex

w ∈ V (G) such that dG−D(w) < f(w), there exists an edge (u2, v2) ∈ Ai such

that u2, v2 ∈ V (F ′). Now let Ai+1 = (Ai \ {(u1, v1), (u2, v2)}) ∪ {(u1, u2), (v1, v2)}.
Observe that Gi+1 = G − D + Ai+1 is a simple graph with strictly less connected

component than in Gi and dGi+1
(v) = f(v) for all v ∈ V (G). Observe that when

the procedure stops we would have found the desired A.

Given a nice deletion set D, we can find the desired A using the iterative proce-

dure described in the reverse direction of the proof. Clearly, this procedure can be

implemented in polynomial time. This completes the proof of the lemma.

15.2.2 An algorithm with running time nO(k)

In this section we design an algorithm for ECG running in time nO(k) – an XP
algorithm. Clearly, this is not the algorithm we promised. In fact a simple brute
force algorithm for ECG will run in time nO(k). But this algorithm will provide
a skeleton for a parameterized algorithm given in the next subsection. Both the
algorithms, XP as well as FPT for ECG, are based on dynamic programming (DP).
The algorithm given in this section allows us to introduce various aspects of the
dynamic programming in a gentler manner. Even though the number of states in the
dynamic programming algorithm given in this subsection is bounded by cO(k) ·nO(1),
the number of partial solutions stored in a DP table entry could potentially be nO(k).
The FPT algorithm given in the next subsection is based on this algorithm and uses
tools from representative family to reduce the cardinality of partial solutions stored
in any DP table entry to cO(k) · nO(1).
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Given an instance (G, f, k)of ECG. The main idea of the algorithm is to find a
nice deletion set D ⊆ E(G) and an accompanying proper deficiency map ψ on
S(G−D, f), if it exists, using dynamic programming. Throughout this section
we will work with a hypothetical deletion set D. We start with coloring
the vertices of G, green and red in the following way. We color v ∈ V (G) green if
dG(v) > f(v), otherwise we color v red. That is, Green = {v | v ∈ V (G), dG(v) >
f(v)} and Red = V (G) \ Green. Let Er = E(G[Red]) and Eg = E(G) \ Er. One
first does a quick sanity check. That is, if

∑
{v:dG(v)6=f(v)} |dG(v) − f(v)| > 2k then

we output No, because in this case any solution to ECG requires more than k edge
edits (addition/deletion operations). Now we guess the size k′ ≤ k of D such that
2k′ ≥∑v:dG(v)>f(v) dG(v) − f(v). Since D is our hypothetical deletion set, we have
that for any v ∈ Green, the number of edges in D which are incident to v is at least
dG(v)− f(v). Now we guess the number k1 of edges in D which are incident to only
green vertices and the number k2 of edges in D which are incident to at least one
vertex in Red. Note that k1 + k2 = k′. Also note that the number of ways we can
guess (k′, k1, k2) is at most k2. Now for every v ∈ Green, we guess the number of
edges in D which are incident to v. In particular, we guess a function Φ : Green→ N
such that for all v ∈ Green we have that Φ(v) ≥ dG(v) − f(v). We claim that the
number of possible functions from Green to N, that represent the number of edges
incident to a vertex v ∈ Green in the hypothetical solution D, is bounded by O(4kk).
Let k3 be the number of edges in D which are incident to only red vertices. Observe
that we are looking for functions Φ, such that for all v ∈ Green we have that
1 ≤ dG(v) − f(v) ≤ Φ(v) ≤ k1 + k2 − k3, and

∑
v∈Green Φ(v) ≤ 2k1 + k2 − k3. The

number of such functions is upper bounded by

O(2|Green|+2k1+k2−k3−
∑
v∈Green dG(v)−f(v)).

The above quantity is upper bounded by O(4k) because |Green| ≤∑v∈Green dG(v)−
f(v) and 2k1 + k2 − k3 ≤ 2k. Since there are at most k possible values for k3, the
number of possible functions Φ(v) is upper bounded by O(4kk). From now onwards
we will assume that we are given a Φ. In other words we have guessed the function
Φ corresponding to the hypothetical solution D. We say that a solution D ∪ A to
ECG satisfies the function Φ if for every vertex v ∈ Green the number of edges
incident to v in D is exactly equal to Φ(v).

Intuitive Structure of the Algorithm. We start with an intuitive explanation
of the structure of the solution that helps us in designing partial solution for the
DP algorithm we are trying to give for our problem. Any solution to our problem
is of the form D ∪ A ∈

(
V (G)

2

)
where D ⊆ E(G) and A ⊆ E(G). Given D ∪ A,

we first define a notion of an alternating walk. An alternating walk is a sequence
of vertices u1, u2, . . . , u` such that consecutive pairs ((ui, ui+1), (ui+1, ui+2)) either
belong to D × A or A × D. That is, an edge from D is followed by an edge from
A or vice-versa. In an alternating even length closed walk, u1 = u` and ` is even.
One might wonder about the definition of alternating odd length closed walk. For
our purposes we will think of them as alternating walks that start and end at the
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same vertex. Essentially, these will be alternating walks that start and end with the
same vertex and the first and the last edge either both belong to D or both belong
to A. From now onwards whenever we say an alternating closed walk, we mean an
alternating even length closed walk. For any intermediate vertex in the alternating
walk or in the alternating closed walk, one of the edges incident to it belongs to D
and the other edge belongs to A. Thus the degree of any intermediate vertex is not
disturbed either by an alternating walk or alternating closed walk. Our reasons to
define these notions are as follows. Let D ∪ A be a solution of ECG that satisfies
Φ. We can think of edges in D ∪ A forming a family, P, of alternating walks and
alternating closed walks with the following properties.

• For every vertex v ∈ V (G) and a set Z ∈ {D,A}, we define apdeg(P , Z, v) as
the number of edges from Z that are incident to v and appear as (i) the first
edge in alternating walks from P that start with v; and (ii) the last edge in
alternating walks from P that end in v. Note that, if there is an alternating
walk that both starts and ends in v and the start edge as well as the last
edge belong to Z then this path contributes two to apdeg(P , Z, v). For every
vertex v ∈ Green, apdeg(P , D, v) = dG(v)− f(v) and apdeg(P , A, v) = 0. Fur-
thermore, for every vertex v ∈ Red, apdeg(P , D, v) = 0 and apdeg(P , A, v) =
f(v)− dG(v).

• Every vertex v ∈ Green, the number of times it appear as an intermediate
vertex in an alternating walk or in an alternating closed walk of P is exactly
equal to Φ(v)− (dG(v)− f(v)).

For any solution P = {P1, P2, . . . , Pα}, without loss of generality we assume that
there is η such that P1, . . . , Pη are alternating walks and Pη+1, . . . , Pα are alternating
closed walks. In our solution we will first construct all alternating walks and then
construct all altenarting closed walks. Also for any alternating closed walk, we always
start with a deletion edge.

Towards an implementation of the intuitive description. Our objective is
to design a DP algorithm. Thus, we first need to define a notion of partial solution
which will constitute basic building block of our algorithm. We first explain about
partial solutions and its structure which will be utilized to design the algorithm.
Any solution to our problem is of the form D ∪ A ∈

(
V (G)

2

)
where D ⊆ E(G) and

A ⊆ E(G), thus the partial solution for the problem is also a subset B ∪A′ ∈
(
V (G)

2

)
where B ⊆ E(G) and A′ ⊆ E(G). Let D∪A be a solution of ECG that satisfies Φ.
As described before we think of edges in D ∪A forming a family, P = {P1, . . . , Ps},
of alternating walks and alternating closed walks. A partial solution can be thought
of as {P1, . . . , P

∗
j }, where we have already created P1, . . . , Pj−1 and P ∗j is some

subwalk of Pj that we are creating now. This view could be useful in understanding
the algorithm we are going to describe later. At this point we add a caveat that our
algorithm slightly differs from this perspective to make the proof more accessible.
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Let P ′ = {P1, . . . , P
∗
j } be a partial solution. We first assume that P ∗j that we are

constructing is going to be an alternating walk. For every vertex v ∈ V (G) and a
set Z ∈ {B,A′}, we define apdeg∗(P ′, Z, v) as the number of edges from Z that are
incident to v and appear as (i) the first edge in alternating walks from P ′ that start
with v; and (ii) the last edge in alternating walks from {P1, . . . , Pj−1} that end in
v. As before if there is an alternating walk that both starts and ends in v and the
start edge as well as the last edge belong to Z then this path contributes two to
apdeg(P ′, Z, v). If P ∗j that we are constructing is going to be an alternating closed
walk then, apdeg∗(P ′, Z, v) = apdeg({P1, . . . , Pj−1}, Z, v). Before we go further we
would like to add that while making an algorithm we will know whether we are
currently constructing an alternating walk or an alternating closed walk.

In our algorithm we form partial solutions of size i from partial solutions of size
i−1. It is important, for designing the FPT algorithm given in the next subsection,
to partition the set of partial solutions based on some of its structures. Note that
we have already guessed some structure of the solution: like the number of deletion
edges, the number of deletion edges with both end points in Green, the number of
addition edges and the number of edges deleted from each vertex v ∈ Green (via
guessing the function Φ). We use these structures to characterize the equivalence
classes of partial solutions. Since we are going to compute a solution which respects
Φ, in the description of a equivalence class over partial solution we would like to
include for every vertex v ∈ Green the number of edges that are incident to v
and contribute to apdeg∗(P , D, v). This is achieved by creating a multiset set Tm
containing dG(v)−f(v) many copies of v for all v ∈ Green and keeping a subset of T ′m
for each equivalence class. That is, T ′m tells us how many edges incident to a vertex
v ∈ Green must be present in the partial solutions that respect apdeg∗(P ′, B, v). In
other words, apdeg∗(P ′, B, v) = T ′m(v).

Now we define another set Tg for Green vertices that stores the information about
how many times a vertex v appears as an intermediate vertex in the current partial
solution P ′ = {P1, . . . , P

∗
j }. In particular we define

Tg = { v(i) | v ∈ Green,Φ(v) > dG(v)− f(v), i ∈ [Φ(v)− (dG(v)− f(v))]}.

We use T ′g ⊆ Tg to represent an equivalence class with the property that a partial
solution P ′ = {P1, . . . , P

∗
j } satisfies that for every vertex v ∈ Green the number of

times v appear as an intermediate vertex in P ′ is same as the number of elements
corresponding to it in T ′g. Observe that we are differentiating between elements
corresponding to a vertex and a copy of a vertex. For example consider a vertex v.
When we say that Tm contains 3 copies of a vertex v, we mean {v, v, v} ⊆ Tm and
when we say Tg contains three elements/vertices corresponding to v, then we mean
that {v(1), v(2), v(3)} ⊆ Tg.

We have taken care of all alternating walks that start or end with deletion edges as
well as alternating closed walk. We also have some alternating walks that start or
end with an addition edge. Now we define some sets that will help us to have some
control over these alternating walks. Towards this we define a set Tr as follows: Tr
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is a set such that for any v ∈ Red there are exactly f(v) − dG(v) elements in Tr
corresponding to v.

Tr = { v(i) | v ∈ Red, f(v) > dG(v), i ∈ [f(v)− dG(v)]}

Ideally, we would like to keep a set T ′r ⊆ Tr to represent an equivalence class with
the property that a partial solution P ′ = {P1, . . . , P

∗
j } satisfies that for every vertex

v ∈ Red, apdeg∗(P ′, A′, v) = T ′r(v). However, for technical reasons we represent it
as follows. For every vertex v ∈ Red, apdeg∗(P ′, A′, v) = (Tr \ T ′r)(v).

Let v be the last vertex of P ∗j . When we are constructing P ∗j it can happen that
the edge incident to v could either a deletion edge or an addition edge. In either
case we do not know whether v is the last vertex of P ∗j and thus we can not store
the information on v either using T ′g or T ′r. To overcome this difficulty, we keep a
multiset X of size at most 2 or a set Y of size at most one. If the last edge is an
addition edge then we store v in Y and if the last edge is a deletion edge then we
store v in X. Now we explain why X is a multiset and |X| ≤ 2. If P ∗j is going to
be an alternating closed walk then in fact we need to store information about both
of its end vertices. In other words if P ∗j is going to be an alternating closed walk
then P ∗j starts with a deletion edge and the information about its starting vertex is
stored in X. If P ∗j ends with deletion edge then the information about it is stored
in X and the end vertex very well could be same as the starting vertex of P ∗j . Thus,
X could be a multiset of size 2.

Informal Description of the algorithm. Our algorithm works as follows. First
we construct all alternating walks P1, . . . , Pη and then construct alternating closed
walks Pη+1, . . . , Pα. Now we explain how each alternating (closed) walk can be
constructed. Suppose we have completed constructing Pj−1. We start constructing
Pj in the following preference order.

1. If Tm 6= T ′m, then we start with a deletion edge incident on v ∈ Tm \ T ′m and
add a copy of v to T ′m. Let P ∗j denote the current partial alternating walk
that we have constructed so far. If P ∗j ends in a vertex u ∈ Tm \ T ′m with a
deletion edge, then we say Pj = P ∗j and add a copy of u to T ′m. If P ∗j ends
in a vertex u with an addition edge and there is an element corresponding to
u in T ′r, then we say Pj = P ∗j and we delete an element corresponding to u
from T ′r. Else, we continue constructing this alternating walk by either adding
or deleting an appropriate edge incident to u. Notice that if u is a vertex in
Green then the last edge of P ∗j will be accounted in the next step using T ′g.
However, if u ∈ Red then we do not account for these edges using any set.

2. If T ′r 6= ∅, then we start with an addition edge incident on a vertex v, where
T ′r(v) 6= 0 and we delete an element corresponding to v from T ′r. Let P ∗j denote
the current partial alternating walk that we have constructed so far. Now if
P ∗j ends in a vertex u ∈ Tm \ T ′m with a deletion edge, then we say Pj = P ∗j
and add a copy of u to T ′m. If P ∗j ends in a vertex u with an addition edge
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and there is an element corresponding to u in T ′r, then we say Pj = P ∗j and we
delete an element corresponding to u from T ′r. Else, we continue constructing
this alternating walk by either adding or deleting an appropriate edge incident
to u.

3. If both the above cases are not applicable, then in fact j − 1 ≥ η. That is,
we have constructed all the alternating walks in the solution. Let B ⊆ E(G)
and A′ ⊆ E(G) be the set of deletion edges and addition edges present in
P1, . . . , Pj−1. In fact at this point dG−B+A′(v) = f(v) for all v ∈ V (G), Tm =
T ′m, T ′r = ∅, X = ∅ and Y = ∅. So all the degree constraints are satisfied. But
to make the resulting graph connected we might need to do more editing. Note
that any alternating closed walk will not disturb the degree of any vertex. It
is only used for connectivity purpose. We start construction of P ∗j by guessing
a deletion edge (u, v) in the closed walk Pj and adding both its end vertices,
x, y, to X. After this we continue following this trail until we hit x again.

In essence, we are constructing our alternating walks greedily (that is, we stop
whenever we have chance to do so!).

A formal definition of partial solution. For our partial solution we would like
to use Lemma 15.1. That is, we would like to obtain a nice deletion set. However,
to completely characterize a nice deletion set, we also need a proper deficiency map.
Note that for any Z ⊆ E(G), Tr ⊆ S(G−Z, f). For each partial solution B∪A′, the
subset T ′r ⊆ Tr represents the following: the current partial proper deficiency map
does not have T ′r as its domain. This is the main reason we defined T ′r differently
than T ′m and T ′g. In other words T ′r denotes that we still “need to add certain number
of edges” on vertices belonging to Red. However, note that we have a vertex v ∈ X
and the only reason this vertex is in X is that f(v) > dG−B(v). Thus, when we
consider S(G−B, f) \ T ′r then there is an element corresponding to v present in it.
And we can not take care of this deficiencies using the current partial map for which
the corresponding edge set is A′. To circumvent this we remove the newly added
deficiencies from our domain. Towards this we define XB,f as follows. Let X be a
multiset of size 2 such that for all u ∈ X, f(u) > dG−B(u) +X(u)− 1. Then,

XB,f = {u(i) | u ∈ X, f(u)− dG−B(u)−X(u) + 1 ≤ i ≤ f(u)− dG−B(u), i ∈ N+}

Note that XB,f ⊆ S(G − B, f). Similarly, when Y 6= ∅ then we know that the last
operation was an edge addition incident on a vertex w ∈ Y . Thus to have a proper
deficiency map ψ′ such that Eψ′ = A′ we need to add Y to the domain of ψ′. For
some partial solution B ∪ A′, it can happen that there exists v ∈ Green such that
dG−B(v) ≥ f(v) and EG(v)∩A′ 6= ∅. Thus to have a proper deficiency map ψ′ such
that Eψ′ = A′ we add the set T ′g corresponding to the partial solution B ∪A′ to the
domain of ψ′. Thus for any partial solution B ∪A′ which are in an equivalence class
characterized by T ′g ⊆ Tg, T

′
r ⊆ Tr, X and Y , we will have a proper deficiency map

ψ′ over (S(G−B, f) ∪ T ′g ∪ Y ) \ (T ′r ∪XB,f ) such that Eψ′ = A′.
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Now we formally define the notion of partial solutions. Given an instance (G, f, k)
we define Tm, Tg and Tr as described earlier. Also, recall that we have k1, k2 and Φ.
For any T ′m ⊆ Tm, T

′
g ⊆ Tg, T

′
r ⊆ Tr, k

′
1 ≤ k1, k

′
2 ≤ k2, i ≤ k, a multiset X containing

elements from V (G) and Y ⊆ V (G) such that |X| ≤ 2, |Y | ≤ 1, |X ∪ Y | ≤ 2 and
X ∩ Y = ∅, we define a family Q(T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ) of subsets of

(
V (G)

2

)
as

follows. For any B ⊆ E(G) and A ⊆ E(G), B ∪ A ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ) if

the following conditions are met:

(a) |E(G[Green]) ∩B| = k′1, |B \ E(G[Green])| = k′2 and |B ∪ A| = i.

(b) For any v ∈ Green, the number of edges in B which are incident to v is exactly
equal to T ′m(v) + T ′g(v) + X(v). That is, for all v ∈ Green, |B ∩ EG(v)| =
T ′m(v) + T ′g(v) +X(v).

(c) |XB,f | = |X| and XB,f ⊆ S(G−B, f) \ Tr.

(d) G−B has at most k − k′ + 1 connected components.

(e) There is a proper deficiency map ψ′ : (S(G−B, f) ∪ T ′g ∪ Y ) \ (T ′r ∪XB,f )→
(S(G − B, f) ∪ T ′g ∪ Y ) \ (T ′r ∪ XB,f ) such that A = Eψ. Furthermore, for
w ∈ Y , if ψ′(w) = u(j) for some j then Tm(u) = T ′m(u).

In condition (e) we demanded the following: for w ∈ Y , if ψ′(w) = u(j) for
some j then Tm(u) = T ′m(u). We explain the reason for doing this. In our
algorithm if Y 6= ∅, then the last operation is an addition operation with an
edge incident to w. If (u,w) is the edge added in the last operation then in the
proper deficiency map ψ, w maps to u(j) for some j. The only reason we did
not stop at u is because either u ∈ Red or u ∈ Green and T ′m(u) = Tm(u). Thus,
in some sense this condition helps us in knowing when the current alternating
walk we are constructing will stop.

For T ′m ⊆ Tm, T
′
g ⊆ Tg, T

′
r ⊆ Tr, k

′
1 ≤ k1, k

′
2 ≤ k2, i ≤ k, a multiset X containing

elements from V (G) and Y ⊆ V (G), we say that the tuple (T ′mT
′
g, T

′
r, k
′
1, k
′
2, i, X, Y )

is a valid tuple if the following happens.

(1) |X| ≤ 2, |Y | ≤ 1, |X ∪ Y | ≤ 2 and X ∩ Y = ∅

(2) For w ∈ Y , w(j) /∈ T ′r for all j.

(3) If u(j) ∈ T ′g then u(j′) ∈ T ′g for all 0 < j′ < j.

(4) For any v ∈ X, Tm(v) = T ′m(v).

For the correctness of the algorithm, it is enough to focus on partial solutions defined
over valid tuples. We have already explained that the cardinality of |X| ≤ 2 and
|Y | ≤ 1. Also note that if we have a partially constructed alternating (closed) walk
then its current end vertex will be either in X or Y . If we are constructing an
alternating closed walk then its starting vertex will also be in X. Because of this
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|X ∪ Y | ≤ 2. When both X and Y are non empty then we are constructing an
alternating closed walk stating at a vertex x ∈ X and at present it ends at a vertex
w ∈ Y . If x = w, then we could have greedily completed this closed walk. Hence,
X ∩ Y 6= ∅. For any set of partial solution B ∪ A ∈ Q(T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ),

we have a proper deficiency map ψ over (S(G − B, f) ∪ T ′g ∪ Y ) \ (T ′r ∪ XB,f ). If
u(j) ∈ S(G−B, f) then u(j′) ∈ S(G−B, f) for all j′ ≤ j. Since T ′g also accounts for
the number of edges deleted from each green (along with T ′m and X), the condition
(3) of the valid tuple is a sanity check. Conditions (2) and (4) are another set of
sanity checks which we have already explained.

Now we prove that in fact Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ) is “a correct notion of partial

solution”.

Lemma 15.2. Let (G, f, k) be an Yes instance of ECG with a solution D ∪ A
such that D ⊆ E(G), A ⊆ E(G), |D ∩ E(G[Green])| = k1, |D \ E(G[Green])| =

k2, k1 + k2 = k′ and |D ∩ EG(v)| = Φ(v) for all v ∈ Green. Let ψ be a proper

deficiency map over S(G − D, f) such that Eψ = A. Then for each i ≤ k, there

exists D′ ∪ A′ ⊆ D ∪ A and a valid tuple (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ) such that D′ ∪

A′ ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ) and there is a proper deficiency map ψ′ over R =

(S(G−D′, f) ∪ T ′g ∪ Y ) \ (T ′r ∪XD′,f ) with the property that Eψ′ = A′

Proof. We prove the lemma by induction on i. For i = 0 we set D′, A′ = ∅ and so

D′∪A′ ∈ Q(∅, ∅, Tr, 0, 0, 0, ∅, ∅). It is obvious to see that D′∪A′ satisfy the conditions

(a), (b), (c) and (e) of being in the family Q(∅, ∅, Tr, 0, 0, 0, ∅, ∅). Since D ∪ A is a

solution of ECG, G has at most k−k′+1 connected components, and hence D′∪A′

satisfy the condition (d) of being in the family Q(∅, ∅, Tr, 0, 0, 0, ∅, ∅). Assume that

the statement is true for i−1. That is, there exists D′∪A′ ⊆ D∪A and a valid tuple

(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i−1, X, Y ) such that D′∪A′ ∈ Q(T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i−1, X, Y ) and

there is a proper deficiency map ψ′ over R = (S(G−D′, f) ∪ T ′g ∪ Y ) \ (T ′r ∪XD′,f )

with the property that Eψ′ = A′. We need to show that the statement hold for i.

Case 1 : X, Y = ∅.

Since i− 1 < k, we have that D′ 6= D or A′ 6= A.
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Subcase (i): D′ 6= D. Let e = (x, y) ∈ D \D′. Let D′′ = D′ ∪ {e} and Y ′ = ∅.
Now we explain how to construct X ′. The set X ′ is a subset of {x, y}. If x ∈ Green

and x /∈ Tm \ T ′m, then we add x to X ′. If x ∈ Red, then we add x to X ′. Similar

case holds for y as well. We set X ′ = {z ∈ {x, y} | z /∈ Tm \ T ′m}. Note that if

z ∈ {x, y} is a Red vertex, then z /∈ Tm \ T ′m. The following claim follows from the

definition of X ′.

Claim 15.2. Let z ∈ {x, y} ∩ Green. Then z /∈ X ′ if and only if z ∈ Tm \ T ′m.

Let T ′′m = T ′m ∪ ({x, y} ∩ (Tm \ T ′m)). That is, we add those elements from {x, y}
to T ′m that appear in Tm \ T ′m. Now we define k′′1 = k′1 + 1 and k′′2 = k′2 if

e ∈ E(G[Green]), otherwise k′′1 = k′1 and k′′2 = k′2 + 1. Now we claim that D′′ ∪
A′ ∈ Q(T ′′m, T

′
g, T

′
r, k
′′
1 , k

′′
2 , i, X

′, Y ′) and (T ′′m, T
′
g, T

′
r, k
′′
1 , k

′′
2 , i, X

′, Y ′) is a valid tu-

ple. Since |X ′| ≤ 2, Y ′ = ∅, and (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i − 1, X, Y ) is a valid tuple,

(T ′′m, T
′
g, T

′
r, k
′′
1 , k

′′
2 , i, X

′, Y ′) satisfies properties (1), (2) and (3) of a valid tuple. Be-

cause of Claim 15.2, the tuple (T ′′m, T
′
g, T

′
r, k
′′
1 , k

′′
2 , i, X

′, Y ′) satisfies property (4) of a

valid tuple. Since D′ ∪ A′ ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i− 1, ∅, ∅) and D′′ = D′ ∪ {(x, y)},

the subset D′′ ∪ A′, satisfies the following conditions.

(a) |D′′ ∩ E(G[Green])| = k′′1 , |D′′ \ E(G[Green])| = k′′2 and |D′′ ∪ A′| = i.

(b) Due to Claim 15.2 and the definition of T ′′m, we have that for any v ∈ Green,

|D′′ ∩ EG(v)| = T ′′m(v) +X ′(v) + T ′g(v).

(c) Since for any v ∈ X ′, dG−D′′(v) < f(v), we have that |X ′| = |X ′D′′,f | and

X ′D′′,f ⊆ S(G−D′′, f) \ Tr.

(d) Since D ∪ A is a solution of ECG, by Lemma 15.1, we have that G −D has

at most k − k′ + 1 connected components. This implies that G − D′′ has at

most k − k′ + 1 connected components.

(e) Since S(G−D′′, f)∪T ′g = S(G−D′, f)∪T ′g ∪X ′D′′,f and (S(G−D′, f)∪T ′g)∩
X ′D′′,f = ∅, we have that (S(G−D′, f)∪T ′g) \T ′r = (S(G−D′′, f)∪T ′g) \ (T ′r ∪
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X ′D′′,f ). This implies that ψ′ is proper deficiency map over (S(G − D′′, f) ∪
T ′g) \ (T ′r ∪X ′D′′,f )

Thus we conclude that D′′ ∪ A′ ∈ Q(T ′′m, T
′
g, T

′
r, k
′′
1 , k

′′
2 , i, X

′, Y ′).

Subcase (ii): D′ = D. In this subcase we have that A′ 6= A. Let (x, y) ∈ A \ A′.
Let A′′ = A′ ∪ {(x, y)}. Note that Eψ = A and Eψ′ = A′. Since D′ = D, for

all v ∈ Green the number of edges in D′ which are incident to v is equal to Φ(v).

Also, note that Tm(v) + Tg(v) = Φ(v). This implies that T ′m = Tm and T ′g = Tg.

Since ψ is a proper deficiency map over S(G − D, f) = S(G − D, f) ∪ Tg, ψ′ is a

proper deficiency map over (S(G − D′, f) ∪ T ′g) \ T ′r and (x, y) ∈ Eψ \ Eψ′ , there

exists j, j′ such that x(j), y(j′) ∈ T ′r. Now we claim that D′ ∪ A′′ ∈ Q(T ′m, T
′
g, T

′
r \

{x(j), y(j′)}, k′1, k′2, i, ∅, ∅). Since D′ ∪ A′ ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i − 1, ∅, ∅), D′ ∪

A′′ satisfies conditions (a), (b), (c) and (d) of being in the family Q(T ′m, T
′
g, T

′
r \

{x(j), y(j′)}, k′1, k′2, i, ∅, ∅). Now we need to show that D′ ∪ A′′ satisfies condition

(e). Consider the bijection ψ′′ defined over (S(G−D′, f) ∪ T ′g) \ (T ′r \ {x(j), y(j′)})
as follows.

ψ′′(q) =


y(j′) if q = x(j)

x(j) if q = y(j′)

ψ′(q) otherwise

Note that Eψ′′ = A′′ ⊆ A. Since ψ′ is a proper deficiency map, ψ′′(x(j)) = y(j′),

ψ′′(y(j′)) = x(j), Eψ′′ is not a multiset and Eψ′′ ∩ E(G) = ∅, we have that ψ′′ is a

proper deficiency map. It is easy to see that (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i − 1, ∅, ∅) is a valid

tuple.

Case 2 : X 6= ∅, Y = ∅.

Let v ∈ X and let j be the smallest integer such that v(j) ∈ XD′,f . Since XD′,f ⊆
S(G−D′, f) \ Tr, we have that v(j) ∈ S(G−D′, f) ⊆ S(G−D, f). Also since ψ′ is

a proper deficiency map over (S(G−D′, f)∪T ′g) \ (T ′r ∪XD′,f ) and Eψ′ ⊆ Eψ, there
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exists b ∈ V (G) such that (v, b) /∈ Eψ′ and (v, b) ∈ Eψ. Let A′′ = A′ ∪ {(v, b)}.

Subcase (i): b ∈ X . In this subcase the set X ′ = ∅. Let j′ = f(b) − dG−D′(b).
Note that {v(j), b(j′)} = XD′,f ⊆ S(G−D′, f)\Tr. Let T ′′g = T ′g∪({v(j), b(j′)}∩Tg).
If v ∈ Green, then we know that |EG(v)∩D′| = T ′m(v)+T ′g(v)+X(v) and X(v) = 1.

Since the new set X ′ = ∅, to keep track of the cardinality |EG(v) ∩D′| we include

v(j) to T ′′g . The Claim 15.3 ensures that v(j) does not belongs to T ′g. The similar

arguments holds for b as well.

Claim 15.3. If v ∈ Green, then v(j) /∈ T ′g and v(j − 1) ∈ T ′g

Proof. Since {v, b} = X, j = f(v)− dG−D′(v). This implies that,

|EG(v) ∩D′| = j + dG(v)− f(v)

= j + Tm(v) (15.1)

We also know that, by the property (b) of partial solutions,

|EG(v) ∩D′| = T ′m(v) + T ′g(v) +X(v)

= Tm(v) + T ′g(v) +X(v) (∵ v ∈ X) (15.2)

Equations (15.1) and (15.2) implies that j = T ′g(v)+X(v). This implies T ′g(v) = j−1

because |X(v)| = 1. Thus we can conclude that v(j) /∈ T ′g and v(j − 1) ∈ T ′g

Similarly way we can prove the following claim.

Claim 15.4. If b ∈ Green, then b(j′) /∈ T ′g and b(j′ − 1) ∈ T ′g

We claim that D′ ∪ A′′ ∈ Q(T ′m, T
′′
g , T

′
r, k
′
1, k
′
2, i, ∅, ∅). We know that D′ ∪ A′ ∈

Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i−1, X, ∅). Thus, by Claims 15.3 and 15.4, we can conclude that

D′∪A′′ satisfies conditions (a), (b), (c) and (d) of being in Q(T ′m, T
′′
g , T

′
r, k
′
1, k
′
2, i, ∅, ∅).
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Now we need to show that D′ ∪A′′ satisfies condition (e). Consider the bijection ψ′′

over (S(G−D′), f) ∪ T ′′g ) \ T ′r as follows.

ψ′′(q) =


b(j′) if q = v(j)

v(j) if q = b(j′)

ψ′(q) otherwise

Note that that Eψ′′ = A′′. Since ψ′ is a proper deficiency map, ψ′′(u(j)) = v(j′),

ψ′′(v(j′)) = u(j), Eψ′′ is not a multiset and Eψ′′ ∩ E(G) = ∅, we have that ψ′′

is a proper deficiency map. It is easy to see that (T ′m, T
′′
g , T

′
r, k
′
1, k
′
2, i, ∅, ∅) satisfy

properties (1), (2) and (4) of a valid tuple. Claim 15.3 and Claim 15.4 implies that

(T ′m, T
′′
g , T

′
r, k
′
1, k
′
2, i, ∅, ∅) satisfy property (3) of a valid tuple.

Subcase (ii): b /∈ X and b(j′) ∈ T ′r for some j′. Let T ′′g = T ′g ∪ ({v(j)} ∩ Tg).

Claim 15.5. If v ∈ Green, then v(j) /∈ T ′g and v(j − 1) ∈ T ′g.

Proof. If X(v) = 1, then the proof is same as the proof of Claim 15.3. Suppose

X(v) = 2. Since {v, v} = X, j = f(v)− dG−D′(v)− 1. This implies that,

|EG(v) ∩D′| = j + 1 + dG(v)− f(v)

= j + 1 + Tm(v) (15.3)

We also know that, by the property (b) of partial solutions,

|EG(v) ∩D′| = T ′m(v) + T ′g(v) +X(v)

= Tm(v) + T ′g(v) + 2 (∵ v ∈ X) (15.4)

Equations (15.3) and (15.4) implies that j − 1 = T ′g(v). Thus we can conclude that

v(j) /∈ T ′g and v(j − 1) ∈ T ′g

Now we claim that D′ ∪ A′′ ∈ Q(T ′m, T
′′
g , T

′
r \ {b(j′)}, k′1, k′2, i, X ′, ∅) where X ′ =
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X \ {v}. Since D′ ∪A′ ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i− 1, X, ∅) and by Claim 15.5, we can

conclude that D′ ∪A′′ satisfies conditions (a), (b), (c) and (d) of being in the family

Q(T ′m, T
′′
g , T

′
r \ {b(j′)}, k′1, k′2, i, X ′, ∅). Now we need to show that D′ ∪ A′′ satisfies

condition (e). Consider the bijection ψ′′ over (S(G−D′, f) ∪ T ′′g ) \ ((T ′r \ {b(j′)}) ∪
X ′D′,f ) as follows.

ψ′′(q) =


b(j′) if q = v(j)

v(j) if q = b(j′)

ψ′(q) otherwise

Note that Eψ′′ = A′′ ⊆ A. Since ψ′ is a proper deficiency map, ψ′′(v(j)) = b(j′),

ψ′′(b(j′)) = v(j), Eψ′′ is not a multiset and Eψ′′ ∩ E(G) = ∅, we have that ψ′′ is a

proper deficiency map. Since X ′ ⊆ X and (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i − 1, X, ∅) is a valid

tuple, we have that (T ′m, T
′′
g , T

′
r \ {b(j′)}, k′1, k′2, i, X ′, ∅) satisfies properties (1), (2)

and (4) of a valid tuple. Claim 15.5 implies that (T ′m, T
′′
g , T

′
r \ {b(j′)}, k′1, k′2, i, X ′, ∅)

satisfies property (3).

Subcase (iii): b /∈ X and b(j′) /∈ T ′r for all j′. Let T ′′g = T ′g ∪ ({v(j)} ∩ Tg).

Claim 15.6. If v ∈ Green, then v(j) /∈ T ′g and v(j − 1) ∈ T ′g

Proof of Claim 15.6 is same as the proof of Claim 15.5. Now we claim that D′ ∪
A′′ ∈ Q(T ′m, T

′′
g , T

′
r, k
′
1, k
′
2, i, X

′, Y ′), where X ′ = X \ {v} and Y ′ = {b}. Since

D′ ∪ A′ ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i − 1, X, ∅), X ′ ⊆ X, and by Claim 15.6, we can

conclude that D′ ∪A′′ satisfies conditions (a), (b), (c) and (d) of being in the family

Q(T ′m, T
′′
g , T

′
r, k
′
1, k
′
2, i, X

′, Y ′). Now we need to show that D′ ∪A′′ satisfies condition

(e). Consider the bijection ψ′′ over (S(G−D′, f)∪ T ′′g ∪ {b}) \ (T ′r ∪X ′D′,f )) defined

as follows.

ψ′′(q) =


b if q = v(j)

v(j) if q = b

ψ′(q) otherwise

Note that that Eψ′′ = Eψ′∪{e} = A′′. Since ψ′ is a proper deficiency map, ψ′′(v(j)) =
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b, ψ′′(b) = v(j), Eψ′′ is not a multiset and Eψ′′ ∩ E(G) = ∅, we have that ψ′′ is a

proper deficiency map. Also note that ψ′′(b) = v(j) and Tm(v) = T ′m(v), because

v ∈ X and (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i − 1, X, ∅) is a valid tuple. Since X ′ ⊂ X, Y ′ = {b},

b(j′) /∈ T ′r for all j′ and (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i − 1, X, ∅) is a valid tuple, we have

that (T ′m, T
′′
g , T

′
r, k
′
1, k
′
2, i, X

′, Y ′) satisfies properties (1), (2) and (4) of a valid tuple.

Claim 15.5 implies that (T ′m, T
′′
g , T

′
r \ {b(j′)}, k′1, k′2, i, X ′, ∅) satisfies property (3).

Case 3 : Y 6= ∅.

Let Y = {w}. Since (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i − 1, X, Y ) is a valid tuple and |Y | = 1,

we have that |X| ≤ 1. We claim that there exists x ∈ V (G) such that (w, x) ∈
D \D′. Suppose not, then dG−D′(w) = dG−D(w). This implies that dG−D′+A′(w) =

dG−D+A′(w). We know that ψ′ is a proper deficiency map over (S(G − D′, f) ∪
T ′g ∪ {w}) \ (T ′r ∪ XD′,f ), Eψ′ = A′ and w(i′) /∈ T ′r ∪ XD′,f for all i′. This implies

that dG−D′+A′(w) ≥ f(w) + 1 and hence dG−D+A(w) > f(w), contradicting the fact

that D ∪ A is a solution to ECG. Thus we know that there exists x such that

(w, x) ∈ D \D′. Let D′′ = D′∪{(w, x)} and X ′ = X ∪{z|z = x, x /∈ Tm \T ′m}. Note

that |X ′| ≤ 2, because |X| ≤ 1. Let T ′′m = T ′m ∪ ({x} ∩ (Tm \ T ′m)). The following

claim follows from the definition of X ′.

Claim 15.7. Let x ∈ Green. Then x /∈ X ′ \X if and only if x ∈ Tm \ T ′m.

Subcase (i): w ∈ Green. Let k′′1 = k′1 + 1, k′′2 = k′2 if (w, x) ∈ E(G[Green]),

otherwise k′′1 = k′1, k
′′
2 = k′2 + 1. We claim that there exists j ∈ N+ such that

w(j) ∈ Tg \ T ′g. Suppose not. Since ψ′ is a proper deficiency map over (S(G −
D′) ∪ T ′g ∪ {w} \ (T ′r ∪ XD′,f ) such that E ′ψ = A′ ⊆ A and w(j) /∈ Tg \ T ′g for

all j, we can conclude that the number of edges in A′ which are incident to w

is at least 1 + |{w(j′) | j′ ∈ N+, w(j′) ∈ Tg}| = 1 + Φ(w) − (dG(w) − f(w)).

This implies that dG−D+A(w) ≥ dG−D+A′(w) ≥ dG(w) − |EG(v) ∩D| + 1 + Φ(w) −
(dG(w) − f(w)) = dG(w) − Φ(w) + 1 + Φ(w) − (dG(w) − f(w)) > f(w), which
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is a contradiction to the fact that D ∪ A is a solution of ECG. Without loss of

generality let j be the smallest integer such that w(j) ∈ Tg \ T ′g. Now we show that

D′′ ∪ A′ ∈ Q(T ′′m, T
′′
g , T

′
r, k
′′
1 , k

′′
2 , i, X

′, ∅), where T ′′g = T ′g ∪ {w(j)}. Since D′ ∪ A′ ∈
Q(T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i−1, X, Y ) and D′′ = D′∪{(w, x)}, the subset D′′∪A′, satisfies

the following conditions.

(a) |D′′ ∩ E(G[Green])| = k′′1 , |D′′ \ E(G[Green])| = k′′2 and |D′′ ∪ A′| = i.

(b) For any v ∈ Green,

|D′′ ∩ EG(v)| =

 T ′m(v) + T ′g(v) +X(v) + 1 if v ∈ {w, x}
T ′m(v) + T ′g(v) +X(v) if v /∈ {w, x}

=


T ′m(v) + T ′′g (v) +X(v) if v = w (By definition of T ′′g )

T ′′m(v) + T ′g(v) +X ′(v) if v = x (Due to Claim 15.7)

T ′m(v) + T ′g(v) +X(v) if v /∈ {w, x}
= T ′′m(v) + T ′′g (v) +X ′(v)

(c) |X ′| = 1 + |{z|z = x, x /∈ Tm \ T ′m}| = |X ′D′′,f | and X ′D′′,f ⊆ S(G−D′′, f) \ Tr.

(d) Since D ∪ A is a solution of ECG, by Lemma 15.1, we have that G −D has

at most k − k′ + 1 connected components. This implies that G − D′′ has at

most k − k′ + 1 connected components.

Now we need to show that D′′∪A′, satisfies the condition (e). Consider the bijection

ψ′′ over (S(G−D′′) ∪ T ′′g ) \ (T ′r ∪X ′D′′,f ) as follows.

ψ′′(q) =


ψ′(w) if q = w(j)

w(j) if q = ψ′(w)

ψ′(q) otherwise

The function ψ′′ is a proper deficiency map such that Eψ′′ = A′. Since the tuple

(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i− 1, X, Y ) is a valid tuple, |X ′| ≤ 2 and j is the smallest integer
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such that w(j) ∈ Tg \T ′g, we have that (T ′′m, T
′′
g , T

′
r, k
′′
1 , k

′′
2 , i, X

′, ∅) satisfies properties

(1), (2) and (3) of a valid tuple. Due to Claim 15.7, (T ′′m, T
′′
g , T

′
r, k
′′
1 , k

′′
2 , i, X

′, ∅)
satisfies property (4) of a valid tuple.

Subcase (ii): w ∈ Red. In this subcase we claim thatD′′∪A′ ∈ Q(T ′′m, T
′
g, T

′
r, k
′
1, k
′
2+

1, i, X ′, ∅). Let j = f(w)−dG−D′′(w). Since D′∪A′ ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i−1, X, Y )

and D′′ = D′ ∪ {(w, x)}, the subset D′′ ∪ A′, satisfies the following conditions.

(a) |D′′ ∩ E(G[Green])| = k′1, |D′′ \ E(G[Green])| = k′2 + 1 and |D′′ ∪ A′| = i.

(b) For any v ∈ Green,

|D′′ ∩ EG(v)| =

 T ′m(v) + T ′g(v) +X(v) + 1 if v = x

T ′m(v) + T ′g(v) +X(v) if v 6= x

= T ′′m(v) + T ′g(v) +X ′(v) ( Due to claim 15.7)

(c) |X ′| = 1 + |{z|z = x, x /∈ Tm \ T ′m}| = |X ′D′′,f | and X ′D′′,f ⊆ S(G−D′′, f) \ Tr.

(d) G−D′′ has at most k − k′ + 1 connected components.

Now we need to show that D′′∪A′, satisfies the condition (e). Consider the bijection

ψ′′ over (S(G−D′′) ∪ T ′g) \ (T ′r ∪X ′D′′,f ) as follows.

ψ′′(q) =


ψ′(w) if q = w(j)

w(j) if q = ψ′(w)

ψ′(q) otherwise

The function ψ′′ is a proper deficiency map such that Eψ′′ = A′. Since the tuple

(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i−1, X, Y ) is a valid tuple, |X ′| ≤ 2, we have that (T ′′m, T

′
g, T

′
r, k
′
1, k
′
2+

1, i, X ′, ∅) satisfies properties (1), (2) and (3) of a valid tuple. Due to claim 15.7,

(T ′′m, T
′
g, T

′
r, k
′
1, k
′
2 + 1, i, X ′, ∅) satisfies property (4) of a valid tuple.

164



Our algorithm is based on DP. It keeps a table entry D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] for

each valid tuple (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ). The idea is to store a subset of the family

Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ) in the DP table entry D[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] which

is sufficient to maintain the correctness of the algorithm. Next we write the re-
currence relation for D[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] and prove its correctness. Towards

that consider the following � and � operations defined as follows. For any family S
of subsets of

(
V (G)

2

)
, e ∈ E(G), and e′ ∈ E(G),

S�e = {B ∪ A ∪ {e} | A ∪B ∈ S, B ⊆ E(G) \ {e}, A ⊆ E(G),

G− (B ∪ {e}) has at most k − k′ + 1 connected components}
S � e′ = {B ∪ A ∪ {e′} | A ∪B ∈ S, B ⊆ E(G), A ⊆ E(G) \ {e′}}

Now we write the recurrence relation. For i = 0, we have the following base cases.

D[T ′m, T
′
g, T

′
r, 0, 0, 0, X, Y ] :=

{
{∅} if T ′m, T

′
g, X, Y = ∅, and T ′r = Tr

∅ otherwise
(15.5)

For any invalid tuple (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ), we set D[T ′g, T

′
r, k
′
1, k
′
2, i, X, Y ] = ∅.

Now we describe how to compute DP table entry for D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i+ 1, X, Y ]

for a valid tuple (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i+ 1, X, Y ) using the previously calculated table

entries. We write the following recurrence by following Lemma 15.2. That is, we
see which all cases in Lemma 15.2 will lead to the current table entry and for the
current table entry we just take the union of previously calculated table entries
corresponding to these cases.
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Case 1: X = ∅ and Y = ∅.

D[T ′m , T ′g, T
′
r, k
′
1, k
′
2, i+ 1, X, Y ] :=( ⋃

(x,y)∈E(G)
x,y∈T ′m

D[T ′m \ {x, y}, T ′g, T ′r, k′1 − 1, k′2, i, ∅, ∅]�{(x, y)}
)

⋃ ( ⋃
(x,y)∈E(G)

∃j,j′x(j),y(j′)∈Tr\T ′r

D[T ′m, T
′
g, T

′
r ∪ {x(j), y(j′)}, k′1, k′2, i, ∅, ∅] � {(x, y)}

)
⋃ ( ⋃

(x,y)∈E(G)
j=T ′g(x),j′=T ′g(y)

D[T ′m, T
′
g \ {x(j), y(j′)}, T ′r, k′1, k′2, i, {x, y}, ∅] � {(x, y)}

)

⋃ ( ⋃
(y,x)∈E(G)

j=T ′g(y),x∈T ′m

D[T ′m \ {x}, T ′g \ {y(j)}, T ′r, k′1 − 1, k′2, i, ∅, {y}]�{(y, x)}
)

⋃ ( ⋃
(y,x)∈E(G)
x∈T ′m,y∈Red

D[T ′m \ {x}, T ′g, T ′r, k′1, k′2 − 1, i, ∅, {y}]�{(y, x)}
)

⋃ ( ⋃
(x,y)∈E(G)
∃j,y(j)∈Tr\T ′r

D[T ′m, T
′
g, T

′
r ∪ {y(j)}, k′1, k′2, i, {x}, ∅] � {(x, y)}

)
(15.6)
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Case 2: x ∈ X 6= ∅ and Y = ∅.

D[T ′m, T ′g, T
′
r, k
′
1, k
′
2, i+ 1, X, Y ] :=( ⋃

(x,y)∈E(G[Green])
y∈X,T ′m(x)=Tm(x)
T ′m(y)=Tm(y)

D[T ′m, T
′
g, T

′
r, k
′
1 − 1, k′2, i, ∅, ∅]�{(x, y)}

)

⋃ ( ⋃
(x,y)∈E(G)

y∈X,x∈Green,y∈Red
T ′m(x)=Tm(x)

D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2 − 1, i, ∅, ∅]�{(x, y)}

)

⋃ ( ⋃
(x,y)∈E(G[Green])

y/∈X,y∈T ′m
T ′m(x)=Tm(x)

D[T ′m \ {y}, T ′g, T ′r, k′1 − 1, k′2, i, X \ {x}, ∅]�{(x, y)}
)

⋃ ( ⋃
(x,y)∈E(G)

x∈Red,y /∈X,y∈T ′m

D[T ′m \ {y}, T ′g, T ′r, k′1, k′2 − 1, i, X \ {x}, ∅]�{(x, y)}
)

⋃ ( ⋃
(y,z)∈E(G),j=T ′g(z)

∃j′:y(j′)∈Tr\T ′r

D[T ′m, T
′
g \ {z(j)}, T ′r ∪ {y(j′)}, k′1, k′2, i, X \ {x}, ∅] � {(y, z)}

)

⋃ ( ⋃
(y,z)∈E(G)

j=T ′g(y),z∈T ′m

D[T ′m \ {z}, T ′g \ {y(j)}, T ′r, k′1 − 1, k′2, i, X, {y}]�{(y, x)}
)

⋃ ( ⋃
(y,x)∈E(G[Green])
x/∈T ′m,j=T ′g(y)

D[T ′m, T
′
g \ {y(j)}, T ′r, k′1 − 1, k′2, i, X \ {x}, {y}]�{(y, x)}

)
⋃ ( ⋃

(y,x)∈E(G)
x∈Red,j=T ′g(y)

D[T ′m, T
′
g \ {y(j)}, T ′r, k′1 − 1, k′2, i, X \ {x}, {y}]�{(y, x)}

)
⋃ ( ⋃

(y,z)∈E(G),z /∈X
y∈Red,z∈T ′m

D[T ′m \ {z}, T ′g, T ′r, k′1, k′2 − 1, i, X, {y}]�{(y, x)}
)

⋃ ( ⋃
(y,x)∈E(G)
y∈Red,x/∈T ′m

D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2 − 1, i, X \ {x}, {y}]�{(y, x)}

)
(15.7)
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Case 3: y ∈ Y 6= ∅.

D[T ′m, T ′g, T
′
r, k
′
1, k
′
2, i+ 1, X, Y ] :=( ⋃

(x,y)∈E(G),j=T ′g(x)

X′=X∪{x},T ′r(y)=0

D[T ′m, T
′
g \ {x(j)}, T ′r, k′1, k′2, i, X ′, ∅] � {(x, y)}

)

(15.8)

The algorithm computes the family D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] for all valid tuple

(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ) and if there exists D ∪A ∈ D[Tm, Tg, ∅, k1, k2, k, ∅, ∅] such

that D ∪ A is a solution to ECG, then outputs Yes, otherwise outputs No. Since
the size of D[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] can potentially be nO(i), this algorithm takes

time nO(k). Now we prove the correctness of the algorithm.

Correctness. If the algorithm outputs Yes, then there exists D ∪ A which is a
solution to ECG. Now we need to show that if the input instance is an Yes instance,
then the algorithm will always output Yes. Lemma 15.4 achieves this. The following
lemma is useful for Lemma 15.4 and it can be proved by induction on i.

Lemma 15.3. D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] ⊆ Q(T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ), for any

valid tuple (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ),

The next lemma is very similar to Lemma 15.2 and we use some of the arguments
used there (for example in showing a particular tuple to be valid) directly in our
proof.

Lemma 15.4. Let (G, f, k) be an Yes instance of ECG with a solution D ∪ A
such that D ⊆ E(G), A ⊆ E(G), |D ∩ E(G[Green])| = k1, |D \ E(G[Green])| =

k2, k1 + k2 = k′ and |D ∩ EG(v)| = Φ(v) for all v ∈ Green. Let ψ be a proper

deficiency map over S(G − D, f) such that Eψ = A. Then for each i ≤ k, there

exists D′ ∪ A′ ⊆ D ∪ A and a valid tuple (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ) such that D′ ∪

A′ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] and there is a proper deficiency map ψ′ over R =

(S(G − D′, f) ∪ T ′g ∪ Y ) \ (T ′r ∪ XD′,f ) with the property that Eψ′ = A′. Moreover

D ∪ A ∈ D[Tm, Tg, ∅, k1, k2, k, ∅, ∅].

Proof. We prove the lemma by induction on i and its proof is very much similar

to the proof of Lemma 15.2. For i = 0 we set D′, A′ = ∅ and by definition, ∅ ∈
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D[∅, ∅, Tr, 0, 0, 0, ∅, ∅]. We assume that the statement is true for i−1. That is, there

exists D′ ∪ A′ ⊆ D ∪ A and a valid tuple (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i − 1, X, Y ) such that

D′ ∪ A′ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i − 1, X, Y ] and there is a proper deficiency map ψ′

over R = (S(G − D′, f) ∪ T ′g ∪ Y ) \ (T ′r ∪ XD′,f ) with the property that Eψ′ = A′.

Due to Lemma 15.3, D′ ∪ A′ ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i − 1, X, Y ). We need to show

that the statement holds for i.

Case 1 : X, Y = ∅.

Since i− 1 < k, we have that D′ 6= D or A′ 6= A.

Subcase (i): D′ 6= D. Let e = (x, y) ∈ D \ D′. Let D′′ = D′ ∪ {e}, X ′ = {z ∈
{x, y} | z /∈ Tm \ T ′m} and Y ′ = ∅. Let T ′′m = T ′m ∪ ({x, y} ∩ (Tm \ T ′m)). We have

several cases based on vertices belong to X ′.

Suppose X ′ = {x, y} and x, y ∈ Green. By the definition of X ′, since x, y ∈ X ′, we

have that x, y /∈ Tm \ T ′m. This implies that T ′′m = T ′m, Tm(x) = T ′m(x) and Tm(y) =

T ′m(y). Thus by Equation 15.7, D′′ ∪ A′ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i− 1, ∅, ∅]�{(x, y)} ⊆

D[T ′m, T
′
g, T

′
r, k
′
1 + 1, k′2, i, X

′, ∅].

Suppose X ′ = {x, y}, x ∈ Green and y ∈ Red. By the definition of X ′, since

x ∈ X ′, we have that x /∈ Tm \ T ′m. This implies that T ′′m = T ′m and Tm(x) =

T ′m(x) . Thus by Equation 15.7, D′′ ∪A′ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i− 1, ∅, ∅]�{(x, y)} ⊆

D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2 + 1, i, X ′, ∅].

Suppose X ′ = {x} and x ∈ Green. Then by the definition of X ′, since x ∈ X ′ and

y /∈ X ′, we have that x /∈ Tm \T ′m and y ∈ Tm \T ′m. This implies that T ′′m = T ′m∪{y}
and Tm(x) = T ′m(x). Thus by Equation 15.7, D′′∪A′ ∈ D[T ′′m \ {y}, T ′g, T ′r, k′1, k′2, i−
1, {x} \ {x}, ∅]�{(x, y)} ⊆ D[T ′′m, T

′
g, T

′
r, k
′
1 + 1, k′2, i, X

′, ∅].

Suppose X ′ = {x} and x ∈ Red. By the definition of X ′, since y /∈ X ′, we have that

y ∈ Tm \ T ′m. This implies that T ′′m = T ′m ∪ {y}. Thus by Equation 15.7, D′′ ∪ A′ ∈
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D[T ′′m\{y}, T ′g, T ′r, k′1, k′2, i−1, {x}\{x}, ∅]�{(x, y)} ⊆ D[T ′′m, T
′
g, T

′
r, k
′
1, k
′
2+1, i, X ′, ∅].

Suppose X ′ = ∅. Then by the definition of X ′, since x, y /∈ X ′, we have that

x, y ∈ Tm \ T ′m and T ′′m = T ′m ∪ {x, y}. Thus by Equation 15.6, D′′ ∪ A′ ∈ D[T ′′m \
{x, y}, T ′g, T ′r, k′1, k′2, i− 1, ∅, ∅]�{(x, y)} ⊆ D[T ′′m, T

′
g, T

′
r, k
′
1 + 1, k′2, i, ∅, ∅].

In all the above cases, we can show that ψ′ is a proper deficiency map over (S(G−
D′′, f) ∪ T ′g) \ (T ′r ∪X ′D′′,f ) and its proof is same as the corresponding proof in the

Lemma 15.2. By argument similar to the one in the proof of Lemma 15.2, we can

show that (T ′′m, T
′
g, T

′
r, k
′
1 + 1, k′2, i, ∅, ∅) is a valid tuple.

Subcase (ii): D′ = D. In this subcase we have that A′ 6= A. Let (x, y) ∈ A \ A′.
Let A′′ = A′ ∪ {(x, y)}. Note that Eψ = A and Eψ′ = A′. Since D′ = D, for all

v ∈ Green the number of edges in D′ which are incident to v is equal to Φ(v). Also,

note that Tm(v) + Tg(v) = Φ(v). This implies that T ′m = Tm and T ′g = Tg. Since

ψ is a proper deficiency map over S(G −D, f) = S(G −D, f) ∪ Tg, ψ′ is a proper

deficiency map over (S(G−D′, f) ∪ T ′g) \ T ′r and (x, y) ∈ Eψ \Eψ′ , there exists j, j′

such that x(j), y(j′) ∈ T ′r. Thus by Equation 15.6, D′∪A′′ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i−

1, ∅, ∅] � {(x, y)} ⊆ D(T ′m, T
′
g, T

′
r \ {x(j), y(j′)}, k′1, k′2, i, ∅, ∅].

We can show that there is a proper deficiency map ψ′′ over (S(G−D′, f)∪T ′g)\(T ′r \
{x(j), y(j′)}) such that A′′ = Eψ′′ and its proof is same as the corresponding proof

in the Lemma 15.2. Since D′ ∪ A′ ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i − 1, X, Y ), by argument

similar to the one in the proof of Lemma 15.2, we can show that (T ′m, T
′
g, T

′
r \

{x(j), y(j′)}, k′1, k′2, i, ∅, ∅) is a valid tuple.

Case 2 : X 6= ∅, Y = ∅.

Let x ∈ X and let j be the smallest integer such that x(j) ∈ XD′,f . Since XD′,f ⊆
S(G−D′, f) \Tr, we have that x(j) ∈ S(G−D′, f) ⊆ S(G−D, f). Also since ψ′ is

a proper deficiency map over (S(G−D′, f)∪T ′g) \ (T ′r ∪XD′,f ) and Eψ′ ⊆ Eψ, there
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exists y ∈ V (G) such that (x, y) /∈ Eψ′ and (x, y) ∈ Eψ. Let A′′ = A′ ∪ {(x, y)}.

Subcase (i): y ∈ X. Let j′ = f(y)− dG−D′(y). Note that {x(j), y(j′)} = XD′,f ⊆
S(G−D′, f) \ Tr. Let T ′′g = T ′g ∪ ({x(j), y(j′)} ∩ Tg).

Claim 15.8. If x ∈ Green, then x(j) /∈ T ′g and x(j − 1) ∈ T ′g. If y ∈ Green, then

y(j′) /∈ T ′g and y(j − 1) ∈ T ′g

The Claim 15.8 is identical to the Claim 15.3. Thus by Equation 15.6, D′ ∪ A′′ ∈
D[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i− 1, X, ∅] � {(x, y)} ⊆ D[T ′m, T

′′
g , T

′
r, k
′
1, k
′
2, i, ∅, ∅]. We can show

that there is a proper deficiency map ψ′′ over (S(G − D′, f) ∪ T ′′g ) \ T ′r such that

A′′ = Eψ′′ and its proof is same as the corresponding proof in the Lemma 15.2. Since

D′ ∪ A′ ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i − 1, X, Y ), by argument similar to the one in the

proof of Lemma 15.2, we can show that (T ′m, T
′′
g , T

′
r, k
′
1, k
′
2, i, ∅, ∅) is a valid tuple.

Subcase (ii): y(j′) ∈ T ′r for some j′. Let T ′′g = T ′g ∪ ({x(j)} ∩ Tg).

Claim 15.9. If x ∈ Green, then x(j) /∈ T ′g and x(j − 1) ∈ T ′g

Claim 15.9 is identical to Claim 15.5. Thus, by Equation 15.6 (if X = {x}) and by

Equation 15.7 (if X 6= {x}),

D′∪A′′ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i−1, X, ∅]�(x, y) ⊆ D[T ′m, T

′′
g , T

′
r\y(j′), k′1, k

′
2, i, X\{x}, ∅].

We can show that there is a proper deficiency map ψ′′ over (S(G−D′, f)∪T ′′g )\((T ′r\
{y(j)}) ∪X ′D′,f ), where X ′ = X \ {x}, such that A′′ = Eψ′′ and its proof is same as

the corresponding proof in the Lemma 15.2. Since D′ ∪A′ ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i−

1, X, Y ), by argument similar to the one in the proof of Lemma 15.2, we can show

that (T ′m, T
′′
g , T

′
r \ y(j′), k′1, k

′
2, i, X \ {x}, ∅) is a valid tuple.

Subcase (iii): y /∈ X and y(j′) /∈ T ′r for all j′. Let T ′′g = T ′g ∪ ({x(j)} ∩ Tg).
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Claim 15.10. If x ∈ Green, then x(j) /∈ T ′g and x(j − 1) ∈ T ′g

Proof of the above claim is same as the proof of Claim 15.5 as both are identical.

Thus, by Equation 15.8,

D′∪A′′ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i−1, X, ∅]�(x, y) ⊆ D[T ′m, T

′′
g , T

′
r, k
′
1, k
′
2, i, X\{x}, {y}].

We can show that there is a proper deficiency map ψ′′ over (S(G − D′, f) ∪ T ′′g ∪
Y ′) \ (T ′r ∪ X ′D′,f ), where X ′ = X \ {x} and Y ′ = {y}, such that A′′ = Eψ′′ and

its proof is same as the corresponding proof in the Lemma 15.2. Since D′ ∪ A′ ∈
Q(T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i − 1, X, Y ), by argument similar to the one in the proof of

Lemma 15.2, we can show that (T ′m, T
′′
g , T

′
r, k
′
1, k
′
2, i, X \ {x}, {y}) is a valid tuple.

Case 3 : Y 6= ∅.

Let Y = {y}. Since (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i − 1, X, Y ) is a valid tuple and |Y | = 1, we

have that |X| ≤ 1. There exists x such that (y, x) ∈ D \ D′ and the proof of this

statement can be found in the proof of Lemma 15.2. Let D′′ = D′ ∪ {(y, x)} and

X ′ = X ∪ {z|z = x, z /∈ Tm \ T ′m}. Note that |X ′| ≤ 2, because |X| ≤ 1. Let

T ′′m = T ′m ∪ ({x} ∩ (Tm \ T ′m)).

Subcase (i): y ∈ Green. Then there exists j ∈ N+ such that y(j) ∈ Tg \T ′g and its

proof can be found in Lemma 15.2. Without loss of generality let j be the smallest

integer such that y(j) ∈ Tg \ T ′g. Let T ′′g = T ′g ∪ {y(j)}.

Subsubcase (ia): (y, x) ∈ E(G[Green]). If X = X ′ = ∅, then by the definition of

X ′, T ′′m = T ′m ∪ {x}. Then by Equation 15.6,

D′′ ∪ A′ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i− 1, ∅, Y ]�(y, x) ⊆ D[T ′′m, T

′′
g , T

′
r, k
′
1 + 1, k′2, i, X

′, ∅].
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If X = X ′ 6= ∅, then by the definition of X ′, T ′′m = T ′m∪{x}. Then by Equation 15.7,

D′′ ∪ A′ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i− 1, X, Y ]�(y, x) ⊆ D[T ′′m, T

′′
g , T

′
r, k
′
1 + 1, k′2, i, X

′, ∅].

If X 6= X ′, then by by the definition of X ′, T ′′m = T ′m. Then by Equation 15.7,

D′′ ∪ A′ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i− 1, X, Y ]�(y, x) ⊆ D[T ′m, T

′′
g , T

′
r, k
′
1 + 1, k′2, i, X

′, ∅].

We can show that there is a proper deficiency map ψ′′ over (S(G−D′, f)∪T ′′g )\(T ′r∪
X ′D′,f ), such that A′′ = Eψ′′ and its proof is same as the corresponding proof in the

Lemma 15.2. Since D′∪A′ ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i−1, X, Y ), by argument similar to

the one in the proof of Lemma 15.2, we can show that (T ′′m, T
′′
g , T

′
r, k
′
1 + 1, k′2, i, X

′, ∅)
is a valid tuple.

Subsubcase (ib): (y, x) /∈ E(G[Green]). In this subcase X ′ = X ∪ {x}. Then by

Equation 15.7, D′′∪A′ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i−1, X, Y ]�(y, x) ⊆ D[T ′m, T

′′
g , T

′
r, k11, k′2+

1, i, X ′, ∅].

We can show that there is a proper deficiency map ψ′′ over (S(G−D′, f)∪T ′′g )\(T ′r∪
X ′D′,f ), such that A′′ = Eψ′′ and its proof is same as the corresponding proof in the

Lemma 15.2. Since D′∪A′ ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i−1, X, Y ), by argument similar to

the one in the proof of Lemma 15.2, we can show that (T ′′m, T
′′
g , T

′
r, k
′
1, k
′
2 + 1, i, X ′, ∅)

is a valid tuple.

Subcase (ii): y ∈ Red. If X = X ′ = ∅, then by the definition of X ′, T ′′m =

T ′m∪{x}. Then by Equation 15.6, D′′∪A′ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i−1, ∅, Y ]�(y, x) ⊆

D[T ′′m, T
′
g, T

′
r, k
′
1, k
′
2 + 1, i, ∅, ∅]. If X = X ′ 6= ∅, then by the definition of X ′, T ′′m =

T ′m∪{x}. Then by Equation 15.7, D′′∪A′ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i−1, X, Y ]�(y, x) ⊆

D[T ′′m, T
′
g, T

′
r, k
′
1, k
′
2 + 1, i, X ′, ∅].

If X 6= X ′, then by the definition of X ′, T ′′m = T ′m. Then by Equation 15.7,

D′′ ∪ A′ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i− 1, X, Y ]�(y, x) ⊆ D[T ′m, T

′
g, T

′
r, k
′
1, k
′
2 + 1, i, X ′, ∅].

We can show that there is a proper deficiency map ψ′′ over (S(G−D′, f)∪T ′g)\(T ′r∪
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X ′D′,f ), such that A′′ = Eψ′′ and its proof is same as the corresponding proof in the

Lemma 15.2. Since D′∪A′ ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i−1, X, Y ), by argument similar to

the one in the proof of Lemma 15.2, we can show that (T ′′m, T
′
g, T

′
r, k
′
1, k
′
2 + 1, i, X ′, ∅)

is a valid tuple.

Now we need to show that D∪A ∈ D[Tm, Tg, ∅, k1, k2, k, ∅, ∅]. We proved that there is

a valid tuple (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, k,X, Y ) such thatD∪A ∈ D[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, k,X, Y ].

Due to Lemma 15.3, D ∪ A ∈ Q(T ′m, T
′
g, T

′
r, k
′
1, k
′
2, k,X, Y ). This implies that there

is a proper deficiency map ψ′ over (S(G −D, f) ∪ T ′g ∪ Y ) \ (T ′r ∪XD,f ) such that

Eψ′ = A. Since D∪A is a solution to ECG, there is a proper deficiency map ψ over

S(G−D, f) such that Eψ = A. This implies that

S(G−D, f) = (S(G−D, f) ∪ T ′g ∪ Y ) \ (T ′r ∪XD,f ) (15.9)

Equation 15.9 implies that Y = ∅. Since T ′r ⊆ S(G − D, f) and XD,f ⊆ S(G −
D, f) \ Tr, by Equation 15.9, we get that T ′r = ∅ and X = ∅. Since D ∪ A ∈
Q(T ′m, T

′
g, T

′
r, k
′
1, k
′
2, k,X, Y ), we have that for any v ∈ Green, |EG(v)∩D| = T ′m(v)+

T ′g(v). By assumption we know that |EG(v) ∩ D| = Φ(v) = Tm(v) + Tg(v). This

implies that T ′m = Tm and T ′g = Tg. We also know, by assumption that, D ∩
E(G[Green]) = k1 and D \E(G[Green]) = k2. This implies that k′1 = k1 and k′2 = k2.

Hence D ∪ A ∈ D[Tm, Tg, ∅, k1, k2, k, ∅, ∅]. This completes the proof.

15.2.3 Pruning the DP table – FPT algorithm

Now we explain how to prune the family of partial solutions stored at each DP table
entry such that its size is at most 2O(k) and there by get an FPT algorithm. The
objective is to find a nice deletion set D ⊆ E(G). In fact if the input instance is
an Yes instance we will find a set D ⊆ E(G), A ⊆ E(G) such that D is a nice
deletion set with the property that A = Eψ, where ψ is a proper deficiency map
over S(G−D, f).

Recall that for the algorithm we have guessed k′ – the size of proposed deletion
set D, k1 – the number edges in D ∩ E(G[Green]), k2 – the number of edges in
D \ E(G[Green]) and for all v ∈ Green, Φ(v) (≥ dG(v) − f(v))– the number of
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edges in D which are incident to v. Consider the property (i) of Lemma 15.1, i.e
dG−D(v) ≤ f(v) for all v. By guessing Φ(v) ≥ dG(v) − f(v) for all v ∈ Green, we
know that any solution we compute will satisfy property (i).

Consider property (ii) mentioned in Lemma 15.1, i.e |S(G−D, f)| = 2(k−k′). Since
the total number of edges in D which has one end point in Green and other in Red is
(
∑

v∈Green Φ(v))− 2k1, we have that
∑

v∈Red |D ∩EG(v)| = 2k2 − ((
∑

v∈Green Φ(v))−
2k1).

|S(G−D, f)| =

( ∑
v∈Green

Φ(v)− (dG(v)− f(v))

)
+
∑
v∈Red

(f(v)− dG−D(v))

=

( ∑
v∈Green

Φ(v)− (dG(v)− f(v))

)
+∑

v∈Red

(f(v)− dG(v)) +
∑
v∈Red

|D ∩ EG(v)|

=

( ∑
v∈Green

Φ(v)− (dG(v)− f(v))

)
+
∑
v∈Red

(f(v)− dG(v))

+

(
2k2 + 2k1 −

∑
v∈Green

Φ(v)

)
= 2k1 + 2k2 +

∑
v∈V

(f(v)− dG(v))

So after guessing k′, k1, k2 and Φ(v) for all v ∈ Green, we check whether 2k1 + 2k2 +∑
v∈V (f(v)− dG(v)) = 2(k− k′) and if they are not equal we consider it as a invalid

guess. Thus our guesses takes care of property (ii).

The property (iii) of nice deletion set and Lemma 15.5 below imply that D is
an independent set in the matroid M∗

G(`). That is, `-elongation of the co-graphic
matroid, M∗

G, associated with G, where ` = |E(G)| − |V (G)|+ k − |D|+ 1.

Lemma 15.5. Let G be a graph and D ⊆ E(G). Then D is an independent set in

the `-elongation of M∗
G where ` = |E(G)|− |V (G)|+k−|D|+ 1 if and only if G−D

has at most k − |D|+ 1 connected components.

Proof. Let r be the number of connected components in G. Suppose D is an inde-

pendent set in M∗
G(`). Then there exists S ⊆ E(G) \D such that S ∪D is a basis of

M∗
G(`). This implies that there exists S ′ ⊆ S ∪D such that S ′ is a basis of M∗

G, and

hence G− S ′ is a forest with r connected components and |S ′| = E(G)− V (G) + r.

Since |S∪D|−|S ′| = (k−|D|+1)−r and G−S ′ is a forest with exactly r connected
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components, we have that G−(S∪D) has exactly k−|D|+1 connected components.

This implies that G−D has at most k − |D|+ 1 connected components.

Suppose G−D has at most k− |D|+ 1 connected components. Let S ⊆ E(G) be a

maximal subset such that G− (S ∪D) is a forest with exactly k−|D|+ 1 connected

components. This implies that |S ∪ D| = E(G) − V (G) + k − |D| + 1. Since G

has r connected components, there exists S ′ ⊆ (S ∪ D) of size (k − |D| + 1) − r

such that G− ((S ∪D) \S ′) is a forest with exactly r connected components. Since

|(S ∪D) \ S ′| = E(G)− V (G) + r and G− ((S ∪D) \ S ′) is a forest with exactly r

connected components, (S ∪D) \ S ′ is a basis in M∗
G. This implies that S ∪D is a

basis in M∗
G(`) and hence D is an independent set in M∗

G(`).

Thus by only considering those D which are independent sets in M∗
G(`) we ensure

that property (iii) of the nice deletion set is satisfied.

Now consider the property (v) of the nice deletion set, i.e, there exists a proper
deficiency map ψ : S(G − D, f) → S(G − D, f). Our objective is get a set D ∪ A
such that there is a proper deficiency map ψ over S(G −D, f) such that Eψ = A,
along with other properties as well. We have already defined equivalence classes for
the partial solutions in the previous section, which is the framework in which we will
design our FPT algorithm as well. Let D1∪A1, D2∪A2 ∈ Q(T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y )

be two partial solutions where D1, D2 ⊆ E(G) and A1, A2 ⊆ E(G). Suppose D′ ⊆
E(G), A′ ⊆ E(G), (D1 ∪ D′)

⋃
(A1 ∪ A′) is a solution and A2 ∩ A′ = ∅. Since

D1∪A1, D2∪A2 belongs to same equivalence class and A2∩A′ is disjoint, there is a
proper deficiency map ψ′ over S(G− (D2∪D′), f) such that Eψ′ = A2∪A′. To take
care of the disjointness property between the current addition set and the future
addition set while doing the DP, we view the the addition set A of the solution as
an independent set in a uniform matroid over the universe E(G). Let Um′,k−k′ be

a uniform matroid with ground set E(G), where m′ = |E(G)|. From the definition
of Um′,k−k′ , any set A of size at most k − k′ is independent in Um′,k−k′ . We have
already explained that we view the deletion set D as an independent set in M∗

G(`)
where ` = |E(G)| − |V (G)|+ k − k′ + 1. Thus, to see the solution set D ∪ A as an
independent set in a single matroid, we consider direct sum of M∗

G(`) and Um′,k−k′ .
That is, let M = M∗

G(`)⊕ Um′,k−k′ . In M , a set I is an independent set if and only

if I ∩ E(G) is an independent set in M∗
G(`) and I ∩ E(G) is an independent set in

Um′,k−k′ . This ensures that any solution D ∪ A is an independent set in M . By
viewing any solution of the problem as an independent set in a matroid M (which is
linear), we can use the representative families to prune the table. However, we still
need to ensure that property (iv) of nice deletion set is satisfied. In what follows we
explain how we achieve this.

Consider the property (iv) mentioned in the definition of the nice deletion set. That
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is, for any connected component F in G − D, V (F ) ∩ def(G − D, f) 6= ∅. The
following lemma helps us to satisfy property (iv) partially.

Lemma 15.6. Let F be a connected component in the graph G[Red] and D′ ⊆
E(G). If at least one edge in D′ is incident to a vertex in V (F ), then for any

connected component C in G − D′ such that V (C) ∩ V (F ) 6= ∅ there is a vertex

v ∈ V (C) ∩ def(G−D′, f).

Proof. Let u ∈ V (F ) be a vertex such that an edge in D′ is incident to u. Consider

a connected component C in G−D′ such that V (C)∩ V (F ) 6= ∅. We need to show

that V (C) ∩ def(G−D′, f) 6= ∅. Suppose u ∈ V (C). Since u ∈ Red, dG(u) ≤ f(v).

However, u is incident to an edge in D′, and thus we have that dG−D′(u) < f(u).

This implies that u ∈ V (C)∩def(G−D′, f). Now we are in a case where u /∈ V (C).

Pick an arbitrary vertex w ∈ V (C) ∩ V (F ). Since w, u ∈ V (F ), there exists a path

P from w to u using only vertices from Red. Since w and u are in different connected

components in G − D′, D′ ∩ E(P ) 6= ∅. Pick the first edge (v, v′) in the path P

which are also in D′. Note that there exists a path from w to v in G − D′ and

v ∈ V (C). Since v ∈ Red and (v, v′) ∈ D′, we have that v ∈ V (C) ∩ def(G−D′, f).

This completes the proof.

Now we explain how Lemma 15.6 is useful in satisfying property (iv) partially. Let
C be the set of connected components in G such that for each vertex v in the
component, dG(v) = f(v).

C = {C | C is a connected component in G ∧ ∀v ∈ V (C), dG(v) = f(v)}.

Let D1 and D2 be deletion sets corresponding to two partial solutions such that
for all C ∈ C, D1 ∩ E(C) 6= ∅ if and only if D2 ∩ E(C) 6= ∅. Suppose there is
a D′ ⊆ E(G) such that D1 ∪ D′ is a nice deletion set. Now we claim that any
connected component F in G − (D2 ∪ D′) containing only red vertices will have a
deficient vertex. Let v ∈ V (F ) and v /∈ V (C). We also know that v ∈ Red. Since
v /∈ V (C)(= ⋃C∈C V (C)) one of the following conditions hold.

1. There is a path from v to a vertex in Green in the graph G.

Since v ∈ V (F ) and F is a fully red connected component in G − (D2 ∪D′),
there is a vertex w in V (F ) such that D2 ∪D′ contains an edge incident on w.
Since w ∈ Red as well, w ∈ def(G− (D2 ∪D′), f).
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2. Else, v is in a connected component C1 of G such that V (C1) ⊆ Red and there
is a vertex u ∈ V (C1) such that f(u) > dG(v).

If F = C1, then u is the required deficient vertex. If F 6= C1, then by
Lemma 15.6, V (F ) ∩ def(G− (D2 ∪D′), f) 6= ∅.

Let v ∈ V (F ) and v ∈ V (C) where C ∈ C. Since D1 ∪ D′ is a solution either
D1 ∩ E(C) 6= ∅ or D′ ∩ E(C) 6= ∅. If D1 ∩ E(C) 6= ∅, then by our assumption,
D2 ∩ E(C) 6= ∅. Thus by Lemma 15.6, V (F ) ∩ def(G− (D2 ∪D′), f) 6= ∅.
Essentially due to Lemma 15.6, if we partition our partial solutions based on how
these partial solutions hit the edges from C and keep at least one from each equiva-
lence class property (iv) of nice deletion set will be satisfied partially. But this only
allows us to take care of connected components containing only red vertices. Now we
explain how we can ensure property (iv) for the connected components containing
vertices from Green as well.

To achieve this we will prove that for corresponding to every deletion set D of
a solution, there is a “witness” of O(k) sized subset of edges whose disjointness
from D will ensure property (iv) of nice deletion sets. That is, these witnesses are
depended on solutions; the witness for solution D will be different from the witness
for solution D∗. Even then, these witnesses allow us to satisfy property (iv). In
order to avoid this witness being picked in a deletion set D, that is to keep this
witness non deletable, we use color coding in our algorithm on top of representative
family based pruning of table entries. Towards that we define a weight function w
on E(G) as follows.

w((u, v)) =

{
0 if u, v ∈ Red
1 otherwise

For any subset S ⊆ E(G), w(S) =
∑

e∈S w(e). The next lemma is crucial for our
approach as this not only defines the witness but also gives an upper bound on its
size.

Lemma 15.7. Let Green = {v1, v2, . . . , vη}, η ≤ 2k. Let D ⊆ E(G) such that for

any connected component F in G−D, V (F )∩ def(G−D, f) 6= ∅. Then there exist

paths P1, . . . , Pη such that for all i, Pi is a path in G − D from vi to a vertex in

def(G−D, f), and w(
⋃
iE(Pi)) ≤ 6k where

⋃
iE(Pi) is the set of edges in the paths

P1, . . . Pη.

Proof. We construct P1, . . . , Pη with the required property. Pick an arbitrary vertex

u1 ∈ def(G − D, f) such that v1 and u1 are in the same connected component in

G − D. Let P1 be a smallest weight path according to weight function w, from v1

to u1 in G − D. Now we explain how to construct Pi, given that we have already
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constructed paths P1, . . . , Pi−1. Pick an arbitrary vertex ui ∈ def(G−D, f) such that

vi and ui are in the same connected component in G−D. Let P be a smallest weight

path from vi to ui in G −D. If P is vertex disjoint from P1, . . . , Pi−1, then we set

Pi = P . Otherwise, let x be the first vertex in P such that x ∈ V (P1)∪ . . .∪V (Pi−1).

Let x ∈ Pj where j < i. Let P = P ′P ′′ such that P ′ ends in x and P ′′ starts at x.

Let Pj = P ′jP
′′
j such that P ′j ends in x and P ′′j starts at x. Now we set Pi = P ′P ′′j .

Note that Pi is a path in G−D from vi to a vertex in def(G−D, f).

Now we claim that w(
⋃η
i=1E(Pi)) ≤ 6k. Towards the proof we need to count that

|(⋃η
i=1 E(Pi))∩w−1(1)| ≤ 6k. We assign each vertex v in

⋃η
i=1 V (Pi) to the smallest

indexed path Pj such that v ∈ V (Pj). That is, v is assigned to Pj, if v ∈ V (Pj) and

v /∈ (
⋃j−1
i=1 V (Pi). Note that each vertex in

⋃η
i=1 V (Pi) is assigned to a unique path.

Consider the edge set A∗ ⊆ (
⋃η
i=1E(Pi)) ∩ w−1(1) as follows. An edge e = (u, v)

belongs to A∗ if w(e) = 1, e ∈ E(Pj), and vertices u and v are assigned to path

Pj for some j. Observe that each edge e ∈ A∗ has at least one end point in Green.

Since each vertex is assigned to exactly one path, each vertex in a path has degree

at most 2 and |Green| ≤ 2k, we have that |A∗| ≤ 4k.

Now we show that there exists sets ∅ = B1 ⊆ B2 ⊆ . . . Bη such that (
⋃j
i=1 E(Pi)) ∩

w−1(1) ⊆ A∗ ∪ Bj and |Bj| ≤ j. We prove the statement using induction on j. For

j = 1, we know that (
⋃j
i=1E(Pi)) ∩w−1(1) ⊆ A∗. Thus the statement is true. Now

suppose the statement is true for j−1. Consider any path Pj. If the vertices in Pj are

disjoint from
⋃j−1
i V (Pi), then all the weight one edges in E(Pj) are counted in A∗.

So we can set Bj = Bj−1 and the statement is true. Otherwise by the construction of

Pj, we have that Pj = P ′jP
′′
j and there exists r < j such that Pr = P ′rP

′′
j . Let (u1, u2)

be the last edge in P ′j . Note that all the weight one edges in E(P ′′j ) are counted in

A∗ ∪ Bj−1 and all the weight one edges in E(P ′j) \ {(u1, u2)} are counted in A∗. In

this case we set Bj = Bj−1 if w((u1, u2) = 0) and Bj = Bj−1 ∪ {(u1, u2)} otherwise.

This implies that |(⋃η
i=1 E(Pi)) ∩ w−1(1)| ≤ 6k. This concludes the proof.

Recall that Er = E(G[Red]) and Eg = E(G) \ Er. Note that in Lemma 15.7, the
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weight of each edge in Eg is 1 and the weight of each edge in Er is 0. By Lemma 15.7,
we have that if D is a nice deletion set, then there exists E ′ ⊆ Eg of cardinality at
most 6k such that E ′ witnesses that each connected component of G−D containing
at least one vertex from Green, will also contain a vertex from def(G − D, f). We
call such an edge set E ′ as certificate of D. Now we explain how Lemma 15.7
helps us to satisfy property (iv) of nice deletion sets for components containing at
least one vertex from Green. Let Green = {v1, . . . , vη} and D1 ∪D′ be a deletion set
corresponding to a solution. By Lemma 15.7 we know that there are paths P1, . . . , Pη
such that the total number edges from Eg among these paths is bounded by 6k, and
each path Pi is from vi to a vertex in def(G − (D1 ∪D′), f). Suppose we color the
edges in Eg with black and orange such that the coloring guarantees that all the edges
in Eg∩ (

⋃η
i=1 E(Pi)) are colored black and all the edges in Eg∩ (D1∪D′) are colored

orange. Assume that we are going to find a nice deletion set which does not contains
black color edges. Let D2 be a deletion set corresponding to a partial solution. Also
for a vertex vi ∈ Green, there is path from vi to a vertex in def(G − D1, f) in the
graph G −D1 which does not contain any orange colored edge if and only if there
is path from vi to a vertex in def(G − D2, f) in the graph G − D2 which does not
contain any orange colored edge. Like in the case of red components, we can show
that any connected component in G− (D2∪D′) containing a vertex from Green will
contain a vertex from def(G − (D2 ∪ D′), f). The formal proof of this statement
will be given in Lemma 15.8. Essentially by Lemma 15.7 we get the following.
Suppose we take all partial solutions corresponding to a DP table entry (or a subset
of it) and now we partition these partial solutions based on which all green vertices
have found their deficient vertex currently (there are 2|Green| such partitions), then
it is enough to keep a partial solution from each class. Furthermore, suppose A
corresponds to partial solutions with respect to one particular subset of Green and
we have kept a set D1 in A and deleted rest of the partial solutions from A, say
one of the partial solution we threw out was D2). Then, if there is D′ such that
D2∪D′ is a solution, then all the connected components in G−(D1∪D′) containing
at least one green vertex will have a deficient vertex. Just a word of caution that
in our actual algorithm in fact we keep a subset of A of size 2O(k)nO(1) so that we
can also take care of all other properties of a nice deletion set. Even though we
explained that the property (iv) can be achieved by imposing more structure to the
equivalence class we defined in the last section, we will not include these structures
to the index of the DP table entries. Rather for each table entry, indexed by an
equivalence class, we keep at least one partial solutions for each refinement of this
equivalence class based on which green vertices have found their partner deficient
vertex. This will ensure that property (iv) is satisfied.

We have explained how we will ensure each of the individual properties of a nice
deletion set. Now we design a randomized FPT algorithm for the problem. Later we
derandomize the algorithm. The algorithm is a DP algorithm in which we have DP
table entries indexed exactly in the same way as in the case of the XP algorithm.
But instead of keeping D[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ], we store a small representative

family of D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] which is enough to maintain the correctness

of the algorithm. The algorithm uses both color coding and representative family
techniques. We have explained that we use color coding to separate the proposed
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deletion set from its certificate mentioned in Lemma 15.7. We color each edge
e ∈ Eg black with probability 6/7 and orange with probability 1/7. Let Eb be the
set of edges colored black and Eo be the set of edges colored orange. Let D be a
deletion set of size k′ for the problem and paths P1, . . . , Pη be its witness mentioned
in Lemma 15.7. Then the number of edges in paths P1, . . . , Pη, which are from Eg
is bounded by 6k. We say that a random coloring is good if each edge in D ∩ Eg
is colored orange and each edge in Eg ∩ (

⋃η
i=1 Pi) is colored black. The random

coloring of edges in Eg is good, with probability
(

66

77

)k
. Now our algorithm works

with the edge colored graph and output a nice deletion set D, with the property
that D ∩ Eg ⊆ Eo, if there exists such a deletion set. We know that if the input

instance is an Yes instance then with probability at least
(

66

77

)k
our algorithm will

output a solution. Thus we can increase the success probability to at least (1− 1/e)

by running the entire algorithm
(

77

66

)k
times. So now onwards we assume that the

edges in Eg of the input graph is colored with black or orange, and our objective
is to find out a nice deletion set D such that all edges in D ∩ Eg is colored orange.
Note that the edges in Er is uncolored.

Recall that C is the set of connected components in G such that for each vertex v
in the component, dG(v) = f(v). Now we define a family J of functions as,

J = {g : Green ∪ C → {0, 1}}.

Now we explain how to reduce the size of D[T ′g, T
′
r, k
′
1, k
′
2, i, X, Y ] which is computed

using the recurrence relations (equations 15.6,15.7 and 15.8). We say a partial
solution B ∈ D[T ′g, T

′
r, k
′
1, k
′
2, i, X, Y ] is properly colored, if B ∩ Eb = ∅. Since our

objective is to find out a nice deletion set disjoint from Eb, we delete all partial
solutions which contains an edge from Eb. That is if B ∈ D[T ′g, T

′
r, k
′
1, k
′
2, i, X, Y ]

and B ∩Eb 6= ∅, then we delete B from D[T ′g, T
′
r, k
′
1, k
′
2, i, X, Y ]. So now onwards we

assume that for each B ∈ D[T ′g, T
′
r, k
′
1, k
′
2, i, X, Y ], B ∩ Eb = ∅. Further pruning of

the DP table entry D[T ′g, T
′
r, k
′
1, k
′
2, i, X, Y ] is discussed below.

Definition 15.4. The subsetR[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] ⊆ D[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ]

is called a representative partial solutions for D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ], denoted by

R[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] vk−irep D[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ],

if the following happens. If there exists B,Z ∈
(
V (G)

2

)
such that B ∩ Z = ∅, B ∈

D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ], B ∩Eb = ∅ and (B ∪Z)∩E(G) satisfies five properties

of a nice deletion set with the property that there exists a proper deficiency map ψ
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with Eψ = (B ∪ Z) ∩ E(G), then there exists B̂ ⊆
(
V (G)

2

)
such that B̂ ∩ Z = ∅,

B̂ ∩ Eb = ∅, B̂ ∈ R[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] and (B̂ ∪ Z) ∩ E(G) satisfies five

properties mentioned of a nice deletion set with the property that there exists a

proper deficiency map ψ′ with Eψ′ = (B̂ ∪ Z) ∩ E(G)

For each valid tuple (T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ) we compute a representative par-

tial solutions for D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] in the increasing order of i and store

it instead of D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ]. Now we explain how to compute it and

prove its correctness. First we compute a subfamily S[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] of

D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] using the recurrence relation (equations 15.6,15.7 and

15.8) on the DP table entries computed for value i−1 and then delete all partial solu-
tions which contain edges from Eb. Now we partition S[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] ac-

cording to the refinement of each function in J . That is S[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] =⋃

g∈J Ag whereAg is defined as follows. For each g ∈ J S∪R ∈ Ag, where S ∈ E(G)

and R ∈ E(G), if the following happens.

(i) For any v ∈ Green, g(v) = 1 if and only if there exists a path from v to a
vertex in def(G−S, f) in G[Eb∪ (Er \S)] (checking whether there is a witness
path that do not use edges in Eo).

(ii) For any C ∈ C, g(C) = 1 if and only if S ∩ E(C) 6= ∅.

Recall that any set S ∪R ∈ S[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] is an independent set of size

i in M . Now we compute Âg ⊆k−irep Ag using Theorem 13.3. Then we set

̂D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] =

⋃
g∈J

Âg

and store it instead of D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ]. The next lemma prove the cor-

rectness of this step.

Lemma 15.8. ̂D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] vk−irep D[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ].

Proof. We prove the lemma by induction on i. Suppose there exists B,Z ⊆
(
V (G)

2

)
such that B ∈ D[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ], B ∩ Z = ∅, B ∩ Eb = ∅, (B ∪ Z) ∩ E(G)

satisfies the five properties of a nice deletion set and there exists a proper deficiency

map ψ over S(G−((B∪Z)∩E(G)), f) with the property that Eψ = (B∪Z)∩E(G).

By the recurrence relations given by Equations 15.6,15.7 and 15.8), there exists e ∈ B
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and a valid tuple (T ′′m, T
′′
g , T

′′
r , k

′′
1 , k

′′
2 , i− 1, X ′, Y ′) such that

B \ {e} ∈ ̂D[T ′′m, T
′′
g , T

′′
r , k

′′
1 , k

′′
2 , i− 1, X ′, Y ′].

Let B′ = B\{e} and Z ′ = Z∪{e}. We know that (B′∪Z ′)∩E(G) = (B∪Z)∩E(G)

satisfies five properties of a nice deletion set and ψ is a proper deficiency map over

S(G− ((B′ ∪Z ′)∩E(G)), f) with the property that Eψ = (B′ ∪Z ′)∩E(G). Thus,

by induction hypothesis we have that there exists B̂′ ⊆
(
V (G)

2

)
such that

• B̂′ ∈ ̂D[T ′′m, T
′′
g , T

′′
r , k

′′
1 , k

′′
2 , i− 1, X ′, Y ′],

• B̂′ ∩ Z ′ = ∅, B̂′ ∩ Eb = ∅

• (B̂′ ∪ Z ′) ∩ E(G) satisfies five properties of a nice deletion set and

• there exists a proper deficiency map ψ′ over S(G− ((B̂′∪Z ′)∩E(G)), f) with

the property that Eψ′ = (B̂′ ∪ Z ′) ∩ E(G).

Since (B̂′ ∪ Z ′) ∩ E(G) is a nice deletion set, G− ((B̂′ ∪ {e}) ∩ E(G)) has at most

k − k′ + 1 connected components. The definitions of �, � and recurrence relation of

D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ], imply that

• if e ∈ E(G) then B̂′ ∪ {e} ∈ ̂D[T ′′m, T
′′
g , T

′′
r , k

′′
1 , k

′′
2 , i− 1, X ′, Y ′] • e; and

• if e ∈ E(G) then B̂′ ∪ {e} ∈ ̂D[T ′′m, T
′′
g , T

′′
r , k

′′
1 , k

′′
2 , i− 1, X ′, Y ′] ◦ e.

Also by our assumption, if e ∈ E(G), then e ∈ E(G)\Eb. For an ease of presentation,

let us call B = B̂′ ∪ {e}. Furthermore, let D = (B ∪ Z) ∩E(G) and A = (B ∪ Z) ∩
E(G). Now we have that,

• B ∈ S[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ]

• ψ′ is a proper deficiency map over S(G − ((B ∪ Z) ∩ E(G)), f) such that

Eψ′ = (B ∪ Z) ∩ E(G).

Let g : Green ∪ C → {2, 3} be defined as follows:
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1. For any v ∈ Green, g(v) = 1 if and only if there exists a path from v to a

vertex in def(G− (B ∩ E(G)), f) in G[Eb ∪ (Er \B)].

2. For any C ∈ C, g(C) = 1 if and only if B ∩ E(C) 6= ∅.

From the definition of Ag, we have that B ∈ Ag. Since B ∪Z is an independent set

in the matroid M , by the definition of representative families, there exists B̂ ∈ Âg
such that B̂ ∩ Z = ∅ and B̂ ∪ Z is an independent set in M . Note that B̂ ∈

̂D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] and B̂ ∩ Eb = ∅. To conclude the proof of lemma the

only thing that remains to show is that (B̂∪Z)∩E(G) satisfies all the five properties

of a nice deletion set. The next claim does this job.

Claim 15.11. (B̂ ∪ Z) ∩ E(G) satisfies five properties of a nice deletion set and

there exists a proper deficiency map ψ̂ over S(G − ((B̂ ∪ Z) ∩ E(G)), f) such that

Eψ̂ = (B̂ ∪ Z) ∩ E(G).

Proof. Let D̂ = (B̂∪Z)∩E(G), and Â = (B̂∪Z)∩E(G). We know that D satisfies

five properties of a nice deletion set and there exists a proper deficiency map ψ′ over

S(G − D, f) with the property that Eψ′ = A. We need to show that D̂ satisfies

five properties of a nice deletion set and there exists a proper deficiency map ψ̂ over

S(G− D̂, f) with the property that Eψ̂ = Â.

Property (i). We know that B, B̂ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] because

Âg ⊆ Ag ⊆ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ].

Hence, for all v ∈ Green, dG−(B̂∩E(G))(v) = dG−(B∩E(G))(v). This implies that for all

v ∈ Green, dG−D̂(v) = dG−D(v). Since for all v ∈ Green, dG−D(v) ≤ f(v), we have

that for all v ∈ Green, dG−D̂(v) ≤ f(v). For any v ∈ Red, dG−D̂ ≤ f(v). Hence D̂

satisfies property (i) of a nice deletion set.

Property (ii). Since B, B̂ ∈ D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ], we have that |S(G −

D, f)| = |S(G− D̂, f)| and |D| = |D̂| = k′. Thus D̂ satisfies property (ii) of a nice
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deletion set.

Property (iii). We know that B̂ ∪Z is an independent set in the matroid M , and

hence D̂ is an independent set in M∗
G(`), where ` = E(G)−V (G)+k−k′+1. Thus,

by Lemma 15.5, G− D̂ has at most k− k′+ 1 = k− |D̂|+ 1 connected components,

and so D̂ satisfies property (iii) of a nice deletion set.

Property (iv). Now we consider property (iv) of a nice deletion set. We need to

show that for any connected component C in G− D̂, V (C) ∩ def(G− D̂, f) 6= ∅.

Case 1. Suppose V (C) ∩ Green 6= ∅. Let v ∈ V (C) ∩ Green. Suppose g(v) = 1.

Since B̂ ∈ Ag, there exists a path P in G[(Eb ∪ (Er \ B̂)] from v to a vertex u in

def(G− (B̂ ∩E(G)), f). This implies that u ∈ def(G− D̂, f). If E(P ) ⊆ E(G− D̂),

then u ∈ V (C). This implies that V (C) ∩ def(G − D̂) 6= ∅. Suppose E(P ) *

E(G − D̂). This implies that some of the edges in E(P ) are present in D̂. Since

for all e ∈ D̂, e ∈ Eo and for all e′ ∈ Eg ∩ E(P ), einEb, any edge e ∈ E(P ) ∩ D̂
also belongs to Er. Let e1 = (u1, v1) be the first edge in in the path P , such that

e1 ∈ D̂. Note that u1 ∈ V (C) and dG−D̂(u1) < f(u1), because u1 ∈ Red. Hence

V (C) ∩ def(G− D̂) 6= ∅.

Now we consider the case g(v) = 0. We know that there is a path P in G − D

from the vertex v to a vertex u such that u ∈ def(G −D, f) and E(P ) ∩ Eg ⊆ Eb.

This implies that P is a path in G[Eb ∪ (Er \ D)]. Since g(v) = 0 and P is a

path in G[Eb ∪ (Er \ D)], we have that dG−(B∩E(G))(u) ≥ f(u). If u ∈ Green, then

dG−D̂(u) = dG−D(u) < f(u). If u ∈ Red, then there is e = (u,w) ∈ Z ∩ E(G).

This implies that dG−D̂(u) < f(u) because dG(u) ≤ f(u) and (u,w) ∈ D̂. In either

case u ∈ def(G − D̂, f). If E(P ) ⊆ E(G − D̂), then u ∈ V (C). This implies that

V (C) ∩ def(G − D̂) 6= ∅. Suppose E(P ) * E(G − D̂). This implies that some

of the edges in E(P ) are present in D̂. Since for all e ∈ D̂, e ∈ Eo and for all

e′ ∈ Eg ∩E(Pi), e
′ ∈ Eb, any edge e ∈ E(P )∩ D̂ also belongs to Er. Let e1 = (x, y)

be the first edge in in the path P , such that e1 ∈ D̂. Note that x ∈ V (C) and
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dG−D̂(x) < f(x), because x ∈ Red. Hence V (C) ∩ def(G− D̂) 6= ∅.

Case 2. Suppose V (C) ⊆ Red and there exists a connected component F in C such

that V (F )∩ V (C) 6= ∅. If g(F ) = 1, then we know that B̂ ∩E(G) contains an edge

which is also present in E(F ), because B̂ ∈ Ag. Then by Lemma 15.6 we have that

V (C) ∩ def(G− D̂) 6= ∅. If g(F ) = 0, then there exists an edge e in Z ∩ E(G) such

that e ∈ E(F ), because D satisfies properties of Lemma 15.1 and B ∈ Ag. This

implies that, by Lemma 15.6, we have that V (C) ∩ def(G− D̂) 6= ∅.

Case 3. Suppose V (C) ⊆ Red and for all connected component F in C, V (F ) ∩
V (C) = ∅. Then there exists a path P from a vertex v in V (C) to a vertex u in Green

in graph G. Let e = (x, y) be the first edge in the path P such that e ∈ D̂. Note

that such an edge e exists because V (C) ⊆ Red and x ∈ Red. Since x ∈ Red and

(x, y) ∈ D̂, we have that dG−D̂(x) < f(x). This implies that V (C)∩def(G−D̂) 6= ∅.

Property (v). Now consider property (v) of a nice deletion set. We need to show

that there exists a proper deficiency map ψ̂ over S(G − D̂). We know that ψ′ is a

proper deficiency map over S(G−D). Let

P = B ∩ E(G), P̂ = B̂ ∩ E(G), Q = B ∩ E(G) and Q̂ = B̂ ∩ E(G).

We claim that for all v ∈ V (G), dG−P̂+Q̂(v) = dG−P+Q(v). Since P̂ ∪ Q̂, P ∪ Q ∈
D[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] ⊆ Q(T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ), there exist proper defi-

ciency maps ψ1 over (S(G− P̂ , f)∪T ′g ∪Y ) \ (T ′r ∪XP̂ ,f ) and ψ2 over (S(G−P, f)∪
T ′g ∪ Y ) \ (T ′r ∪ XP,f ) such that Eψ1 = Q̂ and Eψ2 = Q. This implies that for any

v ∈ Red,

dG−P̂+Q̂(v) = f(v) + Y (v)− T ′r(v)−X(v) = dG−P+Q(v).

For any v ∈ Green, since dG−P (v) = dG−P̂ (v) and ψ1, ψ2 are proper deficiency maps

over (S(G−P̂ , f)∪T ′g∪Y )\(T ′r∪XP̂ ,f ), (S(G−P, f)∪T ′g∪Y )\(T ′r∪XP,f ) respectively,

we have that dG−P+Q(v) = dG−P̂+Q̂(v). Hence, for all v ∈ V (G), dG−P̂+Q̂(v) =
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dG−P+Q(v).

Now we claim that for all v ∈ V (G), dG−D̂+Â(v) = dG−D+A(v).

dG−D̂+Â(v) = dG−P̂+Q̂(v)− |EG(v) ∩ Z|+ |EG(v) ∩ Z|

= dG−P+Q(v)− |EG(v) ∩ Z|+ |EG(v) ∩ Z|

= dG−D+A(v)

We have that ψ′ is a proper deficiency map over S(G−D), f) such that Eψ′ = A. This

implies that dG−D+A(v) = f(v) for all v ∈ V (G). Since dG−D̂+Â(v) = dG−D+A(v),

we have that dG−D̂+Â(v) = f(v) for all v ∈ V (G). Let Â = {e1, e2, . . . , er} where

r = k − |D|. Since for all v ∈ V (G), dG−D̂+Â(v) = f(v), we have that there

are exactly f(v) − dG−D(v) edges in Â which are adjacent to v. Now we define a

function ψ̂ : S(G − D̂, f) → S(G − D̂, f) as follows. ψ̂(u(i)) = v(j) if (u, v) = e`

such that there are exactly i − 1 edges from {e1, . . . , e`−1} are incident on u and

there are exactly j − 1 edges from {e1, . . . , e`−1} are incident on v. By Claim 15.1

of Lemma 15.1 we have that ψ̂ is a proper deficiency map. Since we constructed ψ̂

from Â, Eψ̂ = Â.

The proof of above claim completes the proof of the lemma.

So our algorithm computes S[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] using Equations 15.6,15.7

and 15.8 from DP table entries computed for i − 1 and then computes a family
̂D[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] as explained above. If there exists a set B in the family

̂D[Tm, Tg, ∅, k1, k2, k, ∅, ∅] such that B ∩ E(G) is a nice deletion set then the algo-
rithm outputs Yes. Otherwise the algorithm outputs No. The correctness of the
algorithm follows from Lemmata 15.1 and 15.8

Running Time. Let |V (G)| = n and E(G) = m. Then the rank of the matroid

M is bounded by m + k. Consider the construction of ̂D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ].

First we constructed S[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] using equations 15.6, 15.7 or 15.8

from
̂D[T ′′m, T

′′
g , T

′′
r , k

′′
1 , k

′′
2 , i− 1, X ′, Y ′]. Thus the size of S[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] is,

O
(

max
T ′′m,T

′′
g ,T
′′
r ,k
′′
1 ,k
′′
2 ,X

′,Y ′
| ̂D[T ′′m, T

′′
g , T

′′
r , k

′′
1 , k

′′
2 , i− 1, X ′, Y ′]| ·

(
n

2

))
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We know that ̂D[T ′m, T
′′
g , T

′′
r , k

′′
1 , k

′′
2 , i− 1, X ′, Y ′] =

⋃
g∈J Âg where Âg is a (k− (i−

1))-representative family computed using Theorem 13.3. Thus by Theorem 13.3,

|Âg| is bounded by (m + k)k
(
k
i−1

)
. The cardinality of Green ∪ C is bounded by 2k,

because any solution should contain at least one edge incident to each green vertex
and and one edge from each component in C. Hence |J | = 4k. Thus the size of
S[T ′m, T

′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] is bounded by 4k

(
k
i−1

)
(m+ k)k log n = 4k

(
k
i−1

)
nO(1).

Then we have partitioned S[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] based on g ∈ J . That is,

S[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] =

⋃
g∈J

Ag.

Then we computed a (k − i)-representative family Âg of Ag for each g ∈ J . By
Theorem 13.3, the running time of this computation is upper bounded by,

4k
(

k

i− 1

)(
k

i

)ω−1

nO(1)

Thus the running time to compute ̂D[T ′m, T
′
g, T

′
r, k
′
1, k
′
2, i, X, Y ] is bounded by,

4k
(

k

i− 1

)(
k

i

)ω−1

nO(1).

The cardinality of Tm ∪ Tg ∪ Tr is at most 2k, otherwise we need more than k edges
in the solution. Thus the running time of the algorithm, once we guessed k′, k1, k2

and Φ(v) for all v, is upper bounded by,

k∑
i=1

22k4k
(

k

i− 1

)(
k

i

)ω−1

nO(1) = 2(4+ω)k+o(k)nO(1).

Since the number of possible guesses for k′, k1, k2 and Φ is at most 4kkO(1), the
total running time of the algorithm is 2(6+ω)knO(1). Also note that we run the entire

algorithm
(

77

66

)k
time to improve the success probability to at least (1− 1/e).

Theorem 15.3. There is a randomized algorithm running in time
(

77

66

)k
2(6+ω)knO(1)

for ECG.
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15.2.4 Derandomization

In this subsection we explain how to derandomize the above algorithm. Our al-
gorithm can be derandomized using n-p-q-lopsided-universal family. Recall that a
family F of sets over a universe U of size n is an n-p-q-lopsided-universal family if
for every A ∈

(
U
p

)
and B ∈

(
U\A
q

)
there is an F ∈ F such that A ⊆ F and B∩F = ∅.

By Lemma 5.5 we know that there is an algorithm that constructs an n-p-q-lopsided-
universal family F of size

(
p+q
p

)
· 2o(p+q) · log n in time O(

(
p+q
p

)
· 2o(p+q) · n log n). To

derandomize our algorithm, instead of randomly coloring the edges in Eg, we use
(|Eg|, 7k, k)-lopsided-universal family F . We run our algorithm |F| may times as
follows. For each F ∈ F , we color F with orange and Eg \ F with black and run
our algorithm. The correctness of derandomization follows from the definition of
n-7k-k-lopsided-universal family.

Fact 15.1. By Stirling’s approximation,
(
k
αk

)
≤
(
α−α(1− α)(α−1)

)k
[112].

Thus by using Lemma 5.5, we can derandomize our algorithm and we get the fol-
lowing theorem where its running time follows from Fact 21.1.

Theorem 15.4. There is a deterministic algorithm running in time
(

77

66

)k
2(6+ω)knO(1)

for ECG.

15.3 Editing to Connected f-Degree Graph with

Costs

In this section we prove hardness of the following weighted variant of the editing
problem.

Editing to Connected f-Degree Graph with Costs Parameter:k+d
Input: A graph G, integers d, k, C ∈ N+ ∪ {0} and functions f : V (G) →
{1, 2, . . . , d} and c :

(
V (G)

2

)
→ N+ ∪ {0}

Question: Does there exist a connected graph F such that for every vertex v,
dF (v) = f(v), |E(G)4E(F )| ≤ k, and c(E(G)4E(F )) ≤ C?

Theorem 15.5. Editing to Connected f-Degree Graph with Costs is

W[1]-hard for trees when parameterized by k + d even if costs are restricted to be 0

or 1.

Proof. We reduce the Clique problem that is well known to be W[1]-complete [41].

In this problem we are given an undirected graph G and a positive integer k as an
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input and the objective is to check whether G has a clique of size at least k. It is

straightforward to observe that Clique is W[1]-complete for the instances where k

is restricted to be odd. To see this, it is sufficient to notice that if G′ is the graph

obtained from a graph G by adding a vertex that is adjacent to every other vertex

of G, then G has a clique of size k if and only if G′ has a clique of size k + 1.

t

v1
G vi vn

a1 ai an

xi1 xik−1

w1
0

wi0

wi1

wik−1 wik

w1
k

wnkwn0

uik−1

yi1

ui1

yik−2

zi1 zik−2

r
s

Figure 15.1: Construction of T . The edges of cost 0 are shown by thin lines, the
edges of cost 1 are shown by thick lines and the non-edges of cost 0 are shown by
dashed lines. Notice that the graph G is encoded by assigning the cost 0 to every
non-edge of T corresponding to an edge of G.

Let (G, k) be an instance of Clique and k ≥ 3 is odd. Let V (G) = {v1, . . . , vn}.
We construct the tree T and define the function c as follows.

i) Construct vertices v1, . . . , vn and set c(vivj) = 0 if vivj ∈ E(G) for i, j ∈
{1, . . . , n}.

ii) For each i ∈ {1, . . . , n}, construct vertices ai, x
i
1, . . . , x

i
k−1, yi1, y

i
3, y

i
5, . . . , y

i
k−2

and zi1, z
i
3, z

i
5 . . . , z

i
k−2 and edges aivi, vix

i
1, . . . , vix

i
k−1, xi1y

i
1, x

i
3y
i
3, . . . , x

i
k−2y

i
k−2

and yi1z
i
1, y

i
3z
i
3, y

i
5z
i
5, . . . , y

i
k−2z

i
k−2. Set c(aivi) = 1, c(vix

i
1) = . . . = c(vix

i
k−1) =
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0, c(xi1y
i
1) = c(xi3y

i
3) = . . . = c(xik−2y

i
k−2) = 1 and c(yi1z

i
1) = c(yi3z

i
3) = . . . =

c(yik−2z
i
k−2) = 0.

iii) For each i ∈ {1, . . . , n}, construct vertices ui1, . . . , u
i
k−1 and wi0, . . . , w

i
k and

edges ui1w
i
1, . . . , u

i
k−1w

i
k−1, wi0w

i
1, w

i
2w

i
3, . . . , w

i
k−1w

i
k and ui1u

i
2, u

i
3u

i
4, . . . , u

i
k−2u

i
k−1.

Set c(ui1w
i
1) = . . . = c(uik−1w

i
k−1) = 1, c(wi0w

i
1) = c(wi2w

i
3) = . . . = c(wik−1w

i
k) =

0 and c(ui1u
i
2) = c(ui3u

i
4) = . . . = c(uik−2u

i
k−1) = 0. Set c(wi1w

i
2) = c(wi3w

i
4) =

. . . = c(wik−2w
i
k−1) = 0.

iv) For each i ∈ {1, . . . , n}, set c(ui1x
i
1) = . . . = c(uik−1x

i
k−1) = 0.

v) Construct vertices s, t, r and edges rs, st, tw1
0, w1

0w
2
0, w

2
0w

3
0, . . . , w

n−1
0 wn0 , wn0a1

and a1a2, a2a3, . . . , an−1an. Set c(rs) = c(st) = c(tw1
0) = 1, c(w1

0w
2
0) =

c(w2
0w

3
0) = . . . = c(wn−1

0 wn0 ) = 1, c(wn0a1) = 1 and c(a1a2) = c(a2a3) =

. . . = c(an−1an) = 1.

vi) Set c(sw1
0) = . . . = c(swn0 ) = 0, c(tw1

k) = . . . = c(twnk ) = 0.

vii) For each i ∈ {1, . . . , n}, set c(ryi1) = c(ryi3) = . . . = c(ryik−2) = 0 and c(rzi1) =

c(rzi3) . . . = c(rzik−2) = 0.

viii) For any pq ∈
(
V (T )

2

)
\E(T ), set c(pq) = 1 if c(pq) was not set to be 0 in i)–vii).

We define f(s) = k+2, f(t) = k+2, f(r) = 1+k(k−1) and set f(p) = dT (p) for p ∈
V (G)\{s, t, r}. Finally, we set C = 0, d = 2+k(k−1) and k′ = 5k2−2k+k(k−1)/2

and obtain an instance (T, d, k′, C, f, c) of Editing to Connected f-Degree

Graph with Costs. Clearly, T is a tree. We show that (T, d, k′, C, f, c) is a Yes-

instance of Editing to Connected f-Degree Graph with Costs if and only

if G has a clique of size k.

For i ∈ {1, . . . , n}, let

Di ={wi0wi1, wi2wi3, . . . , wik−1w
i
k} ∪ {ui1ui2, ui3ui4, . . . , uik−2u

i
k−1}∪

{vixi1, . . . , vixik−1} ∪ {yi1zi1, yi3zi3, . . . , yik−2z
i
k−2},
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and

Ai ={swi0, twik} ∪ {wi1wi2, wi3wi4, . . . , wik−2w
i
k−1} ∪ {xi1ui1, . . . , xik−1u

i
k−1}∪

{ryi1, ryi3, . . . , ryik−2} ∪ {rzi1, rzi3, . . . , rzik−2}.

Notice that Di ⊆ E(T ), c(Di) = 0, |Di| = 2k−1+(k−1)/2 and Ai ⊆
(
V (T )

2

)
\E(T ),

c(Ai) = 0, Ai = 2k + (k − 1)/2 for i ∈ {1, . . . , n}.

Suppose that G has a clique K = {vi1 , . . . , vik}. Let A′ = {vijvih|1 ≤ j < h ≤ k}.
Because K is a clique in G, c(A′) = 0. Clearly, A′ ⊆

(
V (T )

2

)
\ E(T ) and |A′| =

k(k − 1)/2. We let D =
⋃k
j=1 Dij and A = A′ ∪ (

⋃k
j=1Aij). It is straightforward to

verify that c(D ∪A) = 0, |D|+ |A| = k′, G′ = T −D +A is a connected graph and

for every p ∈ V (G′), dG′(p) = f(p).

Assume now that (T, d, k′, C, f, c) is a Yes-instance of Editing to Connected

f-Degree Graph with Costs. Then there are sets D ⊆ E(T ) and A ⊆
(
V (T )

2

)
such that |D| + |A| ≤ k′, c(D ∪ A) = 0, G′ = T − D + A is a connected graph

and for every p ∈ V (G′), dG′(p) = f(p). Because f(s) = k + 2 and dT (s) = 2,

A contains at least k edges incident to s. Since c(A) = 0, we have that there are

swi10 , . . . , sw
ik
k ∈ A for some distinct i1, . . . , ik ∈ {1, . . . , n}.

Consider sw
ij
0 for some j ∈ {1, . . . , k}. Because f(w

ij
0 ) = dT (w

ij
0 ), D has an edge of

cost 0 incident to w
ij
0 . Hence, w

ij
0 w

ij
1 ∈ D. Now we consider w

ij
1 and observe that

there is an edge of cost 0 in A that is incident to w
ij
1 and, therefore, w

ij
1 w

ij
2 ∈ A.

Repeating these arguments, we conclude that

R = {wij0 w
ij
1 , w

ij
2 w

ij
3 , . . . , w

ij
k−1w

ij
k } ⊆ D and

S = {swij0 , w
ij
1 w

ij
2 , . . . , w

ij
k−2w

ij
k−1, w

ij
k t} ⊆ A.

Consider F = T −R+S. Observe that for any h ∈ {1, . . . , (k− 1)/2}, we have that

F [{wij2h−1, w
ij
2h, u

ij
2h−1, u

ij
2h}] is a component of F . Since G′ is connected, A has an edge
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incident to a vertex of each component of this type. We have that for h ∈ {1, . . . , (k−
1)/2}, xij2h−1u

ij
2h−1 ∈ A or x

ij
2hu

ij
2h ∈ A. As f(u

ij
2h−1) = dT (u

ij
2h−1) and f(u

ij
2h) =

dT (u
ij
2h), D has an edge incident to one of these vertices and, therefore, u

ij
2h−1u

ij
2h ∈ D

and x
ij
2h−1u

ij
2h−1, x

ij
2hu

ij
2h ∈ A. Because f(x

ij
2h−1) = dT (x

ij
2h−1), x

ij
2h−1vij , x

ij
2hvij ∈ D.

We obtain that

R′ = R ∪ {uij1 u
ij
2 , u

ij
3 u

ij
4 , . . . , u

ij
k−2u

ij
k−1} ∪ {vijx

ij
1 , . . . , vijx

ij
k−1} ⊆ D

and

S ′ = S ∪ {xij1 u
ij
1 , . . . , x

ij
k−1u

ij
k−1} ⊆ A.

Let F ′ = T −R′ + S ′. Now we have that for h ∈ {1, . . . , (k − 1)/2},
F ′[{wij2h−1, w

ij
2h, u

ij
2h−1, u

ij
2h, x

ij
2h−1, x

ij
2h, y

ij
2h−1, z

ij
2h−1}] is a component of F ′. Because G′

is connected, ry
ij
2h−1 ∈ A or rz

ij
2h−1 ∈ A. As f(y

ij
2h−1) = dT (y

ij
2h−1) and f(z

ij
2h−1) =

dT (y
ij
2h−1), y

ij
2h−1z

ij
2h−1 ∈ D and ry

ij
2h−1, rz

ij
2h−1 ∈ A. We conclude that Dij ⊆ D and

Aij ⊆ A. Let

R′′ =
k⋃
j=1

Dij , S
′′ =

k⋃
j=1

Aij .

We have that R′′ ⊆ D and S ′′ ⊆ A. Notice that |R′′|+ |S ′′| = 5k2− 2k = k′− k(k−
1)/2. Consider F ′′ = T −R′′ + S ′′. For j ∈ {1, . . . , k}, dF ′′(vij) = dT (vij)− (k − 1).

It implies that A′ = {vijvih|1 ≤ j < h ≤ k} ⊆ A and c(A′) = 0. Hence, K =

{vi1 , . . . , vik} is a clique in G.
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Chapter 16

Representative Family

Computation for a Product Family

in a Linear Matroid

Let M = (E, I) be a matroid and A and B be two subsets of I. Then we define the
product of A and B, denoted by A� B as,

A� B = {A ∪B : A ∪B ∈ I, A ∈ A, B ∈ B and A ∩B = ∅}.

That is A � B = (A • B) ∩ I. In this chapter we give an algorithm for computing
representative families of product families in a linear matroid. A naive approach
for computing a representative familiy of F = A � B would be to compute the
product A � B first and then compute a representative family of the product. By
applying Theorem 13.1, we can compute a q-representative family of a p-family

F of independent sets in time
(
p+q
p

)ω−1|F|. In this chapter we give an algorithm
that significantly outperforms the naive approach. An appealing feature of our
algorithm is that it works by reducing the computation of a representative family for
F to the computation of representative families for many smaller families. Thus an
improved algorithm for the computation of representative sets for general families
will automatically accelerate our algorithm for product families as well. In this
chapter we prove the following theorem.

Theorem 16.1. Let M = (E, I) be a linear matroid of rank k, L1 be a p1-family

of independent sets of M and L2 be a p2-family of independent sets of M . Given

a representation AM of M over a field F, we can find L̂1 � L2 ⊆k−p1−p2minrep L1 � L2

195



of size at most
(

k
p1+p2

)
in O

(
|L2||L1|

(
k−p2
p1

)ω−1
pω1 + |L2|

(
k−p2
p1

)(
k

p1+p2

)ω−1
(p1 + p2)ω

)
operations over F.

Algorithm. We give an algorithm to compute q-representative family for product
families of a linear matroid. That is, given a matroid M = (E, I), families of
independent sets A and B of sets of sizes p1 and p2 respectively, and a positive
integer q, we compute F̂ ⊆qrep F , where, F = A�B, of size

(
p1+p2+q
p1+p2

)
efficiently. We

compute a q-representative family for F in two steps. In the first step we compute
an intermediate q-representative family and then apply Theorem 13.2 to compute
q-representative family of the desired size. The intermediate q-representative family
is obtained by computing q-representative families of slices, A� {B} for all B ∈ B,
and then take its union. We start with the following lemma that will be central to
our faster algorithm for computing the desired q-representative family for a product
family of a linear matroid.

Lemma 16.1 (Slice Computation Lemma). Let M = (E, I) be a linear matroid of

rank k, L be a p1-family of independent sets of M and S ∈ I of size p2. Further-

more, let w : L � {S} → N be a non-negative weight function. Then given a

representation AM of M over a field F, we can find ̂L � {S} ⊆k−p1−p2minrep L � {S} of

size at most
(
k−p2
p1

)
in O

((
k−p2
p1

)
|L|pω1 + |L|

(
k−p2
p1

)ω−1
)

operations over F.

Proof. Observe that L � {S} is a p1 + p2-family of independent sets of M and all

sets in L � {S} contain S as a subset. Let AM the matrix representing the matroid

M over a field F. Without loss of generality we can assume that the first p2 columns

of AM correspond to the elements in S. Furthermore, we can also assume that the

first p2 columns and p2 rows form an identity matrix Ip2×p2 . That is, if S denotes

the first p2 columns and Z denotes the first p2 rows then the submatrix AM [Z, S] is

Ip2×p2 . The reason for the last assertion is that if the matrix is not in the required

form then we can apply elementary row operations and obtain the matrix in the

desired form. This also allows us to assume that the number of rows in AM is k. So

AM have the following form.

 Ip2×p2 A

0 B
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Let AM/S be the matrix obtained after deleting first p2 rows and first p2 columns

from AM . That is, AM/S= B. Let M/S = (Es, Is) be the matriod represented

by the matrix AM/S on the underlying ground set Es = E \ S. Observe that the

rank(M/S)=rank(B)= k−p2, else the rank(AM) would become strictly smaller than

k. Let e1, e2, . . . , ep2 be the first p2 column vectors of AM , i.e., they are columns

corresponding to the elements of S. For a column vector v in AM , v̄ is used to

denote the column vector restricted to the matrix AM/S (i.e., v̄ contains the last

k − p2 entries of v).

Now consider the set L(S) = {X | X ∪ S ∈ L � {S}}. We also define a new non-

negative weight function w′ : L(S)→ N as follows: w′(X) = w(X ∪ S). We would

like to compute k − p2 representative for L(S). Towards that goal we first show

that L(S) is a p1-family of independent sets of M/S. Let X ∈ L(S). We know that

X ∪ S ∈ I. Let v1, v2, . . . , vp1 be the column vectors in AM corresponding to the

elements in X. Suppose X /∈ Is. Then there exist coefficients λ1, . . . , λp1 such that

λ1v̄1 + λ2v̄2 + · · ·+ λp1 v̄p1 = ~0 and at least one of them is non-zero. Then

λ1v1 + λ2v2 + · · ·+ λp1vp1 =



a1

...

ap2

0

...

0


This implies that −a1e1− a2e2− · · · − ap2ep2 + λ1v1 + λ2v2 + · · ·+ λp1vp1 = ~0, which

contradicts the fact that S ∪ X ∈ I. Hence X ∈ Is and L(S) is a p1-family of

independent sets of M/S.

Now we apply Theorem 13.2 and find L̂(S) ⊆k−p1−p2minrep L(S) of size
(
k−p2
p1

)
, by consid-

ering L(S) as a p1-family of independent sets of the matroid M/S. We claim that

L̂(S)�{S} ⊆k−p1−p2minrep L�{S}. Let X ∪S ∈ L�{S} and Y ⊆ E \ (X ∪S) such that
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|Y | = k−p1−p2 and X ∪S∪Y ∈ I. We need to show that there exists a X̂ ∈ L̂(S)

such that X̂ ∪S ∪Y ∈ I and w(X̂ ∪S) ≤ w(X ∪S). We start by showing that that

X ∪ Y ∈ Is. Let v1, v2, . . . , vk−p2 be the column vectors in AM corresponding to the

elements of X ∪ Y . Suppose X ∪ Y /∈ Is. Then there exist coefficients λ1, . . . , λk−p2

such that λ1v̄1 + λ2v̄2 + · · · + λk−p2 v̄k−p2 = ~0 and at least one of them is non-zero.

Then we have the following.

λ1v1 + λ2v2 + · · ·+ λk−p2vk−p2 =



b1

...

bp2

0

...

0


However this implies that −b1e1−b2e2−· · ·−bp2ep2 +λ1v1 +λ2v2 + · · ·+λk−p2vk−p2 =

~0, which contradicts the fact that S ∪ X ∪ Y ∈ I. Hence X ∪ Y ∈ Is. Since

L̂(S) ⊆k−p1−p2minrep L(S), there exists a set X̂ ∈ L(S), with w′(X̂) ≤ w′(X) (i.e w(X̂ ∪
S) ≤ w(X∪S)) and X̂∪Y ∈ Is. We claim that X̂∪S∪Y ∈ I. Let u1, u2, . . . , uk−p2

be the column vectors in AM corresponding to the elements of X̂ ∪ Y . Suppose

X̂ ∪ S ∪ Y /∈ I. Then there exist coefficients α1, . . . , αk such that α1e1 + α2e2 +

· · ·+αp2ep2 +αp2+1u1 + · · ·+αkuk−p2 = ~0 and at least one of the coefficients is non-

zero. We claim that at least one of the coefficients among {αp2+1, . . . , αk} is non-

zero. Suppose not, then α1e1 + · · · + αp2ep2 = 0 and at least one of the coefficients

among {α1, . . . , αp2} is non-zero. This contradicts the fact that S ∈ I. Since

α1e1+· · ·+αp2ep2+αp2+1u1+· · ·+αkuk−p2 = ~0, we have that αp2+1ū1+· · ·+αkūk−p2 =

~0, where ūj are restrictions of uj to the last k − p2 entries. Also note that at

least one of the coefficients among {αp2+1, . . . , αk} is non-zero. This contradicts our

assumption that X̂ ∪ Y ∈ Is. Thus we have shown that X̂ ∪ Y ∪ S ∈ I. The

size of L̂(S)� {S} is
(
k−p2
p1

)
and it can be found in O

((
k−p2
p1

)
|L|pω1 + |L|

(
k−p2
p1

)ω−1
)

operations over F.

198



Now we are ready to prove the main Theorem 16.1 by using Lemma 16.1.

Theorem 16.1 Let M = (E, I) be a linear matroid of rank k, L1 be a p1-family
of independent sets of M and L2 be a p2-family of independent sets of M . Given

a representation AM of M over a field F, we can find L̂1 � L2 ⊆k−p1−p2minrep L1 � L2

of size at most
(

k
p1+p2

)
in O

(
|L2||L1|

(
k−p2
p1

)ω−1
pω1 + |L2|

(
k−p2
p1

)(
k

p1+p2

)ω−1
(p1 + p2)ω

)
operations over F.

Proof. Let L2 = {S1, S2, . . . , S`}. Then we have

L1 � L2 =
⋃̀
i=1

L1 � {Si}.

By Lemma 7.2,

L =
⋃̀
i=1

̂L1 � {Si} ⊆k−p1−p2minrep L1 � L2.

Using Lemma 16.1, for all 1 ≤ i ≤ `, we find ̂L1 � {Si} ⊆k−p1−p2minrep L1 � {Si} of size(
k−p2
p1

)
in O

((
k−p2
p1

)
|L1|pω1 + |L1|

(
k−p2
p1

)ω−1
)

= O
(
|L1|

(
k−p2
p1

)ω−1
pω1

)
operations over

F. Now |L| = |⋃`
i=1

̂L1 � {Si}| ≤ |L2|
(
k−p2
p1

)
. Now we apply Theorem 13.2 and find

L̂ ⊆k−p1−p2minrep L of size
(

k
p1+p2

)
. The number of operations, denoted by T1, over F to

find L̂ from L is

T1 = O
((

k

p1 + p1

)
|L2|

(
k − p2

p1

)
(p1 + p2)ω + |L2|

(
k − p2

p1

)(
k

p1 + p2

)ω−1
)

= O
(
|L2|

(
k − p2

p1

)(
k

p1 + p2

)ω−1

(p1 + p2)ω

)
.

By Lemma 7.1, L̂ ⊆k−p1−p2minrep L1�L2. The number of operations, denoted by T , over

F to find L̂ from L1 and L2 is

T = |L2| · O
(
|L1|

(
k − p2

p1

)ω−1

pω1

)
+ T1

= O
(
|L2||L1|

(
k − p2

p1

)ω−1

pω1 + |L2|
(
k − p2

p1

)(
k

p1 + p2

)ω−1

(p1 + p2)ω

)
.

This completes the proof of the theorem.
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The following form of Theorem 16.1 will be directly useful in some applications.

Corollary 16.1. Let M = (E, I) be a linear matroid of rank k, L1 and L2 be two

families of independent sets of M and the number of sets of size p in L1 and L2 be

at most
(
k+c
p

)
. Here, c is a fixed constant. Let Lr,i be the set of independent sets

of size exactly i in Lr for r ∈ {1, 2}. Then for all the pairs i, j ∈ [k], we can find

̂L1,i � L2,j ⊆k−i−jminrep L1,i�L2,j of size
(
k
i+j

)
, in total of O

(
kω (2ω + 2)k + kω2k(ω−1)3k

)
operations over F.

Proof. By using Theorem 16.1 we can find ̂L1,i � L2,j ⊆k−i−jminrep L1,i � L2,j of size(
k
i+j

)
for any i, j ∈ [k] in O

((
k+c
j

)(
k+c
i

)(
k−j
i

)ω−1
iω +

(
k+c
j

)(
k−j
i

)(
k
i+j

)ω−1
(i+ j)ω

)
op-

erations over F. Let k′ = k + c. So the total number of operations, denoted by T ,

over F to find ̂L1,i � L2,j for all i, j ∈ [k] is,

T = O
(( k∑

i=0

k∑
j=0

(
k′

j

)(
k′

i

)(
k − j
i

)ω−1

iω

)
+(

k∑
i=0

k∑
j=0

(
k′

j

)(
k − j
i

)(
k

i+ j

)ω−1

(i+ j)ω

))
= O

((
kω

k∑
i=0

(
k′

i

) k∑
j=0

(
k′

j

)
2(k−j)(w−1)

)
+(

kω
k∑
j=0

(
k′

j

) k−j∑
i=0

(
k − j
i

)(
k

i+ j

)ω−1
))

= O
((

kω2k(ω−1)

k∑
i=0

(
k′

i

)(
1 +

1

2(ω−1)

)k′)
+(

kω2k(w−1)

k∑
j=0

(
k′

j

) k−j∑
i=0

(
k − j
i

)))
= O

((
kω2k

′ (
2(ω−1) + 1

)k)
+

(
kω2k(w−1)

k∑
j=0

(
k′

j

)
2k−j

))
= O

(
kω2k

(
2(ω−1) + 1

)k
+ kω2k(ω−1)3k

)
= O

(
kω (2ω + 2)k + kω2k(ω−1)3k

)
.

The above simplification completes the proof.
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Chapter 17

Dynamic Programming over

graphs of bounded treewidth

In this chapter we show how the fast computation of representative family of a prod-
uct family in linear matroid is helpful to design fast FPT algorithms for problems over
graphs of bounded treewidth. It is well known that many intractable problems can
be solved efficiently when the input graph has bounded treewidth. Moreover, many
fundamental problems like Maximum Independent Set or Minimum Dominat-
ing Set can be solved in time 2O(t)n. On the other hand, it was believed until very
recently that for some “connectivity” problems such as Hamiltonian Cycle or
Steiner Tree no such algorithm exists. In their breakthrough paper, Cygan et al.
[38] introduced a new algorithmic framework called Cut&Count and used it to ob-
tain 2O(t)nO(1) time Monte Carlo algorithms for a number of connectivity problems.
Recently, Bodlaender et al. [23] obtained the first deterministic single-exponential
algorithms for these problems using two novel approaches. One of the approaches of
Bodlaender et al. is based on rank estimations in specific matrices and the second
based on matrix-tree theorem and computation of determinants.

It is interesting to note that for a number of connectivity problems such as Steiner
Tree or Feedback Vertex Set the “bottleneck” of treewidth based dynamic
programming algorithms is the join operation. For example, as it was shown by
Bodlaender et al. in [23], Feedback Vertex Set and Steiner Tree can be
solved in time O

(
(1 + 2ω)pwpwO(1)n

)
and O

(
(1 + 2ω+1)twtwO(1)n

)
, where pw and

tw are the pathwidth and the treewidth of the input graph. The reason for the
difference in the exponents of these two algorithms is due to the cost of the join
operation, which is required for treewidth and does not occur for pathwidth.

Our approach to solve these problems is based on representative families in matroids.
The main idea behind our approach is that all the relevant information about “par-
tial solutions” in bags of the tree decomposition, can be encoded as an independent

201



set of graphic matroid. For many computational problems on graphs of bounded
treewidth in the join nodes of the decomposition, the family of partial solutions is
the product of the families of its children, and we wish to store a representative
family (for a graphic matroid) for this product family. Here our algorithm for com-
putation of representative family of a product family in a linear matroid comes into
play. By making use of this algorithm one can obtain faster deterministic algorithms
for many connectivity problems. We exemplify this by providing algorithms with
running time O

(
(1 + 2ω−1 · 3)twtwO(1)n

)
for Steiner Tree (in Section 17.1) and

Feedback Vertex Set (in Section 17.2).

Before explaining our algorithms for Steiner Tree and Feedback Vertex Set,
we first define treewdith formally. Let G be a graph. A tree-decomposition of a
graph G is a pair (T,X = {Xt}t∈V (T)) such that

• ∪t∈V (T)Xt = V (G),

• for every edge xy ∈ E(G) there is a t ∈ V (T) such that {x, y} ⊆ Xt, and

• for every vertex v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt}
is connected.

The width of a tree decomposition is maxt∈V (T) |Xt|−1 and the treewidth of G is the
minimum width over all tree decompositions of G and is denoted by tw(G).

A tree decomposition (T,X ) is called a nice tree decomposition if T is a tree rooted
at some node r where Xr = ∅, each node of T has at most two children, and each
node is of one of the following kinds:

1. Introduce node: a node t that has only one child t′ where Xt ⊃ Xt′ and
|Xt| = |Xt′|+ 1.

2. Forget node: a node t that has only one child t′ where Xt ⊂ Xt′ and |Xt| =
|Xt′ | − 1.

3. Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .

4. Base node: a node t that is a leaf of T, is different than the root, and Xt = ∅.

Notice that, according to the above definition, the root r of T is either a forget node
or a join node. It is well known that any tree decomposition of G can be transformed
into a nice tree decomposition maintaining the same width in linear time [76]. We
use Gt to denote the graph induced by the vertex set

⋃
t′ Xt′ , where t′ ranges over

all descendants of t, including t. By E(Xt) we denote the edges present in G[Xt].
We use Ht to denote the graph on vertex set V (Gt) and the edge set E(Gt)\E(Xt).
For clarity of presentation we use the term nodes to refer to the vertices of the tree
T.
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17.1 Steiner Tree

The problem we study in this section is defined below.

Steiner Tree Parameter: tw
Input: An undirected graph G together with a tree-decomposition (T,X ) of
width tw, T ⊆ V (G) function w : E(G)→ N.
Task: Find a subtree in G of minimum weight spanning all vertices of T .

Let G be an input graph of the Steiner Tree problem. Throughout this section,
we say that E ′ ⊆ E(G) is a solution if the subgraph induced on this edge set is
connected and it contains all the terminal vertices. We call E ′ ⊆ E(G) an optimal
solution if E ′ is a solution of the minimum weight. Let S be a family of edge subsets
such that every edge subset corresponds to an optimal solution. That is,

S = {E ′ ⊆ E(G) | E ′ is an optimal solution}.

Observe that any edge set in S induces a forest. We start with few definitions that
will be useful in explaining the algorithm. Let (T,X ) be a tree decomposition of G
of width tw. Let t be a node of V (T). By St we denote the family of edge subsets
of E(Ht), {E ′ ⊆ E(Ht) | G[E ′] is a forest}, that satisfies the following properties.

• Either E ′ is a solution tree (that is, the subgraph induced on this edge set is
connected and it contains all the terminal vertices); or

• every vertex of (T ∩V (Gt))\Xt is incident with some edge from E ′, and every
connected component of the graph induced by E ′ contains a vertex from Xt.

We call St a family of partial solutions for t. We denote by Kt a complete graph on
the vertex set Xt. For an edge subset E∗ ⊆ E(G) and bag Xt corresponding to a
node t, we define the following.

1. Set ∂t(E∗) = Xt ∩ V (E∗), the set of endpoints of E∗ in Xt.

2. Let G∗ be the subgraph of G on the vertex set V (G) and the edge set E∗.
Let C ′1, . . . , C

′
` be the connected components of G∗ such that for all i ∈ [`],

C ′i ∩ Xt 6= ∅. Let Ci = C ′i ∩ Xt. Observe that C1, . . . , C` is a partition
of ∂t(E∗). By Ft(E

∗) we denote a forest {Q1, . . . , Q`} where each Qi is an
arbitrary spanning tree of Kt[Ci]. For an example, since Kt[Ci] is a complete
graph we could take Qi as a star. The purpose of Ft(E

∗) is to keep track for
the vertices in Ci whether they were in the same connected component of G∗.

3. We define w(Ft(E
∗)) = w(E∗).

Let A and B be two family of edge subsets of E(G), then we define

A � B = {E1 ∪ E2 | E1 ∈ A ∧ E2 ∈ B ∧ E1 ∩ E2 = ∅ ∧G[E1 ∪ E2] is a forest}.
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With every node t of T, we associate a subgraph of G. In our case it will be Ht.
For every node t, we keep a family of partial solutions for the graph Ht. That is,
for every optimal solution L ∈ S and its intersection Lt = E(Ht) ∩ L with the
graph Ht, we have some partial solution in the family that is “as good as Lt”. More
precisely, we have some partial solution, say L̂t in our family such that L̂t ∪ LR is
also an optimum solution for the whole graph, where LR = L\Lt. As we move from
one node t in the decomposition tree to the next node t′ the graph Ht changes to
Ht′ , and so does the set of partial solutions. The algorithm updates its set of partial
solutions accordingly. Here matroids come into play: in order to bound the size of
the family of partial solutions that the algorithm stores at each node we employ
Theorem 13.2 and Corollary 16.1 for graphic matroids. More details are given in
the proof of the following theorem, which is one of the main results in this section.

Theorem 17.1. Let G be an n-vertex graph given together with its tree decom-

position (T,X ) of width tw. Then Steiner Tree on G can be solved in time

O
(

(1 + 2ω−1 · 3)
tw

twO(1)n
)

.

Proof. For every node t of T and subset Z ⊆ Xt, we store a family of edge subsets

Ŝt[Z] ⊆ St of Ht satisfying the following correctness invariant.

Correctness Invariant: For every L ∈ S we have the following. Let

Lt = E(Ht) ∩ L, LR = L \ Lt, and Z = ∂t(L). Then there exists

L̂t ∈ Ŝt[Z] such that w(L̂t) ≤ w(Lt), L̂ = L̂t ∪ LR is a solution, and

∂t(L̂) = Z. Observe that since w(L̂t) ≤ w(Lt) and L ∈ S , we have that

L̂ ∈ S .

We process the nodes of the tree T from base nodes to the root node while doing

the dynamic programming. Throughout the process we maintain the correctness

invariant, which will prove the correctness of the algorithm. However, our main

idea is to use representative sets to obtain Ŝt[Z] of small size. That is, given the

set Ŝt[Z] (as a product of two families A and B, i.e Ŝt[Z] = A � B) that satisfies

the correctness invariant, we use Corollary 16.1 to obtain a subset Ŝ ′t[Z] of Ŝt[Z]

that also satisfies the correctness invariant and has size upper bounded by 2|Z| in

total. More precisely, the number of partial solutions with i connected components
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in Ŝ ′t[Z] is upper bounded by
( |Z|
|Z|−i

)
=
(|Z|
i

)
. Thus, we maintain the following size

invariant.

Size Invariant: After node t of T is processed by the algorithm, for

every Z ⊆ Xt we have that |Ŝt[Z, i]| ≤
(|Z|
i

)
, where Ŝt[Z, i] is the partial

solutions with i connected components in Ŝt[Z].

The main ingredient of the dynamic programming algorithm for Steiner Tree is

the use of Theorem 13.2 and Corollary 16.1 to compute Ŝt[Z] maintaining the size

invariant. The next lemma shows how to implement it.

Lemma 17.1 (Product Shrinking Lemma). Let t be a node of T, and let Z ⊆ Xt be a

set of size k. Let P and Q be two family of edge sets of Ht. Furthermore, let Ŝt[Z] =

P �Q be the family of edge subsets of Ht satisfying the correctness invariant. If the

number of edge sets with i connected components in P as well as in Q is bounded by(
k+c
i

)
where c is some fixed constant, then in time O

(
kω (2ω + 2)k n+ kω2k(ω−1)3kn

)
we can compute Ŝ ′t[Z] ⊆ Ŝt[Z] satisfying correctness and size invariants.

Proof. We start by associating a matroid with the node t and the set Z ⊆ Xt as

follows. We consider a graphic matroid M = (E, I) on Kt[Z]. Here, the element

set E of the matroid is the edge set E(Kt[Z]) and the family of independent sets I
consists of forests of Kt[Z].

Let P = {A1, . . . , A`} and Q = {B1, . . . , B`′}. Let L1 = {Ft(A1), . . . , Ft(A`)} and

L2 = {Ft(B1), . . . , Ft(B`′)} be the set of forests in Kt[Z] corresponding to the edge

subsets in P and Q respectively. For r ∈ {1, 2} and i ∈ {1, . . . , k − 1}, let Lr,i
be the family of forests of Lr with i edges. Now we apply Corollary 16.1 and find

̂L1,i � L2,j ⊆k−1−i−j
minrep L1,i � L2,j of size

(
k−1
i+j

)
for all i, j ∈ [k] such that i + j < k.

Let Ŝ ′t[Z, k − d] ⊆ Ŝt[Z, k − d] be such that for every D ∈ Ŝ ′t[Z, k − d] we have

that Ft(D) ∈ ⋃i+j=d
̂L1,i � L2,j. Note that Ft(D) has d edges if and only if G[D]

have k − d connected components. Let Ŝ ′t[Z] =
⋃k
j=1 Ŝ ′t[Z, j]. By Corollary 16.1,

|Ŝ ′t[Z, k − d]| ≤ k
(
k−1
d

)
≤
(
k
k−d

)
, and hence Ŝ ′t[Z] maintains the size invariant.
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Now we show that the Ŝ ′t[Z] maintains the correctness invariant. Let L ∈ S . Let

Lt = E(Ht) ∩ L, LR = L \ Lt and Z = ∂t(L). Since Ŝt[Z] satisfies correctness

invariant, there exists L′t ∈ Ŝt[Z] such that w(L′t) ≤ w(Lt), L̂ = L′t ∪ LR is an

optimal solution and ∂t(L̂) = Z. Since Ŝt[Z] = P � Q, there exists A ∈ P and

B ∈ Q such that L′t = A ∪ B. Observe that G[L′t], G[A] and G[B] form forests.

Consider the forests Ft(A) and Ft(B). Suppose Ft(A) has i edges and Ft(B) has

j edges, then Ft(L
′
t) ∈ L1,i � L2,j. This is because, if Ft(L

′
t) contain a cycle, then

corresponding to that cycle we can get a cycle in G[L′t], which is a contradiction.

Now let Ft(LR) be the forest corresponding to LR. Since L̂ is a solution, we have that

Ft(L
′
t)∪Ft(LR) is a spanning tree in Kt[Z]. Since ̂L1,j � L2,j ⊆k−1−i−j

minrep L1,i�L2,j, we

have that there exists a forest Ft(L̂
′
t) ∈ ̂L1,i � L2,j such that w(Ft(L̂

′
t)) ≤ w(Ft(L

′
t))

and F (L̂′t) ∪ F (LR) is a spanning tree in Kt[Z]. Thus, we have that L̂′t ∪ LR is an

optimum solution and L̂′t ∈ Ŝ ′t[Z]. This proves that Ŝ ′t[Z] maintains the correctness

invariant.

For a given edge set D, we need to compute the forest Ft(D) and that can take O(n)

time. The running time to compute Ŝ ′t[Z] is,

O
(
kω (2ω + 2)k n+ kω2k(ω−1)3kn

)
.

We now return to the dynamic programming algorithm over the tree-decomposition

(T,X ) of G and prove that it maintains the correctness invariant. We assume that

(T,X ) is a nice tree-decomposition of G. By Ŝt we denote
⋃
Z⊆Xt Ŝt[Z] (also called

a representative family of partial solutions). We show how Ŝt is obtained by doing

dynamic programming from base node to the root node.

Base node t. Here the graph Ht is empty and thus we take Ŝt = {∅}.
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Introduce node t with child t′. Here, we know that Xt ⊃ Xt′ and |Xt| =

|Xt′ |+ 1. Let v be the vertex in Xt \Xt′ . Furthermore observe that E(Ht) = E(Ht′)

and v is degree zero vertex in Ht. Thus the graph Ht only differs from Ht′ at a

isolated vertex v. Since we have not added any edge to the new graph, the family

of solutions, which contains edge-subsets, does not change. Thus, we take Ŝt = Ŝt′ .
Formally, we take Ŝt[Z] = Ŝt′ [Z \ {v}]. Since, Ht and Ht′ have same set of edges the

invariant is vacuously maintained.

Forget node t with child t′. Here we know Xt ⊂ Xt′ and |Xt| = |Xt′ | − 1.

Let v be the vertex in Xt′ \ Xt. Let Ev[Z] denote the set of edges between v and

the vertices in Z ⊆ Xt. Observe that E(Ht) = E(Ht′) ∪ Ev[Xt]. Before we define

things formally, observe that in this step the graphs Ht and Ht′ differ by at most

tw edges - the edges with one endpoint in v and the other in Xt. We go through

every possible way an optimal solution can intersect with these newly added edges.

Let Pv[Z] = {Y | ∅ 6= Y ⊆ Ev[Z]}. Then the new set of partial solutions is defined

as follows.

Ŝt[Z] =


(
Ŝt′ [Z ∪ {v}] � Pv[Z]

)
∪
{
A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St

}
if v ∈ T(

Ŝt′ [Z ∪ {v}] � Pv[Z]
)
∪
{
A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St

}
∪ Ŝt′ [Z] if v /∈ T

Now we claim that Ŝt[Z] ⊆ St. Towards the proof we first show that Ŝt′ [Z ∪ {v}] �
Pv[Z] ⊆ St. Let E ′ ∈ Ŝt′ [Z ∪ {v}] � Pv[Z]. Note that E ′ ∩ Ev[Z] 6= ∅. If E ′ is a

solution tree then E ′ ∈ St and we are done. Since E ′ \ Ev[Z] ∈ Ŝt′ [Z ∪ {v}] ⊆ St′ ,
every vertex of (T ∩ V (Gt)) \ (Xt ∪ {v}) is incident with some edge from E ′. Since

E ′ ∩ Ev[Z] 6= ∅, there exists an edge in E ′ which is incident to v. This implies that

every vertex of (T ∩ V (Gt)) \Xt is incident with some edge from E ′. Now consider

any connected component C in G[E ′]. If v /∈ V (C), then C contains a vertex from

Xt′ \{v} = Xt, because E ′ \Ev[Z] ∈ Ŝt′ [Z∪{v}] ⊆ St′ . If v ∈ V (C), then C contains

a vertex from Xt because E ′ ∩ Ev[Z] 6= ∅. Thus we have shown that E ′ ∈ St. It is
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easy to see that {A ∈ Ŝt′ [Z∪{v}] : A ∈ St} ⊆ St. If v /∈ T then Ŝt′ [Z] ⊆ St, because

Ŝt′ [Z] ⊆ St′ and Xt = Xt′ \ {v}.

Now we show that Ŝt maintains the invariant of the algorithm. Let L ∈ S .

1. Let Lt = E(Ht) ∩ L and LR = L \ Lt. Furthermore, edges of Lt can be

partitioned into Lt′ = E(Ht′) ∩ L and Lv = Lt \ Lt′ . That is, Lt = Lt′ ] Lv.

2. Let Z = ∂t(L) and Z ′ = ∂t
′
(L).

By the property of Ŝt′ , there exists a L̂t′ ∈ Ŝt′ [Z ′] such that

L ∈ S ⇐⇒ Lt′ ] Lv ] LR ∈ S

⇐⇒ L̂t′ ] Lv ] LR ∈ S (17.1)

and ∂t
′
(L) = ∂t

′
(L̂t′ ] Lv ] LR) = Z ′.

We put L̂t = L̂t′∪Lv and L̂ = L̂t∪LR. We now show that L̂t ∈ Ŝt[Z]. If v /∈ Z ′, then

v /∈ T , L̂t = L̂t′ and Z = Z ′. This implies that L̂t ∈ Ŝt[Z]. If v ∈ Z ′ and Lv 6= ∅ then

Z ′ = Z∪{v}. This implies that L̂t ∈ Ŝt′ [Z ′]�{Lv} ⊆ Ŝt[Z]. If v ∈ Z ′ and Lv = ∅ then

Z ′ = Z ∪ {v} and L̂t = L̂t′ . This implies that L̂t ∈ {A ∈ Ŝt′ [Z ′] : A ∈ St} ⊆ Ŝt[Z].

By (17.1), L̂ ∈ S . Finally, we need to show that ∂t(L̂) = Z. Towards this just note

that ∂t(L̂) = Z ′ \ {v} = Z. This concludes the proof for the fact that Ŝt maintains

the correctness invariant.

Join node t with two children t1 and t2. Here, we know that Xt = Xt1 = Xt2 .

Also we know that the edges of Ht is obtained by the union of edges of Ht1 and Ht2

which are disjoint. Of course they are separated by the vertices in Xt. A natural

way to obtain a family of partial solutions for Ht is that we take the union of edges

subsets of the families stored at nodes t1 and t2. This is exactly what we do. Let

Ŝt[Z] = Ŝt1 [Z] � Ŝt2 [Z].
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Now we show that Ŝt maintains the invariant. Let L ∈ S .

1. Let Lt = E(Ht) ∩ L and LR = L \ Lt. Furthermore edges of Lt can be

partitioned into those belonging to Ht1 and those belonging to Ht2 . Let Lt1 =

E(Ht1) ∩ L and Lt2 = E(Ht2) ∩ L. Observe that since E(Ht1) ∩ E(Ht2) = ∅,
we have that Lt1 ∩Lt2 = ∅. Also observe that Lt = Lt1 ]Lt2 and G[Lt1 ], G[Lt1 ]

form forests.

2. Let Z = ∂t(L). Since Xt = Xt1 = Xt2 this implies that Z = ∂t(L) = ∂t1(L) =

∂t2(L).

Now observe that

L ∈ S ⇐⇒ Lt1 ] Lt2 ] LR ∈ S

⇐⇒ L̂t1 ] Lt2 ] LR ∈ S (by the property of Ŝt1 we have L̂t1 ∈ Ŝt1 [Z])

⇐⇒ L̂t1 ] L̂t2 ] LR ∈ S (by the property of Ŝt2 we have L̂t2 ∈ Ŝt2 [Z])

We put L̂t = L̂t1 ∪ L̂t2 . By the definition of Ŝt[Z], we have that L̂t1 ∪ L̂t2 ∈ Ŝt[Z].

The above inequalities also show that L̂ = L̂t ∪ LR ∈ S . It remains to show that

∂t(L̂) = Z. Since ∂t1(L) = Z, we have that ∂t1(L̂t1 ] Lt2 ] LR) = Z. Now since

Xt1 = Xt2 we have that ∂t2(L̂t1 ] Lt2 ] LR) = Z and thus ∂t2(L̂t1 ] L̂t2 ] LR) = Z.

Finally, because Xt2 = Xt, we conclude that ∂t(L̂t1 ] L̂t2 ] LR) = ∂t(L̂) = Z. This

concludes the proof of correctness invariant.

Root node r. Here, Xr = ∅. We go through all the solution in Ŝr[∅] and output

the one with the minimum weight. This concludes the description of the dynamic

programming algorithm.

Computation of Ŝt. Now we show how to implement the algorithm described

above in the desired running time by making use of Lemma 17.1. For our discussion

209



let us fix a node t and Z ⊆ Xt of size k. While doing dynamic programming

algorithm from the base nodes to the root node we always maintain the size invariant.

Base node t. Trivially, in this case we have maintained size invariant.

Introduce node t with child t′. Here, we have that Ŝt[Z] = Ŝt′ [Z \{v}] and thus

the number of partial solutions with i connected components in Ŝt[Z] is bounded(
k
i

)
.

Forget node t with child t′. In this case,

Ŝt[Z] =


(
Ŝt′ [Z ∪ {v}] � Pv[Z]

)
∪
{
A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St

}
if v ∈ T(

Ŝt′ [Z ∪ {v}] � Pv[Z]
)
∪
{
A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St

}
∪ Ŝt′ [Z] if v /∈ T

Since Ŝt′ [Z ∪ {v}] maintains size invariant, the number of edge subsets with i con-

nected components in Ŝt′ [Z ∪ {v}] is upper bounded by
(
k+1
i

)
. It is easy to see that

the number of edge subsets with i connected components in Pv[Z] is upper bounded

by
(
k
i

)
. So first we apply Lemma 17.1 and obtain R ⊆ Ŝt′ [Z ∪ {v}] � Pv[Z] that

maintains the correctness and size invariants. Now let,

Ŝ ′t[Z] =


R∪

{
A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St

}
if v ∈ T

R∪
{
A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St

}
∪ Ŝt′ [Z] if v /∈ T

Note that Ŝ ′t[Z] maintains correctness invariant. Since the number of edge subsets

with i connected components in {A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St} and Ŝt′ [Z] is bounded

by
(
k+1
i

)
, the the number of edge subsets with i connected components in Ŝ ′t[Z] is

at most
(
k+4
i

)
. Also note that Ŝ ′t[Z] = Ŝ ′t[Z] � {∅}. Thus we can apply Lemma 17.1

and obtain Ŝ ′′t [Z] ⊆ Ŝ ′t[Z] that maintains the correctness and size invariants. We

update Ŝt[Z] = Ŝ ′′t [Z].
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The running time to compute {A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St} is O(2|Z|n). Thus the

running time T to compute Ŝt (that is, across all subsets of Xt) is

T = O
(

tw+1∑
i=1

(
tw + 1

i

)(
iω (2ω + 2)i n+ iω2i(ω−1)3in

)
+

tw+1∑
i=1

(
tw + 1

i

)
2in

)
= O

(
twωn (2ω + 3)tw + twωn

(
1 + 2ω−1 · 3

)tw)

Join node t with two children t1 and t2. Here we defined

Ŝt[Z] = Ŝt1 [Z] � Ŝt2 [Z].

The number of edge subsets with i connected components in Ŝt1 [Z] and Ŝt2 [Z] are

bounded by
(
k
i

)
. Now, we apply Lemma 17.1 and obtain Ŝ ′t[Z] that maintains the

correctness invariant and has size at most 2k. We put Ŝt[Z] = Ŝ ′t[Z]. The running

time to compute Ŝt is

O
(
twωn (2ω + 3)tw + twωn

(
1 + 2ω−1 · 3

)tw)
.

Thus the whole algorithm takes O
(
twωn2 (2ω + 3)tw + twωn2 (1 + 2ω−1 · 3)

tw
)

=

O(8.7703twn2) time as the number of nodes in a nice tree-decomposition is upper

bounded by O(n). However, observe that we do not need to compute the forests

and the associated weight at every step of the algorithm. The size of the forest is

at most tw + 1 and we can maintain these forests across the bags during dynamic

programming in time twO(1). Also, these forests can be used to compute the set

{A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St} during the computation in the forget node t. This will

lead to an algorithm with the claimed running time. This completes the proof.
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17.2 Feedback Vertex Set

In this subsection we study the Feedback Vertex Set problem which is defined
as follows.

Feedback Vertex Set Parameter: tw
Input: An undirected graph G together with a tree-decomposition (T,X ) of
width tw and a non negative weight function w : V (G)→ N.
Task: Find a minimum weight set Y ⊆ V (G) such that G[V (G) \ Y ] is a forest.

Let G be an input graph of the Feedback Vertex Set problem. In this subsection
instead of saying feedback vertex set Y ⊆ V (G) is a solution, we say that V (G) \ Y
is a solution, i.e, our objective is to find a maximum weight set V ′ ⊆ V (G) such
that G[V ′] is a forest. We call V ′ ⊆ V (G) is an optimal solution if V ′ is a solution
with maximum weight. Let S be a family of vertex subsets such that every vertex
subset corresponds to an optimal solution. That is,

S = {V ′ ⊆ V (G) | V ′ is an optimal solution}.

Let (T,X ) be a tree decomposition of G of width tw. For each tree node t and
Z ⊆ Xt, we define St[Z], family of partial solutions as follows.

St[Z] = {U ⊆ V (Ht) | U ∩Xt = Z and Ht[U ] is a forest }

We denote by Kt a complete graph on the vertex set Xt. Let G∗ be subgraph of G.
Let C ′1, . . . , C

′
` be the connected components of G∗ that have nonempty intersection

with Xt. Let Ci = C ′i ∩ Xt. By Ft(G
∗) we denote the a forest {Q1, . . . , Q`} where

each Qi is an arbitrary spanning tree of Kt[Ci].

For two family of vertex subsets P and Q of the subgraph Ht, we denote

P ⊗t Q = {U1 ∪ U2 | U1 ∈ P , U2 ∈ Q and Ht[U1 ∪ U2] is a forest }.

With every node t of T, we associate the subgraph Ht of G. For every node t, we
keep a family of partial solutions for the graph Ht which sufficient to guarantee
the correctness of the algorithm. That is for every optimal solution L ∈ S with
L ∩Xt = Z and its intersection Lt = V (Ht) ∩ L with the graph Ht, we have some
partial solution L̂t in our subset such that L̂t ∩Xt = Z and L̂t ∪ LR is an optimal
solution, i.e G[L̂t ∪LR] is a forest, where LR = L \Lt and w(L̂t ∪LR) ≥ w(L). Now
we are ready to state the main theorem.

Theorem 17.2. Let G be an n-vertex graph given together with its tree decompo-

sition of width tw. Then Feedback Vertex Set on G can be solved in time
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O
(

(1 + 2ω−1 · 3)
tw

twO(1)n
)

.

Proof. For every node t of T and Z ⊆ Xt, we store a family of vertex subsets Ŝt[Z]

of V (Ht) satisfying the following correctness invariant.

Correctness Invariant: For every L ∈ S we have the following. Let

Lt = V (Ht) ∩ L, LR = L \ Lt and L ∩ Xt = Z. Then there exists

L̂t ∈ Ŝt[Z] such that L̂ = L̂t ∪ LR is an optimal solution, i.e G[L̂t ∪ LR]

is a forest with w(L̂t) ≥ w(Lt). Thus we have that L̂ ∈ S .

We process the nodes of the tree T from base nodes to the root node while doing

the dynamic programming. Throughout the process we maintain the correctness

invariant, which will prove the correctness of the algorithm. However, our main

idea is to use representative sets to obtain Ŝt[Z] of small size. That is, given the

set Ŝt[Z] that satisfies the correctness invariant, we use representative set tool to

obtain a subset Ŝ ′t[Z] of Ŝt[Z] that also satisfies the correctness invariant and has

size upper bounded by 2|Z| in total. More precisely, the number of partial solutions

in Ŝ ′t[Z] that have i connected components with nonempty intersection with Xt is

upper bounded by
(|Z|
i

)
. Thus, we maintain the following size invariant.

Size Invariant: After node t of T is processed by the algorithm, we

have that |Ŝt[Z, i]| ≤
(|Z|
i

)
, where Ŝt[Z, i] is the set of partial solutions

that have i connected components with nonempty intersection with Xt.

Lemma 17.2 (Product Shrinking Lemma). Let t be a node of T and let Z ⊆ Xt be a

set of size k. Let P and Q be two family of vertex subsets of V (Ht) (partial solutions)

such that for any A ∈ P and B ∈ Q, E(Ht[A]) ∩ E(Ht[B]) = ∅. Furthermore, let

Ŝt[Z] = P ⊗t Q be the family of vertex subsets of V (Ht) satisfying the correctness

invariant. If the number of partial solutions with i connected components having

nonempty intersection with Z in P as well as in Q is bounded by
(
k+c
i

)
where c is
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some fixed constant, then in time O
(
kω (2ω + 2)k n+ kω2k(ω−1)3kn

)
we can compute

Ŝ ′t[Z] ⊆ Ŝt[Z] satisfying correctness and size invariants.

Proof. We start by associating a matroid with node t and the set Z ⊆ Xt as follows.

We consider a graphic matroid M = (E, I) on Kt[Z]. Here, the element set E of

the matroid is the edge set E(Kt[Z]) and the family of independent sets I consists

of spanning forests of Kt[Z]. Here our objective is to find a small subfamily of

Ŝt[Z] = P ⊗t Q satisfying correctness and size invariants using efficient computa-

tion of representative family in the graphic matroid M . The main idea to prune

the size of partial solutions is as follows: for each independent set U ∈ Ŝt[Z] we

associate Ft(Ht[U ]) as the corresponding independent set in the graphic matroid M

and compute representative family in the graphic matroid M .

Let P = {A1, . . . , A`} andQ = {B1, . . . , B`′}. Let L1 = {Ft(Ht[A1]), . . . , Ft(Ht[A`])}
and L2 = {Ft(Ht[B1]), . . . , Ft(Ht[B`′ ])} be the set of forests in Kt[Z] correspond-

ing to the vertex subsets in P and Q respectively. Now we define a non negative

weight function w′ : L1 • L2 → N as follows. For each Ft(Ht[Ai]) ∪ Ft(Ht[Bj]) ∈
L1 • L2 we set w′ (Ft(Ht[Ai]) ∪ Ft(Ht[Bj])) = w(Ai ∪ Bj). For i ∈ [k] and r ∈
{1, 2}, let Lr,i be the family of forests of Lr with i edges. Now we apply Corol-

lary 16.1 and find ̂L1,i • L2,j ⊆k−1−i−j
maxrep L1,i • L2,j of size

(
k−1
i+j

)
for all i, j ∈ [k]. Let

Ŝ ′t[Z, k − d] ⊆ Ŝt[Z, k − d] be such that for every U1 ∪ U2 ∈ Ŝ ′t[Z, k − d] we have

that Ft(Ht[U1]) ∪ Ft(Ht[U2]) ∈ ⋃i+j=d
̂L1,i • L2,j. Let Ŝ ′t[Z] =

⋃k
j=0 Ŝ ′t[Z, j]. By

Corollary 16.1, |Ŝ ′t[Z, k − d]| ≤ k
(
k−1
d

)
≤
(
k
k−d

)
, and hence Ŝ ′t[Z] maintains the size

invariant.

Now we show that the Ŝ ′t[Z] maintains the correctness invariant. Let L ∈ S and let

Lt = V (Ht)∩L, LR = L\Lt and Z = L∩Xt. Since Ŝt[Z] satisfy correctness invariant,

there exists L̂t ∈ Ŝt[Z] such that w(L̂t) ≥ w(Lt), L̂ = L̂t∪LR is an optimal solution

and L̂ ∩Xt = Z. Since Ŝt[Z] = P ⊗t Q, there exists U1 ∈ P and U2 ∈ Q such that

L̂t = U1∪U2. Observe that Ht[U1∪U2] form a forest. Consider the forests Ft(Ht[U1])

and Ft(Ht[U2]). Suppose |Ft(Ht[U1])| = i1 and |Ft(Ht[U2])| = i2, then Ft(Ht[U1]) ∪
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Ft(Ht[U2]) ∈ L1,i1 • L1,i2 . This is because, if Ft(Ht[U1]) ∪ Ft(Ht[U2]) contains a

cycle, then corresponding to that cycle we can get a cycle in Ht[U1 ∪U2], which is a

contradiction. Now let E ′ = Ft(G[LR∪Z]) be the forest corresponding to LR∪Z with

respect to the bag Xt. Since L̂ is a solution, we have that Ft(Ht[U1])∪Ft(Ht[U2])∪
E ′ is a forest in Kt[Z]. Since ̂L1,i1 • L2,i2 ⊆k−1−i1−i2

maxrep L1,i1 • L2,i2 , there exists a

forest Ft(Ht[U
′
1])∪Ft(Ht[U

′
2]) ∈ ̂L1,i1 • L2,i2 such that w′ (Ft(Ht[U

′
1]) ∪ Ft(Ht[U

′
2])) ≥

w′ (Ft(Ht[U1] ∪ Ft(Ht[U2]))) = w(U1∪U2) and Ft(Ht[U
′
1])∪Ft(Ht[U

′
2])∪E ′ is a forest

in Kt[Z]. Hence U ′1 ∪ U ′2 ∈ Ŝ ′t[Z]. Since w(U ′1 ∪ U ′2) = w′ (Ft(Ht[U
′
1]) ∪ Ft(Ht[U

′
2])),

w(U ′1 ∪ U ′2) ≥ w(U1 ∪ U2). Thus, we can conclude that U ′1 ∪ U ′2 ∪ LR is an optimal

solution. This proves that Ŝ ′t[Z] maintains the correctness invariant.

By Corollary 16.1, the running time to compute Ŝ ′t[Z] is upper bounded by,

O
(
kω (2ω + 2)k n+ kω2k(ω−1)3kn

)
.

We now explain the dynamic programming algorithm over the tree-decomposition

(T,X ) of G and prove that it maintains the correctness invariant. We assume that

(T,X ) is a nice tree-decomposition of G. By Ŝt we denote
⋃
Z⊆Xt Ŝt[Z] (also called

a representative family of partial solutions). We show how Ŝt is obtained by doing

dynamic programming from base node to the root node.

Base node t. Here the graph Ht is empty and thus we take Ŝt = {∅}.

Introduce node t with child t′. Here, we know that Xt ⊃ Xt′ and |Xt| =

|Xt′ |+ 1. Let v be the vertex in Xt \Xt′ . Furthermore observe that E(Ht) = E(Ht′)

and v is degree zero vertex in Ht. Thus the graph Ht only differs from Ht′ at

a isolated vertex v. Since we have not added any edge to the new graph, the

family of solutions does not change. Thus, we take Ŝt = Ŝt′ . Formally, we take
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Ŝt[Z] = Ŝt′ [Z \ {v}]. Since, Ht and Ht′ have same set of edges both the correctness

and size invariant is maintained.

Forget node t with child t′. Here we know Xt ⊂ Xt′ , |Xt| = |Xt′| − 1 Let

v ∈ Xt′ \ Xt. Observe that E(Ht) ⊇ E(Ht′). Thus for any U ∈ Ŝt′ , Ht[U ] may or

may not be a forest. So in this case we collect all the vertex subsets in Ŝt′ which is

a forest as induced subgraph in Ht. Formally,

Ŝt[Z] =
{
A ∈ Ŝt′ [Z] ∪ Ŝt′ [Z ∪ v]

∣∣∣ Ht[A] is a forest
}
.

Let Ŝt =
⋃
Z⊆Xt Ŝt[Z]. Now we show that Ŝt satisfies correctness invariant. Let

L ∈ S . Let Lt′ = V (Ht′)∩L and LR = L \Lt′ . Let Z ′ = L∩Xt′ Now observe that

L ∈ S ⇐⇒ Lt′ ∪ LR ∈ S

⇐⇒ L̂t′ ∪ LR ∈ S (by the property of Ŝt′ we have that L̂t′ ∈ Ŝt′ [Z ′])

Since Ht[L̂t′ ] is a forest, L̂t′ ∈ Ŝt[Z ′ \ {v}]. This concludes the proof of correctness

invariant.

Since Ŝt[Z] ⊆ Ŝt′ [Z]∪Ŝt′ [Z∪v], the number of partial solutions with i connected com-

ponents having nonempty intersection with Z in Ŝt[Z] is bounded by
(
k
i

)
+
(
k+1
i

)
≤(

k+2
i

)
. Since Ŝt[Z] = Ŝt[Z]⊗t {∅}, we apply Lemma 17.2 and find Ŝ ′t[Z] ⊆ Ŝt[Z] sat-

isfies correctness and size invariant in time O
(
kω (2ω + 2)k n+ kω2k(ω−1)3kn

)
and

we set Ŝt[Z] = Ŝ ′t[Z].

Join node t with two children t1 and t2. Here, we know that Xt = Xt1 = Xt2 .

The natural way to get a family of partial solutions for Xt is the union of vertex sets

of two families stored at node t1 and t2 which form a forest as an induced subgraph
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of Ht, i.e,

Ŝt[Z] = {U1 ∪ U2 | U1 ∈ Ŝt1 [Z], U2 ∈ Ŝt2 [Z], Ht[U1 ∪ U2] is a forest}

= Ŝt1 [Z]⊗t Ŝt2 [Z]

Now we show that Ŝt maintains the invariant. Let L ∈ S . Let Lt = V (Gt)∩L,Lt1 =

V (Gt1) ∩ L,Lt2 = V (Gt2) ∩ L and LR = L \ Lt. Let Z = L ∩Xt Now observe that

L ∈ S ⇐⇒ Lt1 ∪ Lt2 ∪ LR ∈ S

⇐⇒ L̂t1 ∪ Lt2 ∪ LR ∈ S (by the property of Ŝt1 we have L̂t1 ∈ Ŝt1 [Z])

⇐⇒ L̂t1 ∪ L̂t2 ∪ LR ∈ S (by the property of Ŝt2 we have L̂t2 ∈ Ŝt2 [Z])

We put L̂t = L̂t1∪L̂t2 . By the definition of Ŝt[Z], we have that L̂t1∪L̂t2 ∈ Ŝt[Z]. The

above inequalities also show that L̂ = L̂t ∪ LR ∈ S . Note that (L̂t ∪ LR) ∩Xt = Z

This concludes the proof of correctness invariant.

We apply Lemma 17.2 and find Ŝ ′t[Z] ⊆ Ŝt[Z] satisfies correctness and size invariant

in time O
(
kω (2ω + 2)k n+ kω2k(ω−1)3kn

)
and we set Ŝt[Z] = Ŝ ′t[Z].

Root node r. Here, Xr = ∅. We go through all the solution in Ŝr[∅] and output

the one with the maximum weight.

In worst case, in every tree node t, for all subset Z ⊆ Xt, we apply Lemma 17.2. So

by doing the same run time analysis as in the case of Steiner Tree, the total running

time will be upper bounded by O
((

(2ω + 3)tw + (1 + 2ω−1 · 3)
tw
)

twO(1)n
)
.
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Chapter 18

Matroidal Multilinear Monomial

Detection

In this chapter we extend the Multilinear Monomial Detection problem to a
matroidal version, where variables of a monomial should form an independent set of a
matroid and design an algorithm for this. The problem Matroidal Multilinear
Monomial Detection (k-wMMlD) is defined as follows.

k-wMMlD Parameter: k
Input: An arithmetic circuit C over variables X = {x1, x2, . . . , xn} representing
a polynomial P (X) over Z, a linear matroid M = (E, I) where the ground
set E = X with its representation matrix AM and an additive weight function
w : 2X → N.
Question: Does P (X) construed as a sum of monomials contains a multilinear
monomial Z of degree k such that Z ∈ I? If yes find a minimum weighted such
Z.

Our main theorem of this section is as follows. The proof of this theorem is along
the lines of Theorem 12.1. The only difference is that we compute representative
family with respect to the given matroid.

Theorem 18.1. k-wMMlD can be solved in time O(7.7703kkωs(C)).

Proof. We outline a proof here. Let π = v1, . . . , vn be a topological ordering of

C such that all the nodes corresponding to variables appear before any other gate

and for every directed arc uv we have that u <π v. As in Theorem 12.1, at every

node we keep a family F jvi of j-multilinear term that are also members of I, where
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j ∈ {1, . . . , k}. Let Fvi =
⋃k
x=1Fxvi . So Fv ⊆ I. We process the nodes from left to

right and keep F̂ jvi ⊆k−jminrep F jvi of size
(
k
p

)
.

When v is an input node then the associated family contains only one set. That is,

if v is labelled with xi and {xi} ∈ I then Fv = {{xi}}, otherwise Fv = {∅}. If v is

labelled from Z+ then Fv = {∅}. When v is not an input node, then we have two

cases.

Addition Gate. v = v1 + v2

Due to the left to right computation in the topological order, we have repre-

sentative families Fv1 and Fv2 for v1 and v2 respectively, where the number

of subsets with p elements in Fv1 as well as in Fv2 will be at most
(
k
p

)
. So

the representative family corresponding to v will be the representative family

of Fv1 ∪ Fv2 . We partition Fv1 ∪ Fv2 based on the size of subsets in it. Let

Fv1∪Fv2 =
⊎
p≤kHp, where Hp contains all subsets of size p in Fv1∪Fv2 . Note

that |Hp| ≤ 2
(
k
p

)
. Now using Theorem 13.2 we can compute all Ĥp ⊆k−pminrep Hp

in time

O
(

2
∑
p≤k

{(
k

p

)(
k

p

)
pω +

(
k

p

)(
k

p

)ω−1
})

.

The above running time is upper bounded by O(4kpωk + 2ωkk). We output⋃
p≤k Ĥp as the representative family corresponding to the node v. By The-

orem 13.2, |Ĥp| ≤
(
k
p

)
and thus the number of subsets with p elements in⋃

p≤k Ĥp is at most
(
k
p

)
.

Multiplication Gate. v = v1 × v2

Similar to the previous case we have a representative families Fv1 and Fv2 for

v1 and v2 respectively, where the number of subsets with p elements in Fv1 as

well as in Fv2 , is at most
(
k
p

)
. Here, the representative family corresponding

to v will be the representative family of Fv1 • Fv2 . We have that

Fv1 • Fv2 =
⋃
p1,p2

Fp1v1 • Fp2v2 ,
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where Fpivi contains all the subsets of size pi in Fvi . We know that |Fpivi | ≤
(
k
pi

)
.

Now by using Corollary 16.1, we can compute ̂Fp1v1 • Fp2v2 ⊆k−p1−p2minrep Fp1v1 •Fp2v2 of

size
(

k
p1+p2

)
for all p1, p2 together in time O

(
kω (2ω + 2)k + kω2k(ω−1)3k

)
.

Now let F =
⋃
p1,p2

̂Fp1v1 • Fp2v2 = ]pHp, where ]pHp is the partition of F
based on the size of subsets. It is easy to see that |Hp| ≤ k

(
k
p

)
. Now using

Theorem 13.2 we can compute Ĥp ⊆k−pminrep Hp for all p ≤ k together in time

O
(
k
∑
p≤k

{(
k

p

)(
k

p

)
pω +

(
k

p

)(
k

p

)ω−1
})

The above running time is upper bounded by O(4kkω+1 + 2ωkk2). We output⋃
p≤k Ĥp as the representative family corresponding to the node v.

Now we output a minimum weight set of size k among the representative family

corresponding to the root node, otherwise we output No. Since there are s(C) nodes

in C, the total running time is bounded byO
(
kω (2ω + 2)k s(C) + kω2k(ω−1)3ks(C)

)
.

This completes the proof.
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Part IV

Matroid Girth and Connectivity
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Chapter 19

Matroid Girth

Matroids are mathematical objects which have many applications in algorithms.
Certain problems on matroids are known to be equivalent to fundamental combina-
torial problems like Minimum Weight Spanning Tree or Perfect Matching.
Matroids are an exact characterization of structures on which a greedy algorithm
produces an optimum solution. This motivates our study on several natural ma-
troid problems. In this part of the thesis we study Matroid Girth and Matroid
Connectivity problems.

One of the most fundamental problems in coding theory is the problem of computing
the minimum distance of a linear code. The decision version of this problem for
binary linear codes was conjectured to be NP-complete by Berlekamp, McEliece,
and van Tilborg [12] in 1978 and it was only in 1997 that its NP-completeness
was proved by Vardy [116]. In fact, the result of Vardy can be extended to linear
codes over all finite fields. The Minimum Distance problem is a special case of
the Matroid Girth problem, where the objective is to compute the length of a
shortest circuit in a given matroid. Also note that the notion of girth for graphic
matroids coincides with the notion of girth defined in the context of graphs. It was
known in the 80’s that Matroid Girth is NP-complete [95]. Later Vardi showed
that the problem is NP-complete even for binary matroids (matroids over F2) [116].
Therefore, Matroid Girth is a natural candidate for a study in the realm of
parameterized complexity. We study Matroid Girth on various parameters.

Matroid Girth
Input: A linear matroid M = (E, I) together with its representation matrix
AM of dimension rank(M)×|E| over a field Fq, and a positive integer k.
Parameters: (1) k, (2) rank(M) and (3) rank(M)+q
Question: Does there exist a circuit of size at most k in M?

A first natural parameter for our problems is the solution size, k. We argue that
this problem is unlikely to have an FPT algorithm in general. For this, we consider

225



the Hall Set problem. In this problem we are given a bipartite graph G with
bipartition into A and B and a positive integer k, and the objective is to find
a set S ⊆ A of size at most k such that the number of neighbors of S in B is
strictly smaller than |S|, that is, |N(S)| < |S|. It is known that Hall Set is W[1]-
hard [63]. This problem is clearly a special case of Matroid Girth. Indeed, if the
input to Matroid Girth is a transversal matroid then the problem is precisely
Hall Set. We would also like to point out that Even Set, the parameterized
version of the problem of computing the minimum distance of a binary linear code
is a long standing open problem in the area and is stated among the most “infamous
open problems” in the Research Horizons section of the recent textbook by Downey
and Fellows [41, Chapter 33.1]. However, the exact version of Even Set, where we
want to check for a circuit of size exactly k is known to be W[1]-hard [43]. These
intractability results force us to look for alternate parameterizations.

The next natural parameter would be the rank of the input matroid. Since it is a
larger parameter than the solution size k, one might hope for tractability results in
place of previous intractability results. But the NP-hardness reduction by Khachiyan
et al [73] for the problem Linear Degeneracy, a special case of Matroid Girth,
also gives W[1]-hardness for Matroid Girth when parameterized by the rank of
the input matroid.

Linear Degeneracy
Input: A k ×m matrix M of rank k.
Question: Is there a set of k columns in M which are linearly dependent

Khachiyan et al [73] showed that Linear Degeneracy is NP-hard, by giving a
reduction from Small Subset Sum, which is defined as follows.

Small Subset Sum
Input: A set of n positive integers S = {α1, . . . , αn} and k, β ∈ N+.
Question: Does there exist a subset of k integers in S which sum up to β?

The reduction to prove Linear Degeneracy is NP-hard [73, Theorem 1] takes
as an input (S, k, β), an instance of Small Subset Sum and produces an instance
(M,k + 3) to Linear Degeneracy, where M is a (k + 3) × (|S| + 2) matrix. It
is known that Small Subset Sum parameterized by k is W [1]-hard [41]. This
implies that Linear Degeneracy parameteized by k is W[1]-hard. Thus we can
conclude that Matroid Girth is W[1]-hard.

Therefore, we choose as our parameter, rank(M)+q, where q is the size of the field in
which the matroid is represented. Indeed, q is constant for a fixed finite field such as
F2. Observe that since the number of distinct column vectors in Frq is qr, Matroid

Girth can be solved in time qr
2|E|O(1), where r = rank(M). Furthermore, an

algorithm for Matroid Girth with running time O(qrank(M)+krank(M) log k) can
be found as a byproduct in [14] (see Theorem 14 in [14]). However, it was unknown
if the additive dependence on k in the exponent can be avoided. In Section 19.1, we
give a faster algorithm for Matroid Girth. This algorithm gives an exponential
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speedup over the previous algorithm when k is close to rank(M).

Theorem 19.1. Matroid Girth can be solved in time O(qrank(M)rank(M) +

|E|k2).

Theorems 19.1 imply FPT algorithms parameterized by rank(M) for all matroids de-
fined over a constant size field (such as graphic matroids and co-graphic matroids).
Our lower bounds rule out having an algorithm without having any dependence
on the field size. However, it is possible that for certain matroids, for instance,
transversal matroids, gammoids and strict gammoids, which are only representable
over fields whose size depends on |E|, one can obtain an FPT algorithm param-
eterized by rank(M) alone. In fact, we give such an algorithm, running in time

2rank(M)|E|O(1), for transversal matroids. For strict gammoids however, we give
a polynomial time algorithm and leave open the same problem for gammoids. In
Section 19.2 we explain algorithms for Matroid Girth on transversal matroids
and strict gammoids.

19.1 Algorithm for Matroid Girth

In this section we design a qrank(M)|E|O(1) time algorithm for Matroid Girth
parameterized by rank(M) using the MacWilliams identity. In what follows we give
basics of coding theory and recall the MacWilliams identity.

Coding Theory. A linear code C over a finite field Fq, defined by n×m matrix A,
is the set of m-dimensional vectors C = {vA | v ∈ Fnq }. The matrix A is called the
generator matrix of C. The code C is the linear subspace of Fmq spanned by the row
vectors of A and its dimension is equal to rank(A). Without loss of generality we can
assume n =rank(A). A (m,n)-linear code is one such that the length of codewords
is m and its dimension is n.

Let C be a linear code with generator matrix A. Let ~0 be the zero vector (0, . . . , 0)T .
The length of ~0 will be clear from the context. The parity check matrix H of C is a
(m− n)×m matrix satisfying HwT = ~0 for any codeword w ∈ C. It is well-known
that there is a duality between generator matrices and parity check matrices: For
the code C⊥ with generator matrix HT , it is easily verified that Av = ~0 holds for
any v ∈ C⊥ . That is, A is the parity check matrix of C⊥. The code C⊥ is called the
dual code of C. Given a codeword w, the number of non-zero entries in w is called
the weight of w and is denoted by wt(w). The weight enumerator of an (m,n)-linear
code C is a polynomial in x, y and is given by,

WC(x, y) =
∑
c∈C

xm−wt(c)ywt(c) =
m∑
i=0

ξix
m−iyi,
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where ξi is the number of words of weight i in C. The following theorem shows that
the weight enumerator of C⊥ can be calculated from that of C.

Proposition 19.1 (MacWilliams identity [89]). WC⊥(x, y) = 1
|C|WC(x+(q−1)y, x−

y).

Algorithm. We next prove Theorem 19.1.

Proof of Theorem 19.1. Let (M,k) be an instance to Matroid Girth and let

AM be the representation matrix of M of order r × m over Fq, where m = |E|
and r =rank(M). Consider the system of linear equations AMv = ~0, where v =

(v1, . . . , vm)t is a vector of variables. Recall that girth of a matroid M is denoted by

g(M). We have the following claim.

Claim 19.1. g(M) ≤ k if and only if there exists a vector z ∈ Fmq with wt(z) ≤ k

and AMz = ~0.

Proof. Let C ′ ⊆ E be a circuit of length at most ` ≤ k in M . Let W ⊆ {1, . . . ,m}
be the set of indices corresponding to the elements of the circuit C ′. Since C ′ is a

circuit in M , C ′ is linearly dependent. Thus, the columns corresponding to indices

in W are also linearly dependent. Hence there exist λ1, . . . , λ` ∈ Fq, not all zeros,

such that
∑

j∈W λjAj = ~0. Here, Aj denotes the j-th column of AM . Now consider

the vector z = (z1, . . . , zm)T , where zj = λj if j ∈ W , else zj = 0. Note that

wt(z) = ` ≤ k. Since
∑

j∈W λjAj = ~0, we have that AMz = ~0.

Suppose there exists a vector z with wt(z) ≤ k such that AMz = ~0, then
∑m

i=1 ziAi =

~0 where Ai is ith column in AM . Let W ⊆ {1, . . . ,m} such that i ∈ W if and only

if zi 6= 0, then
∑

i∈W ziAi = ~0. Since |W | ≤ k, there exist (at most) k columns in A

which are linearly dependent. Hence, g(M) ≤ k.

By Claim 19.1, to show that g(M) ≤ k, it is sufficient to show that there exists

a vector z ∈ Fmq with wt(z) ≤ k and AMz = ~0. Let C be the code generated by
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the matrix AM , i.e., C = {vAM | v ∈ Frq}. Let C⊥ be the dual code of C, i.e

C⊥ = {u | AMu = ~0}. Using the MacWilliams identity we have,

WC⊥(x, y) =
1

|C|WC(x+ (q − 1)y, x− y). (19.1)

Since |C| ≤ qr, the polynomial WC(x, y) can be computed in O(qrr + |E|) time.

Now we have,

WC(x+ (q − 1)y, x− y) =
m∑
i=0

ξi(x+ (q − 1)y)m−i(x− y)i,

where ξi is the number of codewords in C of weight i. Claim 19.1 implies that there

exists a circuit of size at most k in M if and only if there exists a codeword z in C⊥

such that wt(z) ≤ k, that is, the coefficient of xm−jyj in WC⊥(x, y) is non zero for

some j ≤ k (by the definition of weight enumerator of C⊥). Due to the MacWilliams

identity (Equation 19.1), there exists a codeword z in C⊥ such that wt(v) = j if and

only if coefficient of xm−jyj in WC(x+(q−1)y, x−y) is not equal to zero. Using the

binomial theorem, we have that the coefficient of xm−jyj in ξi(x+(q−1)y)m−i(x−y)i

is

ξi
∑

j′+j′′=j

(−1)j
′′
(q − 1)j

′
(
m− i
j′

)(
i

j′′

)
.

Hence the coefficient of xm−jyj in WC(x+ (q − 1)y, x− y) is

m∑
i=0

ξi
∑

j′+j′′=j

(−1)j
′′
(q − 1)j

′
(
m− i
j′

)(
i

j′′

)
(19.2)

Thus we can check whether the coefficient of xm−jyj in WC(x + (q − 1)y, x − y) is

non zero or not in time O(qr + mj). We output Yes if Equation 19.2 is non zero

for any j ≤ k. Hence the total running time is O(qrr + |E|k2).
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19.2 Matroid Girth on Specific Matroids

In this section we design FPT algorithm for Matroid Girth parameterized by rank
in transversal matroid and a polynomial time algorithm to find Matroid Girth
in a strict gammoid.

19.2.1 Matroid Girth on Transversal Matroid

We design an FPT algorithm for Matroid Girth parameterized by rank in transver-
sal matroid. The problem is defined as follows.

Transversal Matroid Girth Parameter: r =rank(MG)
Input: A bipartite graph G with V (G) = A ]B and an integer k
Question: Does there exist a set S ⊆ A of size at most k such that |N(S)| < |S|?

Since the size of a maximum matching in a bipartite graph is equal to the size of a
minimum vertex cover of G, the rank of the transversal matroid MG is equal to the
size of the minimum vertex cover.

Lemma 19.1. Let G be a bipartite graph with the vertex set V (G) being partitioned

into A and B and let X ] Y be a minimum vertex cover (of size r) of G, where

X ⊆ A and Y ⊆ B. Let X ′ ⊆ X and Y ′ ⊆ Y such that |X ′| ≤ k, |Y ′| < k,

N(X ′) ∩ Y ⊆ Y ′ and |N(X ′) \ Y | < k − |Y ′|. Then there exists a hall-set S of size

k such that S ∩X = X ′ and N(S) ∩ Y = Y ′ if and only if there exists a vertex set

P of size k − |X ′| in A \X such that N(P ) ⊆ Y ′.

Proof. (⇒) Let S be a hall-set of size k such that S ∩X = X ′ and N(S)∩ Y = Y ′.

Note that N(X ′)∩ Y ⊆ Y ′. Consider the set P = S \X. Note that P ⊆ A \X and

|P | = k− |X ′|. Since X ∪ Y is a vertex cover, N(P ) ⊆ Y and since N(S)∩ Y = Y ′,

N(P ) ⊆ Y ′.

(⇐) Let P ⊆ A \ X of size k − |X ′| such that N(P ) ⊆ Y ′. Now consider the set

S = X ′ ∪ P . Note that |S| = k and N(S) = N(X ′ ∪ P ) ⊆ Y ′ ∪ (N(X ′) \ Y ). Since

|N(X ′) \ Y | < k − |Y ′|, S is the required hall-set.

Theorem 19.2. Transversal Matroid Girth can be solved in time 2r|V (G)|O(1).

230



Proof. First we compute a minimum vertex cover X ∪ Y in G, where X ⊆ A and

Y ⊆ B. Now we guess k′ ≤ k, the size of a minimum sized hall-set. Let S be a

minimum sized hall-set. We also guess X ′ = S ∩ X and Y ′ = N(S) ∩ Y . Note

that |Y ′| should be strictly less than k′ and |N(X ′) \ Y | < k′ − |Y ′|. Now by

Lemma 19.1, we know that there exist a hall-set S ′ of size k′ such that X ′ = S ′ ∩X
and Y ′ = N(S ′) ∩ Y if and only if there exists a vertex set P of size k′ − |X ′| in

A\X such that N(P ) ⊆ Y ′. We can obtain the desired set P by just taking k′−|X ′|
vertices in A \X whose neighborhood is contained in Y ′. Since there are at most 2r

guesses for (X ′, Y ′), the total running time is upper bounded by 2r|V (G)|O(1).

19.2.2 Matroid Girth on Strict Gammoids

In this subsection we design a polynomial time algorithm to find Matroid Girth
in a strict gammoid. The problem is formally defined as follows.

Strict Gammoid Girth
Input: A directed graph D, S ⊆ V (D) and an integer k.
Question: Does there exist Q ⊆ V (D) of size at most k such that Q is a circuit
in the strict gammoid (D,S)

Theorem 19.3. Strict Gammoid Girth can be solved in polynomial time.

Proof. Let C be a circuit in (D,S). We claim that there exists a vertex u ∈ C such

that there exists a S − u cut, of size strictly less than |C| in D. Since C is a circuit

in (D,S), the number of vertex disjoint paths from S to C is strictly less than |C|.
Hence due to Menger’s theorem, any minimum sized S − C cut is strictly less than

C. Let T be a minimum sized S − C cut. Since |C| > |T |, there exists a vertex

u ∈ C \ T . Hence T is also a S − u cut.

Let v ∈ V (D) and let P ⊆ V (D) be a minimum sized S−v cut in D. We claim that

there is a circuit containing v in P ∪{v} in the strict gammoid (D,S). Towards the

proof of the claim, we show that P ∪{v} is dependent in (D,S). Suppose not, then

there exist |P |+ 1 vertex disjoint paths from S to P ∪ {v} in D, which contradicts

the fact that P is a minimum sized S − v cut in D. Since P is a minimum sized
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S − v cut in D, there exists |P | vertex disjoint paths from S to P (due to Menger’s

Theorem), that is P is independent in (D,S). Hence there is a circuit containing v

in P ∪ {v}.

Now the algorithm is as follows. It computes a minimum sized S − u cut for all

u ∈ V (D). If for any u ∈ V (D) the size of minimum sized S − u cut is less than k,

then the algorithm outputs Yes, otherwise algorithm outputs No. Since we can find

a minimum sized S − u cut in deterministic polynomial time using flow techniques,

Strict Gammoid Girth can be solved in polynomial time.
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Chapter 20

Matroid Connectivity

In this chapter we study another problem related to matroids, called the Matroid
Connectivity problem where the objective is to compute the connectivity of a
given matroid. The problem is formally defined as,

Matroid Connectivity
Input: A linear matroid M = (E, I) together with its representation matrix
AM of dimension rank(M)×|E| over a field Fq, and a positive integer k.
Parameters: (1) k, (2) rank(M) and (3) rank(M)+q
Question: Does M has a k-separation?

This problem generalizes the classical graph problem of computing the connectivity
of a given graph. The notion of connectivity defined for matroids is slightly different
from the standard one defined for graphs. It would be desirable to have a notion of
connectivity from graphs extending to matroids. Unfortunately, the standard notion
of edge-connectivity in graphs when extended to matroids does not fit well with the
duals of these matroids. With these issues in mind, Tutte [115] proposed the above
definition of connectivity for a matroid, which renders it dual-invariant. That is, a
matroid is `-connected if and only if its dual is. Finally, we note that Oxley [102]
has shown how Tutte’s definition of matroid connectivity can be modified to give a
matroid concept that directly generalizes the notion of connectivity on graphs.

Although it is easy to observe that Matroid Girth admits an algorithm with
running time |E|O(k), it is not at all obvious that Matroid Connectivity admits
an algorithm that is polynomial for every fixed integer k. Bixby and Cunningham,
using an algorithm for matroid intersection, gave an algorithm for Matroid Con-
nectivity running in time |E|O(k) (see [15] for details). In Section 20.1 we show
that Matroid Connectivity is not in P unless P=NP. In fact the proof of this
result also gives us the results that Matroid Connectivity is not FPT unless
FPT= W [1], when parameterized by rank(M) or k.
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Therefore we choose our parameter to be rank(M)+q, where q is the size of the field in
which the matroid is represented. In Section 20.2 we give a branching algorithm for
Matroid Connectivity which has a single-exponential dependence on the rank.
The main features of this algorithm are the use of the rank of matroids obtained
in the subproblems as a measure to quantify the progress of the algorithm and
application of the algorithm given by Theorem 19.1 to solve the base cases. Thus,
one can view this algorithm as a parameterized Turing-reduction from Matroid
Connectivity to Matroid Girth. Formally, we obtain the following theorem.

Theorem 20.1. Matroid Connectivity can be solved in time

O
(

2rank(M)+k · rank(M)2 · |E| ·
(
qrank(M)rank(M) + |E|k2

))
.

20.1 Hardness

In this section we first show that Matroid Connectivity cannot be solved in
polynomial time unless P = NP . Then we explain how the same proof gives W [1]-
hardness result for Matroid Connectivity where parameteized by rank(M) or k.
Towards the proof, we need to consider the complement of Linear Degeneracy
problem, named Uniform Matroid Isomorphism problem.

Uniform Matroid Isomorphism (UMI)
Input: A k ×m matrix M of rank k.
Question: Is M isomorphic to Um,k? I.e., is every k sized subset of columns of
M linearly independent?

Khachiyan et al [73] showed that Linear Degeneracy is NP-hard, by giving a
reduction from Small Subset Sum. This implies that UMI is not in P unless
P = NP. The following known lemma is needed to prove the hardness of Matroid
Connectivity.

Lemma 20.1. Let M = (E, I) be a matroid of rank k and m = |E| > 2k+ 1. Then

1. M is isomorphic to Um,k, if and only if the girth of M is k + 1.

2. If κ(M) = k + 1 then g(M) = k + 1.

Proof. We first prove the condition 1 in the lemma. If M is isomorphic to Um,k,

then the smallest dependent set size is k + 1 and hence its girth is k + 1. Now if
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the girth of M is k + 1, then any k sized set of columns in M is independent. This

implies that M is isomorphic to Um,k.

Now we show the condition 2 in the lemma. Recall that M∗ is the dual of M .

Towards that we first show that κ(M) ≤ min{g(M), g(M∗)}. Let C be a smallest

length circuit in M . Note that rM(C)+rM(E\C)−rM(E) ≤ r(C) ≤ |C|−1. Hence,

κ(M) ≤ g(M). Since, κ(M) = κ(M∗) [115], we have that κ(M) = κ(M∗) ≤ g(M∗).

Since, rank(M)=k, g(M) ≤ k+ 1. Furthermore, we have shown above that κ(M) ≤
min{g(M), g(M∗)}. This implies that if κ(M) = k + 1 then g(M) = k + 1.

Theorem 20.2. Matroid Connectivity is not in P unless P=NP.

Proof. We prove the theorem by designing a polynomial time algorithm for UMI,

which uses an algorithm for Matroid Connectivity as a subroutine. Now given

a k×m matrix M of rank k, we want to test whether M is isomorphic to Um,k. We

assume that m > 2k + 1. Note that M is a uniform matroid if and only if the dual

of M is also a uniform matroid. So without loss of generality we can assume that

k ≤ m − k, otherwise instead of checking whether M is isomorphic to Um,k, it is

enough to check whether dual of M is isomorphic to Um,m−k.

Now we describe an algorithm to solve UMI using an algorithm for Matroid Con-

nectivity. Using an algorithm for Matroid Connectivity, find the least inte-

ger, i ≤ k+1, if it exists, such that M has i-separation. This implies that κ(M) = i.

If i = k + 1 then we output Yes, otherwise we output No. Now we show that our

algorithm is correct. If the algorithm outputs Yes, then κ(M) = k + 1. Then by

Lemma 20.1, we have that g(M) = k+1 and M is isomorphic to Um,k. Now consider

the following claim.

Claim 20.1. κ(Um,k) = k + 1

Proof. Let E be the ground set of Um,k and let r be the rank function of Um,k. Let

C ⊆ E be an arbitrary subset of size k + 1. Note that r(C) + r(E \ C) − r(E) ≤
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r(C) ≤ |C|−1 and |C|, |E \C| ≥ k+ 1. Hence, κ(Um,k) ≤ k+ 1. Next we show that

there does not exists i < k + 1 such that κ(Um,k) = i. We prove the statement via

contradiction. Suppose there exists i < k + 1 such that κ(Um,k) = i. Let (A,E \A)

be an i-separation. Since m > 2k, we have that |A| > k or |E \ A| > k. Assume

without loss of generality that |E \A| > k. Then r(A) + r(E \A)− r(E) = r(A) ≥ i

(since |A| ≥ i and i ≤ k). This leads to a contradiction that (A,E \ A) be an

i-separation. This completes the proof of the lemma.

If M is isomorphic to Um,k then by Claim 20.1, we have that κ(M) = k + 1 and

thus the algorithm will output Yes. This completes the proof of correctness of

our algorithm. Hence, if we do have a polynomial time algorithm for Matroid

Connectivity then we do have a polynomial time algorithm for UMI.

We have mentioned in Chapter 19 that Linear Degeneracy parameteized by k
is W [1]-hard. Thus, combining this fact with Theorem 20.2 we have the following
theorem.

Theorem 20.3. Matroid Connectivity parameterized by rank(M) is not FPT

unless FPT=W [1].

As κ(M) ≤ rank(M)+1, Matroid Connectivity parameterized by k is also not
FPT unless FPT=W [1].

20.2 Algorithm for Matroid Connectivity

In this section we design a fast FPT algorithm for Matroid Connectivity pa-
rameterized by rank(M)+q. Our algorithm is a recursive algorithm and at the leaves
of the search tree it runs the algorithm for Matroid Girth as a subroutine.

In what follows, we say that a partition (X, Y ) of the ground set E of a matroid M ,
obeys the pair (X1, Y1) where X1, Y1 ⊆ E, if X1 ⊆ X and Y1 ⊆ Y . We start with
two lemmas which are useful for our algorithm.

Lemma 20.2. Let M = (E, I) be a matroid. Let X, Y ⊆ E such that X ∩ Y = ∅
and |Y | ≥ k. Let Sx = cl(X) ∩ (E \ (X ∪ Y )). If there exist a k-separation (X ′, Y ′)
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obeying the pair (X, Y ), then there exist a k-separation (X ′′, Y ′′) obeying the pair

(X ∪ Sx, Y ).

Proof. Let (X ′, Y ′) be a k-separation obeying the pair (X, Y ). Then we know that

r(X ′) + r(Y ′) − r(E) ≤ k − 1. Now consider the partition (X ′ ∪ Sx, Y ′ \ Sx).
We claim that (X ′ ∪ Sx, Y ′ \ Sx) is a k-separation because |X ′ ∪ Sx| ≥ |X ′| ≥ k,

|Y ′\Sx| ≥ |Y | ≥ k and r(X ′∪Sx)+r(Y ′\Sx)−r(E) ≤ r(X ′)+r(Y ′)−r(E) ≤ k−1.

The pair (X ′ ∪ Sx, Y ′ \ Sx) obeys (X ∪ Sx, Y ) because X ∪ Sx ⊆ X ′ ∪ Sx and

Y ⊆ Y ′ \ Sx.

Lemma 20.3. Let M = (E, I) be a matroid. Let X, Y ⊆ E such that X ∩ Y = ∅,
|Y | ≥ k, |X| < k, r(Y ) = r(E), and r(X) = |X|. Then there exists a k-separation

(X ′, Y ′) obeying (X, Y ) if and only if there exists a circuit C in the matroid M/X

of size at most k − |X| contained in E \ (X ∪ Y ).

Proof. (⇒) Suppose there exists a k-separation (X ′, Y ′) obeying (X, Y ). We need

to show that there exists a circuit C in the matroid M/X, of size at most k − |X|,
contained in E \ (X ∪ Y ). Since (X ′, Y ′) is a k-separation, we have that r(X ′) +

r(Y ′)− r(E) ≤ k− 1. This implies that r(X ′) ≤ k− 1, because r(Y ′) = r(E). Since

(X ′, Y ′) is a k-separation, |X ′| ≥ k. Consider a minimum sized set S ⊆ X ′ such

that X ⊆ S and r(S) = |S| − 1 (such a set S exists because |X ′| ≥ k, r(X ′) ≤ k− 1

and r(X) = |X|). Also note that |S| ≤ k. Since r(S) = |S|−1, there exists a circuit

C ′ in S.

Now we claim that there exists a circuit in M/X of size at most k − |X| contained

in C ′ \X. It is easy to see that rM/X(C ′ \X) ≤ |C ′ \X| − 1. Now consider the size

of C ′ \X.

|C ′ \X| = |C ′| − |X|+ |X \ C ′|

≤ |S| − |X \ C ′| − |X|+ |X \ C ′| (Since C ′ ⊆ S and X ⊆ S)

≤ k − |X| (Since |S| ≤ k)
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Hence there exists a circuit in M/X of size at most k − |X| contained in C ′ \X ⊆
E \ (X ∪ Y ).

(⇐) Suppose there exists a circuit C in M/X of size at most k − |X|, contained in

E \ (X ∪ Y ). Then we claim that (C ∪ X ∪ S,E \ (C ∪ X ∪ S) is a k-separation

obeying (X, Y ), where S is an arbitrary k − |C ∪X| sized set in E \ (C ∪X ∪ Y ).

Note that |C ∪X ∪ S|, |E \ (C ∪X ∪ S)| ≥ k and

r(C ∪X ∪ S) + r(E \ (C ∪X ∪ S))− r(E) ≤ r(C ∪X ∪ S)

≤ rM/X(C) + r(X) + r(S)

≤ |C| − 1 + |X|+ k − |C ∪X|

≤ k − 1.

This completes the proof.

Now we prove the Theorem 20.1.

Theorem 20.1. Matroid Connectivity can be solved in time

O
(

2rank(M)+k · rank(M)2 · |E| ·
(
qrank(M)rank(M) + |E|k2

))
.

Proof. Let r = rank(M). Since κ(M) ≤ rank(M)+1, we can assume that k ≤ r. We

design a branching algorithm which gradually creates a solution (X, Y ) starting from

the pair (∅, ∅). At any point in the branching algorithm, we branch on a carefully

chosen element from E \ (X ∪ Y ). Our branching rules are the following, applied in

the order in which they are listed.

• Rule 1: If there exists an element e ∈ E\(X∪Y ) such that e /∈ cl(X)∪cl(Y ),

we branch on e by adding e to X or Y .

• Rule 2: If |X|, |Y | < k, then we branch on an arbitrary element e ∈
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E \ (X ∪ Y ).

In any node of the branching tree of the algorithm we have a potential partial

solution (X, Y ), and we abort if r(X) + r(Y )− r(E) ≥ k. Now we claim that there

will not be an application of Rule 1 after an application of Rule 2. Consider a node

of the branching tree of the algorithm, with a potential partial solution (X, Y ). We

apply Rule 2, only if Rule 1 is not applicable, that is when for all e ∈ E \ (X ∪ Y ),

e ∈ cl(X) ∪ cl(Y ). Hence for any X ′ ⊇ X, Y ′ ⊇ Y , for all e ∈ E \ (X ′ ∪ Y ′),
e ∈ cl(X ′)∪cl(Y ′). This implies Rule 1 is not applicable after an application of Rule

2. Now consider any root to leaf path in the branching tree of the algorithm. If there

exists an application of Rule 2 in this path then the length of the path is at most 2k,

because Rule 2 is applicable only if |X|, |Y | < k. Otherwise, we claim that the length

of the path is at most r+ k. Suppose not. Consider the leaf node and the potential

partial solution (X, Y ) associated with it. If the length of the path is more than r+k

and if we only used branching Rule 1, then r(X) + r(Y )− r(E) > r+ k− r(E) > k,

which is a contradiction (because we should have aborted this branch). Hence the

height of the branching tree is at most r + k (since k ≤ r).

Now we explain how to compute a solution from a leaf node labeled (X, Y ), if there

exists a solution obeying (X, Y ). Note that for all e ∈ E \ (X ∪Y ), e ∈ cl(X)∪cl(Y )

because of Rule 1. Also note that either |X| ≥ k or |Y | ≥ k. Without loss of

generality assume that |Y | ≥ k. Now we can apply Lemma 20.2 and add Sx to

X where Sx = cl(X) ∩ (E \ (X ∪ Y )). Now if |X ∪ Sx| ≥ k, then we can output

the partition (X ∪ Sx, E \ (X ∪ Sx)) as k-separation, because r(X ∪ Sx) + r(E \
(X ∪ Sx)) − r(E) = r(X) + r(Y ) − r(E) ≤ k − 1 (because we did not abort this

branch). Otherwise |X ∪ Sx| < k. For convenience, now we use (X, Y ) to denote

the partial solution (X ∪ Sx, Y ). The properties of (X, Y ) are |X| < k, |Y | ≥ k, for

all e ∈ E \ (X ∪ Y ) e ∈ cl(Y ) and e /∈ cl(X). If r(X) < |X|, then we can output

(X ∪S,E \ (X ∪S)) as a k-partition where S is an arbitrary set of k− |X| elements
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from E \ (X ∪ Y ), because

r(X ∪ S) + r(E \ (X ∪ S))− r(E) ≤ r(X) + r(S) + r(E \ (X ∪ S))− r(E)

≤ r(X) + k − |X|+ r(E \ (X ∪ S))− r(E)

≤ k − 1 (Since r(X) < |X|)

If r(X) = |X| and r(Y ) < r(E), then we can output the (X ∪ S,E \ (X ∪ S)) as a

k-partition where S is an arbitrary set of k−|X| elements from E \(X∪Y ), because

r(X ∪ S) + r(E \ (X ∪ S))− r(E) ≤ k + r(E \ (X ∪ S))− r(E)

≤ k + r(Y )− r(E) ≤ k − 1.

Now if r(X) = |X|, |X| < k, r(Y ) = r(E), |Y | ≥ k, then we apply Lemma 20.3 and

output Yes if there exists a circuit of size at most k−|X| in M/X, otherwise abort

this particular branch. A linear representation of M/X and different case analysis

explained above can be computed in time O((rank(M))2|E|) field operations using

Gaussian elimination. Since the height of the branching tree is at most r + k,

the algorithm runs in O(2rank(M)+k · (rank(M))2|E|(qrank(M)rank(M) + |E|k2))

time.
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Part V

Steiner Tree
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Chapter 21

Polynomial Space Single

Exponential FPT Algorithm

In this chapter we give a polynomial space single exponential FPT algorithm for the
Steiner Tree problem, which is define formally as,

Steiner Tree Parameter: k = |T |
Input: A connected n-vertex graph, a non-negative weight function
w : E(G)→ {1, 2, . . . ,W}, and a set of terminal vertices T ⊆ V (G).
Question: Find a minimum-weight connected subgraph ST of G containing all
terminal nodes T .

Steiner Tree is one of the central and best-studied problems in Computer Science
with various applications. We refer to the book of Prömel and Steger [111] for an
overview of the results and applications of the Steiner tree problem. Steiner Tree
is known to be APX-complete, even when the graph is complete and all edge costs
are either 1 or 2 [13]. On the other hand the problem admits a constant factor
approximation algorithm, the currently best such algorithm (after a long chain of
improvements) is due to Byrka et al. and has approximation ratio ln 4 + ε < 1.39
[26].

Steiner Tree is a fundamental problem in parameterized algorithms [41]. The
classic algorithm for Steiner Tree of Dreyfus and Wagner [44] from 1971 might
well be the first parameterized algorithm for any problem. The study of parameter-
ized algorithms for Steiner Tree has led to the design of important techniques,
such as Fast Subset Convolution [16] and the use of branching walks [101]. Re-
search on the parameterized complexity of Steiner Tree is still on-going, with
very recent significant advances for the planar version of the problem [107, 108].

Algorithms for Steiner Tree are frequently used as a subroutine in fixed-parameter
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tractable (FPT) algorithms for other problems; examples include vertex cover prob-
lems [68], near-perfect phylogenetic tree reconstruction [20], and connectivity aug-
mentation problems [8].

Motivation and earlier work. For more than 30 years, the fastest FPT al-
gorithm for Steiner Tree was the 3k · logW · nO(1)-time dynamic programming
algorithm by Dreyfus and Wagner [44]. Fuchs et al. [60] gave an improved algorithm
with running time O((2 + ε)knf(1/ε) logW ). For the unweighted version of the prob-
lem, Björklund et al. [16] gave a 2knO(1) time algorithm. All of these algorithms are
based on dynamic programming and use exponential space.

Algorithms with high space complexity are in practice more constrained because
the amount of memory is not easily scaled beyond hardware constraints whereas
time complexity can be alleviated by allowing for more time for the algorithm to
finish. Furthermore, algorithms with low space complexity are typically easier to
parallelize and more cache-friendly. These considerations motivate a quest for al-
gorithms whose memory requirements scale polynomially in the size of the input,
even if such algorithms may be slower than their exponential-space counterparts.
The first polynomial space 2O(k)nO(1)-time algorithm for the unweighted Steiner
Tree problem is due to Nederlof [101]. This algorithm runs in time 2knO(1), match-
ing the running time of the best known exponential space algorithm. Nederlof’s
algorithm can be extended to the weighted case, unfortunately this comes at the
cost of a O(W ) factor both in the time and the space complexity. Lokshtanov and
Nederlof [86] showed that the O(W ) factor can be removed from the space bound,
but with a factor O(W ) in the running time. The algorithm of Lokshtanov and
Nederlof [86] runs in 2k · nO(1) ·W time and uses nO(1) logW space. Note that both
the algorithm of Nederlof [101] and the algorithm of Lokstanov and Nederlof [86]
have a O(W ) factor in their running time. Thus the running time of these algo-
rithms depends exponentially on the input size, and therefore these algorithms are
not FPT algorithms for weighted Steiner Tree.

For weighted Steiner Tree, the only known polynomial space FPT algorithm has
a 2O(k log k) running time dependence on the parameter k. This algorithm follows from
combining a (27/4)k · nO(log k) · logW time, polynomial space algorithm by Fomin
et al. [50] with the Dreyfus–Wagner algorithm. Indeed, one runs the algorithm
of Fomin et al. [50] if n ≤ 2k, and the Dreyfus–Wagner algorithm if n > 2k. If
n ≤ 2k, the running time of the algorithm of Fomin et al. is bounded from above
by 2O(k log k). When n > 2k, the Dreyfus–Wagner algorithm becomes a polynomial
time (and space) algorithm.

Prior to our work the existence of a polynomial space algorithm with running time
2O(k) · nO(1) · logW , i.e a single exponential time polynomial space FPT algorithm,
was an open problem asked explicitly in [50, 86].

Contributions and methodology. The starting point of our present algorithm
is the (27/4)k ·nO(log k) · logW -time, polynomial-space algorithm by Fomin et al. [50].
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This algorithm crucially exploits the balanced separation of Steiner trees (for details
see Lemma 21.1 below). Specifically, an optimal Steiner tree ST can be partitioned
into two trees ST1 and ST2 containing the terminal sets T1 and T2 respectively, so
that the following three properties are satisfied: (a) The two trees share exactly one
vertex v and no edges. (b) Neither of the two trees ST1 or ST2 contain more than
a 2/3 fraction of the terminal set T . (c) The tree ST1 is an optimal Steiner tree for
the terminal set T1 ∪ {v}, and ST2 is an optimal Steiner tree for the terminal set
T2 ∪ {v}.
Dually, to find the optimal tree ST for the terminal set T it suffices to (a) guess the
vertex v, (b) partition T into T1 and T2, and (c) recursively find optimal trees for
the terminal sets T1 ∪ {v} and T2 ∪ {v}. Since there are n choices for v, and

(
k
k/3

)
ways to partition T into two sets T1 and T2 such that |T1| = |T |/3, the running time
of the algorithm is essentially governed by the recurrence

T (n, k) ≤ n ·
(
k

k/3

)
· (T (n, k/3) + T (n, 2k/3)). (21.1)

Unraveling (21.1) gives the (27/4)k · nO(log k) · logW upper bound for the running
time, and it is easy to see that the algorithm runs in polynomial space. However,
this algorithm is not an FPT algorithm because of the nO(log k) factor in the running
time.

The factor nO(log k) is incurred by the factor n in (21.1), which in turn originates
from the need to iterate over all possible choices for the vertex v in each recursive
call. In effect the recursion tracks an O(log k)-sized set S of split vertices (together
with a subset T ′ of the terminal vertices T ) when it traverses the recursion tree from
the root to a leaf.

The key idea in our new algorithm is to redesign the recurrence for optimal Steiner
trees so that we obtain control over the size of S using an alternation between

1. balanced separation steps (as described above), and

2. novel resplitting steps that maintain the size of S at no more than 3 vertices
throughout the recurrence.

In essence, a resplit takes a set S of size 3 and splits that set into three sets of
size 2 by combining each element in S with an arbitrary vertex v, while at the
same time splitting the terminal set T ′ into three parts in all possible (not only
balanced) ways. While the combinatorial intuition for resplitting is elementary (see
Lemma 21.2 below), the implementation and analysis requires a somewhat careful
combination of ingredients.

Namely, to run in polynomial space, it is not possible to use extensive amounts of
memory to store intermediate results to avoid recomputation. Yet, if no memoization
is used, the novel recurrence does not lead to an FPT algorithm, let alone to a single-
exponential FPT algorithm. Thus neither a purely dynamic programming nor a
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purely recursive implementation will lead to the desired algorithm. A combination of
the two will, however, give a single-exponential time algorithm that uses polynomial
space.

Roughly, our approach is to employ recursive evaluation over subsets T ′ of the
terminal set T , but each recursive call with T ′ will compute and return the optimal
solutions for every possible set S of split vertices. Since by resplitting we have
arranged that S always has size at most 3, this hybrid evaluation approach will
use polynomial space. Since each recursive call on T ′ yields the optimum weights
for every possible S, we can use dynamic programming to efficiently combine these
weights so that single-exponential running time results.

In precise terms, our main result is as follows:

Theorem 21.1. Steiner Tree can be solved in time O(7.97kn4 log nW ) time using

O(n3 log nW log k) space.

Whereas our main result seeks to optimize the polynomial dependency in n for
both the running time and space usage, it is possible to trade between polynomial
dependency in n and the single-exponential dependency in k to obtain faster running
time as a function k, but at the cost of increased running time and space usage as
a function of n. In particular, we can use larger (but still constant-size) sets S to
avoid re-computation and to arrive at a somewhat faster algorithm:

Theorem 21.2. There exists a polynomial-space algorithm for Steiner Tree run-

ning in O(6.751knO(1) logW ) time.

By using further balanced separators, but of large size, we show the following theo-
rem.

Theorem 21.3. For any ε > 0, there is a nO(f ′(ε)) logW space 4(1+ε)knO(f(ε)) logW

time algorithm for Steiner Tree, where f and f ′ are computable functions depends

only on ε.

Organization of the Chapter. In Section 21.1 we define some notations specific
to this chapter and define and state balanced separators used to design our algo-
rithms. In Section 21.2 we prove Theorems 21.1 and 21.2. In Section 21.3 we prove
Theorem 21.3.

21.1 Notations and Separators

Partition. A partition of a set U , is a collection nonempty, pairwise disjoint subsets
of U whose union is U . The subsets are called blocks. For a set U , we write
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U1 ] U2 ] · · · ] U` = U if U1, U2, . . . , U` is a partition of U . For a set U and a
positive integer i, we use P(U) and Pi(U) to denote the set of all partitions of U
and set of all partitions of U into i parts respectively. For a set U and a constant
ε ≥ 0, we use Bε(U) to denote the set all partitions (U1, U2) of U into two parts
such that |U1|, |U2| ≤

(
1
2

+ ε
)
|U |. For a set U , U ′ ⊆ U and a partition P ∈ P(U)

we use P [U ′] to denote the restriction of partition P on the set U ′, i.e, blocks in
P [U ′] is obtained by deleting U \U ′ from the blocks of P . For a set U and partitions
P1, P2 ∈ P(U), we say partition P1 refines partition P2, denoted by P1 � P2, if
every block of P1 is contained in some block of P2. We also use P1 � P2, if P1 is a
restriction of a partition of P(U) which refines partition P2. That is, for a set U ,
U ′ ⊆ U and partitions P1 ∈ P(U ′) and P2 ∈ P(U), we denote P1 � P2, if each block
of P1 is contained in some block of P2. For two partitions P1 and P2 in P(U), the
join of P1 and P2, denoted by P1 t P2 is the smallest (with respect to �) partition
P refined by both P1 and P2. For a graph G, we use PG to denote the partition
{V (C) | C is a connected component of G} of V (G).

Separation and resplitting. A set of nodes S is called an α-separator of a graph
G, 0 < α ≤ 1, if the vertex set V (G) \ S can be partitioned into sets VL and VR of
size at most αn each, such that no vertex of VL is adjacent to any vertex of VR. We
next define a similar notion, which turns out to be useful for Steiner trees. Given a
Steiner tree ST on terminals T , an α-Steiner separator S of ST is a subset of nodes
which partitions ST − S in two forests R1 and R2, each one containing at most αk
terminals from T .

Lemma 21.1 (Separation). [22, 50] Every Steiner tree ST on terminal set T ,

|T | ≥ 3, has a 2/3-Steiner separator S = {s} of size one.

The following easy lemma enables us to control the size of the split S set at no more
than 3 vertices.

Lemma 21.2 (Resplitting). Let F be a tree and S ∈
(
V (F )

3

)
. Then there is a vertex

v ∈ V (F ) such that each connected component in F − v contains at most one vertex

of S.

Proof. Let S = {s1, s2, s3}. Let P1 be the unique path between s1 and s3 in the tree

F . Let P2 be the unique path between s3 and s2 in the tree F . If P1 and P2 are

edge disjoint then V (P1) ∩ V (P2) = {s3} and P1P2 is the unique path between s1

and s2. Thus any connected component in G − s3 will not contain both s1 and s2.

In this case s3 is the required vertex. Suppose V (P1) ∩ V (P2) 6= {s3}. Consider the

unique path
←−
P1 between s3 and s1, which is the reverse of the path P1. Since F is a
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tree these paths
←−
P1 and P2 will be of the form P1 = Q

←−
P1
′ and P2 = QP ′2. Note that

Q is a path starting at s3. Let w be the last vertex in the path Q. Since F is a tree

V (
←−
P1
′) ∩ V (P ′2) = {w}. Now consider the graph G− w. Any connected component

in G− w will not contain more that one from {s1, s2, s3}, because the unique path

between any pair of vertices in {s1, s2, s3} passes through w.

21.2 Algorithm

In this section we design an algorithm for Steiner Tree which runs in time
O(7.97kn4 log nW ) usingO(n3 log nW log k) space. The minimum weight of a Steiner
tree of G on terminals T is denoted by stG(T ). Most algorithms for Steiner Tree,
including ours, are based on recurrence relations that reduce finding the optimal
Steiner tree to finding optimal Steiner trees in the same graph, but with a smaller
terminal set. We will define four functions fi for i ∈ {0, 1, 2, 3}. Each function fi
takes as input a vertex set S of size at most i and a subset T ′ of T . The func-
tion fi(S, T

′) returns a real number. We will define the functions using recurrence
relations, and then prove that fi(S, T

′) is exactly stG(T ′ ∪ S).

For T ′ ⊆ T , i ∈ {0, 1, 2, 3}, and S ∈
(
V (G)
≤i

)
, we define fi(S, T

′) as follows. When
|T ′| ≤ 2, fi(S, T

′) = stG(T ′∪S). For |T ′| ≥ 3, we define fi(S, T
′) using the following

recurrences.

Separation. For i ∈ {0, 1, 2}, let us define

fi(S, T
′) = min

(T1,T2)∈B 1
6

(T ′)
min
v∈V (G)
S1]S2=S

fi+1

(
S1 ∪ {v}, T1

)
+ fi+1

(
S2 ∪ {v}, T2

)
(21.2)

Resplitting. For i = 3, let us define

fi(S, T
′) = min

(T1,T2,T3)∈P3(T ′)
min

S1]S2]S3=S
|S1|,|S2|,|S3|≤i−2

v∈V (G)

3∑
r=1

fi−1

(
Sr ∪ {v}, Tr

)
(21.3)

The recurrences (21.2) and (21.3) are recurrence relations for Steiner Tree:

Lemma 21.3. For all T ′ ⊆ T , 0 ≤ i ≤ 3, and S ∈
(
V (G)
≤i

)
it holds that fi(S, T

′) =

stG(T ′ ∪ S).
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Proof. We prove the lemma using induction on |T ′|. For the base case |T ′| ≤ 2 the

lemma holds by the definition of fi. For inductive step, let us assume that the lemma

holds for all T ′′ of size less than j. We proceed to show that fi(S, T
′) = stG(T ′ ∪ S)

for all T ′ ⊆ T with |T ′| = j. We split into cases based on i and in each case establish

inequalities fi(S, T
′) ≤ stG(T ′ ∪S) and fi(S, T

′) ≥ stG(T ′ ∪S) to conclude equality.

Case 1: 0 ≤ i ≤ 2. By (21.2), we know that there is a vertex v ∈ V (G), S1 ] S2 =

S and a partition (T1, T2) ∈ B1/6(T ′) such that fi(S, T
′) = fi+1(S1 ∪ {v}, T1) +

fi+1(S2 ∪ {v}, T2). Since (T1, T2) ∈ B1/6(T ′) and |T ′| ≥ 3, we have that |T1|, |T2| <
|T ′| ≤. Then by induction hypothesis fi+1(S1 ∪ {v}, T1) = stG(T1 ∪ S1 ∪ {v}) and

fi+1(S2 ∪ {v}, T2) = stG(T2 ∪ S2 ∪ {v}). So we have that fi(S, T
′) = stG(T1 ∪

S1 ∪ {v}) + stG(T2 ∪ S2 ∪ {v}). Let ST1 be an optimum Steiner tree for the set of

terminals T1 ∪S1 ∪{v} and ST2 be an optimum Steiner tree for the set of terminals

T2 ∪ S2 ∪ {v}. Note that ST1 + ST2 is a connected subgraph containing T1 ∪ T2 ∪ S
and w(E(ST1 + ST2)) ≤ stG(T1 ∪ S1 ∪ {v}) + stG(T2 ∪ S2 ∪ {v}). This implies that

stG(T ′∪S) ≤ w(E(ST1 +ST2)) ≤ stG(T1∪S1∪{v})+stG(T2∪S2∪{v}) = fi(S, T
′).

Hence fi(S, T
′) ≥ stG(T ′ ∪ S).

Conversely, let ST be an optimum Steiner tree for the set of terminals T ′ ∪ S.

Thus ST is also a Steiner tree for the set of terminals T ′. Hence by Lemma 21.1,

we know that there is a 2/3-Steiner separator {v} of size one. Let F1 and F2 be

two forests created by the separator {v}, such that V (Fr) ∩ T ′ ≤ 2|T ′|/3 for each

1 ≤ r ≤ 2. If v ∈ T ′ and |T1| ≤ |T2|, then we replace T1 with T1 ∪ {v}. If v ∈ T ′

and |T1| > |T2|, then we replace T2 with T2 ∪ {v}. Note that (T1, T2) is a partition

of T ′. Since {v} is a 2/3-Steiner separator and |T ′| ≥ 3, we have that |T1|, |T2| ≤
2|T ′|/3 ≤

(
1
2

+ 1
6

)
|T ′| < |T ′|. Hence (T1, T2) ∈ B1/6(T ′). Let Sr = V (STr) ∩ S and

Tr = V (Fr)∩T ′, 1 ≤ r ≤ 2. Thus fi+1(S1 ∪{v}, T1) + fi+1(S2 ∪{v}, T2) ≥ fi(S, T
′).

Note that ST1 = ST [V (F1) ∪ {v}] and ST2 = ST [V (F2) ∪ {v}] are subtrees of ST .

By the induction hypothesis, we have that fi+1(S1 ∪ {v}, T1) = stG(T1 ∪ S1 ∪ {v})
and fi+1(S2 ∪{v}, T2) = stG(T2 ∪S2 ∪{v}). Since ST1 and ST2 are trees containing
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T1 ∪ S1 ∪ {v} and T2 ∪ S2 ∪ {v} respectively, we have w(E(ST1)) + w(E(ST2)) ≥
stG(T1 ∪ S1 ∪ {v}) + stG(T2 ∪ {v}) = fi+1(S1 ∪ {v}, T1) + fi+1(S2 ∪ {v}, T2) ≥
fi(S, T

′). Since V (ST1) ∩ V (ST2) = {v} and T ′ ∪ S ⊆ V (ST1) ∪ V (ST2), we have

that stG(T ′ ∪ S ′) = w(E(ST1)) + w(E(ST2)). Thus fi(S, T
′) ≤ stG(T ′ ∪ S).

Case 2: i = 3. By (21.3), there is v ∈ V (G), S1, S2, S3 ∈
(
V (G)
≤1

)
, S1 ] S2 ] S3 = S,

and a partition (T1, T2, T3) ∈ P3(T ′) such that f3(S, T ′) =
∑3

r=1 f2(Sr∪{v}, Tr). We

have shown (in Case 1) that f2(Sr ∪ {v}, Tr) = stG(Tr ∪ Sr ∪ {v}) for all 1 ≤ r ≤ 3.

Therefore f3(S, T ′) =
∑3

r=1 stG(Tr ∪ Sr ∪ {v}). Let STr be an optimum Steiner

tree for the set of terminals Tr ∪ Sr ∪ {v} for all r. Note that ST1 + ST2 + ST3 is

a connected subgraph containing T1 ∪ T2 ∪ T3 ∪ S and w(E(ST1 + ST2 + ST3)) ≤∑3
r=1 stG(Tr∪Sr∪{v}). Thus stG(T ′∪S) ≤ w(E(ST1+ST2+ST3)) ≤∑3

r=1 stG(Tr∪
Sr ∪ {v}) = f3(S, T ′). Thus, f3(S, T ′) ≥ stG(T ′ ∪ S).

Conversely, let ST be an optimum Steiner tree for the set of terminals T ′ ∪ S. By

Lemma 21.2, there is a vertex v ∈ V (ST ) such that each connected component C

in ST − v contains at most one vertex from S. Let be C1, C2 and C3 be a partition

of connected components of ST − v such that for each |V (Cr) ∩ S| ≤ 1 for all

1 ≤ r ≤ 3. For each r, let Tr = T ′ ∩ V (Cr). If v ∈ T ′, then we replace T1 with

T1 ∪ {v}. Note that (T1, T2, T3) is a partition of T ′. Hence (T1, T2, T3) ∈ P3(T ′).

For each r, let Sr = (S \ {v}) ∩ V (STr). Since each Cr contains at most one

vertex from S, |Sr| ≤ 1. This implies
∑3

r=1 f2(Sr ∪ {v}, Tr) ≥ f3(S, T ′). Note that

STr = ST [V (Cr) ∪ {v}] is a tree for each r. Since V (C1) ∪ V (C2) ∪ V (C3) ∪ {v} =

V (ST ) and for all 1 ≤ r1 6= r2 ≤ 3 it holds that V (Cr1) ∩ V (Cr2) = {v}, we have

stG(T ′ ∪ S) = w(E(ST )) =
∑3

r=1w(E(STr)) ≥
∑3

r=1 f2(Sr ∪ {v}, Tr) ≥ f3(S, T ′).

Thus f3(S, T ′) ≤ stG(T ′ ∪ S).

Our algorithm uses (21.2) and (21.3) to compute f0(∅, T ), which is exactly the cost of
an optimum Steiner tree. A näıve way of turning the recurrences into an algorithm
would be to simply make one recursive procedure for each fi, and apply (21.2) and
(21.3) directly. However, this would result in a factor nO(log k) in the running time,
which we seek to avoid. As the näıve approach, our algorithm has one recursive
procedure Fi for each function fi. The procedure Fi takes as input a subset T ′ of
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Algorithm 4: Implementation of procedure Fi for i ∈ {0, 1, 2}
Input: T ′ ⊆ T
Output: stG(T ′ ∪ S) for all S ∈

(
V (G)
≤i

)
1 if |T ′| ≤ 2 then

2 for S ∈
(
V (G)
≤3

)
do

3 A[S]← stG(T ′ ∪ S) (compute using the Dreyfus–Wagner algorithm)

4 return A

5 for S ∈
(
V (G)
≤i

)
do

6 A[S]←∞
7 for T1, T2 ∈ B1/6(T ′) do
8 A1 ← Fi+1(T1)
9 A2 ← Fi+1(T2)

10 for S1 ] S2 ∈
(
V (G)
≤i

)
such that |S2| ≤ |S1| and v ∈ V (G) do

11 if A[S1 ] S2] > A1[S1 ∪ {v}] + A2[S2 ∪ {v}] then
12 A[S1 ] S2]← A1[S1 ∪ {v}] + A2[S2 ∪ {v}]

13 return A.

the terminal set, and returns an array that, for every S ∈
(
V (G)
≤i

)
, contains fi(S, T

′).

The key observation is that if we seek to compute fi(S, T
′) for a fixed T ′ and all

choices of S ∈
(
V (G)
≤i

)
using recurrence (21.2) or (21.3), we should not just iterate

over every choice of S and then apply the recurrence to compute fi(S, T
′) because it

is much faster to compute all the entries of the return array of Fi simultaneosly, by
iterating over every eligible partition of T , making the required calls to Fi+1 (or Fi−1

if we are using recurrence (21.3)), and updating the appropriate array entries to yield
the return array of Fi. Next we give pseudocode for the procedures F0, F1, F2, F3.

The procedure Fi for 0 ≤ i ≤ 2 operates as follows. (See algorithm 4.) Let T ′ ⊆ T
be the input to the procedure Fi. If |T ′| ≤ 2, then Fi computes stG(T ′ ∪ S) for
all S ∈

(
V (G)
≤i

)
using the Dreyfus–Wagner algorithm and returns these values. The

procedure Fi has an array A indexed by S ∈
(
V (G)
≤i

)
. At the end of the procedure

Fi, A[S] will contain the value stG(T ′ ∪ S) for all S ∈
(
V (G)
≤i

)
. For each (T1, T2) ∈

B1/6(T ′) (line 7), Fi calls Fi+1(T1) and Fi+1(T2) and it returns two sets of values

{fi+1(S, T1) | S ∈
(
V (G)
≤i+1

)
} and {fi(S, T2) | S ∈

(
V (G)
≤i

)
}, respectively. Let A1 and A2

be two arrays used to store the return values of Fi+1(T1) and Fi+1(T2) respectively.
That is, A1[S] = fi+1(S, T1) for all S ∈

(
V (G)
≤i+1

)
and A2[S ′] = fi(S

′, T2) for all S ′ ∈(
V (G)
≤i+1

)
. Now we update A as follows. For each S1 ] S2 ∈

(
V (G)
≤i

)
and v ∈ V (G)

(line 10), if A[S1 ] S2] > A1[S1 ∪ {v}] + A2[S2 ∪ {v}], then we update the entry
A[S1 ] S2], with the value A1[S1 ∪ {v}] + A2[S2 ∪ {v}]. So at the end the inner for
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Algorithm 5: Implementation of procedure F3

Input: T ′ ⊆ T
Output: stG(T ′ ∪ S) for all S ∈

(
V (G)
≤3

)
1 if |T ′| ≤ 2 then

2 for S ∈
(
V (G)
≤3

)
do

3 A[S]← stG(T ′ ∪ S) (compute using the Dreyfus–Wagner algorithm)

4 return A

5 for S ∈
(
V (G)
≤3

)
do

6 A[S]←∞
7 for T1, T2, T3 ∈ P3(T ′) do
8 A1 ← F2(T1)
9 A2 ← F2(T2)

10 A3 ← F2(T3)

11 for S1, S2, S3 ∈
(
V (G)
≤1

)
and v ∈ V (G) do

12 if A[S1 ∪ S2 ∪ S3] > A1[S1 ∪ {v}] + A2[S2 ∪ {v}] + A3[S3 ∪ {v}] then
13 A[S1 ∪ S2 ∪ S3]← A1[S1 ∪ {v}] + A2[S2 ∪ {v}] + A3[S3 ∪ {v}]

14 return A.

loop, A[S] contains the value

min
v∈V (G)
S1]S2=S

fi+1(S1 ∪ {v}, T1) + fi(S2 ∪ {v}, T2).

Since we do have a outer for loop which runs over (T1, T2) ∈ B1/6(T ′), we have
updated A[S] with

min
(T1,T2)∈B1/6(T ′)

min
v∈V (G)
S1]S2=S

fi+1(S1 ∪ {v}, T1) + fi(S2 ∪ {v}, T2).

at the end of the procedure. Then Fi will return A.

The procedure F3 works as follows. (See algorithm 5.) Let T ′ ⊆ T be the input
to the procedure F3. If |T ′| ≤ 2, then F3 computes stG(T ′ ∪ S) for all S ∈

(
V (G)
≤3

)
using the Dreyfus–Wagner algorithm and returns these values. The procedure F3

has an array A indexed by S ∈
(
V (G)
≤3

)
. At the end of the procedure F3, A[S] will

contain the value stG(T ′ ∪ S) for all S ∈
(
V (G)
≤3

)
. For each (T1, T2, T3) ∈ P3(T ′)

(line 7), F3 calls F2(T1), F2(T2) and F2(T3), and it returns three sets of values
{f2(S, T1) | S ∈

(
V (G)
≤2

)
}, {f2(S, T2) | S ∈

(
V (G)
≤2

)
} and {f2(S, T3) | S ∈

(
V (G)
≤2

)
},

respectively. Let A1, A2 and A3 be three arrays used to store the outputs of F2(T1),
F2(T2) and F2(T3) respectively. That is, Ar[S] = f2(S, Tr) for r ∈ {1, 2, 3}. Now
we update A as follows. For each S1, S2, S3 ∈

(
V (G)
≤1

)
and v ∈ V (G) (line 11), if
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A[S1 ∪ S2 ∪ S3] > A1[S1 ∪ {v}] + A2[S2 ∪ {v}] + A3[S3 ∪ {v}], then we update the
entry A[S1 ∪ S2 ∪ S3], with the value A1[S1 ∪ {v}] +A2[S2 ∪ {v}] +A3[S3 ∪ {v}]. So
at the end the inner for loop, A[S] contains the value

min
S1∪S2∪S3=S
|S1|,|S2|,|S3|≤1

v∈V (G)

3∑
r=1

f2(Sr ∪ {v}, Tr).

Since we do have a outer for loop which runs over (T1, T2, T3) ∈ P3(T ′), we have
updated A[S] with

min
(T1,T2,T3)∈P3(T ′)

min
S1∪S2∪S3=S
|S1|,|S2|,|S3|≤1

v∈V (G)

3∑
r=1

f2(Sr ∪ {v}, Tr).

at the end of the procedure. Then F3 will return A as the output.

In what follows we prove the correctness and analyze the running time and memory
usage of the call to the procedure F0(T ).

Lemma 21.4. For every i ≤ 3, T ′ ⊆ T the procedure Fi(T
′) outputs an array that

for every S ∈
(
V (G)
≤i

)
, contains fi(S, T

′).

Proof. Correctness of Lemma 21.4 follows directly by an induction on |T |. Indeed,

assuming that the lemma statement holds for the recursive calls made by the pro-

cedure Fi, it is easy to see that each entry of the output table is exactly equal to

the right hand side of recurrence (21.2) (recurrence (21.3) in the case of F3).

Observation 21.1. The recursion tree of the procedure F0(T ) has depth O(log k).

Proof. For every i ≤ 2 the procedure Fi(T
′) only makes recursive calls to Fi+1(T ′′)

where |T ′′| ≤ 2|T ′|/3. The procedure F3(T ′) makes recursive calls to F2(T ′′) where

|T ′′| ≤ |T ′|. Therefore, on any root-leaf path in the recursion tree, the size of the

considered terminal set T ′ drops by a constant factor every second step. When the

terminal set reaches size at most 2, no further recursive calls are made. Thus any

root-leaf path has length at most O(log k).

Lemma 21.5. The procedure F0(T ) uses O(n3 log nW log k) space.
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Proof. To upper bound the space used by the procedure F0(T ) it is sufficient to

upper bound the memory usage of every individual recursive call, not taking into

account the memory used by its recursive calls, and then multiply this upper bound

by the depth of the recursion tree.

Each individual recursive call will at any point of time keep a constant number of

tables, each containing at most O(n3) entries. Each entry is a number less than or

equal to nW , therefore each entry can be represented using at most O(log nW ) bits.

Thus each individual recurisve call uses at most O(n3 log nW ) bits. Combining this

with Observation 21.1 proves the lemma.

Next we analyze the running time of the algorithm. Let τi(k) be the total number
of arithmetic operations of the procedure Fi(T

′) for all i ≤ 3, where k = |T ′| on an
n-vertex graph. It follows directly from the structure of the procedures Fi for i ≤ 2,
that there exits a constant C such that the following recurrences hold for τi, i ≤ 2:

τi(k) ≤
∑

k
3
≤j≤ 2k

3

(
k

j

)
(τi+1(j) + τi+1(k − j) + Cn3)

≤ 2
∑

k
3
≤j≤ 2k

3

(
k

j

)
(τi+1(j) + Cn3) ≤ 2k max

k
3
≤j≤ 2k

3

(
k

j

)
(τi+1(j) + Cn3)(21.4)

Let
(

k
i1,i2,i3

)
be the number of partitions of k distinct elements into sets of sizes i1, i2,

and i3. It follows directly from the structure of the procedure F3, that there exists
a constant C such that the following recurrence holds for τ3:

τ3(k) =
∑

i1+i2+i3=k

(
k

i1, i2, i3

)
(τ2(i1) + τ2(i2) + τ2(i3) + Cn4)

≤
∑

i1≥i2,i3

(
k

i1, i2, i3

)
3 · (τ2(i1) + Cn4) ≤ 3

∑
i1≥ k3

(
k

i1

)
2k−i1 · (τ2(i1) + Cn4)

≤ 3kmax
i1≥ k3

(
k

i1

)
2k−i1 · (τ2(i1) + Cn4) (21.5)

Now we will bound τ3(k) from above using (21.4) and (21.5). The following facts
are required for the proof.

Fact 21.1. By Stirling’s approximation,
(
k
αk

)
≤
(
α−α(1− α)(α−1)

)k
[112].
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Fact 21.2. For every fixed x ≥ 4, function f(y) = xy

yy(1−y)1−y
is increasing on interval

(0, 2/3].

Lemma 21.6. There exists a constant C such that τ3(k) ≤ C · 11.7899kn4

Proof. We prove that τ2(k) ≤ Ĉk(c log k)9.78977kn4 and τ3(k) ≤ Ĉk(c log k)11.7898kn4,

by induction on k. We will pick Ĉ to be a constant larger than the constants of

(21.4) and (21.5), and sufficiently large so that the base case of the induction holds.

We prove the inductive step. By the induction hypothesis and (21.4), we have that

τ2(k) ≤ 2k max
1
3
≤α≤ 2

3

(
k

αk

)(
Ĉ(αk)(c logαk)11.7898αkn4 + Ĉn3

)
≤ 2k

(
11.78982/3

(2/3)2/3(1/3)1/3

)k
·
(
Ĉ

(
2k

3

)(c log 2k/3)

n4 + Ĉn3

)
(Fact 21.1, 21.2)

≤ (9.78977)k · 2k ·
(
Ĉ

(
2k

3

)(c log 2k/3)

n4 + Ĉn3

)
≤ 9.78977k · Ĉk(c log k)n4

The last inequality holds if c is a sufficiently large constant (independent of k). By

the induction hypothesis and (21.5), we have that

τ3(k) ≤ 3k max
1≥α≥ 1

3

(
k

αk

)
2(1−α)k ·

(
9.78977αk · Ĉ(αk)(c logαk)n4 + Ĉn4

)
≤ 3k max

1≥α≥ 1
3

(
α−α(1− α)(α−1)2(1−α)9.78977α

)k · (Ĉ(αk)(c logαk) + Ĉn4)
)

≤ 11.7898k · Ĉk(c log k)n4

The last inequality holds for sufficiently large constants Ĉ and c. For a sufficiently

large constant C it holds that

C · 11.7899kn4 ≥ 11.7898k · Ĉk(c log k)n4,

completing the proof.

Lemma 21.7. For every i ≤ 2 and constants Ci+1 and βi+1 ≥ 4 such that for
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every k ≥ 1 we have τi+1(k) ≤ Ci+1β
k
i+1n

4, there exists a constant Ci such that

τi(k) ≤ Ci · 1.8899k · β2k/3
i+1 · n4.

Proof. By (21.4) we have that

τi(k) ≤ 2k max
k
3
≤i≤ 2k

3

(
k

j

)
(τi+1(j) + Cn3)

≤ (2k + C) max
k
3
≤i≤ 2k

3

(
k

j

)
(Ci+1β

j
i+1n

4)

≤ Ci+1 · (2k + C) · ( 3

22/3
)k · β2k/3

i+1 · n4

≤ Ci · 1.8899k · β2k/3
i+1 · n4

The last inequality holds for a sufficiently large Ci depending on Ci+1 and βi+1 but

not on k.

Lemma 21.8. The procedure F0(T ) uses O(7.97kn4 log nW ) time.

Proof. We show that τ0(k) = O(7.9631kn4). Since each arithmetic operation takes

at most O(log nW ) time the lemma follows. Applying Lemma 21.7 on the upper

bound for τ3(k) from Lemma 21.6 proves that

τ2(k) = O(1.8899k · 11.78992k/3n4) = O(9.790kn4).

Re-applying Lemma 21.7 on the above upper bound for τ2(k) yields

τ1(k) = O(1.8899k · 9.7902k/3n4) = O(8.6489kn4).

Re-applying Lemma 21.7 on the above upper bound for τ1(k) yields

τ0(k) = O(1.8899k · 8.64892k/3n4) = O(7.9631kn4).

This completes the proof.
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We are now in position to prove our main theorem.

Theorem 21.1. Steiner Tree can be solved in time O(7.97kn4 log nW ) time
using O(n3 log nW log k) space.

Proof. The algorithm calls the procedure F0(T ) and returns the value stored for

f0(∅, T ). By Lemma 21.4 the procedure F0(T ) correctly computes f0(∅, T ), and

by Lemma 21.3 this is exactly equal to the cost of the optimal Steiner tree. By

Lemma 21.5 the space used by the algorithm is at most O(n3 log nW log k), and by

Lemma 21.8 the time used is O(7.97kn4 log nW ).

21.2.1 Obtaining better parameter dependence

The algorithm from Theorem 21.1 is based on defining and computing the functions
fi, 0 ≤ i ≤ 3. The functions fi, i ≤ 2 are defined using recurrence (21.2), while the
function f3 is defined using recurrence (21.3). For every constant t ≥ 4 we could
obtain an algorithm for Steiner Tree by defining functions fi, 0 ≤ i ≤ t − 1
using (21.2) and ft using (21.3). A proof identical to that of Lemma 21.3 shows
that fi(S, T

′) = STG(S ∪ T ′) for every i ≤ t.

We can now compute f0(∅, T ) using an algorithm almost identical to the algorithm
of Theorem 21.1, except that now we have t+ 1 procedures, namely a procedure Fi
for each i ≤ t. For each i and terminal set T ′ ⊆ T a call to the procedure Fi(T

′)
computes an array containing fi(S, T

′) for every set S of size at most i.

For i < t, the procedure Fi is based on (21.2) and is essentially the same as Algo-
rithm 4. Further, the procedure Ft is based on (21.3) and is essentially the same as
Algorithm 5. The correctness of the algorithm and an O(nt log(nW )) upper bound
on the space usage follows from arguments identical to Lemma 21.4 and Lemma 21.5
respectively.

For the running time bound, an argument identical to Lemma 21.6 shows that
τt(k) = O(11.7899knt+1). Furthermore, Lemma 21.7 now holds for i ≤ t − 1.
In the proof of Lemma 21.8 the bound for τ0(k) is obtained by starting with the
O(11.7899kn4) bound for τ3 and applying Lemma 21.7 three times. Here we can
upper bound τ0(k) by starting with the O(11.7899knt+1) bound for τt and applying
Lemma 21.7 t times. This yields a C0 · βk0 upper bound for τ0(k), where

β0 = (11.7899(2/3)t)1.8899
∑t−1
i=0(2/3)i

It is easy to see that as t tends to infinity, the upper bound for β0 tends to a number
between 6.75 and 6.751. This proves Theorem 21.2.
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21.3 4(1+ε)knO(f(ε)) time algorithm

In this section, for any ε > 0, we design a 4(1+ε)knO(f(ε)) logW time, nO(f ′(ε)) logW
space algorithm for Steiner Tree, where f and f ′ are computable functions de-
pends only on ε. Towards that we need to explain Subset Steiner Forest prob-
lem and show that the algorithm in Section 21.2 can be generalized to an algorithm
for Subset Steiner Forest. In Subsection 21.3.1 we explain Subset Steiner
Forest. Then in Subsection 21.3.2 we give faster polynomial space algorithm for
Steiner Tree.

21.3.1 Subset Steiner Forest

In this Subsection we generalize our parameterized single exponential time polyno-
mial space algorithm (algorithm in Section 21.2) to a general version of the Steiner
Tree problem, named Subset Steiner Forest. Towards that we first define sub-
set Steiner forest and then the problem Subset Steiner Forest.

Definition 21.1. Let G be a graph, w : E(G)→ {1, 2, . . . ,W} be a non-negative

weight function, S be a family of set of vertices and T ⊆ V (G) be a set of terminals.

A subgraph G′ of G is called a subset Steiner forest of G on the family S and the

terminal set T , if the following conditions holds.

• T ∪
(⋃

S∈S S
)
⊆ V (G′), and

• for all S ∈ S, there is a connected component C in G′ such that S ⊆ V (C).

We use sfG(S, T ) to denote the minimum weight of a subset Steiner forest of G on

the family S and the terminal set T .

The problem Subset Steiner Forest is formally defined as,

Subset Steiner Forest Parameter: k = |T |
Input: An undirected graph G, a non-negative weight function w : E(G) →
{1, 2, . . . ,W}, a family S of sets of vertices and a set of terminals T where
|⋃S∈S S| is a constant
Question: A minimum weight subset Steiner forest of G on the family S and
the terminal set T

The recurrence relations defined for Steiner Tree (Equations 21.2 and 21.3) can
be generalized to get recurrence relations for Subset Steiner Forest. That is we
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define four functions fi for i ∈ {0, 1, 2, 3}. In what follows let S = {S1, . . . , Sr} is a
family of vertex sets such that for all j, |Sj| ≤ c, where c and r are constants. Each
function fi takes as input a family S of vertex subsets, of size r such that for all
S ∈ S, |S| ≤ c+ i and a subset T ′ of T . These functions fi s are recurrence relations
for Subset Steiner Forest. That is fi(S, T ′) is exactly sfG(S, T ′). Now we
define these functions. When |T ′| ≤ c + 3, fi(S, T ′) = sfG(S, T ′). For |T ′| > c + 3,
we define fi(S, T

′) using the following recurrences.

Separation. For i ∈ {0, 1, 2}, let us define

fi(S, T ′) = min
(T1,T2)∈B 1

6
(T ′)

v1,...,vr∈V (G)

∀j:S(1)
j ]S

(2)
j =Sj

2∑
`=1

fi+1

(
{S(`)

1 ∪ {v1}, . . . , {S(`)
r ∪ {vr}}, T`

)
(21.6)

Resplitting. For i = 3, let us define

fi(S, T ′) = min
(T1,T2,T3)∈P3(T ′)

∀j:S(1)
j ]S

(2)
j ]S

(3)
j =Sj

|S(1)
j |,|S

(2)
j |,|S

(3)
j |≤c+1

v1,...,vr∈V (G)

3∑
`=1

fi−1

(
{S(`)

1 ∪ {v1}, . . . , {S(`)
r ∪ {vr}}, T`

)
(21.7)

The proof of correctness of above recurrence relation is exact generalization of the
proof of correctness of the recurrence relations of Steiner Tree (Equations (21.2)
and (21.3)). Note that when |T ′| ≤ c + 3, we can compute sfG(S, T ′) in polyno-
mial time by solving many instances of Steiner Tree using the Dreyfus–Wagner
algorithm. As like in Section 21.2, a recursive algorithm using Equations (21.6) and
(21.7) can be designed.

Theorem 21.4. Subset Steiner Forest can be solved in O(7.97knr(c+4) log nW )

time using nr(c+3) log nW · log k space.

21.3.2 Algorithm for Steiner Tree

In this Subsection we design a faster polynomial space algorithm for Steiner Tree
using Subset Steiner Forest. We design a new recurrence relation for subset
Steiner forest using a notion of α-Steiner separator for subset Steiner forest. Given
a subset Steiner forest SF on terminals T and family S, an α-Steiner separator S
of SF is a subset of nodes which partitions SF − S in two forests R1 and R2, each
one containing at most α|T | terminals from T . The following lemma follows from
Lemma 1 (Sharp Separation) of [51].
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Lemma 21.9 (c-Separation). For any constant c ≥ 0, every subset Steiner forest

SF on terminal set T and family S, has a
(

1
2

+ 1
2c/2

)
-Steiner separator S of size at

most c.

We design a recurrence relation g(c) for subset Steiner forest for any constant c ≥ 2.
The function g(c) takes inputs S ⊆ V (G), PS ∈ P(S) and a set of terminals T .
When |T | ≤ c, the value of g(c)(S, PS, T ) is defined to be sfG(PS, T ). Otherwise
g(c)(S, PS, T ) is defined by the following recurrence relation. Let us fix α = 1

2(c/2)
.

g(c)(S, PS, T ) = min
(T1,T2)∈Bα(T ),
S′⊇S:|S′\S|≤c,
P1,P2∈P(S′):
PS�P1tP2

g(c)(S ′, P1, T1) + g(c)(S ′, P2, T2) (21.8)

We need to show that Equation 21.8 is a recurrence relation for Subset Steiner
forest and we prove it in Lemma 21.11. The following lemma is useful for proving
Lemma 21.11.

Lemma 21.10. Let G be a graph, S ′, T ⊆ V (G) and P1, P2 ∈ P(S ′). Let F1 and F2

be subset Steiner forests for the pairs (P1, T ) and (P2, T ) respectively. Let S ⊆ S ′

and PS ∈ P(S) such that PS � P1 t P2. Then F1 + F2 is a subset Steiner forest for

the pair (PS, T ).

Proof. Let F = F1 + F2. Since F1 is a subset Steiner forest for the pair (P1, T )

and P1 ∈ P(S), we have that S ′ ∪ T ⊆ V (F1). This implies that S ∪ T ⊆ V (F ).

Now we need to show that for any Q ∈ PS, there is a component C in F such that

Q ⊆ V (C). Since F1 and F2 are subset Steiner forests for the pairs (P1, T ) and

(P2, T ) respectively, the graph F = F1 + F2 is a subset Steiner forest for the pair

(P1 t P2, T ). Since PS � P1 t P2 any Q ∈ PS is completely contained in a block

Q′ in P1 t P2. Since F is a subset Steiner forest for the pair (P1 t P2, T ), there is

a component C in F such that Q′ ⊆ V (C). This implies that Q ⊆ V (C). This

completes the proof of the Lemma.

Now we show that the above recurrence (Equation 21.8) is indeed a recurrence
relation for subset Steiner forest:
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Lemma 21.11. For any T ⊆ V (G), a partition PS of vertex subset S of G and a

constant c ≥ 2 it holds that g(c)(S, PS, T ) = sfG(PS, T ).

Proof. We prove the lemma using induction on |T |. For the base case, when |T | ≤ c

the lemma holds by the definition of g(c). For inductive step, let us assume that

the lemma holds for all T ′ of size less than j and any S ′ ⊆ V (G) and any partition

PS′ ∈ P(S ′). We now show that g(c)(S, PS, T ) = sfG(PS, T ) for all T ⊆
(
V (G)
j

)
,

S ⊆ V (G) and PS ∈ P(S). Fix a set T ⊆
(
V (G)
j

)
, S ⊆ V (G) and PS ∈ P(S). Let

α = 1
2(c/2)

.

First we show that g(c)(S, PS, T ) ≥ sfG(PS, T ). By (21.8), we know there exists

(T1, T2) ∈ Bα(T ), S ′ ⊇ S and P1, P2 ∈ P(S ′) such that |S ′ \ S| ≤ c, PS � P1 t P2

and

g(c)(S, PS, T ) = g(c)(S ′, P1, T1) + g(c)(S ′, P2, T2).

Since (T1, T2) ∈ Bα(T ) and |T | ≥ 2, we have that |T1|, |T2| < |T |. Then by induction

hypothesis g(c)(S ′, P1, T1) = sfG(P1, T1) and g(c)(S ′, P2, T2) = sfG(P2, T2). So we

have that g(c)(S, PS, T ) = sfG(P1, T1) + sfG(P2, T2). Let SF1 and SF2 be optimum

subset Steiner forests for the pairs (P1, T1) and (P2, T2) respectively. Hence, by

Lemma 21.10, G′ = SF1+SF2 is a subset Steiner forest for the pair (PS, T ). Thus we

have shown that G′ is subset Steiner forest of the pair (PS, T ) of weight g(c)(S, PS, T ).

This implies that g(c)(S, PS, T ) ≥ sfG(PS, T ).

Conversely, let SF be an optimum subset Steiner forest for the pair (PS, T ). By

Lemma 21.9 we know that there exists an α-Steiner separator S ′′ of SF such that

|S ′′| ≤ c. Let S ′ = S ′′ ∪ S. Since S ′ ⊇ S ′′, S ′ is also an α-Steiner separator of SF .

Let R1 and R2 be the forests created by S ′ such that |V (R1) ∩ T | ≤ (1
2

+ α)|T |
and |V (R2) ∩ T | ≤ (1

2
+ α)|T |. Let T1 = V (R1) ∩ T and T2 = V (R2) ∩ T . If

T1 ∪ T2 6= T , then arbitrarily add each vertex in T \ (T1 ∪ T2) to either T1 or T2

such that |Tr| ≤ (1
2

+ α)|T | for r ∈ {0, 1}. Note that (T1, T2) ∈ Bα(T ). Since S ′

is a separator for R1 and R2 in SF , there is no edge in E(SF ) which is incident
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to both R1 and R2. Let E1 be the set of edges in E(SF ) which are incident to

R1 and let E2 = E(SF ) \ E1. Consider the graphs F1 = (V (R1) ∪ S ′, E1) and

F2 = (V (R2)∪S ′, E2). The graphs F1 and F2 are subset Steiner forests for the pairs

(PF1 [S
′], T1) and (PF2 [S

′], T2) respectively. Thus we have that

w(SF ) = w(F1) + w(F2) ≥ sfG(PF1 [S
′], T1) + sfG(PF2 [S

′], T2) (21.9)

Since F1+F2 = SF and PS � PSF , we have that PS � PF1 [S
′]tPF2 [S

′]. We have that

|S ′ \ S| ≤ c, (T1, T2) ∈ Bα(T ) and PF1 [S
′], PF2 [S

′] ∈ P(S ′) such that PS � PF1 [S
′] t

PF2 [S
′]. Hence by induction hypothesis and our recurrence relation (Equation 21.8),

we have that sfG(PF1 [S
′], T1) + sfG(PF2 [S

′], T2) ≥ g(c)(S, PS, T ). Combining this

with Equation 21.9, we get g(c)(S, PS, T ) ≤ w(SF ) = sfG(PS, T ).

Now for any ε > 0, we explain a nO(f ′(ε)) logW space 4(1+ε)knO(f(ε)) logW time
algorithm for Steiner Tree. The We fix (later) two constants c ≥ 4 and d based

on ε. Let α = 1
2(c/2)

and β =
(

1
2

+ α
)d

. The algorithm is a recursive algorithm based
on Equation 21.8. Whenever the cardinality of set of terminal in a recursive call is
bounded by βk, then the algorithm uses Theorem 21.4 as a black box, otherwise it
branches according to Equation 21.8. Initial call to the recurrence is on the set of
terminals T and family ∅. Since each time Equation 21.8 reduces the cardinality
of the set of terminals by a factor of (1

2
+ α), the depth of the recurrence tree is

bounded by d. Hence the total number of vertices in the family when our algorithm
invoke Theorem 21.4 is bounded by d · c. This implies that the space usage of our
algorithm is bounded by (ndc(dc+1) + d) logW .

Now we bound the running time of the algorithm. Let T (k) be the running time of
the algorithm for an n-vertex graph.

Lemma 21.12. There exists a constant C such that for any k′ ≤ k,

T (k′) = C · (dc)(2dc)d′ncd
′
ncd(cd+4)2d

′
log nW · (7.97)βk4k

′
2

2k′
1−2α ,

where d′ = log 1
2

+α
βk
k′

.

Proof. Let C be a constant such that the algorithm in Theorem 21.4 runs in time

C · 7.97knr(c+4) log nW . We prove the lemma by induction on k′. When k′ ≤ βk,
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then T (k′) is bounded by C · 7.97k
′
ndc(dc+4) log nW . Assume that the lemma holds

for all values of k′ < k. Now we need to bound T (k). According to Equation 21.8,

T (k) = ncc2c2k · 2 · T
((

1

2
+ α

)
k

)
(21.10)

Let γ =
(

1
2

+ α
)
. Now by induction hypothesis, we simplify Equation 21.10 as

T (k) = ncc2c2k · 2 · T (γk)

= ncc2c2k+1 · C(dc)(2dc)d′ncd
′
ncd(cd+4)2d

′
log nW · (7.97)βk4γk2

2γk
1−2α ,(21.11)

where d′ = logγ
βk
γk
≤ d− 1.

Substituting d′ = d− 1 in Equation 21.11,

T (k) = C · (dc)(2dc)dncdncd(cd+4)2d log nW · 2k(7.97)βk4γk2
2γk
1−2α (21.12)

Claim 21.1. 2k4γk2
2γk
1−2α ≤ 4k2

2k
1−2α

Proof.

2k4γk2
2γk
1−2α ≤ 2k · 2(1+2α)k · 2

(1+2α)k
1−2α

≤ 4k · 2(2α+ 1+2α
1−2α)k (21.13)

Here α = 1
2(c/2)

. For c ≥ 4,
(
2α + 1+2α

1−2α

)
≤ 2

1−2α
. This completes the proof of the

claim.

By applying above claim in Equation 21.12, we get

T (k) = C · (dc)(2dc)dncdncd(cd+4)2d log nW · (7.97)βk4k2
2k

1−2α

Thus, for any ε > 0, by choosing constants c and d such that (7.97)βk2
2k

1−2α ≤ 4εk,
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we can get the following theorem.

Theorem 21.3. For any ε > 0, there is a nO(f ′(ε)) logW space 4(1+ε)knO(f(ε)) logW
time algorithm for Steiner Tree, where f and f ′ are computable functions depends
only on ε.
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Part VI

Conclusion
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Chapter 22

Conclusion

We gave an efficient algorithm for computing a representative familiy of a family
of independent sets in a linear matroid. For the special case where the underlying
matroid is uniform we developed an even faster algorithm. Also we have developed
faster algorithm for representative family of product families both in uniform ma-
troids and linear matroids. We also showed interesting links between representative
families of matroids and the design of single-exponential parameterized and exact
exponential algorithms. We believe that these connections have a potential for a
wide range of applications. We list some of the natural open problems below.

• What is the best possible running time of an algorithm that computes a q-
representative family of size at most

(
p+q
p

)
for a p-family F of independent sets

of a linear matroid? Does an algorithm with linear dependence of the running
time on |F| exist, or is it possible to prove superlinear lower bounds?

• It would be interesting to find faster algorithms even for special classes of linear
matroids. Uniform matroids and graphic matroids are especially interesting
in this regard.

• There is a randomized polynomial time algorithm to find a linear represen-
tation of a gammoid. Can we derandomize it? Can we compute a small
representative family of a family of independent sets in a gammoid without
using its linear representation?

• What are the natural set families like product families for which we can find
representative sets faster?

• Are there deterministic algorithms for k-Path and Multilinear Monomial
Detection running in time 2knO(1)?

We would like to remark that recently Zehavi [121] has announced a further im-
provement for k-Path algorithm using representative families and divide and color
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technique. The algorithm presented in [121] runs in time 2.597k · nO(1).

In Part IV we studied some problems on matroids like Matroid Girth and Ma-
troid Connectivity. We showed that Matroid Girth and Matroid Con-
nectivity in a linear matroid when parameterized by rank(M) are not FPT unless
FPT = W [1], but FPT when parameterized by rank(M)+q, where q is the field size.
Other than the Even Set problem which remains notoriously open, we draw atten-
tion to the following interesting open problem arising from our work. Is Matroid
Girth FPT on gammoids when parameterized by rank(M)?

In Part V we give the first single exponential time polynomial space algorithm for
Steiner Tree running in time O(7.97kn4 log nW ) where W is the largest weight
of an edge in the n-vertex input graph. We also give an algorithm running in time
4(1+ε)knO(f(ε)) logW and space nO(f ′(ε)). Can we get rid of the ε dependence from
the power of n in the time complexity or space complexity?
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