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Abstract

We divide our study into two parts. In the first part we study the main topic of our

interest, that is same as the title of this thesis. While in the second part we study

a problem related to additive representation function related to sum-set.

For an elliptic curve E over the rationals and a prime p, Ep(Fp) be the reduced curve

modulo p. For a fixed positive integer N , ME(N) counts the number of primes p

such that |Ep(Fp)| = N . Under a well known conjecture regarding primes in short

intervals, the average of ME(N) over an appropriate large class C of curves E is

asymptotic to K∗(N)
logN

for a constant K∗(N) close to 1. In this thesis, we compute

the average of K∗(N) over N ≤ x. This asymptotic result improves an earlier

result significantly and checks the consistency of the conditional result with other

unconditional ones. Further, we also investigate the distribution of ME(N), that is

the probability of the event {ME(N) = `} for a fixed integer ` and N . For that

purpose, we again take an average of the indicator function of the event {ME(N) =

`} over a class C of curves and prove that ME(N) follows a Poisson distribution on

average with a mean equals to the average of ME(N) over the same class C.

In the second part of the thesis, we discuss a problem in additive number theory.

Let A = {a1 < a2 < a3 · · · < an < · · · } be an infinite sequence of non-negative

integers and let R2(n) = |{(i, j) : ai + aj = n; ai, aj ∈ A; i ≤ j}|. We define

Sk =
k∑
l=1

(R2(2l)−R2(2l+ 1)). We prove that if the L∞ norm of S+
k (= max{Sk, 0})

is small, then the L1 norm of
S+
k

k
is large.
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Chapter 1

Introduction

In this chapter we shall discuss the background of the problems that we are inter-

ested in and state the results. In the later chapters, we shall have more elaborate

discussions on those results.

1.1 Reduction modulo prime

Consider an elliptic curve

E : Y 2Z = X3 + aXZ2 + bZ3, (1.1.1)

where a, b ∈ Q and discriminant ∆ = −16(4a3 + 27b2) 6= 0. Under a suitable change

of variable of the type X 7→ X/c2 and Y 7→ Y/c3, without loss of generality, one

can assume that a and b are integers. Also, if c is chosen in such a way that |∆|

is minimal, then the equation is said to be minimal Weierstrass equation. For a

curve E, a prime p 6= 2 is called prime of good reduction if p - ∆, where ∆ is the

discriminant of the minimal Weierstrass equation for E.

So, if we assume that (1.1.1) is minimal form, then the reduction of E modulo p is

11



given by

Ep : Y 2Z = X3 + apXZ
2 + bpZ

3, (1.1.2)

where ap and bp are the images of a and b in Fp.

Here we also recall that the points on elliptic curve over a field k gives rise to an

abelian group under addition of points over curves. So, E/Q is an abelian group

and Ep/Fp, where p is a prime of good reduction for E, is an abelian group.

With these notations, we proceed to define the following prime counting function.

1.2 The prime counting function ME(N)

Let E be an elliptic curve defined over the field of rationals Q. For a prime p where

E has good reduction, we denote by Ep the reduction of E modulo p. Let Fp be the

finite field with p elements and Ep(Fp) is the group of Fp points of Ep.

It is well known that Ep(Fp) admits the structure of an abelian group of the form

Z/mZ × Z/mkZ, where m divides (p − 1). We denote such groups by Gm,k. The

question related to density of elliptic curve groups among all groups of the form

Gm,k has been addressed in [BPS12].

We know |Ep(Fp)| = p+1−ap(E) where ap(E) is the trace of the Frobenius morphism

at p. By Hasse’s theorem we know that |ap(E)| < 2
√
p. The question related to the

primality of Ep(Fp) has been discussed in [BCD11]. Now, for a fixed positive integer

N , we define the following prime counting function

ME(N) := #{p prime : E has good reduction over p and |Ep(Fp)| = N}. (1.2.1)

12



Here we note that the Hasse’s theorem implies

(
√
p− 1)2 <N < (

√
p+ 1)2

or equivalently,

N− := (
√
N − 1)2 <p < (

√
N + 1)2 := N+. (1.2.2)

This in turn implies that

ME(N)�
√
N

log(N + 1)
. (1.2.3)

Using Chinese Reminder theorem, it is not difficult to construct a curve E such that

the upper bound in (1.2.3) is attained.

Also, it is not difficult to prove that

∑
N≤x

ME(N) = π(x) +O(
√
x). (1.2.4)

To see this, note that when N varies over the range [1, x], ME(N)’s corresponds to

mutually exclusive sets of primes. But, by Hasse’s theorem the primes are in the

range [N−, N+] and hence in the range [x−, x+]. By the same arguments, all the

primes except O(
√
x) many in the range [x−, x+] appear at least once. Hence each

prime occurs exactly once. Since π(x) = π(x+) +O(
√
x), the above equality holds.

Consequently, ME(N) is zero for most of the N ’s. Under the assumption that

Ep(Fp) is uniformly distributed over the range [p−, p+] when E varies, heuristically,

the average order of ME(N) is expected to be ∼ c
logN

; See equation (4) in [DS13]

for more details.

Now, we are interested in the behavior of ME(N) for a fixed N . For a single E,

13



ME(N) can range from 0 to
√
N

logN
as discussed above. So a sensible way to approach

the problem is to take an average of ME(N) over a reasonably large class of curves

E.

For a pair of integers (a, b), let Ea,b be the elliptic curve defined by the Weierstrass

equation

Ea,b : y2 = x3 + ax+ b.

Also for A,B > 0, we define the class of curves C(A,B) by

C(A,B) := {Ea,b : |a| ≤ A, |b| ≤ B,∆(Ea,b) 6= 0}. (1.2.5)

Before we present the relevant results, we need to state the following well known

conjecture related to short interval distribution of primes in arithmetic progression.

Conjecture 1 (Barban-Davenport-Halberstam). Let θ(x; q, a) =
∑

p≤x,p≡a(mod q)

log p.

Let 0 < η ≤ 1 and β > 0 be real numbers. Suppose that X, Y , and Q are positive

real numbers satisfying Xη ≤ Y ≤ X and Y/(logX)β ≤ Q ≤ Y . Then

∑
q≤Q

∑
1≤a≤q
(a,q)=1

|θ(X + Y ; q, a)− θ(X; q, a)− Y

φ(q)
|2 �η,β Y Q logX.

For η = 1, this is the classical Barban-Davenport-Halberstam theorem. Languasco,

Perelli, and Zaccagnini [LPZ10] have proved the Conjecture for η = 7
12

+ ε, which

is the best known result. Also, in the same paper [LPZ10], they have proved the

conjecture for η = 1
2

+ ε under the generalized Riemann hypothesis.

Now, under the above hypothesis, David and Smith [DS13],[DS14] proved that

Theorem A. Let Conjecture 1 be true for some 0 < η < 1
2
. Let γ be a posi-

tive constant. Choose A, B such that A,B ≥
√
N(logN)1+γ log logN and AB ≥

14



N
3
2 (logN)2+γ log logN , then for any odd integer N , we have

1

#C(A,B)

∑
E∈C(A,B)

ME(N) = K(N)
N

φ(N) logN
+O(

1

(logN)1+γ
),

(1.2.6)

with

K(N) :=
∏
p-N

(
1−

(N−1
p

)2p+ 1

(p− 1)2(p+ 1)

)∏
p|N

(
1− 1

pνp(N)(p− 1)

)
, (1.2.7)

where νp denotes the usual p-adic valuation.

Heuristically one would expect this result where the function NK(N)
φ(N)

can be consid-

ered to be a constant close to 1 for most of N ’s.

In [CDKS14], Chandee, David, Koukoulopoulos and Smith extended this result over

all N .

Note that the above theorem is based on the assumption of Barban-Davenport-

Halberstam conjecture for a particular range. In order to verify the consistency of

Theorem A with unconditional results such as (1.2.4), one needs to compute the

mean value of NK(N)
φ(N)

, which is the main topic to be discussed in the next chapter.

1.3 Average of K∗(N)

If we denote NK(N)
φ(N)

by K∗(N), then in [MPS14], Smith, Martin and Pollack proved

Theorem B. For x ≥ 2,

∑
N≤x

K∗(N) = x+O

(
x

log x

)
and

∑
N≤x
N odd

K∗(N) =
x

3
+O

(
x

log x

)
.

15



Using the first part of Theorem B and Abel’s partial summation one can verify that

∑
N≤x

K∗(N)

logN
=

x

log x
+O(

x

(log x)2
). (1.3.1)

Then (1.2.6) together with 1.3.1 gives

1

#C(A,B)

∑
E∈C(A,B)

∑
N≤x

ME(N) =
x

log x
+O

(
x

(log x)2

)
. (1.3.2)

So Theorem A is consistent with (1.2.4) as π(x) = x
log x

+ O
(

x
(log x)2

)
. Hence an

average over E in the equation (1.2.4) also gives the above equality. Similarly, using

the second part of Theorem B, we also get

∑
N≤x
N odd

K∗(N)

logN
=

1

3
π(x) +O

(
x

(log x)2

)

Here, we note that, a special case of an unconditional result (Theorem 19, [BS09])

by Banks and Shparlinski gives

1

#C(A,B)

∑
E∈C(A,B)

∑
N≤x
N odd

ME(N) =
1

3
π(x) +OR

(
x

(log x)R

)
, (1.3.3)

where R is a fixed positive real number. See equation (9) in [MPS14] for more

details.

We observe that appropriate improvements in the asymptotic results in Theorem B

would give

1

#C(A,B)

∑
E∈C(A,B)

∑
N≤x

ME(N) = π(x) +O

(
x

(log x)R

)
, (1.3.4)

as well as (1.3.3).
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These improvements are contained in Theorem 1.3.1 below. This provides further

support to the Barban-Davenport-Halberstam conjecture. We prove

Theorem 1.3.1. If x ≥ 2, then

∑
N≤x

K∗(N) = x+O(log x) and
∑
N≤x
N odd

K∗(N) =
x

3
+O(log x).

To get (1.3.3) and (1.3.4), one can combine Theorem A and Theorem 1.3.1 by using

partial summation formula. Note the improvements in the error term in (1.3.4)

compared to the error term in (1.3.2).

Before going to the next section, we shall see what special structure the function

K∗(N) posses. An arithmetic function F : N→ C is called multiplicative if

F (mn) = F (m)F (n) for (m,n) = 1.

Although the function K∗(N) looks far from being multiplicative, it can be written

as a product of two shifted multiplicative functions, i.e.

K∗(N) = C∗2F
∗(N − 1)G∗(N) (1.3.5)

where

C∗2 =
∏
p>2

(
1− 1

(p− 1)2

)
(1.3.6)

F ∗(N) =
∏
p|N
p>2

(
1− 1

(p− 1)2

)−1∏
p|N

(
1− 1

(p− 1)2(p+ 1)

)
(1.3.7)

G∗(N) =
N

ϕ(N)

∏
p|N
p>2

(
1− 1

(p− 1)2

)−1∏
p|N

(
1− 1

pνp(N)(p− 1)

)
. (1.3.8)

Note that, both F ∗ and G∗ are multiplicative functions. So the problem reduces

17



to computing the average of the product of two shifted multiplicative functions. In

order to prove the above theorem, we use a new technique to compute the mean

value of fairly general shifted multiplicative functions.

1.4 Shifted multiplicative functions

Let F and G : N→ C be non zero multiplicative functions . Here we are interested

in finding the mean value of F (n− h)G(n) for a fixed integer h. More precisely, we

consider

Mx,h(F,G) =
1

x

∑
n≤x

F (n− h)G(n). (1.4.1)

A lot of work has been done to find the asymptotic behavior of Mx,h(F,G) un-

der various conditions, (see for example [CS01], [Kat69], [SS07], [Ste97a], [Ste97b],

[Ste01]). In many of those cases, the functions are required to be close to 1 on the

set of primes. In some cases (for example [Kat69]) convergence of suitable series

involving F and G has been assumed.

When the functions grow fast, then the problem becomes more difficult. In [EI90],

divisor function and other fast-growing functions are discussed. Mx(φ, φ), corre-

sponding to the Euler totient function φ(n), has been studied in [Ing27] and [Mir49].

Here we consider this problem for a wide class of functions with generalized growth

conditions. The types of functions that we consider in Theorem 1.4.1 need not be

multiplicative. But they can be written as

F (n) = A(n)
∑
d|n

f(d) and G(n) = B(n)
∑
d|n

g(d), (1.4.2)

18



where

∞∑
d=1

|f(d)|
d

< +∞,
∞∑
d=1

|g(d)|
d

< +∞. (1.4.3)

Further, we assume the existence of two function M(x) and E1(x), such that for any

positive integers a and m,

∑
n≤x

n≡a(mod m)

A(n− h)B(n) =
1

m
M(x) +Oh(E1(x)), (1.4.4)

where the main term M(x) depends only on x; and not on a and m; Also the implied

constant in the error term depends on h only.

We show that, under the above conditions, one can prove an asymptotic estimate

of Mx,h(F,G). Further, in order to write the error term explicitly, we introduce two

suitable monotonic functions E1(x) and E2(x) such that

∑
d≤x

|f(d)| = O(E2(x)),
∑
d≤x

|g(d)| = O(E3(x)). (1.4.5)

With these notations, we state the following theorem.

Theorem 1.4.1. Let F and G be two arithmetic functions, satisfying (1.4.2),

(1.4.3), (1.4.4) and (1.4.5), where f and g are multiplicative. Suppose there is

a 0 < c < 2 such that for any large positive real number y, Ei(2y) ≤ cEi(y) for

i = 2, 3. Then for any fixed positive integer h,

∑
n≤x

F (n− h)G(n) = ChM(x) +Oh (E1(x)E2(x)E3(x)) +Oh

(
c

2− c
|M(x)|
x

(|E2(x)|+ |E3(x)|)
)
,

(1.4.6)
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with

Ch =
∏
p

(
1 +

∑
j≥1

f(pj) + g(pj)

pj

)∏
p|h

1 +

νp(h)∑
i=1

piSp(p
i)

Sp(1)


where Sp(p

i) :=
∑

min{e1,e2}=i

f(pe1 )g(pe2 )
pe1+e2

, for i ≥ 0 and the implied constant in the error

term depends only on h.

Before proceeding further, we shall note down some application of the above theorem

apart from its application on the function K∗(N) defined above. One can directly

apply it on classical Euler’s totient function φ and Jordan’s totient function Jk . See

[ES51] and [AS90] for more on the error term related to φ and Jk.

Corollary 1.4.1. (a) If φ(n) is the Euler totient function, i.e. φ(n) = n
∏
p|n

(1−1/p),

then for any positive integer h ≤ x,

∑
n≤x

φ(n)φ(n− h) =
1

3
x3
∏
p

(1− 2

p2
)
∏
p|h

(1 +
1

p(p2 − 2)
) +O(hx2(log x)2).

(b) If Jk(n) is the Jordan’s totient function, defined as Jk(n) = nk
∏
p|n

(1−1/pk), then

for k ≥ 2 and a positive integer h ≤ x,

∑
n≤x

Jk(n)Jk(n− h) =
x2k+1

2k + 1

∏
p

(1− 2

pk+1
)
∏
p|h

(
1 +

1

pk(pk+1 − 2)

)
+O(hx2k).

Part (a) of the previous corollary is as strong as the best known result which was

due to L. Mirsky [Mir49]. While the result related to Jk(n) in part (b) appears to

be the first of this kind.

Now, we discuss the original expression of K(N) as defined in [Theorem 3 ; [DS13]].
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We denote it by K̂(N). It was defined as

K̂(N) : =
N

φ(N)

∏
p-N

(
1−

(N−1
p

)2p+ 1

(p− 1)2(p+ 1)

) ∏
p|N

2-νp(N)

(
1− 1

pνp(N)(p− 1)

) ∏
p|N

2|νp(N)

1−
p−

(
−Np
p

)
pνp(N)+1(p− 1)


(1.4.7)

where νp denotes the usual p−adic valuation, Np := N
pνp(N) denotes the p−free part

of N and
(
a
p

)
is the quadratic residue symbol for a modulo p.

This function cannot be written as a product of two shifted multiplicative functions.

In [MPS14], the mean value of K̂(N) over odd N has been computed. Using a

different method, we prove an average of K̂(N) over all N up to x.

Theorem 1.4.2. For x ≥ 2,

∑
N≤x

K̂(N) = x+O(log x).

In [MPS14], Smith, Martin and Pollack also computed a similar average of K̂(N)

over odd N ’s with an error term O
(

x
log x

)
. Although the function above in the main

theorem does not have any relevance to any any natural question, the main reason

to prove this theorem separately, is to show that Theorem 1.4.1 can be useful, even

when one of the shifted functions is not multiplicative.

In Chapter 2, we shall continue the discussion on the above mentioned functions

such as K∗(N) and K̂(N).

In the last section of this chapter, we come back to the distribution of the function

as defined in 1.2.1.
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1.5 Distribution of ME(N)

In [Kow06], Kowalski raised a question related to the behavior of sums of the type

∑
N≤x

ME(N)r and
∑
N≤x

ME(N)≥2

ME(N). (1.5.1)

To answer this question, we focus on the distribution of the function ME(N). In

other words, if N is a fixed integer and E be any arbitrary chosen curve from a large

class of curves, then what is the probability of the event {ME(N) = `}, where ` is

a given positive integer.

Under the assumption that primes are randomly distributed and reduction modulo

two different primes are two independent events, from Theorem 1.3.1, one would

expect the event {E ∈ C : ME(N) = `} occurs with a probability ∼ 1
(logN)`

. But

such a result is possibly going to be dependent on assumption such as the one

assumed in Theorem 1.3.1. As before, by taking the average over a class , we can

get the following unconditional result.

Theorem 1.5.1. Let C(A,B) be as defined as in (1.2.5) and N be a positive integer

greater than 7. If L be a positive integer and γ > 0, such that A,B > NL/2(logN)1+γ

and AB > N3L/2(logN)2+γ for some γ > 0, then for 1 ≤ ` ≤ L

1

#C(A,B)

∑
E∈C(A,B)
ME(N)=`

1 =
1

`!

 1

#C(A,B)

∑
E∈C(A,B)

ME(N)

`(
1 +O

(
N

φ(N) logN

))

+O

(
1

N
L−`
2 (logN)γ

)
,

where the ‘O’constant in the last error term is independent of γ.

22



From [Theorem 1.7, [CDKS14]] we also have

1

#C(A,B)

∑
E∈C(A,B)

ME(N)� N

φ(N) logN
= O

(
log logN

logN

)
, (1.5.2)

for large enough A,B.

Now we know that if XN ∼ Poisson(λN), for N = 1, 2, · · · , then the probability

mass function of XN is

fXN (`) =
(λN)`e−λN

`!
for ` = 0, 1, 2, · · · .

If we take λN = 1
#C(A,B)

∑
E∈C(A,B)

ME(N), then in view of (1.5.2), one can see that if L

is large, then on an average ME(N) follows a limiting Poisson distribution with mean

1
#C(A,B)

∑
E∈C(A,B)

ME(N) as N →∞. The integer L in Theorem 1.5.1 is introduced to

ensure the finiteness of the class C(A,B).

One can immediately see that if one also assumes Conjecture 1, as in Theorem A,

then the right hand side of Theorem 1.3.1 is asymptotic to 1
`!

(
NK(N)

φ(N) logN

)`
.

Further, one can think of the following generalization of the quantities defined in

(1.5.1), namely

1

#C
∑
E∈C

∑
ME(N)≥`

N≤x

ME(N)r (1.5.3)

for two non negative integers r and `.

Proving an asymptotic for (1.5.3) would provide a possible answer for Kowalski’s

question related to (1.5.1).

Before stating our result related to (1.5.3), we shall introduce a sequence of con-

stants {C(m)}∞m=`, where C(m) corresponds to the m−th moment of the function
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NK(N)/φ(N) where K(N) as defined in (1.2.7). More precisely,

C(m) =
∏
p>2

(
1− 1

(p− 1)2

)m∏
p

(1 + fm(p)) ,

where,

fm(2) =
1

2

((
2

3

)m
− 1

)
+ 2m

∑
j≥2

1

2j

((
1− 1

2j

)m
−
(

1− 1

2j−1

)m)
,

fm(p) =
1

p

[(
1− 1

(p− 1)2

)−m((
1− 1

(p− 1)2(p+ 1)

)m
+

(
p

p− 1

)m(
1− 1

p(p− 1)

)m)
− 2

]

+

(
p

p− 1

)m(
1− 1

(p− 1)2

)m∑
j≥2

1

pj

((
1− 1

pj(p− 1)

)m
−
(

1− 1

pj−1(p− 1)

)m)
.

(1.5.4)

It is easy to check that C(1) = 1. It seems difficult to simplify the expression when

m > 1.

Also, for two integers r ≤ `, we construct a sequence {d`,r(m)}∞m=` as follows.

d`,r(m) =
m∑
k=`

kr

k!

(−1)m−k

(m− k)!
(1.5.5)

Here we note that d`,r(`) = `r

`!
; Also d1,1(1) = 1 and d1,1(m) = 0 for m ≥ 2.

With these notations, our next theorem is as follows.

Theorem 1.5.2. Let r and ` be two positive integers with r ≤ `. Also sup-

pose γ1 be nonnegative integer and γ2 is a positive real number with 1 + γ1 ≤ γ2.

Now if C(A,B) be defined as in (1.2.5) with A,B > x
`+γ1

2 (log x)1+`+γ2 and AB >
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x
3(`+γ1)

2 (log x)2+`+γ2, then for any positive real number x,

1

#C(A,B)

∑
E∈C

∑
N≤x

ME(N)≥`

ME(N)r =

`+γ1∑
m=`

C(m)d`,r(m)Lim(x) +O

(
x

(log x)1+`+γ1

)
,

where C(m) and d`,r(m) are defined in (1.5.4) and (1.5.5) respectively and Lim(x) =∫ x
2

1
(log t)m

dt.

If we focus on the right hand side in the above theorem, we observe that the high-

est order term, as a function of x, corresponds to the contribution coming from

{ME(N) = `}. This contributes a factor `r, along with the 1
`!

as stated in Theorem

1.5.1. Also the constant C(m) is the m’th moment of NK(N)
φ(N)

, which is defined in

Theorem A.

Further conditionally as in Theorem A, one has

Theorem 1.5.3. Let Conjecture 1 be true for some η < 1
2
. Also, let γ1 be a

non negative integer and γ2 > 0. Now if A,B > x
`+γ1

2 (log x)1+`+γ2 and AB >

x
3(`+γ1)

2 (log x)2+`+γ2, then for r ≤ `

1

#C(A,B)

∑
E∈C(A,B)

∑
ME(N)≥`

ME(N)r =

`+γ1∑
m=`

d`,r(m)

(
K(N)N

φ(N) logN

)m
+O

(
N

φ(N) logN

)1+`+γ1

+O

(
1

(logN)`+γ2

)
,

where C(A,B) is as before.

Remark 1. Let H denote a `-tuple of distinct integers and υH(p) is the number of

residue classes modulo p represented by elements of H. Suppose υH(p) < p for all

prime p. Then the Hardy-Littlewood conjecture states that the number of integers

n ≤ x such that n+h is prime for each h ∈ H is asymptotic to S(H)x log−k x where

S(H) =
∏
p

(
1−

υH(p)

p

)(
1− 1

p

)−k
.
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S(H) is called the ‘singular series’. Recalling the fact that d`,r(`) = `r

`!
, we note that

Theorem 1.5.2 is somewhat similar to the prime `−tuple conjecture except for an

extra 1
`!

, which comes from the permutation of a `−tuple.

In Theorem 1.5.2 and Theorem 1.5.3, the parameter γ1 is introduced to express the

smaller order terms with precise constants. Further, in Theorem 1.5.3, the implied

constant in the last error term is independent of γ2.

In Chapter 2, we first give a proof of Theorem 1.3.1 and Theorem 1.4.1. We shall

see that Theorem 1.4.1 is a straightforward application of Theorem 1.3.1. The proof

of Theorem 1.4.2 is somewhat more technical. We first show that the average K̂(N)

equals to an average of a ‘nice’function of the type that is defined in Theorem 1.3.1

and hence just average that ‘nice’function using Theorem 1.3.1.

While in Chapter 3, we produce a brief survey of the machinery that has been used

in problems similar to the one discussed in Section 1.5. We give a brief sketch of

the proof of Theorem A as done in [DS13]. In the last part of that chapter, we shall

show how one can modify this method to get Theorem 1.5.1. We also complete the

proof of Theorem 1.5.2 and Theorem 1.5.3 is the same chapter.

Since the final topic of our thesis, which is on the monotonicity of additive repre-

sentation function, is somewhat different from what has been explained above, we

leave the full discussion on that for Chapter 4.
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Chapter 2

Shifted multiplication functions

One of the classical way of approaching the sums of the type
∑
n≤x

f(n), where f is

an arithmetic function, is to replace f(n) by
∑
d|n
g(d). In that case the expression

becomes

∑
n≤x

f(n) =
∑
n≤x

∑
d|n

g(d)

=
∑
d≤x

g(d)
(x
d

+O(1)
)

= x
∑
d≤x

g(d)

d
+O

(∑
d≤x

|g(d)|

)

= x
∞∑
d=1

g(d)

d
+O

(
x
∑
d>x

g(d)

d

)
+O

(∑
d≤x

|g(d)|

)

If one can assume that the last two terms are indeed error terms, then it is all about

computing
∑
d≥1

g(d)
d

.

We know by Möbius inversion formula,

f(n) =
∑
d|n

g(d)⇐⇒ g(d) =
∑
d1|d

µ(d1)f

(
d

d1

)
,
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where µ is the Möbius function defined by

µ(d) =

 (−1)m, where d = p1p2 · · · pm, pi’s are distinct primes.

0, else.

Further, if f is multiplicative, then g is also multiplicative and vice versa. In that

case
∞∑
d=1

g(d)

d
=
∏
p

(
1 +

g(p)

p
+
g(p2)

p2
+ · · ·

)
.

Here note that, we are assuming convergence of the sums in many occasions. Also,

it is not clear what happens if f is not exactly multiplicative and slightly different

from that.

In [Luc79], Lucht showed the existence of mean values M(F ) = lim
x→∞

1
x

∑
n≤x

F (n) for

arithmetical function F : N → C defined by F (n) =
k∏
t=1

ft(Lt(n)), where the ft’s

under consideration are multiplicative and satisfies

|ft| ≤ 1 and
∑
p

∣∣∣∣ft(p)− 1

p

∣∣∣∣ <∞. (2.0.1)

Lt : n → 1
γt

(βtn + αt) are linear form with αt ∈ Z, (βt, γt) ∈ N2. This convergence

condition is the main reason why many of the results, as discussed in Section 1.2,

assume the condition of ft’s being close to 1.

In [Mir49], Mirsky discussed a simpler version of the above problem. To be more

precise, he considered the sums of the type

∑
n≤x

f1(n− h1)f2(n− h2) · · · fk(n− hk), (2.0.2)

where each fi are multiplicative and satisfy certain general conditions, whose under-

lining ideas are somewhat similar to ours. He was able to show that the (2.0.2) can
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be asymptotically estimated with small enough error term. Note that the functions

fi are need not be close to 1 in his case.

In this thesis, we consider functions F and G which are close to some ‘smooth’

functions A and B such that F
A

and G
B

are close to 1 and A(n − h)B(n) should be

nicely summable on every arithmetic progression. To make this more precise, we

shall first recall the conditions (1.4.2), (1.4.3), (1.4.4), (1.4.5) as stated in Chapter

1 and see how such conditions can be useful. We restate the conditions as follows.

F (n) = A(n)
∑
d|n

f(d) and G(n) = B(n)
∑
d|n

g(d), (2.0.3)

∞∑
d=1

|f(d)|
d

< +∞, and
∞∑
d=1

|g(d)|
d

< +∞. (2.0.4)

∑
d≤x

|f(d)| = O(E2(x)), and
∑
d≤x

|g(d)| = O(E3(x)). (2.0.5)

∑
n≤x

n≡a(mod m)

A(n− h)B(n) =
1

m
M(x) +Oh(E1(x)), (2.0.6)

Now if F (n)
A(n)

=
∑

d|n f(d) and G(n)
B(n)

=
∑

d|n g(d), then changing order of summation,

we shall arrive to the equality,

F (n− h)G(n) =
∑
d≤x−h

f(d)
∑
d1≤x

(d,d1)|h

g(d1)
∑
n≤x

n≡0 (mod d1)
n≡(0mod d)

A(n− h)B(n).

So to proceed further, we assume (2.0.6), i.e. the existence of a good estimate of

the sums of the type
∑
n≤x

n≡a mod [d,d1]

A(n− h)B(n), where the main term is independent

of a.
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With these conditions, we compute the main term of
∑
n≤x

F (n − h)G(n) explicitly.

The additional condition of f and g being multiplicative in Theorem 1.4.1 is only

required to get an Euler product form of the constant Ch. Also, note that if F
A

is

multiplicative, then by möbius inversion formula, f is uniquely determined. Further,

the convergence conditions, such as (2.0.4) are automatically satisfied.

In the next part we structure the above discussion to a proof of the Theorem 1.4.1.

2.1 Proof of Theorem 1.4.1

Using (2.0.3), we have

∑
n≤x

F (n− h)G(n) =
∑
n≤x

G(n)A(n− h)
∑
d|n−h

f(d)

=
∑
d≤x−h

f(d)
∑
n≤x

n≡h(mod d)

G(n)A(n− h)

=
∑
d≤x−h

f(d)
∑
n≤x

n≡h(mod d)

A(n− h)B(n)
∑
d1|n

g(d1)

=
∑
d≤x−h

f(d)
∑
d1≤x

(d,d1)|h

g(d1)
∑
n≤x

n≡0(mod d1)
n≡h(mod d)

A(n− h)B(n)

If (d, d1) | h, then using the Chinese remainder theorem ,

n ≡ 0( mod d1)

n ≡ h( mod d)

⇐⇒ n ≡ a( mod [d, d1]) for some a.
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By (2.0.6), this equals to

=
∑
d≤x−h

f(d)
∑
d1≤x

(d,d1)|h

g(d1)

(
M(x)

[d, d1]
+Oh(E1(x))

)
,

= M(x)
∑
d≤x−h

f(d)

d

∑
d1≤x

(d,d1)|h

g(d1)(d, d1)

d1
+Oh(E1(x)E2(x)E3(x)). (2.1.1)

Now, using the fact (d, d1) ≤ h, the d-sum and d1-sum can be extended to ∞ to get

M(x)
∞∑
d=1

f(d)

d

∞∑
d1=1

(d,d1)|h

g(d1)(d, d1)

d1

with an error term,

O(hM(x)
∑

1≤d<+∞

|f(d)|
d

∑
d1>x

|g(d1)|
d1

) +O(hM(x)
∑
d>x−h

|f(d)|
d

∑
d1≤x

|g(d1)|
d1

).

Now note that

∑
d>x

|f(d)|
d

=
∑

x<d≤2x

|f(d)|
d

+
∑

2x<d≤4x

|f(d)|
d

+
∑

4x<d≤8x

|f(d)|
d

+ · · ·

� E2(2x)

x
+
E2(4x)

2x
+
E2(8x)

4x
+ · · ·

≤ E2(x)

x
(c+ c2/2 + c3/4 + c4/8 + · · · )

≤ 2c

2− c
E2(x)

x
.

Similarly
∑
d1>x

|g(d1)|
d1
� 2c

2−c
E3(x)
x
.
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Then by (2.1.1),

∑
n≤x

F (n− h)G(n) = M(x)
∑
d,d1

(d,d1)|h

f(d)g(d1)(d, d1)

dd1
+Oh (|E1(x)E2(x)E3(x)|)

+O

(
ch

2− c
|M(x)|
x

(|E2(x)|+ |E3(x)|)
)
. (2.1.2)

We now express
∑
d,d1

(d,d1)|h

f(d)g(d1)(d,d1)
dd1

as an Euler product.

Let T be a multiplicative function, defined on prime powers by

T (pk) :=
Sp(p

k)

Sp(1)
=

∑
min{e1,e2}=k

f(pe1 )g(pe2 )
pe1+e2∑

min{e1,e2}=0

f(pe1 )g(pe2 )
pe1+e2

.

Then, we claim that

∑
(d,d1)=`

f(d)g(d1)

dd1
= T (`)

∑
(d,d1)=1

f(d)g(d1)

dd1
. (2.1.3)

To prove this, note that

∑
(d,d1)=`

f(d)g(d1)

dd1
=
∏
p|`

Sp(p
νp(`))

∏
p-`

Sp(1)

where Sp(p
i) :=

∑
min{e1,e2}=i

f(pe1 )g(pe2 )
pe1+e2

, for i ≥ 0. This follows from expanding the

product from the right hand side.

Similarly, ∑
(d,d1)=1

f(d)g(d1)

dd1
=
∏
p

Sp(1).

Hence, dividing the two quantities, (2.1.3) follows.
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Now

∑
d,d1

(d,d1)|h

f(d)g(d1)(d, d1)

dd1
=
∑
`|h

`
∑

(d,d1)=`

f(d)g(d1)

dd1

=
∑
`|h

`T (`)
∑

(d,d1)=1

f(d)g(d1)

dd1
.

Since T is multiplicative, the right hand side equals to

=

 ∑
(d,d1)=1

f(d)g(d1)

dd1

∏
p|h

(1 + pT (p) + · · ·+ pνp(h)T (pνp(h)))

=
∏
p

(
1 +

f(p) + g(p)

p
+
f(p2) + g(p2)

p2
+ · · ·

)
×

∏
p|h

(
1 + pT (p) + · · ·+ pνp(h)T (pνp(h))

)
,

which proves the result.

Before going in the proof of Theorem 1.3.1, we try to see how the above result can

be used in practice. For that we recall Corollary 1.4.1 from Section 1.4.

In the first case of the Corollary, we need to estimate
∑
n≤x

φ(n)φ(n−h) where φ(n) =

n
∏
p|n

(
1− 1

p

)
. In this case we choose A(n) = B(n) = n and hence F (n) = G(n) =∏

p|n

(
1− 1

p

)
. So we have

f(pk) = g(pk) =


1, if k = 0;

−1
p

if k = 1;

0, else.
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Now,

∑
n≤x

n≡a( mod m)

A(n− h)B(n) =
∑
n≤x

n≡a( mod m)

n2 − h
∑
n≤x

n≡a( mod m)

n

=
1

m
x3 +O(mx+ hx2).

Also, the convergence conditions such as
∑
d

|f(d)|
d

< +∞ and
∑
d

|g(d)|
d

< +∞ are

satisfied.

While for the Jordan totient function Jk(n) = nk
∏
p|n

(
1− 1

pk

)
, one takes A(n) =

B(n) = nk. The remaining computations are similar to the φ function case discussed

above. As another application of the above theorem, we shall give a proof of Theorem

1.3.1 in the next section.

2.2 Proof of Theorem 1.3.1

Recall that, K∗(N) = C∗2F
∗(N − 1)G∗(N) where C∗2 , F ∗ and G∗ are given as

C∗2 =
∏
p>2

(
1− 1

(p− 1)2

)

F ∗(N) =
∏
p|N
p>2

(
1− 1

(p− 1)2

)−1∏
p|N

(
1− 1

(p− 1)2(p+ 1)

)

G∗(N) =
N

ϕ(N)

∏
p|N
p>2

(
1− 1

(p− 1)2

)−1∏
p|N

(
1− 1

pνp(N)(p− 1)

)
.

Now following the notations of Theorem 1.4.1, A(n) = B(n) = 1, and hence M(x) =

x in this case.
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Also, if we set

f ∗(m) =
∑
d|m

µ(d)F ∗(m/d) (2.2.1)

and

g∗(m) =
∑
d|m

µ(d)G∗(m/d), (2.2.2)

then f ∗, g∗ are multiplicative functions. So it is enough to compute the values on

prime powers. It is straightforward to check that

f ∗(pk) =


1, if k = 0

1/(p+ 1)(p− 2), if k = 1

0, else.

g∗(pk) =

 1, if k = 0

(p− 1)/pk(p− 2), if k ≥ 1

for an odd prime p. Also

f ∗(2k) =

 −1/3, if k = 1

0, if k ≥ 2

g∗(2k) =

 0, for k = 1

1/2k−1, if k ≥ 2.

First, we shall compute the error terms E1(x), E2(x) and E3(x) as defined in Theo-

rem 1.4.1.

It is easy to see that E1(x) = O(1).
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Now,

E2(x) =
∑
d≤x

|f ∗(d)|

�
∏
p≤x

(1 + f ∗(p) + f ∗(p2) + · · · )

�
∏

2<p≤x

(1 +
1

(p+ 1)(p− 2)
)

= O(1).

Also

E3(x) =
∑
d1≤x

|g∗(d1)|

≤
∏
p≤x

(1 + g∗(p) + g∗(p2) + · · · )

≤
∏

2<p≤x

(1 +
1

p− 2
)

� log x.

If p is an odd prime,

1 +
+∞∑
i=1

f ∗(pi) + g∗(pi)

pi
= 1 +

1/(p+ 1)(p− 2) + (p− 1)/p(p− 2)

p
+
p− 1

p− 2

∑
i≥2

1

p2i

= 1 +
1

p(p+ 1)(p− 2)
+
p− 1

p− 2

1

p2 − 1

=
(p− 1)2

p(p− 2)

=

(
1− 1

(p− 1)2

)−1
. (2.2.3)
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Also

1 +
∞∑
i=1

f ∗(2i) + g∗(2i)

2i
= 1 +

(−1/3)

2
+
∑
j≥2

1

22j−1 = 1. (2.2.4)

Since C∗2 =
∏
p>2

(
1− 1

(p−1)2

)
this completes the proof of part (a).

To prove part (b) of the theorem, we may assume that G is supported on odd integers

only. Hence G(2k) = 0 for all k ≥ 1. In this case

g∗(2k) =

 −1, if k = 1

0, if k ≥ 2.
(2.2.5)

This gives

1 +
∞∑
i=1

f ∗(2i) + g∗(2i)

2i
= 1 +

(−1/3) + (−1)

2

=
1

3
.

This proves (b).

2.3 Proof of Theorem 1.4.2

Next, we focus on the proof of Theorem 1.4.2. In Theorem 1.4.2, the function K̂(N)

under consideration is not a product of two shifted multiplicative functions. Hence

the proof of the theorem is not as straight forward as the last one. Our main idea

is to replace the function K̂(N) by a simpler function while averaging.
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Recall that

K̂(N) = C∗2F
∗(N − 1)G∗1(N),

(2.3.1)

where F ∗(N) is defined as in (1.3.7) and

G∗1(N) =
N

φ(N)

∏
p|N
p>2

(
1− 1

(p− 1)2

)−1 ∏
pα‖N
2-α

(
1− 1

pα(p− 1)

) ∏
pα‖N
2|α

1−
p−

(
−Np
p

)
pα+1(p− 1)

 .

(2.3.2)

We write G∗1(N) = G∗2(N)G∗3(N), where

G∗2(N) =
N

φ(N)

∏
p|N
p>2

(
1− 1

(p− 1)2

)−1 ∏
pα‖N
2-α

(
1− 1

pα(p− 1)

)

and

G∗3(N) =
∏
p2α‖N

1−
p−

(
−Np
p

)
p2α+1(p− 1)

 . (2.3.3)

Then G∗2 is multiplicative, but G∗3 is not. Write

G∗2(N) =
∑
l|N

ĝ(l).

Then, if p 6= 2,

ĝ(pk) =



1, if k = 0

(p−1)
p(p−2) , if k = 1

1
p2s−1(p−2) , if k = 2s, s ≥ 1

− 1
p2s+1(p−2) , if k = 2s+ 1, s ≥ 1
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and

ĝ(2k) =



1, if k = 0

0, if k = 1

1
2k−2 , if k = 2s, s ≥ 1

− 1
2k−1 , if k = 2s+ 1, s ≥ 1.

Our claim, which is motivated from a similar idea in [MPS14], is that the whole

computation of
∑
N≤x

F ∗(N − 1)G∗1(N) remains the same even if we replace
(
−Np
p

)
in

G∗3(N) by its expected value 0 for every prime. To make this rigorous, define

G∗4(N) =
∏
p2α‖N

(
1− 1

p2α(p− 1)

)
.

For any d, l with (d, l) = 1, we claim that

∑
N≤x

N≡1(mod d)
N≡0(mod l)

G∗3(N) =
∑
N≤x

N≡1(mod d)
N≡0(mod l)

G∗4(N) +O(1). (2.3.4)

In fact,

∑
N≤x

N≡1(mod d)
N≡0(mod l)

G∗3(N) =
∑
N≤x

N≡1(mod d)
N≡0(mod l)

∏
p2α‖N

1−
p−

(
−Np
p

)
p2α+1(p− 1)



=
∑
N≤x

N≡1(mod d)
N≡0(mod l)

∏
p2α‖N

1− 1

p2α(p− 1)
+

(
−Np
p

)
/p

p2α(p− 1)

 . (2.3.5)

From now on l1, l2, l3 are mutually co-prime positive integers. we define the following

notations

ψ(li) =
∏
pβ‖li

pβ(p− 1),
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A(m, li) =
∏
p|li

(
−mp
p

)
p

,

and

l′3 =
∏
p|l3

p.

Now if ω(m) denote the number of distinct prime divisors of m, then with these

notations, (2.3.5) is equal to

∑
l1l22l

2
3≤x

l1l
2
2l

2
3≡1(mod d)

l1l
2
2l

2
3≡0(mod l)

(−1)ω(l2)A(l1l
2
2l

2
3, l3)

ψ(l22l
2
3)

=
∑
l22l

2
3≤x

(−1)ω(l2)

l′3ψ(l22l
2
3)

∑
l1

l1l
2
2l

2
3≤x

l1l
2
2l

2
3≡1(mod d)

l1l
2
2l

2
3≡0(mod l)

(
−l1
l′3

)
. (2.3.6)

We replace
(
−l1
l′3

)
by 1, for l′3 = 1, in the last summation. Also in case of l′3 ≥ 2, the

condition (l1, l3) = 1 is taken care of by
(
−l1
l′3

)
Hence (2.3.6) can be broken into two parts, namely S(x, l, d) and E5(x), where

S(x, l, d) =
∑
l22≤x

(−1)ω(l2)

ψ(l22)

∑
l1

l1l
2
2≤x

l1l
2
2≡1(mod d)

l1l
2
2≡0(mod l)

1

and

E5(x) =
∑
l22l

2
3≤x

(l2,l3)=1

l′3≥2

(−1)ω(l2)

l′3ψ(l22l
2
3)

∑
l1

l1l
2
2l

2
3≤x

l1l
2
2l

2
3≡1(mod d)

l1l
2
2l

2
3≡0(mod l)

(
−l1
l′3

)
.

If we rewrite G∗4 as

G∗4(n) =
∏
p2α‖N

(
1− 1

p2α(p− 1)

)
,

40



then it is easy to check that

∑
N≤x

N≡1(mod d)
N≡0(mod l)

G∗4(N) = S(x, l, d).

For E5(x), note that the congruence relations in the last summation of E5(x) have

no solution unless (l2l3, d) = 1. So if l2 and l3 are fixed with (l2l3, d) = 1, then

the congruence condition on the last summation of E5(x) is equivalent to l1 ≡

b( mod dl0), for some b, where l0 = l
(l,l22l

2
3)

. Also the condition (l1, l2) = 1 gives rise

to φ(l2) residue classes module l2. While if (l1, l3) > 1, then
(
−l1
l′3

)
= 0.

Combining all of them together gives the following residue classes

l1 ≡ ai( mod Md,l,l2,l3), i = 1, 2, · · · , φ(l2)

for some a1, a2,· · · ,aφ(l2), with Md,l,l2,l3 = dl0l2. Note that (Md,l,l2,l3 , l
′
3) = 1 in this

case.

Then for each fixed ai, the set {ai, ai + Md,l,l2,l3 , ai + 2Md,l,l2,l3 , · · · , ai + (l′3 −

1)Md,l,l2,l3} runs over all possible residue class module l′3 exactly once. Now, if

l′3 ≥ 3 is odd, then we know that

l′3∑
a=1

(
a

l′3

)
= 0.

Also, if l′3 is even, then (Md,l,l2,l3 , 4l
′
3) = 1. In this case {ai, ai + Md,l,l2,l3 , ai +

2Md,l,l2,l3 , · · · , ai + (4l′3 − 1)Md,l,l2,l3} covers every residue class modulo 4l′3. Since( ·
2

)
is a character modulo 8, we know for even l′3,

4l′3−1∑
a=1

(
a

l′3

)
= 0.
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So, in any case, ∑
l1

l1l
2
2l

2
3≤x

l1l
2
2l

2
3≡1(mod d)

l1l
2
2l

2
3≡0(mod l)

(
−l1
l′3

)
= O(l2l

′
3).

Hence,

E5(x) = O(
∑
l22l

2
3≤x

(l2,l3)=1

1

l′3ψ(l22l
2
3)
l2l
′
3)

= O(
∑
l2≤
√
x

l2
ψ(l22)

∑
l3≤
√
x

1

ψ(l23)
)

= O(
∑
l2≤
√
x

l2
ψ(l22)

)

= O(
∑
l2≤
√
x

1

ψ(l2)
)

= O(1),

which proves the claim.

Now with these notations, where f ∗(d) is as in (2.2.1), we have

∑
N≤x

F ∗(N − 1)G∗1(N) =
∑
N≤x

G∗1(N)
∑
d|N−1

f ∗(d)

=
∑
d≤x−1

f ∗(d)
∑
N≤x

N≡1(mod d)

G∗1(N)

=
∑
d≤x−1

f ∗(d)
∑
N≤x

N≡1(mod d)

G∗2(N)G∗3(N)

=
∑
d≤x−1

f ∗(d)
∑
N≤x

N≡1(mod d)

G∗3(N)
∑
l|N

ĝ(l)

=
∑
d≤x−1

f ∗(d)
∑
l≤x

(l,d)=1

ĝ(l)
∑
N≤x

N≡1(mod d)
N≡0(mod l)

G∗3(N).
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Now, using (2.3.4) we get

∑
N≤x

F ∗(N − 1)G∗1(N) =
∑
d≤x−1

f ∗(d)
∑
l≤x

(l,d)=1

ĝ(l)
∑
N≤x

N≡1(mod d)
N≡0(mod l)

G∗4(N) +O(
∑
d≤x−1

|f ∗(d)|
∑
l≤x

(l,d)=1

|ĝ(l)|)

=
∑
d≤x−1

f ∗(d)
∑
N≤x

N≡1(mod d)

G∗2(N)G∗4(N) +O(log x)

=
∑
N≤x

F ∗(N − 1)G∗2(N)G∗4(N) +O(log x). (2.3.7)

ButG∗2(N)G∗4(N) is nothing but theG∗(N), which has been defined in (1.3.8). Hence

the
∑
N≤x

K̂(N) N
φ(N)

equals to
∑
N≤x

K∗(N) up to an error O(log x). Then Theorem 1.4.2

follows from Theorem 1.3.1.
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Chapter 3

Poisson distribution of ME(N)

The primary goal of this chapter is to present the proofs of the theorems stated in

Section 1.5. But before going into the proofs, first we are going to understand the

approach for these types of problems and the machinery that are needed. To do

that, we first introduce the required notations and definitions.

3.1 Notations and preliminaries

Let

E = Ea,b : y2 = x3 + ax+ b and E ′ = Ea′,b′ : y2 = x3 + a′x+ b′

be elliptic curves defined over a field k. An isomorphism ψ : E → E ′ is defined

by an element u ∈ k∗ such that a′ = u4a and b′ = u6b. An automorphism of E is

defined to be an isomorphism from E to E. We denote the isomorphism class of E

by Ẽ. Also E
u∼= E ′ implies that E and E ′ are isomorphic by an element u ∈ k∗.

Now, if k = Fp, be the finite field with p elements, then it is not difficult to check
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that

∣∣AutFp(Ea,b)∣∣ =


6, if a = 0 and p ≡ 1 (mod 4)

4, if b = 0 and p ≡ 1 (mod 4)

2, else

For a negative discriminant d, the Kronecker symbol χd is defined by χd(n) =
(
d
n

)
.

Note that χd is a multiplicative character modulo d. Let L(s, χd) be the L−function

corresponding to χd define as

L(s, χd) :=
∞∑
n=1

χd(n)

ns
for s ≥ 1.

Since d is not a perfect square, χd is not a principal character and hence L(s, χd)

converges at s = 1.

Let D be a negative discriminant. The Hurwitz-Kronecker class number of discrim-

inant D is defined by

H(D) =
∑
f2|D

D/f2≡0,1( mod 4)

h(D/f 2)

ω(D/f 2)

where h(d) denotes the usual class number of the unique imaginary quadratic order

of discriminant d < 0 and ω(d) is the size of the unit group.

Also by class number formula [p. 515, [IK04]],

h(d)

ω(d)
=

√
d

2π
L(1, χd).

This in turns gives,
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H(D) :=
∑
f2|D

D/f2≡0,1 (mod 4)

√
|D|

2πf
L(1, χD/f2) (3.1.1)

First we shall see how the class number is related to our problem. The answer is

the following well known theorem due to Deuring[Deu41].

Theorem C. Let p > 3 be a prime and t be an integer such that t2− 4p < 0. Then

∑
Ẽ/Fp
ap(Ẽ)=t

1

|AutFp(Ẽ)|
= H(t2 − 4p),

where the sum runs over the Fp-isomorphism classes of elliptic curves with fixed

trace t.

Now, if |Ẽ(Fp)| = N , then ap = p+1−N . In that case (t2−4p) = (p+1−N)2−4p =

(N + 1− p)2 − 4N . We denote it by

DN(p) := (N + 1− p)2 − 4N, (3.1.2)

Also, recall that N+ := (
√
N + 1)2 and N− := (

√
N − 1)2.

So, by Deuring’s theorem we get

H(DN(p)) =
∑
Ẽ/Fp

|Ẽ(Fp)|=N

1

|AutFp(Ẽ)|
, (3.1.3)

where the sum is over the Fp-isomorphism classes of elliptic curves.

Next, we see how the right hand side of (3.1.3) relates to a sum of the type
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∑
E∈C(A,B)

ME(N). Basically, one replaces ME(N) by
∑

p prime
Ep(Fp)=N

1. After a change in

summation, this comes down to computing
∑
p

∑
E∈C(A,B)
Ep(Fp)=N

1.

Now the counting in the last summation can also be done in two steps as follows

∑
Ẽ/Fp

Ẽ(Fp)=N

∑
E∈C(A,B)
E∼=pẼ

1

where the first sum runs over the isomorphic class of curves over Fp with the group

order is N .

The last sum is ∼ #C(A,B)

|Autp(Ẽ)| . Then from Deuring’s theorem, the denominator gives

rise to the class number H(DN(p)). So finally it comes down to computing the

average of the type
∑

N−<p<N+

H(DN(p)).

In [DS13], this is the main idea behind the proof of Theorem A, as stated in Section

1.2. David and Smith were able to compute an asymptotic for
∑

N−<p<N+ , under

the assumption of Conjecture 1.

In the remaining part of this chapter, we are going to adopt the above approach to

complete the proofs of the theorems stated in Section 1.5.

In the next section, we state some required results related to short interval averages

of the function H(DN(p)).

3.2 Estimation of class numbers

In our proofs, we are going to use various estimation of H(D). Importantly, most

of the required results related to H(D) has already been proved in [DS13] and

[CDKS14]. We state some of the results as follows.

47



Proposition 3.2.1. Fix R to be a positive integer. Then for x ≥ 1,

1

x

∑
1≤N≤x

|
∑

N−<p<N+

H(DN(p))− K(N)N2

φ(N) logN
| �R

x

(log x)R
.

The above proposition has been proved in (Theorem 1.8, [CDKS14]).

Note that, on the left hand side of Proposition 3.2.1, p ≈ N and |DN(p)| ≤ 4N .

We also prove the following lemma

Lemma 3.2.1. Let N be a positive integers and N−, N+ and H(DN(p)) are defined

as before. Then

(a) ∑
N−<p<N+

H(DN(p))� N2

φ(N) logN
.

(b) Also for k ≥ 2,

∑
N−<p<N+

H(DN(p))k � N
k+1
2 (logN)k−2(log logN)k.

Proof. Part (a) essentially follows from [Theorem 1.7, [CDKS14]]. Also see [DS13].

To prove part (b), we recall that

H(DN(p)) =
∑

f2|DN (p)
DN (p)

f2
≡0,1( mod 4)

√
|DN(p)|
2πf

L(1, χdN,f (p))

where dN,f (p) := DN (p)
f2

.

Now |DN(p)| ≤ 4N in the above range of p. Also L(1, χdN,f (p)) � logN using
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convexity bound. Further, using the fact that
∑
d|n

1
d
� log log n, we get

H(DN(p))�
∑

f2|DN (p)
DN (p)

f2
≡0,1( mod 4)

√
N logN

f

�
√
N logN log logN. (3.2.1)

Then, (3.2.1) along with part (a) completes the proof.

Probably a stronger bound for the second part of the previous lemma could be

proved. But for the purpose of this paper, this result is sufficient.

3.3 Curves with fixed order modulo primes

We first recall the following lemma [Corollary 2F, [Sch76]]:

Lemma 3.3.1. Suppose p is a prime. Suppose g(x) = anx
n+· · ·+a0 is a polynomial

with integer coefficients having 0 < n < p and p - an. Then

|
p−1∑
x=0

e

(
g(x)

p

)
| ≤ (n− 1)p

1
2 .

From now on Es,t will denote the elliptic curve given by a Weierstrass equation of the

form y2 = x3 + sx+ t. Also note that, if the corresponding field is of characteristic

different from 2 or 3, then any isomorphism class of curve can be represented by one

such Weierstrass equation. By Ẽs,t, we denote the isomorphism class of Es,t, over

the field of definition. If p is a prime, then Ep ∼=p Ẽs,t represents an isomorphism

over the field Fp between the reduced curve Ep and the representative Es,t of the

class Ẽs,t. With these notations, we state the following result

Proposition 3.3.1. Let {pi}`i=1 be a set of ` distinct primes in the range [N−, N+]
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and {Ẽsi,ti/Fpi}`i=1 be a set of isomorphism class of elliptic curves over corresponding

fields Fpi’s. Then for the class of rational curves C(A,B) as defined in (1.2.5),

#{E ∈ C(A,B) : Epi
∼=pi Ẽsi,ti for 1 ≤ i ≤ `} =

4AB

p1 · · · p`

∏̀
i=1

(
1

|Autpi(Esi,ti)|

)
+ E`(A,B,N)

(3.3.1)

where

E`(A,B,N)� AB

N2`
+N

`
2 (logN)2 + (A

∏
ti=0

√
N +B

∏
si=0

√
N)N−

`
2 logN.

Proof. We use a modified version of the character sum argument used by Fouvry

and Murty (p. 94, [FM96]). First, subdivide the interval [−A,A] into intervals of

length p1 · · · p`, starting from [−A,−A+ p1p2 . . . p`]. The last one is denoted by A.

Similarly for [−B,B], with the last one as B.

Note that, for a isomorphism class Ẽs,t, the number of elliptic curves Ep over Fp

such that Ep ≡p Es,t is (p−1)
|Autp(Es,t)| . This is due to the fact that the isomorphisms are

given by u ∈ F∗p by (s, t) 7→ (u4s, u6t). Out of p− 1 = |F∗p| such u′s, only p−1
|Aut(Es,t)| of

them gives rise to distinct pairs (u4s, u6t) or distinct curves Eu4s,u6t/Fp. Now, using

the Chinese remainder theorem, we get

#{E ∈ C(A,B) : E ∼=pi Ẽsi,ti for 1 ≤ i ≤ `}

=

[
2A

p1 · · · p`

] [
2B

p1 · · · p`

]∏̀
i=1

(
pi − 1

|Autpi(Esi,ti)
|
)

+

[
2A

p1 · · · p`

]
# {(u1, · · ·u`) ∈ Fp1 × · · · × Fp` : tiu

6
i ∈ B(mod pi), ∀1 ≤ i ≤ `}∏`

i=1 |Autpi(Esi,ti)|

+

[
2B

p1 · · · p`

]
# {(u1, · · ·u`) ∈ Fp1 × · · · × Fp` : siu

4
i ∈ A(mod pi), ∀1 ≤ i ≤ `}∏`

i=1 |Autpi(Esi,ti)|

+
# {(u1, · · · , u`) ∈ Fp1 × · · · × Fp` : siu

4
i ∈ A(mod pi), tiu

6
i ∈ B(mod pi), ∀1 ≤ i ≤ `}∏`

i=1 |Autpi(Esi,ti)|

+O(
AB

p1 · · · p`
(
∑̀
i=1

1

p9i
)), (3.3.2)
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where the last error term comes from the rational curves of the form Esiu4i p4i ,tiu6i p6i .

Now from the fourth term on the right hand side of (3.3.2),

#
{

(u1, · · ·u`) ∈ Fp1 × · · ·Fp` : siu
4
i ∈ A(mod pi), tiu

6
i ∈ B(mod pi), ∀1 ≤ i ≤ `

}
=

1

(p1 · · · p`)2
∑

(h1,··· ,h`)
0≤hi≤pi
1≤i≤`

∑
(g1,··· ,g`)
0≤gi≤pi
1≤i≤`

∑
(u1,··· ,u`)
1≤ui≤pi−1

1≤i≤`

∑
(a,b)∈A×B

e

(∑̀
i=1

hi(siu
4
i − a) + gi(tiu

6
i − b)

pi

)
,

(3.3.3)

where e(x) = e2πix.

When (h1, · · · , h`) = (0, · · · , 0) and (g1, · · · , g`) = (0, · · · , 0), the R.H.S of (3.3.3)

gives a contribution equal to |A||B|
∏̀
i=1

(pi−1
p2i

). If ‖ α ‖ denotes the distance between

α and its nearest integer, then using the fact that A and B are intervals, the con-

tributions corresponding to (h1, · · · , h`) 6= (0, · · · , 0), (g1, · · · , g`) 6= (0, · · · , 0) are

bounded by

1

(p1 · · · p`)2
∑

(h1,··· ,h`)6=(0,··· ,0)
0≤hi≤pi−i

1≤i≤`

∑
(g1,··· ,g`)6=(0,··· ,0)

0≤gi≤pi−1
1≤i≤`

∥∥∥∥h1p1 + · · ·+ h`
p`

∥∥∥∥−1 ∥∥∥∥g1p1 + · · ·+ g`
p`

∥∥∥∥−1

×
∏̀
i=1

(
pi−1∑
ui=1

e

(
hisiu

4
i + gitiu

6
i

pi

))
. (3.3.4)

This follows from the fact that
∑
n∈I
e(αn)�‖ α ‖−1, where I is an interval.

Now, if higi is different from 0 for all i, then using Lemma 3.3.1,

pi−1∑
ui=1

e

(
hisiu

4
i + gitiu

6
i

pi

)
≤ 5
√
pi.
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If hi1 , hi2 , · · · , hir are zero and other hi are non zero, then

1

(p1 · · · p`)
∑

(h1,··· ,h`)6=(0,··· ,0)
0≤hi≤pi−i

1≤i≤`
hi1=hi2=···=hir=0

∥∥∥∥h1p1 + · · ·+ h`
p`

∥∥∥∥−1 = O

 log
(

p1···p`
pi1 ···pir

)
pi1 · · · pir

 .

A similar result holds for gi’s. Without loss of generality, we may assume that

pi � 22`. In that case (3.3.4) is

O(
√
p1 · · · p` log(p1 · · · p`)2).

Similarly, considering contributions corresponding to (h1, · · · , h`) = (0, · · · , 0), (g1, · · · , g`) 6=

(0, · · · , 0), as well as (h1, · · · , h`) 6= (0, · · · , 0), (g1, · · · , g`) = (0, · · · , 0), (3.3.3)

equals

|A||B|
∏̀
i=1

(
pi − 1

p2i
) +O(

|A|
(p1 · · · p`)

log(p1 · · · p`)
∏
ti=0

(pi)
∏
ti 6=0

√
(pi))

+O(
|B|

(p1 · · · p`)
log(p1 · · · p`)

∏
si=0

(pi)
∏
si 6=0

√
(pi)) +O(

√
p1 · · · p` log(p1 · · · p`)2)

(3.3.5)

Proceeding in a similar way for the second and third term in the right hand side of
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(3.3.2), we get the following

#{E ∈ C(A,B) : E ∼=pi Ẽsi,ti for 1 ≤ i ≤ `} =

[
2A

p1 · · · p`

] [
2B

p1 · · · p`

]∏̀
i=1

(
p− 1

|Autpi(Esi,ti)

)

+

[
2A

p1 · · · p`

]∏̀
i=1

1

|Autpi(Esi,ti)|

[
|B|
∏̀
i=1

pi − 1

pi
+O

((∏
si=0

pi

)(∏
si 6=0

√
pi

)
log(p1 · · · p`)

)]

+

[
2B

p1 · · · p`

]∏̀
i=1

1

|Autpi(Esi,ti)|

[
|A|
∏̀
i=1

pi − 1

pi
+O

((∏
ti=0

pi

)(∏
ti 6=0

√
pi

)
log(p1 · · · p`)

)]

+ |A||B|
∏̀
i=1

(
pi − 1

p2i
) +O(

|A|
(p1 · · · p`)

log(p1 · · · p`)
∏
ti=0

(pi)
∏
ti 6=0

√
(pi))

+O(
|B|

(p1 · · · p`)
log(p1 · · · p`)

∏
si=0

(pi)
∏
si 6=0

√
(pi)) +O(

√
p1 · · · p` log(p1 · · · p`)2).

By combining the terms together, we get

#{E ∈ C(A,B) : E ∼=pi Ẽsi,ti for 1 ≤ i ≤ `} =
4AB

(p1 · · · p`)2
∏̀
i=1

(
pi − 1

|Autpi(Esi,ti)|

)

+O(
√
p1 · · · p` log(p1 · · · p`)2) +O

(
A

(p1 · · · p`)
log(p1 · · · p`)

(∏
ti=0

pi

)(∏
ti 6=0

√
pi

))

+O

(
B

(p1 · · · p`)
log(p1 · · · p`)

(∏
si=0

pi

)(∏
si 6=0

√
pi

))
, (3.3.6)

and this proves Proposition 3.3.1.

Lemma 3.3.2. Let C(A,B) be as above. Now, for positive a integer ` and a positive

constant γ2,

(a) If A,B > N
`
2 (logN)1+`+γ2 and AB > N

3`
2 (logN)2+`+γ2, then

1

#C(A,B)

∑
N−<p1 6=···6=p`<N+

#{E ∈ C(A,B) :#Ep1(Fp1) = · · · = #Ep`(Fp`) = N} =

 ∑
N−<p<N+

H(DN(p))

p

`

+O

(
1

(logN)`+γ2

)
.
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(b) For r ≤ `,

1

#C(A,B)

∑
N−<p1,··· ,pr<N+

∑
E∈C(A,B),ME(N)≥`+1
Ep1 (Fp1 )=···=Epr (Fpr )=N

1�`

 ∑
N−<p<N+

H(DN(p))

p

`+1

+
1

(logN)`+γ2

Proof. Note that

#{E ∈ C(A,B) : #Ep1(Fp1) = · · · = #Ep`(Fp`) = N}

=
∑
Ẽ1/Fp1

Ẽ1(Fp1 )=N

· · ·
∑
Ẽ`/Fp`

Ẽ`(Fp`
)=N

#{E ∈ C : Epi
∼=pi Ẽi for 1 ≤ i ≤ `}.

(3.3.7)

If N > 7, then p is different from 2 and 3. Hence every isomorphism class of curve

can be represented in a minimal Weierstrass equation, say Es,t : y2 = x3 + sx + t

with s, t ∈ Fp. Let each of the Ei are given as Esi,ti . so we can use Proposition 3.3.1

to estimate the summand in the right hand side of (3.3.7).

Now for a fixed prime pi, the number of isomorphism class of curves Esi,ti with siti =

0 is at most 10. Also recall that #C(A,B) = 4AB + O(A + B) and H(DN(pi)) =∑
Esi,ti/Fpi

1
|Autpi (Esi,ti )|

. Thus dividing (3.3.7) by C(A,B), the sum in the first part of

the lemma equals to

Σ1 =
∑

N−<p1 6=p2 6=···6=p`<N+

∑
Ẽ1/Fp1

Ẽ1(Fp1 )=N

· · ·
∑
Ẽ`/Fp`

Ẽ`(Fp`
)=N

∏̀
i=1

1

pi|Autpi(Esi,ti)|
+ Ê`(A,B,N)

=
∑

N−<p1 6=p2 6=···6=p`<N+

(∏̀
i=1

H(DN(pi))

pi

)
+ Ê`(A,B,N) (3.3.8)

with

Ê`(A,B,N)�

{
1

N2`
+

logN

N
`
2

(
1

A
+

1

B

)
+
N

`
2 (logN)2

AB

}(
N log logN

logN

)`
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where the implied constant depends on ` only. Also, since A,B > N
`
2 (logN)1+`+γ2 ,

and AB > N
3`
2 (logN)2+`+γ2 it follows that

Ê`(A,B,N)� 1

(logN)`+γ2
.

Further, if we relax the condition p1 6= p2 6= · · · 6= p` from the right hand side of

(3.3.8), then one gets

Σ1 =
∑

(p1,p2,··· ,p`)
N−<pi<N+ ∀i

∏
i

H(DN(pi))

pi
+

∑
(p1,p2,··· ,p`)

pi=pj for some i 6=j

N−<pi<N+ ∀i

∏
i

H(DN(pi))

pi
+O

(
1

(logN)`+γ2

)

=

 ∑
N<−p<N+

H(DN(p))

p

`

+O

∑̀
r=2

 ∑
N−<p<N+

H(DN(p))

p

`−r ∑
N−<p<N+

H(DN(p))r

pr


+O

(
1

(logN)`+γ2

)
(3.3.9)

Using Lemma 3.2.1 it is easy to see that

∑̀
r=2

 ∑
N−<p<N+

H(DN(p))r

pr

 ∑
N−<p<N+

H(DN(p))

p

`−r

� O(N−
1
2
+ε)

for any small ε > 0. Hence

Σ1 =

 ∑
N−<p<N+

H(DN(p))

p

`

+O

(
1

(logN)`+γ2

)
. (3.3.10)

This proves the result part (a) of the Lemma.

Now, if for a curve E, ME(N) = L ≥ `+ 1, then E is counted Lr times in part (b).
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While the same E will be counted L!
(`+1)!

times if we consider the expression

1

#C(A,B)

∑
N−<p1 6=···6=p`+1<N+

#{E ∈ C(A,B) : #Ep1(Fp1) = · · · = #Ep`+1
(Fp`+1

) = N}

Using Stirling’s approximation, is easy to see that Lr(`+1)!
L!

� (` + 1)` for r ≤ `.

Hence part (b) follows from part (a).

3.4 Some combinatorial arguments

Proposition 3.4.1. Let ME(N) and C(A,B) be defined as before. Let ` is a positive

integer and γ1, γ2 are nonnegative integers. If A,B > x
`+γ1

2 (log x)1+`+γ2 and AB >

x
3(`+γ1)

2 (log x)2+`+γ2, then for any positive integer r ≤ `,

1

#C(A,B)

∑
E∈C(A,B)
ME(N)≥`

ME(N)r =

`+γ1∑
j=`

d`,r(j)

 ∑
N−<p<N+

H(DN(p))

p

j

+O

(∑
p

H(DN(p))

p

)`+γ1+1

+O

(
1

(logN)`+γ2

)
,

where d`,r(j) =
j∑
k=`

kr

k!
(−1)j−k
(j−k)! .

Proof.

1

#C(A,B)

∑
E∈C(A,B)
ME(N)≥`

ME(N)r =
1

#C(A,B)

∑
E∈C(A,B)
ME(N)≥`

 ∑
N−<p<N+

Ep(Fp)=N

1


r

=
1

#C(A,B)

∑
N−<p1,··· ,pr<N+

∑
E∈C(A,B),ME(N)≥`

Ep1 (Fp1 )=···=Epr (Fpr )=N

1.
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By breaking the sum into two parts depending on the value of ME(N), we get the

following

1

#C(A,B)

∑
N−<p1,··· ,pr<N+

`+γ1∑
j=`

∑
ME(N)=j

1 +
1

#C(A,B)

∑
N−<p1,··· ,pr<N+

∑
ME(N)≥`+γ1+1

1

(3.4.1)

where the range of summation is overE ∈ C(A,B) withEp1(Fp1) = · · · = Epr(Fpr) = N .

Now, by Lemma 3.3.2(b), the last sum in the right hand side is bounded by

 ∑
N−<p<N+

H(DN(p)

p

`+γ1+1

+O(
1

(logN)`+γ2
)

Now, we claim that for r ≤ ` ≤ j ≤ `+ γ1

∑
N−<p1 6=p2 6=···6=pr<N+

∑
E∈C(A,B),ME(N)=j

Ep1 (Fp1 )=···=Epr (Fpr )=N

1 =
1

(j − r)!
∑

N−<p1 6=p2 6=···6=pj<N+

∑
E∈C(A,B),ME(N)=j

Ep1 (Fp1 )=···=Epj (Fpj )=N

1

(3.4.2)

In fact, any curve E ∈ C(A,B) with ME(N) = j is counted j!
(j−r)! times in the left

hand side summation, while on the right hand side, the same curve is counted j!

times.

We now consider the first term of (3.4.1). Note that the primes in the range of sum-

mations in (3.4.1) are not distinct. Then, using (3.4.2) and recalling the definition

of S(n,m), the Stirling number of the second kind, which equals to the number of

ways of partitioning a set of n elements into m nonempty sets, we get
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∑
N−<p1,··· ,pr<N+

∑
E∈C,ME(N)=j

E(Fp1 )=···=E(Fpr )=N

1 =

(
r∑

m=1

S(r,m)

(j −m)!

) ∑
N−<p1 6=p2 6=···6=pj<N+

∑
E∈C(A,B),ME(N)=j

Ep1 (Fp1 )=···=Epr (Fpj )=N

1.

(3.4.3)

To simplify the constant on the right hand side, we use the fact that
∑r

m=1
S(r,m)j!
(j−m)!

=

jr. See [(4.1.3), p. 60 , [Rom84]].

With this

∑
N−<p1 6=p2 6=···6=pj<N+

∑
E∈C(A,B),ME(N)=j

Ep1 (Fp1 )=···=Epr (Fpr )=N

1

=
∑

N−<p1 6=p2 6=···6=pj<N+

∑
E∈C(A,B),ME(N)≥j
E(Fp1 )=···=E(Fpj )=N

1−
∑

N−<p1 6=p2 6=···6=pj<N+

∑
E∈C(A,B),ME(N)≥j+1
E(Fp1 )=···=E(Fpj )=N

1

(3.4.4)

Now, we plan to write (3.4.1) as a polynomial in
∑

N−<p<N+

H(DN (p))
p

with a suitable

error term. To find the correct coefficients of the polynomial, we introduce the

following invariants.

We denote the left hand side of (3.4.2) by ω(r, j) and the first term of the right hand

side of (3.4.4) by Ω(j, j). Also, we call the left hand side of (3.4.3) by Υ(r, j). Then

in view of (3.4.2) and (3.4.3), we get the following set of relations


Υ(r, j) = jr

j!
ω(j, j),

Ω(t, s) =
∞∑
n=s

ω(t, n) for t ≤ s,

ω(t, n) = 1
(n−t)!ω(n, n) for t ≤ n.

(3.4.5)
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Now, by Lemma 3.3.2(a),

1

#C(A,B)
× Ω(j, j) =

 ∑
N−<p<N+

H(DN(p))

p

j

+O(
1

(logN)j+γ2
),

whenever A,B > x
j
2 (log x)1+j+γ2 and AB > x

3j
2 (log x)2+j+γ2 .

From (3.4.5), it is clear that ω’s can be written is terms of Υ’s as well as Ω’s. Hence

the equation

`+γ1∑
j=`

Υ(r, j) =

`+γ1∑
j=`

z`,r(j)Ω(j, j) +O(Ω(`+ γ1, `+ γ1 + 1))

has a unique solution in the variables {z`,r(j)}. Also note that

Ω(`+ γ1, `+ γ1 + 1)� AB

(∑
p

H(DN(p))

p

)`+γ1

+
1

(logN)`+γ2

 .
Then (3.4.1) equals to

`+γ1∑
j=`

z`,r(j)

 ∑
N−<p<N+

H(DN(p))

p

j

+O

 ∑
N−<p<N+

H(DN(p))

p

`+γ1+1

+O

(
1

(logN)`+γ2

)
.

The only thing that remains to be shown is that {z`,r(j)}j equals to {d`,r(j)}j, as

defined in the statement of the proposition. For that, we prove the following lemma.

Lemma 3.4.1. Consider ω, Ω as variables satisfying the identities in (3.4.5). Then

the solution of the equation

∞∑
j=`

jr

j!
ω(j, j) =

∞∑
j=`

z`,r(j)Ω(j, j)
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in z`,r(j) is given by

z`,r(j) =

j∑
k=`

kr

k!

(−1)j−k

(j − k)!
.

Proof. Using the second equation in (3.4.5), we have

∞∑
j=`

jr

j!
ω(j, j) =

∞∑
j=`

z`,r(j)Ω(j, j)

=
∞∑
j=`

z`,r(j)
∞∑
n=j

ω(j, n).

By changing the order of summation, the right hand side equals to

=
∞∑
n=`

∑
`≤j≤n

z`,r(j)ω(j, n) =
∞∑
j=`

∑
`≤n≤j

z`,r(n)ω(n, j)

But by the last relation in (3.4.5), this can be written as

∞∑
j=`

( ∑
`≤n≤j

z`,r(n)

(j − n)!

)
ω(j, j)

Thus, comparing the coefficients of ω(j, j) from both sides, we get

∑
`≤n≤j

z`,r(n)

(j − n)!
=
jr

j!
for j ≥ `. (3.4.6)

Since we are only interested in the values of z`,r(n) for ` ≤ n ≤ ` + γ1, we consider

the following matrix equation

AZ = J,
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where A is the (γ1 + 1)× (γ1 + 1) matrix (amn)m,n, where

amn =

 0, if m < n,

1
(m−n)! if m ≥ n;

Also Z and J are the column matrices

[
z`,r(`) z`,r(`+ 1) · · · z`,r(`+ γ1)

]T

and [
`r

`!
(`+1)r

(`+1)!
· · · (`+γ1)r

(`+γ1)!

]T
respectively.

Now it is not difficult to check that A is an invertible matrix with inverse B = (bmn),

where

bmn = (−1)m−namn.

Finally, using Z = A−1J = BJ , we get the desired value of z`,r(j)’s. This completes

the proof of the lemma.
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3.5 Proof of Theorem 1.5.1 and Theorem 1.5.3

Putting ` = 1, r = 1 and γ1 = 0, γ2 = γ, in Proposition 3.4.1 we get,

1

#C(A,B)

∑
E∈C(A,B)

ME(N) =
∑

N−<p<N+

H(DN(p))

p
+O

 ∑
N−<p<N+

H(DN(p))

p

2
+O(

1

(logN)1+γ
)

(3.5.1)

for appropriate A, B. Then, using (3.5.1), we replace
∑

N−<p<N+

H(DN (p))
p

in Proposi-

tion 3.4.1 by 1
#C(A,B)

∑
E∈C(A,B)ME(N). We also recall that d`,r(`) = `r

`!
. Now take

γ1 = 0, r = 1 and consider the sum 1
#C(A,B)

∑
E∈C(A,B)
ME(N)=`

ME(N) = 1
#C(A,B)

∑
E∈C(A,B)
ME(N)=`

`. Then

dividing the last equation by `, Theorem 1.5.1 follows immidiately from the above

discussion.

Again, (3.5.1) together with Proposition 3.4.1 and Theorem A completes the proof

of Theorem 1.5.3.

3.6 Proof of Theorem 1.5.2

First of all note that

∑
N−<p<N+

H(DN(p))

p
=

1

N

∑
N−<p<N+

H(DN(p))

(
1 +O

(
1√
N

))
=

1

N

∑
N−<p<N+

H(DN(p)) +
1

N
3
2

∑
N−<p<N+

|H(DN(p))|
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Now, from Lemma 3.2.1(a), we get

∑
N−<p<N+

H(DN(p))

p
=

1

N

∑
N−<p<N+

H(DN(p)) +O

(
log logN√
N logN

)

Also

 ∑
N−<p<N+

H(DN(p))

p

j

=
1

N j

 ∑
N−<p<N+

H(DN(p))

j

+O

(
1√
N

)

Then,

∑
N≤x

 ∑
N−<p<N+

H(DN(p))

p

j

=
∑
N≤x

1

N j

 ∑
N−<p<N+

H(DN(p))

j

+O(
√
x)

=
∑
N≤x

(
K(N)N

φ(N) logN

)j
+ Ẽ1

To bound the error Ẽ1, note that

Ẽ1 �
∑
N≤x

1

N j

∣∣∣∣∣∣
 ∑
N−<p<N+

H(DN(p))

j

−
(

K(N)N2

φ(N) logN

)j∣∣∣∣∣∣+O(
√
x)

Using Lemma 3.2.1(a), the right hand side is bounded by

∑
N≤x

1

N j

∣∣∣∣∣∣
∑

N−<p<N+

H(DN(p))− K(N)N2

φ(N) logN

∣∣∣∣∣∣
(

N2

φ(N) logN

)j−1
+O(

√
x)

�1

x

∑
N≤x

∣∣∣∣∣∣
∑

N−<p<N+

H(DN(p))− K(N)N2

φ(N) logN

∣∣∣∣∣∣+
√
x

Using Proposition 3.2.1 with R = 1 + `+ γ1, the last summation is

�`,γ1

x

(log x)1+`+γ1
+
√
x.
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The only thing that remains is to estimate the main term, i.e.

∑
N≤x

(
K(N)N

φ(N) logN

)j

for every ` ≤ j ≤ `+ γ1. To do this, we write

(
K(N)N

φ(N)

)j
= ΘF (N − 1)G(N)

where

Θ =
∏
p>2

(
1− 1

(p− 1)2

)j
F (N) =

∏
p|N
p>2

(
1− 1

(p− 1)2

)−j∏
p|N

(
1− 1

(p− 1)2(p+ 1)

)j

G(N) =

(
N

φ(N)

)j∏
p|N
p>2

(
1− 1

(p− 1)2

)−j∏
p|N

(
1− 1

pνp(N)(p− 1)

)j

Note that both F and G are multiplicative functions. We use Theorem 1.4.1 with

A(n) = B(n) = 1, and hence M(x) = x. Also, if we set

f(m) =
∑
d|m

µ(d)F (m/d) (3.6.1)

and

g(m) =
∑
d|m

µ(d)G(m/d), (3.6.2)

then f, g are multiplicative functions. So it is enough to compute the values on
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prime powers. It is straightforward to check that

f(pt) =


1, if t = 0(

1− 1
(p−1)2

)−j (
1− 1

(p−1)2(p+1)

)j
− 1, if t = 1

0, else,

and

g(pt) =


1, if t = 0

( p
p−1)j(1− 1

(p−1)2 )−j(1− 1
p(p−1))

j − 1, if t = 1

( p
p−1)j(1− 1

(p−1)2 )−j[(1− 1
pt(p−1))

j − (1− 1
pt−1(p−1))

j], if t ≥ 2,

for an odd prime p.

Also

f(2t) =

 (2/3)j − 1, if t = 1

0, if t ≥ 2,

and

g(2t) =

 0, for t = 1

2j[(1− 1
2t

)j − (1− 1
2t−1 )j], if t ≥ 2.

Then from Theorem 1.4.1, we know

1

x

∑
N≤x

(
K(N)N

φ(N)

)j
= Θ

∑
N≤x

F (N−1)G(N) = Θ
∏
p

(
1 +

∑
t≥1

f(pt) + g(pt)

pt

)
+O

(
log x

x

)
.

But the constant in the main term is nothing but the C(j), which has been defined
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in (1.5.4). Using partial summation, we get

∑
N≤x

(
K(N)N

φ(N) logN

)j
= C(j)

∫ x

2

1

(log t)j
dt+O

(
x

(log x)R1

)

for any R1 > 0. By choosing R1 = 1 + ` + γ1 we completes the proof of Theorem

1.5.2.

It may be interesting to try to improve the error term in Theorem 1.5.2. This can

be done by improving the Proposition 3.2.1 or [Theorem 1.8, [CDKS14]], which is

dependent on a result from [Kou14] on the distribution of primes in short arithmetic

progressions. So again, one need to look at such problems related to distribution of

primes.

We end the discussion on elliptic curve here. In the next chapter the questions are

going to be independent of the earlier discussion.
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Chapter 4

Additive Representation Function

In this chapter, we are going to focus on a problem in additive number theory. From

the title of the chapter, it is evident that the problem is in some way related to the

addition of subsets of integers.

Let A = {a1, a2, · · · }(0 ≤ a1 < a2 < · · · ) be an infinite sequence of non-negative

integers. For n ∈ N0, define

R1(n) =R1(A, n) =
∑

ai+aj=n

1, (4.0.1)

R2(n) =R2(A, n) =
∑

ai+aj=n
i≤j

1. (4.0.2)

R1 and R2 are called additive representation functions. We are interested in mono-

tonicity of these functions.

Now, it is easy to check that if A is a complement of a finite set inside the set of

natural numbers, then both R1 and R2 are monotonically increasing for all large n.

Here we are interested in the inverse problems, i.e., how the monotonicity of the

representation functions affects the cardinality of the set A.

The question of characterization of the set A, under the condition that either R1(n)
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or R2(n) is monotonic, was raised by Erdős, Sárközy and Sós [ESS85]. Also see

[Bal87], [CSST05], [TC09, ES85, ES86, ESS87] and [ESS86]. Erdős, Sárközy and

Sós [ESS85] and Balasubramanian [Bal87] independently proved that R1(n) can be

monotonically increasing from a certain point, only in a trivial way, i.e. if the set A

is complement of a finite set of nonnegative integers.

Theorem D. If R1(n+ 1) ≥ R1(n) for all large n, then N \ A is a finite set.

The analogous conclusion is not known to be true in the case of R2. If, we define

A(N) = |A ∩ [1, N ]|, (4.0.3)

then Balasubramanian [Bal87] proved the following theorem:

Theorem E. If R2(n+ 1) ≥ R2(n) for all large n, then A(N) = N +O(logN).

In other words, if R2(n) is monotonic, then the complement set of A is at most of

order O(logN).

In the first part of this chapter we shall focus on the function R2 and quantities

related to monotonicity of it. Also in Section 4.5, we shall make a remark concerning

a question raised by Sárközy [Sar06], related to monotonicity of R1.

In [ESS86], Erdős, Sárközy and Sós proved

Theorem F. If

lim
n→+∞

n−A(n)

log n
= +∞, (4.0.4)

then we have,

lim sup
N→+∞

N∑
k=1

(R2(2k)−R2(2k + 1)) = +∞. (4.0.5)
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The assumption (4.0.4) in the above theorem cannot be relaxed. In fact Erdős,

Sárközy and Sós [ESS86] constructed a sequence Â such that (n − Â(n)) > c log n

(for large n and fixed constant c) and

lim sup
N→+∞

N∑
k=1

(R2(2k)−R2(2k + 1)) < +∞.

In [TC05], Tang and Chen gave a quantitative version of Theorem F. We need the

following definitions to state their theorem. Define Sn and m(N) by

Sn =
∑
k≤n

(R2(2k)−R2(2k + 1)),

m(N) = N(logN + log logN)

for any positive real number N .

Also the L∞ norm of Sn, denoted by T (N), is defined as follows:

T (N) = max
n≤m(N)

Sn = max
n≤m(N)

∑
k≤n

(R2(2k)−R2(2k + 1)). (4.0.6)

In [TC05], the authors proved that, when the ratio T (N)
A(N)

is bounded above by a small

enough fixed constant, then T (N) and N−A(N)
logN

satisfies a simple inequality. More

precisely,

Theorem G. Let T (N) be defined as in (4.0.6). If

T (N) <
1

36
A(N) (4.0.7)

for all large enough N , then there exists a C > 0, depending only on A, such that

T (N) >
1

80e

N −A(N)

logN
− C (4.0.8)
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for all N ≥ 1.

It is easy to see that, Theorem G implies Theorem F.

Now, set

S+
n = max{Sn, 0}, and T+(N) = max

n≤m(N)
{S+

n }.

Note: T (N) and T+(N) are same unless all the elements of the set {Sn : n ≤

m(N)} are negative.

Here, we again assume that T (N)
A(N)

is bounded above and prove an improved version

of (4.0.8) where we replace the L∞ norm of S(n) by the L1 norm of S+(n)
n

. More

precisely, we prove the following theorem:

Theorem 4.0.1. Let A be an infinite sequence of positive integers. Assume that

there exists N0 such that T (N) < 1
36
A(N) for N ≥ N0. Then there exists a constant

c1 > 0, depending on A, such that

m(N)∑
n=1

S+
n

n
>

1

10e
(N −A(N))− 1

4
logN − c1, (4.0.9)

for all N ≥ 1.

Corollary 4.0.1. If (4.0.7) in Theorem G holds, then for any ε > 0,

T+(N) >
1

10e+ ε

N −A(N)

logN
− 1

4
, (4.0.10)

for any large enough N .

So, if at least one of S(n) is non-negative, then T+(N) indeed equals T (N). In that

case, Corollary 4.0.1 gives Theorem G with a better constant.
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4.1 Generating Functions

It is more natural to consider the problem in terms of generating function.

Set

f(z) =
∑
a∈A

za, for |z| < 1.

Then,

f(z)2 =
+∞∑
n=1

R1(n)zn.

For any positive real number Y , define

ψ(Y ) = f(e−
1
Y ) =

∑
a∈A

e−
a
Y , (4.1.1)

and

g(Y ) = 1 + 4(1− e−
2
Y )

+∞∑
k=1

Ske
− 2k
Y . (4.1.2)

Theorem 4.1.1. Let g(Y ) and ψ(Y ) be defined as above. Also assume

g(Y ) ≤ min{ψ
(
Y

2

)
,
1

9
Y } (4.1.3)

for all sufficiently large positive real numbers Y . Then

ψ(Y ) ≥ Y exp

(
−2.3

2Y

(
log2 Y +

16

Y

∞∑
k=1

S+
k

e−
2k
Y

1− e− 2k
Y

)
− c

Y

)

for some positive constant c depending only on first few elements of A.

In Section 4.3, we will give a proof of Theorem 4.1.1. In Section 4.4, we will show

how Theorem 4.0.1 follows from Theorem 4.1.1.
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4.2 Notations and preliminary lemmas

Consider a function h : R 7→ [0,+∞). For any real number Y and integer α ≥ 0,

define H(Y ;α) by the recurrences

H(Y ; 0) = 0,

H(Y ;α) =
h(Y )

2
+
h(Y

2
)

4
+
h(Y

4
)

8
+ · · ·+

h( Y
2α−1 )

2α

=
α−1∑
j=0

1

2j+1
h

(
Y

2j

)
, for integer α ≥ 1. (4.2.1)

Also

H(Y ) =
∞∑
j=0

1

2j+1
h

(
Y

2j

)
. (4.2.2)

Lemma 4.2.1. If h(Y ) and H(Y ;α) are defined as above and

(ψ(Y ))2 ≥ 2Y exp(−h(Y ))ψ(
Y

2
) (4.2.3)

for all real numbers Y ≥ Ñ0, then for every integer α ≥ 0,

ψ(Y ) ≥ Y exp(−H(Y ;α))

(
ψ
(
Y
2α

)
2α

Y

) 1
2α

(4.2.4)

for any real number Y ≥ 2αÑ0.

Proof. We shall prove the result by induction.

For α = 0, both sides of (4.2.4) are equal.
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In the general case, suppose it is true for α = α0. Then

(ψ(Y ))2 ≥ 2Y exp(−h(Y ))ψ

(
Y

2

)

≥ Y 2 exp

(
−h(Y )−H

(
Y

2
;α0

))(
ψ
(

Y
2α0+1

)
2α0+1

Y

) 1
2α0

, for Y ≥ 2α+1Ñ0

=

Y exp(−H(Y, α0 + 1))

(
ψ
(

Y
2α0+1

)
2α0+1

Y

) 1

2α0+1

2

.

Hence the result is true for α = α0 + 1. This concludes the proof.

Lemma 4.2.2. There exists a positive constant c such that, if Y is large enough,

then we have (
ψ
(
Y
2α

)
2α

Y

) 1
2α

≥ exp(− c

Y
)

for some α ≤ log2 Y .

Proof. Now fix an interval [a, 2a], with a ≥ 1, so that ψ(a) ≥ 1.

Then choose α suitably so that Y
2α
∈ [a, 2a]. In that case, we have

(
ψ( Y

2α
)2α

Y

) Y
2α

≥
(

1

2a

)2a

= exp(−2a log(2a)).

This proves the lemma.

Lemma 4.2.3. Let 0 < x < 1 be a real number. Then
+∞∑
n=0

2nx2
n ≤ 2x

1− x
.

Proof. Note that

2nx2
n ≤ 2

∑
2n−1<j≤2n

xj.
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Summing over n = 1 to +∞,

+∞∑
n=1

2nx2
n ≤ 2

+∞∑
j=2

xj =
2x2

1− x
.

Adding x corresponding to n = 0, on both sides, we get

+∞∑
n=0

2nx2
n ≤ 2x2

1− x
+ x =

x(1 + x)

(1− x)
.

But since x < 1, this proves the result.

Lemma 4.2.4. In the notation of Lemma 4.2.1, let h(Y ) = dg(Y )
Y

for some fixed

positive constant d, to be chosen later. Then

H(Y, α) ≤ d

2Y

(
α +

16

Y

∞∑
k=1

S+
k

e−
2k
Y

1− e− 2k
Y

)
.

Proof. Set x = e−
2
Y . Then

g(Y ) = 1 + 4(1− e−
2
Y )

∞∑
k=1

Skx
k.

≤ 1 +
8

Y

∞∑
k=1

S+
k x

k.
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Now,

H(Y ;α) =
α−1∑
j=0

1

2j+1
h

(
Y

2j

)

=
α−1∑
j=0

d

2j+1

2j

Y
g(
Y

2j
)

≤
α−1∑
j=0

d

2Y

(
1 +

8

Y

∞∑
k=1

S+
k 2jxk2

j

)

≤ d

2Y

(
α +

8

Y

∞∑
k=1

S+
k

∞∑
j=0

2jxk2
j

)

≤ d

2Y

(
α +

8

Y

∞∑
k=1

S+
k

2xk

1− xk

)
.

4.3 Proof of Theorem 4.1.1

It is easy to verify the following equality by comparing the coefficients of zn from

both sides.

f(z2) =
1− z

2z
(f(z))2 + 2

+∞∑
k=1

(R2(2k)−R2(2k + 1))z2k − (1 + z)

2z
f(−z)2. (4.3.1)

Choose z to be a positive real number. This gives

f(z2) ≤ 1− z
2z

f(z)2 + 2
+∞∑
k=1

(R2(2k)−R2(2k + 1))z2k. (4.3.2)
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Now, considering the right hand side of the summation, we get

+∞∑
k=1

(R2(2k)−R2(2k + 1))z2k =
+∞∑
k=1

(Sk − Sk−1)z2k

=
+∞∑
k=1

Sk(z
2k − z2k+2)− S0z

2

≤ (1− z2)
+∞∑
k=1

Skz
2k.

Thus, from (4.3.2) we get

f(z2) ≤ 1− z
2z

f(z)2 + 2(1− z2)
+∞∑
k=1

Skz
2k.

Now putting z = e−
1
Y , we get

ψ

(
Y

2

)
≤ 1

2

(
1

Y
+

1

Y 2

)
(ψ(Y ))2 + 2(1− e−

2
Y )

+∞∑
k=1

Ske
− 2k
Y .

Since ψ(Y ) ≤ Y , this gives

2Y ψ

(
Y

2

)
≤ (ψ(Y ))2 + Y g(Y ).

Thus,

(ψ(Y ))2 ≥ 2Y ψ

(
Y

2

)
− Y g(Y ). (4.3.3)

Lemma 4.3.1. If g(Y ) ≤ ψ
(
Y
2

)
, then for all large enough real numbers Y ,

ψ(Y ) ≥ 0.49Y.
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Proof. Since g(Y ) ≤ ψ
(
Y
2

)
, using (4.3.3) we get

(ψ(Y ))2 ≥ Y ψ

(
Y

2

)
.

Then (4.2.3) in Lemma 4.2.1 holds with h(Y ) = log 2.

In that case

H(Y ) =
∑

0≤j<+∞

1

2j+1
h

(
Y

2j

)
= log 2.

This gives, by Lemma 4.2.1 and Lemma 4.2.2,

ψ(Y ) ≥ 0.49Y

if Y is large enough.

Thus, combining (4.3.3) and Lemma 4.3.1 we get

ψ(Y )2 ≥ 2Y ψ

(
Y

2

)(
1− g(Y )

0.49Y

)
(4.3.4)

for sufficiently large Y .

Since g(Y )
Y

< 1
9
, equation (4.2.3) in Lemma 4.2.1 is satisfied with h(Y ) = 2.3g(Y )

Y
.

Hence Lemma 4.2.4 and Lemma 4.2.1 together give the following inequality

ψ(Y ) ≥ Y exp

(
−2.3

2Y

(
α +

16

Y

+∞∑
k=1

S+
k

(
e−

2k
Y

1− e− 2k
Y

)))(
ψ
(
Y
2α

)
2α

Y

) 1
2α

. (4.3.5)

Hence Theorem 4.1.1 follows from (4.3.5) and Lemma 4.2.2.
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4.4 Proof of Theorem 4.0.1

Lemma 4.4.1. Let g(Y ) and T (N) be as in (4.1.2) and (4.0.6). Then

(a)

g(N) < 4T (N) + 40

for any real number N ≥ 40.

(b) Further, if (N\A) is infinite and T (N) ≤ 1
36
A(N) for any real number N ≥ N0,

then there exists N2 ≥ N0 such that

g(N) ≤ min{ψ
(
N

2

)
,

1

9
N}

for any real number N ≥ N2.

Proof. We have

g(N) = 1 + 4(1− e−
2
N ){

∑
k≤m(N)

Ske
− 2k
N +

∑
k>m(N)

Ske
− 2k
N }

= 1 + 4(1− e−
2
N ){Σ3 + Σ4}, say.

For the first summation, we use the fact Sk ≤ T (N), for k ≤ m(N), while for the

second we use the trivial estimate Sk ≤ k2

2
.

In that case

Σ3 ≤
+∞∑
k=0

T (N)e−
2k
N = T (N)

1

1− e− 2
N
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and

Σ4 ≤
∑

k>m(N)

k2

2
e−

2k
N ≤

∫ +∞

m(N)−1

x2

2
e−

2x
N dx ≤ 4N,

using integration by parts and the fact that m(N) = N(logN + log logN). This

proves (a).

To prove (b) note that,

A(N) =
∑
a∈A
a≤N

1 ≤
∑
a∈A
a≤N

e2−
2a
N ≤ e2ψ(

N

2
). (4.4.1)

Also, using T (N) < 1
36
A(N), from (a) we get

g(N) <
1

9
A(N) + 40. (4.4.2)

Then from (4.4.1) and (4.4.2), we get g(N) < e2

9
ψ(N

2
) + 40.

Since e2 < 9 and A is infinite, it follows g(N) < ψ(N
2

), for sufficiently large N .

Also (4.4.2) can be written as g(N) < 1
9
N− 1

9
(N−A(N))+40. As N\A are infinite,

so we get (b) for sufficiently large N .

Notice that if N\A is finite set, then Theorem 4.0.1 is satisfied trivially. So without

loss of generality, we may assume that both A and N \ A are infinite sets.

Then in view of Lemma 4.4.1, condition (4.1.3) of Theorem 4.1.1 is satisfied. Hence
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ψ(N)

N
≥ exp

(
− 2.3

2N

(
log2N +

16

N

∞∑
k=1

S+
k

e−
2k
N

1− e− 2k
N

)
− c

N

)
(4.4.3)

where c is the constant, as defined in Lemma 4.2.2.

Taking logarithm on both sides,

2.3

2N

(
log2N +

16

N

∞∑
k=1

S+
k

e−
2k
N

1− e− 2k
N

)
+

c

N
≥ − log

(
1−

(
1− ψ(N)

N

))
>

(
1− ψ(N)

N

)
.

Now, following the calculation of Σ4,

2.3

2N

log2N +
16

N

m(N)∑
k=1

S+
k

(
e−

2k
N

1− e− 2k
N

)
+ 100

+
c

N
>

(
1− ψ(N)

N

)
.

Now, e−x

1−e−x ≤
1
x

and hence we can replace e−
2k
N

1−e−
2k
N

by N
2k

, for k ≤ m(N). Hence

2.3

2N

log2N + 8

m(N)∑
k=1

S+
k

k
+ 100

+
c

N
>
N − ψ(N)

N
.

80



Also note that

N − ψ(N) = (
+∞∑
n=1

e−n/N +O(1))−
∑
a∈A

e−a/N

=
∑
n/∈A
n≥1

e−n/N +O(1)

≥
∑
n/∈A

1≤n≤N

e−1 +O(1)

=
N −A(N)

e
+O(1).

It implies that

m(N)∑
k=1

S+
k

k
>

1

10e
(N −A(N))− 1

8
log2N − c1 (4.4.4)

for positive integer N and fixed constant c1 depending on A. This proves Theorem

4.0.1.

4.5 Monotonicity of R1(n) on dense set of integers

In this section, we solve a question raised by Sárközy (see [Sar06])[Problem 5, Page

337]. His question was the following:

Does there exist an infinite set A ⊂ N such that N\A is also infinite and R1(n+1) ≥

R1(n) holds on a sequence of integers n whose density is 1?

Here we show that the answer to this question is positive by giving a simple example.

A Sidon set is a set of positive integers such that the sums of any two terms are

all different. i.e., R2(n) ≤ 1 for the corresponding R2 function. By [AKS81], it is

possible to construct Sidon sequence of order (n log n)
1
3 .

Now, let B be an infinite Sidon set of even integers and A = N \ B;
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Put

Y = (B + B) ∪ B and X = N \ Y ;

Then,

R1(n+ 1) ≥ R1(n) for all n ∈ X.

To see this, let

f(z) =
∑
a∈A

za and g(z) =
∑
b∈B

zb.

Then,

+∞∑
n=1

(R1(n)−R1(n− 1))zn = (1− z)f(z)2

= (1− z)(
z

(1− z)
− g(z))2

=
z2

(1− z)
+ (1− z)(g(z))2 − 2zg(z).

Again, let

r1(n) =
∑

bi+bj=n
bi∈B,bj∈B

1,

So, R1(n+ 1) ≥ R1(n) iff coefficient of zn+1 in (1− z)(f(z))2 is non negative.

Now coefficient of z2k is = 1 + r1(2k)− r1(2k − 1)− 2χB(2k − 1)

and coefficient of z2k+1 is = 1 + r1(2k + 1)− r1(2k)− 2χB(2k).

Then, it is clear from the above choice of X and A that R1(n + 1) ≥ R1(n) for all
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n in X.

For example, we can take B = {2, 4, 8, 16, 32, ...., 2m, .....}. Then B is infinite and X

is of density 1.
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[SS07] J. Šiaulys and G. Stepanauskas, On the Mean Value of the Product of

Multiplicative Functions with Shifted Argument, Monatsh. Math. 150,

(2007), 343-351 .

[TC05] M. Tang and Y.G. Chen, On Additive Properties of General Sequences,

Bull. Austral. Math. Soc. 71 (2005), 479-485.

[TC09] M. Tang and Y.G. Chen, On the monotonicity properties of additive rep-

resentation functions. II, Discrete Math. 309 (2009), 1368-1373.

87


	Introduction
	Reduction modulo prime
	The prime counting function ME(N)
	Average of K*(N)
	Shifted multiplicative functions
	Distribution of ME(N)

	Shifted multiplication functions
	Proof of Theorem 1.4.1
	Proof of Theorem 1.3.1
	Proof of Theorem 1.4.2

	Poisson distribution of ME(N)
	Notations and preliminaries
	Estimation of class numbers
	Curves with fixed order modulo primes
	Some combinatorial arguments
	Proof of Theorem 1.5.1 and Theorem 1.5.3
	Proof of Theorem 1.5.2

	Additive Representation Function
	Generating Functions
	Notations and preliminary lemmas
	Proof of Theorem 4.1.1
	Proof of Theorem 4.0.1
	Monotonicity of R1(n) on dense set of integers

	Bibliography

