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Synopsis

Entropy is a measure of disorder in a system. Usually, ordering transitions lead to a

decrease in entropy. Entropy-driven phase transitions, on the other hand, are interest-

ing and counter-intuitive as they lead to increase in visible order with gain in entropy.

Examples of systems undergoing entropy-driven phase transitions from disordered to or-

dered phases with different broken symmetries include colloids of polymethyl methacry-

late (PMMA) [1], tobacco mosaic virus [2], f d virus [3], silica particles [4], boehmite

particles [5], Brownian square platelets [6], and banana-shaped molecules [7].

Hard-core models or systems with only excluded volume interactions are minimal models

to study entropy-driven ordering transitions. For example, hard spheres in continuum

undergo a fluid–solid transition with increasing packing fraction as seen in experiments

with colloidal PMMA [8, 9]. The phase transitions in a system of hard rods are significant

for more complex systems like liquid crystals [10, 11, 12]. Hard-core lattice gas models

of particles of different shapes have direct realization in the adsorption of gas molecules

on metal surfaces [13, 14].

Consider systems of hard anisotropic particles. Long hard rods in three dimensions un-

dergo a discontinuous transition from an isotropic fluid phase to an orientationally ordered

nematic phase with increasing density [11, 15, 16]. Further increase of density may lead

to phases with translational order, like the smectic and solid phases [12]. Hard needles in

two-dimensional continuum undergo a Kosterlitz-Thouless-type transition into a nematic

phase with quasi-long-range orientational order [17]. Systems of hard rectangles with

short aspect ratio in continuum may exhibit tetratic and solid-like phases [18, 19].

Compared to the continuum problems, the systems of hard rods or rectangles on lattices

are less well-understood. It may be heuristically argued that the maximal density phase

for hard rectangles on lattices does not posses orientational order [10, 20]. Both the low
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and high-density phases being disordered, it remained unclear till recently whether the

system may ever exhibit an ordered phase [10]. In this thesis, we focus on the model of

hard rectangles on lattices.

The Model of hard rectangles: Consider a monodispersed system of hard rectangles of

size m × mk, where the aspect ratio k > 1, on a square lattice with periodic boundary

conditions. Generalization to the other lattices is straight forward. Each rectangle may

be oriented along the horizontal or vertical direction. A horizontal (vertical) rectangle

occupies mk lattice sites along the x (y)-axis and m lattice sites along the y (x)-axis. No

two rectangles may overlap or equivalently each site may be occupied atmost by one

rectangle. We associate an activity z = eµ to each rectangle, where µ is the chemical

potential. The grand canonical partition function for the system is

Z =
∑
nh,nv

C(nh, nv) znh+nv , (1)

where C(nh, nv) is the number of distinct configurations with nh horizontal and nv vertical

rectangles. The fraction of occupied sites ρ = m2k 〈nh + nv〉/L2 will be referred as density,

where L is the system size.

Known results: When m = 1, the system corresponds to that of hard rods on lattices.

The dimer model (k = 2) does not undergo any phase transition and remains disordered

at all densities [21, 22, 23]. Recently, the existence of an intermediate density nematic

phase having only orientational order and, hence, a transition from a low-density disor-

dered (LDD) to the nematic phase has been shown both numerically for k ≥ 7 [20] and

rigorously for k � 1 [24]. The LDD–nematic phase transition was found to be in the

Ising universality class for the square lattice and in the three-state Potts universality class

for the triangular lattice [25]. If the heuristic argument of the high-density phase being

orientationally disordered is correct, there should be a second transition from the nematic

to a high-density disordered (HDD) phase. However, it is difficult to equilibrate the sys-

tem at high densities using Monte Carlo algorithms with local evaporation and deposition

2



moves as the system gets stuck in long lived metastable states. Therefore, establishing the

existence and determining the nature of the HDD phase have remained open problems.

The only exact solution that exists is for hard rods on the random locally tree-like layered

lattice [26]. On this lattice, while the LDD–nematic transition exists, the second transition

is absent. There are very few studies for m > 1. Simulations of hard parallelepipeds on

cubic lattice show layered and columnar phases, but no nematic phase [27]. However, the

complete phase diagram has remained unexplored. The limit m → ∞, keeping k fixed

corresponds to the system of oriented rectangles of aspect ratio k in continuum, known

as the Zwanzig model. From truncated virial expansion [15] and within a Bethe approxi-

mation [28], it was predicted that this model would undergo a disordered–nematic phase

transition with increasing density [15].

Is there an efficient algorithm that allows the study of hard-core systems close to full

packing? What are the possible phases and the ρ − k phase diagram for different m?

What is the nature of the phase transitions between the different phases? In this thesis we

systematically address these questions. Below, we summarize the main results.

The Monte carlo algorithm: We implement an efficient Monte carlo algorithm to study

systems of extended hard particles on lattices. Here, we describe the algorithm for hard

rectangles of size m × mk on a square lattice. Starting with an valid configuration, a row

(or a column) is chosen at random. First, all the horizontal (vertical) rectangles whose

bottom-left corners are on that row (column) are evaporated, keeping the remaining rect-

angles as they are. The row (column) now consists of intervals of empty sites, separated

by sites which are either already occupied by rectangles or can not be occupied due to

the hard-core constraint. Next, the empty intervals of the row (column) are refilled by

deposition of horizontal (vertical) rectangles with the correct equilibrium grand canonical

probabilities. The calculation of these probabilities reduces to a solvable one-dimensional

problem. In addition to the evaporation-deposition move, we also implement a flip move.

In this move, a site is picked up at random. If the chosen site is the bottom-left corner of
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a square plaquette of size mk×mk consisting of k aligned horizontal (vertical) rectangles,

the plaquette is replaced by a similar plaquette of k vertical (horizontal) rectangles. One

Monte Carlo move corresponds to 2L evaporation-deposition and L2 plaquette flip moves.

This algorithm is easily parallelizable. The evaporation and deposition of rectangles in

rows or columns separated by m are independent of each other, and may be done simul-

taneously by passing them into different processors. Similarly, the flip move may also be

parallelized by dividing the lattice of size L2 into L2/m2k2 blocks of size mk × mk. For

rods of size 1 × 7, this algorithm allows to simulate system sizes upto 2576 and densities

upto 0.99, while algorithms with local moves are restricted to L < 200 and densities upto

0.85 [20].

The algorithm is easily generalized to particles of different shapes. Other implementations

of this algorithm include lattice gas model of particles with exclusion of several next-

nearest-neighbor sites [29, 30], mixtures of hard squares and dimers [31].

Hard rods (m = 1): Implementing the above algorithm for the hard rod system (m = 1)

on the square and triangular lattices, we demonstrate the existence of the HDD phase

on both the lattices for k = 7. The metastability of the nematic order at high densities is

quantitatively described using classical nucleation theory. The transition from the nematic

to the HDD phase with increasing density is found to be continuous on both the lattices.

On the square lattice, our best estimates of the critical exponents for this transition are

β/ν = 0.22 ± 0.07, γ/ν = 1.56 ± 0.07, and α/ν = 0.22 ± 0.07. These exponents differ

from those of the two-dimensional Ising model. To better understand the nature of the

HDD phase, we study the correlations, cluster size distribution, stack distribution and the

formation of bound states of vacancies. Interestingly, we find the existence of a crossover

length scale ξ∗ & 1400 on the square lattice. For distances smaller than ξ∗, correlations

appear to decay algebraically and we can not rule out a crossover to Ising universality

class at length scales � ξ∗. The stack distribution remains exponential at all densities.

We find that the vacancies in the HDD phase, similar to the LDD phase, do not form a
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bound state. Thus, it remains unclear from Monte Carlo simulations whether the HDD

phase is a reentrant LDD phase. On the triangular lattice the critical exponents for the

second transition are consistent with the first transition that belongs to the three-state

Potts universality class.

Repulsive rods on a Bethe-like lattice: To investigate whether the HDD phase is a reen-

trant LDD phase, we study a model where rods are allowed to intersect, but with an energy

cost, adding an extra dimension to the phase diagram. We solve the model exactly on the

random locally tree-like layered lattice (RLTL), a lattice that was introduced in Ref. [26]

to study the disordered–nematic transition for hard rods of finite length k. We briefly de-

scribe the RLTL for coordination number q = 4. Generalization to the larger even values

of q is straight forward. Consider a collection of M layers, each having N sites. A layer

m is connected to the adjacent layer (m− 1) by N bonds of type X and N bonds of type Y .

Each site in the mth layer is connected with randomly chosen sites in the (m − 1)-th layer

by an X bond and a Y bond. A rod of length k, called as k-mer, occupies (k−1) consecutive

bonds of same type. Rods on X (Y) type of bonds will be called x-mers (y-mers). When

q = 4, a site may either be empty, or occupied by a single rod, or occupied simultane-

ously by an x-mer and a y-mer. We assign a weight u for each site that is simultaneously

occupied by an x-mer and a y-mer. When q = 6, there are three types of bonds and each

site may be occupied by atmost three k-mers of different types. An additional weight v is

associated to such sites. The partition function is defined as the weighted average over all

rod-configurations as well as bond-configurations.

We show that when k ≥ 4 and u < uc, the system undergoes two phase transition with

increasing density: first from a LDD to a nematic phase and second, from the nematic to

a HDD phase [see Fig. 1]. When q = 4, both the transitions are continuous and found to

be in the mean field Ising universality class [see Fig. 1 (A)]. For q = 6, the first transition

is discontinuous, while the nature of the second transition depends on the length of the

rods and the intersection parameters. The phase coexistence region at a discontinuous
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Figure 1: Phase diagram when (A) q = 4 for different values of k and, (B) q = 6 and
k = 7: (a) v = u2, (b) v = u3, and (c) v = u4. Lines stand for continuous transitions and
shaded region denotes phase coexistence at a discontinuous transition.

transition is shown by the shaded region in Fig. 1(B). Beyond a critical value uc, no phase

transition is observed, where uc < 1 for any finite k. The u − ρ phase diagram in Fig. 1

shows that it is always possible to continuously transform the LDD phase into the HDD

phase without crossing any phase boundary, implying that the LDD and HDD phases are

qualitatively similar.

Hard Rectangles with integer aspect ratio (m ≥ 2, k ∈ N): For hard rectangles of size

m×mk with m ≥ 2 and integer k, we find that the system may exist in four distinct phases:

a low-density isotropic phase (I) in which the rectangles have neither orientational nor

translational order, a nematic (N) phase in which the rectangles have orientational order

but no translational order, a columnar (C) phase that has orientational order and partial

translational order along the direction perpendicular to the preferred orientation and a

sublattice (S) phase with complete spatial order, but no orientational order. Figure 2

shows the phase diagram for m = 2, obtained from Monte carlo simulations. The high-

density (HD) phase is a S phase for k ≥ 2 and C phase for k = 1 (hard square). When

m = 2, k = 2, 3, the system undergoes a direct transition from the I to the S phase with

increasing density. For 4 ≤ k < 7, there exists two transitions: first from the I phase

to the C phase and second from the C to the S phase. When k ≥ 7, with increasing

density, the system transits successively from I to N to C to S phases. The I-N, N-C and
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Figure 2: Phase diagram for integer k, when (A) m = 2 and, (B) m = 3. The data points
are from simulation, while the continuous lines and shaded portions are guides to the eye.
The shaded portion denotes regions of phase coexistence. The HD phase is a C phase for
k = 1 and a S phase for k > 1.

C-S transitions are found to be continuous. The I-C transition is continuous for k = 5,

and discontinuous for k = 6. Universality classes and the critical exponents for different

transitions are summarized in Table 1. When m = 3, there exists no direct transition from

the I to the S phase [see Fig. 2(B)]. For 2 ≤ k < 7, the system may exist in I, C or S

phases depending on the density. When k ≥ 7, the system undergoes I-N, N-C and C-S

transitions with increasing density. All the transitions except the I-N transition, are found

to be discontinuous. The I-N transition continues to be in the Ising universality class. We

expect that the phase diagram for m ≥ 4 is qualitatively similar to that for m = 3.

Hard Rectangles with non-integer aspect ratio (m ≥ 2, k < N): We also determine the

phase diagram of the hard rectangle system when the aspect ratio k is a non-integer. The

existence of a low-density I phase, an intermediate density N and C phases, and a high-

density (HD) phase is observed. The HD phase has no orientational or positional order

when the length and width of the rectangles are mutually prime (e.g. rectangles of size

2 × 5), otherwise, it is conjectured to be a sublattice phase (e.g rectangles of size 4 × 6).
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Transition k Universality class ν

I-S 2 Ashkin-Teller 1.18 ± 0.06
I-S 3 Ashkin-Teller 1.23 ± 0.07
I-C 5 Ashkin-Teller 0.82 ± 0.06
I-C 6 First order
C-S 5 Ashkin-Teller 0.83 ± 0.06
I-N 7 Ising 1.00
N-C 7 Ising 1.00

Table 1: Table showing nature of different phase transitions for 2 × 2k rectangles, where
k is a integer. For the Ashkin-Teller and Ising universality classes, β/ν = 1/8, γ/ν = 7/4.

The system does not exhibit any phase transitions when k < kmin(m). For kmin(m) ≤ k < kc,

existence of an intermediate density C phase is observed. We find that kmin(m = 2) = 11/2

and kmin(m = 3) = 13/3. When m = 2, unlike the case of integer k, we find that the I-C

transition is discontinuous when it exists. When k ≥ kc for any m, an N phase exists and

the system is expected to undergo three successive transitions with increasing density:

first from the I to the N phase, second from the N to the C phase and third, from the C to

the HD phase. We find, 20/3 < kc ≤ 7. Both the I-N and N-C transitions belong to the

Ising universality class for m = 2. We could not access the transition from the C phase to

the HD phase due to difficulties with equilibration. The phase diagram of the system for

m ≥ 3 is expected to be qualitatively similar to that for m = 2.

Asymptotic behavior of the phase boundaries for hard rectangles: The asymptotic

behavior of the I-N, N-C and C-S phase boundaries is studied using Monte carlo simula-

tions and analytical calculations. Simulating systems up to k = 60 for m = 1 and k = 56

for m = 2 and 3, we show that the critical density for the I-N transition ρI−N
c ≈ A1/k,

when k � 1, where A1 is independent of m and equals to 4.80 ± 0.05. The N-C phase

boundary is studied numerically for m = 2 and k up to 24. We obtain the critical den-

sity ρN−C
c ≈ 0.73 + 0.23k−1 for large k. Binder cumulant for the N-C transition is found

to be non-universal and decreases as k−1 for k � 1. However, the critical exponents

belong to the Ising universality class for all k. Numerical simulations of the C-S phase

transitions for large k is constrained by large relaxation times at high densities. The I-N
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Figure 3: Phase diagram for the system of rectangles of size 2 × 2k, where k is a non-
integer. The data points are from simulation, while the continuous lines and shaded por-
tions are guides to the eye. The shaded portion denotes regions of phase coexistence.

phase boundary is calculated analytically from the virial expansion truncated at the sec-

ond virial coefficient and a Bethe approximation. Within both the theories, we obtain

ρI−N
c ≈ A1/k for k � 1, where A1 = 2. In this case, truncated virial theory is not exact

in the limit k → ∞. In particular, we find that all the even virial coefficients contributes

in the limit k → ∞. For the N-C transition, within a Bethe approximation, we obtain

ρN−C
c (m) ≈ A2(m) + A3(m) k−1, with A2(m = 2) ≈ 0.59 and A3(m = 2) ≈ 0.15, which is

qualitatively in agreement with the numerical finding. The C-S phase boundary is studied

by estimating the entropies of the C and S phases. By comparing the entropies of these

two phases , we obtain ρC−S
c ≈ 1 − A4/mk2 for k � 1, where A4 is a constant.
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Chapter 1

Introduction

Phase transitions in equilibrium systems continue to be an active and fascinating area of

research in Statistical Physics. Common examples of phase transitions in nature are the

liquid–vapor and the liquid–solid transitions. While the liquid–solid transition in three

dimensions is first order in nature, the liquid–vapor transition may be first order or second

order. At a first order or discontinuous transition, the first derivatives of the free energy

are discontinuous. In a second order or continuous phase transition, the first derivatives

remain continuous, but the second derivatives of the free energy diverge. A second or-

der transition is characterized by the divergence of the correlation length at the critical

point. Near a critical point, the singular behavior of the thermodynamic quantities is uni-

versal and is determined by a set of critical exponents and universal scaling functions.

The universality class of a continuous phase transition does not depend on many of the

microscopic details of the particular system, rather it depends on factors like symmetry

of the Hamiltonian, symmetry of the order parameter and dimensionality of the system.

For instance, the critical exponents of the liquid–vapor transition belongs to the Ising

universality class describing the ferromagnetic-paramagnetic transition in magnets.

In a phase transition, the free energy is minimized by two different phases on either side

of the critical value of a control parameter like temperature or density. Usually, an ordered
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phase has lower entropy than a disordered phase and a system undergoes a transition to

such an ordered phase when the lowering of energy outweighs the loss in entropy. Thus,

they are energy driven. On the other hand, there are entropy-driven ordering transitions in

which there is no significant change of internal energy. Such transitions are particularly

interesting and counter-intuitive as they lead to increase in visible order with increase

of microscopic disorder, resulting in the gain in entropy [32]. Examples of entropy-

driven transitions include the fluid–solid transition in colloids of polymethyl methacry-

late (PMMA) [1], transition to various liquid crystalline phases like nematic, smectic, and

cholesteric phases in systems of tobacco mosaic virus [33, 2], f d virus [3, 34], silica parti-

cles [35, 4], boehmite particles [5], banana-shaped molecules [7], and ordering transitions

in adsorbed monolayer of gas particles on metal surfaces [13, 36, 37]. Entropy-driven

crystal-crystal transitions may be realized in Brownian square platelets [6].

Systems with only hard-core or excluded volume interactions are minimal models to study

entropy-driven transitions. For example, liquid–solid transition in colloidal polymethyl

methacrylate (PMMA) may be modelled by the hard sphere system in continuum that

exhibits a discontinuous transition from a liquid phase to a crystal phase with increas-

ing packing fraction [8, 9]. Systems of hard rods or sphero-cylinders can reproduce the

liquid, nematic, smectic and solid phases as seen in more complex systems like liquid

crystals [10, 11, 12]. The phase behavior of two-dimensional Brownian square platelets

may be reproduced by studying the model of rounded hard squares [38]. Hard-core lat-

tice gas models have direct realizations in adsorptions of gas particles on metal surfaces

and are studied to explain the phase diagram of the monolayers of adsorbed gas parti-

cles [13, 36, 39, 40, 37, 14]. The (100) and (110) planes of fcc crystals have square and

rectangular symmetry and may be treated with lattice statistics if the adsorbate-adsorbate

interaction is negligible with respect to the periodic variation of the corrugation potential

of the underlying substrate [37]. For example, the monolayer of chlorine (Cl) on Ag(100)

undergoes a continuous transition, belonging to the Ising universality class, to a spatially

ordered structure c(2 × 2) with increasing coverage [13]. The critical coverage for this
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transition is quite close to that of the hard square model, which also undergoes a simi-

lar transition [41, 42, 43]. Lattice gas model with repulsive interaction up to forth nearest

neighbor has been used to study the phase behavior of selenium adsorbed on Ni(100) [36].

In addition to its relevance for entropy-driven transitions, hard-core lattice gas models are

closely related to directed and undirected animals [44, 45, 46] and the Yang-Lee singular-

ity [47], have applications in frustrated antiferromagnetic quantum spin systems [48, 49],

short-range resonating valence bond physics [50], combinatorial problems [51, 52], glass

transitions [53, 54, 55], granular media [56], self-assembly of nano particles on mono-

layers [57], thermodynamics of linear adsorbates [58, 59], and in establishing rigor-

ous results [21, 60, 22, 23, 24]. Differently shaped particles that have been studied in-

clude dimers [61, 62, 63, 64, 21, 60, 22, 23, 65], trimers [66, 67], squares [41, 68, 69,

70, 71, 72, 73, 14, 74, 75], hexagons [76, 77, 78], triangles [66], tetrominoes [79, 57],

discs [80, 29] and mixtures [31]. Despite sustained interests, exact solution exists only for

hard hexagons [76] and related models [81]. Thus, it is important to study different shapes

using simulations and approximate methods in order to develop phenomenology, leading

to better understanding. The integrability of the hard hexagon and non-integrability of

the hard square model has recently been studied in detail using zeros of partition func-

tion [82]. In this thesis, we focus on models of anisotropic hard particles.

1.1 Models of anisotropic hard particles

1.1.1 Continuum models

Solution of hard long rods in three dimensions undergoes a discontinuous transition from

an isotropic phase to an orientationally ordered nematic phase with increasing density [11].

In the nematic phase, particles do not have positional order. The loss of orientational

entropy in the nematic phase is compensated by the gain in positional entropy, as the ex-

21



cluded volume becomes negligible when the rods are aligned. This was shown by a virial

expansion. The second virial coefficient was obtained by averaging the excluded volume

over all orientations, or for an ordered arrangement of particles, over their equilibrium

distribution of orientations. The orientational distribution was determined by the condi-

tion of minimum free energy. The third and higher virial coefficients may be neglected in

the limit of infinite aspect ratio. Thus, this calculation is exact only for infinitely thin and

long rods, or else restricted to low concentrations for rods with finite aspect ratio. Subse-

quently, the existence of a smectic phase, a columnar phase and a solid phase was shown

to arise from pure hard-core exclusion at high densities [83, 84, 85, 12]. Complete phase

diagram of the system of hard sphero-cylinders in three dimensions was determined us-

ing computer simulations [12]. Polydispersity in the length of the sphero-cylinders leads

to the destabilization of the smectic phase towards nematic phase at low densities and

columnar phase at high densities [86]. Experimental realizations include tobacco mosaic

virus [2], f d virus [3, 87, 34], silica colloids [35, 4], boehmite particles [88, 5] and DNA

origami nanoneedles on lipid membranes [89].

In two-dimensional continuum, system of hard needles (limit of infinite aspect ratio)

undergoes Kosterlitz-Thouless-type (KT) transition to a nematic phase with quasi-long-

range orientational order at high densities [90, 91, 92, 17]. Model of hard sphero-cylinders

confined to lie in a plane, exhibits isotropic, nematic, and solid phases (with quasi long-

range translational order) as the density is varied. When the aspect ratio is small, the

system directly transits from the isotropic into the solid phase [93]. Experiment with

hard rectangles of aspect ratio ∼ 6.4 shows a KT transition from an isotropic to a nematic

phase. Surprisingly, the existence of an intermediate tetratic phase with four fold orienta-

tional symmetry was also observed [19]. Monte carlo simulations of the system of hard

rectangles with aspect ratio 2 exhibits tetratic liquid and tetratic solid phases with quasi-

long-range order [18]. Existence of an intermediate tetratic phase between the isotropic

liquid and two-dimensional solid phases for the system of hard squares was shown using

Monte carlo simulations in Ref. [94].
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1.1.2 Discrete models

Although the continuum models are well studied, the phenomenology is, however, less

clear when the orientations are discrete, and the positions are either on a lattice or in the

continuum. Flory introduced a lattice based mean field theory of the hard rod problem

that handles higher densities better [16]. In this calculation, the rods are a set of points

on a lattice. To describe a tilted rod, the rod is replaced by a set of smaller units, each

unit being still oriented in the same lattice direction, but displaced in the perpendicular

direction. When all rods are parallel, the partition function can be calculated exactly. The

Flory calculation is useful for a dense highly ordered phase and complements the Onsager

calculation for low densities. Within this approximation, the isotropic–nematic transition

is confirmed, though the estimates for the critical density are roughly double to that of

Onsager’s estimates.

For oriented (restricted orientation) cuboids of size d × d × l in the continuum, higher

order virial coefficients can be calculated. In the limit d/l→ 0, the nth virial coefficient is

proportional to (ldρ)n−1, except for the third virial coefficient being equal to zero. Working

in the limit d/l → 0 keeping l2d a constant, it can be shown that the isotropic–nematic

transition occurs up to the seventh virial coefficient [15]. However, early simulations

of semi-flexible polymers on lattices were inconclusive about the existence of a nematic

phase [95]. Later, using scaled particle theory it was predicted that, in addition to the the

nematic phase, the system would exhibit inhomogeneous phases like smectic, columnar

and plastic solid (orientationally disordered) phases [96]. System of hard lines (d = 0)

with discrete orientations in two dimensions was shown numerically to undergo an Ising

like transition from an isotropic to a nematic phase with increasing density [97]. But there

exists no numerical investigation for the complete phase diagram of rectangles with finite

aspect ratio (l/d).

Polydispersed Zwanzig model was studied using virial expansion [98] which predicts

the experimental observations like broadening of phase coexistence region with increas-
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ing polydispersity and strong fractionation effect in the system of sterically stabilized

boehmite particles [88, 5].

In this thesis, we discuss the models of monodispersed anisotropic particles in two dimen-

sions where both the space and orientation are discrete.

1.1.3 Hard rectangle gas on lattices

We consider systems of monodispersed hard rectangles of size m × mk on lattices, where

each rectangle occupies m consecutive lattice sites along the short axis and mk lattice sites

along the long axis such that k is the aspect ratio. The rectangles may orient along different

possible lattice directions. The system of hard rectangles on lattices represents a class of

general hard-core lattice gas models. The limiting cases when either the aspect ratio k = 1

(hard squares) or m = 1 (hard rods) are better studied. When k = 1 (hard squares), the

system is known to undergo a transition from an isotropic phase to a columnar phase at

high density [29]. For hard squares, columnar phase corresponds to the phase having

partial translational order (only along one lattice direction). On the square lattice, the

transition from isotropic to the columnar phase is continuous, belonging to the Ashkin-

Teller universality class for m = 2 [99, 29, 80, 100, 74, 30] and discontinuous for m =

3 [80, 29].

When m = 1, each rod occupies k consecutive lattice sites along a fixed lattice direction

and will be called k-mers. For m = 1, k = 2, the system corresponds to the well studied

monomer-dimer model, which may be realized in the adsorption of diatomic molecules on

a 2d substrate. It has been shown rigorously that the monomer-dimer partition function

has its zeros on the imaginary axis for any non negative dimer activities, implying that

the system does not undergo any phase transitions as a function of monomer (empty sites)

density on any lattice [21, 60, 22, 23]. However, the system of hard dimers with additional

interaction of disallowing nearest neighbor occupation leads to a discontinuous transition
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to an ordered phase [78]. Similarly, system of dimers with aligning interaction gives rise

to a rich phase diagram involving a KT transition and a line of Ashkin-Teller criticality

between different phases [101]. The fully packed hard dimer problem on planar lattices

may be solved exactly using Pfaffian techniques [61, 63, 62], allowing the calculation

of the correlation functions of two test monomers [64, 102]. It was shown using general

perturbation theory for Pfaffians that in the limit of zero monomer density, the correlations

decay algebraically on a bipartite lattice [64], while on the triangular lattice, correlations

are short-ranged at full packing [103].

The fully packed critical phase of the hard dimer model in two dimensions may stud-

ied by mapping it to a height model [104, 105]. The height mapping breaks down at

nonzero monomer densities. After integrating out the short distance fluctuations, the

coarse-grained height model may be represented as a Coulomb gas, where the height field

is conjugate to the electric charge density and dual magnetic charges correspond to a dis-

location in the height field [65]. But this approach relies on the exact solution to determine

the renormalized coupling, which is needed for the calculation of exponents [106]. How-

ever, one may determine the coupling using transfer matrix calculation or Monte carlo

simulations [107]. System of closed packed dimers with interaction between the neigh-

boring dimers has also been studied using Coulomb gas method [107, 108]. Recently,

the non integrable interacting dimer model has been studied rigorously by combining

discrete holomorphicity and constructive renormalization group methods [109]. Using a

local gauge field generalization of the height representation and Monte carlo simulations

for the system of hard dimers, it was shown that the critical coulomb phase exists even

on higher dimensional bipartite lattices, but not on the non-bipartite lattices like fcc and

Fisher lattices [110]. Hard trimer (m = 1 and k = 3) packing on a square lattice also

admits height representation, where the height variable is a two-dimensional vector [67],

but there exist no exact solution to fix the couplings. The problem of determining the

corresponding couplings analytically for k-mers is still open.
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For m = 1 and k ≥ 2, it may be heuristically argued that the maximal density phase is ori-

entationally disordered on lattices [20], making it uncertain whether a pure lattice model

may ever exhibit a nematic phase [10]. This argument may be constructed by estimating

the entropy of a nematic and a disordered phase near full packing. The calculation of

entropy of a fully aligned nematic phase at density ρ (fraction of occupied sites) reduces

to a solvable one-dimensional problem. Consider a system with only horizontal rods on

a square lattice of size L × L with periodic boundary conditions. On average, each row

contains ρL/k number of rods and L(1 − ρ) number of empty sites. The number of ways

of arranging them on a row is

Ωnem(L, ρ) =

[
L(1 − ρ) +

ρL
k

]
!

[L(1 − ρ)]!
[
ρL
k

]
!
. (1.1)

For L rows, the total number of ways of arrangement is ΩL
nem. Hence, the entropy per site

in the thermodynamic limit L→ ∞ is given by

Snem(ρ) =

(
1 − ρ +

ρ

k

)
log

(
1 − ρ +

ρ

k

)
− (1 − ρ) log(1 − ρ) −

ρ

k
log

ρ

k
. (1.2)

When ρ = 1− ε, ε → 0, one may obtain Snem as perturbation expansion in powers of ε as,

Snem(ρ = 1 − ε) = ε log
1
εk

+ ε + higher-order terms in ε. (1.3)

It can be easily seen from the above equation that Snem → 0, as ρ→ 1 or ε → 0.

A lower bound of the disordered phase entropy at full packing may be estimated by break-

ing the lattice into L2/k2 blocks of size k × k. Each of these blocks may be covered by

k-mers in two ways: either by k horizontal rods or k vertical rods. Thus the total number

of ways to cover the lattice is 2L2/k2
, leading to the entropy of the disordered phase per

site Sdis(ρ = 1) ≥ 1
k2 log 2. A better estimate of the lower bound on Sdis(ρ = 1) may be

derived in the following way [20]. One may break the lattice of size L × L into L/k strips

of size k × L. Consider FL be the number of ways of covering a strip of size k × L with
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k-mers. The left most column of the strip may be occupied either by a vertical rod or by

the heads of k horizontal rods. Hence, FL satisfies the following recursion relation

FL = FL−1 + FL−k. (1.4)

It implies FL ≈ λ
L, where λ is the largest root of the equation

λk − λk−1 − 1 = 0. (1.5)

Solution of this equation has the following asymptotic expression for k � 1,

λ = 1 +
log k

k
−

log log k
k

+
log log k
k log k

+ higher-order terms. (1.6)

As there are L/k number of strips, the total number of ways of covering the lattice of size

L × L with k-mers is given by Ω = [FL]L/k ≈ λL2/k. Therefore, the the entropy per site of

the disordered phase at full packing in the thermodynamic limit L→ ∞ is,

Sdis(ρ = 1) =
1
L2 log Ω (1.7)

≥
log k

k2 , k � 1.

For densities close to 1 (ρ = 1 − ε), the correction term to Sdis(ρ = 1) may be estimated

by removing ε/k fraction of rods at random from the fully packed state. Here, the entropy

of the holes is ignored, assuming that they form bound states. This gives the entropy of

the disordered phase close to the full packing to be approximately

Sdis (ρ = 1 − ε) ≈ Sdis (ρ = 1) −
1
k

[ε log ε + (1 − ε) log(1 − ε)], k � 1. (1.8)

Clearly at ρ = 1 or ε = 0, the disordered phase entropy (≈ log k/k2) is larger than the

nematic phase entropy (which is zero), favouring orientational disorder at full packing.
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Figure 1.1: Entropy per site for nematic and disordered phases given by Eq. (1.3) and
Eq. (1.8) respectively, as a function of ε = 1 − ρ when k = 8 [20].

Recently, the existence of a transition from the low-density disordered phase to an inter-

mediate density nematic phase for the system of k-mers on the square lattice has been

shown numerically for k ≥ 7. In addition, using the above entropic argument it was pre-

dicted that the nematic phase would exist for the range of densities ρ∗1 < ρ < ρ∗2. Beyond

ρ∗2, the phase would be orientationally disordered [20]. For ρ = 1 − ε, from Eq. (1.3) and

Eq. (1.8) one may verify that the the entropies for nematic and disordered phases become

equal at ε ≈ C/k2 (see Fig. 1.1), which predicts the existence of a second transition from

the nematic to a disordered phase at critical density ρ∗2 ≈ 1 −C/k2 [20].

The existence of the nematic phase, and hence the first transition from the low-density

disordered to the nematic phase has been proved rigorously for k � 1 [24]. In this

proof, at first, the system of rods is mapped to a contour model of effective Ising spins.

Coarse-graining of the lattice is done by dividing it into squares of size ` ∼ k/2, such

that only rods of the same orientation can have their centers within the same square.

Hence each square can be of three types: first, +1, if it contains centers of horizontal

rods, second, −1, if it contains the centers of vertical rods, and otherwise 0, if empty,

which is very unlikely to occur. The values associated to each squares may be thought as
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different spin values for the coarse-grained system. Such squares with opposite spins have

strong repulsive interaction due to the hard-core constraint. A typical spin configuration

consists of domains of type +1 and −1, separated by contours containing zeros or pairs of

neighboring opposite spins. This contour theory is not invariant under the Z2 symmetry,

therefore, instead of Peierl’s argument, cluster expansion methods by Pirogov and Sinai

were applied to complete the proof.

The first transition from the low-density disordered to the nematic phase for the system of

monodispersed long rods has also been studied in detail through Monte carlo simulations

with local moves [25, 111, 112, 113]. Comparison between the configurational entropy

and the entropy of the fully aligned nematic phase predicts that the nematic phase would

appear only when k ≥ kmin = 7 on both the square [113] and triangular lattices [112]. In

addition, it was estimated that 0.87 ≤ ρ∗2 ≤ 0.93 for k = 7 for the square lattice, and an ap-

proximate functional form for the entropy as a function of the density was proposed [113].

The critical density for the first transition was predicted to be ρ∗1 ∝ 1/k [112, 114]. On the

square lattice, the transition is numerically found to be in the Ising [25], or equivalently

in the liquid-gas universality class [97], and on the triangular and honeycomb lattices, it

is in the three-state Potts model universality class [25, 111].

If the high density phase is orientationally disordered, there has to be a second transition

from the intermediate density nematic phase to the high-density disordered phase. To

distinguish between the two phases without nematic order, we refer to the first as low-

density disordered (LDD) phase and the second as high-density disordered (HDD) phase.

In Ref. [113], it was shown using the Monte carlo simulations with deposition, evapo-

ration, diffusion and rotation moves that the nematic order parameter comes down with

increasing the density for k = 7. But the algorithm is still not efficient enough to confirm

the existence of the HDD phase or perform quantitative studies of the second transition.

Numerical studies are difficult because of the large relaxation times of the nearly jammed

configurations at high densities.
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Recently, the model was exactly solved on a random locally tree-like layered lattice and

the existence of an disordered–nematic transition was shown. On this lattice, kmin is a

function of the coordination number and is equal to 4 when the coordination number is 4.

But the second transition is absent in this model. [26].

A related model of polydispersed long hard rods (m = 1) on the square lattice was solved

by mapping the partition function of the system into that of the nearest neighbor two-

dimensional Ising model [115]. In this model, the activity of a rod of length k is q/(2q)k.

It is shown that for small enough q, a nematic phase exists. A generalization of this model

has recently been studied in Ref. [116], using transfer matrix method. The model allows

rods of length k with weight zk−2
i z2

e , where zi (ze) is the activity for an internal (endpoint)

monomer. The choice ze =
√

zi/2 reduces to the previous model [115]. For a fixed ze,

the system undergoes a transition to a nematic phase with increasing zi. The transition

belongs to the two-dimensional Ising universality class. However, the second transition

to the high-density disordered phase is absent in this model. Phase diagram of a mixture

of hard squares (k = 1) and dimers (m = 1, k = 2) on a square lattice has recently

been studied using Monte carlo simulations and coulomb gas method. At full packing,

the system undergoes a Kosterlitz-Thouless transition from a columnar phase to a power

law correlated phase. For nonzero density of vacancies, a line of Ashkin-Teller criticality

separates the columnar phase from a disordered fluid phase [31].

There are very few studies for m > 1. Simulations of monodispersed hard parallelepipeds

on cubic lattice show layered and columnar phases, but no nematic phase [27]. When

m→ ∞, keeping k fixed, the lattice model is equivalent to the model of oriented rectangles

in two-dimensional continuum, also known as the Zwanzig model [15]. For oriented lines

in the continuum (k → ∞), a nematic phase exists at high density [97].

The phase diagram of the system for arbitrary m and k has been difficult to determine,

primarily due to the lack of an efficient Monte Carlo algorithm. In general, numerical

studies of extended objects are constrained by the fact that it is difficult to equilibrate the
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system at high densities using Monte Carlo algorithms with local moves as the system gets

trapped in metastable states and requires correlated moves of several particles to access

different configurations.

1.2 Overview of the thesis

Is there any efficient algorithm to study the system of hard extended objects on lattices?

Can one show the existence of the nematic–disordered phase transition at high densities

for the system of monodispersed hard rods? If it exists, what is the nature of this transi-

tion? Are the low-density and high-density disordered phases different from each other?

What is the phase diagram of hard rectangles of arbitrary size?

In this thesis, we will address the above questions using numerical simulations, exact

calculation, Bethe approximation, virial expansion and arguments based on estimation of

entropies. The rest of the thesis is organized as follows.

In Chapter 2, we present a Monte carlo algorithm for studying equilibrium properties of

extended objects having only excluded volume interactions. The algorithm does not suffer

from slow-down due to jamming even at densities close to the maximum possible. We

describe the algorithm by implementing it for the system of hard rods (m = 1) and also

generalize it for the system of hard rectangles of size m × mk. In addition to overcome

jamming at high packing densities, it is easily parallelized, which makes it suitable for

studying hard-core systems with particles of other shapes, and also in higher dimensions.

We discuss various methods to parallelize the program, that allows us to perform large

scale simulations.

In Chapter 3, we study the transition from the nematic phase to the high-density disor-

dered phase in systems of long rigid rods (m = 1) of length k on the square and triangular

lattices. The existence of a second transition is shown for k = 7 on both the lattices.

Metastability of the nematic order at high densities is explained within the classical nu-
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cleation theory of Kolmogorov-Johnson-Mehl-Avrami. We study correlations in the high-

density disordered phase, and find evidence of a crossover length scale ξ∗ & 1400, on the

square lattice. For distances smaller than ξ∗, correlations appear to decay algebraically.

Our best estimates of the critical exponents on the square lattice differ from those of the

Ising model, but we cannot rule out a crossover to Ising universality class at length scales

� ξ∗. On the triangular lattice, the estimated critical exponents are consistent with those

of the two-dimensional three-state Potts universality class.

In Chapter 4, we solve exactly a model of monodispersed rigid rods of length k with

repulsive interactions on the random locally tree-like layered lattice to throw light on the

high-density disordered phase. For k ≥ 4, we show that with increasing density, the

system undergoes two phase transitions: first from a low-density disordered phase to an

intermediate density nematic phase and second from the nematic phase to a high-density

re-entrant disordered phase. When the coordination number is 4, both the phase transi-

tions are continuous and in the mean field Ising universality class. For even coordination

number larger than 4, the first transition is found to be discontinuous while the nature of

the second transition depends on the rod length k and the interaction parameters. We argue

that the low-density disordered and the high-density disordered phases are qualitatively

similar.

In Chapter 5, the phase diagram of a system of monodispersed hard rectangles of size m×

mk on a square lattice is numerically determined for m = 2, 3 and integer aspect ratio k =

1, 2, . . . , 7. We show the existence of a disordered isotropic phase, a nematic phase with

orientational order, a columnar phase with orientational and partial translational order,

and a solid-like sublattice phase with complete translational order, but no orientational

order. In particular we show that for k ≥ 7, the system undergoes three entropy-driven

phase transitions with increasing density: first, from a low-density isotropic phase to an

intermediate density nematic phase, second, from the nematic phase to a columnar phase

and third, from the columnar to a high-density sublattice phase. The nature of the different
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phase transitions are established and the critical exponents for the continuous transitions

are determined using finite size scaling.

In Chapter 6, we investigate, using Monte Carlo simulations, the phase diagram of a

system of hard rectangles of size m × mk on a square lattice when the aspect ratio k is a

non-integer. The existence of a disordered isotropic phase, a nematic phase with only ori-

entational order, a columnar phase with orientational and partial translational order, and

a high-density phase with no orientational order is shown. The high-density phase is a

solid-like sublattice phase only if the length and width of the rectangles are not mutually

prime, else, it is an isotropic phase. The minimum value of k beyond which the nematic

and columnar phases exist are determined for m = 2 and 3. The nature of the transi-

tions between different phases is determined, and the critical exponents are numerically

obtained for the continuous transitions.

In Chapter 7, asymptotic behavior of phase boundaries of the hard rectangle system

is determined both numerically and analytically using Monte carlo simulations, entropy

estimates, Bethe approximation and virial expansion for large m and k. We find the critical

density for the isotropic–nematic transition ρI−N
c ≈ A1k−1, where A1 is independent of m

and the transition density for the nematic–columnar transition ρN−C
c ≈ A2(m) + A3(m)k−1

for k � 1. Based on estimates of entropy for the columnar and sublattice phases, we

obtain ρC−S
c ≈ 1 − A4/mk2 for k � 1, where A4 is a constant. We estimate the value of

A1, A2, and A3 numerically and also within the corresponding approximate theories. In

addition, we observe that the critical Binder cumulant for the nematic–columnar phase

transition is non-universal and decreases as k−1 for k � 1. However, the transition is

shown to be in the Ising universality class.

Finally, in Chapter 8, we present the principal conclusions that emerge from the work in

this thesis, as well as open problems.
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Chapter 2

A Monte carlo algorithm for studying

systems of hard particles on lattices

2.1 Introduction

In this chapter, we present a Monte carlo algorithm that is efficient in simulating systems

of hard particles with large excluded volume on lattices, even at densities close to the

full packing. This algorithm overcomes the difficulties of slow relaxation time at high

densities, faced by the algorithms with local moves. Here, we describe the algorithm for

the system of hard rectangles of size m × mk on a square lattice, though it may easily

be generalized to particles of different shape. The model of hard rectangles is described

in Sec. 2.2. Section 2.3 contains a review of the Monte carlo algorithms that were used

earlier to study the system of hard rectangles. In Sec. 2.4, we describe the Monte carlo

algorithm with non-local moves that we have used in this thesis, by illustrating its imple-

mentation for the system of hard rods and rectangles. Section 2.5 contains a discussion

about various High Performance Computing techniques that are useful to parallelize the

program. Section 2.6 contains summary of the results and discussion. The content of this

chapter is published in Ref. [117, 118, 119].
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(a) (b)

Figure 2.1: (a) A valid configuration of horizontal and vertical rectangles of size 2 × 4,
(b) a configuration that is disallowed due to the hard-core constraint.

2.2 Model

We define the model on a square lattice of size L × L with periodic boundary conditions.

Consider a system of monodispersed hard rectangles of size m × mk such that the aspect

ratio is k. Each rectangle may have two possible orientations: either horizontal or vertical.

A horizontal (vertical) rectangle occupies mk lattice sites along the x (y)-axis and m lattice

sites along the y (x)-axis. No two rectangles may overlap or equivalently each site may

be occupied atmost by one rectangle. Fig. 2.1 shows a system of hard rectangles of size

2 × 4, where m = 2 and k = 2. We associate an activity zh to each horizontal rectangle

and zv to each vertical rectangle. The corresponding chemical potentials are denoted by

µh and µv respectively, where zh = eµh and zv = eµv . The grand canonical partition function

for the system is

Z =
∑
Nh,Nv

C(Nh,Nv) zNh
h zNv

v , (2.1)

where C(Nh,Nv) is the number of distinct configurations with Nh horizontal and Nv verti-

cal rectangles. Fraction of occupied sites or density is defined as

ρ =
m2k (Nh + Nv)

L2 . (2.2)
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The case m = 1 corresponds to the system of hard rods. Straight rods occupying k con-

secutive sites along any one lattice direction will be called k-mers. A k-mer may be either

horizontal (x-mer) or vertical (y-mer). The bottom-left corner of a k-mer will be called its

head.

2.3 Algorithms with deposition-evaporation move

We, first, briefly review the grand-canonical Monte carlo algorithm with local moves for

simulating the system of hard rods (m = 1) on the square lattice [20]. Starting with

an arbitrary configuration, deposition of a new rod is attempted with probability p or

evaporation of an existing rod is attempted with probability (1 − p). In the deposition

move, horizontal or vertical orientation is chosen with probability 1/2. Next, a site is

picked up at random and deposition of a rod is attempted along the chosen direction. The

deposition is successful only if k consecutive lattice sites along that particular direction,

starting from the chosen site, are empty. Otherwise, the deposition attempt is rejected. In

the evaporation attempt, again a site is chosen at random. If the site is the head of a rod,

it is evaporated. This dynamics does not conserve the number of rods. The probability

of deposition attempt p is related to the activity z through the detailed balance condition

as z = p/2(1 − p). Using this algorithm, the existence of a nematic phase at intermediate

densities was shown for the system of hard rods of length k ≥ 7 on the square lattice [20].

However, it is not possible to equilibrate the system for densities beyond 0.85 for k = 7,

making the algorithm unsuitable for studying high densities.

In addition to the evaporation-deposition move, diffusional and rotational relaxations were

also implemented [113]. In the diffusion move, a randomly chosen rod is translated to

one of the neighboring positions, if permitted by the hard-core constraint. In the rotation

move, a k-mer is rotated by π/2 about its head, provided the new position does not have

any overlap with other rods. Implementing this algorithm for hard rods (m = 1, k = 7),
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it was shown that the nematic order gradually decreases with increasing density [113].

But a clear evidence of the existence of a high-density disordered phase and hence, the

second transition was lacking as the algorithm suffers from large relaxation times at high

densities, making it unsuitable for a detailed study.

Apart from algorithms with local moves, cluster algorithms were implemented for the

hard-core systems. Classical hard-core monomer-dimer model on lattices has been stud-

ied using a cluster algorithm, called as pocket algorithm [120]. The algorithm is as fol-

lows: starting with an arbitrary configuration, a symmetry axis and a dimer is picked at

random. Then the dimer is reflected with respect to the chosen symmetry axis and de-

posited to the new position. If it overlaps with other existing dimers, they are reflected

similarly with respect to the symmetry axis. This process continues until the final configu-

ration has no overlapping dimers. Reflection about any diagonal axis changes the number

of horizontal or vertical dimers and any horizontal or vertical axis allows the dimers to

move through the different winding number sectors. On the square lattice, the algorithm

may be shown to be ergodic if the symmetry axis passes through sites of the lattice. In

three dimensions, symmetry planes are chosen for reflection [110]. Although, this algo-

rithm works in any dimension for different lattices and arbitrary doping with monomers,

it is not efficient enough to study the system of longer rods. For longer rods there are large

number of overlaps, increasing the time taken for achieving a valid configuration through

reflection.

Cluster algorithm has also been implemented for the system of oriented lines (k → ∞,

keeping m fixed) in the continuum, allowing the study of the system at high densities [97].

Width of the lines being zero, two lines of same orientation can not have any overlap. But

each line has a square shaped depletion zone which is not allowed to contain any centers

of lines with perpendicular orientation due to the hard-core constraint. The algorithm is

as follows. Starting with an initial configuration, deposition or evaporation of a horizontal

or vertical line is attempted with equal probability. In the deposition attempt, a horizontal
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(vertical) line is placed at a random position. It may lead to overlap with several vertical

(horizontal) lines. If the number of overlapping vertical (horizontal) lines is larger than

a parameter δ, specified by the fugacity of the vertical (horizontal) lines, the attempt is

rejected, otherwise it is accepted with some weight depending on fugacities and number

of particles. In the evaporation attempt, a randomly chosen horizontal (vertical) line is

evaporated and a number of vertical (horizontal) lines, chosen at random between 0 and

δ, is distributed over the depletion zone of the evaporated line. If any of the vertical (hor-

izontal) lines intersect with the existing horizontal (vertical) lines, the move is rejected,

otherwise accepted with certain weight. This cluster move is associated with a biased

sampling method [121] to make it more efficient. But this algorithm works only for hard

lines. Although this system exhibits orientational ordering at high densities, it can not

have any spatial order by construction.

2.4 The Monte carlo algorithm

2.4.1 Hard rods

In this section we describe an efficient Monte carlo algorithm consisting of non-local

moves by implementing it for the system of hard rods (m = 1). The algorithm is defined

as follows: given a valid configuration, first, a row is chosen at random. All x-mers lying

on that row are removed without moving any of the y-mers [see Fig. 2.2(a)]. The chosen

row now consists of sets of contiguous empty sites, separated from each other by sites

occupied by y-mers [shown by cross symbols in Fig. 2.2(b)]. All the empty intervals of the

row are now reoccupied with x-mers. Each interval may be reoccupied independently of

each other and the problem reduces to that of occupying an interval of some given length

` of a one-dimensional lattice with k-mers with correct probabilities. These probabilities

may be obtained by solving a one-dimensional problem.
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(a) (b)

Figure 2.2: An illustration of the Monte Carlo algorithm for the system of rods of length
k = 4: (a) Initial configuration of x-mres (shown by red color) and y-mers (shown by
blue color). The chosen row is enclosed by a dashed line, (b) configuration after the
evaporation of the x-mers from the row, enclosed by the dashed line. Each interval now
consists of contiguous empty sites, separated from each other by the sites occupied by
the y-mers, denoted by cross symbols. The sites, marked with cross symbols, cannot be
occupied by the horizontal rods in the new configuration.

Let the grand canonical partition function of a system of hard rods on a one-dimensional

lattice of ` sites with open boundary conditions be denoted by Ωo(z; `). The partition

functions Ωo(z; `) obeys the following simple recursion relation,

Ωo(z; `) = zΩo(z; ` − k) + Ωo(z; ` − 1), when ` ≥ k, (2.3a)

Ωo(z; `) = 1, when ` = 0, 1, . . . , k − 1. (2.3b)

The solution of this recursion relation is Ωo(z; `) =
∑k

i=1 aiλ
`
i , where λi’s are independent

of `. The ai’s are determined by the boundary conditions 2.3(b). Once Eq. (2.3) is solved

for Ωo(z; `), all the equilibrium probabilities can be calculated exactly. The probability

that the left most site of an open chain of length ` is occupied by the left most site of an

x-mer is

p` = z
Ωo(z; ` − k)

Ωo(z; `)
, (2.4)

and the probability of it is being empty is (1 − p`). If occupied, we move to the k-th
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neighbor along the chain and reduce the length of the interval by k, and if not occupied,

we consider the immediate neighbor to the right and reduce the length of the interval by

one.

With periodic boundary conditions, the recursion relations have to be modified. Let

Ωp(z; `) be the partition function of a one-dimensional lattice of length ` with periodic

boundary conditions. It is easy to see that

Ωp(z; `) = kzΩo(z; ` − k) + Ωo(z; ` − 1). (2.5)

When Ωo(z; `) is known, the computation of Ωp(z; `) is straightforward. The probability

that a site of an empty row of length L is occupied by an x-mer is

pL = k z
Ωo(z; L − k)

Ωp(z; L)
. (2.6)

We use a list of stored values of the relevant probabilities {p`} for all ` = 1, . . . , L, to

reduce the computation time. It can be easily seen that the evaporation or reoccupation

of x-mers in any row is independent of the other rows. Hence at each time step, all the

x-mers can be evaporated and then redeposited simultaneously in all the rows with the

equilibrium grand canonical weights.

Following the evaporation of and reoccupation of x-mers, we repeat the procedure with

y-mers. Keeping x-mers fixed, all y-mers are evaporated and the columns are then re-

occupied with y-mers. A Monte Carlo move corresponds to one set of evaporation and

reoccupation of both x-mers and y-mers.

We check for equilibration by starting the simulation with two different initial configura-

tions and making sure that the final equilibrium state is independent of the initial condi-

tion: one configuration is a fully nematic state, where all rods are oriented either along

horizontal or vertical direction and the other is a random configuration where x-mers and

y-mers are placed randomly.
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2.4.2 Hard rectangles

Here, we generalize the algorithm for the system of hard rectangles of size m × mk. The

bottom-left corner of a rectangle will be called its head. Given a valid configuration of

rectangles, in a single move, a row or a column is chosen at random. If a row is chosen,

then all horizontal rectangles whose heads lie in that row are removed, leaving the other

rectangles untouched. The emptied row now consists of two kinds of sites: forbidden

sites that cannot be occupied with the horizontal rectangles having their heads on that

row due to the presence of vertical rectangles in the same row or due to rectangles with

heads in the neighboring (m − 1) rows, and sites that may be reoccupied by horizontal

rectangles in a valid configuration. An example illustrating the forbidden sites is shown

in Fig. 2.3(a). It is clear that the sites that may be occupied are divided into intervals

of contiguous empty sites. The problem of occupation of the emptied row with a new

configuration of rectangles with heads on the same row, now reduces to the problem of

occupying the empty intervals. The empty intervals may be occupied independently of

each other, as the occupation of one is not affected by the configuration of rectangles in

the remaining ones. Thus, the reoccupation of the emptied row with horizontal rectangles

reduces to a problem of occupying a one-dimensional interval with rods of length mk. The

calculation of equilibrium probabilities is same as discussed in Sec. 2.4.1. If a column is

chosen instead of a row, then a similar operation is performed for the vertical rectangles

whose heads lie on that column.

In addition to the above evaporation-deposition move, we find that the autocorrelation

time is reduced considerably by introducing a flip move. At first, we describe the flip move

for integer k. In this move, a site (i, j) is picked at random. If it is occupied by the head

of a horizontal rectangle, then we check whether (i, j + m), (i, j + 2m), . . . , (i, j + [k− 1]m)

sites are occupied by the heads of horizontal rectangles. If that is the case, we call this

set of k aligned rectangles a rotatable plaquette of horizontal rectangles. In the flip move

such a rotatable plaquette of size mk ×mk, containing k horizontal rectangles, is replaced
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Before evaporation After evaporation

Before Flip After Flip

(a)

(b)

Figure 2.3: An illustration of the Monte Carlo algorithm for the system of rectangles: (a)
Configurations before and after the evaporation of horizontal rectangles with heads on a
particular row (denoted by an arrow). Sites denoted by cross symbols cannot be occupied
by the horizontal rectangles with their heads on that row in the new configuration. (b) An
example of the flip move for rectangles of size 2× 6. A rotatable or flippable plaquette of
size 6 × 6, consisting of three aligned rectangles, is shown by the dashed line. After the
flip move, the horizontal rectangles become vertical.
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by a similar plaquette of k vertical rectangles. An example of the flip move is shown

in Fig. 2.3(b). If (i, j) is occupied by the head of a vertical rectangle and a rotatable

plaquette of vertical rectangles is present, then it is replaced by a plaquette of k aligned

horizontal rectangles. When k is non-integer, a square plaquette consisting of ` aligned

horizontal (vertical) rectangles is replaced by a similar plaquette of ` vertical (horizontal)

rectangles, where ` is the ratio of the least common multiple of m and mk to m. In general,

a rotatable plaquette is of size R × R, where R is the least common multiple of m and mk.

A Monte Carlo move corresponds to 2L evaporation-deposition moves and L2 flip moves.

It is easy to check that the algorithm obeys detailed balance. While going through each

interval on the rows or columns, we erase the old configuration and reoccupy with a new

one obeying equilibrium grand canonical probabilities as expressed in Eq. (2.4) and (2.6).

The flip move trivially satisfies the detailed balance condition. For any ρ < 1, there is

always a nonzero probability to achieve any configuration from any initial configuration,

implying that the algorithm is ergodic. At any finite z, the evaporation-deposition move

by itself can sample the entire configuration space. The flip move is non-ergodic by itself

and samples a particular sector of the configuration space. However, its inclusion makes

the sampling more efficient. At full coverage, only the flip move is applicable and thus,

the algorithm is not ergodic.

2.5 Parallelization using High Performance Computing

The algorithm is easily parallelizable since the evaporation or reoccupation of horizontal

(vertical) rectangles in the rows (columns) that are separated by m, is independent of each

other and can be done simultaneously. The flip move is parallelized by dividing the lattice

into L2/R2 blocks of size R×R. The flipping of each of these blocks is independent of the

others and may therefore be performed simultaneously. We flip a rotatable plaquette with

probability 1/2.
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The above discussed Monte carlo algorithm may be parallelized using various High Per-

formance Computing (HPC) techniques. In case of CPU based parallel computing, we

have used Message Passing Interface (MPI) and Open Multi-Processing (OpenMP). MPI

is a specification of message passing libraries and addresses the message-passing parallel

programming model. It runs on distributed, shared and hybrid memory architectures, but

the programming model acts as a distributed memory model. We carry out our simulations

on the supercomputing machine Annapurna (Intel Nehalem 2.93 GHz) at The Institute of

Mathematical Sciences. It has 128 nodes, each node is having 8 cores. All the nodes have

their own private memory space. Within each node, the memory is shared among the 8

cores. In MPI, each core possesses its own copy of the data and does not get affected by

other cores. Data transfer among the different nodes is much slower than that within a

node. Maximum efficiency may be achieved by balancing the number of nodes and the

amount of data transfer among them. We observe maximum efficiency while using single

node, presumably due to the overhead of node to node transfer.

On the other hand, OpenMP is a shared-memory application programming interface (API)

and simply a compiler extension to parallelize the existing source code. It is based on

instructions that can be added in the sequential code to share the work among different

cores [122]. Thus, it is much simpler to use than MPI. Being restricted to the shared

memory, with OpenMP, one can not go beyond one node. In contrast to MPI, in this case,

the data need not to be transferred among different cores within a node, as the shared data

can be accessed or updated by any core. Thus, OpenMP runs faster than MPI within a

single node.

CUDA or Compute Unified Device Architecture is used as a framework for general pur-

pose parallel computing on Graphics processing unit (GPU), and CUDA C is an language

developed to facilitate GPU computing. GPU has a massively parallel architecture con-

sisting of thousands of efficient cores designed for handling multiple tasks simultaneously.

For example in case of the hard rod problem, if we consider a lattice of size 1000× 1000,
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all the 1000 rows or columns may be updated parallely. GPU turns out to be very effi-

cient for simulating large system sizes and it has opened up the possibility of studying

three-dimensional systems. Details about GPU computing may be found in Ref. [123].

2.6 Summary and discussion

We presented an efficient Monte Carlo algorithm that is able to overcome jamming at high

densities to study the phase transitions in a system of extended hard particles on lattices.

The algorithm is more efficient than algorithms with only local moves. In addition to

overcoming jamming at high packing densities, it is easily parallelized, which makes it

suitable for studying the high densities for large system sizes, and also higher-dimensional

systems. All Monte Carlo simulations presented in this thesis have been done using a

parallelized version of the algorithm. Other implementations of this algorithm include

lattice gas model of particles with exclusion of several next-nearest-neighbor sites [29,

30], mixtures of hard squares and dimers [31]. The algorithm, described in Ref. [31],

works efficiently even at full packing and can be generalized to similar problems. In this

case, the corresponding equilibrium probabilities are not stored, but they are calculated at

every time step using transfer-matrix method.

46



Chapter 3

Phase transitions in systems of hard

rods on two-Dimensional lattices

3.1 Introduction

In this chapter, we study the system of hard rods (m = 1) of length k on two-dimensional

lattices using the efficient Monte carlo algorithm. Existence of an intermediate density

nematic phase and hence a transition from a low-density disordered (LDD) to the nematic

phase has recently been shown numerically for k ≥ 7 [20, 25] and rigorously for k �

1 [24]. But the study at high densities were restricted due to the slow relaxation time of

local algorithms. Implementing the efficient Monte carlo algorithm, as discussed in the

previous chapter, we show that the equilibrium high-density phase for the system has no

order, implying the existence of a second transition from the nematic to the high-density

disordered (HDD) phase for k ≥ 7. We study this nematic–disordered transition on the

square and the triangular lattice for k = 7 in detail. We also investigate the nature of the

high-density disordered phase. Using lattices of size up to L = 2576, we find evidence of

power-law decay of orientational correlations between rods at high densities for distances

r ≤ ξ∗ ≈ 1400, where ξ∗ is a characteristic length scale of the system. Correlations appear
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to decay faster for distances r & ξ∗, but we have limited data in this regime, and cannot

rule out a power-law decay, even for r � ξ∗.

Regarding the critical behavior near the phase transition on the square and triangular

lattices, for k = 7, our results show that the transition is continuous and occurs for ρ∗2 =

0.917± .015 (µc = 5.57± .02) on the square lattice, and for ρ∗2 = 0.905± .010 (µc = 5.14±

0.05) on the triangular lattice, where µc is the critical chemical potential. For comparison,

ρ∗1 ≈ 0.745 on the square lattice [112]. On the square lattice, our best estimates of the

effective critical exponents differ from those of the Ising universality class, with exponents

ν = 0.90 ± 0.05, β/ν = 0.22 ± 0.07, γ/ν = 1.56 ± 0.07 and α/ν = 0.22 ± 0.07. However,

it appears that these are only effective exponents, and a cross over to the Ising exponents

(α/ν = 0, β/ν = 0.125, γ/ν = 1.75, and ν = 1) at larger length scales can not be ruled out.

On the triangular lattice, our estimates of critical exponents for the second transition are

ν = 0.83±0.04, β/ν = 0.13±0.02, γ/ν = 1.73±0.04 and α/ν = 0.40±0.05, consistent with

those of the three-state Potts model universality class (ν = 5/6, β/ν = 2/15, γ/ν = 26/15,

and α/ν = 2/5).

In this chapter, we study the model, introduced in Sec. 2.2 when m = 1. The plan of

this chapter is as follows. In Sec. 3.2, we redefine the model of hard rods on lattices. In

Sec. 3.3, we use the Monte carlo algorithm, discussed in the previous chapter, to show

that at high activities, the nematic phase is unstable to creation of bubbles of HDD phase,

and that the decay of the nematic order parameter to zero is well described quantitatively

by the classical nucleation theory of Kolmogorov-Johnson-Mehl-Avrami. Section 3.4 is

devoted to study different properties of the HDD phase: the two point correlations, clus-

ter size distributions, susceptibility, size distribution of structures that we call ‘stacks’,

and the formation of bound states of vacancies. The critical behavior near the second

transition from the nematic phase to the HDD phase is studied in Sec. 3.5 for both the

square and triangular lattices, by determining the numerical values of the critical expo-

nents. Section 3.6 summarizes the main results. The content of this chapter is published
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in Ref. [118].

3.2 Model and the Monte carlo algorithm

To make the chapter self-contained, we redefine the model on the square lattice (See

Sec. 2.2). Generalization to the triangular lattice is straightforward. Consider a square

lattice of size L×L with periodic boundary conditions. Rods occupying k consecutive lat-

tice sites along any lattice direction are called as k-mers. A k-mer, can be either horizontal

(x-mer) or vertical (y-mer). A lattice site can have at most one k-mer passing through it.

An activity z = eµ is associated with each k-mer, where µ is the chemical potential. Den-

sity or the fraction of occupied sites is given by ρ = nh + nv, where nh and nv are the

fraction of sites occupied by the x-mers and y-mers respectively.

We simulate the system in the constant µ grand canonical ensemble using an efficient

algorithm that involves cluster moves. The implementation of the algorithm for the system

of hard rods is described in detail in Sec. 2.4.1. Numerical simulations in this chapter are

performed without incorporating the flip move in the algorithm.

3.3 Metastability of the nematic phase for large activities

We first verify that, for large activities, the nematic phase is unstable to the growth of

the HDD phase. In Fig. 3.1(a)–(c), we show snapshots of the system of rods of length

k = 7 in equilibrium on a square lattice at low, intermediate and high densities. For

the high-density snapshot, the initial configuration had full nematic order, but the system

relaxed to a disordered phase. A similar disordered phase is also seen for the triangular

lattice at high densities (see Fig. 3.2). In Fig. 3.3, we show the temporal evolution of

the order parameter Q, defined as Q = 〈nh − nv〉/〈nh + nv〉. For all values of µ, the initial

configuration had full nematic order. For µ = 3.89, at large times, the system relaxes to an
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(a) (b) (c)

Figure 3.1: Typical configurations of the system in equilibrium at densities (a) ρ ≈ 0.66
(µ = 0.41) (b) ρ ≈ 0.89 (µ = 4.82), and (c) ρ ≈ 0.96 (µ = 7.60) on a square lattice. Here,
k = 7 and L = 98.

Figure 3.2: A typical configuration of the system in equilibrium at density ρ ≈ 0.96
(µ = 7.60) on a triangular lattice. Here, k = 7 and L = 98.
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Figure 3.3: (a) Evolution of the order parameter Q for the square lattice as a function of
time (Monte Carlo steps), starting from a fully ordered state for two different values of µ:
µ = 3.89 (ρ ≈ 0.867), and µ = 7.60 (ρ ≈ 0.957). The best fit of the data to Eq. (3.1) with
additional subleading terms is also shown. Inset: Data for different chemical potentials,
all corresponding to HDD phase for L = 154 and k = 7. The densities corresponding
to these values of µ are approximately 0.957, 0.948, 0.941. (b) Variation of Q with time
t for µ = 7.60 in semi-log scale, exhibiting the exponential decay of Q when t > t∗ as
described in Eq. (3.1).

equilibrium state with a nonzero nematic order. However, for larger µ = 7.60, the nematic

order decreases with time to zero. Figure 3.4 shows how how for large µ value, the system

evolves from an initial configuration with full nematic order to the equilibrium disordered

phase with time. Figure 3.4 (a) shows the snapshot of a fully ordered phase (Q = 1) at

T = 2 × 104, and Fig. 3.4 (f) shows the HDD phase (Q ≈ 0) at T = 2 × 106. Interestingly,

we find that the average lifetime of the metastable state decreases with increasing system

size, and saturates to a L independent value for L & 200 (see Fig. 3.3).

Naively, faster relaxation for larger systems may appear unexpected, but is easily ex-

plained using the well-known nucleation theory of Kolmogorov-Johnson-Mehl-Avrami

[124, 125]. We assume that critical droplets of the stable phase are created with a small

uniform rate ε per unit time per unit area, and once formed, the droplet radius grows at a

constant rate v. Then, the probability that any randomly chosen site is still not invaded by

the stable phase is given by exp[−ε
∫ t

0
dt′V(t′)], where V(t′) is the area of the region such

that a nucleation event within this area will reach the origin before time t′. The area V(t′)

is given by V(t′) = πv2t′2 when the droplet is smaller than the size of the lattice. For time
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Snapshots of the system of hard rods at different Monte carlo steps t: (a)
t = 2 × 104, (b) t = 3 × 105, (c) t = 6 × 105, (d) t = 8 × 105, (e) t = 1.2 × 106, and (f)
t = 2.0 × 106. The data are for k = 7, L = 98, and µ = 7.60 (ρ ≈ 0.96).

t′ greater than this characteristic time t∗, we have V(t′) = L2. If the droplet does not grow

equally fast in all directions, we take suitably defined average over directions to define v2.

Thus, we obtain

Q(t) = exp
[
−
π

3
εv2t3

]
, for t < t∗,

= exp
[
−πεv2t∗2

(
t −

2t∗

3

)]
, for t > t∗. (3.1)

We see that with this choice, both Q(t) and its derivative are continuous at t = t∗. Since
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V(t′) should tend to L2 for large t′, we get the crossover scale t∗ given by

t∗ =
L

v
√
π
. (3.2)

The crossover lattice size L∗ beyond which the average lifetime of the metastable state

becomes independent of L can then be estimated from the above to be

L∗ ∼
(
3
√
πv
ε

)1/3

. (3.3)

Fitting the numerical data in Fig. 3.3 (a) to Eq. (3.1) we obtain ε = (2.1± 0.2)× 10−10 and

v = (5.5 ± 0.7) × 10−5 for µ = 7.60. From Eq. (3.3), we then obtain the crossover scale

L∗ ∼ 110, of the same order as the numerically observed value of L∗ ∼ 200. The difference

is presumably due to simplifying approximations made in the theory, e.g., neglecting the

dependence of the mean velocity of growth on the direction of growth, or the curvature of

the interface, etc. Figure 3.3 (b) shows the exponential decay of Q for t > t∗.

We can also estimate v directly from simulations of a system with an initial configuration

where half the sample is in the nematic phase and the other half is in the equilibrium

disordered phase at that µ. For µ = 7.60, we find that this velocity increases slowly with

L, and tends to a limiting value ≈ 1.0× 10−4 for L ≥ 784, reasonably close to the velocity

obtained from fitting data to Eq. (3.1). For decreasing chemical potential µ, we find that

both the velocity v and nucleation rate ε increase.

3.4 Nature of the high-density disordered phase

There is a one-to-one correspondence between fully packed k-mer configurations and a

restricted solid on solid height model with vector-valued heights [126, 127]. The height

fluctuations at large length scales are well-described by a Gaussian model, and at full

packing the orientation-orientation correlation function decays as a power-law with dis-
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Figure 3.5: Susceptibility χ for the square lattice as a function of L for three values of µ, all
in the HDD phase. There is no anomalous dependence on L. Inset: The scaled probability
distribution for the order parameter P(Q) for different L’s collapse when plotted against
QL. The data are for µ = 5.95.

tance. The exponent of this power law has been estimated for the case k = 3 by exact

diagonalization studies [67]. If these correlations are not destroyed by small density of

vacancies for large k, then the correlations in the HDD phase would be long-ranged, qual-

itatively different from the known exponential decay of correlations in the LDD phase. In

this section, we test this possibility by studying the susceptibility χ, the order parameter

correlation function CS S (i, j), the cluster size distribution F(s), and the size distribution of

structures that we call stacks. We also examine the formation of bound states of vacancies.

The susceptibility is defined as χ = L2〈(nh−nv)2〉/〈nh+nv〉
2. Figure 3.5 shows the variation

of χ with L, for three different values of µ in the HDD phase. χ tends to a finite nonzero

value for large L, hence, if the correlations are a power law, then the decay exponent is

larger than 2. From the central limit theorem, it follows that the order parameter Q should

scale as L−1. This is confirmed in the inset of Fig. 3.5, where the scaled probability

distributions for different L’s collapse onto one curve when plotted against QL.

The order parameter correlation function CS S (i, j) is defined as follows. Given a configu-
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Figure 3.6: Order parameter correlations CS S (r) for the square lattice as a function of r,
measured along the x- and y-axes, for three different values of µ, all corresponds to the
HDD phase. The system size is L = 252. Inset: The dependence of CS S (r) on L is shown
for µ = 7.60. The solid lines are power laws r−2.5, intended only as guides to the eye.

ration, we assign to each site (i, j) a variable S i, j, where S i, j = 1 if (i, j) is occupied by an

x-mer, S i, j = −1 if (i, j) is occupied by an y-mer, and S i, j = 0 if (i, j) is empty. Then,

CS S (i, j) = 〈S 0,0S i, j〉. (3.4)

Figure 3.6 shows the variation of CS S (r) with separation r along the x- and y- axes, for dif-

ferent chemical potentials and systems sizes. In the HDD phase, the correlation function

has an oscillatory dependence on distance with period k, and for r � k, appears to de-

crease as a power law r−η, with η > 2. Given the limited range of r available 7 � r � L/2,

it is difficult to get an accurate estimate of the exponent η.

The long-range correlations in the HDD phase are better studied by looking at the large-

scale properties of connected clusters of parallel rods. For instance, it is known that the

exponent characterizing the decay of cluster size distribution of critical Fortuin–Kasteleyn

clusters [128] in the q-state Potts model [129, 130] has a non-trivial dependence on q. We

denote all sites occupied by x-mers by 1 and the rest by zero. For our problem, we define
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a cluster as a set of 1’s connected by nearest neighbor bonds. Let F(s) be the probability

that a randomly chosen 1 belongs to a cluster of s sites. Clearly, F(s) is zero, unless s is

a multiple of k. Let the cumulative distribution function be Fcum(s) =
∑s

s′=1 F(s′).

In Fig. 3.7, we plot Fcum(s) in the HDD phase for different system sizes on the square

lattice. We find that for intermediate range of s, for 103 � s � 106, Fcum(s) ' As1−τ,

with τ < 1. For µ = 7.60, we estimate the numerical values to be A = 0.037 and τ = 0.762.

For small system sizes (up to L = 1568), Fcum(s) has a system-size dependent cutoff. The

L-independent cutoff s∗ is determined by the condition As∗1−τ ≈ 1, giving s∗ ≈ 1.04×106.

The density of 1’s being roughly 0.48, we expect to observe s∗ only when L exceeds a

characteristic length scale ξ∗ ∼ 1400. This is indeed seen in Fig. 3.7.

In the HDD phase, Fcum(s) depends weakly on µ (see Fig. 3.8). The power law exponent

τ is estimated to be 0.778 (µ = 6.50), 0.767 (µ = 6.91) and 0.762 (µ = 7.60). It appears

that τ decreases slowly with increasing µ, while s∗ decreases with increasing µ.

One qualitative feature of the HDD phase is the appearance of large groups of parallel

rods, worm-like in appearance, nearly aligned in the transverse direction. This is clearly
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Figure 3.8: Fcum(s), the probability that a randomly chosen 1 (a site occupied by an x-mer)
belongs to a connected cluster of size ≤ s, for different values of µ, all corresponding to the
HDD phase. The curves appear to have weakly density dependent power-law exponents.

seen in Fig. 3.1(c). We call these groups stacks. To be precise, we define a stack as fol-

lows: two neighboring parallel k-mers are said to belong to the same stack if the number

of nearest-neighbor bonds between them is greater than k/2. A stack is the maximal clus-

ter of rods that can be so constructed. By this definition, a stack has a linear structure

without branching, with some transverse fluctuations allowed. Size of a stack is defined

by the number of rods present in it. Examples of stacks on square and triangular lat-

tices are shown in Fig. 3.9. Any given configuration of rods is uniquely broken up into a

collection of disjoint stacks.

There are a noticeable number of large stacks in the HDD phase. We measured the stack

size distribution D(s1), the number of stacks of size s1 per site of the lattice, in all the

three phases and at the transition points (see Fig. 3.10). Interestingly, we found that this

distribution is nearly exponential in all the three phases, as well as at the critical points,

and there is no indication of any power-law tail in this function. It implies the absence

of any local spatial ordering of parallel rods in HDD phase and thus, it is indistinguish-

able from the LDD phase in this respect. In the HDD phase, the mean stack size 〈s1〉 is
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(a) (b)

Figure 3.9: Some examples of the different types of stacks, shown here as rods joined
by wiggly lines, for (a) square lattice and (b) triangular lattice. The snapshots are for
µ = 7.60, corresponding to the HDD phase. Rods of different orientations are shown in
different colors for easy visualization.

approximately 12, for both square and triangular lattices, and is only weakly dependent

on the density. For this average stack size, the size of the cluster of occupied sites is

s = 12 × k = 84. Presumably, this might be the reason of having a L independent knee

like structure in the distribution of Fcum(s) around s ≈ 80 − 90 (see Fig. 3.7).

It was suggested in Ref. [20] that the second phase transition may be viewed as a binding-

unbinding transition of k species of vacancies. For studying such a characterization, we

break the square lattice into k sublattices. A site (x, y) belongs to the i-th sublattice if

x + y = i (mod k), where i = 0, 1, . . . , k − 1. In a typical configuration with a low density

of vacant sites, it was argued that the vacancies would form bound states of k vacancies,

one from each sublattice. The HDD phase can then be described as a weakly interacting

gas of such bound states if the typical distance between two bound states is much larger

than the mean size of a bound state.

Let di j be the Euclidean distance between a randomly picked vacant site on the i-th sub-

lattice, and the vacant site nearest to it on the j-th sublattice. The average of di j, averaged

over all pairs (i j), with i , j, will be denoted by d̄i j, and d̄ii will denote the value of dii,
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Figure 3.10: Stack distribution in the LDD phase (µ = 0.200), intermediate density ne-
matic phase (µ = 3.476), HDD phase (µ = 7.600), and at two critical points (µ = 1.3863,
5.57) are shown. Data are for L = 280, k = 7, and the square lattice.

averaged over i.

In Fig. 3.11, we show the variation of d̄i j and d̄ii with density ρ. We see that d̄ii and d̄i j,

both vary approximately as (1 − ρ)−1/2, with d̄ii ≈ 1.18d̄i j. The data are for L = 168 and

k = 7. There is no noticeable dependence of the data on L. We see no signature of d̄i j

saturating to a finite value, for the densities up to 0.995, when d̄i j ' 35.

We conclude that the bound state, if exists at all, is very weakly bound. Near ρ∗2, the

typical spacing between vacancies is much less than the size of the bound state, and the

transition can not be treated as binding-unbinding transition when the average distance

between bound states becomes comparable to their size.

3.5 Critical behavior near the second transition

We now discuss the critical behavior near the second transition. Several thermodynamic

quantities are of interest. We define the order parameter variable q1 for the square lattice
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Figure 3.11: The average spacing between vacancies d̄ii and d̄i j, on the square lattice as a
function of density ρ. The solid lines show the functions K(1 − ρ)−1/2, for K = 1.36 and
1.15. The data are for L = 168 and k = 7.

as q1 = nh−nv. For the triangular lattice, ρ = n1 +n2 +n3 and q1 = n1 +ω n2 +ω2 n3, where

ω is the complex cube-root of unity, and ni (i = 1, 2, 3) is the fraction of sites occupied

by the k-mers oriented along i-th lattice directions. The averaged order parameter Q, its

second moment χ, compressibility κ, and Binder cumulant U are defined as

Q =
〈|q1|〉

〈ρ〉
, (3.5a)

χ =
L2〈|q1|

2〉

〈ρ〉2
, (3.5b)

κ = L2
[
〈ρ2〉 − 〈ρ〉2

]
, (3.5c)

U = 1 −
〈|q1|

4〉

a〈|q1|
2〉2
, (3.5d)

where a = 3 for square lattice and a = 2 for triangular lattice. Q is zero in the LDD and

HDD phases and nonzero in the nematic phase.

The data used for estimating the critical exponents are for k = 7, and for five different

system sizes L = 154, 210, 336, 448, and 952 for the square lattice and L = 210, 336,

448, and 560 for the triangular lattice. The system is equilibrated for 107 Monte Carlo
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Figure 3.12: The temporal variation of the autocorrelation functions for (a) the global
order parameter q1 and (b) the local order parameter S . The data are for µ = 7.60 and the
autocorrelation times corresponding to the solid lines are (a)220000 and (b) 52000 Monte
carlo steps. Inset: Data as above but in the LDD phase (µ = 0.20), with (c) corresponding
to Aq1q1(t) (d) corresponding to AS S (t). The autocorrelation times are (c) 440 and (d) 310.
All data are for k = 7.

steps for each µ, following which the data are averaged over 3 × 108 Monte Carlo steps.

These times are larger than the largest autocorrelation times that we encounter, obtained

by measuring the autocorrelation function

Aq1q1(t) =
〈q1(τ)q1(τ + t)〉

〈q2
1〉

, (3.6)

where the averaging is done over the reference time τ. The function AS S (t) for the local

order parameter is defined similarly. The largest autocorrelation time is for the largest

density and is close to 2.2× 105 Monte Carlo steps (see Fig. 3.12). To estimate errors, the

measurement is broken up into 10 statistically independent blocks.

The quantities in Eq. (3.5) are determined as a function of µ using Monte Carlo simula-

tions. The nature of the second transition from the ordered nematic phase to the HDD

phase is determined by the singular behavior of U, Q, χ, and κ near the critical point.

Let ε = (µ − µc)/µc, where µc is the critical chemical potential. The singular behavior
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is characterized by the critical exponents ν, β, γ, and α, defined by Q ∼ (−ε)β, ε < 0,

χ ∼ |ε|−γ and κ ∼ |ε |−α, and ξ∗ ∼ |ε|−ν, where ξ∗ is the correlation length and |ε | → 0. Here,

the density ρ is at the same footing as energy in a typical spin model, and the chemical

potential µ = µh = µv is like temperature. The order parameter would be coupled to the

symmetry breaking field (∼ µh − µv) between the two orientations. Thus, the scaling of

the compressibility κ or the second derivative of the free energy with respect to µ is given

by the specific heat exponent α. The exponents are obtained by finite size scaling of the

different quantities near the critical point:

U ' fU(εL1/ν), (3.7a)

Q ' L−β/ν fQ(εL1/ν), (3.7b)

χ ' Lγ/ν fχ(εL1/ν), (3.7c)

κ ' Lα/ν fκ(εL1/ν), (3.7d)

where fU , fQ, fχ, and fκ are scaling functions.

3.5.1 Square lattice

We first present results for the square lattice. The data for the Binder cumulant U for

different system sizes intersect at µc = 5.57 ± .02 (see Fig. 3.13). The density at this

value of chemical potential is ρ∗2 = 0.917 ± .015, consistent with the variational estimate

0.87 ≤ ρ∗2 ≤ 0.93 in Ref. [113]. The value of U at the transition lies in the range 0.56 to

0.59. This is not very different from the value for the Ising transition Uc ≈ 0.61 [131]. The

data for different system sizes collapse when scaled as in Eq. (3.7a) with ν = 0.90 ± .05

(see inset of Fig. 3.13). To compare with the first transition from the LDD phase to the

nematic phase, ρ∗1 = 0.745 ± 0.010, and the numerical estimate for the exponent ν is

consistent with the known exact Ising value 1 [25].

The data for order parameter, χ and κ for different system sizes are shown in Figs. 3.14,
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Figure 3.13: The Binder cumulant U as a function of chemical potential µ for different
lattice sizes of a square lattice. The curves intersect at µc = 5.57±.02. Inset: Data collapse
for square lattices when U is plotted against εL1/ν with ν = 0.90 and ε = (µ − µc)/µc.

3.15 and 3.16 respectively. Q decreases to zero at high densities. Our best estimates of

effective critical exponents are β/ν = 0.22±0.07 (see inset of Fig. 3.14). γ/ν = 1.56±0.07

(see inset of Fig. 3.15), and α/ν = 0.22±0.07 (see inset of Fig. 3.16). The estimated error

bars are our subjective estimates, based on the goodness of fit. These differ substantially

from the values of the exponents of the two-dimensional Ising model (ν = 1, β = 1/8, γ =

7/4, α = 0). However, as discussed in Sec. 3.4, it seems like there is a characteristic

length scale ξ∗ ∼ 1400 in the HDD phase, and we cannot say much about the asymptotic

value the critical exponents at length scales L � ξ∗.

3.5.2 Triangular lattice

For the triangular lattice, we find that the second transition is continuous with µc =

5.147 ± .050 and ρ∗2 = 0.905 ± .010. The data for U, Q, χ, and κ for different system

sizes collapse onto one scaling curve when scaled as in Eq. (3.7) with exponents that are

indistinguishable from those of the three-state Potts model (see Fig. 3.17,3.18, 3.19,3.20)

(ν = 5/6, β/ν = 2/15, γ/ν = 26/15 and α/ν = 2/5). We estimate ν = 0.83 ± 0.04,
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Figure 3.14: The variation of the order parameter Q with chemical potential µ for different
systems sizes of a square lattice. Inset: Data collapse for square lattices when scaled Q is
plotted against εL1/ν with ν = 0.90, β/ν = 0.22 and ε = (µ − µc)/µc.
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Figure 3.16: The variation of compressibility κ with chemical potential µ for different
system sizes of a square lattice. Inset: Data collapse for square lattices when the scaled κ
is plotted against εL1/ν with ν = 0.90, α/ν = 0.22, and ε = (µ − µc)/µc.

β/ν = 0.13 ± 0.02, γ/ν = 1.73 ± 0.04 and α/ν = 0.40 ± 0.05. From symmetry, one can

argue that there is only one type of surface tension as it is the same between the different

ordered phases (where majority of the rods are oriented along one of the thee possible

lattice directions). Thus, we can relate this with the three-state Potts model having Z3

symmetry and a unique surface tension energy between different spins.

As in the case of the square lattice, we probe the correlations in the triangular lattice by

looking at the large-scale properties of connected clusters of parallel rods. We denote

all sites occupied by horizontal rods by 1 and the rest by zero. In Fig. 3.21, F(s), the

probability that a randomly chosen 1 belongs to a cluster of s sites, is shown for different

system sizes L in the HDD phase. Unlike the square lattice case, here, there is no extended

regime of s where F(s) seems to grow as a power of s. This suggests that for the triangular

lattice, the HDD and LDD phases are qualitatively similar, and the HDD phase has a finite

correlation length ∼ 60.
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µc = 5.147 and ν = 5/6, where ε = (µ − µc)/µc.

 0.4

 0.8

 1.2

 1.6

-80 -60 -40 -20  0  20  40  60  80

Q
 L

β
/ν

ε L
1/ν

L=210
L=336
L=448
L=560

Figure 3.18: Data collapse for triangular lattices when scaled Q is plotted against εL1/ν
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3.6 Summary and discussion

In this chapter, we studied the problem of hard, rigid rods on two-dimensional square and

triangular lattices, using the efficient Mote carlo algorithm. We showed the existence of

a second transition from the ordered nematic phase to a disordered phase as the packing

density is increased. By studying the order parameter, its second moment, compressibility

and Binder cumulant, we find that the second transition is continuous on both square and

triangular lattices. We also investigated the nature of correlations in the HDD phase by

measuring distribution of connected clusters of parallel rods, as well as the distribution of

stacks.

We are not able to give a very clear answer to the question whether the HDD and LDD

phases are qualitatively different, or not. But the available evidence suggests that while

the HDD phase has a large correlation length ξ∗, it is not qualitatively different. This is

based on the evidence that vacancies in the HDD phase do not form a bound state. In that

sense, a k-mer system with k = 7, at high densities is similar to the k = 2 case, where also,
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the monomers do not form a bound state, and unbound monomers lead to an exponential

decay of correlations at any nonzero vacancy density.

An interesting feature of the HDD phase is the appearance of a large characteristic length

scale ξ∗ ∼ 1400 on the square lattice, as inferred from the fact that the cluster size distri-

bution seems to follow a power law distribution F(s) ∼ s−τ, with τ < 1 for s < ξ∗2. The

amplitude of this power-law term is rather small. This is related to the fact that for the

k-mer problem, various perturbation series involve terms like k−k [20], which then leads to

large correlation lengths. The HDD phase has power-law correlations at least for lengths

up to ξ∗.

For the triangular lattice, the correlation length ξ∗ is much smaller, as near the critical

point, clusters of each type of rods cover only about a third of the sites, which is substan-

tially below the corresponding percolation threshold.

On the square lattice, our best estimates of the numerical values of the critical exponents

are different from those of the Ising universality class. However, because the correlation

lengths in the HDD phase are large and no clear distinction between the LDD and the

HDD phases are found, we cannot rule out a crossover to the Ising universality class at

larger length scales. For the triangular lattice with k = 7, the estimated exponents for sec-

ond transition are consistent with those of two-dimensional three-state Potts universality

class.
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Chapter 4

Repulsive Rods on a Bethe-like lattice

4.1 Introduction

On two-dimensional lattices, the system of hard rods undergoes two entropy-driven transi-

tions: first from a low-density disordered (LDD) phase to an intermediate density nematic

phase, and second from the nematic phase to a high-density disordered (HDD) phase. On

the square lattice, the second transition is continuous with effective critical exponents that

are different from the two-dimensional Ising exponents, though a crossover to the Ising

universality class at large length scales could not be ruled out (see Sec. 3.6). This raises

the question whether the LDD and HDD phases are same or different.

In this chapter, we ask whether there is a solvable model of k-mers that shows two tran-

sitions with increasing density and throws light on the HDD phase? The hard-core k-

mer problem was solved exactly on the random locally tree-like layered lattice (RLTL), a

Bethe-like lattice [26]. This lattice was introduced because a uniform nematic order is un-

stable on the more conventional Bethe lattice when the coordination number is larger than

4. However, on the RLTL, while a stable nematic phase exists for all even coordination

numbers greater than or equal to four, the second transition is absent for hard rods [26].

Here we relax the hard-core constraint and allow k-mers of different orientations to inter-
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sect at a lattice site. Weights u, v, . . . are associated with sites that are occupied by two,

three, . . . k-mers. When the weights are zero, we recover the hard rod problem. We solve

this model on the RLTL and show that for a range of u, v, . . ., the system undergoes two

transitions as the density is increased: first from a LDD phase to a nematic phase and

second from the nematic phase to a HDD phase. For coordination number q = 4, the two

transitions are continuous and belong to the mean field Ising universality class. For q ≥ 6,

where q is an even integer, while the first transition is first order, the second transition

is first order or continuous depending on the values of k, u, v, . . . .. In all cases, it is pos-

sible to continuously transform the LDD phase into the HDD phase in the ρ–interaction

parameters phase diagram without crossing any phase boundary, showing that the LDD

and HDD phases are qualitatively similar, and hence the HDD phase is a reentrant LDD

phase.

The rest of the chapter is organized as follows. In Sec. 4.2, we recapitulate the construc-

tion of RLTL and formulate the model of rods on this lattice. In Sec. 4.3, we derive

the analytic expression for free energy for fixed density of horizontal and vertical k-mers

on the 4-coordinated RLTL. It is shown that the system undergoes two continuous phase

transitions for k ≥ 4. In Sec. 4.4, the free energy is computed for coordination number

q = 6, and the dependence of the nature of the transition on the different parameters are

detailed. Section 4.5 summarizes the main results of this work. The content of this chapter

is published in Ref. [132].

4.2 The RLTL and definition of the model

The RLTL was introduced in Ref. [26]. In this section, we recapitulate its construction for

coordination number q = 4. Generalization to larger even values of q is straightforward.

Consider a collection of M layers, each having N sites. Each site in layer m is connected

to the sites in layer (m − 1) by two bonds. To distinguish between two orientations, the
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mm−1 M1

Figure 4.1: Schematic diagram of the RLTL with N = 6 sites per layer and coordination
number 4. A typical bond configuration between layers m − 1 and m is shown with X
bonds in red (solid) lines and Y bonds in blue (dotted) lines.

bonds are divided into two types: X and Y . Each site in the m-th layer is connected with

exactly one randomly chosen site in the (m − 1)-th layer with a bond of type X. Simi-

larly, bonds of type Y are also connected by random pairing of sites in the two adjacent

layers. Hence, the total number of such possible pairing between two layers is (N!)2. A

typical bond configuration is shown in Fig. 4.1. For a q-coordinated lattice with periodic

boundary conditions, the total number of different possible graphs is (N!)qM/2, and with

open boundary conditions there are (N!)q(M−1)/2 different possible graphs. In the thermo-

dynamic limit, the RLTL contains few short loops and locally resembles a Bethe lattice.

We consider a system of monodispersed rods of length k on the RLTL. A k-mer occupies

(k − 1) consecutive bonds of same type. Rods on X (Y) type of bonds will be called x-

mers (y-mers). Weights eµ1 and eµ2 are associated with each x-mer and y-mer, where µ’s

are chemical potentials. Linear rods comprising of k monomers are placed on the RLTL

such that a site can be occupied by utmost two k-mers. Two k-mers of the same type can

not intersect. A weight u is associated with every site that is occupied by two k-mers of

different types. The limiting case u = 0 corresponds to the hard-core problem. For even

q ≥ 6, a site can be occupied by utmost q/2 k-mers, each of different type.
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For a given bond configuration R, let ZR(M,N) denote the partition function, the weighted

sum over all possible rod configurations. We, then, define the average partition function

as

Zav(M,N) =
1

NR

∑
R

ZR(M,N), (4.1)

where NR is the number of different bond configurations on the lattice. In the thermody-

namic limit the mean free energy per site is obtained by

f = − lim
M,N→∞

1
MN

ln Zav, (4.2)

where the temperature and Boltzmann constant have been set equal to 1.

4.3 k-mers on RLTL with coordination number q = 4

In this section, we calculate the free energy of the system on the RLTL of coordination

number 4 for fixed u and fixed densities of x-mers and y-mers. The phase diagram of

the system is obtained by minimizing the free energy with respect to x-mer and y-mer

densities for a fixed total density.

4.3.1 Calculation of free energy

To calculate the partition function, consider the operation of adding the m-th layer, given

the configuration up to the (m − 1)-th layer. The number of ways of adding the m-th layer

is denoted by Cm. Cm will be a function of the number of x-mers and y-mers passing

through the m-th layer and the number of intersections between x-mers and y-mers at the

m-th layer.

Let xm (ym) be the number of x-mers (y-mers) whose left most sites or heads are in the

m-th layer. Xm and Ym are the number of sites in the m-th layer occupied by x-mers and
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y-mers respectively, but where the site is not the head of the k-mer. Clearly,

Xm =

k−1∑
j=1

xm− j, Ym =

k−1∑
j=1

ym− j, 1 ≤ m ≤ M, (4.3)

with xm = ym = 0, for m ≤ 0. To have all k-mer fully contained within the lattice for open

boundary condition we need to impose, xm = ym = 0 for, m ≥ M − k + 2.

In a k-mer, let h denote its head or left most site and b denote the other k − 1 sites. Then,

we define Γm
i j, where i, j = h, b, to be the number of intersections at the m-th layer between

site i of an x-mer and site j of a y-mer. For instance, Γm
hh is the number of sites in the m-th

layer, occupied simultaneously by the heads of an x-mer and a y-mer. Given {xm}, {ym}

and {Γm
i j}, the calculation of Cm reduces to an enumeration problem.

Now we derive the expression for Cm. Cm is the total number of ways of connecting the

X- and Y-bonds from the (m − 1)-th layer to the m-th layer consistent with the number of

x-mers, y-mers, and intersections at the m-th layer. In the (m − 1)-th layer, there are Xm

and Ym sites occupied by x-mers and y-mers that extend to the m-th layer. These Xm bonds

of type X have to be connected to Xm different sites out of the N sites in the m-th layer.

This can be done in
N!

(N − Xm)!

ways. Among the Ym bonds of type Y , Γm
bb of them are connected to sites occupied by an

x-mer and the remaining Ym − Γm
bb bonds are connected to empty sites in the m-th layer.

The number of ways of connecting the Y bonds is a product of the two enumerations and

is equal to
Ym!Xm!

Γm
bb!(Y − Γm

bb)!(Xm − Γm
bb)!
×

(N − Xm)!
(N − Xm − Ym + Γm

bb)!
.

Now connect the remaining (N−Xm) free bonds of type X and (N−Ym) free bonds of type

Y to sites in layer m that are not occupied by x-mers and y-mers respectively. This can be
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done in

(N − Xm)!(N − Ym)!

ways.

We have to now assign sites to xm and ym heads in layer m. Out of xm (ym) heads, Γm
hb (Γm

bh)

of them will be on sites already occupied by only a y-mer (x-mer). The number of ways

of doing this is
(Xm − Γm

bb)!
Γm

bh!(Xm − Γm
bb − Γm

bh)!
×

(Ym − Γm
bb)!

Γm
hb!(Ym − Γm

bb − Γm
hb)!

.

There are (N − Xm − Ym + Γm
bb) sites in the m-th layer which are unoccupied so far. They

can be divided into four groups: Γm
hh sites, each occupied by the heads of an x-mer and a

y-mer, (xm − Γm
hh − Γm

hb) sites occupied by only a head of an x-mer, (ym − Γm
hh − Γm

bh) sites

occupied by only a head of a y-mer, and (N − Xm − Ym − xm − ym +
∑

i j Γm
i j) unoccupied

sites. The number of ways of arranging them is:

(N − Xm − Ym + Γm
bb)!

Γm
hh!(xm − Γm

hh − Γm
hb)!(ym − Γm

hh − Γm
bh)!

×
1

(N − Xm − Ym − xm − ym +
∑

i j Γm
i j)!

.

The product of all these factors gives

Cm =
N!Xm!Ym!(N − Xm)!(N − Ym)!

(xm − Γm
hh − Γm

hb)!(ym − Γm
hh − Γm

bh)!(Xm − Γm
bb − Γm

bh)!(Ym − Γm
bb − Γm

hb)!

×
1N − Xm − Ym − xm − ym +

∑
i, j=b,h

Γm
i j

! ∏
i, j=b,h

Γm
i j!

. (4.4)

The partition function is then the weighted sum of the product of Cm for different layers:

Zav =
1

(N!)2M

∑
{xm},{ym},{Γ

m
i j}∏

m

(
Cmeµ1 xmeµ2ymu

∑
i j Γm

i j
)
. (4.5)
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where the sum is over all possible number of x-mers, y-mers and number of doubly oc-

cupied sites. Each term in the sum in Eq. (4.5) is of order exp(NM). Hence, for large

N,M, we replace the summation with the largest summand with negligible error. To find

the summand that maximizes the sum, we extremize the summand with respect to the

variables that are summed over. For example, to maximize with respect to xl, we set:

C({xm + δm,l}, {ym}, {Γ
m
i j})e

µ1

C({xm}, {ym}, {Γ
m
i j})

≈ 1, (4.6)

where C =
∏

m Cm. Likewise, we can write equations for each of the variables.

We look for homogeneous solutions such that ρx = xmk/N, ρy = ymk/N, and γi j = Γm
i j/N

are variables that are independent of N and have no spatial dependence. Here, ρx and ρy

are fractions of sites in any layer that are occupied by x-mers and y-mers respectively.

In terms of these variables, Eq. (4.6) and the corresponding one obtained by maximizing

with respect to y j reduce to

(ρx −
ρx
k )k−1(1 − ρ+

∑
i jγi j)k(ρx

k −γhh−γhb)−1

(1 − ρx +
ρx
k )k−1(ρx −

ρx
k − γbb − γbh)k−1

= e−µ1 , (4.7)

and
(ρy −

ρy

k )k−1(1 − ρ+
∑

i jγi j)k(ρy

k −γhh−γbh)−1

(1 − ρy +
ρy

k )k−1(ρy −
ρy

k − γbb − γhb)k−1
= e−µ2 , (4.8)

where ρ = ρx + ρy is the total density.

The summand in Eq. (4.5) has to be now maximized with respect to the intersection
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parameters {Γl
i j}. On doing so, we obtain

[ρx(1− 1
k)−γbb−γbh][ρy(1− 1

k)−γbb−γhb]
γbb(1 − ρ +

∑
i j γi j)

=
1
u
, (4.9a)

(ρx
k − γhh − γhb)(ρy

k − γhh − γbh)
γhh(1 − ρ +

∑
i j γi j)

=
1
u
, (4.9b)

(ρx
k − γhh − γhb)[ρy(1 − 1

k ) − γbb − γhb]
γhb(1 − ρ +

∑
i j γi j)

=
1
u
, (4.9c)

(ρy

k − γhh − γbh)[ρx(1 − 1
k ) − γbb − γbh]

γbh(1 − ρ +
∑

i j γi j)
=

1
u
, (4.9d)

where i, j = h, b. Equation (4.9) can easily be solved to express γbb, γhb and γbh in terms

of γhh:

γbb = (k − 1)2γhh, γbh = γhb = (k − 1)γhh, (4.10)

and γhh satisfies the quadratic equation

γ2
hh − γhh

ρ − ρu − 1
k2(1 − u)

−
uρxρy

k4(1 − u)
= 0. (4.11)

Equation (4.10) has a simple interpretation. Given that an x-mer and y-mer have inter-

sected, the intersecting site is chosen from the head (h) or one of the other k − 1 sites

(b) of the k-mers randomly. In addition, the choice of h or b for the x-mer and y-mer are

independent of each other. Thus, the probability of choosing 2 b’s is (k − 1)2 times that of

choosing 2 h’s, and leads to the first relation in Eq. (4.10). Similar reasoning also gives

the second relation in Eq. (4.10).

From Eq. (4.5), the free energy is calculated using Eq. (4.2). Eliminating the chemical

potentials using Legendre transforms, we may express the free energy in terms of ρx, ρy
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and u as

f (ρx, ρy, u) = −
k − 1

k

∑
i

ρi ln ρi −
∑

i

[
1 −

(k − 1)ρi

k

]
ln

[
1 −

(k − 1)ρi

k

]
+

∑
i

(ρi − k2γhh) ln(ρi − k2γhh) + (1 − ρ + k2γhh) ln(1 − ρ + k2γhh)

−
ρ

k
ln k + k2γhh ln

(
k2γhh

u

)
, (4.12)

where γhh is a function of ρx, ρy and u through Eq. (4.11). This expression for the free

energy turns out to be not convex everywhere. The true free energy f̄ (ρx, ρy, u) is obtained

by the Maxwell construction such that

f̄ (ρx, ρy, u) = CE
[
f (ρx, ρy, u)

]
, (4.13)

where CE denotes the convex envelope. The densities ρx and ρy are free parameters.

Given total density ρ, we minimize the free energy with respect to ρx and ρy subject to the

constraint ρx + ρy = ρ. The disordered solution corresponds to ρx = ρy, while a solution

ρx , ρy corresponds to a nematic phase.

4.3.2 Two phase transitions

To study the phase transitions we define the nematic order parameter as

ψ =
ρx − ρy

ρ
. (4.14)

A nonzero ψ corresponds to a nematic phase. The free energy when expressed as a power

series in ψ, has the form

f (ρx, ρy, u) = A0(ρ, u) + A2(ρ, u)ψ2 + A4(ρ, u)ψ4 + . . . , (4.15)
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Figure 4.2: Free energy f (ψ) as a function of the order parameter ψ for ρ ≈ ρc1. The data
are for k = 6, u = 0.15, and q = 4. The curves have been shifted for clarity. The dotted
line denotes the convex envelope.

such that f (ρx, ρy, u) is unchanged when ψ ↔ −ψ. The expressions for the coefficients

A0(ρ, u), A2(ρ, u) and A4(ρ, u) are unwieldy and we do not reproduce them here. How-

ever, we find that the coefficient A4(ρ, u) > 0. For small densities, the coefficient of the

quadratic term A2(ρ, u) is positive and the free energy has a minimum at ψ = 0 corre-

sponding to the LDD phase. However for k ≥ 4, if u is smaller than a critical value uc,

then A2(ρ, u) changes sign continuously at a critical density ρc1 and the free energy has

two symmetric minima at ψ , 0, corresponding to the nematic phase. This qualitative

change in the behavior of the free energy for densities close to ρc1 is shown in Fig. 4.2. As

density is further increased, A2(ρ, u) changes sign continuously from negative to positive

at a second critical density ρc2, such that the free energy has a minimum at ψ = 0, corre-

sponding to the HDD phase. The dependence of the free energy on ψ for densities close to

ρc2 is similar to that shown in Fig. 4.2. The variation of the order parameter ψwith density

ρ is shown in Fig. 4.3 for different values of u. ψ increases continuously from zero at ρc1

and decreases continuously to zero at ρc2. The average number of intersections between

the rods per site, though continuous, also shows non-analytic behavior at ρc1 and ρc2 (see

Fig. 4.4). The power series expansion of free energy in Eq. (4.15) has the same form as
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Figure 4.3: Order parameter ψ as a function of density ρ. For low and high densities,
ψ = 0, while for intermediate densities, ψ , 0. The data are for q = 4 and k = 6.

that of a system with scalar order parameter that has two broken symmetry phases. Thus,

the two transitions will be in the mean field Ising universality class. The nematic phase

does not exist for k < 4.

The phase diagram in the ρ–u plane is determined by solving A2(ρ, u) = 0 for ρ and

is shown in Fig. 4.5 for different values of k. The difference between the two critical

densities decreases with increasing u. Beyond a maximum value uc(k), there is no phase

transition and the system remains disordered at all densities. The critical densities ρc1 and

ρc2 may be solved as an expansion in u. For example, when k = 4,

ρc1 =
2

k − 1
+ 2u + 12u2 + O(u3), k = 4. (4.16)

and

ρc2 = 1.13148 − 2.38675u − 12.2726u2 + O(u3), k = 4. (4.17)

It is of interest to determine ρc2 for large k. For the hard rod problem, it was conjectured

81



 0

 0.2

 0.4

 0.6

 0.8

 1.0

 0  0.4  0.8  1.2  1.6  2.0

N
in

ts

ρ

u=0.10

u=0.15

u=0.20

 0.05

 0.1

 0.15

 0.6  0.7  0.8  0.9

N
in

ts

ρ

u=0.20

Figure 4.4: Average number of interactions per site, Nints, as a function of density ρ for
different values of u. Inset: The region between the two critical points is magnified. The
data are for q = 4 and k = 6.

that ρc2 ≈ 1 − a/k2, when k → ∞ [20]. For our model, we find,

ρc2 =
−1 + 2k −

√
−3 + 4k

−1 + k
, u→ 0,

= 2 −
2
√

k
+

1
k
−

5
4k3/2 +

1
k2 + O(k−5/2). (4.18)

Thus the leading correction is O(1/
√

k), and not O(1/k2).

uc(k), the largest value of u for which the nematic phase exists, is determined by solving

the equations A2(ρ, u) = 0 and dA2(ρ, u)/dρ = 0 simultaneously. uc(k) increases with k

(see Fig. 4.6), and approaches 1 from below as k → ∞. At uc(k) two mean-field Ising

critical lines meet.

4.4 k-mers on RLTL with q = 6

The calculation presented in Sec. 4.3 may be extended to the case when the coordination

number q ≥ 6. In this case, we associate a weight u (v) to a site occupied by two (three)
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k-mers of different types. The calculation of the free energy now involves many more

combinatorial factors than for the case q = 4, but is straightforward.

4.4.1 Calculation of free energy

The combinatorial factor Cm for q = 6 may be obtained by following the same steps as

in the case q = 4. For q = 6, a site can be occupied by utmost three k-mers of different

types. Let Γ
pq
nl be the total number of intersections at the m-th layer between site n of a

k-mer of type p and site l of a k-mer of type q. Γ
pqr
nlm denotes the total number of sites at

the m-th layer shared by site n of a k-mer of type p, site l of a k-mer of type q and site m

of a k-mer of type r. Here p, q and r can be x, y or z. n, l and m can be h or b depending

on whether the site is the head or part of the body of the k-mer. We omit the layer index m

from Γ for notational simplicity. In addition to Xm and Ym defined in Eq. (4.3), we define

Zm =

k−1∑
j=1

zm− j,

as the number of sites at the m-th layer occupied by z-mers that are extended from (m−1)-

th layer. Let eµ3 be the weight associated with a z-mer. Xm number of x-mers from (m−1)-

th layer are connected to the Xm sites of m-th layer through X type bonds in

N!
(N − Xm)!

ways. After connecting the x-mers, we connect y-mers between m-th and (m − 1)-th

layer. Among the Ym number of y-mers, Γ̄
xy
bb of them are connected to the sites at the

m-th layer, which are already occupied by x-mers. Later on, while connecting z-mers,

some of the sites among Γ̄
xy
bb sites might be occupied by z mers also. Thus we have

Γ̄
xy
bb = Γ

xy
bb + Γ

xyz
bbb + Γ

zxy
hbb. Remaining (Ym − Γ̄

xy
bb) sites are connected to the empty sites of the
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m-th layer. The number of ways of doing this is

Ym!Xm!
Γ̄

xy
bb!(Ym − Γ̄

xy
bb)!(Xm − Γ̄

xy
bb)!
×

(N − Xm)!
(N − Xm − Ym + Γ̄

xy
bb)!

.

Now we connect the z mers. Γ̄xz
bb and Γ̄

yz
bb number of z-mers from (m − 1)-th layer are

connected with the sites at the m-th layer which are occupied by x-mers and y-mers re-

spectively. Here Γ̄xz
bb = Γxz

bb + Γ
yxz
hbb and similarly, Γ̄

yz
bb = Γ

yz
bb + Γ

xyz
hbb. Γ

xyz
bbb number of z-mers

are connected to the sites which are already simultaneously shared by x-mers and y-mers

at the m-th layer. Rest of the (Zm − Γ̄xz
bb − Γ̄

yz
bb − Γ

xyz
bbb) number of z-mers are connected to

the remaining empty sites at the m-th layer. The number of ways of connecting them is

Zm!
Γ̄xz

bb!(Zm − Γ̄xz
bb)!
×

(Xm − Γ̄
xy
bb)!

(Xm − Γ̄
xy
bb − Γ̄xz

bb)!
(Zm − Γ̄xz

bb)!

Γ̄
yz
bb!(Zm − Γ̄xz

bb − Γ̄
yz
bb)!
×

(Ym − Γ̄
xy
bb)!

(Ym − Γ̄
xy
bb − Γ̄

yz
bb)!

×
(Zm − Γ̄xz

bb − Γ̄
yz
bb)!

Γ
xyz
bbb!(Zm − Γ̄xz

bb − Γ̄
yz
bb − Γ

xyz
bbb)!

×
Γ̄

xy
bb!

(Γ̄xy
bb − Γ

xyz
bbb)!

×
(N − Xm − Ym + Γ̄

xy
bb)!

(N − Xm − Ym − Zm + Γ̄
xy
bb + Γ̄

yz
bb + Γ̄xz

bb + Γ
xyz
bbb)!

.

We can connect (N−Xm), (N−Ym) and (N−Zm) free bonds of type X, Y and Z respectively

to the empty sites at the m-th layer in

(N − Xm)!(N − Ym)!(N − Zm)!

ways. Now we consider the k-mers, starting from the sites at the m-th layer which are

already occupied by the k-mers extended from the previous layer. Number of ways of

choosing the heads of the k-mers at the m-th layer from the sites which are already occu-

pied by two different k-mers is given by,

Γ̄
yz
bb!

Γ
xyz
hbb!(Γ̄yz

bb − Γ
xyz
hbb)!

×
Γ̄xz

bb!

Γ
yxz
hbb!(Γ̄xz

bb − Γ
yxz
hbb)!

×
(Γ̄xy

bb − Γ
xyz
bbb)!

Γ
zxy
hbb!(Γ̄xy

bb − Γ
xyz
bbb − Γ

zxy
hbb)!

.
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Similarly two k-mers may start from the same site. We can choose such pairs of heads at

the m-th layer from the sites having single k-mers passing through them in

(Zm − Γ̄xz
bb − Γ̄

yz
bb − Γ

xyz
bbb)!)

Γ
xyz
hhb!(Zm − Γ̄xz

bb − Γ̄
yz
bb − Γ

xyz
bbb − Γ

xyz
hhb)!

×
(Ym − Γ̄

xy
bb − Γ̄

yz
bb)!

Γ
xzy
hhb!(Ym − Γ̄

xy
bb − Γ̄

yz
bb − Γ

xzy
hhb)!

×
(Xm − Γ̄

xy
bb − Γ̄xz

bb)!

Γ
yzx
hhb!(Xm − Γ̄

xy
bb − Γ̄xz

bb − Γ
yzx
hhb)!

ways. The total number of x-mers, y-mers and z-mers starting from the m-th layer are xm,

ym and zm respectively. Number of ways of choosing heads of new k-mers from the sites

at the m-th layer that are already occupied by single k-mers is,

(Ym − Γ̄
xy
bb − Γ̄

yz
bb − Γ

xzy
hhb)!

Γ
xy
hb!(Ym − Γ̄

xy
bb − Γ̄

yz
bb − Γ

xzy
hhb − Γ

xy
hb)!
×

(Zm − Γ̄xz
bb − Γ̄

yz
bb − Γ

xyz
hhb − Γ

xyz
bbb)!

Γxz
hb!(Zm − Γ̄xz

bb − Γ̄
yz
bb − Γ

xyz
hhb − Γ

xyz
bbb − Γxz

hb)!

×
(Xm − Γ̄

xy
bb − Γ̄xz

bb − Γ
yzx
hhb)!

Γ
yx
hb!(Xm − Γ̄

xy
bb − Γ̄xz

bb − Γ
yzx
hhb − Γ

yx
hb)!
×

(Zm − Γ̄xz
bb − Γ̄

yz
bb − Γ

xyz
hhb − Γ

xyz
bbb − Γxz

hb)!

Γ
yz
hb!(Zm − Γ̄xz

bb − Γ̄
yz
bb − Γ

xyz
hhb − Γ

xyz
bbb − Γxz

hb − Γ
yz
hb)!

×
(Xm − Γ̄

xy
bb − Γ̄xz

bb − Γ
yzx
hhb − Γ

yx
hb)!

Γzx
hb!(Xm − Γ̄

xy
bb − Γ̄xz

bb − Γ
yzx
hhb − Γ

yx
hb − Γzx

hb)!
×

(Ym − Γ̄
xy
bb − Γ̄

yz
bb − Γ

xzy
hhb − Γ

xy
hb)!

Γ
zy
hb!(Ym − Γ̄

xy
bb − Γ̄

yz
bb − Γ

xzy
hhb − Γ

xy
hb − Γ

zy
hb)!

.

There are (N − Xm − Ym − Zm + Γ̄
xy
bb + Γ̄xz

bb + Γ̄
yz
bb + Γ

xyz
bbb) unoccupied sites so far at the m-th

layer. They can be divided into four groups: sites shared simultaneously by two heads of

different types of k-mers, sites occupied by three heads of the k-mers of different types,

sites from which single k-mers start, and completely empty sites. Number of ways to

arrange them is,

(N − Xm − Ym − Zm + Γ̄
xy
bb + Γ̄xz

bb + Γ̄
yz
bb + Γ

xyz
bbb)!

Γ
xy
hh!Γxz

hh!Γyz
hh!Γxyz

hhh!Nem!(xm − Γ
xy
hh − Γxz

hh − Γ
xy
hb − Γxz

hb − Γ
xyz
hhb − Γ

xzy
hhb − Γ

xyz
hbb − Γ

xyz
hhh)!

×
1

(ym − Γ
xy
hh − Γ

yz
hh − Γ

yx
hb − Γ

yz
hb − Γ

xyz
hhb − Γ

yzx
hhb − Γ

yxz
hbb − Γ

xyz
hhh)!

×
1

(zm − Γ
yz
hh − Γxz

hh − Γzx
hb − Γ

zy
hb − Γ

xzy
hhb − Γ

yzx
hhb − Γ

zxy
hbb − Γ

xyz
hhh)!

,
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where,

Nem = N − Xm − xm − Ym − ym − Zm − zm +
1
2

∑
i, j,i, j

[
Γ

i j
hh + Γ̄

i j
bb + 2Γ

i j
hb

]
+ Γ

xyz
bbb + 2

[
Γ

xyz
hhb + Γ

xzy
hhb + Γ

yzx
hhb + Γ

xyz
hhh

]
+ Γ

xyz
hbb + Γ

yxz
hbb + Γ

zxy
hbb.

[Γ̄i j
bb] and [Γi j

hh] are symmetric in i and j, but [Γi j
hb] is not. Multiplying all these factors and

writing Γ̄ in terms of Γ we obtain Cm for q = 6. Define homogeneous, N-independent

variables: γi j
nl = Γ

i j
nl/N, γi jk

nlm = Γ
i jk
nlm/N, ρx = xmk/N, ρy = ymk/N and ρz = zmk/N. ρx, ρy

and ρz are the fraction of sites occupied by x-mers, y-mers and z-mers respectively.

We define,

F = ρx −
ρx

k
− γ

xy
bb − γ

xz
bb − γ

yx
hb − γ

zx
hb − γ

zxy
hbb − γ

yxz
hbb − γ

yzx
hhb − γ

xyz
bbb,

G = ρy −
ρy

k
− γ

xy
bb − γ

yz
bb − γ

xy
hb − γ

zy
hb − γ

zxy
hbb − γ

xyz
hbb − γ

xzy
hhb − γ

xyz
bbb,

W = ρz −
ρz

k
− γxz

bb − γ
yz
bb − γ

xz
hb − γ

yz
hb − γ

yxz
hbb − γ

xyz
hbb − γ

xyz
hhb − γ

xyz
bbb,

f =
ρx

k
− γ

xy
hh − γ

xz
hh − γ

xy
hb − γ

xz
hb − γ

xyz
hbb − γ

xyz
hhb − γ

xzy
hhb − γ

xyz
hhh,

g =
ρy

k
− γ

xy
hh − γ

yz
hh − γ

yx
hb − γ

yz
hb − γ

yxz
hbb − γ

xyz
hhb − γ

yzx
hhb − γ

xyz
hhh,

w =
ρz

k
− γxz

hh − γ
yz
hh − γ

zy
hb − γ

zx
hb − γ

zxy
hbb − γ

xzy
hhb − γ

yzx
hhb − γ

xyz
hhh,

D = 1 − ρ +
1
2

∑
i, j

[
γ

i j
bb + γ

i j
hh + 2γi j

hb

]
+ 2

[
γ

xyz
bbb + γ

xyz
hhh + γ

xyz
hbb + γ

yxz
hbb

+ γ
zxy
hbb + γ

xyz
hhb + γ

xzy
hhb + γ

yzx
hhb

]
.

γ′s satisfy the following equations, obtained by the maximizing the summand of the par-
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tition function with respect to the interaction parameters {Γ}:

FG
γ

xy
bbD

=
1
u
,

GW
γ

yz
bbD

=
1
u
,

FW
γxz

bbD
=

1
u
,

f g
γ

xy
hhD

=
1
u
,

gw
γ

yz
hhD

=
1
u
,

f w
γxz

hhD
=

1
u
,

fG
γ

xy
hbD

=
1
u
,

gF
γ

yx
hbD

=
1
u
,

gW
γ

yz
hbD

=
1
u
,

wG
γ

zy
hbD

=
1
u
,

f W
γxz

hbD
=

1
u
,

wF
γzx

hbD
=

1
u
,

f gw
γ

xyz
hhhD2

=
1
v
,

FGW
γ

xyz
bbbD2

=
1
v
,

f gW
γ

xyz
hhbD2

=
1
v
,

f wG
γ

xzy
hhbD2

=
1
v
,

gwF
γ

yzx
hhbD2

=
1
v
,

wFG
γ

zxy
hbbD2

=
1
v
,

gFW
γ

yxz
hbbD2

=
1
v
,

fGW
γ

xyz
hbbD2

=
1
v
.

Simplifying the above equations we obtain γ
i j
bb = (k − 1)2γ

i j
hh, γi j

hb = γ
ji
hb = (k − 1)γi j

hh,

γ
i jk
bbb = (k − 1)3γ

i jk
hhh, γi jk

hbb = (k − 1)2γ
i jk
hhh and γi jk

hhb = (k − 1)γi jk
hhh. F, G, W, f , g, w, D are

simplified using the above relations. Using these relations and setting ρy = ρz and hence

γ
xy
hh = γxz

hh, we reduce the number of independent equations for {γ}, given by,

f g =
Dγxy

hh

u
, (4.19)

gw =
Dγyz

hh

u
, (4.20)

f gw =
γ

xyz
hhhD2

v
. (4.21)

We solve these three simultaneous equations to estimate the free energy. Maximizing the

summand of the partition function with respect to xl, yl and zl for q = 6 and we obtain,

[
ρx −

ρx
k

]k−1 [
1 − ρ + k2(γxy

hh + γxz
hh + γ

yz
hh) + 2k3γ

xyz
hhh

]k
eµ1[

1−ρx+
ρx
k

]k−1
[k − 1]k−1

[
ρx
k − kγxy

hh − kγxz
hh − k2γ

xyz
hhh

]k = 1, (4.22)

[
ρy −

ρy

k

]k−1 [
1 − ρ + k2(γxy

hh + γxz
hh + γ

yz
hh) + 2k3γ

xyz
hhh

]k
eµ2[

1−ρy+
ρy

k

]k−1
[k − 1]k−1

[
ρy

k − kγxy
hh − kγyz

hh − k2γ
xyz
hhh

]k = 1, (4.23)

[
ρz −

ρz
k

]k−1 [
1 − ρ + k2(γxy

hh + γxz
hh + γ

yz
hh) + 2k3γ

xyz
hhh

]k
eµ3[

1−ρz+
ρz
k

]k−1
[k − 1]k−1

[
ρz
k − kγxz

hh − kγyz
hh − k2γ

xyz
hhh

]k = 1. (4.24)

88



The expression of free energy for q = 6, in terms of uniform, N-independent variables for

a fixed u and v is given by,

f (ρx, ρy, ρz, u) = −
k − 1

k

q/2∑
i=1

ρi ln ρi −

q/2∑
i=1

[
1 −

(k − 1)ρi

k

]
ln

[
1 −

(k − 1)ρi

k

]

+

q/2∑
i=1

ρi − k2
∑

j=1, j,i

γ
i j
hh − k3γhhh

 ln

ρi − k2
q/2∑

j=1, j,i

γ
i j
hh − k3γhhh


+

1 − ρ +
k2

2

q/2∑
i, j=1,i, j

γ
i j
hh + 2k3γhhh


ln

1 − ρ +
k2

2

q/2∑
i, j=1,i, j

γ
i j
hh + 2k3γhhh


−
ρ

k
ln k +

k2

2

q/2∑
i, j,i, j

γ
i j
hh ln

k2γ
i j
hh

u

 + k3γhhh ln
(
k3γhhh

v

)
. (4.25)

For notational simplicity we have dropped the upper indices of γ123
hhh.

We define the order parameter to be ψ = (ρx−ρy)/ρ, where we set ρy = ρz. We find that for

u < uc(k) and v < u, the system undergoes two transitions as for the case q = 4, at critical

densities ρc1 and ρc2. The three dimensional ρ–u–v phase diagram may be visualized by

studying the phase diagram along three different lines in the u–v plane: v = u2, v = u3 and

v = u4. The free energy, expressed as a power series in ψ, now has the form

f (ρx, ρy, u, v) = A0(ρ, u, v) + A2(ρ, u, v)ψ2

+ A3(ρ, u, v)ψ3 + A4(ρ, u, v)ψ4 + . . . , (4.26)

where A4(ρ, u, v) > 0 and A3(ρ, u, v) is in general nonzero. At low densities, A2(ρ, u, v) is

positive and the free energy has a global minimum at ψ = 0. With increasing density it

develops a second local minimum at ψ , 0. At ρc1 the two minima become degenerate,

and for ρc1 < ρ < ρc2, the free energy has a minimum at ψ , 0, corresponding to the

nematic phase. A typical example is shown in Fig. 4.7. The order parameter thus shows

a discontinuity at ρc1 and the transition is first order. In all the cases we have studied, we
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Figure 4.7: Free energy f (ψ) as a function of the order parameter ψ for ρ ≈ ρc1 when
q = 6. The data are for k = 6, v = u2 and u = 0.15. The dotted lines denote the convex
envelopes.

find that the first transition from disordered to nematic phase is discontinuous.

On the other hand, the nature of the second transition from the nematic to HDD phase

depends on the value of k, u and v. When v = u2, the second transition is first order for

all k. However, when v = u3, the second transition could be first order or continuous. We

find that for k < 7, the second transition is always first order while for k ≥ 7, the order of

transition depends on u. In Fig. 4.8, we show the variation of the order parameter ψ with

density ρ for different values of u for fixed k = 7. The second transition is continuous for

small values of u and first order for larger values of u. For the transitions that are first or-

der, the system shows coexistence near the transition point. In the coexistence region, the

system no longer has uniform density, instead has regions of the ordered and disordered

phases. The order parameter for these densities are obtained from the Maxwell construc-

tion. In Fig. 4.8, the coexistence regions are marked with thick lines. Qualitatively similar

behavior is seen for k > 7. The second transition is continuous for u ≤ u∗(k) and first or-

der for u > u∗(k). The value of u∗(k) increases with k. When v = u4, the phenomenology

is qualitatively similar to that for the case v = u3.
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Figure 4.8: Order parameter ψ as a function of density ρ for different values of u for k = 7,
q = 6, and v = u3. The second transition is first order for u > u∗(k) and continuous for
u ≤ u∗(k). Here, u∗(7) ≈ 0.09563. Regions shown by the thick lines denote coexistence
region.

The first order or continuous nature of the second transition is also reflected in the average

number of intersections. In Fig. 4.9, we show the variation for the number of intersections

per site with density for k = 7 for two values of u: one corresponding to a first order and

the other to continuous transition. In addition to ψ, the average number of intersections

between rods per site also shows a discontinuity when the transition is first order. This

discontinuity vanishes when the transition becomes continuous.

These observations are summarized in the ρ–u phase diagram for k = 7 shown in Fig. 4.10.

Shaded portions denote the coexistence regions in the ρ − u plane. For v = u3 and v = u4,

a second order line terminates at a tricritical point beyond which the transition becomes

first order.

The exponents describing the continuous transitions may be found from the Landau-type

free energy, Eq. (4.26). At the first transition A2(ρ, u, v) > 0 and A3(ρ, u, v) < 0. At

the spinodal point A2(ρ, u, v) changes sign to negative. As density is further increased

A2(ρ, u, v) changes sign back to positive. When this occurs, A3(ρ, u, v) could be positive
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Figure 4.9: The number of interactions per site, Nints, as a function of density ρ for two
different values of u. The data are for q = 6, k = 7, and v = u4. Inset: The variation
with density of (a) order parameter ψ, (b) fraction of sites occupied by two k-mers, and
(c) fraction of sites occupied by three k-mers. Here, u = 0.20.
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Figure 4.10: Phase diagram for q = 6 and k = 7 for (a) v = u2, (b) v = u3, and (c) v = u4.
Shaded portions denote coexistence regions. Dotted lines denote continuous transitions.
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Figure 4.11: The order parameter ψ as the density ρ approaches the critical density ρc2 for
u < u∗ and at the tricritical point u = u∗ when k = 7, q = 6 and v = u3. The solid lines are
power laws (a) (ρc2 − ρ)1/2 and (b) (ρc2 − ρ).

or negative. If positive, then the transition will be continuous. Now the critical exponents

are determined from a Landau free energy functional of the form A2ψ
2 + A3ψ

3, and hence

the critical exponent β = 1, where ψ ∼ (ρc2 − ρ)β as ρ approaches ρc2 from below. At the

tricritical point A3(ρ, u, v) = 0, and the transition is in the mean field Ising universality

class with β = 1/2 (see Fig. 4.11).

4.5 Summary and discussion

In this chapter, we studied the problem of monodispersed rigid rods on the RLTL, a Bethe-

like lattice where rods of different orientations are allowed to intersect with weight u, v, . . .

depending on whether a site is occupied by two, three, . . . k-mers. We showed that the

system undergoes two phase transitions with increasing density for k ≥ kmin and appropri-

ate choice of interaction parameters. For coordination number q = 4, the two transitions

are continuous and in the mean field Ising universality class. For q = 6, while the first

transition is first order, the nature of the second transition depends on the values k, u and
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v, giving rise to a rich phase diagram. To the best of our knowledge, it is the only solvable

model on interacting rods that shows two phase transitions.

The limit u → 0 is different from u = 0 (the hard rod problem). When u = 0, the

second transition in absent [26]. When u, v > 0, the fully packed phase is disordered

by construction and if the first phase transition exists, so does a second phase transition.

The relaxation of the restriction that only rods of different orientations may intersect at

a lattice site does not change the qualitative behavior of the system as the high-density

phase remains disordered. There are still two transitions, both in the mean field Ising

universality class (when q = 4). However, the solution becomes more cumbersome.

Similarly, when q = 6, the limit v → 0 is different from v = 0 when u > 0. When v = 0,

a lattice site may occupied by utmost two k-mers of different type. In this case, the fully

packed phase is not necessarily disordered and for certain values of k and u, only one

transition is present with increasing density.

For hard rods on the square lattice, Monte Carlo simulations were unable to give a clear

answer to the question whether the HDD and LDD phases are qualitatively similar or not.

It was argued that the HDD phase on the square lattice has a large crossover length scale

ξ∗ ∼ 1400, and for length scales larger than ξ∗, it is possible that the HDD phase is not

qualitatively different from the LDD phase. This was based on the evidence that vacancies

in the HDD phase do not form a bound state. In this chapter, by expanding the phase

diagram from a one-dimensional ρ phase diagram to a multi-dimensional ρ–interaction

parameters phase diagram, we showed that it is always possible to continuously transform

the LDD phase into the HDD phase without crossing any phase boundary. This means

that the LDD and HDD phases are qualitatively similar, at least for the model on RLTL.

It would thus be worthwhile to simulate the hard rods problem on the square lattice for

system sizes larger than 1400 and verify the same.

For the RLTL with coordination number q = 4, we showed that for large k, ρc2 ≈ 2 −

a/
√

k + O(k−1). This is at variance from the prediction from entropy based arguments for
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the hard rod problem that ρc2 approaches 1 as k−2 [20]. It would be interesting to resolve

this discrepancy.
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Chapter 5

Hard rectangles with integer aspect

ratio on the square lattice

5.1 Introduction

In this chapter, we consider the system of hard rectangles of size m × mk (m > 1) on a

two-dimensional square lattice where each rectangle occupies m (mk) lattice sites along

the short (long) axis. Here, we restrict our study to the case when k is integer. The aim

of this chapter would be to investigate the phase diagram of the hard rectangle system for

general m and k using numerical simulations.

The model and the Monte carlo algorithm is described in Sec. 5.2. We observe four

distinct phases at different densities: isotropic, nematic, columnar, and sublattice phases.

These phases, suitable order parameters to characterize them, and other thermodynamic

quantities are defined in Sec. 5.3. From extensive large scale simulations, we determine

the rich phase diagram for m = 2, 3, and k = 1, . . . , 7. The phase diagram for m = 2 is

discussed in Sec. 5.4. We find that all transitions except the isotropic–columnar transition

for k = 6 are continuous. The critical exponents and universality classes of the continuous
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transitions are determined. Section 5.5 contains the details about the phase diagram and

the nature of the phase transitions for m = 3. Section 5.6 contains a summary and a

discussion of the results. The content of this chapter is published in Ref. [119].

5.2 Model and Monte carlo Algorithm

We consider a system of monodispersed hard rectangles of size m×mk on a square lattice

of L × L sites with periodic boundary conditions. A rectangle can be either horizontal

or vertical. A horizontal (vertical) rectangle occupies mk sites along the x (y)-axis and m

sites along the y (x)-axis. No two rectangles may overlap. An activity z = eµ is associated

with each rectangle, where µ is the chemical potential. Here we consider the case when

the aspect ratio k is integer.

The Monte carlo algorithm to study the hard rectangle system is described in Sec. 2.4.2.

5.3 Different phases

Snapshots of the different phases that we observe in simulations are shown in Fig. 5.1.

First is the low-density isotropic (I) phase in which the rectangles have neither orienta-

tional nor translational order [see Fig. 5.1(c)]. Second is the nematic (N) phase in which

the rectangles have orientational order but no translational order [see Fig. 5.1(d)] . In this

phase, the mean number of horizontal rectangles is different from that of vertical rectan-

gles. The third phase is the columnar (C) phase, having orientational order and partial

translational order [see Fig. 5.1(e)]. In this phase, if majority of rectangles are horizontal

(vertical), then their heads, or bottom-left corners, preferably lie in rows (columns) that

are separated by m. Thus, it breaks the translational symmetry in the direction perpendic-

ular to the orientation but not parallel to the orientation. Clearly, there are 2m symmetric

C phases. In this phase the rectangles can slide much more along one lattice direction.
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The fourth phase is the crystalline sublattice (S) phase with no orientational order [see

Fig. 5.1(f)]. We divide the square lattice into m2 sublattices by assigning to a site (i, j) a

label (i mod m) + m× ( j mod m). The sublattice labeling for the case m = 2 is shown in

Fig. 5.1(a). In the S phase, the heads of the rectangles preferably occupy one sublattice,

breaking translational symmetry in both the lattice directions.

From the symmetry of the system we would expect up to 7 phases. The orientational

symmetry could be present or broken while the translational symmetry could be unbroken,

broken along only one or both x- and y- directions. If the orientational symmetry is

broken, then the translational symmetry could be broken either parallel or perpendicular

to the preferred orientation. Out of the 7 possibilities, we do not observe (i) a phase with

no orientational order but partial translational order, (ii) a phase with orientational order

and complete translational order (iii) a smectic like phase in which orientational order is

present and translational symmetry parallel to the orientation is broken.

To distinguish among the four different phases we define the following order parameter

variables:

q1 = nh − nv, (5.1a)

q2 = |

m2−1∑
j=0

n je
2πi j
m2 |, (5.1b)

q3 = |

m−1∑
j=0

nr je
2πi j

m | − |

m−1∑
j=0

nc je
2πi j

m |, (5.1c)

q4 = n0 − n1 − n2 + n3, (5.1d)

where nh and nv are the fraction of sites occupied by the horizontal and vertical rectan-

gles respectively, ni is the fraction of sites occupied by the rectangles whose heads are

in i-th sublattice, where i = 0, . . . ,m2 − 1. nr j is the fraction of sites occupied by the

rectangles whose heads are in row ( j mod m), and nc j is the fraction of sites occupied

by the rectangles whose heads are in column ( j mod m). The corresponding averaged

order parameters are given by, Qi = 〈|qi|〉, where i = 1 to 4. All four order parameters
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Figure 5.1: Snapshots of different phases (at different densities) in a system of 2 × 14
hard rectangles. (a) The four sub lattices when m = 2. (b) The color scheme: eight
colors corresponding to two orientations, horizontal (H) and vertical (V), and heads of
rectangles being on one of the four sublattices, denoted by SL0 to SL3. (c) The isotropic
phase where all 8 colors are present. (d) The nematic phase, dominated by 4 colors
corresponding to 4 sublattices and one orientation. (e) The columnar phase, dominated
by 2 colors corresponding to two sublattices and one orientation. (f) The sublattice phase,
dominated by 2 colors corresponding to one sublattice and 2 orientations.
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are zero in the I phase. Q1 is nonzero in the N and C phases, Q2 is nonzero in the C and

S phases, Q3 is nonzero only in the C phase, and Q4 is nonzero only in the S phase. Q4

in Eq. (5.1d) has been defined for m = 2. Its generalization to m ≥ 3 is straightforward.

Density ρ = nh + nv is the fraction of occupied sites.

We now define the thermodynamic quantities that are useful to characterize the transitions

between the different phases. qi’s second moment χi, compressibility κ and the Binder

cumulant Ui are defined as

χi = 〈q2
i 〉L

2, (5.2a)

κ = [〈ρ2〉 − 〈ρ〉2]L2, (5.2b)

Ui = 1 −
〈q4

i 〉

3〈q2
i 〉

2
. (5.2c)

Scaling properties of the thermodynamic quantities and the definition of the critical expo-

nents may be found in Eq. (3.7).

5.4 Phase diagram and critical behavior for m = 2

In this section, we discuss the phase diagram for the case m = 2 and aspect ratio k =

1, 2, . . . 7. The critical exponents characterizing the different continuous transitions are

determined numerically.

5.4.1 Phase diagram

The phase diagram obtained from simulations for m = 2 and integer k are shown in

Fig. 5.2. The low-density phase is an I phase for all k. The case k = 1 is different from

other k values. For k = 1, the problem reduces to a hard square problem and orientational

order is not possible as there is no distinction between horizontal and vertical squares.
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Figure 5.2: Phase diagram for rectangles of size 2 × 2k. I, N, C and HD denote isotropic,
nematic, columnar and high-density phases respectively. The HD phase is a C phase for
k = 1 and a S phase for k > 1. The data points are from simulation, while the continuous
lines and shaded portions are guides to the eye. The shaded portion denotes regions of
phase coexistence.

The hard square system undergoes only one continuous transition from the I phase to a C

phase (having 2m or 4-fold degeneracy) with increasing density [99, 68, 70, 75]. Using

symmetry, it can be argued that there are two types of interfacial surface tensions in this

high density phase [30]. Hence, this transition belongs to the Ashkin-Teller universality

class (β/ν = 7/4 and γ/ν = 7/4, see Refs. [80, 100, 74, 30] for recent numerical studies).

For k = 2, 3, we find that the system undergoes one continuous transition directly from the

I phase to a crystalline S phase. On the other hand, the system with k = 4, 5, 6 may exist

in I, C, or S phases. With increasing density, the system undergoes two phase transitions:

first from the I to a C phase which could be continuous or first order, and second, from the

C to a S phase which is continuous. For k = 7, we observe three continuous transitions

with increasing density: first from the I to the N phase, second into the C phase and third

into the S phase. By confirming the existence of the N and C phases for k = 8, we expect

the phase behavior for k ≥ 8 to be similar to that for k = 7.
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Figure 5.3: (a) The probability distribution of the order parameter q1 for k = 4 at different
µ values, when L = 416. (b) The same for different system sizes when µ = 6.55.

The system undergoes more than one transition only for k ≥ kc = 4. We now present some

supporting evidence for this claim. In Fig. 5.3 (a) we show the probability distribution of

the nematic order parameter q1, when k = 4, for different values of µ and fixed L, close to

the I-C and the C-S transitions. For lower values of µ, the distribution is peaked around

zero corresponding to the I phase. With increasing µ, the distribution becomes flat and

two symmetric maxima appear at q1 , 0 (q3 also becomes nonzero simultaneously),

corresponding to a C phase. On increasing µ further, the two maxima continuously merge

into a single peak at q1=0, corresponding to the S phase (q3 also becomes zero and q4

becomes nonzero). Fig. 5.3 (b) shows the distribution of q1 for three different system

sizes at a fixed value of µ for which P(q1) has two symmetric maxima at q1 , 0. The two

peaks become sharper and narrower with increasing L. We find the similar behavior for

P(q3) also. From the above, we conclude that the C phase exists for k = 4 albeit for a

very narrow range of µ. For k = 2 and 3 we do not observe the existence of a columnar

phase and find that the probability distributions of q1 and q3 are peaked around zero for

all µ values. Hence, we conclude that kc = 4.

The N phase exists only for k ≥ 7. This is also true for m = 1 [20]. To see this, notice

that the I-C transition for k = 6 is first order (see Fig. 5.2). If a nematic phase exists for
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k = 6, then the first transition would have been continuous and in the Ising universality

class [25].

5.4.2 Critical behavior of the isotropic–sublattice (I-S) phase transi-

tion

The system of rectangles with m = 2 undergoes a direct I-S transition for k = 2, 3. At

this transition, the translational symmetry gets broken along both x- and y- directions but

the orientational symmetry remains preserved. We study this transition using the order

parameter Q2. Q2 is nonzero in the S phase and zero in the I phase. In this case Q1 and Q3

remains zero for all values of µ. The data collapse of U2, Q2, and χ2 for different values

of L near the I-S transition are shown in Fig. 5.4 for k = 2 and in Fig. 5.5 for k = 3.

From the crossing of the Binder cumulant data for different L, we estimate the critical

chemical potential µI−S
c ≈ 5.33 (ρI−S

c ≈ 0.930) for k = 2 and µI−S
c ≈ 6.04 (ρI−S

c ≈ 0.925)

for k = 3. The order parameter increases continuously with µ from zero as µI−S
c is crossed,

making the transition continuous. The S phase has a four-fold symmetry due to the four

possible sublattices. From symmetry, one can see that there are two types of interfacial

surface tensions: σ12 = σ03 and σ01 = σ02 = σ23 = σ13), where σi j is the surface

tension between the phases where majority of the rectangles have their heads on the i-th

and j-th sublattices respectively. These symmetries are similar to that of the Ashkin-

Teller model with 4 states and two types of surface tension energies. Thus, we expect the

transition to be in the Ashkin-Teller universality class. Indeed, we find a good collapse

when β/ν = 0.125 ± 0.015 and γ/ν = 1.75 ± 0.03.

Numerically, we find ν = 1.18 ± 0.06 for k = 2 and ν = 1.23 ± 0.07 for k = 3. ν being

larger than 1, we do not observe any divergence in κ. This transition could have also been

studied using the order parameter Q4.
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c )/µI−S
c . We find µI−S
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exponents are β/ν = 1/8, γ/ν = 7/4 and ν ≈ 1.18.
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5.4.3 Critical behavior of the isotropic–columnar phase (I-C) transi-

tion

The I-C transition is seen for k = 4, 5, 6. When k = 4, the C phase exists for a very narrow

range of µ, making k = 4 unsuitable for studying the critical behavior. We, therefore,

study the I-C transition for k = 5 (2 × 10 rectangles) and k = 6 (2 × 12 rectangles).

The critical behavior is best studied using the order parameter Q3. Q3 is nonzero only in

the C phase. First, we present the critical behavior for k = 5. The simulation data for

different system sizes are shown in Fig. 5.6. From the crossing of the Binder cumulant

curves, we obtain µI−C
c ≈ 4.98 (ρI−C

c ≈ 0.876). The transition is found to be continuous.

There are four possible columnar states: majority of heads are either on even (re) or odd

(ro) rows (when horizontal orientation is preferred), or on even (ce) or odd (co) columns

(when vertical orientation is preferred). Again, due to this four fold symmetry and two

types of surface tensions (σrero = σceco and σrece = σreco = σroce = σroco), we expect the I-

C transition to be in the Ashkin-Teller universality class. The data for different L collapse

with β/ν = 0.125±0.015, γ/ν = 1.75±0.03 and ν = 0.82±0.06 (see Fig. 5.6), confirming

the same. Unlike the I-S transition for k = 2, 3, ν < 1 and lies between the Ising and q=4

Potts points. At the I-C transition partial breaking of translational symmetry and complete

breaking of rotational symmetry occur simultaneously.

The I-C transition for k = 4 is also continuous [see Fig. 5.3 (a)], and is therefore expected

to be in the Ashkin-Teller universality class. However, there is no reason to expect that ν

will be the same as that for k = 5.

For k = 6, the I-C transition is surprisingly first order. Fig. 5.7(a) shows the time profile

of density near the I-C transition. At the transition point, ρ alternates between two well

defined densities, one corresponding to the I phase and the other to the C phase. This is

also seen in the probability distribution for density P(ρ) [see Fig. 5.7(b)]. Near the I-C

transition, it shows two peaks of P(ρ) corresponding to the I and the C phases. Thus,
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Figure 5.6: The data for different L near the I-C transition collapse when scaled with
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(a) Equilibrium time profile of ρ near the I-C transition, for µ = 3.02 and L = 720.
Probability distribution, near the I-C transition, of (b) ρ for different values of µ when
L = 576, (c) q3 for different values of µ when L = 576, and (d) q3 for L = 240 (µ = 2.99)
and L = 576 (µ = 3.02).

at µ = µI−C
c , the density has a discontinuity, which is shown by the shaded region in the

phase diagram (see Fig. 5.2). The probability distribution of the order parameter q3 shows

similar behavior [see Fig. 5.7(c)]. Near µ = µI−C
c the distribution shows three peaks: one

at q3 = 0 corresponding to the I phase and the other two at q3 , 0, corresponding to the

C phase. These peaks sharpen with increasing system size [see Fig. 5.7(d)]. At µI−C
c , the

order parameter q3 jumps from zero to a nonzero value. These are typical signatures of

a first order transition. Hence, we conclude that the I-C transition may be continuous or

first order depending on k.
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5.4.4 Critical behavior of the isotropic–nematic phase (I-N) transi-

tion

We find that the nematic phase exists only for k ≥ 7. We study the I-N phase transition

for k = 7 using the order parameter Q1. Q1 is nonzero in the N and C phases and zero

in the I phase. We confirm that the ordered phase is an N phase by checking that Q3,

which is nonzero only in the C phase, is zero. In the nematic phase, the rectangles may

choose either horizontal or vertical orientation. Thus, we expect the transition to be in the

Ising universality class. When m = 1, this has been verified using extensive Monte Carlo

simulations [25]. Here, we confirm the same for m = 2. The data for U1, Q1 and χ1 for

different L collapse onto one curve when scaled with the two-dimensional Ising exponents

β/ν = 1/8, γ/ν = 7/4, and ν = 1 (see Fig. 5.8). We find µI−N
c ≈ 1.77 (ρI−N

c ≈ 0.746).

We note that the value of U1 at the point where the curves for different L cross is slightly

smaller than the Ising value 0.61. This suggests that larger system sizes are necessary for

better collapse of the data.

5.4.5 Critical behavior of the nematic–columnar phase (N-C) transi-

tion

The N-C transition is also studied for k = 7, using the order parameter Q3. Q3 is zero in

the nematic phase but nonzero in the columnar phase. At the I-N transition orientational

symmetry gets broken. If the nematic phase consists of mostly horizontal (vertical) rect-

angles, then there is no preference over even and odd rows (columns). In the columnar

phase, the system chooses either even or odd rows (columns), once the orientational sym-

metry is broken. Due to the two broken symmetry phases we expect this transition to be

in the Ising universality class. We indeed find good data collapse when U3, Q3 and χ3 for

different system sizes are scaled with Ising exponents (see Fig. 5.9). The critical chemical

potential or critical density is obtained from the crossing point of the binder cumulant U3
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c ≈ 1.77. The critical density ρI−N
c
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c ≈ 1.92. The critical density ρN−C
c

≈ 0.766. Data are for rectangles of size 2 × 14.

for different L. We find µN−C
c ≈ 1.92 (ρN−C

c ≈ 0.766) for this transition. We expect the

critical behavior to be same for k > 7.

5.4.6 Critical behavior of the columnar–sublattice phase (C-S) tran-

sition

The C-S transition exists for k ≥ 4. This transitions is studied by choosing k = 5. We

characterize the C-S transition using the order parameter Q4 which is non zero only in the

S phase. In the C phase, the system chooses one particular orientation and either even or
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odd rows or columns, depending on the orientation. This corresponds to two sublattices

being chosen among four of them. In the C-S transition the translational symmetry gets

broken completely by choosing one particular sublattice, but along with that the orienta-

tional symmetry gets restored. This transition is found to be continuous. The data of U4,

Q4 and χ4 for different L near the C-S transition collapse well when scaled with the expo-

nents belonging to the Ashkin-Teller universality class. The estimated critical exponents

are β/ν = 1/8, γ/ν = 7/4 and ν = 0.83 ± 0.06 (see Fig. 5.10). Binder cumulants for dif-

ferent system sizes cross at µC−S
c ≈ 9.65 (ρC−S

c ≈ 0.958). We expect similar behavior for

k = 4 and 6 but possibly with different ν. The C-S transition occurs at very high density.

With increasing k, the relaxation time becomes increasingly large, making it difficult to

obtain reliable data for the C-S transition when k ≥ 6.

5.5 Phase diagram and critical behavior for m = 3

5.5.1 Phase diagram

The phase diagram that we obtain for m = 3, is shown in Fig. 5.11. When k = 1, the corre-

sponding hard square system has a single, first order transition from the I phase into the C

phase [80]. The shaded region between two points denotes a region of phase coexistence.

For 2 ≤ k ≤ 6, the system undergoes two first order transitions with increasing density:

first an I-C transition and second a C-S transition. This is unlike the case m = 2, where

for k = 2 and 3 we find only one transition. For k = 7, we find three transitions as in the

m = 2 case. The first transition from I to N phase is continuous while the second from N

to C phase appears to be first order. Although we cannot obtain reliable data for the third

transition into the S phase, we expect it to be first order. We note that the minimum value

of k beyond which the nematic phase exists is 7 for both m = 2 and m = 3, and matches

with that for m = 1 [20].
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Figure 5.10: The data for different L near the C-S transition collapse when scaled with
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c

≈ 0.958. Data are for rectangles of size 2 × 10.
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5.5.2 Isotropic–columnar phase (I-C) transition

The I-C transition exists when k ≤ 6. We study the this transition for k = 6, using

the order parameter q3. Now there are six possible choices for the C phase: heads are

predominantly in one of the rows 0, 1 or 2 (mod 3) with all the columns equally occupied

(if horizontal orientation is preferred) or in one of the columns 0, 1 or 2 (mod 3) and

all the rows are equally occupied (if vertical orientation is preferred). In this case, there

are two types of surface tensions between the different ordered phase (σr0r1 = σr0r2 =

σr1r2 = σc0c1 = σc0c2 = σc1c2 , and σr0c0 = σr0c1 = σr0c2 = σr1c0 = σr1c1 = σr1c2 =

σr2c0 = σr2c1 = σr2c2). Hence, from symmetry, we can make an analogy with a spin model

possessing Z6 symmetry and two types of surface tension energies. In this case, the nature

of the transition may depend on the relative values of the surface tensions. The probability

distribution of the density ρ and the order parameter |q3| for k = 6 near the I-C transition is

shown in Fig. 5.12. The distributions are clearly double peaked at and near the transition

115



 0

 40

 80

 120

 160

 0.8  0.82  0.84  0.86

P
(ρ

)

ρ

µ=3.91
µ=3.93
µ=3.94

 0

 5

 10

 15

 20

 0  0.3  0.6  0.9

P
(|

q
3
|)

|q3|

µ=3.91
µ=3.93
µ=3.94

(b)(a)

Figure 5.12: Distribution of (a) the density ρ, (b) the order parameter |q3| near the I-C
transition. The data are for rectangles of size 3 × 18 and L = 432.

point, one corresponding to the I phase and the other to the C phase. We find that these

peaks become sharper with increasing system size. This is suggestive of a first order phase

transition with a discontinuity in both density and order parameter as µ crosses µI−C
c . The

discontinuity in the density is denoted by the shaded regions of Fig. 5.11. The chemical

potential at which the I-C transition occurs is given by, µI−C
c ≈ 3.93. Similar behavior is

seen near the I-C transition for rectangles of size 3×3k with k = 2, 3, 4 and 5. We observe

that the discontinuity in the density increases with k.

5.5.3 Critical behavior of the isotropic–nematic phase (I-N) transi-

tion

As for m = 2, for m = 3 we find the existence of the nematic phase only for k ≥ 7. We

study the I-N transition for k = 7 with the order parameter q1. It is expected to be in

the Ising universality class since there are two possible choices of the orientation: either

horizontal or vertical. We are unable to obtain good data collapse for Q1, χ1 and U1 as the

relaxation time increases with increasing m and k. Instead, we present some evidence for

the transition being continuous and belonging to the Ising universality class. In Fig. 5.13

(a), the distribution q1 near the I-N transition is shown. The two symmetric peaks of the
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Figure 5.13: The I-N transition for rectangles of size 3 × 21. (a) Distribution of the order
parameter q1 near the I-N transition. The data are for L = 420. (b) Binder cumulant for
different system sizes crosses at µI−N

c ≈ 2.92 (ρI−N
c ≈ 0.79). Value of U1 at µI−N

c is ≈ 0.61.

distribution come closer with decreasing µ and merge to a single peak. This is a signature

of a continuous transition. The Binder cumulant U1 for different system sizes cross at

µI−N
c ≈ 2.92 (ρI−N

c ≈ 0.79) [see Fig. 5.13 (b)]. The value of U1 at µ = µI−N
c is very close to

the Uc value (0.61) for the Ising universality class.

5.5.4 Nematic–columnar phase (N-C) transition

The N-C transition is studied for k = 7 using the order parameter q3. Contrary to our

expectation that the N-C transition should be in the three-state Potts universality class,

we observe a first order transition. The temporal dependence of the density near the N-

C transition is shown in Fig. 5.14(a). Density jumps between two well separated values

corresponding to the two different phases near the coexistence. Fig 5.14(b) shows the

discontinuity in the order parameter |q3| near the transition. P(|q3|) shows two peaks of

approximately equal height near µN−C
c ≈ 3.12. However, we are limited in our ability to

obtain reliable data for 3 × 21 rectangles for larger system sizes, and the observed first

order nature could be spurious.
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Figure 5.14: (a) Temporal variation of density ρ near the N-C transition, (b) distribution
of the order parameter |q3| near the N-C transition. The data are for rectangles of size
3 × 21 and L = 756.

5.5.5 Columnar–sublattice phase (C-S) transition

The C-S transition is studied by choosing k = 2. We use the order parameter q4 which

is nonzero only in the S phase. The probability distribution of the density ρ and the

order parameter |q4| for 3 × 6 rectangles near the C-S transitions is shown in Fig. 5.15.

The distributions are again double peaked at and near the transition point, making the

C-S transition first order. These peaks become sharper with increasing system size. The

discontinuity in the density near the C-S transition is very small and can also be seen in

the shaded portions of Fig. 5.11. We estimate µC−S
c ≈ 9.33. Similar behavior near the C-S

transitions is also observed for k > 2, but it is difficult to get reliable data due to large

relaxation times.

5.6 Summary and discussion

To summarize, we obtained the rich phase diagram of a system of hard rectangles of size

m × mk on a square lattice for integer m, k using Monte Carlo simulations. For k ≥ 7, we

show that the system undergoes three entropy-driven transitions with increasing density.
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Figure 5.15: Distribution of (a) the density ρ near the C-S transition and (e) the order
parameter |q4| near the C-S transition. The data are for rectangles of size 3×6 and L = 720.

For m = 2, we find that the I-N, N-C and C-S transitions are continuous, but the I-C

transition may be continuous or first order, depending on k. The critical exponents for the

continuous transitions are obtained using finite size scaling. The I-N and N-C transitions

are found to be in the Ising universality class, while the C-S transition in the Ashkin-Teller

universality class. The I-C transition is also found to be in the Ashkin-Teller universality

class when continuous. For larger m, the number of possible ordered states increases and

the corresponding surface tensions plays a crucial role in determining the nature of the

transitions.

Surprisingly, our numerical data suggests that the nematic–columnar phase transition for

m = 3 is first order. However, once a nematic phase with orientational order exists,

there are only three possible choices for the columnar phase and a unique surface tension

between these phases. By analogy with the three-state Potts model, we would expect

a continuous transition, in contradiction with the numerical result. We also performed

simulations for a system where the activity for vertical rectangles is zero (only horizontal

rectangles are present) and observed again a first order transition. However, for 3 × 21

rectangles, the autocorrelation time is high and it becomes increasingly difficult to obtain

reliable data. Simulations of larger systems are required to resolve this puzzle in the
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future.

When m = 2, the I-C transition is found to be continuous for k = 4 and 5, but first order

for k = 6. For k = 6, it is a weak first order transition and it is difficult to see the jump

in density for small system sizes. It is also possible that the data is difficult to interpret

because the transition point is close to a triciritcal point (the intersection of the I-N and

N-C phase boundaries). It would be interesting to reconfirm the first order nature by

either simulating larger systems or doing constant density Monte carlo simulations at the

transition point so that phase separation may be seen. Also, determining a method to map

k and ρ to the Ashkin-Teller model parameters would be useful in clarifying this issue.

Another issue that we are not able to resolve completely is the determination of the mini-

mum value of k (say kc) for which two transitions exist. For m ≥ 3, we show that kc = 2.

When m = 2, our numerical data suggests that kc = 4, with a direct transition from

isotropic to sublattice phase for k = 2, 3. However, for k = 4, the columnar phase exists

in a very narrow window of µ or ρ. Whether the columnar phase is present for k = 2, 3,

but we are unable to resolve the transitions, is something that requires investigation with

much larger system sizes.
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Chapter 6

Hard rectangles with non-integer aspect

ratio

6.1 Introduction

In this chapter, we study the phase diagram of the system of hard rectangles of size m×mk

on the square lattice, when m and mk both are integers, but the aspect ratio k is non-integer.

What are the different phases and the phase diagram when k is rational but not an integer?

What are the minimum values of k beyond which the nematic and columnar phases exist?

Can one get consistent bounds for those minimum k values by comparing with the case of

integer k? Answering these questions will allow us to obtain the complete phase diagram

for the system of hard rectangles.

We obtain the phase diagram for m = 2, when k is a half-integer, using large scale Monte

Carlo simulations. The existence of an isotropic phase, a nematic phase, a columnar phase

and a high-density phase is observed. Nature of the high-density phase depends on the

length and width of the rectangles. The isotropic-columnar transition is found to be dis-

continuous, while the isotropic-nematic and nematic-columnar transitions are continuous.
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Figure 6.1: A schematic diagram showing a valid configuration for the system of hard
rectangles of size 3 × 7 (m = 3, and aspect ratio k = 7/3).

The critical exponents are numerically estimated for the continuous transitions. We find

that the columnar phase exists only when k ≥ 11/2 for m = 2 and when k ≥ 13/3 for

m = 3. The nematic phase exists only when k ≥ 15/2 for m = 2 and when k ≥ 22/3 for

m = 3.

The chapter is organizes as follows. In Sec. 6.2, the model is defined and the Monte Carlo

algorithm is discussed. In Sec. 6.3, we describe the different phases that we observe in

simulations. The phase diagram for m = 2 is determined using Monte carlo simulations

in Sec. 6.4. Section 6.5 is devoted to study the nature of the different phase transitions

occurring in the system. We study the isotropic-columnar, isotropic-nematic and nematic-

columnar transitions in detail. In Sec. 6.6, we briefly discuss the phase behavior of the

system when m ≥ 3. Section 6.7 contains summary of the results obtained and discus-

sions. The content of this chapter is published in Ref. [133].
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6.2 Model and Monte carlo algorithm

Consider monodispersed hard rectangles of size m×mk on a square lattice of size L×L with

periodic boundary conditions. Here, m and mk both are integers, but k is non-integer. Each

rectangle is oriented either horizontally or vertically. A horizontal (vertical) rectangle

occupies mk lattice sites along x (y)-direction and m lattice site along y (x)-direction.

Each site may have at most one rectangle passing through it. An example of a valid

configuration is shown in Fig. 6.1. We associate an activity z = eµ to each rectangle,

where µ is the chemical potential.

We simulate the system in the constant µ grand canonical ensemble using the efficient

algorithm involving cluster moves as described in Sec. 2.4.2. A rotatable plaquettes for

the flip move is now of size R × R, where R is the least common multiple of m and mk.

The rotatable plaquettes being larger (compared to the case for integer k) in size, have

lower probability to occur during the simulations. This makes the flip move less effective,

making it difficult to equilibrate the systems at high densities.

6.3 Different phases

As for integer k, we observe four different phases in the simulations: an isotropic (I)

phase, a nematic (N) phase, a columnar (C) phase and a high-density (HD) phase. The

I phase is disordered. In the N phase, rectangles orient preferably along the horizontal

or vertical direction, but they do not have any positional order. Each row or column on

an average contains equal number of bottom-left corners (heads) of the rectangles. The

columnar (C) phase has orientational order and translational order only in the direction

perpendicular to the nematic orientation. When m = 2, in the columnar phase, if the

majority of the rectangles are horizontal (vertical), their heads lie mostly on either even

rows (columns) or odd rows (columns). Hence, there are 4 (in general 2m) symmetric C
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phases. The I, N and C phases are observed when m ≥ 2, for both integer and non-integer

k.

The HD phase has no orientational order. But it may or may not possess translational

order depending on the length and width of the rectangles. Let, the greatest common

divisor of the length and width be denoted by p. We divide the square lattice into p2

sublattices by assigning to a site (i, j) a label (i mod p) + p × ( j mod p). In the fully

packed limit, it is straightforward to verify that the heads of the rectangles occupy one

of the p2 sublattices. We expect this phase to be stable to introduction of vacancies at

densities close to the full packing. If p > 1, the HD phase is a sublattice phase with

complete translational order but no orientational order. On the other hand, when p = 1

(length and width are mutually prime), the HD phase is disordered with no orientational

or translational order. Since existing evidence for m = 1 suggests that the high-density

disordered phase is qualitatively similar to the low-density I phase (see Sec. 3.6 and 4.5),

we expect the same to hold for m ≥ 2 whenever the HD phase is disordered.

When m ≥ 2 and integer k, p = m > 1 and the HD is known to be a sublattice phase (see

Sec. 5.3), consistent with the above argument. To further confirm that the HD phase is a

sublattice phase when p > 1, but k is a non-integer, we simulate the system of rectangles

of size 4×6, for which p = 2. We divide the lattice into p2 = 4 sublattices. The sublattice

order parameter is defined as q4 = n0 − n1 − n2 + n3 (consistent with the definitions in

Chapter. 5), where ni is the fraction of sites occupied by rectangles whose heads are on the

i-th sublattice. It is straightforward to check that 〈|q4|〉 , 0 only for the sublattice phase.

To show the existence of sublattice phase at high density, a large value of µ is chosen

(µ = 10.8), and the temporal evolution of |q4| is tracked, starting from three different

initial configurations: nematic, disordered and sublattice phases (see Fig 6.2). At large

times, the system reaches a stationary state that is independent of the initial configuration,

ensuring equilibrium. For this choice of µ, the fraction of occupied sites ρ fluctuates

around 0.962. In equilibrium, 〈|q4|〉 ≈ 0.580, clearly showing the existence of a sublattice
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Figure 6.2: Time evolution of the sublattice order parameter q4, starting from three differ-
ent types of initial configurations: nematic, disordered, and sublattice phases. The straight
line is |q4| = 0.580. The data are µ = 10.8 and for L=960. The equilibrium density is
≈ 0.962.

phase.

6.4 Phase diagram for m = 2

The phase diagram for m = 2 and non-integer k is shown in Fig. 6.3, where the data points

are obtained from Monte Carlo simulations and the lines are guides to the eye. The low

density phase is an I phase for all k. Since the length and width of the rectangles are

mutually prime, p = 1, and the HD phase is a reentrant I phase. No phase transitions are

observed when k ≤ 9/2. The C phase exists only for k ≥ 11/2, while the N phase exists

only for k ≥ 15/2.

We could not numerically obtain any data point on the C-HD phase boundary as it is not

possible to equilibrate the systems within available computer time at high densities for

k ≥ 11/2.

The I-C transition is found to be first order for both k = 11/2 and 13/2. The shaded region
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Figure 6.3: Phase diagram for rectangles of size 2×2k, where k is restricted to non-integer
values. I, N, C and HD denote isotropic, nematic, columnar and high-density phases
respectively. The data points are from simulation, while the continuous lines and shaded
portions are guides to the eye. The shaded portion denotes regions of phase coexistence.

in Fig. 6.3 denotes the region of phase coexistence at a first order phase transition. We

find that the I-N and N-C transitions are both continuous. These transitions are analyzed

in detail below.

6.5 Critical behavior for m = 2

We now study the nature of the different phase transitions for the system of 2 × 2k rect-

angles, where k is half-integer. The I-N transition is studied by the order parameter q1,

defined as

q1 = nh − nv, (6.1)

where nh and nv are the fraction of sites occupied by the horizontal and vertical rectangles

respectively. In the I phase 〈|q1|〉 = 0, while in the N phase, 〈|q1|〉 , 0.
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The I-C and N-C phase transitions are best studied with the order parameter

q3 = |nre − nro| − |nce − nco|, (6.2)

where nre (nro) is the fraction of sites occupied by rectangles whose heads are on the even

(odd) rows, and nce (nco) is the fraction of sites occupied by rectangles whose heads are

on the even (odd) columns. In the I and N phases, nre ≈ nro, and nce ≈ nco, implying

that 〈|q3|〉 = 0. In the C phase, either nre , nro and nce ≈ nco, or nce , nco and nre ≈ nro

implying that 〈|q3|〉 , 0.

The averaged order parameter is denoted by Qi = 〈qi〉. The other relevant thermodynamic

quantities are the second moment χi and the Binder cumulant Ui, defined as

χi = 〈q2
i 〉L

2, (6.3a)

Ui = 1 −
〈q4

i 〉

3〈q2
i 〉

2
. (6.3b)

where i = 2, 3. Singular behavior of the thermodynamic quantities near a critical point

and the definition of the critical exponents may be found in Eq. (3.7).

6.5.1 Isotropic–nematic (I-N) transition

We study the I-N transition for 2 × 15 (k = 15/2) rectangles using the order parameter

Q1. Since the N phase may have orientational order only in the horizontal or vertical

direction, we expect the I-N transition to be in the two-dimensional Ising universality

class, as has been confirmed for integer k, when m = 1 [25] and m = 2, 3 (see Sec. 5.4.4

and 5.5.3), and for systems of polydispersed rods [115, 116]. The data for U1 for different

system sizes intersect at µ = µI−N
c ≈ 0.945 [see Fig. 6.4(a)]. The corresponding critical

density is ρI−N
c ≈ 0.694, which is less than ρI−N

c ≈ 0.745 for k = 7 [112]. The data for U1

[see Fig. 6.4(b)], Q1 [see Fig. 6.4(c)], and χ1 [see Fig. 6.4(d)] for different system sizes
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collapse onto a single curve when scaled as in Eq. (3.7) with Ising exponents β/ν = 1/8,

γ/ν = 7/4, and ν = 1. For larger values of k, integer or otherwise, we expect the I-N

transition to be in the Ising universality class.

6.5.2 Nematic–columnar (N-C) transition

We study the N-C transition for rectangles of size 2 × 15 using the order parameter Q3.

When the system makes a transition from the N phase with horizontal (vertical) orien-

tation to the C phase, the symmetry between even and odd rows (columns) is broken.

From symmetry considerations, we expect the N-C transition to be in the Ising universal-

ity class. The data for U3 for different system sizes intersect at µ = µN−C
c ≈ 1.696 [see

Fig. 6.5(a)], corresponding to ρN−C
c ≈ 0.759. The data for U3 [see Fig. 6.5(b)], Q3 [see

Fig. 6.5(c)], and χ3 [see Fig. 6.5(d)] for different system sizes collapse onto a single curve

when scaled as in Eq. (3.7) with Ising exponents β/ν = 1/8, γ/ν = 7/4, and ν = 1. The

N-C transition in the system of 2 × 14 rectangles has also been shown to be in the Ising

universality class (see Sec. 5.4.5), and we expect the same for k > 15/2.

6.5.3 Isotropic–columnar (I-C) transition

The I-C transition occurs only for rectangles of size 2 × 11 (k = 11/2) and 2 × 13

(k = 13/2). The transition is best studied using the order parameter q3. We find that

the transition is first order for both values of k. This may be established by numerically

calculating the probability density functions (pdf) P(ρ) of the density ρ and P(q3) of the

order parameter q3 for values of µ that are close to the transition point µI−C
c ≈ 3.885 for

k = 11/2 and µ ≈ µI−C
c = 2.390 for k = 13/2. The pdf for k = 11/2 and 13/2 are shown in

Fig. 6.6 and Fig. 6.7 respectively. In both the figures, the pdfs for q3 have three clear peaks

at the transition point: the two peaks at q3 , 0 correspond to the symmetric C phases and

the one at q3 = 0 to the I phase. The pdf for ρ have two peaks of nearly equal height at the
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Figure 6.4: The critical behavior near the I-N transition for rectangles of size 2 × 15
(k = 15/2). (a) The data for Binder cumulant for different system sizes intersect at µI−N

c ≈

0.945 (ρI−N
c ≈ 0.694). The data for different L near the I-N transition for (b) Binder

cumulant, (c) order parameter, and (d) second moment of the order parameter collapse
onto a single curve when scaled as in Eq. (3.7) with the Ising exponents β/ν = 1/8,
γ/ν = 7/4, and ν = 1.

129



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1.6  1.7  1.8  1.9  2

U
3

µ

L=300
L=480
L=600

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1  2  3  4

U
3

ln |ε L
1/ν

|

L=300
L=480
L=600

 0.5

 1

 1.5

 0  1  2  3  4

Q
3
 L

β
/ν

ln |ε L
1/ν

|

L=300
L=480
L=600

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4

χ
3
 L

-γ
/ν

ln |ε L
1/ν

|

L=300
L=480
L=600

(a)

(c)

(b)

(d)

Figure 6.5: The critical behavior near the N-C transition for rectangles of size 2 × 15
(k = 15/2). (a) The data for Binder cumulant for different system sizes intersect at µN−C
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c ≈ 0.75). The data for different L near the N-C transition for (b) Binder
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onto a single curve when scaled as in Eq. (3.7) with the Ising exponents β/ν = 1/8,
γ/ν = 7/4, and ν = 1.
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Figure 6.6: Probability density function of (a) density ρ and (b) order parameter q3 for
three values of µ near the I-C transition. The data are for rectangles of size 2 × 11 and
L = 440.

transition point, though these peaks are not clearly separated for k = 13/2. The difference

in the peak positions is equal to the jump in the density across the transition point and is

shown by the shaded region in Fig. 6.3. We find that these peaks become sharper with

increasing system size. These are clear signatures of a first order transition.

6.6 Phase diagram for m ≥ 3

We expect that the phase diagram for m ≥ 3 and non-integer k to be qualitatively similar

to that for m = 2 with three entropy-driven transitions for large k. The HD phase is a dis-

ordered or sublattice phase depending on whether the length and width of the rectangles

are mutually prime or not. For m = 3, we determine the the minimum value of k beyond

which the C and N phases exist. There are no transitions for k ≤ 11/3. We find that the C

phase exists only for k ≥ 13/3, while the N phase exists only for k ≥ 22/3. When m = 3,

the C phase has a 6-fold symmetry and there exists two types of surface tensions in the

system as discussed earlier. Thus, it is difficult to guess the nature of the I-C transition

without knowing the values of surface tensions. For rectangles with k = 13/3, we find
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Figure 6.7: Probability density function of (a) density ρ and (b) order parameter q3 for
three values of µ near the I-C transition. The data are for rectangles of size 2 × 13 and
L = 416.

that the I-C phase transition is first order in nature. The pdfs for ρ and q3 behave similarly

to that for the case of m = 2. The I-N transition is expected to be in Ising universality

class for all m.

6.7 Summary and discussion

In this chapter, we obtained numerically the phase diagram of the system of hard rect-

angles of size m × mk with non-integer aspect ratio k. As for integer k, the system may

exist in four different phases: isotropic, nematic, columnar or high-density phase. The

high-density phase is a disordered phase when the length and width of the rectangles are

mutually prime, otherwise, it is a sublattice phase.

The N phase exists only when k ≥ 15/2 for m = 2 and when k ≥ 22/3 for m = 3.

For integer k, the N phase exists only when k ≥ 7 for m = 1, 2, 3. These different

lower bounds may be combined to give tighter bounds for kI−N
min , the smallest value of

k beyond which the N phase exists. We conclude that 20/3 < kI−N
min ≤ 7. While the

isotropic–columnar transition is found to be first order, the isotropic–nematic and the
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nematic–columnar transitions belong to the two-dimensional Ising universality class. We

could not access the columnar–high-density phase transition due to numerical limitations.

The phase diagram for large m is expected to be qualitatively similar to that for m = 2.

However, the nature of the various transitions, except the isotropic-nematic transition,

may be different.

The bounds for kI−C
min , the minimum value of k beyond which the C phase exists, are not so

clear. We find that the C phase exists when k ≥ 11/2 for m = 2 and when k ≥ 13/3 for

m = 3. On the other hand, for integer k, the C phase exists for k ≥ 4 for m = 2 and when

k ≥ 2 for m = 3. Thus, unlike for the N phase, kI−C
min depends both on m and whether k is a

integer or not, and it is not possible to combine the bounds in terms of only m.
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Chapter 7

Asymptotic phase behavior for the

system of hard rectangles

7.1 Introduction

As we have seen, the system of hard rectangles of size m × mk on the square lattice

undergoes three entropy-driven phase transitions with density for large aspect ratios (k ≥

7): first, from a low-density isotropic (I) to a nematic (N) phase, second, from the nematic

to a columnar (C) phase and third, from the columnar to a high density phase. The high

density phase is disordered if the length and width of the rectangles are mutually prime,

else, it is sublattice (S) phase with complete positional order, but no orientational order.

In this chapter, we investigate the asymptotic behavior of the isotropic–nematic, nematic–

columnar and columnar–sublattice phase boundaries using a combination of numerical

simulations and analytical techniques involving Bethe approximations, virial expansion,

and entropy estimates.

The limit k → ∞, keeping m fixed is argued to be the limit of oriented lines in the

continuum. For this limiting case in three dimensions, the virial expansion truncated at
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the second virial coefficient becomes exact and the critical density for the I-N transition

ρI−N
c ≈ A1k−1 [11, 15, 134]. A1 for oriented long rectangles in the two-dimensional con-

tinuum can be directly estimated by simulating oriented lines of length `, for which it is

straightforward to show that the critical number density ≈ A1`
−2. From the simulations of

this system with ` = 1, it can be inferred that A1 ≈ 4.84 [97]. For m = 1, by simulating

systems with k up to 12 on the lattice, it has been shown that ρI−N
c ∝ k−1 [112]. From

the value of the critical density for k = 10 [112], it can be estimated that A1 ≈ 5.02,

different from that for oriented lines [97]. There are no such similar studies for m > 1.

The limit m → ∞, keeping k fixed corresponds to the continuum problem of oriented

rectangles of aspect ratio k, a model that was introduced and studied by Zwanzig using

virial expansion [15]. This limit is difficult to study numerically on the square lattice.

In this chapter, by simulating systems of rectangles with aspect ratio k up to 60 (for

m = 1), and k = 56 (for m = 2 and 3), we show that ρI−N
c is proportional to k−1 for

m = 1, 2 and 3. Within numerical error, A1 is shown to be independent of m and equal to

4.80 ± 0.05. To understand better the limit of large k, we study the I-N transition using

a Bethe approximation, and a virial expansion truncated at the second virial coefficient.

The critical density ρI−N
c is obtained for all m and k. When k is large, both the theories

predict that ρI−N
c ≈ A1/k, where A1 = 2. In particular, we find that within the virial

expansion truncated at the second virial coefficient, ρI−N
c is independent of m, for all k.

For the N-C transition, we numerically determine ρN−C
c for m = 2 and k up to 24 and

show that for large k, ρN−C
c ≈ 0.73 + 0.23k−1. We study the N-C transition also using the

same Bethe approximation to predict ρN−C
c ≈ A2(m) + A3(m)k−1 for k � 1, which captures

the large k behavior correctly. It shows that a system of oriented rectangles with large

aspect ratio in the two-dimensional continuum should exhibit both nematic and columnar

phases provided lim
m→∞

A(m) < 1. In addition, we find that the Binder cumulant at the N-C

transition is surprisingly dependent on k, and decreases as k−1 with increasing k. However,

we show that the transition remains in the Ising universality class.
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The rest of the chapter is organized as follows. Section 7.2 contains a brief description

of the model, the Monte Carlo algorithm, and definitions of the phases and the relevant

thermodynamic quantities of interest. In Sec. 7.3.1, we present the numerical results for

the I-N transition for m = 1, 2 and 3. The asymptotic behavior of the N-C phase boundary

for m = 2 and large k is determined numerically in Sec. 7.3.2. The Binder cumulant

is shown to be non-universal, though exponents continue to be universal. Section 7.4.1

contains calculations of the I-N phase boundary using an ad-hoc Bethe approximation

and a truncated virial expansion. In Sec. 7.4.2, we study the N-C transition analytically

by estimating the entropy within the same Bethe approximation. The C-S phase boundary

is studied by estimating the entropies in Sec. 7.4.3. Section 7.5 contains a summary and

discussion of results. The content of this chapter is published in Ref. [119] and [135].

7.2 Model and definitions

The model of hard rectangles on the square lattice has already been discussed in the

earlier chapters. We redefine it for the completeness of this chapter. Consider a system

of monodispersed hard rectangles of size m × mk on a square lattice of size L × L, with

periodic boundary conditions. Each rectangle occupies m sites along the short axis and mk

sites along the long axis, such that k is the aspect ratio. A rectangle is called horizontal

or vertical depending on whether the long axis is along the x-axis or y-axis. No two

rectangles may overlap. We associate an activity z = eµ to each rectangle, where µ is the

chemical potential.

To simulate the system, we use the grand canonical Monte carlo algorithm as discussed in

Sec. 2.4.2. Here we define the order parameters and necessary thermodynamic quantities

to study the I-N and the N-C transitions numerically. For the I-N transition, we use the

order parameter

q1 = nh − nv, (7.1)
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where nh and nv are the fraction of sites occupied by the horizontal and vertical rectan-

gles respectively. The corresponding averaged order parameter Q1 = 〈|q1|〉 is zero in the

I phase and nonzero in the N and C phases. The density is defined as the fraction of

occupied sites. For the N-C transition, we use the order parameter

q3 = |nre − nro| − |nce − nco|, (7.2)

where nre (nro) is the fraction of sites occupied by the rectangles whose bottom-left corners

or heads are in the even (odd) rows, and nce (nco) is the fraction of sites occupied by the

rectangles whose heads are in the even (odd) columns. In the I and N phases, nre ≈ nro,

and nce ≈ nco, and hence the corresponding averaged order parameter Q3 = 〈q3〉 is zero.

In the C phase, either nre , nro and nce ≈ nco, or nre ≈ nro and nce , nco, such that Q3 is

nonzero.

The second moment of the order parameter χi = 〈q2
i 〉L

2 and the Binder cumulant Ui =

1 − 〈q4
i 〉/3〈q

2
i 〉

2, where i = 1 and 3. Scaling properties of Qi, χi, Ui may be found in

Eq. (3.7).

7.3 Estimation of the phase boundaries using numerical

simulations

7.3.1 Isotropic–nematic (I-N) phase boundary

In this section, we investigate the asymptotic behavior of the I-N phase boundary for

m = 1, 2, and 3 by numerical simulations and show that ρI−N
c = A1k−1 when k � 1,

where A1 is independent of m. Since there are two symmetric N phases (horizontal and

vertical), the I-N transition for the system of hard rectangles is continuous and belongs

to the Ising universality class for all m. We determine the critical density ρI−N
c from the
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Figure 7.1: The variation of the Binder cumulant U1 with density ρ for three different
system sizes. The lines are cubic splines, fitted to the data. The value of U1 at ρ = ρI−N

c is
≈ 0.61. The data are for m = 1 and k = 32.

point of intersection of the curves of Binder cumulant with density for different system

sizes. A typical example is shown in Fig. 7.1, where the variation of U1 with density ρ

is shown for three different system sizes when m = 1 and k = 32. The Binder cumulant

data are fitted to a cubic spline to obtain a smooth and continuous curve for each L. This

allows us to determine the point of intersection or ρI−N
c more accurately. In the example

shown in Fig. 7.1, the curves for Binder cumulants for three different system sizes crosses

at ρ = ρI−N
c ≈ 0.152 and the value of the critical Binder cumulant Uc

1 ≈ 0.61. We find

Uc
1 ≈ 0.61 for all values of m and k that we have studied, consistent with the value for the

two-dimensional Ising model [131].

We simulate systems with aspect ratio up to k = 60 for m = 1 and k = 56 for m = 2 and 3.

The critical density ρI−N
c obtained from the Binder cumulants are shown in Fig. 7.2. The

data are clearly linear in k−1 for large k, confirming that ρI−N
c = A1k−1, k � 1. In addition,

the data for m = 1, 2, 3 asymptotically lie on the same straight line, showing that A1 is

independent of m. We estimate A1 = 4.80 ± 0.05.
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Figure 7.2: The variation of the critical density for the I-N transition ρI−N
c with k−1 for

m = 1, 2 and 3. The straight line is 4.80k−1.

7.3.2 Nematic–columnar (N-C) phase boundary

In this section, we numerically study the N-C phase transition for m = 2 and determine

the asymptotic behavior of the critical density ρN−C
c for large k. When m = 2, the N-C

transition belongs to the Ising universality class for all k and the corresponding critical

densities are determined from the intersection of Binder cumulant curves for different

system sizes as discussed in Sec. 7.3.1. The critical density ρN−C
c decreases to a constant

with increasing k (see Fig. 7.3). We obtain ρN−C
c ≈ 0.727 + 0.226k−1, k � 1 when m = 2.

As ρN−C
c asymptotically approaches a constant value, it becomes increasingly difficult to

get reliable data for large k.

Surprisingly, we find that the value of the critical Binder cumulant at the N-C transition

point depends on the aspect ratio k. When m = 2, the critical Binder cumulant Uc
3 de-

creases monotonically as a power law with k, from 0.50 when k = 7 to 0.18 when k = 24

(see Fig. 7.4). The data is fitted best with Uc
3 ≈ 4.45 k−1. Usually, for the Ising univer-

sality class, the value critical Binder cumulant at the transition point is expected to be

universal (≈ 0.61) . However, there are a few examples of systems that exhibit such non
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Figure 7.3: The variation of the critical density for the N-C transition ρN−C
c with k−1 for

m = 2. The straight line is a linear fit to the data: 0.727 + 0.226k−1.

universal behavior [131, 136, 137]. These include the anisotropic Ising model where the

critical Binder cumulant depends on the ratio of the coupling constants along the x and

y directions [136], and the isotropic Ising model on rectangular lattice, where the critical

Binder cumulant is a function of the aspect ratio of the underlying lattice [131]. In the

latter case, Uc
3 ≈ 2.46 α−1, where α is the aspect ratio of the lattice [131]. Thus, nominally

k ≈ 1.8 α.

Although Uc
3 varies with k, we confirm that the critical exponents for the N-C transition

remains the same as those of the two-dimensional Ising model. To do so, we determine

the critical exponents for the system with m = 2 and k = 13 using finite size scaling. For

this example, critical Binder cumulant is ≈ 0.35, noticeably different from that for the

Ising universality class. The data for the Binder cumulant U3 for different system sizes

intersect at µN−C
c ≈ 1.00 [see fig. 7.5 (a)]. We find that the data for U3, Q3 and χ3 for

different system sizes collapse onto a single curve when scaled as in Eq. (3.7) with Ising

exponents β/ν = 1/8, γ/ν = 7/4, and ν = 1 [see Fig. 7.5 (b)–(d)]. We thus conclude

that, though the critical Binder cumulant is non-universal, the transition is in the Ising

universality class.
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Figure 7.4: The variation of the critical Binder cumulant Uc
3 at the N-C transition with

k−1. The straight line 4.446 k−1 is a linear fit to the data. The data are for m = 2.

7.3.3 Columnar–sublattice (C-S) phase boundary

The columnar–sublattice phase transition occurs at very high density for large k or m,

resulting in a large relaxation time. It becomes very difficult to obtain reliable data within

reasonable time at these densities. Hence, we could not investigate the asymptotic behav-

ior of the columnar–sublattice phase boundary numerically.

7.4 Estimation of the phase boundaries using analytical

methods

In this section, we obtain the asymptotic behavior of the phase diagram for large k using

theoretical arguments.
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Figure 7.5: The critical behavior near the N-C transition for rectangles of size 2 × 26
(k = 13). (a) The data for Binder cumulant for different system sizes intersect at µN−C

c ≈

1.00. The data for different L near the N-C transition for (b) Binder cumulant, (c) order
parameter, and (d) second moment of the order parameter collapse onto a single curve
when scaled as in Eq. (3.7) with the Ising exponents β/ν = 1/8, γ/ν = 7/4, and ν = 1.
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7.4.1 Isotropic–nematic (I-N) phase boundary

Here we obtain the asymptotic behavior of the isotropic–nematic phase boundary for large

k using analytical methods. The critical density for the I-N phase transition, for fixed

m and k � 1 may be determined by making an analogy with the continuum problem.

The limit k → ∞, keeping m fixed corresponds to the system of oriented lines in the

continuum. For this problem ρI−N
c ≈ A1/k [20, 112]. Thus, we expect ρI−N

c ≈ A1/k, where

A1 is independent of m. For k = 7, we observed only a weak dependence of ρI−N
c on m

with the critical density being 0.745 ± 0.005 (m = 1) [112], 0.744 ± 0.008 (m = 2) and

0.787 ± 0.010 (m = 3) (see Sec. 5.4 and 5.5).

In the absence of an exact solution, we present two approximate calculations: first a Bethe

approximation and second a virial expansion truncated at the second virial coefficient.

Bethe approximation

The Bethe approximation becomes exact on tree-like lattices. For m = 1, the model was

solved exactly on the 4-coordinated random locally tree-like layered lattice (RLTL) to

obtain ρI−N
c = 2/(k − 1) [26] or A1 = 2. The RLTL also allows an exact solution to

be obtained for more complicated systems like repulsive rods. However, a convenient

formulation of the problem of hard rectangles on the RLTL is lacking. Therefore, we

resort to an ad-hoc Bethe approximation introduced by DiMarzio to estimate the entropy

of hard rods on a cubic lattice [28], and later used for studying the statistics of hard rods on

different lattices [114, 112, 113]. However, a straightforward extension of this method to a

system of rectangles suffers from the enumeration result depending on the order in which

the rectangles are placed. A scheme that overcomes this shortcoming was suggested in

Ref. [138]. Here, we adapt the calculations to study the I-N transition.

The I-N phase boundary can be determined if the entropy as a function of the densities

of the horizontal and vertical rectangles is known. We estimate the entropy by computing
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the number of ways of placing Nx horizontal and Ny vertical rectangles on the lattice.

First, we place the horizontal rectangles on the lattice one by one. Given that jx horizontal

rectangles have been placed, the number of ways of placing the ( jx + 1)th horizontal rect-

angle may be estimated as follows. The head of the rectangle may be placed in one of the

(M − m2k jx) empty sites, where M is the total number of lattice sites. We denote this site

by A (see Fig. 7.6). For this new configuration to be valid, all sites in the m×mk rectangle

with head at A should be empty. Given A is empty, we divide the remaining (m2k − 1)

sites in three groups: (mk − 1) sites along the line AB, (m − 1) sites along the line AC,

and the remaining (m− 1)(mk− 1) sites (D is an example). Let Px(B|A) be the conditional

probability that B is empty given that A is empty. Then the probability that (mk − 1) sites

along the line AB are empty is [Px(B|A)]mk−1, where the subscript x denotes the direction

AB. In writing this, we ignore all correlations beyond the nearest neighbor. Likewise, the

probability that (m− 1) sites along the line AC are empty is given by [Py(C|A)]m−1, where

Py(C|A) is the conditional probability that C is empty given A is empty. Let P(D|B ∩ C)

denote the conditional probability that D is empty given that B and C are both empty.

Then, the probability that the remaining (m − 1)(mk − 1) sites are empty may be approxi-

mated by [P(D|B ∩ C)](m−1)(mk−1). Collecting these different terms together, we obtain the

number of ways to place the ( jx + 1)th horizontal rectangle

ν jx+1 = (M − m2k jx) × [Px(B|A)]mk−1[Py(C|A)]m−1

× [P(D|B ∩C)](m−1)(mk−1). (7.3)

It is not possible to determine these conditional probabilities exactly. However, they may

be estimated by assuming that the rectangles are placed randomly. Given A is empty,

either B might be empty or occupied by a horizontal rectangle (as no vertical rectangles

have been placed yet) in m ways. Thus, given A is empty, the probability that B is also
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C D

Figure 7.6: Schematic of a square lattice showing the position of the sites A-D to explain
the calculation of the isotropic–nematic phase boundary.

empty, is

Px(B|A) =
M − m2k jx

M − m2k jx + m jx
. (7.4)

Similarly, if A is empty, C might be empty or it might be occupied by any of the mk sites

on the longer axis (passing through C) of a horizontal rectangle. Thus the probability that

C is empty, given A empty is given by

Py(C|A) =
M − m2k jx

M − m2k jx + mk jx
. (7.5)

Next, we estimate P(D|B ∩ C). If we follow a similar approach to calculate P(D|B ∩ C),

the resultant entropy becomes dependent on the order of placement of the horizontal and

vertical rectangles, and thus asymmetric with respect to Nx and Ny. To overcome this

shortcoming, we follow the Bethe approximation proposed in Ref. [138] and assume

P(D|B ∩C) ≈
Px(C|D)Py(B|D)

Pxy(C|B)
, (7.6)
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where

Pxy(B|C) =
M − m2k jx

M − m(m − 1)k jx + (m − 1) jx
, (7.7)

is the probability that C is empty given B is empty. It can be easily seen that

Px(C|D) = Px(B|A), (7.8a)

Py(B|D) = Py(C|A). (7.8b)

As all the horizontal rectangles are indistinguishable, the total number of ways to place

Nx of them is,

Ωx =
1

Nx!

Nx−1∏
jx=0

ν jx+1. (7.9)

Substituting Eqs. (7.4)–(7.8) into Eq. (7.3), we obtain ν jx+1. Ωx is given by

Ωx =
1

Nx!

Nx−1∏
jx=0

[M − m2k jx]m2k[M − (m − 1)(mk − 1) jx](m−1)(mk−1)

[M − m(mk − 1) jx]m(mk−1)[M − mk(m − 1) jx]mk(m−1) . (7.10)

After placing Nx horizontal rectangles we would like to determine the number of ways in

which Ny vertical rectangles may be placed on the lattice. Given Nx horizontal rectangles

and jy vertical rectangles have already been placed, we estimate ν jy+1, the number of ways

to place the ( jy + 1)th vertical rectangle, using the same procedure as above. Now, we may

choose an empty site A (see Fig. 7.6) randomly in (M −m2kNx −m2k jy) ways to place the

head of the ( jy + 1)th vertical rectangle. As the vertical rectangles have their longer axis

along y-direction, it can be easily seen that

ν jy+1 = (M − m2kNx − m2k jy)[Py(C|A)]mk−1

× [Px(B|A)]m−1[P(D|B ∩C)](m−1)(mk−1). (7.11)

The expressions for the conditional probabilities will now be modified due to the presence
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of both horizontal and vertical rectangles. If A is empty, C may be empty or occupied by

one of the mk sites on the long axis (passing through C) of a horizontal rectangle, or by

one of the m sites on the short axis (passing through C) of a vertical rectangle. Hence,

given A is empty, the probability that C is also empty is

Py(C|A) =
M − m2kNx − m2k jy

M − mk(m − 1)Nx − m(mk − 1) jy
. (7.12)

Similarly, the probability of B being empty, given A is empty, is

Px(B|A) =
M − m2kNx − m2k jy

M − m(mk − 1)Nx − mk(m − 1) jy
. (7.13)

Now the probability that B is empty, given C is empty, is

Pxy(B|C) =
M − m2kNx − m2k jy

M − (mk − 1)(m − 1)(Nx + jy)
. (7.14)

P(D|B ∩C) is determined using Eqs. (7.6) and (7.8). Substituting Eqs. (7.12)–(7.14) into

Eq. (7.11), we obtain ν jy+1. The total number of ways to place Ny vertical rectangles,

given that Nx horizontal rectangles have already been placed, is then

Ωy =
1

Ny!

Ny−1∏
jy=0

ν jy+1

=
1

Ny!

Ny−1∏
jy=0

[M − m2k(Nx + jy)]m2k

[M − m(mk − 1)Nx + mk(m − 1) jy]mk(m−1)

×
[M − (m − 1)(mk − 1)Nx − (m − 1)(mk − 1) jy](m−1)(mk−1)

[M − mk(m − 1)Nx − m(mk − 1) jy]m(mk−1) . (7.15)

The total number of ways to place Nx horizontal and Ny vertical rectangles on the lattice

is given by

Ω = ΩxΩy. (7.16)

Let ρx and ρy be the fraction of the sites occupied by the horizontal and the vertical rect-
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angles, given by

ρi =
m2kNi

M
, i = x, y. (7.17)

Using Eqs. (7.10) and (7.15), the entropy of the system per site in the thermodynamic

limit may be expressed in terms of ρx and ρy as

s(ρx, ρy) = lim
M→∞

1
M

ln
(
ΩxΩy

)
= −

∑
i=x,y

ρi

m2k
ln

ρi

m2k
−

[
1 − ρ

]
ln

[
1 − ρ

]
−

[
1 −

(m − 1)(mk − 1)
m2k

ρ

]
ln

[
1 −

(m − 1)(mk − 1)
m2k

ρ

]
+

∑
i=x,y

[
1 −

(mk − 1)ρ + (k − 1)ρi

mk

]
ln

[
1 −

(mk − 1)ρ + (k − 1)ρi

mk

]
,(7.18)

where ρ = ρx + ρy is the fraction of occupied sites.

The entropy s(ρx, ρy) is not concave everywhere. The true entropy s̄(ρx, ρy) is obtained by

the Maxwell construction such that

s̄(ρx, ρy) = CE
[
s(ρx, ρy)

]
, (7.19)

where CE denotes the concave envelope.

The entropy may also be expressed in terms of the total density ρ = ρx+ρy and the nematic

order parameter ψ, defined as

ψ =
ρx − ρy

ρ
. (7.20)

ψ is zero in the isotropic phase and nonzero in the nematic phase. At a fixed density

ρ, the preferred phase is obtained by maximizing s(ψ) with respect to ψ. The transition

density for the I-N transition is denoted by ρI−N
c . In Fig. 7.7, we show the plot of entropy

s(ψ) as a function of ψ, for three different densities near the I-N transition. For ρ < ρI−N
c

the entropy s(ψ) is maximum at ψ = 0 i.e ρx = ρy, corresponding to the isotropic phase.

Beyond ρI−N
c the entropy develops two symmetric maxima at ψ = ±ψ0, where ψ0 = 0 at
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Figure 7.7: Entropy s as a function of the nematic order parameter ψ near the I-N tran-
sition (ρI−N

c ≈ 0.552). The data are for k = 4 and m = 2. The dotted line denotes the
concave envelope.

ρ = ρI−N
c . ψ0 , 0 i.e. ρx , ρy corresponds to the nematic phase. The order parameter ψ

grows continuously with density ρ. This is a typical signature of a continuous transition

with two equivalent broken symmetry phases. The entropy s(ρ, ψ) is invariant under the

transformation ψ↔ −ψ and contains only even powers of ψ, when expanded about ψ = 0.

The critical density ρI−N
c may be obtained by solving d2s/dψ2|ψ=0 = 0 and is given by

ρI−N
c =

2km
mk2 + m − k − 1

. (7.21)

Asymptotic behavior of ρI−N
c is given by

ρI−N
c =


2
k + 2

mk2 + O(k−3), k → ∞,m fixed,

2k
1+k2 +

2k(1+k)
(1+k2)2m + O(m−2), m→ ∞, k fixed.

(7.22)

Thus, A1 = 2.

When m = 1, the critical density ρI−N
c = 2/(k − 1), which matches with the exact calcu-

lation of ρI−N
c for the system of hard rods of length k on the RLTL [26]. It reflects that
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the Bethe approximations becomes exact on the RLTL. For m = 1, the nematic phase and

hence the I-N transition exists for k ≥ kmin = 4. While for m = 2 and 3, kmin = 3, for

m ≥ 4 the nematic phase exists even for k = 2.

Virial expansion

In this subsection we determine ρI−N
c using a standard virial expansion truncated at the

second virial coefficient. We closely follow the calculations of Zwanzig for oriented hard

rectangles in the continuum [15]. The excess free energy of the system of hard rectangles

(relative to the ideal gas) may be expressed in terms of the virial coefficients and the

density. We truncate the series at the second virial coefficient and study the I-N transition

in the limit k → ∞.

Consider a system of N rectangles on the square lattice of volume V . Each rectangle may

be oriented along two possible directions. Setting β = 1, the configurational sum of the

system is given by,

QN =
1

N!2N

∑
u

∑
R

exp(−UN), (7.23)

where the sum over all possible positions and directions are denoted by
∑

R and
∑

u respec-

tively, UN is the total interaction energy of all rectangles. The excess free energy (relative

to the ideal gas) φN of the system of rectangles having fixed orientations is defined by

exp[−φN(u)] =
1

VN

∑
R

exp(−βUN). (7.24)

As the rectangles having same orientation are indistinguishable, φN depends only on the

fractions of the rectangles pointing along the two possible directions. If the number of

rectangles oriented along direction i is denoted by Ni, we may rewrite the Eq. (7.23) using
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Eq. (7.24) as

QN =
VN

N!2N

N∑
N1,N2=0

N!
N1!N2!

e−φN (N1,N2)δN1+N2,N

=

N∑
N1=0

N∑
N2=0

W(N1,N2), (7.25)

where δN1+N2,N takes care of the constraint that the total number of rectangles is N and W

is given by

W(N1,N2) =
VN

2N N1!N2!
exp[−φN(N1,N2)]. (7.26)

In the thermodynamic limit N → ∞ and V → ∞, the above summation may be replaced

by the largest summand Wmax with negligible error. Thus the configurational free energy

per particle is given by

F = − lim
N,V→∞

1
N

ln QN = − lim
N,V→∞

1
N

Wmax. (7.27)

The fractions of rectangles pointing in the i -direction is denoted by xi = Ni/N, such

that (x1 + x2) = 1, and the number density of the rectangles is given by N/V = ρ/m2k,

where ρ is the total fraction of occupied sites. Equation (7.27) for the free energy may be

expressed in terms of x1 and x2 as

F(x1, x2) = −1 + ln 2 + ln
ρ

m2k
+

2∑
i=1

xi ln xi +
1
N
φN(ρ, x1, x2). (7.28)

The virial expansion of the excess free energy φN , for a composition x = (x1, x2) of the

rectangles is given by

−
1
N
φN(ρ, x) =

∑
n=2

Bn(x)
(
ρ

m2k

)n−1
, (7.29)
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where

Bn(x) =
1

Vn!

∫ ∑∏
f

=
1

Vn!

n∑
j=0

(
n
j

)
xn− j

1 x j
2B(n − j, j)

=
1
V

n∑
j=0

B(n − j, j)
(n − j)! j!

xn− j
1 x j

2, (7.30)

where
∫ ∑∏

f is the standard abbreviation for the cluster integrals over the irreducible

graphs consisting on n rectangles with composition x and f denotes the Mayer functions,

defined as

f = exp(−U) − 1, (7.31)

where U is the interaction energy. Due to the hard-core exclusion, we have U = ∞ for

any intersection or overlap among the rectangles, otherwise U = 0. Hence

f =


−1, for any intersection

0, otherwise
(7.32)

B(n − j, j) denotes the sum of the irreducible n-particle graphs for the composition where

(n − j) rectangles are oriented along the x direction and j rectangles are along the y-

direction.

As the total fraction x1 + x2 = 1, we set

x1 = x,

x2 = 1 − x. (7.33)

We consider up to the second virial coefficient and truncate the expansion in Eq. (7.29) at

first order in ρ. From the definition of the virial coefficients in Eq. (7.30), we can easily
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infer that they are symmetric in the following way:

B(n1, n2) = B(n2, n1). (7.34)

Using Eq. (7.30) and the above symmetry property of B(n1, n2), we can rewrite Eq. (7.29)

as

−
1
N
φN ≈

1
2V

B(2, 0)
(
ρ

m2k

)
(2x2 − 2x + 1)

+
1
V

B(1, 1)
(
ρ

m2k

)
(x − x2) + O(ρ2). (7.35)

Now we evaluate the virial coefficients. From Eq. (7.32) we can see that f has nonzero

contributions only when the rods intersect. Thus the calculation of the virial coefficients

on a lattice turns out as the problem of counting the number of disallowed configurations.

By definition

B(2, 0) = B(0, 2) =

∫
d2R1

∫
d2R2 f12(2, 0)

= −V × (2mk − 1) × (2m − 1), (7.36)

where (2mk − 1) × (2m − 1) is the number of disallowed configurations when both the

rectangles are oriented along the same direction [see Fig. 7.8(a)]. Similarly

B(1, 1) =

∫
d2R1

∫
d2R2 f12(1, 1)

= −V × (m + mk − 1)2, (7.37)

where (m + mk − 1)2 is the number of disallowed configurations when the two rectangles

are oriented along different directions [see Fig. 7.8(b)].
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(a) (b)

Figure 7.8: Schematic diagram showing the orientations of two rectangles in the calcula-
tion of (a) B(2, 0) and (b) B(1, 1).

Substituting Eqs. (7.36) and (7.37) into Eq. (7.35), we find

−
1
N
φN ≈ −

1
2

(2x2 − 2x + 1)
(
ρ

m2k

)
(2m − 1)(2mk − 1)

− (x − x2)
(
ρ

m2k

)
(m + mk − 1)2 + O(ρ2). (7.38)

Now substituting Eq. (7.38) in Eq. (7.28), the expression for the free energy reduces to

F(x) = −1 + log 2 + log
ρ

m2k
+ x log x + (1 − x) log(1 − x)

+ (x − x2)
(
ρ

m2k

)
(m + mk − 1)2 + (x2 − x +

1
2

)

×

(
ρ

m2k

)
(2m − 1)(2mk − 1) + O(ρ2). (7.39)

The preferred state at any fixed density is obtained by minimizing the free energy F(x)

with respect to x. For ρ < ρI−N
c , F(x) is minimized for x = 1/2, corresponding to the

isotropic phase, and beyond ρI−N
c , F(x) is minimized for x , 1/2, corresponding to the

nematic phase. Thus the system undergoes a transition from an isotropic phase to a ne-

matic phase with increasing density. The I-N transition is found to be continuous with the

critical density ρI−N
c . The expansion of the free energy F(x) as a power series in x about

x = 1/2 contains only even powers, and thus the critical density ρI−N
c may be determined

by solving
d2

dx2 F(x)|x= 1
2

= 0. (7.40)
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Solving Eq. (7.40) for ρ, we find

ρI−N
c =

2k
(k − 1)2 , (7.41)

which independent of m, for all k. The asymptotic behavior of ρI−N
c is given by

ρI−N
c =

2
k

+
4
k2 + O(k−2), when k → ∞. (7.42)

Comparing Eq. (7.22) and Eq. (7.42), we see that both the Bethe approximation and the

virial theory predicts ρI−N
c ≈ A1/k for k � 1, where A1 = 2.

7.4.2 Nematic–columnar (N-C) phase boundary

Bethe approximation

To obtain the asymptotic behavior of the N-C phase boundary, we use the same ad-hoc

Bethe approximation scheme for rods due to DiMarzio [28], adapted to other shapes [138].

To estimate the phase boundary of the nematic–columnar transition for m×mk rectangles

on the square lattice with M = L×L sites, we require the entropy as a function of the occu-

pation densities of the m types of rows/columns. The calculations become much simpler,

if we consider a fully oriented phase with only horizontal rectangles. Now, the nematic

phase corresponds to the the phase where there is equal occupancy of each of the m types

of rows, while the columnar phase breaks this symmetry and preferentially occupies one

type of row. For this simplified model with only one orientation, we estimate the entropy

as detailed below. We present the calculation for m = 2, classifying the rows as even and

odd rows. Generalization to higher values of m is straight forward.

Let there be Ne (No) number of rectangles whose heads occupy even (odd) rows. We first

place the Ne rectangles one by one on the even rows. Given that je rectangles have already

been placed, the number of ways in which the ( je + 1)th rectangle can be placed may be
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DC

E F

G H

Figure 7.9: Schematic diagram showing the positions of sites A–F to aid the explana-
tion of the calculation of the nematic–columnar phase boundary. Even and odd rows are
denoted by e and o respectively.

estimated as follows. The head of the ( je + 1)th rectangle has to be placed on an empty

site of an even row. We denote this site by A (see Fig. 7.9). The site A may be chosen at

random in (M/2−2k je) ways, M/2 being the number of sites in even rows and 2k je being

the number of occupied sites in the even rows by the je rectangles. We now require that

the 2k − 1 consecutive sites to the right of A are also empty. The probability of this being

true is [Px(B|A)]2k−1, where Px(B|A) is the conditional probability that B (see Fig. 7.9) is

empty given that A is empty. In terms of M and je, Px(B|A) is given by

Px(B|A) =

M
2 − 2k je

M
2 − 2k je + je

. (7.43)

To place the ( je +1)th rectangle, we also require that the site C (see Fig. 7.9) and the 2k−1

consecutive sites to the right of C are also empty. The probability of this being true is

Py(C|A) × Pxy(D|B ∩C)2k−1, where Py(C|A) is the conditional probability that C is empty

given A is empty, and Pxy(D|B ∩ C) is the conditional probability that D (see Fig. 7.9) is

empty given that both B and C are empty. Sites C and D belongs to an odd row. Since both
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A and B are empty, C and D can be occupied only by rectangles with heads in the same

odd row. But, there are no such rectangles. Therefore, Py(C|A) = 1, and Pxy(D|B∩C) = 1.

Thus, given that je rectangles have been placed, the ( je + 1)th rectangle may be placed in

ν je+1 =

(M
2
− 2k je

)
× [Px(B|A)]2k−1 (7.44)

ways. Hence, the total number of ways of placing Ne rectangles with heads on even rows

is

Ωe =
1

Ne!

Ne−1∏
je=0

ν je+1

=
1

Ne!

Ne−1∏
je=0

( M
2 − 2k je)2k

( M
2 − 2k je + je)2k−1

. (7.45)

Keeping the Ne rectangles with heads on even rows, we now place No rectangles one by

one with their heads on the odd rows. Given that jo rectangles have been placed on the

odd rows, the number of ways of placing the ( jo + 1)th rectangle may be estimated as

follows. The head of the ( jo + 1)th rectangle must be placed on an empty site on an odd

row. We denote this site by E (see Fig. 7.9). E may be chosen in ( M
2 − 2kNe − 2k jo)

ways, where we have ignored correlations between rectangles. Here 2kNe is the number

of occupied sites in the odd rows due to the Ne rectangles with their heads on the even

rows, and the 2k jo is the number of sites occupied by jo rectangles on odd rows. We now

require that the 2k−1 consecutive sites to the right of E are also empty. The probability of

this being true is [Px(F|E)]2k−1, where Px(F|E) is the conditional probability that F (see

Fig. 7.9) is empty given that E is empty. Px(F|E) is given by

Px(F|E) =
M/2 − 2kNe − 2k jo

M/2 − 2kNe − 2k jo + Ne + jo
, (7.46)

where we have again ignored all correlations.

For placing the ( jo + 1)th rectangle, we also require that the site G (see Fig. 7.9) and the
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2k − 1 consecutive sites to the right of G are also empty. The probability of this being

true is Py(G|E) × Pxy(H|F ∩ G)2k−1, where Py(G|E) is the conditional probability that G

is empty given E is empty, and Pxy(H|F ∩ G) is the conditional probability that H (see

Fig. 7.9) is empty given that both F and G are empty. Ignoring correlations, Py(G|E) is

given by

Py(G|E) =
M/2 − 2kNe − 2k jo

M/2 − 2k jo
. (7.47)

As discussed before, to overcome the problem of the resultant entropy not being symmet-

ric with respect to Ne and No, we follow the Bethe approximation proposed in Ref. [138],

P(H|F ∩G) =
P(F ∩G|H)P(H)

Pxy(G|F)P(F)
, (7.48)

≈
Px(G|H)Py(F|H)

Pxy(G|F)
. (7.49)

where in Eq. (7.48), we use P(H) = P(F) and in Eq. (7.49), we replace P(F ∩G|H)P(H)

by Px(G|H)Py(F|H), which is an approximation.

In Eq.(7.49), from symmetry, it is easy to see that Px(G|H) = Px(F|E) and Py(F|H) =

Py(G|E) and can be read off from Eqs. (7.46) and (7.47). To obtain an expression for

Pxy(G|F), the probability that G is empty, given that the site F is empty, we again ignore

correlations. We then obtain

Pxy(G|F) =
M/2 − 2kNe − 2k jo

M/2 − 2k jo + jo
. (7.50)

The number of ways of placing the ( jo + 1)th rectangle is

ν jo+1 =

(M
2
− 2kNe − 2k jo

)
× Px(F|E)]2k−1

× Py(G|E) × [P(H|G ∩ F)]2k−1. (7.51)

Substituting for each of the quantities on the right hand side, we obtain the total number

159



of ways of placing the No rectangles on the odd rows as

Ωo =
1

No!

No−1∏
jo=0

ν jo+1

=
1

No!

No−1∏
jo=0

( M
2 − 2kNe − 2k jo)4k

( M
2 − 2k jo)2k

×
( M

2 − 2k jo + jo)2k−1

( M
2 − 2kNe − 2k jo + Ne + jo)4k−2

. (7.52)

We would like to express the entropy in terms of the total density ρ and the densities of

occupied sites in even and odd rows, given by ρe and ρo respectively. Clearly,

ρe =
4kNe

M
, (7.53)

ρo =
4kNo

M
, (7.54)

ρ = ρe + ρo. (7.55)

The entropy per site s(ρe, ρo) in the thermodynamic limit is given by

s(ρe, ρo) = lim
M→∞

1
M

ln (Ω0Ωe) . (7.56)

Substituting for Ωe and Ωo from Eqs. (7.45) and (7.52), we obtain

s(ρe, ρo) = −
∑
i=o,e

ρi

4k
ln
ρi

2k
− (1 − ρ) ln(1 − ρ) +

(
1 − ρ +

ρ

2k

)
ln

(
1 − ρ +

ρ

2k

)
+

∑
i=o,e

1 − ρi

2
ln(1 − ρi) −

1
2

∑
i=o,e

(
1 − ρi +

ρi

2k

)
ln

(
1 − ρi +

ρi

2k

)
. (7.57)

We express the entropy s(ρe, ρo) in terms of density ρ and the order parameter ψN−C,

defined as

ψN−C =
ρe − ρo

ρ
. (7.58)

ψN−C is zero in the nematic phase and nonzero in the columnar phase. For a fixed value

160



of ρ, the equilibrium values of ρo and ρe are determined by maximizing the entropy

s(ρ, ψN−C) with respect to ψN−C. In Fig. 7.10 we show the variation of entropy s(ρ, ψN−C)

with ψN−C for different densities. For small values of ρ, the entropy is maximized by

ψN−C = 0, i.e, ρe = ρo. Beyond a critical density ρN−C
c , s(ρ, ψN−C) is maximized by

ψN−C , 0, i.e, ρe , ρo. ψN−C grows continuously with ρ for ρ > ρN−C
c , and thus the

transition for m = 2 is continuous.

The expansion of s(ρ, ψN−C) in powers of ψN−C has only even powers of ψN−C since

s(ρ, ψN−C) is invariant when ψN−C ↔ −ψN−C. Thus, the critical density is obtained from

the condition d2s/dψ2
N−C |ψN−C=0 = 0. This gives

ρN−C
c =

−1 + 4k −
√

1 − 4k + 8k2

2k − 1

= (2 −
√

2) +
A
k

+ O(k−2), (7.59)

where A = (1
2 −

1
2
√

2
) > 0. We note that as k → ∞, ρN−C

c tends to a k independent value

and that the transition exists for all k ≥ 2.

We can similarly calculate the entropy for m = 3 and then generalize the expression of

entropy for arbitrary m and k. Now, there are m densities ρ1, ρ2, . . ., ρm, corresponding to

the m types of rows. In terms of them, the entropy is given by

s({ρi}) = −

m∑
i=1

ρi

m2k
ln

ρi

mk
− (1 − ρ) ln(1 − ρ) +

(
1 − ρ +

ρ

mk

)
ln

(
1 − ρ +

ρ

mk

)
+

m∑
i=1

1 − ρ + ρi

m
ln (1 − ρ + ρi) −

1
m

m∑
i=1

(
1 − ρ + ρi +

ρ − ρi

mk

)
× ln

(
1 − ρ + ρi +

ρ − ρi

mk

)
. (7.60)

Here, we define the order parameter to be

ψN−C =
ρ1 − ρ2

ρ
, (7.61)
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Figure 7.10: Entropy as a function of the order parameter ψN−C for m = 2 near the N-C
transition (ρN−C

c ≈ 0.624 ). The data are for k = 4. The dotted line denotes the concave
envelope.

where we set ρ2 = ρ3 = . . . = ρm. Now, s(ψN−C, ρ) is not invariant when ψN−C = −ψN−C.

Thus, when expanded in powers of ψN−C, s(ψN−C, ρ) has cubic terms, making the transition

first order. This is illustrated in Fig. 7.11 which shows the variation of entropy with ψN−C

for different ρ near the N-C transition. For low densities s(ψN−C) exhibit a single peak at

ψN−C = 0, but with increasing ρ a secondary maximum gets developed at ψN−C , 0. For

ρ = ρN−C
c the maximum at ψN−C = 0 and ψN−C , 0 becomes of equal height. Beyond ρN−C

c

the global maximum of s(ψN−C, ρ) jumps to ψN−C , 0, making the N-C transition to be

first order.

Unlike the m = 2 case, there is no way to obtain an analytic expression for ρN−C
c . For

m=3, the numerically determined ρN−C
c for different k is shown in Fig. 7.12. From the

data, we obtain

ρN−C
c = 0.62875 +

0.107
k

, m = 3. (7.62)

We note that this expression has the same form as for m = 2 [see Eq. (7.59)].
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Figure 7.11: Entropy as a function of the order parameter ψN−C for m=3 near the N-C
transition (ρN−C

c ≈ 0.684). The data are for k = 2. The dotted lines denote the concave
envelopes. The curves have been shifted for clarity.
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c and the spinodal density ρN−C

s , obtained from the
Bethe approximation, as a function of 1/k for m = 3. The solid line is 0.62875 + 0.107/k.
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For m > 3, we proceed as follows. The transition density ρN−C
c is bounded from above by

the spinodal density ρN−C
s , the density at which the entropy at ψN−C = 0 changes from a lo-

cal maximum to local minimum. ρN−C
s is obtained from the condition d2s/dψ2

N−C |ψN−C=0 =

0 and we obtain

ρN−C
s =

−m + 2km2 − m
√

1 − 4k + 4k2m
2(1 − m − km + km2)

≥ ρN−C
c , (7.63)

=

√
m

1 +
√

m
+

B1(m)
k

+ O
(
k−2

)
, k → ∞, (7.64)

= 1 −
1
√

m
+

B2(k)
m

+ O
(
m−3/2

)
, m→ ∞, (7.65)

where B1(m) = 1
2(m+

√
m) and B2(k) = (1 + 1

2k ). The spinodal density is compared with ρN−C
c

in Fig. 7.12. From Eq. (7.65), it follows that ρN−C
s ≤ 1 and tends to one when m, k → ∞.

The limit m → ∞ corresponds to the continuum limit. In this limit ρN−C
s → 1. Thus, it is

not clear whether the nematic–columnar phase transition will exist in the continuum.

7.4.3 Columnar–sublattice (C-S) phase boundary

The sublattice phase at high densities exists only when the length and width of the rect-

angles are not mutually prime. The dependence of the C-S phase boundary on m and k

may be determined by estimating the entropy for the C and S phases close to full packing.

We approximate the entropy of the C phase by the entropy of the fully aligned C phase.

Since the heads of the rectangles are all in either even or odd rows/columns, by ignoring

the unoccupied rows/columns, the calculation of entropy reduces to a one-dimensional

problem of rods. The mean number of holes in a row is L(1 − ρ), and the mean number

of rods (of length mk) in a row is ρL
mk . There are L/m such rows. The number of ways of

arranging the rods and holes on a row is

Ωrow =
[L(1 − ρ) +

ρL
mk ]!

[L(1 − ρ)]![ ρL
mk ]!

, (7.66)
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such that the total number of ways of arranging the rectangles is Ω
L/m
row . Hence, SC, the en-

tropy per site of the columnar phase is given by SC = (Lm)−1 ln Ωrow, which for densities

close to 1 is

SC ≈
1 − ρ

m
ln

[
e

km(1 − ρ)

]
+ O[(1 − ρ)2]. (7.67)

We now estimate the entropy for the sublattice phase. At full packing, the head of each

rectangle occupies one of m2 sublattices. Ignoring the sites belonging to other sublattices,

it is easy to see that each configuration of rectangles can be mapped on to a configuration

of rods of length k on a lattice of size L/m×L/m. Thus, the entropy per site at full packing

may be estimated by solving the problem of rods [20]. We have already discussed in

Sec. 1.1.3 that a lower bound on the entropy of an orientationally disordered phase on a

lattice of size ` × ` at full coverage may be estimated by breaking the lattice into strips of

size k × `. The number of ways of covering a strip with rods of size k is given by F` ≈ λ
`,

where λ is the largest root of the equation

λk − λk−1 − 1 = 0. (7.68)

Asymptotic form of the solution for k � 1 is given by,

λ = 1 +
ln k
k
−

ln ln k
k

+
ln ln k
k ln k

+ higher-order terms. (7.69)

Hence, the total number of ways of covering the lattice of size ` × ` with rods of length k

is given by Ω = [F`]`/k ≈ λ`
2/k. Now we replace ` by L/m and find the entropy per site of

the sublattice phase at full packing for the system of rectangles as,

SS (ρ = 1) =
1
L2 ln Ω (7.70)

≈
ln k

m2k2 , k � 1

For densities close to 1 (ρ = 1 − ε) we estimate the correction term to SS (ρ = 1) by
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removing ε/(m2k) fraction of rectangles at random from the fully packed state. Here, we

ignore the entropy of the holes, assuming that the holes form bound states. This gives the

entropy of the sublattice phase, close to the full packing to be approximately

SS ≈
ln k

m2k2 −
1

m2k
[(1 − ρ) ln(1 − ρ) + ρ ln ρ], k � 1, (7.71)

Comparing Eqs. (7.67) and (7.71) up to the leading order we obtain the critical density

for the C-S transition to be

ρC−S
c ≈ 1 −

A4

mk2 , k � 1, (7.72)

where A4 > 0 is a constant.

7.5 Summary and discussion

For k ≥ 7, the system of long, hard rectangles of size m × mk on the square lattice

undergoes three entropy-driven phase transitions with density: first from a low-density I

phase to an intermediate density N phase, second from the N phase to a C phase and third

from the C phase to a HD phase. The HD phase is a S phase when the length and width of

the rectangles are not mutually prime. In this chapter, we study the asymptotic behavior

of the I-N, N-C and C-S phase boundaries when k � 1. From extensive Monte carlo

simulations of systems with m = 1, 2 and 3, we establish that ρI−N
c ≈ A1/k, for k � 1,

where A1 is independent of m and is estimated to be 4.80 ± 0.05, the numerical value

being consistent with that obtained from simulation of oriented lines [97]. The maximum

value of k we studied is 60, while earlier simulations having been restricted up to m = 1

and k = 12 [112]. The I-N transition was also studied analytically using an ad-hoc Bethe

approximation and a truncated virial expansion. Both these theories support the numerical

result ρI−N
c ≈ A1/k, for k � 1, where A1 is independent of m. Within both these theories,

we obtain A1 = 2.

166



The Bethe approximation, while taking into account nearest neighbor correlations, ig-

nores other correlations and there appears to be no systematic way of improving the

calculations to obtain better estimates of A1. On the other hand, the virial expansion

truncated at the second virial coefficient is known to become exact in three dimensions

when k → ∞. But in two dimensions, higher order virial coefficients contributes signifi-

cantly. To confirm this, we computed the higher order virial coefficients. As B2 ∼ k2 [see

Eqs. (7.37)], in the limit k → ∞, B2 × ρ/k ∼ O(1). We can rewrite Eq. (7.29) as

−
1
N
φN(x) ≈ B2(x)

ρ

m2k
+

B3(x)
[B2(x)]2

[
B2(x)

ρ

m2k

]2

+
B4(x)

[B2(x)]3

[
B2(x)

ρ

m2k

]3
+ O(ρ4). (7.73)

When k � 1, it can be verified that B3 ∼ O(k3) and hence B3/[B2]2 ∼ O(1/k). Quite

interestingly we find B4 ∼ O(k6) and B4/[B2]3 ∼ O(1). Thus B4 will have non negligible

contribution to ρI−N
c . In general B2n ∼ O(k4n−2), implying all the even virial coefficients

will have non negligible contributions. Usually, the number of diagrams required to com-

pute higher order virial coefficients increase rapidly with order. However, here the number

of diagrams are of order one. Hence, it may be possible to determine A1 exactly by taking

into account all the even virial coefficients.

We also investigated the asymptotic behavior of ρN−C
c both numerically and analytically.

By performing numerical simulations for m = 2, we find ρN−C
c ≈ 0.73 + 0.23k−1 when

k � 1. The Bethe approximation predicts: ρN−C
c ≈ A2(m) + A3(m)/k, for k � 1 which

is in qualitative agreement with the numerical results. Recently, similar behavior is also

observed using truncated high activity expansion. Further, asymptotic dependence of

A2 and A3 on m is also obtained [139]. But numerical study of the large m behavior is

restricted due to large relaxation times at high densities.

Entropy estimates of the columnar and sublattices phases gives, the critical density for

the C-S transition ρC−S
c ≈ 1 − A4/(mk2) for k � 1, where A4 is a constant. However, we
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could not numerically verify this claim as it becomes difficult to equilibrate the system

at densities close to one due to the presence of long-lived metastable states. The limit

m → ∞, keeping k fixed corresponds to the continuum limit of oriented rectangles. In

this limit, ρC−S
c → 1, implying that the sublattice phase will not survive in continuum.

But we expect the nematic and columnar phases to exist.

Density-functional theory calculations for a system of hard rectangles with restricted ori-

entation in the continuum, confined in a two-dimensional square nanocavity, predicts that

the system will exhibit nematic, smectic, columnar and solid-like phases, where the solid-

like phase has both orientational and complete positional order [140]. In contrast, we do

not find any evidence of smectic or solid-like phases when m or k tend to ∞, the contin-

uum limit. In particular, on lattices the maximal density phase of a monodispersed system

does not have orientational order [10, 20].

We showed that the critical Binder cumulant for the N-C transition decreases as k−1 with

increasing the aspect ratio k of the rectangles. The critical Binder cumulant in the Ising

model on rectangular geometry decreases as α−1, where α is the aspect ratio of the lat-

tice [131]. Whether a mapping between k and α exists is an open question. Curiously,

the critical Binder cumulant is zero when k → ∞ (or α → ∞). In the Ising model, this

has been interpreted as the absence of transition on one-dimensional geometries [131].

However, the hard rectangle system shows a transition at k → ∞. It is possible that in this

limit, the fluctuations at the transition become Gaussian.
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Chapter 8

Conclusion and future directions

In this chapter, we summarize the main results of the thesis and list some open problems.

We considered the system of hard rectangles of size m × mk on lattices and studied its

phase diagram in detail.

In Chapter 2, we described a Monte carlo algorithm to study the systems of hard extended

objects on lattices by implementing it for the system of hard rods (m = 1) and rectangles

(m > 1). The algorithm overcomes the problem of large relaxation times at high densities

and is easily generalizable for hard particles of other shapes. In addition, the algorithm

is highly parallelizable which makes it efficient to study large system sizes and higher-

dimensional systems. Various parallel computing techniques were also discussed.

In Chapter 3, we studied the system of monodispersed hard rods (m = 1) on lattices

which is known to exhibit a nematic phase at intermediate densities for k ≥ 7. We showed

the existence of a second transition from the nematic phase to a high density disordered

phase with increasing density for k = 7 on both square and triangular lattices, and exam-

ined the nematic–disordered transition in detail using Monte carlo simulations. The ne-

matic phase becomes unstable at high activities. This metastability of the nematic order is

explained within the classical Kolmogorov-Johnson-Mehl-Avrami nucleation theory. The

transition is found to be continuous on both the lattices. On the square lattice, the critical
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behavior of this transition differs from that of the first transition (low-density disordered–

nematic), which raises the question whether the high-density disordered phase is similar

to the low-density disordered phase. Nature of the high-density disordered phase is inves-

tigated by studying the correlations, cluster size distribution, stack distribution and spatial

distribution of holes. Existence of a crossover length scale ξ∗ & 1400 is observed on

the square lattice, within which the correlations decay algebraically. The distribution of

stacks and holes exhibits similar behavior in the low and high-density disordered phases.

Although the estimated critical exponents differ from those of the Ising model, we could

not rule out a crossover to the Ising universality class for length scales � ξ∗. On the tri-

angular lattice, the critical exponents of the nematic–disordered transition are consistent

with the first transition, belonging to the three-state Potts universality class. Unlike the

square lattice case, here, we do not find any extended regime where the correlations decay

algebraically.

In Chapter 4, we studied the model of monodispersed repulsive rods of length k on the

random locally tree-like layered lattice to better understand the high density phase. In this

model, rods of different orientations are allowed to intersect, but with an energy cost. We

solved the model exactly to compute the free energy and showed that for k ≥ 4, the system

undergoes two transition with increasing density: first from a low-density disordered to a

nematic phase and second from the nematic to a high-density disordered phase. When the

coordination number is 4, both the transitions are found to be continuous, belonging to

the mean field Ising universality class. For even coordination number larger than 4, while

the first transition becomes discontinuous, the nature of the second transition depends on

the length of the rod and the intersection parameters. From the phase behavior, we argue

that one may go from the low-density disordered phase to the high-density disordered

phase without encountering any phase transition, implying both the phases have similar

symmetry. Hence, we concluded that the high-density phase is a reentrant disordered

phase.
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Transition Nature
Isotropic-sublattice (I-S) Ashkin-Teller universality
Isotropic-columnar (I-C) Ashkin-Teller universality or first order
Isotropic-nematic (I-N) Ising universality
Nematic-columnar (N-C) Ising universality
Columnar-sublattice (C-S) Ashkin-Teller universality

Table 8.1: Table showing nature of different phase transitions for 2×2k rectangles, where
k is integer. Universality classes of the continuous transitions are given.

Chapter 5 was devoted to study the equilibrium phase behavior of the system of monodis-

persed hard rectangles of size m × mk on a square lattice using numerical simulations.

Here, we restricted the aspect ratio k to be integer. When m = 2 and 3, for k ≥ 7, with

increasing density, the system transits successively from isotropic (I) to nematic (N) to

columnar (C) to solid-like sublattice (S) phase. When k < 7, the N phase is absent. For

2 ≤ k < 7 when m ≥ 3, and for 4 ≤ k < 7 when m = 2, the system undergoes two

transitions with increasing density: first from the I phase to the C phase and second, from

the C phase to the S phase. The C phase does not exist for k = 2, 3 when m = 2, and

the system makes a direct transition from the I phase to the S phase. We also determined

the nature of the different phase transitions. When m = 2, all the transitions are found to

be continuous except the I-C transition, which is continuous for k = 5 and discontinuous

for k = 6. Universality classes for the different continuous transitions are summarized in

Table 8.1. For m = 3, the I-N transition remains in the Ising universality class, but the

other transitions become first order.

In Chapter 6, we numerically obtained the phase diagram of the system of hard rectangles

of size m × mk with non-integer aspect ratio k. The system may exist in four different

phases: I, N, C or high density (HD) phases. The HD phase is a disordered phase when the

length and width of the rectangles are mutually prime, else, it is a S phase with complete

positional order. The N phase is found to exist only when k ≥ 15/2 for m = 2 and when

k ≥ 22/3 for m = 3. We obtained tighter bounds for kI−N
min , the smallest value of k beyond

which the N phase exists. We concluded that 20/3 < kI−N
min ≤ 7. The bounds for kI−C

min , the
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minimum value of k beyond which the C phase exists, are not so clear. We find that the

C phase exists when k ≥ 11/2 for m = 2 and when k ≥ 13/3 for m = 3. On the other

hand, for integer k, the C phase exists for k ≥ 4 for m = 2 and when k ≥ 2 for m = 3.

Thus, unlike for the N phase, kI−C
min depends both on m and whether k is a integer or not,

and it is not possible to combine the bounds in a tighter form. When m = 2, the I-C

transition is found to be first order, while both the I-N and N-C transition are continuous

and belong to the Ising universality class. The phase diagram for large m is expected to

be qualitatively similar to that for m = 2, but the nature of the different transitions, except

the isotropic–nematic transition, may be different.

Chapter 7, contains the study of the asymptotic behavior of the isotropic–nematic (I-N),

nematic–columnar (N-C) and columnar–sublattice (C-S) phase boundaries for the hard

rectangles system using Monte carlo simulations and analytical calculations. By simulat-

ing systems up to k = 60 for m = 1 and k = 56 for m = 2 and 3, we showed that the

critical density for the I-N transition ρI−N
c ≈ A1/k, when k � 1, where A1 is independent

of m and equals to 4.80± 0.05. The N-C phase boundary is studied numerically for m = 2

and k up to 24. We estimate ρN−C
c ≈ 0.73 + 0.23k−1 for large k. Binder cumulant for the

N-C transition is found to be non-universal and decreases as k−1 for k � 1. However, the

critical exponents belong to the Ising universality class for all k. Numerical simulations

of the C-S phase transitions for large k is constrained by large relaxation times at high

densities.

The I-N phase boundary is also studied analytically using virial expansion truncated at the

second virial coefficient and Bethe approximation. Within both the theories we obtained

ρI−N
c ≈ A1/k for k � 1, where A1 = 2. In particular, using virial expansion we find ρI−N

c

to be independent of m, for all k. Bethe approximation for the N-C transition predicts

ρN−C
c (m) ≈ A2(m) + A3(m) k−1, which is qualitatively in agreement with the numerical

finding. But within the Bethe approximation, A2(m = 2) ≈ 0.59 and A3(m = 2) ≈ 0.15.

We studied the C-S transition using entropy estimates and obtained ρC−S
c ≈ 1 − A4/mk2
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for k � 1, where A4 is a constant.

Future directions: Here we discuss some open problems and future directions based on

the studies in this thesis.

The system of hard rods (m = 1) undergoes two successive transitions with increasing

density: first from a low-density disordered to a nematic phase and second from the ne-

matic to a high-density disordered phase. Although we showed that the low-density and

the high-density disordered phases are qualitatively similar on the RLTL, the question

whether these two phases are similar on the square lattice is still not answered satisfac-

torily. The numerically obtained critical exponents for the second transition differ from

those of the first transition. However, the simulations for m = 1 presented in this thesis are

done without incorporating the flip move. Performing the simulations with the flip move

reduces the autocorrelation time and should improve the data at high densities, leading to

better estimates of the critical exponents for the second transition.

At full packing or zero monomer density, the phase of the system of k-mers on a bipartite

lattice is critical with algebraic decay of correlation. The correlation exponent is exactly

known only for dimers (k = 2) [64]. For trimers (k = 3), it was shown to be different from

that of dimers [67]. The immediate question would be, how the correlation at full packing

depends on k? One possible direction to solve this problem is to follow the Coulomb gas

method. It involves two major steps: first, mapping the fully packed system of k-mers

to a height model and then, fixing the renormalized couplings to write an effective action

for the coarse-grained height field which can be treated with the theory of Coulomb gas

with electric and magnetic charges. The couplings are a priori unknown. For dimers, the

couplings may be fixed using the exact solution. However, there exists no exact solution

for k > 2. The height representation for trimers may constructed using a two-dimensional

vector field [67]. But it still remains unresolved how to fix the couplings for the k-mer

problems without using the exact solution. One may look how it is done for fully packed

loop model [141, 142].
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Does the critical behavior of the nematic–disordered phase transition at high densities get

affected by the critical properties at full packing? In other words, do the critical expo-

nents of this transition depend on k? It would be very interesting to study the nematic–

disordered transition for k > 7 on the square lattice and verify this issue. Also, further

studies are needed to determine if the correlations in the high-density disordered phase

decay exponentially for distances greater than ξ∗.

One may also study the problem of repulsive rods on the square lattice using numerical

simulations. The algorithm presented in Sec. 2.4.1 is generalizable to the case when

intersections are allowed. Confirming whether the qualitative behavior is similar to that

seen for the RLTL would be interesting. Measuring the exponents for the second transition

might be easier for such a model as the critical density would be away from the fully

packed limit.

The RLTL is suitable for studying hard-core models of anisotropic particles. An example

is polydispersed systems of hard rods which can show multiple phases [143, 144]. Its so-

lution on the RLTL would make rigorous some of the qualitative features of the problem.

Another interesting problem is that of percolation of a system of long rods. Using simula-

tions, the dependence of the critical percolation threshold on the rod length, and the prob-

abilities of horizontal and vertical rods being present, has been conjectured [145, 146].

These conjectures may be checked on the RLTL through an exact solution.

The hard rectangle model may be generalized in different directions. One could consider

the model on other lattices like the triangular lattice. Here, the parallelograms may orient

themselves along three possible lattice directions. For each orientation, the rectangles may

have two different slants (as the shorter side of the rectangle may be oriented along two

possible lattice directions). In this case, we expect the phase diagram to be qualitatively

similar to that for the square lattice. However, as there are three broken symmetry phases

corresponding to the three directions, the I-N transition would be in the three-state Potts

universality class, as opposed to Ising universality class for the square lattice. However,
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the N-C transition would be same as that for the square lattice. Now, the number of

symmetric C phases increases from 2m to 6m or 3m. The S phase will now have 2m2

symmetric states, the extra factor of 2 being due to the two different slants corresponding

to each orientation. As the number of possible states increases with m, it becomes harder

to argue the nature of the transitions a priori.

Extension to hard cuboids on cubic lattice would result in a much richer phase diagram

that remains to be explored. Is the high-density phase a layered phase? Does a smectic-

like phase exist at intermediate densities? What is the complete phase diagram? The

algorithm for rectangles (see Sec. 2.4.2) is easily implementable in three dimensions. In

this case, one needs to implement efficient parallel programming techniques. GPU seems

to be a potential candidate to explore this problem.

The m = 1 case (hard rods) is the only instance where the existence of a nematic phase

may be proved rigorously [24]. Can one come up with such proof to show that the high-

density phase for hard rods has no order? To the best of our knowledge, there exists

no proof of existence of phases with partial translational order like the columnar phase.

The hard rectangle model seems an ideal candidate to prove its existence. Recently, the

nematic–columnar transition for the hard rectangle gas has been studied using a high-

activity expansion in inverse fractional powers of the fugacity [139]. The terms in the

expansion are more tractable in the limit k � 1. This limiting case is a good candidate

for proving the existence of the columnar phase.

Another generalization is to study polydispersed system of hard rods or rectangles to

obtain the phase diagrams for different mixtures. The Monte carlo algorithm presented

for the system of monodispersed rectangles may easily be generalized for polydispersed

case. Entropy per site of the fully ordered nematic phase for the monodispersed system

at full coverage is zero in the thermodynamic limit, favouring the orientationally disor-

dered phase at high densities. Polydispersity leads to nonzero nematic entropy at full

packing. Thus, it would be intersecting to see whether the orientational order is stable
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at full packing for any mixture. In the continuum, polydispersity may result in reentrant

nematic phase or two distinct nematic phases, and broadening of phase coexistence re-

gion [98, 96]. It would be interesting to see which features persist in the lattice version.

In this context, one may also study the effect of introducing aligning interaction between

the rectangles that stablises the orientational order.

Recently, the mixture of hard dimers and squares, exhibiting a rich phase diagram with a

Kosterlitz-Thouless transition and a line of Ashkin-Teller criticality separating the differ-

ent phases, has been studied using a transfer matrices based Monte carlo algorithm which

enabled the study even at full packing [31]. This opens up many possibilities including

the study of the systems with different mixtures of hard rectangles, rectangles with attrac-

tive interaction between them, such as between two neighboring rectangles on the same

row or column. Including attractive interaction results in phases with broken orientational

and transitional symmetry even for dimers [107, 108].

Virial expansion truncated at the second virial coefficient predicts ρI−N
c ≈ A1/k for k � 1,

where A1 = 2. However, from Monte carlo simulations, we found A1 = 4.80 ± 0.05, for

k � 1. This discrepancy indicates that the second virial theory is not exact in the limit

k → ∞ in two dimensions. We found that the higher order virial coefficients can’t be

neglected in this case, as all the even virial coefficients have non-negligible contribution.

But none of the odd virial coefficients contribute in the limit k → ∞. In general, number

of diagrams required to calculate virial coefficients increases very rapidly with the order

of the coefficient. Quite interestingly, we found that in this case the number of diagrams

are of order one, which opens up the possibility of calculating A1 exactly by taking into

account the contribution of the higher order even virial coefficients.

Using entropy estimates, we found that for hard rectangles, the critical density for the C-S

transition ρc
C−S ≈ 1 − A4/mk2. It would be interesting to verify this conjecture and deter-

mine the prefactor by Monte carlo simulations. It may be easier to verify the conjecture

for the system of hard rods (m = 1). But, further improvement in the algorithm is needed.
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One possible direction is the modification suggested in Ref. [31].

The phase diagram when the aspect ratio of the rectangles is irrational remains an open

question. In this case, it has been conjectured that there could be more transitions at densi-

ties close to full packing, when the disordered phase will become unstable to a nematic or

columnar phases [20]. This question, as well as finding tighter bounds on k for existence

of different phases are best answered by obtaining the phase diagram of hard rectangles

with restricted orientation in two-dimensional continuum, when the aspect ratio may be

continuously tuned.
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