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Synopsis

This thesis is concerned with analysis of spectral triples as indicated in the last chapter

of Connes [15] and the Yang-Mills action functional in noncommutative geometry. It is

divided in five chapters. The first chapter is devoted to the preliminary notions required

to understand the content of this thesis. The second and third chapters deal with the

equivalence of two approaches to Yang-Mills for noncommutative n-tori and the quantum

Heisenberg manifolds respectively. Fourth chapter is devoted to study the behaviour of

Connes’ calculus for the quantum double suspension. The final chapter deals with the

behaviour of Connes’ calculus for the tensor product of spectral triples.

Preliminaries on differential calculus and Yang-Mills

functional

In this chapter we discuss preliminary notions required to carry on with the materials

of latter chapters.

The study of Yang-Mills functional in noncommutative geometry started with [20],

where authors defined it on a C∗-dynamical system. Later the spectral triple approach

became more popular in noncommutative geometry and Connes defined notion of Yang-

Mills in this set-up. There is a general recipe to produce a “spectral triple” from a

C∗-dynamical system but it does not tell whether the resulting object is a true spectral

triple, but they are candidates, and one has to verify the relevant conditions on a case by

case basis. However, for noncommutative torus and the quantum Heisenberg manifolds

indeed one obtains a genuine spectral triple. Then one encounters the natural question

whether these two notions of Yang-Mills agree. This is the content of the second and third

chapters. Final two chapters deal with differential calculus in noncommutative geometry.

We note down here few definitions for the sake of understanding the contents.
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Definition 0.0.1. A spectral triple (A,H, D) over an associative algebra A with involu-

tion ? consists of the following things :

1. a ? -representation of A on a Hilbert space H,

2. an unbounded selfadjoint operator D,

3. D has compact resolvent and [D, a] extends to a bounded operator on H for every

a ∈ A.

Definition 0.0.2 ([15]). Let A be a unital ? -algebra. A Hermitian structure on a finitely

generated projective (f.g.p) right A-module E is an A-valued positive-definite sesquilinear

mapping 〈 , 〉A such that

1. 〈ξ, ξ′〉∗A = 〈ξ′, ξ〉A , ∀ ξ, ξ′ ∈ E ,

2. 〈ξ, ξ′.a〉A = (〈ξ, ξ′〉A).a , ∀ ξ, ξ′ ∈ E , ∀ a ∈ A ,

3. The map ξ 7−→ Φξ from E to E∗, given by Φξ(η) = 〈ξ, η〉A , ∀η ∈ E , gives a

conjugate linear A-module isomorphism between E and E∗. This property is referred

as the self-duality of E .

Definition 0.0.3 ([15]). Let Ω•(A) =
⊕∞

k=0 Ωk(A) be the reduced universal differential

graded algebra over A . Here Ωk(A) := A⊗ Ā⊗k , Ā = A/C . The graded product is the

multilinear extension of the following product on simple tensors, given by

(a0 ⊗ a1 ⊗ . . .⊗ am) .
(
b0 ⊗ b1 ⊗ . . .⊗ bn

)
:= a0 ⊗ (⊗m−1

j=1 aj)⊗ amb0 ⊗ (⊗ni=1bi)

+
m−1∑
i=1

(−1)ia0 ⊗ a1 ⊗ . . .⊗ am−iam−i+1 ⊗ . . .⊗ am ⊗ (⊗ni=0bi)

+ (−1)ma0a1 ⊗ (⊗mj=2aj)⊗ (⊗ni=0bi) .

for a0 ⊗ a1 ⊗ . . .⊗ am ∈ Ωm(A) and b0 ⊗ b1 ⊗ . . .⊗ bn ∈ Ωn(A). There is a differential

d acting on Ω•(A), given by
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d(a0 ⊗ a1 ⊗ . . .⊗ ak) := 1⊗ a0 ⊗ a1 ⊗ . . .⊗ ak ∀ aj ∈ A .

It satisfies the following relations

1. d2ω = 0 ∀ω ∈ Ω•(A),

2. d(ω1ω2) = (dω1)ω2 + (−1)deg(ω1)ω1dω2 , ∀ homogeneous ω1 ∈ Ω•(A).

We have a ? -representation π of Ω•(A) on H, given by

π(a0 ⊗ a1 ⊗ . . .⊗ ak) := a0[D, a1] . . . [D, ak] ; aj ∈ A.

Let J
(k)
0 := {ω ∈ Ωk : π(ω) = 0} and J ′ =

⊕
J

(k)
0 . But J ′ fails to be a differential ideal.

We consider J• =
⊕

J (k) where J (k) = J
(k)
0 + dJ

(k−1)
0 . Then J• becomes a differential

graded two-sided ideal and hence the quotient Ω•D := Ω•/J• becomes a differential graded

algebra, called the Connes’ calculus. The representation π gives an isomorphism

Ωk
D
∼= π(Ωk)/π(dJk−1

0 ) .

Definition 0.0.4 ([15]). Let (A,H, D) be a spectral triple and E be a Hermitian, f.g.p

module over A. A compatible connection on E is a C-linear mapping ∇ : E −→ E ⊗AΩ1
D

such that

1. ∇(ξa) = (∇ξ)a+ ξ ⊗ da, ∀ ξ ∈ E , a ∈ A ,

2. 〈 ξ,∇η 〉 − 〈∇ξ, η 〉 = d〈 ξ, η 〉A ∀ ξ, η ∈ E (Compatibility).

The Yang-Mills functional is a certain functional defined on the affine space C̃(E) of

compatible connections.

Definition 0.0.5 ([12]). Let (A, G, α, τ) be a C∗-dynamical system with a G-invariant,

faithful trace τ and E be a f.g.p module over A with a Hermitian Structure. A compatible

connection on E is a C-linear map ∇ : E −→ E ⊗Lie(G)∗ such that for all X ∈ Lie(G)

and ξ, ξ′ ∈ E , a ∈ A one has
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1. ∇X(ξ · a) = ∇X(ξ) · a+ ξ · δX(a) ,

2. 〈∇X ξ , ξ
′〉A + 〈ξ ,∇X ξ

′〉A = δX(〈 ξ, ξ′ 〉A) (Compatibility).

In this setting also, the Yang-Mills functional is a certain functional defined on the

affine space C(E) of compatible connections.

Definition 0.0.6 ([24]). Let A be a unital C∗-algebra and l denotes the left shift operator

on `2(N), defined by l(en) = en−1, l(e0) = 0 on the standard orthonormal basis (en).

The quantum double suspension of A, denoted by Σ2A, is the C∗-algebra generated by

a⊗ |e0〉〈e0| and 1⊗ l in A⊗T , where T is the Toeplitz algebra.

Definition 0.0.7 ([11]). For any spectral triple (A,H, D) , (Σ2A, Σ2H := H⊗ `2(N),

Σ2D := D ⊗ I + F ⊗N) becomes a spectral triple where F is the sign of the operator D

and N is the number operator on `2(N) given by N(en) = nen. This is called the quantum

double suspension of the spectral triple (A,H, D).

Equivalence of the two approaches to Yang-Mills

theory on Noncommutative Tori

In this chapter we prove two theorems, one regarding the structure of finitely gen-

erated projective module endowed with a Hermitian structure over spectrally invariant

subalgebras of C∗-algebras, and the other the equivalence of Yang-Mills approaches on

noncommutative n-torus. The equivalence for n=2 case was addressed by Connes in [15]

(Proposition 13, page 582). Here we take up the higher dimensional noncommutative

torus and show that even in this case it holds.

Theorem 0.0.8. Let E be a finitely generated projective A-module with a Hermitian

structure. Assume A is stable under holomorphic function calculus in a C∗-algebra A.

Then we can have a self-adjoint idempotent p ∈ Mn(A) such that E = pAn and E has

the induced canonical Hermitian structure.
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Theorem 0.0.9. Let C(E), C̃(E) be the affine spaces of compatible connections for the

C∗-dynamical system and spectral triple approaches respectively. Then both these are

in one-one correspondence through an affine isomorphism, and the value of Yang-Mills

functional on corresponding elements of these spaces are same upto a positive scalar

factor.

Yang-Mills on Quantum Heisenberg Manifolds

In this chapter we move one step further to deal with this problem of equivalence of

two approaches to Yang-Mills on the quantum Heisenberg manifolds, defined by Rieffel

in [35].

Definition 0.0.10. For any positive integer c, let Sc denote the space of smooth functions

Φ : R× T× Z→ C such that

• Φ(x+ k, y, p) = exp(2πickpy)Φ(x, y, p) for all k ∈ Z,

• for every polynomial P on Z and every partial differential operator X̃ = ∂m+n

∂xm∂yn
on

R× T the function P (p)(X̃Φ)(x, y, p) is bounded on K × Z for any compact subset

K of R× T.

For each ~, µ, ν ∈ R, µ2 + ν2 6= 0, let A∞~ denote Sc with product and involution defined

by

(Φ ?Ψ)(x, y, p) =
∑
q

Φ(x− ~(q − p)µ, y − ~(q − p)ν, q)Ψ(x− ~qµ, y − ~qν, p− q)

Φ∗(x, y, p) = Φ̄(x, y,−p).

Then π : A∞~ → B(L2(R× T× Z)) given by

(π(Φ)ξ)(x, y, p) =
∑
q

Φ(x− ~(q − 2p)µ, y − ~(q − 2p)ν, q)ξ(x, y, p− q) ,
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gives a faithful representation of the involutive algebra A∞~ . Ac,~µ,ν = norm closure of

π(A∞~ ) is called the Quantum Heisenberg Manifold.

The spectral triple on quantum Heisenberg manifold is constructed in [9] and here we

prove the following theorem.

Theorem 0.0.11. Let E be a finitely generated projective A∞~ module with a Hermi-

tian structure and C(E), C̃(E) be the affine spaces of compatible connections for the C∗-

dynamical system and spectral triple approaches respectively. Then Φ : C(E) −→ C̃(E)

given by Φ(∇) = ∇̃, where ∇̃(ξ) = i∇(ξ), is well-defined and

1
2
(Trω|D|−3)YM(∇) = YM(Φ(∇)) .

Connes’ Calculus for The Quantum Double

Suspension

Associated to every spectral triple (A,H, D) there is a differential graded algebra

(dga) Ω•D(A) [15] defined by Connes. Here in this chapter we set ourselves with the

task of understanding this concept. There is no general recipe to compute this calculus

and instances of computations are very few available in the literature, only for some

particular examples ([15],[10]). We want to compute this dga for a family of spectral

triples. For this purpose we compute Ω•D for the quantum double suspended spectral

triple (Σ2A, Σ2H, Σ2D), a notion introduced in [11]. At the end of this chapter we

study behaviour of compatible connections, curvatures on the quantum double suspended

spectral triple. We have the following theorems in this chapter.

Theorem 0.0.12. For (Σ2A, Σ2H, Σ2D) we have,

1. Ω1
Σ2D (Σ2A) ∼= Ω1

D(A)⊗ S
⊕

Σ2A .

2. Ωn
Σ2D (Σ2A) ∼= Ωn

D(A)⊗ S , for all n ≥ 2 .

vi



3. The differential δ0 : Σ2A −→ Ω1
Σ2D (Σ2A) is given by,

a⊗ T + f 7−→ [D, a]⊗ T
⊕

(a⊗ [N, T ] + f ′) .

4. The differential δ1 : Ω1
Σ2D (Σ2A) −→ Ω2

Σ2D (Σ2A) is given by,

δ1|Ω1
D(A)⊗S = d1 ⊗ 1 and δ1|Σ2A = 0.

5. The differential δn : Ωn
Σ2D (Σ2A) −→ Ωn+1

Σ2D (Σ2A) is given by,

δn = dn ⊗ 1

for all n ≥ 2.

Here d : Ω•D(A) −→ Ω•+1
D (A) is the differential of Connes’ complex and S denotes

subspace of finitely supported matrices in B (`2(N)).

Theorem 0.0.13. Let E be a finitely generated projective module over A, equipped with

a Hermitian structure 〈 , 〉A . Assume that A is spectrally invariant. Choose a pro-

jection p ∈ Mn(A) such that E = pAn and E has the induced canonical Hermitian

structure. Let Ẽ = (p ⊗ u)(Σ2A)n and restrict the canonical structure on (Σ2A)n to

Ẽ. We have an one-one affine morphism φ̃con : Con(E) −→ Con(Ẽ) which preserves the

Grassmannian conection, and an one-one C-linear map ψ : HomA (E , E ⊗A Ω2
D(A)) −→

HomΣ2A

(
Ẽ , Ẽ ⊗Σ2A Ω2

Σ2D(Σ2A)
)

such that the following diagram

φ̃con
Con(E) Con(Ẽ)

ψ
HomA (E , E ⊗A Ω2

D(A)) HomΣ2A

(
Ẽ , Ẽ ⊗Σ2A Ω2

Σ2D(Σ2A)
)ff

commutes. Here ‘f ’ is the map which sends any compatible connection to its associated

curvature.

It should be noted that probably this is the first systematic computation of this

complex.
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Multiplicativity of Connes’ Calculus

In this final chapter we study behaviour of Ω•D for the tensor product of even spec-

tral triples. This problem was investigated earlier by Kastler-Testard in [25] but their

work appears inconclusive. Hence we reinvestigate this problem and propose a category

theoretic conclusion. We start with a quadruple (A,V, D, γ) where A is a unital, as-

sociative algebra over a field K, represented on a K-vector space V, D ∈ End(V) and

γ ∈ End(V) is a Z2-grading operator which commutes with A and anticommutes with D.

We call such a quadruple an even algebraic spectral triple . We prove that the collection

of such quadruples forms a category S̃pec. It turns out that S̃pec is a monoidal category

and F : S̃pec −→ DGA given by (A,V, D, γ) 7−→ Ω•D(A) is a covariant functor, where

DGA denotes the category of dgas over K. We are interested in knowing whether F is

a monoidal functor and the article [25] gives a partial answer to it. Here we consider

a subcategory S̃pecsub of S̃pec, objects of which are (A,V, D, γ) with γ ∈ π(A). Then

S̃pecsub becomes a monoidal subcategory of S̃pec. We prove that there is a covariant

functor G : S̃pec −→ S̃pecsub . We show that restricted to the subcategory S̃pecsub , the

functor F is a monoidal functor. To show that the functor F when restricted to S̃pecsub

is not trivial we compute F ◦ G for a canonical spectral triple associated with compact

smooth manifolds and the noncommutative torus.

viii



Chapter 1

Preliminaries on differential calculus

and Yang-Mills functional

This chapter is devoted to register preliminary notions essential to understand the

content of this thesis. Here we discuss differential calculus in noncommutative set-up

and the two approaches to the Yang-Mills functional defined by Connes-Rieffel ([20]) and

Connes ([15]).

1.1 Spectral triple and differential calculus

A noncommutative differential structure on an associative algebra A is the specifica-

tion of a differential graded algebra (dga). This is interpreted as the space of differential

forms. Study of differential calculus in noncommutative geometry appears in early 80’s

through the invention of noncommutative differential geometry ([13]), and to search for its

examples ([42],[43]). Since then quite a lot of works have been done involving differential

calculus in various noncommutative contexts for e.g. see ([34],[1],[4],[31],[32]) and refer-

ences therein. In his spectral formulation of the subject Connes unified various treatments

in noncommutative geometry in terms of a K-cycle (A,H, D), often called spectral triple.

He defined a canonical dga Ω•D associated to a K-cycle (A,H, D) and extended several
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classical notions including connection, curvature, Yang-Mills action functional etc. to the

noncommutative framework. It is also shown in ([15]) that using this dga one can produce

Hochschild cocycles and cyclic cocycles (under certain assumption) for Poincaré dual al-

gebras which establishes Ω•D worth studying. Last but not the least Connes showed that

in the case of classical spectral triple associated to a compact Riemannian spin manifold,

Ω•D gives back the space of de-Rham forms on the manifold. This establishes Ω•D as a

genuine noncommutative generalization of the classical de-Rham complex of a manifold.

Definition 1.1.1. A spectral triple (A,H, D) over an associative algebra A with involu-

tion ? consists of the following things :

1. a ? -representation π of A on a Hilbert space H.

2. an unbounded selfadjoint operator D.

3. D has compact resolvent and [D, π(a)] extends to a bounded operator on H for every

a ∈ A.

We shall assume that A is unital and the unit 1 ∈ A acts as the identity on H. If there

is a Z2 grading γ ∈ B(H) which commutes with every element of A and anticommutes

with D then the spectral triple (A,H, D, γ) is called an even spectral triple.

Definition 1.1.2 ([15]). Let H be a Hilbert space and

L(1,∞) := {T ∈ K(H) : ||T ||1,∞ = supN

∑N
i=1 µi(T )

log(N)
<∞}.

Here the numbers µi(T ) are the eigenvalues of |T | arranged in decreasing order. Let

aN =
∑N
i=1 µi(T )

log(N)
.

The Dixmier trace Trω(T ) of T is defined for positive operators T ∈ L(1,∞) to be

Trω(T ) = limω aN

where limω is a scale-invariant positive extension of the usual limit, to all bounded se-

quences.
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The Dixmier trace is a non-normal trace on a space of linear operators on a Hilbert

space larger than the space of trace class operators. It enjoys the following properties :

1. Trω(T ) is linear in T .

2. For T ≥ 0, Trω(T ) ≥ 0.

3. If S is bounded then Trω(TS) = Trω(ST ).

4. Trω(T ) is independent of the choice of inner product on H.

5. Trω(T ) is zero for all trace class operators T i,e. it is singular trace.

For proof of these facts and general introduction to Dixmier trace one can look at the

excellent article by Sukochev ([39]). In ([16]), Connes showed that Wodzicki’s noncom-

mutative residue of a pseudodifferential operator on a manifold is equal to its Dixmier

trace.

For a spectral triple (A,H, D), if |D|−p is in the ideal of Dixmier traceable oper-

ators L(1,∞) then we say that the spectral triple is p-summable. Note that the com-

pact resolvent condition is equivalent to saying that exp(−tD2) is a compact opera-

tor for some (and hence all) t > 0. This can be seen by considering the closed ideal

G = {f ∈ C0(R) : f(D) is compact} of C0(R) and thus e−tx
2 ∈ G iff G = C0(R) iff

(x ± i)−1 ∈ G . If exp(−tD2) is a trace class operator for all t > 0 then we call the

spectral triple (A,H, D) a θ-summable spectral triple. Existence of θ-summable spec-

tral triples has been proved in ([14]). Note that every p-summable spectral triple is

θ-summable with bound Tr(exp(−tD2)) = O(t−p) as t→ 0.

To every spectral triple (A,H, D) Connes associated the following differential graded

algebra (dga).

Definition 1.1.3 ([15]). Let Ω•(A) =
∞⊕
k=0

Ωk(A) be the reduced universal dga over A .

Here Ωk(A) := A⊗ Ā⊗k , Ā = A/C . The graded product is given by

3



(∑
k

a0k ⊗ a1k ⊗ . . .⊗ amk

)
.

(∑
k′

b0k′ ⊗ b1k′ ⊗ . . .⊗ bnk′
)

:=
∑
k,k′

a0k ⊗ (⊗m−1
j=1 ajk)⊗ amkb0k′ ⊗ (⊗ni=1bik′)

+
m−1∑
i=1

(−1)ia0k ⊗ a1k ⊗ . . .⊗ am−i,kam−i+1,k ⊗ . . .⊗ amk ⊗ (⊗ni=0bik′)

+ (−1)ma0ka1k ⊗ (⊗mj=2ajk)⊗ (⊗ni=0bik′) .

for
∑

k a0k ⊗ a1k ⊗ . . .⊗ amk ∈ Ωm(A) and
∑

k′ b0k′ ⊗ b1k′ ⊗ . . .⊗ bnk′ ∈ Ωn(A). There is

a differential d acting on Ω•(A), given by

d(a0 ⊗ a1 ⊗ . . .⊗ ak) := 1⊗ a0 ⊗ a1 ⊗ . . .⊗ ak ∀ aj ∈ A ,

and it satisfies the relations

1. d2ω = 0, ∀ω ∈ Ω•(A).

2. d(ω1ω2) = (dω1)ω2 + (−1)deg(ω1)ω1dω2 , ∀ homogeneous ω1 ∈ Ω•(A).

We get a ∗ -representation π of Ω•(A) on H by ,

π(a0 ⊗ a1 ⊗ . . .⊗ ak) := a0[D, a1] . . . [D, ak] ; aj ∈ A.

Let J
(k)
0 = {ω ∈ Ωk : π(ω) = 0} and J ′ =

⊕
J

(k)
0 . But J ′ fails to be a differential ideal.

We consider J• =
⊕

J (k) where J (k) = J
(k)
0 + dJ

(k−1)
0 . Then J• becomes a differential

graded two-sided ideal and hence the quotient Ω•D = Ω•/J• becomes a differential graded

algebra. This is called the Connes’ calculus.

The representation π gives the isomorphism Ωk
D
∼= π(Ωk)/π(dJk−1

0 ) . The abstract

differential d induces a differential d̃ on the complex Ω•D(A) so that we get a chain

complex (Ω•D(A), d̃ ) and a chain map πD : Ω•(A) → Ω•D(A) such that the following
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diagram

πD
Ω•(A) Ω•D(A)

πD
Ω•+1(A) Ω•+1

D (A)

d̃d

(1.1.1)

commutes.

1.2 Hermitian structure

Definition 1.2.1. Let E be a finitely generated projective module over A . A Hermitian

structure on E is an A-valued positive-definite sesquilinear mapping 〈 , 〉A such that,

1. 〈ξ, ξ′〉∗A = 〈ξ′, ξ〉A , ∀ ξ, ξ′ ∈ E.

2. 〈ξ, ξ′.a〉A = (〈ξ, ξ′〉A).a , ∀ ξ, ξ′ ∈ E , ∀ a ∈ A.

3. The map ξ 7−→ Φξ from E to E∗ , given by Φξ(η) = 〈ξ, η〉A , ∀η ∈ E , gives conjugate

linear A-module isomorphism between E and E∗. This property will be referred as

the self-duality of E.

Any free A-module E0 = Aq has a Hermitian structure on it, given by 〈 ξ, η 〉A =∑q
j=1 ξ

∗
j ηj , ∀ ξ = (ξ1, . . . , ξq) , η = (η1, . . . , ηq) ∈ E0 . We refer this as the canonical Her-

mitian structure on Aq. For finitely generated projective module existence of Hermitian

structure is provided by following Lemma.

Lemma 1.2.2. (a) A finitely generated projective module of the form pAq, where p ∈

Mq(A) a self-adjoint idempotent, has a Hermitian structure on it.

(b) Let A be a C∗-algebra or a dense subalgebra in a C∗-algebra stable under the

holomorphic function calculus. Every finitely generated projective module E over A is
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isomorphic as a f.g.p module with pAq where p is a self-adjoint idempotent, that is a

projection. Hence E has a Hermitian structure on it.

Proof. (a) With respect to the canonical Hermitian structure 〈 p∗ξ, η 〉A = 〈 ξ, pη 〉A holds

for any p ∈ Mq(A). Suppose E = pAq be a f.g.p module with p a projection in Mq(A).

The canonical structure 〈 ξ, η 〉A =
∑
ξ∗j ηj on Aq will induce a pairing on E . We have to

show that ξ 7−→ Φξ gives an A-module isomorphism between E and E∗. It is enough to

check only the surjectivity of this map. In order to do so let’s take an element f ∈ E∗.

Then f̃ = f ◦ π is an element of (Aq)∗ where π : Aq −→ pAq is the map ξ 7−→ pξ. By

definition (1.2.1) there exists η ∈ Aq s.t f̃ = Φη. Consider any element pξ ∈ E with

ξ ∈ Aq. Then,

f(pξ) = f ◦ π(pξ) = f̃(pξ) = 〈 η, pξ 〉A = 〈 p∗η, pξ 〉A = 〈 pη, pξ 〉A = Φpη(pξ).

Hence f = Φpη with η ∈ Aq. So the induced pairing on E gives a Hermitian structure on

it.

(b) Let E be a f.g.p module over A . There exists an A-module F such that E
⊕
F ∼=

Aq for some natural number q. Once we fix such an F we let p : Aq −→ Aq given by

p(e + f) = e for e ∈ E and f ∈ F . So p is an idempotent in Mq(A) with E = pAq. By

([41], page 101) we see that in a C∗-algebra (or ∗-subalgebra of a C∗-algebra which is

stable under holomorphic function calculus) every idempotent is similar to a selfadjoint

idempotent i.e., a projection and this similarity is witnessed by the invertible element

z = ((2p∗ − 1)(2p− 1) + 1)1/2. Since A is closed under holomorphic function calculus

the invertible element z actually belongs to Mq(A). Hence p̃ = zpz−1 is a projection in

Mq(A) and Ẽ = p̃Aq ∼= pAq = E . Then one restricts the Hermitian structure on Aq to

Ẽ and endows E with the Hermitian structure obtained via the isomorphism between E

and Ẽ . 2

Remark 1.2.3. The concept of Hermitian structure can be defined for f.g.p modules

over involutive algebras and part (a) of Lemma (1.2.2) still holds. But part (b) requires

the more finer property of closure under holomorphic function calculus.
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Remark 1.2.4 (Open Question). We do not know whether a finitely generated pro-

jective module over an involutive algebra always admits Hermitian structure.

1.3 Connection, Curvature for a Dynamical system

Definition 1.3.1. A C∗-dynamical system with an invariant trace is a quadruple

(A, G, α, τ) where

1. A is a C∗-algebra;

2. G is a Lie group acting strongly on A ;

3. α : G −→ Aut(A) is the strong action of G on A ;

4. τ is a G-invariant faithful trace on A .

Here strong action means that for any a ∈ A the map g 7−→ αg(a) is a continuous

homomorphism, where Aut(A) denotes the group of ?-automorphisms of A. It should

be noted that G can be any locally compact group ([33]) but in our case we only work

with Lie groups. We say that a ∈ A is smooth if the map g 7−→ αg(a) from G to the

normed spaceA is smooth. The involutive algebraA∞ = {a ∈ A : a is smooth} is a norm

dense subalgebra of A, called the smooth subalgebra. Note that this is unital as well. One

crucial property enjoyed by this algebra is that it is closed under the holomorphic function

calculus inherited from the ambient C∗-algebra A. Let Lie(G) be the Lie algebra of G.

Then we have a representation δ of Lie(G) into the Lie algebra Der(A) of derivations on

A given by

δX(a) = d
dt
|t=0 αexp(tX)(a) ,

where exp : Lie(G) −→ G is the exponential map.

Definition 1.3.2. Let E be a f.g.p module over A with a Hermitian structure. A con-

nection (on E) is a C-linear map ∇ : E −→ E ⊗ Lie(G)∗ such that, for all X ∈ Lie(G)

and ξ ∈ E, a ∈ A one has
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∇X(ξ · a) = ∇X(ξ) · a+ ξ · δX(a) .

We shall say that ∇ is compatible with respect to the Hermitian structure on E iff :

〈∇X ξ , ξ
′〉A + 〈ξ ,∇X ξ

′〉A = δX(〈 ξ, ξ′ 〉A) , ∀ ξ , ξ′ ∈ E , ∀X ∈ Lie(G) .

In ([12]) existence of compatible connection has been discussed. We will denote the set

of compatible connections on E by C(E). The algebra End(E) has a natural involution

given by

〈T ∗ξ, η 〉A = 〈 ξ, Tη 〉A ∀ ξ, η ∈ E , T ∈ End(E) .

For any two compatible connections ∇,∇′ it can be easily checked that ∇X − ∇′X is a

skew-adjoint element of End(E) for each X ∈ Lie(G). The curvature Θ∇ of a connection

∇ is the alternating bilinear End(E)-valued form on Lie(G) defined by

Θ∇ : ∧2(Lie(G)) −→ End(E)

Θ∇(X ∧ Y ) := [∇X ,∇Y ]−∇[X,Y ] , ∀X, Y ∈ Lie(G) .

This measures the extent to which ∇ fails to be a Lie algebra homomorphism. A simple

calculation will assure that Θ∇ takes value in End(E). In fact we can say something

more.

Lemma 1.3.3. The range of Θ∇ is contained in End(E)skew := {T ∈ End(E) : T ∗ =

−T}.

Proof. We have to show that 〈Θ∇(X ∧ Y )(ξ), η 〉A = −〈 ξ, Θ∇(X ∧ Y )(η) 〉A for all

ξ, η ∈ E . Now,

〈Θ∇(X ∧ Y )(ξ), η 〉A = 〈 ([∇X ,∇Y ]−∇[X,Y ])(ξ), η 〉A

= 〈∇X(∇Y (ξ))−∇Y (∇X(ξ))−∇[X,Y ](ξ), η 〉A

= 〈∇X(∇Y (ξ)), η 〉A − 〈∇Y (∇X(ξ)), η 〉A − 〈∇[X,Y ](ξ)), η 〉A

= δX(〈∇Y (ξ), η 〉A)− 〈∇Y (ξ),∇X(η) 〉A − δY (〈∇X(ξ), η 〉A)

+ 〈∇X(ξ),∇Y (η) 〉A − δ[X,Y ](〈ξ, η〉A) + 〈 ξ,∇[X,Y ](η) 〉A
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= δX(δY (〈ξ, η〉A)− 〈ξ,∇Y (η)〉A)− 〈∇Y (ξ),∇X(η)〉A)

− δY (δX(〈ξ, η〉A)− 〈ξ,∇X(η)〉A) + 〈∇X(ξ),∇Y (η)〉A)

− δ[X,Y ](〈ξ, η〉A) + 〈ξ,∇[X,Y ](η)〉A

= [δX , δY ](〈ξ, η〉A)− δ[X,Y ](〈ξ, η〉A) + 〈ξ,∇[X,Y ](η)〉A

+ 〈∇X(ξ),∇Y (η)〉A + δY (〈ξ,∇X(η)〉A)

−〈∇Y (ξ),∇X(η)〉A − δX(〈ξ,∇Y (η)〉A)

= 〈ξ,∇[X,Y ](η)〉A − 〈ξ,∇X∇Y (η)〉A + 〈ξ,∇Y∇X(η)〉A

= 〈ξ,∇[X,Y ](η)〉A − 〈ξ, [∇X ,∇Y ](η)〉A

= −〈ξ, ([∇X ,∇Y ]−∇[X,Y ])(η)〉A

= −〈 ξ, Θ∇(X ∧ Y )(η) 〉A .

and this completes the proof. 2

1.4 The Yang-Mills functional for Dynamical system

Initially in noncommutative geometry a C∗-dynamical system was the candidate for a

noncommutative space and Connes-Rieffel ([20]) successfully extended the classical notion

of Yang-Mills functional in this setting. It is certain functional defined on the affine space

C(E) of compatible connections on a Hermitian finitely generated projective module E .

Later Rieffel studied the critical points of this functional for noncommutative torus ([37]).

Recently, Kang ([26]) obtained a family of critical points for a specific module E0 over a

quantum Heisenberg manifold and Lee ([28]) constructed a connection ∇0 on E0 which

is a minimum of the Yang-Mills functional on the module E0. Let us now recall the

definition of the Yang-Mills functional.

Let (A, G, α, τ) be a C∗-dynamical system with an invariant trace τ . Fix an inner

product on Lie(G) which will remain fixed throughout. Next choose an orthonormal

basis {Z1, . . . , Zn} of Lie(G). The bilinear form on the space of alternating 2-forms with
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values in End(E) is given by

{Φ,Ψ}E =
∑
i<j

Φ(Zi ∧ Zj)Ψ(Zi ∧ Zj).

Recall that we have a G-invariant faithful trace τ on A. We can extend it to a canonical

faithful trace τ̃ on End(E) with the help of the following lemma from ([20]).

Lemma 1.4.1. If E is f.g.p A-module with a Hermitian structure, then every element

of End(E) can be written as a linear combination of elements of the form 〈 ξ, η 〉E for

ξ, η ∈ E, where 〈 ξ, η 〉E(ζ) = ξ〈 η, ζ 〉A, ∀ ζ ∈ E.

Proof. Let E = pAq where p ∈Mq(A) is an idempotent and {e1, . . . , eq} be the standard

basis for Aq. For any given T ∈ End(E) one can write T =

q⊕
i=1

Ti , where Ti = πi ◦ T, πi

denotes the projection onto the i-th component of Aq. Then Ti(ξ) = 〈ηi, ξ〉A for some

ηi ∈ E , which follows from self duality of E . Then one can show directly that T =∑
〈 pei, ηi 〉E . 2

Now, using this lemma, we define a linear functional τ̃ on End(E) as

τ̃ : End(E) −→ C

τ̃(〈 ξ, η 〉E) := τ(〈η, ξ〉A) .

Lemma 1.4.2. τ̃ defined above, is a trace on End(E).

Proof. One can easily check that 〈 ξ1, η1 〉E〈 ξ2, η2 〉E = 〈 ξ1〈η1, ξ2〉A, η2 〉E . Now use the

fact that τ is a trace on A. 2

Moreover it can be shown that τ̃ is faithful (see [20]). Finally, the Yang-Mills func-

tional on C(E) is given by

YM (∇) := −τ̃({Θ∇, Θ∇}E) .

Since Θ∇ takes value in End(E)skew (Lemma 1.3.3), this minus sign will force YM to

take nonnegative real values.

10



1.5 From Dynamical systems to Spectral triples

Starting from a C∗-dynamical system there is a way to construct a candidate for

spectral triple but there is no guarantee that the resulting object is truely a spectral

triple. One has to verify the conditions for being a spectral triple on a case by case basis

for each examples. The construction is the following.

Given a C∗-dynamical system (A, G, α) with a G-invariant faithful trace τ on A,

consider the G.N.S Hilbert space H̃ = L2(A, τ). If dimension of the Lie group G is

m, letting t = 2[m/2] , there exist m matrices in Mt(C) denoted by γ1, γ2, · · · , γm (called

Clifford gamma matrices), such that, γrγs + γsγr = 2δrs , r, s ∈ {1, . . . ,m} , where δrs is

the Kronecker delta function. Let H = H̃ ⊗ Ct and

δ̃j(a) = d
dt
|t=0 αexp(tZj)(a) .

where {Z1, . . . , Zm} is the fixed orthonormal basis of Lie(G). We define D :=
∑m

j=1 δj⊗γj

where δj = (−
√
−1)δ̃j . Then (A,H, D) is a candidate for a spectral triple.

However, there is no general theory to guarantee that D will be self-adjoint and have

compact resolvent and one has to check for each example on a case by case basis. It is

known that for noncommutative tori ([15],[23]) and the quantum Heisenberg manifolds

([9]) one can obtain a genuine spectral triples through this formalism.

1.6 Connections and Curvature for Spectral triples

Definition 1.6.1 ([15]). Let (A,H, D) be a spectral triple and E be a Hermitian finitely

generated projective module over A . A compatible connection on E is a C-linear mapping

∇ : E −→ E ⊗A Ω1
D such that

1. ∇(ξa) = (∇ξ)a+ ξ ⊗ da, ∀ ξ ∈ E , a ∈ A;

2. 〈 ξ,∇η 〉 − 〈∇ξ, η 〉 = d〈 ξ, η 〉A ∀ ξ, η ∈ E (Compatibility).
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The meaning of the last equality in Ω1
D is, if ∇(ξ) =

∑
ξj ⊗ ωj, with ξj ∈ E , ωj ∈

Ω1
D(A), then 〈∇ξ, η〉 =

∑
ω∗j 〈ξj, η〉A. Any finitely generated projective right module has

a connection. An example of such is the Grassmannian connection ∇0 on E = pAq,

given by ∇0(ξ) = pdξ, where dξ = (dξ1, . . . , dξq). This connection is compatible with the

Hermitian structure

〈ξ, η〉A =

q∑
k=1

ξ∗k ηk , ∀ ξ, η ∈ pAq .

Also, any two compatible connections can only differ by an element of HomA(E , E ⊗A

Ω1
D(A)). That is, the space of all compatible connections on E , which we denote by

C̃(E), is an affine space with the associated vector space HomA(E , E ⊗A Ω1
D(A)). The

connection ∇ extends to a unique linear map ∇̃ : E ⊗ Ω1
D −→ E ⊗ Ω2

D such that

∇̃(ξ ⊗ ω) = (∇ξ)ω + ξ ⊗ d̃ω, ∀ ξ ∈ E , ω ∈ Ω1
D . (1.6.1)

It can be easily checked that ∇̃, defined above, satisfies the Leibniz rule, i,e.

∇̃(ηa) = ∇̃(η)a− ηd̃a , ∀ a ∈ A, η ∈ E ⊗ Ω1
D .

A simple calculation shows that Θ = ∇̃ ◦ ∇ is an element of HomA(E , E ⊗A Ω2
D) and is

called the curvature of the connection ∇.

1.7 The Yang-Mills functional for Spectral triple

It has been accepted that the geometry of noncommutative spaces is fully encoded in

a spectral triple. A recent deep theorem of Connes strengthens this point ([17]). Because

of this realization it was necessary to define the Yang-Mills functional in this setting.

Connes sucessfully did this in his book ([15]) using the dga Ω•D. Its definition is the

following.

Let (A,H, D) be a d-summable spectral triple. Recall that Ω2
D
∼= π(Ω2)/π(dJ

(1)
0 ).
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Let H2 be the Hilbert space completion of π(Ω2) with the inner-product

〈T1, T2〉 := Trω(T ∗1 T2|D|−d), ∀T1, T2 ∈ π(Ω2). (1.7.1)

Let H̃2 be the Hilbert space completion of π(dJ
(1)
0 ) with the above inner-product. Clearly

H̃2 ⊆ H2. Let P be the orthogonal projection of H2 onto the orthogonal complement of

the subspace π(dJ
(1)
0 ). Now define 〈 [T1], [T2] 〉Ω2

D
= 〈PT1, PT2〉, for all [Tj] ∈ Ω2

D . This

gives a well defined inner-product on Ω2
D . Viewing E = pAq we have an embedding

HomA(E , E ⊗A Ω2
D) ∼= HomA(pAq, p(Ω2

D)q) ⊆ HomA(Aq, (Ω2
D)q) .

Now for φ, ψ ∈ HomA(E , E ⊗A Ω2
D), define 〈〈φ, ψ〉〉 :=

∑
k〈φ(pẽk), ψ(pẽk)〉Ω2

D
where

{ẽ1, . . . , ẽq} is the standard basis of Aq as A-bimodule. Finally, the Yang-Mills functional

on C̃(E) is defined by, YM (∇) := 〈〈Θ,Θ 〉〉 .

Proposition 1.7.1. The definition of Yang-Mills does not depend on the choice of the

projection used to describe E.

Proof. Let E ∼= p1Aq and E ∼= p2Al be two isomorphisms. Then there is a unitary

U ∈Mq+l(A) such that p̃2 = Up̃1U
∗ where

p̃1 =

p1 0

0 0

 , p̃2 =

p2 0

0 0

 .

Hence w.l.o.g. we can assume l = n = q and there is a unitary U ∈ Mn(A) such that

p2 = Up1U
∗. Let M = {A ∈ Mn(Ω2

D) : p1A = A} and M′ = {B ∈ Mn(Ω2
D) : p2B = B}.

We have obvious bijections HomA(p1An, p1An⊗AΩ2
D) −→M and HomA(p2An, p2An⊗A

Ω2
D) −→ M′ such that the induced bijection Ψ : M → M′ is given by A 7−→ UA.

Observe that Ψ makes sense on Mn(π(Ω2)). Using the inner product (1.7.1) we can

convert Mn(π(Ω2)) into an inner product space. Clearly Ψ is inner product preserving

and respects π(dJ1
0 ). Recall that Ω2

D
∼= π(Ω2)/π(dJ1

0 ), hence Ψ induces an inner product

preserving map on Mn(Ω2
D). The equality 〈〈Θ,Θ 〉〉 = 〈〈Ψ(Θ),Ψ(Θ) 〉〉 shows that YM

does not depend on the choice of projection p in E = pAq. 2
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Chapter 2

Equivalence of the two approaches

to Yang-Mills theory on

Noncommutative Tori

In the previous chapter we have encountered two definitions of the Yang-Mills func-

tional, one for C∗-dynamical systems and the other for spectral triples. In this chapter we

will answer a natural question of equivalence of these approaches to Yang-Mills functional

for the noncommutative n-torus.

Our aim here is to prove two theorems, one regarding the structure of a finitely

generated projective module endowed with a Hermitian structure over spectrally invariant

subalgebras of C∗-algebras, and the other the equivalence of Yang-Mills approaches on

noncommutative n-torus. The equivalence for n=2 case was addressed by Connes in ([15],

Proposition 13, page 582). Here we take up the higher dimensional noncommutative torus

and show that even in this case it holds.

We recall non-commutative n-torus AΘ as defined in ([36]). Let Θ be a n × n real

skew-symmetric matrix. Denote byAΘ, the universal C∗-algebra generated by n unitaries

U1, . . . , Un satisfying UkUm = e2πiΘkmUmUk, where k,m ∈ {1, . . . , n}. Throughout this

chapter i will stand for
√
−1. On the noncommutative n-torus AΘ the Lie group G = Tn

14



acts as follows :

α(z1,...,zn)(Uk) = zkUk ; k = 1, . . . , n.

The smooth subalgebra of AΘ is given by

A∞Θ := {
∑

ar U
r : {ar} ∈ S(Zn) , r = (r1, . . . , rn) ∈ Zn}

where S(Zn) denotes vector space of multisequences (ar) that decay faster than the inverse

of any polynomial in r = (r1, . . . , rn).

This subalgebra is equipped with a unique G-invariant tracial state, given by τ(a) =

a0 , where 0 = (0, . . . , 0). One can further assume that the lattice ΛΘ generated by

columns of Θ is such that ΛΘ + Zn is dense in Rn. The advantage of choosing such a

matrix Θ is that AΘ (hence A∞Θ ) becomes simple (see [23], Page 537). But in our case

simpleness of A∞Θ is not needed and hence we do not require any assumption on Θ except

skew-symmetry. The Hilbert space obtained by applying the G.N.S. construction to τ can

be identified with l2(Zn) ([36]).

2.1 Yang-Mills in the dynamical system approach

From now on we will work with A∞Θ only and hence for notational brevity we denote

it by AΘ. In this case L = Lie(G) is Rn. Let {ν1, ν2, . . . , νn} be the standard basis of

Rn and the associated derivations δν1 , . . . , δνn . We will denote δνj by δ̃j.

The derivations {δ̃1, . . . , δ̃n} on AΘ are given by

δ̃j(
∑
r

arU
r) = i

∑
r

rjarU
r . (2.1.1)

It can be easily checked that these derivations commute and they are ? -derivations of

AΘ i,e.

(δ̃j(a))∗ = δ̃j(a
∗) ; δ̃j(ab) = δ̃j(a)b+ aδ̃j(b).
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A connection is given by n maps ∇δ̃j
: E −→ E such that ∇δ̃j

(ξ.a) = ∇δ̃j
(ξ)a+ ξδ̃j(a). So

the space of compatible connections ∇ consists of n-tuples of maps (∇δ̃1
, . . . ,∇δ̃n

) such

that

∇(ξ) =
n∑
j=1

∇δ̃j
(ξ)⊗ ej , (2.1.2)

and

〈∇δ̃j
(ξ), η〉AΘ + 〈ξ,∇δ̃j

(η)〉AΘ = δ̃j (〈ξ, η〉AΘ) . (2.1.3)

Here {e1, · · · , en} denotes the basis dual to {ν1, · · · , νn} of the dual of the Lie algebra Rn.

The curvature of a connection ∇ is given by Θ∇(δ̃j∧ δ̃k) = [∇δ̃j
,∇δ̃k

] , because [δ̃j, δ̃k] = 0

in this case. We have [∇δ̃j
,∇δ̃k

]∗ = −[∇δ̃j
,∇δ̃k

] by Lemma (1.3.3). The bilinear form on

the space of End(E)-valued alternating 2-forms becomes

{Φ,Ψ}E =
∑
j<k

Φ(δ̃j ∧ δ̃k)Ψ(δ̃j ∧ δ̃k) .

Finally, the Yang-Mills functional of ∇ is given by

YM (∇) = −τ̃({Θ∇, Θ∇}E) = −τ̃

(∑
j<k

[∇δ̃j
,∇δ̃k

]2

)

= τ̃

(∑
j<k

[∇δ̃j
,∇δ̃k

]∗[∇δ̃j
,∇δ̃k

]

)
.

For notational simplicity we write

YM(∇) =
∑
j<k

τ̃ ([∇j,∇k]
∗[∇j,∇k]) . (2.1.4)
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2.2 Finitely generated projective modules with a

Hermitian structure

It is almost by definition that a finitely generated projective module over an associa-

tive algebra can be embedded in a free module as a complemented submodule. However

the situation is different for finitely generated projective modules with a Hermitian struc-

ture over involutive subalgebras of C∗-algebras. Let A be an involutive subalgebra of a

C∗-algebra A and E be a finitely generated projective module over A with a Hermitian

structure. Note that any free A module has a canonical Hermitian structure and one may

ask does there exist an embedding i : E −→ An such that (i) there exists a submodule

F of An with the property i(E) ⊕ F = An and (ii) the Hermitian structure of E is the

one induced from An. In this section we show that this is indeed the case provided A is

a subalgebra of a C∗-algebra and is closed under holomorphic function calculus. In this

result the emphasis is on this condition which is often overlooked. In fact we do not know

whether the result is true in general.

Let A be a unital subalgebra of a C∗-algebra stable under holomorphic functional

calculus and represented faithfully on a Hilbert space H. Let E be a f.g.p (right)module

over A equipped with a Hermitian structure on it. There is a right A-module F such

that E
⊕
F ∼= Aq for some q. Since Aq has a topology, E inherits the topology from Aq.

Also E∗ inherits topology from Aq because E∗
⊕
F∗ ∼= (Aq)∗ ∼= Aq. As because we have

topology now, we can expect the isomorphism between E and E∗ to be topological, which

turns out to be true by the following lemma.

Lemma 2.2.1. If two finitely generated projective A-modules E1 and E2 are algebraically

isomorphic then they are also isomorphic as topological vector spaces.

Proof. Since both the modules are projective, we can find F1 and F2 such that, E1

⊕
F1
∼=

Ak and E2

⊕
F2
∼= Al. Then, E1

⊕
F1

⊕
Al ∼= Ak+l and E2

⊕
F2 ⊕ Ak ∼= Ak+l. Hence

we can write E1 = p1Ak+l and E2 = p2Ak+l, where p1, p2 ∈Mk+l(A) are idempotents. Let

uj : Ak+l −→ Ej denote the projection maps and vj : Ej −→ Ak+l denote the inclusion
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maps for j = 1, 2. If we denote the isomorphism between E1 and E2 by φ then considering

f = v2 ◦φ ◦u1 and g = v1 ◦φ−1 ◦u2 in HomA(Ak+l,Ak+l), it is easily seen that f ◦ g = p2

and g ◦ f = p1. If we choose

p̃1 =

p1 0

0 0

 , p̃2 =

p2 0

0 0



U =

 f 1− f ◦ g

1− g ◦ f g


then we see that p̃2 = Up̃1U

−1. Since f, g both are A-linear maps, U is also an A-linear

map from Aq to Aq where q = 2(k + l). Since A is unital, U ∈ Mq(A). Hence U is

bounded and induces a topological isomorphism between E1, E2. 2

Lemma 2.2.2. All Hermitian structures on a free module over A are isomorphic to each

other.

Proof. The canonical Hermitian structure on Aq was given by 〈ξ, η〉A =
∑q

k=1 ξ
∗
kηk. We

show that any other Hermitian structure is isomorphic to this one. Let 〈 , 〉′ : Aq×Aq −→

A be another Hermitian structure on Aq. Let {e1, . . . , eq} be standard basis of Aq. Let

T = ((trs)) be given by tsr = 〈er, es〉′. Then 〈ξ, η〉′ =
∑
r,s

〈erξr, esηs〉′ =
∑
r,s

ξ∗r 〈er, es〉′ηs.

That is, 〈ξ, η〉′ = ξ∗Tη, where T ∈ Mq(A) is positive-definite. Hence T is a positive

element in the C∗-algebra Mq(B(H)). Note that for ξ ∈ Aq, ξ∗ = (ξ∗1 , . . . , ξ
∗
q ) where

ξ = (ξ1, . . . , ξq). We consider elements of Aq as column vector, whereas their ∗ will

denote row vector. So here ξ∗ is a row vector and ξ is a column vector. We denote 〈 , 〉′

by 〈 , 〉T . Hence, Hermitian structures on Aq are parametrized by such T . We show that

T is one to one. Suppose Tξ = 0. Then for any η ∈ E , we get Φξ(η) = ξ∗Tη = (Tξ)∗η = 0,

showing Φξ = 0. Since ξ 7−→ Φξ is an isomorphism, we get ξ = 0. Hence T is one to one.

To see T is onto, we pick any ζ from Aq. Then η 7−→ ζ∗η is a A-linear map on Aq taking

value in A (we are dealing with right A-module). Hence, there exists ξ in Aq such that
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Φξ(η) = ζ∗η = ξ∗Tη = (Tξ)∗η .

Hence ζ = Tξ , showing T is onto. We define

T̃ : Aq −→ Aq

T̃ (Tξ) = ξ

To show this map is continuous, let Tξk → Tξ in Aq. Then ξ∗kTη → ξ∗Tη for any η

because multiplication is continuous with respect to the topology of Aq. Hence Φξk → Φξ .

By Lemma (2.2.1) ξ 7−→ Φξ is a continuous isomorphism. Hence we get ξk → ξ, which

shows continuity of T̃ . Thus T has a bounded inverse T̃ implying spectrum of T is away

from zero. Since T is positive,
√
T is a holomorphic function of T . Now define

Ψ : Aq −→ Aq

Ψ(ξ) =
√
Tξ

Then, 〈ξ, η〉T = ξ∗Tη = ξ∗
√
T
√
Tη = 〈Ψ(ξ),Ψ(η)〉. Since A is stable under holomorphic

functional calculus in B(H), inverse of T i,e. T̃ lies in Mq(A) ⊆ Mq(B(H)) (see [38]).

Invertibility of T in Mq(A) gives invertibility of Ψ. So Ψ gives an isomorphism between

the canonical Hermitian structure 〈 , 〉A on A and Hermitian structure obtained throught

T . Hence we are done. 2

Using this lemma we can conclude the following fact about Hermitian structures on

a f.g.p module which is also important in our computation of the Yang-Mills functional.

Theorem 2.2.3. Let E be a f.g.p A-module with a Hermitian structure. Then we can

have a self-adjoint idempotent p ∈ Mq(A) such that E = pAq and E has the induced

Hermitian structure.

Proof. Let E be a f.g.p A-module with a Hermitian structure 〈 , 〉E . Because E is pro-

jective, we can have an A-module F such that E
⊕
F ∼= Aq for some natural number

q. Since F is also f.g.p A-module, by Lemma (1.2.2) F has a Hermitian structure say

〈 , 〉F . Then E
⊕
F posseses a Hermitian structure 〈 , 〉 given by
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〈(e1, f1), (e2, f2)〉 = 〈e1, e2〉E + 〈f1, f2〉F ,

i,e. we get a Hermitian structure on Aq coming from E and F . By our previous lemma,

this Hermitian structure is isomorphic with the canonical one. Note that E is orthogonal

to F with respect to this Hermitian structure. Let p be a projection from Aq onto E , i,e.

p(e+ f) = e. Then E = pAq. Now,

〈p(e1 + f1), (e2 + f2)〉 = 〈e1, e2〉E + 〈e1, f2〉F

= 〈e1, e2〉E

= 〈e1, p(e2 + f2)〉E

= 〈e1 + f1, p(e2 + f2)〉.

which shows that p is self-adjoint. Once we have a self-adjoint p, we can now restrict the

Hermitian structure on Aq to E (recall the proof of part (a) of Lemma 1.2.2) and hence

E has the induced Hermitian structure. 2

2.3 Comparison between the two approaches

In this section we work out the Yang-Mills action functional in the second formu-

lation and show that this is same as the one coming from the C∗-dynamical system

formulation. In our case of the non-commutative n torus AΘ, the Lie group is Tn

and hence we get n Clifford gamma matrices γ1, . . . , γn . We define D :=
∑n

j=1 δj ⊗ γj

where δj = (−i)δ̃j (recall the definition of δ̃j from 2.1.1 ). Then D becomes self-adjoint

on H = H̃ ⊗ CN with domain AΘ ⊗ CN , N = 2[n/2]. Moreover |D|−n lies in L(1,∞)

with Trω(|D|−n) = 2Nπn/2/(n(2π)nΓ(n/2)) (see [23], Page 545) and (AΘ,H, D) gives us

a (n,∞)-summable spectral triple. Following lemmas and propositions determine the

Connes’ calculus Ω1
D , Ω2

D along with the product Ω1
D × Ω1

D −→ Ω2
D and differentials d̃ .

Proposition 2.3.1. Ω1
D
∼= AΘ ⊕ . . .⊕AΘ︸ ︷︷ ︸

n times

.
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Proof. We know that Ω1
D
∼= π(Ω1). Let ω ∈ Ω1, so ω =

∑
j ajdbj, aj, bj ∈ AΘ. Then,

π(ω) =
∑
j

(aj ⊗ I)[D, bj]

=
∑
j

(
n∑
l=1

ajδl(bj)⊗ γl

)
.

Since {γ1, . . . , γn} ⊆ MN(C) is a linearly independent set, their linear span forms a n-

dimensional vector space Cn where we identify γl with αl = (0, . . . , 1, . . . , 0) ∈ Cn with 1

in the l-th place. {α1, . . . , αn} is the canonical basis for Cn. Hence we get Ω1
D ⊆ AΘ⊗Cn.

To see surjectivity notice that for any a ∈ AΘ, we can write a = aU∗l Ul = aU∗l δl(Ul) where

the element aU∗l d(Ul) ∈ Ω1. 2

Remark 2.3.2. Henceforth throughout the chapter {σ1, . . . , σn} will denote the standard

basis of AnΘ as free AΘ-bimodule where σk = (0, . . . , 1, . . . , 0)︸ ︷︷ ︸
n tuple

with 1 in the k-th place;

whereas {ẽ1, . . . , ẽq} will stand for the standard basis of AqΘ where ẽl = (0, . . . , 1, . . . , 0)︸ ︷︷ ︸
q tuple

with 1 in the l-th place. We will reserve this notation for the rest of this chapter. Under

the identification in the above proposition, σk is identified with U∗k δk(Uk)⊗ γk in Ω1
D for

k ∈ {1, . . . , n}.

Proposition 2.3.3. Ω2
D
∼= AΘ ⊕ . . . . . .⊕AΘ︸ ︷︷ ︸

n(n−1)/2 times

.

Proof. We know that Ω2
D
∼= π(Ω2)/π(dJ

(1)
0 ). Let ω ∈ Ω2 and write ω =

∑
r ardbrdcr ,

where ar, br, cr ∈ AΘ . Then

π(ω) =
∑
r

(ar ⊗ I)[D, br][D, cr]

=
∑
r

(ar ⊗ I)

(
n∑
j=1

δj(br)⊗ γj

)(
n∑
k=1

δk(cr)⊗ γk

)

=
∑
r

(
n∑
j=1

arδj(br)⊗ γj

)(
n∑
k=1

δk(cr)⊗ γk

)
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=
∑
r

((
n∑
j=1

arδj(br)δj(cr)⊗ I

)
+
∑
p<q

(arδp(br)δq(cr)− arδq(br)δp(cr))⊗ γpγq

)
.

Since we know that γ2
l = I and γlγm = −γmγl for l 6= m, we have

arδp(br)δq(cr)⊗ γpγq + arδq(br)δp(cr)⊗ γqγp

= (arδp(br)δq(cr)− arδq(br)δp(cr))⊗ γpγq.

Now γlγm is independent with all γpγq if l,m /∈ {p, q}. Hence, π(Ω2) ⊆
1+n(n−1)/2⊕

l=1

A(l)
Θ

where A(l)
Θ = AΘ ∀ l , because total number of the elements (arδp(br)δq(cr) ⊗ γpγq −

arδq(br)δp(cr) ⊗ γpγq) is n(n − 1)/2. To show equality we take any non-zero a ∈ AΘ

and b = U1 , c = U∗1 . Then adU1dU
∗
1 ∈ Ω2 and π(adU1dU

∗
1 ) = −a ⊗ I is a non-zero

element of π(Ω2). Similarly for each p, q we consider aU∗qU
∗
pd(Up)d(Uq) ∈ Ω2. Then

π(aU∗qU
∗
pd(Up)d(Uq)) = a⊗ γpγq. This shows that the above inclusion is an equality.

Now we calculate π(dJ
(1)
0 ). We have ω ∈ J (1)

0 implies ω =
∑

s asdbs where as, bs ∈ AΘ,

such that
∑
s

(as ⊗ I)[D, bs] = 0. So we get
∑
s

(as ⊗ I)

(
n∑
j=1

δj(bs)⊗ γj

)
= 0, that is,

n∑
j=1

(∑
s

asδj(bs)

)
⊗ γj = 0. But γ1, . . . , γn being linearly independent we get

∑
s

asδj(bs)⊗ γj = 0, ∀j = 1, . . . , n. (2.3.1)

Now dω =
∑
s

dasdbs . So,

π(dω) =
∑
s

[D, as][D, bs]

=
∑
s

(
n∑
j=1

δj(as)⊗ γj

)(
n∑
k=1

δk(bs)⊗ γk

)

=
∑
s

(
(
n∑
j=1

δj(as)δj(bs)⊗ I) + . . .+ (δp(as)δq(bs)− δq(as)δp(bs))⊗ γpγq + . . .

)

Now, from equation (2.3.1) we get
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∑
s

δp(as)δq(bs)⊗ γpγq = −
∑
s

asδpδq(bs)⊗ γpγq ,

and ∑
s

δq(as)δp(bs)⊗ γqγp = −
∑
s

asδqδp(bs)⊗ γqγp .

Hence,

(δp(as)δq(bs)− δq(as)δp(bs))⊗ γpγq = (−asδpδq(bs) + asδqδp(bs))⊗ γpγq

= 0

because δpδq = δqδp , ∀p, q ∈ {1, . . . , n}. Hence, π(dJ
(1)
0 ) ⊆ AΘ and to show the equality

take any a ∈ AΘ. Consider ω = a(U∗1dU1−1/2×U−2
1 d(U2

1 )) ∈ Ω1. Then we get π(ω) = 0

but π(dω) = a ⊗ I 6= 0 (which also shows non-triviality of ω). Hence we conclude

π(dJ
(1)
0 ) ∼= π(AΘ) ∼= AΘ. 2

Now we want to determine the differential d̃ : π(AΘ) −→ Ω1
D so that d̃(π(a)) =

π(da), ∀a ∈ AΘ.

Lemma 2.3.4. d̃ : π(AΘ) −→ Ω1
D is given by, π(a) 7−→ (δ1(a), . . . , δn(a)).

Proof. Pick any element π(a) ∈ π(AΘ). Then da ∈ Ω1 and hence π(da) = [D, a] =
n∑
j=1

δj(a) ⊗ γj. This is an element in Ω1
D, which is isomorphic to AnΘ and under this

isomorphism,
n∑
j=1

δj(a)⊗ γj goes to (δ1(a), . . . , δn(a)) in AnΘ. Hence the above definition

of d̃ is justified. 2

Next we want to determine the differential d̃ : Ω1
D −→ Ω2

D so that d̃(π(ω)) =

π(dω), ∀ω ∈ Ω1.

Lemma 2.3.5. d̃ : Ω1
D −→ Ω2

D is given by,

(0, . . . , a, . . . , 0) 7−→ ((δp(aU
∗
j )δq(Uj)− (δq(aU

∗
j )δp(Uj)))1≤p<q≤n

for a in the j-th place.
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Proof. For (0, . . . , a, . . . , 0) ∈ Ω1
D with a in the j-th place, we have aU∗j dUj ∈ Ω1, such

that π(aU∗j dUj) is identified with (0, . . . , a, . . . , 0). Now, d(aU∗j dUj) = d(aU∗j )dUj , an

element of Ω2. Now,

π(d(aU∗j )dUj) = [D, aU∗j ][D,Uj]

=

(
n∑
l=1

δl(aU
∗
j )⊗ γl

)(
n∑
k=1

δk(Uj)⊗ γk

)

=
n∑
l=1

δl(aU
∗
j )δl(Uj)⊗ I +

∑
p<q

(
δp(aU

∗
j )δq(Uj)− δq(aU∗j )δp(Uj)

)
⊗ γpγq.

Under the isomorphism Ω2
D
∼= An(n−1)/2

Θ ,
∑
p<q

(δp(aU
∗
j )δq(Uj)− δq(aU∗j )δp(Uj))⊗γpγq goes

to the required element in An(n−1)/2
Θ . 2

Finally the product map is recognized by the following lemma.

Lemma 2.3.6. The product map
∏̃

: Ω1
D × Ω1

D −→ Ω2
D is given by the following

(a1, . . . , an).(b1, . . . , bn) := ((apbq − aqbp))1≤p<q≤n .

Proof. We have a product
∏

: Ω1×Ω1 −→ Ω2 , given by
∏

(a1da2, b1db2) = a1da2b1db2 =

a1d(a2b1)db2 − a1a2db1db2 . Choose two elements (a1, . . . , an) and (b1, . . . , bn) in Ω1
D. We

have seen previously that π(
n∑

m=1

amU
∗
md(Um)) in π(Ω1) is identified with (a1, . . . , an).

Similarly for bm in place of am. Let ω =
n∑

m=1

amU
∗
md(Um) and ω′ =

n∑
m=1

bmU
∗
md(Um).

Now,

∏
(ω, ω′) =

(
n∑

m=1

amU
∗
md(Um)

)(
n∑
j=1

bjU
∗
j d(Uj)

)

=
n∑

m,j=1

amU
∗
md(Um)bjU

∗
j d(Uj)

=
n∑

m,j=1

(
amU

∗
md(UmbjU

∗
j )d(Uj)− amd(bjU

∗
j )d(Uj)

)
.

It is an element of Ω2. Applying π on it we get
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π
(∏

(ω, ω′)
)

=
n∑

m,j=1

(
amU

∗
m[D,UmbjU

∗
j ][D,Uj]− am[D, bjU

∗
j ][D,Uj]

)
=

n∑
m,j=1

(amU
∗
m(

n∑
k=1

δk(UmbjU
∗
j )⊗ γk)(

n∑
l=1

δl(Uj)⊗ γl)

−am(
n∑
r=1

δr(bjU
∗
j )⊗ γr)(

n∑
s=1

δs(Uj)⊗ γs))

=
∑
p<q

(
n∑

m,j=1

amU
∗
mδp(UmbjU

∗
j )δq(Uj)−

n∑
m,j=1

amU
∗
mδq(UmbjU

∗
j )δp(Uj)

−
n∑

m,j=1

amδp(bjU
∗
j )δq(Uj) +

n∑
m,j=1

amδq(bjU
∗
j )δp(Uj))⊗ γpγq

Now for each p and q,

n∑
m,j=1

(amU
∗
mδp(UmbjU

∗
j )δq(Uj)−

n∑
m,j=1

amU
∗
mδq(UmbjU

∗
j )δp(Uj)

−
n∑

m,j=1

amδp(bjU
∗
j )δq(Uj) +

n∑
m,j=1

amδq(bjU
∗
j )δp(Uj)

=
n∑

m=1

(amU
∗
mδp(UmbqU

∗
q )Uq − amδp(bqU∗q )Uq + amδq(bpU

∗
p )Up − amU∗mδq(UmbpU∗p )Up)

=
n∑

m=1

(amU
∗
mδp(Umbq)− amδp(bq) + amδq(bp)− amU∗mδq(Umbp))

=
n∑

m=1

(amU
∗
mδp(Um)bq − amU∗mδq(Um)bp)

= apbq − aqbp.

Hence for (a1, . . . , an), (b1, . . . , bn) ∈ Ω1
D, we get∏̃

((a1, . . . , an), (b1, . . . , bn)) = ((apbq − aqbp))1≤p<q≤n .

2

It can be easily checked that both the d̃ , defined above, are derivations. We first
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prove the following lemmas which will help us in the computation.

Lemma 2.3.7. The canonical trace τ on AΘ equals to Trω(|D|−n)−1
∫

, where Trω

denotes the Dixmier trace and
∫
a := Trω((a⊗ I)|D|−n) for all a ∈ AΘ.

Proof. We have τ(a) = τ(αg(a)), ∀g ∈ Tn because τ is G-invariant on AΘ. The

G.N.S Hilbert space L2(AΘ, τ) is identified with l2(Zn). For g ∈ Tn, αg(Uk1
1 . . . Ukn

n ) =

gkUk1
1 . . . Ukn

n . Here g = (g1, . . . , gn) ∈ Tn ; gk = gk11 . . . gknn . Define

Ug : L2(AΘ, τ) −→ L2(AΘ, τ)

a 7−→ αg(a)

It is easy to check this map is isometry with dense range. Hence extends as unitary

on L2(AΘ, τ). For ek ∈ l2(Zn), Ug(ek) = gkek. Since D(ek ⊗M) =
∑n

j=1 kjek ⊗ γjM

for M ∈ MN(C), it follows that D(Ug ⊗ I) = (Ug ⊗ I)D on L2(AΘ , τ) ⊗ CN . But

(Ug ⊗ I)D(U∗g ⊗ I) = D ⇒ (Ug ⊗ I)|D|(U∗g ⊗ I) = |D|. This further implies that

(Ug ⊗ I)|D|−n(U∗g ⊗ I) = |D|−n. Hence,

Trω((UgaU
∗
g ⊗ I)|D|−n) = Trω((Ug ⊗ I)(a⊗ I)|D|−n(U∗g ⊗ I))

= Trω((a⊗ I)|D|−n).

This shows that Trω(|D|−n)−1
∫

is also a G-invariant trace on AΘ. Now uniqueness of

G-invariant trace on AΘ gives τ(a) = Trω(|D|−n)−1Trω((a⊗ I)|D|−n), where Trω(|D|−n)

is a positive constant. 2

Lemma 2.3.8. If {γ1, . . . , γn} are Clifford gamma matrices in MN(C) then they enjoy

the property Trace(γlγm) = 0 for l 6= m.

Proof. This follows immediately from the fact that Clifford gamma matrices satisfy the

relation γlγm + γmγl = 2δlm ∀ l,m, where δlm is the Kronecker delta. 2

26



Lemma 2.3.9. The positive linear functional
∫

: T 7−→ Trω(T |D|−n)/Trω(|D|−n), for

T ∈ MN(AΘ), equals with τ ⊗ Trace , where ‘Trace’ denotes the ordinary matrix trace

(normalized) on MN(C).

Proof. Since D2 =
∑
δ2
j ⊗ IN , |D|−n commutes with 1 ⊗MN(C) it follows that

∫
is a

trace on MN(AΘ) ∼= AΘ ⊗MN(C). Our requirement is now fulfilled because of the fact

that τ ⊗ Trace is the unique extention (normalized) of τ on MN(AΘ). 2

Lemma 2.3.10. If l 6= m then any a ⊗ γlγm lies in the range of P where P is the

orthogonal projection onto the orthogonal complement of π(dJ
(1)
0 ) ⊆ π(Ω2).

Proof. Recall that any element of π(dJ
(1)
0 ) looks like x⊗I. Now 〈 a⊗γlγm , x⊗I 〉π(Ω2) =

Trω((a∗x⊗γlγm)|D|−n) = Trω(|D|−n)τ(a∗x)Trace (γlγm) = 0, since Trace (γlγm) = 0 by

Lemma (2.3.8). 2

Now we are ready to compute the Yang-Mills functional for AΘ. Since Ω1
D
∼= AnΘ,

any compatible connection ∇ : E −→ E ⊗ Ω1
D is given by n-tuple of maps (∇1, . . . ,∇n),

where ∇j : E −→ E are such that

∇(ξ) =
n∑
j=1

∇j(ξ)⊗ σj , (2.3.2)

and

〈ξ,∇j(η)〉 − 〈∇j(ξ), η〉 = δj(〈ξ, η〉AΘ). (2.3.3)

Here {σ1, . . . , σn} is the standard basis of AnΘ as free AΘ-bimodule. Then

∇̃ : E ⊗ Ω1
D −→ E ⊗ Ω2

D

is given by

∇̃(ξ ⊗ σm) =

(
n∑
j=1

∇j(ξ)⊗ σj

)
σm + ξ ⊗ d̃(σm)
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for each m = 1, . . . , n.

Proposition 2.3.11. The curvature Θ = ∇̃ ◦ ∇ is given by
∑

m<j[∇m,∇j](.) ⊗ σmσj

where σm, σj ∈ AnΘ and σmσj is the element in An(n−1)/2
Θ produced by the product map

∏̃
of Lemma (2.3.6).

Proof. Through direct computation we get

Θ(ξ) = ∇̃ ◦ ∇(ξ)

=
n∑

m=1

∇̃(∇m(ξ)⊗ σm)

=
∑
m

(
(
∑
j

∇j(∇m(ξ))⊗ σj)σm +∇m(ξ)⊗ d̃(σm)

)
=

∑
m,j

∇j(∇m(ξ))⊗ σjσm +∇m(ξ)⊗ d̃(σm)

=
∑
m<j

[∇m,∇j](ξ)⊗ σmσj +
∑
m

∇m(ξ)⊗ d̃(σm).

But

∑
m

∇m(ξ)⊗ d̃(σm) =
∑
m

∇m(ξ)⊗ ((δp(U
∗
m)δq(Um)− δq(U∗m)δp(Um))1≤p<q≤n

= 0

because δj(U
∗
m) = −U∗mδj(Um)U∗m . Hence Θ =

∑
m<j

[∇m,∇j] ⊗ σmσj . 2

Proposition 2.3.12. YM(∇) =
∑
m<j

τq([∇m,∇j]
∗[∇m,∇j]) upto a positive factor where

τq denotes the extended trace τ ⊗ Trace on Mq(AΘ).

Proof. Recall that 〈〈Θ,Θ〉〉 =

q∑
k=1

〈Θ(pẽk), Θ(pẽk) 〉Ω2
D

where {ẽ1, . . . , ẽq} denotes the

standard basis of AqΘ and E = pAqΘ . Let

[∇m,∇j](pẽk) = η(mjk) = pη(mjk) = (η
(mjk)
1 , . . . , η

(mjk)
q ) ∈ AqΘ .

Then from Proposition (2.3.11) we get
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Θ(pẽk) =
∑

m<j(η
(mjk)
1 σmσj, . . . , η

(mjk)
q σmσj) ,

an element of (Ω2
D)q. It is easily observed that as C-vector spaces Hom(E , E ⊗ Ω2

D) ∼=⊕
Hom(E , E). We can view End(E) as pMq(AΘ)p ⊆Mq(AΘ). We have an inner-product

on
⊕

Mq(AΘ) given by 〈(A1, . . . , At), (B1, . . . , Bt)〉 =
t∑

j=1

τq(A
∗
jBj). The following calcu-

lation shows that this inner-product becomes same with the one on Hom(E , E ⊗ Ω2
D).

〈Θ(pẽk), Θ(pẽk)〉 =
∑

m<j,l<r

〈 (η(mjk)
1 σmσj, . . . , η

(mjk)
q σmσj) , (η

(lrk)
1 σlσr, . . . , η

(lrk)
q σlσr) 〉

=
∑

m<j,l<r

q∑
s=1

〈 η(mjk)
s σmσj , η

(lrk)
s σlσr 〉Ω2

D

=
∑

m<j,l<r

q∑
s=1

〈 [η(mjk)
s ⊗ γmγj] , [η(lrk)

s ⊗ γlγr] 〉Ω2
D

=
∑

m<j,l<r

q∑
s=1

〈P (η(mjk)
s ⊗ γmγj) , P (η(lrk)

s ⊗ γlγr) 〉π(Ω2)

=
∑

m<j,l<r

q∑
s=1

Trω

(
(η(mjk)
s

∗
η(lrk)
s ⊗ γjγmγlγr)|D|−n

)
.

The last equality follows from Lemma (2.3.10). Now an application of Lemma (2.3.8)

and (2.3.9) shows that

〈〈Θ,Θ〉〉 = Trω(|D|−n)

q∑
k=1

∑
m<j

q∑
s=1

τ
(
η(mjk)
s

∗
η(mjk)
s

)
= Trω(|D|−n)

q∑
k=1

∑
m<j

τ ( 〈 [∇m,∇j](pẽk) , [∇m,∇j](pẽk) 〉AΘ )

= Trω(|D|−n)

q∑
k=1

∑
m<j

τ ( 〈 pẽk , [∇m,∇j]
∗[∇m,∇j](pẽk) 〉AΘ )

= Trω(|D|−n)
∑
m<j

τq ( [∇m,∇j]
∗[∇m,∇j] ) .

The last equality follows from the fact that for any T = ((trs)) ∈ pMq(AΘ)p , where

p ∈ Mq(AΘ) is a projection,

q∑
k=1

〈ẽk, T ẽk〉AΘ =

q∑
k=1

〈 pẽk, Tpẽk 〉AΘ =

q∑
r=1

trr . Hence

follows the proposition. 2
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Recall that {e1, . . . , en} denotes the standard basis choosen for Rn and {σ1, . . . , σn}

is the standard basis of Ω1
D. We have an one to one correspondence between these sets,

both being finite sets of same cardinality. The following theorem points out the main

result.

Theorem 2.3.13. Let C(E) and C̃(E) denote the affine space of compatible connections

for the first and second approaches respectively. Then both these are in one to one cor-

respondence through an affine isomorphism, and the value of Yang-Mills functional on

corresponding elements of these spaces are same upto a positive scalar factor. That is to

say that the following diagram

C(E) C̃(E)

R+ ∪ {0}

Φ

YMcYM

commutes, where c = 2Nπn/2/(n(2π)nΓ(n/2)).

Proof. Recall from equation (2.1.2) for any ∇ ∈ C(E), ∇(ξ) =
∑n

j=1∇j(ξ) ⊗ ej where

∇j : E −→ E . We define Φ(∇) = ∇̃ where

∇̃(ξ) =
n∑
j=1

(−i)∇j(ξ)⊗ σj .

It is easy to see that ∇̃ defines a connection. Given compatibility of ∇, we have to check

whether ∇̃ is compatible with respect to the Hermitian structure. This follows from the

following computation.

〈 ξ, ∇̃(η) 〉 − 〈 ∇̃(ξ), η 〉 =
n∑
j=1

(〈 ξ, (−i)∇j(η)⊗ σj 〉 − 〈 (−i)∇j(ξ)⊗ σj, η 〉 )

=
n∑
j=1

( 〈 ξ,∇j(η) 〉AΘ(−i)σj − iσ∗j 〈∇j(ξ), η 〉AΘ)

=
n∑
j=1

( 〈 ξ,∇j(η) 〉AΘ(−i)σj − iσj〈∇j(ξ), η 〉AΘ)
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= (−i)(〈 ξ,∇1(η)〉AΘ + 〈∇1(ξ), η 〉AΘ , . . . ,

〈 ξ,∇n(η)〉AΘ + 〈∇n(ξ), η 〉AΘ)

= (−i)(δ̃1( 〈 ξ, η 〉AΘ), . . . , δ̃n( 〈 ξ, η 〉AΘ))

= (δ1( 〈 ξ, η 〉AΘ), . . . , δn( 〈 ξ, η 〉AΘ))

= d̃ ( 〈 ξ, η 〉AΘ).

This shows the compatibility of ∇̃ with respect to the Hermitian structure and hence

∇̃ belongs to C̃(E). Conversely, for given ∇̃ ∈ C̃(E) recall from equation (2.3.2) that

∇̃(ξ) =
n∑
j=1

∇̃j(ξ)⊗ σj where ∇̃j : E −→ E . We define Φ−1(∇̃) = ∇ where

∇(ξ) =
n∑
j=1

i∇̃j(ξ)⊗ ej .

A similar computation shows the compatibility of ∇. So the elements of C(E) and C̃(E)

are in one-one correspondence. Recall from equation (2.1.4), for the finitely generated

projective AΘ-module E = pAqΘ we obtained for ∇ ∈ C(E)

YM(∇) =
∑
j<k

τ̃([∇j,∇k]
∗[∇j,∇k]) ,

where τ̃ was the trace on End(E). For Φ(∇) = ∇̃ we obtain from Proposition (2.3.12)

YM(∇̃) = Trω(|D|−n)
∑
j<k

τq([∇j,∇k]
∗[∇j,∇k]) ,

where τq was the extended trace of τ on Mq(AΘ). Identifying End(E) with pMq(AΘ)p ⊆

Mq(AΘ) we see that both τ̃ and τq are equal with τ ⊗ Trace. Hence follows the equality

of Yang-Mills for both the approaches except for the positive scalar factor Trω(|D|−n) =

2Nπn/2/(n(2π)nΓ(n/2)) , N = 2[n/2]. 2
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Chapter 3

Yang-Mills on Quantum Heisenberg

Manifolds

In this chapter our objective is to prove that both the Yang-Mills approaches discussed

in chapter 1 coincide for the Quantum Heisenberg manifolds.

Quantum Heisenberg manifolds(QHM) were introduced by Rieffel in ([35]) as strict

deformation quantization of Heisenberg manifolds. He introduced a parametric family of

deformations and for generic parameter values these are simple C∗-algebras carrying an

ergodic action of the Heisenberg group of 3×3 upper triangular matrices with ones on the

diagonal. They admit a unique invariant trace. Recently Kang ([26]) and Lee ([28]) has

studied Yang-Mills for the QHM following the dynamical system approach. It was shown

in ([9]) that in the case of QHM the general prescription that produces a candidate for a

spectral triple starting from a C∗ dynamical system gives rise to an honest spectral triple.

Therefore it is natural to ask whether even in this case these two notions of Yang-Mills

coincide and this is the content of this chapter. This parallels Theorem (2.3.13) in the

previous chapter where we obtained similar result for the noncommutative n-torus.

Notation : For x ∈ R, e(x) stands for e2πix where i =
√
−1.

Definition 3.0.14. For any positive integer c, let Sc denote the space of smooth functions

Φ : R× T× Z→ C such that
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• Φ(x+ k, y, p) = e(ckpy)Φ(x, y, p) for all k ∈ Z,

• for every polynomial P on Z and every partial differential operator X̃ = ∂m+n

∂xm∂yn
on

R×T the function P (p)(X̃Φ)(x, y, p) is bounded on K ×Z for any compact subset

K of R× T.

For each ~, µ, ν ∈ R, µ2 + ν2 6= 0, let A∞~ denote Sc with product and involution defined

by

(Φ ?Ψ)(x, y, p)

:=
∑
q

Φ(x− ~(q − p)µ, y − ~(q − p)ν, q)Ψ(x− ~qµ, y − ~qν, p− q) (3.0.1)

and

Φ∗(x, y, p) := Φ̄(x, y,−p). (3.0.2)

Then, π : A∞~ → B(L2(R× T× Z)) given by

(π(Φ)ξ)(x, y, p) =
∑
q

Φ(x− ~(q − 2p)µ, y − ~(q − 2p)ν, q)ξ(x, y, p− q) (3.0.3)

gives a faithful representation of the involutive algebra A∞~ . Ac,~µ,ν = norm closure of

π(A∞~ ) is called the Quantum Heisenberg Manifold.

We will identify A∞~ with π(A∞~ ) without any mention. Since we are going to work

with fixed parameters c, µ, ν, ~ we will drop them altogether and denote Ac,~µ,ν simply by

A~. Here the subscript remains merely as a reminiscent of Heisenberg only to distinguish

it from a general algebra.

Action of the Heisenberg group : Let c be a positive integer. Let us consider the

group structure on G = R3 = {(r, s, t) : r, s, t ∈ R} given by the multiplication

(r, s, t)(r′, s′, t′) = (r + r′, s+ s′, t+ t′ + csr′). (3.0.4)
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Later we will give an explicit isomorphism between G and H3, the Heisenberg group of

3× 3 upper triangular matrices with real entries and ones on the diagonal. Through this

identification we can identify G with the Heisenberg group. For Φ ∈ Sc, (r, s, t) ∈ R3 ≡ G,

(L(r,s,t)φ)(x, y, p) = e(p(t+ cs(x− r)))φ(x− r, y − s, p) (3.0.5)

extends to an ergodic action of the Heisenberg group on Ac,~µ,ν .

The Trace : The linear functional τ : A∞~ → C, given by τ(φ) =
∫ 1

0

∫
T φ(x, y, 0)dxdy

is invariant under the Heisenberg group action. So, the group action can be lifted to

L2(A∞~ ). We will denote the action at the Hilbert space level by the same symbol.

3.1 Yang-Mills in the dynamical system approach

We recall the definition of Yang-Mills in the setting of C∗-dynamical systems in the

context of QHM. Here the dynamics is governed by the Lie group G. We can identify G

withH3 through the isomorphism that identifies (r, s, t) ∈ G with the matrix


1 cs t

0 1 r

0 0 1

.

Let g be the Lie-algebra of G. We can identify g with the Lie-algebra of H3, which is

given by 3 × 3 upper triangular matrices with real entries with zeros on the diagonal.

Fix a real number α greater than one. This number will remain fixed throughout and we

will comment about it later. In this approach one has to fix an inner product structure

on the Lie algebra of the underlying Lie group and in our case we do so by declaring the

following basis,

X1 =


0 0 0

0 0 1

0 0 0

 , X2 =


0 c 0

0 0 0

0 0 0

 , X3 =


0 0 cα

0 0 0

0 0 0

 (3.1.1)
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as orthonormal. Their Lie bracket is given by

[X1, X3] = [X2, X3] = 0 , [X1, X2] = − 1

α
X3. (3.1.2)

The exponential map from g to G acts on these elements as follows

exp(rX1) = (r, 0, 0), exp(sX2) = (0, s, 0), and exp(tX3) = (0, 0, cαt).

For X ∈ g, let dX be the derivation of A∞~ given by dX(a) = d
dt
|t=0 Lexp(tX)(a). Let us

denote the dXj ’s, for j = 1, 2, 3 by dj. Then they are given by

d1(f) = −∂f
∂x
, (3.1.3)

d2(f) = 2πicpxf(x, y, p)− ∂f

∂y
, (3.1.4)

d3(f) = 2πipcαf(x, y, p). (3.1.5)

Proposition 3.1.1. Let E be a finitely generated projective A∞~ module. Then the space

C(E) of compatible connections is given by triples of linear maps ∇j : E → E , j = 1, 2, 3

such that

∇j(ξ.a) = ∇j(ξ).a+ ξ.dj(a), j = 1, 2, 3 (3.1.6)

dj(〈 ξ, ξ′ 〉A) = 〈∇j ξ , ξ
′〉A + 〈ξ ,∇j ξ

′〉A, ∀ ξ , ξ′ ∈ E , j = 1, 2, 3 . (3.1.7)

Proof. Given a compatible connection ∇ let ∇j = ∇Xj for j = 1, 2, 3. The condition

(3.1.6 , 3.1.7) holds because of the definition of ∇ (see 1.3). Conversely if (3.1.6 , 3.1.7)

holds and we define ∇ by specifying its components on the basis (3.1.1) such that ∇Xj =

∇j, then clearly the conditions of a compatible connection are satisfied. 2

For the QHM the curvature is given by

Θ∇(X1 ∧X3) = [∇X1 ,∇X3 ],
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Θ∇(X2 ∧X3) = [∇X2 ,∇X3 ],

Θ∇(X1 ∧X2) = [∇X1 ,∇X2 ] + 1
α
∇X3 .

Here the third equality uses the relation [X1, X2] = − 1
α
X3 from (3.1.2).

Definition 3.1.2. Let E be a finitely generated projective A∞~ module with a Hermitian

structure. Then the Yang-Mills action functional for a compatible connection ∇ ∈ C(E)

is given by

YM(∇) = −τ̃(([∇X1 ,∇X3 ])
2 + ([∇X2 ,∇X3 ])

2 + ([∇X1 ,∇X2 ] +
1

α
∇X3)

2)). (3.1.8)

3.2 The Equivalence of the two approaches

For our present purpose it is enough to recall the operators [D,φ] for φ ∈ Sc. Note

that here the dimension of the associated Lie group is three. Let σ1, σ2, σ3 be 2 × 2

self-adjoint trace-less matrices given by

σ1 =

1 0

0 −1

 , σ2 =

 0 −1

−1 0

 , σ3 =

 0 i

−i 0

 .

Then,

σ1σ2 = iσ3 , σ2σ3 = iσ1 , σ3σ1 = iσ2 .

Let φ ∈ Sc, then

[D,φ] =
∑

δj(φ)⊗ σj where δj(φ) = idj(φ) (3.2.1)

and the derivations dj are given by (3.1.3 , 3.1.4 , 3.1.5). The δj’s satisfy the following

commutation relations

[δ1, δ3] = [δ2, δ3] = 0 , [δ1, δ2] = − i
α
δ3. (3.2.2)
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Assumption: Henceforth for the rest of the paper we will only consider generic

parameter values namely 1, ~µ, ~ν are independent over Q.

The space of forms were computed in ([9]). In the following proposition we recall the

description of the space of forms as A∞~ −A∞~ -bimodules.

Proposition 3.2.1.

(i) The space of one forms as an A∞~ −A∞~ -bimodule is given by

Ω1
D(A∞~ ) = {

∑
aj ⊗ σj|aj ∈ A∞~ , σ′js as above } ⊆ A∞~ ⊗M2(C) ⊆ B(H)

∼= A∞~ ⊕A∞~ ⊕A∞~ .

(ii) π(Ωk(A∞~ )) = A∞~ ⊗M2(C) = A∞~ ⊕A∞~ ⊕A∞~ ⊕A∞~ for k ≥ 2.

(iii) π(dJ1
0 ) = A∞~ ⊗ I2 ⊆ A∞~ ⊗M2(C) ⊆ B(H).

(iv) The space of two forms as an A∞~ −A∞~ -bimodule is given by

Ω2
D(A∞~ ) = {

∑
aj ⊗ σj|aj ∈ A∞~ , σ′js as above } ⊆ A∞~ ⊗M2(C) ⊆ B(H)

∼= A∞~ ⊕A∞~ ⊕A∞~ .

(v) The product map from Ω1
D(A∞~ )× Ω1

D(A∞~ ) to Ω2
D(A∞~ ) is given by

(a⊗ σj) · (b⊗ σk) = (1− δjk)ab⊗ σjσk,∀j, k = 1, 2, 3.

Here δjk is the Kronecker delta.

Proof. Only (v) was not mentioned in ([9]). This follows because the space of forms

Ω1
D(A∞~ ), Ω2

D(A∞~ ) are identified with subspaces of A∞~ ⊗M2(C) and the multiplication

is induced from the multiplication on A∞~ ⊗M2(C). 2
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We also recall Proposition 14 from ([9]).

Proposition 3.2.2. If 1, ~µ, ~ν are independent over Q then the positive linear functional

on A∞~ ⊗M2(C) given by τ ′ : a 7→ trωa|D|−3 coincides with 1
2
(trω|D|−3)τ ⊗ tr where trω

is a Dixmier trace. Thus τ ′ = 1
2
(trω|D|−3)τ̃ , where τ̃ , is the trace on End(E) used in

definition (3.1.2).

Proposition 3.2.3. Assume {1, ~µ, ~ν} is rationally independent so that the algebra A∞~

becomes simple.

(i) The differential d̃ : A∞~ −→ Ω1
D(A∞~ ) satisfies d̃(a) =

∑3
j=1 δj(a)⊗ σj.

(ii) The differential d̃ : Ω1
D(A∞~ ) −→ Ω2

D(A∞~ ) satisfies

d̃(a⊗ σ1) =
∑
j=2,3

δj(a)⊗ σjσ1, (3.2.3)

d̃(a⊗ σ2) =
∑
j=1,3

δj(a)⊗ σjσ2, (3.2.4)

d̃(a⊗ σ3) = δ1(a)⊗ σ1σ3 + δ2(a)⊗ σ2σ3 +
i

α
a⊗ σ1σ2. (3.2.5)

Proof. (i) This follows from d̃(a) = [D, a] =
∑

j δj(a)⊗ σj.

(ii) The differential d̃ : Ω1
D(A∞~ ) −→ Ω2

D(A∞~ ) is defined in such a way that the

following diagram

πD
Ω1(A∞~ ) Ω1

D(A∞~ )

πD
Ω2(A∞~ ) Ω2

D(A∞~ )

d̃δ

commutes. Therefore to see how it acts on an element of Ω1
D(A∞~ ) we pick an element

and lift that to Ω1(A∞~ ) and then follow the diagram. Let φmn ∈ Sc be the function
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φm,n(x, y, p) = e(mx+ ny)δp0. These functions are eigenfunctions for δj’s and satisfy

δ1(φ10) = 2πφ10, δ2(φ10) = 0, δ3(φ10) = 0,

δ1(φ01) = 0, δ2(φ10) = 2πφ01, δ3(φ01) = 0.

Let ã = 1
2π
aφ∗10δ(φ10) ∈ Ω1. Then,

πD(ã) =
1

2π
(aφ∗10 ⊗ I2)(

3∑
j=1

δj(φ10)⊗ σj))

=
1

2π
(aφ∗102πφ10)⊗ σ1

= a⊗ σ1.

Therefore,

d̃(a⊗ σ1) = πD(δ(ã))

=
1

2π
(

3∑
j=1

δj(aφ
∗
10)⊗ σj)(2πφ10 ⊗ σ1)

=
∑
j 6=1

δj(a)⊗ σjσ1.

Similarly,

d̃(a⊗ σ2) =
∑
j 6=2

δj(a)⊗ σjσ2.

To see (3.2.5) observe that

d̃(aδ3(b)⊗ σ3) = d̃(a
∑
j

δj(b)⊗ σj)− d̃(aδ1(b)⊗ σ1)− d̃(aδ2(b)⊗ σ2)

= d̃(πD(aδ(b)))− d̃(aδ1(b)⊗ σ1)− d̃(aδ2(b)⊗ σ2)
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= πD(δ(a)δ(b))− d̃(aδ1(b)⊗ σ1)− d̃(aδ2(b)⊗ σ2)

=
∑

(δj(a)⊗ σj)(δk(a)⊗ σk)− d̃(aδ1(b)⊗ σ1)− d̃(aδ2(b)⊗ σ2)

mod π(δJ1)

= δ1(a)δ3(b)⊗ σ1σ3 + δ2(a)δ3(b)⊗ σ2σ3 + a[δ2, δ1](b)⊗ σ1σ2

−aδ3(δ1(b))⊗ σ3σ1 − aδ3(δ2(b))⊗ σ3σ2

= δ1(aδ3(b))⊗ σ1σ3 + δ2(aδ3(b))⊗ σ2σ3 + a[δ2, δ1](b)⊗ σ1σ2

= δ1(aδ3(b))⊗ σ1σ3 + δ2(aδ3(b))⊗ σ2σ3 +
i

α
aδ3(b)⊗ σ1σ2.

The last equality uses [δ2, δ1] = i
α
δ3 . Since span of elements of the form aδ3(b) forms an

ideal in A∞~ and A∞~ is simple, (3.2.5) follows. 2

Corollary 3.2.4. d̃(1⊗ σj) =


0 if j = 1, 2 ;

−1
α
⊗ σ3 if j = 3 .

Now we have all the ingredients to describe the space C̃(E) of compatible connections

on a finitely generated projective A∞~ -module E with a Hermitian structure.

Proposition 3.2.5. Let E be a finitely generated projective A∞~ module. Then the space

C̃(E) of compatible connections for the differential graded algebra Ω•D(A∞~ ) is given by

triples of linear maps ∇̃j : E −→ E , j = 1, 2, 3 such that,

∇̃j(ξ.a) = ∇j(ξ).a+ ξ.δj(a), j = 1, 2, 3 (3.2.6)

δj(〈 ξ, ξ′ 〉A) = 〈ξ , ∇̃j ξ
′〉 − 〈∇̃j ξ , ξ

′〉 , ∀ ξ , ξ′ ∈ E ,j = 1, 2, 3 . (3.2.7)

Proof. By Proposition (3.2.1) we can identify E ⊗A∞~ Ω1
D(A∞~ ) with the subspace∑

j E ⊗σj ⊆ E ⊗M2(C). Thus any compatible connection ∇̃ is prescribed by three maps

∇̃j : E −→ E such that

∇̃(ξ) =
∑3

j=1 ∇̃j(ξ)⊗ σj.
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Then

∇̃(ξ.a) =
3∑
j=1

∇̃j(ξ.a)⊗ σj

= ∇̃(ξ).a+ ξ ⊗ d̃(a)

=
3∑
j=1

∇̃j(ξ).a⊗ σj +
3∑
j=1

ξ.δj(a)⊗ σj.

Thus comparing coefficients of σj we get

∇̃j(ξ.a) = ∇j(ξ).a+ ξ.δj(a), j = 1, 2, 3.

For (3.2.7) note that

3∑
j=1

δj(〈ξ, ξ′〉)⊗ σj = d̃〈ξ, ξ′〉)

= (ξ, ∇̃ξ′)− (∇̃ξ, ξ′)

=
3∑
j=1

(〈ξ, ∇̃jξ
′〉 − 〈∇̃j ξ , ξ

′〉)⊗ σj.

This completes the proof. 2

Theorem 3.2.6. Let E be a finitely generated projective A∞~ module with a Hermitian

structure. Then Φ : C(E) −→ C̃(E) given by Φ(∇) = ∇̃, where ∇̃(ξ) = i∇(ξ) is well

defined and

1
2
(trω|D|−3)YM(∇) = YM(Φ(∇)) .

Proof. Let ∇ ∈ C(E) be a compatible connection and ∇j, j = 1, 2, 3 be its components

as defined in the proof of Proposition (3.1.1). If we define ∇̃j = i∇j, j = 1, 2, 3, then ∇̃j’s

satisfy (3.2.6) because δj = i.dj, j = 1, 2, 3 and (3.1.6) holds. Similarly (3.2.7) follows

from (3.1.7). Thus the triple ∇̃j, j = 1, 2, 3 defines a compatible connection ∇̃ ∈ C̃(E).

This proves the map Φ is well defined with the given domain and range. In fact it is an
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isomorphism. Let ∇̃ denote the extended connection as defined on (1.6.1). Then using

Propositions (3.2.1 , 3.2.3) we get

∇̃(ξ ⊗ σ1) =
∑
j 6=1

∇̃j(ξ)⊗ σjσ1

∇̃(ξ ⊗ σ2) =
∑
j 6=2

∇̃j(ξ)⊗ σjσ2

∇̃(ξ ⊗ σ3) =
∑
j 6=3

∇̃j(ξ)⊗ σjσ3 −
1

α
ξ ⊗ σ3.

The curvature Θ of the connection ∇̃ is given by Θ = ∇̃ ◦ ∇̃, which turns out to be,

Θ(ξ) = i[∇̃2, ∇̃3](ξ)⊗ σ1 + i[∇̃3, ∇̃1](ξ)⊗ σ2 + (i[∇̃1, ∇̃2]− 1

α
∇̃3)(ξ)⊗ σ3.

Repeated application of equation (3.2.7) gives,

δk(〈ξ, ∇̃j(η)〉 = 〈ξ, ∇̃k(∇̃j(η))〉 − 〈∇̃k(ξ), ∇̃j(η)〉, (3.2.8)

δj(〈ξ, ∇̃k(η)〉 = 〈ξ, ∇̃j(∇̃k(η))〉 − 〈∇̃j(ξ), ∇̃k(η)〉, (3.2.9)

δj(〈∇̃k(ξ), η〉 = 〈∇̃k(ξ), ∇̃j(η)〉 − 〈∇̃j(∇̃k(ξ)), η〉, (3.2.10)

δk(〈∇̃j(ξ), η〉 = 〈∇̃j(ξ), ∇̃k(η)〉 − 〈∇̃k(∇̃j(ξ)), η〉. (3.2.11)

Now, (3.2.8) − (3.2.9) + (3.2.10) − (3.2.11) gives,

〈ξ, [∇̃k, ∇̃j](η)〉 − 〈[∇̃j, ∇̃k](ξ), η〉 = [δk, δj]〈ξ, η〉). (3.2.12)

Combining (3.2.2) and (3.2.12) we get,

〈ξ, [∇̃1, ∇̃3](η)〉 = 〈[∇̃3, ∇̃1](ξ), η〉

〈ξ, [∇̃2, ∇̃3](η)〉 = 〈[∇̃3, ∇̃2](ξ), η〉

〈ξ, (i[∇̃1, ∇̃2]− 1

α
∇̃3)(η)〉 = 〈(i[∇̃1, ∇̃2]− 1

α
∇̃3)(ξ), η〉
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These relations give,

YM (∇̃) = 〈〈Θ,Θ 〉〉

=
1

2
(trω|D|−3)τ̃(−([∇̃1, ∇̃3])

2
− ([∇̃2, ∇̃3])

2
+ (i[∇̃1, ∇̃2]− 1

α
∇̃3)

2

)

= −1

2
(trω|D|−3)τ̃(([∇1,∇3])2 + ([∇2,∇3])2 + ([∇1,∇2] +

1

α
∇3)2))

=
1

2
(trω|D|−3)YM(∇).

and the proof is completed. 2

Remark 3.2.7. It would be interesting to compute the exact value of the normalizing

constant 1
2
(trω|D|−3), however at present we only have an upper bound and a nonzero

lower bound.

Remark 3.2.8. The computations in this chapter crucially use results of ([9]). Unless

one assumes {1, ~µ, ~ν} is rationally independent, the algebra A∞~ is not simple and hence

the computation of the space of forms Ω•D(A∞~ ) in (3.2.1) and the differentials as executed

in Proposition (3.2.3) collapses. We believe even in the nonsimple case the result is true

but we do not yet have a proof.
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Chapter 4

Connes’ Calculus for The Quantum

Double Suspension

A calculus or a differential calculus often means a differential graded algebra(dga).

Recall the dga Ω•D (1.1.3) defined by Connes. However, outside the works of Connes

there are very few instances ([9],[10]) where this calculus has been computed. In view of

this scenario, here in this chapter we set ourselves with the task of computation of this

calculus for a certain systematic class of examples.

The concept of quantum double suspension(QDS) of an algebra A, denoted by Σ2A ,

was introduced by Hong-Szymanski in ([24]). Later the quantum double suspension of

a spectral triple was introduced by Chakraborty-Sundar ([11]) and a class of examples

of regular spectral triples having simple dimension spectrum were constructed, useful in

the context of local index formulas of Connes-Moscovici ([19]). Note that by iterating

QDS on a manifold one can produce genuine noncommutative spectral triples. Under the

following hypotheses

• [D, a]F − F [D, a] is a compact operator for all a ∈ A, where F is the sign of the

operator D,

• H∞ :=
⋂
k≥1Dom(Dk) is a leftA-module and [D,A] ⊆ A⊗EndA(H∞) ⊆ EndC(H∞),
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on a spectral triple (A,H, D), we compute Ω•D for the quantum double suspended spec-

tral triple (Σ2A, Σ2H, Σ2D). Notable features of these hypotheses are, firstly the spectral

triple associated with a first order elliptic differential operator on a manifold will always

satisfy them and secondly they are stable under quantum double suspension. Thus our

results allows one to compute Connes’ calculus for spectral triples obtained by iteratively

quantum double suspending spectral triples associated with first order differential opera-

tors on smooth compact manifolds. In particular, iterated application of our construction

on the spectral triple
(
C∞(T), L2(T), 1

i
d
dθ

)
imply the computation of the Connes’ calculus

for odd dimensional quantum spheres. This extends earlier work of ([10]). This compu-

tation gives the first systematic computation of Connes’ calculus for a large family of

spectral triples.

At the end of this chapter we discuss behaviour of geometric notions of compatible

connections, curvatures on the quantum double suspended spectral triple. If we take E to

be a Hermitian finitely generated projective module over A, and denote the affine space of

compatible connections by Con(E), then there is a canonical Hermitian finitely generated

projective module over Σ2A which we denote by Ẽ . The affine space of compatible

connections on Ẽ is denoted by Con(Ẽ). We show that there is an affine embedding of

Con(E) into Con(Ẽ) which preserves the Grassmannian connection and together with

HomA (E , E ⊗A Ω2
D(A)), the vector space containing the subspace of curvatures, these fit

into a commutative diagram.

4.1 Preliminaries on The Quantum Double

Suspension

We define Connes calculus Ω•D in a slightly modified way in this chapter and then justify

it.

Definition 4.1.1. Recall from (1.1.3 ) that (Ω•(A), d) is a differential graded algebra.

We have a ∗ -representation π of Ω•(A) on the Calkin algebra Q(H) := B(H)/K(H),
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given by

π(a0 ⊗ a1 ⊗ . . .⊗ ak) := a0[D, a1] . . . [D, ak] +K(H) ; aj ∈ A .

Let J
(k)
0 = {ω ∈ Ωk : πk(ω) = 0} and J ′ =

⊕
J

(k)
0 . But J ′ fails to be a differential ideal in

Ω•. We consider J• =
⊕

J (k) where J (k) = J
(k)
0 +dJ

(k−1)
0 . Then J• becomes a differential

graded two-sided ideal in Ω• and hence, the quotient Ω•D = Ω•/J• becomes a differential

graded algebra.

Remark 4.1.2. If we compare the definition of Ω•D given in (1.1.3 ) with that in (4.1.1),

then one sees that the definition given in (1.1.3 ) does not involve the projection map

θ : B(H) → Q(H) and Connes represented Ω•(A) on B(H) instead on Q(H). However

often, the explicit computation of Ω•D is rather difficult, even in the particular cases.

In ([10]), authors have computed Ω•D for the quantum SU(2) and the Podleś sphere by

replacing B(H) with Q(H), i,e. following the above prescription. Justification for this

has been discussed in section (3) of ([10]). Here in this chapter we follow the above

prescription of Ω•D given in definition (4.1.1).

Now we define Ω•D(A) for non-unital algebra A. Notice that elements of Ωk are

linear combination of elements of the form a0da1 . . . dak. For non-unital algebra A, one

first considers the minimal unitization Ã := A ⊕ C and embeds A in Ã by the map

a 7−→ (a, 0). This makes A an ideal in Ã . The map (a, λ) 7−→ π(a) + λI gives a faith-

ful representation of Ã on B(H). Now, using the embedding A ↪→ Ã, define elements

of Ωk(A) as linear combination of elements of the form (a0, 0)d(a1, 0) . . . d(ak, 0). Ob-

serve that Ωn(A) ⊆ Ωn(Ã ) and hence Ωn(A)

Ωn(A)
⋂
Jn(Ã )

⊆ Ωn(Ã )

Jn(Ã )
and subsequently we define

Ω•D(A) = Ωn(A)

Ωn(A)
⋂
Jn(Ã )

for the nonunital case.

Now we define the concept of quantum double suspension(QDS) introduced by Hong-

Szymanski in ([24]). Let l denotes the left shift operator on `2(N) defined on the standard

orthonormal basis (en) by l(en) = en−1, l(e0) = 0 and N be the number operator on `2(N)

defined as N(en) = nen. We fix the notation ‘u’ throughout the chapter which denotes
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the rank one projection |e0〉〈e0| := I − l∗l. Let K denotes space of compact operators on

`2(N).

Definition 4.1.3. Let A be a unital C∗-algebra. The quantum double suspension of A,

denoted by Σ2A, is the C∗-algebra generated by a ⊗ u and 1 ⊗ l in A ⊗ T where T is

the Toeplitz algebra.

There is a symbol map σ : T −→ C(S1) which sends l to the standard unitary

generator z of C(S1) and one has a short exact sequence

0 −→ K −→ T
σ−→ C(S1) −→ 0 .

If ρ denotes the restriction of 1 ⊗ σ to Σ2A then one gets the following short exact

sequence

0 −→ A⊗K −→ Σ2A ρ−→ C(S1) −→ 0 .

There is a C -linear splitting map σ′ from C(S1) to Σ2A which sends z to 1⊗ l and yields

the following C -vector spaces isomorphism :

Σ2A ∼= (A⊗K)
⊕

C(S1) .

Notice that σ′ is injective since it has a left inverse ρ and hence any f ∈ C(S1) can

be identified with 1 ⊗ σ′(f) ∈ Σ2A. For f =
∑

n λnz
n ∈ C(S1) , we write σ′(f) :=∑

n≥0 λnl
n +

∑
n>0 λ−nl

∗n. The finite subalgebra, denoted by (Σ2A)fin, is generated by

a ⊗ T and
∑

0≤n<∞ λnl
n +

∑
0<n<∞ λ−nl

∗n, where a ∈ A and T ∈ B (`2(N)) is a finitely

supported matrix.

Definition 4.1.4 ([11]). For any spectral triple (A,H, D) , (Σ2A, Σ2H := H⊗ `2(N),

Σ2D := D ⊗ I + F ⊗N) becomes a spectral triple where F is the sign of the operator D

and N is the number operator on `2(N). It is called the quantum double suspension of

the spectral triple (A,H, D).
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Notice that (C[z, z−1], `2(N), N) is also a spectral triple, and for any f ∈ C[z, z−1] ,

we have [Σ2D, 1⊗σ′(f)] = F ⊗ [N, f ]. Here we record two conditions on a spectral triple

which will be used later.

Conditions :

(A) [D, a]F − F [D, a] is a compact operator for all a ∈ A .

(B) H∞ :=
⋂
k≥1Dom(Dk) is a left A-module and [D,A] ⊆ A ⊗ EndA(H∞) ⊆

EndC(H∞).

Proposition 4.1.5. These conditions are valid for the classical case where A = C∞(M)

and D is a first order differential operator. Moreover, if a spectral triple (A,H, D) satis-

fies these conditions then the quantum double suspended spectral triple ((Σ2A)fin, Σ
2H,

Σ2D) also satisfies them.

Proof. When D is of order 1, [D, a]F − F [D, a] has order −1 and hence it is a compact

operator. Now suppose [D, a]F − F [D, a] is a compact operator for all a ∈ A . To check

the stability under QDS, note that (Σ2A)fin = A ⊗ S
⊕

C[z, z−1] as linear space and

sign(Σ2D) = F ⊗ 1. Now

[Σ2D, a⊗ T + f ](F ⊗ 1)− (F ⊗ 1)[Σ2D, a⊗ T + f ]

= [D, a]F ⊗ T + FaF ⊗ [N, T ] + 1⊗ [N, f ]− F [D, a]⊗ T − a⊗ [N, T ]− 1⊗ [N, f ]

= [D, a]F ⊗ T − F [D, a]⊗ T + [F, a]F ⊗ [N, T ].

This says that [Σ2D, (Σ2A)fin](F⊗1)−(F⊗1)[Σ2D, (Σ2A)fin] is also a compact operator

on H⊗ `2(N). The second condition follows similarly. 2

Lemma 4.1.6. Let σ1, σ2 denote any two 2×2 Pauli spin matrices. For a given spectral

triple (A,H, D) consider the even spectral triple (Ã, H̃, D̃, γ) where H̃ = H ⊗ C2, Ã =

A⊗ I2, D̃ = D ⊗ σ1, γ = 1⊗ σ2 . Then Ω•
D̃

(Ã) ∼= Ω•D(A).

Proof. First observe that
∑
ã0

∏n
i=1[D̃, ãi] = (

∑
a0

∏n
i=1[D, ai])⊗σn1 where ãi = ai⊗ I2.
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Now

σn1 =


σ1 for n odd ,

I2 for n even .

immediately shows that π(Ωn(Ã)) ∼= π(Ωn(A)) for all n ≥ 1. Since
∑
a0

∏n
i=1[D, ai] ⊗

σn1 = 0 implies
∏n

i=0[D, ai] ∈ π(dJn0 (A)), we have π(dJn0 (Ã)) ∼= π(dJn0 (A)) for all n ≥ 1.

This completes the proof. 2

Remark 4.1.7. (a) Proposition (4.1.5) says that iterating the classical case of spectral

triples canonically associated with a first order differential operator on a compact mani-

fold, one gets a lot of examples satifying our conditions.

(b) Observe that sign(D̃) = sign(D)⊗σ1 and hence if (A,H, D) satisfies our conditions

then so does (Ã, H̃, D̃, γ). For any even spectral triple it is obvious that FA ∩ A = {0}

where F = sign(D). Hence, Lemma (4.1.6) will guarantee that in our context, without

loss of generality, we can always take FA ∩ A = {0}. Throughout the chapter we stick

to this fact.

Notation :

1. In this chapter we will work with (Σ2A)fin and denote it by Σ2A for notational

brevity.

2. For all f ∈ C[z, z−1], we denote [N, f ] by f ′ for notational brevity.

3. ‘S’ denotes the space of finitely supported matrices in B(`2(N)) .

4. Any T = (Tij) ∈ S is said to have order m if m ≥ 1 is the least natural number

such that Tij = 0 for all i, j > m.

5. (eij) will denote infinite matrix with 1 at the ij-th place and zero elsewhere. We

call it elementary matrix.
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4.2 Connes’ Calculus for The Quantum Double

Suspension

In this section we take a spectral triple satisfying Conditions (A), (B) mentioned in

the previous section. Because of Remark (4.1.7) we can assume FA∩A = {0}. Our goal

here is computation of Ω•Σ2D ((Σ2A)fin) . Note that (S, `2(N), N) is a spectral triple but

S is non-unital. We first consider Ω•N(S), following the definition of Ω•D for non-unital

algebras. We need to compute this complex first.

Lemma 4.2.1. πN (Ωn(S)) = S for all n ≥ 0.

Proof. Let’s take n > 0. We have to show πN (Ωn(S)) ⊇ S. Choose any T ∈ S of order

l. If n is even then take n = 2r. Observe that

T =
∑l−1

j=1 T
([
N, 1

j−l(ej,l)
] [
N, 1

l−j (el,j)
])r

+ T
([
N, 1

l−1
(el,1)

] [
N, 1

1−l(e1,l)
])r

.

For n = 2r + 1 we can similarly write,

T =
l−1∑
j=1

T (ej,l)

([
N,

1

l − 2
(el,2)

] [
N,

1

2− l
(e2,l)

])r [
N,

1

l − j
(el,j)

]
+T (el,1)

[
N,

1

1− l
(e1,l)

]([
N,

1

l − 1
(el,1)

] [
N,

1

1− l
(e1,l)

])r

and this completes the proof. 2

Lemma 4.2.2. πN (dJn0 (S)) = S for all n ≥ 1.

Proof. Notice that πN (dJn0 (Ml(C))) is an ideal in Ml(C) for any l and hence if we can

produce one nontrivial element then πN (dJn0 (Ml(C))) will be equal with Ml(C) for all l.

For n = 1 , choose

ζ = (e2,3)d

(
1

2
(e3,1)

)
− (e2,2)d ((e2,1)) .

For n = 2 , choose

ζ =

(
(e2,3)d

(
1

2
(e3,1)

)
− (e2,2)d((e2,1))

)
d

(
−1

3
(e1,4)

)
.
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For n = 3 , choose

ζ =

(
(e2,3)d

(
1

2
(e3,1)

)
− (e2,2)d((e2,1))

)
d

(
−1

3
(e1,4)

)
d

(
1

2
(e4,2)

)
.

For n ≥ 4 , choose

ζ =

(
(e2,n+1)d

(
1

n
(en+1,1)

)
− (e2,2)d((e2,1))

)
d

(
−1

3
(e1,4)

)
•

n∏
j=4

d((−1)(ej,j+1))d(
1

n− 1
(en+1,2)).

It is easy to see that for all n ≥ 1 these elements lie in Jn0 (Ml(C)). One can verify that

π(dζ) 6= 0 in each case. 2

Proposition 4.2.3. For (S, `2(N), N) we have

1. Ωn
N(S) = S for n = 0 , 1 .

2. Ωn
N(S) = 0 for all n ≥ 2.

Proof. Combine Lemmas (4.2.1) and (4.2.2). 2

Now we are ready for the computation of Ω•Σ2D. Note that both πΣ2D (Ω•(A⊗ S)) and

πΣ2D (Ω•(C[z, z−1])) are subspaces of πΣ2D (Ω•(Σ2A)), because Σ2A = A⊗S
⊕

C[z, z−1]

as C-vector spaces. Furthermore, πΣ2D (Ω•(C[z, z−1])) = F • ⊗ πN (Ω•(C[z, z−1])). We

always write π instead of πΣ2D and πN for notational brevity.

Lemma 4.2.4. π (Ω1(Σ2A)) = π (Ω1(A⊗ S)) + (F ⊗ 1) (A⊗ S + π(Ω1(C[z, z−1]))).

Proof. Note that π (Ω1(A⊗ S)) ⊆ π (Ω1(Σ2A)). Now for any element (F⊗1)(a⊗T+f0f
′
1)

of (F ⊗ 1) (A⊗ S + π(Ω1(C[z, z−1]))) we see that,

(F ⊗ 1)(a⊗ T + f0f
′
1) = (a⊗ T + f0f

′
1)(F ⊗ 1)

= (a⊗ T + f0f
′
1)(1⊗ l)(1⊗ l∗)(F ⊗ 1)

= (a⊗ T + f0f
′
1)(1⊗ l)

[
Σ2D, 1⊗ l∗

]
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This is clearly in π (Ω1(Σ2A)). To see the reverse inclusion we start with arbitrary

element
∑

k(a0k ⊗ T0k + f0k)
[∑2D, a1k ⊗ T1k + f1k

]
of π (Ω1(Σ2A)). Then,

∑
k

(a0k ⊗ T0k + f0k)
[
Σ2D, a1k ⊗ T1k + f1k

]
=
∑
k

(a0k ⊗ T0k)
[
Σ2D, a1k ⊗ T1k

]
+ (a0k ⊗ T0k + f0k)

[
Σ2D, f1k

]
+
[
Σ2D, a1k ⊗ f0kT1k

]
− Fa1k ⊗ f ′0kT1k

which is an element of π (Ω1(A⊗ S)) + (F ⊗ 1) (A⊗ S + π(Ω1(C[z, z−1]))). 2

Lemma 4.2.5. π(Ωn(Σ2A)) =
∑n

j=1 F
j−1π(Ωn+1−j(A⊗ S)) + (F ⊗ 1)n(A⊗ S +

π(Ωn(C[z, z−1]))) for all n ≥ 1 .

Proof. We prove the Lemma by induction. Suppose the statement is true for n = k. Any

element of π
(
Ωk+1(Σ2A)

)
can be written as ω[Σ2D, a⊗T+f ], where ω is in π

(
Ωk(Σ2A)

)
.

By assumtion ω =
∑k+1

i=1 ωi where ωi ∈ F i−1π
(
Ωk+1−i(A⊗ S)

)
for 1 6 i 6 k and

ωk+1 ∈ (F ⊗ 1)k
(
A⊗ S + π(Ωk(C[z, z−1]))

)
. Hence,

ω[Σ2D, a⊗ T + f ] =
∑k+1

i=1 ωi[Σ
2D, a⊗ T ] +

∑k+1
i=1 ωi(F ⊗ f ′).

This is an element of∑k+1
j=1 F

j−1π
(
Ωk+2−j(A⊗ S)

)
+ (F ⊗ 1)k+1

(
A⊗ S + π

(
Ωk+1(C[z, z−1])

))
.

To get the reverse inclusion one can use the same trick used in Lemma (4.2.4). 2

Lemma 4.2.6. π(Ω1(A⊗ S))
⋂

(F ⊗ 1)(A⊗ S + π(Ω1(C[z, z−1]))) = (F ⊗ 1)(A⊗ S).

Proof. Choose any arbitrary element
∑

k (a0k ⊗ T0k) [Σ2D, a1k ⊗ T1k] of π (Ω1(A⊗ S)).

In terms of elementary matrices ((eij)) we can rewrite this element as following ,

∑
k

(a0k ⊗ T0k)
[
Σ2D, a1k ⊗ T1k

]
=

∑
k

(∑
i,j

a0kij ⊗ eij

)[
Σ2D,

∑
p,q

a1kpq ⊗ epq

]
=

∑
k,i,j,q

a0kij ([D, a1kjq] + F (j − q)a1kjq)⊗ eiq .
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Now any element of (F ⊗1)(A⊗S) + (F ⊗1)π (Ω1(C[z, z−1])) looks like
∑

k′ Fak′⊗Tk′ +

F ⊗ f for some f ∈ C[z, z−1]. The equality of these two elements shows that f has to

be a compact operator on `2(N) (Take any linear functional
∫

on B(H) and hit both

elements by
∫
⊗Id). Hence, if intersection is nontrivial then it must be contained in the

ideal (F ⊗ 1)(A⊗S). We now show that (F ⊗ 1)(A⊗S) is contained in the intersection.

Choose any arbitrary element
∑

k′ Fak′ ⊗ Tk′ . Consider the following equation

∑
k′

Fak′ ⊗ Tk′ =
∑
k

(a0k ⊗ T0k)
[
Σ2D, a1k ⊗ T1k

]
. (4.2.1)

Choose a1k = 1 for each k. Then this equation reduces to,

∑
k′

Fak′ ⊗ Tk′ =
∑
k

Fa0k ⊗ T0k[N, T1k]. (4.2.2)

Using Lemma (4.2.1) we can write each Tk′ as
∑

m<∞ T
(k′)
0m [N, T

(k′)
1m ]. Hence, this equation

has nontrivial solution, which shows that (F ⊗ 1)(A⊗ S) ⊆ π (Ω1(A⊗ S)). 2

Lemma 4.2.7. (F ⊗ 1)π (Ωn(A⊗ S)) ⊆ π (Ωn+1(A⊗ S)) for all n ≥ 1.

Proof. This follows from the fact that for algebra B

Ωn(B) = Ω1(B)⊗B . . .⊗B Ω1(B)︸ ︷︷ ︸
n times

.

Now use Lemma (4.2.6) which says that (F ⊗ 1)(A⊗ S) ⊆ π (Ω1(A⊗ S)). 2

Proposition 4.2.8. π (Ωn(Σ2A)) = π (Ωn(A⊗ S))
⊕

π (Ωn(C[z, z−1])) for all n ≥ 0 .

Proof. Combine Lemmas (4.2.5 , 4.2.6 , 4.2.7). 2

Recall that Ωn
Σ2D (Σ2A) ∼= π (Ωn(Σ2A)) /π

(
dJn−1

0 (Σ2A)
)
. Hence our next target is

to identify the quotient π
(
dJn−1

0 (Σ2A)
)
.

Lemma 4.2.9. π (dJ1
0 (Σ2A)) = π (dJ1

0 (A⊗ S))
⊕

π (dJ1
0 (C[z, z−1])).
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Proof. Suppose ζ =
∑

k d(a0k ⊗ T0k + f0k)d(a1k ⊗ T1k + f1k) is an element of dJ1
0 (Σ2A).

Then,

∑
k

(a0k ⊗ T0k + f0k)[Σ
2D, a1k ⊗ T1k + f1k] = 0

Then π(ζ) =
∑

k[Σ
2D, a0k ⊗ T0k + f0k][Σ

2D, a1k ⊗ T1k + f1k] equals the following sum

∑
k

[Σ2D, a0k ⊗ T0k][Σ
2D, a1k ⊗ T1k] + [Σ2D, f0k][Σ

2D, f1k]

+ [Σ2D, a0k ⊗ T0k][Σ
2D, f1k] + [Σ2D, f0k][Σ

2D, a1k ⊗ T1k].

The term
∑

k[Σ
2D, f0k][Σ

2D, f1k] lies in π (dJ1
0 (C[z, z−1])). If we can write each term

[Σ2D, a0k⊗T0k][Σ
2D, f1k] as

∑
k′ [Σ

2D, b0k′ ⊗S0k′ ][Σ
2D, b1k′ ⊗S1k′ ] in such a way that

(a0k ⊗ T0k)[Σ
2D, f1k] =

∑
k′(b0k′ ⊗ S0k′)([Σ

2D, b1k′ ⊗ S1k′ ])

where S0k′ and S1k′ ’s are from S and similarly for the term [Σ2D, f0k][Σ
2D, a1k ⊗ T1k] ,

then we can conclude that π (dJ1
0 (Σ2A)) ⊆ π (dJ1

0 (A⊗ S))
⊕

π (dJ1
0 (C[z, z−1])). First

let b1k′ = 1 for all k′. Then we have the following equations to solve :


Fa0k ⊗ T0kf

′
1k =

∑
k′ Fb0k′ ⊗ S0k′ [N,S1k′ ]

F [D, a0k]⊗ T0kf
′
1k + a0k ⊗ [N, T0k]f

′
1k =

∑
k′ F [D, b0k′ ]⊗ S0k′ [N,S1k′ ]

+ b0k′ ⊗ [N,S0k′ ][N,S1k′ ] .

(4.2.3)

For that it is enough to solve the following equations :


T0kf

′
1k =

∑
k′ S0k′ [N,S1k′ ]

[N, T0k]f
′
1k =

∑
k′ [N,S0k′ ][N,S1k′ ] .

(4.2.4)

Note that f ′1k is of the form
∑n

i=1 λiz
i +
∑m

j=1 λ−j(z
−1)

j
. Then σ′(f ′1k) ∈ B (`2(N)) is the

following matrix
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

0 λ1 λ2 . . . . . . λn 0 . . . . . . . . .

λ−1 0 λ1 λ2 . . . . . . λn 0 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ−m λ−m+1 . . . . . . . . . . . . . . . . . . . . . . . .

0 λ−m λ−m+1 . . . . . . . . . . . . . . . . . . . . .

0 0 λ−m λ−m+1 . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



.

Each row and column of this matrix has only finitely many non-zero entries and all

the diagonal entries are zero. Denote this matrix by (βpq)p,q. Notice that (eij).σ
′(f ′1k)

is the matrix whose i-th row consists of j-th row of (βpq)p,q and zero everywhere else,

whereas σ′(f ′1k).(eij) is the matrix whose j-th column consists of i-th column of (βpq)p,q

and zero everywhere else. Let T0k be denoted by the matrix (αij)ij. Since T0k ∈ S, one

can assume that αij = 0 for all i ≥ r + 1 and j ≥ s + 1, for some r, s. Observe that

T0kσ
′(f ′1k) = (αij)ij(β̃pq)p,q , where

β̃pq =


βpq for 1 ≤ p ≤ s , q ≤ n+ s ,

0 otherwise .

Hence (β̃pq)p,q ∈ S and we have a solution for equation (4.2.4). Similarly one can do for

the term [Σ2D, f0k][Σ
2D, a1k ⊗ T1k]. 2

Proposition 4.2.10. π (dJn0 (Σ2A)) = π (dJn0 (A⊗ S))
⊕

π (dJn0 (C[z, z−1])) ∀n ≥ 1 .

Proof. For arbitrary ‘n’ it follows from our observation in the previous Lemma that both

[Σ2D, a ⊗ T ][Σ2D, f ] and [Σ2D, g][Σ2D, a′ ⊗ T ′] for f, g ∈ C[z, z−1] can be replaced by

[Σ2D, b⊗ S][Σ2D, b′ ⊗ S ′] where T, T ′, S, S ′ all lie in S. 2

Lemma 4.2.11. For the spectral triple (C[z, z−1], `2(N), N) we have πN (Ωn(C[z, z−1])) =

C[z, z−1] for all n ≥ 0.

Proof. Clearly π (Ωn(C[z, z−1])) ⊆ C[z, z−1] . For the other inclusion consider ξ, η ∈

C[z, z−1] where ξ = z, η = z−1. Then [N, ξ] = ξ and [N, η] = −η.
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Case 1 : Suppose n = 2r is even. Choose any φ ∈ C[z, z−1] and consider ω =

φ (dξdη) . . . (dξdη)︸ ︷︷ ︸
r

∈ Ωn (C[z, z−1]). Then

π(ω) = φ( [N, ξ][N, η]) . . . ([N, ξ][N, η]︸ ︷︷ ︸
r

) .

But [N, ξ][N, η] = −1. This proves that C[z, z−1] ⊆ π (Ωn(C[z, z−1])).

Case 2 : Suppose n = 2r + 1 is odd. Choose any φ ∈ C(S1). Consider ω =

φξdη (dξdη) . . . (dξdη)︸ ︷︷ ︸
r

∈ Ωn (C(S1)) for r 6= 0 and ω = φξdη for r = 0. 2

Lemma 4.2.12. For the spectral triple (C[z, z−1], `2(N), N) we have πN (dJn0 (C[z, z−1]))

= C[z, z−1] for all n ≥ 1.

Proof. It is clear from the previous Lemma (4.2.11) that π (dJn0 (C[z, z−1])) ⊆ C[z, z−1] .

For the other inclusion notice that for n ≥ 1, π (dJn0 (C[z, z−1])) is an ideal in C[z, z−1].

We will show that 1 ∈ C[z, z−1] lies in π (dJn0 (C[z, z−1])) . Consider ξ = z, η = z−1 ∈

C[z, z−1].

Case 1 : For n ≥ 3 odd, consider

ω = ξdη (dξdη) . . . (dξdη)︸ ︷︷ ︸
(n−1)/2

+ ηdξ (dξdη) . . . (dξdη)︸ ︷︷ ︸
(n−1)/2

∈ Ωn
(
C[z, z−1]

)
.

Case 2 : For n ≥ 2 even, consider

ω = −ξ2dηdη (dξdη) . . . (dξdη)︸ ︷︷ ︸
(n−2)/2

+ η2dξdξ (dξdη) . . . (dξdη)︸ ︷︷ ︸
(n−2)/2

∈ Ωn
(
C[z, z−1]

)
.

Case 3 : For n = 1 , consider ω = ξdη + ηdξ.

One can check that for all n ≥ 1, π(ω) = 0 i,e. ω ∈ Jn0 (C[z, z−1]). But
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π(dω) =


−2 for n = 1 ,

−2(−1)(n−1)/2 for n ≥ 3 odd ,

−4(−1)(n−2)/2 for n ≥ 2 even .

This justifies our claim. 2

Proposition 4.2.13. For the spectral triple (C[z, z−1], `2(N), N),

1. Ωn
N (C[z, z−1]) = C[z, z−1] , for n = 0 , 1 .

2. Ωn
N (C[z, z−1]) = 0 , for n ≥ 2 .

Proof. Combine Lemmas (4.2.11) and (4.2.12). 2

Proposition 4.2.14. For (Σ2A,H⊗ `2(N), Σ2D) ,

1. Ω1
Σ2D(Σ2A) ∼= Ω1

Σ2D(A⊗ S)
⊕

C[z, z−1] ,

2. Ωn
Σ2D(Σ2A) ∼= Ωn

Σ2D(A⊗ S) , for all n ≥ 2.

Proof. Use Propositions (4.2.8 , 4.2.10 , 4.2.13). 2

Our next goal is to determine Ωn
Σ2D (A⊗ S) in terms of Ωn

D(A). Note that we are

viewing A⊗ S inside the unital algebra Σ2A as an embedded subspace.

Lemma 4.2.15. π (Ωn(A⊗ S)) =
∑n

r=0 F
rπ(Ωn−r(A))⊗ S for all n ≥ 0 .

Proof. The inclusion ‘⊆’ is obvious since one just has to expand the commutators [Σ2D, . ]

involved in LHS. For ‘⊇’ we show that F rπ (Ωn−r(A)) ⊗ S ⊆ π (Ωn(A⊗ S)), for each

0 6 r 6 n. Consider first F ra0

∏n−r
i=1 [D, ai]⊗T ∈ F rπ (Ωn−r(A))⊗S , where 1 6 r 6 n−1.

By Lemma (4.2.1) one can write T =
∑

k T0k

∏r
i=1[N, Tik]. Let I(0k) be the infinite matrix

having an identity block matrix in top left most corner of order same as that of T0k and

57



zero elsewhere. Then,

∑
k

(a0 ⊗ T0k)

(
n−r∏
i=1

[Σ2D, ai ⊗ I(0k)]

)(
r∏
j=1

[Σ2D, 1⊗ Tjk]

)

=
∑
k

(a0 ⊗ T0k)
n−r∏
i=1

(
[D, ai]⊗ I(0k)

)(
F r ⊗

r∏
j=1

[N, Tjk]

)

=
∑
k

F ra0

(
n−r∏
i=1

[D, ai]

)
⊗ T0k

(
r∏
j=1

[N, Tjk]

)

= F ra0

n−r∏
i=1

[D, ai]⊗ T.

For r = 0, observe that a0

∏n
i=1[D, ai] ⊗ T = (a0 ⊗ T )

∏n
i=1[Σ2D, ai ⊗ I(T )] , where I(T )

denotes the infinite matrix having an identity block matrix in top left most corner of

order same as that of T and zero elsewhere. Finally for r = n, F na ⊗ T =
∑

k(a ⊗

T0k) (
∏n

i=1[Σ2D, 1⊗ Tik]) where T =
∑

k T0k

∏n
i=1[N, Tik] (by Lemma 4.2.1). 2

Lemma 4.2.16. π (dJ1
0 (A⊗ S)) = π (dJ1

0 (A))⊗ S + Fπ (Ω1(A))⊗ S +A⊗ S.

Proof. In terms of elementary matrices (eij), arbitrary element of π (dJ1
0 (A⊗ S)) looks

like

∑
[Σ2D, a0 ⊗ T0][Σ2D, a1 ⊗ T1]

=
∑∑

i,s

{
∑
j

[D, a0ij][D, a1js] + Fa0ij[D, a1js](i− j)

+ a0ija1js(i− j)(j − s) + F [D, a0ij]a1js(j − s)}⊗ eis

such that for each i and s we have

∑∑
j

a0ij[D, a1js] +
∑
j

Fa0ija1js(j − s) = 0 . (4.2.5)
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Consider the following equations

ξ =
∑∑

j

a0ij[D, a1js] , (4.2.6)

η =
∑∑

j

a0ija1js(j − s) . (4.2.7)

Hence, ξ + Fη = 0 by equation (4.2.5). Let n be any natural number. For each i and s ,

consider
a0,i,s+n = −1

a1,s+n,s = a


a0,i,s+n+1 = 1

a1,s+n+1,s = a


a0,i,s+n+2 = 1

a1,s+n+2,s = a


a0,i,s+n+3 = 1

a1,s+n+3,s = −a .

One easily checks that ξ = 0 in equation (4.2.6) and η = 0 in equation (4.2.7) for these

four pairs together and hence these pairs can produce infinitely many solutions to the

equation ξ + Fη = 0. We can now conclude that arbitrary a⊗ eis lies in π(dJ1
0 (A⊗S)),

for each i and s and for any a ∈ A. We will now show that any Fa[D, b] ⊗ eis lies

in π (dJ1
0 (A⊗ S)), for each i and s. For any natural number m and for each i and s ,

consider
a0,i,s+m = a

a1,s+m,s = b


a0,i,s+m+1 = −a

a1,s+m+1,s = b


a0,i,s+m+2 = (1/(m+ 2))ab

a1,s+m+2,s = 1 .

Again one checks that ξ = 0 in equations (4.2.6) and η = 0 in equation (4.2.7) and

one gets 2Fa[D, b] ⊗ eis + ab(m − 1) ⊗ eis as an element of π (dJ1
0 (A⊗ S)). Hence

Fa[D, b]⊗eis lies in π (dJ1
0 (A⊗ S)), for each i and s. We will now show that π (dJ1

0 (A))⊗

S ⊆ π (dJ1
0 (A⊗ S)). Choose any

∑
k[D, a0k][D, a1k] ⊗ Tk ∈ π (dJ1

0 (A)) ⊗ S. Then

a0k[D, a1k] = 0 for each k. Let I(k) be the infinite matrix having an identity block

matrix in top left most corner of order same as that of Tk and zero elsewhere. Then

[Σ2D, a0k ⊗ I(k)][Σ
2D, a1k ⊗ I(k)] ∈ π (dJ1

0 (A⊗ S)) for each k and hence,

(1⊗ Tk)[Σ2D, a0k ⊗ I(k)][Σ
2D, a1k ⊗ I(k)] ∈ π (dJ1

0 (A⊗ S))
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for each k. Now observe that∑
k[D, a0k][D, a1k]⊗ Tk =

∑
k(1⊗ Tk)[Σ2D, a0k ⊗ I(k)][Σ

2D, a1k ⊗ I(k)] .

This proves the inclusion ‘⊇’. Now Lemma (4.2.15) shows that π (dJ1
0 (A⊗ S)) ⊆

π (Ω2(A))⊗S+Fπ (Ω1(A))⊗S+A⊗S. Finally, the fact that [D,A] ⊆ A⊗EndA(H∞) ⊆

EndC(H∞) and FA ∩A = {0} implies the inclusion ‘⊆’ by equation (4.2.5). 2

Lemma 4.2.17. For all n ≥ 1, F n+1a⊗ eij ∈ π (dJn0 (A⊗ S)) for any a ∈ A and each i

and j.

Proof. The n = 1 case has been addressed in Lemma (4.2.16). Let’s take n ≥ 2. Arbitrary

element of π (dJn0 (A⊗ S)) looks like

∑ ∑
i1,in+2

 ∑
i2,...,in+1

n+1∏
j=1

[D, ajijij+1
] +

n+1∑
t=1

F t(
n+1∏
j=1

[D, ajijij+1
])(t)

⊗ ei1in+2 , (4.2.8)

where
(∏n+1

j=1 [D, ajijij+1
]
)(t)

is the following expression

n+1∑
1≤r1<r2<...<rt

[D, a1i1i2 ] . . . . . .
ˆ[D, ar1ir1 ir1+1 ] . . .

ˆ[D, ar2ir2 ir2+1 ]

. . . ˆ[D, artirt irt+1 ] . . . . . . [D, a(n+1)in+1in+2 ]

with ˆ[D, aririr+1 ] = (ir− ir+1)aririr+1 (the total number of ^ appearing in each summand

of the summation
∑n

1≤r1<r2<...<rt is exactly t ) ; such that

∑ ∑
i2,...,in+1

{ a1i1i2

n+1∏
j=2

[D, ajijij+1
] +

n∑
t=2, t even

a1i1i2

(
n+1∏
j=2

[D, ajijij+1
]

)(t)

+
n∑

t=3, t odd

Fa1i1i2

(
n+1∏
j=2

[D, ajijij+1
]

)(t)

} = 0

for each i1 and in+2 . Here
(∏n+1

j=2 [D, ajijij+1
]
)(t)

is the same expression as(∏n+1
j=1 [D, ajijij+1

]
)(t)

except for the fact that there is no r1 present i,e. the summation
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will be over r2, . . . , rt and for t = 1 this term is zero. Consider

ξ =
∑ ∑

i2,...,in+1

a1i1i2

n+1∏
j=2

[D, ajijij+1
] , (4.2.9)

η =
∑ ∑

i2,...,in+1

{
n∑

t=2, t even

a1i1i2(
n+1∏
j=2

[D, ajijij+1
])(t) (4.2.10)

+
n∑

t=3, t odd

Fa1i1i2(
n+1∏
j=2

[D, ajijij+1
])(t)} .

Hence, ξ + η = 0. For each i1 and in+2 , consider
a1,i1,i1+m = a

as,i1+(s−1)m,i1+sm = −1/m ; ∀ 2 ≤ s ≤ n

an+1,i1+nm,in+2 = 1/(i1 + nm− in+2)

and 
a1,i1,i1+m+1 = −a

as,i1+(s−1)m+1,i1+sm+1 = −1/m ; ∀ 2 ≤ s ≤ n

an+1,i1+nm+1,in+2 = 1/(i1 + nm+ 1− in+2)

Here m is a natural number s.t. i1 + nm + 1 − in+2 and i1 + nm − in+2 both are

nonzero. Note that infinitely many such m can be found for given i1, in+2, n. The term∑
i2,...,in+1

a1i1i2

∏n+1
j=2 (ajijij+1

(ij − ij+1)) becomes zero for above choice and these pairs

satisfy ξ = 0 in equation (4.2.9) and η = 0 in equation (4.2.10). The existence of

infinitely many natural numbers m gives us infinitely many solutions to the equation

ξ+η = 0. The only surviving term in the expression (4.2.8) for these solution is the term∑
i2,...,in+1

F n+1
(∏n+1

k=1 akikik+1

)∏n+1
j=1 (ij− ij+1) (when t = n+ 1), which is equal to F n+1a

for each i1 and in+2. All the other terms become zero because of the existence of commuta-

tors (except for t = n, which also vanishes for our choice a1,i1,i1+m = a, a1,i1,i1+m+1 = −a).

This justifies our claim. 2
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Lemma 4.2.18.
∑n

j=0 F
n+1−jπ(Ωj(A))⊗ S ⊆ π (dJn0 (A⊗ S)), for all n ≥ 1.

Proof. We use induction. We have seen that Fπ(Ω1(A)) ⊗ S + A ⊗ S ⊆ π(dJ1
0 (A ⊗

S)) (Lemma 4.2.16). Assume this is true at the k-th stage. To prove for the (k + 1)-

th stage we use Lemma (4.2.17). Let ξ =
∑k+1

j=0 F
k+2−jξj ∈

∑k+1
j=0 F

k+2−jπ(Ωj(A)) ⊗

S. Lemma (4.2.17) shows that F k+2ξ0 ∈ π
(
dJk+1

0 (A⊗ S)
)
. To prove ξ − F k+2ξ0 ∈

π
(
dJk+1

0 (A⊗ S)
)
, it is enough to show that for each i and j , if π(ω)⊗eij ∈ π(dJk0 (A⊗S))

then π(ω)[D, a]⊗ eij ∈ π(dJk+1
0 (A⊗ S)) for any a ∈ A . Let

π(ω)⊗ eij =
∑ k∏

m=0

[Σ2D, xm]

such that

∑
x0

k∏
m=1

[Σ2D, xm] = 0. (4.2.11)

for all xm ∈ A⊗ S . Now

(π(ω)⊗ eij)([D, a]⊗ ejj) =

(∑ k∏
m=0

[Σ2D, xm]

)
([D, a]⊗ ejj)

=
∑ k∏

m=0

[Σ2D, xm][Σ2D, a⊗ ejj] ,

since [D, a]⊗ ejj = [Σ2D, a⊗ ejj]. If π(ω)[D, a]⊗ eij has to be in π(dJk+1
0 (A⊗S)) then

∑
x0

k∏
m=1

[Σ2D, xm][Σ2D, a⊗ ejj] = 0

should hold. But this is clear from equation (4.2.11). 2

Lemma 4.2.19. For all n ≥ 1, π (dJn0 (A))⊗ S ⊆ π (dJn0 (A⊗ S)) .

Proof. The n = 1 case has been addressed in Lemma (4.2.16). Let’s take n ≥ 2. Now

choose any
∑

k

∏n
j=0[D, ajk]⊗ Tk ∈ π (dJn0 (A))⊗ S. Then a0k

∏n
j=1[D, ajk] = 0 for each
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k. Let I(k) be the infinite matrix having an identity block matrix in top left-most corner of

order same as that of Tk and zero elsewhere. Then
∏n

j=0[Σ2D, ajk⊗I(k)] ∈ π (dJn0 (A⊗ S))

for each k and hence, (1 ⊗ Tk)
∏n

j=0[Σ2D, ajk ⊗ I(k)] ∈ π (dJn0 (A⊗ S)) for each k. Now

observe that

∑
k

n∏
j=0

[D, ajk]⊗ Tk =
∑
k

(1⊗ Tk)
n∏
j=0

[Σ2D, ajk ⊗ I(k)] ,

which completes the proof. 2

Lemma 4.2.20. π (dJn0 (A⊗ S)) = π (dJn0 (A))⊗S+
∑n

r=0 F
n+1−rπ (Ωr(A))⊗S ∀n ≥ 1.

Proof. Since π (dJn0 (A⊗ S)) ⊆ π (Ωn+1(A⊗ S)), Lemma (4.2.15) says the following:

π (dJn0 (A⊗ S)) ⊆ π
(
Ωn+1(A)

)
⊗ S +

n∑
r=0

F n+1−rπ (Ωr(A))⊗ S.

Now Lemmas (4.2.17, 4.2.18) and (4.2.19) show that

π (dJn0 (A))⊗ S +
n∑
r=0

F n+1−rπ (Ωr(A))⊗ S ⊆ π (dJn0 (A⊗ S)) .

We need to show that

π (dJn0 (A⊗ S)) ⊆ π (dJn0 (A))⊗ S +
n∑
r=0

F n+1−rπ (Ωr(A))⊗ S.

We use induction on n . Lemma (4.2.16) gives the basis step of the induction and suppose

that

π
(
dJn−1

0 (A⊗ S)
)

= π
(
dJn−1

0 (A)
)
⊗ S +

∑n−1
r=0 F

n−rπ (Ωr(A))⊗ S.

Recall that for the algebra B and for all n ≥ 1 ,

Ωn(B) = Ω1(B)⊗B . . . . . .⊗B Ω1(B)︸ ︷︷ ︸
n times

= Ω1(B)⊗B Ωn−1(B) .
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Hence Jn0 = J1
0 ⊗ Ωn−1 + Ω1 ⊗ Jn−1

0 . Since d satisfies the graded Leibniz rule, we have

dJn0 ⊆ (dJ1
0 ).Ωn−1 + J1

0 . (dΩn−1) + (dΩ1). Jn−1
0 + Ω1. (dJn−1

0 )

(recall the graded product on Ω• ) and hence applying the algebra homomorphism π we

get π(dJn0 ) ⊆ π(dJ1
0 )π(Ωn−1) + π(Ω1)π(dJn−1

0 ). Since J• is a graded ideal in Ω• we have

π (dJn0 (A⊗ S))

⊆ π
(
dJ1

0 (A⊗ S)
)
π
(
Ωn−1(A⊗ S)

)
+ π

(
Ω1(A⊗ S)

)
π
(
dJn−1

0 (A⊗ S)
)

=
(
π
(
dJ1

0 (A)
)
⊗ S + Fπ

(
Ω1(A)

)
⊗ S +A⊗ S

)(n−1∑
r=0

F rπ(Ωn−1−r(A))⊗ S

)

+
(
π(Ω1(A))⊗ S + FA⊗ S

)(
π
(
dJn−1

0 (A)
)
⊗ S +

n−1∑
r=0

F n−rπ(Ωr(A))⊗ S

)

=
n−1∑
r=0

F rπ(dJn−r0 (A))⊗ S +
n−1∑
r=0

F r+1π(Ωn−r(A))⊗ S

+
n−1∑
r=0

F rπ(Ωn−1−r(A))⊗ S + π (dJn0 (A))⊗ S + Fπ
(
dJn−1

0 (A)
)
⊗ S

+
n−1∑
r=0

F n+1−rπ (Ωr(A))⊗ S +
n∑
r=1

F n+1−rπ (Ωr(A))⊗ S

= π (dJn0 (A))⊗ S +
n∑
r=0

F n+1−rπ (Ωr(A))⊗ S.

Here the first equality follows from Lemmas (4.2.16 , 4.2.15) and the induction hypothesis.

2

Remark 4.2.21. Note that the second condition, i,e. [D,A] ⊆ A⊗EndA(H∞), is needed

only for Lemmas (4.2.16 , 4.2.20).

Theorem 4.2.22. For the spectral triple (Σ2A, Σ2H, Σ2D) , we have

1. Ω1
Σ2D (Σ2A) ∼= Ω1

D(A)⊗ S
⊕

Σ2A .

2. Ωn
Σ2D (Σ2A) ∼= Ωn

D(A)⊗ S , for all n ≥ 2 .

3. The differential δ0 : Σ2A −→ Ω1
Σ2D (Σ2A) is given by,
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a⊗ T + f 7−→ [D, a]⊗ T
⊕

(a⊗ [N, T ] + f ′).

4. The differential δ1 : Ω1
Σ2D (Σ2A) −→ Ω2

Σ2D (Σ2A) is given by,

δ1|Ω1
D(A)⊗S = d1 ⊗ 1 and δ1|Σ2A = 0.

5. The differential δn : Ωn
Σ2D (Σ2A) −→ Ωn+1

Σ2D (Σ2A) is given by,

δn = dn ⊗ 1

for all n ≥ 2 .

Here d : Ω•D(A) −→ Ω•+1
D (A) is the differential of the Connes’ complex.

Proof. 1. Recall from Lemma (4.2.15) that Ω1
Σ2D(A ⊗ S) ∼= Ω1

D(A) ⊗ S + FA ⊗ S.

Since A ⊗ EndA(H∞) ⊆ EndC(H∞) by the map a ⊗ g 7−→ a ◦ g , FA can be

embedded in FA ⊗ EndA(H∞) ⊆ EndC(H∞) by the map Fa 7−→ Fa ⊗ I. Now

[D,A] ⊆ EndC(H∞) and FA∩A = {0} gives the direct sum. Finally, use the fact

that FA⊗ S ∼= A⊗ S and Proposition (4.2.14) to conclude Part (1).

2. For all n ≥ 2 , we have

Ωn
Σ2D

(
Σ2A

)
∼=

π (Ωn(Σ2A))

π
(
dJn−1

0 (Σ2A)
)

∼=
π (Ωn(A⊗ S))

π
(
dJn−1

0 (A⊗ S)
) by Proposition (4.2.14)

∼=
∑n

r=0 F
rπ (Ωn−r(A))⊗ S

π
(
dJn−1

0 (A)
)
⊗ S +

∑n−1
r=0 F

n−rπ (Ωr(A))⊗ S
by Lemmas (4.2.15 , 4.2.20)

∼=
π (Ωn(A))⊗ S +

∑n
r=1 F

rπ (Ωn−r(A))⊗ S
π
(
dJn−1

0 (A)
)
⊗ S +

∑n−1
r=0 F

n−rπ (Ωr(A))⊗ S

∼=
π (Ωn(A))⊗ S +

∑n−1
r=0 F

n−rπ (Ωr(A))⊗ S
π
(
dJn−1

0 (A)
)
⊗ S +

∑n−1
r=0 F

n−rπ (Ωr(A))⊗ S

∼=
π (Ωn(A))⊗ S

π
(
dJn−1

0 (A)
)
⊗ S

∼= Ωn
D(A)⊗ S
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3. Obvious since [Σ2D, a⊗ T + f ] = [D, a]⊗ T + Fa⊗ [N, T ] + f ′.

4. Take arbitrary (a0[D, a1] ⊗ T , b ⊗ S + f) ∈ Ω1
D(A) ⊗ S

⊕
Σ2A . Using Lemma

(4.2.1) we have S =
∑
S0[N,S1] and Proposition (4.2.13) implies f =

∑
f0f

′
1 .

Now, as an element of Ω1
Σ2D(Σ2A)

(a0[D, a1]⊗ T , b⊗ S + f)

= (a0 ⊗ T )[Σ2D, a1 ⊗ I(T )] +
∑

(b⊗ S0)[Σ2D, 1⊗ S1]

+
∑

(1⊗ f0)[Σ2D, 1⊗ f1] ,

where I(T ) is the identity block matrix of order same as that of T . Hence,

δ1((a0[D, a1]⊗ T , b⊗ S + f))

= ([Σ2D, a0 ⊗ T ][Σ2D, a1 ⊗ I(T )] +
∑

[Σ2D, b⊗ S0][Σ2D, 1⊗ S1]

+
∑

[Σ2D, 1⊗ f0][Σ2D, 1⊗ f1]) + π(dJ1
0 (Σ2A)),

as an element of Ω2
Σ2D(Σ2A) ∼= π(Ω2(Σ2A))

π(dJ1
0 (Σ2A))

. Now, by Part (2), we finally get

δ1((a0[D, a1]⊗ T , b⊗ S + f)) =
(
[D, a0][D, a1] + π(dJ1

0 (A))
)
⊗ T,

as an element of Ω2
D(A)⊗ S.

5. Follows in a similar fashion to Part (4).

2

Now we want to iterate this Theorem and Proposition (4.1.5) guarantees that we are

allowed to do so. Let k ≥ 1 and Σ2kA = Σ2(Σ2(k−1)A). We put the convention Σ0A = A

and Σ0D = D. Let F (k) be the sign of the operator Σ2(k−1)D, acting on the Hilbert

space H ⊗ `2(N)⊗k−1. Then Σ2kD = Σ2(k−1)D ⊗ I + F (k) ⊗ N and F (k) = F ⊗ 1⊗k−1.

Any element Σ2ka of Σ2kA is of the form Σ2(k−1)a ⊗ T(k−1) + f(k−1) where Σ2(k−1)a ∈

66



Σ2(k−1)A , T(k−1) ∈ S and f(k−1) ∈ C[z, z−1]. Using this functional equation one can write

Σ2ka in terms of elements only from A, S and C[z, z−1].

Corollary 4.2.23. For the spectral triple
(
Σ2kA, Σ2kH, Σ2kD

)
, k ≥ 1, we have

1. Ω1
Σ2kD

(
Σ2kA

) ∼= Ω1
D(A)⊗ S⊗k

⊕⊕k
j=1

(
Σ2jA⊗ S⊗(k−j)) .

2. Ωn
Σ2kD

(
Σ2kA

) ∼= Ωn
D(A)⊗ S⊗k , for all n ≥ 2 .

3. The differential δ0 : Σ2kA −→ Ω1
Σ2kD

(
Σ2kA

)
is given by,

Σ2(k−1)a⊗ T(k−1) + f(k−1) 7−→ [D, a]⊗ T(0) ⊗ T(1) ⊗ . . .⊗ T(k−1)

⊕
(
Σ2(k−1)a⊗ [N, T(k−1)] + f ′(k−1)

) ⊕(
k⊕
j=2

(
Σ2(k−j)a⊗ [N, T(k−j)] + f ′(k−j)

)
⊗Qj

)

where Qj := T(k−(j−1)) ⊗ T(k−(j−2)) ⊗ . . .⊗ T(k−1) ∈ S⊗(j−1) .

4. The differential δ1 : Ω1
Σ2kD

(
Σ2kA

)
−→ Ω2

Σ2kD

(
Σ2kA

)
is given by,

δ1|Ω1
D(A)⊗S⊗k = d1 ⊗ 1⊗k and δ1|⊕k

j=1(Σ2jA⊗S⊗(k−j)) = 0.

5. The differential δn : Ωn
Σ2kD

(
Σ2kA

)
−→ Ωn+1

Σ2kD

(
Σ2kA

)
is given by,

δn = dn ⊗ 1⊗k

for all n ≥ 2 .

Here d : Ω•D(A) −→ Ω•+1
D (A) is the differential of the Connes’ complex at the k = 0

level.

Proof. Note that F (k)Σ2(k−1)A⊗S ∼= Σ2(k−1)A⊗S for all k ≥ 1. Now the proof follows

easily by induction on k where Theorem (4.2.22) is the basis step of the induction. 2
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4.3 Connection and Curvature for the Quantum

Double Suspension

Recall the notions of Connection, Curvature from (1.6). These notions are meaningful

whenever one has a spectral triple. In this section, we discuss these notions on quantum

double suspended spectral triple.

Assumption : Henceforth throughout the section we assume that A is spectrally

invariant subalgebra in a C∗-algebra A.

Throughout this section ‘u’ will stand for the rank one projection |e0〉〈e0| = I − l∗l in

B (`2(N)). The map φ : a 7−→ a⊗ u gives an algebra embedding of A in Σ2A and hence

extends to the map

φ̃ : Mq(A) −→Mq(Σ
2A)

a = (aij) 7−→ (aij ⊗ u)ij

By definition of projective module, let E = pAn for some natural number n and an

idempotent p ∈Mn(A) . For p = (pij)ij, if we denote the matrix (pij⊗u)ij by p⊗u, then φ̃

gives a f.g.p right Σ2A-module Ẽ = (p⊗u)(Σ2A)n. However, note that Ẽ = (p⊗u)(Σ2A)n

is same as (p ⊗ u)(A ⊗ S)n because u is a rank one projection operator. For reader’s

convenience we recall Theorem (2.2.3) here.

Theorem 4.3.1 (2.2.3). Let E be a f.g.p A-module with a Hermitian structure where

A is spectrally invariant subalgebra in a C∗-algebra. Then we can have a self-adjoint

idempotent p ∈ Mn(A) such that E = pAn and E has the induced canonical Hermitian

structure.

The goal of this section is to prove the following theorem.

Theorem 4.3.2. Let E be a f.g.p module over A equipped with a Hermitian struc-

ture 〈 , 〉A. Choose a projection p ∈ Mn(A) such that E = pAn and E has the in-

duced canonical Hermitian structure. Let Ẽ = (p ⊗ u)(Σ2A)n and restrict the canonical
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structure on (Σ2A)n to Ẽ. We have an one-one affine morphism φ̃con : Con(E) −→

Con(Ẽ) which preserves the Grassmannian conections, and an one-one C-linear map

ψ : HomA (E , E ⊗A Ω2
D(A)) −→ HomΣ2A

(
Ẽ , Ẽ ⊗Σ2A Ω2

Σ2D(Σ2A)
)

such that the follow-

ing diagram

φ̃con
Con(E) Con(Ẽ)

ψ
HomA (E , E ⊗A Ω2

D(A)) HomΣ2A

(
Ẽ , Ẽ ⊗Σ2A Ω2

Σ2D(Σ2A)
)ff

commutes. Here f is the map which sends any compatible connection to its associated

curvature.

Remark 4.3.3. The Choice of such a projection p ∈ Mn(A) of Theorem (4.3.1), such

that E = pAn, has the advantage that now we have to deal with the canonical Hermitian

structure, which is much easier to tackle than an arbitrary Hermitian structure. This is

one of the main reasons for our assumption that A is spectrally invariant subalgebra in

a C∗-algebra because this assumption is crucial for Theorem (4.3.1) to hold.

We break the proof of this theorem into several lemmas and propositions to make it

transparent and then combine them together at the end.

Lemma 4.3.4. As right Σ2A module,

(p⊗ u)(Ω1
D ⊗ S)n ∼= p(Ω1

D)n ⊗ uS

Proof. We define

Φ : p(Ω1
D)n ⊗ uS −→ (p⊗ u)(Ω1

D ⊗ S)n

p(ω1, . . . , ωn)⊗ uT 7−→ (p⊗ u)(ω1 ⊗ T, . . . , ωn ⊗ T )

and

Ψ : (p⊗ u)(Ω1
D ⊗ S)n −→ p(Ω1

D)n ⊗ uS
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(p⊗ u)(ω1 ⊗ T1, . . . , ωn ⊗ Tn) 7−→
n∑
i=1

p(0, . . . , ωi, . . . , 0)⊗ uTi .

The proof is now routine verification. 2

Lemma 4.3.5. (p⊗ u)(A⊗ S)n ∼= pAn ⊗ uS as right Σ2A-module.

Proof. Exact similar description of Φ,Ψ of previous Lemma (4.3.4) gives the isomorphism.

2

Notation : Henceforth throughout this chapter we write δ(T ) = [N, T ] for all T ∈ S

and (0, . . . , ai, . . . , 0)︸ ︷︷ ︸
n tuple

will denote the element of An with ai ∈ A at the i-th co-ordinate

and zero elsewhere.

Proposition 4.3.6. Let ∇ : E −→ E⊗AΩ1
D(A) be a connection where E = pAn. Define,

∇̃ : (p⊗ u)(A⊗ S)n −→ (p⊗ u)(A⊗ S)n ⊗Σ2A Ω1
Σ2D(Σ2A)

by the rule,

(p⊗ u)(a1 ⊗ T1, . . . , an ⊗ Tn) 7−→
n∑
i=1

∇(p(0, . . . , ai, . . . , 0))⊗ uTi

+(p⊗ u) (a1 ⊗ δ(uT1), . . . , an ⊗ δ(uTn))

where δ(T ) = [N, T ]. Then ∇̃ defines a connection on Ẽ = (p⊗ u)(Σ2A)n.

Proof. Well-definedness is easy to check. Now consider any a⊗ T + f ∈ Σ2A . Then,

(p⊗ u)(a1 ⊗ T1, . . . , an ⊗ Tn)(a⊗ T + f)

= (p⊗ u)(a1a⊗ T1T, . . . , ana⊗ TnT ) + (p⊗ u)(a1 ⊗ T1f, . . . , an ⊗ Tnf).

70



The image of this element under ∇̃ is,

n∑
i=1

∇(p(0, . . . , aia, . . . , 0))⊗ uTiT + (p⊗ u)(a1a⊗ δ(uT1T ), . . . , ana⊗ δ(uTnT ))

+
n∑
i=1

∇(p(0, . . . , ai, . . . , 0))⊗ uTif + (p⊗ u)(a1 ⊗ δ(uT1f), . . . , an ⊗ δ(uTnf))

Now,

∇̃ ((p⊗ u)(a1 ⊗ T1, . . . , an ⊗ Tn)) .(a⊗ T + f)

+(p⊗ u)(a1 ⊗ T1, . . . , an ⊗ Tn)⊗ d̃(a⊗ T + f)

=
n∑
i=1

∇(p(0, . . . , ai, . . . , 0))a⊗ uTiT +
n∑
i=1

∇(p(0, . . . , ai, . . . , 0))⊗ uTif

+(p⊗ u)(a1 ⊗ δ(uT1), . . . , an ⊗ δ(uTn)).(a⊗ T + f)

+(p⊗ u)(a1 ⊗ T1, . . . , an ⊗ Tn)⊗ (da⊗ T + a⊗ δT + 1⊗ δf)

=
n∑
i=1

{∇(p(0, . . . , ai, . . . , 0))a⊗ uTiT + (p(0, . . . , ai, . . . , 0)⊗ da)⊗ uTiT}

+(p⊗ u){(a1a⊗ δ(uT1)T, . . . , ana⊗ δ(uTn)T ) + (a1a⊗ T1δT, . . . , ana⊗ TnδT )}

+(p⊗ u){(a1 ⊗ δ(uT1)f, . . . , an ⊗ δ(uTn)f) + (a1 ⊗ T1δf, . . . , an ⊗ Tnδf)}

+
n∑
i=1

∇(p(0, . . . , ai, . . . , 0))⊗ uTif

=
n∑
i=1

{∇(p(0, . . . , aia, . . . , 0))⊗ uTiT +
n∑
i=1

∇(p(0, . . . , ai, . . . , 0))⊗ uTif

+(p⊗ u)(a1a⊗ δ(uT1T ), . . . , ana⊗ δ(uTnT ))

+(p⊗ u)(a1 ⊗ δ(uT1f), . . . , an ⊗ δ(uTnf)) .

This shows that,

∇̃ ((p⊗ u)(a1 ⊗ T1, . . . , an ⊗ Tn).(a⊗ T + f))

= ∇̃ ((p⊗ u)(a1 ⊗ T1, . . . , an ⊗ Tn)) .(a⊗ T + f)

+(p⊗ u)(a1 ⊗ T1, . . . , an ⊗ Tn)⊗ d̃(a⊗ T + f) ,
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i,e. ∇̃ is a connection on Ẽ . 2

Lemma 4.3.7. If ∇ is the Grassmannian connection on E, then ∇̃ is the Grassmannian

connection on Ẽ.

Proof. Let ∇ = ∇0(E) denotes the Grassmannian connection on E . Then

∇̃0((p⊗ u)(a1 ⊗ T1, . . . , an ⊗ Tn))

=
n∑
i=1

∇0(E)(p(0, . . . , ai, . . . , 0))⊗ uTi + (p⊗ u)(a1 ⊗ δ(uT1), . . . , an ⊗ δ(uTn))

=
n∑
i=1

∇0(E)((p1iai, . . . , pniai))⊗ uTi + (p⊗ u)(a1 ⊗ δ(uT1), . . . , an ⊗ δ(uTn))

=
n∑
i=1

p(d(p1iai), . . . , d(pniai))⊗ uTi + (p⊗ u)(a1 ⊗ δ(uT1), . . . , an ⊗ δ(uTn)) .

Now if ∇0(Ẽ) denotes the Grassmannian connection on Ẽ , then

∇0(Ẽ)((p⊗ u)(a1 ⊗ T1, . . . , an ⊗ Tn))

= ∇0(Ẽ)(
n∑
j=1

p1jaj ⊗ uTj, . . . ,
n∑
j=1

pnjaj ⊗ uTj)

=
n∑
j=1

(p⊗ u)(d̃(p1jaj ⊗ uTj), . . . , d̃(p1jaj ⊗ uTj))

=
n∑
j=1

(p⊗ u)(d(p1jaj)⊗ uTj + p1jaj ⊗ δ(uTj), . . . , d(pnjaj)⊗ uTj + pnjaj ⊗ δ(uTj)) .

Here d̃ : Σ2A −→ Ω1
Σ2D(Σ2A) is the differential of Part (3), Proposition (4.2.22). Notice

that∑n
j=1(p⊗ u)(p1jaj ⊗ δ(uTj), . . . , pnjaj ⊗ δ(uTj)) = (p⊗ u)(a1⊗ δ(uT1), . . . , an⊗ δ(uTn)) ,

and this completes the proof. 2

Proposition 4.3.8. Let Θ : pAn −→ pAn ⊗A Ω2
D(A) be the curvature of the connection

∇ on E = pAn and let Θ̃ denotes the curvature of the connection ∇̃ of Proposition (4.3.6).

Then
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Θ̃ : (p⊗ u)(A⊗ S)n −→ (p⊗ u)(A⊗ S)n ⊗Σ2A Ω2
Σ2D(Σ2A)

is the map given by

(p⊗ u)(a1 ⊗ T1, . . . , an ⊗ Tn) 7−→
∑n

i=1Θ(p(0, . . . , ai, . . . , 0))⊗ uTi .

Proof. Let ∇ : pAn −→ pAn ⊗A Ω1
D be a connection for which Θ is the curvature and ∇̃

denotes the connection in Proposition (4.3.6). We let ∇̃′ be the extended map,

∇̃′ : Ẽ ⊗Σ2A Ω1
Σ2D(Σ2A) −→ Ẽ ⊗Σ2A Ω2

Σ2D(Σ2A).

Then Θ̃ = ∇̃′ ◦ ∇̃. Now,

∇̃′
(

n∑
i=1

∇(p(0, . . . , ai, . . . , 0))⊗ uTi

)

= ∇̃′
(

n∑
i=1

p(ω
(i)
1 , . . . , ω(i)

n )⊗ uTi

)

= ∇̃′
(

n∑
i=1

(p⊗ u)(ω
(i)
1 ⊗ uTi, . . . , ω(i)

n ⊗ uTi)

)

= ∇̃′
 n∑

i=1

n∑
j=1

(p⊗ u)(0, . . . , 1⊗ u︸ ︷︷ ︸
j−th place

, . . . , 0)⊗ (ω
(i)
j ⊗ uTi)


=

n∑
i=1

n∑
j=1

∇̃

(p⊗ u)(0, . . . , 1⊗ u︸ ︷︷ ︸
j−th place

, . . . , 0)

 .(ω
(i)
j ⊗ uTi)

+(p⊗ u)(0, . . . , 1⊗ u︸ ︷︷ ︸
j−th place

, . . . , 0)⊗ (dω
(i)
j ⊗ uTi)

=
n∑
i=1

n∑
j=1

∇(p(0, . . . , 1︸︷︷︸
j−th place

, . . . , 0))ω
(i)
j ⊗ uTi + (p⊗ u)(0, . . . , dω

(i)
j ⊗ uTi︸ ︷︷ ︸
j−th place

, . . . , 0)
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In the last equality use the fact that δ(u) = [N, u] = 0. Also,

∇̃′((p⊗ u)(a1 ⊗ δ(uT1), . . . , an ⊗ δ(uTn)))

= ∇̃′(
n∑
i=1

(p⊗ u)(0, . . . , ai ⊗ u, . . . , 0)⊗ (1⊗ δ(uTi)))

=
n∑
i=1

∇̃((p⊗ u)(0, . . . , ai ⊗ u, . . . , 0))(1⊗ δ(uTi))

+(p⊗ u)(0, . . . , ai ⊗ u, . . . , 0)⊗ d(1⊗ δ(uTi))

=
n∑
i=1

{∇(p(0, . . . , ai, . . . , 0))⊗ u+ (p⊗ u)(0, . . . , ai ⊗ δ(u), . . . , 0)}(1⊗ δ(uTi))

=
n∑
i=1

{∇(p(0, . . . , ai, . . . , 0))⊗ u}(1⊗ δ(uTi))

= 0 . ( see Theorem 4.2.22)

Finally,

Θ̃ ((p⊗ u)(a1 ⊗ T1, . . . , an ⊗ Tn))

= ∇̃′
(

n∑
i=1

∇(p(0, . . . , ai, . . . , 0))⊗ uTi

)
+ ∇̃′ ((p⊗ u)(a1 ⊗ δ(uT1), . . . , an ⊗ δ(uTn)))

=
n∑
i=1

n∑
j=1

∇(p(0, . . . , 1︸︷︷︸
j−th place

, . . . , 0))ω
(i)
j ⊗ uTi + (p⊗ u)(0, . . . , dω

(i)
j ⊗ uTi︸ ︷︷ ︸
j−th place

, . . . , 0)

=
n∑
i=1

n∑
j=1

(∇(p(0, . . . , 1︸︷︷︸
j−th place

, . . . , 0))ω
(i)
j + p(0, . . . , 1︸︷︷︸

j−th place

, . . . , 0)⊗ dω(i)
j )⊗ uTi

=
n∑
i=1

n∑
j=1

∇′(p(0, . . . , 1︸︷︷︸
j−th place

, . . . , 0)⊗ ω(i)
j )⊗ uTi

=
n∑
i=1

n∑
j=1

∇′(p(0, . . . , ω
(i)
j︸︷︷︸

j−th place

, . . . , 0))⊗ uTi

=
n∑
i=1

Θ(p(0, . . . , ai, . . . , 0))⊗ uTi

and this completes the proof. 2

Lemma 4.3.9. Let ξ̃, η̃ ∈ (p⊗u)(A⊗S)n and Ψ(ξ̃) =
∑

k ξk⊗uTk , Ψ(η̃) =
∑

k ηk⊗uSk
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where

Ψ : (p⊗ u)(A⊗ S)n −→ pAn ⊗ uS

(p⊗ u)(a1 ⊗ T1, . . . , an ⊗ Tn) 7−→
n∑
i=1

p(0, . . . , ai, . . . , 0)⊗ uTi

is the isomorphism of Lemma (4.3.5). Then the induced canonical Hermitian structure

on (p⊗ u)(A⊗ S)n has the following form :

〈 ξ̃, η̃ 〉Σ2A =
∑
k,k′

〈 ξk, ηk′〉A ⊗ (uTk)
∗(uSk′) .

Proof. Let ξ̃ = (p⊗ u)(a1⊗T1, . . . , an⊗Tn) and η̃ = (p⊗ u)(a′1⊗T ′1, . . . , a′n⊗T ′n). Then

〈 ξ̃, η̃ 〉Σ2A

= 〈 (
n∑
j=1

p1jaj ⊗ uTj, . . . ,
n∑
j=1

pnjaj ⊗ uTj) , (
n∑
j=1

p1ja
′
j ⊗ uT ′j , . . . ,

n∑
j=1

pnja
′
j ⊗ uT ′j) 〉

= 〈
n∑
j=1

(p1jaj ⊗ uTj, . . . , pnjaj ⊗ uTj) ,
n∑
j=1

(p1ja
′
j ⊗ uT ′j , . . . , pnja′j ⊗ uT ′j) 〉

=
n∑

j,l=1

〈 (p1jaj ⊗ uTj, . . . , pnjaj ⊗ uTj) , (p1la
′
l ⊗ uT ′l , . . . , pnla′l ⊗ uT ′l ) 〉

=
n∑

j,l=1

n∑
k=1

(pkjaj ⊗ uTj)∗(pkla′l ⊗ uT ′l )

Now Ψ(ξ̃) =
∑n

j=1 p(0, . . . , aj, . . . , 0) ⊗ uTj and Ψ(η̃) =
∑n

j=1 p(0, . . . , a
′
j, . . . , 0) ⊗ uT ′j .

Let ξj = p(0, . . . , aj, . . . , 0) and ηj = p(0, . . . , a′j, . . . , 0). Now,

〈 ξr, ηs〉A = 〈 p(0, . . . , ar, . . . , 0), p(0, . . . , a′s, . . . , 0)〉A

= 〈 (p1rar, . . . , pnrar), (p1sa
′
s, . . . , pnsa

′
s)〉A

=
n∑
k=1

(pkrar)
∗pksa

′
s

=
n∑
k=1

a∗rpkrpksa
′
s

Hence,
∑

r,s〈 ξr, ηs〉A ⊗ (uTr)
∗(uT ′s) =

∑
r,s (
∑n

i=1(pirar ⊗ uTr)∗(pisa′s ⊗ uT ′s)) . 2
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Lemma 4.3.10. For ξ, η ∈ E we have

(a) 〈ξ ⊗ uT,∇η ⊗ uS〉 = 〈ξ,∇η〉 ⊗ (uT )∗uS ,

(b) 〈∇ξ ⊗ uT, η ⊗ uS〉 = 〈∇ξ, η〉 ⊗ (uT )∗uS .

Proof. Let ξ = p(a1, . . . , an) ∈ pAn, ∇η =
∑

i p(b1i, . . . , bni)⊗ ωi ∈ pAn ⊗ Ω1
D(A). Then,

ξ ⊗ uT = p(a1, . . . , an)⊗ uT

= (p⊗ u)(a1 ⊗ T, . . . , an ⊗ T )

and

∇η ⊗ uS =
∑
i

(p(b1i, . . . , bni)⊗ ωi)⊗ uS

=
∑
i

p(b1iωi, . . . , bniωi)⊗ uS

=
∑
i

(p⊗ u)(b1iωi ⊗ S, . . . , bniωi ⊗ S)

=
∑
i

(p⊗ u)(b1i ⊗ u, . . . , bni ⊗ u)⊗ (ωi ⊗ uS)

Hence,

〈ξ ⊗ uT,∇η ⊗ uS〉

=
∑
i

〈(p⊗ u)(a1 ⊗ T, . . . , an ⊗ T ), (p⊗ u)(b1i ⊗ u, . . . , bni ⊗ u)〉Σ2A(ωi ⊗ uS)

=
∑
i

〈p(a1, . . . , an)⊗ uT, p(b1i, . . . , bni)⊗ u〉Σ2A(ωi ⊗ uS)

=
∑
i

(〈p(a1, . . . , an), p(b1i, . . . , bni)〉A ⊗ (uT )∗u) (ωi ⊗ uS)

=
∑
i

(〈p(a1, . . . , an), p(b1i, . . . , bni)〉Aωi)⊗ (uT )∗uS

=
∑
i

〈p(a1, . . . , an), p(b1i, . . . , bni)⊗ ωi〉 ⊗ (uT )∗uS

= 〈ξ,∇η〉 ⊗ (uT )∗uS

This proves part (a) and part (b) follows similarly. 2
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Lemma 4.3.11. The connection ∇̃ of Proposition (4.3.6) is compatible with the Hermi-

tian structure 〈 , 〉Σ2A on Ẽ , if ∇ is compatible with respect to 〈 , 〉A on E.

Proof. For ξ̃, η̃ ∈ (p⊗ u)(A⊗ S)n, we have isomorphic elements
∑
ξ ⊗ uT,

∑
η ⊗ uS ∈

pAn⊗uS respectively. Let ξ = p(a1, . . . , an) and η = p(b1, . . . , bn). It is easy to see that,

∇̃(ξ̃) = ∇(ξ)⊗ uT + (p⊗ u)(a1 ⊗ δ(uT ), . . . , an ⊗ δ(uT )).

∇̃(η̃) = ∇(η)⊗ uS + (p⊗ u)(b1 ⊗ δ(uS), . . . , bn ⊗ δ(uS)).

Now,

〈 ξ̃, ∇̃η̃〉Σ2A − 〈 ∇̃ξ̃, η̃〉Σ2A

= 〈 ξ ⊗ uT,∇η ⊗ uS〉Σ2A − 〈∇ξ ⊗ uT, η ⊗ uS〉Σ2A

+〈 ξ ⊗ uT, (p⊗ u)(b1 ⊗ δ(uS), . . . , bn ⊗ δ(uS))〉Σ2A

−〈 (p⊗ u)(a1 ⊗ δ(uT ), . . . , an ⊗ δ(uT ), η ⊗ uS〉Σ2A

= (〈 ξ,∇η〉A − 〈∇ξ, η〉A)⊗ (uT )∗(uS)

+〈 ξ ⊗ uT, η ⊗ uδ(uS)〉Σ2A − 〈 ξ ⊗ uδ(uT ), η ⊗ uS〉Σ2A (by Lemma 4.3.10)

= d(〈 ξ, η〉A)⊗ (uT )∗(uS) + 〈 ξ, η〉A ⊗ (uT )∗uδ(uS)− 〈 ξ, η〉A ⊗ (uδ(uT ))∗uS

Finally,

d̃(〈 ξ̃, η̃〉Σ2A) = d̃(〈 ξ ⊗ uT, η ⊗ uS〉Σ2A

= d̃(〈 ξ, η〉A ⊗ (uT )∗uS)

= d(〈 ξ, η〉A)⊗ (uT )∗uS + 〈 ξ, η〉A ⊗ δ((uT )∗uS)

= d(〈 ξ, η〉A)⊗ (uT )∗uS + 〈 ξ, η〉A ⊗ ((uT )∗δ(uS) + δ((uT )∗)uS)

= d(〈 ξ, η〉A)⊗ (uT )∗uS + 〈 ξ, η〉A ⊗ ((uT )∗δ(uS)− (δ(uT ))∗uS)

This shows compatibility of ∇̃. 2
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Proof of the Theorem (4.3.2) : Define

φ̃con : Con(E) −→ Con(Ẽ)

∇ 7−→ ∇̃

where ∇̃ is as defined in Proposition (4.3.6). Lemma (4.3.11) proves that Ran(φ̃con) ⊆

Con(Ẽ) and Lemma (4.3.7) proves preservation of the Grassmannian connection. It is

easy to check that φ̃con is an affine morphism between Con(E) and Con(Ẽ). To see

injectivity, let φ̃con(∇1) = φ̃con(∇2) and choose any ξ = p(a1, . . . , an) ∈ E . Then ξ̃ =

(p⊗ u)(a1⊗ u, . . . , an⊗ u) ∈ Ẽ . Then it follows that ∇1(ξ)⊗ u = ∇2(ξ)⊗ u (use Lemma

4.3.5) i,e. ∇1(ξ) = ∇2(ξ). Now define

ψ : HomA (E , E ⊗A Ω2
D(A)) −→ HomΣ2A

(
Ẽ , Ẽ ⊗Σ2A Ω2

Σ2D(Σ2A)
)

ψ(g) ((p⊗ u)(a1 ⊗ T1, . . . , an ⊗ Tn)) :=
∑n

i=1 g (p(0, . . . , ai, . . . , 0))⊗ uTi .

It is easy to see that ψ is a well-defined linear map because Ẽ ⊗Σ2A Ω2
Σ2D(Σ2A) ∼=

p (Ω2
D(A))

n ⊗ uS as right Σ2A -module (the proof of this fact goes on the same route

as described in Lemma 4.3.4). Injectivity follows similarly as before. Finally, in view of

Proposition (4.3.8), we see that the diagram commutes and this completes the proof. 2
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Chapter 5

Multiplicativity of Connes’ Calculus

In this final chapter we study behaviour of Ω•D for the tensor product of even spec-

tral triples. More precisely, we are interested in knowing whether Ω•D(A1 ⊗ A2) ∼=

Ω•D1
(A1) ⊗ Ω•D2

(A2) for two even spectral triples (A1,H1, D1, γ1) and (A2,H2, D2, γ2).

Here Ω•D1
⊗ Ω•D2

denotes the tensor product of two differential graded algebras. We call

it multiplicativity property of Ω•D .

This question has been studied in ([25]), but because of the partial nature of their

result we reinvestigate it here. Note that to define Ω•D one does not use self-adjointness

and compactness of the resolvent of D. We cast Connes’ definition in a slightly more

general algebraic framework. We consider the quadruple (A,V, D, γ) where A is an

associative, unital algebra over K, represented on a vector space V, D ∈ End(V), γ ∈

End(V) is a Z2-grading operator which commutes with A and anticommutes with D. We

show that the collection of such quadruple (A,V, D, γ) is a monoidal category and denote

it by S̃pec . We identify a smaller subcategory S̃pecsub and show that there is a covariant

functor G : S̃pec −→ S̃pecsub . Moreover, S̃pecsub becomes a monoidal subcategory of

S̃pec . Next we consider the category DGA of differential graded algebras over a field K

and show that the association F : (A,V, D, γ) 7−→ Ω•D(A) gives a covariant functor from

S̃pec to DGA. We show that restricted to S̃pecsub , F becomes a monoidal functor. To

validate the nontriviality of this functor, i,e. to show that the associated dga Ω•D is not
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trivial, we explicitly compute F◦G for a canonical spectral triple associated with compact

smooth manifolds and for the noncommutative torus. We also compute the associated

cohomologies in each case and it turns out that the resulting dga Ω•D is cohomologically

also not trivial.

5.1 Multiplicativity of Connes’ Calculus

Definition 5.1.1. A quadruple (A,V, D, γ) is called an even algebraic spectral triple if

1. A is a unital, associative algebra over a field K,

2. π is a representation of A on the K-vector space V,

3. D ∈ End(V),

4. γ ∈ End(V) is a Z2-grading operator which commutes with π(A) and anticommutes

with D.

Let (A1,V1, D1, γ1) and (A2,V2, D2, γ2) be two even algebraic spectral triples. The

product of these is given by the following even algebraic spectral triple

(A1,V1, D1, γ1)⊗ (A2,V2, D2, γ2) := (A1 ⊗A2,V1 ⊗ V2, D1 ⊗ 1 + γ1 ⊗D2, γ1 ⊗ γ2) .

One can consider two dgas Ω•D1
(A1) and Ω•D2

(A2). The product of these two dgas is given

by

Ω•D1
(A1)⊗ Ω•D2

(A2) :=
⊕

n≥0

⊕
i+j=n Ωi

D1
(A1)⊗ Ωj

D2
(A2) .

It is natural to ask how Ω•D behaves under this multiplication, i,e. whether

Ωn
D(A1 ⊗A2) ∼=

⊕
i+j=n Ωi

D1
(A1)⊗ Ωj

D2
(A2) ∀n ≥ 0 .

The article ([25]) deals with this investigation and does not lead to a final conclusion.

However, using the universality of Ω•(A1 ⊗A2), a useful outcome is that for all n ≥ 0

Ωn
D(A1 ⊗A2) ∼= Ω̃n

D(A1,A2) , (5.1.1)
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where Ω̃•D(A1,A2) is defined as follows.

Definition 5.1.2. Consider the reduced universal dgas (Ω•(A1), d1) and (Ω•(A2), d2),

associated with the algebraic spectral triples (A1,V1, D1, γ1) and (A2,V2, D2, γ2) respec-

tively. Consider the product dga
(

Ω•(A1)⊗ Ω•(A2) , d̃
)

where

(ωi ⊗ uj).(ωp ⊗ uq) := (−1)jpωiωp ⊗ ujuq , (5.1.2)

d̃(ωi ⊗ uj) := d1(ωi)⊗ uj + (−1)iωi ⊗ d2(uj) , (5.1.3)

for ω• ∈ Ω•(A1) and u• ∈ Ω•(A2). One can define a representation π̃ of Ω•(A1)⊗Ω•(A2)

by

π̃(ωi ⊗ uj) := π1(ωi)γ
j
1 ⊗ π2(uj) . (5.1.4)

Let

J̃k0 := Ker

{
π̃ :

⊕
i+j=k

Ωi(A1)⊗ Ωj(A2) −→ End(V1 ⊗ V2)

}
, (5.1.5)

and J̃n = J̃n0 + d̃J̃n−1
0 . Define Ω̃n

D(A1,A2) :=
⊕
i+j=n Ωi(A1)⊗Ωj(A2)

J̃n(A1,A2)
, ∀n ≥ 0.

At this point we would like to register one interesting observation about the tensored

complex Ω•(A1) ⊗ Ω•(A2). Recall that Ω1(A1 ⊗ A2) enjoys the following universal

property :

For any A1 ⊗ A2-bimodule M and any derivation δ : A1 ⊗ A2 −→ M , there exists a

unique A1 ⊗ A2-bimodule morphism Φ : Ω1(A1 ⊗ A2) −→ M such that the following

diagram

A1 ⊗A2 Ω1(A1 ⊗A2)

M

d

Φδ
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commutes.

The A1 ⊗ A2 -bimodule Ω̃1(A1 ,A2) := (Ω1(A1)⊗A2)
⊕

(A1 ⊗ Ω1(A2)) enjoys the

following universal property.

Proposition 5.1.3. For any A1⊗A2-bimodule M and any derivation δ : A1⊗A2 −→M

satisfying,

1. δ(a⊗ 1) commutes with 1⊗ b ,

2. δ(1⊗ b) commutes with a⊗ 1 ,

for all a ∈ A1 , b ∈ A2 ; there exists a unique A1 ⊗A2-bimodule morphism

Ψ : Ω̃1(A1 ,A2) −→M

such that the following diagram

A1 ⊗A2 Ω̃1(A1,A2)

M

d̃

Ψδ

commutes.

Proof. Define Ψ : Ω̃1(A1 ,A2) −→M by the following map

a1d1a2 ⊗ b1 7−→ (a1 ⊗ 1)δ(a2 ⊗ 1)(1⊗ b1)

a1 ⊗ b1d2b2 7−→ (a1 ⊗ 1)(1⊗ b1)δ(1⊗ b2) .

Checking left module homomorphism is trivial. We will check that Ψ is a right module

homomorphism. For any simple tensor x⊗ y ∈ A1 ⊗A2 ,

(a1d1a2 ⊗ b1 + ã1 ⊗ b̃1d2b̃2)(x⊗ y) = a1d1(a2x)⊗ b1y + ã1x⊗ b̃1d2(̃b2y)

− a1a2d1x⊗ b1y − ã1x⊗ b̃1b̃2d2y
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Hence,

Ψ
(

(a1d1a2 ⊗ b1 + ã1 ⊗ b̃1d2b̃2)(x⊗ y)
)

= (a1 ⊗ 1)δ(a2x⊗ 1)(1⊗ b1y)− (a1a2 ⊗ 1)δ(x⊗ 1)(1⊗ b1y)

+ (ã1x⊗ b̃1)δ(1⊗ b̃2y)− (ã1x⊗ b̃1b̃2)δ(1⊗ y)

= (a1 ⊗ 1)δ(a2 ⊗ 1)(1⊗ b1)(x⊗ y) + (ã1 ⊗ b̃1)δ(1⊗ b̃2y)(x⊗ 1)

− (ã1x⊗ b̃1b̃2)δ(1⊗ y)

= (a1 ⊗ 1)δ(a2 ⊗ 1)(1⊗ b1)(x⊗ y) + (ã1 ⊗ b̃1)δ(1⊗ b̃2)(x⊗ y)

+ (ã1 ⊗ b̃1)(1⊗ b̃2)δ(1⊗ y)(x⊗ 1)− (ã1x⊗ b̃1b̃2)δ(1⊗ y)

=
(

(a1 ⊗ 1)δ(a2 ⊗ 1)(1⊗ b1) + (ã1 ⊗ b̃1)δ(1⊗ b̃2)
)

(x⊗ y)

=
(

Ψ(a1d1a2 ⊗ b1 + ã1 ⊗ b̃1d2b̃2)
)

(x⊗ y)

Suppose there exists another A1 ⊗ A2 bimodule morphism Ψ′ such that the diagram

commutes. For any a1d1a2⊗ b1 ∈ Ω1(A1)⊗A2, observe that it is same as (a1⊗ 1)d̃(a2⊗

1)(1⊗ b1). Then,

Ψ′ (a1d1a2 ⊗ b1) = (a1 ⊗ 1)Ψ′
(
d̃(a2 ⊗ 1)

)
(1⊗ b1)

= (a1 ⊗ 1)δ(a2 ⊗ 1)(1⊗ b1)

= Ψ(a1d1a2 ⊗ b1)

One can prove a similar fact for a⊗ b1d2b2 . This proves the uniqueness of Ψ. 2

Note that Ω̃n
D(A1,A2) ∼=

⊕
i+j=n Ωi

D1
(A1)⊗ Ωj

D2
(A2) if and only if

J̃n(A1,A2) ∼=
⊕
i+j=n

J i(A1)⊗ Ωj(A2) + Ωi(A1)⊗ J j(A2) . (5.1.6)

But it is in general not true. This is the point of investigation in this chapter. We propose

a subcategory of the category of even algebraic spectral triples, which satisfies ( 5.1.6 ).
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Also there is a canonical projector onto this subcategory.

Definition 5.1.4. The objects of the category S̃pec are even algebraic spectral triples

(A,V, D, γ). Given two such objects (Ai,Vi, Di, γi), with i = 1, 2, a morphism between

them is a pair (φ,Φ) where φ : A1 → A2 is unital algebra morphism between the algebras

A1,A2 and Φ ∈ End(V1,V2) is surjective which intertwines the representations π1, π2 ◦ φ

and the operators D1, D2 or equivalently, for which the following diagrams commute for

every x ∈ A1 :

Φ
V1 V2

Φ
V1 V2

D2D1

Φ
V1 V2

Φ
V1 V2

π2 ◦ φ(x)π1(x)

and Φ also intertwines the grading operators γ1, γ2,

Φ
V1 V2

Φ
V1 V2

γ2γ1

Remark 5.1.5. This definition is essentially from ([2]). However, our requirement de-

mands the extra condition on surjectivity of Φ . This is in line with ([22], [40]).

Proposition 5.1.6. The category S̃pec is a monoidal category.

Proof. Define the identity object ‘1’ of monoidal category as follows

1 := (K,K, 0, 1).

Define the functor tensor product ‘⊗ ’ on objects as

(A1,V1, D1, γ1)⊗ (A2,V2, D2, γ2)

:= (A1 ⊗A2,V1 ⊗ V2, D1 ⊗ 1 + γ1 ⊗D2, γ1 ⊗ γ2)

and on morphisms
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(φ ,Φ) : (A,V, D, γ) 7−→ (Ã, Ṽ, D̃, γ̃)

(φ′ ,Φ′) : (A′,V′, D′, γ′) 7−→ (Ã′, Ṽ′, D̃′, γ̃′)

by (φ⊗ φ′,Φ⊗Φ′) , where φ⊗ φ′ is the usual tensor product of two algebra morphisms

and Φ⊗Φ′ is the usual tensor product of two linear maps. Now one can easily verify all

the conditions of a monoidal category. 2

Let DGA be the category of differential graded algebras over field K . We will only

consider nonnegatively graded algebras in this chapter.

Lemma 5.1.7. There is a covariant funtor F : S̃pec −→ DGA given by (A,V, D, γ) 7−→

Ω•D(A).

Proof. Consider two objects (A1,V1, D1, γ1), (A2,V2, D2, γ2) ∈ Ob(S̃pec) and suppose

there is a morphism (φ ,Φ) : (A1,V1, D1, γ1) −→ (A2,V2, D2, γ2). Define

Ψ : Ω•D1
(A1) −→ Ω•D2

(A2)

[
∑
a0

∏n
i=1[D1, ai]] 7−→ [

∑
φ(a0)

∏n
i=1[D2, φ(ai)]]

for all aj ∈ Aj, n ≥ 0 . To show Ψ is well-defined we must show that Ψ(π(d1J
m
0 )) ⊆

π(d2J
m
0 ) for all m ≥ 1, where d1, d2 are the universal differentials for Ω•(A1),Ω•(A2)

respectively. Observe that

Φ ◦

(∑
a0

n∏
i=1

[D1, ai]

)
=

(∑
φ(a0)

n∏
i=1

[D2, φ(ai)]

)
◦ Φ . (5.1.7)

Consider an arbitrary element ξ ∈ π(d1J
n
0 ). By definition, ξ =

∑∏n
i=0[D1, ai] ∈ π(d1J

n
0 )

such that
∑
a0

∏n
i=1[D1, ai] = 0. Now using equation (5.1.7) and surjectivity of Φ we

have ∑
φ(a0)

∏n
i=1[D2, φ(ai)] = 0 .

This shows the well-definedness of Ψ. Now it is easy to check that Ψ is a differential

graded algebra morphism. 2
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Remark 5.1.8. This is the only place where we need the stronger assumption on surjec-

tivity of the map Φ and because of this reason we differ from ([2]).

Now consider (A,V, D, γ) ∈ Ob(S̃pec) such that γ ∈ π(A). Let S̃pecsub be the

subcategory of S̃pec , objects of which are (A,V, D, γ) with γ ∈ π(A). Clearly S̃pecsub

is a monoidal subcategory of S̃pec . Now suppose (A,V, D, γ) ∈ Ob(S̃pec) and γ /∈ π(A).

Consider the vector space A⊕A with the product rule

(a, b) ? (ā, b̄) := (aā+ bb̄ , ab̄+ bā) .

The algebra (A⊕A , ?) becomes unital with unit (1, 0). The map (a, b) 7−→ (a+ b, a− b)

gives a unital algebra isomorphism between the algebra (A ⊕ A , ?) and the direct sum

algebra A⊕A where the multiplication is defined as co-ordinatewise. Now the map

(a, b) 7−→ π(a) + γπ(b) ∈ End(V)

gives a representation of the unital algebra (A ⊕ A , ?) on the vector space V. Since

(0, 1) 7−→ γ ∈ End(V) we have γ ∈ π((A ⊕ A , ? )) and hence ((A⊕A , ?),V, D, γ) ∈

Ob(S̃pecsub).

Proposition 5.1.9. The association G : (A,V, D, γ) 7−→ ((A ⊕ A , ?),V, D, γ) gives a

covariant functor from S̃pec to S̃pecsub .

Proof. For a morphism (φ ,Φ) : (A,V, D, γ) −→ (A′,V′, D′, γ′), define

(φ̃ , Φ̃) : ((A⊕A , ? ),V, D, γ) −→ ((A′ ⊕A′ , ? ),V′, D′, γ′)

by taking Φ̃ := Φ and

φ̃ : A⊕A −→ A′ ⊕A′

(a, b) 7−→ (φ(a), φ(b)) .

It is easy to check that (φ̃ , Φ̃) defines a morphism in S̃pecsub . 2
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In the next two sections we will see that the funtor F ◦ G is not trivial. Throughout

the rest of this chapter the notation F and G will be reserved to mean the functors in

Lemma (5.1.7) and Proposition (5.1.9) respectively.

Lemma 5.1.10. The category DGA is monoidal.

Proof. For two dgas (C = ⊕n≥0C
n, d) and (E = ⊕n≥0E

n, δ), define the tensor product

functor ‘⊗’ by (C ⊗ E := ⊕n≥0 ⊕i+j=n Ci ⊗ Ej, d⊗ δ) where,

d⊗ δ(ci ⊗ ej) := d(ci)⊗ ej + (−1)ici ⊗ δ(ej)

for all ci ∈ Ci, ej ∈ Ej. For two morphisms

f : (C, d) −→ (E, δ) ; g : (C̃, d̃) −→ (Ẽ, δ̃)

define f ⊗ g : (C, d) ⊗ (C̃, d̃) −→ (E, δ) ⊗ (Ẽ, δ̃) by f ⊗ g = ⊕n≥0 ⊕i+j=n f i ⊗ gj. The

identity object ‘1’ is the dga (A = ⊕n≥0A
n, 0) where A0 = C and An = 0 for all n ≥ 1.

The rest of the results can be routinely checked. 2

Theorem 5.1.11. Restricted to the monoidal subcategory S̃pecsub of S̃pec , the covariant

functor F : S̃pecsub −→ DGA defined in Lemma (5.1.7) is a monoidal functor.

Proof. Only nontrivial part is to prove that

Ωn
D(A1 ⊗A2) ∼=

⊕
i+j=n Ωi

D1
(A1)⊗ Ωj

D2
(A2)

where D = D1 ⊗ 1 + γ1 ⊗D2 . We break the proof into two lemmas.

Lemma 5.1.12. For any a ∈ A , [D2, a] ∈ π(dJ1
0 ) .

Proof. Consider p = (1 + γ)/2 and q = (1 − γ)/2. Then pq = 0 and pDp = qDq = 0.

Consider a ∈ A and η ∈ A be such that π(η) = γ. Now consider

ω = 1
4
(1 + η)d(a)(1 + η) + 1

4
(1− η)d(a)(1− η) ∈ Ω1(A) .
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Then,

π(ω) = p[D, ap]− pa[D, p] + q[D, aq]− qa[D, q]

= pDap− papD − paDp+ papD + qDaq − qaqD − qaDq + qaqD

= 0 ; since pap = pa = ap ; qaq = qa = aq.

This shows that ω ∈ J1
0 (A) ⊆ Ω1(A). Now,

π(dω) = [D, p][D, ap]− [D, pa][D, p] + [D, q][D, aq]− [D, qa][D, q]

= (Dp− pD)(Dap− apD)−Dpa[D, p] + paD[D, p]

+(Dq − qD)(Daq − aqD)−Dqa[D, q] + qaD[D, q]

= DpDap−DpapD − pD2ap+ pDapD −DpaDp+DpapD

+paD2p− paDpD +DqDaq −DqaqD − qD2aq

+qDaqD −DqaDq +DqaqD + qaD2q − qaDqD

= 0−DpaD − pD2ap+ 0− 0 +DpaD + paD2p− 0

+0−DqaD − qD2aq + 0− 0 +DqaD + qaD2q − 0

= −[pD2p, pa]− [qD2q, qa]

Now observe that pD2q = pD(p+ q)Dq = 0 and qD2p = 0. Hence,

[D2, a] = [(p+ q)D2(p+ q), (p+ q)a]

= [pD2p+ qD2q, pa+ qa]

= [pD2p, pa] + [qD2q, qa]

= π(dω)

This proves that [D2, a] ∈ π(dJ1
0 (A)). 2

Lemma 5.1.13. We have
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J̃n(A1,A2) =
⊕

i+j=n J
i(A1)⊗ Ωj(A2) + Ωi(A1)⊗ J j(A2) ,

where definition of J̃n is provided in definition (5.1.2).

Proof. Let ω = π̃(d̃ω′) where ω′ ∈ J̃n−1
0 . Suppose ω′ =

∑
k

⊕
i+j=n−1 v

i
1,k ⊗ v

j
2,k , where

vi1,k ∈ Ωi(A1) and vj2,k ∈ Ωj(A2). Hence we have the following equation,

∑
k

∑
i+j=n−1

π1(vi1,k)γ
j
1 ⊗ π2(vj2,k) = 0 . (5.1.8)

Let

vi1,k =
∑
a

(i)
0,k

∏i
r=1 d1(a

(i)
r,k)

vj2,k =
∑
b

(j)
0,k

∏j
s=1 d2(b

(j)
s,k)

for a
(i)
r,k ∈ A1 and b

(j)
s,k ∈ A2. Then equation (5.1.8) becomes

∑
k

∑
i+j=n−1

∑(
a

(i)
0,k

i∏
r=1

[D1, a
(i)
r,k]γ

j
1

)
⊗

(
b

(j)
0,k

j∏
s=1

[D2, b
(j)
s,k]

)
= 0 . (5.1.9)

Now since ω′ =
∑

k

⊕
i+j=n−1 v

i
1,k ⊗ v

j
2,k ,

d̃(ω′) =
∑

k

∑
i+j=n−1 d1(vi1,k)⊗ v

j
2,k + (−1)ivi1,k ⊗ d2(vj2,k)

and hence,

π̃(d̃ω′) =
∑
k

∑
i+j=n−1

π1(d1(vi1,k))γ
j ⊗ π2(vj2,k) + (−1)iπ1(vi1,k)γ

j+1 ⊗ π2(d2(vj2,k)).

Using equation (5.1.9) we get,

∑
k

∑
i+j=n−1

π1(d1(vi1,k))γ
j ⊗ π2(vj2,k)

=
∑
k

∑
i+j=n−1

∑(
−a(i)

0,kD1

i∏
r=1

[D1, a
(i)
r,k]γ

j
1

)
⊗

(
b

(j)
0,k

j∏
s=1

[D2, b
(j)
s,k]

)

89



= −
∑
k

∑
i+j=n−1

∑
{

i∑
r=1

(
(−1)r+1a

(i)
0,k[D1, a

(i)
1,k] . . . [D

2
1, a

(i)
r,k] . . . [D1, a

(i)
i,k]γ

j
1

)
⊗

(
b

(j)
0,k

j∏
s=1

[D2, b
(j)
s,k]

)
−

(
(−1)ia

(i)
0,k

i∏
t=1

[D1, a
(i)
t,k]D1γ

j
1

)
⊗

(
b

(j)
0,k

j∏
s=1

[D2, b
(j)
s,k]

)
} .

This term is contained in
∑

i+j=n π1(J i)γj1 ⊗ π2(Ωj) , since we have seen that [D2
1, a

(i)
r,k] is

in π1(J2) for each 1 6 r 6 i ( Lemma 5.1.12). Finally,

∑
k

∑
i+j=n−1

(−1)iπ1(vi1,k)γ
j+1 ⊗ π2(d2(vj2,k))

=
∑
k

∑
i+j=n−1

∑[
γ1 ⊗D2 ,

(
a

(i)
0,k

i∏
t=1

[D1, a
(i)
t,k]γ

j
1

)
⊗

(
b

(j)
0,k

j∏
s=1

[D2, b
(j)
s,k]

)]

+

j∑
r=1

(−1)r+1

(
a

(i)
0,k

i∏
t=1

[D1, a
(i)
t,k]γ

j+1
1

)
⊗
(
b

(j)
0,k[D2, b

(j)
1,k] . . . [D

2
2, b

(j)
r,k] . . . [D2, b

(j)
j,k]
)
.

This term is in
∑

i+j=n π1(Ωi)γj1 ⊗ π2(J j) , since [D2
2, b

(j)
r,k] ∈ π2(J2) for each 1 6 r 6

j (5.1.12). So we get

π̃(J̃n) ⊆
∑

i+j=n π1(Ωi)γj1 ⊗ π2(J j) + π1(J i)γj1 ⊗ π2(Ωj) ,

i,e. π̃(J̃n) ⊆ π̃
(⊕

i+j=n(J i ⊗ Ωj + Ωi ⊗ J j)
)

. The converse is trivial. Hence,

J̃n⊕
i+j=n(Ji⊗Ωj+Ωi⊗Jj)

∼= π̃(J̃n)

π̃(
⊕
i+j=n(Ji⊗Ωj+Ωi⊗Jj))

= {0}

and our claim has been justified. 2

Proof of Theorem (5.1.11) : Lemma (5.1.13) proves that the isomorphism in equa-

tion (5.1.6) holds i,e.

J̃n(A1 , A2) ∼=
⊕

i+j=n J
i(A1)⊗ Ωj(A2) + Ωi(A1)⊗ J j(A2) ,

when we restrict ourselves to the subcategory S̃pecsub. Hence the proof follows from the

fact that Ωn
D(B1 ⊗ B2) ∼= Ω̃n

D(B1,B2) for all n ≥ 0 and for any unital algebras B1,B2 (see

the isomorphism in 5.1.1). 2

Corollary 5.1.14. F(G(A1)⊗ G(A2)) ∼= F ◦ G(A1)⊗F ◦ G(A2).
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However, we do not know whether F ◦ G(A1 ⊗A2) ∼= F ◦ G(A1)⊗F ◦ G(A2).

5.2 Computation for Compact Manifold

In this section our objective is to show that there exists a contravariant functor P

from the category of manifolds M with embeddings as morphisms to the category S̃pec

such that the functor F ◦ G ◦ P is not trivial.

Let M be a compact manifold of dimension n with atlas {Ui, φi}ki=1. Consider the

complexified exterior bundle ∧•CT ∗M over M and let (x1, . . . , xn) denote the local co-

ordinates. Let d be the exterior differentiation. To construct the contravariant functor

P consider the following objectC∞(M) , Γ(∧•CT ∗M) ∼= Γ(∧evenC T ∗M)⊕ Γ(∧oddC T ∗M) , D :=

0 d

d 0

 , γ := parity


in S̃pec , where ‘parity’ means the odd-even parity of a form in Γ(∧•CT ∗M). Now for an

embedding φ : M ↪→ N, we have

φ̃ :

C∞(N) , Γ(∧•CT ∗N) ,

0 d

d 0

 , γ

 −→
C∞(M) , Γ(∧•CT ∗M) ,

0 d

d 0

 , γ

 ,

a morphism in S̃pec. Moreover, the following commutative diagram

d
Γ(∧kCT ∗N) Γ(∧k+1

C T ∗N)

d
Γ(∧kCT ∗M) Γ(∧k+1

C T ∗M)

φ∗φ∗

where φ∗ is the pullback of φ , explains that the quadruple (C∞(M),Γ(∧•CT ∗M), D, γ)

is natural. Henceforth we will be dealing with (C∞(M),Γ(∧•CT ∗M), D, γ) ∈ Ob
(
S̃pec

)
in this section, where D =

0 d

d 0

 and γ =

1 0

0 −1

. Notice that D2 = 0. Since
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γ /∈ π(C∞(M)) we first apply the functor G of Proposition (5.1.9) and then compute

F ◦ G along with the associated cohomologies.

Notation : C̃∞(M) := G (C∞(M),Γ(∧•CT ∗M), D, γ) where G is defined in Proposi-

tion (5.1.9) and dim(M) = n throughout this section.

Lemma 5.2.1. Ωm
D

(
C̃∞(M)

)
∼= π

(
Ωm(C̃∞(M))

)
∀m ≥ 0.

Proof. Observe that J0
0

(
C̃∞(M)

)
= {0} in this case. We show that π

(
dJm0 (C̃∞(M))

)
=

{0} ∀m ≥ 1. Note that

π(dJm0 ) = {
∑ m∏

i=0

[D, xi] : xi ∈ C̃∞(M) ;
∑

x0

m∏
i=1

[D, xi] = 0}

= {−
∑

x0D

m∏
i=1

[D, xi] : xi ∈ C̃∞(M) ;
∑

x0

m∏
i=1

[D, xi] = 0}

Now,

∑
x0D

m∏
i=1

[D, xi] =
∑

x0D
m∏
i=1

(Dxi − xiD)

= −
∑

x0Dx1D
m∏
i=2

(Dxi − xiD)

= (−1)m
∑

x0

m∏
i=1

DxiD

= (−1)m

(∑
x0

m−1∏
i=1

[D, xi]

)
DxmD

= (−1)m

(∑
x0

m∏
i=1

[D, xi]

)
D

But
∑
x0

∏m
i=1[D, xi] = 0 by assumption and hence we are done. 2

Let 1 ≤ m ≤ n, where n = dim(M). We define the following linear operator

Ta0,...,am : Γ(∧•CT ∗M) −→ Γ(∧•CT ∗M)

ω 7−→ a0da1 ∧ . . . ∧ d(amω)
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where ai ∈ C∞(M). Let

Mm = span{Ta0,...,am : Γ(∧•CT ∗M) −→ Γ(∧•CT ∗M) : ai ∈ C∞(M)} .

Then Mm is a C -vector space. Note that for a, b ∈ C∞(M)D,
a 0

0 b


 =

 0 T1,b − Ta,1

T1,a − Tb,1 0

 .

Since elements of π
(

Ωm(C̃∞(M))
)

are of the form

∑a0 0

0 b0

∏m
i=1

D,
ai 0

0 bi


 ; aj, bj ∈ C∞(M) ,

it is easy to observe that π
(

Ωm(C̃∞(M))
)

is a subspace ofMm⊕Mm. Moreover, using

the equality

∑
k

a0k 0

0 a′0k


D,

0 0

0 1



−a′1k 0

0 a1k

 =
∑
k

 0 Ta0k , a1k

Ta′0k , a′1k 0

 (5.2.1)

we see that for m ≥ 3 odd

∑ 0 Ta0,a1,...,am

Ta′0,a′1,...,a′m 0


=

∑ 0 Ta0,a1

Ta′0,a′1 0

 m∏
i=2,i even


 0 T1,a′i

T1,ai 0


 0 T1,ai+1

T1,a′i+1
0




=
∑a0 0

0 a′0


D,

0 0

0 1



−a′1 0

0 a1

 •
m∏

i=2,i even



D,

0 0

0 1



−ai 0

0 a′i




D,

0 0

0 1



−a′i+1 0

0 ai+1





and similarly for m ≥ 2 even. Hence we conclude that π
(

Ωm
(
C̃∞(M)

))
=Mm⊕Mm.
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Lemma 5.2.2. Let V be the vector space of all linear endomorphisms acting on Γ(∧•CT ∗M).

We have the following subspaces of V

M(1)
m := {Mωm−1 ◦ d : Γ(∧•CT ∗M) −→ Γ(∧•CT ∗M) : ωm−1 ∈ Γ(∧m−1

C T ∗M)} ,

M(2)
m := {Mωm : Γ(∧•CT ∗M) −→ Γ(∧•CT ∗M) : ωm ∈ Γ(∧mC T ∗M)} .

where Mξ denotes multiplication by ξ . Then M(1)
m

⋂
M(2)

m = {0} and Mm ⊆ M(1)
m ⊕

M(2)
m ⊆ V.

Proof. Observe that Ta0,...,am(ω) = (Ma0amda1∧...∧dam−1 ◦ d + Ma0da1∧...∧dam)(ω) , ∀ω ∈

Γ(∧•CT ∗M). Since d(1) = 0 and ∧(1) = 1, we have the direct sum. 2

Lemma 5.2.3. For 1 ≤ m ≤ n define

Φ̃ :Mm −→ Ωm−1M⊕ ΩmM

Ta0,...,am 7−→ (a0amda1 ∧ . . . ∧ dam−1 , a0da1 ∧ . . . ∧ dam)

where ΩkM := Γ(∧kCT ∗M) denotes the space of k-forms on M. Then

Φ = (Φ̃, Φ̃) :Mm ⊕Mm −→ Ωm−1M⊕ ΩmM⊕ Ωm−1M⊕ ΩmM

is a linear bijection.

Proof. Observe that to prove well-definedness of Φ̃ , in view of Lemma (5.2.2), we only

need to show that for 0 ≤ k ≤ n − 1, if Mωk ◦ d is zero then ωk = 0. In a co-ordinate

neighbourhood around a point p ∈ M, suppose ωk =
∑

i1<...<ik
fi1,...,ikdx

i1 ∧ . . . ∧ dxik .

Since k ≤ n − 1, there always exist j /∈ {i1, . . . , ik} and we have ωk ∧ dxj = 0 i,e.∑
i1<...<ik

fi1,...,ikdx
i1 ∧ . . .∧dxik ∧dxj = 0 at each point of the co-ordinate neighbourhood

around p ∈ M. This will show that each fi1,...,ik is zero showing ωk = 0. Injectivity of

Φ̃ easily follows from Lemma (5.2.2). To see surjectivity, choose (ωm−1, ωm) ∈ Ωm−1M⊕

ΩmM. Let in a co-ordinate neighbourhood

ωm =
∑

i1<...<im
fi1...imdx

i1 ∧ . . . ∧ dxim
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ωm−1 =
∑

j1<...<jm−1
gj1...jm−1dx

j1 ∧ . . . ∧ dxjm−1

with support of fi1...im , gj1...jm−1 in that neighbourhood. Then∑
Tgj1...jm−1

,xj1 ,...,xjm−1 ,1 7−→ (ωm−1, 0)

∑
Tfi1...im ,xi1 ,...,xim 7−→ (

∑
fi1...imx

imdxi1 ∧ . . . ∧ dxim−1 , ωm)

This shows that

Φ̃−1(ωm−1, ωm) =
∑

Tfi1...im ,xi1 ,...,xim +
∑

Tgj1...jm−1
,xj1 ,...,xjm−1 ,1

−
∑

Tfi1...imxim ,xi1 ,...,x
im−1 ,1

and containment of support of the functions fi1...im and gj1...jm−1 in the co-ordinate neigh-

bourhood fulfills our claim. 2

Lemma 5.2.4. For all m ≥ n+ 1, where n = dim(M), Mm = {0}.

Proof. Note that for any ω ∈ Γ(∧•CT ∗M),

Ta0,...,am(ω) :=
(
Ma0amda1∧...∧dam−1 ◦ d+Ma0da1∧...∧dam

)
(ω) .

Since m ≥ n + 1, it follows that Mm = {0} because ΩkM = Γ(∧kCT ∗M) = {0} for all

k > n. 2

Proposition 5.2.5. Ωm−1M⊕ΩmM⊕Ωm−1M⊕ΩmM has a C̃∞(M)-bimodule structure

given by,

φ 0

0 ψ

 . (ωm−1, ωm, ω̃m−1, ω̃m) := (φωm−1, φωm, ψω̃m−1, ψω̃m)
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(ωm−1, ωm, ω̃m−1, ω̃m) .

φ 0

0 ψ



:=


(φωm−1, φωm − dφ ∧ ωm−1, ψω̃m−1, ψω̃m − dψ ∧ ω̃m−1) ; if m even

(ψωm−1, ψωm + dψ ∧ ωm−1, φω̃m−1, φω̃m + dφ ∧ ω̃m−1) ; if m odd

Proof. In the co-ordinate chart,

ωm−1 =
∑

j1<...<jm−1
gj1...jm−1dx

j1 ∧ . . . ∧ dxjm−1

ωm =
∑

i1<...<im
fi1...imdx

i1 ∧ . . . ∧ dxim

ω̃m−1 =
∑

j1<...<jm−1
˜gj1...jm−1dx

j1 ∧ . . . ∧ dxjm−1

ω̃m =
∑

i1<...<im
f̃i1...imdx

i1 ∧ . . . ∧ dxim .

Alos let

ξ =
∑

Tfi1...im ,xi1 ,...,xim +
∑

Tgj1...jm−1
,xj1 ,...,xjm−1 ,1

−
∑

Tfi1...imxim ,xi1 ,...,x
im−1 ,1

and

ξ̃ =
∑

T ˜fi1...im ,x
i1 ,...,xim

+
∑

T ˜gj1...jm−1
,xj1 ...,xjm−1 ,1

−
∑

T ˜fi1...imxim ,x
i1 ,...,xim−1 ,1

Define,

φ 0

0 ψ

 . (ωm−1, ωm, ω̃m−1, ω̃m)

:= Φ


φ 0

0 ψ

 .Φ−1(ωm−1, ωm, ω̃m−1, ω̃m)


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=



Φ


φ 0

0 ψ

 .

ξ 0

0 ξ̃


 ; if m even

Φ


φ 0

0 ψ

 .

0 ξ

ξ̃ 0


 ; if m odd

= (φωm−1, φωm, ψω̃m−1, ψω̃m) ; for both even and odd m .

and

(ωm−1, ωm, ω̃m−1, ω̃m) .

φ 0

0 ψ


:= Φ

Φ−1(ωm−1, ωm, ω̃m−1, ω̃m) .

φ 0

0 ψ




=



Φ


ξ 0

0 ξ̃

 .

φ 0

0 ψ


 ; if m even

Φ


0 ξ

ξ̃ 0

 .

φ 0

0 ψ


 ; if m odd

=



Φ


ξφ 0

0 ξ̃ψ


 ; if m even

Φ


 0 ξψ

ξ̃φ 0


 ; if m odd

where Φ is the map defined in Lemma (5.2.3). Now

ξφ =
∑

Tfi1...im ,xi1 ,...,ximφ +
∑

Tgj1...jm−1
,xj1 ,...,xjm−1 ,φ

−
∑

Tfi1...imxim ,xi1 ,...,x
im−1 ,φ ,
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and

ξ̃ψ =
∑

T ˜fi1...im ,x
i1 ,...,ximψ

+
∑

T ˜gj1...jm−1
,xj1 ,...,xjm−1 ,ψ

−
∑

T ˜fi1...imxim ,x
i1 ,...,xim−1 ,ψ

.

So,

Φ


ξφ 0

0 ξ̃ψ




= (
∑

fi1...imx
imφdxi1 ∧ . . . ∧ dxim−1 − fi1...imximφdxi1 ∧ . . . ∧ dxim−1

+φωm−1 ,
∑

fi1...imdx
i1 ∧ . . . dxim−1 ∧ d(ximφ) + ωm−1 ∧ dφ

−fi1...imximdxi1 ∧ . . . dxim−1 ∧ dφ ,
∑

f̃i1...imx
imψdxi1 ∧ . . . ∧ dxim−1

−f̃i1...imximψdxi1 ∧ . . . ∧ dxim−1 + ψω̃m−1 ,∑
f̃i1...imdx

i1 ∧ . . . ∧ dxim−1 ∧ d(ximψ) + ω̃m−1 ∧ dψ

−f̃i1...imximψdxi1 ∧ . . . ∧ dxim−1 ∧ dψ )

= (φωm−1, φωm − dφ ∧ ωm−1, ψω̃m−1, ψω̃m − dψ ∧ ω̃m−1)

Similarly one can prove that

Φ


 0 ξψ

ξ̃φ 0




= (ψωm−1, ψωm + ωm−1 ∧ dψ, φω̃m−1, φω̃m + ω̃m−1 ∧ dφ)

= (ψωm−1, ψωm + dψ ∧ ωm−1, φω̃m−1, φω̃m + dφ ∧ ω̃m−1)

This is clearly a bimodule structure since it is induced by that on Ωm
D

(
C̃∞(M)

)
. 2

Notation : Ω̃m
D := Ωm−1M ⊕ ΩmM ⊕ Ωm−1M ⊕ ΩmM , 1 ≤ m ≤ n , untill the end

this section, where Ω•M denotes the space of forms on M .

98



Theorem 5.2.6. Ωm
D

(
C̃∞(M)

)
∼= Ω̃m

D , for all 1 ≤ m ≤ n , and Ωm
D

(
C̃∞(M)

)
= {0}

for m > n. This isomorphism is a C̃∞(M)-bimodule isomorphism.

Proof. We have for all 1 ≤ m ≤ n ,

Ωm
D

(
C̃∞(M)

)
∼= π

(
Ωm(C̃∞(M)

)
(by Lemma 5.2.1)

∼= Ωm−1M⊕ ΩmM⊕ Ωm−1M⊕ ΩmM (by Lemma 5.2.3).

Lemma (5.2.4) proves that Ωm
D

(
C̃∞(M)

)
= {0} for m > n. Finally, Proposition (5.2.5)

proves that this isomorphism is C̃∞(M)-bimodule isomorphism for all 1 ≤ m ≤ n . 2

Now we will turn Ω̃•D into a chain complex.

Lemma 5.2.7. The differential d̃ : Ωm
D

(
C̃∞(M)

)
−→ Ωm+1

D

(
C̃∞(M)

)
of diagram

(1.1.1) has the following action :

1. For m ≥ 1 odd ,

d̃ :

 0 Ta0,...,am

Ta′0,...,a′m 0

 7−→
T1,a′0,...,a

′
m

+ Ta0,...,am,1 0

0 T1,a0,...,am + Ta′0,...,a′m,1


2. For m ≥ 2 even ,

d̃ :

Ta0,...,am 0

0 Ta′0,...,a′m

 7−→
 0 T1,a′0,...,a

′
m
− Ta0,...,am,1

T1,a0,...,am − Ta′0,...,a′m,1 0


Proof. We first note that

D,
0 0

0 1


 =

 0 T1,1

−T1,1 0

 (5.2.2)

 0 T1,1

−T1,1 0


−a′1 0

0 a1

 =

 0 T1,a1

T1,a′1
0

 (5.2.3)
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a0 0

0 a′0


 0 T1,a1

T1,a′1
0

 =

 0 Ta0,a1

Ta′0,a′1 0

 (5.2.4)

Hence combining these three we get,

a0 0

0 a′0


D,

0 0

0 1



−a′1 0

0 a1

 =

 0 Ta0,a1

Ta′0,a′1 0

 (5.2.5)

Case 1 : Let m ≥ 3 be odd. Observe that

 0 Ta0,a1,...,am

Ta′0,a′1,...,a′m 0


=

 0 Ta0,a1

Ta′0,a′1 0

 m∏
i=2,i even


 0 T1,a′i

T1,ai 0


 0 T1,ai+1

T1,a′i+1
0




=

a0 0

0 a′0


D,

0 0

0 1



−a′1 0

0 a1

 •
m∏

i=2,i even



D,

0 0

0 1



−ai 0

0 a′i




D,

0 0

0 1



−a′i+1 0

0 ai+1





Consider the expression η = x0

∏m
i=1

(
d̄(b)xi

)
where,

x0 =

a0 0

0 a′0

 ; b =

0 0

0 1

 ; d̄(y) =

D,
y11 y12

y21 y22




xi =

−a′i 0

0 ai

 for 1 ≤ i ≤ m, odd ; xj =

−aj 0

0 a′j

 for 1 ≤ j ≤ m, even.

One should note that d̄ ◦ d̄(b) = 0 because d2 = 0, d being the exterior differentiation.
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Now for the differential d̃ : Ωm
D

(
C̃∞(M)

)
−→ Ωm+1

D

(
C̃∞(M)

)
of diagram 1.1.1 we get,

d̃η = d̄(x0)
m∏
i=1

{d̄(b)xi}+ x0d̃

(
d̄(b)x1

m∏
i=2

{d̄(b)xi}

)

= d̄(x0)
m∏
i=1

{d̄(b)xi}+
m∑
k=2

(−1)k−1

k−2∏
j=0

{xj d̄(b)}d̄(xk−1)

(
m∏
i=k

{d̄(b)xi}

)

+(−1)m

(
m−1∏
i=0

{xid̄(b)}

)
d̄(xm)

=

D,
a0 0

0 a′0



D,

0 0

0 1



−a′1 0

0 a1

 m∏
i=2,i even


 0 T1,a′i

T1,ai 0


 0 T1,ai+1

T1,a′i+1
0




+
m∑
k=2

(−1)k−1

k−2∏
j=0

{xj d̄(b)}d̄(xk−1)

(
m∏
i=k

{d̄(b)xi}

)

+(−1)m

a0 0

0 a′0


D,

0 0

0 1


 m−1∏
i=1,i odd

{

−a′i 0

0 ai


D,

0 0

0 1




−ai+1 0

0 a′i+1


D,

0 0

0 1


}

D,
−a′m 0

0 am




Now it is straightforward computation to observe that

m∏
i=k

{d̄(b)xi} =
m∏
i=k


 0 T1,1

−T1,1 0

 xi



=



T1,a′k,...,a
′
m

0

0 T1,ak,...,am

 ; if k even

 0 T1,ak,...,am

T1,a′k,...,a
′
m

0

 ; if k odd
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and

k−2∏
j=0

{xj d̄(b)}d̄(xk−1) =



−Ta0,...,ak−1,1 0

0 −Ta′0,...,a′k−1,1

 ; if k even

 0 −Ta0,...,ak−1,1

−Ta′0,...,a′k−1,1
0

 ; if k odd

The fact that d2 = 0 will now ensure that only the first and last term in the expression

for d̃η survive. Hence,

d̃η =

(T1,a′0
− Ta0,1)T1,a′1,...,a

′
m

0

0 (T1,a0 − Ta′0,1)T1,a1,...,am

+ (−1)m

−Ta0,...,am,1 0

0 −Ta′0,...,a′m,1


=

T1,a′0,...,a
′
m

+ Ta0,...,am,1 0

0 T1,a0,...,am + Ta′0,...,a′m,1

 .

Case 2 : Let m be even.

One can prove this in exactly the same way as in the ‘odd’ case. The only difference in

this case is a negative sign and it appears because of the presence of (−1)m at the last

term in the expression for d̃η.

Case 3 : Let m = 1 . Recall from equation (5.2.5), 0 Ta0,a1

Ta′0,a′1 0

 =

a0 0

0 a′0


D,

0 0

0 1



−a′1 0

0 a1


and hence,

d̃ :

 0 Ta0,a1

Ta′0,a′1 0

 7−→
T1,a′0,a

′
1

+ Ta0,a1,1 0

0 T1,a0,a1 + Ta′0,a′1,1


2

Using the isomorphism in Theorem (5.2.6) we can transfer Connes’ differential

d̃ : Ω•D

(
C̃∞(M)

)
−→ Ω•+1

D

(
C̃∞(M)

)
to the differential δ : Ω̃•D −→ Ω̃•+1

D . This will turn
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Ω̃•D into a chain complex and then we will be able to compute the cohomologies of the

complex
(

Ω̃•D , δ
)

.

Proposition 5.2.8. For 1 ≤ m ≤ n , the map

δ : Ω̃m
D −→ Ω̃m+1

D

(ωm−1, ωm, ω̃m−1, ω̃m) 7−→

(dω̃m−1 + (−1)m(ω̃m − ωm) , dω̃m , dωm−1 + (−1)m(ωm − ω̃m) , dωm)

makes the following diagram

d̃
Ωm
D

(
C̃∞(M)

)
Ωm+1
D

(
C̃∞(M)

)

δ
Ω̃m
D Ω̃m+1

D

∼=∼=

commutative.

Proof. For 1 ≤ m ≤ n take (ωm−1, ωm, ω̃m−1, ω̃m) ∈ Ω̃m
D . In terms of local co-ordinates

ωm−1 =
∑

j1<...<jm−1
gj1...jm−1dx

j1 ∧ . . . ∧ dxjm−1

ωm =
∑

i1<...<im
fi1...imdx

i1 ∧ . . . ∧ dxim

ω̃m−1 =
∑

j1<...<jm−1
˜gj1...jm−1dx

j1 ∧ . . . ∧ dxjm−1

ω̃m =
∑

i1<...<im
f̃i1...imdx

i1 ∧ . . . ∧ dxim

Using Lemma (5.2.3) we see that, isomorphic image of this element in Ωm
D

(
C̃∞(M)

)
is

ξ 0

0 ξ̃

 ; if m even

0 ξ

ξ̃ 0

 ; if m odd
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where,

ξ =
∑

Tfi1...im ,xi1 ,...,xim − Tfi1...imxim ,xi1 ,...,xim−1 ,1

+
∑

Tgj1...jm−1
,xj1 ,...,xjm−1 ,1

and

ξ̃ =
∑

T ˜fi1...im ,x
i1 ,...,xim

− T ˜fi1...imxim ,x
i1 ,...,xim−1 ,1

+
∑

T ˜gj1...jm−1
,xj1 ,...,xjm−1 ,1

By Lemma (5.2.7) we see that the differential d̃ : Ωm
D

(
C̃∞(M)

)
−→ Ωm+1

D

(
C̃∞(M)

)
sends this element to

dξ̃ + ξ T1,1 0

0 dξ + ξ̃ T1,1

 ; if m odd

 0 dξ̃ − ξ T1,1

dξ − ξ̃ T1,1 0

 ; if m even

where

dξ =
∑

T1,fi1...im ,x
i1 ,...,xim − T1,fi1...imx

im ,xi1 ,...,xim−1 ,1

+
∑

T1,gj1...jm−1
,xj1 ,...,xjm−1 ,1

and

dξ̃ =
∑

T
1, ˜fi1...im ,x

i1 ,...,xim
− T

1, ˜fi1...imxim ,x
i1 ,...,xim−1 ,1

+
∑

T1, ˜gj1...jm−1
,xj1 ,...,xjm−1 ,1

The isomophic image of this element in Ω̃m+1
D , under the map Φ of Lemma 5.2.3 , is
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
(dω̃m−1 − ω̃m + ωm , dω̃m , dωm−1 − ωm + ω̃m , dωm) ; if m odd

(dω̃m−1 + ω̃m − ωm , dω̃m , dωm−1 + ωm − ω̃m , dωm) ; if m even

i,e. (dω̃m−1 + (−1)m(ω̃m − ωm) , dω̃m , dωm−1 + (−1)m(ωm − ω̃m) , dωm) . 2

Remark 5.2.9. Notice that δ = Φ ◦ d̃ ◦ Φ−1 , and hence δ2 = 0. Thus
(

Ω̃•D , δ
)

is a

chain complex. Furthermore, the graded algebra structure on Ω•D

(
C̃∞(M)

)
will induce

the same on
(

Ω̃•D , δ
)

through the commutative diagram of Proposition (5.2.8). So we get(
Ω•D(C̃∞(M)), d̃

)
∼=
(

Ω̃•D , δ
)

as differential graded algebras and Theorem (5.2.6) gives

C̃∞(M)-bimodule isomorphism at each term of these chain complexes.

Theorem 5.2.10. The cohomologies H̃•(M) of the chain complex
(

Ω̃•D , δ
)

are given by

H̃m(M) ∼= Hm−1(M)⊕Hm(M) ; for 0 ≤ m ≤ dim(M) ,

where H•(M) denotes the de-Rham cohomology of M.

Proof. (1) Let m = 0. Recall that for

f 0

0 g

 ∈ C̃∞(M),

D,
f 0

0 g


 =

 0 T1,g − Tf,1

T1,f − Tg,1 0

 .

The isomorphism of Lemma (5.2.3) sends this element to (g − f, dg, f − g, df). Hence

H̃0(M) = {

f 0

0 f

 : df = 0 , f ∈ C∞(M)}

∼= H0(M) .

(2) Let 1 ≤ m ≤ dim(M) . Consider δm−1 : Ω̃m−1
D −→ Ω̃m

D and δm : Ω̃m
D −→ Ω̃m+1

D .

Then,

δm−1(vm−2, vm−1, ṽm−2, ṽm−1) = (dṽm−2 + (−1)m−1(ṽm−1 − vm−1), dṽm−1,

dvm−2 + (−1)m−1(vm−1 − ṽm−1), dvm−1) (5.2.6)
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for all (vm−2, vm−1, ṽm−2, ṽm−1) ∈ Ω̃m−1
D . Let ζ = (wm−1, wm, w̃m−1, w̃m) ∈ Ker(δm).

Then we have the following


d(wm) = 0

d(w̃m) = 0

;
d(w̃m−1) + (−1)m(w̃m − wm) = 0

d(wm−1) + (−1)m(wm − w̃m) = 0

(5.2.7)

Define

Ψ : Ker(δm)
Im(δm−1)

−→ Hm(M)⊕Hm−1(M)

[ζ] 7−→
(
[wm + w̃m], [wm−1 + w̃m−1]

)
.

This map is well-defined (because of equation 5.2.7) and linear. Now define

Φ : Hm(M)⊕Hm−1(M) −→ Ker(δm)
Im(δm−1)

([vm], [vm−1]) 7−→
[(

1
2
vm−1,

1
2
vm,

1
2
vm−1,

1
2
vm
)]

.

Using equation (5.2.6) one can check that Φ is well-defined and linear. Now observe that

Ψ ◦ Φ = Id, and

Φ ◦Ψ ([ζ]) =
[(

1
2
(wm−1 + w̃m−1), 1

2
(wm + w̃m), 1

2
(wm−1 + w̃m−1), 1

2
(wm + w̃m)

)]
.

If we can show that

ξ =
(

1
2
(w̃m−1 − wm−1), 1

2
(w̃m − wm), 1

2
(wm−1 − w̃m−1), 1

2
(wm − w̃m)

)
∈ Im(δm−1) ,

then Φ ◦Ψ will also be the identity. Observe that

δm−1
(

0, (−1)m+1

4
(wm−1 − w̃m−1), 0, (−1)m+1

4
(w̃m−1 − wm−1)

)
= ξ

using equation (5.2.7), and hence (2) follows. 2
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5.3 Computation for the Noncommutative Torus

In this section our objective is to show that the functor F ◦ G is not trivial for the

case of noncommutative torus, one of the most fundamental and widely studied exam-

ple in noncommutative geometry. Recall the general definition of the noncommutative

torus from ([36]). However, for our purpose we consider the following definition of the

noncommutative torus.

Definition 5.3.1. Let θ be a real number. The noncommutative torus, denoted by AΘ,

is the universal ?-algebra generated by U, V subject to the following relations

UU∗ = U∗U = 1 , V V ∗ = V ∗V = 1 ,

UV = e−2πiθV U .

There is a nondegenerate sesquilinear pairing on AΘ given by

〈
∑

ar1,r2 U
r1V r2 ,

∑
bs1,s2 U

s1V s2 〉 :=
∑

r1=s1,r2=s2

ar1,r2bs1,s2 .

We have the following derivations acting on AΘ ,

δ̃j

(∑
r1,r2

ar1,r2U
r1V r2

)
:=
√
−1
∑
r1,r2

rjar1,r2U
r1V r2 for j = 1, 2 .

Let δj := −
√
−1 δ̃j , j = 1, 2. Throughout this section i will stand for

√
−1.

Our candidate for the even algebraic spectral triple is the following quadruple

E :=

AΘ , AΘ ⊗ C2 , D :=

 0 δ1 − iδ2

δ1 + iδ2 0

 , γ :=

1 0

0 −1


 .

Here

π : AΘ −→ End(AΘ ⊗ C2)

a 7−→

Ma 0

0 Ma


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where Ma denotes multiplication by a. Since γ /∈ π(AΘ) we first apply the functor G

of Proposition (5.1.9) and then compute F ◦ G along with the associated cohomologies.

Note that

δ1(U) = U , δ1(V ) = 0 , δ2(U) = 0 , δ2(V ) = V .

We denote d := δ1 − iδ2 and d∗ := δ1 + iδ2 . Hence,

d(U) = U , d∗(U) = U , d(V ) = −iV , d∗(V ) = iV ,

d(U∗) = −U∗ , d∗(U∗) = −U∗ , d(V ∗) = iV ∗ , d∗(V ∗) = −iV ∗.

Notation : ÃΘ = G(E) throughout this section where G is as defined in Proposition

(5.1.9).

Note that J0
0

(
ÃΘ
)

= {0} in this case. Conisder the following linear operators

Ta,b : AΘ −→ AΘ

c 7−→ ad(bc)

T̃a,b : AΘ −→ AΘ

c 7−→ ad∗(bc).

Now observe that D,
a 0

0 b


 =

 0 T1,b − Ta,1

T̃1,a − T̃b,1 0

 , (5.3.1)

and hence each element of π
(

Ω1(ÃΘ)
)

is the linear span of following elements : 0 Tc,e

T̃c′,e′ 0

 such that c, e, c′, e′ ∈ AΘ.

108



Let M1 := span{Tc,e : AΘ −→ AΘ : c, e ∈ AΘ} and M̃1 := span{T̃c′,e′ : AΘ −→

AΘ : c′, e′ ∈ AΘ}. Then M1 and M̃1 are C -vector spaces and using equation (5.3.1) we

see that π
(

Ω1(ÃΘ)
)
⊆M1 ⊕ M̃1. Now the following equality 0 Tc,e

T̃c′,e′ 0

 =

c 0

0 −c′


D,

0 0

0 1



e′ 0

0 e


proves that π

(
Ω1(ÃΘ)

)
=M1 ⊕ M̃1.

Lemma 5.3.2. Let V be the vector space of linear endomorphisms acting on AΘ. Let Mξ

denotes multiplication by ξ. The vector subspaces {M∑
cid(bi) : AΘ −→ AΘ : ci, bi ∈ AΘ}

and {Me ◦ d : AΘ −→ AΘ : e ∈ AΘ} of V has trivial intersection and M1 ⊆ {Mcd(b) :

AΘ −→ AΘ}
⊕
{Mcb ◦ d : AΘ −→ AΘ} .

Proof. Observe that Tc,b(e) = (Mcd(b) + Mcb ◦ d)(e) for any e ∈ AΘ. Since d(1) = 0 we

have the direct sum. 2

Lemma 5.3.3. Let V be the vector space of linear endomorphisms acting on AΘ. Let Mξ

denotes multiplication by ξ. The vector subspaces {M∑
cid∗(bi) : AΘ −→ AΘ : ci, bi ∈ AΘ}

and {Me ◦ d : AΘ −→ AΘ : e ∈ AΘ} of V has trivial intersection and M̃1 ⊆ {Mcd∗(b) :

AΘ −→ AΘ}
⊕
{Mcb ◦ d : AΘ −→ AΘ} .

Proof. Observe that T̃c,b(e) = (Mcd∗(b) +Mcb ◦ d∗)(e) for any e ∈ AΘ. Since d∗(1) = 0 we

have the direct sum. 2

Define

Φ : π
(

Ω1(ÃΘ)
)
−→ AΘ ⊕AΘ ⊕AΘ ⊕AΘ 0 Ta,b

T̃a′,b′ 0

 7−→ (ad(b) , ab , a′d∗(b′) , a′b′).

Lemma 5.3.4. Φ is a linear bijection.
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Proof. To prove Φ is well-defined, let
∑
Tai,bi = 0. Acting it on 1 ∈ AΘ and U ∈ AΘ

respectively, we see that both
∑
aid(bi) and

∑
aibi are zero. Similarly for the case of∑

T̃a′i,b′i = 0. This proves well-definedness and Lemmas (5.3.2 , 5.3.3) proves injectivity.

To see surjectivity, observe that 0 TaU∗, U + Tb,1 − Ta,1

T̃a′U∗, U + T̃b′,1 − T̃a′,1 0

 Φ−→ (a, b, a′, b′).

2

Proposition 5.3.5. AΘ ⊗ C4 is a ÃΘ-bimodule where the module action is specified by

f 0

0 g

 .(a, b, a′, b′).

f ′ 0

0 g′


:= (fag′ + fbd(g′), fbg′, ga′f ′ + gb′d∗(f ′), gb′f ′) .

Proof. If we definef 0

0 g

 .(a, b, a′, b′) := Φ


f 0

0 g

 .Φ−1(a, b, a′, b′)

 ,

where Φ is in Lemma (5.3.4), then it is clearly a left module structure induced by that

on Ω1
D(ÃΘ). Now one can check thatf 0

0 g

 .(a, b, a′, b′) = (fa, fb, ga′, gb′)

Similarly for the right module structure, we define

(a, b, a′, b′).

f ′ 0

0 g′

 := Φ

Φ−1(a, b, a′, b′).

f ′ 0

0 g′




and check that it is equal to (ag′ + bd(g′), bg′, a′f ′ + b′d∗(f ′), b′f ′). 2

Proposition 5.3.6. Ω1
D(ÃΘ) ∼= AΘ ⊗ C4 as ÃΘ-bimodule.

110



Proof. The ÃΘ-bimodule action on the right hand side is given by Proposition (5.3.5)

and Φ of Lemma (5.3.4) becomes a bimodule isomorphism under this action. 2

Now consider the following linear operators

Ta,b,c : AΘ −→ AΘ

e 7−→ ad (bd∗(ce)) ,

T̃a′,b′,c′ : AΘ −→ AΘ

e 7−→ a′d∗ (b′d(c′e)) .

Then,


Ta,b,c ≡ Mad(b)d∗(c)+abdd∗(c) +Mabd∗(c) ◦ d+Mad(bc) ◦ d∗ +Mabc ◦ d ◦ d∗

T̃a′,b′,c′ ≡ Ma′d∗(b′)d(c′)+a′b′d∗d(c′) +Ma′b′d(c′) ◦ d∗ +Ma′d∗(b′c′) ◦ d+Ma′b′c′ ◦ d∗ ◦ d ,
(5.3.2)

where Mξ denotes multiplication by ξ. Since elements of π
(

Ω2(ÃΘ)
)

are linear sums ofa0 0

0 b0


D,

a1 0

0 b1



D,

a2 0

0 b2


 ,

they are of the form
∑Ta,b,c 0

0 T̃a′,b′,c′

 for a, b, a′, b′ ∈ AΘ. This shows that

π
(

Ω2(ÃΘ)
)
⊆M2 ⊕ M̃2 , where

M2 := span{Ta,b,c : AΘ −→ AΘ} ,

M̃2 := span{T̃a′,b′,c′ : AΘ −→ AΘ} .
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To see equality use equation (5.3.1) and observe that

∑Ta,b,c 0

0 T̃a′,b′,c′


=

∑a 0

0 −a′


D,

0 0

0 1



b′ 0

0 b


D,

0 0

0 1



−c 0

0 c′

 .

Lemma 5.3.7. {Mf ◦ d : AΘ −→ AΘ}
⋂
{Mg ◦ d∗ : AΘ −→ AΘ} = {0} .

Proof. Let ek = Uk1V k2 for k = (k1, k2) ∈ Z2. Any element in the intersection must

satisfy

〈eα , Mf ◦ d(eβ)〉 = 〈eα , Mg ◦ d∗(eβ)〉 ∀α, β ∈ Z2 .

⇒ 〈
∑
k

f̂ ∗kek+α , d(eβ) 〉 = 〈
∑
k

ĝ∗kek+α , d
∗(eβ) 〉.

⇒ 〈
∑
k

f̂ ∗kek+α , eβ 〉(β1 − iβ2) = 〈
∑
k

ĝ∗kek+α , eβ 〉(β1 + iβ2).

So,

f̂ ∗β−α(β1 − iβ2) = ĝ∗β−α(β1 + iβ2)

for all α = (α1, α2), β = (β1, β2) ∈ Z2 , i,e.

f̂ ∗γ (α1 + γ1 − iα2 − iγ2) = ĝ∗γ(α1 + γ1 + iα2 + iγ2) (5.3.3)

where β − α = γ ∈ Z2 . In order to have nontrivial intersection, equation (5.3.3) must

have nontrivial solution for all α, γ ∈ Z2 . Let f̂ ∗γ = x and ĝ∗γ = y. We get

x(1 + γ1 − i− iγ2) = y(1 + γ1 + i+ iγ2), (5.3.4)

x(2 + γ1 − 2i− iγ2) = y(2 + γ1 + 2i+ iγ2). (5.3.5)
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Now (5.3.5)− (5.3.4) implies

x(1− i) = y(1 + i). (5.3.6)

Again equation (5.3.3) gives

x(1 + γ1 − iγ2) = y(1 + γ1 + iγ2). (5.3.7)

Equations (5.3.4) and (5.3.7) together impliy x = −y . Hence, from equation (5.3.6) we

get x = y = 0, i,e. f̂ ∗γ = 0 for all γ, which proves the triviality of the intersection. 2

Lemma 5.3.8. {Ma+Mb ◦d+Mc ◦d∗ : AΘ −→ AΘ}
⋂
{Mf ◦dd∗ : AΘ −→ AΘ} = {0} .

Proof. As before, any element in the intersection must satisfy

〈eα , (Ma +Mb ◦ d+Mc ◦ d∗)(eβ) 〉 = 〈eα , Mf ◦ dd∗(eβ) 〉 ∀α, β ∈ Z2 .

⇒ 〈
∑
k

â∗kek+α , eβ) 〉+ 〈
∑
k

b̂∗kek+α , eβ) 〉(β1 − iβ2) +

〈
∑
k

ĉ∗kek+α , eβ) 〉(β1 + iβ2) = 〈
∑
k

f̂ ∗kek+α , eβ 〉(β2
1 + β2

2).

So,

â∗β−α + b̂∗β−α(β1 − iβ2) + ĉ∗β−α(β1 + iβ2) = f̂ ∗β−α(β2
1 + β2

2)

for all α = (α1, α2), β = (β1, β2) ∈ Z2 , i,e.

â∗γ + b̂∗γ(α1 + γ1 − iα2 − iγ2) + ĉ∗γ(α1 + γ1 + iα2 + iγ2)

= f̂ ∗γ ((α1 + γ1)2 + (α2 + γ2)2) (5.3.8)

where β − α = γ ∈ Z2 . In order to have a nontrivial intersection, equation (5.3.8) must

have nontrivial solution for all α, γ ∈ Z2 . Let â∗γ = w, b̂∗γ = x, ĉ∗γ = y, and f̂ ∗γ = z. So
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equation (5.3.8) turns to

w + x(α1 + γ1 − iα2 − iγ2) + y(α1 + γ1 + iα2 + iγ2)

= z((α1 + γ1)2 + (α2 + γ2)2). (5.3.9)

From equation (5.3.9) we get

w + x(1 + γ1 − i− iγ2) + y(1 + γ1 + i+ iγ2) = z((1 + γ1)2 + (1 + γ2)2), (5.3.10)

w + x(2 + γ1 − 2i− iγ2) + y(2 + γ1 + 2i+ iγ2) = z((2 + γ1)2 + (2 + γ2)2). (5.3.11)

Now (5.3.11)− (5.3.10) gives

x(1− i) + y(1 + i) (5.3.12)

= z((2 + γ1)2 + (2 + γ2)2 − (1 + γ1)2 − (1 + γ2)2),

and equation (5.3.9) gives

w + x(γ1 − iγ2) + y(γ1 + iγ2) = z(γ2
1 + γ2

2). (5.3.13)

Now (5.3.10)− (5.3.13) gives

x(1− i) + y(1 + i) = z((1 + γ1)2 + (1 + γ2)2 − γ2
1 − γ2

2). (5.3.14)

Finally, (5.3.12)− (5.3.14) gives z = 0. Hence f̂ ∗γ = 0 for all γ i,e. intersection is trivial.

2

Lemma 5.3.9. {Ma ◦ d+Mb ◦ d∗ : AΘ −→ AΘ}
⋂
{Mf : AΘ −→ AΘ} = {0} .

Proof. Since d(1) = d∗(1) = 0 for 1 ∈ AΘ, this follows trivially. 2
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Proposition 5.3.10. The following map

Φ : π
(

Ω2(ÃΘ)
)
−→ AΘ ⊗ C8

Φ = (Φ̃ , Φ̃′)

where

Φ̃ : Ta,b,c 7−→ (ad(b)d∗(c) + abdd∗(c), abd∗(c), ad(bc), abc) ,

and

Φ̃′ : T̃a′,b′,c′ 7−→ (a′d∗(b′)d(c′) + a′b′d∗d(c′), a′b′d(c′), a′d∗(b′c′), a′b′c′) ,

is a linear bijection.

Proof. Since d(U) = d∗(U) = U and UU∗ = U∗U = I, Lemmas (5.3.7 , 5.3.8 , 5.3.9)

prove well-definedness as well as injectivity of Φ . To see surjectivity observe that

TaU∗,1,U − TaU∗,U,1 − T−ia,V ∗,V − Tia,1,1 + T−ib,V ∗,V − T−ib,1,1

+TcU∗,U,1 − Tc,1,1 + Te,1,1
Φ̃−→ (a, b, c, e) ∈ AΘ ⊕AΘ ⊕AΘ ⊕AΘ

and

Ta′U∗,1,U − Ta′U∗,U,1 − T−ia′,V,V ∗ − Tia′,1,1 + T−ib′,V,V ∗ − T−ib′,1,1

+Tc′U∗,U,1 − Tc′,1,1 + Te′,1,1
Φ̃′−→ (a′, b′, c′, e′) ∈ AΘ ⊕AΘ ⊕AΘ ⊕AΘ

This completes the proof. 2

Proposition 5.3.11. π
(
dJ1

0 (ÃΘ)
)
∼= AΘ ⊗ C6.

Proof. Elements of π
(
dJ1

0 (ÃΘ)
)

looks like∑
[D, pa+ qb][D, pe+ qf ] where

∑
(pa+ qb)[D, pe+ qf ] = 0 ,
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where p = (1 + γ)/2 =

1 0

0 0

 and q = (1 − γ)/2 =

0 0

0 1

 are the projections onto

the eigenspaces of γ . Expanding the commutators and simplifying we get

∑Tae,1,1 − Ta,1,e 0

0 T̃bf,1,1 − T̃b,1,f

 s.t.


∑
Ta,f =

∑
Tae,1∑

T̃b,e =
∑
T̃bf,1

. (5.3.15)

The bijection of Proposition (5.3.10) gives

Φ̃ (Tae,1,1 − Ta,1,e) = (−add∗(e),−ad∗(e),−ad(e), 0)

Φ̃′(T̃bf,1,1 − T̃b,1,f ) = (−bd∗d(f),−bd(f),−bd∗(f), 0).

To fullfil our claim it is enough to show that elements of the form

(add∗(e), ad∗(e), ad(e), bd∗d(f), bd(f), bd∗(f))

can generate AΘ ⊗ C6 , where the conditions in equation (5.3.15) hold. Choose any

arbitrary element (a1, a2, a3, a
′
1, a
′
2, a
′
3) ∈ AΘ ⊗ C6 . Observe that

(a1V
∗dd∗(V ), a1V

∗d∗(V ), a1V
∗d(V ), a′1V

∗d∗d(V ), a′1V
∗d(V ), a′1V

∗d∗(V ))

+ (a1V dd
∗(V ∗), a1V d

∗(V ∗), a1V d(V ∗), a′1V d
∗d(V ∗), a′1V d(V ∗), a′1V d

∗(V ∗))

= (2a1, 0, 0, 2a
′
1, 0, 0)

and the conditions of equation (5.3.15) also satisfied. Hence (a1, 0, 0, a
′
1, 0, 0) ∈ π

(
dJ1

0 (ÃΘ)
)

.

Now,

(ia3Udd
∗(U∗), ia3Ud

∗(U∗), ia3Ud(U∗), 0, 0, 0)

+ (a3V
∗dd∗(V ), a3V

∗d∗(V ), a3V
∗d(V ), 0, 0, 0)

+ (− 1

2
(a3 + ia3)V ∗dd∗(V ),−1

2
(a3 + ia3)V ∗d∗(V ),−1

2
(a3 + ia3)V ∗d(V ), 0, 0, 0)

+ (− 1

2
(a3 + ia3)V dd∗(V ∗),−1

2
(a3 + ia3)V d∗(V ∗),−1

2
(a3 + ia3)V d(V ∗), 0, 0, 0)
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= (0, 0,−2ia3, 0, 0, 0)

and conditions of equation (5.3.15) also satisfied. Hence, (0, 0, a3, 0, 0, 0) ∈ π
(
dJ1

0 (ÃΘ)
)

.

Finally,

(0, 0, 0, ia′2Ud
∗d(U∗), ia′2Ud(U∗), ia′2Ud

∗(U∗))

+ (0, 0, 0, a′2V
∗d∗d(V ), a′2V

∗d(V ), a′2V
∗d∗(V ))

+ (0, 0, 0,−1

2
(a′2 + ia′2)V ∗d∗d(V ),−1

2
(a′2 + ia′2)V ∗d(V ),−1

2
(a′2 + ia′2)V ∗d∗(V ))

+ (0, 0, 0,−1

2
(a′2 + ia′2)V d∗d(V ∗),−1

2
(a′2 + ia′2)V d(V ∗),−1

2
(a′2 + ia′2)V d∗(V ∗))

= (0, 0, 0, 0,−2ia′2, 0)

and conditions of equation (5.3.15) also satisfied. Hence, (0, 0, 0, 0, a′2, 0) ∈ π
(
dJ1

0 (ÃΘ)
)

.

Thus we get (0, 0, a3, 0, a
′
2, 0) ∈ π

(
dJ1

0 (ÃΘ)
)

. Similarly one can show that

(0, a2, 0, 0, 0, a
′
3) ∈ π

(
dJ1

0 (ÃΘ)
)

and this completes the proof. 2

Proposition 5.3.12. The following actionx 0

0 y

 .(a1, a2) := (xa1, ya2)

(a1, a2).

x 0

0 y

 := (a1y, a2x).

defines an ÃΘ-bimodule structure on
π(Ω2(ÃΘ))
π(dJ1

0 (ÃΘ))
∼= AΘ ⊕AΘ .

Proof. If we define x 0

0 y

 .(a1, a2) := Φ


x 0

0 y

 .Φ−1(a1, a2)



(a1, a2).

x 0

0 y

 := Φ

Φ−1(a1, a2).

x 0

0 y



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where Φ is as defined in Proposition (5.3.10), then clearly it is a bimodule action induced

by that on Ω2
D(ÃΘ). One can verify that these actions are precisely the actions defined

in question. 2

Theorem 5.3.13. For the noncommutative torus we have,

1. Ω1
D(ÃΘ) ∼= AΘ

⊕
AΘ
⊕
AΘ
⊕
AΘ , as ÃΘ-bimodule.

2. Ωn
D(ÃΘ) ∼= AΘ

⊕
AΘ , for all n ≥ 2 as ÃΘ-bimodule.

Proof. Proposition (5.3.6) gives part (1). Proposition (5.3.10) and (5.3.11) proves part

(2) for n = 2. The fact that the isomorphisms in Propositions (5.3.10 , 5.3.11) are not

only C -linear but also ÃΘ-bimodule isomorphisms follows from the defining property of

the bimodule action in Proposition (5.3.12).

We need to prove part (2) for n ≥ 3. For that purpose first note that



0 0

0 1


0 1

0 0

 =

1 0

0 0


0 0

0 1

 =

0 1

0 0


2

=

0 0

1 0


2

=

0 0

0 0

0 0

0 1


1 0

0 0

 =

0 1

0 0


1 0

0 0

 =

0 0

1 0


0 0

0 1

 =

0 0

0 0


(5.3.16)

These matrices plays a key role to compute Ωn
D(ÃΘ) for all n ≥ 3. Now for any unital

algebra A ,

Ωn(A) = Ω1(A)⊗A . . . . . .⊗A Ω1(A)︸ ︷︷ ︸
n times

. (5.3.17)

By Lemma (5.3.4) we have

π
(

Ω1(ÃΘ)
)

= (AΘ ⊕AΘ)⊗C

0 1

0 0

+ (AΘ ⊕AΘ)⊗C

0 0

1 0

 .
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In view of Proposition (5.3.5) and using (5.3.16 , 5.3.17) we get π
(

Ωn(ÃΘ)
)
∼= AΘ ⊗

C2n
⊕
AΘ ⊗ C2n for all n ≥ 3 (actually true for all n ≥ 1 by part (1) and Proposition

5.3.10). We will show the following

π
(
dJn0 (ÃΘ)

)
∼= AΘ ⊗ C2n+1

⊕
AΘ ⊗ C2n+1 , ∀n ≥ 2 .

Recall from Lemma (5.1.12), [D2, a] ∈ π(dJ1
0 ) . One can easily prove that

π(dJn0 ) =
∑n−1

i=0 π (Ωi ⊗A J2 ⊗A Ωn−1−i) ∀n ≥ 2

by writing down any arbitrary element of π(dJn0 ) and then passing D through the com-

mutators from left to right. Hence, for all n ≥ 2 odd

π
(
dJn0 (ÃΘ)

)
=

n−1∑
i=0 , i even

π
(
Ωi ⊗ J2 ⊗ Ωn−1−i)+

n−1∑
i=1 , i odd

π
(
Ωi ⊗ J2 ⊗ Ωn−1−i)

=
n−1∑

i=0 , i even

AΘ ⊗ C2i ⊗

1 0

0 0

+AΘ ⊗ C2i ⊗

0 0

0 1




AΘ ⊗ C3 ⊗

1 0

0 0

+AΘ ⊗ C3 ⊗

0 0

0 1




AΘ ⊗ C2(n−1−i) ⊗

1 0

0 0

+AΘ ⊗ C2(n−1−i) ⊗

0 0

0 1




+
n−1∑

i=1 , i odd

AΘ ⊗ C2i ⊗

0 1

0 0

+AΘ ⊗ C2i ⊗

0 0

1 0




AΘ ⊗ C3 ⊗

1 0

0 0

+AΘ ⊗ C3 ⊗

0 0

0 1




AΘ ⊗ C2(n−1−i) ⊗

0 1

0 0

+AΘ ⊗ C2(n−1−i) ⊗

0 0

1 0




= AΘ ⊗ C2n+1 ⊗

1 0

0 0

+AΘ ⊗ C2n+1 ⊗

0 0

0 1


∼= AΘ ⊗ C2n+1

⊕
AΘ ⊗ C2n+1 .
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Here the last equality uses (5.3.16) frequently. One can give a similar proof for all even

n ≥ 2. Hence, for all n ≥ 3, we have Ωn
D(ÃΘ) ∼= AΘ ⊗ C2 . 2

Remark 5.3.14. One can also consider

D =

0 d

d 0

 or D =

 0 d∗

d∗ 0

.

However, in that case one will get same answer as in Theorem (5.3.13). Since in non-

commutative geometry it is customary to take D =

 0 d

d∗ 0

 , we provide computations

with this value for D.

Notation : Ω̃1
D := AΘ ⊗ C4 and Ω̃2

D := AΘ ⊗ C2 untill the end of this chapter.

Now we want to show that Ω•D(ÃΘ) is cohomologically not trivial. For that purpose we

use the isomorphism in Theorem (5.3.13) to compute the differentials on Ω̃1
D and Ω̃2

D.

Proposition 5.3.15. Under the isomorphism in Theorem (5.3.13) the differentials d̃ :

ÃΘ −→ Ω1
D(ÃΘ) and d̃ : Ω1

D(ÃΘ) −→ Ω2
D(ÃΘ) of Connes’ complex Ω•D(ÃΘ) are given

by

δ : ÃΘ −→ Ω̃1
Da 0

0 b

 7−→ (d(b), b− a, d∗(a), a− b)

and

δ : Ω̃1
D −→ Ω̃2

D

(a, b, c, e) 7−→ (b+ e, b+ e)

i,e. the following diagrams

d̃
ÃΘ Ω1

D(ÃΘ)

δ
ÃΘ Ω̃1

D

∼=id

d̃
Ω1
D(ÃΘ) Ω2

D(ÃΘ)

δ
Ω̃1
D Ω̃2

D

∼=∼=
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commute.

Proof. Use Lemma (5.3.4) to see commutativity of the first diagram. For the second,

take any (a, b, c, e) ∈ Ω̃1
D and use Φ−1 of Lemma (5.3.4) to get the following element in

π
(

Ω1(ÃΘ)
)

 0 TaU∗, U + Tb,1 − Ta,1

T̃cU∗, U + T̃e,1 − T̃c,1 0

 . (5.3.18)

Use the fact−U∗ 0

0 0


D,

U 0

0 0


+

0 0

0 −U∗


D,

0 0

0 U


 =

 0 d

d∗ 0


to observe that (5.3.18) can be re-written as−aU∗U∗ 0

0 0


D,

U2 0

0 0


+

aU∗ 0

0 0


D,

U 0

0 U


+

0 0

0 −cU∗U∗


D,

0 0

0 U2


+

0 0

0 cU∗


D,

U 0

0 U


+

(a− b)U∗ 0

0 0


D,

U 0

0 0


+

0 0

0 (c− e)U∗


D,

0 0

0 U


 .

Applying Φ◦d̃ (Φ of Proposition 5.3.10 and d̃ : Ω1
D −→ Ω2

D), we get the following element

(d(c) + 2c+ 2a+ b , b+ c , d(e) + a+ b , b+ e , d∗(a) + 2a+ 2c+ e , e+ a ,

d∗(b) + c+ e , e+ b) + π
(
dJ1

0 (ÃΘ)
)

of Ω2
D(ÃΘ). This element is equal to (b+ e , b+ e) ∈ Ω2

D(ÃΘ) by Theorem (5.3.13). 2

Before we proceed to show that Ω•D(ÃΘ) is cohomologically not trivial we first com-

pute the cohomologies for (Ω•D(AΘ) , d), in order to notice the similarity. To do so recall

Proposition 13, in the last chapter of ([15]) .
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Proposition 5.3.16 ([15]). For the noncommutative torus AΘ, we have

1. Ω1
D(AΘ) ∼= AΘ ⊕AΘ ,

2. Ω2
D(AΘ) ∼= AΘ ,

3. The differentials d̃ : AΘ −→ Ω1
D(AΘ) and d̃ : Ω1

D(AΘ) −→ Ω2
D(AΘ) are given by

d̃ : a 7−→ (δ1a , δ2a)

d̃ : (a1, a2) 7−→ δ2(a1)− δ1(a2)

Remark 5.3.17. For n ≥ 3, the space of higher forms Ωn
D(AΘ) vanish. To see this first

observe that [D, a] = δ1(a) ⊗ σ1 + δ2(a) ⊗ σ2 where σ1, σ2 are the spin matrices satisfing

σiσj + σjσi = 2δij. The isomorphism Ω1
D(AΘ) ∼= AΘ ⊗ C2 is obtained using the linear

independence of σ1, σ2 in M2(C). The isomorphism π(Ω2(AΘ)) ∼= AΘ ⊗ C2 is obtained

using the linear independence of I2 and σ1σ2 in M2(C) and in this way one will obtain

that π(dJ1
0 (AΘ)) ∼= AΘ ⊗ I2. Because of this reason Ω2

D(AΘ) ∼= AΘ . Observe that

π(Ω3(AΘ)) = AΘ ⊗ σ1 +AΘ ⊗ σ2 and hence π(Ω3(AΘ)) ∼= AΘ ⊗ C2. Now recall that J•

is a graded ideal in Ω• and hence we have

π (Ω1(AΘ)J2(AΘ)) ⊆ π (J3(AΘ)) ⊆ π (Ω3(AΘ)) .

This shows that π (J3(AΘ)) = π (dJ2
0 (AΘ)) ∼= AΘ ⊗ C2, i,e. Ω3

D(AΘ) = {0}. Now note

that Ωn(A) = Ω1(A)⊗A . . . . . .⊗A Ω1(A)︸ ︷︷ ︸
n times

for any unital algebra A . Hence, π (Ωn(AΘ)) ∼=

AΘ ⊗ C2 for all n ≥ 4. Finally, the inclusion

π (Ωn−2(AΘ)J2(AΘ)) ⊆ π (Jn(AΘ)) ⊆ π (Ωn(AΘ))

proves that Ωn
D(AΘ) = {0} for all n ≥ 4. This is needed in the next Lemma.

Lemma 5.3.18. The cohomologies H•(AΘ) are given by ,

1. H0(AΘ) ∼= C ,
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2. H1(AΘ) ∼= C⊕ C ,

3. H2(AΘ) ∼= C .

Proof. 1. We have

H0(AΘ) = {a ∈ AΘ : δ1(a) = δ2(a) = 0}

∼= C

2. We have

H1(AΘ) =
{(a, b) : a, b ∈ AΘ; δ2(a) = δ1(b)}
{(δ1(a), δ2(a)) : a ∈ AΘ}

Let

a =
∑

m,n αm,nU
mV n − α0,0 , b =

∑
p,q βp,qU

pV q − β0,0

i,e. a, b /∈ C1. Then δ2(a) = δ1(b) will imply

∑
m 6=0,n 6=0

nαm,nU
mV n +

∑
n6=0

nα0,nV
n =

∑
p 6=0,q 6=0

pβp,qU
pV q +

∑
p 6=0

pβp,0U
p

Let emn = UmV n, m, n ∈ Z. Then we get

βp,0 = 0 ∀ p 6= 0 ; α0n = 0 ∀n 6= 0 ; nαmn = mβmn ∀m 6= 0, n 6= 0.

Let

c =
∑

m6=0,n6=0

γm,n
mn

UmV n +
∑
m 6=0

αm,0
m

Um +
∑
n6=0

β0,n

n
V n

For m 6= 0, n 6= 0, if we choose γm,n = nαmn then we get δ1(c) = a and δ2(c) = b

which proves our claim.
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3. Finally,

H2(AΘ) =
AΘ

{δ2(a)− δ1(b) : a, b ∈ AΘ}

Let a ∈ AΘ be s.t. a /∈ C1. Let a =
∑

m 6=0 or n6=0 αm,nU
mV n. Then

a =
∑

m∈Z,n∈Z−{0} αm,nU
mV n +

∑
m∈Z−{0} αm,0U

m

Consider b =
∑

m∈Z,n∈Z−{0}
αm,n
n
UmV n and c = −

∑
m∈Z−{0}

αm,0
m
Um. Then δ2(b)−

δ1(c) = a , which proves our claim.

2

Theorem 5.3.19. If H̃•(AΘ) denotes the cohomology groups of the chain complex
(

Ω•D(ÃΘ) , δ
)

then we have

1. H̃0(AΘ) ∼= C ,

2. H̃1(AΘ) ∼= C⊕ C⊕AΘ/C .

Proof. 1. We have

H̃0(AΘ) = {

a 0

0 b

 : d(b) = 0, d∗(a) = 0, a = b}

= {

a 0

0 a

 : δ1(a) = δ2(a) = 0}

∼= C.

2. We have

H̃1(AΘ) =
{(a, b, c, e) : b+ e = 0}

{(d(f), f − g, d∗(g), g − f)}

Let M = {(a, b, c,−b) : a, b, c ∈ AΘ} and N = {(d(f), f − g, d∗(g), g − f) : f, g ∈

AΘ}. Clearly M∼= AΘ ⊕AΘ ⊕AΘ. Now define
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ψ : N
⊕

C
⊕
AΘ/C

⊕
C −→M

(d(f), f − g, d∗(g), g − f, λ1, a, λ2) 7−→ (d(f) + λ1, f − g + a, d∗(g) + λ2)

This map is C-linear and one-one. To see surjectivity take any (a, b, c) ∈ A3
Θ.

Suppose a =
∑
αm,nU

mV n. If we choose

f =
∑

m6=0 or n6=0
1

m−inαm,nU
mV n

then d(f) = a− α0,0 and we see that

(d(f), f, 0,−f, α0,0,−f, 0) 7−→ (a, 0, 0)

Now suppose b =
∑
βm,nU

mV n. If we choose f = β0,0, g = 0 then

(0, β0,0, 0,−β0,0, 0, b− β0,0, 0) 7−→ (0, b, 0)

Finally let c =
∑
γm,nU

mV n and choose

g =
∑

m6=0 or n6=0
1

m+in
γm,nU

mV n

then we see that

(0,−g, c− γ0,0, g, 0, g, γ0,0) 7−→ (0, 0, c)

This shows that ψ is a linear isomorphism with ψ(N ) = N and hence our claim

has been justified.

This shows that the complex Ω•D(ÃΘ) is cohomologically not trivial. 2
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