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Synopsis

The appearance of simple or complex ordered patterns is a phenomenon of central impor-
tance in dynamical systems as well as in statistical physicsof far-from-equilibrium sys-
tems. Several examples of the emergence of simple, regular patterns in physical systems
that occur through collective order-disorder transitions, e.g., the aligned orientation of
spins in Ising-like systems, are well known. In the context of nonlinear dynamics, similar
simple ordering behavior can be observed in the synchronization of coupled oscillators.
However, more complex patterns have recently been seen to occur in various systems
under different conditions, especially in heterogeneous media. In this thesis, we have
investigated how such patterns can arise by considering several models of complex sys-
tems comprising large number of components interacting with each other via non-trivial
connection topologies. Such complexity is ubiquitous in the natural world (especially in
living systems) and their spatio-temporal dynamics can often have functionally critical
consequences for biological organisms. Our work is aimed atcontributing towards build-
ing a general theory for describing pattern formation and ordering in “complex” systems.

The models we consider are capable of exhibiting a variety ofnovel complex patterns and
collective order, some of which may in fact have manifestations in real systems, such as
the mammalian uterus. We present systematic investigations of the mechanisms resulting
in the generation of such patterns, which is a challenging exercise because of the large
number of interacting components involved and the complicated nature of the coupling.
The emergence of various dynamical regimes have been characterized in terms of distinct
non-equilibrium steady state properties for systems that span a range of different types
of components (in terms of their intrinsic behavior) and their interactions. At the level
of component dynamics, the temporal behavior ranges from threshold-activated dynam-
ics with either discrete-state transitions (as in “Ising”-like spins) or continuous-state be-
havior (as in excitable elements described by FitzHugh-Nagumo like equations) to those
which display relaxation oscillations or even passive response (with any perturbation to
the state decaying exponentially to the resting value). On the other hand, the nature of
the interactions in the systems we have investigated range from exchange interactions (as
in a system of spins) to diffusive coupling (e.g., in a system of cells coupled by electrical
gap junctions describing a piece of biological tissue) to effective synapse-like connections
(as between different brain areas in the cortex). In the following paragraphs we briefly
describe the work reported in the thesis.

In Chapter 1 we begin with a short overview of the physics of pattern formation and com-
plex ordering. We present a brief review of key results from earlier studies that have used
reaction-diffusion models and oscillator arrays to study such phenomena.We conclude
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this chapter with a discussion of the main themes consideredin the thesis.

In Chapter 2 we show using a simple model the emergence of collective rhythms in
chemical and biological systems as a result of interaction between a heterogeneous pop-
ulation of elements or cell types. The results of this chapter underlines one of the key
lessons of complex systems theory that components whose intrinsic behavior is relatively
simple often exhibit unexpectedly rich properties when coupled together. In particular, we
show that the interaction of an excitable and a passive cell,both of which are quiescent in
isolation, can result in (under appropriate conditions) spontaneously generated sustained
oscillations. As the detailed nature of the coupling can produce a variety of different
frequencies, when studying this problem for an entire system of coupled excitable and
passive cells it is a challenge to understand what will be thepossible types of dynamics
that such a system is capable of supporting. This is not a question of theoretical interest
only but rather has important biological consequences; indeed, we have used this model
system to understand how the pregnant uterus, which is quiescent for most of the time,
suddenly starts oscillating close to term generating the coherent contractions needed for
birth of a child. For this we have considered a two-dimensional lattice of excitable cells,
each coupled to its nearest neighbors and also to a varying number of passive cells. We
show that increasing the coupling between the cells allow the system to show a number
of transitions between very different spatiotemporal dynamical regimes: from quiescence
to a state marked by clusters of cells oscillating at different frequencies to finally, global
synchronization of periodic activity and coherence. Our results provide a causal connec-
tion between two previously reported experimental observations which were not known
to be related, viz., that there is remarkable increase in intercellular coupling close to onset
of labor and that activity is initially weak and transient, gradually increasing in intensity
and duration at the late stage of pregnancy. We also discuss in the context of our modeling
studies the important role played by multistability of different types of attractors in such
biological phenomena.

In the work described above, the diffusive coupling between elements promotes homo-
geneity which results in coherent collective dynamics. While such coherent activity is in-
deed functionally important in systems where synchronization between different elements
is necessary, e.g., in the brain for information processingand for insulin secretion in pan-
creatic beta-cell assemblies, it is only one of several possible spatiotemporal patterns that
can emerge via different types of interactions. To explore the range of possible patterns
that can be generated in complex systems, inChapter 3 we have investigated the col-
lective dynamics of a system of relaxation oscillators thatare effectively coupled through
mutual inhibition. Our study has important applications inthe real world, in particular,
for understanding how biochemical oscillators coupled through reaction-diffusion mech-
anisms yield a large variety of spatial patterns and temporal rhythms. Furthermore, there
have been recent experiments in microfluidic devices where oscillatory chemical reactions
occur on beads suspended in oil where the interaction between the beads is thought to re-
sult from diffusion of an inactivator chemical constituent, thereby implementing a lateral
inhibition-like mechanism. The results of these experiments have revealed a rich vari-
ety of collective phenomena including (i) anti-phase synchronization and (ii) oscillator
death regimes with spatial patterns resembling Turing structures seen in various reaction-
diffusion systems. We have explained the formation of these patterns by using a simple
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model of coupled relaxation oscillators that allows us to analytically explain the emer-
gence of anti-phase oscillations and the spatially patterned oscillator death (Turing-like)
regime. In addition our model also exhibits a novel “chimera-like” dynamical state in
which part of the system is oscillating whereas other regions show negligible temporal
activity. An even more fascinating pattern consists of traveling waves of phase defect-like
structures. These defects behave like particles and have non-trivial interactions with each
other. For example, they can either reflect off each other or, one or both of them can an-
nihilate upon collision. The manifestation of this phenomena in two dimensions is even
more interesting. For oscillators arranged on a square lattice we have found a fundamental
defect structure which is self propelling and moves around indefinitely in a medium with
periodic boundaries. These patterns are reminiscent of the“gliders” observed in the well-
known two-dimensional cellular automata “Game of Life”. Inthe asymptotic state, we
observe situations where gliders interact with each other continually producing complex
spatio-temporal patterns. We conclude the chapter with a brief discussion of a conjecture
about whether such structures can be used to construct logicgates in the manner similar
to what has been done in the “Game of Life” cellular automata,which will make possible
the building of chemical computers.

Although diffusive coupling between elements are capable of generating afascinating va-
riety of spatiotemporal patterns, as has been shown by us in the above chapters, many
complex systems exhibit interactions having a very different nature. For example, neu-
rons in the brain, apart from coupling with each other through electrical gap junctions
that can be effectively modeled as a diffusive coupling, also communicate by chemical
means through synapses. Synaptic coupling is fundamentally nonlinear and can give rise
to phenomena distinct from those observed in diffusively coupled systems. We investi-
gate the role of such nonlinear interactions in giving rise to a variety of different types
of synchronization dynamics inChapter 4 where we analyze a system of globally cou-
pled Wilson-Cowan oscillators that functions as a mesoscopic model for brain activity.
One of the principal difficulties in making sense of the complex dynamical phenomena
underlying cognition is associated with the wide range of scales over which the relevant
processes operate. While molecular approaches to neuroscience can explicate the opera-
tion of a single synapse or neuron, it is unclear how to relatesuch results with cognitive
science that considers the entire human brain (comprising∼ 1011 neurons) as an unit.
However, with the increasing use of brain activity mapping techniques such as fMRI,
MEG, multi-electrode EEG and fluorescence imaging using voltage-sensitive dyes, it is
important to come up with descriptions of phenomena at scales that span the range be-
tween the two extremes mentioned above. Such a mesoscopic-level model of the brain
should ideally comprise variables that describe the activity of brain areas having thou-
sands of neurons. Instead of building the model of a brain by the complicated process of
joining together an extremely large number of detailed models of single neurons, it may
be preferable to use phenomenological models that are basedon experimental observa-
tions of intermediate-scale dynamical phenomena in the brain. The Wilson-Cowan (WC)
model, that describes the time-evolution of the mean level of activity for a population of
interacting excitatory and inhibitory neurons, provides us with a method of simulating the
dynamics of large assemblies of neurons by using it as the basic unit for a network model
of brain areas. We investigate the dynamical properties of coupled Wilson-Cowan oscilla-
tors and find that the system is capable of showing a range of different types of collective
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behavior as the coupling strength between the oscillators is varied. While the observed
patterns include those seen in many other systems such as exact synchronization, anti-
phase synchronization and amplitude death, we also find states marked by the occurrence
of phase and frequency clusters, as well as, homogeneous oscillator death. The occur-
rence of clustered synchronization states marked by the existence of multiple groups of
elements having a common frequency or phase, in the absence of any heterogeneity in the
connection topology (such as modularity) is a surprising result and suggests an exciting
interplay between structural and dynamical organizational principles in the brain.

The models discussed above belong to the same general class of continuous-state dynam-
ical systems. However, in order to develop a general theory of spatial patterns arising
through interactions between a large number of dynamical elements, we need to ask how
universal are the features that we observe and whether similarly rich variety of phenom-
ena can be seen in dynamical systems having discrete states.With this aim, inChapter 5
we have investigated ordering behavior in systems of Ising spins having modular organi-
zation in their connection topology of ferromagnetic and antiferromagnetic interactions.
The equilibrium properties of such a system in absence of external magnetic field are
relatively easy to understand with the spins getting divided into two oppositely aligned
clusters with members of each cluster oriented in the same direction. However, we have
shown that at finite temperatures and in the presence of an external field this system can
exhibit extremely nontrivial equilibrium behavior with one cluster being ordered while the
other is disordered. This state can be called a chimera statein analogy with similar phe-
nomena recently seen in systems of coupled oscillators. While traditionally the focus of
research in oscillator systems had centered on globally synchronized states and traveling
waves, the discovery of complex ordering behavior designated as chimera has generated
interest in states characterized by broken symmetries of the underlying homogeneous
system exhibiting stable coexistence of coherent and incoherent regions. Generalizing
the concept of such “chimera” states to systems at thermal equilibrium undergoing order-
disorder transition, we have shown analytically that similar complex ordering can appear
in a system of discrete-state dynamical elements such as Ising spins. Using mean-field
theory we show that under certain conditions a chimera-likeordering is the equilibrium
state for a system of Ising spins. The identity of the clusterthat is ordered and the one
which is disordered can switch with a time scale that is related to the system size. This
result is connected to the Kramer’s exit problem from a potential well and we have in-
vestigated this using Monte Carlo simulations. We have also numerically established the
existence of chimera ordering in 3-dimensional spin systems resembling layered magnetic
materials, suggesting possible experimental observationof such states. The results of our
study can also have significant implications for models of social dynamics. While it is
expected that two polarized groups in society respond oppositely to a common stimuli, a
chimera state corresponds to the same external event causing one group to become com-
pletely unanimous in their choice while the other group splits into complete confusion. It
is not difficult to identify historical instances of similar phenomena, and it is interesting
to speculate whether similar causal mechanisms are at play.

An important aspect of many complex systems in nature is thatthe interactions between
the constituent elements do not remain constant but rather evolve in response to the dy-
namics of the system. For instance, learning in the context of neuronal networks in the
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brain is considered to arise from changes in the strength of connections between neu-
rons over time, resulting from relative timing of activation of the corresponding neurons.
This suggests a fascinating interplay between dynamics at very different time-scales in
complex systems: while the relatively fast dynamics of the elements cause the nature of
interactions to change, the slowly evolving coupling in turn affects the global dynamics
of the system. This is the subject ofChapter 6 where we seek to understand the coevo-
lution of nodal dynamics and the interactions strengths in networks. In other words, we
observe how the structure of the network topology evolves asa result of the dynamics in
the nodes, which in turn influences the collective behavior of the nodes. In particular, we
focus on the emergence of structural balance in networks with adaptive dynamics, where
a node can be in one of two possible states (i.e., we consider Ising-like nodal dynamics).
To understand structural balance we first note that many networks in nature have signed
weights associated with their links or edges, where the signrepresents the nature of the
interaction. For example, in a social network, “positive” links indicating affiliative rela-
tions connect friends while “negative” links implying conflict connect enemies. If signs
are assigned at random to the links of a network, it is possible to arrive at a situation
characterized by conflicting constraints (referred to as “frustration" in the context of spin
models in statistical physics) where the dynamical states adopted by the nodes of the net-
work cannot all be made compatible with the nature of the links connecting them. As an
example, three nodes connected to each other by negative links (antagonistic relations)
cannot have any assignment of binary states that simultaneously satisfy all mutual rela-
tions. Such situations are considered to be unstable and thenature of the interactions can
gradually change in order to resolve the conflict. Thus, in the above example, any pair of
nodes may change the sign of their interaction to form an alliance against the third, their
common enemy. This allows the system to achieve “structuralbalance”, characterized
by all cycles in the network having an even number of negativelinks, a classical result
of graph theory due to Harary and Cartwright. Note that, a structurally balanced society
will have all agents segregated into two opposing groups. Connected agents belonging to
the same camp will be mutual friends and those belonging to different camps will have
antagonistic relations. However, in reality, the friend ofa friend may initially be an en-
emy, a “frustration" inducing situation implying the lack of structural balance. However,
adaptation of the interactions over time may resolve all such conflicts eventually yielding
a balanced structure. How frustrated systems can evolve with time under such link adap-
tation dynamics is an important question and has recently been the focus of activity for
many physicists working on the theory of complex networks. In most of these studies,
the dynamics of the nodes are not considered when the evolution of the network is inves-
tigated. In contrast, we propose a simple model for studyingthe transition of a frustrated
network to structural balance where the nodal dynamics directly governs the evolution of
interactions. The process of link adaptation we consider isinspired by the classical theory
of learning in nervous systems due to Hebb, where the link strength between two nodes
having the same dynamical state at a given time is positivelyincremented, while that be-
tween nodes having opposite states is negatively incremented. While limiting cases of
this model are easy to understand, the overall properties ofthis apparently simple model
are quite complex. For suitable parameter values, the system manages to approach bal-
ance, but the time required for this exhibits non-trivial behavior. We observe that over a
range of adaptation rates and temperatures (which control the degree of noise or stochastic
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fluctuations in the update dynamics of the node states) the time required to reach struc-
tural balance can become extremely long. The divergence of the time required to achieve
balance poses interesting questions in the context of several real-world networks where
similar adaptation may be going on (e.g., food webs or neuronal networks).

In Chapter 7 we conclude with a discussion of how our results may contribute towards
a general theory of pattern formation in complex systems andindicate possible future
directions of research.
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1

Introduction

Then the Ethiopian put his five fingers close together . . . and pressed them all

over the Leopard, and wherever the five fingers touched they left five little black

marks, all close together. You can see them on any Leopard’s skin you like

. . . Sometimes the fingers slipped and the marks got a little blurred; but if you

look closely at any Leopard now you will see that there are always five spots . . .

– Rudyard Kipling, “How the Leopard got his spots” inJust So Stories(1902)

Spatio-temporal patterns are ubiquitous in nature. They are not only seen in the context

of biological development, e.g., in the segmentation of theDrosophilaembryo [1] and in

the characteristic markings on animal skins [2], but also appear as a result of dynamical

processes, such as the appearance of spiral waves of electrical excitation in the heart

during episodes of abnormally rapid cardiac activity [3] and aggregation of slime-mold

through chemotaxis [4]. Many of the patterns seen in nature, including some of the ones

mentioned above, also have functional significance. To understand how such patterns

arise, experimental systems have been developed that help us in analyzing the genesis of

these structures under a controlled environment.

A class of experimental systems which has been studied in detail comprise nonlinear
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chemical reactions that are capable of excitatory activityor oscillations [5]. One of the

reasons why the study of these reactions have been of great interest is because they can be

considered as simple models for understanding the dynamicsof more complex systems,

such as, electrical activity in biological tissue, including the heart. The phenomenon of

chemical oscillation was discovered in the 1950s by Boris Belousov [6] but initially was

disbelieved, as it was erroneously thought that this observation violated the second law of

thermodynamics. It was only in the sixties, following the subsequent experiments of A.

M. Zhabotinksy and others that the phenomenon of chemical oscillations was accepted

to be real and at present the system is known as the Belousov-Zhabotinsky (BZ) reac-

tion [3]. The original dramatic periodic changes in color that indicated the occurrence of

chemical oscillations were observed in “well-mixed” chemical systems. In the original

experimental set-up the periodic oscillation was transient and the reaction stopped once

the reactants were exhausted. Later experiments were conducted in continuously stirred

tank reactors where reactants were constantly fed in and theproducts were taken out.

Here, the oscillations would continue indefinitely as long as the supply of reactants was

maintained. In the last few decades, apart from minor variants of the BZ reaction, several

other oscillating chemical systems have been discovered which exhibit a rich variety of

dynamical behavior [5].

Another important development was the investigation of coupled chemical oscillators to

understand how diffusive interaction between these would affect the collective behavior.

Experiments were done to study different kinds of synchronization phenomena such as

synchronized oscillations, anti-phase synchronization and oscillator death [7]. The BZ

and other nonlinear reactions have also been carried out in aspatially extended frame-

work, viz., in gels spread in thin layers on a petri dish. The departure from the well-mixed

situation means that heterogeneities in the reactant/product concentrations will appear as

spatial patterns. Depending on various experimental parameters, these systems manifest

either excitable or oscillatory properties. A wide varietyof spatio-temporal patterns, in-

cluding target waves and spirals, have been observed in these experiments. The use of

8



photo-sensitive chemicals has allowed a high degree of control on the patterns that can be

produced by suitably manipulating the light incident on themedium. Recently, chemical

experiments have been designed on microfluidic devices thatallow experimental realiza-

tion of a large array of coupled nonlinear oscillators. Although there have been theoretical

studies on such spatially extended systems, these developments allow controlled experi-

mental realizations of tens to hundreds of coupled oscillators.

Although we have only mentioned chemical systems above, there have in fact been many

experiments carried out on a range of nonlinear devices aimed at understanding pattern

formation and other collective phenomena resulting from the spatio-temporal dynamics

of such systems. The results of these experiments have been used to guide theoretical

efforts at uncovering the mechanisms underlying pattern formation [8–15]. This had led

to several models for spatio-temporal dynamics which can beclassified into categories

depending on whether space, time and the dynamical state in amodel adopts discrete or

continuous values. One of the most widely used of these are partial differential equations

(PDEs) where space, time and state-space are continuous. They have been used for under-

standing patterns in physical systems (such as, in fluids) aswell as in biological systems

(e.g., the propagation of reentrant waves in excitable tissue). A widely used type of PDE

for explaining pattern formation in many different situations is the system of reaction-

diffusion equations that we describe in the next section. Another class of models closely

related to PDEs are lattices of continuous dynamical elements, where space is discrete but

time and state-space are continuous. Of particular interest within this class are the mod-

els where the dynamical elements are autonomous oscillators (limit cycles). The concept

of the spatial lattice can be generalized to a network where the spatial neighborhood is

replaced by an arbitrary connection topology. The study of dynamical elements coupled

in a general network has gained attention in recent times because of the wide variety of

natural systems it can be used to model. As many networks thatexist in the real world are

also seen to evolve both in terms of the nature and strength oftheir interactions, several

models have been proposed recently to understand how the connections between elements
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can coevolve with the dynamics on the nodes of a network. Another important class of

models is one where the space, time and state-space are discrete, the paradigmatic exam-

ple being the well-known Ising model. We briefly discuss these different categories of

models for understanding spatio-temporal pattern formation in the following sections.

1.1 Reaction Diffusion Systems

As suggested by the name, reaction-diffusion models provide a natural description for the

dynamics of a chemical system: the reagents arereactingwith each other and the reactants

as well as the products being transported throughdiffusion. Over time, these models have

been used to analyze a wide class of spatially extended systems in chemistry, physics,

biology and ecology [10,11,14]. Under coarse-graining, these systems are modeled using

PDEs having the form:
∂q(x, t)
∂t

= D∇2q(x, t) + R(q),

where each component ofq(x, t) represents one of the several variables describing the

state of a system (e.g., concentration of a chemical speciesin case of chemical reactions),

D is the diffusion matrix andR(q) represents the different (nonlinear) reaction terms.

Thus, the first term in the equation represents transport of the different components while

the second term contains details of all the local dynamical processes operating on each of

the components including production, decay, etc.

A commonly used analytical tool for understanding the dynamics of nonlinear PDEs is to

perform linear stability analysis for various solutions. An important example of such anal-

ysis carried out for reaction diffusion systems is that of Alan Turing [16]. While trying

to understand the mechanisms responsible for morphogenesis, Turing discovered a strik-

ing, counter-intuitive effect of diffusion, namely, a homogeneous solution of a reaction-

diffusion system can be destabilized by diffusion under certain circumstances. This is

surprising as diffusion usually smooths out any spatial fluctuation in a system. This cru-
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cial insight of Turing has provided one of the most well-known mechanisms of pattern

formation in reaction-diffusion systems and the resulting patterns are named after Turing.

Several models have successfully used this mechanism to describe the generation of a

wide variety of patterns, e.g., stripes and spots that occurin animal coat patterns [14].

Apart fromTuring patterns, reaction-diffusion systems can exhibit a wide range of other

spatio-temporal dynamical behavior such as travelling waves, dissipative solitons, spa-

tiotemporal chaos, etc. While some of these can be explained through an analytical treat-

ment, to study the rest one has to resort to numerical simulations. The first step is the

discretization of the Laplacian or diffusion operator for a finite system which turns the

space continuum into a discrete lattice. Thus, this processconverts a system of PDEs

into a large number of coupled ordinary differential equations (ODEs). Diffusion is now

represented by the coupling of suitable variables at a givenlattice point with those on its

nearest neighbors.

Traditionally, the space continuum (and hence the system ofPDEs) is assumed to repre-

sent reality, while the lattice (correspondingly, the system of coupled ODEs) is considered

to be an approximation. However, with modern technology it is possible to investigate

systems where the spatially discrete lattice is the more accurate description and the cor-

responding PDE is an approximation. Examples include recent experiments involving

beads containing chemical reactants suspended in a medium within a microfluidic chan-

nel or simulations of a system of cells interacting with eachother in biological tissue. In

these situations it is natural to model the individual beadsor cells as a single unit, so that

the system is represented as a lattice of dynamical elements. It is important to make this

distinction as these recent experiments report observations of phenomena that are natural

for a lattice but are difficult to understand in terms of a spatial continuum, e.g., anti-phase

oscillations and heterogeneous oscillator death, which are described in detail later in this

thesis.

11



1.2 Coupled Oscillators

Oscillators (to be precise, self-sustained or limit cycle oscillators) are dynamical systems

having periodic solutions which have been used to model a wide variety of physical and

biological systems. Although the physical systems represented by these models have

been known for a long time, their distinction with respect toother types of oscillatory

dynamics was first pointed out by Lord Rayleigh when he distinguished between self-

sustained oscillations and driven oscillations. The concept of a limit cycle itself is due to

H. Poincaré. A systematic study of these self-sustained oscillators was performed by A.

Andronov and collaborators [17] and they discovered a commonly occurring mechanism

that gives rise to these oscillations, namely theAndronov-Hopf bifurcation(also known

as Hopf bifurcation).

In this thesis, one of the systems we have focused on is an array or network of coupled

oscillators. One of the most well-known collective phenomena associated with such sys-

tems issynchronization[18]. Possibly the first person to report it was the Dutch scientist

Christiaan Huygens [19] who observed that a pair of pendulum clocks would start oscil-

lating with same frequency if they are hung from a common support. In this state, the two

pendula always move opposite to one another and if they are disturbed from this motion

they return to it after some time. The phenomenon that Huygens had observed is now

known asanti-phase synchronization. Other historically important observations of syn-

chronization phenomenon in various systems include that inacoustical systems by Lord

Rayleigh [20], in triode generators by W. H. Eccles and J. H. Vincent [21] and in large

population of fireflies by the Dutch physician Engelbert Kaempfer in 1680 [22]. After

replicating and extending the experimental work of W. H. Eccles and J. H. Vincent, Ed-

ward Appleton [23] and Balthasar van der Pol [24] made the first theoretical study aimed

at understanding synchronization. An outcome of this work is one of the most well-known

nonlinear oscillator models in the dynamical systems literature, viz., thevan der Pol os-

cillator model. The relaxation oscillator model based on the FitzHugh-Nagumo systems
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of equations that we use in this thesis is closely related to this model.

Apart from synchronization, coupled oscillator models arealso known to exhibit other

types of collective behavior such as oscillator death, amplitude death, chimera states, etc.

that are described in detail later in the thesis.

1.3 Spin Models

Spin models, or rather systems of interacting elements which can be in any one of a finite

number of states, are examples of discrete dynamical systems. The paradigmatic spin

model is the one proposed by Ising [25] to understand spontaneous magnetization early

in the last century. These models have been used extensivelyin statistical mechanics and

condensed matter physics to understand phase transitions and other cooperative phenom-

ena. Their simplicity has also led to the adoption of spin models to understand ordering

phenomena in domains outside physics, such as, in the context of opinion formation in

social systems and associative recall of patterns in neuralnetworks.

Traditionally, in the context of condensed matter physics,spins have been arranged in

regulard-dimensional lattices. However, in recent applications toproblems of social or

biological importance, spin-spin interactions over networks having arbitrary connection

topology have been considered [26]. This has resulted in the discovery of novel collec-

tive phenomena, e.g., the occurrence of “modular order” in networks having community

organization [27].

1.4 Overview of the thesis

The aim of the present thesis is to contribute towards understanding the general princi-

ples underlying the dynamics of pattern formation in complex systems. For this we have
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considered different types of (a) local dynamics for the system components,(b) types of

interaction between these components and (c) connection topology in which these inter-

actions are arranged. A common property of many of the systems we investigate here is

the existence of both cooperative (promoting order) and antagonistic (disrupting homo-

geneity) interactions between the constituent elements. The resultingcompetitionleads to

different types of non-trivial collective behavior as the relative strengths of the interactions

are varied. These are manifested as spatio-temporal patterns, including several types of

ordering and coherence, which have been described in the thesis and the processes giving

rise to them analyzed in detail.

A general theme underlying the phenomena described in several of the chapters is the oc-

currence ofspontaneous symmetry breakingleading to pattern formation. In other words,

under these conditions, the solution of the set of equationsdescribing the model dynam-

ics does not possess its full symmetry. Another feature exhibited by many of the systems

under consideration here is the phenomenon ofmultistability, i.e., the existence of many

stable solutions for a given set of system parameters. Different patterns are seen depend-

ing on the initial condition chosen and the fraction of randomly chosen initial states that

give rise to a specific pattern can be taken as a measure of the size of its basin of attraction.

Further, the patterns can appear, disappear or lose stability as the system parameters are

gradually changed via different kinds ofbifurcations. We now provide an overview of the

work described in each chapter of the thesis.

In Chapter 2, we consider a heterogeneous system whose individual components are con-

tinuous dynamical systems, in particular, excitable and passive elements. Local coupling

between these different types of elements can result in oscillations and we have investi-

gated the emergence of collective rhythmic activity in suchsystems. This is motivated by

a puzzling observation in uterine physiology, viz., synchronized oscillations that give rise

to labor during childbirth occur in the uterus even though ithas been shown that none of

the cells in the uterine tissue can oscillate spontaneouslyin isolation. Thus, the periodic
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activity of the uterus is distinct from several other types of biological oscillations, such as

the rhythmic pumping action of the heart, which are coordinated by specialized elements

known as “pacemakers” (e.g., cells in the sino-atrial node of the heart). Although in the

uterus we observe a transition from disordered activity during gestation to synchronized

electrical activity giving rise to coherent contraction that ultimately leads to birth, there

is no experimental evidence for the presence of such specialized coordinating elements in

this organ. We have proposed a novel explanation for the emergence of coherent activity

in this system through increased coupling among heterogeneous dynamical elements. For

this purpose, we use a lattice model of disordered excitablesystem (disorder being in the

form of a variable number of passive cells connected to each excitable cell). On increas-

ing the strength of coupling between the elements comprising the system, we observe

a transition from a quiescent state to coherent activity viaseveral non-trivial collective

dynamical states. Our results help in causally connecting two apparently unrelated ex-

perimental observations: (i) coupling between uterine cells increases remarkably through

the course of pregnancy and (ii) oscillatory activity is rare and extremely weak during the

early stages of pregnancy but increases in frequency and strength as one approaches labor.

While cooperative interactions primarily result in synchronization of activity between

elements, other forms of couplings can result in a richer variety of collective dynam-

ics. InChapter 3, we have investigated systems where individual elements interact with

their neighbors through lateral inhibition. In particular, we investigate the emergence of

spatio-temporal patterns in an array of relaxation oscillators which are coupled through

diffusion of the inactivating component of the local dynamics. These patterns can poten-

tially arise in systems of coupled biochemical oscillatorsand thus, may be of interest to

biologists. The simple model of coupled relaxation oscillators we have used helps explain

different collective phenomena seen recently in chemical experiments such as anti-phase

synchronized oscillations and heterogeneous oscillator death states with spatial patterns

resembling Turing structures. The model also exhibits a chimera dynamical state in which

part of the system is oscillating whereas other regions shownegligible temporal activity.
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In addition, we observe traveling waves of phase defect-like structures that behave like

particles and have nontrivial interactions with each other. The complex spatio-temporal

patterns produced by these interactions are reminiscent ofthose observed in the well-

known cellular automata “Game of Life”. As the latter has been shown to be capable

of universal computation, it suggests the possibility thatpropagating defects in chemical

media may be used for performing complex logical operations.

In Chapter 4, we have explored the effect of simultaneous action of excitatory and in-

hibitory coupling in continuous dynamical systems. Specifically, we have investigated

collective behavior in a system of coupled Wilson-Cowan (WC) oscillators, that model

the dynamics of local regions in the brain, connected using excitatory and inhibitory con-

nections arranged in various topologies. As this model system provides a mesoscopic

description of brain activity, our results may give insights into the genesis of observed

patterns in large-scale cortical oscillations. We have first analyzed the different dynami-

cal behavior seen for a pair of coupled WC oscillators, and then extended our study to a

globally coupled network of WC oscillators. We show the existence of novel collective

states, including those characterized by oscillator clusters, where each cluster is distin-

guished by its amplitude or frequency. As each oscillator isidentical in terms of both

intrinsic dynamics and connectivity, this indicates that the homogeneous system of WC

oscillators undergoes spontaneous symmetry breaking. We also investigate the effect of

removing a small fraction of connections, making the systemmarginally sparse. A sur-

prising aspect is that although this densely connected system is effectively identical to

the mean-field description, the dynamical properties are radically altered in response to

extremely minor deviations from the fully connected situation.

In the preceding chapters we have considered continuous dynamical systems. An im-

portant question we consider next is whether coupled discrete dynamical systems can

exhibit equally intriguing collective phenomena. InChapter 5, we investigate spin sys-

tems, where the individual elements can switch between a finite number of possible states
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at discrete time intervals. As the orientation of a spin can be interpreted as one of a

number of mutually exclusive choices, such models have beenapplied to understand so-

cial phenomena involving coordination among agents, e.g.,the adoption of innovations

and consensus formation. The simplest case one can consideris that of binary choice

where the spin flips between two states (Ising spins) depending on the interactions with

its neighbors. The ferromagnetic Ising model having positive spin-spin coupling, such

that each spin tries to align itself with its neighbors, can become globally ordered under

suitable conditions. In social context this corresponds tocomplete consensus, i.e., each

agent agrees with everyone else. However, in real social situations, there can also be

antagonistic interactions between agents and systems having both types of interactions

can exhibit a variety of complex behavior. In particular, wehave investigated the conse-

quences of cooperative coupling operating over short rangeand antagonistic coupling at

longer range. In equilibrium, the system is divided into twooppositely aligned clusters

with spins within each cluster oriented in the same direction. The social analogy would be

two extremely polarized groups holding opposite convictions on various issues. However,

we show analytically that in the presence of an external fieldnontrivial equilibrium be-

havior can occur, with one of the clusters being ordered while the other is disordered. We

call this “chimera” state in analogy with similar phenomenarecently seen in systems of

coupled oscillators. We have also numerically establishedthe existence of chimera order

in 3-dimensional spin systems resembling layered magneticmaterials thereby suggesting

possible experimental observation of such states.

While the results described so far gives an indication of the rich variety of collective

behavior in complex systems that emerge from their structure of the interactions among

their elements, for many many natural systems these interactions themselves evolve over

time in response to the dynamics of the components. InChapter 6 we investigate the

coevolution of the interaction strengths with the dynamicson the nodes of a network. As

in the preceding chapter, we consider a discrete dynamical system on each node, which

can be in one of a finite number of states. In particular, we usethe two-state Ising spin
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to represent the state of each node, which allows us to study the evolution of structural

balance in the model system. Structural balance, a concept that has been introduced in the

context of social systems, is a property of signed networks.It corresponds to complete

absence of conflicting constraints (referred to as frustration in the context of spin models

in statistical physics), which results from incompatibilities between the states of the nodes

and the sign of the links connecting them. We have considerednetworks, each of whose

links are associated with a sign and a weight, correspondingto the nature and strength of

interactions respectively. These links evolve using an adaptation rule, inspired by Hebb’s

principle, i.e., the link weights change in proportion to the correlation between activity of

the connected elements. While this dynamics leads to structural balance, in the presence

of stochastic fluctuations in the nodal dynamics, the time required to converge to this state

exhibits extreme variability under suitable conditions. This divergence in the relaxation

time scales is characterized by a bimodal distribution, which is observed for a wide range

of system parameters. As larger fraction of positive interactions reduces frustration while

larger fraction of negative interactions increases it, we have also investigated the role

of bias in the sign of the interactions on the nature of the balanced state and the time

required to converge to it. Our work suggests the intriguingpossibility that biological

networks may also evolve so as to approach balance.

We conclude with a short discussion of the general implications of the results reported in

this thesis and indicate possible future directions of research.
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2

Self-Organized transition to coherent

activity in disordered media

2.1 Introduction

Rhythmic behavior is central to the normal functioning of many biological processes [28]

and the periods of such oscillators span a wide range of time scales controlling almost

every aspect of life [29–32]. Synchronization of spatially distributed oscillators is of

crucial importance for many biological systems [18]. For example, disruption of coherent

collective activity in the heart can result in life-threatening arrhythmia [33]. In several

cases, the rhythmic behavior of the entire system is centrally organized by a specialized

group of oscillators (often referred to aspacemakers) [34] as in the heart, where this

function is performed in the sino-atrial node [35]. However, no such special coordinating

agency has been identified for many biological processes. A promising mechanism for the

self-organized emergence of coherence is through couplingamong neighboring elements.

Indeed, local interactions can lead to order without an organizing center in a broad class

of complex systems [36,37].
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In this chapter we consider the self-organized emergence ofcoherent activity. This work

is inspired by studies of the pregnant uterus whose principal function is critically depen-

dent on coherent rhythmic contractions that, unlike the heart, do not appear to be centrally

coordinated from a localized group of pacemaker cells [38]. In fact, the uterus remains

quiescent almost throughout pregnancy until at the very late stage when large sustained

periodic activity is observed immediately preceding the expulsion of the fetus [39]. In the

USA, in more than 10 % of all pregnancies, rhythmic contractions are initiated signifi-

cantly earlier, causing preterm births [40], which are responsible for more than a third of

all infant deaths [41]. The causes of premature rhythmic activity are not well understood

and at present there is no effective treatment for preterm labor [39].

We investigate here the emergence of coherence using a modeling approach that stresses

the role of coupling in a system of heterogeneous entities. Importantly, recent studies have

not revealed the presence of pacemaker cells in the uterus [42]. The uterine tissue has a

heterogeneous composition, comprising electrically excitable smooth muscle cells (uter-

ine myocytes), as well as electrically passive cells (fibroblasts and interstitial Cajal-like

cells [ICLCs]) [43,44]. Cells are coupled in tissue by gap junctions that serve as electrical

conductors. In the uterine tissue, the gap junctional couplings have been seen to markedly

increase during late pregnancy and labor, both in terms of the number of such junctions

and their conductances (by an order of magnitude [45,46]), which is the most striking of

all electrophysiological changes the cells undergo duringthis period. The observation that

isolated uterine cells do not spontaneously oscillate [42], whereas the organ rhythmically

contracts when the number of gap junctions increases, strongly suggests a prominent role

of the coupling. The above observations have motivated our model for the onset of spon-

taneous oscillatory activity and its synchronization through increased coupling in a mixed

population of excitable and passive elements. While it has been shown earlier that an ex-

citable cell connected to passive cells can oscillate [47–49], we demonstrate that coupling

such oscillators with different frequencies (because of varying numbers of passive cells)

can result in the system having a frequencyhigherthan its constituent elements. We have
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also performed a systematic characterization for the first time of the dynamical transitions

occurring in the heterogeneous medium comprising active and passive cells as the cou-

pling is increased, revealing a rich variety of synchronized activity in the absence of any

pacemaker. Finally, we show that the system has multiple coexisting attractors charac-

terized by distinct mean oscillation periods, with the nature of variation of the frequency

with coupling depending on the choice of initial state as thecoupling strength is varied.

Our results provide a physical understanding of the transition from transient excitations to

sustained rhythmic activity through physiological changes such as increased gap junction

expression [50].

2.2 The Model

The dynamics of excitable myocytes can be described by a model having the form

CmV̇e = −I ion(Ve,gi)

whereVe(mV) is the potential difference across a cellular membrane,Cm (= 1 µF cm−2)

is the membrane capacitance,I ion (µA cm−2) is the total current density through ion chan-

nels on the cellular membrane andgi are the gating variables, describing the different ion

channels. The specific functional form forI ion varies in different models. To investigate

the actual biological system we have first considered a detailed, realistic description of

the uterine myocyte given by Tonget al. [51]. However, during the systematic dynam-

ical characterization of the spatially extended system, for ease of computation we have

used the phenomenological FitzHugh-Nagumo (FHN) system [33] which exhibits behav-

ior qualitatively similar to the uterine myocyte model in the excitable regime. In the FHN

model, the ionic current is given by

I ion = Fe(Ve,g) = AVe(Ve− α)(1− Ve) − g,
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whereg is an effective membrane conductance evolving with time as

ġ = ǫ(Ve− g),

α(= 0.2) is the excitation threshold,A(= 3) specifies the fast activation kinetics andǫ(=

0.08) characterizes the recovery rate of the medium (the parameter values are chosen such

that the system is in the excitable regime and small variations do not affect the results

qualitatively). The state of the electrically passive cellis described by the time-evolution

of the single variableVp [52]:

V̇p = Fp(Vp) = K(VR
p − Vp),

where the resting state for the cell,VR
p is set to 1.5 andK(= 0.25) characterizes the time-

scale over which perturbations away fromVR
p decay back to it. We model the interaction

between a myocyte and one or more passive cells by:

V̇e = Fe(Ve,g) + np Cr(Vp − Ve), (2.1a)

V̇p = Fp(Vp) −Cr(Vp − Ve), (2.1b)

wherenp(= 1,2, . . .) passive elements are coupled to an excitable element via the activa-

tion variableVe,p with strengthCr . Here, we have assumed for simplicity that all passive

cells are identical having the same parametersVR
p and K, as well as, starting from the

same initial state. We observe that the coupled system comprising a realistic model of

uterine myocyte and one or more passive cells exhibits oscillations (Fig.2.1 (a)) qualita-

tively similar to the generic FHN model (Fig.2.1 (b)), although the individual elements

are incapable of spontaneous periodic activity in both cases. In Fig.2.1(a-b), the range of

np and excitable-passive cell couplings for which limit cycleoscillations of the coupled

system are observed is indicated with a pseudocolor representation of the period (τ). We

also look at how a system obtained by diffusively coupling two such “oscillators" with
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distinct frequencies (by virtue of having differentnp) behaves upon increasing the cou-

pling constantD betweenVe (Fig. 2.1 (c)). A surprising result here is that the combined

system may oscillatefasterthan the individual oscillators comprising it.

To investigate the onset of spatial organization of periodic activity in the system we have

considered a 2-dimensional medium of locally coupled excitable cells, where each ex-

citable cell is connected tonp passive cells [Fig.2.1(d)], np having a Poisson distribution

with mean f . Thus, f is a measure of the density of passive cells relative to the my-

ocytes. Our results reported here are forf = 0.7; we have verified for various values

of f ≥ 0.5 that qualitatively similar behavior is seen. The dynamicsof the resulting

medium is described by:

∂Ve

∂t
= Fe(Ve,g) + np Cr(Vp − Ve) + D∇2Ve,

whereD represents the strength of coupling between excitable elements (passive cells are

not coupled to each other). Note that, in the limit of largeD the behavior of the spatially

extended medium can be reduced by a mean-field approximationto a single excitable

element coupled tof passive cells. Asf can be non-integer,np in the mean-field limit

can take fractional values [as in Fig.2.1(a-b)].

We discretize the system on a square spatial grid of sizeL × L with the lattice spacing

set to 1. For most results reported hereL = 64, although we have usedL up to 1024 to

verify that the qualitative nature of the transition to global synchronization with increas-

ing coupling is independent of system size. The dynamical equations are solved using a

fourth-order Runge Kutta scheme with time-stepdt ≤ 0.1 and a standard 5-point stencil

for the spatial coupling between the excitable elements. Wehave used periodic boundary

conditions in the results reported here and verified that no-flux boundary conditions do not

produce qualitatively different phenomena. Frequencies of individual elements are calcu-

lated using FFT of time-series for a duration 215 time units. The behavior of the model

for a specific set of values off , Cr andD is analyzed over many (∼ 100) realizations of
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Figure 2.1: Oscillations through interaction between excitable and passive elements. A
single excitable element described by (a) a detailed ionic model of an uterine myocyte
and (b) a generic FHN model, coupled tonp passive elements exhibits oscillatory activity
(inset) with periodτ for a specific range of gap junctional conductancesGm in (a) and
coupling strengthsCr in (b). The triangles (upright and inverted) enclosing the region of
periodic activity in (b) are obtained analytically by linear stability analysis of the fixed
point solution of Eq. (2.1a). (c) Frequency of oscillation for a system of two “oscillators"
A andB (each comprising an excitable cell andnp passive cells withnA

p = 1 andnB
p = 2)

coupled with strengthD. Curves corresponding to different values ofCr show that the
system synchronizes on increasingD, having a frequency that can behigher than either
of the component oscillators. (d) Uterine tissue model as a 2-dimensional square lattice,
every site occupied by an excitable cell coupled to a variable number of passive cells.
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thenp distribution with random initial conditions.

2.3 Results

To quantitatively analyze the dynamical transitions as theinter-cellular coupling is in-

creased, we focus on the differences in the oscillatory behavior of individual elementsin

the simulation domain. In Fig.2.2(a) we see that at lowD elements can have different pe-

riods, indicating the co-existence of multiple oscillation frequencies in the medium. This

is explicit from the power spectral density of local activity at different sites [Fig.2.2(b)],

which shows that there are multiple clusters in the domain, each being characterized by

a principal frequency,ν [Fig. 2.2 (c)]. As all elements belonging to one cluster have the

same period, we refer to this behavior ascluster synchronization(CS). Note that quies-

cent regions of non-oscillating elements, indicated in white in Fig.2.2 (c), coexist with

the clusters. As the coupling is increased the clusters merge [Fig. 2.2 (d)], thereby re-

ducing the spread in the distribution of oscillation frequencies present in the medium,

P(ν), eventually resulting in a single frequency for all oscillating elements (as seen for

D = 0.3). As there are still a few local regions of inactivity, we term this behavior as

local synchronization(LS). Further increasingD results inglobal synchronization(GS)

characterized byall elements in the medium oscillating at the same frequency.

We can also interpret the dynamical transitions observed upon increasing the coupling

between neighboring excitable elements as being coordinated by waves traveling over in-

creasingly longer range in the system. Fig.2.3 (first row) shows spatial activity in the

system at different values ofD after long durations (∼ 215 time units) starting from ran-

dom initial conditions. As the couplingD between the excitable elements is increased,

we observe a transition from highly localized, asynchronous excitations to spatially orga-

nized coherent activity that manifests as propagating waves. Similar traveling waves of

excitation have indeed been experimentally observedin vitro in myometrial tissue from
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Figure 2.2: Synchronization via cluster merging. (a) Time-series of fast activation vari-
ableue for two excitable cells in the domain exhibiting distinct oscillation frequencies.
(b) Power spectral density ofue from four different sites [location shown in (c)] in a two-
dimensional simulation domain withL = 64 (f = 0.7,Cr = 1,D = 0.1). (c) Pseudocolor
plot indicating multiple clusters, each consisting of oscillators synchronized at a distinct
frequency, i.e. cluster synchronization (white corresponding to absence of oscillation).
(d) IncreasingD from 0.1 in (c) to 0.2 in the left panel results in decreasing the number of
clusters with distinct oscillation frequencies. Increasing D further to 0.3 results in local
synchronization where all oscillators have the same frequency with a few patches show-
ing absence of oscillation. WhenD = 0.4, all elements in the domain oscillate with same
frequency (i.e. global synchronization).
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Figure 2.3: Emergence of synchronization via propagation of activity waves with in-
creased coupling. Snapshots (first row) of the activityVe in a two-dimensional simulation
domain (f = 0.7,Cr = 1, L = 64) for increasing values of couplingD (with a given dis-
tribution of np). The corresponding time-averaged spatial correlation functions C(r) are
shown in the middle row. The size of the region aroundr = 0 (at center) where C(r) is
high provides a measure of the correlation length scale which is seen to increase withD.
The last row shows pseudocolor plots indicating the frequencies of individual oscillators
in the medium (white corresponding to absence of oscillation). IncreasingD results in de-
creasing the number of clusters with distinct oscillation frequencies, eventually leading to
global synchronization characterized by spatially coherent, wavelike excitation patterns
where all elements in the domain oscillate with same frequency.
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the pregnant uterus [53]. The different dynamical regimes observed during the transi-

tion are accompanied by an increase in spatial correlation length scale (Fig.2.3, middle

row) and can be characterized by the spatial variation of frequencies of the constituent

elements (Fig.2.3, last row). For low coupling (D = 0.1), multiple clusters each with a

distinct oscillation frequencyν coexist in the medium (CS). Note that there are also quies-

cent regions of non-oscillating elements indicated in white. With increased coupling the

clusters merge, reducing the variance of the distribution of oscillation frequencies eventu-

ally resulting in a single frequency for all oscillating elements (LS, seen forD = 0.3). On

increasing the coupling to even higher values (D = 0.4), a single wave traverses the entire

system resulting in GS whereall elements in the medium are oscillating at the same fre-

quency. Our results thus help in causally connecting two well-known observations about

electrical activity in the pregnant uterus: (a) there is a remarkable increase in cellular cou-

pling through gap junctions close to onset of labor [45] and (b) excitations are initially

infrequent and irregular, but gradually become sustained and coherent towards the end of

labor [38].

The above observations motivate the following order parameters that allow us to quanti-

tatively segregate the different synchronization regimes in the space of model parameters

D andCr [Fig. 2.4 (a)]. The CS state is characterized by a finite width of the frequency

distribution as measured by the standard deviation,σν, and the fraction of oscillating el-

ements in the medium, 0< fosc < 1. Both LS and GS states haveσν → 0, but differ in

terms of fosc (< 1 in LS,≃ 1 in GS). Fig.2.4(b-c) shows the variation of the two order pa-

rameters〈σν〉 and〈 fosc〉 with the couplingD, 〈 〉 indicating ensemble average over many

realizations. Varying the excitable cell-passive cell coupling Cr together withD allows

us to explore the rich variety of spatio-temporal behavior that the system is capable of

[Fig. 2.4 (a)]. In addition to the different synchronized states (CS, LS and GS), we also

observe a region where there is no oscillation (NO) characterized by fosc→ 0, and a state

where all elements oscillate with the same frequency and phase which we term coherence

(COH). COH is identified by the condition that the order parameterF ≡ maxt[ fact(t)] → 1
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Figure 2.4: (a) Different dynamical regimes of the uterine tissue model (forf = 0.7)
in D − Cr parameter plane indicating the regions having (i) completeabsence of oscilla-
tion (NO), (ii) cluster synchronization (CS), (iii) local synchronization (LS), (iv) global
synchronization (GS) and (v) coherence (COH). (b-c) Variation of (b) width of frequency
distribution〈σν〉 and (c) fraction of oscillating cells〈 fosc〉 with coupling strengthD for
Cr = 1 [i.e., along the broken line shown in (a)]. The regimes in (a) are distinguished by
thresholds applied on order parameters〈σν〉, 〈 fosc〉 and〈F〉, viz., NO: 〈 fosc〉 < 10−3, CS:
〈σν〉 > 10−4, LS: 〈σν〉 < 10−4 and〈 fosc〉 < 0.99; GS:〈 fosc〉 > 0.99 and COH:〈F〉 > 0.995.
Results shown are averaged over many realizations.
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where fact(t) is the fraction of elements that are active (Ve > α) at timet. In practice, the

different states are characterized by thresholds whose specificvalues do not affect the

qualitative nature of the results.

To further characterize the state of the system, we determined the mean frequency ¯ν by

averaging over all oscillating cells for any given realization of the system. Fig.2.5(a) re-

veals that several values of the mean frequency are possibleat a given coupling strength.

When the initial conditions are chosen randomly for each value of the coupling (broken

curve in Fig.2.5(a)), the mean frequency decreases with increasingD. On the other hand,

ν̄ is observed toincreasewith D when the system is allowed to evolve starting from a ran-

dom initial state at lowD, and then adiabatically increasing the value ofD. The abrupt

jumps correspond to drastic changes in the size of the basin of an attractor at certain val-

ues of the coupling strength, which can be investigated in detail in future studies. This

suggests a multistable attractor landscape of the system dynamics, with the basins of the

multiple attractors shown in Fig.2.5(d) [each corresponding to a characteristic spatiotem-

poral pattern of activity shown in Fig.2.5 (e)] having differing sizes. They represent one

or more plane waves propagating in the medium and are quite distinct from the disordered

patterns of spreading activity (Fig.2.5(b-c)) seen when random initial conditions are used

at each value ofD. We note that the period of recurrent activity in the uterus decreases

with time as it comes closer to term [50] in conjunction with the increase in number of

gap junctions. This is consistent with our result in Fig.2.5(a) when considering a gradual

increase of the couplingD.

As previously mentioned, the above results are for a fixed value of f , the mean number

of passive cells per excitable cell. To investigate how varying the density of passive cells

affects the spatial coherence in activity, we have considered aspecial case of the passive

cell distribution to define another spatially extended, 2-dimensional lattice model for the

uterine tissue. Here, an excitable cell, located at each lattice site, can be connected to

either one or no passive cells (Fig.2.6, left). This has the simplifying feature that the
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Figure 2.5: (a) Variation of mean oscillation frequency ¯ν with coupling strengthD in the
uterine tissue model (f = 0.7) for 400 different initial conditions atCr = 1. Continuous
curves correspond to gradually increasingD starting from a random initial state at low
D, while broken curves (overlapping) correspond to random initial conditions chosen at
each value ofD. (b-c) Snapshots of activity in the medium atD = 1.5 for a random initial
condition seen at intervals ofδT = 5 time units. (d) Variation of the cumulative fractional
volumesφ of the basins for different attractors corresponding to activation patterns shown
in (b-c) and (e), as a function of the coupling strengthD. (e) Snapshots of topologically
distinct patterns of activity corresponding to the five attractors atD = 1.5 [shown by a
broken line in (d)] whenD is increased.
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Figure 2.7: (left) Rate of production of human pregnancy-related hormones estrogen and
progesterone over the course of pregnancy (adapted from Ref.[54]). (right) Variation of
the mean value of the order parameter,〈F〉, characterizing coherence (COH) shown as a
function of the excitation threshold (α) and the coupling strengthD between the excitable
cells, forCr = 0.6.
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individual lattice sites either don’t oscillate or oscillate at the same frequency in isolation.

In this scenario, the passive cell density,f , which is the same as the fraction of oscillators

in the lattice, varies between 0 and 1. Whenf = 1, the system corresponds to ahomoge-

neousoscillatory medium. As the coupling between the excitable elements is increased,

we observe that for high value off the system becomes coherent (COH) as in the lat-

tice model used earlier. At low passive cell density, increasing D results in cessation of

oscillation (NO) [Fig.2.6 (right)]. The transition to coherence can also be observed as

a function of increasing passive cell density. For lower coupling, this exhibits a gradual

rise, while at higher coupling there is an abrupt change in the order parameter character-

izing coherence. This can be explained as a result of the system dynamics approaching

that expected in the mean-field limit as the couplingD is increased.

An important biological factor that is believed to regulatethe onset of uterine activity is

the secretion of different hormones, such as estrogen and progesterone [54]. Estrogen

increases the excitability of the myometrium, while pregesterone reduces it [55], so that

altering the balance between the two can result in the uterusbeing quiescent or undergoing

contractions. As seen from Fig.2.7 (left), the rate of secretion of both these hormones

increase during the course of pregnancy. However, close to term, the progesterone rate

falls slightly while that of estrogen keeps increasing. This presumably results in a large

increase in the myometrium excitability resulting in stimulation of uterine contractions.

In our model, the role of such hormones can be incorporated bysimply altering the value

of the threshold of the excitable cells,α. Increasing ratio of estrogen to progesterone

production rates can be modeled as reducingαwhich has the effect of making the medium

more excitable. Fig.2.7 (right) shows that coherence is achieved by either increasing

excitability (i.e., reducingα) or increasing the coupling strengthD between excitable cells

or both. Thus, we believe that the role of hormones essentially amplifies quantiatively the

coherence that is achieved in our model through increased coupling.
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2.4 Discussion and Conclusion

Our results explain several important features known aboutthe emergence of contrac-

tions in uterine tissue. Previous experimental results have demonstrated that the coupling

between cells in the myometrium increases with progress of pregnancy [45]. This sug-

gests that the changes in the system with time amounts to simultaneous increase ofD

andCr , eventually leading to synchronization as shown in Fig.2.4 (a). Such a scenario

is supported by experimental evidence that disruption of gap-junctional communication

is associated with acute inhibition of spontaneous uterinecontractions [56]. The mech-

anism of synchronization discussed here is based on a very generic model, suggesting

that our results apply to a broad class of systems comprisingcoupled excitable and pas-

sive cells [57, 58]. A possible extension will be to investigate the effect of long-range

connections [59,60].

To conclude, we have shown that coherent periodic activity can emerge in a system of

heterogeneous cells in a self-organized manner and does notrequire the presence of a

centralized coordinating group of pacemaker cells. A rich variety of collective behav-

ior is observed in the system under different conditions; in particular, for intermediate

cellular coupling, groups of cells spontaneously form clusters that oscillate at different

frequencies. With increased coupling, clusters merge and eventually give rise to a glob-

ally synchronized state marked by the genesis of propagating waves of excitation in the

medium. Our model predicts that a similar set of changes occur in the uterus during late

stages of pregnancy.
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3

Spatiotemporal pattern formation in

homogeneous system of relaxation

oscillators

3.1 Introduction

The problem of understanding pattern formation across a variety of chemical and bio-

logical contexts [10,61] has stimulated much theoretical and experimental activity since

the early work of Turing [16, 62, 63]. Studying the dynamics of coupled biochemical

oscillators interacting through reaction-diffusion mechanisms constitutes a particularly

promising approach to understanding the genesis of patterns in natural systems [64]. Gen-

eralizations of such processes involving differential excitatory and inhibitory interactions

between elements as represented by the coupling terms, havebeen used to represent a

variety of complex systems [65–67]. They have also been proposed recently as a possible

mechanism for computation in biological and chemical systems [68,69].

The stationary patterns exhibited by the models mentioned above represent only a frac-
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tion of the variety seen in nature, many of which exhibit periodic activity. Thus, extending

ideas underlying reaction-diffusion mechanisms to systems of interacting relaxation os-

cillators should permit investigation of spatio-temporalpatterns in biological systems,

where oscillations are observed across many spatial and temporal scales, ranging from

the periodic variations of intracellular molecular concentrations [70,71] to changes in the

activity levels of different brain areas [72]. The coherent dynamics of these oscillators can

produce functionally important collective behavior such as synchronization [73] yielding

different biological rhythms [74]. However, synchronized oscillations constitute only one

of a number of possible collective phenomena that can emergefrom such interactions.

For example, a recent set of experiments on coupled chemicaloscillators in a microfluidic

device [75, 76] have shown that anti-phase synchronization as well as spatially hetero-

geneous oscillator death states [77] can occur in this system under different conditions.

Extending the mechanism of coupling by lateral inhibition (e.g., via a rapidly diffusing

inhibitory chemical species) to arrays of relaxation oscillators, used for modeling biolog-

ical periodic activity, can be expected to reveal the underlying mechanism for a variety of

spatio-temporal phenomena seen in natural systems.

In this chapter, we study a generic model of relaxation oscillators, each comprising ac-

tivator and inactivating components, coupled to nearest neighbors through lateral inhibi-

tion via diffusion of the inactivating component (in line with the experiments mentioned

above). Our model is capable of exhibiting a variety of spatio-temporal patterns which

may be observed experimentally, while its simplicity allows an analytical understanding

of their genesis. We provide a simple theoretical demonstration of the existence and sta-

bility of an anti-phase synchronized state for coupled relaxation oscillators. In addition to

reproducing some patterns reported earlier, we also observe novel states, such as attrac-

tors corresponding to spatially co-existing dynamically distinct configurations, which we

term chimera states. Although homogeneous arrays of generic relaxation oscillators have

been studied extensively, our observation of these spatially heterogeneous attractors for

such systems is new to the best of our knowledge. We characterize basins of attraction for
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Figure 3.1: Spatio-temporal evolution of a 1-dimensional array of coupled relaxation
oscillators (N = 10) with passive elements at the boundaries [model system shown
schematically on top]. Pseudocolor plots of the activationvariableu indicate different
regimes characterized by (a) synchronized oscillations (SO), (b) anti-phase synchroniza-
tion (APS), (c) spatially patterned oscillation death (SPOD) and (d) chimera state (CS),
i.e., co-occurrence of spatial patches with dynamically distinct behavior.

various patterns seen in the model, also demonstrating an unexpected robustness of the

chimera states. This robustness suggests that the states wedescribe can be reproduced in

suitably designed experiments. We report phase defect-like discontinuities moving ballis-

tically through the system, producing complex patterns on collision with each other. We

observe analogous structures in two-dimensional media that bear a striking resemblance

to persistent configurations in cellular automata (CA) [80], which have been linked to the

universal computation capabilities of such systems [81–83].
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3.2 The Model

Our model system comprisesN relaxation oscillators interacting with each other in a

specific topology. For the dynamics of individual relaxation oscillators we use the phe-

nomenological FitzHugh-Nagumo (FHN) equations, which area generic model for such

systems. Each oscillator is described by a fast activation variableu and a slow inactivation

variablev:

u̇ = f (u, v) = u (1− u) (u− α) − v,

v̇ = g(u, v) = ǫ (k u− v− b),
(3.1)

whereα = 0.139,k = 0.6 are parameters describing the kinetics,ǫ = 0.001 characterizes

the recovery rate of the medium andb is a measure of the asymmetry of the oscillator

(measured by the ratio of the time spent by the oscillator at high and low value branches

of u). Parameter values are chosen such that the system is in the oscillatory regime. We

have checked that small variations in the values do not affect our results qualitatively. To

investigate spatial patterns generated by interaction between the oscillators, we arrange

them in a 1-dimensional chain [Fig.3.1 (top)]. In the chemical experiments, the beads

containing the reactive solution are suspended in a chemically inert medium which allows

passage of only the inhibitory chemical species [75]. In our model, the oscillators are

diffusively coupled via the inactivation variablev. The boundary conditions for the chain

take into account the inert medium by including non-reactive passive elements at each

end that are diffusively coupled to the neighboring oscillators. The inert medium between

the oscillators is not considered explicitly, its volume being relatively small compared

to the reservoirs at the boundary. We have verified that inclusion of intermediate non-

reactive cells diffusively coupling each pair of oscillators does not affect the fixed-point

equilibria of the system or their stability, once the diffusion constant is suitably scaled.
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The dynamics of the resulting system is described by

u̇i = f (ui , vi) + Du (ui−1 + ui+1 − 2 ui),

v̇i = g(ui , vi) + Dv (vi−1 + vi+1 − 2 vi),

v̇0 = Dv (v1 − v0), v̇N+1 = Dv (vN − vN+1),

(3.2)

wherei = 1,2, . . . ,N and the diffusion constantsDu,Dv represent the strength of coupling

between neighboring relaxation oscillators through theiractivation and inactivation vari-

ables, respectively. For most results reported here we haveconsidered only diffusion of

the inactivation variable, i.e.,Du = 0. For the simulations of the model system we have

mostly used eitherN = 10 or 20, although larger values ofN upto 1000 have been used to

verify that our results are not sensitively dependent on system size. We have verified that

the boundary conditions do not affect the results significantly by also considering peri-

odic boundaries and observing patterns qualitatively identical to those reported here. The

dynamical equations are solved using an adaptive Runge-Kutta scheme. The behavior of

the system for each set of parameter valuesb andDv is analyzed over many (104) initial

conditions, with each oscillator having a random phase chosen from a uniform distribu-

tion.

3.3 Results

Fig.3.1(a-d) shows a variety of asymptotic spatio-temporal patterns that we observe in the

model system: (a) synchronized oscillations (SO) with all elements (except those at the

boundary) having the same phase, (b) anti-phase synchronization (APS) with neighboring

elements in opposite phase, (c) Spatially Patterned Oscillator Death (SPOD) regime where

the oscillators are arrested in various stationary states and (d) Chimera States (CS) where

oscillating regions co-exist with patches showing negligible temporal variation. However,

these do not exhaust the range of possible spatio-temporal phenomena that are observed
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including propagating structures that are discussed later. Both APS and SPOD states have

been observed experimentally in chemical systems [75]. Although the latter has been

referred to as “Turing patterns” in the literature, we stress that SPOD is distinct as it is

not obtained through destabilization of a homogeneous equilibrium (Turing instability)

but occurs through a process of oscillator death [77]. There is a simple mathematical

reason why the mechanism involved in generating SPODcannotbe Turing instability:

the Jacobian matrix corresponding to the stable fixed point of the FHN model has the

structure






















− −

+ −























from which it immediately follows that the fixed point cannotbe destabilized by the Tur-

ing mechanism [14].

To investigate the robustness of the observed patterns in detail, we numerically estimate

the size of their basins of attraction in the (b,Dv) parameter space (Fig.3.2). To identify

distinct pattern regimes in (b,Dv) space [Fig.3.2 (a)] we introduce the following order

parameters. The number of non-oscillating cells in the bulkof the system,Nno, i.e., cells

for which the variance with respect ot time of the activationvariableu, σ2
t (ui), is zero,

is used to characterize the SPOD (Nno = N) and CS regimes (0< Nno < N). Both SO

and APS states have all elements in the bulk oscillating. However, SO is distinguished

by having all oscillators in the same phase as measured by thevariance of the activation

variablesu, 〈σ2
i (u)〉t = 0, where〈 〉t represents time average. We can also define the syn-

chronization among the oscillators in two distinct (even, odd) sub-lattices, as measured by

the time-averaged variance of the activation variable, viz., 〈σ2
even(u)〉t and〈σ2

odd(u)〉t. This

pair of order parameters is zero for both SO and APS states; however, if 〈σ2
i (u)〉t > 0, it

signifies the APS regime. In practice, different regimes are characterized by thresholds

whose specific values do not affect the qualitative nature of the results. Fig.3.2 (a) indi-

cates the parameter regions where SO, APS, SPOD and CS states are observed for more

than 50% of initial conditions (i.e., they have the largest basin). As mentioned earlier, the
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system also exhibits other regimes apart from the above ones, which occur in regions of

(b,Dv) parameter space shown in white.

While diffusive coupling in a homogeneous system of oscillators is expected to promote

the SO state [18], a striking observation from this phase diagram is that theAPS state has

a very large basin of attraction in certain regions [Fig.3.2(b)]. The existence of APS is

somewhat counter-intuitive as for diffusively coupled identical isochronous oscillators the

only stable attractors are synchronized oscillations or oscillator death [18]. To understand

the origin of such anti-phase oscillations we consider a simple model that captures the

essence of relaxation oscillation phenomena and can be solved exactly. We consider the

relaxation limit (ǫ → 0 in FHN system) and extreme asymmetry where the limit cycle has

a slow segment in which the system spends the entire durationof the oscillation period

(the remaining segment of the cycle being traversed extremely fast). In this limit, we

obtain the one-dimensional dynamical system: ˙x = ω(x), wherex parameterizes the slow

part of the limit cycle and can be redefined to belong to the interval (0,1). Fig. 3.3 (a)

shows a schematic diagram of the trajectory of the limit cycle, where the system spends

almost its entire oscillation period on the solid branch (the return fromx = 1 to x = 0,

shown by the broken line, is considered to be instantaneous). The model can be exactly

solved ifω(x) is a constant (= ω, say), although the geometrical argument is valid for

any arbitrary positive definite function defined over the interval (0,1). By appropriate

choice of time scale we set the periodω−1 = 1. A system of two such diffusively coupled

oscillators can be described by

ẋ1 = 1+ D (x2 − x1), ẋ2 = 1+ D (x1 − x2). (3.3)

Given the values ofx1, x2 at some arbitrary initial timet′, the solution of Eqn. (3.3) at a
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Figure 3.2: Different dynamical regimes of a 1-dimensional array of coupledrelaxation
oscillators (N = 10) in theDv − b parameter plane showing regions where the majority
(> 50%) of initial conditions result in synchronized oscillations (SO), anti-phase synchro-
nization (APS), spatially patterned oscillator death (SPOD) and chimera state (CS). (b)
Variation of the attraction basin size for the different regimes mentioned above (measured
as fraction of initial states reaching the attractor) with coupling strengthD for b = 0.064
[i.e., along the broken line shown in (a)]. In practice, the regimes are distinguished by
thresholds applied on the order parametersσ2

t (ui), 〈σ2
i (u)〉t, 〈σ2

even(u)〉t and 〈σ2
odd(u)〉t,

which have been taken to be 0.05 for the present figure. Basin sizes have been estimated
using 104 initial conditions.
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Figure 3.3: (a) Schematic diagram of a limit cycle trajectory for an oscillator in the relax-
ation limit (ǫ → 0) and extreme asymmetry (for details see text) such that theoscillator
is on the solid line (0< x < 1) for almost its entire period. (b) Time-series of two such
coupled oscillators [Eqn. (3.3) with D = 1] and (c) the Poincare map for the system at dif-
ferent coupling strengthsD showing stable anti-phase synchronization. (d) Phase-plane
diagram indicating the general mechanism (see text) for oscillator death in a system of
two coupled oscillators (1 and 2).

later timet follows the relations:

x1(t) + x2(t) = x1(t
′) + x2(t

′) + 2(t − t′),

x1(t) − x2(t) = [x1(t
′) − x2(t

′)] exp[−2D(t − t′)],
(3.4)

till time t′′ whenmax(x1, x2) reachesx = 1. After this the larger of (x1, x2) is mapped

back tox = 0 (because of the instantaneous nature of the remaining segment of the limit

cycle) andt′ is replaced byt′′. Using the above exact solution of the coupled system

( 3.3), its Poincare mapP(x) is constructed in two steps. First, ifx1 starts at 0 andx2 starts

at some point 0< x < 1, we find the location ofx1[= f (x)] at some timet whenx2 = 1
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(which is then immediately mapped tox2 = 0). Now, starting withx2 = 0 andx1 = f (x),

whenx1 = 1 we find the location ofx2: x′ = f ( f (x)) = P(x). Using solution (3.4), with

x1(t′) = 0, x2(t′) = x, x1(t) = f (x) andx2(t) = 1, we get

f (x) = 1+ D−1 W[−Dx exp{D(x− 2)}],

whereW is the Lambert W-function. Fig.3.3(c) shows the Poincare mapP(x) = f ( f (x))

for different values of the coupling strengthD. The map has one stable and one unstable

fixed point, which correspond to the anti-phase synchronized (APS) and synchronized

oscillating (SO) states, respectively. Thus, for the model(3.3) we find that APS is the

only stable state. Relaxing the extremal conditions under which this was derived may

allow a stable SO state to coexist with the stable APS state [84]. This is a fundamental

mechanism for generating APS states in any system of diffusively coupled oscillators

exhibiting anti-phase oscillations.

When the couplingDv between oscillators in the array is increased to very high values,

we observe that the oscillatory regimes (e.g., SO and APS) are replaced by stationary

spatial patterns such as SPOD (Fig.3.2). To understand the genesis of SPOD at strong

coupling, we can again focus on a pair of coupled relaxation oscillators in the relaxation

limit (ǫ → 0). The parameterb is chosen such that thev-nullcline is placed symmetri-

cally between the two branches of theu-nullcline with the oscillator taking equal time to

traverse each branch [Fig.3.3 (d)]. When the two oscillators (1 and 2) are in opposite

branches (as shown in the schematic diagram), the two opposing forces acting on each

oscillator, corresponding to the coupling [Fd = Dv(v2 − v1)] and the intrinsic kinetics

(Fn) respectively, can exactly cancel when the coupling is strong resulting in oscillator

death. Symmetry ensures that the force due to the intrinsic kinetics for the two oscillators

is identical in magnitude but oppositely directed in the steady state. The occurrence and

stabilization of thisheterogeneousstationary state is the key to the occurrence of SPOD

at strong coupling.
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At intermediate values of couplingDv in large arrays, the competition of the above mech-

anism with the intrinsic oscillatory dynamics dominant at low coupling, may give rise

to chimera states. This CS regime is especially interesting as the system exhibits a re-

markable heterogeneous dynamical state in spite of the bulkbeing homogeneous. The

occurrence of CS is not dependent on boundary conditions as itis also reproduced with

periodic boundaries. The observation of such states in a generic model of relaxation oscil-

lators suggests that they should be present in a wide class ofsystems; similar phenomena

have been recently reported in a specific chemical system model [85]. The chimera state

described here comprises regions with dynamically distinct behavior, as opposed to its re-

cent usage referring to the co-occurrence of coherent and non-coherent domains [78,79].

Aside from the spatio-temporal patterns in Fig.3.1(a-d) we also observe attractors having

point-like “phase defects” (i.e., with a discontinuity of phase along the oscillator array

at this point), moving in the background of system-wide oscillations. As seen from a

typical example of such states [Fig.3.4 (a)], after initial transients these defects move in

the medium with interactions between two such entities resulting in either the two being

deflected in opposite directions, or either both or only one getting annihilated. This is

unlike the situation of oppositely charged defects in non-oscillatory media which typically

annihilate on collision [86]. While the boundary for systems with passive elements at the

ends is a source of new defects entering the medium, similar persistent structures are also

seen in systems with periodic boundary conditions where, inthe steady state, a conserved

number of defects can reflect off each other indefinitely [Fig.3.4(b)].

To observe how these propagating defects manifest in higherdimensional systems, we

consider a 2-dimensional array of coupled oscillators defined on a torus. The system can

have extremely complicated transient phenomena, and for simplicity we discuss only its

asymptotic behavior. For a square lattice, we observe that there is a specific configuration

of four sites that persists indefinitely (reminiscent of theglider configurations in the 2-

dimensional CA “Game of Life" [80]). These structures can move in horizontal or vertical
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Figure 3.4: (a-b) Spatio-temporal evolution of a system of coupled relaxation oscillators
showing traveling waves of phase defects in (a) a linear array with passive elements at
the boundaries and (b) with periodic boundary conditions. (c-d) Propagating defects in
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moving “gliders" and (d) collision of two “gliders". For clear visualization of the motion
of the spatially extended defects, snapshots of the two-dimensional medium are taken at
intervals which are multiples of the oscillation period forthe mean activity of the system
τ.

directions [Fig.3.4 (c)]. The interaction of such “gliders” can produce complexspatio-

temporal patterns, e.g., Fig.3.4 (d) which shows two “gliders” that on collision move off

in directions perpendicular to their incident ones.

So far we have assumed that only the inactivation variablev can diffuse as this is the situ-

ation in the experimental system that motivated our study. However, in principle, one can

conceive of a system where both activation and inactivationvariables can diffuse through

the medium. To investigate the effect of such interactions on the collective dynamics of

the system of coupled oscillators, we have considered the simplest caseDu = Dv = D,
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Figure 3.5: Spatio-temporal evolution of a 1-dimensional array of coupled relaxation os-
cillators (N = 20) with Du = Dv and periodic boundary conditions, exhibiting patterns
similar to those seen in systems that allow diffusion of only inactivation variable. Pseudo-
color plots of the activation variableu indicate different regimes characterized by (a) syn-
chronized oscillations (SO), (b) anti-phase synchronization (APS), (c) spatially patterned
oscillation death (SPOD) and (d) chimera state (CS, corresponding to co-occurrence of
spatial patches with dynamically distinct behavior).

i.e., the coupling strengths for both variables are the same. Also, to avoid the edge effects

introduced by the passive reservoirs at each end, periodic boundary conditions have been

imposed on the system. Figures3.5and3.6show a representative selection of the asymp-

totic spatio-temporal patterns observed at different values ofb andD. We observe that the

system exhibits all the patterns (SO, APS, SPOD, CS and propagating defects) discussed

in detail earlier in the context of diffusion in only the inactivation variable. As a conse-

quence of using periodic boundary conditions we also observe variants of these patterns

with a spatial gradient. For example, Fig.3.6 shows SO and APS with such gradients

that we refer to as gradient synchronization (GS) and gradient anti-phase synchronization
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Figure 3.6: Spatio-temporal evolution of a 1-dimensional array of coupled relaxation os-
cillators (N = 20) with Du = Dv = D and periodic boundary conditions, showing patterns
that have a spatial gradient. Pseudocolor plots of the activation variableu indicate dif-
ferent regimes characterized by (a) gradient synchronization (GS), (b) gradient anti-phase
synchronization (GAPS), (c) traveling defects and (d) traveling chimera state (region with
SPOD propagating over a background of GS).

(GAPS). The manifestation of spatial gradient in CS results in a propagating region of

SPOD traveling against a background in GS, which we can term as a traveling chimera

state. The different pattern regimes observed for this system are indicated in (b,D) space

shown in Fig.3.7.

3.4 Discussion and Conclusion

To conclude, we have shown that a simple model of relaxation oscillators interacting via

lateral inhibition-like coupling yields a variety of striking spatio-temporal patterns. Our
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chronization (APS), spatially patterned oscillation death (SPOD) and chimera state (CS).
The region marked “others” exhibit patterns that do not belong to any of the ones men-
tioned above (e.g., gradient anti-phase synchronization and traveling defects).

model is simple and generic, suggesting that the patterns wepredict may be observed in a

range of experiments. These include coupled electronic circuits implementing relaxation

oscillators [87] and Pt wire undergoing CO oxidation where the system is in an oscillatory

regime [88] as well as the microfluidic chemical systems mentioned earlier. It will also

be of great interest to see whether similar patterns occur inwell-known generic models

of chemical oscillators such as the Brusselator [89]. Recent theoretical work on trapped

ions [90] suggest yet another system where such patterns can be foundexperimentally.

Our initial exploration of propagating configurations in 2-dimensional media suggests

that systems of higher dimensions may exhibit yet more striking features. The possibil-
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ity of using the propagating defects for computation is an intriguing one, especially as

analogous entities have been used to construct logic gates in CA [80].
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4

Emergence of complex patterns through

spontaneous symmetry breaking in

dense homogeneous networks of neural

oscillators

4.1 Introduction

Collective dynamics of coupled oscillators, in particular,synchronization [18], is inte-

gral to many natural phenomena [91] and is especially important for several biological

processes [28, 29, 74], such as brain function [72, 92–95]. While very large-scale syn-

chronization of neuronal activity is considered pathological, as in epilepsy [96], the brain

is capable of exhibiting a variety of complex spatiotemporal excitation patterns that may

play a crucial role in information processing [97]. Understanding the dynamics of these

patterns at the scale of the entire brain (imaged using techniques such as fMRI) is of fun-

damental importance, as interaction between widely dispersed brain regions are responsi-

ble for significant behavioral changes, such as loss of consciousness caused by disruption
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of communication between different areas of the cerebral cortex [98]. As detailed simula-

tion of each individual neuron in the brain is computationally expensive [99,100], when

studying the dynamics of the entire system it is useful to focus on the network of interac-

tions between brain regions. It has also been explicitly shown that the collective response

of a large number of connected excitatory and inhibitory neurons, which constitute such

regions, can be much simpler than the dynamics of individualneurons [101]. Indeed,

each region can be described using phenomenological modelsin terms of a few aggregate

variables [102].

Using anatomical and physiological data obtained over several decades, the networks

of brain regions for different animals have been reconstructed [103–105], where the in-

dividual nodes correspond to large assemblies (103 − 106) of neurons [106, 107]. The

connectivityC (i.e., fraction of realized links) of these networks (C ∼ 10−1) is signifi-

cantly higher than that among neurons (C ∼ 10−6) [108]. A schematic representation of a

network of the Macaque brain regions (adapted from Ref. [105]) is shown in Fig.4.1(a).

The collective activity of such networks can result in complicated nodal dynamics, in-

cluding temporal oscillations at several scales that are known to be functionally rele-

vant [72, 111, 112]. Each of these nodes can be described using neural field models of

localized neuronal population activity, which can have varying mathematical complexity

and biological realism [113–115]. In this chapter, we use the well-known and pioneering

model proposed by Wilson and Cowan (WC) [116, 117] to describe the activity of each

brain region. We also discuss how our model may provide insights into recent experimen-

tal findings related to the communication between brain areas during the transition to loss

of consciousness [98,118,119].

The complex collective dynamics obtained using this model for the Macaque network,

shown in Fig.4.1 (b), are reminiscent of experimentally recorded activity of brain re-

gions [72]. The range of behaviors observed in this system at different connection strengths

[Fig. 4.2 (a)-(b)], can arise from an interplay of several factors, which makes their anal-
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Figure 4.1: (a) The directed network of connections betweenregions of the Macaque
brain, adapted from Ref. [105]. The size of each node is proportional to its total de-
gree and the colors distinguish the modules (characterizedby significantly higher intra-
connection density and obtained using a partitioning algorithm [110]). The color of each
link corresponds to that of the source node. (b) Time series of the excitatory component
of a typical node in this network with coupling strengthw = 500, where each node is
modeled as a Wilson-Cowan oscillator.

53



Figure 4.2: (a) Phase space projections of the oscillators connected to each other using the
connection topology of the Macaque brain network, with different coupling strengths. The
filled circles represent the location of each oscillator at atime instant. The panels here are
scaled individually for better visualization. (b) Time-series of the excitatory component
u, for the corresponding values ofw used in the panels directly above. The nodesi are
arranged according to their modules (demarcated by white lines).
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ysis difficult. A possible approach to understand the genesis of thesepatterns is to focus

on the dynamics of the nodes interacting in the simplified setting of a homogeneous,

globally coupled system, which is an idealization of the densely connected network. In

this chapter we show that this simple system exhibits an unexpectedly rich variety of

complex phenomena, despite lacking the detailed topological features of brain networks

[e.g., Fig.4.1(a)], such as heterogeneity in degree (number of connections per node) and

modular organization. In particular, we show the existenceof novel collective states, in-

cluding those characterized by oscillator clusters, whereeach cluster is distinguished by

its amplitude or frequency. The occurrence of such clustersis surprising as each node

is identical in terms of both intrinsic dynamics and connectivity, indicating that the ho-

mogeneous system of oscillators undergoesspontaneous symmetry breaking. In addition

we observe patterns where the time-series for all oscillators are identical except for a

non-zero phase difference betweenncl groups of exactly synchronized elements which we

refer to as “phase clusters". On removing a few links from the network while preserving

the structural symmetry of connections we observe even moredramatic situations such as

the appearance of many (> 2) clusters having different amplitudes. In addition, oscillator

death, which is seen over a substantial region of parameter space in the fully connected

system, occurs in a drastically reduced region for such marginally sparse networks. As

the behavior of a large, densely connected system is effectively identical to that of the cor-

responding mean-field model, it is remarkable that the dynamical properties of the system

considered here are radically altered in response to extremely minor deviations from the

fully connected situation.

4.2 The Model

The model we consider comprises a network ofN oscillators, each described by the WC

model whose dynamics results from interactions between an excitatory and an inhibitory
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neuronal subpopulation. The average activity of each nodei (ui , vi) evolves as:

τuu̇i = −ui + (κu − ruui) Su(u
in
i ),

τvv̇i = −vi + (κv − rvvi) Sv(v
in
i ),

(4.1)

where,uin
i = cuuui−cuvvi+

∑′(wuu
i j uj−wuv

i j vj)+Iext
u andvin

i = cvuui−cvvvi+
∑′(wvu

i j uj−wvv
i j vj)+

Iext
v represent the total input to the two subpopulations respectively. The time constants

and external stimuli for the subpopulations are indicated by τu,v and Iext
u,v respectively,

while cµν (µ, ν = u, v) corresponds to the strength of interactions within and between

the subpopulations of a node. The interaction strengths arerepresented by the weight

matricesWµν ≡ {wµνi j } and the summationΣ′ is over all network neighbors (for a globally

coupled system,Σ′ ≡ Σ1≤ j≤N, j,i). The functionSµ(z) = [1 + exp{−aµ(z− θµ)}]−1 + κµ − 1

has a sigmoidal dependence onz, with κµ = 1− [1 + exp(aµθµ)]−1. The parameter values

have been chosen such that each isolated node (Wµν = 0) is in the oscillatory regime, viz.,

au = 1.3, θu = 4, av = 2, θv = 3.7, cuu = 16, cuv = 12, cvu = 15, cvv = 3, ru = 1, rv = 1, τu =

8, τv = 8, Iext
u = 1.25 andIext

v = 0. For the homogeneous systems considered here the

links will have same strength, i.e.,wµνi j = w/k (µ, ν = u, v andi(, j) = 1, . . . ,N; wµνii = 0),

wherek is the degree of a node

The dynamical system (Eq.4.1) is numerically solved using an adaptive-step Runge-

Kutta integration scheme for different system sizes (N) and coupling strengths (w). Linear

stability analysis is used to determine the stability of some of the patterns and identify the

associated bifurcations. The behavior of the system for each set (w,N) is analyzed over

many (∼ 100) randomly chosen initial conditions. We have explicitly verified that our

results are robust with respect to small variations in the parameters.
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4.3 Results

We first examine the collective dynamics of a pair of coupled oscillators (N = 2) as

a function of the interaction strength between them (Fig.4.6). Fig. 4.4 (a)-(b) show

that while exact synchronization (ES) of oscillator dynamics occurs at weak coupling

(w . 3.2), a state of anti-phase synchronization (APS) is observedat higher values ofw

(4.4 . w . 11). For intermediatew, the co-existence of the dominant frequencies corre-

sponding to ES and APS states [Fig.4.5(a)] indicates that the quasi-periodic (QP) behav-

ior observed in this regime can be interpreted as arising through competition between the

mechanisms responsible for the above two states. Atw ∼ 11, the system undergoes spon-

taneous symmetry-breaking, eventually giving rise to inhomogeneous in-phase synchro-

nization (IIS), characterized by different phase-space projections and distinct amplitudes

for the time-series of each oscillator [Fig.4.4(a)-(b), last panel]. The nature of the transi-

tion from APS to IIS is made explicit in Fig.4.5(b) [top panel], where the fixed points of

one of the oscillators, obtained using numerical root finding, are shown over a range ofw.

At w ≈ 10.943, a pair of heterogeneous unstable solutions related by permutation symme-

try, corresponding to an inhomogeneous steady-state (ISS), emerge from a homogeneous

unstable solution, beyond which all three solutions coexist. Thus, spontaneous symmetry

breaking appears to arise in the system through a subcritical pitchfork bifurcation, with the

number of positive eigenvalues corresponding to the homogeneous solution decreasing by

unity (not shown). The ISS is stable over a very small range, 10.964 . w . 11.002, as

seen from their corresponding eigenvalues in Fig.4.5(b) [lower panel]. Note that stability

is lost on either end of this interval through supercriticalHopf bifurcations (Fig.4.6). For

w & 700, both oscillators converge to the inactive stateui = vi = 0,∀i, corresponding to

amplitude death (AD, not shown).

To understand how the patterns we observe for a pair of WC oscillators generalize for

a larger system, we now increase the number of oscillators and examine the collective

dynamics (Fig.4.7). We observe that while the patterns seen for a pair of coupled oscil-
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Figure 4.3: Bifurcation diagram for a pair of coupled WC oscillators with coupling
strengthw as the bifurcation parameter, obtained for a set of 20 randominitial condi-
tions (i.c.). Red dots represent the maxima of the inhibitorycomponentsv for each i.c.,
while blue dots represent the corresponding minima.

lators, namely ES, QP, ISS, IIS, APS and AD persist (first fourshown in Fig.4.8 (a)-(b)

for N = 20) 1, qualitatively different states also emerge. As mentioned earlier, a new class

of patterns characterized by the existence of phase clusters appears. The most robust of

these, referred to as gradient synchronization (GS), hasncl ∼ N. Another new pattern

comprises two oscillator clusters, each characterized by aunique frequency [Fig.4.9(a)].

This constitutes a dramatic instance of spontaneous breaking of permutation symmetry,

as the oscillators are intrinsically indistinguishable for this completely homogeneous sys-

tem. Thus, the appearance of multiple frequencies in a dynamical network need not imply

heterogeneity in connectivity or node properties.

A third new pattern is a homogeneous steady state referred toas oscillator death (OD),

in which the individual nodes have the same time-invariant,non-zero activity. This dy-

namical state appears over a large region in (w,N)-space as seen in the phase diagram,

1Note that APS, which forN > 2 has a very small basin of attraction, is a “phase cluster" state for which
ncl = 2.
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Figure 4.4: Collective dynamics of a system of two coupled WC oscillators. (a) Phase
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Figure 4.7: Bifurcation diagram forN = 20 globally coupled WC oscillators with cou-
pling strengthw as the bifurcation parameter, obtained for a set of 20 randominitial
conditions (i.c.). Red dots represent the maxima of the inhibitory componentsv for each
i.c., while blue dots represent the corresponding minima.

Fig. 4.9 (b). To identify and segregate the regimes in this diagram, we use several order

parameters (summarized in Table4.1). The mean of the oscillation amplitude, measured

as the variance (σ2) with respect to time of one of the WC variables,v, averaged over

all the nodes〈σ2
t (vi)〉i, is zero for all the non-oscillating states AD, OD and ISS. These

are further distinguished by using the mean and variance with respect to all nodes of the

time-averagedv, i.e.,〈〈vi〉t〉i (=0 for AD) andσ2
i (〈vi〉t) (=0 for OD and AD). To distinguish

between the oscillating patterns, we consider the mean coherence, measured as〈σ2
i (vi)〉t,

and the total space occupied by all the trajectory projections∆, as measured by the num-

ber of non-zero bins of their histogram in (u, v)-space. ES is characterized by〈σ2
i (vi)〉t = 0

and IIS byσ2
i (〈vi〉t) > 0. The remaining patterns, GS and QP, are distinguished by∆ ∼ 0

for GS. Note that〈〉t and〈〉i represent averaging over time and all nodes, respectively.In

practice, different regimes are characterized by thresholds whose specific values do not

affect the qualitative nature of the results.
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Figure 4.8: Collective dynamics ofN globally connected WC oscillators. (a) Phase space
projections of the trajectories and (b) time-series forN = 20 globally coupled oscilla-
tors, showing exact synchronization (ES,w = 2), quasiperiodicity (QP,w = 4), gradient
synchronization (GS,w = 120), inhomogeneous steady-state (ISS,w = 195) and inhomo-
geneous in-phase synchronization (IIS,w = 210). The panels in (a) are scaled individually
for better visualization.

Table 4.1: Order parameters used for identifying the different dynamical regimes of a
homogeneous network of WC oscillators (as explained in the main text).

Pattern 〈σ2
t (vi)〉i = 0 〈〈vi〉t〉i = 0 σ2

i (〈vi〉t) = 0 〈σ2
i (vi)〉t = 0 ∆ > 0

AD X X X X

OD X X X

ISS X

ES X X

QP X

IIS
GS X
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(b) Phase diagram forN WC oscillators globally coupled with strengthw, indicating areas
where the majority (> 50%) of initial conditions result in ES, QP, GS, IIS, oscillator death
(OD) and amplitude death (AD). Note that thew-axis is logarithmic.
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Figure 4.10: Effect of marginally sparse connection density on collective dynamics of
WC oscillators. (a) As the degreek, i.e., the number of links per node, deviates slightly
from the globally coupled case (kmax= N−1) toN−3, the trajectories of the IIS state split
into many (∼ N) distinct projections (N = 21,w = 110). (b) The OD region in Fig.4.9(a)
shrinks rapidly with the number of removed links, as seen from the slope of the upper
boundary of OD (inset).
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As a first step towards extending the results seen for the globally coupled system to brain

networks of the type shown in Fig.4.1 (a), we have investigated the consequences of

gradually decreasing the connection density. To ensure that the degree reduction pre-

serves as many of the existing symmetries as possible, we arrange the nodes on a circle

and sequentially remove connections between nodes placed furthest apart. In addition to

preserving degree homogeneity, this ensures that every node has the same neighborhood

structure. As we deviate from the global coupling limit, we observe patterns similar to

those shown in Fig.4.8 (a-b), although the precise form of the attractors may differ and

it is now the translational symmetry that is being spontaneously broken. For example,

as seen in Fig.4.10(a), a reduction of just 2 links per node causes the trajectory in the

IIS state to split into many more (∼ N) projections than seen for the fully connected case

(∼ 2). Also, while the phase diagram of the system remains qualitatively unchanged when

the degree is decreased fromkmax = N − 1, there is a dramatic quantitative reduction in

the area corresponding to OD [Fig.4.10(b)] even with the reduction of one link per node.

This is surprising, as one would expect that a marginal deviation from the global coupling

limit in large systems will not result in a perceptible change from the mean-field behavior.

4.4 Discussion and Conclusion

Our result that weakening connections between nodes of a network can increase coher-

ence in collective activity (viz., observation of ES at loww) suggests an intriguing relation

between two recent experimental findings: (i) anaesthetic-induced loss of consciousness

occurs through the progressive disruption of communication between brain areas [98]

and (ii) functional connectivity networks reconstructed from EEG data become increas-

ingly dense with the development of fatigue in sleep- deprived subjects [118,119]. The

latter study finds that the onset of sleep is accompanied by anincrease in the degree

of synchronization between brain areas, while the former result implies that the interac-

tion strengths between these areas will concurrently get weaker. Although it may appear
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counter-intuitive that decreased coupling strength wouldresult in increased synchroniza-

tion, our findings illustrate that these results are not incompatible.

Another important implication of this study follows from our demonstration that sys-

tems with simple connection topology are capable of exhibiting very rich dynamical be-

havior. In particular, many of the patterns seen in our simulations of the network of

Macaque brain regions (Fig.4.1) resemble those observed using much simpler connectiv-

ity schemes (Fig.4.8). Hence, patterns seen in complex systems that are often attributed

to their non-trivial connection structure, may in fact be independent of the details of the

network architecture. With the availability of high-resolution data and increased compu-

tational power, it is now possible to model brain networks incorporating a high level of

realistic detail [99,100,120]. While these studies are extremely important, we need to be

careful while attributing observed dynamical features to the structural properties of the

network, as such features might appear even with very simpleconnection topologies. Our

findings provide a baseline for future studies on the specificrole of the detailed aspects

(degree heterogeneity, modular architecture, etc.) of brain networks on their collective

dynamics.

To conclude, we have shown that the collective dynamics of a homogeneous system of

oscillators, motivated by mesoscopic descriptions of brain activity, exhibits spontaneous

symmetry breaking that gives rise to several novel patterns. Despite preserving the struc-

tural symmetry of connections, a marginal increase in the network sparsity, corresponding

to an extremely small deviation from the mean-field, unexpectedly changes the robustness

of certain patterns. Our results suggest that some of the complicated activity patterns seen

in the brain can be explained even without complete knowledge of its wiring diagram.
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5

Chimera ordering in spin systems

5.1 Introduction

Transition to states characterized by simple or complex ordered patterns is a phenomenon

of central importance in equilibrium statistical physics as well as in dynamical systems far

from equilibrium [91,121]. Examples of simple ordering at thermal equilibrium include

the aligned orientation of spins in Ising-like systems, while, in the context of nonlin-

ear dynamics, this may be observed in the phase synchronization of coupled oscillators.

However, more complex ordering behavior may also occur in various systems under dif-

ferent conditions, especially in the presence of heterogeneities. A surprising recent find-

ing is that evenhomogeneousdynamical systems can exhibit a robust, partially ordered

state characterized by the coexistence of incoherent, desynchronized domains with coher-

ent, phase locked domains [122]. Suchchimerastates have initially been observed only

in different types of oscillator populations, including complex Ginzburg-Landau equa-

tions, phase oscillators, relaxation oscillators, etc., arranged in various connection topolo-

gies [78,123–131]. Given that “chimera" refers to the co-occurrence of incongruous el-

ements, one can extend the concept of chimera-like states toinclude those characterized

by simultaneous existence of strongly and weakly ordered regions in an otherwise homo-
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geneous system. If such a state can occur as the global free-energy minimum of a system

in thermal equilibrium, it may widen the scope of experimentally observing chimera-like

order in physical situations.

It is with this aim in mind that we investigate chimera-like ordering in systems at thermal

equilibrium. Specifically, we consider spin-models as theyare paradigmatic for different

complex systems comprising interacting components which can be in any of multiple dis-

crete states. For example, simple Ising-like models consisting of binary-state elements

are versatile enough to be used for understanding processesoperating in a wide range

of physical (e.g., magnetic materials [132–134]), biological (e.g., neural networks [135])

and social (e.g., opinion formation [27,136]) systems. The nature and connection topol-

ogy of the interactions between the spins decide whether theentire population reaches a

consensus corresponding to a highly ordered state, or is in aweakly ordered state (includ-

ing the case of complete disorder) that corresponds to the stable coexistence of contrary

orientations. The existence of a chimera state in such situations would imply that even

though every spin is in an identical environment, different regions of the system will ex-

hibit widely different degrees of ordering.

In this chapter we report the novel occurrence of chimera order in spin systems. This is

characterized for a system of Ising spins by the simultaneous occurrence of strongly and

weakly ordered regions, as measured by the magnitude of local magnetizations. The spe-

cific system we consider in detail is globally coupled and comprises two sub-populations

(or modules) with the nature of interactions between spins depending onwhether they

belong to the same or different groups. Our central result is that when subjected to a

uniform magnetic field at a finite temperature, one of the sub-populations can become

highly orderedwhile the other remainsweakly ordered. This is surprising as both the

interactions as well as the external field for the two modulesareidentical. Moreover, the

chimera state is not a metastable state, but rather the global minimum of free energy for

the system. The critical behavior of the system associated with the onset of chimera or-
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A B

ferromagnetic coupling
anti-ferromagnetic coupling

Figure 5.1: Schematic diagram of a system of 2N globally coupled Ising spins arranged
into two subpopulations (A,B) ofN spins each. Spins belonging to the same module
interact with each other ferromagnetically, while those belonging to different modules
have antiferromagnetic interactions.

dering is established in this chapter by an exact analyticaltreatment. We also demonstrate

by Monte Carlo (MC) simulations the existence of similar complex ordering phenomena

in three-dimensional spin systems with nearest neighbor interactions. This opens up the

possibility of experimentally observing chimera states inlayered magnetic systems, e.g.,

manganites [133,134]. While the effect of noise on chimera state in coupled oscillators is

not well-understood, the chimera order in spin systems reported here arise in the presence

of (thermal) noise; thus, it is robust and likely to be seen inreal physical situations.
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5.2 The Model

We consider a system of 2N globally coupled Ising spins arranged into two sub-populations

(Fig. 5.1), each havingN spins, at a constant temperatureT and subjected to a uniform

external magnetic fieldH(> 0). A dynamical system analogous to our model has recently

been analyzed by Abramset al. [126] where two clusters of identical oscillators, each

maintaining a fixed phase difference with the others, was shown to possess a chimera

state. The interaction between two spins belonging to the same module is ferromagnetic,

having strengthJ (> 0), while that between spins belonging to different modules is an-

tiferromagnetic with strength−J′ (whereJ′ > 0). It is obvious that in the absence of

an external field, the modules will be completely ordered in opposite orientations at zero

temperature. As temperature is increased, the magnitude ofthe magnetizations for the

two modules will decrease by the same amount, eventually becoming zero at a critical

temperature,Tc. In the presence of an external fieldH that favors spins with+ve orienta-

tion, the module having negative magnetization will be subjected to competition between

(i) the fieldH which attempts to align the spins along the+ve direction and (ii) the anti-

ferromagnetic interactionJ′ which is trying to do the opposite. In the presence of a strong

field H > H0 (whereH0 is a threshold field), as the temperature is increased from zero, the

spins in both modules initially remain ordered and are oriented in thesamedirection. We

show below that beyond a certain critical temperatureTc1, one module becomes more dis-

ordered relative to the other. As the temperature increasesfurther beyond a second critical

temperatureTc2, the two modules again attain the same magnetization, whichdecreases

gradually withT [Fig. 5.2(a)]. The phase transitions atTc1 andTc2 are continuous and are

characterized by critical exponentsα andβ which are derived exactly below. ForH < H0,

the spins in the two modules are oriented atT = 0 in opposite directions, although having

the same magnitude. At any finite temperature belowTc2, the module whose spins were

initially oriented opposite to the direction of the field is seen to be more disordered than

the other module. The same critical exponents as in the case of H > H0 are observed
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for the transition atTc2, beyond which the magnetization of the two modules are same in

magnitude and orientation.

5.3 Results

For the system described above, the energy for a given configuration of spins is

E = −J
∑

i, j,s
i, j

σisσ js + J′
∑

i, j,s,s′

s,s′

σisσ js′ − H
∑

i,s

σis, (5.1)

whereσis = ±1 is the Ising spin on thei-th node (i, j = 1,2, · · ·N) in the s-th module

(s, s′ = 1,2) andJ, J′ > 0. Since each spin is connected to every other spin, mean-field

treatment is exact for our effectively infinite-dimensional system. Thus, the total free

energy of the system can be expressed as:

F(m1,m2) = −aN(m2
1 +m2

2) + bNm1m2 − HN(m1 +m2) + NkBT [S(m1) + S(m2)] , (5.2)

where the magnetizations per spin of the two modules (ms =
1
N

∑N
i=1σis) are the order

parameters for the system,

S(m) =
1
2

[(1 +m) log(1+m) + (1−m) log(1−m)] − log 2

is the entropy term, anda = J(N − 1)/2, b = J′N are system parameters (kB being the

Boltzmann constant).

To find the condition for equilibrium at a temperatureT, the free energy can be minimized

with respect tom1 andm2 to obtain:

− 2am1 + bm2 − H +
kBT
2

log
1+m1

1−m1
= 0, (5.3)

−2am2 + bm1 − H +
kBT
2

log
1+m2

1−m2
= 0. (5.4)
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Figure 5.2: (a) Variation of magnetization per spin of the two modules (m1, m2) with
temperature forH > H0. Between the temperaturesTc1 andTc2, the magnetizations of
the two modules are different, with the smaller value being calledm< and the larger one
m>. The broken line indicates the saddle point of the free energy function corresponding
to m1 = m2 = m0 (see text). The free energy landscape corresponding to chimera order
at kBT/J = 5 (b) shows that there are two free-energy minima form1 , m2 (the curves
are iso-energy contours and darker shades correspond to lower energy), whereas outside
the range [Tc1,Tc2] there is only one free-energy minimum (m0) on them1 = m2 line as
is seen forkBT/J = 8 (c). This is seen explicitly in (d) when the free energy per spin
F is observed along the curve of steepest descent fromm0 (for Tc1 < T < Tc2) or along
the curve of slowest ascent (forT < Tc1 or T > Tc2). All the results shown in (a-d)
are obtained analytically. (e) Time-evolution of the magnetizations per spin of the two
modules,m1 andm2, shown for MC simulations withN = 100 atkBT/J = 5. In the
chimera ordered state, the system switches due to thermal noise between the two free-
energy minima corresponding to the two modules exchanging their magnetization states
betweenm> andm<. In all cases,a = 1 andb = H = 10.
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Eqs.5.3-5.4 may be expressed in the formm1,2 = g(m2,1), where we define the one-

dimensional map,

g(x) =
1
b

[

2ax+ H −
kBT
2

log
1+ x
1− x

]

. (5.5)

Solutions ofg2(x) ≡ g(g(x)) = x give the extremam∗1 and m∗2 of the free-energyF

(Eq. 5.2). Numerical solution for the extrema values shows that for suitable parameter

values andH > H0, the system has two critical temperaturesTc1 andTc2. For tempera-

tures lower thanTc1 and aboveTc2 the only fixed-point of the mapg2 is the unstable fixed

point,g(x) = x, of Eq. (5.5). Thus, this solution corresponds tom1 = m2 ≡ m0, where the

free energyF(m1,m2) has a minimum. The value form0 is obtained from

(−2a+ b)m0 − H +
kBT
2

log
1+m0

1−m0
= 0. (5.6)

However, in the temperature rangeTc1 < T < Tc2, there aretwo types of fixed points

of the twice-composed mapg2: (i) a stable fixed pointm1 = m2 = m0 [obtained from

Eq. (5.6)] corresponding to a saddle point of the free energy function [shown by a broken

line in Fig. 5.2 (a)], and (ii) the pair of unstable fixed pointsm1 , m2 which form a

period-2 orbit of Eq. (5.5) corresponding to a minimum of the free energyF [shown by

solid lines in Fig.5.2 (a)]. As one of (m1 , m2) is higher and the other low, we obtain

a chimera state where one module is disordered (m<) relative to the other module (m>).

The chimera state occurs through subcritical pitchfork bifurcations of the mapg2 as the

temperature is increased aboveTc1 or decreased belowTc2
1. For H < H0, the system

exhibits chimera ordering forT > 0 and it has a single critical temperature atTc2 above

which the magnetizations of the two modules become same.

By observing the free-energyF(m1,m2) landscape in the range 0≤ m1,m2 ≤ 1, we

obtain a clear physical picture of the transition to chimeraordering [Fig.5.2 (b-c)]. The

homogeneous statem1 = m2 = m0 is a local extremum (i.e.,∂F/∂m1,2 = 0) for the range

1It is of interest to note that the chimera state in oscillatorarrays occur via saddle-node bifurcation [78,
126,137].
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of parameters considered here. However, its nature changesfrom a free-energy minimum

to a saddle point as the temperature is increased beyondTc1 and again changes back to

a minimum when temperature exceedsTc2. This is seen by looking at the matrix of the

second derivatives of free energy per site with respect tom1,m2:

H
∣

∣

∣

m0
=























A b

b A























, (5.7)

whereA = −2a + kBT 1
1−m2

0
. The eigenvalues of this matrix areλ+ = A + b along the

m1 = m2 line andλ− = A−b in the direction perpendicular to it (parallel tom1 = −m2 line).

Below Tc1 and aboveTc2 both eigenvalues are positive indicating thatm0 is a minimum

[Fig. 5.2(c)]. The transition to chimera ordering occurs in the rangeTc1 < T < Tc2 when

the smaller eigenvalueλ− becomes negative while the other eigenvalue remains positive,

indicating thatm0 is now a saddle point. This gives us an implicit relation forTc as the

temperature whereλ− = 0, which gives

kBTc = 2(2a+ b)(1−m2
0).

Numerical investigation of the landscape indicates that this transition is accompanied by

the creation of two minima away from them1 = m2 line [Fig. 5.2 (b)]. These minima are

symmetrically placed about them1 = m2 line [asF(m1,m2) = F(m2,m1)] and correspond

to the two coexisting chimera statesC1 : m1 = m>,m2 = m< andC2 : m1 = m<,m2 =

m>. The two minima are separated by an energy barrier∆ = F(m0,m0) − F(m>,m<)

which for a finite system can be crossed by thermal energy [Fig. 5.2 (d)]. This switching

behavior between the two chimera states has a characteristic timeτ ∼ exp(∆/kBT) which

is indeed observed from MC simulations in small systems [Fig. 5.2 (e)] 2 Note that each

2For N = 100, we observe thatτ > 103 MC steps for a range of temperatures. For larger systems, e.g.,
N = 1000, switching was not observed for the duration of our simulations, which is consistent with the
exponential divergence ofτ as one approaches the thermodynamic limit. This follows from the exponential
dependence ofτ on the energy barrier height, and the fact that free energy isproportional toN for given
values ofa, b, H andT as can be seen from Eq. (5.2).
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Figure 5.3: (a) Phase diagram in the magnetic field (H), temperature (kBT/J) and anti-
ferromagnetic coupling (b) parameter space obtained by numerical minimization of free
energy fora = 1 with the region in which chimera ordering occurs being indicated. A
cross-section alongH − T plane forb = 15 is shown in (b). The broken line indicates
H = 16, for which the critical temperatures are shown by dotted lines.

minimum corresponds to a state having a specific arrangementof both highly ordered and

weakly ordered regions, and hence is unlike the minima seen in phase-coexistence state of

systems such as metamagnets, where each of the minima corresponds to a homogeneous

phase (ordered or disordered)3.

Fig. 5.3shows the region in (H − T − b) parameter space where chimera ordering is ob-

served in our system as obtained by numerical minimization of the free energy. Temper-

ature induced transitions are always continuous whose exponents are analytically derived

below. To investigate the critical behavior of the system aroundTc1 andTc2, we shall use

the order parameters:

p1 = m1 −m2 and p2 = 2m0 − (m1 +m2).

3See, e.g., Section 4 of Ref. [133].
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For Tc1 < T < Tc2 where the chimera ordering is observed, as mentioned earlier the

free-energy minima are atm1 andm2 while m0 corresponds to a saddle point. The order

parametersp1 and p2 are non-zero in this region and zero elsewhere. Whenp1, p2 are

small, we solve for them using Eqs. (5.3), (5.4) and (5.6) by expressingm1 andm2 in

terms ofp1, p2, and obtain

p1 ∝| T − Tc |
1/2 and | p2 |∝| T − Tc | . (5.8)

Thus, asT → T+c1 or T → T−c2, the order parameters vanish continuously with exponents

β = 1/2 for p1 andβ = 1 for p2. Similar calculations for the field induced transition

at finite temperature yield identical critical exponents. Note that at zero temperature the

field induced transition is of first order and its discontinuous nature can be shown exactly

by analyzing the free energy. The values of the exponents forall continuous transitions

have been confirmed by us numerically.

We have also analyzed the critical behavior of the specific heatC = −T ∂
2F0

∂T2 whereF0 is the

equilibrium free energy at a givena, b, H andT. Although it involves both first and second

order derivatives ofp1 andp2, as the most dominant term is∂2p1/∂T2, the divergence at

critical temperature is characterized by exponentα = 3/2 : C ∝| T − Tc1,c2 |
−3/2.

While the system we have considered so far has the advantage ofbeing amenable to

exact analytical treatment, we have also numerically analyzed spin models which are

closer to real magnetic materials. We have performed MC simulation studies of a three-

dimensional Ising spin model with nearest neighbor interactions having an anisotropic

nature [Fig.5.4 (a)]. The system emulates a layered magnetic system comprising multi-

ple layers of two-dimensional spin arrays stacked on top of each other, with interactions

along a plane being ferromagnetic (J) and those between planes anti-ferromagnetic (−J′).

One example of such a system is FeCl2 where the exchange integral between Fe electron

clouds is such that the Fe atoms within the same layer interact ferromagnetically while

those in different layers interact antiferromagnetically [133]. Fig. 5.4(b-c) shows chimera
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Figure 5.4: (a) Schematic diagram of the 3-dimensional layered spin system with ferro-
magnetic (anti-ferromagnetic) interactions within layers, J (between layers,J′) indicated
by continuous (broken) lines. In the chimera state alternate layers show strong and weak
order. (b) The time-evolution in MC steps of the magnetization of each of the 32 layers
of a 3-dimensional system, with every layer having 128× 128 spins, showing chimera
ordering forkBT/J = 3. (c) The magnetizations of different layers of the 128× 128× 32
spin system at different temperatures. Chimera ordering is manifested as different values
of |m| for alternate layers (e.g., atkBT/J = 3). In all casesJ = J′ = 1 andH = 1.8.
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ordering in such a 3-dimensional spin system with periodic boundary conditions and start-

ing from random initial spin configurations. As seen from Fig. 5.4 (b), the chimera state

appears relatively rapidly and persists for the duration ofthe simulation. Similar behavior

was observed in other systems having different sizes, parameters and interaction structure,

indicating that chimera ordering is a robust phenomenon that should be possible to ob-

serve in an experimental magnetic system. Note that in this system the chimera ordering

is observed with nearest neighbor interactions, while, forsystems of coupled oscillators,

chimera states have so far been observed only with spatiallynon-local coupling.

5.4 Discussion and Conclusion

In summary, we have shown the existence of a novel complex ordering behavior that we

term chimera order in analogy with the simultaneous occurrence of coherent and inco-

herent behavior in dynamical systems. For a system of two clusters of Ising spins, where

the spins are coupled ferromagnetically (anti-ferromagnetically) to all spins in the same

(other) cluster, subjected to a uniform external magnetic field at a given temperature,

chimera ordering is manifested as a much higher magnetization in one cluster compared

to the other. To illustrate the wider implication of our result we can use the analogy of two

communities of individuals who are deciding between a pair of competing choices. The

interactions of an agent with other members of its own community strongly favor consen-

sus while that with members of a different community are antagonistic. Thus, given that

every individual is exposed to the same information or external environment, we would

expect that unanimity about a particular choice in one community will imply the same for

the contrary choice in the other community. However, the occurrence of chimera order

suggests that under certain conditions, when given the sameexternal stimulus we may

observe consensus in one community while the other is fragmented.

While chimera states (defined in the original context of oscillators) have been recently
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observed in experiments [138–140], extension of the concept of chimera state as defined

here suggests an alternative approach to experimentally observe such states in physical

systems. Our demonstration of chimera order in a three-dimensional spin system with

nearest neighbor interactions indicate that a possible experimental example can be lay-

ered magnetic materials (e.g., manganites) having different types of interactions between

and within layers [133, 134]. Although in this chapter we look at the case of two com-

peting choices, it is possible to extend the analysis toq-state Potts spin dynamics. Given

the wider applicability of spin models for studying ordering in different contexts, one can

consider other connection topologies as well as mesoscopicfeatures such as the occur-

rence of multiple modules (> 2) and hierarchical organization.
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6

Extreme variability in convergence to

structural balance in frustrated

dynamical systems

6.1 Introduction

Many complex systems that arise in biological, social and technological contexts can be

represented as a collection of dynamical elements, interacting via a non-trivial connection

topology [141, 142]. A variety of critical behavior has been observed in such systems,

both in the collective dynamics taking place on the network,as well as in the evolution

of the network architecture itself [26]. The interplay between changes to the connection

topology (by adding, removing or rewiring links) and nodal dynamics has also been inves-

tigated in different contexts [143–149]. While the coevolution of network structure and

nodal activity has mostly been studied in the simple case where the links are either present

or absent, many naturally occurring networks have links with heterogeneously distributed

properties. Connections in such systems can differ quantitatively by having a distribution

of weights (which may represent the strength of interaction) [150–152] and/or qualita-
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tively through the nature of their interactions, viz., positive (cooperative or activating)

and negative (antagonistic or inhibitory) [153]. The presence of negative links in signed

networks can introduce frustration through the presence ofinconsistent relations within

cycles in the system [154,155]. Networks whose positive and negative links are arranged

such that frustration is absent are said to bestructurally balanced– a concept that was

originally introduced in the context of social interactions [156]. A classic result in graph

theory is that a balanced network can be always represented as comprising two subnet-

works, with only positive interactions within each subnetwork, while links between the

two are exclusively negative [157]. Networks of dynamical elements with such structural

organization can exhibit non-trivial collective phenomena, e.g., “chimera" order [79].

Recently, the processes through which structural balance can be achieved in networks

has received attention from scientists and quantitative models for understanding their un-

derlying mechanisms have been proposed. Evolving networkswhere the sign of links

are flipped to reduce frustration have been shown to reach balance; however, introduc-

tion of constraints can sometimes result in jammed states which prevent convergence to

the balanced state [158, 159]. Another approach, using coupled differential equations

for describing link adaptation [160], has been analytically demonstrated to result in bal-

ance [161,162].

While most studies on structural balance have been done in thecontext of social net-

works, an important question is whether other kinds of networks, in particular, those that

occur in biology, exhibit balance. The recent observation that the resting human brain

is organized into two subnetworks that are dynamically anti-correlated (with the activ-

ity within each subnetwork being correlated) [163] point to the intriguing possibility that

the underlying network may in fact be balanced. As connections in the brain evolve ac-

cording to long-term potentiation which embodies Hebb’s principle [164, 165], i.e., the

link weights change in proportion to the correlation between activity of the connected

elements, it suggests a novel process for achieving structural balance. Thus, signed and
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weighted networks can remove frustration by adjusting the weights associated with the

links in accordance with the dynamical states of their nodes. Such a local adaptation

process has an intuitive interpretation in social systems,viz., agents that act alike have

their ties strengthened, while those behaving differently gradually develop antagonistic

relations. In fact, Hebb’s rule may apply more broadly to a large class of systems, for

example, in gene regulation networks where it has been suggested that co-expression of

genes can lead to co-regulation over evolutionary time-scales [166,167].

In this chapter, we show that such a link-weight adaptation dynamics can in fact lead to

structural balance (shown schematically in Fig.6.1), using only local information about

the correlation between dynamical states of the nodes. The temporal behavior of the ap-

proach to balance shows unexpected features. In particular, we observe that the system

exhibits a high degree of variability in the time required toconverge to the balanced state

when stochastic fluctuations are present in the nodal dynamics. This relaxation time has a

bimodal distribution for a range of adaptation rates and noise strengths. Finite-size scaling

of the transition from fast to slow relaxation shows that thevariation of the scaling expo-

nent is related to the qualitative nature of the way the bimodal distribution emerges. As a

larger fraction of positive (negative) interactions reduces (promotes) frustration, we also

investigate the role of bias in the sign of interactions on the nature and rate of convergence

to the balanced state.

6.2 Model

We consider a system ofN globally coupled Ising spinsσi = ±1 (i = 1, . . . ,N), the energy

for a given configuration of spins being

E = −
∑

i, j

Ji jσiσ j (6.1)
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Figure 6.1: Coevolution of coupling strength with the dynamics on the node starting from
a disordered state of spin orientations and interaction strengths randomly selected to be
±1. (a) The spin configurations in the initial (left), intermediate (center) and final, i.e.,
after convergence to structural balance (right), states for a system ofN = 6 spins. Solid
(broken) lines represent positive (negative) interactions between spins. The correspond-
ing coupling matricesJ are shown in (b) while the schematic energy landscapes are rep-
resented in (c). The two minima in the balanced state correspond to the pair of degenerate
ground states related by reversal of each spin.
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whereJi j (= Jji ) is the symmetric bond, representing interaction strengthbetween the spin

pair (i, j). Structural balance in real social networks have been recently investigated us-

ing a similar energy function [168,169]. The balanced state corresponds to the situation

where the interactions are consistent with the corresponding spin pairs, i.e.,Ji j andσiσ j

have the same sign. Starting from a disordered spin configuration and random distribu-

tion of interactions, the state of the spins are updated stochastically at discrete time-steps

using the Metropolis Monte Carlo (MC) algorithm with temperature T. The interaction

strengths also evolve after every MC step according to the following deterministic adap-

tation dynamics:

Ji j (t + 1) = (1− ǫ)Ji j (t) + ǫσi(t)σ j(t), (6.2)

whereǫ governs the rate of change of the interaction relative to thespin dynamics. The

Ji j dynamics alters the energy landscape on which the state of the spin system evolves.

The relaxation timefor the system is defined as the characteristic time scale in which

the balanced state is reached. Note that the form of Eq. (6.2) ensures that the relaxation

time ∼ 1/ǫ in the absence of any thermal fluctuation (i.e., atT = 0). Also, it restricts

the asymptotic distribution ofJi j to the range [−1,1], independent of whether the system

converges to a balanced state. In many real systems the signature of the link cannot

change, although the magnitude of the link weight can. We have also considered a variant

of Eq. (6.2) for which the dynamics is constrained such that the sign of eachJi j cannot

change from the initially chosen value. As a result several of the interactions can go to

zero when the system relaxes.

In our simulations the initial state of the system for each realization is constructed by

choosing the spinsσi to be±1 with equal probability. For most results shown here, each

initial Ji j is chosen from a distribution with two equally weightedδ function peaks at

±1, i.e.,P(z; µ) = [(1 + µ)/2]δ(z− 1) + [(1 − µ)/2]δ(z+ 1) where the meanµ = 0. We

have verified that the results do not change qualitatively ifthe initial distribution has a

non-zero mean, or has a different functional form (e.g., a uniform distribution in [−1,1]),
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provided that the system is initially far from balance. For each set of parameters (T, ǫ),

104 different realizations have been used to statistically quantify the relaxation behavior

of the system, which is identified using the energy per bond [Eq.( 6.1)] normalized by the

number of connections, i.e.,E = E/
(

N
2

)

, as the order parameter. The number of spins has

been chosen to beN = 64 for most of the figures shown here, although we have verified

that the results are qualitatively unchanged forN upto 512. Simulating larger systems

is computationally very expensive as the system is globallycoupled and disordered with

time-varying interactions.

6.3 Results

In the absence of thermal fluctuations (i.e., atT = 0), the dynamics of the system can

be understood intuitively. Starting from a random initial state, the spin dynamics stops

when the system gets trapped in local energy minimum within afew MC steps (∼ 1/ǫ, as

mentioned above). The subsequent evolution of the interaction strengths makes this con-

figuration a global minimum. However, at finite temperature,the stochastic fluctuations

of the spins may prevent the system from remaining in a metastable state for sufficiently

long. This does not allow theJi j dynamics to alter the energy landscape sufficiently to

make the configuration the global minimum. Thus, an extremely long time may be re-

quired to reach structural balance, and the relaxation timediverges due to the stronger

fluctuations on increasing temperature.

Fig. 6.2 (a) shows the time-evolution of the order parameterE for several typical runs

for different initial conditions and realizations of a system withT = 15, ǫ = 0.05. The

order parameter of the system initially corresponds to thatfor a maximally disordered

state (≈ 0) but eventually relaxes to a balanced state (E = −1). The time required for

reaching balance, referred to asrelaxation time, τ, is estimated by measuring the duration

starting from the initial state after whichE decreases below−1/2 [Fig.6.2(a)]. For a large
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Figure 6.2: (a) Typical time-evolution of the energy per bond E for a system ofN spins
starting from different initial conditions. The relaxation timeτ indicated in the figure is the
duration after whichE decreases below−0.5. (b-e) Time-evolution of the distributions for
the interaction strengthJi j shown for two cases: (b-c) when the system relaxes rapidly and
(d-e) when convergence takes much longer. Snapshots of theJi j distribution at specific
times immediately before, during and immediately after theconvergence are shown for
the two cases in (c,e) respectively. For all figuresN = 256 withT = 51,ǫ = 0.05.
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range of parameters, we observe two very distinct types of behavior: in one, the system

relaxes rapidly, while in the other this takes a longer time.In both cases, once the order

parameter starts decreasing (i.e., after timeτ), it reaches a balanced state within a time-

interval∼ 1/ǫ. As this is typically much shorter than the relaxation time for the second

case, the transition to the balanced state can appear rathersuddenly for the latter. Before

the onset of the convergence to the balanced state, the orderparameter fluctuates over a

very narrow range around zero, and there is little indication as to when the transition will

happen. Characteristic time-evolution corresponding to these two types of behavior are

shown in Fig.6.2(b-e). When the system relaxes rapidly, smaller peaks emergefrom the

two peaks of the initialJi j distribution (located at±1) and eventually cross each other

to reach the opposite ends asymptotically, converging to a two-peaked distribution again

[Fig. 6.2 (b-c)], indicating that all interactions are now balanced.However, in the case

where convergence takes significantly longer [Fig.6.2(d-e)], the initial distribution is first

completely altered to a form resembling a Gaussian distribution with zero mean. After a

long time, the system abruptly converges towards a balancedstate with a corresponding

transformation of theJi j distribution to one having peaks at±1. Note that even with

the same initial spin configuration and realization ofJi j distribution, different MC runs

generate distinct trajectories that are similar to those shown in Fig.6.2 (a). This implies

that knowledge of the initial conditions is not sufficient to decide whether the system will

relax rapidly or not.

To quantitatively characterize the distinction between the two types of relaxation behav-

ior, we focus on the statistics ofτ (Fig. 6.3). Fig. 6.3 (a) shows the distribution of the

relaxation time for a given set of (T, ǫ) where cases of both fast and slow convergences

are seen. The resulting bimodal nature is clearly observed with the peak at lowerτ (∼ 100

MC steps) corresponding to fast convergence to balanced state while that occurring at a

higher value (∼ 107 MC steps) arises from the instances of slow relaxation. The distri-

bution decays exponentially at very high values ofτ. Fig. 6.3 (b) shows the temperature

dependence of the distribution of log10(τ) for two different values ofǫ. For the smallerǫ
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Figure 6.3: (a) The cumulative distribution of relaxation time τ for system ofN = 64
spins withT = 12, ǫ = 0.03 shows a gap implying a bimodal nature for the distribution.
The inset showing the corresponding frequency distribution fτ for log10(τ) clearly indi-
cates this bimodal nature. (b) Probability distributions of log10(τ) shown as a function
of temperatureT for ǫ = 0.03 (top) and 0.05 (bottom) indicates the onset of bimodal
behavior at higher values of temperature, e.g., forT & 10 in (top). Bimodality appears
around the temperature where the standard deviation of log10(τ) starts increasing appre-
ciably from an almost constant value (insets). (c) The probability that relaxation takes
longer than 105 MC steps,P(τ > 105) shown as a function ofǫ andT. The point of
transition from fast to slow convergence can be quantified byT1/2(ǫ), i.e., the temperature
at whichP(τ > 105)=1/2 for a given valueǫ (indicated by boundary between the dark and
light regions). (d) Finite size scaling of the probability that relaxation takes longer than
105 MC steps,P(τ > 105), with Nα(T − T1/2) for different system sizesN (ǫ = 0.05).
The temperature at whichP(τ > 105) becomes half is represented asT1/2. A scaling ex-
ponent value ofα ≈ −0.32 shows reasonable data collapse. The inset shows the scaling
exponents for the best data collapse at different values ofǫ.
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(= 0.03), the second peak is well-separated from the first when bimodality first appears,

while for the largerǫ (= 0.05) the second peak appears close to the first one. To esti-

mate the temperature where the second peak appears, we plot the standard deviation of

log10(τ) as a function ofT (inset), as bimodality is characterized by an increase in the

dispersion of relaxation times. To observe how the distribution is affected by variation

in both T andǫ, we show in Fig.6.3 (c) how the probability that the relaxation takes a

long time (viz.,≥ 105 MC steps) varies as a function of these two parameters. As we

know that the system relaxes rapidly when the temperature isdecreased close to zero, we

expect this probability to be negligible at very low values of T. On the other hand, when

temperature is increased to very high values, the relaxation takes increasingly longer, so

that the probabilityP(τ > 105) approaches 1. We indeed observe a monotonic increase in

this probability from 0 to 1 as the temperature is increased for a given value ofǫ. We can

define a transition temperatureT1/2(ǫ) as the value ofT at which this probability is equal

to 1/2. We observe thatT1/2(ǫ) increases withǫ, which implies that the relaxation to the

balanced state requires a longer duration as the interaction dynamics becomes slower. For

a givenǫ, we study the variation of the probabilityP(τ > 105) with T for different system

sizes. Finite-size scaling shows data collapse with a scaling exponentα [Fig. 6.3(d)] that

varies withǫ (inset). Depending on the value ofǫ, we observe that there may be different

types of bimodal distribution of the relaxation times, e.g., one where the second peak is

clearly separated from the first, and the other where they arejoined [Fig.6.3 (b)]. The

variation ofα with ǫ appears to reflect this change from one type of bimodality to another

(inset).

So far we have assumed that the initialJi j distribution is unbiased (i.e.,µ = 0). However,

having a higher fraction of interactions of a particular sign can have significant conse-

quences for both the structure of the final balanced state andthe time required to converge

to it. To investigate the role of this initial bias among the interaction strengths, we con-

sider a distribution with two differently weightedδ function peaks at±1 (i.e., µ , 0).

Fig. 6.4 (a) shows the distribution of the relaxation times asµ is varied over the inter-
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Figure 6.4: (a) Probability distribution of log10(τ) shown as a function of the meanµ
of the initial distribution forJi j for T = 17, ǫ = 0.05. The filled circles represent the
average of log10(τ) for different values ofµ. The distribution does not change much for
small bias (|µ|); however the lower peak disappears asµ approached−1 while the the
relaxation behavior occurs faster asµ approaches+1. (b) Scaled size differenceδ =
(C1 − C2)/N between the two clusters of aligned spins shown as a functionof µ. As µ
increases from negative values to 1,δ increases from values close to 0 towards 1. (c)
Trajectories representing the time-evolution of the system (N = 256) in the (E,U) order
parameter space for different values ofµ (from top to bottom,µ increases from−1 to 1 in
steps of 0.1). After transients, all trajectories converge to a singlecurve independent of
the time required to converge to the balanced state. A magnified view (inset) compares
the trajectory corresponding to a long relaxation time (solid curve), which appears to be
trapped in this region, with the one corresponding to a shortrelaxation time (broken curve)
for µ = 0.
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val [−1,1] with the parametersT, ǫ chosen such that there is a clear bimodal nature of

the relaxation time distribution for the unbiased case (µ = 0). If all the interactions are

anti-ferromagnetic (µ = −1), the system is extremely frustrated and the relaxation toa

balanced state may take a long time, whereas in the case wherethe interactions are all

ferromagnetic (µ = 1), the system is balanced to begin with. Thus, with increasingµ, we

expect the relaxation time to decrease, which is indeed observed; in addition, the peak at

higher values ofτ disappears asµ approaches 1. On the other hand, whenµ approaches

−1, the peak corresponding to shorter relaxation times is no longer present. The two

clusters that comprise the final balanced state can have verydifferent size distributions

depending on the bias in the initial distribution ofJi j . For the unbiased case, the two

clusters are approximately of the same size. We observe fromFig. 6.4 (b) that this prop-

erty holds for the entire range of negative values forµ. As µ increases from 0, the size

difference between the two clusters start increasing, eventually leading to a single cluster

where all the spins interact with each other ferromagnetically (µ ≃ 1). Note that if the

system initially has a very low degree of frustration [e.g.,µ ≥ 0.4 in Fig. 6.4 (a,b)], the

system relaxes almost immediately to a balanced state wherethe larger cluster comprises

almost the entire system. To visualize the coevolving dynamics in the link weights and

spin orientations as the system approaches balance for different values ofµ, we use an

additional order parameter [158, 159] that measures the frustration in a signed network

in terms of the fraction of triads deviating from balance (a triad being balanced if the

product of its link weights approaches+1), U = −
∑

i, j,k Ji j JjkJki/
(

N
3

)

. Fig. 6.4 (c) shows

that the trajectories corresponding to different values ofµ converge to a single curve after

transients, eventually reaching the balanced state at (E = −1,U = −1). Forµ < 0, the

initial trajectory is approximately vertical indicating that it is dominated by the adapta-

tion dynamics (Eq.6.2), whereas forµ > 0, it has strong horizontal component implying

that it is governed primarily by the MC update of the spin states. Realizations in which

the system takes a long time to relax to the balanced state aredistinguished by trajectories

that appear to be trapped in a confined region in the (E,U) space for a considerable period
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[Fig. 6.4(c), inset].

We can qualitatively understand the appearance of short relaxation times as follows. In the

initial state, when the system has a random assignment of interaction strengths, the energy

landscape is extremely rugged, resembling that of a spin glass [154]. The system starts out

in a potential well corresponding to one of the many initially available local minima. As

the state of the system evolves, theJi j dynamics (Eq.6.2) lowers the energy of the state by

making the interactions consistent with the spin orientations of the system, while the spin

dynamics (updated according to the MC algorithm) can eitherresult in a further lowering

of energy as the state moves towards the bottom of the potential well, or is ejected from the

initial local minima due to thermal fluctuations. The probability of escaping from the well

at thet-th iteration,p(t), depends on the potential barrier height with neighboringwells.

If the state cannot escape in the first few iterations from thelocal minimum from which

it starts, successive lowering of the energy of this well by the Ji j dynamics results in the

minima becoming deeper, so that the probability of escape isreduced further. Eventually,

the system relaxes to the balances state with a time-scale of∼ ǫ−1, when the well becomes

the global minimum of a smooth energy landscape. On the otherhand, if the state escapes

from the initial well within the first few iterations, when the Ji j dynamics has not yet been

able to significantly reduce the energy of a particular well,the barrier heights separating

the different local minima are all relatively low. As a result, the system can jump from one

well to another with ease, corresponding to frequent switching of the spin orientations.

As Ji j moves towardsσiσ j at any given time (Eq.6.2), rapid changes in the sign of the

latter implies that there is effectively no net movement ofJi j towards±1. In fact, in

this case, we observe that the initial distribution ofJi j , comprising delta-function peaks

at ±1, transforms within a few iterations to one resembling a Gaussian peaked at zero

[Fig. 6.2 (d-e)]. Once the system reaches such a state, it can only attain a balanced state

through a low-probability event which corresponds to the state remaining in the same

local minimum for several successive time steps. As such an event will only happen after

extremely long time, this will lead to a very large relaxation time for a range ofT and
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ǫ. Let us assume for simplicity that when the system is in the state corresponding to

frequent spin flips and low interaction strengths, the probability of escaping from a local

minimum is approximately a constant (p(t) ≈ p). Then the probability that the system

jumps between different minima fort steps and gets trapped in thet+1-th step ispt(1−p).

This results in the distribution of the relaxation times (under the simplifying assumption

of constantp) having an exponential tail, which is indeed observed [Fig.6.3(a)].

6.4 Discussion and Conclusion

To conclude, we have shown that a link adaptation dynamics inspired by the Hebbian

principle can result in an initially frustrated network achieving structural balance. How-

ever, in the presence of fluctuations, we observe that the system exhibits a large dispersion

in the time-scale of relaxation to the balanced state, characterized by a bimodal distribu-

tion. This extreme variability of the time required to converge to the balanced state is a

novel phenomenon that requires further investigation. Ourresult suggests that even when

a system has the potential of attaining structural balance,the time required for this process

to converge may be so large that it will not be observed in practice. Although we have

considered a globally connected network of binary state dynamical elements, it is possible

to extend our analysis to sparse networks [27,170] and different kinds of nodal dynamics

(e.g.,q-state Potts model). As many networks seen in nature have directed links, a gen-

eralization of the concept of balance to directed networks and understanding how it can

arise may provide important insights on the evolution of such systems.
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7

Conclusions

A complex system is exactly that; there are many things goingon simultane-

ously. If you search carefully, you can find your favorite toy: fractals, chaos,

self-organized criticality, Lotka-Volterra predator-prey oscillations, etc., in some

corner, in a relatively well developed and isolated way. But donot expect any

single simple insight to explain it all.

– Rolf Landauer, as quoted in Ref. [8]

The work described in this thesis form part of a research program aimed at revealing the

general principles underlying the dynamical behavior of complex systems. We view a

complex system as comprising relatively large number of components coupled to each

other via various types of connection topologies and natureof interactions, such that new

phenomena emerge at the systems level that are absent in the dynamics of individual

elements. While this definition is sufficiently broad to cover a large variety of natural,

technological and social systems, our research strategy involves systematically varying

the complexity at the level of the dynamics of the individualelements and in the nature

of connections to uncover universal features underlying the dynamics of apparently very

different complex systems, ranging from spin models to opinion formation and from the
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pregnant uterus to microarray of chemical oscillators. In the following subsections, the

important results and conclusions reported in the thesis are summarized. We conclude

with a brief discussion of possible future extensions of ourresults.

7.1 Summary of main results

Self-organization of coherent activity in heterogeneous system of cou-

pled excitable and passive cells

Synchronized oscillations are of critical functional importance in many biological sys-

tems. In this thesis we have shown that such oscillations canarise without centralized

coordination in a disordered system of electrically coupled excitable and passive cells.

Increasing the coupling strength results in waves that leadto coherent periodic activity,

exhibiting cluster, local and global synchronization under different conditions. Our results

may explain the self-organized transition in a pregnant uterus from transient, localized ac-

tivity initially to system-wide coherent excitations justbefore delivery.

Collective phenomena in a homogeneous system of diffusively coupled

relaxation oscillators

A variety of complex spatial patterns relevant to chemical and biological systems can be

generated through reaction-diffusion mechanisms. In this thesis, we have shown that dif-

fusive coupling through the inactivating component in a system of relaxation oscillators

extends such complexity to the temporal domain, generatingremarkable spatiotemporal

phenomena. We provide analytic explanations of the antiphase synchronization and spa-

tially patterned oscillatory death regimes. We report a chimera state where patches with

distinct dynamics coexist and also observe propagating phase defects resembling persis-

98



tent structures in cellular automata that may be used for computation.

Pattern formation through spontaneous symmetry-breaking in dense,

homogeneous networks of neural oscillators

Recent experiments have highlighted how collective dynamics in networks of brain re-

gions affect behavior and cognitive function. In this thesis, we haveshown that a simple,

homogeneous system of densely connected oscillators representing the aggregate activity

of local brain regions can exhibit a rich variety of dynamical patterns emerging via spon-

taneous breaking of permutation or translational symmetry. Our results connect recent

experimental findings and suggest that a range of complicated activity patterns seen in the

brain can be explained even without a full knowledge of its wiring diagram.

Chimera order in spin systems

It has recently been shown that a population of oscillators having identical environments

can exhibit a heterogeneous phase topology termed as chimera state. In this thesis, we

have generalized this phenomenon to the broader perspective of order-disorder transitions

in physical systems with discrete states. By an exact analytic treatment we show that

chimera states can occur in a system of Ising spins in thermalequilibrium. We also nu-

merically establish the existence of chimera ordering in 3-dimensional models of layered

magnetic materials (such as manganites) suggesting possible means of experimentally

observing it.
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Dynamics of convergence to structural balance in frustrated dynami-

cal systems

In many complex systems, the dynamical evolution of the different components can result

in adaptation of the connections between them. In this thesis, we have considered the

problem of how a fully connected network of discrete-state dynamical elements which

can interact via positive or negative links, approaches structural balance by evolving its

links to be consistent with the states of its components. Theadaptation process, inspired

by Hebb’s principle, involves the interaction strengths evolving in accordance with the

dynamical states of the elements. We observe that in the presence of stochastic fluctua-

tions in the dynamics of the components, the system can exhibit large dispersion in the

time required for converging to the balanced state. This variability is characterized by

a bimodal distribution, which points to an intriguing non-trivial problem in the study of

evolving energy landscapes.

7.2 Outlook

In this thesis, we have addressed several problems that can contribute to a general un-

derstanding of spatio-temporal pattern formation in a broad class of natural systems. A

natural extension of the work presented here would be to develop theoretical techniques

to understand the different types of spatio-temporal phenomena that have been observed

in connection with epidemics [171]. In particular travelling waves of contagion has been

observed during measles epidemics [172], dengue haemorrhagic fever in Thailand [173]

and infestations of larch budmouth [174], while synchronization between different re-

gions have been observed in the spread of influenza [175] as well as for measles and

whooping cough [176]. Traditional compartmental models in epidemiology have strong

resemblance to the phenomenological models of excitable and oscillatory media that I

have worked with: for instance, the susceptible, infected and recovered compartments
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in an epidemic model directly correspond to the resting, excited and recovering states

of an excitable/oscillatory element. It is therefore of interest to see whether the the-

oretical models I have investigated for explaining spatio-temporal pattern formation in

excitable/oscillatory media can be fruitfully applied to understand the epidemiological

patterns mentioned above. In particular, the dependence ofthe different pattern regimes

on the nature of coupling as well as other model parameters could give us insights about

the conditions under which waves or synchronization of epidemics will take place.

Investigating the dynamics of contagia propagation is sufficiently general to cover a large

range of phenomena including how ideas spread across society while also being of im-

mense practical interest in connection with understandinghow epidemics of infectious

diseases occur. In view of the recurrent pandemics which have emerged in the recent past,

it would be fascinating to see if efficient intervention strategies can be designed based on

complex systems theoretical approaches. The availabilityof data on incidence of such

diseases will also provide a crucial reality check on theoretical models being developed.

Another topic in epidemic modeling which builds on the present research is the role of

temporal evolution of the interactions between neighboring elements on the spreading dy-

namics of contagia. This will be an intriguing application of a novel theoretical approach

involving descriptions of continuum media where the diffusion is evolving at a time-scale

slower than that of the local dynamics. The approach can be generalized to other connec-

tion topologies such as complex networks, where the above problem can be connected to

the phenomenon of learning in networks of the brain (throughmodification of the synaptic

strengths) and evolution and development in gene expression networks (through changes

in the role of specific transcription factors). While a general theory explaining how slowly

evolving coupling strength can affect the dynamics of these systems would be a crucial

component for the projected general theory of complex systems, the implications of such

a theory in the context of epidemics may be used to explain theefficacy of procedures that

isolate different regions or subpopulations during an epidemic (e.g., through quarantine).
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Another direction would be to explore the possibility of developing infection spreading

models that take into account factors that have traditionally not been considered in de-

tail, such as, changes in the pattern of interactions among agents as an epidemic propa-

gates [177]. This would require developing atomistic models of reaction-diffusion sys-

tems in evolving networks and apply them to understand the propagation of infections

on a network of interactions that are slowly evolving. Once there is some insights about

the emergent properties of such models, we can try to developanalytical understanding

of these features. These studies would help us figure out fundamental properties of real

infection spreading and help us develop effective intervention strategies. Ideally, using

such models one should be able to compare the efficacy of different strategies such as

quarantine and mass vaccination.

Another topic that can be studied in future is the modeling ofcompeting contagia [178].

While most epidemiological models tend to study an infectious disease in isolation, in

reality a population is subject to a large variety of pathogens simultaneously. While in

some cases being infected with one type of disease increasesthe risk of being infected by

another (cooperative interaction between contagia), it isalso possible that being infected

by one can provide immunity against another (antagonistic interaction between contagia).

Exploration of this problem fits naturally into the overall program of exploring complex

systems dynamics where the individual entities can interact with each other through ei-

ther cooperative or antagonistic interactions. It would also be important to model the

competing infections on an evolving network of interactionas these models would be

better representation of the situation in the real world andinsights gained from the study

can have practical implications.
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