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ABSTRACT

Let X be a simply connected space having rational homology of finite type.

Suppose X is a formal space in the sense that its minimal model can be constructed

from (H∗(X;Q), 0). Let Y = X ∪α en where α : Sn−1 → X is a continuous map. In

this thesis we obtain a criterion for formality of Y in terms of [α] ∈ πn−1(X). In

another direction, we consider maps between grass manifolds. Let Gn,k denote the

complex Grassmann manifold of all k-dimensional vector subspaces of Cn. Using the

fact that any map f : Gn,k → Gm,l is formal, we shall show that the set [Gm,l, Gn,k]

of homotopy classes of maps is finite if 1 ≤ k ≤ bn/2c,1 ≤ l ≤ bm/2c,k < l,

m− l > n− k and m− l > 2k2 − k − 1 or 1 ≤ k ≤ 3. We obtain some applications

of this result.

we now give more precise statements of the main results of the thesis.

Let ηk (or more briefly η) denote the Hurewicz homomorphism πQ
k (X)→ Hk(X;Q)

and let ũ ∈ Hn(Y,X;Z) ∼= Hn(Dn,Sn−1;Z)) ∼= Z be the canonical generator. Let

j : Y ↪→ (Y,X) be the inclusion map, and set u := j∗(ũ).

Theorem 0.1. Suppose that X is a simply connected space and is formal. Let

MX = Λ(V ) and suppose that V = ⊕k≥0Vk is a standard lower gradation of V . Let

Y = X ∪α en. Suppose that η([α]) = 0 so that j∗(ũ) =: u 6= 0. (i) If [α] ∈ πn−1(X)

is a torsion element then u is indecomposable and Y is formal. (ii) Let [α] 6= 0

in πQ
n−1(X). Suppose that 〈v, [α]〉 = 0 for all v ∈ Vk ∩ V n−1, k 6= 1, and that u is

decomposable in H∗(Y ;Q). Then Y is formal. (iii) If [α] ∈ πn−1(X) is not a torsion

element and u is not decomposable, then Y is not formal. In cases (i) and (ii), the

inclusion i : X ↪→ Y is formal.

Theorem 0.2. Let 1 ≤ k ≤ bn/2c, 1 ≤ l ≤ bm/2c and k < l, where m,n are

positive integers such that m− l > n− k. Suppose that (i) m− l > 2k2 − k − 1 or

1 ≤ k ≤ 3. Then the set [(Gm,l)0, (Gn,k)0] of homotopy classes of continuous maps

consists of only the class of constant maps and consequently the set [Gm,l, Gn,k] of

homotopy classes of maps is finite.
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1. INTRODUCTION

The main results of this thesis are summarised here: Let X be a simply connected

space having rational homology of finite type. Suppose X is a formal space in the

sense that its minimal model can be constructed from (H∗(X;Q), 0). Let Y =

X∪αen where α : Sn−1 → X is a continuous map. In this thesis we obtain a criterion

for formality of Y in terms of [α] ∈ πn−1(X). We obtain a necessary condition for

the formality of a map. We shall apply these two results to prove formality of union

of Schubert varieties of low dimensions in complex Grassmann manifolds. Let Gn,k

denote the complex Grassmann manifold of all k-dimensional vector subspaces of

Cn. Using the fact that any map f : Gn,k → Gm,l is formal, we shall show that

the set [Gm,l, Gn,k] of homotopy classes of maps is finite if 1 ≤ k ≤ bn/2c,1 ≤ l ≤

bm/2c,k < l, m− l > n− k and m− l > 2k2 − k− 1 or 1 ≤ k ≤ 3. We obtain some

applications of this result.

1.1. Sullivan algebra and formality. A differential graded commutative algebra

over Q (abbreviated dgca) (M,d) is called a Sullivan algebra if the following con-

ditions hold: (i) Freeness: There exists a graded Q-vector space V = ⊕q≥1V
q such

that M is freely generated by V , that is, M = ΛV := S∗(V even) ⊗ E∗(V odd) where

V even = ⊕q≥1V
2q, V odd = ⊕q≥1V

2q−1.(ii) Nilpotence: There is an increasing filtra-

tion V = ∪k≥0V (k), such that d(V (k)) ⊂ Λ(V (k−1)), k ≥ 1, and d(V (0)) = 0. This

gradation Vk is referred to as the lower gradation of V . A Sullivan algebra (M,d) is

called minimal if d(M) is contained in the ideal M+.M+ of decomposable elements.

A minimal model (MA, d) for a dgca (A, d) is a minimal Sullivan algebra (MA, d)

together with a dgca morphism φ : (MA, d)→ (A, d) which is a quasi-isomorphism,

that is, φ induces an isomorphism φ∗ : H∗(MA, d) → H∗(A, d). A dgc algebra

A with H0(A) = Q has a minimal model ρA : (MA, d) → (A, d) where (MA, d)

is unique up to isomorphism. There is a notion of standard lower gradation for a

minimal model (MA, d) of a dgca (A, 0) (see §4.2).
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Given a path connected topological space X, one has a functorial differential graded

commutative algebra (dgca) (APL(X), d) over Q, called complex of polynomial dif-

ferential forms on X, such that H∗(APL(X), d) is naturally isomorphic to H∗(X;Q),

a minimal model (MX , d) which is a dgca, and a dgc algebra morphism ρX :MX →

APL(X) which induces isomorphism in cohomology. We say that X is formal if there

exists a dgca morphism Φ : (MX , d) → (H∗(X), 0) which is a quasi-isomorphism.

Similarly, a map f : X → Y is formal if APL(f) : APL(Y ) → APL(X) is connected

to H∗(f) : H∗(Y ;Q) → H∗(X;Q) by a chain of quasi-isomorphisms. For detailed

definitions, see chapters 2 and 3.

1.2. Main results. Let (MX , d) = (ΛV, d) be the minimal model of a simply-

connected space X, then we have a pairing 〈−,−〉 : V k × πQ
k (X) → Q. Let ηk

(or more briefly η) denote the Hurewicz homomorphism πQ
k (X) → Hk(X;Q) and

let ũ ∈ Hn(Y,X;Z) ∼= Hn(Dn,Sn−1;Z)) ∼= Z be the canonical generator. Let

j : Y ↪→ (Y,X) be the inclusion map, and set u := j∗(ũ).

Theorem 1.1. Suppose that X is a simply connected space and is formal. Let

MX = Λ(V ) and suppose that V = ⊕k≥0Vk is a standard lower gradation of V . Let

Y = X ∪α en. Suppose that η([α]) = 0 so that j∗(ũ) =: u 6= 0. (i) If [α] ∈ πn−1(X)

is a torsion element then u is indecomposable and Y is formal. (ii) Let [α] 6= 0

in πQ
n−1(X). Suppose that 〈v, [α]〉 = 0 for all v ∈ Vk ∩ V n−1, k 6= 1, and that u is

decomposable in H∗(Y ;Q). Then Y is formal. (iii) If [α] ∈ πn−1(X) is not a torsion

element and u is not decomposable, then Y is not formal. In cases (i) and (ii), the

inclusion i : X ↪→ Y is formal.

As a corollary to Theorem 1 we obtain the following.

Suppose X is formal space and suppose (ΛV, d) is the minimal model of X with

standard lower gradation. If (V0⊕ (⊕k≥2Vk))∩ V n−1 = 0, α : Sn−1 → X represents a

non-torsion element and η([α]) = 0 (where η is as defined above), then Y = X ∪α en

is formal.
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One of the questions that stimulated our research is the following: Suppose that

X is a simply connected finite CW complex with cells only in even dimensions. Is X

a formal space? The complex Grassmann manifolds Gn,k, complex flag varieties [6],

quasi-toric manifolds [24] etc., lend support to an affirmative answer to the above

question. In this context we show that Schubert varieties of low dimensions in Gn,k

are formal. However, we obtain the following examples:

(1) a finite CW complex Y with only even dimensional cells, which is not formal.

(2) a cell attachment Y = X ∪α en which is not formal, but X is formal and

u ∈ Hn(Y ;Q) decomposable (with u as in Theorem 1.1),

(3) a finite CW complex Y with only even dimensional cells and a subcomplex X of

Y , such that Y is formal but X is not formal.

Let X be a simply connected formal space having minimal model with standard

lower gradation. An element [α] ∈ πn−1(X) is said to be special if 〈v, [α]〉 = 0 for all

v ∈ Vk ∩ V n−1, k 6= 1.

Let f : Z → X. Let β : Sn−1 → Z, n ≥ 2, be continuous. Suppose that both

Z and X are simply connected and formal spaces and that f is a formal map. Let

MZ = (ΛU, d) andMX = (ΛV, d) be minimal models of Z and X respectively with

standard lower gradation.

Theorem 1.2. Suppose that [β] ∈ πn−1(Z) is special and f : Z → X is formal.

Then f∗([β]) is special.

The Theorem 1.1 has been divided into two different theorems, namely Theorem

7.2 and 8.2 and have been proved in chapter 8. The theorem 1.2 has been restated

in chaper 7 as Theorem 7.5 and has been proved in chapter 8.

1.3. Rational homotopy classification of maps between complex Grass-

mann manifolds. Let X be any simply connected CW complex and let X0 denote
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its rationalization. Thus H̃∗(X0;Z) ∼= H̃∗(X;Q). If f : X → Y is a continuous

map of such spaces, then there exists a rationalization of f , namely a continu-

ous map f0 : X0 → Y0 such that f ∗0 : H̃∗(Y0;Z) → H̃∗(X0;Z) is the same as

f ∗ : H̃∗(Y ;Q) → H̃∗(X;Q). Denoting the minimal model of X by MX , one has

a bijection [X0, Y0] ∼= [MY ,MX ] where on the left we have homotopy classes of

continuous maps X0 → Y0 and on the right we have homotopy classes of dgca

homomorphisms between Sullivan algebras MY → MX . In the case when X is

a complex Grassmann manifold, one knows that MX can be computed directly

from its rational cohomology algebra. When X and Y are complex Grassmann

manifolds, [X0, Y0] is in bijection with the set of graded Q-algebra homomorphisms

H∗(Y ;Q) → H∗(X;Q). If X = Y and both are same complex Grassmannian, and

if h : X0 → X0 with h∗(c1) = 0, where h∗ is the cohomology algebra morphism in-

duced by h and c1 is the degree 2 generator of H∗(X;Q), then h is null-homotopic if

2k ≤ n, n ≥ 2k2−1 or k ≤ 3. It has been conjectured that the result is true without

any restriction on n, k. See [9]. In this thesis, we study [X, Y ] when X and Y are

different complex Grassmann manifolds.

Theorem 1.3. Let 1 ≤ k ≤ bn/2c, 1 ≤ l ≤ bm/2c and k < l, where m,n are

positive integers such that m− l > n− k. Suppose that (i) m− l > 2k2 − k − 1 or

1 ≤ k ≤ 3. Then the set [(Gm,l)0, (Gn,k)0] of homotopy classes of continuous maps

consists of only the class of constant maps and consequently the set [Gm,l, Gn,k] of

homotopy classes of maps is finite.

As a corollary to the above theorem we obtain the following result.

Theorem 1.4. Let f : Gm,l → Gn,k be any continuous map where l, k,m, n are as

in Theorem 1.3. Then there exists an element x ∈ Gm,l such that f(x) ⊂ x.

These theorems have been restated as Theorem 10.2 and 10.3 and proved in

chapter 10.
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2. MINIMAL MODEL AND FORMALITY

In this chapter we discuss the notion of a Sullivan algebra, formality, the Sullivan

model for a cell attachment, and the stepwise construction of the minimal Sullivan

model for a differential graded commutative cochain algebra. The reader is referred

to [7] for a comprehensive treatment of rational homotopy theory.

2.1. Sullivan algebra. A differential graded commutative algebra (dgca for short)

is a graded Q - algebra (A, dA) together with a differential dA of degree 1, that

is a derivation, ie dA(a.b) = dAa.b + (−1)|a|a.dAb and a.b = (−1)|a||b|b.a. The co-

homology algebra H∗(A, dA) is the graded algebra where Hk(A, dA) = kernel of

dA(k)/ Image of dA(k − 1). A morphism f : (A, dA) → (B, dB) is a morphism

of graded algebras of degree 0 satisfying f ◦ dA = dB ◦ f . It induces a morphism

H∗(f) : H∗(A, dA) → H∗(B, dB). A morphism f : (A, d) → (B, d) is said to be a

quasi-isomorphism (denoted by f : (A, d)
'→ (B, d)) if H∗(f) : H∗(A, d)→ H∗(B, d)

is an isomorphism. Any graded commutative algebra may be regarded as a dgca

with zero differential. In particular, the cohomology algebra H∗(A, dA) may be re-

garded as a dgca (H∗(A, dA), 0). A dgc algebra (A, d) is connected if A0 = Q and

simply connected if A0 = Q and A1 = 0. Henceforth, we shall denote the differential

of any dgc algebra by d unless there is a danger of confusion.

A differential graded commutative algebra (M,d) is called a Sullivan algebra if

the following hold: (i) Freeness: There exists a graded Q-vector space V = ⊕q≥1V
q

such that M is freely generated by V , that is, M = ΛV := S∗(V even) ⊗ E∗(V odd)

where V even = ⊕q≥1V
2q, V odd = ⊕q≥1V

2q−1. Here S∗(V ) denotes the symmetric

algebra on V and E∗(V ) denotes the exterior algebra on V . (ii) Nilpotence: There is

a well-ordering on a basis {vα} of V consisting of homogeneous elements such that
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for each α, d(vα) is a polynomial in the vβ, β < α.

The nilpotence condition can be restated as follows: There is an increasing fil-

tration V = ∪k≥0V (k), such that d(V (k)) ⊂ Λ(V (k − 1)) and there exists a sub-

space Vk ⊂ V (k) such that d(V (0)) = 0 and d(Vk) ⊂ Λ(V (k − 1)) and Λ(V (k)) =

Λ(Vk) ⊗ Λ(V (k − 1)). This filtration is referred to as the lower filtration of M . A

Sullivan algebra (M,d) is called a minimal algebra if d(M) ⊂ M+.M+ (here M+ is

⊕k≥1M
k), the ideal of decomposable elements. If θ : (ΛV, d) → (ΛW,d) be a dgca

morphism between Sullivan algebras, then the linear part Q(θ) : V → W is a linear

map of degree 0, defined by (θ −Q(θ))(v) ∈ Λ≥2W for v ∈ V .

2.2. Minimal model and Formality of dgc algebra. A Sullivan model (M,d) for

a dgca (A, d) is a Sullivan algebra (M,d) together with a dgca morphism ρ : M → A

which is a quasi-isomorphism. Thus, ρ is a dgca morphism which induces an iso-

morphism ρ∗ : H∗(M,d)→ H∗(A, d). Similarly, a minimal model (M,d) for a dgca

(A, d) is a minimal algebra (M,d) together with a quasi-isomorphism ρ : M → A.

A dgc algebra A with H0(A) = Q has a unique minimal model up to isomorphism.

We denote this by (MA, d). The dgc algebra A is called formal if there exists a dgc

morphism Φ : (MA, d)→ (H∗(A), 0) which is a quasi-isomorphism.

Notations. If V is a graded vector space, then V ≤k (resp. V <k) denotes the subspace

consisting of elements of degree at most (resp. less than) k. If A is a differential

graded algebra, A≤k (resp. A<k) denotes the differential graded subalgebra of A

generated by elements of degree at most (resp. less than) k.

If A is a dgc algebra, we denote by D(A) (or simply D if A is clear from the

context) the ideal of decomposable elements i.e. A+.A+ (here A+ = ⊕k≥1A
k) in A.

By abuse of notation we write An/D to mean An/D ∩ An ⊂ A/D.
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Two dgc algebras (A, d) and (B, d) are weakly equivalent if there is a finite se-

quence of dgc morphisms f := {fi} where A0
f0→ A1

f1← A2
f2→ · · · f2n−1← A2n with

(A0, d) = (A, d), (A2n, d) = (B, d) such that induced morphisms in cohomology are

all isomorphisms. In this case we write (A, d)
f↔ (B, d) or (A, d) ' (B, d). We denote

by f ∗ : H∗(A, d)→ H∗(B, d) the composition of isomorphisms (f ∗2n−1)−1 · · · ◦ f ∗0 . A

dgc algebra (A, d) (graded algebra A) is of finite type if each Ak is finite dimensional

vector space over Q.

2.3. Homotopy between dgca morphisms. Next we recall the notion of homo-

topy between two dgca morphisms from a Sullivan algebra. One has the dgc algebra

Λ(t, dt) where degree of t is zero and the differential of t is dt. The augmentations

εj : Λ(t, dt)→ Q, where εj(t) = j, j = 0, 1 are dgca morphisms. For any dgca A, the

algebra morphism ηj : A⊗Λ(t, dt)→ A defined by a⊗t 7→ εj(t)a is a dgca morphism

for j = 0, 1. Two dgca morphisms φ0, φ1 : M → A from a Sullivan algebra M = ΛV

to a dgca A are homotopic (denoted by φ0 ' φ1) if there exists a dgca morphism

H : M → A⊗ Λ(t, dt) such that ηj ◦H = φj, j = 0, 1. The set of homotopy classes

of dgca morphisms from a Sullivan algebra (M,d) to a dgca (A, d) is denoted by

[(M,d), (A, d)].

2.4. Formality of dgca morphism. If f : (A, d)→ (B, d) is a quasi-isomorphism

and (M,d) is a Sullivan algebra, then the natural map ρ] : [(M,d), (A, d))] →

[(M,d), (B, d)] is a bijection. Suppose that ρA : (MA, d)→ (A, d) and ρB : (MB, d)→

(B, d) are Sullivan models of A and B respectively. Using the last bijection, for each

morphism f : (A, d) → (B, d), we get φf (or φ) : (MA, d) → (MB, d) yielding the
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following homotopy commutative diagram:

(A, d)
f→ (B, d)

ρA ↑ ↑ ρB

(MA, d)
φf→ (MB, d).

If A and B are dgca with with H0(A, d) = H0(B, d)) = Q, then there are quasi-

isomorphisms ρA : MA → (A, d) and ρB : MB → (B, d), where MA and MB

are minimal models. For a dgca morphism f : (A, d) → (B, d), we have Sullivan

representative φ : MA → MB. Now, suppose that A and B are formal dgca,

then we have dgca morphismsMA
Φ→ H∗(A) andMB

Ψ→ H∗(B), which are quasi-

isomorphisms inducing ρ∗A and ρ∗B in cohomology. The dgca morphism f is said to

be a formal map if φ satisfies Ψ ◦ φ ' f ∗ ◦ Φ for some choice ofMA,MB, ρA, ρB,

Φ, Ψ (See [1]). But when we shall talk of a formal map, we shall always fix these

minimal models and dgca morphisms. Thus f is formal if φ is a common Sullivan

representative for both f and f ∗. See diagram below.

(A, d)
f→ (B, d)

ρA ↑ ↑ ρB

(MA, d)
φ→ (MB, d)

Φ ↓ ↓ Ψ

H∗(A)
f∗→ H∗(B).

It is evident that if g : (B, d)→ (C, d) is another formal map, then their composition

h = g ◦ f is also a formal map.



18

3. RATIONAL SPACES AND RATIONAL HOMOTOPY THEORY

3.1. Rationalization. A simply connected space X0 is said to be a rational space

if πk(X0) (or equivalently Hk(X0, pt;Z)) are rational vector spaces for all k ≥ 2. A

rationalization of a simply connected space X is a map ι : X → X0 to a simply con-

nected rational space X0 such that ι induces any one of the following isomorphisms

(a) πk(X)⊗Z Q
'→ πk(X0) for all k,

(b) H∗(X;Q)
'→ H∗(X0;Q).

The equivalence of (a) and (b) follows from Whitehead-Serre Theorem (See [7]).

We obtain the existence and uniqueness of rationalization X0 of a simply connected

space and the universal property of a rationalization from the following theorem

Theorem 3.1. ([7, Ch. 9]) (1) For each simply connected space X there is a relative

CW complex (X0, X) with no zero-cell and no one-cells such that the inclusion ι :

X → X0 is a rationalization.

(2) If (X0, X) is as in (1), then any continuous map f from X to a simply

connected rational space Z extends to a map g : X0 → Z. If g′ : X0 → Z extends

f ′ : X → Z, then any homotopy from f to f ′ extends to a homotopy from g to g′.

(3) In particular, the rationalization of (1) are unique up to homotopy equivalence

relative X (i.e. the maps of the homotopy equivalence are restricted to identity on

X).

A continuous map f : Z1 → Z2 is a weak homotopy equivalence if π0(f) : π0(Z1)→

π0(Z2) is a bijection and each

πn(f) : πn(Z1, z1)→ πn(Z2, f(z1)), z1 ∈ Z1, n ≥ 1,

is an isomorphism.
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A continuous map f : Z1 → Z2 between simply connected spaces Z1 and Z2 is a

rational homotopy equivalence if it satisfies the following equivalent conditions:

(a) π∗(f)⊗Q is an isomorphism.

(b) H∗(f ;Q) is an isomorphism.

(c) H∗(f ;Q) is an isomorphism.

Two spaces X and Y have the same weak homotopy type if they are connected

by a chain of weak homotopy equivalences

X ← Z(0)→ · · · ← Z(n)→ Y.

The weak homotopy type of X0 (the rationalization of X) is the rational homotopy

type of X. A rational cellular model for a simply connected space Y is a rational

homotopy equivalence f : X → Y from a CW complex X such that X(1) = X(0)

= point. (Here X(i) is the i-th skeleton of X.) We have the following theorem

regarding rational cellular model.

Theorem 3.2. ([7, Theorem 9.11]) Every simply connected space Y is rationally

modelled by a CW complex X for which the differential in the integral cellular chain

complex is identically zero.

As corollaries we get the following facts for a simply connected space Y .

(1) H∗(Y ;Q) has finite type (i.e. finite dimensional in each dimension) ⇔ Y is

rationally modelled by a CW complex of finite type.

(2) H∗(Y ;Q) is finite dimensional and concentrated in degrees ≤ N ⇔ Y is

rationally modelled by a CW complex of dimension ≤ N .

Note: Rational homotopy theory is the study of properties of spaces and maps that

depend only on rational homotopy type; i.e., are invariant under rational homotopy

equivalence.
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3.2. Formality of spaces and maps. Any path-connected topological space X

has an associated naturally defined differential graded commutative algebra (dgca)

APL(X) overQ and natural cochain algebra morphisms which are quasi-isomorphisms

(See [7])

C∗(X;Q)
'→ D(X)

'← APL(X).

where C∗(X;Q) denotes cochain algebra of normalized singular cochain on X and

D(X) is a third natural cochain algebra. These quasi-isomorphisms define a natural

isomorphism of graded algebras,

H∗(X;Q) = H∗(APL(X)).

The dgc algebra APL(X) is the cochain algebra of polynomial differential forms on

X with coefficients in Q. This association

X  APL(X)

gives a contravariant functor from the category of path-connected topological spaces

to the category of differential graded commutative algebras. A commutative cochain

algebra model for a space X (or simply a commutative model for X) is a cochain

algebra (A, d) together with a weak equivalence

(A, d)
'→ · · · '← APL(X).

The construction of APL(X), due to Sullivan [30], is inspired from C∞ differential

forms, while reflecting the combinatorial nature of how the singular simplices of X

fit together.

The dgc algebra APL(X) can be constructed over any field of characteristic zero, in

particular over R, which we denote by APL(X;R). For a smooth manifold M the

classical de Rham algebra ADR(M) of smooth differential forms is weakly equivalent

to APL(M ;R).
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Suppose that X is a path connected topological space. A Sullivan model (resp.

minimal model) for X is by definition a Sullivan model (resp. minimal model) for

APL(X). Any path connected space X has a unique minimal model MX . See

[7, Proposition 12.1 and corollary of Theorem 14.12]. If X1 and X2 are simply

connected spaces with rational homology of finite type and have the same rational

homotopy type, then their minimal models are isomorphic (as dgc algebras). Assume

that X and Y are simply connected and with rational homology of finite type.

Then we have an isomorphism of sets: [X0, Y0]→ [MY ,MX ] where X0 denotes the

rationalization of X, [X0, Y0] denotes the set of homotopy classes of maps between

X0 and Y0, [MY ,MX ] denotes the homotopy classes of dgca morphisms between

Sullivan algebras MY → MX and MX is the minimal model of X. Observe that

MX and MX0 are naturally isomorphic since X ⊂ X0 is a rational homotopy

equivalence. The isomorphism is obtained by sending [f ] ∈ [X0, Y0] to the homotopy

class of a Sullivan representative of φf :MY →MX ofAPL(f) : APL(Y0)→ APL(X0)

so that the following diagram commutes:

MY

φf−→ MY

ρY ↓ ↓ ρX

APL(Y0)
APL(f)−→ APL(X0).

In fact we have the following bijections, where we restrict to simply connected

CW complexes with rational homology of finite type and to simply connected min-

imal Sullivan algebras of finite type.

{rational homotopy types}

l

{isomorphism classes of minimal algebras over Q}
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and

{homotopy classes of continuous maps of rational spaces}

l

{homotopy classes of morphisms of minimal Sullivan algebras over Q.}

By the above discussion, any path connected spaceX has a unique minimal model

ρX : MX → APL(X). A space X is said be a formal space if APL(X) is a formal

dgc algebra. Then we have a dgca morphism Φ : MX → H∗(X;Q), which is a

quasi-isomorphism. A continuous map f : X → Y between two formal spaces is

called a formal map if APL(f) : APL(Y ) → APL(X) is a formal dgca morphism.

Here we set our notations as follows.

For a formal space X, we have the minimal model ρX : MX → APL(X) and

Φ :MX → H∗(X;Q) with ρ∗X = Φ∗. We shall writeMX = ΛV and similarly for Y

we haveMY = ΛW , Ψ :MY → H∗(Y ;Q).

If X is a simply connected space with rational homology of finite type, then

there is a bilinear map 〈−,−〉 : V k × πQ
k (X) → Q (where πQ

k (X) := πk(X) ⊗ Q),

which is non-degenerate. This gives that V k ∼= Hom(πk(X);Q). Recall that if

θ : (ΛV, d) → (ΛW,d) is a dgca morphism, then the linear part Q(θ) : V → W is

a linear map of degree 0, defined by (θ − Q(θ))(v) ∈ Λ≥2W for v ∈ V . Suppose

f : X → Y is a continuous map between simply connected spaces, ρX : (ΛV, d) →

APL(X) and ρY : (ΛW,d) → APL(Y ) be minimal models of X and Y respectively.

Let φf : (ΛW,d) → (ΛV, d) be a Sullivan representative of f . Then through the

bilinear map 〈−,−〉 : V × πQ
∗ (X) → Q, we get that Q(φf ) is the transpose of

f∗ : πQ
∗ (X)→ πQ

∗ (Y ).
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4. CONSTRUCTION OF MINIMAL MODEL

Here we give the construction of minimal models in two cases, first for the general

case and then for a dgca with zero differential. In both cases, we assume that

H0(A, d) = Q and H1(A, d) = 0. In the special case, when d = 0, the second

construction yields a description of the lower gradation.

4.1. Minimal model for a simply connected dgc algebra. We briefly recall

the construction of the minimal model (MA, d) for a dgca (A, d) with H0(A, d) = Q,

in the special case when H1(A, d) = 0. See [7], p.144 for details.

Choose cocycles zα ∈ A2, α ∈ J2, so that the cohomology classes [zα] ∈ H2(A)

form a Q-basis. Let V 2 ⊂ A2 be the Q-span of {zα}, α ∈ J2. Then the inclusion

map V 2 → A extends to a dgca morphism ρ2 : (ΛV 2, 0) → (A, d) inducing an

isomorphism in degree 2. Since H1(A) = 0, and H3(ΛV 2) = 0 we see that ρ2

induces isomorphism in degree ≤ 2 and a monomorphism in degree 3.

Inductively assume that we have constructed V j, j ≤ k, and a dgca morphism

ρk : (Λ(⊕j≤kV j), d) → (A, d) which induces isomorphism in degree ≤ k and a

monomorphism in degree k + 1. We now explain how to construct V k+1 and ρk+1.

Choose cocycles zα ∈ Ak+1, α ∈ Jk+1, such that the images of the [zα] ∈ Hk+1(A)

form a Q-basis for the cokernel of Hk+1(Λ(⊕j≤kV j), d) → Hk+1(A). Also choose

cocycles uβ ∈ Λ(⊕j≤kV j)k+2, β ∈ J ′k+1, so that the [uβ] ∈ Hk+2(Λ(⊕j≤kV j), d) form

a Q-basis for the kernel of Hk+2(ρk). Choose wβ ∈ Ak+1 such that ρk(uβ) = dwβ.

Set V k+1 := ⊕α∈Jk+1
Qzα⊕(⊕β∈J ′k+1

Qvβ) and extend the derivation on Λ(V ≤k) to a

derivation on Λ(V ≤k+1) by setting dzα = 0, dvβ = uβ. The morphism ρk is extended

to Λ(V ≤k+1) by setting ρk+1(zα) = zα, α ∈ Jk+1, and ρk+1(vβ) = wβ, β ∈ J ′k+1.

Then ρk+1 induces isomorphism in degree ≤ k + 1 and a monomorphism in degree
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k + 2. The required minimal model (MA, d) is (ΛV, d) with V := ⊕k≥2V
k and the

morphism ρ :MA → A is defined by ρ|V k = ρk|V k , k ≥ 2.

4.2. Minimal model for simply connected dgca with d=0. Let (A, d) be a dgc

algebra with A0 = Q and A1 = 0. Then we have a minimal model ρA : (MA, d) →

(A, d) whereMA = ΛV with the following properties:

a) ΛV0
ρ→ A is surjective,

b) V≥1
ρ→ 0.

(See [13, §3]).

Here we give the construction.

We set V0 = A+/A+.A+, the space of indecomposables for A. We define d = 0 in V0

and ρ : ΛV0 → A so its restriction to V0 splits the projection A+ → V0. Thus V0 is

a “space of generators for A”. Then ρ : ΛV0 → A is surjective. Let K be its kernel.

Then K0 = K1 = 0.

We define V1 = K/K.Λ+V0 with gradation defined as

V p
1 = (K/K.Λ+V0)p+1

The space V1 is the “space of generators for the relations in A”. Since K0 = K1 = 0,

V1 = ⊕p≥1V
p

1 . We extend d on V1 by requiring that it be a linear map V1 → K

splitting the projection. Then d : V1 → ΛV0 and we define ρ to be 0 on V1.

Suppose V (n) = V0 ⊕ V1 ⊕ . . . Vn has been constructed for some n ≥ 1. Now,

define V p
n+1 to be (H∗(ΛV (n), d)/(H∗(V (n), d).Λ+V0)p+1. We define d so that d :

Vn+1 → (ΛV (n))∩(ker d) splits the projection of ΛV (n)∩ ker d onto Vn+1. We define

ρ : V (n+ 1)→ A where V (n+ 1) = V0 ⊕ V1 ⊕ · · · ⊕ Vn+1 by ρ|Vn+1 = 0.

Now, let (ΛV, d)
ρ→ (A, 0) be the dgca morphism constructed in this way, with

V = ⊕∞n=0Vn.

This is the required minimal model of (A, 0). For our purpose it is important to have

a lower gradation that satisfies a further property. We have the following lemma

which achieves this.
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Lemma 4.1. Let (MA, d) = (ΛV, d) be a minimal model of a dgca (A, 0) with zero

differential. Then there exists a lower gradation V = ⊕k≥0Vk such that (i) ρ(Vk) = 0

for all k ≥ 1, and, (ii) d(Vk) ⊂ Λ(V0).Λ+(V1 ⊕ · · · ⊕ Vk−1) for k ≥ 2.

Proof. The existence of a lower gradation Vk, k ≥ 1, such that ρ(Vk) = 0 is given

in 4.2. We start such a lower gradation Vk, k ≥ 0 and modify this to obtain a new

lower gradation V ′k so as to meet both our requirements. We set V n
k = Vk ∩ V n.

Let {yγ}γ∈Jk,2 be a basis for V k
2 . Write dyγ = u0 + u1 where u0 ∈ Λ(V0)k+1 and

u1 ∈ Λ(V0).Λ+(V1). Then ρ(u1) = 0 by Leibniz rule using ρ(V1) = 0. Therefore,

0 = dρ(w) = ρ(dw) = ρ(u0) implies that u0 =
∑
fi.dvi = d(

∑
fivi) where fi ∈

Λ(V0), vi ∈ V1 since u0 ∈ Λ(V0). Now let y′γ = yγ −
∑
fivi. Then dy′γ = u1 ∈

Λ(V0).Λ+(V1) and ρ(y′γ) = ρ(yγ) −
∑
ρ(fi)ρ(vi) = 0 as ρ(V2) = 0 = ρ(V1). We

define V ′k2 ⊂ Λ(V0 ⊕ V1)k ⊕ V k
2 to be the space spanned by y′γ, γ ∈ Jk,2. Set V ′2 =

⊕k≥3V
′k

2 . Note that V ′2 ∩ (V0 ⊕ V1) = 0, V (2) = V0 + V1 + V ′2 , ρ(V ′2) = 0 and

d(V ′2) ⊂ Λ(V0).Λ+(V1).

We now proceed by induction. Assume that V ′j , 2 ≤ j < n, have been constructed

satisfying (i) and (ii) such that V0 +V1 +V ′2 +· · ·+V ′n−1 = V (n−1). Let {yγ}γ∈Jk,n be

a basis for V k
n . Write dyγ = z0 + z1 where z0 ∈ Λ(V0)k and z1 ∈ Λ(V0).Λ+(V1⊕ V ′2 ⊕

· · · ⊕ V ′n−1). Then ρ(z1) = 0 by Leibniz rule using ρ(V ′j ) = 0, j ≥ 1. Therefore, 0 =

dρ(yγ) = ρ(dyγ) = ρ(z0) implies that z0 = d(
∑
fj.xj) where fj ∈ Λ(V0), xj ∈ Λ+(V1)

since u0 ∈ Λ(V0). Set y′γ := yγ−
∑
fjxj. Then dy′γ = z1 ∈ Λ(V0).Λ+(V1⊕· · ·⊕V ′n−1)

and ρ(y′γ) = 0 as ρ(yγ) = 0 and ρ(Vj) = 0, 1 ≤ j < n. Then V ′n := ⊕k≥3(⊕γ∈Jk,nQy′γ)

satisfies (i) and (ii). Furthermore V (n) = V (n − 1) + V ′n, Vn ∩ V (n − 1) = 0. This

completes the induction step and we see that V0, V1, V
′
j , j ≥ 2 yield a lower gradation

for V that meets our requirements. �

Definition 4.2. LetMA be a minimal model of (A, 0). We say that a lower grada-

tion V = ⊕k≥0Vk ofMA = Λ(V ) is standard if it satisfies conditions (i) and (ii) of

Lemma 4.1.
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4.3. Minimal models and inverse limits. We shall obtain a simple criterion for

the minimal model of a simply connected dgc algebra (A, d) to be isomorphic to an

inverse limit of dgc algebras. Let fn : A→ An, fm,n : An → Am, n ≥ m ≥ 1, be dgca

morphisms such that fn,n = id and fm,n ◦ fn = fm. Suppose that f ∗m : Hq(A) →

Hq(Am), f ∗m,n : Hq(An) → Hq(Am) are isomorphisms for q ≤ m. We assume that

H0(A) = Q, H1(A) = 0. We denote by M := MA = Λ(V ), V = ⊕q≥2V
q, the

minimal model of A.

Let zα, α ∈ Jq, vβ, uβ, wβ, β ∈ J ′q have the same meaning as in the above descrip-

tion of V q in 4.1 . The quasi-isomorphism ρ :M→ A is chosen to be as described

above. We set zn,α := fn(zα) ∈ An, α ∈ Jq, for q ≤ n and wn,β := fn(wβ), β ∈ J ′q
for all q ≤ n− 1. Then fm,n(zn,α) = zm,α and fm,n(wn,β) = wm,β. Moreover, setting

V q
n := ⊕α∈JqQzn,α ⊕β∈J ′q Qvn,q, q ≤ n, we obtain a dgca Λ(⊕2≤q≤nV

q
n ) where the

differential is defined as dzn,α = 0, dvn,β = un,β. Also, we have a dgca morphism

µn : Λ(⊕2≤q≤nV
q
n )→ An defined as µn(zn,α) = zn,α = fn ◦ρ(zα) and µn(vn,β) = wn,β.

Since f ∗n : Hq(A)→ Hq(An) is an isomorphism for q ≤ n, it follows that µn induces

isomorphism in dimensions q < n. Denoting the minimal model of An byMn, it is

clear from the stepwise construction ofMn thatM<n := Λ(⊕q<nVn,q) and that the

quasi-isomorphism ρn :Mn → An may be chosen to agree with µn onM<n
n . Thus

we have a commuting diagram of dgca morphisms

M Φn−→ Mn

ρ ↓ ↓ ρn

A
fn−→ An

in which Φn|V q is an isomorphism for q < n where zα 7→ zn,α, α ∈ Jq, and vβ 7→

vn,β, β ∈ J ′q. Furthermore when m ≤ n there are dgca morphism Φm,n : Mn →

Mm covering fm,n : An → Am such that Φm,n ◦ Φn|V q = Φm|V q for q < m ≤

n and Φn|M<n ,Φm,n|M<m
n

are isomorphisms of dgc algebras onto M<n
n and M<m

m

respectively. We denote by Φ≤qm,n the dgca morphism Φm,n|M≤q
n

:M≤q
m,n →M≤q

m .
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Lemma 4.3. Let A, {An, fm,n}, {Mn,Φm,n} be as above. Suppose that H0(A) =

Q, H1(A) = 0. Then: (i) The minimal modelM is the inverse limit of {Mn,Φm,n}.

(ii) If each An is formal, then so is A.

Proof. (i) From the above discussion it is clear thatM≤q is isomorphic to the inverse

limit of {M≤q
n ,Φ≤qm,n} as a dgc algebra. It follows thatM is isomorphic to the inverse

limit of {Mn,Φm,n}.

(ii) Choose dgca morphisms φn :Mn → H∗(An) so that φn induces isomorphism

in cohomology and φn(zn,α) = [zn,α], φn(vβ) = 0 for α ∈ Jq, β ∈ J ′q, q < n. Then we

have a diagram

Mn
Φm,n→ Mm

φn ↓ ↓ φm

H∗(An)
f∗m,n→ H∗(Am)

which commutes for all q < m ≤ n. In view of the assumption that f ∗n : Hq(A) →

Hq(An) and f ∗m,n : Hq(An)→ Hq(Am) are isomorphisms for q ≤ m, we see that the

first assertion of the lemma implies the second. �

In our applications, A will equal APL(X) for a simply connected CW complex

X, (An, d) = APL(X(n)), An
fm,n→ Am, n ≥ m, A fn→ An, where fm,n is APL(im,n) :

APL(X(n))→ APL(X(m)) (im,n is the inclusion of X(m) into X(n)) and fn is APL(in) :

APL(X)→ APL(X(n)) (in is the inclusion ofX(n) intoX). Therefore, ifX is a simply

connected CW complex such that each skeletonX(n) is formal, thenX is also formal.
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5. EXAMPLES OF FORMAL AND NON-FORMAL SPACES AND MAPS

In this chapter we briefly recall some well-known examples of formal and non-

formal spaces and maps.

5.1. Examples of formal spaces. The following spaces are well-known to be for-

mal.

(1) Product of two formal spaces is formal if at least one of them has the rational

homology of finite type. An arbitrary wedge of formal spaces is formal. (See [7])

(2) Spheres Sn are formal. So their minimal models can be computed from the

cohomology algebras, which are as follows:

For n is odd,MSn = Λ(e), deg e = n, d(e) = 0.

For n is even,MSn = Λ(e, e′), deg e = n, deg e′ = 2n− 1, d(e) = 0, d(e′) = e2.

(See [7]).

(3) A path-connected H-space X with rational homology of finite type (in par-

ticular Eilenberg-MacLane space K(π, n), we assume π is abelian when n = 1) is

formal. The minimal model of X is as follows:

We choose a graded vector space V ⊂ H+(X) so that H+(X) = V ⊕H+(X).H+(X).

Then (ΛV, 0) will be the minimal model of X. (See [7]).

(4) Suppose that τ is an involution of a compact connected Lie group G, and that

K is the connected component of the identity in the subgroup of elements fixed by

τ . Then G/K is called a symmetric space of compact type. E. Cartan showed that

a symmetric space of compact type is formal.

(5) Suppose that M is a complex manifold with almost complex structure J :

TM → TM so that J2 = −1. Let 〈, 〉 be a Riemannian metric such that 〈Jξ, Jη〉 =

〈ξ, η〉. Define ω ∈ A2
DR(M) by ω(ξ, η) = 〈Jξ, η〉. The manifold M is called Kähler
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if 〈, 〉 can be chosen so that dω = 0. Deligne, Griffiths, Morgan and Sullivan [6]

showed that compact Kähler manifolds are formal. In particular, all smooth complex

projective varieties are formal. Examples of such spaces are the complex projective

spaces, complex Grassmann manifolds Gn,k, complex flag varieties and complex

projective toric varietis. The minimal models of complex projective spaces as follows.

For CPn,MCPn = Λ(u, v), deg u = 2, deg v = 2n+ 1, d(u) = 0, d(v) = un+1.

For CP∞,MCP∞ = Λ(u), deg u = 2, d(u) = 0.

(6) Simply connected compact manifolds of dimension ≤ 6 are formal (See [22]).

(7) There is a natural action of (S1)n on (R2)n, called the standard representation.

Let M be a 2n-dimensional connected compact C∞ manifold and (S1)n acts on M .

A local isomorphism of M with the standard representation consists of:

a) (S1)n stable open sets U1 in M and U2in (R2)n and

b) an automorphism θ : (S1)n → (S1)n,

c) a θ-equivariant homeomorphism f : U1 → U2 (i.e.f(tx) = θ(t)f(x)) ∀t ∈ (S1)n,

∀x ∈ U1.

Now, M is said to be a quasitoric manifold if each point of M is in the domain

of a local isomorphism and the orbit space of this action is homeomorphic to a

simple polytope P . The manifold M can be reconstructed from the polytope P and

a combinatorial data that codes the action of (S1)n on M . This is the topological

analogue of a smooth projective toric variety. Panov and Ray proved that quasitoric

manifolds are formal (See [24]).

(8) A dgc algebra (A, d) is said to be intrinsically formal if any dgc algebra

(B, d) with cohomology algebra isomorphic to H∗(A, d) is formal. For example,

(A, d) = Λ(x1, x2, . . . , xn; y1, y2, . . . , ym), |xi| = even, |yj| = odd, dxi = 0, dyj = Pj,

where {Pj} form a regular sequence in Q[x1, x2, . . . , xn] (i.e. Pi is not a zero divisor

in Q[x1, x2, . . . , xn]/〈P1, P2, . . . , Pi−1〉) is intrinsically formal. A complex Grassmann

manifold is intrinsically formal as it has the cohomology algebra of the above form

(See [30], p.317). (The cohomology algebra of complex Grassmann manifold will
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be discussed in §9.2 and §9.3 of this thesis.) Naturally, an intrinsically formal dgc

algebra is formal. The minimal model of a complex Grassmann manifold Gn,k (2k ≤

n) is the following.

MGn,k
= Λ(c1, c2, · · · , ck; y1, y2, · · · , yk), deg ci = 2i, deg yj = 2(n − k + j) − 1,

d(ci) = 0, d(yj) = Pj ∀i, j ≤ k, where the Pj are certain elements which form a

regular sequence in Λ(c1, c2, · · · , ck).

The minimal model for BU(n) is

MBU(n) = Λ(c1, c2, · · · , cn), where deg ci = 2i, d(ci) = 0.

(9) A skeleton of a formal connected CW complex is formal (See Lemma 6.5,

[18]).

5.2. Examples of non-formal spaces. (1) For formal spaces all Massey triple

products vanish. It is known that if X = S3 − B, where B is Borromean ring, then

there is a certain Massey triple product in H∗(X) which does not vanish. This shows

that X is not a formal space.

(2) Not all simply connected homogeneous spaces are formal. It is shown in ([23],

Proposition 4.15) that M = SU(6)/(SU(3) × SU(3)) is not formal by exhibiting a

non-vanishing Massey triple product.

(3) Recall that a symplectic manifold is a 2n dimensional manifold M equipped

with a ω ∈ A2
DR(M) satisfying dω = 0 and ωnx 6= 0, x ∈ M . I.K. Babenko and

I.A.Taimanov [2] have constructed, for any n ≥ 5, infinitely many pairwise non ho-

motopy equivalent non formal simply connected symplectic manifolds of dimension

2n.

(4) We shall construct CW complexes which are non-formal spaces in §8.3. In our

examples all Massey triple products vanish; in fact they have non-zero cohomology

groups in even degrees only.
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5.3. Examples of formal maps. Here spaces are considered to be simply con-

nected, path connected and with rational homology of finite type. Without giving

details of proofs we give the following examples.

(1) If f : X → Y and g : X → Z be two formal maps, then h : X → Y × Z

defined by h(x) = (f(x), g(x)), x ∈ X is formal, where all of X, Y, Z.

(2) If f1 : X1 → Y , f2 : X2 → Y are formal maps, f : X1

∨
X2 → Y defined by

f |Xi = fi, then f is again a formal map. If X and Y are formal maps, then the

projections p1 : X × Y → X and p2 : X × Y → Y are formal maps.

(3) Every continuous map in [X, Y ], where Y is Sn (n is odd), path-connected H-

space with rational homology of finite type (in particular Eilenberg-MacLane space

K(π, n), where we assume π is abelian when n = 1) and X is any space, is formal.

Maps between complex Grassmann manifolds are formal (We shall prove this in

§10.2).

5.4. Examples of non formal map. (1) Hopf fibration f : S3 → S2 is not a

formal. More generally, any f : S4n−1 → S2n, which represents a non-torsion element

in π4n−1(S2n), is not formal.

(2) Let X be a simply connected finite CW complex. Suppose dim X = d. If

n > d is such that πn(X)⊗Q 6= 0, then there is non-formal maps f : Sn → X. If X

is of rationally hyperbolic type, these non-formal maps exist for infinitely many n.
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6. A MODEL FOR CELL ATTACHMENT

Let X be a simply connected topological space. Let Y = X ∪α en where α :

Sn−1 → X represents an element [α] ∈ πn−1(X). We assume that n ≥ 2 so that Y is

also simply connected. We recall the following proposition which will play a crucial

role in our proofs. Let ρX : (MX , d) → (APL(X), d) be a minimal Sullivan model

for X. Suppose that MX = Λ(V ) so that V = ⊕k≥2V
k. (Note that V 1 = 0 since

X is simply connected.) We have the pairing 〈−,−〉 : V k × πQ
k (X)→ Q defined by

evaluation.

Let n ≥ 3. Let Mα = Λ(Vα) be the dgca defined as follows: Vα := V ⊕ Quα,

deg(uα) = n, u2
α = uα.v = 0, v ∈ V , with differential dα where dα(uα) = 0 and

dα(v) = dv + 〈v, α〉uα, v ∈ V .

Proposition 6.1. The dgca (Mα, dα) defined above is a model for Y = X ∪α en.

Moreover, one has the following diagram of dgc algebras in which the rows are exact

and the vertical arrows are quasi-isomorphism:

0→ Quα ↪→ Mα
λ→ MX → 0

l' l µ ↓ ρX

0→ APL(Y,X)
APL(j)→ APL(Y )

APL(i)→ APL(X) → 0

↓'

APL(Dn, Sn−1)

where i : X ↪→ Y and j : Y ↪→ (Y,X) are inclusions and λ is induced by projection

Vα → V . The induced diagram
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0→ Quα ↪→ H∗(Mα)
λ∗→ H∗(MX) → 0

↓∼= ↓ µ∗ ↓ ρ∗X
0→ H∗(Y,X)

j∗→ H∗(Y )
i∗→ H∗(X) → 0

↓∼=

H∗(Dn,Sn−1)

(1)

is commutative with exact rows in which the vertical arrows are all isomorphisms.

�

We refer the reader to [7, Chapter 13] for a proof.

Remark 6.2. The dgca Mα is not a minimal model for Y most often. Indeed it is

not free except in the case V = 0 and n odd, since u2
α = 0 and the relation uα.v = 0

holds for v ∈ V .
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7. FORMALITY OF CELL ATTACHMENT

We come to one of the main results of this thesis, namely theorem 7.2. Recall the

notion of a standard lower gradation of simply connected minimal Sullivan algebra

(ΛV, d) (See §4.2). We introduce the notion of a special element:

Definition 7.1. (1) Let (ΛV, d) be a minimal Sullivan algebra with standard lower

gradation V = ⊕k≥0Vk. We say that an element α ∈ Hom(V n;Q) is special if

〈v, α〉 = 0 ∀v ∈ Vk, k 6= 1.

(2) Let X be a simply connected space with rational homology of finite type. Recall

from §3.2, πQ
n (X) ∼= Hom(V n;Q). We say α ∈ πQ

n (X) is special if 〈v, α〉 = 0

∀v ∈ Vk, k 6= 1, whereMX = ΛV and V = ⊕k≥0Vk is standard lower gradation.

Let X be a simply connected topological space with rational homology of finite

type, which is formal. Let α : Sn−1 → X represent an element in the kernel of

the Hurewicz homomorphism η : πQ
n−1(X) → Hn−1(X;Q). Let Y = X ∪α en. Let

i : X ↪→ Y be the inclusion. We have the inclusion map j : Y ↪→ (Y,X) and the

characteristic map (Dn,Sn−1) → (Y,X). Then j∗ : Hn(Y,X;Z) → Hn(Y ;Z) maps

the positive generator ũ ∈ Hn(Y,X;Z) ∼= Hn(D, Sn−1) ∼= Z to a non-zero element u

in Hn(Y ;Z).

Our main result is the following. Recall that a minimal model of a simply-

connected space is isomorphic as a graded algebra to ΛV where V is a graded Q-

vector space V = ⊕k≥2V
k and ΛV stands for the free graded-commutative algebra

over V . Here we give conditions for formality (and non-formality) of Y .

Theorem 7.2. Suppose that X is a simply connected CW complex and is formal.

Let MX = Λ(V ) and suppose that V = ⊕k≥0Vk is a standard lower gradation of

V . Let Y = X ∪α en. Suppose that η([α]) = 0 so that j∗(ũ) =: u 6= 0. (i) If

[α] ∈ πn−1(X) is a torsion element then u is indecomposable and Y is formal. (ii)
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Let [α] 6= 0 in πQ
n−1(X). Suppose that α is special and that u is decomposable in

H∗(Y ;Q). Then Y is formal. (iii) If [α] ∈ πn−1(X) is not a torsion element and u

is not decomposable, then Y is not formal.

As a corollary we shall prove,

Theorem 7.3. Let X be a connected finite CW complex having cells only in even

dimensions. If H∗(X) is generated by H2k(X) and dimX ≤ 4k, then X is formal.

Remark 7.4. (i) By a result of Halperin and Stasheff [13, Theorem 1.5] a nilpotent

finite CW complex with only odd dimensional cells in positive dimensions is formal.

Such a CW complex is in fact rationally equivalent to a bouquet of odd-dimensional

spheres. Halperin and Stasheff point out that this result has also been obtained

independently by Baus.

(ii) Papadima [25] has obtained a criterion for the formality of cell attachments. He

also considers spaces X whose cohomology algebra is generated by degree k elements

and remarks that formality of such spaces can be obtained under the hypothesis that

k ≥ c (resp. c − 1) where c is the rational cup-length of X (resp. when X is a

Poincaré duality space).

Let α : Sn−1 → Z, where n ≥ 2. Suppose that both Z and X are simply

connected, formal spaces with rational homology of finite type. LetMZ = (ΛU, d)

andMX = (ΛV, d) be minimal models of Z and X respectively with standard lower

gradation.

Theorem 7.5. Suppose that [α] ∈ πQ
n−1(Z) is special and f : Z → X is formal.

Then f∗([α]) is special.
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8. PROOFS OF MAIN RESULTS

8.1. Proof of Theorem 7.2. Here H∗(X) (and H∗(X)) denote the singular homol-

ogy (and cohomology respectively) of X with Q -coefficients. We keep the notations

and set-up of §6. It is understood that a base point for X is chosen and fixed and it

serves as the point for Y = X ∪α en as well; the homotopy groups are defined with

respect to this choice and will be suppressed in the notation πk(X), etc. Recall that

i denotes the inclusion X ↪→ Y . Also V and W are graded vector spaces so that

MX = Λ(V ) andMY = Λ(W ). We shall use the construction of minimal model of

(H∗(X), 0) as given in §4.2 as here X is a formal space. We assume that V = ⊕Vk

and W = ⊕Wk are standard lower gradations. One has a morphism of dgca φ :

MY →MX which is a lift of APL(i) : APL(Y )→ APL(X) ( i.e. φ is the Sullivan rep-

resentative of APL(i)). The linear part Q(φ) : W → V of φ is defined by the require-

ment that φ(w)−Q(φ(w)) ∈ Λ≥2V ; it induces i∗ : Hom(πk(Y ),Q)→ Hom(πk(X),Q)

for all k under the isomorphisms V k ∼= Hom(πk(X),Q) and W k ∼= Hom(πk(Y ),Q).

Recall that X is simply connected. By the relative Hurewicz theorem, we obtain

that η : πn(Y,X) ∼= Hn(Y,X;Z) ∼= Z. The group πn(Y,X) = Z is generated by

the homotopy class of the characteristic map α̃ : (Dn,Sn−1)→ (Y,X) of the cell eα.

The homomorphism ∂ : πn(Y,X) → πn−1(X) maps [α̃] to [α]. Denoting by πQ
k the

rational homotopy group functor πk(−)⊗Q, we have the commuting diagram

πQ
n (Y )

j∗→ πQ
n (Y,X)

∂→ πQ
n−1(X)

η ↓ η ↓ ↓ η

Hn(X) → Hn(Y )
j∗→ Hn(Y,X)

∂→ Hn−1(X).

(2)

where η denotes the Hurewicz homomorphism, with the middle one being an iso-

morphism.
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Suppose that η([α]) 6= 0. Then ∂(η[α̃]) = η([α]) 6= 0 and since Hn(Y,X) ∼= Q,

we conclude that j∗ = 0 and i∗ : Hn(X) → Hn(Y ) is an isomorphism since

Hn+1(Y,X) = 0. Therefore i∗ : Hn(Y )→ Hn(X) is also an isomorphism.

Suppose that η([α]) = 0. This happens, for example, when α is a torsion element

or when Hn−1(X) = 0. (However η[α] = 0 does not imply that α is of finite order.

For example, one can choose α to be an element of infinite order in π4m−1(S2m).)

There exists an element γ ∈ Hn(Y ) such that j∗(γ) = η([α̃]). Let ũ denote the

generator of Hn(Y,X) = Hom(Hn(Y,X),Q) ∼= Q such that 〈ũ, η([α̃])〉 = 1. Then

j∗(ũ) = u is a non-zero element of Hn(Y ) and we have 〈u, γ〉 = 1. Therefore, using

the exact sequence Hn−1(Y,X)
j∗→ Hn−1(Y )

i∗→ Hn−1(X)→ Hn(Y,X)
j∗→ Hn(Y )

i∗→

Hn(X)→ Hn+1(Y,X) = 0, we have

Hn(Y ) ∼=

 Hn(X)⊕Qu if η([α]) = 0,

Hn(X) if η([α]) 6= 0,
(3)

and

Hn−1(X) ∼=

 Hn−1(Y ) if η([α]) = 0,

Hn−1(Y )⊕Qũ if η([α]) 6= 0.
(4)

Since Hom(πn−1(X),Q) ∼= V n−1, using the exactness of the sequence πQ
n (Y,X)

∂→

πQ
n−1(X)

i∗→ πQ
n−1(Y )→ πQ

n−1(Y,X) = 0 we see that

V n−1 ∼=

 W n−1 ⊕Q if [α] 6= 0,

W n−1 if [α] = 0,
(5)

via the restriction of Q(φ).

Summarizing the above discussion we obtain the following.

Lemma 8.1. (i) Suppose that η[α] = 0. Then j∗(ũ) = u 6= 0 and Hn(Y ) ∼= Hn(X)⊕

Qu, Hk(Y ) ∼= Hk(X), k 6= n. If [α] 6= 0 in πQ
n−1(X), then V n−1 ∼= W n−1 ⊕Q.

(ii) Suppose that η[α] 6= 0. Then j∗(ũ) = 0 and Hk(Y ) ∼= Hk(X), k 6= n − 1,

Hn−1(X) ∼= Hn−1(Y )⊕Q[ũ]. Moreover, V n−1 ∼= W n−1 ⊕Q. �
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We now establish Theorem 7.2.

Proof of Theorem 7.2. (i) If [α] ∈ πn−1(X) is a torsion element then Y is rational

homotopically equivalent to X0 ∨ Sn. Hence Y is formal.

(ii) In this case Q(φ) : W k → V k is an isomorphism for k ≤ n − 2 and is

a monomorphism when k = n − 1. Moreover, Q(φ)(W n−1) = ker([α]) ⊂ V n−1

has codimension 1. Write Q(φ)(W n−1) ⊕ Qvα = V n−1 where vα ∈ V n−1 is an

element such that 〈vα, [α]〉 = 1. (We shall presently make a more specific choice

of vα.) Write u = P (v1, . . . , vr) with vq ∈ H<(n−1)(Y ) ∼= H<(n−1)(X) where vq

are indecomposable elements. Since Λ(V0) → H∗(X) is onto, we choose cocycles

vq ∈ V0 ⊂ MX so that vq 7→ vq. We set w = P (v1, . . . , vr) ∈ MX . Since X is

formal we have a quasi-isomorphism Φ : (MX , d) → (H∗(X), 0). Since i∗(u) = 0

we have Φ(P (v1, . . . , vr)) = 0 in Hn(X). That is, P (v1, . . . , vr) =: w ∈ ker(Φ).

Note that w ∈MX is a cocyle. Since Φ∗ is a monomorphism, w = dX(vα) for some

vα ∈ (ΛV (1))n−1 ⊂Mn−1
X . We claim that 〈vα, [α]〉 6= 0. Indeed, since µ : (Mα, dα)↔

APL(Y ) is a quasi-isomorphism we have, using the commutative diagram (1) of 6.1,

that µ∗([w]) = P (v1, . . . , vr) = u ∈ Hn(Y ) is non-zero. So [w] 6= 0 in Hn(Mα).

If 〈vα, [α]〉 = 0, then dα(vα) = dX(vα) = w, whence µ∗([w]) = 0 in Hn(Mα), a

contradiction. Therefore 〈vα, [α]〉 6= 0. Now this implies that vα /∈ Q(φ)(W ) =

ker([α]). We can write vα = v1 + v2 where v1 ∈ V1 and v2 ∈ Λ+V0.V1. If 〈v1, [α]〉 = 0,

then

dα(vα) = dα(v1) + dα(v2) = dX(v1) + dX(v2) = dX(v1 + v2) = dX(vα)

showing that dα(vα) = dX(vα) = ω, hence µ∗([ω]) = 0 in Hn(Mα), a contradiction.

Therefore, we can choose vα ∈ V n−1
1 so that 〈vα, [α]〉 = 0.

By hypothesis 〈v, [α]〉 = 0 ∀v ∈ V n−1
0 ⊕ (⊕k≥2V

n−1
k ).

The surjective homomorphism i∗ : Hn(Y ) → Hn(X) induces an isomorphism

Hn(Y )/D → Hn(X)/D ∼= V n
0 . (Here D stands for the space of decomposable
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elements.) Choose a linear map θ′ : V n
0 → Hn(Y ) such that Φ(v) = i∗(θ′(v)), v ∈ V n

0

and extend it to a linear map θ : V n → Hn(Y ) by setting θ(v) = 0 for v ∈ ⊕k≥1V
n
k .

Define a vector space homomorphism ψ : V ⊕Quα → H∗(Y ) as follows:

ψ(v) =


(i∗)−1 ◦ Φ(v) if v ∈ V k, k 6= n,

θ(v) if v ∈ V n,

−u/〈vα, [α]〉 if v = uα.

This extends to a homomorphism Mα → H∗(Y ), again denoted by ψ, of the graded

commutative algebra Mα because the relations u2 = 0, u.z = 0 for all z ∈ H∗(Y )

hold. Note that ψ(w) = u.

We claim that ψ is a dgca morphism, that is, ψ ◦ dα = 0. Clearly ψ(dα(uα)) =

ψ(0) = 0. Let v ∈ V k, k 6= n − 1. Then dα(v) = dXv and so ψ(dα(v)) =

(i∗)−1(Φ(dXv)) = 0. If v ∈ V n−1
j , j 6= 1, then dα(v) = dXv since v ∈ ker([α]). If

j = 0, then dX(v) = 0 whence ψ(dαv) = 0. Assume that j > 1. Since V = ⊕k≥0V
k

is a standard lower gradation, we see that dXv is a sum of monomials in each of

which there is a factor belonging to Vi, 1 ≤ i < j, present by Lemma 4.1. Therefore

ψ(dXv) = 0.

Finally, let v ∈ V n−1
1 = V n−1

1 ∩ ker([α]) ⊕ Qvα. Suppose v ∈ ker([α]). Then

dα(v) = dXv = f(w1, . . . , ws). Since µ∗ : H∗(Mα) → H∗(Y ) is an isomorphism

of algebras which agrees with H∗(MX) → H∗(X) in degrees less than n − 1, we

see that 0 = [dαv] in H∗(Mα) implies that [dXv] = 0 in Hn(Y ). On the other

hand ψ(dXv) = ψ(f(w1, . . . , ws)) = f(ψ(w1), . . . , ψ(ws)) is the image of the element

f(w1, . . . , ws) under µ∗. As f(w1, . . . , ws) = dαv, we conclude that ψ(dαv) = 0.

It remains to consider the case v = vα. Then dα(vα) = dXvα + 〈vα, [α]〉uα =

w + 〈vα, [α]〉u. It follows that ψ(dαvα) = ψ(w) − u = 0. It is clear that ψ induces

isomorphism in cohomology.

Since Mα ' MY , there exists a dgca morphism h : MY → Mα which induces

isomorphism in cohomology. Then ψ ◦ h : MY → H∗(Y ) induces isomorphism in
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cohomology.

(iii) Let [α] 6= 0 in πQ
n−1(X). Assume that j∗(ũ) = u is not decomposable, and

that Y is formal. We shall arrive at a contradiction. Recall that by Proposition 6.1,

µ : Mα ↔ APL(Y ) is a quasi-isomorphism.

Let ν : MY → Mα and Ψ : MY → H∗(Y ) be quasi-isomorphisms so that

µ∗ ◦ ν∗ = Ψ∗. Let λ : Mα →MX be the dgca morphism considered in Proposition

6.1. Then φ = λ◦ν :MY →MX is a lift of APL(i) : APL(Y )→ APL(X) and induces

i∗ : H∗(Y ) → H∗(X). From (5), we have an isomorphism V n−1 ∼= W n−1 ⊕Q given

by Q(φ). Also V k ∼= W k if k ≤ n− 2.

Consider the dgca morphism ι : Λ(W≤n−1)→Mα. Then ι∗ is an isomorphism in

dimension ≤ n− 2 and the cokernel of ι∗ : Hn(Λ(W≤n−1)) → Hn(Mα) ∼= Hn(Y ) is

isomorphic to ker(dY )∩W n. Since [dvα] = u and since dvα ∈ Λ(V ≤n−2) = Λ(W≤n−2),

we see that u belongs to the image of (ι∗). Hence, if we try to construct a mini-

mal model of Mα following §4.1, we see that dim(coker(ι∗)n) = dim(ker(dY ) ∩

W n). Since u is indecomposable we see that dim(coker(ι∗))n < dim(Hn(Mα)/D) =

dim(Hn(Y )/D). Therefore dim(ker(dY ) ∩ W n) < dim(Hn(Y )/D). On the other

hand, since Y is formal, dim(Hn(Y )/D) = dim(ker(dY ) ∩W n). Therefore we con-

clude that Y cannot be formal. �

Now, we shall define a morphism ψ : ΛV ⊕Quα → H∗(Y ) for case (i). Choose a

linear map θ′ : V n
0 → Hn(Y ) such that Φ(v) = i∗(θ′(v)), v ∈ V n

0 and extend it to a

linear map θ : V n → Hn(Y ) by setting θ(v) = 0 for v ∈ ⊕k≥1V
n
k .

Define a vector space homomorphism ψ : V ⊕Quα → H∗(Y ) as follows:

ψ(v) =


(i∗)−1 ◦ Φ(v) if v ∈ V k, k 6= n,

θ(v) if v ∈ V n,

u if v = uα.
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This extends to a homomorphism Mα → H∗(Y ), again denoted by ψ, of the graded

commutative algebra Mα because the relations u2 = 0, u.z = 0 for all z ∈ H∗(Y )

hold. Now, we can show that ψ is a quasi-isomorphism as in case (ii).

Both in case (i) and (ii), we have the following diagram:

APL(Y )
ρY← MY

µ→ Mα
ψ→ H∗(Y )

APL(i) ↓ φ ↓ λ ↓ ↓ i∗

APL(X)
ρX← MX

id→ MX
Φ→ H∗(X).

The left and middle squares are homotopy commutative, whereas the right square

is commutative.

Thus we have proved the following.

Theorem 8.2. Let X and α : Sn−1 → X are as in theorem 7.2. Then in cases (i)

and (ii), the inclusion map i : X ↪→ Y is formal.

As an application of Theorem 7.2 we shall prove the following theorem.

Theorem 8.3. Let X be a connected finite CW complex having cells only in 2ik

dimensions (i = 0, 1, 2) and X(0) = {pt}. If H∗(X) is generated by H2k(X) and

dimX ≤ 4k, then X is formal.

Proof. The 2k-skeleton X(2k) of X is bouquet of 2k-dimensional spheres and hence

is formal. We may assume that X is of dimension 4k. The minimal modelM = ΛV

of X(2k) has the property that for any standard lower gradation V = ⊕j≥0Vj, we

have V0 = V 2k, V≥2 ∩ V 4k−1 = 0. So any element in π4−1(X2k) is special. (See Defn.

7.1). (Note that the Hurewicz homomorphism in dimension 4k − 1 vanishes since

H4k−1(X) = 0.) It follows that attaching any 4k-cell to X(2k) results in a formal

space. Note that any sub complex of X again has the property that its rational

cohomology algebra is generated by degree 2k elements. We may regard X = X(4k)

as obtained from successive cell-attachmentsX1, . . . , Xs whereXj+1 is obtained from
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Xj (with X0 := X(2k)) by attaching a 4k-cell, s being the number of 4k-cells in X.

We have just shown that X1 is formal.

Inductively assume that Xj is formal. Writing Xj+1 = Xj ∪α e4k for a suitable

α ∈ π4k−1(Xj), we need only to show that α is special. We shall again writeM = ΛV

for the minimal model of Xj. Once again V0 = V 2k. We claim that V2 ∩ V 4k−1 = 0

(and consequently Vj ∩ V 4k−1 = 0 for all j > 2). Indeed for dimension reasons

V1 ∩ V p = 0 for all p < 4k − 1. It follows that there are no relations involving

elements of V0 = V 2k and V1 ∩ V 4k−1 in dimensions less than 6k − 1. Thus any

element of π4k−1(Xj) is special. It follows by Theorem 7.2 that Xj+1 is special. �

Now, if Y is a simply connected space with cohomology generated by H2k(Y )

and H>4k(Y ) = 0 and dim H2k(Y ) < ∞, then by theorem 3.2, we have a rational

homotopy equivalence ι : X → Y with X(0) = X(1) = point and the differential in

the integral cellular chain complex is identically zero. Then obviously X is a finite

CW complex with cells only in dimensions 2k, 4k and H∗(X) is generated by H2k.

Therefore by Theorem 8.3, X is formal. So, Y is formal too. We get the following

corollary.

Corollary 8.4. Let Y be a simply connected space with H∗(Y ) is generated by

H2k(Y ), H>4k(Y ) = 0 and dim H2k(Y ) <∞ then Y is formal.

Here we give a necessary criterion for formality of a map. Recall the definition of

Q(φ) : W → V for a dgca morphism φ : (ΛW,d)→ (ΛV, d) (See §2.1).

Lemma 8.5. Suppose that f : (B, 0) → (A, 0) is a dgca morphism where B is of

finite type. Let MB = (ΛW,d) and MA = (ΛV, d) be minimal models of B and A

respectively with standard lower gradations. Then there is a Sullivan representative

φ :MB →MA of f such that

φ(W0) ⊂ ΛV0, (6)

φ(W1) ⊂ Λ+V≥1.ΛV0, (7)
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Q(φ)(W≥2) ⊂ V≥2. (8)

Proof. Any Sullivan representative φ : MB →MA is determined by its restriction

to ⊕k≥0Wk. We shall construct linear maps φk : Wk → ΛV inductively for k ≥ 0 and

extend φk to an algebra homomorphism ΛW (k)→ ΛV , again denoted φk, extending

φk−1 : ΛW (k−1)→ ΛV . From our construction it will follow that φk is a morphism

of dgc algebras. It will be shown that the dgca morphism φ : ΛW = ∪k≥0ΛW (k)→

ΛV , defined as the union of the morphisms φk, k ≥ 0, meets the requirements of the

lemma.

Fix a basis {wj}, j ∈ Jk, of Wk, k ≥ 0, and let J = ∪k≥0Jk.

For j ∈ J0 and choose vj ∈ ΛV0 such that ρA(vj) = f(ρB(wj)); such a vj exists

since ΛVj → A = H∗(A, d) is surjective. Here ρA :MA → A and ρB :MB → B are

quasi-isomorphisms inducing the identity map in cohomology. We define φ0 : W0 →

ΛV0 by φ0(wj) = vj, j ∈ J0. Note that φ0 satisfies (6). Clearly dφ0(wj) = dvj = 0 =

φ0(dwj). The linear map φ0 extends to a dgca morphism φ0 : ΛW0 → ΛV . Note

that fρB = ρAφ0.

Extend φ0 to a dgca morphism ψ0 : ΛW → ΛV . We will use it to construct

φ1. Let j ∈ J1. Then dwj ∈ Λ+W0. Write ψ0(wj) = uj + vj so that uj ∈ Λ+V0,

vj ∈ Λ+V≥1.ΛV0. Note that dψ0(wj) = dvj as duj = 0. Now define φ1(wj) =

vj∀j ∈ J1 to obtain an algebra morphism φ1 : ΛW (1) → ΛV that extends φ0. We

have dφ1(wj) = dvj = dψ0(wj) = ψ0(dwj) = φ0(dwj) = φ1(dwj)∀j ∈ J1, since

dwj ∈ ΛW0. Hence φ1 is a dgca morphism. Note that φ1 satisfies (7), that is,

φ1(W1) ⊂ ΛV0.Λ
+V≥1 by the very definition of φ1.

Next we shall construct, inductively, dgca morphisms φk : ΛW (k)→ ΛV , k ≥ 2,

such that φk extends φk−1, and has the property that φk(w) contains no monomial

belonging to Λ≤1V1.ΛV0 that is, for all w ∈ Wk,

φk(w) ∈ (Λ≥2V≥1 + Λ+V≥2).ΛV0. (9)
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Let j ∈ J2 so that dwj ∈ ΛW (1). Now d(φ1(dwj)) = φ1(ddwj) = 0 and so φ1(dwj)

is closed. Since dwj ∈ Λ+W1.ΛW0 (asW has standard lower gradation) and since φ1

satisfies condition (7), it follows that φ1(dwj) is exact. Write φ1(dwj) = dzj where

zj = uj + vj with uj ∈ Λ≤1V1.ΛV0 and every monomial present in vj having at least

two factors from V1 or a factor from V≥2. Since φ1 satisfies (7), and since duj ∈ ΛV0,

we see that duj = 0 as φ1(dwj) = duj + dvj. We set φ2(wj) := vj ∀j ∈ J2 which

defines a dgca morphism φ2 : ΛW (2) → ΛV extending φ1. Note that φ2 satisfies

(9).

Having obtained, inductively, a dgca morphism φk : ΛW (k)→ ΛV satisfying (7)

and (9), we extend it to a dgca morphism φk+1 : ΛW (k + 1)→ ΛV .

Let j ∈ Jk+1, k ≥ 2. Note that dφk(dwj) = φk(ddwj) = 0. It follows that, since

φk(dwj) ∈ Λ+V≥1.ΛV0 (using induction and the fact that W has standard lower

gradation), it is exact. Write φk(dwj) = dzj. Since φk satisfies (7) (already proved )

and (9), dzj has no monomial from ΛV0. Write zj = uj + vj where uj ∈ Λ≤1V1.ΛV0,

vj ∈ (Λ≥2V1 + Λ+V≥2).ΛV0. Then duj ∈ ΛV0 and dvj ∈ ΛV0.Λ
+V≥1. It follows that

duj = 0 and so φk(dwj) = dvj. Set φk+1(wj) := vj, ∀j ∈ Jk+1. This leads to algebra

homomorphism ΛW (k+1)→ ΛV that extends φk. Note that dφ(wj) = dvj = dzj =

φ(dwj) ∀j ∈ Jk+1. Hence φk+1 is a dgca morphism. It is clear that φk+1 satisfies

(7) and (9). This completes the induction step. Thus we obtain a dgca morphism

φ : ΛW → ΛV defined by the condition that φ|ΛV (k) = φk. It is clear that φ is a

Sullivan representative for f and satisfies (7), and (9) for all w ∈ W (k), k ≥ 2. Now

property (8) follows immediately as (9) holds for φ. �

8.2. Proof of theorem 7.5. Now, if α ∈ πQ
n−1(Z) be special, as MZ = (ΛU, d)

then 〈u, α〉 = 0 for u ∈ Uk, k 6= 1.

Now, if f : Z → X is formal map, then its Sullivan representative φ : (ΛV, d) →

(ΛU, d) can be built from f ∗ : H∗(X) → H∗(Z). Using lemma 8.5, we choose

a Sullivan representative φ : (ΛV, d) → (ΛU, d) so that Q(φ)(V≥2) ⊂ U≥2 and
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Q(φ)(V0) ⊂ U0.

〈Q(φ)(v), α〉 = 〈v, f∗(α)〉

So, v ∈ Vk, k 6= 1 implies Q(φ)(v) ∈ Uk, k 6= 1 so α is special leads to the fact that

〈Q(φ)(v), α〉 = 0. So, 〈v, f∗(α)〉 = 0 for v ∈ Vk, k 6= 1, so f∗(α) is a special element.

8.3. Examples. In this section we construct various illustrative examples. We first

give an example of a finite CW complex with only even dimensional cells which is

not formal.

Example 8.6. (i) Let X = S2∨S2∨S2. Then X is formal. Computing the minimal

modelMX = Λ(V ) of X up to degree five we have the following table.

deg i dimV i basis differential

2 3 a1, a2, a3 dai = 0

3 6 b11, b22,b33 dbii = a2
i

b12, b23, b13 dbij = aiaj

4 6 fij, i 6= j dfij = biiaj − aibij

5 3 k12, k23, k13 dkij = ajfij − aifji + biibjj

Let α ∈ πQ
5 (X) be such that 〈k12, α〉 = 1. Let Y = X ∪α e6. Then Y is not formal

by Theorem 7.2 because the class [u] ∈ H6(Y ;Q) ∼= Q is indecomposable.

(ii) Consider the same space Y regarded as a subcomplex of Ỹ = CP 3 × CP 3 ×

CP 3 ∪α e6 where we regard X as the 2-skeleton of X̃ := CP 3 × CP 3 × CP 3. Note

that π5(X̃) = 0 and so [α] = 0. It follows that Ỹ is formal. Since Y is not formal

we see that a subcomplex of a formal space with only even-dimensional cell is not

necessarily formal.

Our next example shows that merely assuming u (as in Theorem 7.2) to be

decomposable is not sufficient to conclude formality of Y .
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Example 8.7. Let X = X0 ∨ X1 where X0 = S2 ∨ S2 ∨ S2, X1 = {(x, y, z) ∈

S2 × S2 × S2 | x or y or z equals ∗} where ∗ denotes the base point of S2. Then

X0 is formal, being a wedge of formal spaces. The space X1 is formal since it

is the 4-skeleton of the formal S2 × S2 × S2 where the 2-sphere is given the cell

structure with one 0-cell and one 2-cell. ThereforeX is formal. One hasH∗(X0;Q) =

Q[a1, a2, a3]/〈a2
1, a

2
2, a

2
3, a1a2, a2a3, a3a1〉, |ai| = 2 and

H∗(X1;Q) = Q[x1, x2, x3]/〈x2
1, x

2
2x

2
3, x1x2x3〉, |xi| = 2. The cohomology algebra of

X is readily computed from this. The minimal model (MX , d) = (Λ(V ), d) of X can

be computed from the description of H∗(X;Q) since X is formal. We obtain that

V0 = V 2 = H2(X;Q) is six dimensional, with basis a1, a2, a3, x1, x2, x3 all in degree

2 where d(ai) = d(xi) = 0, V 3 ⊂ V1 has basis bij(1 ≤ i ≤ j ≤ 3), vi, wij(1 ≤ i, j ≤ 3),

where dbij = aiaj, dvi = x2
i , dwij = aixj. Also note that there are elements fij ∈

V2 ∩ V 4, i 6= j such that dfij = aibij − ajbii, elements kij ∈ V3 ∩ V 5, i 6= j, such that

dkij = ajfij−aifji+ biibjj and there is an element z ∈ V1, |z| = 5, with dz = x1x2x3.

Let α : S5 → X be such that 〈k12, [α]〉 = l, 〈z, [α]〉 = m where l,m are non-zero

integers. We observe that α is in the kernel of the Hurewicz homomorphism. Then

y := mk12− lz vanishes on [α], dαy = mdk1,2− lx1x2x3, dαz = x1x2x3 +muα. So, in

H∗(Mα) ∼= H∗(Y ) we obtain [uα] = u = (−1/m)x1x2x3, a decomposable element.

Note that k12 ∈ V3 ∩ V 5 and 〈−, [α]〉 : V3 → Q is non-zero.

We claim that Y is not formal. Suppose that Y is formal then it is readily seen

that, writingMY = ΛW ,W j = V j, j ≤ 4, and V 5 ∼= W 5⊕Qz whereW 5 is identified

with the kernel of [α]. In particular y ∈ W 5. Let Ψ :MY → H∗(Y ) be a dgca mor-

phism that induces isomorphism in cohomology. Then Ψ|W j = Φ|W j, j ≤ 3, where

Φ : MX → H∗(X) is a suitable quasi-isomorphism. Since Ψ(ai) = Φ(ai) = ai and

since ai.H4(Y ;Q) = 0 we get 0 = Ψ(dY (y)) = Ψ(mdg12 − lx1x2x3) = Ψ(m(ajfij −

aifji + biibjj)− lx1x2x3) = −lx1x2x3 6= 0, a contradiction. Hence Y is not formal.
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9. COHOMOLOGY OF GRASSMANN MANIFOLD

9.1. Cellular structure of Grassmann manifold. Let Gn,k denote the com-

plex Grassmann manifold of k-dimensional vector subspaces of Cn. Then Gn,k =

SL(n,C)/Pk where Pk is the parabolic subgroup consisting of those linear transfor-

mations of Cn which stabilize Ck ⊂ Cn, the coordinate subspace spanned by the

first k standard basis vectors ej, 1 ≤ j ≤ k. Let U(n) denote the unitary group.

Then Gn,k = U(n)/U(k) × U(n − k). Thus we see that Gn,k is a compact smooth

manifold of complex dimension k(n− k). In fact Gn,k has the structure of a smooth

projective variety. The variety Gn,k has an algebraic cell decomposition given by

Schubert cells, the labeling set for which is the coset space In,k = Sn/(Sk × Sn−k),

where Sn denotes the symmetric group. The set In,k may be identified with the set

of all sequences i = i1 < · · · < ik where 1 ≤ ir ≤ n for all r ≤ k. The Schubert

variety X(i) corresponding to i is

X(i) = {A ∈ Gn,k | dimCA ∩ Cir ≤ r, 1 ≤ r ≤ k}.

This is the closure of the Schubert cell C(i) = {A ∈ Gn,k | dimCA ∩ Cir−1 =

r − 1, dimCA ∩ Cir = r, 1 ≤ r ≤ k} ⊂ Gn,k which is isomorphic to the affine

space Cd where d = dimX(i). It is equal to the orbit B.ei of the point ei :=

Cei1 + · · · + Ceir ∈ Gn,k where B is the Borel subgroup that fixes the standard

flag C1 ⊂ C2 ⊂ · · ·Cn. Writing matrices with respect to the standard basis, B

is the group of upper triangular matrices in SL((n,C). The (complex) dimension

of X(i) equals
∑

1≤r≤k(ir − r). The Chevalley-Bruhat order on In,k is obtained

as i ≤ j if iq ≤ jq for 1 ≤ q ≤ k. In particular, X(i) ∩ X(j) = X(t) where

tq = min{iq, jq}, 1 ≤ q ≤ k.

9.2. Cohomology of Gn,k. The homology classes of Schubert varieties X(i) form a

Z-basis zi ofH∗(Gn,k;Z). The dual basis elements ofH∗(Gn,k;Z) = HomZ(H∗(Gn,k;Z),Z)
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will be denoted [X(i)], i ∈ In,k. Thus [X(i)](zj) = δi,j. We shall denote by Xi the

special Schubert variety corresponding to (1, 2, . . . , k − 1, k + i) ∈ In,k having (com-

plex) dimension i. The elements [Xi] ∼= Pi, 1 ≤ i ≤ n− k, generate the cohomology

ring H∗(Gn,k;Z). Note that [X0] = 1 ∈ H0(Gn,k;Z).

The structure constants [X(i)].[Xj] =
∑

r c
r
i,j.[X(r)] are determined by the Pieri

formula which expresses [X(i)].[Xj] in terms of the basis elements and the Giambelli

formula which expresses [X(i)] as a polynomial in the [Xj], 0 ≤ j ≤ k. In order to

describe these formulae we associate to each i ∈ In,k a partition ν(i) = ν = ν1 ≥

ν2 ≥ · · · ≥ νk ≥ 0 where νk−p+1 := ip − p of dimCXi =
∑
νp =: |ν| into at most k

parts. Denote by Xν the Schubert variety X(i). Thus the partition corresponding

to Xj is j. We recall below the Pieri and the Giambelli formulae. See [11], [8] for

details.

• Pieri formula. [Xν ].[Xj] =
∑

µ[Xµ] where the sum is over all partitions µ of |ν|+j

such that µk ≥ νk ≥ · · · ≥ µ1 ≥ ν1 where µi − νi ≤ j for all i.

• Giambelli formula. The element [Xν ] equals the determinant of the k × k matrix

([Xνi+j−i]) where it is understood that [Xr] = 0 if r < 0.

Let γn,k denote the tautological bundle over Gn,k whose fibre over V ∈ Gn,k is

the vector space V . Then γn,k is naturally a subbundle of the trivial complex vector

bundle nε of rank n over Gn,k. Let γ⊥n,k denote the orthogonal complement of γn,k

with respect to the standard hermitian product on Cn. Thus the fibre of γ⊥n,k over

V ∈ Gn,k is V ⊥ ⊂ Cn. (Note that one has an isomorphism of complex vector bundles:

γ⊥n,k
∼= nε/γn,k, where nε denotes the trivial bundle of rank n.) Since γn,k⊕γ⊥n,k ∼= nε,

the following relation holds in H∗(Gn,k;Z):

c(γn,k).c(γ
⊥
n,k) = 1 (10)

where c(ξ) = 1 + c1(ξ) + . . . + cm(ξ) is the total Chern class of a complex vector

bundle of rank m, ci(ξ) being the i-th Chern class of ξ. Using (10) one can express
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ci(γ
⊥
n,k) as a polynomial hi(c1(γn,k), . . . , ck(γn,k)) for all i. In particular, hj = 0 if

j > n− k.

It is well-known that the integral cohomology algebra of Gn,k is generated by

cj := cj(γn,k), 1 ≤ j ≤ k, subject only to relations arising (10). More precisely,

H∗(Gn,k;Z) is the quotient of the polynomial ring in the ‘indeterminates’ ci(γn,k), 1 ≤

i ≤ k, modulo the ideal generated by hj(c1(γn,k), . . . , ck(γn,k)), j > n− k. It follows

that there are no algebraic relations among c1(γn,k), . . . , ck(γn,k) in dimensions up

to 2(n − k). When n − k < j ≤ k, it can be seen using the relation hi = 0, n −

k < i ≤ j, that cj(γn,k) is expressible as a polynomial in c1(γn,k), . . . , cj−1(γn,k).

The cohomology class [Xi] equals ci(γ⊥n,k), and, consequently there are no algebraic

relations among [Xi], 1 ≤ i ≤ k, in dimensions up to 2(n− k) and, when k > n− k,

[Xj] ∈ H∗(Gn,k;Z) is decomposable for n− k < j ≤ k. Using the Giambelli formula

one obtains a formula for the class of any Schubert variety [Xν ] in terms of the

Chern classes ci(γn,k). See [8, §14].

9.3. Facts concerning cohomology ring of Gn,k. The cohomology ring of Gn,k

has a presentation

H∗(Gn,k;Z) = Z[c1, . . . , ck]/〈hn−k+1, . . . , hn〉

as the quotient of the polynomial ring modulo the ideal generated by the elements

hj, n− k+ 1 ≤ j ≤ n, where |ci| = 2i; here hj is defined as the 2j-th degree term in

the expansion of (1 + c1 + · · ·+ ck)
−1. Under the above isomorphism, ci corresponds

to the element ci(γn,k) ∈ H2i(Gn,k;Z), 1 ≤ i ≤ k.

The following are well-known facts concerning the cohomology ring:

(1) The cohomology group Hr(Gn,k;Z) is a free abelian group for any r; it is zero

when r is odd. This follows from the fact that Gn,k admits a cell-structure with cells

only in even dimensions. See, for example, p.196, [11].
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(2) The elements hj, n−k+1 ≤ j ≤ n, form a regular sequence in the polynomial

algebra Rk := Z[c1, . . . , ck] for any n ≥ 2k. That is, hn−k+1 6= 0 and hn−k+r is a not

a zero divisor in Rk/〈hn−k+1, · · · , hn−k+r−1〉, 2 ≤ r ≤ k. See for example [3].

(3) The element cd1 6= 0 where d = dimCGn,k = k(n−k). This follows immediately

from the fact that Gn,k has the structure of a Kähler manifold with second Betti

number 1. In fact it is known that H2d(Gn,k;Z) is generated by the element cn−kk

and that cd1 = Ncn−kk whereN = (d!1!2! · · · (k−1)!)/((n−k)! · · · (n−1)!). See [8, §14].

(4) The natural embeddings i : Gn,k ⊂ Gn+1,k and j : Gn,k ⊂ Gn+1,k+1, induce sur-

jections i∗ : H∗(Gn+1,k;Z) → H∗(Gn,k,Z) and j∗ : H∗(Gn+1,k+1;Z) → H∗(Gn,k;Z)

where i∗(cr(γn+1,k)) = cr(γn,k), 1 ≤ r ≤ k and j∗(cr(γn+1,k+1)) = cr(γn,k) when r ≤ k

and j∗(ck+1(γn+1,k+1)) = 0. The homomorphism i∗ induces isomorphisms in coho-

mology in dimensions up to 2(n− k) and j∗ induces isomorphisms in cohomology in

dimensions up to 2k.

9.4. Indecomposable Schubert classes. Suppose that X is a union of Schubert

varieties in Gn,k. We determine the Schubert classes [Xν ] ∈ H∗(X;Z) which are in-

decomposable in the cohomology ring H∗(X;Z). We need only consider the problem

when dimXν = dimX since otherwise we may replace X by its 2|ν|-dimensional

skeleton X(2|ν|). Also we may assume, without loss of generality, that X is a equidi-

mensional variety.

First we consider the case where X = Gn,k and assume, without loss of generality,

that 2k ≤ n.

Lemma 9.1. Let 1 ≤ k ≤ bn/2c. The Schubert class [Xν ] is indecomposable in

H∗(Gn,k;Z) if and only if 0 ≤ ν2 ≤ 1 and |ν| ≤ k. Furthermore, if [Xν ] is indecom-

posable, then [Xν ]− (−1)|ν|−ν1 [X|ν|] is decomposable.
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Proof. As remarked above, there are no algebraic relations among the [Xj], 1 ≤ j ≤

k.

Let 0 ≤ ν2 ≤ 1 and |ν| ≤ k. Put r := |ν| − ν1 + 1. Expanding the determinant

on the right hand side of the Giambelli formula for [Xν ] we obtain the term

(−1)r+1a1,ra21 . . . ar−2,r−1ar+1,r+1 . . . ak,k

where (ai,j) = ([Xνi+j−i]). We see that a1,r = [X|ν|], ai−1,i = [X0] = 1 if 2 ≤ i ≤ r

and ai,i = [X0] = 1 when i > r. Hence the term (−1)r+1[X|ν|] occurs in the

formula for [Xν ]. (Note that there can be no cancellation of terms.) Since [Xj] is

indecomposable if and only if j ≤ k we see that [Xν ] is indecomposable and that

[Xν ]− (−1)|ν|−ν1 [X|ν|] is decomposable.

It is easily seen, again using the Giambelli formula, that [Xν ] is decomposable if

ν2 ≥ 2 or if |ν| > k. �

Let X be a union of Schubert varieties. The inclusion map X ↪→ Gn,k induces a

surjection in cohomology whose kernel is generated (as an abelian group) by those

Schubert cells which are not contained in X. The ring structure of H∗(X;Z) is again

obtained from the Pieri and Giambelli formulae by simply setting equal to zero the

Schubert classes [Xj] which occur in these formulae whenever Xj is not contained in

X. We shall be particularly concerned with such an X when it is equidimensional,

that is, every irreducible component of X has the same dimension. As an immediate

corollary, we obtain the following criterion for the irreducibility of [Xi] ∈ H∗(X;Z).

We make no notational distinction between the Schubert class [Xi] ∈ H∗(Gn,k;Z)

and its image in H∗(X;Z).

Proposition 9.2. Let 2 ≤ r ≤ k ≤ bn/2c. Suppose that X ⊂ Gn,k is a union of

Schubert varieties all having dimension r over C.

(i) Suppose that Xν is not contained in X for some ν such that ν2 ≤ 1 and |ν| = r.

Then there are no indecomposable classes in H2r(X;Z).
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(ii) If X contains all the Schubert varieties Xν with ν2 ≤ 1 where |ν| = r, then each

such [Xν ] ∈ H2r(X;Z) is indecomposable.

Proof. (i) Suppose that [Xµ] ∈ H2r(Gn,k;Z) is indecomposable. By Lemma 9.1, it is

clear that [Xµ]− ε[Xν ] ∈ H2r(Gn,k;Z) is decomposable where ε = 1 or −1. As [Xν ]

maps to zero in H2r(X;Z) it follows that [Xµ] maps to a decomposable element.

(ii) Our hypothesis, together with Lemma 9.1, implies that H2r(X;Z) isomorphic

to the quotient of H2r(Gn,k;Z) by a subgroup generated by certain decomposable

elements. It follows that any indecomposable element in H2r(Gn,k;Z) is mapped to

an indecomposable element in H2r(X;Z). This completes the proof. �

Application 9.3. LetG6,3 denote the complex Grassmann manifold of 3-dimensional

vector subspaces of C6. Now recall some facts regarding cell structure and cohomol-

ogy ring of G6,3 which we have already seen for general Gn,k in §9.1 and §9.2.

The manifold G6,3 is a compact smooth manifold of complex dimension 9 and it has

the structure of a smooth projective variety. The variety G6,3 has an algebraic cell

decomposition given by Schubert cells, the labeling set for which is the coset space

I6,3 = S6/(S3×S3), where S6 and S3 denote the symmetric groups. The set I6,3 may

be identified with the set of all sequences i = i1 < i2 < i3 where 1 ≤ ir ≤ 6 for all

r ≤ 3. The Schubert variety X(i) corresponding to i is

X(i) = {A ∈ G6,3 | dimCA ∩ Cir ≤ r, 1 ≤ r ≤ 3}.

This is the closure of the Schubert cell C(i) = {A ∈ G6,3 | dimCA ∩ Cir−1 =

r − 1, dimCA ∩ Cir = r, 1 ≤ r ≤ 3} ⊂ G6,3. The complex dimension of X(i) equals∑
1≤r≤3(ir − r). The Chevalley-Bruhat order on I6,3 is obtained as i ≤ j if iq ≤ jq

for 1 ≤ q ≤ 3. In particular, X(i) ∩X(j) = X(t) where tq = min{iq, jq}, 1 ≤ q ≤ 3.

The integral cohomology algebra of G6,3 is Z[c1, c2, c3]/〈h4, h5, h6〉 where deg ci is

2i and deg hj is 2j and h1, h2, h3 forms a regular sequence (see example (8), §5.1).

Similarly, the rational cohomology algebra of G6,3 is Q[c1, c2, c3]/〈h4, h5, h6〉. And
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also using Giambelli formula (see §9.2), we shall be able to compute cohomology

class corresponding to each cell.

Using Theorems 7.2 and 7.5, we shall prove the formality of union of same dimen-

sional Schubert varieties in G6,3.

The following is the CW complex structure of G6,3

(1) The Schubert varieties of G6,3 of complex dimension ≤ 2, are smooth complex

projective varieties, so are formal.

(2) The union of these two Schubert varieties X(125) ∪X(134) is also formal as

we have X(125)∪X(134) = X(134)∪C(125). The minimal modelMX(134) =MCP2

with standard lower gradation (abbreviated s.l.g.) does not contain any non-zero

element in degree 3, so C(125) is attached by the trivial element in π3(X(134)) =

π3(CP2) = 0, which is in the kernel of the Hurewicz map. Therefore, by (i) of

Theorem 7.2, X(134) ∪ C(125) is a formal space.

(3) For complex dimension 3, there are three Schubert varieties, namely X(234),

X(135), X(126). The Schubert variety X(1, 2, 6) and X(234) are homeomorphic to
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CP3, so are formal.

Let X = X(135). In (3), we have seen that X(4) = X(134) ∪ X(125) which is

formal. So we can compute its minimal model from its cohomology algebra, which is

M≤5

X(4) = (Λ(x1, x2, y1, y2))≤5, where deg xi is 2i, deg yj is odd, d(xi) = 0, d(y1) = x3
1,

d(y2) = x1x2. Therefore, we have constructed a minimal model (ΛV, d) up to degree

5 with s.l.g. such that xi ∈ V0, yj ∈ V1. Then Vj ∩ V 5 = 0, j 6= 1. This shows

that the attaching map of C(1, 3, 5) to X(4) is special and also is in the kernel of

the Hurewicz homomorphism. Also the cohomology class u, as defined in Theorem

7.2 is decomposable. Thus, applying (ii) of Theorem 7.2, we see that X = X(135)

is formal.

(4) Now consider X = X(234) ∪ X(135). We have already shown that X(135)

is formal. Now, we can compute its minimal model from its cohomology algebra.

We can show that the attaching map of C(234) to X(135) is special and in the

kernel of the Hurewicz map, so satisfies the criterion of (ii) of Theorem 7.2, so

X = X(234) ∪X(135) is formal.

Similarly we can show that X(135)∪X(126) and X(234)∪X(126) is formal. Though

here we shall give a different proof of the formality of X(234) ∪X(126).

First, I shall prove that the inclusion of i : X(125) ↪→ X(125) ∪ X(234) is for-

mal. This is because i is the composition of i1 and i2, i.e. i = i2 ◦ i1 where

i1 : X(125) ↪→ X(125) ∪ X(134) and i2 : X(125) ∪ X(134) ↪→ X(125) ∪ X(234).

The inclusion i1 is formal as we have already seen in (3) that the attaching map

of C(125) is the trivial element in π3(X(134)) = π3(CP2) = 0 and in the kernel of

Hurewicz homomorphism. So by Theorem 8.2, i1 is formal.

In (4) we have constructed the minimal model of X(1, 3, 4) ∪X(1, 2, 5) with s.l.g.,

such that Vj ∩ V 5 = 0, j 6= 1. Therefore, the attaching map of C(234) to X(134) ∪

X(125) is special and in the kernel of the Hurewicz homomorphism and the coho-

mology class u is decomposable. So, by Theorem 8.2, the inclusion i2 is formal.

Then i = i2 ◦ i1 is formal (see §2.4).
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The Schubert variety X(125) is already proven to be formal and its minimal model

with s.l.g. is as follows:

M(X(125)) = (Λ(V ), d), where V = V0 ⊕ V1, V0 = Qv1, V1 = Qv2, deg v1 = 2, deg

v2=5, d(v1) = 0, d(v2) = v3
1.

Evidently, Vj ∩ V 5 = 0, j 6= 1 and so the attaching map α of C(126) to X(125) is

special. Therefore, by Theorem 8.2, i∗(α) is special too. So, C(126) is attached to

X(234) ∪ X(125) by a special homotopy element and the attaching map is in the

kernel of the Hurewicz homomorphism and the cohomology class u is decomposable.

Thus, by Theorem 7.2, X(234) ∪X(126) is formal.

(5) Let X be a union of complex k-dimensional Schubert varieties with the prop-

erty that X2(k−1) = G
2(k−1)
6,3 , then we shall prove that X is formal. We shall prove

this by induction on k. The 2(k − 1)-st skeleton X2(k−1) = X1 has same property,

i.e. X2(k−2)
1 = G

2(k−2)
6,3 . By induction, X1 is formal. Then we can compute its min-

imal model expliciyely from its cohomology algebra up to dimension 2k − 1. Its

minimal model with s.l.g. is of the form (ΛV, d), where V ≤2k−1 = V 2k−1
0 ⊕ V 2k−1

1 .

This happens because the cohomology algebra of G6,3 is the quotient of polynomial

algebra by an ideal, generated by a regular sequence. Then we can show that the

attaching maps of cells will be special (torsion or free element), and in the kernel of

the Hurewicz homomorphism in both cases. Therefore, X will be formal. This will

prove most of the union of Schubert varieties of same complex dimension ≥ 4 will

be formal. For remaining few cases, we can prove formality using above techniques

repeatedly.
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10. MAPS BETWEEN GRASSMANN MANIFOLDS

In this chapter we prove the following theorem.

10.1. Statement of theorems.

Theorem 10.1. Let 1 ≤ k ≤ bn/2c, 1 ≤ l ≤ bm/2c and k < l, where m,n are

positive integers such that m − l > n − k. Suppose that m − l ≥ 2k2 − k − 1 or

1 ≤ k ≤ 3. Then any homomorphism of graded rings φ : H∗(Gn,k;Z)→ H∗(Gm,l;Z)

vanishes in positive dimensions.

As a corollary to the above theorem we obtain the following result on the homo-

topy classification of maps between the complex Grassmann manifolds.

Theorem 10.2. Let l, k,m, n be as in the above theorem. Then the set [Gm,l, Gn,k]

of homotopy classes of maps is finite and moreover each homotopy class is rationally

null-homotopic.

As another application of Theorem 10.1 we obtain the following invariant subspace

theorem. See [20] for an analogous result for real Grassmann manifolds. We shall

regard Cn as a subspace of Cm consisting of vectors with last m − n coordinates

zero. Thus, if y ∈ Gn,k and x ∈ Gm,l it is meaningful to write y ⊂ x.

Theorem 10.3. Let f : Gm,l → Gn,k be any continuous map where l, k,m, n are as

in Theorem 10.1. Then there exists an element x ∈ Gm,l such that f(x) ⊂ x.

We point out that the classification of self-maps of a complex Grassmann manifold

has been studied in terms of their induced endomorphisms of the cohomology algebra

by several authors. See [21], [5], [9], [14], [15]. Similar study of maps between two

distinct (real) Grassmann manifolds seems to have been initiated in [17]. Sankaran

and Sarkar [28] have studied the existence (or non-existence) of maps of non-zero
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degree between two different complex (resp. quaternionic) Grassmann manifolds of

the same dimension. The same problem for oriented real Grassmann manifolds has

been settled by Ramani and Sankaran [27].

Our methods are straightforward. To prove Theorem 10.1, we reduce the problem

to one about endomorphisms of the cohomology ring of a certain Grassmann mani-

fold and appeal to a result of Glover and Homer [9]. Theorem 10.2 is proved using

a result due to Glover and Homer [10], namely, any map between any two complex

Grassmann manifolds—indeed complex flag manifolds—is formal. Our approach to

the proof of Theorem 10.3 is similar in spirit to that of [20, Theorem 1.1].

It has been conjectured that if φ is any endomorphism of the graded Z-algebra

H∗(Gn,k;Z) which vanishes on H2(Gn,k;Q), then φ vanishes in all positive degrees.

See [9]. Our proof shows that the conjecture, if true, implies the validity of Theorems

10.1 and 10.2 hold without the restriction m− l ≥ 2k2 − k − 1.

10.2. Proofs of the above theorems. Recall that the cohomology ring of Gn,k

has a presentation

H∗(Gn,k;Z) = Z[c1, . . . , ck]/〈hn−k+1, . . . , hn〉

as the quotient of the polynomial ring modulo the ideal generated by the elements

hj, n− k+ 1 ≤ j ≤ n, where |ci| = 2i; here hr is defined as the 2r-th degree term in

the expansion of (1 + c1 + · · ·+ ck)
−1. Under the above isomorphism ci corresponds

to the element ci(γn,k) ∈ H2i(Gn,k;Z), 1 ≤ i ≤ k. We shall denote the polynomial

ring Z[c1, c2, · · · , ck] by Rk.

Proof of Theorem 10.1: One has an inclusion U(m − l + k) ⊂ U(m) where a ma-

trix X ∈ U(m − l + k) corresponds to the matrix in block diagonal form with

diagonal blocks X, Ik−l. (Here Ik−l denotes the identity matrix.) This induces an

imbedding Gm−l+k,k ⊂ Gm,l. Similarly, since m − l > n − k, we have the inclusion

U(n) ⊂ U(m− l+k) which induces an imbedding Gn,k ⊂ Gm−l+k,k. These inclusions

are merely compositions of appropriate inclusions considered in Fact (4) (§9.3) above.
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Let α : H∗(Gm,l,Z) → H∗(Gm−l+k,k;Z) and β : H∗(Gm−l+k,k;Z) → H∗(Gn,k;Z)

be the inclusion-induced homomorphisms. It follows from Fact (4) (§9.3) that

β(ci(γm−l+k,k)) = ci(γn,k), i ≤ k. Also, α(ci(γm,l)) = ci(γm−l+k,k), i ≤ k. Then

we obtain an endomorphism α ◦ φ ◦ β of the graded ring H∗(Gm−l+k,k) where

φ : H∗(Gn,k;Z) → H∗(Gm,l;Z) is any graded ring homomorphism. Note that our

hypothesis on k, l,m, n implies that dimGn,k < dimGm,l. Hence by Fact (3) (§9.3)

above, φ(c1(γn,k)) = 0. Therefore α ◦ φ ◦ β(c1(γm−l+k,k)) = 0. Our hypothesis that

m − l ≥ 2k2 − k − 1 or k ≤ 3 implies, by [9], that this endomorphism is zero in

positive dimensions. �

We remark that Theorem 10.1 and the above proof hold when the coefficient ring

Z is replaced by any subring of Q throughout. If φ is induced by a continuous map

f , then f ∗ is zero for any commutative ring R.

Before taking up the proof of Theorem 10.2, we recall a relation between the

homotopy class of a map and the homomorphism it induces in cohomology with

rational coefficients.

Let X be any simply connected finite CW complex and let X0 denote its ra-

tionalization. Denoting the minimal model of X by MX , one has a bijection

[X0, Y0] ∼= [MY ,MX ], [h] 7→ [Φh] where on the left we have homotopy classes of

continuous maps X0 → Y0 and on the right we have homotopy classes of differential

graded commutative algebra homomorphism of the minimal models MY → MX

(as described in §3.2).

We say that a graded Q-algebra is “good” if it is of the form

Q[u1, u2, · · · , uk]/I

where I is generated by polynomials f1, f2, · · · , fr which form a regular sequence,

i.e., fl does not represent a zero divisor in Q[u1, u2, · · · , uk]/〈f1, f2, · · · , fl−1〉 for l =

1, 2, · · · , r. If X is a simply connected space with “good” cohomology algebra, then

X is a formal space and the minimal model of X is of the formMX = (Λ(V0⊕V1), d)
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where V0 is a vector space generated by x1, x2, · · · , xk, degree of xi is even and d on V0

is 0; V1 is a vector space generated by y1, y2, · · · , yr, degree of yl is odd and d(yl) = fl

and as X is a formal space, so there is a quasi-isomorphism ρX :MX → H∗(X;Q)

defined by ρX(xi) = ui and ρX(yj) = 0.

For any morphism φ : MY → MX between minimal models of simply connected

spaces with “good” cohomology algebra, we have the following diagram which is

evidently commutative

(MY , d)
φ→ (MX , d)

ρY ↓ ↓ ρX

H∗(Y )
φ∗→ H∗(X).

Therefore, if X and Y are simply connected spaces with “good” cohomology algebra,

then we have the following bijection

[MY ,MX ] ∼= Homalg(H
∗(Y ;Q), H∗(X;Q)).

Thus, if X and Y are simply connected spaces with “good” cohomology algebra,

then we have the following bijection (see §16, [4])

[X0, Y0] ∼= Homalg(H
∗(Y ;Q), H∗(X;Q)).

It is known that complex Grassmann manifold have “good” cohomology algebra.

(See 9.2 and 9.3).

Thus we have

Theorem 10.4. Let X, Y be complex Grassmann manifolds. Then [h] 7→ H∗(h;Q)

establishes a bijection from [X0, Y0] to the set of graded Q-algebra homomorphisms

Homalg(H
∗(Y ;Q), H∗(X;Q)). �

We now turn to the proof of Theorem 10.2.
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Proof of Theorem 10.2: By Theorem 10.1 we know that any such f ∗ is the trivial

homomorphism (which is identity in degree zero and is zero in positive dimensions).

By the above theorem f0 is null-homotopic. This proves the second statement of

Theorem 10.2. The first statement follows from the second since there exist, up to

homotopy, at most finitely many continuous maps f : Gm,l → Gn,k having the same

rationalization f0. (See [30, §12].) This completes the proof of Theorem 10.2. �

Next we turn to the proof of Theorem 10.3; we use cohomology with rational

coefficients although one may use integer coefficients.

We shall write M,N respectively for Gm,l and Gn,k. Suppose that 1 ≤ k < l,

m − l ≥ n − k. As usual we assume that 2k ≤ n, 2l ≤ m. Let V ⊂ M × N be the

subspace V := {(x, y) ∈M×N | y ⊂ x} ⊂M×N . (Recall that Cn = Cn⊕0 ⊂ Cm.)

One has a map π : V → N that sends (x, y) ∈ V to y ∈ N . This is the projection

of a fibre bundle over N with fibre space Gm−k,l−k. To see this, regard V as a

submanifold of the complex flag manifold F = U(m)/U(k)×U(l− k)×U(m− l) =

{(A,B) | dimCA = k, dimCB = l− k,A ⊥ B,A,B ⊂ Cm} where a point (x, y) ∈ V

is identified with the point (y, x′) ∈ F where x′ is the orthogonal complement of y

in x so that x′ ⊥ y and x = x′ + y. The projection map p : F → Gm,k, defined as

(A,B) 7→ A ∈ Gm,k, of the Gm−k,l−k-bundle θ over Gm,k maps V onto Gn,k ⊂ Gm,k.

In fact V = p−1(Gn,k) and so π : V → Gn,k is the projection of the bundle θ|Gn,k
.

As usual we denote by [N ] the generator of the top cohomology groupH2k(n−k)(N ;Q).

Lemma 10.5. Let c = codimM×NV = 2k(m − l). Let v ∈ Hc(M × N ;Q) denote

the cohomology class dual to j : V ↪→M ×N . Then v ∪ [N ] 6= 0 in H∗(M ×N ;Q).

Proof. The cohomology class [N ] is dual to the submanifold i : M ↪→M ×N where

i(x) = (x,Ck), x ∈ M . First we shall show that i(M) intersects V transversely.

Note that i(M) ∩ V = {(x,Ck) | Ck ⊂ x ⊂ Cm} ∼= Gm−k,l−k, which is the fibre over

the point Ck ∈ N of the bundle projection π : V → N . Therefore Ti(x)V/Ti(x)(V ) ∩

Ti(x)i(M)) ∼= TClN . Since Ti(x)(M×N)/Ti(x)M ∼= TClN , follows that i(M) intersects
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V transversely. Therefore v ∪ [N ] is dual to the submanifold V ∩ i(M) ⊂ M × N .

Since V ∩ i(M) ∼= Gm−k,l−k ⊂ Gm,l = M represents a non-zero homology class in

H2(l−k)(m−l)(M ;Q) ∼= H2(l−k)(m−l)(M ;Q) ⊗H0(N ;Q) ⊂ H2(l−k)(m−l)(M ×N ;Q), its

Poincaré dual, which equals v∪[N ], is a non-zero cohomology class inH2d(M×N ;Q)

where d = k(m− l) + k(n− k). �

Proof of Theorem 10.3: Consider the map φ := id× f : M ×M → M ×N defined

as φ(x, y) = (x, f(y)). Denote by δ : M →M ×M the diagonal map.

We need to show that φ(δ(M)) ∩ V 6= ∅.

Let v ∈ H∗(M × N ;Q) denote the cohomology class dual to the manifold V ⊂

M × N and let ∆ ∈ H∗(M ×M ;Q) denote the diagonal class, i.e., the class dual

to δ(M) ⊂ M ×M . As is well-known v is in the image of the inclusion-induced

homomorphism H∗(M ×N,M ×N \V ;Q)→ H∗(M ×N ;Q). (See for example [19,

Chapter 11].) By the naturality of cup-products and by considering the bilinear map

H∗(M×N,M×N \φ(δ(M));Q)⊗H∗(M×N,M×N \V ;Q)
∪→ H∗(M×N,M×N \

(V ∩φ(δ(M)));Q) induced by the inclusion maps, it follows that if V ∩φ(δ(M)) = ∅,

then v∪w = 0 for any w ∈ H+(M ×N,M ×N \φ(δ(M));Q). (See [29, §6, Chapter

5].) In particular, this holds for the class w that maps to the cohomology class

αf dual to the submanifold φ(δ(M)) ↪→ M × N under the inclusion-induced map

H2k(n−k)(M ×N,M ×N \ φ(δ(M));Q)→ H2k(n−k)(M ×N ;Q). Thus v ∪ αf = 0.

At the same time, µM×N ∩αf = φ∗(δ∗(µM)). Our hypothesis on k, l,m, n implies,

by Theorem 10.1, that φ∗ does not depend on f . In particular, taking f = c, the

constant map sending M to Ck ∈ N , we obtain φ ◦ δ = i : M ↪→M ×N considered

in the previous lemma. So φ∗δ∗(µM) = i∗(µM) and we have αf = [N ]. By the above

lemma we have v ∪ αf = v ∪ [N ] 6= 0, a contradiction. This completes the proof. �

Suppose that dim(Gn,k) ≤ dimGm,l and let f : Gm,l → Gn,k be a holomorphic

map where we assume that k ≤ n/2, l ≤ m/2. When dim(Gn,k) = dimGm,l and

k > 1, so that Gn,k is not the projective space, it was proved by Paranjape and
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Srinivas [26] that if f is not a constant map, then (n, k) = (m, l) and f is an

isomorphism of varieties.

Suppose that dimGn,k < dimGm,l. We claim that any holomorphic map f :

Gm,l → Gn,k is a constant map. Indeed, the Picard group Pic(Gm,l) of Gm,l of the

isomorphism classes of complex (equivalently algebraic or holomorphic) line bundles

is isomorphic to H2(Gm,l;Z) ∼= Z via the first Chern class. It is generated by the

bundle ξm,l := det(γm,l). The dual bundle ξ∨m,l is a very ample bundle (or a positive

line bundle in the sense of Kodaira). Note that any holomorphic map between non-

singular complex projective manifolds is a morphism of algebraic varieties. Now our

claim is a consequence of the following more general observation.

Lemma 10.6. Let f : X → Y be a morphism between two complex projective

varieties where Pic(X), the group of isomorphism class of algebraic line bundles

over X, is isomorphic to the infinite cyclic group. If dimX > dimY , then f is a

constant morphism.

Proof. Suppose that f is a non-constant morphism. Then there exists a projective

curve C ⊂ X such that f |C is a finite morphism. Let ξ be a very ample line bundle

over Y and let η = f ∗(ξ). Since ξ is very ample, it is generated by its (algebraic)

sections and so it follows that η is also generated by sections. Since f |C is a finite

morphism, we see that η|C is ample, that is, some positive tensor power of η|C is

very ample. In particular η is not trivial. Denote by ω the ample generator of

Pic(X) ∼= Z and let η = ω⊗r for some r. Since η is generated by its sections, we

have r ≥ 0. Since η is non-trivial, r 6= 0. It follows that r > 0 and η is ample.

On the other hand, since dimX > dimY , some fibre Z of f is positive dimensional

and the bundle η|Z is trivial. This is a contradiction since the restriction of an ample

bundle to a positive dimensional subvariety is ample and non-trivial. �

Here we have another application of 10.1.
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Let X be a finite CW complex, then we can associate the set of all equivalent

classes of complex vector bundles over it and we denote it by K(X). Then K(X)

will form a Z -algebra. We have the Chern character map ch : K(X) ⊗Z Q →

Heven(X;Q), defined by

ch([ξ]) = Ch(c1(ξ), c2(ξ), · · · , ck(ξ)),

where ξ is a complex bundle of rank k over X, [ξ] is the class of ξ, c1(ξ), c2(ξ), · · · , ck(ξ)

are Chern classes of the bundle ξ and Ch(c1(ξ), c2(ξ), · · · , ck(ξ)) is defined as follows:

If ξ is a line bundle, then

Ch(ξ) =
∑
k≥0

c1(ξ)k/k! = exp(c1(ξ))

If ξ ∼= ξ1 ⊕ · · · ⊕ ξk is a Whitney sum of line bundles, then Ch(ξ) =
∑k

j=1 Ch(ξj).

These properties define Ch(ξ) uniquely by the splitting principle.

This map ch : K(X) ⊗Z Q → Heven(X;Q) is always a natural isomorphism of

rings (See §3, chapter V, [16]).

When X has cells only in even dimensions, then K(X) ∼= Zχ(X) (where χ(X) is

the Euler characteristic of X). In particular, K(X) is a free abelian group. Let

f : Gm,l → Gn,k be a map, then by naturality we have the following diagram

K(Gm,l)⊗Z Q
ch→ (H∗(Gm,l;Q)

f ∗ ↑ ↑ f ∗

K(Gn,k)⊗Z Q
ch→ H∗(Gn,k;Q).

As Gn,k and Gm,l have cells only in even dimensions, so K(Gn,k) and K(Gm,l) are

free abelian groups, so we have the following diagram

K(Gm,l)
ch→ (H∗(Gm,l;Q)

f ∗ ↑ ↑ f ∗

K(Gn,k)
ch→ H∗(Gn,k;Q).
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where the horizontal maps are injective.

Now, if m, l, k, n are as in 10.1, then f ∗ : H∗(Gn,k;Q)→ H∗(Gm,l;Q) is the trivial

map between graded Q -algebras. Then, f ∗ : K(Gn,k)→ K(Gm,l) is again a trivial

map, so we get the following result

Theorem 10.7. Let 1 ≤ k ≤ bn/2c, 1 ≤ l ≤ bm/2c and k < l, where m,n are

positive integers such that m − l > n − k. Suppose that m − l ≥ 2k2 − k − 1 or

1 ≤ k ≤ 3. Let f : Gm,l → Gn,k be a map. Then f ∗(ξ) is stably trivial for any

complex vector bundle ξ over Gn,k.

Remark 10.8. Now. let Gn,k be the quaternionic Grassmann manifold of k-dimensional

subspaces of Hn. If φ is any endomorphism of the graded Q-algebra H∗(Gn,k;Q)

which vanishes on H2(Gn,k;Q), then φ vanishes in all positive degree if k ≤ 3 or

n ≥ 2k2 − 1 (analogous to the complex Grassmann manifold). See [9]. All other

tools we have used for complex Grassmann are valid for quaternionic Grassmann

manifolds, namely the natural imbedding and the formality of maps between Grass-

mann manifolds. So, we observe that Theorem 10.1, 10.2, 10.3, 10.7 are valid for

quatrenionic Grassmann manifolds also.
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