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Abstract

This thesis is divided into two parts.

In the first part, we prove the semistability of logarithmic de Rham sheaves on a smooth

projective variety (X,D), under suitable conditions. This is related to existence of Kähler

-Einstein metric on the open variety. We investigate this problem when the Picard number

is one. Fix a normal crossing divisor D on X and consider the logarithmic de Rham sheaf

ΩX(log D) on X. We prove semistability of this sheaf, when the log canonical sheaf KX + D

is ample or trivial, or when −KX −D is ample i.e., when X is a log Fano n-fold of dimension

n ≤ 6. We also extend the semistability result for Kawamata coverings, and this gives examples

whose Picard number can be greater than one.

In the second part, we investigate linear systems on hyperelliptic varieties. We prove ana-

logues of well-known theorems on abelian varieties, like Lefschetz’s embedding theorem and

higher k-jet embedding theorems. Syzygy or Np-properties are also deduced for appropriate

powers of ample line bundles.
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2.3 Čech Cohomology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Cohomology of projective schemes. . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 Higher direct image sheaves. . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Semistability of logarithmic cotangent bundle on some projective manifolds 37

3.1 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Stability and vanishing theorems. . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Stability of tangent bundle of a Fano manifold. . . . . . . . . . . . . . . 40

3.1.3 Logarithmic De Rham sheaves. . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.4 Slope of logarithmic De Rham sheaves. . . . . . . . . . . . . . . . . . . . 41

8



3.2 Stability when the sheaf KX +OX(D) is non-negative. . . . . . . . . . . . . . . 43

3.3 Stability on Kawamata’s finite coverings . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Log Fano manifolds of small dimensions . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Counterexample when D is reducible . . . . . . . . . . . . . . . . . . . . 51

4 Embedding properties of linear series on hyperelliptic varieties 53

4.1 Preliminaries on linear systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Known results on curves and surfaces. . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Mukai conjecture for adjoint linear systems. . . . . . . . . . . . . . . . . 55

4.3 Known results on abelian varieties. . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Primitive line bundles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Mukai regularity and Continuous global generation: . . . . . . . . . . . . . . . . 57

4.4.1 Fourier-Mukai functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Mukai-regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Main theorems on hyperelliptic varieties. . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 G-linearized sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.2 Mukai-regularity for G-linearized sheaves . . . . . . . . . . . . . . . . . 61

4.6 G-global generation and global generation on hyperelliptic varieties . . . . . . . 61

4.6.1 G-global generation, G-very ampleness and G-k jet ampleness . . . . . . 62

4.6.2 Equivalence of G-global generation and global generation on X = A/G . 63

4.7 G-global generation of G-linearized sheaves of weak index zero . . . . . . . . . 64

4.7.1 Surjectivity of ’Averaging’ map . . . . . . . . . . . . . . . . . . . . . . . 64

4.7.2 G-Continuous Global Generation . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Embedding theorems on hyperelliptic varieties . . . . . . . . . . . . . . . . . . 68

4.9 Syzygy or Np-property of line bundles on a hyperelliptic variety . . . . . . . . . 71

4.9.1 Criterion for N r
p -property . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9.2 Cohomology Vanishing on a hyperelliptic variety . . . . . . . . . . . . . 72

9



Chapter 1

Introduction

We begin by summarizing the main results of the thesis. We divide this chapter into two

sections. In section 1.1, we discus the problems related to semistability of logarithmic cotangent

bundles on some projective manifolds. In section 1.2, we discus the problems related to the

embedding properties of linear series on hyperelliptic varieties.

1.1 Semistability of logarithmic cotangent bundle on some pro-

jective manifolds.

The notion of stability of a vector bundle (in the sense of Mumford and Takemoto) play an

important role in complex differential geometry and algebraic geometry. More general notion is

the existence of Kähler-Einstein metric on compact Kähler manifold. Mumford [44] introduced

stability for bundles on curves and later generalized to sheaves on higher dimensional varieties

by Takemoto, Gieseker, Maruyama, and Simpson. The existence of a Kähler -Einstein metric

implies the stability of the cotangent bundle is proved by Kobayashi [30] and Lübke [40].

Let X be a smooth projective variety over C. Denote ΩX , the cotangent bundle of X and

KX is the canonical line bundle on X. By the work of Aubin [1] and Yau [64], it is well known

that ΩX is stable whenever the canonical line bundle KX is ample or trivial. The stability

of ΩX when −KX is ample i.e., when X is a Fano manifold, has attracted wide attention.

By Tian [62] and Fahlaoui [13], we know that ΩX is stable when X is a Del Pezzo surface

except when X is isomorphic to P1 × P1 or P2 blown-up in a point. In the case of fano 3-

folds with b2(X) = 1, Steffens [60] in his thesis gave a complete answer to this problem. In

[61], Subramanian proved the stability of cotangent bundle ΩX when X is a smooth complete

intersection in Pn of codimension l and multi-degree (d1, d2, ..., dl) with d1 ≥ d2 ≥ ... ≥ dl

and dl >
(n+1−d1−...−dl−1)

2 . Later Peternell- Wisniewski [56] gave complete answer for complete

intersections in projective spaces. They also proved stability of ΩX in the case of fano 4-folds

with b2(X) = 1 and stability of ΩX of fano n-fold of large index with b2(X) = 1. In [28], Hwang
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proved the stability and semistability of ΩX in the case of fano 5-folds and 6-folds respectively

with picard number 1. Stability of Fano n-fold is still an open problem, for n ≥ 7. In chapter

3 we will prove semistability for logarithmic cotangent bundle ΩX(logD).

Now we will briefly discuss the main results of Chapter 3.

Main results.

Let X be a smooth projective variety over C with picard number 1 and D ⊂ X is a simple

normal crossing divisor. Define Ωa
X(logD) :=

∧a ΩX(logD); these are logarithmic de Rham

sheaves [12], whose local sections are meromorphic a-forms having at most a simple pole along

D.

We prove the following theorem.

Theorem 1.1.1. Suppose (X,OX(1)) is a smooth projective variety of dimension n over C,

with the Picard group Pic(X) = Z. Let D =
∑r

i=1Di be a simple normal crossing divisor on

X and KX denote the canonical class. If KX +OX(D) is ample or trivial, then ΩX(logD) is

semistable.

This statement can be extended to Kawamata coverings as follows.

Proposition 1.1.2. Suppose (Y,OY (1)) is a smooth projective variety of dimension n and

D =
∑

iDi is a normal crossing divisor on Y . Assume Pic(Y ) = Z and KY +D is ample or

trivial. Consider the Kawamata covering π : X → Y , ramified along D and D′ = π−1(D)red.

Then the sheaf ΩX(log D′) is semistable with respect to the ample class π∗OY (1).

Note that the Picard number of X in the above proposition can be greater than one, which

is relevant for other applications.

We next investigate log Fano manifolds (X,D), in small dimensions. In this situation the

class −KX−D is ample. The classification of such pairs (X,D) is due to Maeda [42] and Fujita

[14] in small dimensions. We have the following theorem:

Theorem 1.1.3. Suppose (X,D) is a log Fano manifold of dimension n and Pic(X) =

Z.OX(1). Let the canonical class KX = OX(−s) and D is in the linear system |OX(k)|,
for s, k > 0.

Assume one of the following holds:

a) n = 2 and s = 3,

b) n = 3 and s ≤ 4

c) n = 4 and s ≤ 5

d) n = 5 and s ≤ 6 such that s = 2, 5, 6 or (s, k) = (3, 2), (4, 3).

e) n = 6 and s ≤ 7 such that s ≤ 4, s = 6, 7, or (s, k) = (5, 4), (5, 3) .

If D is smooth and irreducible then the logarithmic cotangent bundle ΩX(log D) is semistable.

11



The proof involves a careful investigation of vanishing theorems within a certain range

using residue sequences, and apply semistability of de Rham sheaves on Fano manifolds in

small dimensions. The classification of Maeda yields complete statements for log Del Pezzo

surfaces, log Fano threefolds and 4-folds.

We have remarked that ΩP2(log D) is not semistable when D = D1 + D2, D1 and D2 are

lines on P2.

1.2 Embedding properties of linear series on hyperelliptic va-

rieties.

In this part of the thesis we prove results related to linear series. In particular, very ample-

ness, k-jet ampleness, projective normality, and higher syzygies of an ample line bundle on

hyperelliptic varieties.

In recent years, the problems related to linear series have attracted considerable attention.

The above questions are fairly well-understood on curves and we have some significant work

done by Castelnuova, Fujita, and Green regarding Np-property on curves. Indeed, Green [18]

proved that if L is a line bundle on a curve C of genus g such that degree of L is at least

2g + 1 + p then L satisfies Np-property, for p ≥ 0. In the case of higher dimensional varieties

Mukai conjectured that for any smooth polarized projective variety (X,L), KX⊗L⊗p+4 satisfies

Np-property, where KX denotes the canonical line bundle on X. Mukai’s conjecture has not

yet been proved even for p = 0, but some significant work has been done in some special

cases by Kempf [31], Y. Homma [27] Ein and Lazarsfeld [9]. In [15], [16] and [17], Gallego and

Purnaprajna have done some nice work regarding syzygy properties on surfaces and three folds.

There are still many open questions related to linear series on curves and surfaces. In the case of

abelian varieties Lazarsfeld conjectured that if L is an ample line bundle on an abelian variety

X then Lp+3 satisfies Np-property, for p ≥ 0. Recently Pareschi [53], proved this conjecture.

In [38], Lazarsfeld-Pareschi-Popa proved that L satisfies Np if Seshadri constant of L is greater

than (p + 2)g, where g is a dimension of an abelian variety X. Problems concerning about

projective normal embedding of an ample line bundle on an abelian variety, have done by Iyer

[29], Hwang-To [25], Koizumi [33] and Ohbuchi [51].

On the other hand, Fujita’s conjecture on very ampleness of a line bundle has attracted

attention in the past years. Indeed, if L is an ample line bundle on an algebraic variety X of

dimension n, then KX⊗L⊗n+2 is very ample. Fujita’s conjecture has been proven for algebraic

surfaces but this problem is still open for higher dimensional varieties. The questions related

to very ampleness and k-jet ampleness are completely known in the case of abelian varieties.

Indeed, suppose X is an abelian variety and L is an ample line bundle on X then by the

12



theorem of Lefschetz L⊗3 is very ample. In [52], Ohbuchi proved that L⊗2 is very ample if L

has no base divisor. In [2], Bauer-Szemberg proved that L⊗k+2 is k-jet ample and L⊗k+1 is

k-jet ample if L has no base divisors. Recently G. Pareschi and M. Popa [54], [55] used an

alternate approach called Mukai regularity to obtain most of the above results.

In the case of primitive line bundles L, i.e., line bundles of type (1, d2, ..., dg), these problems

are not much known. In the case of surfaces, L is of type (1, d) is very ample iff d ≥ 5 and there

is no elliptic curve E on X with (L.E) = 2 (see [5], Theorem 10.4.1). For abelian varieties of

dimension g ≥ 3 not much is known. Recently Ein and Lazarsfeld [10] proved a theorem on

global generation of adjoint line bundles. In [6], Birkenhake-Lange-Ramanan proved that very

ampleness of a polarized abelian threefold of type (1, 1, d).

In this chapter we are interested in powers of ample line bundles.

Let X be an hyperelliptic variety over C. i.e., X is not isomorphic to an abelian variety

but admitting an étale covering A→ X, where A is an abelian variety.

Now we will briefly discuss the main results of Chapter 4.

Main results.

We proved the following theorem which is an analogue of Lefschetz embedding theorem on

abelian varieties.

Theorem 1.2.1. Suppose X is a hyperelliptic variety of dimension n. Let L be an ample line

bundle on X. Then we have

1) Lk, for k ≥ 3, is always very ample.

2) L2 is very ample, if L has no base divisor.

We will generalize the above theorem, namely k-jet ampleness to hyperelliptic varieties as

follows.

Theorem 1.2.2. Suppose L is an ample line bundle on a hyperelliptic variety X. Then the

following hold, for k ≥ 0:

1) Lk+2 is k-jet ample

2) Lk+1 is k-jet ample if L has no base divisor.

Regarding Np-property, we show the analogue of Pareschi’s theorem (Lazarsfeld’s conjec-

ture) on abelian varieties, extended to hyperelliptic varieties.

Theorem 1.2.3. Suppose L is an ample line bundle on a hyperelliptic variety X. Then Lp+k

satisfies Np-property, for k ≥ 3.

The key point in the proofs is to note that a hyperelliptic variety X is realized as a finite

group quotient A/G of an abelian variety A, for some finite group G acting freely on A [34,
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Theorem 1.1, p.492]. Hence a line bundle on a hyperelliptic variety is regarded as a G-linearized

line bundle on A. We introduce the notion of G-global generation of G-linearized sheaves and

obtain a correspondence of the usual global generation on X with G-global generation on A.

We then look at the notion of M -regularity of G-linearized sheaves and suitably extend the

techniques used by Pareschi and Popa. The proofs are reduced to showing G-global generation

of appropriate G-linearized coherent sheaves, obtained by applying the Fourier-Mukai functor.

We employ different method, the ’averaging of sections’ to obtain our results.
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Chapter 2

Preliminaries

In this chapter we collect some basic definitions in algebraic geometry, which are essential for

the rest of the thesis. We collect these definitions mainly from [23], [24], [39], [45], and [46].

2.0.1 Manifolds and Vector bundles.

Let C denotes the field of complex numbers.

Definition 2.0.4. A complex manifold M of dimension n is a Hausdorff topological space with

a countable basis U = {Uα}, and homeomorphisms φα : Uα → φα(Uα) ⊂ Cn such that

φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ).

is holomorphic, for all α, β

We call the pair (Uα, φα) a coordinate chart of M . The collection AM = {(Uα, φα)}α is

called an atlas for M .

Let M be a n-dimensional complex manifold and p ∈M , and z = (z1, ..., zn) a holomorphic

coordinate system around p. We define tangent space, denoted by Tp(M), the space of C-linear

derivations in the ring of holomorphic functions on M around p. i.e.,

Tp(M) = C{ ∂
∂zi

,
∂

∂z̄i
}.

Consider the set T (M) formed by the disjoint union of all tangent spaces

T (M) =
⊔
p∈M

Tp(M).

Note that T (M) is a complex manifold of dimension 2n.

A complex-valued function f on open set U ⊂ M is holomorphic if, for all α, f ◦ φ−1
α is

holomorphic on φα(Uα ∩ U) ⊂ Cn.

15



Definition 2.0.5. A continuous map f : M → N between two complex manifolds is holomor-

phic at a point p ∈ M if there exists a chart (φ,U) near p and a chart (ψ, V ) near f(p) ∈ N
such that

ψ ◦ f ◦ φ−1 : φ(U)→ ψ(V )

defines a holomorphic map. This condition is independent of the choice of charts because

overlap maps are biholomorphic. The map f is called holomorphic if it is holomorphic at every

point of p ∈ M . An isomorphism between two complex manifolds M and N is a holomorphic

map f : M → N such that f is bijective and f−1 is also a holomorphic map.

Examples 2.0.6. (1) If V is a n-dimensional vector space over C, then the projective space

P(V ) := { the set of one dimensional subspaces of V } is a complex manifold of dimension n−1.

(2) The general linear group,

GLnC = {A ∈M(n,C)|detA 6= 0}

is a complex manifold of dimension n2.

Definition 2.0.7. Let M be a complex manifold. A complex vector bundle on M is a complex

manifold E together with a holomorphic map π : E →M such that

• for each p ∈M , the set EP = π−1(p), is a complex vector space of finite dimension, (Ep

is called fiber over p).

• For every p ∈M , there is a neighborhood U of p and a biholomorphic map

φU : π−1(U)→ U × Cn

such that φU (Ep) ⊂ {p} × Cn, and φp, defined by the composition

φp : Ep → {p} × Cn p2−→ Cn

is a complex vector space isomorphism.

The map φU is called a local trivialization of E over U . Here E is called the total space

and M is called the base space. The dimension of the fibers Ep of E is called the rank of E. In

particular, a vector bundle of rank 1 is called line bundle.

Note that for any pair of trivialization φU and φV the map

gUV : U ∩ V → GLn

given by

gUV (x) = (φU ◦ φ−1
V )|{x}×Cn

is holomorphic. The maps gUV are called transition functions for E relative to the trivializations

φU , φV . The transition functions gUV satisfy the following compatibility conditions:
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gUV (x) · gV U (x) = In for all x ∈ U ∩ V ,

gUV (x) · gVW (x) · gWU (x) = In for all x ∈ U ∩ V ∩W .

One can check that given an open cover U = {Uα} of M and holomorphic maps gαβ :

Uα∩Uβ → GLn satisfies above compatibility conditions, then there is a unique complex vector

bundle E →M with transition functions {gαβ}.

Example 2.0.8. (Tangent bundle): Suppose M is a complex manifold, and Tx(M) is the

complex tangent space to M at x. Let

T (M) =
⊔
x∈M

Tx(M).

and define

π : T (M)→M

by

π(v) = x if v ∈ Tx(M)

We can give a complex vector bundle structure to T (M) on M as follows:

Let (Uα, φα) be an atlas for M. We have maps

φα : Tx(M)→ Tφα(x)(Uα) ∼= C{ ∂
∂zi

,
∂

∂z̄i
}.

for each x ∈ Uα, hence a map

φα : π−1(Uα) =
⋃
x∈Uα

Tx(M)→ Uα × C2n.

It is easy to verify that φα is bijective and fiber-preserving and more over that

φα
x : Tx(M)→ {x} × C2n proj.−−−→ C2n

is a C-linear isomorphism. The maps φα are biholomorphic follows from the complex manifold

structure on T (M). This vector bundle T (M) is called the complex tangent bundle. We define

transition functions

jα,β : Uα ∩ Uβ → GL(2n,C)

by setting

jα,β(x) = φα
x ◦ (φβ

x)−1 : C2n → C2n.

Definition 2.0.9. A map between two complex vector bundles E, F over a complex manifold M

is given by a holomorphic map f : E → F such that for every p ∈M , one has f(Ep) ⊂ Fp and

fp = f |Ep : Ep → Fp is C-linear. Two complex vector bundles E and F on M are isomorphic

if there exists a map f : E → F such that f : Ep → Fp is an isomorphism for all x ∈M .
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2.0.2 Sheaves.

Definition 2.0.10. A presheaf F of abelian groups on a topological space X consists of the

following data:

• for each open set U of X, an abelian group F(U),

• for each pair of open sets U ⊆ V , we have a restriction map resV,U : F(V ) → F(U) such

that

(a) resU,U = idF(U) for every open set U ⊆ X,

(b) for U ⊆ V ⊆W open sets of X, we have resW,U = resV,U ◦ resW,V .

The elements of F(U) are called the sections of F over U , and the restriction maps resV,U

are written as s 7→ s|U .

Definition 2.0.11. The stalk of a presheaf F at a point p ∈ X, denoted by Fp, defined as the

direct limit of all F(U), for all open sets U containing p. Equivalently, we can define the stalk

Fp to be the set {(s, U) : p ∈ U, s ∈ F(U)} modulo the the relation that (s, U) ∼ (t, V ) if and

only if there is some open neighborhood W of p with W ⊂ U ∩ V such that s|W = t|W .

The elements of the stalk Fp are called as germs of F at p.

Definition 2.0.12. The presheaf F is called a sheaf if it satisfies the following axiom:

• If {Ui}i∈I is a open cover of an open set U , and if we have elements si ∈ F(Ui) for each i,

with the property that for each i, j, si|Ui∩Uj = sj |Ui∩Uj , then there is a unique element s ∈ F(U)

such that s|Ui = si, for each i.

Example 2.0.13. Let X be a topological space and let F be a presheaf over X defined by

(a) For any open subset U ⊆ X, F(U) := {f : X → R|f is continuous}.
(b) For V ⊆ U open sets of X, and f ∈ F(U), resU,V (f) := f |V , the natural restriction map

as a function. One can check that it is in fact a sheaf.

Definition 2.0.14. A morphism φ : F → G of presheaves F ,G on X is a family of homomor-

phisms φU : F(U)→ G(U) of abelian groups for each open subset U of X, such that for every

pair V ⊆ U of open sets in X, the diagram

F(U)
φ(U)→ G(U)

↓resU,V ↓resU,V
F(V )

φ(V )→ G(V )

is commutative.

18



Note that morphism between sheaves is nothing but morphism between presheaves. An

isomorphism between sheaves is a morphism which has a two-sided inverse. We obtain the

category of sheaves on the topological space X, which we denote by (Sh(X)). Also note that

a morphism φ : F → G of sheaves on X induces a morphism φp : Fp → Gp on the stalks, for

every point p ∈ X.

Theorem 2.0.15. A morphism φ : F → G of sheaves on X is an isomorphism if and only if

the induced map on the stalk φp : Fp → Gp is an isomorphism for every p ∈ X.

Proof. See [24, Proposition 1.1, p.63]. 2

For any morphism φ : F → G of presheaves, we define presheaf kernel kerφ by (kerφ)(U) =

kerφ(U), which is a presheaf. If F ,G are sheaves then kerφ is also a sheaf. Similarly we can

define subpresheaf, image presheaf, and quotient presheaf. But these are in general not sheaves.

This leads us to the notion of a sheaf associated to a presheaf.

Definition-Proposition 2.0.16. Given a presheaf F , there is a sheaf F+ and a morphism

θ : F → F+, with the property that for any sheaf G, and for any morphism ϕ : F → G, there is

a unique morphism ψ : F+ → G such that ϕ = ψ ◦ θ. Furthermore the pair (F+, θ) is unique

up to unique isomorphism. F+ is called the sheaf associated to the presheaf F .

Proof. See [24, Proposition 1.2, p.64]. 2

2.0.3 Direct and inverse image of sheaves.

Suppose f : X → Y is a continuous map of topological spaces, and F is a presheaf on X. Then

define a sheaf on Y , f∗F by f∗F(V ) = F(f−1V ), where V is an open subset of Y . Note that

f∗F is a presheaf on Y , and is a sheaf if F is. This is called direct image sheaf of F . For any

sheaf G on Y , we define the inverse image sheaf f−1G on X to be the sheaf associated the the

presheaf U 7→ limV⊇f(U)G(V), where U is any open set in X, and the limit is taken over all

open set V of Y containing f(U).

2.1 Schemes.

2.1.1 Ringed Spaces.

Definition 2.1.1. A ringed space is a pair (X,OX) consisting of a topological space X and a

sheaf of rings OX on X. A morphism of ringed spaces from (X,OX) to (Y,OY ) is a pair (f, f ]),

where f : X → Y is a continuous map of topological spaces and a morphism f ] : OY → f∗OX
of sheaves of rings on Y .
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Note that we have a category Rsp, whose objects are ringed spaces, and whose morphisms

are morphisms of ringed spaces.

Definition 2.1.2. A ringed space (X,OX) is called locally ringed space if for every point

x ∈ X, the stalk OX,x is a local ring. In that case, the maximal ideal in OX,x is denoted by mx.

The residue field OX,x/mx of OX,x is denoted by k(x). A morphism of locally ringed spaces

from (X,OX) to (Y,OY ) is a morphism (f, f ]) of ringed spaces such that, for all x ∈ X, the

induced map of local rings f ]x : OY,f(x) → OX,x is a local homomorphism of local rings, i.e.,

f ]x(mf(x)) ⊂mx.

2.1.2 Affine Schemes

Let A be a ring and denote SpecA, the set of all prime ideals in A, called the prime spectrum or

just spectrum of A. For any f ∈ A we will denote D(f), the set of all prime ideals p ∈ SpecA
which does not contain f . Note that the family B = {D(f)}f∈A is a basis for a topology of

X = SpecA. Now we will define the sheaf of rings OX on X as follows: for any open set U ⊂ X,

OX(U) is the set of all functions

s : U →
∐
p∈U

Ap,

such that s(p) ∈ Ap for each P in U , which are locally represented by quotients. That is, for

each p ∈ U there is a neighborhood V of p, contained in U , and elements a, f ∈ A, such that

for each q ∈ V, f /∈ q, s(q) = a/f in Aq. It is easy to check that OX is a sheaf of rings, with

the natural restriction maps.

Note that for any p ∈ X, the stalk of OX at p is Ap , where Ap denotes the ring S−1A, for

S = {f ∈ A|f /∈ p}. Note that Ap is a local ring with the maximal ideal pAp. Therefore,

(SpecA,OX) is a locally ringed space, we will denote it by (SpecA,OSpecA).

Proposition 2.1.3. (a) If φ : A → B is a homomorphism of rings, then φ induces a natural

morphism of local ringed spaces

(f, f ]) : (SpecB,OSpecB)→ (SpecA,OSpecA).

(b) If A and B are rings, then any morphism of locally ringed spaces from SpecB to SpecA

is induced by a homomorphism of rings φ : A→ B as in (a).

Proof. See [24, Proposition 2.3, p.73]. 2

Definition 2.1.4. An affine scheme is a locally ringed space (X,OX) which is isomorphic to

the spectrum of some ring. A scheme is a locally ringed space (X,OX) which admits an open

covering X =
⋃
i∈I Ui such that (Ui,OX|U ) is an affine scheme for every i. We will denote it

simply by X.
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A morphism of schemes is a morphism as locally ringed spaces. An isomorphism is a

morphism with a two-sided inverse.

2.1.3 Projective scheme

Let S =
⊕

d≥0 Sd be a graded ring and denote S+ =
⊕

d>0 Sd, ideal of S. Note that an ideal

I is called homogeneous if it is generated by homogeneous elements. We let ProjS denote the

set of all homogeneous prime ideals p of S, which do not contain all of S+. We set, for any

homogeneous ideal I( 6= S+)

V (I) = {p ∈ ProjS|I ⊂ p}.

We put the topology on X := ProjS, called the Zariski topology, by identifying V (I) as closed

sets. For any homogeneous element f ∈ S+ , set D(f) = {p ∈ ProjS|f /∈ p}, then D(f) is

open in ProjS, these sets cover ProjS. Let S(p) denote the set of all elements of degree zero

in the localization T−1S, where T is the multiplicative system consisting of all homogeneous

elements in S which are not in p. Now we define the sheaf of rings OX on X as follows: for

any open set U ⊂ X, OX(U) is the set of all functions

s : U →
∐
p∈U

S(p),

such that s(p) ∈ S(p) for each P, which are locally represented by quotients. That is, for each

p ∈ U there is a neighborhood V of p, contained in U , and homogeneous elements a, f ∈ S of

same degree such that for each q ∈ V, f /∈ q, s(q) = a/f in S(q). It is easy to check that OX
is a sheaf of rings, with the natural restriction maps.

The fact that (X,OX) is a scheme is due to the following theorem.

Theorem 2.1.5. Let S be a graded ring and set X = ProjS.

(a) For every p ∈ X, the stalk OX,p is isomorphic to the local ring S(p).

(b) For any homogeneous element f ∈ S+ we have an isomorphism of locally ringed spaces

(D(f),OX |D(f)) ∼= SpecS(f), where S(f) consists of all elements of degree zero in the localiza-

tion Sf .

(c) X = ProjS is a scheme.

Proof. See [24, Theorem 2.5, p.76]. 2

Example 2.1.6. Let S = k[x0, x1, ..., xn] be a polynomial ring over a field k, then ProjS = Pnk
is a Projective n-space over k.

Definition 2.1.7. An open subscheme of a scheme X is a scheme U , whose topological space

is an open subset of X, and whose structure sheaf OU is isomorphic to the restriction OX |U
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of the structure sheaf of X. An open immersion is a morphism f : X → Y of schemes which

induces an isomorphism of X with an open subscheme of Y .

Definition 2.1.8. A closed immersion is a morphism f : Y → X of schemes such that

Y identifies as a closed subset of X and furthermore the induced map f ] : OX → f∗OY is

surjective. A closed subscheme of X is a closed subset Y of X endowed with the structure

(Y,OY ) of a scheme and with a closed immersion j : Y ↪→ X.

Note that a scheme X is called irreducible if its topological space is irreducible, i.e., the

underlying topological space X cannot be expressed as the union of two proper closed subsets

of X. A scheme is X called connected if its topological space is connected.

Definition 2.1.9. (1) A scheme X is called reduced if for every open set U ⊆ X, the ring

OX(U) has no nilpotent elements. Equivalently, X is reduced if and only if the local rings Op,
for all p ∈ X, have no nilpotent elements.

(2) A scheme X is called integral if for every open set U ⊆ X, the ring OX(U) is an integral

domain.

Evidently, an integral scheme is always reduced. But the converse is not true in general.

However, we have the following theorem:

Theorem 2.1.10. A scheme is integral if and only if it is both reduced and irreducible.

Proof. See [24, Theorem 3.1, p.82]. 2

Definition 2.1.11. The dimension of a topological space X, denoted dim X is the supremum

of all integers n such that there exists a chain Z0 ⊂ Z1 ⊂ ... ⊂ Zn of distinct irreducible closed

subsets of X. The dimension of a scheme X is the dimension of underlying topological space

X.

For any irreducible closed subset Z of X we define codimension of Z in X, denoted

codim(Z,X) is the supremum of all integers n such that there exists a chain Z = Z0 ⊂
Z1 ⊂ ... ⊂ Zn of distinct irreducible closed subsets of X, beginning with Z. If Y is any closed

subset of X, we define

codim(Y,X) = inf
Z⊆Y

codim(Z,X)

Definition 2.1.12. A scheme X is called noetherian if X can be covered by finite number of

open affine subsets SpecAi with each Ai a noetherian ring.

Definition-Proposition 2.1.13. A morphism f : X → Y of schemes is called locally of finite

type if one of the following equivalent conditions satisfies.

(a) For each open affine subset V = SpecB of Y , f−1(V ) is covered by open affine subsets
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Ui = SpecAi, such that each Ai is a finitely generated B-algebra.

(b) There is an affine open covering {Vi = SpecBi} of Y , such that for each i, f−1(Vi) is

covered by open affine subsets Uij = SpecAij, where each Aij is a finitely generated Bi-algebra.

The morphism f is called finite type if in addition f is quasi-compact, i.e., for every affine

open subset U ⊆ Y , f−1(U) is quasi-compact.

Proof. See [46, Proposition 1, p.121]. 2

Definition-Proposition 2.1.14. A morphism f : X → Y of schemes is called finite morphism

if one of the following equivalent conditions satisfies.

(a) For each open affine subset U = SpecB of Y , f−1(U) is affine, equal to SpecA, such that

A is a finite B-module.

(b) There is an affine open covering {Ui = SpecBi} of Y such that for each i, f−1(Ui) is affine,

equal to SpecAi with Ai is a finite B-module.

Proof. See [46, Proposition 5, p.124]. 2

2.1.4 Fibered product

Let S be a scheme, and let X, Y be schemes over S, i.e., schemes with morphisms to S. We

define the fibered product of X, Y over S denoted X ×S Y , to be a scheme over S, together

with two morphisms p1 : X×S Y → X and p2 : X×S Y → Y , satisfying the following universal

property:

Let f : Z → X, g : Z → Y be two morphisms of schemes over S. Then there exists a unique

morphism (f, g) : Z → X ×S Y of schemes making the following diagram commutative:

X
p1← X ×S Y

p2→ Y

↖f ↑(f,g) ↗g

Z

Given any scheme S, fibered product exists in the category Sch(S) of schemes over S (See

[24, Theorem 3.3, p.87]). For any scheme Y , we define PnY = PnZ×SpecZY , and we call projective

n-space over Y .

Definition 2.1.15. A morphism f : X → Y of schemes is called separated if the image of the

diagonal morphism X → X×Y X is closed. A morphism f is called proper if it is separated, of

finite type, and universally closed. We say that f is unversally closed if it is a closed morphism,

and for any base change Z → Y , X ×Y Z → Z is also a closed morphism.

In this case we say that X is separated (resp. proper) over Y . A scheme X is separated(resp.

proper) if it is separated (resp. proper) over Spec Z. Note that any morphism of affine schemes

is separated.
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Definition 2.1.16. A morphism f is called projective if it factors into a closed immersion

i : X → PnY , followed by the projection p2 : PnY → Y .

The relation between projective and proper morphism is given in the following theorem:

Theorem 2.1.17. A projective morphism of noetherian schemes is proper.

Proof. See [24, Theorem 4.9, p.103]. 2

2.1.5 Sheaves of Modules.

Definition 2.1.18. Let (X,OX) be a ringed space. A sheaf of OX-modules or an OX-module

is a sheaf F on X, such that for each open set U ⊆ X, F(U) is an OX(U)-module, and for

each inclusion of open sets V ⊆ U , the diagram:

OX(U) × F(U) → F(U)

↓ ↓ ↓

OX(V ) × F(V ) → F(V ).

commutes.

A sheaf of ideals on X is a sheaf of OX -modules I which is a subsheaf of OX . In other

words, for every open set U , I(U) is an ideal in OX(U). A morphism F → G of sheaves of OX -

modules is a morphism of sheaves, such that for each open set U ⊆ X, the map F(U)→ G(U) is

a homomorphism of OX(U)-modules. The category of OX -modules will be denoted by Mod(X).

Note that using the usual operations on modules over a ring one can construct other OX -

modules from the given OX -modules. Suppose F ,G are two OX -modules. We define the tensor

product F ⊗OX G to be the sheaf associated to the presheaf

U 7→ F(U)⊗OX(U) G(U).

Which is an OX -module, and we denote it by F ⊗ G. Similarly one can define HomOX (F ,G)

and the direct sum of a family of OX -modules. The kernel sheaf and cokernel sheaf of a

homomorphism of OX -modules are OX -modules.

Definition 2.1.19. Let X be a scheme. An OX-module F is called free if F ∼= OrX , for some

positive integer r. F is called locally free of rank r if there is an open covering {Ui} of X such

that

F|Ui ∼= OrX |Ui .

A locally free sheaf of rank 1 is called an invertible sheaf.
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The set of all isomorphism classes of invertible sheaves on a scheme X form a group under

the operation ⊗. For any invertible sheaf L, we define inverse of L by L−1 = Hom(L,OX).

We denote it by Pic X, and called Picard group of X.

Remark 2.1.20. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. If F is sheaf of

OX-module, then f∗F is sheaf of f∗OY -module, and hence by the morphism f ] : OY → f∗OX ,

f∗F has a natural structure of OY -module. This OY -module is called the direct image of F
under f .

Note that for any sheaf G of OY -module on Y , f−1G is f−1OY -module. Using the natural

morphism f−1OY → OX we can consider OX as f−1OY . We define f∗G to be the tensor

product

f−1G ⊗f−1OY OX .

Thus f∗G is an OX-module which we call inverse image of G under f . One can show that f∗ and

f∗ are adjoint functors between the category of OX-modules and the category of OY -modules,

i.e., HomOX (f∗G,F) ∼= HomOY (G, f∗F).

Let A be a commutative ring and let X = SpecA be an affine scheme. For any A-module

M , we define an OX -module M̃ as follows. For each open subset U ⊆ X,

U 7→ {s : U →
∐
p∈U

Mp},

which are locally fractions (as we seen in the definition of affine scheme). This gives a sheaf on

SpecA with the obvious restriction maps. We denote it by M̃ and we call sheaf associated to

M on SpecA.

We can easily check that for any principal open set D(f) of X, M̃(D(f)) = Mf and

M̃p = Mp for every p ∈ SpecA and M̃(X) = M . It is clear that M̃ is an OX -module.

Definition-Proposition 2.1.21. Let (X,OX) be a scheme, and let F be a sheaf of OX-module.

Then the following are equivalent.

(a) There is a affine open covering {Ui = SpecAi} of X such that for each i, there is an Ai-

module Mi with F|Ui ∼= M̃i.

(b) for every affine open set U = SpecA of X, there is an A-module M with F|U ∼= M̃ .

We say F quasi coherent if F satisfies above equivalent conditions. Assume X is noetherian,

we say F is coherent if further more each Mi can be taken to be finitely generated Ai-module

Proof. See [24, Proposition 5.4, p.113]. 2

Definition 2.1.22. Let Y be a closed subscheme of a scheme X, and let i : Y → X be

the inclusion morphism. We define the ideal sheaf of Y , denoted IY , to be the kernel of the

morphism i] : OX → i∗OY . Note that IY is a quasi-coherent sheaf of ideals on X.
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One can check easily that any quasi-coherent sheaf of ideals on X is uniquely determined

by a closed subscheme of X, (See, [24, Proposition 5.9, p.116]).

Now we will define quasi coherent sheaves on the Proj of a graded ring. Let S be a graded

ring and let M be a graded S-module. For any homogeneous prime p ∈ ProjS, define T the

set of all homogeneous elements not in p. Denote M(p), the group of elements of degree 0 in

the localization T−1M . For each open subset U ⊆ ProjS,

U 7→ {s : U →
∐
p∈U

M(p)},

which are locally fractions (as we seen in the definition of projective scheme). This gives a sheaf

on ProjS with the obvious restriction maps. We denote it by M̃ and we call sheaf associated

to M on ProjS. Note that M̃ is a quasi-coherent sheaf, and if S is noetherian then M̃ is

coherent (See [24, Proposition 5.11, p.116]).

Definition 2.1.23. Let S be a graded ring, and let X = ProjS. For any n ∈ Z, we define

the sheaf OX(n) to be ˜S(n). We call OX(1) the twisting sheaf of Serre. For any sheaf of OX-

modules, F , we denote by F(n) the twisted sheaf F ⊗OX OX(n), and we write OX(0) simply

as OX .

Proposition 2.1.24. Let S be a graded ring, and let X = ProjS. Assume that S is generated

by S1 as an S0-algebra. Then

(a) The sheaf OX(n) is an invertible sheaf on X.

(b) OX(n)⊗OX(m) ∼= OX(n+m),∀m,n ∈ Z.

Proof. See [24, Proposition 5.12, p.117]. 2

2.2 Divisors.

Assume that X is a noetherian integral separated scheme which is regular in codimension one,

here regular in codimension one means every local ring Ox of X of dimension one is regular.

Definition 2.2.1. A prime divisor on X is a closed integral subscheme Y of codimension one.

A Weil divisor on X is a formal Z-linear combination of prime divisor of X. In other words,

a Weil divisor is a finite sum D =
∑
ni.Yi, where the Yi are prime divisors.

A Weil divisor D =
∑
ni.Yi is called effective, denoted D ≥ 0, if all the ni ≥ 0. The set

of all Weil divisors is a free abelian group generated by prime divisors. We will denote it by

Div X. Suppose Y is a prime divisor and y ∈ Y be the generic point of Y . Then the local
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ring OX,y is a discrete valuation ring with quotient field K(X). Denote ϑY , the corresponding

valuation of Y . Note that since X is separated, Y is uniquely determined by its valuation.

For any f ∈ K(X)∗, by [24, Lemma 6.1, p.131], ϑY (f) = 0 for all except finitely many prime

divisors Y .

This implies, we can make the following definition.

Definition 2.2.2. Given f ∈ K(X)∗, we define the divisor of f , denoted div(f), by

div(f) =
∑

ϑY (f).Y,

where the sum is taken over all prime divisors of X.

div(f) is called principal divisor of X. It is clear from the properties of discrete valuations

that div(fg ) = div(f)− div(g) and div(fg) = div(f) + div(g), and hence the set of all principal

divisors of X forms a subgroup of Div(X).

Definition 2.2.3. Two divisors D,D′ on X are said to be linearly equivalent, written D ∼ D′,
if D −D′ = div(f), for some f ∈ K(X)∗.

The quotient group Div X divided by the subgroup of principal divisors is called the divisor

class group of X, and it is denoted by Cl X. Note that, if A is an unique factorization domain

then Cl SpecA = 0.

If U ⊂ X is an open subset, we define the restriction map Cl(X) → Cl(U) by
∑
niYi 7→∑

ni(Yi ∩ U).

We have the following use full exact sequence.

Theorem 2.2.4. Let X be noetherian integral separated scheme which is regular in codimension

one, and let Z ⊂ X be a proper closed subset of X. Then

(1) if Z ⊂ X is a irreducible closed subscheme of codimension one, Then there is an exact

sequence

Z n7→n[Z]−−−−−→ Cl(X) −→ Cl(X − Z) −→ 0.

(2) if Z ⊂ X is of codimension at least 2. Then the canonical map

Cl(X) −→ Cl(X − Z)

is an isomorphism.

Proof. See [24, Proposition 6.5, p.133]. 2
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2.2.1 Cartier divisors.

Now we will define the notion of divisors on arbitrary schemes. Assume that X is a noethe-

rian scheme. For any open open subset U ⊂ X, define K(U) be the total quotient ring

S(U)−1Γ(U,OX) of Γ(U,OX), where S(U) = {s ∈ Γ(U,OX)|s is not zero divisor in Ox, ∀x ∈
U}. By [45, Proposition 1, p.61], this gives a sheaf of OX -modules with the natural restriction

maps, and it is unique. We will denote it by KX . The stalks Kx of KX are just the total quotient

rings of the stalks Ox. Let K∗X (respectively, O∗X) denotes the subgroup of KX (respectively,

OX) consisting of invertible elements.

Definition 2.2.5. (1) A Cartier divisor on X is a global section of the sheaf K∗/O∗. More

concretely, a Cartier divisor on X can be described by giving an open cover {Ui} of X, and for

each i an element fi ∈ Γ(Ui,K∗), such that for each i, j, fi/fj ∈ Γ(Ui ∩ Uj ,O∗). (2) A Cartier

divisor D on X, represented by {(Ui, fi)} is called effective if all the fi ∈ Γ(Ui,OUi).

Note that the set of all Cartier divisors form a group. A Cartier divisor is called principal

if it is in the image of the natural map Γ(X,K∗) → Γ(X,K∗/O∗). Two Cartier divisors are

linearly equivalent if their difference is principal. We define the group CaCl X is the Cartier

divisors modulo principal divisors. In general, Cartier divisors are not generalization of Weil

divisor. But by [24, Proposition 6.11, p.141], Cl X and CaCl X are isomorphic, if X is integral,

separated, and all of whose local rings are unique factorization domains.

Let D be an effective Cartier divisor on X, represented by {(Ui, fi)}. Define the sheaf of

ideals I on X which is locally generated by fi. Let Y be the associated closed subscheme of

codimension 1. This closed subscheme is called locally principal closed subscheme of X. By

[24, Proposition 6.18, p.145], IY ∼= OX(−D).

Now we will define a line bundle associated to a given Cartier divisor.

Definition 2.2.6. Let D be a Cartier divisor on a noetherian scheme X, represented by

{(Ui, fi)}. We define a subsheaf OX(D) of KX by taking OX(D) to be the sub-OX-module

of KX generated by f−1
i on Ui. This is well defined, since fi/fj is invertible on Ui ∩Uj, so f−1

i

and f−1
j generate the same OX-module.

Note that OX(D) can also be characterized by

OX(D)(U) = {f ∈ K∗X |div(f) +D|U ≥ 0} ∪ {0}.

We have the following theorem.

Theorem 2.2.7. (a) For any Cartier divisor D, OX(D) is an invertible sheaf on X. The

map D 7→ OX(D) gives a one-one correspondence between Cartier divisors on X and invertible
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subsheaves of K.

(b) OX(D1 −D2) ∼= OX(D1)⊗OX(D2)−1.

(c) D1 ∼ D2 iff OX(D1) ∼= OX(D2) as abstract invertible sheaves.

Proof. See [24, Proposition 6.13, p.144]. 2

It is clear from the above theorem that the map D 7→ OX(D) gives an injective homo-

morphism from CaCl X to Pic(X). This map is surjective if X is integral scheme, [See [24,

Proposition 6.15, p.145].

Finally, we note:

Theorem 2.2.8. If X is integral, separated, and all of whose local rings are unique factorization

domains, then there is a natural isomorphism Cl X ∼= Pic(X).

Proof. See [24, Corollary 6.16, p.145]. 2

2.2.2 The class group of projective space.

Let X be the smooth projective space Pnk over a field k. Suppose D =
∑
niYi is a divisor on

X. We define the degree of D by deg(D) =
∑
ni.degYi, where degYi is the degree of the hyper

surface Yi.

Theorem 2.2.9. Let H = {x0 = 0} be the hyperplane on X. Then:

(a) If D is any divisor of degree d, then D ∼ dH,

(b) for any f ∈ K(X)∗, deg(div(f)) = 0,

(c) the degree function gives an isomorphism deg : ClX → Z.

Proof. See [24, Proposition 6.4, p.132]. 2

It is clear from the above theorem that any line bundle on Pnk is isomorphic to some O(m),

where m ∈ Z.

Now we define linear systems corresponding to line bundles.

2.2.3 Linear systems.

Let X be a non-singular projective variety over an algebraically closed field k. By Theorem

2.2.8, the notion of Weil divisors and Cartier divisors are equivalent. So we can talk about

divisors instead of Weil divisors/Cartier divisors.

Definition 2.2.10. Let D be a divisor on X. We define the complete linear system of D,

denoted |D|, as

|D| = {D′|D′ ≥ 0, D′ ∼ D}.
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The base locus of |D| is the intersection of all of the elements of |D|. We say |D| is base point

free if the base locus is empty.

Let D0 be a divisor on X, and let L ∼= O(D0) be the corresponding invertible sheaf on X.

By [24, Theorem 5.19, p.122], Γ(X,L) is a finite dimensional k-vector space. Let {Ui} be an

open cover of X, where L trivializes, and let φ : L|Ui
∼−→ OUi be an isomorphism.

In view of this, we can make the following definition.

Definition 2.2.11. Let s ∈ Γ(X,L) be a non zero section of L . We define the divisor of zeros

of s, denote div(s), to be an effective Cartier divisor {(Ui, φ(s))} on X. It is clear that div(s)

is linearly equivalent to D0. Note that φ is determined up to multiplication by an element of

Γ(U,OU ∗), so div(s) is well-defined Cartier divisor.

Suppose D ≥ 0 is a divisor linearly equivalent to D0, then one can prove that D = div(s)

for some s ∈ Γ(X,L). Finally, s′ = λs for some λ ∈ k∗ and s, s′ ∈ Γ(X,L) if and only if

div(s) = div(s′), (See [24, Proposition 7.7, p.157]). This implies, |D0| is one-to-one correspon-

dence with the set (Γ(X,L) − {0})/k∗. This gives |D0| a structure of the set of closed points

of a projective space over k.

Suppose D is a divisor on X. Let n be the dimension of the vector space Γ(X,OX(D)),

and Pn−1 ' P(Γ(X,OX(D))∗). Note that D defines a rational map:

φD : X 99K Pn−1

Given a point x ∈ X, let

Hx = {s ∈ Γ(X,OX(D))|s(x) = 0}.

Suppose x not in base locus of |D|, then Hx is a hyperplane in Γ(X,OX(D)), whence a point

of φD(x) = [Hx] ∈ Pn−1. Note that the map φD is defined out side the base locus of |D|.

Definition 2.2.12. A divisor D on X is called base point free or globally generated if the

rational map φD : X 99K P(Γ(X,OX(D))∗) is a morphism. We say that D is very ample if φD

defines an embedding of X. We say that D is ample if mD is very ample for some m ∈ N.

Note that a line bundle L is called very ample (respectively ample) if its corresponding

divisor is very ample (respectively ample).

2.2.4 Differentials.

Now we will introduce the language of sheaf of relative differentials of one scheme over another.

Let f : X → Y be a separated morphism of schemes, and let ∆ : X → X ×Y X be

the diagonal morphism. Denote I, ideal sheaf corresponds to the closed subscheme ∆(X) ⊂
X ×Y X.
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Definition 2.2.13. We define the sheaf of relative differentials of X over Y to be the quasi-

coherent sheaf ΩX/Y = ∆∗(I/I2).

One can prove easily that, the sheaf ΩX/Y is coherent if Y is noetherian and f : X → Y is

of finite type. Suppose if Y = Speck, k is field, then we write ΩX/Y as ΩX .

We have two use full exact sequences. The second exact sequence describes how differentials

behave under a closed immersion.

Theorem 2.2.14. (1) Given separated morphisms of schemes X
f−→ Y

g−→ Z, there is an exact

sequence of sheaves on X:

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

(2) Suppose X ↪→ Y closed subscheme of Y , with ideal sheaf I, and g : Y → Z be a separated

morphism of schemes. Then there is an exact sequence of sheaves on X:

I/I2 δ−→ ΩY/Z ⊗OX → ΩX/Z → 0.

Proof. See [24, Theorem 8.11, 8.12, p.176]. 2

We have the following exact sequence of differentials on a projective space.

Theorem 2.2.15. (The Euler exact sequence.)

Let A be a ring, let Y = SpecA, and let X = PnA. Then there is an exact sequence of sheaves

on X,

0→ ΩX/Y → OX(−1)n+1 → OX → 0.

Here, OX(−1)n+1 means a direct sum of n+ 1 copies of OX(−1).

Proof. See [24, Theorem 8.13, p.176]. 2

The following theorem will gives the connection between non-singular varieties over an

algebraically closed field and differentials.

Theorem 2.2.16. An n-dimensional scheme X over an algebraically closed field k is smooth

if and only if ΩX is a locally free sheaf of rank n.

Proof. See [24, Theorem 8.15, p.177]. 2

In view of above theorem, we can make the following definition.

Definition 2.2.17. Let X be a n-dimensional nonsingular variety over k. We define the

canonical sheaf of X to be ωX =
∧n ΩX , the nth exterior power of the sheaf of differentials. It is

an invertible sheaf on X. We define the tangent sheaf of X to be TX = Ω∨X = HomOX (ΩX ,OX).
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Now we study the behavior of the tangent sheaf and the canonical sheaf for a nonsingular

subvariety of a variety X.

Let Y be a nonsingular subvariety of a nonsingular variety X over k. Let I be the ideal

sheaf of Y on X.

Definition 2.2.18. We define the conormal sheaf of Y in X to be a locally free sheaf I/I2.

Its dual NY/X = HomOY (I/I2,OY ) is called the normal sheaf of Y in X. It is locally free of

rank r = codim(Y,X).

Suppose Y is a nonsingular subvariety of codimension one, i.e., Y is divisor on X. By [24,

Proposition 8.20, p.182], the canonical sheaf ωY ∼= ωX ⊗OX(D)⊗OY .

2.3 Čech Cohomology.

Now we will define Čech cohomology groups for a sheaf of abelian groups on a topological space

X with respect to an open cover of X.

Let X be a topological space, and let U = {Ui}i∈I be an open cover of X. Let F be a sheaf

of abelian groups on X. For any integer p ≥ 0 and for any sequence of indices i0, i1, ..., ip in I

with i0 < i1 < ... < ip we set

Ui0,i1,...,ip = Ui0 ∩ Ui1 ∩ ... ∩ Uip .

For each p ≥ 0, set

Cp(U ,F) =
∏

i0<i1<...<ip

F(Ui0,i1,...,ip).

Any α ∈ Cp(U ,F) is called a p-cochain of U in F , and we denote by αi0,i1,...,ip the value of α in

F(Ui0,i1,...,ip).

We define co-boundary map d : Cp(U ,F)→ Cp+1(U ,F) by the formula

(dα)i0,i1,...,ip =

p+1∑
k=0

(−1)kαi0,i1,...,̂ik,...,ip+1
|Ui0,i1,...,ip+1

,

where îk means that we remove the index ik. One can check easily that d2 = 0. Therefore,

C•(U ,F) is a cochain complex of F with respect to the open cover U .

Definition 2.3.1. Let X be a topological space, and let U be an open cover of X. For any

sheaf abelian groups F on X, we define pth Čech cohomology group of F , with respect to the

covering U , to be

Hp(U ,F) =
Ker{Cp(U ,F)→ Cp+1(U ,F)}
Im{Cp−1(U ,F)→ Cp(U ,F)}

.
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It follows immediately from the construction that H0(U ,F) = F(X).

Definition 2.3.2. Let X be a topological space, and let F be a sheaf on X. We set

Hp(X,F) = lim−→
U
Hp(U ,F)

where the direct limit is taken over the set of all open covers of X endowed with refinement of

covering as the partial orderings.

Now we restrict our attention to cohomology of sheaves of OX -modules F on a scheme X.

In this case we have nice properties of the Čech cohomology groups.

Theorem 2.3.3. Let X be an affine scheme. Then for any quasi-coherent sheaf F on X and

for any integer p ≥ 0, we have Hp(X,F) = 0

Proof. See [39, Theorem 2.18, p.186]. 2

For any open cover U of X, we have a canonical homomorphisms Hp(U ,F) → Hp(X,F),

for each integer p ≥ 0. These homomorphisms need not be isomorphisms. On the other hand,

we have the following.

Theorem 2.3.4. Let X be a noetherian separated scheme, let F be a quasi-coherent sheaf on

X, and U an affine covering of X. Then the canonical homomorphism

Hp(U ,F)→ Hp(X,F)

is an isomorphism for every p ≥ 0.

Proof. See [39, Theorem 2.19, p.186]. 2

The above results enables us to construct a long exact sequence of cohomology from a given

short exact sequence of quasi-coherent sheaf on X, where X is a noetherian separated scheme.

Corollary 2.3.5. For any short exact sequence of sheaves 0→ F ′′ → F → F ′ → 0 on X with

F ′′ quasi-coherent, we have a long exact sequence

...→ Hp−1(X,F ′) ∂−→ Hp(X,F ′′)→ Hp(X,F)→ Hp(X,F ′) ∂−→ Hp+1(X,F ′′)→ ....

Proof. See [39, Corollary 2.22, p.186]. 2

Note that if 0→ F ′′ → F → F ′ → 0 is a short exact sequence of sheaves of abelian groups

on a topological space X. In general we do not get a long exact sequence of Čech cohomology

groups.

We can use Čech cohomology to determine when a noetherian scheme is affine. This is

given in the following theorem.
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Theorem 2.3.6. (Serre). Let X be a noetherian scheme. Then the following are equivalent:

(a) X is affine.

(b) Hp(X,F) = 0, for all quasi-coherent sheaves F on X and for all i ≥ 1.

(c) H1(X,F) = 0, for all coherent sheaf F on X

Proof. See [39, Theorem 2.23, p.187]. 2

2.3.1 Cohomology of projective schemes.

Let A be a noetherian ring, let S = A[x0, x1, ..., xr] , and let X = ProjS be the projective

space PrA over A.

Theorem 2.3.7. Let X = PrA then for any n ∈ Z, we have:

(a) H0(X,OX(n)) = Sn (if n < 0, we set Sn = 0 by convention).

(b) Hp(X,OX(n)) = 0 if p 6= 0, r.

(c) Hr(X,OX(n)) ' H0(X,OX(−n − r − 1))∨ (where ∨ means dual as an A-module). In

particular, Hr(X,OX(n)) = 0 if n ≥ −r.

Proof. See [39, Theorem 3.1, p.195]. 2

We have the following fundamental theorem for the study of projective schemes.

Theorem 2.3.8. Let X be a projective scheme over a noetherian ring A and let F be a coherent

sheaf on X. Then we have the following properties.

(a) For any integer p ≥ 0, the A-module Hp(X,F) is finitely generated.

(b) There exists an integer n0 such that for every n ≥ n0 and for every p ≥ 1, we have

Hp(X,F(n)) = 0.

Proof. See [39, Theorem 3.2, p.195]. 2

We have the following Serre duality theorem for the cohomology of coherent sheaves on a

projective scheme. This will help us to reduce the computations of cohomology of coherent

sheaves as we have seen Poincare duality in the case of cohomology of manifolds.

Theorem 2.3.9. Let X be a smooth projective scheme over an algebraically closed filed k of

dimensision n. Then for any locally free sheaf F ,

H i(X,F) ' Hn−i(X,F∨ ⊗ ωX)∨

Proof. See [24, Corollary 7.7, p.244]. 2
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Definition 2.3.10. Let f : X → Y be a morphism of schemes. An OX-module F is called flat

over Y at a point x ∈ X if the stalk Fx is a flat Oy,Y -module, where y = f(y) and we consider

Fx as an Oy,Y -module via the natural map f ] : Oy,Y → Ox,X . We say F is flat over Y if it is

flat at every point of X. We say X is flat over Y if OX is.

2.3.2 Higher direct image sheaves.

Let f : X → Y be a separated morphism of schemes and let F be a quasi-coherent sheaf on X.

We define higher direct image sheaves of F on Y as follows. For any open subset V of Y , we

define the sheaf associated to the preashef,

V 7→ Hp(f−1(V ),F|f−1(V ))

on Y . We denote it by Rpf∗F . These are quasi-coherent sheaves. For p ≥ 1, Rpf∗F are called

higher direct images of F . Note that R0f∗F = f∗F .

Theorem 2.3.11. Let f : X → Y be a separated and quasi-compact morphism of schemes.

Let F be a quasi-coherent sheaf on X, and E be a quasi-coherent sheaf which is flat over Y ,

then the canonical morphism of sheaves

Rpf∗F ⊗OY E → Rpf∗(F ⊗OX f
∗E)

is an isomorphism. The isomorphism is called the projection formula.

Proof. See [39, Theorem 2.32, p.190]. 2

Theorem 2.3.12. Let X be a noetherian scheme, and let f : X → Y be a morphism of X to

an affine scheme Y = Spec A. Then for any quasi-coherent sheaf F on X, we have

Rp(f∗F) ∼= Hp(X,F )̃.

Proof. See [24, Proposition 8.5, p.251]. 2

The following theorem shows that cohomology commutes with flat base extension.

Theorem 2.3.13. Let f : X → Y be a separated morphism of finite type of noetherian schemes,

and let F be a quasi-coherent sheaf on X. Let u : Y
′ → Y be a flat morphism of noetherian

schemes.
X
′ v→ X

↓g ↓f
Y
′ u→ Y

Then for all i ≥ 0 there are natural isomorphisms

u∗Rif∗(F) ∼= Rig∗(v
∗F).
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Proof. See [24, Proposition 9.3, p.255]. 2

Note that even if u is not flat, we have a natural map u∗Rif∗(F) → Rig∗(v
∗F).

Definition 2.3.14. A morphism f : X → Y of schemes of finite type over k is etale if f is

flat and unramified.

We say f is unramified if for every x ∈ X, letting y = f(x), we have my · Ox = mx, and

k(x) is separable algebraic extension of k(y).
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Chapter 3

Semistability of logarithmic

cotangent bundle on some projective

manifolds

In the first section of this chapter we will recall the definitions of stability and some well known

results related to stability of tangent bundle of low dimensional Fano manifolds. The main

results Theorem 1.1.1, Proposition 1.1.2 and Theorem 1.1.3, in Chapter 1, will be proved in

next sections.

Throughout this chapter, unless specified otherwise, a variety always mean a smooth pro-

jective variety over C.

Let X be a n-dimensional smooth projective variety over C and KX denotes the canonical

line bundle on X. Fix an ample line bundle H on X.

3.1 Preliminaries.

For the definitions of this section we follow [26].

Definition 3.1.1. • The dimension of a coherent sheaf F is the dimension of the closed set

Supp(F) = {x ∈ X|Fx 6= 0}.
• F is called pure of dimension d if dim(G) = d for all non-trivial coherent subsheaves

G ⊂ F .

Definition 3.1.2. The torsion filtration of a coherent sheaf F of dimension d, is the unique

filtration

0 ⊂ T0(F) ⊂ ... ⊂ Td(F) = F ,

where Ti(F) is the maximal subsheaf of F of dimension ≤ i.
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The torsion filtration of a coherent sheaf always exists. Note that F is pure sheaf of

dimension d if and only if Td−1(F) = 0.

Suppose F is a locally free sheaf on X then it is torsion free and dim(F) = n. Clearly

Tn−1(F) = 0 and hence it is pure.

Definition 3.1.3. The slope of F with respect to the ample bundle H is defined by

µ(F) :=
deg(F)

rk(F)
,

where deg(F) = c1(F).Hn−1.

Definition 3.1.4. A coherent sheaf F of dimension n on X is called stable in the sense of

Mumford-Takemoto if Tn−2(F) = Tn−1(F) and µ(G) < µ(F) for all subsheaves G ⊂ F with

0 < rk(G) < rk(F).

Similarly, F is semistable if µ(G) ≤ µ(F).

The Euler characteristic of a coherent sheaf F is χ(F) :=
∑

(−1)ihi(X,F), where hi(X,F) =

dimCH
i(X,F). The Hilbert polynomial P (F) is defined by

m 7→ χ(F ⊗OX(m)).

Suppose F is a coherent sheaf of dimension n. The reduced Hilbert polynomial p(F) is defined

by

p(F ,m) :=
P (F ,m)

rk(F).c1(KX)
.

The Harder-Narasimhan filtration.

Now we shall define the Harder-Narasimhan filtration.

Definition 3.1.5. Let F be a non-trivial pure sheaf of dimension d. A Harder-Narasimhan

filtration for F is an increasing filtration

0 = HN0(F) ⊂ HN1(F) ⊂ ... ⊂ HNl(F) = F ,

such that the factors grHNi = HNi(F)/HNi−1(F) for i = 1, ..., l, are semistable sheaves of

dimension d with reduced Hilbert polynomials pi satisfying

pmax(F) := p1 > ... > pl =: pmin(F).

Theorem 3.1.6. Every pure sheaf F has a unique Harder-Narasimhan filtration.

Proof. [26, Theorem 1.3.4, p17]. 2

It is clear from the Definition 3.1.5 that F is semistable if and only if F is pure and

pmax(F) = pmin(F).
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Jordan-Hölder filtration.

Now we will define the Jordan-Hölder filtration for semi stable sheaves.

Definition 3.1.7. Let F be a semistable sheaf of dimension d. A Jordan-Hölder filtration of

F is a filtration

0 = F0 ⊂ F1 ⊂ ... ⊂ Fl = F ,

such that the factors gri(F) = Fi/Fi−1 are stable with reduced Hilbert polynomial p(F).

Note that the sheaves Fi, i > 0, are also semistable with Hilbert polynomial p(F), and

Jordan-Hölder filtration need not be unique.

We have the following theorem:

Theorem 3.1.8. Jordan-Hölder filtration always exist. Up to isomorphism, the sheaf gr(F) :=⊕
i gri(F) does not depend on the choice of the Jordan-Hölder filtration.

Proof. [26, Theorem 1.5.2, p23]. 2

Definition 3.1.9. A semistable sheaf F is called polystable if F is the direct sum of stable

sheaves.

3.1.1 Stability and vanishing theorems.

Throughout this chapter, unless specified otherwise we assume that picard number of X is 1,

and H = OX(1) be the ample generator of Pic(X). Let s be the index of X, i.e., the canonical

line bundle KX = OX(−s), s ∈ Z. We remark that the stability of the cotangent bundle of

X is implied by the vanishing of some Hodge cohomologies twisted by appropriate powers of

the ample class OX(1). This can be seen as follows. Suppose S ⊂ Ω1
X is a coherent subsheaf

of rank a and
∧a S = OX(k), for some integer k. We have OX(k) ⊂ Ωa

X . The inclusion of

sheaves gives a non trivial section of Ωa
X ⊗OX(−k). The stability of the the cotangent bundle

will hold if we have the following vanishing:

H0(X,Ωa
X ⊗OX(−k)) = 0, for 0 < a < n, and k ≥ a.−sn .

Assume that D is a smooth divisor from the linear system |OX(d)|. Consider the following

exact sequences of sheaves on X and D respectively:

0→ Ωq
X(t)→ Ωq

X(t+ d)→ Ωq
X|D(t+ d)→ 0

and

0→ Ωq
D(t)→ Ωq+1

X|D(t+ d)→ Ωq+1
D (t+ d)→ 0.

We have the following key lemma which is useful further computations in this chapter.
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Lemma 3.1.10. The composition of appropriate maps on cohomology of the above sequences:

Hp−1(X,Ωq−1
X )→ Hp−1(D,Ωq−1

X|D)→ Hp−1(D,Ωq−1
D )→ Hp−1(D,Ωq

X|D(d))→ Hp(X,Ωq
X)

is cupping with c1(O(d)) (and thus is an isomorphism for p+ q < n+ 1).

Proof. [56, Lemma 1.2] 2

3.1.2 Stability of tangent bundle of a Fano manifold.

Now we shall recall the definition of Fano manifold and some well-known results related to

stability of tangent bundle of a Fano manifold.

Definition 3.1.11. A smooth projective variety X over C is called Fano if its anti canonical

divisor −KX is ample.

Theorem 3.1.12. If X is a Del-Pezzo surface, then X has a stable tangent bundle TX, unless

X is isomorphic to P1 × P1, or P2 blown-up in a point.

Proof. See [62] and [13]. 2

Theorem 3.1.13. Let X is a Fano 3-fold with b2 = 1. Then the tangent bundle of X is stable.

Proof. [60, Corollary 2.4, p.638]. 2

Theorem 3.1.14. Let X be a Fano 4-fold with b2 = 1. Then the tangent bundle of X is stable.

Proof. [56, Corollary 2.10, p.15]. 2

In the case of Fano 5-fold X, Peternell and Wisniewski proved stability of tangent bundle

of Fano 5-fold except the case of index 2.

Theorem 3.1.15. Let X be a Fano n-folds with Picard number 1. Then

(a) TX is stable if n = 5.

(b) TX is semistable if n = 6.

Proof. [28, Theorem 2 and 3, p.605]. 2
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3.1.3 Logarithmic De Rham sheaves.

In this subsection we shall define the logarithmic de Rham sheaves ΩX(log D).

LetD ⊂ X be a smooth irreducible divisor, that is, D does not contain multiple components.

Definition 3.1.16. ([58]) A meromorphic a-form α, a ≥ 0, on X is called logarithmic a-form

along a divisor D if both α and dα have at most simple poles along D.

Meromorphic a-forms with logarithmic poles along D form a sheaf denoted by Ωa
X(log D).

More precisely, suppose p ∈ X and h1, h2, ..., hn be local coordinates for X such that D is

defined by h1 = 0. We have

Ω1
X,p(log D) = OX,p〈

dh1

h1
, dh2, ..., dhn〉

and Ωa
X(log D) :=

∧a Ω1
X(log D). In particular, Ω0

X(log D) = OX .

In the case of normal crossing divisors logarithmic forms are behaved well. Suppose

D =
∑r

i=1Di is a normal crossing divisor, i.e., Di intersects Dj transversally, for i 6= j.

Let h1, h2, ..., hn be local coordinates for X such that Di is defined locally by hi = 0, for

1 ≤ i ≤ r, and r ≤ n. In this case Ωa
X(log D) is a locally free sheaf. More precisely, for any

a-form α ∈ Ωa
X(log D) can be written locally as

α =
∑

1≤k1<...<ka≤n
hk1...ka .δk1 ∧ ... ∧ δkn

where

δi =

{
dhi
hi

i ≤ r
dhi i > r

Consider the usual residue exact sequences [12, Properties 2.3.,p.13]:

0→ ΩX → ΩX(log D)→ ⊕ri=1ODi → 0, (3.1.1)

and

0→ Ωa
X(log (D −D1))→ Ωa

X(log D)→ Ωa−1
D1

(log (D −D1)|D1
)→ 0. (3.1.2)

See [12, 2.2] for more details.

3.1.4 Slope of logarithmic De Rham sheaves.

Let Di ∈ |OX(ki)|, for some positive integers ki, for 1 ≤ i ≤ r. Consider the short exact

sequence of sheaves on X

0→ OX(−D)→ OX → OD → 0.

Since the first Chern class c1 is additive over exact sequences, we have the equality:

c1(OD) = −c1(OX(−D)) = c1(OX(D)). (3.1.3)
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Using the additivity of c1 and from Equation (3.1.1), we have

c1(ΩX(log D)) = c1(ΩX) + c1(
⊕
i

ODi)

= c1(ΩX) +
∑
i

c1(O(Di)), using (3.1.3)

= c1(ΩX) + c1(OX(
∑
i

ki)).

The first Chern class modulo the rank, of the sheaf Ωa
X(log D) is

c1(Ωa
X(log D))(
n
a

) =

(
n−1
a−1

)
.c1(ΩX(log D))(

n
a

)
=

(
n
a

)
−
(
n−1
a

)(
n
a

) .c1(ΩX(log D))

=
a

n
c1(ΩX(log D)).

Hence the slope is given as

µ(Ωa
X(log D)) =

a

n
c1(ΩX(log D)).OX(1)n−1

= a.
c1(ΩX) + c1(OX(

∑
i ki))

n
.OX(1)n−1

=
a.(−s+

∑r
i=1 ki)

n
.OX(1)n.

As we have remarked in Subsection 3.1.1, the stability of ΩX(log D) is implied by the

vanishing of some Hodge cohomologies. In particular, we have the following lemma.

Lemma 3.1.17. The stability of ΩX(log D) is implied by the vanishing

H0(X,Ωa
X(log D)(−t)) = 0

for −t ≤ a.(s−
∑r
i=1 ki)
n and 1 ≤ a < n. Similar assertion is true for semistability when we have

strictly inequality in the slope inequality.

Proof. Suppose there is a subsheaf F ⊂ ΩX(log D) of rank a < n, destabilizing the sheaf. Then

taking determinants, we get a nonzero morphism

det(F)→ Ωa
X(log D).

Let det(F) = OX(t), for some integer t. Hence the above morphism gives a nonzero section in

H0(X,Ωa
X(log D)). The slope condition says that

t >
a.(−s+

∑
i ki)

n

Hence semistability is implied by the vanishing

H0(X,Ωa
X(log D)(−t)) = 0, whenever − t <

a.(s−
∑

i ki)

n
.

2
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3.2 Stability when the sheaf KX +OX(D) is non-negative.

In this section, we proceed to investigate the stability of ΩX(logD) under suitable assumptions

on the canonical class with respect to the divisor D. More precisely, we prove Theorem (1.1)

of the Chapter 1.

Theorem 3.2.1. Suppose X is a smooth projective variety of dimension n over C, with the

Picard group Pic(X) = Z. Let D =
∑r

i=1Di be a simple normal crossing divisor on X, where

Di ∈ |OX(ki)|, for some positive integers ki, for 1 ≤ i ≤ r. If KX +OX(
∑r

i=1 ki) is ample or

trivial, then ΩX(logD) is semistable.

It suffices to prove vanishing of relevant cohomologies as indicated in Lemma 3.1.17.

We first prove the following vanishing. This is well-known and due to Norimatsu [50]. For

the sake of completeness, we provide a simpler proof:

Lemma 3.2.2. Suppose (Y,OY (1)) is a smooth projective variety of dimension n. Let D ⊂ Y
be a normal crossing divisor and D is written as

∑r
i=1Di. Then for t < 0,

H0(Y,Ωa
Y (log D)(t)) = 0.

Proof. We prove this by using induction on the number of components r of the divisor D.

We start with the case r = 1.

Consider the residue sequence

0→ Ωa
Y → Ωa

Y (log D)→ Ωa−1
D → 0.

Tensor with O(t), t < 0, and take the long exact cohomology sequence:

0→ H0(Y,Ωa
Y (t))→ H0(Y,Ωa

Y (log D)(t))→ H0(D,Ωa−1
D (t))→ ...

Since t < 0, by Kodaira-Akizuki-Nakano theorem [12, 1.3,p.4], the first and the third cohomol-

ogy groups vanish . This implies the middle cohomology H0(Y,Ωa
Y (log D)(t)) also vanishes.

Now assume that the lemma holds for divisors with at most r−1 components. Consider the

residue sequence (3.1.2) and tensor with O(t), for t < 0. Now take the associated cohomology

sequence

0→ H0(Y,Ωa
Y (log(D−D1))(t))→ H0(Y,Ωa

Y (log D)(t))→ H0(D1,Ω
a−1
D1

(log(D−D1)|D1
)(t))→ ...

By induction hypothesis applied to D−D1 on Y and D1, we deduce the vanishing of the middle

cohomology as required.

2
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The proof of Theorem 3.2.1 is a corollary of above lemma. Indeed, by Lemma 3.1.17, it

suffices to check the vanishing

H0(X,Ωa
X(log D)(t)) = 0

for t <
a.(s−

∑r
i=1 ki)
n and 1 ≤ a < n. Recall that KX = OX(−s), s is an integer.

The assumption on KX + D being ample or trivial implies that s ≤
∑r

i=1 ki. Hence the

slope condition t <
a.(s−

∑r
i=1 ki)
n implies t < 0. Now by Lemma 3.2.2 we conclude the theorem.

3.3 Stability on Kawamata’s finite coverings

In this section, we recall some details concerning branched finite coverings of a complex pro-

jective variety, and investigate stability of the logarithmic de Rham sheaves on the covering

variety. Note that the Picard group of such coverings can be bigger than Z. Hence it is of

interest to look at such cases.

We begin by recalling Kawamata’s covering construction:

Proposition 3.3.1. Let (Y,OY (1)) be a nonsingular projective variety of dimension n. Let

D =
∑r

i=1Di be a simple normal crossing divisor on Y and Di ∈ |OY (ki)|, for some positive

integers ki. Then there is a smooth variety X together with a finite flat morphism π : X → Y

such that π∗Di = ki.D
′
i, for some divisors D′i on X such that D′ =

∑r
i=1D

′
i is a normal

crossing divisor on X. Furthermore, the canonical class KX = π∗(KY ⊗OY (D)).

Proof. See [36, 4.1.6, 4.1.12]. 2

Now we investigate the semistability of the logarithmic de Rham sheaves on the covering

variety. More precisely, we prove Proposition (1.2) of the Chapter 1.

Proposition 3.3.2. We keep notations as in Proposition 3.3.1 for the covering variety π :

X → Y . Assume that Pic(Y ) = Z.OY (1) and k :=
∑r

i=1 ki. If KY +OY (k) is ample or trivial

then ΩX(log D′) is semistable.

Proof. Since KY +O(k) is ample or trivial, by Theorem 3.2.1, the sheaf ΩY (log D) is semistable.

By the generalized Hurwitz formula [12, Lemma 3.21, p.33], we have

ΩX(log D′) ' π∗ΩY (log D).

Now by [42, Lemma 1.17,p. 325], we deduce that the pullback sheaf ΩX(log D′) is also

semistable, with respect to the ample line bundle π∗OY (1). 2

b) n = 3 and s ≤ 4

c) n = 4 and s ≤ 5 Now in the next section, we investigate the situation when the class

KX +D is anti-ample.
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3.4 Log Fano manifolds of small dimensions

The last section of this chapter we shall prove the Theorem (1.3) of the Chapter 1.

A pair (X,D) is a called a log Fano n-fold if the class −KX −D is ample. Here D =
∑

iDi

is a normal crossing divisor, Di are smooth irreducible divisors.

Assume that Pic(X) = Z.H and the anti canonical class is −KX = s.H and D ∈ |k.H|,
for some s, k > 0. Hence the assumption on ampleness of −KX − D implies that s > k. In

particular s ≥ 2.

In this section we would like to discuss stability for possible cases, when n is small.

• n = 2

Here (X,D) is a Del Pezzo surface with Pic(X) = Z.H. By Fujita’s classification theorem

[41, p.87], the following cases for (X,D) occur:

a) (P2, H), where H is a line on P2.

b) (P2, H1 +H2), where H1, H2 are lines on P2.

c) (P2, Q), where Q is a conic in P2.

• n = 3

Here (X,D) is log Fano threefold with Pic(X) = Z.H. By Maeda’s classification [41,

§6,p.95] according to the index s, the following cases occur:

a) s = 4 and X = P3. Here D is equivalent to H, 2H or 3H. Hence we have,

1) (P3, D), where D is a smooth cubic surface.

2) (P3, D), where D = D1 +D2, and D1 is a smooth quadric surface and D2 is a plane.

3) (P3, D), where D = D1 +D2 +D3, and each Di is a plane.

4) (P3, D), where D is a smooth quadric surface.

5) (P3, D), where D = D1 +D2, and each Di is a plane.

6) (P3, D), where D is a plane.

b) s = 3 and X = Q, a smooth quadric threefold in P4. Here D is equivalent to H or 2H.

Hence we have,

1) (Q,D), where D is a smooth quartic surface in P4.

2) (Q,D), where D = D1 +D2 and each Di is a smooth quadric surface.

3) (Q,D), where D is a smooth quadric surface.

c) s = 2. There are five different types of Fano 3-folds and D is a smooth irreducible divisor

in the linear system |H|.
• n = 4, 5, 6 Here the possibilities are more and we refer to [14].

Note that the dual of a stable bundle is again stable, it suffices to prove that the cotangent

bundle Ω1
X of the Fano manifold X is stable.

We can now state the main result of this section.

We will need the following result in the proof.
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Lemma 3.4.1. Suppose (Y,O(1)) is a smooth projective variety of dimension n, and D is a

smooth irreducible divisor in |O(k)|. Fix q < n− 1. Then the restriction map

H0(Y,Ωq
Y (c))→ H0(D,Ωq

D(c))

is surjective, for all c < k.

Proof. See proof of [56, Lemma 2.9 a)]. 2

Proposition 3.4.2. Suppose (X,D) is a log Fano manifold of dimension n and Pic(X) = Z.H.

Let KX = OX(−s) and D ∈ |OX(k)| such that s, k > 0.

Assume one of the following holds:

a) n = 2 and s = 3,

b) n = 3 and s ≤ 4

c) n = 4 and s ≤ 5

d) n = 5 and s ≤ 6 such that s = 2, 5, 6 or (s, k) = (3, 2), (4, 3).

e) n = 6 and s ≤ 7 such that s ≤ 4, s = 6, 7, or (s, k) = (5, 4), (5, 3) .

If D is smooth and irreducible then the logarithmic cotangent bundle ΩX(log D) is semistable.

Proof. Suppose D is a smooth and irreducible divisor. Note that the ampleness of −KX −D
implies that s > k.

From Lemma 3.1.17, the semistability of ΩX(log D) is implied by the vanishing

H0(X,Ωa
X(log D)(t)) = 0, (3.4.4)

for t < a.(s−k)
n and 1 ≤ a < n.

Recall the residue exact sequence;

0→ Ωa
X(t)→ Ωa

X(log D)(t)→ Ωa−1
D (t)→ 0.

Taking the global sections, we have the long exact sequence

0→ H0(X,Ωa
X(t))→ H0(X,Ωa

X(log D)(t))→ H0(D,Ωa−1
D (t))→

H1(X,Ωa
X(t))→ H1(X,Ωa

X(log D)(t))→ ...

Then to prove the vanishing (3.4.4), it suffices to check that

H0(X,Ωa
X(t)) = 0 (3.4.5)

and the map

H0(D,Ωa−1
D (t))→ H1(X,Ωa

X(t)) (3.4.6)

is injective, whenever t < a.(s−k)
n and 1 ≤ a < n.
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We now look at the cases listed above, according to the dimension n.

a) n = 2 and s = 3.

By §3.4, the only possibility is (X,D) = (P2, D), where D is a line or a conic in P2.

But for X = P2, H0(X,ΩX(t)) = 0 for t ≤ 1. Hence for s−k
2 = 3−k

2 ≤ 1, k = 1, 2, the

vanishing (3.4.5) holds. When t < 0, then clearly H0(D,OD(t)) = 0.

When t = 0, then by the hard Lefschetz theorem and the cupping map (for instance see

Lemma 3.1.10) gives the injectivity of (3.4.6).

Hence ΩP2(log D) is semistable.

b) n = 3 and s ≤ 4.

Since X is a Fano 3-fold, by [60, 2.4, p.638], we have the stability of ΩX . Therefore, by

Maruyama’s result [42, 2.6.1], Ωa
X is semistable. Using the slope inequality in Lemma 3.1.17,

we deduce that

H0(X,Ωa
X(t)) = 0, for t <

a.s

3
, (3.4.7)

and when a = 1, the vanishing holds for t ≤ s
3 .

On the other hand,
a.(s− k)

3
<
a.s

3
and this verifies (3.4.5).

Now we proceed to check (3.4.6) below.

Since −KD = OD(s − k) is ample, D is a Del Pezzo surface. But Pic(D) can be greater

than Z, hence semistability of ΩD does not always hold. Hence we argue as follows.

Since 0 < k < s ≤ 4 and 1 ≤ a < 3, the possible values for a are 1, 2 and the possible values

for k and s are:

if k = 1, then s = 2, 3, 4.

if k = 2, then s = 3, 4.

if k = 3, then s = 4.

If t < 0, then the required vanishing of H0(D,Ωa
D(t)), follows from Kodaira-Akizuki-Nakano

theorem.

Suppose a = 1 and we have 0 ≤ t < (s− k)

3
.

If we substitute the respective values of k and s in above range then the only possible value

is t = 0. The required Hodge vanishing holds because both X and D are Fano manifolds.

Supose a = 2 and we have 0 ≤ t <
2 · (s− k)

3
. In this case the only possible values are

t = 0, 1 when (k, s) = (1, 3) and (2, 4). We deduce that it is sufficient to prove, when t = 1,

H0(D,ΩD(1)) = 0

and when t = 0,

H0(D,OD) −→ H1(X,ΩX)

is injective.

Suppose t = 1.
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First consider the case when (k, s) = (2, 4). Then by §3.4 a) 4), (X,D) = (P3, D), where D

is a smooth quadric surface. Using Lemma 3.4.1, we deduce that the restriction map

H0(P3,ΩP3(1))→ H0(D,ΩD(1))

is surjective.

But we noticed in (3.4.7) or it also follows from [8], that H0(P3,ΩP3(1)) = 0. Hence

H0(D,ΩD(1)) = 0.

When (k, s) = (1, 3), then by §3.4 b)3), (X,D) = (Q,H), whereQ is a smooth quadric three-

fold and H is a hyperplane section. Hence D is again a quadric surface and H0(D,ΩD(1)) = 0.

On the other hand for t = 0, by Lemma 3.1.10, the required injectivity follows.

Hence ΩX(logD) is semi-stable.

c) n = 4 and s ≤ 5.

Since X is a Fano 4-fold with Pic(X) = Z, by [56, 2.10,p.15], ΩX is stable. Therefore, by

Maruyama’s result the exterior powers are semistable and by Lemma 3.1.17, we have

H0(X,Ωa
X(t)) = 0, for t <

a.s

4
. (3.4.8)

On the other hand,
a.(s− k)

4
<
a · s

4
and we have H0(X,Ωa

X(t)) = 0 for t <
a · (s− k)

4
.

Since −KD = OD(s − k) is ample, D is a Fano 3-fold with Pic(D) = Z.H|D (by Lefschetz

hyperplane section theorem). Hence ΩD is stable [60, 2.4,p.638].

Therefore, again by Maruyama’s result we have the semistability of its exterior powers and

by Lemma 3.1.17,

H0(D,Ωa−1
D (t)) = 0, for t <

(a− 1).(s− k)

3
.

Since
(a− 1).(s− k)

3
<
a.(s− k)

4
, we only have to discuss the situation

(a− 1).(s− k)

3
≤ t < a.(s− k)

4
.

Since 0 < k < s ≤ 3 and 1 ≤ a < 4, the possible values for a are 1, 2, 3 and the possible values

for k and s are:

if k = 1, then s = 2, 3,

if k = 2, then s = 3.

If we substitute the respective values of k, s and a in
(a− 1).(s− k)

3
≤ t < a.(s− k)

4
then

the only possible value which remains is t = 0 and when a = 1.

Therefore, as before injectivity of (3.4.6) follows from Lemma 3.1.10.

Suppose s = 4, then we note that we need vanishing of only H0(D,Ωa−1
D (t)), if a = 2 and

k = 1. In this case X is a smooth quadric 4-fold and D is a smooth quadric threefold in P3.

Hence we can apply Lemma 3.4.1, to get the desired vanishing.
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Suppose s = 5, then X = P4. We note that we need to check vanishing of H0(D,Ωa−1
D (t))

only when a = 2, k = 2, t = 1 and when a = 3, k = 2, t = 2. In this case, D is a smooth

quadric threefold. Both these vanishings follow from [59, Theorem (1), p.174].

Hence ΩX(logD) is semi-stable.

d) n = 5 and s ≤ 6.

Since X is a Fano 5-fold, ΩX is stable [28, Theorem 2,p.605]. Therefore, by Maruyama’s

result,

H0(X,Ωa
X(t)) = 0, for t <

a.s

5
.

Note that D is a Fano fourfold with Pic(D) = Z.H|D.

If t ≤ 0 and except when a = 1, t = 0, then by Kodaira-Nakano vanishing theorem and by

rational connectedness of D,

H0(D,Ωa−1
D (t)) = 0.

So when t ≤ 0, we have the desired vanishing H0(X,Ωa
X(logD)(t)) = 0.

Suppose t = 0 and a = 1 then by Lemma 3.1.10, the injectivity of (3.4.6) follows.

As in the previous case, we need to look at the case:

(a− 1)(s− k)

4
≤ t < a.(s− k)

5

to obtain vanishing of H0(D,Ωa−1
D (t)).

We note that we need to check the following cases only:

1) (s = 3, k = 1, a = 3, t = 1),

2) (s = 4, k = 1, a = 2, t = 1),

3) (s = 4, k = 2, a = 3, t = 1)

4) (s = 5, k = 1, a = 2, t = 1)

5) (s = 5, k = 1, a = 3, t = 2)

6) (s = 5, k = 1, a = 4, t = 3)

7) (s = 5, k = 2, a = 2, t = 1)

8) (s = 5, k = 3, a = 3, t = 1)

9) (s = 6, k = 2, a, t = a− 1)

10) (s = 6, k = 3, a = 2, t = 1)

11) (s = 6, k = 4, a = 3, t = 1).

We check that in 4),5),6), D is a smooth quadric hypersurface in P5. Hence the vanishing

H0(D,Ωa−1
D (a − 1)) = 0 holds by [59, Theorem (1),p. 174]. Similarly, 9) also hold because D

is a smooth quadric hypersurface in P6. We again use Snow’s theorem and apply Lemma 3.4.1

to get the required vanishing on D, in case of 8), 10), and 11).

The remaining cases are not known to us.

Hence ΩX(logD) is semi-stable in the cases claimed.

e) n = 6 and s ≤ 7.
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Since X is a Fano 6-fold, by [28, Theorem 3,p.605], ΩX is semi-stable. Therefore, by

Maruyama’s result

H0(X,Ωa
X(t)) = 0 for t <

a.s

6
.

On the other hand,
a.(s− k)

6
<
a.s

6
we have

H0(X,Ωa
X(t)) = 0, for t <

a.(s− k)

6
.

Since −KD = OD(s− k) is ample, D is a Fano 5-fold with Pic(D) = Z.H|D and hence ΩD

is stable [28, Theorem 2,p.605]. Therefore, again by Maruyama’s result we have

H0(D,Ωa−1
D (t)) = 0, for t <

(a− 1).(s− k)

5
.

Since
(a− 1).(s− k)

5
<
a.(s− k)

6
, so we have only to discuss the situation

(a− 1).(s− k)

5
≤ t < a.(s− k)

6
.

Since 0 < k < s ≤ 4 and 1 ≤ a < 6, the possible values for a are 1, 2, 3, 4, 5 and the

possible values for k and s are:

if k = 1, then s = 2, 3, 4,

if k = 2, then s = 3, 4,

if k = 3, then s = 4.

Suppose a = 1 we have 0 ≤ t < (s− k)

6
.

If we substitute the respective values of k and s in above range then the only possible value

is t = 0. In this case it is enough to show H0(D,OD) −→ H1(X,Ω1
X) is injective. But this

follows from the cupping map Lemma 3.1.10.

Suppose a = 2 then we have
(s− k)

5
≤ t < 2.(s− k)

6
. In this case t does not exist.

Suppose a = 3, 4, and if we substitute the respective values of k, s and a in

(a− 1).(s− k)

5
≤ t < a.(s− k)

6
.

Then the possible value is t = 1 when

• a = 3 and (k, s) = (1, 4),

• a = 4 and (k, s) = (1, 3), (2, 4).

In this case it is enough to show

H0(D,Ω2
D(1)) = 0 when (k, s) = (1, 4)

and

H0(D,Ω3
D(1)) = 0 when (k, s) = (1, 3), (2, 4).
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But both the claims follows from stability of ΩD.

Suppose a = 5 then we have
4.(s− k)

5
≤ t <

5 · (s− k)

6
. If we substitute the respective

values of k and s in above range then the only possible value is t = 2 when (k, s) = (1, 4).

In this case it is enough to show

H0(D,Ω4
D(2)) = 0 when (k, s) = (1, 4).

But this follows from stability of ΩD.

The following cases need only to be discussed:

s = 6:

1) (s = 6, k = 1, a, t = a− 1)

2) (s = 6, k = 2, a = 2, t = 1)

3) (s = 6, k = 3, a = 2, t = 1)

4) (s = 6, k = 4, a = 3, t = 1).

s = 7:

5) (s = 7, k = 2, a, t = a− 1)

6) (s = 7, k = 3, a = 2, t = 1).

In 1) and 5), we note that D is a smooth quadric hypersurface in P6 and by [59, Theorem

1, p.174], the vanishing H0(D,Ωa−1
D (a−1)) = 0 holds. Again by Snow’s theorem, and applying

Lemma 3.4.1 we deduce the required vanishing in case 1)-4), 6).

Hence ΩX(logD) is semi-stable in the cases claimed.

2

3.4.1 Counterexample when D is reducible

We now investigate the situation when D is reducible and when (X,D) is Del Pezzo surface.

Lemma 3.4.3. Suppose (X,D) = (P2, D1+D2), where D1, D2 are lines on P2. Then ΩP2(log D)

is not semistable.

Proof. The semistability of ΩP2(log D) is equivalent to the vanishing (see (3.4.4)):

H0(P2,ΩP2(log D)(t)) = 0

for t < (3−2)
2 , i.e. when t ≤ 0.

When t < 0, this follows from Lemma 3.2.2.

When t = 0, we note that the injectivity of map⊕
i=1,2

H0(Di,ODi)→ H1(P2,ΩP2)

(see (3.1.1)) fails. Indeed, here
⊕

i=1,2H
0(Di,ODi) is of rank two and H1(P2,ΩP2) is of rank

one. 2
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Remark 3.4.4. We suspect that in higher dimensional cases with several divisor components,

the semistability may fail.
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Chapter 4

Embedding properties of linear

series on hyperelliptic varieties

4.1 Preliminaries on linear systems.

Let X be a smooth projective variety defined over C, and let L be an ample line bundle

on X. Note that H0(X,L) is the finite dimensional vector space of global sections of the line

bundle L. Let us recall (Section 2.2.3) the associated rational map:

φL : X → Pn = P (H0(X,L)
∗
),

given by

x 7→ {s ∈ H0(X,L)|s(x) = 0}.

One can ask when φL is a morphism (respectively, embedding). In other words, when φL is

base point free (respectively, very ample).

More generally, we have the following notion of k-jet ampleness.

Definition 4.1.1. A line bundle L is called k-jet ample, k ≥ 0, if the restriction map

H0(L)→ H0(L⊗OX/mk1
x1 ⊗ ...⊗m

kp
xp)

is surjective for distinct points x1, x2, ..., xp ∈ X such that k1 + k2 + ...+ kp = k + 1.

Note that 0-jet ample is same as global generation, and 1-jet ampleness is same as very

ampleness.

Further questions on embedding were studied classically by the Italian school of Geometers.

The study was with reference to the existence of trisecants or more generally multisecants to

the given embedded variety.

Some geometric notions which evolved were:
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Definition 4.1.2. Let L be a very ample line bundle on X. We say φL is a projectively normal

embedding (or, X is a projectively normal) if the multiplication map

H0(Pn,OPn(r)) = SymrH0(X,L)→ H0(X,Lr)

is surjective, for each r ≥ 1. We also called as N0-property.

Definition 4.1.3. We say that L satisfies N1-property if it satisfies N0-property and the ideal

of the embedded variety is generated by quadrics.

Mark Green ([18],[19]) unified the above concepts and introduced the Np-property of L,

also called the p-th syzygy property of L. For a projective variety X defined over an al-

gebraically closed field k, and an ample line bundle L on X, consider the graded algebra

RL = ⊕∞h=0H
0(X,L⊗h) over the polynomial ring SL = ⊕∞h=0Sym

hH0(X,L).

Now take a minimal resolution of RL as a graded SL-module:

0→ ...→ Ep → ...→ E2 → E1 → E0 → RL → 0

where E0 = SL ⊕j SL(−a0j), a0j ≥ 2, and for p ≥ 1, Ep = ⊕jSL(−apj), apj ≥ p+ 1.

Green introduced the following terminology:

• N0-property of L ⇐⇒ E0 = SL, i.e., the embedded variety X is projectively normal.

• N1-property of L ⇐⇒ N0-property of L and a1j = 2 for any j, i.e., the homogeneous ideal of

the embedded variety X is generated by quadrics. In general,

• Np-property of L ⇐⇒ Np−1-property of L and apj = p + 1 for any j, i.e., the first (p − 1)

maps of the resolution of the ideal of X are matrices with linear entries.

4.2 Known results on curves and surfaces.

The initial results on these questions included the case of curves and surfaces. Suppose C

is a smooth projective curve of genus g and L is a line bundle on C.

Theorem 4.2.1. a) (Castelnuova): If the degree of L is at least 2g + 1 then L satisfies N0-

property.

b) (Mattuck, Fujita, St.Donat): If the degree of L is at least 2g+ 2 then L satisfies N1-property

The following theorem is due to Green [19], which generalizes the above results on curves.

Theorem 4.2.2. Suppose C is a smooth projective curve of genus g and L is a line bundle on

C. If the degree of L is at least 2g + 1 + p then L satisfies Np-property.

In the case of surfaces F. Gallego , B. Purnaprajna done some significant work.
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Theorem 4.2.3. [15] Let X be an Enriques surface over an algebraic closed field of charac-

teristic 0. Let L be an ample base-point free line bundle. Then L⊗p+1 satisfies the property Np,

for all p ≥ 1.

Theorem 4.2.4. [16] Let X be a K3 surface and let L be a base-point-free line bundle such

that L2 ≥ 4. If n ≥ p+ 1, then nL satisfies property Np.

Theorem 4.2.5. [16] Let X be a K3 surface and let L be a base-point-free line bundle such

that L2 ≥ 8 and the general member of |L| is non-hyperelliptic, non-trigonal and not a plane

quintic. Then rL satisfies property Np for all r ≥ p.

For higher dimensions, Mukai proposed a generalization of the theorem 4.2.2.

4.2.1 Mukai conjecture for adjoint linear systems.

Conjecture 4.2.6. Suppose (X,L) is a smooth polarized projective variety and KX is the

canonical class on X. Then KX + (p+ 4)L satisfies Np-property.

This conjecture is still unsolved. A progress on this conjecture was subsequently given:

Theorem 4.2.7. [9] Suppose L is a very ample line bundle on a n-dimensional smooth pro-

jective variety then KX + (n+ 1 + p)L satisfies Np-property.

A stronger version of the Mukai conjecture in the case of Enriques surfaces and for the

property N0 is proved by Gallego and Purnaprajna. More precisely:

Theorem 4.2.8. [21, Corollary 2.8, p.156] Let X be an Enriques surface and L1, ..., Ln ample

line bundles on X. Let L = KX ⊗ L1 ⊗ ...⊗ Ln. If n ≥ 4, then L satisfies property N0.

They also gave a partial answer in the case of abelian and bielliptic surfaces:

Theorem 4.2.9. [21, Corollary 4.5, p.167] Let X be an Abelian or a bielliptic surface. Let M

be an ample line and L = KX ⊗M⊗n. If n ≥ 2p+ 2 and p ≥ 1, then L satisfies property Np.

In particular, if n ≥ 4, L satisfies property N1.

4.3 Known results on abelian varieties.

An abelian variety A defined over C is a compact complex torus Cg
Γ (here Γ ⊂ Cg is a free

abelian group on 2g generators) and there is an ample line bundle L on A.

Given a polarized abelian variety (A,L), Mumford([45]) associated certain groups: Let

ta : A→ A be the translation map x 7→ a+ x.

• K(L) = {a ∈ A : L ' t∗aL} is called the fixed group of L.
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• G(L) = {(a, φ) : L 'φ t∗aL} is called the theta group of L.

The theta group G(L) acts on H0(A,L) as follows: if (a, φ) ∈ G(L) and s ∈ H0(A,L) then

(a, φ).s = t∗−aφ(s).

Further, H0(A,L) is the unique irreducible G(L)-module, upto isomorphisms, such that α ∈ C∗

acts as multiplication by itself ([45, Proposition 3]). These groups have been extensively used

in the study of linear series on abelian varieties.

Denote Pic0(A), the group of line bundles on A whose first chern class is 0. The group

Pic0(A) admits the structure of a complex torus (See [5, Proposition 2.2.1, p35]) in a natural

way.

Definition 4.3.1. [5] A holomorphic line bundle P on A× Â satisfying

1) P|A× L ' L for every L ∈ Â
2) P|0× Â is trivial

is called a Poincare bundle for A.

Some well-known results on linear series are:

Theorem 4.3.2. Suppose (A,L) is a polarized abelian variety. Then

1) (Lefschetz, [37]) nL, n ≥ 3 is always very ample.

2) (Ohbuchi, [52]) L2 is very ample if L has no base divisor.

3) (Bauer-Szemberg, [2]) Lk+1 is k-jet ample for k ≥ 1 , and the same holds for Lk+1, k ≥ 1

if L has no base divisor.

4) (Koizumi, [33]) nL satisfies N0-property, for n ≥ 3.

5) (Kempf, [31]) nL satisfies N1-property, for n ≥ 4.

6) (Pareschi, [53]) nL satisfies Np-property, for n ≥ p+ 3.

7) (Iyer, [29]) Suppose (A,L) is a polarized g-dimensional simple abelian variety. If dimH0(A,L) >

2g · g!, then L gives a projectively normal embedding, for all g ≥ 1.

These results are not much known in the case of primitive line bundles L.

4.3.1 Primitive line bundles.

Let (A,L) be a polarized abelian variety of dimension g and Â be its dual abelian variety. The

polarization L induces an isogeny

φL : A→ Â, x 7→ t∗xL⊗ L−1.

The kernel of φL is of the form (⊕gi=1Z/diZ)2 with positive integers d1, ..., dg and di|di+1 for

i = 1, ..., g − 1. The vector (d1, ..., dg) is called the type of the polarization L.
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Definition 4.3.3. A line bundle L on an abelian variety A is said be primitive if L is of type

(1, d2, ..., dg). That is L is not of the form Mn for some n ≥ 2 and an ample line bundle M on

A.

Some well-known results on linear series in the case of primitive line bundles are:

Theorem 4.3.4. [5] Let L be an ample line bundle of type (1, d) on A defining an irreducible

polarization. Then L is globally generated if and only if d ≥ 3 and is very ample if and only if

d ≥ 5 and there is no elliptie curve E on A with (L.E) = 2.

In the case of abelian three fold Ein and Lazarsfeld proved a theorem on global generation

of adjoint line bundles. More precisely,

Theorem 4.3.5. [10] Let L be an ample line bundle of type (1, d2, d3) on an abelian threefold

A with d2.d3 ≥ 5. Suppose there is no curve C ⊂ A with (L.C) ≥ 29 and there is no surface

S ⊂ A with (L2.C) ≥ 16. Then L is globally generated.

The problem related to very ampleness in the case of abelian three folds proved by Birken-

hake, Lange and Ramanan. More precisely,

Theorem 4.3.6. [6] Let (A,L) be a general polarized abelian threefold of type (1, 1, d), d ≥ 13,

6= 14. Then the line bundle L is very ample.

4.4 Mukai regularity and Continuous global generation:

The notion of Mukai regularity on abelian varieties, is based on Fourier-Mukai transform

has been introduced by G.Pareschi and M.Popa ([54], [55]), to obtain the most of the above

results.

4.4.1 Fourier-Mukai functor

Suppose A is an abelian variety of dimension g over C and Â be its dual abelian variety (See

[5, Section 2.4, p.34]). Denote P, the normalized Poincaré line bundle on A× Â.

Let us recall some facts from [43]:

Denote Coh(A) (respectively, Coh(Â)), the category of coherent sheaves on A (resp. on Â).

Let

Ŝ : Coh(A)→ Coh(Â)

be the functor defined as follows:

ŜF := p2∗(p
∗
1F ⊗ P).
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Similarly we can define the functor

S : Coh(Â)→ Coh(A)

given as

SG := p1∗(p
∗
2G ⊗ P).

Denote D(A) (respectively D(Â)) the derived category of Coh(A) (respectively Coh(Â)). Then

we have a derived functor ([43, Proposition 2.1, p.155]),

RŜ : D(A)→ D(Â)

given by

RŜF = Rp2∗(p
∗
1F ⊗ P).

Similarly we obtain the derived functor

RS : D(Â)→ D(A)

These derived functors are called the Fourier-Mukai functor.

4.4.2 Mukai-regularity

Now we recall the notion of of I.T (index theorem) and M-regularity from [43].

With notations as in previous subsection, denote RjŜ(F), the cohomologies of the derived

complex RŜF . A coherent sheaf F on A satisfies W.I.T (the weak index theorem) with index

i if RjŜ(F) = 0, for all j 6= i.

A stronger notion is as below.

Definition 4.4.1. A coherent sheaf F on A is said to satisfy I.T (index theorem) with index

i if Hj(F ⊗ α) = 0, for all α ∈ Â and for all j 6= i.

In this situation the sheaf RiŜ(F) is locally free. If F satisfies W.I.T or I.T. with index i,

then the sheaf RiŜ(F) is denoted by F̂ and is called the Fourier transform of F .

In particular, a sheaf F is said to satisfy index theorem (I.T) with index 0 if

H i(F ⊗ α) = 0,∀α ∈ Pic0(A), ∀ i > 0.

Given a coherent sheaf F on A, we denote the support of the sheaf RiŜ(F) by

Si(F) := Supp(RiŜ(F)).

Definition 4.4.2. A coherent sheaf F on A is called M-regular if

codim Si(F) > i

for each i = 1, ..., g.
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Remark 4.4.3. 1) Coherent sheaves on A which satisfy I.T with index 0, are examples of

M-regular sheaves.

2) Note that an ample line bundle H on A satisfies I.T with index 0 [54, Example 2.2,

p.289].

Denote the cohomological support locus [22] by:

V i(F) := {η ∈ Pic0(A) : hi(F ⊗ η) 6= 0} ⊂ Pic0(A).

Note that there is an inclusion Si(F) ⊂ V i(F).

Hence a sheaf is M -regular if

codim(V i(F)) > i (4.4.1)

for any i = 1, ..., g.

The notion of M -regularity has significant geometric consequences via global generation of

suitable sheaves. This will be illustrated in the next section.

The main result about M -regularity is the following:

Theorem 4.4.4. [54, Theorem 2.4, p289]. Let F be a coherent sheaf and L an invertible sheaf

supported on a subvariety Y of the abelian variety X (possibly X it self). If both F and L are

M -regular as a sheaves on X, then F ⊗ L is globally generated.

To prove this theorem Pareschi and Popa introduced an intermediate notion, called contin-

uous global generation.

Definition 4.4.5. A coherent sheaf F on an irregular variety Y is called continuously globally

generated if for any nonempty open set U ⊆ Pic0(Y ) the sum of evaluation maps⊕
α∈U

H0(F ⊗ α)⊗ α̌ ⊕ev−−→ F

is surjective.

Note that M -regularity implies continuous global generation, see [54, Theorem 2.13, p293].

We have the following intermediate result to prove Theorem 4.4.4.

Theorem 4.4.6. [54, Theorem 2.4, p292]. Let Y be a subvariety of an irregular variety X, F
a coherent sheaf and L a line bundle on Y , both continuously globally generated as sheaves on

X. Then F ⊗ L is globally generated.

4.5 Main theorems on hyperelliptic varieties.

In this section, we will prove some of the above results on hyperelliptic varieties.
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Definition 4.5.1. [34] A smooth projective variety X is called a hyperelliptic variety if it is

not isomorphic to an abelian variety but admitting an étale covering A → X, where A is an

abelian variety.

Note that by [34, Theorem 1.1, p.492], there is a finite group G acting biholomorphically

on A, without fixed points. In other words, we can write X as a group quotient X = A/G,

with an étale quotient morphism

π : A→ X = A/G.

To investigate coherent sheaves on X, we note that their pullback on A under the morphism

π, is equipped with an action of the group G. Hence to investigate line bundles and more

generally coherent sheaves on X, it would suffice to investigate coherent sheaves on A with a

G-action. To make this more precise, we recall the following facts.

4.5.1 G-linearized sheaves

Suppose A is an abelian variety and is equipped with an action by a finite group G. In this

subsection, we recall G-linearized sheaves on an abelian variety A.

Definition 4.5.2. [49, Definition 1.6, p.30]. A coherent sheaf F on A is called G-linearized

(or a G-sheaf) if we have an isomorphism φg : g∗F ∼−→ F , for all g ∈ G, and such that the

following diagram of coherent sheaves on A

(gh)∗F
h∗φg //

φgh $$III
III

III
I h∗F

φh
��
F

is commutative, for any pair g, h ∈ G, i.e. φgh = φh ◦ h∗φg.

Assume that the action of the group G on A is free. We note that G-linearized sheaves are

relevant to our situation, since it corresponds to coherent sheaves on the quotient variety A/G.

In fact, we have:

Proposition 4.5.3. Consider a pair (A,G) as above, and assume that the action of G on A

is free. Then the functor F 7→ π∗F is an equivalence of category of coherent OX-modules on

X and the category of coherent G-sheaves on A. The inverse functor is given by G 7→ (π∗(G))G

(the subsheaf of G-invariant sections of π∗(G)). Locally free sheaves correspond to locally free

sheaves of the same rank.

Proof. See [47, Proposition 2, p.70]. 2
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4.5.2 Mukai-regularity for G-linearized sheaves

Now we apply Fourier-Mukai functor RŜ (See Section 4.4.1) on the G-linearized sheaves. More

over we define the I.T (index theorem) and M -regularity in the case of G-linearized sheaves.

Definition 4.5.4. 1) A coherent G-sheaf F on A satisfies W.I.T (the weak index theorem)

with index i if RjŜ(F) = 0, for all j 6= i.

2) A coherent G-sheaf F on A is said to satisfy I.T (index theorem) with index i if Hj(F⊗α) =

0, for all α ∈ Â and for all j 6= i.

Note that the sheaf RiŜ(F) is locally free.

Given a coherent G-sheaf F on A, we denote the support of the sheaf RiŜ(F) by

Si(F) := Supp(RiŜ(F)).

Now we recall the notion of M -regularity.

Definition 4.5.5. A coherent G-sheaf F on A is called M-regular if

codim Si(F) > i

for each i = 1, ..., g.

Remark 4.5.6. 1) Coherent G-sheaves on A which satisfy I.T with index 0, are examples of

M-regular G-sheaves.

2) We also note that an ample line bundle H satisfies I.T with index 0 [54, Example 2.2,

p.289]. This will be relevant in our later sections.

Denote the cohomological support locus [22]:

V i(F) := {η ∈ Pic0(A) : hi(F ⊗ η) 6= 0} ⊂ Pic0(A).

There is an inclusion Si(F) ⊂ V i(F).

Hence a G-sheaf is M -regular if

codim(V i(F)) > i (4.5.2)

for any i = 1, ..., g.

4.6 G-global generation and global generation on hyperelliptic

varieties

Suppose G be a finite group and F is a coherent G-sheaf on an abelian variety A. Consider the

central extension of G by C∗, the multiplicative group of nonzero complex numbers. In other

words, there is an exact sequence:

1→ C∗ → G̃ → G→ 0.
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Here G̃ consists of pairs(g, g̃), where g runs over G and g̃ is an automorphism of F covering g.

We assume that there is a splitting and let G̃ ⊂ G̃ denote the image of G under the splitting

map. This is because, by definition, a G-linearized sheaf comes with a splitting as above. This

will enable us to look at invariant sections of G-linearized coherent sheaves on A.

We note that G̃ acts on H0(A,F). Denote the subspace of G̃-invariants:

H0(A,F)G̃ = {s ∈ H0(A,F) : g̃s = s ∀g̃ ∈ G̃}.

Since our aim is to obtain global generation of coherent sheaves on the quotient variety

X = A/G, we introduce the following corresponding notions for coherent G-sheaves on A as

follows. In the next subsection, we will prove its equivalence with usual global generation on

X.

4.6.1 G-global generation, G-very ampleness and G-k jet ampleness

We keep notations as above.

Definition 4.6.1. A coherent G-sheaf F on A is called G-globally generated if the evaluation

map

ev : H0(A,F)
G̃ ⊗OA → F

is surjective. Here the map ev is evaluation of G̃-invariant sections at any point of A.

Now we formulate very ampleness for coherent G-sheaves as follows. For any a ∈ A, let

G.a := {ga : g ∈ G}. Then this is the orbit of the point a ∈ A under the action of G. Let IG.a

denote the ideal sheaf of the orbit G.a in A. Then this is a coherent G-sheaf on A.

Definition 4.6.2. A G-line bundle L on A is called G-very ample if the coherent G- sheaf

L⊗ IG.a is G-globally generated, for all a ∈ A.

This notion can be extended to k-jet ampleness for G-line bundles as well.

Definition 4.6.3. A G-line bundle L on A is G-k-jet ample if the coherent G sheaf

L⊗ Ik1G.a1 ⊗ ...⊗ I
kl
G.al

is G-globally generated, for distinct points a1, a2, ..., al ∈ A such that k1 + k2 + ...+ kl = k. In

other words, the evaluation map given by G̃-invariant sections

H0(A,L⊗ Ik1G.a1 ⊗ ...⊗ I
kl
G.al

)G̃ → H0(A,L⊗ Ik1G.a1 ⊗ ...⊗ I
kl
G.al
⊗OA/ma)

is surjective, for each a ∈ A.

Note that G-0-jet ample is same as G-global generation and G-1-jet ampleness is same as

G-very ampleness.
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4.6.2 Equivalence of G-global generation and global generation on X = A/G

In this subsection, we note the relevance of G-global generation on the quotient variety X. We

keep notations as in the previous subsection.

Then we have the following equivalence:

Lemma 4.6.4. Suppose F is a coherent G-sheaf on A. Then F is G-globally generated if and

only if the corresponding sheaf (π∗(F))G is globally generated on the quotient variety X = A/G.

Proof. We recall the one-one correspondence of coherent sheaves, as given in Proposition 4.5.3.

Given a coherent sheaf G on the quotient variety X = A/G, consider its pullback π∗G on A,

via the quotient morphism π : A→ X = A/G. Then π∗G is a coherent G-sheaf on A. It would

suffice to prove that G is globally generated on X if and only if π∗G is G-globally generated on

A, using Proposition 4.5.3. Firstly, we note the following decomposition [47, Remark 1, p.72]:

π∗OA =
⊕
χ∈Ĝ

Lχ,

if G is commutative. In any case, OX is a direct summand of π∗OA. Here Lχ is a line bundle

on X associated to the character χ on G. Using projection formula, we have:

π∗(π
∗G) =

⊕
χ∈Ĝ

(G ⊗ Lχ), (4.6.3)

if G is commutative. But in any case, the sheaf G is a direct summand of π∗(π
∗G). This gives

us an inclusion of the space of global sections:

π∗H0(X,G) ⊂ H0(A, π∗G).

In particular, the subspace of G̃-invariant sections of H0(A, π∗G) is given by the space

π∗H0(X,G).

Suppose G is globally generated. This implies that the evaluation map:

H0(X,G)⊗OX → G

is surjective. The pullback of this morphism of sheaves, via π, on A corresponds to the map

H0(A, π∗G)G̃ ⊗OA → π∗G

and which is clearly surjective. This implies the G-global generation of π∗G. Using the equiv-

alence of categories in Proposition 4.5.3, we conclude the proof. 2

Corollary 4.6.5. Suppose L is an ample G-line bundle on A and M be the corresponding line

bundle on X (under the correspondence in Proposition 4.5.3). Then L is G-k jet ample if and

only if M is k-jet ample on X.
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Proof. We need only to note that the ideal sheaf Ik1x1 ⊗ ...⊗ I
kl
xl

of distinct points x1, ..., xl ∈ X
with multiplicities ki, such that

∑
i ki = k, corresponds to the ideal sheaf Ik1G.a1 ⊗ ... ⊗ I

kl
G.al

on A, under the correspondence in Proposition 4.5.3. Here G.ai = π−1(xi), i.e. the inverse

image of a point xi is a G-orbit of a point ai ∈ A, for i = 1, ..., l. Hence the coherent G-sheaf

L ⊗ Ik1G.a1 ⊗ ... ⊗ I
kl
G.al

on A corresponds to the coherent sheaf M ⊗ Ik1x1 ⊗ ... ⊗ I
kl
xl

on X. Now

we apply Lemma 4.6.4, to conclude the proof. 2

4.7 G-global generation of G-linearized sheaves of weak index

zero

In this section, we recall the notion of continuous global generation [54], adapted to coherent

G- sheaves. Instead of the usual multiplication maps, we take the ’averaging’ of sections, for

the action of the group G. We note that the results of this section hold, for any action of the

finite group, i.e., the action need not be free, except in Proposition 4.7.6.

Before proceeding to continuous global generation and its relevance to our set-up, recall

the surjectivity statement for multiplication map of sections of ample line bundles [5, 7.3.3].

This is suitably generalized to higher rank sheaves, which are M -regular, by Pareschi and Popa

[54]. We modify the multiplication maps by taking ’averaging’ of sections, for the finite group

G. In other words, we will consider multiplication maps for the G̃-invariant sections, suitably

interpreted. This will be needed when we want to look at G-global generation of coherent G

sheaves.

4.7.1 Surjectivity of ’Averaging’ map

We keep the notations from the previous section.

Lemma 4.7.1. Let F be M-regular coherent G-sheaf and H locally free G-sheaf satisfying I.T

with index 0. Then for any Zariski open set U ⊆ Â, the map⊕
α∈U

H0(F ⊗ α)⊗H0(H ⊗ α̌)
⊕Av−−−→ H0(F ⊗H)G̃

is surjective. Here the ’averaging map’ is given as

Av(s⊗ t) =
1

|G|
∑
g̃∈G̃

g̃(s⊗ t),

for s ∈ H0(F ⊗ α) and t ∈ H0(H ⊗ α̌).

Proof. Firstly, note that the map ⊕Av factorizes as follows,⊕
α∈U

H0(F ⊗ α)⊗H0(H ⊗ α̌)
∑
mα−−−−→ H0(F ⊗H)

h−→ H0(F ⊗H)G̃.
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where h is the averaging map. By [54, Theorem 2.5, p.290], the map
∑
mα is surjective.

Clearly h is surjective, since h restricts to identity on H0(F ⊗H)G̃ ⊂ H0(F ⊗H). Hence the

composed map ⊕Av = h ◦
∑
mα is surjective.

2

Corollary 4.7.2. Let F be M-regular coherent G-sheaf and H locally free G-sheaf satisfying

I.T with index 0. Then for any large positive integer N and for any subset S ⊂ Â with |S| = N ,

the averaging map ⊕
α∈S

H0(F ⊗ α)⊗H0(H ⊗ α̌)
⊕Av−−−→ H0(F ⊗H)G̃

is surjective

Proof. By above Lemma 4.7.1, the surjectivity of the averaging map⊕
α∈U

H0(F ⊗ α)⊗H0(H ⊗ α̌)
⊕Av−−−→ H0(F ⊗H)G̃

implies that the family of linear subspaces {Im(Avα)}α∈U spans the finite dimensional vector

space H0(F⊗H)G̃. So for any large positive integer N , the images under Av of a finitely many

N linear subspaces H0(F ⊗ α)⊗H0(H ⊗ α̌) span H0(F ⊗H)G̃.

2

4.7.2 G-Continuous Global Generation

In this subsection, we recall the notion of continuous global generation and its relevance to

global generation [54]. We suitably modify this notion for coherent G-sheaves and show that

it is related to G-global generation.

Definition 4.7.3. A coherent G-sheaf Fon A is called G-continuously globally generated if for

any nonempty open set U ⊆ Â the sum of average maps⊕
α∈U

H0(F ⊗ α)⊗ α̌ ⊕Av−−−→ F

is surjective. For s ∈ H0(A,F ⊗ α) and a local section t of α̌, we define locally on A:

Av(s⊗ t) =
1

|G|
∑
g̃∈G̃

g̃.(s⊗ t).

Note that locally s⊗ t is a section of F .

As earlier, we note that the sum could be taken over finite subsets of Â, of large cardinality.
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Lemma 4.7.4. Suppose F is a coherent G-sheaf and assume it is G-continuously globally

generated. Then for any large positive integer N and for any subset S ⊂ Â with |S| = N , the

sum of average maps ⊕
α∈S

H0(F ⊗ α)⊗ α̌ ⊕Av−−−→ F

is surjective.

Proof. This proof is similar to the argument given in Corollary 4.7.2. 2

We now prove the following proposition relating tensor product of continuously G global

generated sheaves and G-global generation.

Proposition 4.7.5. Suppose F is a coherent G-sheaf and H is a G-line bundle on A. If both

F and H are G-continuously globally generated then F ⊗H is G-globally generated.

Proof. By Lemma 4.7.4, for any large positive integer N and for any subset S ⊂ Â with

|S| = N , the averaging map ⊕
α∈S

H0(F ⊗ α)⊗ α̌ ⊕Av−→ F

is surjective. Consider the following commutative diagram,⊕
α∈S

H0(F ⊗ α)⊗H0(H ⊗ α̌)⊗OA
⊕
Av−−−→ H0(F ⊗H)G̃ ⊗OA

↓ ↓⊕
α∈S

H0(F ⊗ α)⊗H ⊗ α̌ =
⊕
α∈S

H0(F ⊗ α)⊗ α̌⊗H Av⊗id−−−−→ F ⊗H.

Then we have the surjectivity of the lower right map Av ⊗ id.

We have to show surjectivity of the following evaluation map

ev : H0(F ⊗H)G̃ ⊗OA → F ⊗H.

We first show that

supp(coker(ev)) ⊆ ∩S⊂Â{∪α∈SB(H ⊗ α̌)} =: Z.

Here the intersection varies over finite subsets S of Â of large cardinality N and B(H ⊗ α̌) is

the base locus of H ⊗ α̌. Let x be an element in supp(coker(ev)) such that x is not in Z. This

implies, for some S and an α ∈ S,

H0(H ⊗ α̌)⊗OA → H ⊗ α̌

is surjective at x. Therefore, in the above commutative diagram, the evaluation map

ev : H0(F ⊗H)G̃ ⊗OA → F ⊗H.
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is surjective at x. This gives a contradiction to x lying in supp(coker(ev)). Hence supp(coker(ev))

⊆ ∩S⊂Â{∪α∈SB(H ⊗ α̌)}. Since H is G- continuously globally generated, by the arguments

in [54, Remark 2.11, Proposition 2.12, p.292], ∩S ∪α∈S B(H ⊗ α̌) is empty, where ∩ runs over

S ⊂ Â of large cardinality. This implies supp(coker(ev)) is empty.

Hence the evaluation map,

ev : H0(F ⊗H)G̃ ⊗OA → F ⊗H

is surjective.

2

The following proposition gives an analogue of [54, Proposition 2.13]. It shows that the

M-regularity of a coherent G-sheaf implies G-continuous global generation. We assume that

the group G acts freely on A.

Proposition 4.7.6. If F is a M-regular coherent G-sheaf on A, then for any large positive

integer N and for any subset S of Â with cardinality N , the sum of average maps,⊕
α∈S

H0(F ⊗ α)⊗ α̌ ⊕Av→ F

is surjective. In other words, F is G-continuously globally generated.

Proof. Let H be an ample G-line bundle such that F ⊗ H is G-globally generated. Indeed,

such a line bundle can be chosen, due to the correspondence in Proposition 4.5.3. We consider

the sheaf FX corresponding to F , on X = A/G, and find an ample line bundle HX on X such

that FX ⊗HX is globally generated on X. Let H be the ample line bundle on A corresponding

to HX . By Lemma 4.6.4, the coherent G-sheaf F ⊗H is G- globally generated.

This implies that the evaluation map

H0(F ⊗H)G̃ ⊗OA
ev−→ F ⊗H

is surjective. Since H is an ample G-line bundle, by Remark 4.5.6, H satisfies I.T with index

0. Therefore, by Corollary 4.7.2,⊕
α∈S

H0(F ⊗ α)⊗H0(H ⊗ α̌)⊗OA
⊕Av−−−→ H0(F ⊗H)G̃ ⊗OA

is surjective. Now consider the following commutative diagram,⊕
α∈S

H0(F ⊗ α)⊗H0(H ⊗ α̌)⊗OA
⊕
Av−−−→ H0(F ⊗H)G̃ ⊗OA

↓ ↓⊕
α∈S

H0(F ⊗ α)⊗H ⊗ α̌ Av⊗id−−−−→ F ⊗H
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where the sum varies over a finite subset S, of large cardinality. In the above commutative

diagram, since ⊕Av and the evaluation ev are surjective, it follows that the averaging map⊕
α∈S

H0(F ⊗ α)⊗H ⊗ α̌ Av⊗id−−−−→ F ⊗H

is also surjective. Since H is a line bundle, we obtain the assertion on G-continuous global

generation of the sheaf F . 2

As a consequence of the above proposition, we obtain the main result of this section:

Corollary 4.7.7. Suppose F is a coherent G-sheaf and H is a G-line bundle on A. If both F
and H are M-regular sheaves on A, then the coherent G-sheaf F ⊗H is G-globally generated.

Proof. By Proposition 4.7.6, F are H are G-continuously globally generated. By Proposition

4.7.5 F ⊗H is G-globally generated. 2

4.8 Embedding theorems on hyperelliptic varieties

In this section we prove analogues of very amplessnes results due to Ohbuchi and Lefschetz

[54, Corollary 3.9], in the case of ample G-line bundle. By Corollary 4.6.5, we obtain similar

embedding statements for the quotient variety X = A/G.

Lemma 4.8.1. Let L1 and L2 be G-line bundles on A such that L1 and L2⊗IGx are M -regular,

for all a ∈ A. Then L1 ⊗ L2 is G-very ample on A.

Proof. By Corollary 4.7.7, L1⊗L2⊗ IG.a is G-globally generated, for all a ∈ A. Hence L1⊗L2

is G-very ample. 2

Now we check M -regularity of G-line bundles which have no G-invariant base divisor. This

will enable us to conclude very ampleness of powers of G-line bundles.

Proposition 4.8.2. Suppose L be an ample G-line bundle and having no base divisor on an

abelian variety A. Then L⊗ IG.a is M -regular on A.

Proof. Firstly for any a ∈ A, consider the following exact sequence:

0→ L⊗ IG.a → L→ L|G.a → 0.

Take the long exact cohomology sequence:

0→ H0(L⊗ IG.a)→ H0(L)→ ⊕g∈GH0(L⊗ C(ga))→

H1(L⊗ IG.a)→ H1(L)→ ⊕g∈GH1(L⊗ C(ga))→ · · ·.
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Also note that since L is ample H i(A,L) = 0, for all i > 0. Therefore the above long exact

sequence reduces to

0→ H0(L⊗ IG.a)→ H0(L)→ (⊕g∈GH0(L⊗ C(ga))→ H1(L⊗ IG.a)→ 0.

Now consider the cohomological support locus,

Supp V i(L⊗ IG.a) := {α ∈ Â : H i(L⊗ IG.a ⊗ α) 6= 0}.

Note that

L⊗ IG.a ⊗ α = ⊕g∈G(L⊗ Iga ⊗ α) ∼= t∗y(L⊗ IG.a−y),

for some y ∈ A. The above exact sequences imply that, when i > 1, we have SuppV i(L⊗IGx)) =

∅. This implies

codim SuppV i(L⊗ IGx) > i

for all i > 1. When i = 1, Supp(V 1(L ⊗ IGx)) is isomorphic to a base divisor of L. By

hypothesis, L has no base divisor. Hence this implies codimension of Supp(V 1(L⊗ IGx)) is at

least 2. Hence, using (4.5.2), L⊗ IGx is M-regular.

2

Now we consider powers of ample G-line bundles and apply the previous results to obtain

embedding statements.

Theorem 4.8.3. Suppose N is an ample line bundle on the quotient variety X = A/G. Then

the following hold:

a) N2 is very ample, if N has no base divisor.

b) N3 is always very ample.

Proof. Using Proposition 4.5.3, let L be the ample G-line bundle on A corresponding to the

ample line bundle N on X.

To prove a), we assume that N has no base divisor. This implies that L has no G-invariant

base divisor, in particular L has no base divisor. By Proposition 4.8.2, L⊗IGx is M-regular, for

all x ∈ X. Furthermore since L is ample, L is M-regular by Remark 4.5.6. Hence by Corollary

4.7.7, L ⊗ L ⊗ IGx is G-globally generated. Hence L⊗2 is G-very ample. Now by Corollary

4.6.5, we conclude that N2 is very ample on X.

To prove b), note that by Corollary 4.7.7, L⊗2 is G-globally generated. This implies that

L⊗2 has no base divisor and hence by Theorem 4.8.2, L⊗2 ⊗ IGx is M-regular, for all x ∈ X.

Hence, by Corollary 4.7.7, L⊗2 ⊗ IGx is G-continuously globally generated. This implies L⊗3

is G-very ample and hence N⊗3 is very ample on X. 2

To extend above results to k-jet ampleness on a hyperelliptic variety X, we note the below

lemma for ample G-line bundles on an abelian variety A.
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Lemma 4.8.4. Suppose L is an ample G-line bundle on an abelian variety A. Then the

following are equivalent:

1) L is G-k-jet ample.

2) L ⊗ Ik1G.a1 ⊗ ... ⊗ I
kl
G.al

satisfies I.T. with index 0, for any l-distinct points a1, ..., al ∈ A
such that

∑
ki = k + 1.

Proof. Using the correspondence in Proposition 4.5.3, it suffices to prove the equivalence for

the corresponding line bundle N := π∗(L)G on X. Recall that π : A → X = A/G is the

quotient morphism. Using (4.6.3), we note that

H1(A,L) =
⊕
χ∈Ĝ

H1(X,N ⊗ Lχ).

Here Lχ denotes the line bundle on X associated to the character χ on G. Since L is ample we

have the vanishing H1(A,L) = 0. This implies the vanishing H1(X,N) = 0. The rest of the

proof is similar to [55, Lemma 3.3]. 2

Now we state the analogue of above theorem, for higher jet ampleness on a hyperelliptic

variety X.

Proposition 4.8.5. Suppose N is an ample line bundle on a hyperelliptic variety X. Then

the following hold:

1) Nk+1 is k-jet ample if N has no base divisor, and for k ≥ 1.

2) Nk+2 is k-jet ample, and for k ≥ 0.

Proof. The proof is similar to [55, Theorem 3.8] applied to the corresponding ample G-line

bundle L on A. Indeed, by above Lemma 4.8.4, it suffices to check 3), i.e., the sheaf

L⊗ Ik1G.a1 ⊗ ...⊗ I
kl
G.al

is G-globally generated, for any l-distinct points a1, ..., al ∈ A such that
∑
ki = k.

We apply induction on k, and using the correspondence in Corollary 4.6.5, prove it for the

ample G-line budle L on A.

Suppose k = 1. Then 1) holds, by Theorem 4.8.3.

Suppose the statement 1) holds for k − 1, i.e., Lk is G–(k− 1)-jet ample. By Lemma 4.8.4,

this implies for any l-distinct points a1, ..., al ∈ A such that
∑

i ki = k, the sheaf Lk ⊗ Ik1G.a1 ⊗
...⊗ IklG.al satisfies I.T with index zero. By Remark 4.5.6 2), Lk⊗ Ik1G.a1⊗ ...⊗ I

kl
G.al

is M -regular.

Hence, by Corollary 4.7.7, the sheaf L ⊗ Lk ⊗ Ik1G.a1 ⊗ ... ⊗ I
kl
G.al

is G-globally generated, for

l-distinct a1, ..., al ∈ A, such that
∑
ki = k. Now by Lemma 4.8.4 3), Lk+1 is G-k-jet ample.

The proof of 2) is similar, and we omit it. 2
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4.9 Syzygy or Np-property of line bundles on a hyperelliptic

variety

In this section, we look at syzygy or Np-properties defined by M. Green [19].

Suppose Z is a smooth projective variety defined over the complex numbers. An ample

line bundle L on Z is said to satisfy Np-property (See 4.1) if the first p-steps of the minimal

graded free resolution of the algebra RL := ⊕n≥0H
0(Ln) over the polynomial ring SL :=

⊕n≥0Sym
nH0(L) are linear. In other words, a minimal resolution of RL looks like:

SL(−p− 1)ip → SL(−p)⊕ip−1 → ...→ SL(−2)i1 → SL → RL → 0.

When p = 0, we say that L gives a projectively normal embedding. When p = 1, L satisfies

N0 and the ideal of the embedded variety is generated by quadrics.

More generally, even (see [55]), one can define properties measuring how far the first p steps

of the resolution are from being linear. To do this, fix p ≥ 0, and consider the first p steps of

the minimal free resolution of RL as an SL-module.

Ep → Ep−1 → → E1 → E0 → RL → 0,

where E0 = SL ⊕
⊕

j SL(−a0j) with a0j ≥ 2 (since the linear series is complete), E1 =⊕
j SL(−a1j) with a1j ≥ 2 (since the embedding is non-degenerate) and so on, up to Ep =⊕
j SL(−apj) with apj ≥ p + 1. Then L is said to satisfy property N r

p if apj ≤ p + 1 + r. In

particular, N r
1 means that a1j ≤ 2 + r, i.e., the ideal IX,L is generated by forms of degree

≤ 2 + r, while property N0
p is the same as Np.

4.9.1 Criterion for N r
p -property

Usually, in practice, one looks at surjectivity of multiplication maps of sections of some natural

bundles associated to L. We recall them below. Consider the exact sequence associated to a

globally generated line bundle L, given by evaluation of its sections:

0→ML → H0(L)⊗OZ → L→ 0.

Here ML is a coherent sheaf and is the kernel of the evaluation map. In fact, it is a locally free

sheaf.

Consider the exact sequence by taking the p+ 1-st exterior power of the above evaluation

sequence:

0→ ∧p+1ML ⊗ Lh → ∧p+1H0(L)⊗ Lh → ∧pML ⊗ Lh+1 → 0.

Then N r
p -property holds if

H1(∧p+1ML ⊗ Lh) = 0, for all h ≥ r + 1.
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The converse is true if Z is an abelian variety, since H1(Lh) = 0. See [53, p.660]. Moreover we

have:

Lemma 4.9.1. a) If H1(M⊗p+1
L ⊗ Lh) = 0, for all h ≥ r + 1, then L satisfies N r

p -property.

b) Assume that H1(M⊗p+1
L ⊗ Lh) = 0. Then H1(M⊗p+1

L ⊗ Lh) = 0 if and only if the

multiplication map

H0(L)⊗H0(M⊗pL ⊗ L
h)→ H0(M⊗pL ⊗ L

⊗h+1)

is surjective.

Proof. See [55, Proposition 6.3]. 2

4.9.2 Cohomology Vanishing on a hyperelliptic variety

Suppose X is a hyperelliptic variety of dimension n. As in earlier sections, we consider the

quotient morphism π : A→ X = A/G. Here G is a finite group acting freely on A.

Suppose N is an ample line bundle on X. Assume it is globally generated. Consider the

evaluation map on the sections of N :

0→MN → H0(N)⊗OX → N → 0.

Pullback of this exact sequence on A yields the exact sequence:

0→ π∗MN → H0(L)G̃ ⊗OA → L→ 0.

Here L := π∗N is the corresponding G-line bundle on A, and H0(L)G̃ ⊂ H0(L) is the subspace

of G̃-invariant sections. Denote MG
L := π∗MN . In particular, ∧pMG

L is a G-linearized bundle.

We first note the below vanishing, which we will need.

Lemma 4.9.2. The cohomology vanishing

H1(A,∧p+1MG
L ⊗ Lh) = 0

implies the cohomology vanishing

H1(X,∧p+1MN ⊗Nh) = 0,

for each h ≥ r + 1 and r ≥ 0.

Proof. Since the bundles ∧p+1MG
L and Lh areG-linearized bundles, the tensor product ∧p+1MG

L⊗
Lh is also a G-linearized bundle. In particular, the group G̃ acts on the cohomology groups

H i(A,∧p+1MG
L ⊗Lh), for i ≥ 0. The G̃-invariant subspace is precisely H i(A,∧p+1MG

L ⊗Lh)G̃.

Now, we use projection formula as shown in Lemma 4.6.4, and using (4.6.3), we deduce that

the G̃-invariant subspace is equal to the cohomology group H i(X,∧p+1MN ⊗Nh). This gives

the assertion.

2
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Lemma 4.9.3. The cohomology vanishing

H1(A,∧p+1ML ⊗ Lh) = 0

implies the cohomology vanishing

H1(A,∧p+1MG
L ⊗ Lh) = 0,

for each h ≥ r + 1 and r ≥ 0.

Proof. Note that in the below exact sequence

0→ML → H0(L)⊗OA → L→ 0

the group G̃ acts on H0(L) and on L equivariantly. Hence the inclusion of G̃-invariant sections

H0(L)G̃ ⊂ H0(L) provides an inclusion of bundles

MG
L ⊂ML.

Moreover, since the averaging map of sections

H0(L)
Av→ H0(L)G̃, s 7→ 1

|G|
∑
g∈G̃

g.s

is surjective, we deduce that the bundle MG
L is a split summand of ML.

Hence we have an inclusion of their exterior powers tensored with Lh:

∧p+1MG
L ⊗ Lh ⊂ ∧p+1ML ⊗ Lh.

This is also a split summand and hence gives the inclusion of cohomologies:

H1(A,∧p+1MG
L ⊗ Lh) ⊂ H1(A,∧p+1ML ⊗ Lh).

We now deduce our assertion.

2

Now, we apply above two lemmas to conclude our main consequence of this section.

Proposition 4.9.4. Suppose M is an ample line bundle on a hyperelliptic variety X. Then

Mp+k satisfies Np-property, for any k ≥ 3.

Proof. Suppose M is an ample line bundle on X. By Theorem 4.8.3, we know that N := Mk,

k ≥ 3, is very ample. In particular, N is globally generated. Since L = π∗N is an ample

globally generated line bundle on A, by [53, Theorem 4.3, p. 663], we have the cohomology

vanishing

H1(A,∧p+1ML ⊗ Lh) = 0
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for any h ≥ 1. Now apply Lemma 4.9.2 and Lemma 4.9.3, when r = 0, to conclude the

cohomology vanishing

H1(X,∧p+1MN ⊗Nh) = 0.

for any h ≥ 1. This implies that Np = Mp+k, k ≥ 3, satisfies Np-property.

2

Theorem 4.9.5. Suppose X is a hyperelliptic variety over C, and N be an ample line bundle

on X. If (r + 1)(n− 1) > p+ 1, then N⊗n satisfies N r
p .

Proof. Note that L := π∗N be an ample G-line bundle on A.

We have to show H1(X,∧p+1MN⊗n ⊗N⊗nh) = 0 fo all h ≥ r + 1.

Since (r+1)(n−1) > p+1, L⊗n satisfiesN r
p (By [53, Theorem 4.3, p.663]), i.e., H1(A,∧p+1ML⊗n⊗

L⊗nh) = 0 fo all h ≥ r + 1. Now apply 4.9.2 and 4.9.3 to conclude the cohomology vanishing

H1(X,∧p+1MN⊗n ⊗N⊗nh) = 0.

for any h ≥ r + 1.

2
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