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Abstract

Let ' be a group and let ¢ : I' — I be an endomorphism. We define an ac-
tion g.x := gx¢(g™'), for g, x € ', of T on itself. The ¢-twisted conjugacy
class of an element x € I is the orbit of this action containing x. A group
I' has the Ro-property if every automorphism ¢ of I' has infinitely many
¢-twisted conjugacy classes. In this thesis we show that any irreducible
lattice in a non-compact connected semisimple Lie group with finite cen-
ter and having real rank at least 2 has the R.,-property. We also show that
any countable abelian extensions A of I' has the Ro-property when (i) the
lattice I is linear, (ii) I is a torsion free non-elementary hyperbolic group.

We also consider the R.,-problem for S -arithmetic lattices.
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INTRODUCTION

1.1 OVERVIEW

Given a group I' and an endomorphism ¢ : I' — I', we can define an action
of I on itself by g.x = gx¢(g'). This is just the conjugation action when
¢ is the identity homomorphism. The orbits of this action are called ¢-
twisted conjugacy classes. The set of all ¢-twisted conjugacy classes is
denoted by R(¢). The cardinality R(¢) of R(¢) is called the Reidemeister
number of ¢. All these notions make sense for any group, not necessarily
finitely generated. However, our main focus will be on automorphisms of
countable groups. We say that I" has the Ro,-property if there are infinitely
many ¢-twisted conjugacy classes for every automorphism ¢ of I'. If I’

has the R.,-property, we shall call I" an Re-group.

There are countably infinite groups with only finitely many conjugacy
classes (see [47] §1.4 or [31] Chapter 4, §3). Examples of such groups
which are finitely generated have been constructed by S. Ivanov. Recently
D. Osin [38] has constructed a finitely generated infinite group that has ex-
actly one non trivial conjugacy class. The notion of twisted conjugacy in
groups originated in Nielsen-Reidemeister fixed point theory ([28], [15]).
It also arises in other areas of research such as number theory and repre-
sentation theory. The problem of determining which class of groups have
the R.-property was initiated by A. Fel’shtyn and R. Hill [19]. This is
one of the principal problems in the theory of twisted conjugacy classes
in infinite groups. The R..-property has its consequences in topology. We

explain below its connection to fixed point theory.



1.2 REIDEMEISTER FIXED POINT THEORY

Let X be a compact connected polyhedron and let f : X — X be a continu-
ous map. Denote the fixed point set of f by Fix(f) = {xe€ X | f(x) = x}.
Let p : X — X be the universal covering projection and let f : X - X be
a lift of f to X, thatis po f = fo p. Let f : 71 (X) — m1(X) be the in-
duced homomorphism of f. Fix a base point xo € X such that f(xo) = xo.
We say that two lifts f, f” of f are equivalent if there is an element y in the
fundamental group I' := 7 (X, x9) of X, which is identified with the deck
transformation group of X, such that f" = yfy~!. This is an equivalence
relation on the set of all lifts of f to X. Denote by | f] the equivalence
class of f, called lifting class of f. Fix a lift f and a base point Xy € X.
Let @ € T. Then any lift of f is of the form af. Also for a lift f and
y e T, p(Fix(f)) = p(Fix(yfy™")). Note that for any point y € X such
that p(y) € Fix(f), there is a unique map f such that po f = fo p and
f(y) = y. In particular, any fixed point of f is the projection of a fixed
point of some lift £ of f. Hence we get an equivalence relation, denoted
~, on the set Fix(f) and we can write Fix(f) = Lz p(Fix(f)). The
subset p(Fix(f)) € Fix(f) is called the fixed point class of f determined
by the lifting class [f] of f.

Again by fixing a lift f of f together with an & € T, and an element
% € X, we obtain a unique element & € T such that @f(¥) = f(a(¥)).
This gives a homomorphism ¢ : 711 (X) — n1(X) such that fa = ¢(a)f
for each @ € I. Now for two lifts af and Bf of f (where f is fixed),
[af] = [Bf] if and only if Bf = yafy~! for some y € T, that is, if and
only if B3f = ya¢(y~!)f. By the uniqueness of lifts, we have [af] = [8f]
if and only if 8 = ya¢(y~!) for some y € I'. Furthermore, by choosing
an appropriate base point, ¢ can be identified with the induced homomor-
phism fu : I' = I of f. Thus it follows that there is a one-one correspon-
dence between the set Fix(f)/ ~ and R(f¢), the Reidemeister classes of
fa. If we choose a different lifting f’, we get a different homomorphism
¢’ and a bijection between the sets R(¢) and R(¢’). Thus the number of
fixed point classes of f is exactly the number R( fx).



1.3 NIELSEN NUMBER

We continue with the same notations as in the section §1.2. Two points
x,y € Fix(f) are said to be in the same Nielsen class of f if there is a
path ¢ : [0,1] — X joining x and y such that the paths ¢ and f o ¢ are
homotopic relative to the end points. This defines an equivalence relation
on Fix(f) and the equivalence class [x] of x is called the Nielsen class of
x. Let x1, x» € X and let ¢ be a path in X from x; to x, homotopic to f oc
with respect to the end points. Let f be a lift of f and %; € Fix(f) such
that p(%;) = x;. Lift ¢ to a path ¢ starting from ¥; and ending at some
% € X. Then pmaps f o¢onto f oc which is homotopic to ¢ with respect
to the end points. Thus f o & also ends at X,. Hence f(%,) = %,. In other
words, both p(x1) and p(x2) lie in the same fixed point class. Conversely,
let %1, % € Fix(f) such that p(%) = x; # xo = p(%). Let¢: [ - X
be a path from X to X;. Then ¢ = p o ¢ is a path from x; to x; in X and
p(fo&) = fopo& = foc. Hence p maps the loop &(fo¢&)~! onto
c¢(foc)~!. Since X is simply-connected, &(f o &)~ is homotopic to the
trivial loop. Thus ¢ is homotopic to f o ¢. That is x| and x, are in the
same Nielsen class. This shows that there is a one-one map from the set
of Nielsen classes to the set R(f#). Thus, the number of Nielsen classes
is a lower bound for R(f#). A compact connected polyhedron has only
finitely many Nielsen classes. Note that a lifting class p(Fix(f)) might
be empty (since the lift # may not have any fixed points), but a Nielsen

class is always non-empty.

Assume the set Fix(f) is non-empty. There is a notion of index which
assigns a rational number to each Nielsen class of f. This index is homo-
topy invariant among maps in the same homotopy class of f. A Nielsen
class is said to be essential if its index is non-zero and is called inessential
otherwise. The Nielsen number N(f) of f is defined to be the number
of essential classes. We saw that the number N(f) is an invariant among
maps homotopic to f, always finite and a lower bound for the number of
fixed points of f and hence for any map g homotopic to f. It also follows
from the above discussion that N(f) < R(f#). The number R(f#) need

not be finite. For example, if f = 1x then any two points are Nielsen



equivalent, thus N(f) < 1 while R(f) is the number of conjugacy classes
in I'. In particular, if T is abelian then R(f) = ||, the cardinality of T.
We refer the reader to [8] for more details on this.

1.4 THE JIANG SUBGROUP

The main tool to calculate N(f) is the so-called Jiang subgroup 7'(f) <
71 (X) introduced by B. Jiang in [28]. Fix a point xp € X and a self map f
on X. We denote by Map(X) the set of all continuous maps from X to it-
self with the supremum metric d(f, g) = sup{d(f(x),g(x)) | x € X}, then
it is a complete metric space. Let p : Map(X) — X be the map given by
p(g) = g(xo). Then p induces a homomorphism p, : 71 (Map(X), f) —
71 (X, f(x0)). The Jiang subgroup T(f,xo) with respect to f is the im-
age of the homomorphism p,. Equivalently, an element @ € 71 (X, f(x0))
is said to be in the Jiang subgroup T(f, xp) of f if there is a loop H in
Map(X) based at f such that the loop ¢ in X defined by ¢(¢) = H(t)(xo)
is homotopic to a. A Jiang subgroup is independent of the base point and
if f and g are homotopic maps then the corresponding Jiang subgroups
are isomorphic. From now onwards, we use 7'(f) instead of T'(f, xo).
Forany map f : X — X, T(X) c T(f), where T(X) = T(1) the
Jiang subgroup with respect to the identity map on X. We say that X
is a Jiang space if T(X) = m1(X). For example, H-spaces satisfy this
condition. For Jiang spaces, either N(f) = R(f#) provided R(f) is finite
or N(f) = 0 when R(f#) is infinity. There are Jiang spaces in which if
the fundamental group 71 (X) has the R -property then there is a fixed
point free map homotopic to f. For any n > 5 a compact n-dimensional
nilmanifold is constructed for which any homeomorphism is homotopic

to a fixed point free map [22]. See [8], [16] and the references therein.

1.5 REPRESENTATION THEORY

We explain below the connection of twisted conjugacy with representation
theory. Let G be any group and G be the set of all equivalence classes of



unitary irreducible representations of G. We will denote the equivalence
class of a representation 7 by [r]. The classical Burnside-Frobenius the-
orem says that if G is a finite group, the number of equivalence classes
of irreducible representations is equal to the number of conjugacy classes
of elements of G. Thus #G = R(Id). If ¢ € Aut(G), it induces a map
$:G — G given by [t] - [t 0¢]. When ¢ = Id, #G = #Fix($). It was
later discovered in [19] by A. Fel’shtyn and Hill that R(¢) = #Fix(¢) for
any automorphism ¢ of a finite group G. Let G 1 be the set of equivalence
classes of finite dimensional unitary irreducible representations of G and
let Ef .G = G r be the restriction of ¢ to G - A group G is said to be
¢-conjugacy separable if any two non-¢-conjugate elements g, h € G are
non-¢-conjugate in some finite quotient G/ H of G, where H C G is some
subgroup such that ¢(H) = H. We say that G is twisted conjugacy separa-
ble if it is ¢-conjugacy separable for any automorphism ¢ with R(¢) < oo
and we say that it is strongly twisted conjugacy separable if this condition
is satisfied for any ¢ € Aut(G). For example, polycyclic-by-finite groups
are strongly twisted conjugacy separable. A. Fel’shtyn [16] has proved
that if G is ¢-conjugacy separable then R(¢) = #Fix(¢;) whenever one
of these numbers is finite. Recently, we heard from A. Fel’shtyn about
a preprint [14] in which it is announced that for any finitely generated
residually finite group, R(¢) = #Fix($r), if R(¢) is finite.

1.6 KNOWN CLASSES OF GROUPS

We shall go through some classes of groups which are known to have (not
have) the Ro,-property.

Hyperbolic Groups: A. Fel’shtyn and R. Hill [19] conjectured that any
injective endomorphism of a finitely generated torsion free group with ex-
ponential growth would have infinitely many twisted conjugacy classes. D.
Gongalves and P. Wong [20] proved that Fel’shtyn-Hill conjecture is not
true in general. They gave a non hyperbolic group of exponential growth
having automorphisms with finite Reidemeister number. The notion of hy-
perbolicity of groups, which was introduced and developed by M. Gromov

[23], are either virtually cyclic or have exponential growth. A hyperbolic



group is called elementary if it is finite or if it contains an infinite cyclic
subgroup of finite index. Otherwise it is called non-elementary. G. Levitt
and M. Lustig [30] showed that this conjecture is true for automorphisms
of any torsion free non-elementary hyperbolic group. That is, they have
the Ro-property. Later, A. Fel’shtyn [13] extended Levitt-Lustig’s result
to all non-elementary hyperbolic groups by removing the torsion free hy-
pothesis. A lot of research has been done in this area since then and more
groups have been found to have the R -property. See section §2.3.2 for

preliminaries.

Relatively Hyperbolic Groups: Relative hyperbolicity, a generalization
of the concept of hyperbolicity in geometric group theory, was introduced
by M. Gromov [23]. For example, there are non-uniform lattices in rank
1 real semisimple Lie groups which are relatively hyperbolic with respect
to a set of subgroups but not hyperbolic. We shall discuss this in the pre-
liminaries section §2.3.4. A. Fel’shtyn [16] showed that non-elementary
relatively hyperbolic groups have the R.,-property.

Baumslag-Solitar Groups: The Baumslag-Solitar group BS (m,n) :=
{a,b | ab™a™! = b"), where m # 0 # n € Z, was introduced by G.
Baumslag and D. Solitar [1] to provide examples of non-Hopfian groups.
These groups act as counter examples for many results. For example,
these groups disprove G. Higman’s claim that every finitely generated
one-relator group is Hopfian. Apart from this, these groups contain resid-
ually finite groups and Hopfian groups that are not residually finite. When
m = n = 1, BS(m,n) = Z? and it is known that there is an auto-
morphism of Z? with only finitely many twisted conjugacy classes. A.
Fel’shtyn and D. Gongalves [17] showed that the Baumslag-Solitar groups
have the Re-property except when n = m = +1. The group BS (1,m) =
{a,t | tar™' = a™y,m # 1 is known as the solvable Baumslag-Solitar
group. A solvable generalization of BS (1,m) is the group I'(S) :=
(a,ty, - 0 | titj = tjti,i # j,tiar;! = a"), where S = {ny,n, -+, m}
are pairwise relatively prime positive integers. J. Taback and P. Wong
[50] showed that the group I'(S) and any finitely generated group quasi-



isometric to I'(S') have the Ro-property. A generalized Baumslag-Solitar
group is a finitely generated group which acts on a tree with all edge and
vertex stabilizers being infinite cyclic. G. Levitt [29] showed that these
groups have the R.,-property.

Given a group G, the restricted wreath product of G with Z is the
group G Z := (D, Gi) <o Z, where G; = G for all i € Z, and the
Z -action @ on @, _, G; is given by the shift a(n)((x;)) = (xi-n) for
(x;) € @B,.,Gi,n € Z. D. Gongalves and P. Wong [21] classified all
finitely generated abelian groups G for which the group G ¢ Z has the R.,-
property. In particular, the lamplighter groups Z,, ¢ Z have R -property
if and only if 2|n or 3|n. For G, G, finite groups, G| ¢ Z and G, ¢ Z are
quasi-isometric if and only if there exist positive integers d, r, s such that
|G1| = d" and |G>| = d° (see [11]). Note that the groups H] = Z4!Z. and
H, = (Z,)? 1 Z are quasi-isometric. The group H; has the R,-property
while H;, does not have the R.-property ([21]). Thus the R-property is
not preserved under quasi-isometries.

The groups Aut(F,) and Out(F,) of the free group F, on n generators,
the symplectic group Sp(2n,Z) for n > 2, mapping class group of an
orientable closed surface S (not S?) and its outer automorphism group
have the R.,-property [18].

Consider the free nilpotent group N, . of rank r and nilpotency class
¢ which is the quotient N, . := F,/I'.41F,, where I'|F, := F,, I F, =
|F», Fy| the commutator subgroup, and I'jF, := [F,,TjF,|. Here F,
denotes the free group of rank r. D. Gonalves and P. Wong [22] showed
that N, . when r = 2 and ¢ > 9 have the R.,-property. V. Roman’kov [45]
showed the following: N, . whenr =2 orr =3 and ¢ > 4r orr > 4 and
¢ > 2r; any Np . for ¢ > 4 have the R-property while N>, N2 3 and N3 »
do not have the R.-property. It is known that the Heisenberg group of
all 3 x 3 uppertriangular integer matrices has automorphisms with exactly
2N many twisted conjugacy classes for any given N [].

It is known that the R..-property is not inherited by finite index sub-
groups in general. This also shows that this property is not geometric,
i.e, not invariant under quasi-isometry. For example, the infinite dihedral

group Z = Z,, which contains the infinite cyclic group as an index 2 sub-



group has the R, -property [22] (whereas R(—Idz) = 2). However there
are classes of groups such as non-elementary hyperbolic groups within
which this property is geometric. The Ro.-property is not preserved under
quotients. For example, any finitely generated free group has this property
while for example, their commutator quotient is free abelian which does
not have this property.

It appears that the Ro,-problem for groups requires many different tech-
niques which are peculiar to the class of groups under consideration. This
makes the problem interesting and non-trivial. Some of them required

geometric methods and some required algebraic methods.

1.7 THE MAIN RESULTS

The aim of this thesis is to study the R.-property of lattices in Lie groups.
Our main results in the thesis address the R.-property for irreducible lat-
tices in semisimple Lie groups of real rank at least 2 and the R.,-property

of their abelian extensions.

Theorem 1.7.1. (Theorem 4.1.1) Let G be a connected semisimple non-
compact Lie group of real rank at least 2 and having finite center. Let I’

be any irreducible lattice in G. Then I has the R, property.

When G has real rank 1, the above result is well-known. Indeed, as-
sume that G has real rank 1. When the lattice I' is cocompact, it is hyper-
bolic. When I is not cocompact, it is relatively hyperbolic. It is known
that any non-elementary hyperbolic group as well as any non-elementary
relatively hyperbolic group have the R.,-property.

The linear groups SL(n,Z),PSL(n,Z),PGL(n,Z) and PSp(2n,Z)
for n > 2 are a few examples of lattices. A separate elementary proof,
showing the R.-property of these groups, is given in chapter 3 (see [34]).
The Ro,-property for the group GL(n, Z) follows from that of PGL(n, Z).
The Theorem 1.7.1 when T is a principal congruence subgroup of SL(n, Z)
is also shown in chapter 3 (see [34]). When I' = Sp(2n, Z), the result was
first proved by A. Fel’shtyn and D. Gongalves [18]. We also give a proof
for this result in chapter 3 ( see [34]).



Our proof of the above theorem involves only elementary arguments,
using some well-known but deep results concerning irreducible lattices
in semi simple Lie groups. The main theorem is first established when
G has no compact factors and has trivial centre. In this case, the proof
uses the Zariski density property of I' due to Borel as well as the strong
rigidity theorem. When G has non-trivial compact factors, we need to
use Margulis’ normal subgroup theorem to reduce to the case when G has
trivial centre and no compact factors.

We also consider abelian extensions of lattices in Lie groups. Consider

a group extension:
J n
]l —-A<>A—TIT—I.

We have the following result when A is abelian:

Theorem 1.7.2. (Theorem 4.2.2) Let I and G be as in Theorem 1.7.1 and
A be an extension of T’ by an arbitrary countable abelian group A. Assume
that G is linear. Then A has the R-property.

The hyperbolic groups have many geometric properties. The follow-
ing quasi-convexity properties of certain subgroups of (non-elementary)
hyperbolic groups will be relevant for our purposes. The cyclic subgroup
generated by an element of infinite order has finite index in its centralizer;
infinite finitely generated subgroups which are quasi-convex have finite

index in their normalizers. We have:

Theorem 1.7.3. (Theorem 3.1.1) Let A\ be an extension of a group I' by
an arbitrary countable abelian group A. Then A\ has the Ro-property in
case any one of the following holds:

(i) I is a torsion-free non-elementary hyperbolic group,

(ii) I is the fundamental group of a complete Riemannian manifold of

constant negative sectional curvature and finite volume.

Remark 1.7.4. T. Nasybullov [35] has proved that GL(n, R) or SL(n, R),
n > 3, where R is an infinite integral domain of characteristic zero and has

no non-trivial automorphism, has R -property.



In order to prove the above theorems, we needed to make use of the
following well known results concerning lattices in Lie groups (See [42]):
Borel density theorem: Let G be a connected semisimple algebraic R-
group and let G?R be the identity component of the IR-points GR of G. Let
I'c G% be a lattice. If G?R has no compact factors, then I' is Zariski dense
in G.

Margulis’ normal subgroup theorem: Let I' C G be an irreducible lattice
where G is a connected semisimple Lie group of R-rank > 2 and with
finite centre. If N is normal in I, then either N is of finite index in I" or is
a finite subgroup contained in the centre of G.

Strong rigidity theorem(Mostow-Margulis-Prasad) [51],[40]: Let G and
G’ be connected linear semisimple Lie groups with trivial centre and hav-
ing no compact factors. Let I' ¢ G and I" C G’ be irreducible lattices.
Assume that G and G’ are not locally isomorphic to SL(2,R). Then any
isomorphism ¢ : I' — I” extends to an isomorphism G — G’ of Lie

groups.

The R.-problem for abelian extensions of groups in the above theo-
rems makes use of the following facts concerning normal subgroups of
the group I'. When I is hyperbolic, it uses the quasi-convexity property
of infinite cyclic subgroups of I'; in the case of the linear groups, non-
central normal subgroups of SL(n,Z),n > 3 and the fundamental group
of complete Riemannian manifolds of constant negative sectional curva-
ture of finite volume it uses the Margulis’ normal subgroup theorem and
Mostow-Margulis-Prasad strong rigidity theorem. Using the fact that I" is
hopfian, the R.,-property for A can be deduced from the R.,-property for
I'. We also consider the R-problem for § -airthmetic lattices.

Our result contains as special cases the direct product A X I" as well as
the restricted wreath product CT' := (&@,crC,) > TI', where C,, = C is any
cyclic group. This leads to continuously many pairwise non-isomorphic

abelian extensions of I' which have the R.-property.

We describe below how this thesis is organized.
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1.8 ORGANIZATION OF THE THESIS

There are 5 chapters in this thesis including this chapter. We give a short

chapter-wise description here.

Chapter 2 recalls necessary definitions and results concerning lattices
in semisimple Lie groups. We state results such as Margulis normal sub-
group theorem, Borel density theorem and superrigidity theorem which
we use in later chapters. No proofs are given. Assuming some basic
background in algebraic geometry, we recall algebraic groups, arithmetic
lattices and the arithmeticity theorem of lattices in higher rank Lie groups.
To bring geometry to some of the groups we consider in this thesis, we
discuss some notions from geometric group theory such as quasi-isometry
between geodesic metric spaces, hyperbolic groups and relatively hyper-
bolic groups. We use the residual finiteness and hopficity properties of
groups in this thesis. We recall both the definitions and some results con-
cerning such groups. The work of O. T. O’Meara played a role in one of
our main results regarding linear groups. We briefly discuss the automor-
phism groups of the linear groups SL(n, Z), GL(n, Z) and Sp(2n, Z). At
the end of this chapter, we make the necessary setup for our main results.
We also introduce some elementary results concerning the R,-property of

groups.

In Chapter 3 we study the Re-property for the groups SL(n, Z),
GL(n,Z), PSL(n,Z), PGL(n,Z), all countable abelian extensions of

these groups and non-central normal subgroups of SL(n,Z), n > 3.

Chapter 4 contains the main results of this thesis. We study the Re.-
property of lattices in semisimple Lie groups. We also investigate the
Ro-property for their (countable) abelian extensions when the Lie group
is linear. We also consider the R.-problem for S -arithmetic lattices. At
the end of this chapter, we conclude this thesis discussing some recent

results in this area.

At the end of the thesis, there is an index which lists some of the
important notations, definitions and terminology with references to the

places where they are used.
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Detailed chapter-wise description will be given in each chapter. A
result with the mark O immediately following it means that no proof will
be given.
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PRELIMINARIES

As described in the introduction, the aim of the thesis is to study the R-
property for lattices in semisimple Lie groups. In this chapter, we recall
certain definitions and results, concentrating on some important examples,
which are necessary to understand the R.,-problem for lattices.

The first two sections §2.1 and §2.2 of this chapter deal with lattices
in semisimple Lie groups, algebraic groups and certain well known and
deep results concerning lattices in semisimple Lie groups. Third section
§2.3 of this chapter concentrates on quasi-isometry between geodesic met-
ric spaces, the Svarc-Milnor Lemma which says that finitely generated
groups are quasi-isometric to some length spaces on which the groups act
properly cocompactly by isometries, the notion of Gromov’s hyperbolic-
ity for geodesic metric spaces and certain properties of hyperbolic groups
together with some important examples which are relevant to our purpose,
Gromov’s hyperbolicity relative to a finite collection of subgroups and
some of their properties. In the fourth section §2.4 we recall the defini-
tion of residually finite groups and hopfian groups. Section §2.5 deals
with the automorphism groups of the linear groups SL(n,Z), GL(n,Z)
and Sp(2n,Z). In the last section §2.6, we define and discuss the R..-
property in groups and introduce some results which will be used in later
chapters.

13



2.1 LATTICES IN LIE GROUPS
2.1.1 Basic Definitions and Terminology

Throughout this section we shall denote by G a locally compact Hausdorff
topological group. A Haar measure u on G is a regular Borel measure
on G. A measure y is left invariant if u(gE) = u(E) for all Borel set
E c G and for all g € G. We call a left invariant Haar measure on G a
left Haar measure. A. Weil showed that every locally compact Hausdorff
topological group G has at least one left Haar measure and if y and v
are two left Haar measures on G then there exists a constant ¢ > 0 such
that v = cu, that is the left Haar measure is unique up to positive scalar
multiples. In particular, any Lie group has a left Haar measure. Let g € G
and let u be a left Haar measure on G, then v(E) := u(Eg), for each
Borel set E C G, is another left Haar measure on G. By uniqueness
of u, there exists a continuous homomorphism yg : G — R, called
modular function, such that v(E) = yc(g)u(E) for all Borel set E C G
and for all g € G. A group is said to be unimodular if yg = 1, the
trivial homomorphism, equivalently, if the Haar measure is both left and
right invariant. For example, groups G with G = [G, G], abelian groups,

connected nilpotent Lie groups and compact groups are unimodular.

Let H C G be a closed subgroup of G. The quotient space G/ H with
the quotient topology is a locally compact Hausdorft topological space
(not necessarily a group). Let y and yy be the corresponding modular
functions on G and H respectively. Then G/ H has a left invariant measure
if and only if y(y) = xm(y) for all y € H. The coset spaces G/H do

not always have an invariant measure, for example, take G = SL(2,R)
b
which is unimodular and K = [g _1) |a #0,be R}, then G/K does
a

not have a G-invariant measure. Let I' € G be a discrete subgroup of G.
Then the counting measure on I is a left and right invariant Haar measure
on I' and hence I is unimodular and the quotient space G /I" will have a
left invariant Haar measure. If G is also unimodular then G /T has a left

invariant Haar measure (see [42]).
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2.1.2 Lattices

Let G be a Lie group. A subgroup I' C G is called a lattice if T is discrete
and G/T has a left invariant measure v such that v(G/T') < co. If G/T
is compact we call I' uniform (or cocompact) and non-uniform (or non-
cocompact) otherwise. If G admits a lattice then G is unimodular but the
converse is not true in general. For example there are simply connected
nilpotent Lie groups which do not admit lattices. We refer to [42] for an
example of such a Lie group. The upper triangular matrices in SL(2,R)
is not unimodular and hence does not contain any lattice. Let I', I be two
closed subgroups of G such that I'” c T'. Note that the coset space G /T’
admits a finite left invariant measure if and only if both the spaces G/T’
and I'/T” admit a finite left invariant measure. Two subgroups I" and I
of G are said to be commensurable if I N I” has finite index in both T’
and I”. Being commensurable is an equivalence relation on the set of all
subgroups of G. If one is discrete (resp. lattice) then so is the other if they
are commensurable. In particular, any finite index subgroup of a lattice in

G is a lattice in G.

2.1.3 Semisimple Lie Groups

Let G be areal Lie group with finitely many connected components and let
g be its Lie algebra. A Lie algebra is said to be simple if it is non abelian
and has no proper non trivial ideals. A semisimple Lie algebra is a direct
sum of simple ideals g;, thatis g = g1 ® g2 @ - - - ® g, equivalently, g has
no nontrivial abelian ideals. We say that a Lie group is semisimple (resp.
simple) if its Lie algebra is semisimple (resp. simple). A real semisimple
Lie group G is said to have no compact factors if it has no compact normal
subgroup which is not discrete. Note that when G is connected, a discrete
normal subgroup N of G is contained in the center of G and it is finite if
N is compact.

Let G be a non-compact semisimple Lie group. Then it admits both
uniform and non-uniform lattices (see [42] and the references there in).

Let G be a Lie group as above with finite center and finitely many con-
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nected components. Let I" be a lattice in G. We say that I' is irreducible
if for any non-compact closed proper normal subgroup H C G, the image
of I' under the quotient map G — G/H is dense. If G has no compact
factors, I' is irreducible if and only if for any two closed normal subgroups
H\, H, of G such that G = Hj.H» and lattices I'; C H;, the group I'1.I'; is
not commensurable with I'. In particular, any lattice in G is irreducible if
G is simple. We shall recall in the section §2.2 the definition of an arith-
metic lattice in semisimple Lie group and some deep results concerning
them which we will use in the next chapter.

Our definition of irreducible lattice differs from the one given in [51].
The two definitions agree when G has no non-trivial compact factors.

If N c G is a compact normal subgroup of a connected Lie group G
with finite centre and I" a discrete subgroup of G, then I' is a lattice in G if
and only if the image of I" under the quotient map G — G/ N is a lattice.

Let G be a connected Lie group and its Lie algebra Lie(G) = g. For
g € G, iy : G — G is the inner automorphism x — gxg~!. Its differential
Ad, : g — g gives a representation Ad : G — GL(g) called the adjoint
representation of G. The differential of Ad is ad : ¢ — End(g), called
the adjoint representation of g, where End(g) denotes the group of all Lie
algebra endomorphisms of g. Note that, when G is connected, Ker(Ad) =
Z(G) (resp. Ker(ad) = Z(9)), Lie(Z(G)) = Z(g) and Lie(|G,G]) =
g, g] where [G, G| is the commutator subgroup of G and Z(G) is the center
of the group G.

Let G be a connected semisimple Lie group. Denote by G the universal
cover of G. If the center Z(G) of G is trivial, then Aut(G) = Aut(g),
where Aut(g) C GL(g) is the group of all Lie algebra automorphisms
of g. This is because, since Z(G) = {1} and hence 7;(G) = Z(G) we
have G = G/Z(G) and their Lie algebras are isomorphic as Z(G) is a
discrete normal Lie subgroup. Also Aut(G) = Aut(G). Since G is simply
connected we get Aut(G) = Aut(Lie(G)) = Aut(g). Hence Aut(G) =
Aut(g). Since G is semisimple Aut(g)/Ad(G) is finite, where Ad : G —
Aut(g) is the adjoint representation of G. Note that if G is semisimple,
then Z(G) is discrete and the quotient group G/Z(G) is a semisimple Lie

group with trivial center.

16



Let G be a connected semisimple Lie group and K C G a maximal
compact subgroup. Note that every connected Lie group (indeed every
connected locally compact group) admits a maximal compact subgroup
and they are all conjugate to one another. Since the center Z(G) is con-
tained in every maximal compact subgroup of G, K contains Z(G). For a
semisimple Lie group G, having no compact factor is equivalent to having
no maximal compact normal subgroups in G. Therefore if M is maximal

compact normal in G, then G/ M has no compact factors.

Definition 2.1.1. The real rank of G, denoted IR-rank, is the largest integer
m such that the Euclidean space IR can be imbedded as a totally geodesic
submanifold of the symmetric space G/ K. Equivalently, the real rank of
G is the dimension of the largest abelian subalgebra contained in p where
g = t@ p is the Cartan decomposition. Here g = Lie(G),t = Lie(K).

We say a subgroup H C G of a group G has finite index in G if the
quotient set G/ H is finite. Let  be a property of groups. A group G is
called virtually P if G has a subgroup of finite index with property #.

The following well-known result will be needed in the proof of our
main theorem.

Theorem 2.1.2. (Margulis’ normal subgroup theorem [51]) Let I' € G
be an irreducible lattice where G is a connected semisimple Lie group of
rank at least 2 and with finite centre. If N is normal in T, then either N is

of finite index in I or is a finite subgroup contained in the centre of G. O

Although our definition of an irreducible lattice differs from the one
given in Zimmer [51], the above result is valid as stated. In fact one
reduces to the case where G has no compact factors.

Remark 2.1.3. The linear group SL(n,Z) is a non-uniform irreducible
lattice in the simple Lie group SL(n,IR) for n > 1. The R-rank of
SL(n,R) is n — 1. Thus the normal subgroup theorem holds for n > 3.

Forn = 2, let ' = F3, the free group of two generators. Note that I is
contained in SL(2,Z) as a finite index subgroup and hence it is an irre-
ducible lattice in SL(2,R). But the commutator [I',I'] of T is neither of

finite index in SL(2,R) nor is contained in the center.
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Margulis proved the normal subgroup theorem for a more general class
of lattices such as lattices in Lie groups over local fields. For more details
we refer to [[32], Chapter IV] and [[51], Chapter 8].

Next we state the strong rigidity for irreducible lattices.

Theorem 2.1.4. (Strong rigidity [51]) Let G and G’ be connected linear
semisimple Lie groups with trivial centre and having no compact factors.
LetT' € G and I” C G’ be irreducible lattices. Assume that G and G’ are
not locally isomorphic to SL(2,R). Then any isomorphism ¢ : T — T’

extends to an isomorphism G — G’ of Lie groups. O

The strong rigidity theorem for cocompact lattices was obtained by
Mostow [33]. Margulis showed that the result holds for G as above with
real rank > 2. The rank 1 case (when the lattice is non-cocompact) is due
to Prasad [40], who extended the classical work of Mostow concerning
rigidity of rank 1 compact locally symmetric manifolds. The proofs of the
rigidity theorem for the case rank > 2 and the Margulis’ normal subgroup

theorem can be found in [51].

2.2 ALGEBRAIC GROUPS

Throughout this section, K will be an algebraically closed field and £ will
be a subfield of K. All varieties considered will be affine varieties over
K. We assume the reader is familiar with basic definitions. For details we
refer the reader to [27], [32] and [2].

Let K be an algebraically closed field and let R = K[x,x2,- -+ , Xy]
be the ring of polynomials in n variables with coeflicients in K and let
A" := K". Each f € R gives amap f : K" — K, namely the evaluation
map defined by x — f(x) for each x € K". For an ideal I C R, the zero set
of IisV(I) ;== {xeK"| f(x) =0,Yf € I}. For example V({0}) = K".
An affine algebraic variety (or simply affine variety) is the set of common
zeros in A" of a finite collection of polynomials in R. By Hilbert basis
theorem [27], every ideal / of R is finitely generated and hence V(I) is an

affine varie