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ABSTRACT

Let G0 be a simply connected non-compact real simple Lie group with maximal compact
subgroup K0. Let T0 ⊂ K0 be a maximal torus. Assume that rank(G0) = rank(K0) so that
G0 has discrete series representations. We denote by g, k, and t, the complexifications of
the Lie algebras g0, k0 and t0 of G0,K0 and T0 respectively. Denote by ∆ the root system of
g with respect to t. There exists a positive root system known as the Borel-de Siebenthal
positive system such that there is exactly one non-compact simple root, denoted ν. We
assume that G0/K0 is not Hermitian. In this case one has a partition ∆ = ∪−2≤i≤2∆i where
α ∈ ∆ belongs to ∆i precisely when the coefficient of ν in α when expressed as a sum
of simple roots is equal to i. Let G be the simply connected complexification of G0.
Denote by L0 and L̄0, the centralizer in K0 of a certain circle subgroup S 0 of T0 and its
image in G (under the homomorphism p : G0 −→ G defined by the inclusion g0 ↪→ g)
respectively so that the root system of (L0,T0) is ∆0. Any L̄0-representation is regarded as
an L0-representation via p.

Let γ be the highest weight of an irreducible representation of L̄0 such that γ + ρg is
negative on ∆1∪∆2. Here ρg denotes half the sum of positive roots of g. Then γ+ρg is the
Harish-Chandra parameter of a discrete series representation πγ+ρg of G0 called a Borel-
de Siebenthal discrete series representation. The K0-finite part of πγ+ρg is admissible
for a simple factor K1 ⊂ K0. It turns out that S 0 ⊂ K1 and K1/L1 = K0/L0 is a Hermitian
symmetric space where L1 = L0∩K1. One has a Hermitian symmetric pair of non-compact
type (K∗0 , L̄0) dual to the pair (K0, L0). The element γ also determines a holomorphic
discrete series representation πγ+ρk of K∗0 .

In this thesis we address the following question: Does there exist common L0-types
between the Borel-de Siebenthal discrete series representation πγ+ρg and the holomorphic
discrete series representation πγ+ρk? We settle this question completely in the quaternionic
case, namely, when k1 � su(2). In the general case, affirmative answer is obtained under
the following two hypotheses—(i) there exists a (non-constant) relative invariant for the
prehomogeneous space (LC

0 , u1), where u1 is the representation of L0 on the normal space at
the identity coset for the (holomorphic) imbedding K0/L0 ↪→ G0/L0, and, (ii) the longest
element w0

k of the Weyl group of K0 normalizes L0. The proof uses, among others, a
decomposition theorem of Schmid and Littelmann’s path model.
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Chapter 1

INTRODUCTION

Let G0 be a simply connected non-compact real simple Lie group with maximal compact
subgroup K0. Assume that rank(G0) = rank(K0) so that G0 has discrete series representa-
tions. If G0/K0 is Hermitian symmetric, one has a relatively simple discrete series of G0,
namely the holomorphic discrete series of G0. Now assume that G0/K0 is not Hermitian
symmetric space. In this case, one has the class of Borel-de Siebenthal discrete series of
G0 defined in a manner analogous to the holomorphic discrete series. Let L0 be the cen-
tralizer in K0 of a certain circle subgroup of K0. It turns out that K0/L0 is an irreducible
compact Hermitian symmetric space. See $ 2.4.3 of Chapter 2. Let K∗0 be the dual of K0

with respect to L0. Then K∗0/L0 is an irreducible non-compact Hermitian symmetric space
dual to K0/L0.

In this thesis, to each Borel-de Siebenthal discrete series representation of G0, we
will associate a holomorphic discrete series representation of K∗0 . See §3.2 of Chapter 3.
The main aim of this thesis is to compare the restrictions to the compact subgroup L0 of
G0 which is also a maximal compact subgroup of K∗0 , of a Borel-de Siebenthal discrete
series representation and its associated holomorphic discrete series representation under
certain conditions. In fact we address the following question: Does there exist common
L0-types between a Borel-de Siebenthal discrete series representation and its associated
holomorphic discrete series representation? We settle this question completely in the so
called quaternionic case. See Theorem 1.0.1. In the general case, affirmative answer is
obtained under the following two hypotheses—(i) there exists a (non-constant) relative
invariant for the prehomogeneous space (LC

0 , u1), where u1 is the representation of L0

on the normal space at the identity coset for the (holomorphic) imbedding K0/L0 ↪→
G0/L0 (see §4.3 of Chapter 4), and, (ii) the longest element w0

k of the Weyl group of
K0 normalizes L0. See Theorem 1.0.2. The proof uses, among others, a decomposition
theorem of Schmid and Littelmann’s path model which are discussed in §2.5 and §2.6 of
Chapter 2 respectively. We also discuss L0-admissibility of a Borel-de Siebenthal discrete
series representation of G0. See Proposition 1.0.3.
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Borel-de Siebenthal Discrete Series

Let G0 be a simply connected non-compact real simple Lie group and let K0 be a
maximal compact subgroup of G0. Let T0 ⊂ K0 be a maximal torus. Assume that
rank(K0) =rank(G0) so that G0 has discrete series representations. Note that T0 is a Cartan
subgroup of G0 as well. Also the condition rank(K0)=rank(G0) implies that K0 is the fixed
point set of a Cartan involution of G0. We shall denote by g0, k0, and t0 the Lie algebras
of G0,K0, and T0 respectively and by g, k, and t the complexifications of g0, k0, and t0 re-
spectively. Let ∆ be the root system of g with respect to the Cartan subalgebra t. Let
∆+ be a Borel-de Siebenthal positive system so that the set of simple roots Ψ has exactly
one non-compact root ν. The Killing form B of g determines a non-degenerate symmetric
bilinear pairing 〈 , 〉 : t∗ × t∗ −→ C which is normalized so that 〈ν, ν〉 = 2.

When G0/K0 is a Hermitian symmetric space, one has a partition ∆ = ∪−1≤i≤1∆i where
α ∈ ∆ belongs to ∆i precisely when the coefficient nν(α) of ν in α when expressed as a
sum of simple roots is equal to i, and the set of compact and non-compact roots of g0 are
∆0 and ∆1∪∆−1 respectively. Let ∆±0 = ∆±∩∆0. Then ∆+ = ∆+

0 ∪∆1. The root system and
the induced positive system of (k, t) are ∆0 and ∆+

0 respectively. If γ is the highest weight
of an irreducible representation of K0 such that 〈γ + ρg, α〉 < 0 for all α ∈ ∆1, then γ + ρg
is the Harish-Chandra parameter of a holomorphic discrete series representation πγ+ρg of
G0. The K0-finite part of πγ+ρg is described as ⊕n≥0Eγ⊗S n(u−1) where Eγ is the irreducible
K0-representation with highest weight γ, u−1 = ⊕α∈∆−1gα, gα being the root space for α ∈ ∆

and S n(u−1) is the n-th symmetric power of u−1. See §2.4.2 of Chapter 2 and also [8], [20].

Assume that G0/K0 is not a Hermitian symmetric space. This is equivalent to the
requirement that the centre of K0 is discrete. Then there exists a partition ∆ = ∪−2≤i≤2∆i

where α ∈ ∆ belongs to ∆i precisely when the coefficient nν(α) of ν in α when expressed
as a sum of simple roots is equal to i. Denote by µ the highest root; then µ ∈ ∆2. The set
of compact and non-compact roots of g0 are ∆0 ∪ ∆2 ∪ ∆−2 and ∆1 ∪ ∆−1 respectively. Let
∆±0 = ∆±∩∆0. Then ∆+ = ∆+

0 ∪∆1∪∆2. The root system of k is ∆k = ∆0∪∆2∪∆−2, and the
induced positive system of ∆k is obtained as ∆+

k = ∆+
0 ∪∆2. Let G be the simply connected

complexification of G0. The inclusion g0 ↪→ g defines a homomorphism p : G0 −→ G.
Let Q ⊂ G be the parabolic subgroup with Lie algebra q = l⊕u−1⊕u−2, where ui =

∑
α∈∆i

gα

(−2 ≤ i ≤ 2), gα being the root space for α ∈ ∆, and l = t⊕ u0. Let L be the Levi subgroup
of Q; thus Lie(L) = l. Then L̄0 := p(G0) ∩ Q is a real form of L and L0 := p−1(L̄0)
is the centralizer in K0 of a circle subgroup of T0. Note that G0/L0 is an open orbit of
the complex flag manifold G/Q, K0/L0 is an irreducible Hermitian symmetric space of
compact type and G0/L0 −→ G0/K0 is a fibre bundle projection with fibre K0/L0.

The Borel-de Siebenthal discrete series of G0, whose systematic study carried out by
Ørsted and Wolf [18], is defined analogously to the holomorphic discrete series as fol-
lows: Let γ be the highest weight of an irreducible representation Eγ of L̄0 such that
〈γ + ρg, α〉 < 0 for all α ∈ ∆1 ∪ ∆2. Here ρg denotes half the sum of positive roots of
g. The Borel-de Siebenthal discrete series representation πγ+ρg is the discrete series rep-
resentation of G0 for which the Harish-Chandra parameter is γ + ρg. Ørsted and Wolf
proved that the K0-finite part of πγ+ρg is in fact K1-admissible, where K1 is the simple
factor of K0 corresponding to the simple ideal k1 of k0 such that kC1 contains the root space
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gµ. They described the K0-finite part of πγ+ρg in terms of the Dolbeault cohomology as
⊕m≥0H s(K0/L0;Eγ ⊗Sm(u−1)) where s = dimC K0/L0, Eγ and Sm(u−1) denote the holomor-
phic vector bundles associated to the irreducible L0-module Eγ and the m-th symmetric
power S m(u−1) of the irreducible L0-module u−1 respectively. See Theorem 2.4.1 in Chap-
ter 2.

R. Parthasarathy [19] obtained essentially the same description as above in a more
general context that includes holomorphic and Borel-de Siebenthal discrete series as well
as certain limits of discrete series representations. We give a brief description of his results
in the §2.4.4 of Chapter 2.

The K1-admissibility of the Borel-de Siebenthal discrete series also follows from the
work of Kobayashi [15] who obtained a criterion for the admissibility of restriction of
certain representations to reductive subgroups in a more general context.

Associated Holomorphic Discrete Series

Recall that K0/L0 is an irreducible compact Hermitian symmetric space. Let K be the
connected Lie subgroup of G with Lie algebra k. Let K∗0 be the dual of p(K0) in K with
respect to L̄0 so that K∗0/L̄0 is the non-compact irreducible Hermitian symmetric space
dual to K0/L0. Note that k = Lie(K∗0) ⊗R C and that t ⊂ l is a Cartan subalgebra of k. The
sets of compact and non-compact roots of (k, t) are ∆0 and ∆2 ∪ ∆−2 respectively. ∆+

k is
a positive root system of (k, t). Let ε denote lowest element of ∆2 (that is, β ≥ ε for all
β ∈ ∆2). Then the unique non-compact simple root of ∆+

k is ε. The positive system ∆+
k is

a Borel-de Siebenthal positive system for K∗0 .

Since the space K∗0/L̄0 is Hermitian symmetric, the group K∗0 admits holomorphic dis-
crete series. See §2.4.2 of Chapter 2.

Let γ + ρg be the Harish-Chandra parameter of a Borel-de Siebenthal discrete series
representation of G0. Thus γ is the highest weight of an irreducible L̄0-representation and
〈γ + ρg, β〉 < 0 for all β ∈ ∆1 ∪ ∆2. This implies 〈γ + ρk, β〉 < 0 for all β ∈ ∆2. Here ρk
denotes half the sum of roots in ∆+

k . Thus, γ + ρk is the Harish-Chandra parameter for a
holomorphic discrete series representation πγ+ρk of K∗0 . This is the holomorphic discrete
series representation associated to the Borel-de Siebenthal discrete series representation
πγ+ρg of G0. See §3.2 of Chapter 3 for details.

Main Results

It is a natural question to ask which L0-types are common to the Borel-de Siebenthal
discrete series representation πγ+ρg and the corresponding holomorphic discrete series
representation πγ+ρk . We shall answer this question completely when k1 � su(2), the so-
called quaternionic case. See Theorem 1.0.1. In the non-quaternionic case, we obtain
complete results assuming that (i) there exists a (non-constant) relative invariant for the
prehomogeneous space (LC

0 , u1) or equivalently, there exists a non-trivial one dimensional
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L0-subrepresentation in the symmetric algebra S ∗(u−1) and (ii) the longest element of
the Weyl group of K0 preserves ∆0. See Theorem 1.0.2 below. Note that the second
condition is trivially satisfied in the quaternionic case. The existence of non-trivial one
dimensional L0-submodule in the symmetric algebra S ∗(u−1) greatly simplifies the task
of detecting occurrence of common L0-types. The classification of Borel-de Siebenthal
positive systems for which such one dimensional L0-subrepresentations exist has been
carried out by Ørsted and Wolf [18, §4].

We now state the main results of this thesis.

Theorem 1.0.1 We keep the above notations. Suppose that Lie(K1) � su(2). If g0 =

so(4, 1) or sp(1, l−1), l > 1, then there are at most finitely many L0-types common to πγ+ρg

and πγ+ρk . Moreover, if dim Eγ = 1 then there are no common L0-types.

Suppose that g0 , so(4, 1) or sp(1, l − 1), l > 1. Then each L0-type in the holomor-
phic discrete series representation πγ+ρk occurs in the Borel-de Siebenthal discrete series
representation πγ+ρg with infinite multiplicity.

The Theorem 1.0.1 is proved in Chapter 6. The cases G0 = S O(4, 1), S p(1, l−1) are ex-
ceptional among the quaternionic cases in that these are precisely the cases for which the
prehomogeneous space (LC

0 , u1) has no (non-constant) relative invariants—equivalently
S m(u−1),m ≥ 1, has no one dimensional L0-subrepresentation. In the non-quaternionic
case, we have the following result.

Theorem 1.0.2 With the above notations, suppose that (i) w0
k(∆0) = ∆0 where w0

k is the
longest element of the Weyl group of k (with respect to the positive system ∆+

k ), and, (ii)
there exists a 1-dimensional L0-submodule in S m(u−1) for some m ≥ 1. Then there are
infinitely many L0-types common to πγ+ρg and πγ+ρk each of which occurs in πγ+ρg with
infinite multiplicity. Moreover, if dim Eγ = 1, then πγ+ρk itself occurs in πγ+ρg with infinite
multiplicity.

The Theorem 1.0.2 is proved in Chapter 7. We recall, in Proposition 4.3.1, the Borel-
de Siebenthal root orders for which condition (ii) of the above theorem holds. We obtain
in Proposition 2.5.2 a criterion for condition (i) to hold. For the convenience of the reader
we indicate the result in §4.2 in the non-quaternionic cases.

The second part of Theorem 1.0.1 is a particular case of Theorem 1.0.2 (when Lie(K1) �
su(2), the common L0-types are all in πγ+ρk). The proof of Theorem 1.0.1 involves only
elementary considerations. But the proof of Theorem 1.0.2 involves much deeper results
and arguments.

The existence (or non-existence) of one dimensional L0-submodules in ⊕m≥1S m(u−1)
is closely related to the L0-admissibility of πγ+ρg . Note that Theorem 1.0.2 implies that,
under the condition w0

k(∆0) = ∆0, the restriction of the Borel-de Siebenthal discrete series
representation is not L0-admissible when

∑
m>0 S m(u−1) has one dimensional subrepresen-

tations. When k1 � su(2) and
∑

m>0 S m(u−1) has no one dimensional submodule, the Borel-
de Siebenthal discrete series representation is L0-admissible. In fact we shall establish the
following result which is proved in Chapter 5.

4



Proposition 1.0.3 Suppose that S m(u−1) has a one dimensional L0-subrepresentation for
some m ≥ 1, then the Borel-de Siebenthal discrete series representation πγ+ρg is not L′0-
admissible where L′0 = [L0, L0]. The converse holds if k1 � su(2).

We also obtain, in §3.2 a result on the L′0 admissibility of the holomorphic discrete
series representation πγ+ρk of K∗0 . Note that any holomorphic discrete series representation
of K∗0 is L0-admissible. (It is even T0-admissible; see §2.4.2 or [20]).

Combining Theorems 1.0.1 and 1.0.2, we see that there are infinitely many L0-types
common to πγ+ρg and πγ+ρk whenever S m(u−1) has a one dimensional L0-submodule for
some m ≥ 1 and w0

k(∆0) = ∆0.

We make use of the description of the K0-finite part of the Borel-de Siebenthal discrete
series, obtained by Ørsted and Wolf in terms of the Dolbeault cohomology of the flag va-
riety K0/L0 with coefficients in the holomorphic bundle associated to the L0-represenation
Eγ ⊗ S m(u−1). This will be recalled in §2.4.3 of Chapter 2. Proof of Theorem 1.0.2 cru-
cially makes use of a result of Schmid [22] on the decomposition of the L0-representation
S m(u−2) and Littelmann’s path model [16], [17].

5
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Chapter 2

PRELIMINARIES

As described in the introduction, corresponding to a Borel-de Siebenthal discrete series
representation of a simply connected non-compact real simple Lie group G0, there ex-
ists a holomorphic discrete series representation of a connected non-compact semisimple
real Lie group K∗0 dual to a maximal compact subgroup of G0. The aim of this thesis is
to compare the restrictions to a certain compact reductive subgroup L0 of G0 which is
maximal compact in K∗0 , of a Borel-de Siebenthal discrete series representation and its
associated holomorphic discrete series representation under certain conditions. For this
purpose, we recall in this chapter certain well known definitions and results. In §2.1, we
discuss some basic notions of representation theory including admissible representations
and discrete series representations. In §2.2, we discuss Riemannian globally symmet-
ric spaces and its duality and irreducibility. §2.3 deals with Hermitian symmetric spaces,
particularly bounded symmetric domains. In §2.4, the notions of Borel-de Siebenthal pos-
itive system, the holomorphic discrete series, and the Borel-de Siebenthal discrete series
are discussed. §2.5 deals with Schmid’s theorem and its application. In §2.6, we discuss
about Littelmann’s path model. In this thesis, it is assumed that the reader is familiar
with differentiable manifolds and Lie groups [23]; the structure of finite dimensional Lie
algebras and the theory of finite dimensional representations of compact Lie groups ([10,
Chapter III], [12]) as well as the abstract theory of compact groups [13, Sections 5, 6 of
Chapter I].

2.1 Basic notions of representation theory

We follow [13] for this section.

Let G be a topological group. A representation of G on a complex Hilbert space
V(, 0) is a homomorphism Φ :−→ B(V)∗, B(V)∗ be the group of all bounded linear
operators on V with bounded inverses, such that the action map G×V −→ V is continuous.

Let G be a locally compact topological group and V = L2(G, dlx), where the measure
is a left invariant Haar measure. For g ∈ G, define Φ(g) f (x) = f (g−1x) for all f ∈ V =

L2(G, dlx). Then Φ is a representation of G on V , called the left regular representation
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of G. The right regular representation of G is given by Φ′(g) f (x) = f (xg) on L2(G, dr x)
(the measure is a right invariant Haar measure).

A vector subspace U of V is called invariant under Φ if Φ(g)U ⊆ U for all g ∈ G. The
representation Φ is called irreducible if it has no closed invariant subspaces other than 0
and V .

The representation Φ is unitary if Φ(g) is a unitary operator on V for all g ∈ G. For a
unitary representation the orthogonal complement U⊥ of a closed invariant subspace U is
a closed invariant subspace.

Two representations of G, Φ on V and Φ′ on V ′, are equivalent if there is a bounded
linear map E : V −→ V ′ with bounded inverse such that Φ′(g)E = EΦ(g) for all g ∈ G. If
Φ and Φ′ are unitary, they are unitarily equivalent if they are equivalent via an operator
E that is unitary.

A matrix coefficient of Φ is a function G −→ C defined as g 7→ (Φ(g)v,w), where
v,w ∈ V and ( , ) is the inner product on V .

2.1.1 C∞ vectors

Now assume that G is a Lie group and Φ is a representation of G on a Hilbert space V .
Let g be the Lie algebra of G.

A function f : U −→ E, where U is an open set in Rn and E is a topological vector
space, is differentiable at x0 ∈ U if there is a (necessarily unique) linear map f ′(x0) :
Rn −→ E such that

lim
x→x0

f (x) − f (x0) − f ′(x0)(x − x0)
||x − x0||

= 0

Now End(Rn, E) is a topological vector space in a natural way, since Rn is finite dimen-
sional. If f is differentiable at each point of U, then x → f ′(x) is a map from U into
End(Rn, E). We say that f is of class C1 if x → f ′(x) is continuous, of class C2 if
x → f ′(x) is of class C1, and so on. We say f is of class C∞ if f is of class Ck for all
k ≥ 1.

The above definitions can be carried over to a smooth manifold in the obvious way.

A vector v ∈ V is said to be a C∞ vector for the representation Φ if g → Φ(g)v is
of class C∞. The set of C∞ vectors is denoted by C∞(Φ) (or V∞). Evidently C∞(Φ) is a
vector subspace of V .

Now we will associate to Φ, a representation φ of g on C∞(Φ) as follows:
Let v ∈ C∞(Φ) and let

f (x) = Φ(exp X)v for X ∈ g

Then f is of class C∞. Put
φ(X)(v) = f ′(0)(X)
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Then
φ(X)(v) = f ′(0)(c′X(0)), where cX(t) = tX for t ∈ R

= ( f ◦ cX)′(0)

= limt→0
f ◦ cX(t) − f ◦ cX(0)

t
= limt→0

Φ(exp tX)v − v
t

So φ(X) is a linear map from C∞(Φ) into V depends linearly on X.

The map φ has the following properties:
• φ(X)(C∞(Φ)) ⊂ C∞(Φ) for all X ∈ g and φ : g −→ EndC(C∞(Φ)) is a representation of g.
• If Φ is unitary, then φ(X) is skew-Hermitian for all X ∈ g.
• Φ(g)(C∞(Φ)) ⊂ C∞(Φ) for g ∈ G and Φ(g) ◦ φ(X) ◦ Φ(g)−1 = φ(Ad(g)X) for X ∈ g and
g ∈ G.
• C∞(Φ) is dense in V .
See [13, Chapter III] for proofs of the above properties.

2.1.2 Admissible representations

Let g be a reductive Lie algebra over R. Let θ be an involutive automorphism of g and
k and p be the subspaces of g corresponding to the eigenvalues 1 and −1 respectively.
Assume that θ|[g,g] is a Cartan involution of [g, g]. Let G be a connected Lie group with
Lie algebra g and K the connected Lie subgroup of G corresponding to k. Assume :

(i) K is compact,
(ii) The map (k, X) 7→ k. exp X(k ∈ K, X ∈ p) is a diffeomorphism of K × p onto G.

Note that with the above assumptions, K is a maximal compact subgroup of G.
In this thesis, by a connected reductive Lie group G with maximal compact subgroup K,
we always mean that G and K satisfy the conditions given above. See [24, Section 1.1.5]
for detailed exposition. Note that these conditions are satisfied when G is a finite cover of
a connected reductive linear Lie group.

Let G be a connected reductive Lie group with maximal compact subgroup K. Let π
be a representaton of G on a Hilbert space V . A vector v ∈ V is called K-finite if π(K)v
spans a finite dimensional subspace of V . Let VK denote the subspace of K-finite vectors
in V . The associated representation of g on V∞ is denoted by the same notation π. We
set V0 = V∞ ∩ VK . Then π(X)(V0) ⊂ V0 for all X ∈ g. Consequently a representation
π leads to a representation of g on V0. Also V0 is a K-representation in such a way that
π(k)π(X)(v) = π(Ad(k)X)π(k)(v) for k ∈ K, X ∈ g, v ∈ V0. The representation V0 is said to
be the associated (g,K)-module of π.

When K acts by unitary operators, by the Peter-Weyl Theorem, we have

π|K �
∑
τ∈K̂

nττ (2.1)

where the sum is a Hilbert sum, K̂ is the unitary dual of K, that is, the set of equivalence
classes of irreducible unitary representations of K and nτ is the multiplicity of τ in π|K .
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Note that nτ = dim(HomK(τ, π|K)) and is a non-negative integer or is +∞. The equivalence
classes τ with nτ , 0 are called the K-types that occur in π. It is obvious from (2.1) that
the subspace of all K-finite vectors is dense.

A representation π of a connected reductive Lie group G on a Hilbert space V is called
admissible if K acts by unitary operators and if each τ ∈ K̂ occurs with finite multiplicity
in π|K .

Theorem 2.1.1 [13, Th 8.1, Ch. VIII] Let π be an irreducible unitary representation of
a connected reductive Lie group G on a Hilbert space V. Then the multiplicity nτ of the
K-type τ in π|K satisfies nτ ≤ dim τ for every τ ∈ K̂.

So, by the above theorem, irreducible unitary representations are admisible.

For an admissible representation π, every K-finite vector is a C∞ vector that is V0 = VK ,
and π(X)(VK) ⊆ VK for all X ∈ g. For an admissible representation π, VK is the associated
(g,K)-module of π.

Two admissible representations π and π′ of G are called infinitesimally equivalent if
the associated (g,K)-modules of K-finite vectors are algebraically equivalent (that is, if
there is a linear isomorphism commuting with the action of g).

If π is an admissible representation of G on V and U is a closed G-invariant subspace
of V , then evidently the K-finite vectors in U form a g-invariant subspace dense in U.
The following theorem suggests a converse result. (Note that, the closure of a g-invariant
subspace of C∞ vectors need not be G-invariant. For example, consider the left regular
representation of R on L2(R). Then U := the subspace of members of C∞com(R) with support
in [0, 1], is a subspace of C∞ vectors for the left regular representation of R. U is invariant
under the Lie algebra action but the closure of U in L2(R) is not invariant under the group
action).

Theorem 2.1.2 [13, Th. 8.9, Ch. VIII] If G is a connected reductive Lie group and π
is an admissible representation of G on a Hilbert space V, then the closure in V of any
g-invariant subspace of VK is G-invariant.

As a corollary we obtain the following:

Corollary 2.1.3 [13, Cor. 8.10, Ch. VIII] If π is an admissible representation of G on
V, then the closed G-invariant subspaces U of V are in one-one correspondence with the
g-invariant subspaces UK of VK , the correspondence being UK = U ∩ VK and U = ŪK .

Hence for an admissible representation π of G on V , π(G) has no non-trivial closed
invariant subspace in V if and only if π(g) has no non-trivial invariant subspace in VK . The
representation π is called irreducible admissible if any one of the equivalent conditions
is satisfied for π.
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If π is an admissible representation of G on V , then for u ∈ VK and X ∈ g (regarded X
as a left invariant vector field on G),

X(π(g)u, v) = Xcu,v(g), where cu,v(g) = (π(g)u, v) for g ∈ G
= Xg(cu,v)

= dγg(
d
dt

∣∣∣∣
t=0

)(cu,v), where γg(t) = g exp tX for t ∈ R

=
d
dt

∣∣∣∣
t=0

(cu,v ◦ γg)

=
d
dt

(π(g exp tX)u, v)
∣∣∣∣
t=0

=
d
dt

(π(g)π(exp tX)u, v)
∣∣∣∣
t=0

=
d
dt

(π(exp tX)u, π(g)∗v)
∣∣∣∣
t=0

= (π(g)π(X)u, v)

Hence
D(π(g)u, v) = (π(g)π(D)u, v) (2.2)

for all D ∈ U(gC), where U(gC) denotes the universal enveloping algebra of the complex-
ification gC of g.

A matrix coefficient g 7→ (π(g)u, v) (u, v ∈ V) is said to be K-finite if u, v ∈ VK .
Equation (2.2) gives the action of U(gC) on K-finite matrix coefficients.

If π and π′ are infinitesimally equivalent admissible representations of G, then they
have the same set of K-finite matrix coefficients. Conversely, if π and π′ are irreducible
admissible representations of G with a non-zero K-finite matrix coefficient in common,
then they are infinitesimally equivalent. See [13, Cor. 8.8 and Cor. 8.12 in Ch. VIII].

If π is an irreducible admissible representation of G on V and L : VK −→ VK is a
linear operator commuting with π(g), then by Schur lemma, L is scalar. Hence for an
irreducible admissible representation π of G, each member of the centre Z(gC) of U(gC)
acts as a scalar operator on the space of K-finite vectors of π. In fact there exists an
algebra homomorphism χπ : Z(gC) −→ C such that π(z) = χπ(z).Id for all z ∈ Z(gC).
The homomorphism χπ is called the infinitesimal character of π. The action of U(gC) on
K-finite matrix coefficients given by the equation (2.2) suggests that the K-finite matrix
coefficients of an irreducible admissible representation are eigenfunctons of Z(gC).

An admissible representation π of G on a Hilbert space V is said to be infinitesimally
unitary if VK admits an inner product with respect to which π(g) acts by skew-Hermitian
operators. Evidently a unitary representation is infinitesimally unitary. There is one-one
correspondence between irreducible unitary representations upto unitary equivalence and
infinitesimally unitary irreducible admissible representations upto infinitesimal equiva-
lence. See [13, Cor. 9.2, Th. 9.3 in Ch. IX].
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2.1.3 Verma module and Harish-Chandra isomorphism

Let g be a finite dimensional complex semisimple Lie algebra and h a Cartan subalgebra
of g. Let ∆ denote the set of non-zero roots of (g, h). Choose a positive system ∆+ of ∆.
Define n+ :=

∑
α∈∆+ gα and n− :=

∑
α∈∆+ g−α, gα being the root space for α ∈ ∆. Then we

have, g = n− ⊕ h ⊕ n+. Let b denote the Borel subalgebra h ⊕ n+ and let ρ := 1
2

∑
α∈∆+ α.

For any λ ∈ h∗, let Cλ−ρ denote the one dimensional h-module on which h acts by the
function λ − ρ. Then Cλ−ρ is a b-module by extending the action of n+ trivally on Cλ−ρ.
Hence Cλ−ρ is a left U(b)-module, where U(b) denotes the universal enveloping algebra
of b. Note that the universal enveloping algebra U(g) of g is a right U(b)-module with the
usual multiplication. Define V(λ) := U(g)⊗U(b)Cλ−ρ. Then V(λ) is a left U(g)-module and
hence is a g-module and is called a Verma module with highest weight λ − ρ. By PBW
theorem, we have U(g) � U(n−) ⊗C U(b) as vector spaces. Hence V(λ) is isomorphic to
U(n−) ⊗C Cλ−ρ as a vector space. Note that λ − ρ is the highest weight of V(λ) and its
multiplicity is 1 in V(λ). Also V(λ) has a unique irreducible quotient and we denote it by
L(λ). If λ−ρ is a dominant integral weight, then L(λ) is the finite dimensional irreducible
g-module with highest weight λ − ρ.

Let Z(g) denote the centre of U(g) and let v be a non-zero element of Cλ−ρ. Then for
any z ∈ Z(g), z.(1 ⊗ v) is a weight vector in V(λ) of weight λ − ρ. Since the multiplicity
of λ − ρ is 1 in V(λ), we have z.(1 ⊗ v) is a scalar multiple of 1 ⊗ v. Hence there exists a
function χλ : Z(g) −→ C such that z.(1⊗v) = χλ(z)(1⊗v) for all z ∈ Z(g). Note that χλ is a
algebra homomorphism and is called the character determined by λ. Again since Z(g) is
the centre of U(g) and V(λ) = U(g).(1 ⊗ v), Z(g) acts on V(λ) by the character χλ. Hence
Z(g) acts on any submodule and quotient module of V(λ) by the same character χλ. So if
λ − ρ is a dominant integral weight, then Z(g) acts on the irreducible finite dimensional
g-module L(λ) by the character χλ.

For any α ∈ ∆, choose Eα(, 0) ∈ gα. Define

P :=
∑
α∈∆+

U(g)Eα, and

N :=
∑
α∈∆+

E−αU(g).

Then we have,

Theorem 2.1.4 [14, Prop. 5.34, Ch. V] (i) U(g) = U(h) ⊕ (P + N), where U(h) denote
the universal enveloping algebra of h.

(ii) Also any member of Z(g) has its P +N component in P.

Let γ̄ : Z(g) −→ U(h) be the projection map on U(h) component. Define a linear map
τ : h −→ U(h) by

τ(H) = H − ρ(H)1 for all H ∈ h.

Then τ can be extended to an algebra homomorphism on U(h), by the universal property
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of U(h) and we denote the extended map on U(h) by the same notation τ. The Harish-
Chandra map γ is defined by

γ = τ ◦ γ̄.

Theorem 2.1.5 (Harish-Chandra) [14, Th. 5.44, Ch. V] The Harish-Chandra map γ is
an algebra isomorphism of Z(g) onto the algebra U(h)W , where W is the Weyl group of
(g, h) and U(h)W := {H ∈ U(h) : wH = H for w ∈ W}.

Note that for any λ ∈ h∗, λ(γ(z)) = (λ − ρ)(γ̄(z)) for all z ∈ Z(g) (here we have taken the
algebra homomorphism U(h) −→ C defined by λ, by the universal property of U(h)). In
view of Theorem 2.1.4, we have χλ(z) = λ(γ(z)) for all z ∈ Z(g). Hence for λ, µ ∈ h∗, we
have χλ = χµ if and only if µ = wλ for some w ∈ W, using Theorem 2.1.5 and some little
work. Also any algebra homomorphism Z(g) −→ C is of the form χλ for some λ ∈ h∗.
See [14, Th 5.62, Ch. V].

2.1.4 Discrete series representations

Let G be a connected reductive Lie group with maximal compact subgroup K. For an
irreducible unitary representation π of G on V , the following conditions are equivalent :
[13, Prop. 9.6, Ch. IX]

(1) Some non-zero K-finite matrix coefficient of π is in L2(G).
(2) All the matrix coefficients of π are in L2(G).
(3) The representation π is equivalent to a direct summand of the left regular represen-

tation of G on L2(G).
When these conditions are satisfied π is said to be square integrable and we say that

π is a discrete series representation. By definition, a discrete series of G is the equiva-
lence class of an irreducible unitary square integrable representation of G.

When π is a discrete series representation of G, there exists a positive number dπ such
that ∫

G

(π(x)u1, v1)(π(x)u2, v2) dx = d−1
π (u1, u2)(v1, v2)

for all u1, u2, v1, v2 ∈ V . dπ is called the formal degree of π.
For G compact, every irreducible unitary representation is a discrete series representa-

tion and is finite dimensional. If Haar measure has total mass 1, then the formal degree is
the degree of the representation, by Schur orthogonality. See [13, Section 5 of Chapter I].

If π is a discrete series representation of G, then the Plancherel measure for the de-
composition of L2(G) assigns mass dπ to the one point set {π} in the unitary dual Ĝ and
vice-versa. See [7].

Recall that the rank of a Lie group G is, by definition, the dimension of any Cartan
subalgebra of Lie(G).
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Theorem 2.1.6 [13, Th 12.20, Ch. XII] Let G be a connected semisimple Lie group with
finite centre and let K be a maximal compact subgroup of G. Then G has discrete series
representations if and only if rank (G) = rank (K).

Note that if G admits a discrete series representation, then G cannot be a complex Lie
group, since rank (G) = 2 rank (K).

Let G be a connected semisimple Lie group with finite centre. Let K be a maximal
compact subgroup of G. Assume that rank (G) = rank (K). Denote by g, the Lie algebra
of G and by k ⊂ g, the Lie algebra of K. Let g = k ⊕ p be the corresponding Cartan
decomposition. Let t ⊂ k be a maximal abelian subalgebra of k. Then t is a Cartan
subalgebra of g as well. Let

∆ = roots of (gC, tC), and

∆k = roots of (kC, tC).

Since root spaces are one dimensional and

[tC, kC] ⊆ kC and [tC, pC] ⊆ pC,

each root space is contained either in kC or in pC. The roots in ∆ are called compact or
non-compact accordingly. Clearly ∆k is the set of compact roots. Let ∆n be the set of
non-compact roots. That is, ∆n = ∆ \ ∆k. Let Wg and Wk be the Weyl groups of ∆ and ∆k

respectively. Then Wk ⊂ Wg. Let 〈 , 〉 be the positive definite symmetric bilinear form on
(it)∗ induced from the Killing form of gC.

Theorem 2.1.7 [13, Th. 9.20 in Ch. IX, Th. 12.21 in Ch. XII] Let G be a connected
semisimple Lie group with finite centre and K be a maximal compact subgroup of G.
Assume that rank (G) = rank (K). Let λ ∈ (it)∗ be non-singular relative to ∆, that is,
〈λ, α〉 , 0 for all α ∈ ∆. Define ∆+ by

∆+ := {α ∈ ∆ : 〈λ, α〉 > 0} (2.3)

Define ∆+
k = ∆+ ∩ ∆k. Let

ρg =
1
2

∑
α∈∆+

α and ρk =
1
2

∑
α∈∆+

k

α.

If λ + ρg is analytically integral (that is, λ + ρg is the differential of a smooth function
on the Cartan subgroup of G corresponding to t), then there exists a discrete series rep-
resentation πλ of G with the following properties :

(a) πλ has infinitesimal character χλ (recall from §2.1.3 that χλ is the character of the
Verma module of gC with highest weight λ − ρg).

(b) πλ|K contains with multiplicity one the K-type with highest weight

Λ = λ + ρg − 2ρk.
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(c) If Λ′ is the highest weight of a K-type in πλ|K , then Λ′ is of the form

Λ′ = Λ +
∑
α∈∆+

nαα for integers nα ≥ 0.

Two such representations πλ and πλ′ are unitarily equivalent if and only if λ = wλ′ for
some w ∈ Wk.
Upto equivalence these are the all discrete series representations of G.

The λ as above, is called the Harish-Chandra parameter and Λ is called the Blattner
parameter of the discrete series representation πλ of G. The positive system ∆+ defined
by the equation (2.4.2) is called the Harish-Chandra root order corresponding to λ.

All the parameters wλ for w ∈ Wg give the same infinitesimal character. According
to the theorem, exactly |Wg|/|Wk| of the discrete series representations πwλ are mutually
inequivalent.

2.2 Riemannian symmetric spaces

We follow [10] for this section.

Let M be a connected Riemannian manifold. M is called Riemannian globally sym-
metric if each p ∈ M is an isolated fixed point of an involutive isometry sp of M.

Examples
(i) Rn (n ≥ 1) with the usual metric, is a Riemannian globally symmetric space. For

p ∈ Rn, sp is given by sp(x) = 2p − x for all x ∈ Rn.
(ii) S n (n ≥ 1) with the Riemannian metric induced from Rn+1, is a Riemannian glob-

ally symmetric space. Let v0 ∈ S n and {v0, v1, . . . , vn} be an orthonormal basis of Rn+1

extending v0. Define sv0 : Rn+1 −→ Rn+1 by sv0(v0) = v0, sv0(vi) = −vi (1 ≤ i ≤ n) and
then extend linearly. Then sv0(S

n) = S n and v0 is an isolated fixed point of the involutive
isometry sv0 |S n of S n.

(iii) The upper half plane = {z ∈ C : Imz > 0} with the Poincaré metric is Riemannian
globally symmetric. For the point i, si : z 7→ −1

z is an involutive isometry. Since the isom-
etry group PSL2(R) of the upper half plane acts transitively, so each point is an isolated
fixed point of an involutive isometry.

Let M be a connected Riemannian manifold. Let N0 be a neighbourhood of 0 in TpM
(where TpM is the tangent space of M at p) such that if v ∈ N0, then tv ∈ N0 for all
t ∈ [−1, 1] and Expp is a diffeomorphism of N0 onto a neighbourhood of p in M (See [10,
Chapter I] or [5, Chapter 3]). Let Np := ExppN0. For each q ∈ Np there exists a geodesic
γ(t) in Np with γ(0) = p and γ(1) = q. Put q′ = γ(−1). Then the mapping sp : Np −→ Np

defined by q 7→ q′ is a diffeomorphism and is called the geodesic symmetry with respect
to p. Note that sp

2 = Id and (dsp)p = −Id. If for every p ∈ M, sp is an isometry, then M
is called a Riemannian locally symmetric space.

If M is a Riemannian globally symmetric space, then for p ∈ M, an involutive isometry
sp is the geodesic symmetry on a normal neighbourhood Np of p (that is Np is a neigh-
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bourhood of p defined as above). So there is only one such sp and M is a Riemannian
locally symmetric space. Also M is a complete Riemannian manifold. Let I(M) denote
the group of isometries of M. With the compact-open topology, I(M) is a Lie group and
the action of I(M) on M is smooth. Since M is complete any two points p, q ∈ M can be
joined by a minimal geodesic. If m is the midpoint of this geodesic, then sm(p) = q. In
particular I(M) acts transitively on M. Let I0(M) denote the connected component of M.
Since M is connected, I0(M) itself acts transitively on M. If p ∈ M and K denotes the
isotropy subgroup of I0(M) at p, then I0(M)/K is diffeomorphic to M. Also K is compact
and there exists an involutive automorphism σ : G −→ G defined by

σ(g) = spgsp for all g ∈ G

such that (Kσ)0 ⊂ K ⊂ Kσ, where Kσ is the subgroup of G of all fixed points of σ and
(Kσ)0 is the connected component of Kσ. The group K contains no normal subgroup of G
other than {e}. See [10, Th. 3.3, Ch. IV].

2.2.1 Riemannian symmetric pair

Let G be a connected Lie group and K a closed subgroup of G. The pair (G,K) is called
a Riemannian symmetric pair if

(i) there exists an involutive automorphism σ of G such that (Kσ)0 ⊂ K ⊂ Kσ, where
Kσ is the set of fixed points of σ and (Kσ)0 is the connected component of Kσ, and

(ii) AdG(K) is compact.

If (G,K) is a Riemannian symmetric pair, then in each G-invariant Riemannian struc-
ture on G/K (such Riemannian structure exist), the manifold G/K is a Riemannian glob-
ally symmetric space. The involutive isometry s0 at 0 = eK ∈ G/K is given by

s0(gK) = σ(g)K for all gK ∈ G/K

where σ is an involutive automorphism of G such that (Kσ)0 ⊂ K ⊂ Kσ. See [10, Prop.
3.4, Ch. IV].

A compact connected Lie group G can always be regarded as a Riemannian globally
symmetric space as follows :
The mapping (g1, g2) 7→ (g2, g1) is an involutive automorphism of G × G, whose fixed
point set is G∗ = {(g, g) : g ∈ G}. Hence the pair (G ×G,G∗) is a Riemannian symmetric
pair. The manifold G ×G/G∗ is diffeomorphic to G via the diffeomorphism given by

(g1, g2)G∗ 7→ g1g2
−1

A Riemannian structure on G ×G/G∗ is G ×G-invariant if and only if the corresponding
Riemannian structure on G is invariant under left and right translations. So G is a Rie-
mannian globally symmetric space in each bi-invariant Riemannian structure. See [10,
§6, Ch. IV].

16



2.2.2 Orthogonal symmetric Lie algebra and Riemannian globally
symmetric space

Note that each Riemannian globally symmetric space gives rise to a pair (g, s), where
(i) g is a Lie algebra over R,
(ii) s is an involutive automorphism of g,
(iii) k, the set of fixed points of s, is a compactly imbedded subalgebra of g, 1 and
(iv) k ∩ z = {0}, z denotes the centre of g.
A pair (g, s) with the properties (i), (ii), (iii) is called an orthogonal symmetric Lie

algebra. It is said to be effective if, in addition, (iv) holds. A pair (G,K), where G is a
connected Lie group with Lie algebra g and K is a Lie subgroup of G with Lie algebra k,
is said to be associated with the orthogonal symmetric Lie algebra (g, s).

Let (g, s) be an effective orthogonal symmtric Lie algebra. Let g = k ⊕ p be the decom-
position of g into the eigenspaces of s for the eigenvalues +1 and −1 respectively.

(a) If g is compact and semisimple, (g, s) is said to be of the compact type.
(b) If g is non-compact, semisimple and g = k ⊕ p is a Cartan decomposition of g, then

(g, s) is said to be of the non-compact type.
(c) If p is an abelian ideal in g, then (g, s) is said to be of the Euclidean type.
Let (g, s) be an orthogonal symmtric Lie algebra and suppose the pair (G,K) is as-

sociated with (g, s). The pair is said to be of the compact type, non-compact type or
Euclidean type according to the type of (g, s). Let M be a Riemannian globally symmet-
ric space. Then M is said to be of the compact type, non-compact type or Euclidean
type according to the type of the Riemannian symmetric pair (I0(M),K), K being the
isotropy subgroup of I0(M) at some point in M.

The decomposition of an effective orthogonal symmetric Lie algebra into three others,
which are of the compact type, non-compact type and Euclidean type respectively, leads
to the decomposition of a simply connected Riemannian globally symmetric space M as

M = M0 × M− × M+

where M0 is a Euclidean space and M− and M+ are Riemannian globally symmetric spaces
of compact type and non-compact type respectively. See [10, Prop. 4.2, Ch. V].

Let (G,K) be a pair of non-compact type. Then K is connected, closed and contains
the centre Z of G. K is compact if and only if Z is finite. In this case, K is a maximal
compact subgroup of G. Also the pair (G,K) is a Riemannian symmetric pair. If g = k⊕ p

is the corresponding Cartan decomposition, then the map φ : p × K −→ G given by

φ(X, k) = (exp X).k for X ∈ p, k ∈ K

is a diffeomorphism. Hence the Riemannian globally symmetric space G/K is diffeomor-
phic with p and so G/K is simply connected. See [10, Th. 1.1, Ch. VI].

1 For a Lie algebra g over R, let Int(g) denote the connected Lie subgroup of GL(g) with Lie algebra
adg(g) ⊂ End(g). A Lie subalgebra k of g is called compactly imbedded in g if the connected Lie subgroup
of Int(g) corresponding to the Lie algebra adg(k) is compact. A Lie algebra g over R is called compact if g
is compactly imbedded in itself.
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Note : Since g is semisimple, the Lie algebra k is compact. Hence k can be written as
k = ks ⊕ ka, where the ideals ks and ka are semisimple and abelian respectively (see [10,
Prop. 6.6(ii), Ch. II]). Let Ks and Ka denote the corresponding connected Lie subgroups
of K. The group Ka can be written as Ka = T × V , where T and V are connected Lie
subgroups of Ka which are isomorphic to the torus and the Euclidean space respectively.
Define K′ := KsT . Then K′ is the unique maximal compact subgroup of K. This group is
also maximal compact in G. See [10, Th. 2.2(i), Ch. VI].

So if G is a connected semisimple Lie group with maximal compact subgroup H and
rank (G) = rank (H), then rank (G) = rank (K′) (where K′ is defined as above), for any
two maximal compact subgroups of a connected semisimple Lie group are conjugate un-
der an inner automorphism of G (see [10, Th. 2.2(ii), Ch. VI]). But rank (K′) = rank (K)−
dim(V). Since rank (K) ≤ rank (G), so rank (G) = rank (K′) implies rank (K) = rank (K′).
Hence V = {0} and K = K′. So K is a maximal compact subgroup of G. Therefore the
centre of G is finite.

Let (G,K) be a pair of compact type. Then K is closed. See [10, Prop. 3.6, Ch. IV]. If
K is connected then G/K is a Riemannian globally symmetric space in each G-invariant
Riemannian metric on G/K. See [10, page 349, Ch. VII].

For a Riemannian globally symmetric space G/K, the following theorem describes
I0(G/K) :

Theorem 2.2.1 [10, Th. 4.1(i), Ch. V] Let (G,K) be a Riemannian symmetric pair and
M := G/K.

Suppose that G is semisimple and acts effectively on the Riemannian globally symmet-
ric space M. Then G = I0(M) (as Lie groups).

More generally, if G is semisimple and if N denotes the kernel of the action of G on M,
then G/N = I0(M).

The duality

Let (g, s) be an orthogonal symmetric Lie algebra and let g = k⊕p be the decomposition of
g into the eigenspaces of s corresponding to the eigenvalues +1 and −1 respectively. Let
gC denote the complexification of g. Define g∗ := k ⊕ ip to be the subspace of gC. Then g∗

is a Lie subalgebra of gC over R. The mapping s∗ : T + iX 7→ T − iX (T ∈ k, X ∈ p) is an
involutive automorphism of g∗. The pair (g∗, s∗) is an orthogonal symmetric Lie algebra,
called the dual of (g, s). Then (g, s) is the dual of (g∗, s∗). If (g, s) is of the compact type,
(g∗, s∗) is of the non-compact type and conversely. If (g1, s1) is isomorphic to (g2, s2), then
(g∗1, s

∗
1) is isomorphic to (g∗2, s

∗
2). 2 See [10, Prop. 2.1, Ch. V].

The following proposition shows that the non-compact real forms of a complex semisim-
ple Lie algebra gC (up to conjugacy) are in one-one correspondence with the involutive
automorphisms of a compact real form of gC (up to conjugacy).

2(g1, s1) is said to be isomorphic to (g2, s2) if there exists an isomorphism φ : g1 −→ g2 such that
φ ◦ s1 = s2 ◦ φ.
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Proposition 2.2.2 [10, Prop. 2.2, Ch. V] Let g be a compact semisimple Lie algebra.
Let s1 and s2 be two involutive automorphisms of g with corresponding duals g∗1 and g∗2
respectively. Then s1 and s2 are conjugate within the group Aut(g) if and only if g∗1 and g∗2
are conjugate under an automorphism of gC.

A pair (G1,K1) is called dual to a pair (G2,K2) if the corresponding orthogonal sym-
metric Lie algebras are dual to each other. Let M1 and M2 be two Riemannian globally
symmetric spaces. M1 is called dual to M2 if the pairs (I0(M1),K1) and (I0(M2),K2) are
dual to each other, where K1 (respectively K2) is the isotropy subgroup of I0(M1) (respec-
tively I0(M2)) at some point in M1 (respectively in M2).

Irreducibility

Let (g, s) be an orthogonal symmetric Lie algebra, k and p be the eigenspaces of s for the
eigenvalues +1 and −1 respectively. One says that (g, s) is irreducible if the following
two conditions are satisfied :

(i) g is semisimple and k contains no non-zero ideal of g, and
(ii) the algebra adg(k) acts irreducibly on p.
Note that (g, s) is irreducible if and only if the dual (g∗, s∗) is irreducible.
Let (G,K) be a pair associated with g, s). One says that (G,K) is irreducible if (g, s) is

so. A Riemannian globally symmetric space M is called irreducible if the pair (I0(M),K)
is irreducible, K being the isotropy subgroup of I0(M) at some point in M. Any simply
connected Riemannian globally symmetric space of the compact type or the non-compact
type is the direct product of irreducible Riemannian globally symmetric spaces of the
same type (the type of M). See [10, Prop. 5.5, Ch. VIII]. Let (G,K) be an irreducible
Riemannian symmetric pair. Then all G-invariant Riemannian structures on G/K coin-
cide except for a constant factor. We can therefore always assume that this Riemannian
structure is induced by +B or −B, where B is the Killing form of g.

The irreducible orthogonal symmetric Lie algebras of the compact type are :
I. (g, s) where g is a compact simple Lie algebra and s any involutive automorphism of

g.
II. (g, s) where the compact Lie algebra g is the direct sum g = g1 ⊕ g2 of simple ideals

which are interchanged by an involutive automorphism s of g.

See [10, Th. 5.3, Ch. VIII].

The irreducible orthogonal symmetric Lie algebras of the non-compact type are :
III. (g, s) where g is a simple non-compact Lie algebra over R, the complexification gC

is a simple Lie algebra over C and s is an involutive automorphism of g such that the fixed
points form a compactly imbedded subalgebra.

IV. (g, s) where g = lR, l being a simple Lie algebra over C. Here s is the conjugation
of g with respect to a maximal compactly imbedded subalgebra.

Furthermore, if (g∗, s∗) denotes the dual of (g, s), then
(g, s) is of type III if and only if (g∗, s∗) is of type I,
(g, s) is of type IV if and only if (g∗, s∗) is of type II.
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See [10, Th. 5.4, Ch. VIII].

Let M be an irreducible Riemannian globally symmetric space and (g, s) be the orthog-
onal symmetric Lie algebra associated with M. The space M is said to be of type i ( i = I,
II, III, IV ) if (g, s) is of type i in the notation given above.

Note that the Riemannian globally symmetric spaces of type IV are the spaces G/U,
where G is a connected Lie group whose Lie algebra is gR where g is a simple Lie algebra
over C, and U is a maximal compact subgroup of G. The Riemannian metric on G/U
is G-invariant and is uniquely determined (up to a factor) by this condition. Clearly the
Riemannian globally symmetric spaces of type IV are simply connected.

The Riemannian globally symmetric spaces of type II are the simple , compact, con-
nected Lie groups. The Riemannian metric on a such group is invariant under left and
right translations and is uniquely determined (up to a factor) by this condition. See [10,
Prop. 1.2, Ch. X]. The simply connected Riemannian globally symmetric spaces of type
II are the simply connected, compact, simple Lie groups with the (up to a factor) left and
right translations invariant Riemannian metric.

The classification of involutive automorphisms of compact simple Lie algebras (up to
conjugacy) leads to the classification of irreducible orthogonal symmetric Lie algebras of
type I and hence of type III (up to isomorphism). These lead to the É. Cartan’s classifica-
tion of simply connected irreducible Riemannian globally symmetric spaces of type I and
III. See [10, Ch. X] for details.

2.3 Hermitian symmetric spaces

We follow [10] for this section.

Let M be a connected complex manifold. A Riemannian structure on M is called
a Hermitian structure if the complex structure on each tangent space is an isometry.
Let M be a connected complex manifold with a Hermitian structure. M is said to be
a Hermitian symmetric space if M is a Riemannian globally symmetric space and for
each point p ∈ M, the involutive isometry sp is holomorphic.

The complex vector space Cn (n ≥ 1), the Riemann sphere S 2, the upper half plane
with the Poincaré metric are examples of Hermitian symmetric spaces.

Let A(M) denote the set of all holomorphic isometries of M. Then A(M) is a closed
subgroup of I(M). The group A(M) acts transitively on M, since it contains all the sym-
metries. Hence A0(M), the identity component of A(M), also acts transitively on M.
Therefore M is diffeomorphic to A0(M)/K, K being the isotropy subgroup of A0(M) at
some point p ∈ M. Note that the pair (A0(M),K) is a Riemannian symmetric pair.

Conversely, let (G,K) be a Riemannian symmetric pair and Q be a G-invariant Rie-
mannian structure on M = G/K. Suppose J is an endomorphism of the tangent space
T0(M) at 0 = eK such that

(i) J2 = −Id,
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(ii) Q0(JX, JY) = Q0(X,Y) for X,Y ∈ T0(M),
(iii) J commutes with each element of AdG(K).

Then J defines a unique complex structure on M such that the action of G on M is holo-
morphic and the induced complex structure on T0(M) is J, the Riemannian structure Q is
Hermitian and M is a Hermitian symmetric space. See [10, Prop. 4.2, Ch VIII].

For a Hermitian symmetric space M, A0(M) is not necessarily equals to I0(M). For
example, if M = C2, then A0(M) and I0(M) are different. But one of the groups A0(M)
and I0(M) is semisimple implies the groups are the same, that is A0(M) = I0(M) [10,
Lemma 4.3, Ch VIII].

A Hermitian symmetric space M is said to be of the compact type (respectively of
the non-compact type) if the Riemannian symmetric pair (A0(M),K) is of the compact
type (respectively of the non-compact type), K being the isotropy subgroup at some point
p ∈ M. A Hermitian symmetric space of the compact type or non-compact type is sim-
ply connected [10, Th. 4.6, Ch. VIII]. A simply connected Hermitian space M can be
decomposed as

M = M0 × M− × M+,

where M0 = Cn for some integer n ≥ 0, M− and M+ are Hermitian symmeric spaces of
the compact type and non-compact type respectively. See [10, Prop. 4.4, Ch. VIII].

Let (g, s) be an orthogonal symmetric Lie algebra and M1, M2 be Riemannian globally
symmetric spaces associated with (g, s). It may happen that one of them is a Hermitian
symmetric space but the other is not. For example, the Riemann sphere S 2 and the two
dimensional real projective space RP2 are associated with the same orthogonal symmetric
Lie algebra. Note that S 2 is a Hermitian symmetric space but RP2 is not. But there is
exactly one simply connected Riemannian globally symmetric space associated with an
orthogonal symmetric Lie algebra.

Let M be an irreducible simply connected Riemannian globally symmetric space and
(g, s) be the orthogonal symmetric Lie algebra associated with M. Then M is a Hermitian
symmetric space if and only if the fixed point set k of s has non-zero centre. So in
particular, a Riemannian globally symmetric space of type II or IV cannot be Hermitian
symmetric. If (g, s) is an orthogonal symmetric Lie algebra associated with an irreducible
Hermitian symmetric space, then the centre of the fixed point set k of s is one dimensional.
Any Hermitian symmetric space of the compact type (respectively, non-compact type) can
be decomposed as a product of irreducible Hermitian symmetric spaces of the compact
type (respectively, non-compact type) [10, Prop. 5.5, Ch. VIII].

2.3.1 Bounded symmetric domains

A domain in CN (for some positive integer N) is an open connected subset of CN . A
bounded domain D of CN is said to a bounded symmetric domain if each point p ∈ D
is an isolated fixed point of an involutive holomorphic diffemorphism of D.

If D is a bounded domain, there exists a Riemannian structure coming from the Bergman
metric on D [10, page 369, Chapter VIII] which is a Hermitian structure and, with respect
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to this metric, any holomorphic diffeomorphism of D is an isometry. In fact, any bounded
symmetric domain equipped with the Bergman metric is a Hermitian symmetric space of
the non-compact type [10, Th 7.1(i), Ch. VIII].

Conversely, let M be a Hermitian symmeric space of non-compact type and (g0, s) be
the orthogonal symmetric Lie algebra associated with M. Let g0 = k0 ⊕ p0 be the Cartan
decomposition corresponding to the Cartan involution s. Let c0 denote the centre of k0.
Then c0 , {0} and we have zg0(c0) = k0. Let t0 be a maximal abelian subspace of k0. Then
c0 ⊂ t0 and t0 is a Cartan subalgebra of g0. Let g, k, p, t, c denote the complexifications of
g0, k0, p0, t0, c0 respectively. Then t is a Cartan subalgebra of k as well as of g. Let

∆ := the roots of (g, t) and ∆k := the roots of (k, t).

Note that ∆k ⊂ ∆. Let ∆n := ∆ \ ∆k. A root is compact (respectively non-compact) if
it is in ∆k (respectively in ∆n). Note that a root α is compact if and only if α vanishes
identically on c. Choose a basis of ic0 and extend this to a basis B of it0. Now consider
the lexicographic ordering of the dual of it0 with respect to the basis B. This ordering will
introduce an ordering of ∆. Let ∆+ denote the set of positive roots in ∆ with respect to
this ordering. The positive system of ∆+ is defined to be a special positive system. Let
∆+

n := ∆+ ∩ ∆n. Define
p+ :=

∑
α∈∆+

n

gα and p− :=
∑
−α∈∆+

n

gα,

gα being the root space for α ∈ ∆. Then p+ and p− are abelian, [k, p+] ⊂ p+, [k, p−] ⊂ p− and
p = p+ ⊕ p−.

Let G be the simply connected Lie group with Lie algebra g and G0, K0, K, P+, P−
be the connected Lie subgroups of G corresponding to the subalgebras g0, k0, k, p+, p−

respectively. Note that M = G0/K0. The map exponential induces a diffeomorphism of
p+ onto P+ and of p− onto P−.

The Harish-Chandra decomposition
Note that P+KP− is an open submanifold of G with G0 ⊂ P+KP−, G0KP− is open in

P+KP−, G0 ∩ KP− = K0 and there exists a bounded open connected subset D of p+ such
that

G0KP− = (exp D)KP−.

So there exists a holomorphic diffeomorphism of M = G0/K0 onto D.

Let u = k0 ⊕ ip0 be the dual of (g0, s) in g and U be the connected Lie subgroup of G
corresponding to the subalgebra u. The mapping uK0 7→ uKP− is a holomorphic diffeo-
morphism of U/K0 onto G/KP−. Therefore the Hermitian symmetric space M = G0/K0

is an open submanifold of its dual U/K0.

2.4 Holomorphic discrete series and Borel-de Siebenthal
discrete series
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2.4.1 Borel-de Siebenthal positive root system

Let (g0, s) be an irreducible orthogonal symmetric Lie algebra of the non-compact type
and g0 = k0 ⊕ p0 be the Cartan decomposition corresponding to the Cartan involution s.
Let g, k, p denote the complexifications of g0, k0, p0 respectively. Assume that rank (g0) =

rank (k0). Then note that g is simple. Fix a maximal abelian subalgebra t0 of k0. Then t0

is also a Cartan subalgebra of g0. Let t be the complexification of t0. The construction
of Borel-de Siebenthal [2] provides a positive root system of (g, t) known as a Borel-de
Siebenthal positive system such that the corresponding simple system Ψ contains exactly
one non-compact root ν and the coefficient of ν in the highest root µ when expressed as a
sum of simple roots is 1 or 2. Let nν(α) denote the coefficient of the non-compact simple
root ν in a root α when expressed as a sum of simple roots.

If the orthogonal symmetric Lie algebra (g0, s) is associated with a Hermitian symmet-
ric space, then nν(µ) = 1, k = t⊕ u0 and p = u−1 ⊕ u1, where ui =

∑
nν(α)=i gα for −1 ≤ i ≤ 1,

gα being the root space for the root α of (g, t). Note that Ψ \ {ν} is a simple root system of
(k, t).

Otherwise, nν(µ) = 2, k = u−2 ⊕ t ⊕ u2 and p = u−1 ⊕ u1, where ui =
∑

nν(α)=i gα for
−2 ≤ i ≤ 2. In this case, (Ψ \ {ν}) ∪ {−µ} is a simple root system of (k, t).

Note : In the first case, a positive root system of (g, t) is a special positive system if
and only if it is a Borel-de Siebenthal positive system.

Conversely, let g be a complex simple Lie algebra. Choose a Cartan subalgebra t of g

and a simple root system of (g, t). Let µ denote the highest root.
If there exists a simple root ν such that nν(µ) = 1, then g = u−1⊕l⊕u1, where l = t⊕u0, the

ui are defined as above. Define k := l and p := u−1⊕u1. Note that rank (k) = rank (g). There
exists a unique (up to an inner automorphism of g) irreducible orthogonal symmetric Lie
algebra (g0, s) of the non-compact type such that g and k are the complexifications of g0

and k0 respectively, k0 being the fixed point set of s. Also the chosen simple root system
is the simple system of a Borel-de Siebenthal positive system of g0 with the non-compact
simple root ν. The orthogonal symmetric Lie algebra (g0, s) is associated with a Hermitian
symmetric space.

If there exists a simple root ν such that nν(µ) = 2, then g = u−2 ⊕ u−1 ⊕ l ⊕ u1 ⊕ u2, with
l = t ⊕ u0. Define k := u−2 ⊕ l ⊕ u2 and p := u−1 ⊕ u1. Like as above, rank (k) = rank (g) and
there exists a unique (up to an inner automorphism of g) irreducible orthogonal symmetric
Lie algebra (g0, s) of the non-compact type such that g and k are the complexifications of
g0 and k0 respectively, k0 being the fixed point set of s. The chosen simple root system is
the simple system of a Borel-de Siebenthal positive system of g0 with the non-compact
simple root ν. In this case, k0 is semisimple.

2.4.2 Holomorphic discrete series

Let G0 be a connected non-compact semisimple Lie group with finite centre and K0 be a
maximal compact subgroup of G0. Then (G0,K0) is a pair of non-compact type. Let g0, k0

denote the Lie algebras of G0 and K0 respectively. Let g0 = k0 ⊕ p0 be the corresponding
Cartan decomposition. Assume that G0/K0 is a Hermitian symmetric space. Let c0 denote
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the centre of k0. Then c0 , {0} and zg0(c0) = k0. Let t0 be a maximal abelian subspace of k0.
Then as in §2.3.1, t0 is maximal abelian in g0. Let g, k, p, t, c denote the complexifications
of g0, k0, p0, t0, c0 respectively. Then t is a Cartan subalgebra of k as well as of g. That is
rank (G0) = rank (K0) so that G0 has discrete series representations. As in §2.3.1, let ∆+

be a special positive system of (g, t). Let ∆+
k and ∆+

n denote the set of all positive compact
roots and positive non-compact roots respectively. Define ρg := 1

2

∑
α∈∆+ α. Suppose

Λ ∈ t∗ is analytically integral such that

〈Λ, α〉 ≥ 0 for all α ∈ ∆+
k and 〈Λ + ρg, β〉 < 0 for all β ∈ ∆+

n . (2.4)

where 〈 , 〉 denote the positive definite symmetric bilinear form on (it0)∗ induced from the
Killing form of g.

Note that Λ + ρg is non-singular and is a Harish-Chandra parameter of a discrete series
representation πΛ+ρg of G0 which is called a holomorphic discrete series representation
of G0. The Harish-Chandra root order corresponding to Λ+ρg is ∆+

k∪∆−n , where ∆−n = −∆+
n .

Therefore the Blattener parameter of πΛ+ρg is Λ + ρg +
1
2

∑
α∈∆+

k∪∆−n

α −
∑
α∈∆+

k

α = Λ (see

Theorem 2.1.7(b) in §2.1.4).

The space of K0-finite vectors of a holomorphic discrete series representation πΛ+ρg is
described as ⊕n≥0EΛ ⊗ S n(p−), where EΛ is the irreducible K0-representation with highest
weight Λ, p− =

∑
α∈∆−n

gα as in §2.3.1 and S n(p−) denotes the n-th symmetric power of p−.
See [8] and also [20]. Hence the (g,K0)-module associated with πΛ+ρg is the irreducible
quotient of the Verma module of g with highest weight Λ with respect to the positive
system ∆+.

2.4.3 Borel-de Siebenthal discrete series

In this section we describe Borel-de Siebenthal discrete series. The notations introduced
here will be used from Chapter 3 onwards unless otherwise stated explicitly.

Let G0 be a simply connected non-compact real simple Lie group with maximal com-
pact subgroup K0. Assume that

(i) rank (G0) = rank (K0) (hence G0 has discrete series representations), and
(ii) G0/K0 is not Hermitian symmetric that is, K0 is semisimple.

Let g0, k0 denote the Lie algebras of G0, K0 respectively and g0 = k0 ⊕ p0 be the cor-
responding Cartan decomposition. Let t0 be a Cartan subalgebra of k0, which is also a
Cartan subalgebra of g0. Let g, k, p, t denote the complexifications of g0, k0, p0, t0 respec-
tively. Let ∆ be the root system of (g, t), ∆+ ⊂ ∆ be a Borel-de Siebenthal positive system
and Ψ the set of simple roots. Let α ∈ ∆ be any root and let nν(α) be the coefficient of ν
(the non-compact simple root) when α is expressed as a sum of simple roots. Note that
nν(µ) = 2, where µ denotes the highest root. One has a partition of the set of roots ∆

into subsets ∆i, i = 0,±1,±2 where ∆i ⊂ ∆ defined to be {α ∈ ∆ | nν(α) = i}. Note that
∆k = ∆0 ∪ ∆2 ∪ ∆−2 and ∆n = ∆1 ∪ ∆−1, where ∆k and ∆n are the set of compact roots
and non-compact roots respectively. Define q := l ⊕ u−1 ⊕ u−2, where l = t ⊕ u0, the ui

are defined as in §2.4.1. The Killing form B of g determines a positive definite symmetric
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bilinear form 〈 , 〉 on (it0)∗ which is normalized so that 〈ν, ν〉 = 2. Let ν∗ ∈ (it0)∗ be the
fundamental weight of (g, t) corresponding to the simple root ν of Ψ and hν∗ ∈ it0 be such
that ν∗(h) = 〈h, hν∗〉 for all h ∈ it0. Then the centre of l is Chν∗ . Let G denote the simply
connected complexification of G0. The inclusion i : g0 ↪→ g defines a homomorphism
p : G0 −→ G. Let Q, L, K be the connected Lie subgroups of G corresponding to the
subalgebras q, l. k respectively.

Note that k = l ⊕ u2 ⊕ u−2. Let θ = AdK(exp iπ
2 hν∗) = exp(adk( iπ

2 hν∗)) ∈ Aut(k). Since

adk(
iπ
2

hν∗)(X) = 0 for all X ∈ l, and

adk(
iπ
2

hν∗)(Y) = iπY for Y ∈ u2,

= −iπY for Y ∈ u−2.

We have θ(X) = X for all X ∈ l and θ(Y) = −Y for all Y ∈ u2 ⊕ u−2. Hence θ2 = Id. Notice
that iπ

2 hν∗ ∈ k0. Therefore θ(k0) ⊂ k0 and (k0, θ|k0) is an orthogonal symmetric Lie algebra
of the compact type. Let l0 be the set of fixed points of θ|k0 . Then l0 is a real form of l. Let
L0 be the centralizer in K0 of the circle subgroup S ν∗ := {exp(ithν∗) : t ∈ R} of K0. Then
L0 is connected and Lie(L0) = l0. Define L̄0 := p(L0).

The Borel-de Siebenthal discrete series of G0, whose systematic study was carried out
by Ørsted and Wolf [18], is defined analogously to the holomorphic discrete series as
follows: Let γ be the highest weight of an irreducible representation Eγ of L̄0 such that
γ + ρg is negative on ∆1 ∪ ∆2. Here ρg denotes half the sum of roots in ∆+. The Borel-de
Siebenthal discrete series representation πγ+ρg is the discrete series representation of
G0 for which the Harish-Chandra parameter is γ + ρg.

Let kC1 denote the simple ideal of k that contains the root space gµ. It is the complex-
ification of the Lie algebra k1 of a compact Lie group K1 which is a simple factor of K0.
It turns out that u2, u−2 ⊂ kC1 . Let k2 be the ideal of k0 such that k0 = k1 ⊕ k2. We let
lCj = kCj ∩ l, j = 1, 2. Note that kC2 = lC2 and so lC2 is semisimple. Thus the centre of l is con-
tained in lC1 . Let L1 ⊂ K1 be the centralizer of S ν∗ ⊂ K1. Then L1 ⊂ L0 and Lie(L1) =: l1 is
a compact real form of lC1 . Let K2 be the connected Lie subgroup of K0 with Lie algebra
k2. Then K0 = K1×K2 as K0 is simply connected. Also L0 = L1×K2. It will be convenient
to set L2 := K2.

The map p : G0 −→ G defines a smooth map G0/L0 ⊂ G/Q, since l0 ⊂ q. Since
dimR(G0/L0) = dimR(u1 +u2) = 2 dimC(G/Q), we conclude that G0/L0 is an open domain
of the complex flag variety G/Q. Note that one has a fibre bundle projection G0/L0 −→

G0/K0 with fibre K0/L0. Note that K0/L0 is a Riemannian globally symmetric space which
is isomorphic with the complex flag variety K/(K∩Q). With this complex structure, K0/L0

is a Hermitian symmetric space. Since K0/L0 = K1/L1, it is irreducible. We shall denote
the identity coset of any homogeneous space by o. The holomorphic tangent bundles of
K0/L0 and G/Q are the bundles associated to the L̄0-modules u2 and u1 ⊕ u2 respectively,
since we have the isomorphisms of tangent spaces ToK0/L0 = u2 and ToG/Q = u1 ⊕ u2

of L̄0-modules. Hence the normal bundle to the imbedding K0/L0 ↪→ G/Q is the bundle
associated to the representation of L̄0 on u1.
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We regard any L̄0 representation as an L0-representation via the covering projection
p|L0 . Any L0-representation we consider in this thesis arises from an L̄0-representation
and so we shall abuse notation and simply write L0 for L̄0 as well. Define Y := K0/L0.

We recall the following result due to Parthasarathy [19] (see §2.4.4 below) and Ørsted
and Wolf [18]. Let γ be the highest weight of an irreducible finite dimensional complex
representation of L0 on Eγ and suppose that 〈γ + ρg, α〉 < 0 for all α ∈ ∆1 ∪ ∆2.

Theorem 2.4.1 (Parthasarathy [19], Ørsted and Wolf [18]) The K0-finite part of the
Borel-de Siebenthal discrete series representation πγ+ρg is isomorphic to ⊕m≥0H s(Y;Eγ ⊗

Sm(u−1)) where s = dim Y and moreover, it is K1-admissible.

The K1-admissibility of the Borel-de Siebenthal discrete series also follows from the
work of Kobayashi [15] who obtained a criterion for the admissibility of restriction of
certain representations to reductive subgroups in a more general context.

The set ∆k is the root system of k with respect to the Cartan subalgebra t for which
(Ψ\{ν})∪{−µ} is a set of simple roots defining a positive system of roots, namely, ∆+

0∪∆−2.
On the other hand (k, t) inherits a positive root system from (g, t), namely, ∆+

k := ∆+
0 ∪ ∆2.

Let ε denote the lowest root of ∆2 (so that β ≥ ε for all β ∈ ∆2). Then Ψk := (Ψ \ {ν})∪ {ε}
is the set of simple roots in ∆+

k .3 Lemma 2.4.2 brings out the relation between these two
positive system. Also ∆l := ∆0 is the root system of (l, t) for which Ψl := Ψ \ {ν} is the set
of simple roots defining the positive system ∆+

l := ∆+
0 . Let w0

k (respectively, w0
l ) denote

the longest element of the Weyl group of (k, t) (respectively, of (l, t)) with respect to the
positive system ∆+

k (respectively, ∆+
l ).

Write γ = γ0 + tν∗, where 〈γ0, ν
∗〉 = 0. The assumption that γ is an l-dominant integral

weight and that γ + ρg is negative on positive roots of g complementary to those of l

implies that t is ‘sufficiently negative’. That is, t is real and it satisfies the conditions (see
[18, Theorem 2.12]): 4

t < −1/2〈γ0 + ρg, µ〉 and t < −〈γ0 + ρg,w0
l (ν)〉. (2.5)

The adjoint action of L0 on g yields L0-representations on ui, i = ±1,±2, which are ir-
reducible. The highest (resp. lowest) weights of u−2, u−1, j = 1, 2, are −ε,−ν (resp.
−µ,w0

l (−ν)) respectively. Let ε∗ ∈ (it0)∗ be the fundamental weight of (k, t) corresponding
to the simple root ε of the simple system Ψk and let wY := w0

kw
0
k .

Lemma 2.4.2 (i) ε∗ = ||ε ||2ν∗/4.
(ii) wY(∆+

0 ∪ ∆−2) = ∆+
0 ∪ ∆2, Ψk = wY((Ψ \ {ν}) ∪ {−µ}).

(iii) If λ ∈ t∗, then λ = λ′ + aν∗ where a = 〈λ, ν∗〉/||ν∗||2 and λ′ ∈ (t ∩ [l, l])∗ = {ν∗}⊥.
(iv) The sum

∑
β∈∆2

β = cε∗ where c = s||ε∗||2/2||ε ||2 (with s = |∆2|) is an integer.

3Ørsted and Wolf [18] denote by Ψk the set (Ψ \ {ν}) ∪ {−µ}.
4The decomposition of γ = γ0 + tν∗ used in [18, Theorem 2.12] is different.

26



Proof: We will only prove (iv), the proofs of the remaining parts being straightforward.

Observe that if E is a finite dimensional representation of l, then the sum λ of all
weights of E, counted with multiplicity, is a multiple of ε∗. This follows from the fact
that the top-exterior Λdim(E)(E) is a one dimensional representation of l isomorphic to Cλ.
Applying this to u2, we obtain that

∑
β∈∆2

β = cε∗. Clearly c is an integer since the β are
roots of k and so

∑
β∈∆2

β is in the weight lattice of k. �

2.4.4 Realization of Borel-de Siebenthal Discrete Series from
Parthasarathy’s Construction in [19]

Here we give a brief description of Parthasarathy’s [19] results on his construction of cer-
tain unitarizable (g,K0)-modules, which includes those associated to the Borel-de Sieben-
thal discrete series. We also explain how to obtain the description of Borel-de Sieben-
thal discrete series due to Ørsted and Wolf as Borel-de Siebenthal discrete series from
Parthasarathy’s results.

Let G0 be a non-compact real semisimple Lie group G0 with finite centre and let K0

be a maximal compact subgroup of G0. Assume that G0 contains a compact Cartan sub-
group T0 ⊂ K0. Let P be a positive root system of (g, t) and let p+ (resp. p−) equal

∑
gα

where the sum is over positive (respectively negative) non-compact roots. Suppose that
[p+, [p+, p+]] = 0. Let B denote the Borel subgroup of K = KC

0 such that Lie(B) = t⊕
∑

gα

where the sum is over positive compact roots. Let Pk and Pn denote the set of compact
and non-compact roots in P respectively.

Write ρ = (1/2)
∑
α∈P α and wk,wg the longest element of the Weyl groups of k and g

with respect to the positive systems Pk and P respectively. Let λ be the highest weight of
an irreducible representation of K0 such that the following “regularity" conditions hold:
(i) λ + ρ is dominant for g, and, (ii) H j(K/B; Λq(p−) ⊗ Lλ+2ρ) = 0 for all 0 ≤ j < d, 0 ≤
q ≤ dim p− where d := dimC K/B and L$ denotes the holomorphic line bundle over K/B
associated to a character $ of T extended to a character of B in the usual way. From [11,
Lemma 9.1] we see that condition (ii) holds for λ since [p+, [p+, p+]] = 0. Parthasarathy
shows that the k-module structure on ⊕m≥0Hd(K/B;Lλ+2ρ ⊗ S m(p+)) extends to a g-module
structure which is unitarizable.

Suppose that λ + ρ is regular dominant for g so that condition (i) holds. Then, the
g-module ⊕m≥0Hd(K/B;Lλ+2ρ ⊗ S m(p+)) is the K0-finite part of a discrete series represen-
tation π with Harish-Chandra parameter λ + ρ and Harish-Chandra root order P. The
Blattner parameter is λ + 2ρn. See [19, p.3-4].

Now start with a Borel-de Siebenthal positive system ∆+ where G0 is further assumed
to be simply-connected and simple. Assume also that G0/K0 is not Hermitian symmetric.
The Harish-Chandra root order for the Borel-de Siebenthal discrete series πγ+ρg is ∆+

0 ∪

∆−1∪∆−2. The Blattner parameter for πγ+ρg is γ+
∑
β∈∆2

β. Thus, setting P := ∆+
0∪∆−1∪∆−2,

we have Pn = ∆−1, p+ = u−1 and [p+, [p+, p+]] = 0 holds.
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Finally, we have the isomorphism [19, equation (9.20)]

Hd(K/B;Lλ+2ρ ⊗ Sm(p+)) � H s(Y;Eλ+2ρn ⊗ Eκ ⊗ Sm(p+))

of K-representations where κ =
∑
β∈∆−2

β. Note that Eκ is the canonical line bundle of Y .
From Parthasarathy’s description of the K0-finite part of the discrete series representation
πλ+ρ and using the above isomorphism we have

(πλ+ρ)K0 = ⊕m≥0Hd(K/B;Lλ+2ρ ⊗ Sm(p+))
� ⊕m≥0H s(Y;Eλ+2ρn ⊗ Eκ ⊗ Sm(p+))
= ⊕m≥0H s(Y;Eλ+2ρn+κ ⊗ Sm(p+))
= ⊕m≥0H s(Y;Eγ ⊗ Sm(u−1))

where γ := λ + 2ρn + κ. Note that γ + ρg = λ + 2ρn + κ + ρg = λ + ρ. Therefore, by [18],
the module in the last line is the K0-finite part of πγ+ρg . Hence we see that Parthasarathy’s
description of (πγ+ρg)K0 agrees with that of Ørsted and Wolf.

2.5 A theorem of Schmid

Let g0 be a non-compact simple Lie algebra over R with g := the complexification of g0,
is simple. Let g0 = k0 ⊕ p0 be a Cartan decomposition with the corresponding Cartan
involution s0. Then (g0, s0) is an orthogonal symmetric Lie algebra of type III. Assume
that c0 := zk0 is non-zero. Let G0 be a connected Lie group with Lie algebra g0 and K0 be
a Lie subgroup of G0 corresponding to the subalgebra k0. Then the orthogonal symmetric
Lie algebra (g0, s0) is associated with the irreducible Hermitian symmetric space G0/K0

of the non-compact type. Let t0 be a maximal abelian subalgebra of k0. Then c0 ⊂ t0

and t0 is a Cartan subalgebra of g0. Let k, p, t, c denote the complexifications of k0, p0, t0,
c0 respectively. Let ∆ := the set of non-zero roots of (g, t) and ∆k, ∆n denote the set of
compact and non-compact roots in ∆ respectively. Let ∆+ be a special positive system of
∆ as in §2.3.1 with Ψ := {ψ1, ψ2, · · ·ψn}, the set of simple roots in ∆+. Then Ψ contains
exactly one non-compact root, say ε. Let ∆+

k := ∆+ ∩ ∆k and ∆+
n := ∆+ ∩ ∆n. Let µ denote

the highest root of g. Then µ ∈ ∆+
n . Define p+ :=

∑
β∈∆+

n
gβ and p− :=

∑
−β∈∆+

n
gβ. We have

p+, p− are abelian; [k, p+] ⊂ p+, [k, p−] ⊂ p− and p = p+⊕p−. In fact p+ and p− are irreducible
K0-modules with highest weights µ and −ε respectively. Let 〈 , 〉 be the positive definite
symmetric bilinear form on (it0)∗ induced from the Killing form of g. Let β1, β2 ∈ −(∆+

n ).
Then β1, β2 are called strongly orthogonal roots if β1 + β2 and β1 − β2 are not roots of
(g, t). Since p− is abelian, β1 + β2 is not a root. Hence β1 is strongly orthogonal to β2 if
and only if 〈β1, β2〉 = 0. Let Γ be a maximal set of strongly orthogonal roots in −(∆+

n ).
The cardinality of Γ equals the rank of G0/K0, that is, the maximum dimension of the
Euclidean space that can be imbedded in G0/K0 as a totally geodesic submanifold. See
[10, §6 of Chapter V, Cor. 7.6 of Chapter VIII].

We now consider a specific maximal set Γ ⊂ −(∆+
n ) of strongly orthogonal roots whose

elements γ1, . . . , γr are inductively defined as follows. Fix an ordering of the simple
roots in ∆+ and consider the induced lexicographic ordering on ∆. Now let γ1 := −ε,
the highest root in −(∆+

n ). Having defined γ1, . . . , γi, let γi+1 be the highest root in −(∆+
n )
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which is orthogonal to γ j, 1 ≤ j ≤ i.

Denote by Eγ the irreducible K0-representation with highest weight γ. We have the
following decomposition theorem due to Schmid [22], which is a far reaching general-
ization of the fact that the symmetric power of the defining representation of the special
unitary group is irreducible. See [14, Theorem 10.25].

Theorem 2.5.1 (Schmid [22]) With the above notations, one has the decomposition S m(p−)
as an K0-representation

S m(p−) = ⊕Ea1γ1+···+arγr

where the sum is over all partitions a1 ≥ · · · ≥ ar ≥ 0 of m. �

Let ε∗ be the fundamental weight corresponding to the non-compact simple root ε and
c∗ be the dual space of c. Note that c∗ = Cε∗. Hence Eγ is one dimensional precisely when
γ = kε∗ for some integer k. Now we see from the above theorem that S m(p−) admits a
one dimensional K0-subrepresentation precisely when there exists non-negative integers
a1 ≥ · · · ≥ ar ≥ 0 such that

∑
aiγi = c0ε

∗ for some constant c0. The first part of the
following proposition gives a criterion for this to happen.

Proposition 2.5.2 (i) Let Γ = {γ1, . . . , γr} be the maximal set of strongly orthogonal roots
obtained as above. Let w0

g denote the longest element of the Weyl group of (g, t) with
respect to the positive root system ∆+. Suppose that w0

g(−ε) = ε. Then
∑

1≤i≤r γi = −2ε∗.
Conversely, if

∑
1≤i≤r aiγi is a non-zero multiple of ε∗ where ai ∈ Z, then ai = a j ∀1 ≤

i, j ≤ r, and, w0
g(ε) = −ε.

(ii) Moreover, for any 1 ≤ j ≤ r, if the coefficient of a compact simple root α of g

in the expression of
∑

1≤i≤ j γi is non-zero, then
∑

1≤i≤ j γi is orthogonal to α (without any
assumption on w0

g).

Proof: Our proof involves a straightforward verification using the classification of irre-
ducible Hermitian symmetric pairs of non-compact type. See [10, §6, Ch. X]. We follow
the labelling conventions of Bourbaki [4, Planches I-VII] and make use of the description
of the root system, especially in cases E-III and E-VII. Note that −w0

g induces an automor-
phism of the Dynkin diagram of g. In particular, −w0

g(ε) = ε when the Dynkin diagram of
g admits no symmetries.

Case A III: (g0, k0) = (su(p, q), s(u(p) × u(q))), p ≤ q. The simple roots are ψi = εi − εi+1,
1 ≤ i ≤ p + q− 1. If p + q > 2, then −w0

g induces the order 2 automorphism of the Dynkin
diagram of g, which is of type Ap+q−1. Thus −w0

g(ψ j) = ψp+q− j in any case. The simple
non-compact root is ε = ψp = εp−εp+1, all other simple roots are compact roots. Therefore
−w0

g(ψp) = ψp if and only if p = q. On the other hand, the set of negative non-compact
roots −(∆+

n ) = {ε j − εi | 1 ≤ i ≤ p < j ≤ p + q} and Γ = {γ j := εp+ j − εp− j+1 | 1 ≤ j ≤ p}.
If p = q, then

∑
1≤ j≤p γ j =

∑
1≤ j≤q εp+ j −

∑
1≤ j≤p εp− j+1. Using the fact that

∑
1≤i≤p+q εi = 0,

we see that
∑

1≤ j≤p γ j = −2(
∑

1≤ j≤p ε j) = −2ε∗ if p = q.
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For the converse part, assume that
∑

j a jγ j = mε∗,m , 0. It is evident when p < q
that

∑
a jγ j is not a multiple of ε∗ (since εp+q does not occur in the sum). Since the

γ j, 1 ≤ j ≤ p, are linearly independent, the uniqueness of the expression of ε∗ as a linear
combination of the γ j implies that a j = a1 for all j.

To prove (ii), note that γ1 = −ε and γ j = −(ε +ψp− j+1 + · · ·+ψp−1 +ψp+1 + · · ·+ψp+ j−1),
2 ≤ j ≤ p. So the only compact simple roots whose coefficients are non-zero in the
expression of

∑
1≤i≤ j γi( j > 1) are ψi (p − j + 1 ≤ i ≤ p + j − 1, i , p). Note that∑

1≤i≤ j γi = −(εp− j+1 + · · · + εp − εp+1 − · · · − εp+ j). Hence 〈
∑

1≤i≤ j γi, ψi〉 = 0 for all
p − j + 1 ≤ i ≤ p + j − 1, i , p.

Case D III: (so∗(2p), u(p)), p ≥ 4. The simple roots are ψi = εi − εi+1, 1 ≤ i ≤ p − 1 and
ψp = εp−1 + εp. In this case the only non-compact simple root ε = ψp = εp−1 + εp; ε∗ =

(1/2)(
∑

1≤ j≤p ε j). The set of non-compact positive roots is ∆+
n = {εi + ε j | 1 ≤ i < j ≤ p}

and Γ = {γ j = −(εp−2 j+1 + εp−2 j+2) | 1 ≤ j ≤ bp/2c}. So
∑

1≤ j≤bp/2c γ j = −2ε∗ if p is even.
On the other hand w0

g maps ε to −ε precisely when p is even.

When p is odd, it is readily seen that
∑

j a jγ j is not a non-zero multiple of ε∗ since ε1

does not occur in the sum.

To prove (ii), note that γ1 = −ε and γ j = −(ε +ψp−2 j+1 + 2ψp−2 j+2 + · · ·+ 2ψp−2 +ψp−1),
2 ≤ j ≤ bp/2c. So the only compact simple roots whose coefficients are non-zero in the
expression of

∑
1≤i≤ j γi( j > 1) are ψi (p − 2 j + 1 ≤ i ≤ p − 1). Note that

∑
1≤i≤ j γi =

−(εp−2 j+1 + · · · + εp). Hence 〈
∑

1≤i≤ j γi, ψi〉 = 0 for all p − 2 j + 1 ≤ i ≤ p − 1.

Case BD I (rank= 2): (so(2, p), so(2) × so(p)), p > 2. We have ε = ψ1 = ε1 − ε2, ε
∗ = ε1

and w0
g(ε) = −ε. Now ∆+

n = {ε1 ± ε j | 2 ≤ j ≤ p} ∪ {ε1} if p is odd and is equal to
{ε1±ε j | 2 ≤ j ≤ p} if p is even. For any p, Γ = {γ1 = −(ε1−ε2), γ2 = −(ε1 +ε2)}. Clearly
a1γ1 + a2γ2 = mε∗ if and only if a1 = a2. Since in this case rank is 2 and γ1 + γ2 = −2ε∗,
(ii) is obvious.

Case C I: (sp(p,R), u(p)), p ≥ 3. The simple roots are ψi = εi − εi+1, 1 ≤ i ≤ p − 1 and
ψp = 2εp. We have ε = 2εp, ε

∗ =
∑

1≤ j≤p ε j, and w0
g(ε) = −ε. Also ∆+

n = {εi + ε j | 1 ≤ i ≤
j ≤ p}. Therefore Γ = {γ j := −2εp− j+1 | 1 ≤ j ≤ p}. Evidently

∑
1≤ j≤p γ j = −2ε∗.

The converse part is obvious in this case.

To prove (ii), note that γ1 = −ε and γ j = −(ε + 2ψp− j+1 + · · · + 2ψp−1), 2 ≤ j ≤ p.
So the only compact simple roots whose coefficients are non-zero in the expression of∑

1≤i≤ j γi( j > 1) are ψi (p − j + 1 ≤ i ≤ p − 1). Note that
∑

1≤i≤ j γi = −2(εp− j+1 + · · · + εp).
Hence 〈

∑
1≤i≤ j γi, ψi〉 = 0 for all p − j + 1 ≤ i ≤ p − 1.

Case E III: (e6,−14, so(10)⊕so(2)). The simple roots are ψ1 = (1/2)(ε8−ε6−ε7+ε1−ε2−ε3−

ε4−ε5), ψ2 = ε1 +ε2, ψ3 = ε2−ε1, ψ4 = ε3−ε2, ψ5 = ε4−ε3, ψ6 = ε5−ε4. In this case the
rank is 2, ε = ψ1 = (1/2)(ε8 − ε6 − ε7 + ε1 − ε2 − ε3 − ε4 − ε5), and ε∗ = (2/3)(ε8 − ε7 − ε6).
We have −w0

g(ε) = ψ6 , ε. Now ∆2 = {(1/2)(ε8 − ε7 − ε6 +
∑

1≤i≤5(−1)s(i)εi) | s(i) =

0, 1,
∑

i s(i) ≡ 0 mod 2}. There are five roots in ∆−2 which are orthogonal to γ1 = −ε.
Among these the highest is γ2 = −(1/2)(ε8 − ε6 − ε7 − ε1 + ε2 + ε3 + ε4 − ε5). Thus
Γ = {γ1, γ2}. Now a1γ1 + a2γ2 is not a multiple of ε∗ for any a1, a2 ≥ 0 unless a1 = a2 = 0.
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Note that γ2 = −(ε + ψ2 + 2ψ3 + 2ψ4 + ψ5), γ1 + γ2 = −(ε8 − ε7 − ε6 − ε5). Hence
〈γ1 + γ2, ψi〉 = 0 for all 2 ≤ i ≤ 5.

Case E VII: (e7,−25, e6 ⊕ so(2)). The simple roots are ψ1 = (1/2)(ε8 − ε6 − ε7 + ε1 − ε2 −

ε3 − ε4 − ε5), ψ2 = ε1 + ε2, ψ3 = ε2 − ε1, ψ4 = ε3 − ε2, ψ5 = ε4 − ε3, ψ6 = ε5 − ε4, ψ7 =

ε6 − ε5. In this case rank= 3, ε = ψ7 = ε6 − ε5, ε
∗ = ε6 + (1/2)(ε8 − ε7),w0

k(−ε) = ε.
∆+

n = {ε6 − ε j, ε6 + ε j, 1 ≤ j ≤ 5} ∪ {ε8 − ε7} ∪ {(1/2)(ε8 − ε7 + ε6 +
∑

1≤ j≤5(−1)s( j)ε j) |
s( j) = 0, 1,

∑
j s( j) ≡ 1 mod 2}. Now Γ = {γ1 = ε5 − ε6, γ2 = −ε5 − ε6, γ3 = ε7 − ε8} and

we have γ1 + γ2 + γ3 = −2ε∗. The converse part is easily established.

We have γ2 = −(ε+ψ2 +ψ3 +2ψ4 +2ψ5 +2ψ6), γ1 +γ2 = −2ε6. Hence 〈γ1 +γ2, ψi〉 = 0
for all 2 ≤ i ≤ 6. Also γ1 + γ2 + γ3 = −2ε∗. So (ii) is proved. �

As a corollory we obtain the following.

Proposition 2.5.3 Suppose that G0 and K0 are as above and K′0 be the connected Lie
subgroup of K0 corresponding to the semisimple ideal [k0, k0] of k0. Let πγ+ρg be a holo-
morphic discrete series representation of G0, where ρg = 1

2

∑
α∈∆+ α. If w0

g(ε) = −ε, then
the K0-finite part (πγ+ρg)K0 of πγ+ρg is not K′0-admissible. Conversely, if a holomorphic
discrete series representation πγ+ρg of G0 is not K′0-admissible, then w0

g(ε) = −ε.

Proof: One has the following description of (πγ+ρg)K0 due to Harish-Chandra: (πγ+ρg)K0 =

⊕m≥0Eγ ⊗ S m(p−). Suppose that w0
g(ε) = −ε. Then by Proposition 2.5.2 and Schmid’s the-

orem 2.5.1 we see that Eγ ⊗ E−aε∗ occurs in (πγ+ρg)K0 for infinitely many values of a.
Since E−ε∗ is one dimensional, it is trivial as an K′0-representation. Hence (πγ+ρg)K0 is not
K′0-admissible.

Conversely, since πγ+ρg is not K′0-admissible, in view of Proposition 5.1.1 we have,
(πγ+ρg)K0 is not K′0-admissible. Suppose that w0

g(−ε) , ε. Any K′0-type in (πγ+ρg)K0 is of
the form E∑

a jγ j+κ (considered as K′0-module) for some weight κ of Eγ. Since the set of
weights of Eγ is finite, (πγ+ρg)K0 is not K′0 admissible implies S ∗(p−) is not K′0 admissible.
If E∑

a jγ j � E∑
b jγ j as K′0-modules, then

∑
(a j − b j)γ j is a multiple of ε∗. Proposition 2.5.2

implies that a j = b j, 1 ≤ j ≤ r. �

We conclude this section with the following remark.

Remark 2.5.4 Let Γ be the set of strongly orthogonal roots as in Proposition 2.5.2 and
suppose that w0

g(ε) = −ε. Then:
(i) It follows from the explicit description of Γ in each case that w0

k(γ j) = γr+1− j =

−w0(γ j), 1 ≤ j ≤ r, where w0
k is the longest element of (k, t) with respect to the posi-

tive system ∆+
k and w0 = w0

gw0
k . In particular −µ ∈ Γ.

(ii) For any w in the Weyl group of (k, t),
∑
γ∈Γ w(γ) = w(

∑
γ∈Γ γ) = −2w(ε∗) = −2ε∗.

(iii) Note that ||γi|| = ||ε ||, 1 ≤ i ≤ r. This property holds even without the assumption that
w0

g(ε) = −ε.
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2.6 Littelmann’s path model

Although Littelmann has constructed his path model in the generality of complex sym-
metrizable Kac-Moody algebras, we shall contend ourselves with the finite dimensional
case. Let g be a finite dimensional complex semisimple Lie algebra and h a Cartan
subalgebra of g. Let X denote the weight lattice of (g, h) and 〈 , 〉 be the positive def-
inite symmetric bilinear form on X ⊗Z R induced from the Killing form of g. By a,
say, closed interval [a, b] ⊂ Q, we mean the set {t ∈ Q : a ≤ t ≤ b} and define
Π := {π : [0, 1] −→ X ⊗Z Q : π is piecewise linear with π(0) = 0}. Two paths in Π are
considered equivalent if one can be obtained from the other by a piecewise linear order
preserving reparametrization of the interval [0, 1]. (We regard members of Π as equiva-
lence classes of paths.) Let ∆+ be a positibe root system of (g, h) and Ψ the set of simple
roots in ∆+. For an element w of the Weyl group W of (g, h) and a path π ∈ Π, let w(π) be
the path given by w(π)(t) := w(π(t)) for all t ∈ [0, 1]. Let π1, π2 ∈ Π. The concatenation
of two paths π1 and π2, denoted by π1 ∗ π2, is defined by

π1 ∗ π2(t) :=
{

π1(2t) if 0 ≤ t ≤ 1/2 and t ∈ Q;
π1(1) + π2(2t − 1), if 1/2 ≤ t ≤ 1 and t ∈ Q.

For α ∈ Ψ, the Littelmann’s root operators eα and fα on Π will be defined now. For that,
let π ∈ Π and hα : [0, 1] −→ Q be the function defined by

hα(t) :=
2〈π(t), α〉
〈α, α〉

for t ∈ [0, 1].

Let mα = min{hα(t) : t ∈ [0, 1]}. Then mα is attained by hα.

Definition of eα : Let t1 ∈ [0, 1] be minimal such that hα(t1) = mα.
If mα ≤ −1 that is, hα(0) − mα ≥ 1; fix t0 ∈ [0, t1) maximal such that hα(t) ≥ mα + 1 for
t ∈ [0, t0]. Note that hα(t0) = mα + 1, hα(t1) = mα, and for any ε > 0, there exists t ∈
(t0, t0 + ε) such that mα < hα(t) < mα + 1. Choose a partition t0 = s0 < s1 < · · · < sr = t1

of [t0, t1] such that either
(i) hα(si−1) = hα(si) and hα(t) ≥ hα(si−1) for t ∈ [si−1, si], or
(ii) hα is strictly decreasing on [si−1, si] with hα(t) ≥ hα(si−1) for t ≤ si−1.
Setting s−1 := 0, sr+1 := 1 and πi(t) := π(si−1 + t(si − si−1)) − π(si−1) for all t ∈ [si−1, si],
for 0 ≤ i ≤ r + 1; we have π = π0 ∗ π1 ∗ · · · ∗ πr+1.
Define

eα(π) :=
{

0 if mα > −1,
π0 ∗ η1 ∗ η2 ∗ · · · ∗ ηr ∗ πr+1 otherwise; (2.6)

where ηi = πi if hα
∣∣∣∣
[si−1,si]

is as in (i) and ηi = sα(πi) if hα
∣∣∣∣
[si−1,si]

is as in (ii).

Definition of fα : Let t0 ∈ [0, 1] be maximal such that hα(t0) = mα.
If hα(1) − mα ≥ 1, fix t1 ∈ (t0, 1] minimal such that hα(t) ≥ mα + 1 for t ∈ [t1, 1].
Note that hα(t0) = mα, hα(t1) = mα + 1, and for any t1 − t0 > ε > 0, there exists t ∈
(t0, t1 − ε) such that mα < hα(t) < mα + 1. Choose a partition t0 = s0 < s1 < · · · < sr = t1

of [t0, t1] such that either
(i) hα(si−1) = hα(si) and hα(t) ≥ hα(si−1) for t ∈ [si−1, si], or
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(ii) hα is strictly increasing on [si−1, si] with hα(t) ≥ hα(si) for t ≥ si.
Setting s−1 := 0, sr+1 := 1 and πi(t) := π(si−1 + t(si − si−1)) − π(si−1) for all t ∈ [si−1, si],
for 0 ≤ i ≤ r + 1; we have π = π0 ∗ π1 ∗ · · · ∗ πr+1.
Define

fα(π) :=
{

0 if hα(1) − mα < 1,
π0 ∗ η1 ∗ η2 ∗ · · · ∗ ηr ∗ πr+1 otherwise; (2.7)

where ηi = πi if hα
∣∣∣∣
[si−1,si]

is as in (i) and ηi = sα(πi) if hα
∣∣∣∣
[si−1,si]

is as in (ii).

2.6.1 Some properties of the root operators

1. If eαπ , 0, then eαπ(1) = π(1) + α. Similarly if fαπ , 0, then fαπ(1) = π(1) − α.

2. If eαπ , 0, then fαeαπ = π and if fαπ , 0, then eα fαπ = π.
In fact if eα(π) , 0, then for the path eαπ, the minimum value of the function h̄α

defined by t 7→
2〈eαπ(t), α〉
〈α, α〉

, is mα + 1. Therefore h̄α(1)− (mα + 1) = hα(1) + 2−mα − 1 =

hα(1)−mα + 1 ≥ 1, since mα is the minimum value of the function hα. So fαeαπ , 0. Note
that if t0 and t1 are as in the definition of eα, then t0 is maximal such that h̄α(t0) = mα + 1
and t1 ∈ (t0, 1] is minimal such that h̄α(t) ≥ mα + 2 for t ∈ [t1, 1]. In the interval [t0, t1],
the behaviour of the function h̄α is as in (i) or (ii) (in the definition of fα) according as hα
behaves as in (i) or (ii) (in the definition of eα). Hence fαeαπ = π.

The proof of the other part is similar.

3. en
απ = 0 if and only if n > |mα| and f n

απ = 0 if and only if n >
2〈π(1), α〉
〈α, α〉

− mα.

4. Let π ∈ Π be such that π(1) ∈ X. Let n1 and n2 be maximal such that en1
α π , 0 and

f n2
α π , 0. Then

2〈π(1), α〉
〈α, α〉

= n2 − n1.

5. eαπ = 0 for all α ∈ Ψ if and only if the image of the path π shifted by ρ that is, Im(ρ+π)
is contained in the interior of the dominant Weyl chamber, where ρ = 1

2

∑
α∈∆+ α.

See [17] for further properties of the root operators.

Let λ be a dominant integral weight and π ∈ Π be a path such that π(1) = λ and Im(π) is
completely contained in the dominant Weyl chamber. For such a π, let Bπ denote the set of
all non-zero paths in Π by applying the monomials in the root operators fα, eβ (α, β ∈ Ψ)
on π. Then π is the only path in Bπ which lies completely in the dominant Weyl chamber
and any element of Bπ is of the form fα1 fα2 . . . fαsπ, for some α1, α2, · · · , αs ∈ Ψ. See [17].

For λ ∈ X, denote by πλ the path t 7→ tλ. If λ is a dominant integral weight, we will
denote by Bλ the set Bπλ . If η ∈ Bλ, we say that η is an LS-path of shape λ. See [16]. Note
that if w is an element of the Weyl group W of (g, h), then w(πλ) = πwλ.

Proposition 2.6.1 If λ is a dominant integral weight and πλ is the path t 7→ tλ, then for
any w ∈ W, w(πλ) is an LS-path of shape λ.
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Proof: We will prove this by induction on the length l(w) of the Weyl group element w.

If l(w) = 1 that is, w = sα for some α ∈ Ψ, then sα(πλ) = πsαλ. Indeed, if aλ,α :=
2〈λ, α〉
〈α, α〉

is 0, then sα(πλ) = πλ. Otherwise, sα(πλ) = f aλ,απλ, by property (3) of the root operators.
In any case, sα(πλ) is an LS-path of shape λ.

Assume that n > 1 and the proposition is true for all Weyl group elements of length
n − 1.

Let w be a Weyl group element with l(w) = n. Write w = sαw1, where α ∈ Ψ and w1

is an element of the Weyl group with l(w1) = n − 1. By induction hypothesis, w1(πλ) is
an LS-path of shape λ. This implies w1λ = λ −

∑
β∈Ψ nββ, where the nβ are non-negative

integers. Hence aw1λ, α :=
2〈w1λ, α〉

〈α, α〉
=

2〈λ, α〉
〈α, α〉

−
∑
β∈Ψ

nβ
2〈β, α〉
〈α, α〉

≥ 0, since 〈λ, α〉 ≥ 0 and

〈β, α〉 ≤ 0 for all α ∈ Ψ. If aw1λ, α = 0, then w(πλ) = sα(πw1λ) = πw1λ is an LS-path of
shape λ. Otherwise w(πλ) = sα(πw1λ) = f

aw1λ, α
α πw1λ, which is also an LS-path of shape λ.

This completes the proof. �

Proposition 2.6.2 Let λ1, λ2 be two dominant integral weights and π1, π2 ∈ Π be g-
dominant paths with π1(1) = λ1 and π2(1) = λ2. Assume that η1 ∈ Bπ1 and η2 ∈ Bπ2 . Then
for α ∈ Ψ,

fα(η1 ∗ η2) =

{
( fαη1) ∗ η2, if f n

αη1 , 0 and en
αη2 = 0 for some n ≥ 1;

η1 ∗ ( fαη2), otherwise. (2.8)

Similarly,

eα(η1 ∗ η2) =

{
η1 ∗ (eαη2), if en

αη2 , 0 and f n
αη1 = 0 for some n ≥ 1;

(eαη1) ∗ η2, otherwise. (2.9)

Proof: Denote by m1, the minimum of the function t 7→
2〈η1(t), α〉
〈α, α〉

, t ∈ [0, 1] and by

m2, the minimum of t 7→
2〈η1(t), α〉
〈α, α〉

, t ∈ [0, 1]. Note that m1, m2 and η1(1) are all integers

(see [17]) and

fα(η1 ∗ η2) =

 ( fαη1) ∗ η2, if m1 <
2〈η1(1), α〉
〈α, α〉

+ m2;

η1 ∗ ( fαη2), otherwise.

Now f n
αη1 , 0 and en

αη2 = 0 if and only if −m2 = |m2| < n ≤
2〈η1(1), α〉
〈α, α〉

−m1, by property

(3) of the root operators; which in turn equivalent to the condition m1 <
2〈η1(1), α〉
〈α, α〉

+ m2.

The proof of the other part is similar. This completes the proof. �
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2.6.2 Applications to representation theory

For a dominant integral weight λ, let Vλ denote the finite dimensional irreducible g-module
with highest weight λ.

Theorem 2.6.3 (Littelmann [17]) Let λ be a dominant integral weight. If π ∈ Π be a
g-dominant path with π(1) = λ, then Char Vλ =

∑
η∈Bπ eη(1).

Theorem 2.6.4 (Littelmann [17]) Let λ1 and λ2 be two dominant integral weights. Let
π1, π2 ∈ Π be two paths such that π1(1) = λ1, π2(1) = λ2 and π1, π2 are g-dominant. Then
the tensor product Vλ1 ⊗ Vλ2 of the finite dimensional irreducible g-modules Vλ1 and Vλ2

decomposes as
Vλ1 ⊗ Vλ2 � ⊕Vλ1+η(1),

where the sum is over all paths η ∈ Bπ2 such that π1 ∗ η is g-dominant.

Let l be a Levi subalgebra of g. Thus l is a reductive subalgebra of g containing h. The
positive root system ∆+ induces a positive root system of (l, h). If κ is a dominant integral
weight of l, let Eκ denote the finite dimensional irreducible l-module with highest weight
κ.

Theorem 2.6.5 (Littelmann [17]) Let l be a Levi subalgebra of the Lie algebra g as above
and λ be a dominant integral weight of g. If π ∈ Π be a g-dominant path with π(1) = λ,
then Vλ as an l-module can be decomposed as

Vλ � ⊕Eη(1), (2.10)

where the sum is over all l-dominant paths in Bπ.
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Chapter 3

HOLOMORPHIC DISCRETE SERIES
ASSOCIATED TO A BOREL-DE
SIEBENTHAL DISCRETE SERIES

Unless explicitly stated, from here onwards we keep the notations of §2.4.3. In §3.1, we
discuss the irreducible bounded symmetric domain dual to Y = K0/L0 � K/K ∩ Q. In
§3.2, we will see that for every Borel-de Siebenthal discrete series representation of G0,
there is a naturally associated holomorphic discrete series representation of K∗0 which is
the dual of K0 in K.

3.1 Hermitian symmetric space dual to Y

Recall that Y = K0/L0 = K1/L1 is an irreducible Hermitian symmetric space of the com-
pact type. Also recall that θ = AdK(exp iπ

2 hν∗) and (k0, θ|k0) is an orthogonal symmetric Lie
algebra of the compact type with l0 the set of fixed points of θ|k0 . Notice that θ(k1) ⊂ k1 and
l1 is the set of fixed points of θ|k1 . Hence (k1, θ|k1) is an irreducible orthogonal symmetric
Lie algebra of the compact type and is associated with Y . Let k∗0 ⊂ k (respectively, k∗1 ⊂ kC1 )
denote the non-compact real form of k (respectively, kC1 ) dual to (k0, θ|k0) (respectively,
(k1, θ|k1)). We have k∗0 = k∗1 ⊕ k2. Let K∗0 denote the connected Lie subgroup of K with Lie
algebra k∗0 and K∗1 the connected Lie subgroup of K∗0 corresponding to the Lie subalgebra
k∗1. We have K∗0 = K∗1K2 and X := K∗0/L0 = K∗1/L1 (denoting L̄0, L0 by the same notation
L0 and similarly for L1) is an irreducible Hermitian symmetric space of the non-compact
type dual to Y .

A well-known result of Harish-Chandra (see [10, Ch. VIII] or §2.3.1) is that X is
naturally imbedded as a bounded symmetric domain in u2 = To(Y), the holomorphic
tangent space at o = eK0 of Y . Denote by U±2 ⊂ K the (unipotent) Lie subgroup of K
with Lie algebra u±2 ⊂ k. Then the exponential map is a diffeomorphism from u±2 onto
U±2. The image U2 in K/(L.U−2) is an open neighbourhood of o in K/(L.U−2) � Y .
Thus X is imbedded in Y as an open complex analytic submanifold. See §2.3.1.
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3.2 Holomorphic discrete series associated to a Borel-de
Siebenthal discrete series

Recall that k = k∗0 ⊗R C and that t ⊂ l is a Cartan subalgebra of k. The sets of compact and
non-compact roots of (k∗0), t0) are ∆0 and ∆2 ∪ ∆−2 respectively. The unique non-compact
simple root of Ψk is ε ∈ ∆2.

Note that the group K∗0 admits holomorphic discrete series. See §2.4.2 or [13, Theorem
6.6, Chapter VI]. The positive system ∆+

k is a special positive system of (k, t) as in §2.4.2.

Let γ + ρg be the Harish-Chandra parameter for a Borel-de Siebenthal discrete series
representation of G0. Thus γ is the highest weight of an irreducible L0-representation and
〈γ + ρg, β〉 < 0 for all β ∈ ∆1 ∪ ∆2. Clearly 〈γ + ρk, α〉 > 0 for all positive compact roots
α ∈ ∆+

0 . We claim that 〈γ + ρk, β〉 < 0 for all positive non-compact roots β ∈ ∆2. To
see this, let βi ∈ ∆i, i = 1, 2. Observe that β1 + β2 is not a root and so 〈β1, β2〉 ≥ 0. It
follows that 〈ρk, β2〉 = 〈ρg−1/2

∑
β1∈∆1

β1, β2〉 = 〈ρg, β2〉−1/2
∑
β1∈∆1
〈β1, β2〉 ≤ 〈ρg, β2〉. So

〈γ + ρk, β〉 ≤ 〈γ + ρg, β〉 < 0 for all β ∈ ∆2. Thus γ + ρk is the Harish-Chandra parameter
for a holomorphic discrete series representation πγ+ρk of K∗0 , which is naturally associated
to the Borel-de Siebenthal discrete series representation πγ+ρg of G0.

The L0-finite part of πγ+ρk equals Eγ⊗S ∗(u−2), where Eγ is the irreducible L0-representation
with highest weight γ (see §2.4.2). Write γ = λ + κ where λ and κ are dominant weights
of lC1 and lC2 respectively. We have Eγ = Eλ ⊗ Eκ. Hence (πγ+ρk)L0 = Eκ ⊗ (Eλ ⊗ S ∗(u−2)) =

Eκ ⊗ (πλ+ρ
kC1

)L1 , where πλ+ρ
kC1

is the holomorphic discrete series representation of K∗1 with
Harish-Chandra parameter λ + ρkC1 .

We have (πγ+ρk)L0 = Eκ ⊗ (πλ+ρ
kC1

)L1 . Therefore πγ+ρk is L′0-admissible if and only if
πλ+ρ

kC1
is L′1-admissible, where L′0 (respectively, L′1) denote the connected Lie subgroup

of L0 (respectively, L1) corresponding to the semisimple ideal [l0, l0] (respectively, [l1, l1])
of l0 (respectively l1). Since K1 is simple, and since w0

k(ε) = w0
kC1

(ε), it follows from the

Proposition 2.5.3 of Chapter 2 that πγ+ρk is L′0 admissible if and only if w0
k(ε) , −ε.
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Chapter 4

TWO INVARIANTS ASSOCIATED
TO A BOREL-DE SIBENTHAL
POSITIVE SYSTEM

In this chapter we shall associate to a Borel-de Siebenthal positive system two invariants.
One of them is the first Chern class of the Hermitian symmetric space Y = K0/L0 =

K/K ∩Q (with notations as in §2.4.3). The other is the degree of the algebra generator of
the algebra of relative invariants of (u1, L). See §4.3. The relation between them will play
a crucial role in our proof of Theorem 1.0.2.

Recall that G0 is a simply connected non-compact real simple Lie group with maximal
compact subgroup K0 such that

(i) rank (G0) = rank (K0), and
(ii) G0/K0 is not a Hermitian symmetric space.

Recall that Y = K0/L0 = K1/L1 is an irreducible Hermitian symmetric space of the non-
compact type.

4.1 Spin structure on Y

We have seen in Lemma 2.4.2 that the sum
∑
β∈∆2

β = cε∗, where c is an integer. The
parity of c will be relevant for our purposes. We give an interpretation of it in terms
of the existence of spin structures on Y . The cohomology group H2(Y;Z) is naturally
isomorphic to Z[ε∗] � Z, the quotient of the weight lattice of K0 by the weight lattice
of L0. If λ is an integral weight of K0 its class in H2(Y;Z) is denoted by [λ]. Thus
[λ] = 2(〈λ, ε〉/||ε ||2)[ε∗]. The holomorphic tangent bundle TY is the bundle associated
to the L0-representation u2 =

∑
β∈∆2

gβ. This implies that c1(Y), first Chern class of Y ,
equals

∑
β∈∆2

[β] = c[ε∗] ∈ H2(Y;Z). Consequently Y admits a spin structure if and only
if c is even. The value of c can be explicitly computed. (See, for example, [1, §16].)
This leads to the following conclusion. The complex Grassmann variety CGp(Cp+q) =

S U(p + q)/S (U(p) × U(q)) admits a spin structure if and only if p + q is even and that
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the complex quadric S O(2 + p)/S O(2) × S O(p) admits a spin structure precisely when p
is even. The orthogonal Grassmann variety S O(2p)/U(p) admits a spin structure for all
p. The symplectic Grassmann variety S p(p)/U(p) admits a spin structure if and only if
p is odd. The Hermitian symmetric spaces E6/(S pin(10) × S O(2)) and E7/(E6 × S O(2))
admit spin structures.

4.2 Classification of Borel-de Siebenthal root orders

The complete classification of Borel-de Siebenthal root orders is given in [18, §3]. But it
will be convenient to recall here, in brief, their classification. We list the quaternionic and
non-quaternionic cases separately.

Let g0 be a non-compact real simple Lie algebra with maximal compactly imbedded
subalgebra k0 such that rank (g0) = rank (k0) and k0 is semisimple.
Having fixed a fundamental Cartan subalgebra t0 ⊂ g0; a positive root system of (g, t)
containing exactly one non-compact simple root ν, is Borel-de Siebenthal if the coefficient
of ν in the highest root is 2. Conversely, let g be a complex simple Lie algebra. Choose
a Cartan subalgebra t ⊂ g and a positive root system of (g, t). If there exists a simple root
ν whose coefficient in the highest root is 2, then ν determines uniquely (up to an inner
automorphism) a non-compact real form g0 of g satisfying the conditions given above
such that the positive system is a Borel-de Siebenthal positive system of g0.

If Ψ is the set of simple roots of a Borel-de Siebenthal positive system of g0 and ν ∈ Ψ

is the unique non-compact root, we denote the Borel-de Siebenthal root order by (Ψ, ν).
Corresponding to g0, we can have several Borel-de Siebenthal root orders. Given one
such, we have its negative (−Ψ,−ν). We list below the Borel-de Siebenthal root orders up
to sign changes.

The quaternionic case is characterized by the property that highest root µ is orthogonal
to all the compact simple roots and hence −µ is adjacent to the simple non-compact root
ν in the extended Dynkin diagram of g.

As in [18], we shall follow Bourbaki’s notation [4] in labeling the simple roots of g. We
point out the simple root which is non-compact for g0 and the compact Lie subalgebras
k1, l1, l2 = k2 ⊂ k0. We also point out, based on Proposition 4.3.1 below, whether the
algebra A := A(u1, L) of relative invariants is C or C[ f ]. In the latter case we indicate
the value of deg( f ). See [18] for a more detailed analysis.

We also indicate the non-compact dual Hermitian symmetric space X := Y∗. In the non-
quaternionic cases we point out whether or not w0

k(∆0) = −∆0 (equivalently w0
k(ε) = −ε).

For a proof see Proposition 2.5.2 in Chapter 2.

Borel-de Siebenthal root orders.
(a) Quaternionic type: We have k1 = su(2), l1 = so(2) = iRν∗. Also Y = P1. X = Y∗ =

S U(1, 1)/U(1), the unit disk in C. The condition w0
k(ε) = −ε is trivially valid.

1. g0 = so(4, 2l−3), l > 2. Then g is of type Bl and ν = ψ2. l2 = sp(1)⊕ so(2l−3). A =
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C[ f ], deg( f ) = 4.

2. g0 = so(4, 1). Then g is of type B2, ν = ψ2, l2 = sp(1). A = C.

3. g0 = sp(1, l − 1), l > 1. Then g is of type Cl, ν = ψ1, l2 = sp(l − 1). A = C.

4. g0 = so(4, 2l − 4), l > 4. g is of type Dl, ν = ψ2, l2 = sp(1) ⊕ so(2l − 4). A =

C[ f ], deg( f ) = 4.

5. g0 = so(4, 4). g is of type D4, ν = ψ2, l2 = sp(1)⊕sp(1)⊕sp(1). A = C[ f ], deg( f ) = 4.

6. g0 = g2;A1,A1 , the split real form of the exceptional Lie algebra of type G2. g = g2, ν =

ψ2, l2 = sp(1). A = C[ f ], deg( f ) = 4.

7. g0 = f4;A1,C3 , the split real form of the exceptional Lie algebra of type F4. g = f4, ν =

ψ1, l2 = sp(3). A = C[ f ], deg( f ) = 4.

8. g0 = e6;A1,A5,2. g = e6, the exceptional Lie algebra. ν = ψ2, l2 = su(6). A =

C[ f ], deg( f ) = 4.

9. g0 = e7;A1,D6,1. g = e7, ν = ψ1, l2 = so(12). A = C[ f ], deg( f ) = 4.

10. g0 = e8;A1,E7 . g = e8, ν = ψ8, l
C
2 = e7. A = C[ f ], deg( f ) = 4.

(b) Non-quaternionic type:

1. g0 = so(2p, 2l − 2p + 1), 2 < p < l, l > 3. g is of type Bl, ν = ψp, k1 = so(2p), l1 =

u(p), l2 = s0(2l − 2p + 1). The variety Y = S O(2p)/U(p), X = S O∗(2p)/U(p).
w0

k(ε) = −ε if and only if p is even. A = C[ f ] (with deg( f ) = 2p) if and only if
3p ≤ 2l + 1.

2. g0 = so(2l, 1), l > 2. g is of type Bl, ν = ψl, k0 = k1 = so(2l), l1 = u(l). The vari-
ety Y = S O(2l)/U(l), X = S O∗(2l)/U(l). w0

k(ε) = −ε if and only if l is even. A = C.

3. g0 = sp(p, l − p), l > 2, 1 < p < l. g is of type Cl, ν = ψp, k1 = sp(p), l1 = u(p), l2 =

sp(l − p), and Y = S p(p)/U(p), X = S p(p,R)/U(p). w0
k(ε) = −ε. A = C[ f ], (with

deg( f ) = p) if and only if 3p ≤ 2l and p even.

41



4. g0 = so(2l − 4, 4), l > 4. g is of type Dl, ν = ψl−2, k1 = so(2l − 4), l1 = u(l − 2), l2 =

su(2)⊕su(2). The variety Y = S O(2l−4)/U(l−2), X = S O∗(2l−4)/U(l−2). w0
k(ε) =

−ε if and only if l is even. A = C if l > 6. When l = 5, 6, A = C[ f ] with
deg( f ) = 6, 8 respectively.

5. g0 = so(2p, 2l − 2p), 2 < p < l − 2, l > 5. g is of type Dl, ν = ψp, k1 = so(2p), l1 =

U(p), l2 = so(2l − 2p). Y = S O(2p)/U(p), X = S O∗(2p)/U(p). w0
k(ε) = −ε if and

only if p is even. A = C[ f ] (with deg( f ) = 2p) if and only if 3p ≤ 2l.

6. g0 = f4;B4 , the real form of f4 having k0 � so(9) as a maximal compactly embedded
subalgebra. ν = ψ4 and k0 = k1, l1 = iRν∗ ⊕ so(7). Y = S O(9)/(S O(7)× S O(2)), X =

S O0(2, 7)/(S O(2) × S O(7)). w0
k(ε) = −ε. A = C[ f ], deg( f ) = 2.

7. g0 = e6;A1,A5,1, a real form of e6 with ν = ψ3. k1 = su(6), l1 = su(5) ⊕ iRν∗, l2 = su(2).
Y = P5, X = S U(1, 5)/S (U(1) × U(5)). w0

k(ε) , −ε. A = C.

8. g0 = e7;A1,D6,2, a real form of e7 with ν = ψ6. k1 = so(12), l1 = so(10)⊕iRν∗, l2 = sp(1).
Y = S O(12)/S O(2) × S O(10), X = S O0(2, 10)/(S O(2) × S O(10)). w0

k(ε) = −ε.
A = C.

9. g0 = e7;A7 , a real form of e7 with ν = ψ2. k0 = k1 = su(8), l1 = su(7) ⊕ iRν∗. The
variety Y = P7, X = S U(1, 7)/S (U(1) ×U(7)). w0

k(ε) , −ε. A = C[ f ], deg( f ) = 7.

10. g0 = e8;D8 , a real form of e8 with ν = ψ1. k0 = k1 = so(16), l1 = iRν∗ ⊕ so(14).
Y = S O(16)/S O(2) × S O(14), X = S O0(2, 14)/(S O(2) × S O(14)). w0

k(ε) = −ε.
A = C[ f ], deg( f ) = 8.

4.3 Relative invariants of (u1, L)

The action of L = LC
0 on u1 is known to have a Zariski dense orbit. See [14, Th 10.19, Ch

X]. It follows that the coordinate ring C[u1] = S ∗(u−1) has no non-constant invariant func-
tions, that is, C[u1]L = C. However, it is possible that u1 has non-zero relative invariants,
that is, an h ∈ C[u1] such that x.h = χ(x)h, x ∈ L, for some rational character χ : L −→ C∗.
It can be seen that the subalgebraA(u1, L) ⊂ C[u1] of all relative invariants is either C or
is a polynomial algebra C[ f ] for a suitable (non-zero) homogeneous polynomial function
f ∈ C[u1]. It is clear that a homogeneous function h belongs to A(u1, L) if and only if
Ch is an L-submodule of S m(u−1) where m = deg(h). Ørsted and Wolf [18] determined
when A(u1, L) is a polynomial algebra C[ f ] and described in such cases the generator f
in detail. See also [21].
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Proposition 4.3.1 Let ∆+ be a Borel-de Siebenthal positive system of (g, t) listed above.
If g0 = so(4, 1), sp(1, l − 1)(with l > 1), e6;A1,A5,1, e7;A1,D6,2, g0 = so(2p, r) with p > r ≥ 1,
g0 = sp(p, q) where p > 2q > 0 or p is odd, thenA(u1, L) = C. In all the remaining cases
A(u1, L) = C[ f ], a polynomial algebra where deg( f ) > 0. �

In the case when g0 = so(2l, 1), or sp(1, l − 1), the L0-representation S m(u−1) is irre-
ducible for all m ≥ 0.

Proof: Only the irreducibility of the L0-module S m(u−1) when g0 = so(2l, 1), sp(1, l − 1)
needs to be established as the remaining assertions have already been established in [18,
§4].

When g0 = so(2l, 1), L′0 � S U(l) and u−1, as an L′0-representation, is isomorphic to the
standard representation. Hence S m(u−1) is irreducible as an L′0-module—consequently as
an L0-module—for all m.

When g0 = sp(1, l−1), L′0 = S p(l−1). Again u−1, as an L′0-representation, is isomorphic
to the standard representation of S p(l−1) (of dimension 2l−2). Using the Weyl dimension
formula, it follows that for any m ≥ 1, S m(u−1) is irreducible as L′0-module and hence as
an L0-module. �

Remark 4.3.2 The centre CHν∗ ⊂ l acts via the character −ν∗/||ν∗||2 = −||ε||2ε∗/(4||ε∗||2)
on the irreducible l-representation u−1 and hence by −k||ε||2ε∗/(4||ε∗||2) on S k(u−1) for all
k. Suppose that A(u1, L) = C[ f ] where f ∈ S k(u−1) with deg( f ) = k > 0. Let Eqε∗ = C f
be the one-dimensional subrepresentation of S k(u−1). Then q = −k||ε ||2/(4||ε∗||2).

When g0 = sp(p, l − p), 2 ≤ p ≤ 2(l − p) with p even, it turns out that k = deg( f ) = p
from [18, §4]. In this case ||ε||2 = 4, ε∗ = ν∗ and ||ε∗||2 = p. Hence q = −1.

When g0 = f4,B4 , k = deg( f ) = 2 from [18, §4]. In view of our normalization ||ν||2 = 2,
using [4, Planche VIII], a straightforward calculation leads to ||ε∗||2 = ||ν∗||2 = 2, ||ε ||2 = 4
and so q = −1.

It follows from §4.1 that when Y does not admit a spin structure andA(u1, L) = C[ f ],
the value of q is odd.

In fact it turns out that in all the remaining cases for whichA(u1, L) = C[ f ], the number
q is even. In view of §4.1 we interpret this as follows: Denote byKY the canonical bundle
of Y and let E denote the line bundle over Y determined by the L0-representation E := C f .
Then the line bundle KY ⊗ E always admits a square root, that is, KY ⊗ E = L ⊗ L for a
(necessarily unique) line bundle L over Y .
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4.4 K0-types of a Borel-de Siebenthal discrete series rep-
resentation of G0

Let γ + ρg be the Harish-Chandra parameter of a Borel-de Siebenthal discrete series rep-
resentation πγ+ρg of G0. Ørsted and Wolf described the K0-finite part of the Borel-de
Siebenthal discrete series representation πγ+ρg in terms of the Dolbeault cohomology as
⊕m≥0H s(K0/L0;Eγ ⊗Sm(u−1)) where s = dimC K0/L0, Eγ and Sm(u−1) denote the holomor-
phic vector bundles associated to the irreducible L0-module Eγ and the m-th symmetric
power S m(u−1) of the irreducible L0-module u−1 respectively. See Theorem 2.4.1 in §2.4.3.

The highest weight of any irreducible L0-submodule of Eγ ⊗ S m(u−1) is of the form
γ + φ where φ is a weight of S m(u−1). Thus φ = α1 + · · · + αm for suitable αi in ∆−1 (not
necessarily distinct). Now if α ∈ ∆−1 and β ∈ ∆2, then β−α is not a root. Hence 〈α, β〉 ≤ 0
for all α ∈ ∆−1, β ∈ ∆2. It follows that 〈γ+ρk, β〉 ≤ 〈γ+ρg, β〉 and 〈φ, β〉 ≤ 0 for all β ∈ ∆2.
Since 〈γ + ρg, β〉 < 0 for all β ∈ ∆2, therefore 〈γ + ρk, β〉 < 0 and 〈γ + φ+ ρk, β〉 < 0 for all
β ∈ ∆2. Hence, by the Borel-Weil-Bott theorem ([3], also see [6, Th. 1.6.8, Ch. 1]), the
highest weight of H s(Y;Eγ+φ) equals wY(γ+φ+ρk)−ρk, since wY(∆0∪∆−2) = ∆0∪∆2. See
Lemma 2.4.2 in §2.4.3. We shall make use of this in this thesis without explicit reference
to it.
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Chapter 5

L0-ADMISSIBILITY OF THE
BOREL-DE SIEBENTHAL
DISCRETE SERIES

We begin this chapter by establishing, in §5.1, Proposition 5.1.1 which implies that there
is no loss of generality in confining our attention throughout to the K0-finite part of the
Borel-de Siebenthal series rather than the discrete series itself when the K0-finite part
is L0-admissible. Up to the end of proof of Proposition 5.1.1 we shall use the symbols
G0, K0, L0 etc., in a more general context described in §5.1. In §5.2, we discuss the
L0-admissibility of a Borel-de Siebenthal discrete series representation of G0 and prove
Proposition 1.0.3.

5.1 A general result

Let K0 be a maximal compact subgroup of a connected semisimple Lie group G0 with
finite centre and let π be a unitary K0-admissible representation of G0 on a separable
complex Hilbert space H . Denote by HK0 the K0-finite vectors of H and by πK0 the
restriction of π toHK0 . ThusHK0 is dense inH .

Proposition 5.1.1 Suppose that πK0 is L0-admissible where L0 is a closed subgroup of K0.
Then any finite dimensional L0-subrepresentation of π is contained inHK0 . In particular,
π is L0-admissible.

Proof: To see this, suppose that v ∈ H is contained in an irreducible (finite dimensional)
L0-submodule of H . Then

∑
1≤i≤m ciπ(xi)v0 = v for some L0-highest weight vector v0 of

weight, say, λ, for suitable xi ∈ L0, ci ∈ C. Let {v j} be an orthonormal basis of H
consisting of L0-weight vectors, obtained by taking union of certain orthonormal bases
of L0-isotypic components of HK0 . Write v0 =

∑
j a jv j. It is readily seen that a j is zero
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unless v j is an L0-highest weight vector of weight λ. This means that v0 belongs to the L0-
isotypic component of πK0 having highest weight λ. Since πK0 is L0-admissible, it follows
that v0 ∈ HK0 . Hence v ∈ HK0 . �

5.2 Restriction of a Borel-de Siebenthal discrete series
representation to L0

For the rest of this chapter we keep the notations of §2.4.3. We denote by L′0 and L′1,
the connected Lie subgroups of L0 and L1 corresponding to the semisimple ideals [l0, l0],
[l1, l1] of l0 and l1 respectively. Any irreducible finite dimensional complex representation
E of L0 = L1 × L2 is isomorphic to a tensor product E1 ⊗ E2 where E j is an irreducible
representation of L j, j = 1, 2. In particular, if E1 is one dimensional, then it is trivial
as an L′1 representation and L1 acts on E1 via a character χ : L1/L′1 −→ S1. If E2 one
dimensional, then it is trivial as an L2-representation.

Applying this observation to S k(u−1) we see that one-dimensional L0-subrepresentations
of S k(u−1) are all of the form Ch where h ∈ S k(u−1) a weight vector which is invariant un-
der the action of L′1×L2. That is, h is a relative invariant of (u1, L). See §4.3. If h ∈ S k(u−1)
is a relative invariant, then so is h j for any j ≥ 1. If χ =

∑
α∈∆−1

rαα, rα ≥ 0 is the weight
of a relative invariant h, then, as L′0 acts trivially on Ch, we see that χ is a multiple of ν∗.

When k1 � su(2) we have L1 � S1. Let π be a representation of G0 on a separable
Hilbert space H . For example, π is a Borel-de Siebenthal representation. We have the
following:

Lemma 5.2.1 Suppose that π is K1-admissible where k1 = su(2). Then π is L0-admissible
if and only if π is L2-admissible.

Proof: We need only prove that L0 admissibility of π implies the L2 admissibility. Note
that L′0 = L2. Assume that π is not L2 admissible. Say E is a L2 type which occurs in πwith
infinite multiplicity. In view of Proposition 5.1.1 and since L′0 = L2, the L2-type E actually
occurs in πK0 with infinite multiplicity. Then, denoting the irreducible K1-representation
of dimension d + 1 by Ud, we deduce from K1-admissibility of π that the irreducible K0-
representations Ud j ⊗ E occurs in π where (d j) is a strictly increasing sequence of natural
numbers. Without loss of generality we assume that all the d j are of same parity. Notice
that Uc as an L1-module, is a submodule of Ud, if c ≤ d and c ≡ d mod 2. It follows that
the L0-type Ud1 ⊗E occurs in every summand of ⊕ j≥1Ud j ⊗E. Thus π is not L0-admissible.
�

Proof of Proposition 1.0.3: Let h ∈ S k(u−1) be a relative invariant for (u1, L) with
weight χ = rν∗. Denote by L the holomorphic line bundle K0 ×L0 Ch −→ K0/L0 = Y .
Then L = Eχ and so Eγ ⊗ L

⊗ j = Eγ+ jχ is a subbundle of the bundle Eγ ⊗ S jk(u−1) for
all j ≥ 1. Hence the K0-module H s(Y;Eγ+ jχ) occurs in the Borel-de Siebenthal discrete
series πγ+ρg . The lowest weight of the K0-module H s(Y;Eγ+ jχ) is w0

l (γ+ jχ+ρk)−w0
kρk =
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w0
l (γ0) + (tν∗ + jrν∗) +

∑
α∈∆2

α where χ = rν∗. As observed above,
∑
α∈∆2

α = 2sν∗/||ν∗||2.
Since ν∗ is in the centre of l, the irreducible L′0 representation with lowest weight w0

l (γ0),
namely Eγ0 , occurs in H s(Y;Eγ+ jχ) for all j ≥ 1. It follows that πγ+ρg is not L′0-admissible.

It remains to prove the converse assuming k1 � su(2). We shall suppose that πγ+ρg

is not L′0-admissible and that S m(u−1) has no one-dimensional L′0-submodules and arrive
at a contradiction. By Lemma 5.2.1, πγ+ρg is not L0-admissible. By Proposition 5.1.1,
the K0-finite part of πγ+ρg is not L0-admissible. In view of Proposition 4.3.1 we have
g0 = so(4, 1) or sp(1, l− 1) and the L0-module S m(u−1) is irreducible for all m. The highest
weight of S m(u−1) as an L2-module is m(−ν − aν∗) where aν∗ is the character by which
L1 = L0/L2 � S1 acts on u−1.

Now H1(P1;Eγ ⊗ Sm(u−1)) = H1(P1;E(t+ma)ν∗ ⊗ E−mν−maν∗ ⊗ Eγ0) = H1(P1;E(t+ma)ν∗) ⊗
E−mν−maν∗ ⊗Eγ0 as a K1×L2-module. Since the K0-finite part of πγ+ρg is not L0-admissible,
there exist a b and an L2-dominant integral weight λ such that the L0-type E = Ebν∗ ⊗ Eλ

occurs in H1(P1;E(t+ma)ν∗) ⊗ E−mν−maν∗ ⊗ Eγ0 for infinitely many distinct values of m. This
implies that Eλ occurs in E−mν−maν∗ ⊗ Eγ0 for infinitely many values of m. The highest
weights of L2-types occurring in E−mν−maν∗ ⊗ Eγ0 are all of the form −mν − maν∗ − κm

where κm is a weight of Eγ0 . Thus λ = −mν−maν∗−κm for infinitely many m. Since Eγ0 is
finite dimensional, it follows that for some weight κ of Eγ0 , we have λ + κ = −mν − maν∗

for infinitely many values of m, which is absurd. �
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Chapter 6

COMMON L0-TYPES IN THE
QUATERNIONIC CASE

As usual we keep the notations of §2.4.3. In this chapter we focus on the quaternionic
case, namely, when k1 = su(2). This case is characterized by the property that −µ is
connected to ν in the extended Dynkin diagram of g. In this case ∆2 = {µ}, L1 � S1,Y =

P1, L2 = [L0, L0] = L′0, and, l′ = [l, l] = lC2 . Also, since both µ and ν∗ are orthogonal
to lC2 , µ is a non-zero multiple of ν∗. Write µ = dν∗. Since µ = 2ν + β where β is a
linear combinations of roots of lC2 , we obtain ||µ||2 = d〈ν∗, µ〉 = d〈ν∗, 2ν〉 = d||ν||2 = 2d as
||ν||2 = 2. Since sν(µ) = µ− dν is a root and since µ− 3ν is not a root, we must have d = 1
or 2. For example, when g0 = so(4, 2l − 3) or the split real form of the exceptional Lie
algebra g2, we have d = 1, whereas when g0 = sp(1, l − 1), we have d = 2.

Clearly kC1 = gµ ⊕ Chµ ⊕ g−µ � sl(2,C), where hµ ∈ (it0)∗ is such that 〈h, hµ〉 = µ(h)
for h ∈ (it0)∗. The fundamental weight of kC1 equals µ∗ := µ/2 = dν∗/2. We shall denote
by Uk the (k + 1)-dimensional kC1 -module with highest weight kµ∗ = dkν∗/2. Also, Cχ

denotes the one dimenional lC1 -module corresponding to a character χ ∈ Cν∗.

In §6.1 the ‘sufficiently negativity’ condition (2.5) for the quaternionic case is dis-
cussed. The Theorem 1.0.1 is proved in §6.2.

6.1 ‘Sufficiently negativity’ condition in the quaternionic
case

Let γ = γ0 + tν∗ where γ0 is a dominant integral weight of l′ = lC2 and t satisfies the
‘sufficiently negative’ condition (2.5), that is,

t < −1/2〈γ0 + ρg, µ〉 and t < −〈γ0 + ρg,w0
l (ν)〉.

We have the following lemma.

Lemma 6.1.1 Suppose that k1 = su(2), γ = γ0 + tν∗ where γ0 is a l′-dominant weight.
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Then t satisfies the ‘sufficient negativity’ condition (2.5) if and only if the following in-
equalities hold:

t < −
d
4

(|∆1| + 2), and t < −〈γ0,w0
l (ν)〉 − (1/2)(

∑
ai||ψi||

2)

where w0
l (ν) =

∑
aiψi is the highest root in ∆1.

Proof: Since γ0 is a dominant integral weight of l′ = lC2 and since µ = dν∗ is orthogonal
to lC2 , we have 〈γ0, µ〉 = 0. Since ρg = (1/2)

∑
α∈∆+ α, we get 〈ρg, µ〉 = (d/2)(

∑
α∈∆+

0
〈α, ν∗〉+∑

α∈∆1
〈α, ν∗〉 +

∑
α∈∆2
〈α, ν∗〉) = (d/2)(|∆1| + 2|∆2|), since 〈α, ν∗〉 = i〈ν, ν∗〉 = i whenever

α ∈ ∆i, i = 0, 1, 2. Since |∆2| = 1, we have t < −(1/2)〈γ0 + ρg, µ〉 if and only if t <
−(d/4)(|∆1| + 2).

Now w0
l (ν) =

∑
a jψ j is the highest weight of u1, which is indeed the highest root in ∆1.

Therefore 〈ρg,w0
l (ν)〉 = 〈

∑
ψ∗i ,

∑
a jψ j〉 = (1/2)(

∑
ai||ψi||

2). This completes the proof. �

6.2 Proof of Theorem 1.0.1

We now prove Theorem 1.0.1.

Proof of Theorem 1.0.1 : Write u−1 = E1 ⊗ E2 where Ei is an irreducible Li-module.
By our hypothesis L1 � S1 = {exp(iλHµ)|λ ∈ R} and so E1 is 1-dimensional, given by
the character −ν∗/||ν∗||2 = −µ∗. On the other hand, the highest weight of E2 is −(ν − µ∗).
Hence E2 � Eµ∗−ν. Since E1 is one dimensional, we have S m(u−1) = C−mµ∗ ⊗ S m(Eµ∗−ν).
On the other hand u−2 is 1-dimensional and is isomorphic as an L0-module to C−µ = C−2µ∗ .
Therefore S m(u−2) = C−2mµ∗ .

The vector bundle E over Y = K1/L1 associated to any L2 representation space E is
clearly isomorphic to the product bundle Y × E −→ Y . Therefore the bundle Eγ ⊗ Sm(u−1)
over Y = P1 is isomorphic to E(2t/d−m)µ∗ ⊗ Eγ0 ⊗ S m(Eµ∗−ν). It follows that H1(Y;Eγ ⊗

Sm(u−1)) � H1(Y;E(2t/d−m)µ∗)⊗Eγ0⊗S m(Eµ∗−ν) � U−2t/d+m−2⊗Eγ0⊗S m(Eµ∗−ν). By Theorem
2.4.1 we conclude that

(πγ+ρg)K0 = ⊕m≥0U(m−2t/d−2) ⊗ Eγ0 ⊗ S m(Eµ∗−ν). (6.1)

We now turn to the description of the holomorphic discrete series πγ+ρk of K∗0 = K∗1K2.
Now recall (see §2.4.2) the following description of the holomorphic discrete series of
K∗1 determined by tν∗ = (2t/d)µ∗, namely, (π(2t/d)µ∗+ρ

kC1
)L1 = ⊕r≥0C(2t/d)µ∗ ⊗ S r(u−2) =

⊕r≥0C(2t/d−2r)µ∗ . It follows that the holomorphic discrete series of K∗0 determined by γ is

(πγ+ρk)L0 = ⊕r≥0C(2t/d−2r)µ∗ ⊗ Eγ0 . (6.2)

Comparing (6.1) and (6.2) we observe that there exists an L0-type common to (πγ+ρg)K0

and πγ+ρk if and only if the following two conditions hold:
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(a) Eγ0 occurs in Eγ0 ⊗ S m(Eµ∗−ν).
(b) Assuming that (a) holds for some m ≥ 0, (2t/d − 2r)µ∗ occurs as a weight in Um−2t/d−2

for some r, that is, 2t/d − 2r = (m − 2t/d − 2) − 2i for some 0 ≤ i ≤ (m − 2t/d − 2).

First suppose that g0 = so(4, 1) or sp(1, l − 1), l > 1. In view of Proposition 1.0.3
and Proposition 5.1.1, the Borel-de Siebenthal discrete series πγ+ρg is L0-admissible and
any L0-type in πγ+ρg is contained in (πγ+ρg)K0 . Also S m(Eµ∗−ν) is irreducible with highest
weight m(µ∗−ν) (see Proposition 4.3.1). Recall that the highest weights of irreducible sub
representations which occur in a tensor product Eλ⊗Eκ of two irreducible representations
of lC2 are all of the form θ + κ where θ is a weight of Eλ. So if (a) holds, then γ0 =

m(µ∗ − ν) + θ, for some weight θ of Eγ0 . This implies γ0 − θ = m(µ∗ − ν), which holds for
atmost finitely many m since the number of weights of Eγ0 is finite. So by (a), there are
atmost finitely many L0-types common to πγ+ρg and πγ+ρk .

Moreover, if γ0 = 0, then the trivial L0-representation Eγ0 occurs in Eγ0 ⊗ S m(Eµ∗−ν) =

Em(µ∗−ν) only when m = 0. Since 2t/d − 2r ≤ 2t/d < 2t/d + 2 for all r ≥ 0, (2t/d − 2r)µ∗

cannot be a weight of U−2t/d−2 for all r ≥ 0. So in view of (a) and (b), there are no common
L0-types between πγ+ρg and πγ+ρk .

Now suppose that g0 , so(4, 1), sp(1, l − 1), l > 1. In view of Proposition 4.3.1, we see
thatA(u1, L) = C[ f ], where f is a relative invariant (hence is a homogeneous polynomial)
of positive degree, say of degree k. Then the trivial module is a sub module of the L0-
module S jk(Eµ∗−ν) for all j ≥ 0. So Eγ0 occurs in Eγ0 ⊗ S jk(Eµ∗−ν) for all j ≥ 0. That is (a)
holds.
Let r be a non negative integer. Then (2t/d−2r)µ∗ is a weight of U jk−2t/d−2 for some j ≥ 0
if and only if 2t/d − 2r = ( jk − 2t/d − 2) − 2i for some 0 ≤ i ≤ ( jk − 2t/d − 2) if and only
if jk is even and jk ≥ 2(r + 1).

So in view of (a) and (b), each L0-type in πγ+ρk occurs in πγ+ρg with infinite multiplicity.
This completes the proof. �
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Chapter 7

PROOF OF THEOREM 1.0.2

Recall from §2.4.3 that G0 is a simply connected non-compact real simple Lie group and
K0 is a maximal compact subgroup of G0 such that rank (G0) = rank (K0) and G0/K0

is not Hermitian symmetric. Also recall that Y = K0/L0 is an irreducible Hermitian
symmetric space of the compact type with the non-compact dual X = K∗0/L0. The ∆+

0 is a
positive system of (l, t) with Ψl = Ψ \ {ν} the set of simple roots and ∆+

0 ∪ ∆2 is a positive
system of (k, t) with Ψk = (Ψ \ {ν}) ∪ {ε} the set of simple roots. The simple root ε is
the unique non-compact root in Ψk. If w0

k(ε) = −ε, then w0
k(∆

+
0 ) = ∆−0 ,w

0
k(∆2) = ∆−2 and

wY(∆+
0 ) = ∆+

0 ,wY(∆2) = ∆−2, where wY = w0
kw

0
l . Hence w2

Y(∆+
0 ∪ ∆2) = ∆+

0 ∪ ∆2. This
implies w2

Y = Id. Also w0
k(ε) = −ε implies wY(ε∗) = −ε∗. Let Γ = {γ1, . . . , γr} ⊂ ∆−2 be

the maximal set of strongly orthogonal roots obtained as in §2.5. If γ + ρg is the Harish-
Chandra parameter of a Borel-de Siebenthal discrete series representation πγ+ρg of G0,
then the K0 finite part (πγ+ρg)K0 of πγ+ρg is isomorphic to ⊕m≥0H s(Y;Eγ ⊗ Sm(u−1)). See
Theorem 2.4.1. The L0 finite part (πγ+ρk)L0 of the associated holomorphic discrete series
representation πγ+ρk of K∗0 is isomorphic to Eγ ⊗ S ∗(u−2). See §3.2 in Chapter 3.

In §7.1, we establish three lemmas which will be needed in the proof of Theorem 1.0.2.
We shall use Littelmann’s path model described in §2.6 to prove these lemmas. Up to the
end of proof of Lemma 7.1.3 we shall use the symbols π, πλ, etc., paths in the sense of
Littelmann and are not to be confused with discrete series. The main result of this thesis
Theorem 1.0.2 is proved in §7.2.

7.1 Branching rule using Littelmann’s path model

Recall from §2.6.1 that πλ denotes the path t 7→ tλ, 0 ≤ t ≤ 1, for an integral weight λ of
k. If in addition λ is dominant, then w(πλ) = πwλ is an LS-path of shape λ for any element
w in the Weyl group of (k, t). We also have the action of Littelmann’s root operator fα
(α ∈ Ψk) on the concatenation of two paths. See (2.8) in the Proposition 2.6.2.

We denote by Vλ (respectively Eκ), the finite dimensional irreducible representation
of k (respectively l) with highest weight λ (respectively κ). If V is a k-representation, we
shall denote by Resl(V) its restriction to l. Since l is a Levi subalgebra of k, we have the
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branching rule (2.10) of Resl(V).

Lemma 7.1.1 (i) The restriction Resl(Vmε∗) to l of the irreducible k-representation Vmε∗

contains V(m−p)ε∗ ⊗ Cpε∗ for 0 ≤ p ≤ m.
(ii) Suppose that w0

k(∆0) = ∆0. Then Resl(Vmε∗) contains Resl(V(m−p)ε∗) ⊗ C−pε∗ .

Proof: (i) Note that πmε∗ equals the concatenation π(m−p)ε∗ ∗ πpε∗ .

Let τ be an LS-path of shape (m− p)ε∗ which is l-dominant. Then τ = fαq · · · fα1π(m−p)ε∗

for some sequence α1, . . . , αq of simple roots in Ψk. Then fαi . . . fα1(π(m−p)ε∗) , 0 for
1 ≤ i ≤ q. It follows that fαq . . . fα1(πmε∗) = fαq . . . fα1(π(m−p)ε∗ ∗πpε∗) = fαq . . . fα1(π(m−p)ε∗)∗
πpε∗ = τ∗πpε∗ since eα(πpε∗) = 0. Thus we see that if τ is any l-dominant LS-path of shape
(m − p)ε∗, then τ ∗ πpε∗ is an LS-path of shape mε∗. It is clear that τ ∗ πpε∗ is l-dominant.
Since Eτ∗πpε∗ (1) = Eτ(1)+pε∗ � Eτ(1) ⊗ Cpε∗ and since for any path σ, σ ∗ πpε∗ = τ ∗ πpε∗

implies σ = τ, it follows that Resl(Vmε∗) contains Resl(V(m−p)ε∗) ⊗ Cpε∗ in view of (2.10).

(ii) Suppose that w0
k(∆0) = ∆0. This is equivalent to the condition that w0

k(ε
∗) = −ε∗,

which in turn is equivalent to the requirement that Vqε∗ is self-dual as a k-representation
for all q ≥ 1. Since Resl(V(m−p)ε∗) ⊗ Cpε∗ is contained in Vmε∗ , so is its dual. That is,
Resl(V(m−p)ε∗) ⊗ C−pε∗ is contained in Resl(Vmε∗). �

Lemma 7.1.2 Let 0 ≤ pr ≤ · · · ≤ p1 ≤ p0 ≤ m be a sequence of integers. Then ReslVmε∗

contains Eκ where κ = mε∗ + p1γ1 + · · · prγr. Moreover, if w0
k(∆0) = ∆0, then Eλ occurs in

ReslVmε∗ where λ = (m − 2p0)ε∗ − (
∑

1≤ j≤r p jγr+1− j).

Proof: Recall that γ1 = −ε. Since the γi are pairwise orthogonal we see that sγi sγ j =

sγ j sγi . Also since γ j ∈ ∆−2, 〈ε∗, γi〉 = 〈ε∗,−ε〉 = −||ε||2/2. As noted in Remark 2.5.4(iii),
all the γi have the same length: ||γi|| = ||ε ||. Using these facts a straightforward com-
putation yields that sγi(ε

∗) = ε∗ + γi, sγi(γ j) = γ j for 1 ≤ i, j ≤ r, i , j. Defining
pr+1 = 0, it follows that sγ1 . . . . .sγ j(π(p j−p j+1)ε∗) =: π j is the straight-line path of weight
(p j − p j+1)(ε∗ + γ1 + · · · + γ j) and hence we have fI j(π(p j−p j+1)ε∗) = π j for a suitable
monomial in root operators fI j of simple roots of k for all 2 ≤ j ≤ r. So, writing
πmε∗ = πprε∗ ∗ π(pr−1−pr)ε∗ ∗ · · · ∗ π(p2−p3)ε∗ ∗ π(m−p2)ε∗ we have fIr (πmε∗) = πr ∗ π(pr−1−pr)ε∗ ∗

· · · ∗ π(p2−p3)ε∗ ∗ π(m−p2)ε∗ , in view of (2.8). Clearly fε(π j) = 0 for all 2 ≤ j ≤ r. Also
in view of the Proposition 2.5.2(ii), if the coefficient of a compact simple root α of k

in the expression of
∑

1≤i≤ j γi is non zero, then fα(π j) = 0. Now for a simple root α
of k, if fα is involved in the expression of fI j , then the coefficient of α in the expres-
sion of

∑
1≤i≤( j+1) γi is non zero. Hence fα(π j+1) = 0 for 2 ≤ j ≤ r − 1. Therefore

fI2 . . . fIr (πmε∗) = πr ∗ πr−1 ∗ · · · ∗ π2 ∗ π(m−p2)ε∗ , in view of (2.8). Since fε(π j) = 0 for all 2 ≤
j ≤ r and f p1−p2

ε (π(m−p2)ε∗) = π(p1−p2)(ε∗−ε) ∗ π(m−p1)ε∗ , we obtain τ := f p1−p2
ε fI2 . . . fIr (πmε∗) =

πr ∗ · · · ∗π2 ∗π(p1−p2)(ε∗−ε) ∗π(m−p1)ε∗ , again by (2.8). The break-points and the terminal point
of τ are pr(ε∗ + γ1 + · · · + γr), pr−1(ε∗ + γ1 + · · · + γr−1) + prγr, pr−2(ε∗ + γ1 + · · · + γr−2) +

pr−1γr−1 + prγr, . . . , p2(ε∗ + γ1 + γ2) + p3γ3 + · · ·+ prγr, p1(ε∗ + γ1) + p2γ2 + · · ·+ prγr and
mε∗ + p1γ1 + p2γ2 + · · · + prγr. All these are l-dominant weights (since p1 ≥ p2 ≥ · · · ≥
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pr ≥ 0) and so we conclude that τ is an l-dominant LS-path. Hence by the branching rule,
Emε∗+p1γ1+p2γ2+···+prγr occurs in Vmε∗ .

Now suppose w0
k(∆0) = ∆0. By Lemma 7.1.1, we have ReslVmε∗ contains ReslVp0ε∗ ⊗

E(m−p0)ε∗ . By what has been proved already ReslVp0ε∗ contains Ep0ε∗+p1γ1+p2γ2+···+prγr =:
E. Since Vp0ε∗ is self-dual, Hom(E,C) is contained in ReslVp0ε∗ . The highest weight
of Hom(E,C) is −p0ε

∗ −
∑

1≤ j≤r p jw0
l (γ j) = −p0ε

∗ − p1γr − p2γr−1 + · · · − prγ1 using
Remark 2.5.4(i). Tensoring with E(m−p0)ε∗ we conclude that Eλ occurs in ReslVmε∗ with
λ = (m − 2p0)ε∗ − prγ1 − pr−1γ2 − · · · − p2γr−1 − p1γr. �

Write γ = γ0 + tε∗ with 〈γ0, µ〉 = 0. Then γ0 is k-integral weight and t is an integer
(γ being a k-integral weight). Also γ is l-dominant implies that γ0 is l-dominant. Since
〈γ+ ρk, µ〉 < 0, we have t < −2〈ρk, µ〉/||ε||2. Assuming w0

k(ε) = −ε, we get 〈wY(γ0), α〉 ≥ 0
when α is in ∆+

0 and 〈wY(γ0), ε〉 = 0. So wY(γ0) is k-dominant integral weight.

Lemma 7.1.3 With the above notation, suppose that w0
k(ε) = −ε and that Eτ is a subrep-

resentation of Resl(Vmε∗). Then Eγ0+wY (τ) is a subrepresentation of Resl(VwY (γ0)+mε∗).

Proof: Let π denote the path πmε∗∗πwY (γ0). Then Im(π) is contained in the dominant Weyl
chamber (of k) and π(1) = wY(γ0) + mε∗. Since Eτ is contained in Resl(Vmε∗), there exist a
sequence α1, . . . , αk of simple roots of k such that fα1 . . . fαk(πmε∗) =: η is l-dominant path
with η(1) = τ. Since πwY (γ0) is k-dominant path, θ := fα1 . . . fαk(π) = η ∗ πwY (γ0), in view of
(2.8). Clearly θ is l-dominant and θ(1) = τ + wY(γ0). Hence by the branching rule (2.10),
EwY (γ0)+τ occurs in Resl(VwY (γ0)+mε∗).

Let Φ : K0 −→ GL(Vλ0) be the representation, where λ0 := wY(γ0) + mε∗. Then
φ := dΦ : k0 −→ End(Vλ0). For k ∈ K0 and X ∈ k0, we have

Φ(k−1) ◦ φ(X) ◦ Φ(k) = φ(Ad(k−1)X) (7.1)

Let v ∈ Vλ0 is a weight vector of weight λ := wY(γ0) + τ such that it is a highest weight
vector of Eλ. Now wY = (Ad(k)|it0)∗ for some k ∈ NK0(T0). Then Φ(k)v is a weight vector
of weight wY(λ) and it is killed by all root vectors Xα (α ∈ ∆+

0 ), in view of (7.1); since
wY(∆+

0 ) = ∆+
0 . Hence Φ(k)v is a highest weight vector of an irreducible L0- submodule of

Resl(Vλ0). Therefore EwY (λ) = Eγ0+wY (τ) occurs in Resl(Vλ0). �

7.2 Proof of Theorem 1.0.2

We are now ready to prove Theorem 1.0.2.

Proof of Theorem 1.0.2: Write γ = γ0 + tε∗ where 〈γ0, µ〉 = 0.

We have
(πγ+ρk)L0 = Eγ ⊗ S ∗(u−2) = ⊕(Eγ ⊗ Ea1γ1+···+arγr )

where the sum is over all integers a1 ≥ · · · ≥ ar ≥ 0. (In view of Theorem 2.5.1).
So (πγ+ρk)L0 contains Eγ+a1γ1+···+arγr , for all integers a1 ≥ · · · ≥ ar ≥ 0.
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Let k ≥ 1 be the least integer such that S k(u−1) has one-dimensional L0-subrepresentation,
which is necessarily of the form Eqε∗ for some q < 0. Now (πγ+ρg)K0 contains⊕ j≥0H s(Y;Eγ+ jqε∗),
by Theorem 2.4.1. By Borel-Weil-Bott theorem ([3], also see [6, Th. 1.6.8, Ch. 1]),
H s(Y;Eγ+ jqε∗) is an irreducible finite dimensional K0-representation with highest weight
wY(γ + jqε∗ + ρk)− ρk = wY(γ0) + (−t − jq− c)ε∗ since w0

k(ε
∗) = −ε∗, where

∑
β∈∆2

β = cε∗

for some c ∈ N. Define m j := −t − jq − c for all j ≥ 0. For 0 ≤ pr ≤ · · · ≤

p1 ≤ m j, Em jε∗+p1γ1+···+prγr is a subrepresentation of Resk(Vm jε∗), in view of Lemma 7.1.2.
So by Lemma 7.1.3, Eγ0−m jε∗−p1γr−···−prγ1 is a subrepresentation of Resk(VwY (γ0)+m jε∗) since
wY(γ j) = −γr+1− j, for all 1 ≤ j ≤ r by Remark 2.5.4(i). Now H s(Y;Eγ+ jqε∗) is isomorphic
to VwY (γ0)+m jε∗ . So, for 0 ≤ pr ≤ · · · ≤ p1 ≤ m j, Eγ0−m jε∗−p1γr−···−prγ1 is a L0-submodule of
H s(Y;Eγ+ jqε∗).

Fix a1 ≥ · · · ≥ ar ≥ 0, where a1, . . . , ar ∈ Z. In view of §4.1 and Lemma 4.3.2, q is
odd when c is odd. Let N′ = { j ∈ N|( jq + c)is even}. There exists j0 ∈ N such that for all
j ∈ N′ with j ≥ j0, −( jq + c)/2 ≥ a1. Define pr+1−i := −( jq + c)/2 − ai, 1 ≤ i ≤ r. Then
0 ≤ pr ≤ · · · ≤ p1 < m j.

Now
∑

1≤i≤r piγr+1−i =
∑

1≤i≤r pr+1−iγi =
∑

1≤i≤r(−ai − ( jq + c)/2)γi = ( jq + c)ε∗ −∑
1≤i≤r aiγi in view of Proposition 2.5.2(i), since w0

k(ε) = −ε by hypothesis. It follows that
γ0 −m jε

∗ −
∑

1≤i≤r piγr+1−i = γ+
∑

1≤i≤r aiγi. So for all j ∈ N′ with j ≥ j0, Eγ+a1γ1+···+arγr is
an L0-submodule of H s(Y;Eγ+ jqε∗). That is, for all integers a1 ≥ · · · ≥ ar ≥ 0, the L0-type
Eγ+a1γ1+···+arγr occurs in πγ+ρg with infinite multiplicity.

In particular, if γ = tν∗, each L0-type in πγ+ρk occurs in πγ+ρg with infinite multiplicity.
This completes the proof. �

There are three major obstacles in obtaining complete result in the non-quaternionic
case. The first is the decomposition of S m(u−1) into L0-types Eλ. Secondly, one has the
problem of decomposing of the tensor product Eγ⊗Eλ into irreducible L0-representations
Eκ. Finally, one has the restriction problem of decomposing the irreducible K0-representation
H s(K0/L0;Eκ) into L0- subrepresentations. The latter two problems can, in principle, be
solved using the work of Littelmann [16]. The problem of detecting occurrence of an
infinite family of common L0-types in the general case appears to be intractable.

We conclude this this thesis with the following questions:

Questions: Suppose that there exist infinitely many common L0-types between a Borel-de
Siebenthal discrete series representation πγ+ρg of G0 and the holomorphic discrete series
representation πγ+ρk of K∗0 . Then (i) Does there exist a one dimensional L0-subrepresentation
in S m(u−1)? (ii) Is it true that w0

k(∆0) = ∆0?
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