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Abstract

We study the gaps between consecutive zeros on the critical line for the Riemann

zeta function ζ(s) and certain generalisations of ζ(s), namely, the Epstein zeta

function and the Selberg class of functions. We first give a simplified exposition of

a result of Ivić and Jutila on the large gaps between consecutive zeros of ζ(s) on

the critical line. We then present a generalization of this result to the case of the

Epstein zeta function ζQ(s) associated to a certain binary, positive definite, integral

quadratic form Q(x, y). We next establish the analogue of Hardy’s theorem, namely

that there are infinitely many zeros on the critical line, for degree 2 elements of the

Selberg class of L-functions whose Dirichlet coefficients satisfy certain mild growth

conditions. We conclude with a conditional version of Hardy’s theorem for the degree

d > 2 elements of the Selberg class.
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Chapter 1

Introduction

The study of the analytical properties of the Riemann zeta function ζ(s), is central

to number theory. This function was invented by Euler to study the infinitude of

prime numbers. Riemann showed that ζ(s), originally defined as a Dirichlet series

for Re s > 1, admits an analytic continuation for all complex values excluding s = 1

and made the far-reaching observation that the location of the complex zeros of ζ(s)

is intimately connected to the distribution of the primes. One of the most important

open problems in mathematics, the Riemann hypothesis, asserts that all the complex

zeros of ζ(s) lie on the line Re s = 1/2 (the critical line). A proof or disproof of this

statement will have immense implications in many areas of mathematics.

As a first step towards the Riemann hypothesis, Hardy [15] showed that ζ(s) has

infinitely many zeros on the critical line. The main idea of Hardy was extended by

several authors to show the infinitude of zeros of other classical zeta functions on

the critical line (see below for a discussion).

Research on the critical zeros of ζ(s) can be broadly classified into two themes:

Theme A (Local Results): Here one studies the gap between consecutive zeros

of ζ(s) on the critical line.
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Theme B (Global Results): Here one is interested in the proportion (suitably

defined) of complex zeros that lie on the critical line.

Theme A has been studied extensively from the time of Hardy and Littlewood. In

a classical paper [16], Hardy and Littlewood showed that, given T sufficently large,

there is a zero of ζ(1
2

+ it) with t in the interval [T, T + H] if H ≥ T 1/4+ε for any

ε > 0. This was subsequently improved to H ≥ T 1/6+ε by Balasubramanian [1]

and H ≥ T 1/6(log T )5+ε by Mozer [33], [34]. The next major improvement was by

Karatsuba [27] who showed that the result holds with H ≥ T 5/32(log T )2. Ivić ([19],

p. 261) generalized Karatsuba’s method by using the theory of exponent pairs and

improved the result to H ≥ T 0.1559...+ε (note that 5/32 = 0.15625). Huxley and Watt

[17] and Watt [51] obtained the latest improvements in the exponent of T to the

values 23/148 = 0.1554 . . . and 229/1476 = 0.1551 . . ., respectively, by constructing

new exponent pairs and using Ivić’s method mentioned above.

As for the results belonging to Theme B, we mention the well-known theorem of

Selberg [46] which states that the function ζ(1
2

+ it) has ≥ A
2π
T log T zeros in the

interval [0, T ], for some effectively computable constant A > 0. This means that

a positive proportion of the complex zeros of ζ(s) lie on the critical line, because,

by the Riemann - van Mangoldt formula ([50], p.214), the number of zeros in the

critical strip with ordinates in [0, T ] is asymptotic to 1
2π
T log T . Subsequent research

on this problem focussed on determining the best possible value of A and we list

the series of results obtained so far: Levinson [29], [30] A = 0.3405, 0.3474; Lou and

Yao [31] A = 0.3484; Conrey [6], [7] A = 0.3658, 0.4088; Bui, Conrey and Young [4]

A = 0.4105; Feng [11] A = 0.4128.

In this thesis, we shall address questions belonging to Theme A for the Riemann zeta

function and a certain generalisation of ζ(s), namely, the Epstein zeta function. We

shall then discuss the analogue of Hardy’s theorem for the Selberg class of functions.
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A word about the notation used throughout the thesis: the symbols f(x) � g(x),

f(x) = O(g(x)) and g(x) � f(x) will be interchangeably used to mean that there

exists a constant C > 0 such that |f(x)| ≤ C|g(x)| for all x; the symbol f(x) � g(x)

means that both f(x) � g(x) and f(x) � g(x) is true; and f(x) = o(g(x)) means

that for every ε > 0, |f(x)| < ε|g(x)| for x sufficiently large.

This thesis consists of five chapters. In the current chapter, we shall give a brief

introduction and statement of the results contained in this thesis.

In Chapter 2, we shall address the following question

Question C: Given T sufficiently large and V > 0, how many consecutive zeros of

ζ(s) are there on the critical line with ordinates in [0, T ] which are atleast V distance

apart?

Let R1 := R1(T, V ) be the number of gaps which are larger than V between consec-

utive zeros of ζ(1
2

+ it) with ordinates between 0 and T .

Note that R1 � TV −1 trivially. Karatsuba [27] showed that R1 � TV −3/2 for

V = T ε for any ε > 0. Ivić and Jutila [20] made a substantial improvement and

proved the following theorem, which remains the best result known till date.

Theorem 1. Let T, V be positive real numbers. Then the following estimates hold

uniformly in T and V

(1.1) R1 � TV −2 log T,

and

(1.2) R1 � TV −3 log5 T.
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In Chapter 2, we shall present a simplified exposition of this result, with our proof

following along the lines of [20] to a substantial degree. We streamline the proof

by dividing it into three steps - a local estimate, a global estimate and arithmetical

methods. Our presentation of the first two steps will be based on [20], while the

last step will be substantially new and relies on standard estimates of certain sums

involving the divisor function.

In Chapter 3, we shall address the analogue of Question C for the Epstein zeta

function ζQ(s) associated to a certain binary, positive definite, integral quadratic

form Q. The properties of ζQ(s) relevant to our discussion shall be discussed in this

chapter.

Questions related to Theme A with ζ(s) replaced with ζQ(s) have also been studied

extensively. It was proved by Potter and Titchmarsh [40] that, given T sufficently

large, there is a zero of ζQ(1
2

+ it) with t in the interval [T, T + H] if H ≥ T 1/2+ε

for any ε > 0. Sankaranarayanan [45] sharpened this by showing the same for

H � T 1/2 log T . The latest result was due to Jutila and Srinivas [21], who reduced

the exponent of T below 1/2, by proving that the result holds with H ≥ T 5/11+ε.

In Chapter 3, we shall prove the following theorem as an answer to Question C for

the Epstein zeta function.

Let R2 := R2(T, V ) denote the number of gaps of length at least V between consec-

utive zeros of ζQ(1
2

+ it) with ordinates in the interval [0, T ]. Then we have

Theorem 2. Let Q be a binary, positive definite, integral, quadratic form with

discriminant −4 such that
√
4 is irrational. Let ε > 0 be sufficiently small and

T, V be positive real numbers. Then

(1.3) R2 � T 1+εV −2,
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where the constant in � may depend only on ε.

This result was given by Mukhopadhyay, Srinivas and the author in [35]. Our

proof of this result in Chapter 3 will be an exposition of the method in [35]. We

have simplified the proof considerably and modelled it on that of Theorem 1. It will

also be divided into three steps - a local estimate, a global estimate and arithmetical

methods. The main tool to derive the local estimate will be a transformation formula

for Dirichlet polynomials due to Jutila and Srinivas [21]. The global estimate will

be identical to that in Chapter 2. The last step of using arithmetical methods will

be entirely based on [35].

We remark that Theorem 2 should be contrasted with another result of Ivić and

Jutila [20] regarding the corresponding problem for the L-function Lf (s) associated

to a cusp form f for the full modular group with real Fourier coefficients. For such

Lf (s), we let R3 := R2(T, V ) denote the number of gaps of length at least V between

consecutive zeros of Lf (
1
2

+ it) with ordinates in the interval [0, T ]. Then it is proved

in [20] that uniformly in the range log5 T � V , we have

R3 � TV −2 log T, and

R3 � T 2V −6 log5 T.

In Chapter 4, we shall discuss Hardy’s theorem for general L-functions of a certain

type. Hardy’s ideas in [15] to show the infinitude of critical zeros of ζ(s) were

extended by several authors to other classical zeta functions. For instance, Potter

and Titchmarsh [40] proved the analogue of Hardy’s theorem for the Epstein zeta

function ζQ(s) of a positive definite integral quadratic form; Chandrasekharan and

Narasimhan [5] proved it for the ideal class zeta functions of quadratic number fields.

It is natural, therefore, to ask the following question

5



Question D: What is the most general class of functions to which one can extend

Hardy’s theorem?

In this chapter, we shall answer Question D in the context of the Selberg class of

functions, denoted by S.

We recall that the Selberg class S is the class of functions satisfying the following

five axioms:

(i) F (s) can be written as an absolutely convergent Dirichlet series
∑

n≥1 a(n)n−s

for σ > 1;

(ii) (s− 1)mF (s) is an entire function of finite order for some integer m ≥ 0;

(iii) F (s) satisfies a functional equation of the form

(1.4) Φ(s) = ωΦ̄(1− s),

where

Φ(s) = Qs

r∏
j=1

Γ(λjs+ µj)F (s)

with Q > 0, λj > 0,<µj ≥ 0 and |ω| = 1. Here we denote f̄(s) = f(s̄);

(iv) The Dirichlet coefficients a(n) satisfy the Ramanujan conjecture a(n) � nε

for every ε > 0;

(v) logF (s) =
∑

n≥1 b(n)n−s where b(n) = 0 unless n = pm for some prime p and

integer m ≥ 1 and b(n)� nθ for some θ < 1/2.

For excellent surveys of S and its properties, see Kaczorowski and Perelli [23] and

Perelli [39].

The degree of a function F ∈ S is defined by d = 2
∑r

j=1 λj, where λj are as in the

functional equation (1.4) of F . For example, ζ(s) has degree 1, the L-function Lf (s)
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associated with a cusp form f has degree 2 and the Dedekind zeta function ζK(s)

associated with a number field K has degree d = [K : Q].

The degree is an important invariant associated to F and we have d ≥ 0 by definition.

There are two important open problems connected with the degree. The first is the

question, is d an integer? The other problem is to classify all functions in S of

given degree d.

The answer to the first question is known to be affirmative in the range 0 < d < 1

from the work of Bochner [2], Conrey and Ghosh [8], Kaczorowski and Perelli [24]

and in the range 1 < d < 2 by the deep results of Kaczorowski and Perelli [25], [26].

Regarding the second problem, it is known that the only function in S with d = 0

is the constant function 1 (see Bochner [2], Conrey and Ghosh [8], Kaczorowski

and Perelli [24]). The classification of degree 1 functions in S is also complete (see

Kaczorowski and Perelli [24], Soundararajan [49])- these are ζ(s), the Dirichlet L-

functions L(s, χ) associated with primitive characters χ and their imaginary shifts

L(s+ i ω, χ) with ω real.

The answer to Question D in case of degree 1 elements of S is therefore affirmative.

In fact, stronger results belonging to Theme B are known. In other words, it is

known that a positive proportion of zeros lie on the critical line for all degree 1

functions (see [46], [52]) as mentioned earlier in the context of ζ(s).

Concerning the degree 2 functions in S, the only known examples are the products

of two degree 1 functions, like ζ2(s) and the Dedekind zeta function of a quadratic

number field K, ζK(s); the L-function Lf (s) associated with a suitable normalized

modular form f which is either holomorphic (cusp form) or non-holomorphic (Maass

form); and the imaginary shifts of any of these functions which are entire. Hardy’s

theorem is known to be true for all the known elements of degree 2. Like in the case

of degree 1, stronger results belonging to Theme B are also known (see [13],[14]).
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The classification of all degree 2 functions in S has not yet been achieved. Hence,

the answer to Question D for any general degree 2 function in S becomes significant.

The known results on Question D for general degree 2 functions are all based on

some unproved hypotheses. For example, Gritsenko [12] considers distinct primitive

functions F1, . . . Fn in S of degree 2 which satisfy certain conditions on the growth

of both their Dirichlet coefficients and their Euler factors. Then, assuming the

Selberg orthogonality conjecture (see [47]), it is shown that the linear combination∑N
j=1 bjZFj(t) where bj are real, has at least T exp(

√
log log log T ) zeros in [T, 2T ].

Here ZFj(t) is the analogue for Fj of Hardy’s function Z(t).

Bombieri and Hejhal [3] consider functions L1(s), . . . , Ln(s) which satisfy the same

functional equation, are orthogonal in the sense of Selberg, satisfy the Riemann

Hypothesis and a certain conjecture on the distribution of the zeros. Then they

show that almost all zeros of the linear combination
∑N

j=1 bjLj(s) where bj are real,

lie on the critical line and are simple.

Now, we shall state the main result of Chapter 4 which answers Question D for the

class of general degree 2 elements of S satisfying certain mild conditions.

For F ∈ S satisfying (1.4), we define the conductor q = (2π)dQ2
∏r

j=1 λ
2λj
j and the

internal shift θ = 2 Im(
∑r

j=1 µj), which are also invariants associated with F (see

[23]).

Theorem 3. Let F ∈ S be any function with degree d = 2, θ = 0,
√
q irrational

and the Dirichlet coefficients a(n) of F satisfying

(1.5)
∑
n≤x

|a(n)|2 = O(x),

then F (s) has infinitely many zeros on the critical line.

This result was given by Mukhopadhyay, Srinivas and the author in [36]. Our proof
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of this result will follow the method of [36] to a large extent. The main difference

will be in the use of the saddle point theorem. Here we use a version of this theorem

due to Krätzel [28] and thereby get sharper error terms in our estimations compared

to [36].

In Chapter 5 we study the analogue of Hardy’s theorem for functions of degree

d > 2. The answer to this question is not known for any classical L-function, except

in special cases where ζ(s) appears as a factor. This happens, for instance, for

the Dedekind zeta function ζK(s) of a number field K with solvable Galois group

Gal[K : Q].

The main result of Chapter 5 is the following attempt to answer Question D under

some conditions.

Theorem 4. Let F ∈ S with degree 2 ≤ d < 4, conductor q and internal shift

θ = 0. Let T,H be sufficiently large such that T
d
4

+ε � H � T for some ε > 0. Let

q∗ = q1/2(2π)−d/2, G = H/ log T and ψ(u) = exp(−u2G−2) be a smoothing function.

If the condition

(1.6)
∑

|(n/q∗)
2
d−T |≤H

a(n)

n
1
2
− 1
d

ψ
(
(n/q∗)

2
d − T

)
exp

(
−id

2
(n/q∗)

2
d

)
= o (G)

holds, then F (1
2

+ it) has a zero for some t ∈ [T −H,T +H].

This result is an unpublished work of Srinivas and the author [41]. In Chapter 5,

we shall give a proof of this result by generalizing the methods of Chapter 4 to the

case when d ≥ 2.

We wish to draw the attention of the reader to the philosophy behind the organi-

zation of the various chapters and the methods used therein. The guiding theme is

the progession from the theory of a special L-function to the theory of a general L-

function. This is accompanied by a decline in strength of the corresponding results
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on the critical zeros.

We start with the special case of the Riemann zeta function, which is a prototype of

all L-functions; move on to the Epstein zeta function, which is a particular example

of a degree 2 function in the extended Selberg class (see [23], [39]); study a general

degree 2 function in the Selberg class; and finally, consider a general element of the

Selberg class of degree larger than 2.

The results that we obtain will range from comparably strong estimates on the

number of large gaps between consecutive critical zeros for ζ(s) and ζQ(s); existence

results about consecutive zeros for degree 2 elements of S; and conditional results

for elements of S for degree larger than 2.

The analytical properties of these functions that we will use, summarized at the

beginning of each chapter, will be strikingly similar.

All the proofs have structural features in common with each other. The first steps of

all proofs involve local estimates, which when combined with suitable arithmetical

estimates yield the best known results regarding Theme A for the corresponding

functions. The global estimates which appear in Step II of Chapters 2 and 3 are

virtually identical, though they are not needed in Chapters 4 and 5. The final and

crucial steps in each chapter are completed using arithmetical methods.

However, this is the point where the similarities end and the staggering variety of

the arithmetical methods give an indication of the crucial difficulties involved in

assimilating various special cases into the picture of a general L-function. We hope

that the reader will be convinced that the last word has not been said on either of

the problems considered in this thesis. We wish that the reader will consider this

thesis as an invitation to partake in the study of the zeros of general L-functions on

the critical line.
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Chapter 2

Large gaps for the Riemann zeta

function

We start by recalling the main properties of the Riemann zeta function. It is defined

by the Dirichlet series

ζ(s) =
∞∑
n=1

1

ns
,

in the half-plane Re s = σ > 1. It has an analytic continuation to the entire complex

plane excluding s = 1, where it has a simple pole with residue 1. It satisfies the

functional equation

(2.1) π−
1
2
sΓ
(
s
2

)
ζ(s) = π−

1
2

(1−s)Γ
(

1−s
2

)
ζ(1− s),

where Γ(s) is the well known gamma function. The above equation can also be

rewritten in the form ζ(s) = χ(s)ζ(1− s) where

(2.2) χ(s) = πs−
1
2

Γ
(

1−s
2

)
Γ
(
s
2

) .

The functional equation (2.1) implies that |χ(1
2

+ it)| = 1.
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The Hardy’s function Z(t) is defined as

(2.3) Z(t) = χ(1
2

+ it)−1/2ζ(1
2

+ it).

The function Z(t) was introduced by Hardy to show that the Riemann zeta function

has infinitely many zeros on the critical line. Again, the functional equation (2.1)

implies that for real values of t, we have Z(t) is real and |Z(t)| = |ζ(1
2

+ it)|.

Lastly, ζ(s) has an Euler product, given by

ζ(s) =
∏
p

(
1− 1

ps

)−1

,

where the product is over all primes p and is valid for Re s > 1.

As mentioned in Chapter 1, the Riemann Hypothesis is the statement that the zeros

of ζ(s) which lie in the critical strip 0 ≤ σ ≤ 1 have real part 1/2. This is one of

the most important open problems in the field of number theory.

In the next section, we shall state several supplementary results which we shall need

in the course of the proof of Theorem 1. This proof will be covered in the last

section.

2.1 Lemmas

The first result in this section is a special case of the well-known Hölder’s inequality.

Lemma 2.1. Let ψ,f be in C[a, b] with ψ positive and let k be a positive integer,

then the following holds

∣∣∣∣∫ b

a

f(u)ψ(u)du

∣∣∣∣2k ≤ (∫ b

a

ψ(u)du

)2k−1(∫ b

a

|f(u)|2kψ(u)du

)
.
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The next result is the first derivative estimate for an oscillatory integral. The form

that we state is Lemma 4.2 of Titchmarsh [50].

Lemma 2.2. Let r be in C1[a, b] such that r′(x) is monotonic with minimum modulus

m = min[a,b]|r′(x)|, then the following holds

∫ b

a

eir(x)dx ≤ 4

m
.

Ramachandra showed (see [44], Chap. 2) that the first power mean of a generalized

Dirichlet series satisfying certain conditions cannot be too small. The following

lemma from Balasubramanian [1] is a particular case of this general theorem, which

is quite useful in obtaining lower bounds of this type, even in short intervals.

Lemma 2.3. Let B(s) =
∑∞

n=1 bnn
−s be any Dirichlet series satisfying the following

conditions:

(i) not all bn’s are zero;

(ii) the function can be continued analytically in σ ≥ a, |t| ≥ t0, and in this region

B(s) = O((|t|+ 10)A).

Then for every ε > 0, we have

∫ T+H

T

|B(σ + it)|dt� H

for all H ≥ (log T )ε, T ≥ T0(ε), and σ > a.

Now we state an approximate functional equation for Z(t) (see [50], pp.89).

Lemma 2.4. Let t be sufficiently large, P (t) =
√
t/(2π) and write

χ(1
2

+ it)−1/2 = eiθ(t). Then

13



(2.4) Z(t) = 2
∑
n≤P (t)

n−
1
2 cos(θ(t)− t log n) +O(t−

1
4 ).

The following lemma is a quantitative statement of the decay properties of the

smoothing function ψ(u) = exp(u2G−2).

Lemma 2.5. Assume all the conditions of Lemma 2.4, and let 0 < V � t1/4, L =

4 log t, G = V L−1/2, X ≥ t1/2LV −1. Then for any integer n with 0 < n < P (t)−X,

we have

(2.5)

∫ V/4

−V/4
eiθ(t+u)n−i(t+u)ψ(u)du� Gt−1/2.

Proof. We start with the well known Stirling’s formula for the Γ-function which

states that in any fixed vertical strip −∞ < α ≤ σ ≤ β <∞,

(2.6) Γ(σ + it) = (2π)1/2tσ+it−1/2e−
π
2
t+π

2
i(σ−1/2)−it(1 +O(1/t)) as t→∞.

Now, we use this to estimate χ(s) as

χ(σ + it) = P (t)1−2σ−2ite−
π
2
i(σ− 1

2
)eit(1 +O(1/t)).

Noting that θ(t) = argχ(1
2

+ it)−1/2, we get the standard approximation ([50], pp.

78)

θ(t+ u) = (t+ u)P (t+ u)− 1
2
(t+ u)− π

4
+O(1

t
)

= θ(t) + u logP (t) +O(u
2

t
).
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Using this approximation, the left side of (2.5) becomes

∫ V/4

−V/4
eiθ(t+u)n−i(t+u)ψ(u)du�

∣∣∣∣∣
∫ V/4

−V/4
eiu log(P (t)

n )ψ(u)du

∣∣∣∣∣+O(GV 2t−1).(2.7)

The error term above is O(Gt−1/2) by the condition on V . Now we use the standard

estimate for the complementary error function erfc(x) (see [37], Sec 7.12)

erfc(x) =
2√
π

∫ ∞
x

e−s
2

ds� 1

x
e−x

2

,

to replace the integral on the right of (2.7) by the full integral

∫ ∞
−∞

eiu log(P (t)
n )ψ(u)du =

√
πG exp

(
− 1

4
G2 log2

(
P (t)/n

))
,(2.8)

which is the Fourier transform of ψ(u) = e−u
2G−2

(see [37], Sec 1.14(vii)).

By the condition on n, we have log(P (t)/n) ≥ X/P (t) ≥ L/V . Hence, combining

(2.7) and (2.8) we get

∫ V/4

−V/4
eiθ(t+u)n−i(t+u)ψ(u)du� G exp(−L/4) +O(Gt−1/2)� Gt−1/2,

as claimed.

The last lemma is a summary of the arithmetic facts that we will need during the

course of the proof of Theorem 1. Part (a) is a weaker form of an asymptotic

estimate due to Ingham [18] which is

∑
n≤N

d(n)d(n+ s) ∼ 6
π2σ−1(s)N log2N,

as N → ∞ for a fixed s 6= 0. Here d(n) is the divisor function and σ−1(n) =∑
δ|n δ

−1. Several authors have worked on the deep problem of improving the range
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of s (relative to N) where this asymptotic formula holds and these results have

important applications in the theory of the Riemann zeta function. The best result

so far is due to Duke, Friedlander and Iwaniec [10] where they establish that the

estimate holds in the range s� N3/2−ε. We shall only need an upper bound of this

form in the range s� N , and we present an elementary proof of this.

Part (b) is a standard estimate of the mean value of a multiplicative function.

Lemma 2.6. Let N be sufficiently large.

(a) For s� N a nonnegative integer, we have

∑
n≤N

d(n)d(n+ s)�

 σ−1(s)N log2N, s 6= 0

N log3N, s = 0

(b) We have

∑
s�N

σ−1(s)

s
� logN.

Proof of Part (a). Using the inequality d(n) ≤ 2
∑
m|n

m≤
√
n

1, we get

∑
n≤N

d(n)d(n+ s)�
∑
n≤N

∑
d1|n, d2|(n+s)

d1≤
√
n, d2≤

√
n+s

1

�
∑

d1,d2�
√
N

∑
n≤N

d1|n, d2|(n+s)

1.(2.9)

Note that d1|n, d2|(n+ s)⇒ δ|s, δ|n where δ = (d1, d2). Summing over δ in the last

16



sum of (2.9) and writing d1 = e1δ, d2 = e2δ, n = mδ gives

∑
δ|s
δ�N

∑
e1,e2�

√
N/δ

(e1,e2)=1

∑
m≤N/δ
m≡0(e1)

m≡−s/δ(e2)

1.(2.10)

By the Chinese remainder theorem, any two consecutive solutions of the congruence

conditions in the last sum in (2.10) will differ by e1e2 as (e1, e2) = 1 in the previous

sum. Thus the innermost sum in (2.10) is bounded by N
δe1e2

+ O(1). Using this in

(2.10) and dropping the condition (e1, e2) = 1 gives the upper bound

� N
∑
δ|s
δ�N

1

δ

∑
e1,e2�

√
N/δ

1

e1e2

+O
(∑
δ�N

∑
e1,e2�

√
N/δ

1
)

� N
∑
δ|s
δ�N

1

δ
log2N +O

(∑
δ�N

N

δ2

)
� N log2N

∑
δ|s
δ�N

1

δ
+O(N).(2.11)

Noting that the sum in the main term of (2.11) is σ−1(s) when s 6= 0 and O(logN)

when s = 0, we get the required reuslt of Part (a).

Proof of Part (b). Note that

∑
s�N

σ−1(s)

s
=
∑
s�N

1

s

∑
δ|s

1

δ

=
∑
δ�N

1

δ

∑
s�N
δ|s

1

s
.
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Writing s = tδ in the last sum above, we get the bound

�
∑
δ�N

1

δ2

∑
t�N/δ

1

t

�
∑
δ�N

1

δ2
logN

� logN,

as required.

2.2 Proof of Theorem 1

We start by recalling the statement of Theorem 1: Let T, V be positive real numbers

and R1 := R1(T, V ) be the number of gaps of length at least V between consecutive

zeros of ζ(1
2

+ it) with ordinate between 0 and T . Then the following estimates hold

uniformly in T and V

(2.12) R1 � TV −2 log T,

and

(2.13) R1 � TV −3 log5 T.

We first remark that when V � log T , the trivial estimate R1 ≤ TV −1 is better

than (2.12) and (2.13). Next, by the result of Balasubramanian [1] mentioned in

Chapter 1, R1 = 0 whenever V � T 1/6+ε. Hence the theorem trivially holds in the

region V � T 1/4. For the rest of this chapter, we shall assume that V lies in the

range log T � V � T 1/4.

We shall also restrict ourselves to proving the theorem for consecutive zeros of

18



ζ(1
2

+ it) with ordinates lying in [T, 2T ]. This is clearly equivalent to the statement

of theorem by a dyadic division of the original interval.

For ease of exposition, we shall divide the proof of Theorem 1 into three steps. In

the first step we shall consider the smoothed integral of Hardy’s function over a

short interval of size V/2. We shall estimate it from below and above, whenever

the interval is part of a gap between consecutive zeros of ζ(1
2

+ it). This will give

a local estimate valid in these gaps. In the second step, we shall average this local

estimate over the entire interval [T, 2T ] after using Hölder’s inequality, to get a

global estimate connecting R1 with the moments of a certain zeta sum. The last

step will be the crucial application of arithmetic methods to estimate the second

and fourth moments and complete the proof of the theorem.

Let L = 4 log T , G = V L−1/2 be a parameter which is slightly smaller than V .

Step I: Local Estimate

Let ψ(u) = exp(−u2G−2) be a smoothing function. Now, consider the integral

(2.14) I1(t) =

∫ V/4

−V/4
Z(t+ u)ψ(u)du.

Let τ1 and τ2 be the ordinates of consecutive zeros of ζ(s) on the critical line such

that τ1, τ2 ∈ [T, 2T ] and τ2 − τ1 ≥ V . Note τ1 and τ2 are consecutive real zeros of

Z(u) and hence for

(2.15) t ∈
(
τ1 + V

4
, τ2 − V

4

)
,

we deduce that the integrand in (2.14) does not change sign.
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Thus, for the range (2.15), we bound I1(t) from below as

|I1(t)| =

∣∣∣∣∣
∫ V/4

−V/4
Z(t+ u)ψ(u)du

∣∣∣∣∣ =

∫ V/4

−V/4
|Z(t+ u)|ψ(u)du

�
∫ G

−G
|Z(t+ u)|du� G.(2.16)

The last step is by Ramachandra’s theorem for general Dirichlet series (Lemma 2.3).

Alternately, since |Z(t)| = |ζ(1
2

+ it)|, we can use Ramachandra’s lower bound for

the first moment of |ζ(1
2

+ it)| in short intervals (see [43]) to get a sharper bound

(� GL1/4). We have also used the fact ψ(u) ≥ e−1 when |u| ≤ G.

For the upper bound estimation of I1(t), we first use the approximate functional

equation (Lemma 2.4) to replace Hardy’s function in the integrand by a zeta sum

to get

(2.17) I1(t)�

∣∣∣∣∣∣
∫ V/4

−V/4
eiθ(t+u)

∑
n≤P (t+u)

n−
1
2
−i(t+u)ψ(u)du

∣∣∣∣∣∣+ o(G),

where P (t) =
√
t/(2π).

Let X = (2T )1/2LV −1. Now we use the properties of the smoothing function

(Lemma 2.5) to remove the terms n < P (t + u) − X from the zeta sum in (2.17)

and estimate their contribution as

O

(
GT−1/2

∑
n<P (2T )−X

n−
1
2

)
= O(GT−1/2+1/4) = o(G).

Thus the terms n < P (t+u)−X in (2.17) can be absorbed into the error term, and

we get

(2.18) I1(t)�
∫ V/4

−V/4
|Σ(t+ u)|ψ(u)du+ o(G),
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where

Σ(v) =
∑

P (v)−X≤n≤P (v)

n−
1
2
−iv.(2.19)

Hence, for t in the range (2.15), we can combine the bounds (2.16) and (2.18) to

conclude

(2.20) G�
∫ V/4

−V/4
|Σ(t+ u)|ψ(u)du.

This is the local estimate valid in the large gaps between consecutive zeros of ζ(1
2
+it)

on the critical line.

Step II: Global Estimate

Let T be the set of t ∈ [T + V
4
, 2T − V

4
] for which (2.20) holds. Recall that R1 is

the number of pairs of consecutive zeros of ζ(s) on the critical line with ordinates

τ1, τ2 ∈ [T, 2T ], such that τ2 − τ1 ≥ V .

From Step I we see that the range (2.15) is contained in T , for each such pair τ1

and τ2. Thus R1V � µ(T ) where µ is the usual Lebesgue measure.

Now, applying Hölder’s inequality (Lemma 2.1) to (2.20), we get for all t ∈ T and

k any positive integer

G2k �

(∫ V/4

−V/4
|Σ(t+ u)|2k ψ(u)du

)(∫ V/4

−V/4
ψ(u)du

)2k−1

.

Bounding the second integral by
∫
R
ψ(u)du� G, we get

(2.21) G�
∫ V/4

−V/4
|Σ(t+ u)|2k ψ(u)du,
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for all t ∈ T .

Integrating (2.21) over T , we get the estimate

R1V G� µ(T )G�
∫
T

∫ V/4

−V/4
|Σ(t+ u)|2k ψ(u) du dt

�
∫ 2T−V/4

T+V/4

∫ V/4

−V/4
|Σ(t+ u)|2k ψ(u) du dt

�
∫ 2T

T

|Σ(s)|2k
(∫ V/4

−V/4
ψ(u)du

)
ds.

Bounding the inner integral by G as before, we finally obtain

R1V �
∫ 2T

T

|Σ(t)|2k dt,(2.22)

for k any positive integer. We call this the global estimate, since we are counting

the large gaps between consecutive zeros of ζ(1
2

+ it) in the entire interval [T, 2T ].

Step III: Arithmetical Methods

We shall first analyze (2.22) with k = 1, which leads to an estimation of the second

moment of the integrand. Expanding the square of the modulus of Σ(t) (see (2.19))

in (2.22), we get

(2.23) R1V �
∑
n1,n2

1

(n1n2)1/2

∫
I(n1,n2)

exp

(
it log

(
n1

n2

))
dt,

where the sum ranges over P1 < n1, n2 < P2 with P1 = P (T )−X and P2 = P (2T ).

Here I(n1, n2) =
⋂
i=1,2[2πn2

i , 2π(ni + X)2]
⋂

[T, 2T ] is an interval, which is non-

empty only when |n1 − n2| ≤ X.

Now, we subdivide the sum in (2.23) into S1 and S2 corresponding to the ranges

n1 = n2 and n1 6= n2, respectively. The reason for this subdivision is that, in the
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first case (the “diagonal” case) the integral in (2.23) will be trivial, while in the

other “nondiagonal” case, we will use the first derivative estimate Lemma 2.2 for

the integral.

For estimating S1, we note that |I(n1, n1)| � min(T, n1X)� P2X � TLV −1 which

will be the trivial estimate for the integral. Noting that n1 � T 1/2 and the number

of terms is at most P2 � T 1/2, we get

(2.24) S1 � T 1/2 1

T 1/2

TL

V
� TL

V
.

As for S2, we use Lemma 2.2 and obtain that the integral in (2.23) to be �

1/| log(n1/n2)| � (n1 + n2)/|n1 − n2|. Now, as n1, n2 � T 1/2 and |n2 − n1| ≤ X, we

get

S2 �
1

T 1/2

∑
1≤r≤X

∑
n1

n2=n1+r

n1 + n2

r
�

∑
1≤r≤X

1

r

∑
n1

1

�
∑
r≤X

1

r
P2 � T

1
2L.(2.25)

Using (2.24) and (2.25) in (2.23), we get

R1 �
TL

V 2
,

which is the first part (2.12) of our theorem.

We next turn to (2.22) with the value k = 2. Expanding the 4th power of |Σ(t)| in

the integrand we get

(2.26) R1V �
∑

n1,n2,n3,n4

1

(n1n2n3n4)1/2

∫
I(n)

exp

(
it log

(
n1n2

n3n4

))
dt,
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where the sum now ranges over P1 < ni < P2 for i = 1, . . . 4 and I(n) =

I(n1, n2, n3, n4) =
⋂4
i=1[2πn2

i , 2π(ni + X)2]
⋂

[T, 2T ] is an interval. Here I(n) is

non-empty only when |n1 − ni| ≤ X for i = 2, 3, 4.

Now, denoting r(n) = n1 +n2−n3−n4, we subdivide the sum in (2.26) into S3 and

S4 corresponding to the ranges |r(n)| ≥ 2X2/P1 and |r(n)| < 2X2/P1, respectively.

In both cases, we will use Lemma 2.2 to bound the integral in (2.26) depending only

on s(n) where

(2.27) s(n) = n1n2 − n3n4.

The motivation behind this subdivision is that, in order to count the number of

solutions ni to s(n) = s for a fixed s, the first range will reduce this problem to

solving a linear equation, while in the second range we will tackle the more difficult

problem of solving a quadratic equation by invoking Lemma 2.6.

We first make the observation that

(2.28) s(n) = n1r(n)− (n3 − n1)(n4 − n1).

For the estimation of S3, note that |n1r(n)| ≥ 2X2 while |(n3−n1)(n4−n1)| ≤ X2.

Hence the identity (2.28) gives us |s(n)| � P1|r(n)|.

Using Lemma 2.2, the integral in (2.26) can hence be bounded in this range by

1

| log
(
(n1n2)/(n3n4)

)
|
� n1n2 + n3n4

|s(n)|
� T 1/2

|r(n)|
.

Next, we claim that the number of solutions of r(n) = r for any fixed r is O(T 1/2X2).

This is because, we can first choose n1 arbitrarily with O(T 1/2) choices, and then

depending on n1 we choose n2 and n3 arbitrarily with O(X2) choices. Finally n4
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has at most one choice to get r(n) = r.

Thus we get

(2.29) S3 �
1

T (1/2)2

∑
X2

P1
�r�X

∑
ni

r(n)=r

T 1/2

r
� 1

T 1/2

∑
r

1

r
T 1/2X2 � TL3

V 2
.

For the estimation of S4, we first estimate the number of solutions, H(s), to s(n) = s

in this range. Observe that H(s) is also the number of solutions to (2.28) for the

values n1, r(n), n3 − n1, n4 − n1 with appropriate restrictions. This is because there

is a bijection between the tuples (n1, n2, n3, n4) and (n1, r(n), n3 − n1, n4 − n1).

The number of solutions (n3−n1, n4−n1) to the equation m = (n3−n1)(n4−n1) is

bounded trivially by d(m) (the divisor function). Similarly the number of solutions

to m+ s = n1r(n) is bounded by d(m+ s).

Noting that, in this range, n1r(n), (n3 − n1)(n4 − n1), s(n)� X2, we get

(2.30) H(s)�
∑
m�X2

d(m)d(m+ s)�

 σ−1(s)X2L2, s 6= 0

X2L3, s = 0

by using Lemma 2.6(a).

Now we subdivide S4 further into the ranges s(n) 6= 0 and s(n) = 0 and call the sums

S4,1 and S4,2 respectively. These correspond to the “nondiagonal” and “diagonal”

cases, respectively. The integral in (2.26) will be bounded by using Lemma 2.2 in

the first case and trivially in the other.
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For the estimation of S4,1, we use Lemma 2.2 for the integral in (2.26) to get

S4,1 �
1

T (1/2)2

∑
1≤s�X2

H(s)
n1n2 + n3n4

s
�
∑
s

H(s)

s

� X2L2
∑
s�X2

σ−1(s)

s
� TL5

V 2
,(2.31)

by using Lemma 2.6(b).

As for S4,2, we take the trivial estimate O(T ) for the integral in (2.26) and use (2.30)

to get

(2.32) S4,2 �
1

T (1/2)2
H(0)T � X2L3 � TL5

V 2
.

Using (2.29),(2.31) and (2.32) in (2.26), we get

R1 � TV −3 log5 T.

This completes the proof of the second part (2.13) of the theorem.

In the next chapter, we shall consider the analogue of this question for the Epstein

zeta function.
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Chapter 3

Large gaps for the Epstein zeta

function

The Epstein zeta-function ζQ(s) associated to a binary, positive definite, integral

quadratic form Q(x, y) = ax2 + bxy + cy2 is defined by the Dirichlet series

(3.1) ζQ(s) =
∑

(x,y)6=(0,0)

1

Q(x, y)s
=
∞∑
n=1

rQ(n)

ns
,

in the region σ > 1, where rQ(n) is the number of integer solutions to the equation

Q(x, y) = n. It is well known that ζQ(s) can be analytically continued to the entire

complex plane except for s = 1 where it has a simple pole with residue 2π/
√

∆ where

∆ = 4ac− b2 > 0. Note that the discriminant of Q(x, y) is −∆ = b2 − 4ac < 0.

It satisfies the functional equation

(3.2)

(√
4

2π

)s
Γ(s)ζQ(s) =

(√
4

2π

)1−s

Γ(1− s)ζQ(1− s).
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We will use (3.2) in the form ζQ(s) = γ(s)ζQ(1− s) where γ(s) is defined by

(3.3) γ(s) =

(√
4

2π

)1−2s
Γ(1− s)

Γ(s)
.

We next define the function

(3.4) W (t) = γ(1
2

+ it)−1/2ζQ(1
2

+ it).

The function W (t) will play the same role that Hardy’s function Z(t) (see (2.3))

does in Chapter 2. The functional equation for ζQ(s) implies that for real values

of t, we have W (t) is real and |W (t)| = |ζQ(1
2

+ it)|, analogous to the properties

of Z(t). Thus the zeros of ζQ(s) on the critical line correspond to the real zeros of

W (t).

We suppose throughout the rest of chapter that ∆ is not a square, so that
√
4 is

irrational; other cases like, for e.g., 4 = 4 related to the form Q(x, y) = x2 + y2, are

either easier or well-known.

From the classical theory of binary quadratic forms, it is well known that, for any

ε > 0, rQ(n) � nε for sufficiently large n depending on ε. This is the Ramanujan

hypothesis for ζQ(s) which will be used extensively in this chapter.

Unlike the case of ζ(s) or ζK(s), the Epstein zeta function does not have an Euler

product in general and does not satisfy the analogue of the Riemann hypothesis, in

general.

The next section will contain several supplementary results and the proof of Theorem

2 will be presented in the last section.
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3.1 Lemmas

The first result in this section is a generalization of Lemma 2.2 (see Titchmarsh [50],

Lemma 4.3).

Lemma 3.1. Let f(x) and g(x) be real functions, f ′(x)/g(x) monotonic with min-

imum modulus m = min[a,b]|f ′(x)/g(x)| > 0. Then

(3.5)

∣∣∣∣∫ b

a

g(x)eif(x)dx

∣∣∣∣ ≤ 4

m

Next, we state an approximate functional equation for ζQ(1
2

+ it) which is a direct

adaptation of Lemma 3 in [22] (with X = t3).

Lemma 3.2. For t ≥ 2, we have

ζQ(1
2

+ it) =
∑
n≤t3

rQ(n)n−
1
2
−it +

1

log 2

∑
t3<n≤2t3

rQ(n) log
(

2t3

n

)
n−

1
2
−it

+O(t−1/2).(3.6)

The next lemma is an analogue of Lemma 2.5 and is a statement about the de-

cay properties of the Gaussian smoothing function ψ(u) = exp(−u2G−2) that we

encountered in Chapter 2.

Lemma 3.3. Let t be sufficiently large, t2ε � V � t1/2−ε, L = A log t, G = V L−1/2,

Y = t1+εV −1. Define the function P1(u) = u
√
4/(2π). Then for any integer n with

|n− P1(t)| > Y , we have

(3.7)

∫ V/4

−V/4
γ(1/2 + i(t+ u))−

1
2n−i(t+u)ψ(u)du� Gt−A/16.

Proof. Using Stirling’s formula (2.6), we get

γ(σ + it) = P1(t)1−2σ−2ite−πi(σ−1/2)e2it(1 +O(1/t)).
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For the proof of (3.7), we first consider the case n > P1(t)+Y . We view the integral

to be estimated as a complex integral over the rectangular contour with vertices

±V/4, ±V/4− iG.

On the vertical sides, where u = ±V/4 − iw with w ∈ [0, G], we estimate the first

two factors in the integrand as follows

γ(1
2

+ i(t+ u))−
1
2n−i(t+u) �

(
P1(t± V

4
)

n

)w
�
(
P1(t)±

√
∆

8π
V

n

)w
< 1,

The last inequality follows because of the condition on n and the fact that V = o(Y )

by the condition on V . As for the other factor, we have

e−
u2

G2 � e−
(V/4)2−w2

G2 � e−A log t/16.

Hence the value of the integral on the vertical sides becomes O(GT−A/16).

On the horizontal side in the lower half plane, let u = v − iG with v ∈ [−V
4
, V

4
].

Here e−(u/G)2 is bounded and the other factors are estimated as

γ(1
2

+ i(t+ u))−
1
2n−i(t+u) �

(
n

P1(t+ v)

)−G
� exp

(
−G log

(
n

P1(t+ v)

))
� exp

(
− GY

P1(t)

)
� exp(−tε′)� exp(−A log t/16),

for any ε′ such that 0 < ε′ < ε. Hence the value of the integral on the horizontal

side is also estimated as O(GT−A/16) and this completes the proof of this case.

For n < P1(t)− Y , we take the rectangular contour with vertices ±V/4, ±V/4 + iG

in the upper half plane and argue in a similar way to estimate the value of the

integral to be O(GT−A/16).
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The following lemma is a transformation formula which is a special case of a more

general formula due to Jutila and Srinivas ([21] Lemma 3.2).

Let χ(s) be as defined in (2.2).

Lemma 3.4. Let t be sufficiently large and t1/2+ε � Y � t1−ε. Let r = h/k a

positive rational number with (h, k) = 1, such that |
√

∆ − k/h| � h−2 and h, k �√
t/Y . Let

Mj =
t
√

∆

2π
+ (−1)j2Y, mj =

∣∣∣∣Mj −
t

2πr

∣∣∣∣
M ′

j =
t
√

∆

2π
+ (−1)jY, m′j =

∣∣∣∣M ′
j −

t

2πr

∣∣∣∣
for j = 1, 2. For a constant 40, define

(3.8) nj = nj(t) = 40h
2mj

2Mj
−1, n′j = n′j(t) = 40h

2(m′j)
2(M ′

j)
−1.

Then there exists a certain sufficiently smooth weight function η(x) with support

[M1,M2] satisfying η(x) = 1 for x ∈ [M ′
1,M

′
2], and functions wj(x) piecewise con-

tinuous and bounded in the interval [0, nj], such that

∞∑
n=1

η(n)rQ(n)n−1/2−it = C0(hkt)−
1
4 ritχ

(
1
2

+ it
) 2∑
j=1

(−1)j
∑
n<nj

wj(n)ρ(n)n−
1
4

× exp(2πiC1n)
(

1 + C2
n

t

)− 1
4

exp
(
i(−1)j−1

(
2tφ
(
C2
n

t

)
+
π

4

))
+O(t−ε/3),(3.9)

where C0 is a constant, C1 = h̄4̄0/k − 1/(2hk40), C2 = π/(2hk40) and

(3.10) φ(x) = arcsinh(x1/2) + (x+ x2)1/2.

Here ρ(n) = ρ(n,Q, h/k) is a certain arithmetical function defined in terms of a
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binary, positive definite, integral quadratic form Q∗(x, y) depending on Q and k,

such that ρ(n)� rQ∗(n).

Proof. We first note that Mj,M
′
j � t and

(3.11) mj =

∣∣∣∣(−1)j
t

2π

(√
∆− 1

r

)
+ 2Y

∣∣∣∣ � max(Th−2, Y ) � Y.

Similarly, we get m′j � Y . Thus the conditions

M1 <
t

2πr
< M2, m1 � m2, mj � m′j,

k �M1
1/2−ε, tεmax(t1/2r−1, hk)� m1 �M1

1−ε,

are satisfied because of the condition on Y . Next, for the integer J specified by the

Lemma 3.2 in [21], U is given by JU = min(m′1,m
′
2). Hence U � Y and satisifies

the condition U � r−1t1/2+ε.

Thus all conditions of Lemma 3.2 in [21] are satisfied and we get the transformation

formula as required, except that the first term of [21]

2π4−1/2k−2GQ(k,−h)r−1/2 � k−1 � (Y/t)1/2 � t−ε/2,

goes into the error term in (3.9). Here we have used |GQ(k,−h)| ≤ (4, k)k � k

(see [48], Lemma 1).

The error term of [21] is h2k−1m1
1/2t−3/2U log t � (Y/t)1/2 � t−ε/2 log t and hence

this is also absorbed into the error term in (3.9).
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3.2 Proof of Theorem 2

We start by recalling the statement of Theorem 2: Let Q be a binary, positive

definite, integral, quadratic form with discriminant −4 such that
√
4 is irrational.

Let ε > 0 be sufficiently small, T, V be positive real numbers and R2 := R2(T, V )

denote the number of gaps of length at least V between consecutive zeros of ζQ(1
2
+it)

with ordinates in the interval [0, T ]. Then

(3.12) R2 � T 1+2εV −2,

where the constant in � may depend only on ε.

We remark that the dependence in ε in (3.12) has been chosen in order to simplify

the calculations that appear during the course of the proof.

We note that when V � T 2ε, the trivial estimate R2 ≤ TV −1 is better than (3.12).

Next, by the result of Jutila and Srinivas [21] mentioned in Chapter 1, we have

R2 = 0 whenever V � T 5/11+ε. Hence the theorem trivially holds in the region

V � T 1/2−ε. For the rest of this chapter, we shall therefore assume that V lies in

the range T 2ε � V � T 1/2−ε.

We shall also restrict ourselves to proving the result for consecutive zeros of ζQ(1
2
+it)

with ordinates lying in [T, 2T ] because it clearly implies (3.12).

As in Chapter 2, we shall divide the proof of Theorem 2 into three steps. In the first

step we shall consider the smoothed integral of W (t) over a short interval. We shall

estimate it from below and above, whenever the interval is part of a gap between

consecutive zeros, to get a local estimate valid in these gaps. In the second step,

we shall average this local estimate over the entire interval [T, 2T ], to get a global

estimate connecting R2 with the moments of an exponential sum. The last step

will be the application of arithmetic methods to estimate the second moment and
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complete the proof of the theorem.

For the rest of this chapter, we shall denote L = A log T , G = V L−1/2 and ψ(u) =

exp(−u2G−2). Here A > 0 is a large constant to be chosen later.

Step I: Local Estimate

We start by considering the integral

(3.13) I2(t) =

∫ V/4

−V/4
W (t+ u)ψ(u)du.

Let τ1 and τ2 be the ordinates of consecutive zeros of ζQ(s) on the critical line such

that τ1, τ2 ∈ [T, 2T ] and τ2 − τ1 ≥ V . Note that τ1 and τ2 are consecutive real zeros

of W (u) and hence for

(3.14) t ∈
(
τ1 + V

4
, τ2 − V

4

)
,

it follows that the integrand in (3.13) does not change sign. Thus, for the range

(3.14) we bound I2(t) from below as follows

|I2(t)| =

∣∣∣∣∣
∫ V/4

−V/4
W (t+ u)ψ(u)du

∣∣∣∣∣ =

∫ V/4

−V/4
|W (t+ u)|ψ(u)du

�
∫ G

−G
|W (t+ u)|du� G.(3.15)

The last step follows from Ramachandra’s estimate for general Dirichlet series (see

Lemma 2.3). We have also used the fact that ψ(u) ≥ e−1 when |u| ≤ G.

Now we shall focus on the upper bound estimation of I2(t). First, we define P1(u) =

u
√

∆/(2π) and the parameter Y by

(3.16) V Y = T 1+ε.
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Let η(x) be a bounded function (to be chosen later) with the property

(3.17) η(x) =

 1 if x ∈ [P1(t)− Y, P1(t) + Y ]

0 if |x− P1(t)| > 2Y

Now we rewrite Lemma 3.2 by using the function η(x) as follows

ζQ
(

1
2

+ it
)

=
∑
n≤2t3

rQ(n)η(n)n−
1
2
−it +

∑
n≤2t3

rQ(n)(1− η(n))c(t, n)n−
1
2
−it

+O(t−1/2).(3.18)

where c(t, n) = 1 if n ≤ t3 and c(t, n) = log(2t3/n)/ log 2 otherwise. We have used

the fact that η(n) = 0 for t3 < n which follows from (3.17).

Recall that W (t) = γ(1
2

+ it)−
1
2 ζQ(1

2
+ it). Using this expression in the integrand of

I2(t) and replacing ζQ(1
2

+ it) by (3.18), we get

I2(t) =

∫ V/4

−V/4
γ(1

2
+ i(t+ u))−

1
2

( ∑
n≤2t3

η(n)rQ(n)n−
1
2
−i(t+u)

)
ψ(u)du

+
∑
n≤2t3

(1−η(n))rQ(n)n−
1
2 c(t, n)

∫ V/4

−V/4
γ(1

2
+ i(t+ u))−

1
2n−i(t+u)ψ(u)du

+o(G).(3.19)

Now, we note (3.17) implies that 1− η(n) is supported in the range |n−P1(t)| > Y .

Hence the conditions of Lemma 3.3 hold for the nonzero terms of second sum in

(3.19) and the integral in (3.19) is O(GT−A/16). Thus, using rQ(n) � nε and

c(t, n), 1− η(n)� 1, the second sum in (3.19) can be estimated as

O

( ∑
n≤2t3

n−1/2+εGT−A/16

)
= O(GT 3/2+3ε−A/16) = o(G),

if we choose A sufficiently large (for e.g., A = 32 should do).
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Thus, by noting that |γ(1
2

+ it)−
1
2 | = 1 (coming from the functional equation (3.2))

and using the previous estimate, we arrive at the upper bound

(3.20) I2(t)�
∫ V/4

−V/4

∣∣∣∣ ∞∑
n=1

η(n)rQ(n)n−1/2−i(t+u)

∣∣∣∣ψ(u)du+ o(G).

By our assumption that
√

∆ is a quadratic irrational, we can choose r = h/k with

(h, k) = 1, such that |
√

∆−k/h| � h−2 and h, k �
√
T/Y . Besides, the assumption

T 2ε � V � T 1/2−ε gives T 1/2+2ε � Y � T 1−ε because of the condition (3.16).

Thus, the conditions of Lemma 3.4 are satisfied.

Now we choose η to be the function given by Lemma 3.4 and use the transformation

formula (3.9) for the sum in (3.20) to obtain

(3.21) I2(t)�
∫ V/4

−V/4
|Σ1(t+ u)|ψ(u)du+ o(G),

where Σ1(u) is as follows

Σ1(u) = (hku)−1/4riuχ (1/2 + iu)
2∑
j=1

(−1)j
∑

n<nj(u)

wj(n)ρ(n)n−1/4(3.22)

× exp(2πiC1n) (1 + C2n/u)−1/4 exp
(
i(−1)j−1 (2uφ(C2n/u) + π/4)

)
,

with C1 = h̄4̄0/k − 1/(2hk40), and C2 = π/(2hk40). Note that the error term

O(t−ε/3) from Lemma 3.4 leads to a contribution of O(GT−ε/3) to (3.21) which can

be absorbed into the error term.

Hence, for t in the range (3.14), we can combine the bounds (3.15) and (3.21) to

conclude

(3.23) G�
∫ V/4

−V/4
|Σ1(t+ u)|ψ(u)du.
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Step II: Global Estimate

This step is an exact replica of Step II of the previous chapter. Hence, without

repeating the details, we conclude that we can use the local estimate (3.23) for t in

the range (3.14) to get the following global estimate over the entire interval [T, 2T ]

R2V �
∫ 2T

T

|Σ1(t)|2k dt,(3.24)

where R2 is the number of pairs of consecutive zeros of ζQ(s) on the critical line

with ordinates τ1, τ2 ∈ [T, 2T ], such that τ2 − τ1 ≥ V .

Step III: Arithmetical Methods

We shall focus on estimating the second moment of Σ1(t) over the interval [T, 2T ]

for the rest of this chapter. In other words, we shall analyze (3.24) with k = 1.

Expanding the square of the modulus of Σ1(t) (defined in (3.22)) in the integrand

in (3.24) we get

R2V � (hk)−1/2T 1/2
∑
j=1,2

∑
n<nj(T0)

|wj(n)ρ(n)|2n−1/2(3.25)

+ (hkT )−1/2
∑
j=1,2

∑
m,n<nj(T0)

m6=n

|wj(m)ρ(m)wj(n)ρ(n)|(mn)−1/4

×
∫

((1 + C2m/u)−1/4(1 + C2n/u)−1/4

× exp
(
i(−1)j−12u (φ (C2m/u)− φ (C2n/u))

)
du

= S(1) + S(2), say.

In S(2), the integral will be over an appropriate subinterval of [T, 2T ] depending on

m and n. We also assume that nj(T0) = max{nj(u) : u ∈ [T, 2T ]}.

We note that by the definition (3.8) of nj(T0) and the estimates h �
√
T/Y , Mj � T ,
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mj � Y (from Lemma 3.4), we get

(3.26) nj = nj(T0) � Y.

For estimating S(1), we will need an estimate on the mean-square of the coefficients

rQ∗(n). Since rQ∗(n)� nε, we have the trivial estimate

(3.27)
∑
n≤x

r2
Q∗(n) = O

(
x1+ε

)
.

In fact, for certain quadratic forms much better results are known in this direction

(see [42], [38]).

Now, since ρ(n) � rQ∗(n), and wj(n) � 1 (Lemma 3.4), (3.27) implies by partial

summation that the inner sum in S(1) is

(3.28)
∑
n<nj

|wj(n)ρ(n)|2n−1/2 � n
1/2+ε
j ,

where nj = nj(T0). Hence, using (3.26), we get the estimate

(3.29) S(1) � (hk)−1/2T 1/2Y 1/2+ε � Y 1+ε � T 1+εY εV −1 � T 1+2εV −1.

For estimating S(2), we use the first derivative estimate (Lemma 3.1) with g(x) =

((1 + C2m/x)(1 + C2n/x))−1/4 and f(x) = 2x(φ(C2m/x) − φ(C2n/x)). From the

definition (3.10) of φ we get

f ′(x) = 2 arcsinh
(

(C2m/x)1/2
)
− 2 arcsinh

(
(C2n/x)1/2

)
+ 4 ((C2m/x) (1 + C2m/x))1/2 − 4 ((C2n/x) (1 + C2n/x))1/2 .

Therefore f ′(x)/g(x) is monotonic in the interval [T, 2T ], after replacing f(x) by
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−f(x) if necessary. We also have

|f ′(x)/g(x)| � (C2/T )1/2|
√
m−

√
n|,

in the interval [T, 2T ].

Hence, by Lemma 3.1, we get that the integral in S(2) (see (3.25)) is bounded by

(T/C2)1/2|
√
m−

√
n|−1 � (hkT )1/2|

√
m−

√
n|−1,

because C2 � 1/(hk) from the definition (3.22).

Using this estimate in (3.25) we get

S(2) �
∑
j

∑
m,n<nj
m 6=n

|wj(m)ρ(m)wj(n)ρ(n)|(mn)−1/4|
√
m−

√
n|−1

�
∑
j

∑
n<m<nj

|wj(n)ρ(n)wj(m)ρ(m)|n−1/4m1/4(m− n)−1

�
∑
j

∑
h<nj

h−1
∑

n<nj−h

|wj(n)ρ(n)wj(n+ h)ρ(n+ h)|n−1/4(n+ h)1/4,(3.30)

where nj = nj(T0) as before.

Using the Cauchy-Schwarz inequality, the inner sum over n in (3.30) is bounded by

(∑
n<nj

|wj(n)ρ(n)|2n−1/2

)1/2( ∑
n+h<nj

|wj(n+ h)ρ(n+ h)|2(n+ h)1/2

)1/2

�
(
n

1/2+ε
j n

3/2+ε
j

) 1
2

= n1+ε
j ,

by using the method of partial summation.
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Combining this with
∑

h<nj
h−1 � log nj in (3.30), we get

(3.31) S(2) �
∑
j

n1+ε
j log nj � Y 1+ε log Y � T 1+2εV −1.

Here, we have used the fact that Y ε log Y � T ε.

Using (3.29) and (3.31) in (3.25), we get

R2 � T 1+2εV −2.

This completes the proof of the theorem.

In the next chapter we shall discuss the problem of showing that there are infinitely

many zeros on the critical line for functions in the Selberg class.
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Chapter 4

Hardy’s theorem for the Selberg

class: d = 2

Let F (s) ∈ S be a function in the Selberg class. We shall summarize the properties

of F (s) that will be relevant to this chapter. These are derived from the axioms

defining the Selberg class which we have stated in the first chapter.

F (s) has an absolutely convergent Dirichlet series expansion

F (s) =
∞∑
n=1

a(n)

ns
,

in the half-plane Re s = σ > 1. F (s) has an analytic continuation to the entire

complex plane, except at s = 1 where it has a possible pole of order m ≥ 0. It

satisfies a functional equation of the form

(4.1) Φ(s) = ωΦ̄(1− s),

where

Φ(s) = Qs

r∏
j=1

Γ(λjs+ µj)F (s)
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with Q > 0, λj > 0,Reµj ≥ 0 and |ω| = 1 and Φ̄(s) = Φ(s̄). This functional

equation can be rewritten in the form F (s) = ∆(s)F̄ (1− s) where

(4.2) ∆(s) = ωQ1−2s

r∏
j=1

Γ(λj(1− s) + µj)

Γ(λjs+ µj)
·

Next we define the function ZF (t), which is the analogue of Hardy’s function Z(t)

(see 2.3), which played a central role in Chapter 2.

(4.3) ZF (t) = ∆(1
2

+ it)−1/2F (1
2

+ it).

In a similar way as for Z(t), the functional equation (4.1) implies that for real values

of t, we have ZF (t) is real and |ZF (t)| = |F (1
2

+ it)|. Thus the zeros of F (s) on the

critical line correspond to the real zeros of ZF (t).

An Euler product expansion for F (s) exists in the form

F (s) =
∏
p

(
1 +

a(p)

ps
+
a(p2)

p2s
+
a(p3)

p3s
+ · · ·

)

valid for σ > 1. This means that the Dirichlet coefficients a(n) are multiplicative.

Multiplicativity of the coefficients will be crucial in the proof of Theorem 3.

The Ramanujan hypothesis for F (s) holds in the form

(4.4) a(n) = O(nε),

for any ε > 0 and all sufficently large n (depending on ε). This will also be used

extensively in the proof of Theorem 3.

Lastly, we recall the definitions of invariants associated with F (s) (see [23]): the

degree d = 2
∑r

j=1 λj, the ξ-invariant ξ = 2
∑r

j=1 (µj − 1/2), the internal shift θ =
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Im ξ and the conductor q = (2π)dQ2
∏r

j=1 λ
2λj
j . We note that though these invariants

are defined based on the data in (4.1), they are independent of the particular form

of the functional equation and depend only on F (s).

We shall state several supplementary results in the next section and detail the proof

of Theorem 3 in the last section.

4.1 Lemmas

We first state an asymptotic formula for ∆(s) that follows directly from Stirling’s

formula (see (2.6) of Chapter 2) applied to each Γ-factor in the definition (4.2).

Lemma 4.1. The following asymptotic formula holds uniformly in any fixed vertical

strip −∞ < α ≤ σ ≤ β <∞ as t→∞

(4.5) ∆(s) = ω1(q∗t
d/2)1−2σ−2itt−iθeidt(1 +O(1/t)),

where ω1 = ωe−
π
2
i(d/2+Re ξ)+iθ

∏r
j=1 λ

−2i Imµj
j , with |ω1| = 1, and the parameter q∗ =

√
q (2π)−d/2.

Thus, we have

(4.6) ∆−1/2(s) = ω1(q∗t
d/2)σ−1/2+ittiθ/2e−idt/2(1 +O(1/t)),

where ω1 is a constant with modulus 1.

Next, we state the following uniform convexity estimates.

Lemma 4.2. For any ε > 0 and t sufficiently large, the following growth estimates
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hold

(4.7) ∆−1/2(s)F (s) =

 O(td/4+ε) 0 ≤ σ ≤ 1

O(t(σ−1/2)d/2+ε) 1 < σ ≤ 1 + δ

Proof. Note that

F (s) = O(tε),

holds in the region σ ≥ 1 because of the absolutely convergent Dirichlet series in

σ > 1 and by continuity on the boundary when t is sufficiently large. This implies,

by the functional equation F (s) = ∆(s)F̄ (1− s) and the estimate (4.5), that

F (s) = O(t(1−2σ)d/2+ε),

in the region σ ≤ 0. Using the well known Phragmen - Lindelöf convexity theorem

for vertical strips and the above two estimates, we get

F (s) = O(t(1−σ)d/2+ε)

in the region 0 ≤ σ ≤ 1.

Combining these estimates for F (s) with the estimate (4.6) for ∆−1/2(s) proves the

lemma.

The following lemma is a version of the saddle point theorem for exponential inte-

grals. This is an adaptation of Lemma 2.5 of Krätzel ([28], p.44).

Lemma 4.3. Let f ∈ C3[a, b] such that f ′(t) is monotonic, f ′(c) = 0 for a < c < b,

|f ′′(t)| � λ2 and 0 < |f ′′′(t)| � λ3. Let g ∈ C2[a, b] with |g(t)| ≤ G, |g′(t)| ≤ G1.

Suppose that f ′6(t)−8f ′′(c)f ′′2(t)(f(t)− f(c))3 and g′′(t) have only bounded number
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of zeros in [a, b]. Then,

∫ b

a

g(t)eif(t)dt = c1
g(c)√
f ′′(c)

eif(c) +O

(
G1

λ2

)
+O

(
G(b− a)

λ2
3

λ3
2

)
+O

(
G
λ3

λ2
2

)
+O

(
Gmin

(
1

|f ′(a)|
+

1

|f ′(b)|
,

1√
λ2

))
,

for a constant c1 depending only on the sign of f ′′.

Proof. The statement is the same as Lemma 2.5 of [28], except that we have replaced

the condition g′(t) is monotonic with the condition that g′′(t) has a bounded number

of zeros. In other words, [a, b] can be subdivided into finitely many subintervals, in

each of which g′(t) is monotonic. The proof given in [28] goes through without any

changes.

The last lemma that we state is the an important result on exponential sums with

multiplicative coefficients. This is Theorem 1 of Daboussi and Delange [9].

Lemma 4.4. Let f be a multiplicative arithmetical function satisfying the condition∑
n≤x |f(n)|2 = O(x). Then, for every irrational α, we have

(4.8)
∑
n≤x

f(n)e2πinα = o(x).

We remark that the estimate o(x) in (4.8) can be improved to O(x(log log x)−1/2) by

a careful analysis of the method in [9]. In fact, under the additional condition that

|f(p)| ≤ A for all primes p, Montgomery and Vaughan [32] improved the estimate

to O(x log−1 x).

In passing, we remark that for α rational, the estimate (4.8) was established in [9]

under the restriction that |f(n)| ≤ 1 and some additional conditions. However,

in the general case, the Dirichlet coefficients of functions in S do not satisfy these

restrictions.
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4.2 Proof of Theorem 3

We start by recalling the statement of Theorem 3: Let F ∈ S be any function with

degree d = 2, θ = 0,
√
q irrational and the Dirichlet coefficients a(n) satisfying

(4.9)
∑
n≤x

|a(n)|2 = O(x).

Then F (s) has infinitely many zeros on the critical line.

We first recall that the zeros of F (s) on the critical line correspond to the real zeros

of ZF (t). Let us assume that F (s) has only finitely many zeros on the critical line.

This implies that ZF (t) has no zeros in the interval [T, 2T ] where T is sufficiently

large.

Consider the integral

(4.10) I3 =

∫ 2T

T

ZF (t)dt.

The proof will proceed by using the assumption on ZF (t) to estimate |I3| from below

and above, and obtain a contradiction. The methods will be analogous to Step I

of Chapters 2 and 3. However, the main difference will be that it will not suffice

to express the upper bound as an integral of a finite sum (see (2.18) and (3.21)).

The saddle point method will be used to transform this integral into an explicit

exponential sum and the crucial result of Daboussi and Delange (Lemma 4.4) will

be applied to this sum to complete the upper bound estimation.

By our assumption on ZF (t), we can say that the integrand in (4.10) is of constant

sign. Hence

|I3| =
∫ 2T

T

|ZF (t)|dt =

∫ 2T

T

|F (1
2

+ it)|dt.
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Now, we invoke Ramachandra’s theorem by taking H = T in Lemma 2.3. Thus, we

obtain the lower bound

(4.11) |I3| � T.

For the upper bound estimation, we remark that, unlike the case of ζ(s) and ζQ(s)

in the previous chapters, there is no known approximate functional equation for a

general function F (s) ∈ S. Hence we will need to move the line of integration to

the region where F (s) has a Dirichlet series expansion.

Accordingly, we first write the integral I3 as

(4.12) I3 = −i
∫ 1/2+i2T

1/2+iT

∆−1/2(s)F (s)ds.

Next, we move the line of integration to σ = 1 + δ, (where δ > 0 is a small positive

constant less than 1/2) and apply Cauchy’s theorem to the integral

∫
∆−1/2(s)F (s)ds,

along the rectangle with sides σ = 1/2, σ = 1 + δ, t = T and t = 2T .

By Cauchy’s theorem, the integral (4.12) reduces to

(4.13)

∫ 2T

T

∆−1/2(1 + δ + it)F (1 + δ + it)dt,

with an error O(T 1/2+δ+ε) = o(T ) coming from the horizontal lines, by using the

growth estimate in Lemma 4.2 (with d = 2).

Expanding F (1 + δ+ it) as a Dirchlet series and using the asymptotic formula (4.6)

(with d = 2 and θ = 0) in (4.13), we see that the expression (4.13) is a constant
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multiple of

(4.14)
∞∑
n=1

a(n)

n1+δ

∫ 2T

T

t1/2+δ

(
q∗t

en

)it (
1 +O(1/t)

)
dt.

The contribution of the O−term in (4.14) is trivially O(T 1/2+δ) = o(T ).

Collecting all the above estimates, we obtain

(4.15) I3 �
∞∑
n=1

a(n)

n1+δ

∫ 2T

T

g(t)eif(t)dt+ o(T ),

where f(t) = t log( q∗t
en

) and g(t) = t1/2+δ.

Now we subdivide the sum in (4.15) into sub-intervals

1 ≤ n ≤ q∗T − 1, q∗T + 1 ≤ n ≤ 2q∗T − 1, 2q∗T + 1 ≤ n,

and denote the corresponding sums over these ranges as Σ1,Σ2,Σ3 respectively. The

reason for this subdivision is that in the first and last ranges we will use the first

derivative estimate (Lemma 3.1), while in the middle range we will use the saddle

point theorem (Lemma 4.3).

Notice that there are atmost 4 integers in the range of (4.15) which have not been

included in the above ranges. Noting that n � q∗T for these integers and using the

Ramanujan hypothesis (4.4), their contribution to (4.15) is

O

(
nε

n1+δ
T 1/2+δT

)
= O

(
T 1/2+ε

)
= o(T ).

The sum Σ1 is estimated by using Lemma 3.1. Note that here f ′(x) = log(q∗t/n)�

log(q∗T/n) and g(x) � T 1/2+δ and the condition on monotonicity of f ′/g is satisfied
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by subdiving [T, 2T ] into two parts if necessary.

(4.16) Σ1 = O

(
T 1/2+δ

∑ |a(n)|
n1+δ log(q∗T/n)

)
.

We then further sub-divide the range of (4.16) into two sub-sums as follows

1 ≤ n ≤ q∗T/2, q∗T/2 < n ≤ q∗T − 1,

and denote the corresponding sums by Σ11 and Σ12 respectively. This is done in order

to simplify the estimation of the sum in (4.16), so that the log factor is bounded in

the first range and n1+δ is bounded in the other range.

For estimating Σ11, we note that log(q∗T/n) ≥ log 2 in this range and hence we get

Σ11 = O

(
T 1/2+δ

∑ |a(n)|
n1+δ

)
= O

(
T 1/2+δ

)
= o(T ).

For estimating Σ12, we use the inequality log(q∗T/n) ≥ (q∗T −n)/q∗T , n � q∗T and

(4.4) to obtain

(4.17) Σ12 = O

(
T 1/2+δ

∑ |a(n)|
n1+δ

q∗T

q∗T − n

)
= O

(
T 1/2+ε

∑ 1

q∗T − n

)
.

Observe that the last sum in (4.17) is

∑
(q∗T − n)−1 =

∑
1≤k<q∗T/2

(k + f)−1 = O(log T ),

where f = q∗T − bq∗T c ≥ 0 is the fractional part of q∗T . Using this in (4.17) gives

Σ12 = O(T 1/2+ε log T ) = o(T ).

49



This concludes the estimate

(4.18) Σ1 = o(T ).

Estimating Σ3 is similar to that of Σ1 except that we use |f ′(t)| � log(n/(2q∗T )) in

Lemma 3.1. Hence, we find in a similar manner that

(4.19) Σ3 = o(T ).

We now estimate the main contribution to the upper bound (4.15) coming from the

sum Σ2. This is estimated by using the saddle point theorem Lemma 4.3. Here we

have c = n/q∗, λ2 = T−1, λ3 = T−2, G = T 1/2+δ and G1 = T−1/2+δ. Hence we get

Σ2 = c2

∑
a(n)e−in/q∗ +O

(∑ |a(n)|
n1+δ

T 1/2+δ

)
+(4.20)

+O

(∑ |a(n)|
n1+δ

T 1/2+δEn

)
,

where c2 is a constant and En is

En = log
(

n
q∗T

)−1
+ log

(
2q∗T
n

)−1
.

The first O-term in (4.20) is estimated by noting that the sum is convergent to get

O(T 1/2+δ) = o(T ).

The estimation of the second O-term in (4.20) is done in the same way as was done

for Σ12 to conclude that it is O(T 1/2+ε log T ) = o(T ).
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Finally, the upper bound estimation reduces to the crucial exponential sum

∑
q∗T+1≤n≤2q∗T−1

a(n)e−2πin/
√
q .

Here, we have replaced q∗ =
√
q(2π)−1 in the main exponential sum in (4.20).

By the multiplicativity of the Dirichlet coefficients a(n), the assumption (4.9) on

a(n), the irrationality of
√
q and Lemma 4.4, we get this sum to be o(T ). This

concludes the estimate

(4.21) Σ2 = o(T ).

Thus, using (4.18), (4.19) and (4.21) in (4.15), we get

(4.22) I3 = o(T ).

Thus from (4.11) and (4.22), we derive a contradiction for T sufficiently large. Thus,

F (s) has infinitely many zeros on the critical line. This completes the proof of the

theorem.

In the next chapter, we shall study the same problem for functions in S with degree

d > 2.
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Chapter 5

Hardy’s theorem for the Selberg

class: d > 2

The problem of showing that there are infinitely many zeros on the critical line for

any L-function of degree d > 2 is an extremely challenging one. In this chapter, we

shall discuss a conditional approach to this problem by generalizing the methods of

Chapter 4 pertaining to the degree 2 case.

We first recall the statement of Theorem 4: Let F ∈ S with degree 2 ≤ d < 4,

conductor q and internal shift θ = 0. Let T,H be sufficiently large such that

T
d
4

+ε � H � T for some ε > 0, q∗ = q1/2(2π)−d/2 and G = H/ log T . Let ψ(u) =

exp(−u2G−2) be a smoothing function. If the condition

(5.1)
∑

|(n/q∗)2/d−T |≤H

a(n)

n
1
2
− 1
d

ψ
(
(n/q∗)

2/d − T
)

exp

(
−id

2
(n/q∗)

2/d

)
= o (G)

holds, then F (1
2

+ it) has a zero for some t ∈ [T −H,T +H].

We recall that the zeros of F (s) on the critical line correspond to the real zeros of

ZF (t), which is the analogue of Hardy’s function for F (s) (see (4.3)). Let us assume
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that F (1
2

+ it), and hence ZF (t), has no zeros with t in the interval [T −H,T +H].

Consider the smoothed integral

(5.2) I4 =

∫ H

−H
ZF (T + u)ψ(u)du,

The method of proof will be similar to that of Theorem 3. The proof proceeds by

using our assumption on ZF (t) to estimate I4 from above and below and arrive at a

contradiction. Both the estimates are established by generalizing the corresponding

methods of Chapter 4 to deal with the smoothing factor in the integral.

By our assumption on ZF (t), we get that the integrand in (5.2) does not change

sign in the range of integration. Hence, we get the lower bound

(5.3) |I4| �
∫ G

−G
|ZF (T + u)|du =

∫ G

−G
|F (1

2
+ i(T + u))|du� G.

by noting that ψ(u)� 1 when |u| ≤ G for the first inequality and using Ramachan-

dra’s theorem (Lemma 2.3) to get the last inequality.

For the upper bound estimation of I4, we first convert (5.2) into a complex integral

and move the line of integration to line Re s = 1 + δ, where F (s) has a Dirichlet

series expansion (here δ > 0 is a small constant to be chosen later).

I4 = −i
∫ 1

2
+i(T+H)

1
2

+i(T−H)

∆−1/2(s)F (s)e(s− 1
2
−iT )2G−2

ds

= −i
∫ 1+δ+i(T−H)

1
2

+i(T−H)

−i
∫ 1

2
+i(T+H)

1+δ+i(T+H)

−i
∫ 1+δ+i(T+H)

1+δ+i(T−H)

.(5.4)

We bound the first two integrals in (5.4) - the “horizontal” integrals - by noting that

∆−1/2(s)F (s)� T
d
2

( 1
2

+δ)+ε,
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in the range of integration. This follows from Lemma 4.2. Also, writing s = σ +

i(T ±H), we observe that

exp
(
(s− 1

2
− iT )2G−2

)
= exp

(
(−H2 + (σ − 1

2
)2 ± i(2σ − 1)H)G−2

)
� exp(−1

2
H2G−2)� T−

1
2

log T .

Hence, the first two integrals in (5.4) give an error of o(1).

Now, in the last integral of (5.4)- the “vertical” integral - we expand F (s) as a

Dirichlet series to get

(5.5) I4 �
∞∑
n=1

a(n)

n1+δ

∫ H

−H
∆−1/2(1 + δ + i(T + u))n−i(T+u)e( 1

2
+δ+iu)2G−2

du.

We now recall the asymptotic formula (4.6) (with θ = 0)

(5.6) ∆−1/2(1 + δ + i(T + u)) = ω1(q∗(T + u)
d
2 )

1
2

+δ+i(T+u)e−i
d
2

(T+u)(1 +O(T−1)),

for a constant ω1 6= 0. Using (5.6) in (5.5) we get

I4 �
∑
n

a(n)

n1+δ

∫ H

−H
(T + u)d( 1

4
+ δ

2
)
(
(T+u

e
)
d
2
q∗
n

)i(T+u)
e( 1

2
+δ+iu)2G−2

du

+O(HT d( 1
4

+ δ
2

)−1),(5.7)

where the error term in (5.7) comes from the O-term in (5.6) and a trivial estimation

of the corresponding integral.

Expanding the exponential factor in the integral in (5.7) and multiplying with a

suitable constant � exp((1
2

+ δ)2G−2)� 1, we get

(5.8) I4 �
∑
n

a(n)

n1+δ

∫ H

−H
g(u)eif(u)du+O(HT d( 1

4
+ δ

2
)−1),
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where g(u) and f(u) are the functions

(5.9) g(u) = (T + u)d( 1
4

+ δ
2

)e−u
2G−2

, f(u) = d
2
(T + u) log

(
T+u
e

(
q∗
n

) 2
d c0

)
,

and c0 is as follows

(5.10) c0 = exp(4
d
(1

2
+ δ)G−2).

We now subdivide the sum over n in (5.8) into three ranges

n ≤ n0 − 1, n0 + 1 ≤ n ≤ n1 − 1, n ≥ n1 + 1,

and call the corresponding sums Σ(1),Σ(2),Σ(3), respectively, where

(5.11) n0 = q∗c
d
2
0 (T −H)

d
2 , and n1 = q∗c

d
2
0 (T +H)

d
2 .

The reason for this subdivision is that in the first and last ranges we will use the

first derivative estimate for the integral in (5.8), while for the middle range we will

use the saddle point theorem.

Thus (5.8) becomes

(5.12) I4 � Σ(1) + Σ(2) + Σ(3) +O(HT d( 1
4

+ δ
2

)−1).

Note that there may be atmost 4 integers from (5.8) which have not been covered

in the above subdivision. Since n � T d/2 for these integers and the Ramanujan

hypothesis holds in the form a(n)� nδ, their contribution to I4 is

O

(
T
d
2
δ

T
d
2

(1+δ)
HT d( 1

4
+ δ

2
)

)
= O(HT d( 1

4
+ δ

2
)−1),
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as d ≥ 2 and this is absorbed into the error term in (5.12).

The condition d < 4 implies that we can choose δ small enough so that d(1
4

+ δ
2
) < 1

and hence the error term in (5.12) becomes o(G).

The estimation of Σ(1) is an application of Lemma 3.1 to the integral in (5.8).

Note that f ′(u) = d
2

log((T + u)( q∗
n

)
2
d c0) � log(n0/n) (see (5.11)) and g(u) �

T d( 1
4

+ δ
2

). The condition on monotonicity of f ′/g is satisfied by subdiving the range

of integration into 2 parts if necessary. Hence, we get

Σ(1) � T d( 1
4

+ δ
2

)
∑

n≤n0−1

|a(n)|
n1+δ log(n0/n)

� T d( 1
4

+ δ
2

)

 ∑
n≤n0/2

|a(n)|
n1+δ log 2

+
∑

n0/2<n≤n0−1

|a(n)|
n1+δ log(n0/n)

 .(5.13)

Note that the first sum in (5.13) is convergent, and in the second sum we use n � n0,

log(n0/n)� (n0 − n)/n0 and a(n)� nδ, to get

Σ(1) � T d( 1
4

+ δ
2

)

(
1 +

∑
n0/2<n≤n0−1

1

n0 − n

)
� T d( 1

4
+ δ

2
) log T = o(G),(5.14)

if we choose d
2
δ < ε because G log T = H � T

d
4

+ε. This is the second condition on

the choice of δ.

For Σ(3), we proceed just as in the case of Σ(1), except that we use |f ′(u)| ≥ log(n/n1)

in Lemma 3.1, to conclude that

(5.15) Σ(3) = o(G).

Finally, for Σ(2), we use Lemma 4.3 for the integral in (5.8). Note that the saddle

point u0 (the value such that f ′(u0) = 0) satisfies 1 = (T + u0)( q∗
n

)
2
d c0.
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We also have the bounds f ′′ � T−1, f ′′′ � T−2, g(u)�M where M = T d( 1
4

+ δ
2

) and

g′(u) = g(u)((T + u)−1 − 2uG−2)�MHG−2 = MH−1 log2 T .

Thus applying Lemma 4.3 to the integral in (5.8) in this range, we get

∫ H

−H
g(u)eif(u)du =c2

g(u0)

f ′′(u0)1/2
eif(u0) +O

(
MH−1T log2 T

)
+O

(
MHT−1

)
+O (M) +O(M(|f ′(−H)|−1 + |f ′(H)|−1)),(5.16)

for some constant c2.

Now, recall that Σ(2) is the sum in (5.8) restricted to the range n0 + 1 ≤ n ≤ n1− 1.

To estimate Σ(2), we will replace the integral in (5.8) by the expression (5.16) and

estimate the contribution of each term.

First, we will estimate the contribution of the O-terms in (5.16) to the sum Σ(2). We

note that the first O-term dominates the next two. Hence it is enough to consider

only the first and the last O-terms in (5.16).

Note that the number of terms in the range of Σ(2) is � (T +H)
d
2− (T −H)

d
2

� T
d
2
−1H.

The contribution of the first O-term in (5.16) to Σ(2) is estimated trivially by using

a(n)� nδ and noting that n � T d/2 in this range, to get

(5.17) O

(
T
d
2
−1H

T
d
2
δ

T
d
2

(1+δ)

T d( 1
4

+ δ
2

)T log2 T

H

)
= O(T d( 1

4
+ δ

2
) log2 T ) = o(G),

by our choice of δ.

For the contribution of the last error term in (5.16) to Σ(2), we shall estimate the

part involving f ′(−H), the other one involving f ′(H) being handled similarly. We

write n = n0 + m with 1 ≤ m � T
d
2
−1H in this range. Recall that |f ′(−H)| =
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log( n
n0

)� m
n0

. Using this bound and proceeding as in the previous estimate (5.17),

the contribution to Σ(2) is

(5.18) O

(
T d( 1

4
+ δ

2
)+ d

2
δ

T
d
2

(1+δ)

∑
m

n0

m

)
= O(T d( 1

4
+ δ

2
) log T ) = o(G),

where the sums are over 1 ≤ m� T
d
2
−1H.

The contribution of the main term in (5.16) to Σ(2) is a constant multiple of

∑
n0+1≤n≤n1−1

a(n)

n
1
2
− 1
d

exp

(
−id

2
c−1

0 (n/q∗)
2
d − (T − c−1

0 (n/q∗)
2
d )2

G2

)
.(5.19)

We shall remove the dependence on c0 in (5.19) both in the exponential factor as

well as in the range. First, from (5.10) we have c−1
0 = 1 + O(G−2) and hence the

argument of the exponential in (5.19) is

−id
2

(n/q∗)
2
d +O(TG−2)− (T − (n/q∗)

2
d )2

G2
+O(T 2G−4)(5.20)

Thus, using (5.20) in the exponential factor of (5.19) results in

∑
n0+1≤n≤n1−1

a(n)

n
1
2
− 1
d

exp

(
−id

2
(n/q∗)

2
d − (T − (n/q∗)

2
d )2

G2

)
,(5.21)

with an error

O

(
T
d
2
−1H

T
d
2
δ

T
d
2

( 1
2
− 1
d

)

T

G2

)
= O

(
T
d
4

+ 1
2

+ d
2
δ log2 T

H

)
= o(G),(5.22)

since T
d
4

+ d
2
δ = o(H) by the choice of δ and T 1/2 log2 T � G.

Now, to remove the dependence on c0 in the range of (5.21), we note that for the

terms where |(n/q∗)2/d − T | > H, the value of the smoothing function exp(−(T −

(n/q∗)
2/d)2G−2) � exp(−H2G−2) � T− log T . Thus the contribution of these terms
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to Σ(2) is o(1). Hence the sum (5.21) reduces to

∑
|(n/q∗)2/d−T |≤H

a(n)

n
1
2
− 1
d

ψ
(
(n/q∗)

2/d − T
)

exp

(
−id

2
(n/q∗)

2/d

)
= o(G),(5.23)

the last bound following from the hypothesis (5.1) of the theorem.

Combining (5.17), (5.18), (5.22) and (5.23), we get

(5.24) Σ(2) = o(G).

Hence, using (5.14), (5.15) and (5.24) in (5.12), we complete the upper bound esti-

mate

(5.25) I4 = o(G).

Thus, from the lower bound (5.3) and the upper bound (5.25), we derive a contra-

diction. This contradicts our assumption and therefore establishes the truth of the

theorem.

59



Bibliography

[1] R. Balasubramanian. An improvement on a theorem of Titchmarsh on the

mean square of |ζ(1
2

+ it)|. Proc. London Math. Soc. (3), 36(3):540–576, 1978.

[2] S. Bochner. On Riemann’s functional equation with multiple Gamma factors.

Ann. of Math. (2), 67:29–41, 1958.

[3] E. Bombieri and D. A. Hejhal. On the distribution of zeros of linear combina-

tions of Euler products. Duke Math. J., 80(3):821–862, 1995.

[4] H. M. Bui, Brian Conrey, and Matthew P. Young. More than 41% of the zeros

of the zeta function are on the critical line. Acta Arith., 150(1):35–64, 2011.

[5] K. Chandrasekharan and Raghavan Narasimhan. Zeta-functions of ideal classes

in quadratic fields and their zeros on the critical line. Comment. Math. Helv.,

43:18–30, 1968.

[6] Brian Conrey. Zeros of derivatives of Riemann’s ξ-function on the critical line.

J. Number Theory, 16(1):49–74, 1983.

[7] J. B. Conrey. More than two fifths of the zeros of the Riemann zeta function

are on the critical line. J. Reine Angew. Math., 399:1–26, 1989.

[8] J. B. Conrey and A. Ghosh. On the Selberg class of Dirichlet series: small

degrees. Duke Math. J., 72(3):673–693, 1993.

60
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[19] A. Ivić. The Riemann zeta-function. A Wiley-Interscience Publication. John

Wiley & Sons Inc., New York, 1985. The theory of the Riemann zeta-function

with applications.
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