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Synopsis
In this thesis, we investigate one dimensional generalisations of the Kitaev modeland study robustness of topologial qubits in one dimensional quantum spin hains.The Kitaev model, a two dimensional model on honeyomb lattie, was proposedby A. Yu. Kitaev for possible implementation of topologial quantum omputation[1℄. This model has anisotropi type nearest neighbour spin-spin interation whihdepends on the diretion of the bonds. The Hamiltonian an be written as follows,

H = −Jx
∑

x−link

σx
i σ

x
j − Jy
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y−link

σy
i σ

y
j − Jz

∑

z−link

σz
i σ

z
j .Here x, y and z links are three di�erent bonds in the hexagonal lattie whihare related by 120o rotation and i, j denote nearest neighbour sites. This modelhas onserved quantities assoiated with eah hexagonal plaquette and all losedloops. The spin model has been fermionised by Jordan-Wigner transformation.This fermionisation proess maps the original spin 1/2 Hamiltonian into a tightbinding Hamiltonian of Majorana fermion where hopping amplitude ontains theloal stati Z2 gauge �elds. It has been shown that ground state setor belongsto the ase where all Z2 gauge �elds take value +1. The translational invarianeof Z2 gauge �elds in the hopping amplitude has allowed to alulate the groundstate energy and a set of low lying exited states exatly. For this partiular gaugeon�guration the spetrum has two distint phases. For ertain values of parameterthe spetrum is gapless otherwise it is gapped. While the gapped phase ontainsabelian anyoni exitations, the gapless phase ontains non-abelian exitations. Inpresene of magneti �eld the gapless phase aquires a gap. The fat that Kitaevmodel has non-abelian exitations whih an be used for Quantum Compuationattrated our attention and we started studying one-dimensional generalisationsof this model.Kitaev's honeyomb model an be generalised to a variety of other latties[2,3,4,5,6℄. All generalised Kitaev models are integrable in the sense that all ofthem redue to systems of non-interating Majorana fermions. They an be on-struted on any lattie with oordination number three, if all the bonds an beoloured using three olours. In this thesis, we onsider two generalised modelsthe Tetrahedron model and the XYZ-Ising model. 1



The thesis is divided into �ve hapters. We present a summary of main resultsin eah hapter below:IntrodutionIn hapter 1, we give a brief introdution to quantum omputation and all kindsof errors whih an happen in a Quantum Computer. We disuss a few shemes ofQuantum error orreting odes whih ahieve fault tolerane. Then, we presenta brief introdution to Topologial Quantum omputation. We explain how faulttolerane an be ahieved in this sheme and disuss the Kitaev model wherethese goals have been ahieved. Finally, various shemes of physial realisation aredisussed.Tetrahedron ModelIn hapter 2, we onstrut and study one dimensional generalisation of Kitaevmodel we all the "Tetrahedral model" for whih we derive several exat results.The Hamiltonian of the model an be written as,
H =
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.In eah unit ell two set of operators exist whih ommute with Hamiltonian,
WL
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y
i,2.We express the Hamiltonian in terms of Majorana fermions using the Jordan-Wigner transformation. We hoose the Jordan-Wigner path to go along the x andthe y bonds from left to right. At every site we have two bonds that are tangentialto the path. We denote the inoming bond by t1 and the outgoing bond by t2.The third bond on eah site is normal to the path and denoted by n with the signde�ned by n̂ = t̂1 × t̂2. We de�ne Jordan-Wigner transformation in terms of this
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new basis in following way,
ξi,α = σt1
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,where ξi,α and ηi,α are alled Majorana operators and follow fermioni anti-ommutationrelation with one additional property that they are hermitian operators.In terms of Majorana fermions we get a non-interating Hamiltonian in thebakground of Z2 gauge �eld as shown below,
H =
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,where the gauge �elds, ˆ
u
L(R)
i , are de�ned as
ûLi ≡ iηi,3ηi,1 ûRi ≡ iηi,2ηi,4.The gauge �eld operators are the ommuting operators in Jordan-Wigner basis,therefore they also ommute with the Hamiltonian. As square of eah gauge �eldoperator is unity matrix we an replae them by their eigenvalues uL(R)

i = ±1.Therefore, we ould obtain the following results [7℄:1. Numerially, we found that the translationally invariant �uxes through theunit ells, namely uLi = −1 and uRi = −1 is the ground state setor of the model.2. Sine the fermioni gap is twie the value of the lowest single partile energyeigenvalue and lowest single partile energy belongs to translationally invariant�ux on�guration, we ould give an analyti expression for fermioni gap.3. Sine we got a tight binding Hamiltonian it beame viable for us to writeanalytial solution for zero energy modes of Majorana fermions. The existene ofunpaired degenerate zero modes has been shown.4. It has been shown that by tuning �ux on�guration we an manipulate thezero mode wavefuntion. The regions in parameter spae for homogenous hains3



has been shown where the zero modes our.5. We further show that there is a large parameter spae for inhomogenoushains where the unpaired modes our.6. Another result we prove in the model is that every state of the system hasa 2N/4 fold degeneray, where N is the number of sites.XYZ-Ising Model: Exat SolutionsIn hapter 3, we study another one dimensional generalisation �XYZ-Ising model�for possible physial realisation by Josephson juntion quantum iruits [8℄. TheTetrahedron model has three-spin ommuting operator whereas in this model theommuting operators are two-spin operators.Hamiltonian of this model is de�ned by
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.Commuting operators are,
Wi = σz

i,1σ
z
i,2.Here, sine the ommuting operator are two spin operators, the physial realisationof the model beomes possible using Josephson juntion quantum iruits [8℄. The zbond in the Hamiltonian is nothing but two spin ommuting operators. Therefore,we study the speial ase Jz = 0 of Hamiltonian whih we all the XY-Ising model.All the eigenstates and eigenvalues of the XYZ-Ising and the XY-Ising model issame.In XY-Ising model we de�ne Jordan-Wigner path through the y and the z bond.Applying the JW transformation, we get again a non-interating Hamiltonian,
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ûi ≡ iηi,1ηi,2. 4



As in ase of Tetrahedron model, ûi an be replaed by its eigenvalues ui = ±1.The results we have got so far [9℄:1. Being a tight binding Hamiltonian we ould solve the XY-Ising model exatlyand prove that for Jx = Jy the ground state lies in translationally invariant �uxsetor ui = −1.2. We showed that ground state setor of XY-Ising model is gapped for ertainrange of parameters of the Hamiltonian.3. Nature of low energy exitations in XY-Ising model has been studied ana-lytially.XYZ-Ising Model: Phase DiagramIn hapter 4, the XYZ-Ising model,
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,an also be solved using the Kitaev's trik even if it's not a Kitaev type three linkmodel.In 1961, Lieb, Shultz and Mattis studied a speial ase of similar quantummehanial model where the interations are alternately Ising and isotropi Heisen-berg interations, and solved exatly in the sense that the ground state, all theelementary exitations and the free energy has been found [10℄.Here are the results:1. We study ground state of the XYZ-Ising model for all Jx, Jy and Jz numer-ially whih agree in extreme limits with analytial results.2. The zero temperature phase diagram of the system has been plotted byalulating ground state numerially. We �nd that model undergoes a �rst orderphase transition as a funtion of oupling onstant Jz < 0. ForJz > 0, the modelhas a topologial phase transition.
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Topologial Qubits in XY-Ising ModelIn hapter 5, We de�ne a qubit and study the interation of the system with theenvironment.Here are the results we ahieved [9℄:1. As in ase of the Tetrahedron model, analytial solution for zero modeMajorana fermions in the XY-Ising model has been obtained.2. Unpairing of degenerate zero modes has been shown. It has been shownthat by tuning �ux on�guration we an manipulate the zero mode wavefuntion.3.We propose a Qubit made up of two degenerate modes of the model.4. We have studied, using �rst order degenerate perturbation theory, the pro-tetion of this Qubit from deoherene by environmental perturbation,
V =

∑

i,α
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x σx
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y σy

i,α +Bi,α
z σz
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)

,and showed that z part of the potential indues the transition between the qubit-subspae whih an be made small by tuning parameters J and Jz. We also showedthat for x and y part of potential the protetion form deoherene is perfet.5. We show expliitly, following the sheme proposed by You et al [8℄, how theXY-Ising model and the XYZ-Ising model an be realised by Josephson juntionquantum iruits.Referenes[1℄ A. Y. Kitaev. Fault-tolerant quantum omputation by anyons. Ann. Phys.(N.Y.) 303, 2003; Anyons in an exatly solved model and beyond. 321, 2 (2006).[2℄ H. Yao and S. A. Kivelson. Exat Chiral Spin Liquid with Non-Abelian Anyons.Phys. Rev. Lett. 99, 247203 (2007).[3℄ S. Yang, D. L. Zhou and C. P. Sun. Mosai spin models with topologial order.Phys. Rev. B 76, 180404(R)(2007).[4℄ S. Mandal and N. Surendran. Exatly solvable Kitaev model in three dimen-sions. Phys. Rev. B 79, 024426 (2009).[5℄ Z. Nussinov and G. Ortiz. Bond algebras and exat solvability of Hamiltonians:6



Spin S=1/2 multilayer systems. Phys. Rev. B 79, 214440 (2009).[6℄ G. Baskaran, S. Santhosh and R. Shankar. Exat quantum spin liquids withFermi surfaes in spin-1/2 models. arXiv:0908.1614 (unpublished).[7℄ Abhinav Saket, S. R. Hassan and R. Shankar. Manipulating unpaired Majoranafermions in a quantum spin hain. Phys. Rev. B 82, 174409 (2010).[8℄ J. Q. You, X. F. Shi, X. Hu and F. Nori. Quantum emulation of a spin sys-tem with topologially proteted ground states using superonduting quantumiruits. Phys. Rev. B 81, 014505 (2010).[9℄ Abhinav Saket, S.R. Hassan and R. Shankar. Topologial Qubits in a quantumspin hain (under preparation).[10℄ E. Lieb, T. Shultz and D. Mattis. Two Soluble Models of an AntiferromagnetiChain. Annals of Physis: 16, 407-466 (1961).Publiations1. Abhinav Saket, S. R. Hassan and R. Shankar. Manipulating unpaired Majoranafermions in a quantum spin hain. Phys. Rev. B 82, 174409 (2010).2. Abhinav Saket, S.R. Hassan and R. Shankar. Topologial aspets of an exatlysolvable spin hain (to be published in PRB).
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1Introdution
1.1 OverviewQuantum omputers an solve some problems faster than any lassial omputer,but they are far more prone for making errors than lassial omputers. Somemethod of ontrolling and orreting those errors has to be found to prevent aquantum omputer from failure. There are many reasons that a quantum omputormay fail. The biggest enemy of the quantum omputer is deoherene. Even if wemanage to ontrol deoherene by isolating our omputer from the environment,we an not expet to exeute quantum logi gates with perfet auray. Thequantum gates that the quantum omputer exeutes, are unitary transformationsthat operate on a qubit. These unitary matries form a ontinuum and, therefore,exeution of the transformation will not be �awless. Small errors in the gates anaumulate over the ourse of a omputation, eventually ausing failure. One wayto ahieve fault tolerane is through Topologial Quantum Computation. Topologyonerns the global properties of an objet that remain unhanged when we deformthe objet loally. The entral idea of Topologial Quantum omputation is to storeand manipulate quantum information in a `global' form so that it is protetedfrom loal disturbanes [1℄. In this sheme, we apply the logi gate operationon a qubit by performing braiding operation on two dimensional quasipartilesalled Anyons. Loal perturbations do not hange the topologial properties of thebraids and therefore annot introdue errors in the quantum omputation. Kitaev[2℄ showed this on a two dimensional spin-1/2 model that using the topologialproperties of braids, "fault tolerane" an be ahieved. The Kitaev's model is a1



Chapter 1. Introdutiontwo dimensional model. Our aim in this thesis is to study how far one an go if onetakes a one-dimensional model. Reently, Jason Aliea et al [3℄ has showed a wayto perform braiding operation on non abelion anyons in one dimensional model.In this thesis, we study two one-dimensional generalisations of the Kitaev modelnamely, �Tetrahedron model� and �XY-Ising model�.After Kitaev proposed his model, there have been many attemps to realise thehis model experimentally. J. Q. You et al [4℄ realised the model using Josephsonjuntion Quantum Ciruits. But omplete realisation of braiding operation is notpossible in the model. In this thesis, we make an attempt in this diretion too.1.2 Quantum ComputationA quantum omputer is a devie for omputation that makes use of superpositionpriniple to perform operations on data [5℄. A lassial omputer has a memorymade up of bits, where eah bit is either one or zero where as a quantum omputer'smemory is made up of Qubits. A Qubit is a quantum superposition of two stateszero and one [10℄. We write it as
|ψ〉 = a|0〉+ b|1〉 (1.1)where |0〉 and |1〉 are orthogonal states and |a|2 + |b|2 = 1. Further, oe�ients aand b are omplex numbers. These omplex numbers speify the quantum stateof the qubit.In general, a quantum omputer with N qubits an be in an arbitrary super-position of 2N di�erent states (This an be ompared to a normal omputer thatan only be in one of these 2N states at any time).The logi gate is applied on the qubit through Unitary time evolution of thesystem,
U |ψ〉 = e−iHt/~|ψ〉 (1.2)The allowed operations on the qubits are unitary matries, whih are nothing butomplex rotations. Consequently, Benio� [6℄ and Feynman [7℄ realised omputa-tions are reversible as rotations an be undone by rotating bakward. 2



Chapter 1. IntrodutionA quantum omputer operates by manipulating qubits with a �xed sequeneof quantum logi gates. The sequene of gates to be applied is alled a quantumalgorithm.Final question: How do we read the result obtained by quantum omputationas it is the quantum superposition of states?In the ase of a probabilisti lassial omputer, we sample, for example, fromthe probability distribution of the three-bit register to obtain one de�nite three-bitstring, say 000. Quantum mehanially, we measure the three-qubit state, whihis equivalent to ollapsing the quantum state down to a lassial distribution (withthe oe�ients in the lassial state being the squared magnitudes of the oe�-ients for the quantum state) whih is followed by sampling from that distribution.Many algorithms will only give the orret answer with a ertain probability. Theprobability of getting the orret answer an be inreased by initializing, runningand measuring the quantum omputer many times.Many theoretial models have been proposed for quantum omputer. We willdesribe two models, one based on Turing mahine and another based on quantumiruits.1.2.1 Turing MahineThe traditional omputer siene works on the idea of Turing mahine disoveredby Alan Turing in 1936. Aording to Turing [8, 9℄,�Every funtion whih would naturally be regarded as omputable an be om-puted by the universal Turing mahine.�This assertion is known as Churh-Turing thesis. Many people have spent agreat deal of time gathering evidene to the ontrary for Churh-Turing thesis.In sixty years no evidene has been found. The broad aeptene of this thesislaid the foundation for the developement of Computer Siene. The way quantummehanis impats working of the Turing mahine, we will desribe in later setion.Right now, let us start the disussion from onventional Turing mahine.A Turing mahine ontains four elements:(a) a �nite state ontrol, whih atslike a stripped down miroproessor, o-ordinating the other operations of themahine; (b) tape, whih ats like a omputer memory; () a program, like anordinary omputer; and (d) a read and write head, whih points to the position on3



Chapter 1. Introdutionthe tape whih is urrently readable or writable [10℄. The basi element of Turingmahine are shown in the following �gure 1.1.
Program Finite    State

Control

0 1    1    1    0    1    0   0    1    1    0    1   0

Tape
Read/Write 

Head Figure 1.1: Main elements of a Turing mahineLet us disuss these in more detail.The Finite state ontrol: This is also known as �nite state mahine. In the�nite state ontrol, there are a �nite set of internal states, q1, . . . , qm inluding twospeial states, labelled qs and qh. We all these states the starting state and haltingstate. At the begining of the omputation, the Turing mahine is in starting state
qs. The exeution of the omputation auses the Turing mahine's internal statesto hange. After the end of omputation, the Turing mahine ends up in the state
qh. Tape: Turing mahine tape is a one dimensional objet whih onsists of anin�nite sequene of squares. Eah square ontain one symbol taken from somealphabet, Γ, whih ontains a �nite number of distint symbols. Γ ontains foursymbols, whih we denote by 0,1,b(blank symbol), and →, to mark the left handedge of the tape. Initially, the tape ontains a → at the left end, a �nite numberof 0's and 1's and rest of the tape squares are blanks. The readwrite tape headidenti�es a single square on the Turing mahine tape as the square that is urrentlybeing read by the mahine.Program: A program for Turing mahine is a �nite ordered list of programlines of the form 〈q, x, q′

, x
′

, s〉. The �rst objet in the program line, q, is a state4



Chapter 1. Introdutionfrom the set of internal states of the mahine. The seond objet, x, is taken fromthe alphabet, Γ. On eah mahine yle, Turing mahine searhes through the listof program lines in order for a line q, x, ., ., . suh that the urrent internal state ofthe mahine is q, and the symbol being read on the tape is x. If it does not �ndsuh a program line, the internal state of the mahine is hanged to qh, and themahine halts operation. If suh a line is found, then that program line is exeuted.Exeution of a program line involves the following steps: the internal state of themahine is hanged to q′; the symbol x on tape is overwritten by the symbol x′ ,and tape-head moves left, right or stand still, depending on whether s is -1,+1 or 0respetively. This is Turing mahine model of omputation. It turns out that thismodel an be used to ompute a wide variety of funtions. More than that it turnsout that a Turing mahine an be used to simulate all the operations performedon modern omputer. Indeed, aording to the thesis put forward independentlyby Churh and by Turing, the lass of funtions omputable by a Turing mahineorresponds exatly to the lass of funtions whih we would naturally regard asbeing omputable by an algorithm.1.2.2 Quantum Turing MahineHow quantum mehanis an alter the working of Turing mahine? Suh Turingmahines were �rst proposed by David Deutsh [11℄. He suggested a strongerversion of Churh-Turing thesis, as follows,�Every �nitely realisable physial system an be perfetly simulated by a uni-versal model omputing mahine operating by �nite means.�This version is so strong that it is not satis�ed by Turing's mahine in lassialphysis beause in lassial dynamis, the possible states of a lassial system ne-essarily form a ontinuum. But there are only ountable ways of preparing a �niteinput for Turing's universal omputer. Consequently, Turing universal omputingmahine annot perfetly simulate any lassial dynamial system. Deutsh showedin his lassi paper [11℄ that every real (dissipative) �nite physial system an beperfetly simulated by an Universal Quantum Turing mahine. Thus, quantumtheory is naturally ompatible with the strong form of the Churh-Turing Prini-ple. Computing mahines based on strong form of Churh-Turing Priniple an,in priniple, be built and would have many remarkable properties not reproduible5



Chapter 1. Introdutionby any Turing mahine. One of them is "quantum parallelism", a method bywhih ertain probabilisti tasks an be performed faster by a universal quantumomputer than by any lassial ounterpart of it.1.2.3 Quantum CiruitsThe another theoretial model proposed for quantum omputation is based onQuantum iruits. The Quantum logi gates play the same role in quantum om-putation as the lassial logi gates play in lassial omputation.It is simplest to �quantize� NOT gate. We onsider quantum NOT gate as a twolevel system. If the basis states are |0〉 = [ 1

0

] and |1〉 =
[

0

1

] then exeution ofquantum NOT gate on the basis states aomplish following hanges:
|0〉 −→ |1〉

[

1

0

]

−→
[

0

1

]and
|1〉 −→ |0〉

[

0

1

]

−→
[

1

0

]

. (1.3)The exeution of quantum NOT gate on the basis states is ahieved by a unitarymatix U,
U =

[

0 1

1 0

] (1.4)whih an be written in terms of Pauli spin matries simply as,
U = σx. (1.5)

6



Chapter 1. IntrodutionThen we an express the exeution of quantum NOT gate in the following manner,
U (α|0〉+ β|1〉) = α|1〉+ β|0〉. (1.6)In 1985 Deutsh [15℄ made an important observation that mappings on these basisstates uniquely speify the dynamis of an arbitrary initial quantum state, simplyon aount of the linearity of the Shroedinger equation. In this way of thinking,the time evolution of any quantum gate an be expressed as

U = exp
i

~

∫

H(t)dt. (1.7)or simply for small time △t,
U = exp

iH△t
~

. (1.8)From quantum NOT gate unitary operator it is possible to `get bak' the Hamil-tonian whih time evolution would implement the quantum NOT gate,To ompute H, we �rst �nd the matrix P whih would diagonalise U,
P =

1√
2

[

1 1

1 −1

]

. (1.9)Now eqn. (1.8) an be written as,
P †UP = P †exp

iH△t
~

P. (1.10)or,
D = exp

i△tP †HP

~
, (1.11)where D is the diagonalised matrix given by

D =

[

1 0

0 −1

]

. (1.12)
7



Chapter 1. IntrodutionWe take log on both sides in eqn. (1.8) to get
logD =

i△tP †HP

~
(1.13)where

logD =

[

0 0

0 π

]

. (1.14)Therefore,
H =

~

i△tP logDP † =

[

− π~
2△t

− π~
2△t

π~
2△t

− π~
2△t

]

. (1.15)In terms of Pauli matries it an be expressed as
H = − π~

2△tI +
π~

2△tσ
x. (1.16)We have found out here a time independent Hamiltonian but in many other appli-ations it is atually a time-dependent Hamiltonian whih is used to exeute thequantum gate operation.One of the gates, whih is important in the quantum iruit is quantum Ex-ORgate or the ontrolled-NOT gate as shown in the �gure (1.2). This gate works asfollows: the `a' bit is unhanged while the `b' bit is transformed to the `a Ex-ORb' (denoted by a⊕ b). The inlusion of the `a' bit makes the gate reversible. Theinput is a unique funtion of the output as shown in the truth table (1.1).Table 1.1: Truth Table for X-OR gateInput| Outputa b a' b'0 0 0 00 1 0 11 0 1 11 1 1 0The ation of the ontrolled NOT gate is desribed as a Hamiltonian proess8



Chapter 1. Introdution
a a

b

Source

target

a bFigure 1.2: Controlled NOT gatewhih maps the two-qubit basis states aording to the XOR truth table, viz.,
|00〉 → |00〉,
|01〉 → |01〉,
|10〉 → |11〉,
|11〉 → |10〉. (1.17)This an be expressed as unitary time evolution matrix whih relates the initialwavefuntions oe�ients to the �nal wavefuntions oe�ients. For the quantumEx-OR the unitary matrix,

U =













1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0.













. (1.18)In terms of Pauli matries, U an be wrriten as
U =

1 + σz

2
⊗ I +

1− σz

2
⊗ σx. (1.19)9



Chapter 1. IntrodutionThe fat that U2 = I makes it simple to get bak the Hamiltonian using formula
eiπU/2 = iU . The Hamitonian is therefore, in terms of Pauli matries, an bewrriten as

H =
π~

2it

(

1 + σz

2
⊗ I +

1− σz

2
⊗ σx

)

+ constant. (1.20)To�oli disovered another quantum gate whih is universal gate for quantumomputation [14℄. This gate is alled the To�oli gate and symbolized in the �g.(1.3).A universal logi gate is one from whih one an design a iruit whih will eval-uate any arbitrary Boolean funtion. In lassial omputation, NAND gate is theuniversal gate.
a

a

b b

c c abFigure 1.3: To�oli gateIn To�oli gate, both input bits `a' and `b' are unhanged, while bit `' is replaedby `c⊕ a ∧ b' as shown in the truth table (1.2). Unitary matrix for To�oli gate interms of Pauli spin operators is given by
U =

1 + σz

2
⊗ I ⊗ I +

1 + σz

2
⊗ 1− σz

2
⊗ I +

1 + σz

2
⊗ 1− σz

2
⊗ σx. (1.21)10



Chapter 1. IntrodutionTable 1.2: Truth Table for To�oli gateInput Outputa b  a' b' '0 0 0 0 0 00 0 1 0 0 10 1 0 0 1 00 1 1 0 1 11 0 0 1 0 01 0 1 1 0 11 1 0 1 1 11 1 1 1 1 0As we show in ase of quantum Ex-OR gate, Hamiltonian for this ase is also sameas U beause U2 = 1.1.2.4 Reversible ComputerMotivated by the work of Landauer [12℄ about the restritions whih thermodynam-is imposes on omputation, Charles Bennett [13℄, found that, in one importantrespet, thermodynamis does not onstrain omputation: omputation an bedone reversibly. In thermodynamis, a proess is said to be reversible if there is noinrease in entropy. In the lassial irreversible omputation the energy dissipatedis KT ln2 per bit operation. Energy dissipated in Reversible omputation is zerobeause it results in no inrease of entropy. In the late 70's Tom To�oli, inspiredby the Bennett reversible omputer, investigated how reversible omputing ouldbe done in the traditional language of Boolean logi gates. He showed that a setof modi�ed gates ould be used in plae of the traditional Boolean logi gateslike AND, OR and NOT. It turned out that quantum omputation is a reversibleomputation beause gate operation is done by unitary time evolution operator.1.2.5 Quantum Algorithm- Deutsh AlgorithmA lassial algorithm is a step-by-step proedure for solving a problem, where eahstep or instrution an be performed on a lassial omputer. Similarly, a quantumalgorithm is a step-by-step proedure, where eah of the steps an be performed11



Chapter 1. Introdutionon a quantum omputer. In other words, a Quantum algorithm gives us a way tosolve the problem on Quantum omputer.Various algorithms have been proposed to solve spei� problems. In 1994,Peter Shor [16℄ proposed an algorithm to �nd out all prime fators of any integerN. Shor's algorithm takes polynomial time (log N) to fator an integer N. LuvGrover [17℄ in 1996 proposed an algorithm for searhing an unsorted databasewith N entries in O(N1/2) time and using storage spae O(log N).David Deutsh and Rihard Jozsa, in 1992 [18℄, devised an algorithm whih anbe desribed by a following game. Anamika, in Agra hoose a number x from 0 to
2N − 1 to mail it in a letter to Bharat, in Bhopal. Bharat evaluates some funtionand replies with the result. Bharat has been instruted to use a funtion whihis either onstant or balaned (returns 1 for half of all possible x and 0 for theother half). Anamika's task is to �nd out whether Bharat has hosen a onstantfuntion or balaned funtion.Classially, Anamika an send only one value of x in eah letter. At worst,she will have to send 2N/2 + 1 times to tell that bharat's funtion is balaned.What would have been the situation if they ould exhange qubits instead of bits.Aording to Deutsh and Jozsa algorithm, Anamika an ahieve her goal in justone orrespondane with Bharat.Let us desribe here for the sake of bravity and ompleteness one simpler versionof Deutsh-Jozsa algorithm alled Deutsh algorithm. In Deutsh algorithm, we aregiven a boolean funtion whose input is 1 bit, f : {0, 1} → {0, 1} and askedif it is onstant. We have to hek the ondition f(0) = f(1). It is equivalentto hek f(0) ⊕ f(1) (where ⊕ is addition modulo 2). If this is zero, then f isonstant,otherwise f is not onstant. We begin with the two-qubit state |0〉|1〉 andapply a Hadamard transform to eah qubit.Hadamard Transform is de�ned as

H =
1√
2

[

1 1

1 −1

]

.This gives
1

2
(|0〉+ |1〉)(|0〉 − |1〉). (1.22)12



Chapter 1. IntrodutionLet us onsider a quantum implementation of the funtion f whih maps |x〉|y〉 to
|x〉|f(x)⊕ y〉. Applying this funtion to our urrent state we get,
1

2
(|0〉(|f(0)⊕ 0〉 − |f(0)⊕ 1〉) + |1〉(|f(1)⊕ 0〉 − |f(1)⊕ 1〉)) = 1

2
((−1)f(0)

|0〉(|0〉 − |1〉) + (−1)f(1)|1〉(|0〉 − |1〉))

= (−1)f(0)
1

2
(|0〉+ (−1)f(0)⊕f(1)|1〉)(|0〉 − |1〉).(1.23)We ignore the last bit and the global phase fator and therefore have the state

1√
2
(|0〉+ (−1)f(0)⊕f(1)|1〉). (1.24)Applying again a Hadamard transform to this state, we get

1

2
(|0〉+ |1〉+ (−1)f(0)⊕f(1)|0〉 − (−1)f(0)⊕f(1)|1〉) = 1

2
((1 + (−1)f(0)⊕f(1))|0〉

+(1− (−1)f(0)⊕f(1))|1〉).(1.25)Obviously f(0) ⊕ f(1) = 0 if and only if we get |0〉. Therefore the funtion isonstant if and only if we get zero.1.3 Fault tolerant Quantum ComputationFault-tolerane is the property that enables a omputer to operate properly in theevent of the failure of one or more faults within some of its omponents.1.3.1 Quantum DeohereneThe essential property of a qubit in all physial realisations of quantum omput-ers exploits is the existene of nonloal orrelations among the di�erent parts ofa physial system and with environment. The interations between a quantumdevie and its environment establish nonloal orrelations between the two. Ifsomeone looks at only part of the system at a time, he an deode only very lit-tle of the information enoded in the system. Due to suh nonloal orrelations,enoded information deay quite rapidly in pratie. This phenomenon is knownas quantum deoherene. The problem is, our quantum system is, inevitably in13



Chapter 1. Introdutionontat with a larger system, its environment. It is impossible to perfetly isolatea big quantum system from its environment. Eventually, the quantum informationthat we initially enoded in the devie beomes enoded in orrelations betweenthe devie and the environment. Then, we an no longer aess the informationby observing only the devie. In other words, the information is irrevoably lost.In order to operate a quantum omputer reliably, we must �nd a way to preventor orret these errors, whih means isolating the system from its environment.1.3.2 Other ErrorsDeoherene is not the only problem. Even if we ould ahieve perfet isolationfrom the environment, we an not expet a quantum gate operation to implementon a qubit or quantum omputer with perfet auray [20℄. The quantum gatesthat the mahine exeutes are unitary transformations that operate on a qubit.These unitary matries form a ontinuum. We may have a protool for applying
U0 to qubits, but our exeution of the protool will not be �awless, so the atualtransformation U,

U = U0(1 +O(ǫ)) (1.26)will di�er from U0 by some amount of order ǫ. After about 1/ǫ gates are applied,these errors will aumulate and indue a serious failure.Classial devies have similar problems, but small errors are muh less of aproblem for devies that perform boolean logi. They ahieve suh a high au-ray with dissipation. We an think of a lassial gate ating on a bit, as a ballresiding at one of the two minima of a double-well potential. The gate may pushthe ball over the intervening barrier to the other side of the potential. Of ourse,the gate won't be implemented perfetly; it may push the ball a little too hard.Over time, these imperfetions might aumulate and ause an error. To improvethe performane, we ool the bit after eah gate. This is a dissipative proessthat releases heat to the environment and ompresses the phase spae of the ball,bringing it lose to the loal minimum of the potential. So the small errors that wemay make result in heating the environment rather than ompromising the perfor-mane of the devie. We annot ool a quantum omputer this way. Interation14



Chapter 1. Introdutionwith the environment would destroy enoded quantum information.A sophistiated mahinery alled Quantum error orreting odes has beendeveloped to handle these and other errors. This method works on the lines oflassial error orreting odes. We have to, basially, `quantize' the ClassialError Correting Code. Let us desribe some simple lassial ode namelyrepetition ode. We replae the bit we wish to protet by 3 opies of the bit,
0 → (000)

1 → (111). (1.27)Now an error may our that auses one of the three bits to �ip; if it's the �rstbit, say,
(000) → (100)

(111) → (011). (1.28)Now in spite of the error, we an still deode the bit orretly, by majority voting.Of ourse, if the probability of error in eah bit were p, it would be possible fortwo of the three bits to �ip, or even for all three to �ip. A double �ip an happenin three di�erent ways, so the probability of a double �ip is 3p2(1 − p), while theprobability of a triple �ip is p3. Altogether, then, the probability that majorityvoting fails is 3p2(1 − p) + p3 = 3p2 − 2p3. But for 3p2 − 2p3 to be less than p, phas to be greater than 1
2
. Thus, a lassial omputer with noisy omponents anwork reliably, by employing su�ient redundany.Similarly, we an enhane the reliablity of quantum omputer by employingredundany in qubit in following manner,

a|0〉+ b|1〉 → a|0〉+ b|1〉 = a|000〉+ b|111〉. (1.29)But we an immediately see that there are di�ulties at the quantum level whileemploying redundany.1. Phase errors. With quantum information, more things an go wrong. In
15



Chapter 1. Introdutionaddition to bit-�ip errors
|0〉 → |1〉and |1〉 → |0〉, (1.30)there an also be phase errors
|0〉 → |0〉and |1〉 → −|1〉. (1.31)A phase error is serious, beause it makes the state 1√

2
(|0〉 + |1〉) �ip to the or-thogonal state 1√

2
(|0〉−|1〉) . The lassial method is designed to orret large (bit�ip) errors. But phase error kind of situation does not our in lassial oding.2. Small errors. As already noted, quantum information is ontinuous. If aqubit is supposed to be in the state

a|0〉+ b|1〉, (1.32)an error might hange a and b by an amount of order ǫ, and these small errors anaumulate over time.3. Measurement auses disturbane. In the majority voting sheme, weare expeted to measure the bits in the ode to detet and orret the errors. Butwe an't measure qubits without disturbing the quantum information that theyenode beause measurement would destroy the quantum state.4. No loning. With lassial oding, we protet information by makingextra opies of it. But quantum information annot be opied with perfet �delity.These error orretions in qubit and protetion of qubit from deoherene isalled Fault tolerant quantum omputation. For a fault tolerant Quantumomputation Quantum error orreting odes are used whih is our next topi.1.4 Quantum Error Correting CodesThe one way to understand how quantum error orretion works is to examineShor's original ode [20, 21℄. It is a straightforward `quantization' of the lassial16



Chapter 1. Introdution3-bit repetition ode.We enode a single qubit with 3 qubits,
|0〉 → |0〉 = |000〉and |1〉 → |1〉 = |111〉, (1.33)or, in other words, we enode a superposition

a|0〉+ b|1〉 → a|0〉+ b|1〉 = a|000〉+ b|111〉. (1.34)Suppose we want to orret a bit �ip error without destroying this superposition.If we measure the enoded qubit and get the result |0〉, then we end up preparingthe state |0〉 of all three qubits, and we have lost the quantum information enodedin the oe�ients a and b.In shor's ode we measure a 3-qubit state |x, y, z〉 by the two-qubit observables
Y ⊕ Z and X ⊕ Z (where ⊕ denotes addition modulo 2). Let us de�ne the ationof X, Y and Z on 3-qubit state |x, y, z〉,

X|x, y, z〉 = x|x, y, z〉,
Y |x, y, z〉 = y|x, y, z〉and Z|x, y, z〉 = z|x, y, z〉. (1.35)If the �rst bit �ips i.e.

a|000〉+ b|111〉 → a|100〉+ b|011〉, (1.36)then the measurement of (Y ⊕Z,X ⊕Z) gets the result (0,1), whih is the binaryequivalent of 1 indiating to �ip the �rst bit and repair the error.If the seond bit �ips i.e.
a|000〉+ b|111〉 → a|010〉+ b|101〉, (1.37)then the measurement of (Y ⊕Z,X ⊕Z) gets the result (1,0), whih is the binaryequivalent of 2 indiating to �ip the seond bit and repair the error.Similarly, if the third bit �ips, one an hek that measurement of (Y ⊕Z,X⊕Z)17



Chapter 1. Introdutiongets the result (1,1), whih is the binary equivalent of 3 indiating to �ip the thirdbit and repair the error.All these 3-qubit states are eigenstates of two qubit observables (Y ⊕Z,X⊕Z),therefore, after the measurement they remain in the same state whih means thatmeasurement by these two qubit observables has not destroyed the eigenstate.Thus, we have diagnosed the error without destroying the 3-qubit state.Instead of bit �ip errors, there an be small errors: let us onsider an error in�rst bit,
|000〉 → |000〉+ ǫ|100〉,
|111〉 → |111〉 − ǫ|011〉. (1.38)In this ase too we an show that above proedure works well. Again, we at twoqubit observable (Y ⊕ Z,X ⊕ Z) on the three qubit state getting the result (0,0) orresponding to the original state a|000〉+ b|111〉 and (0, 1) orresponding tothe bit �ip state |100〉 + b|011〉. So, when we get the result(0, 0) we projet thedamaged state to the original state but when we get (0, 1), the damaged state isprojeted to |100〉+ b|011〉 but the result (0, 1) indiates the error at the �rst bit.Thus, protetion against the small errors an also be ahieved.Now we want to protet against phase errors. In phase error our enoded state

a|0〉 + b|1〉 gets transformed to a|0〉 − b|1〉 and the enoded quantum informa-tion gets damaged. As we proteted the qubit against bit-�ip errors by enodingbits redundantly, we protet against phase-�ip by enoding phases redundantly asfollows:
|0〉 → (|000〉+ |111〉) (|000〉+ |111〉) (|000〉+ |111〉)and |1〉 → (|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉) . (1.39)Now suppose that a phase �ip ours, say, in the �rst luster,

|000〉+ |111〉 → |000〉 − |111〉,and |000〉 − |111〉 → |000〉+ |111〉. (1.40)
18



Chapter 1. IntrodutionThen, the nine qubit state beomes
|0〉 → (|000〉 − |111〉) (|000〉+ |111〉) (|000〉+ |111〉)and |1〉 → (|000〉+ |111〉) (|000〉 − |111〉) (|000〉 − |111〉) . (1.41)This means that the relative phase of the damaged luster di�ers from the phasesof the other two lusters.We would need six qubit observables to diagnose the error,

Z1Z2Z3Z4Z5Z6, Z4Z5Z6Z7Z8Z9.A phase error in any one of the qubit in a partiular luster will hange the valueof ZZZ in that luster relative to other two luster resulting in the identi�ationof the luster in whih the error has oured.Here, for the sake of brevity and ompleteness, we want to mention that othererror orretions like large bit �ip error, small bit �ip error et. have been ahievedin nine qubit ode as mentioned in three qubit ode.Thus, Shor's ode restores the quantum state irrespetive of the nature of theerror and we an say that the ode protets against deoherene and ahieves faulttolerane.1.5 Physial RealisationsFor physial realisation of a quantum omputer, we need tehnology whih enablesus to manipulate qubits. The mahine will need to meet some stringent riteria:1. Storage: We need to store qubits for a long time, long enough to ompletean omputation.2. Isolation: The qubits must be well isolated from the environment tominimize deoherene errors.3. Readout: We need to measure the qubits e�iently and reliably.4. Gates: We need to manipulate the quantum states of individual qubits, andto indue ontrolled interations among qubits so that we an perform quantumgates.5. Preision: The quantum gates should be implemented with high preisionif the devie is to perform reliably. 19



Chapter 1. IntrodutionThere are a number of physial realisations proposed for quantum omputer, forexample in Ion traps, Nulear Magneti Resonane and Optial Cavity QuantumEletro-Dynamis (QED).1.5.1 Ion Trap MethodOne possible realisation, suggested by Ignaio Cira and Peter Zoller [22℄, is Iontrap method. In this method, a string of ions is on�ned by a ombination ofosillating and stati eletri �elds in a linear `Paul trap' in high vauum (10−8Pa).A single laser beam is split by beam splitters into many beam pairs, one pairilluminating eah ion. Eah ion has two long-lived states, |g〉 and |e〉. Eah laserbeam pair an drive oherent Raman transitions between the internal states ofthe relevant ion. This allows any single qubit quantum gate to be applied to anyion.The two-qubit gates requires an interation between ions whih is provided bytheir Coulomb repulsion.The main experimental problem in the ion trap method is to ool the string ofions to the ground state of the trap (a miroKelvin temperature), and the mainreason of deoherene is the heating of this motion due to the oupling betweenthe harged ion string and noise voltages in the eletrodes.1.5.2 Nulear Magneti ResonaneDeVinenzo [23℄ �rst suggested the use of nulear spins in quantum ompuation.Gershenfeld and Chuang [24℄, and independently, Cory, Fahmy, and Havel [25℄pointed out that Nulear Magneti Resonane (NMR) provides a useful implemen-tation of quantum omputation. In this sheme qubits are arried by nulear spinsin a partiular moleule. Eah spin an either be aligned (| ↑〉 = |0〉) or antialigned
(| ↓〉 = |1〉) with an applied onstant magneti �eld. The spins take a long time torelax or deohere, therefore the qubits an be stored for a reasonable time.In NMR, we apply a rotating magneti �eld with frequeny ω (where ω isthe energy splitting between the spin-up and spin-down states), and indue Rabiosillations of the spin. By timing the pulse suitably, we an perform a desiredunitary transformation on a single spin. All the spins in the moleule are exposedto the rotating magneti �eld but only those on resonane respond. 20



Chapter 1. IntrodutionFurthermore, the spins have dipole-dipole interations, and this oupling anbe exploited to perform a gate operation. The splitting between | ↑〉 and | ↓〉 forone spin depends on the state of neighboring spins. So, whether a driving pulse ison resonane to tip the spin over is onditioned on the state of another spin.In NMR systems, the typial temperature might be of order of a million timeslarger than the energy splitting between |0〉 and |1〉. This means that the quantumstate of our omputer (the spins in a single moleule) is very noisy beause it issubjeted to strong thermal �utuations. This noise will destroy the quantuminformation. Another problem with NMR systems is that we atually perform ourmeasurement not on a single moleule, but on a marosopi sample ontainingof order 1023 omputers, and the signal we read out of this devie is atuallyaveraged over this ensemble. Quantum algorithms are probabilisti, beause of therandomness of quantum measurement. Hene, averaging over the ensemble maydestroy the results. Gershenfeld and Chuang and Cory, Fahmy and Havel explainedhow to overome these di�ulties. They desribed how `e�etive pure states' anbe prepared, manipulated, and monitored by performing suitable operations onthe thermal ensemble. The idea is to arrange for the �utuating properties of themoleule to average out when the signal is deteted, so that only the underlyingoherent properties are measured.But there are serious limitations with NMR method. The ratio of the o-herent signal to the bakground delines exponentially with the number of spinsper moleule. In pratie, it is be very hallenging to perform an NMR quantumomputation with more than 10 qubits.1.5.3 Optial Cavity QEDAn alternative hardware design based on optial avity is suggested by Pellizzari,Gardiner, Cira, and Zoller) [26℄. In this method, several neutral atoms are kept inoptial avities of very high Quality. Quantum information an again be stored inthe internal states of the atoms and atoms interat beause they are all oupled tothe normal modes of the eletromagneti �eld in the avity. In a very high-qualityoptial avity, a strong oupling an be ahieved between a single atom or ion anda single mode of the eletromagneti �eld. This oupling an be used to applyquantum gates between the �eld mode and the ion. 21



Chapter 1. Introdution1.6 Topologial Quantum ComputationTopologial onepts an be applied in quantum error orretion to ahieve fault-tolerant omputation [27℄. Topology onerns the global properties of an objetthat remain unhanged when we deform the objet loally. The entral idea ofquantum error orretion is to store and manipulate quantum information in a`global' form that is proteted from loal disturbanes. A fault-tolerant gate shouldbe designed to at on this global qubit in suh a way that the ation it performson the enoded data remains unhanged even if we deform the gate slightly, thatis, even if the implementation of the gate is not perfet.In our searh for physial realisation of fault-tolerant quantum omputation, welook for systems in whih physial interations have a topologial harater. Thereis one suh example before us - the Aharonov-Bohm e�et. If an eletron is movedaround a perfet magneti solenoid (perfet in the sense that outside magneti �eldis zero), its wave funtion aquires a phase eieφ, where e is harge of eletron hargeand φ is the magneti �ux enlosed by the solenoid. The Aharonov-Bohm phaseis a topologial property of the path traversed by the eletron beause it dependsonly on how many times the eletron moves around the solenoid and is unhangedwhen the path is smoothly deformed. Therefore, if a qubit an be enoded in aform that an be measured and manipulated through Aharonov-Bohm interationsor topologial interations that are immune to loal disturbanes then realisationof fault tolerant quantum omputer is possible.Another way we an desribe a topologial quantum omputer is through two-dimensional quasipartile alled anyon, whose world lines ross over one anotherto form braids in a three-dimensional spaetime (one temporal plus two spatialdimensions). These braids form the Quantum logi gates whih has to be appliedon qubit or anyons. When anyons are braided, the transformation of the quantumstate of the system depends only on the topologial lass of the anyons' trajetories(whih are lassi�ed aording to the braid group). Hene, loal perturbations donot hange the topologial properties of the braids and therefore annot introdueerrors in the quantum omputation. In 2005, Sankar Das Sarma, Mihael Freed-man, and Chetan Nayak [29℄ proposed a quantum Hall devie whih would realisea topologial qubit. 22



Chapter 1. Introdution1.6.1 Anyon and Non-abelian AnyonIn spae of three or more dimensions, indistinguishable partiles are either Fermionsor Bosons, aording to their statistial behaviour. Fermions obey the so-alledFermi-Dira statistis while Bosons obey the Bose-Einstein statistis. Let us on-sider the behavior of two partile states under the exhange of partiles.
|x1x2〉 = ± |x2x1〉 (1.42)The left hand side denotes the state in whih partile 1 is at position x1 andpartile 2 at position x2 and right hand side denotes the position in whih partile1 is at position x2 and partile 2 at position x1. Here the `+' orresponds to bothpartiles being bosons and the `-' to both partiles being fermions.In two-dimensional systems, however, quasipartiles an be observed whihobey statistis ranging ontinuously between Fermi-Dira and Bose-Einstein statis-tis [28℄. This looks as follows:
|x1x2〉 = ei θ |x2x1〉 , (1.43)where θ is a real number. In the ase θ = π, we reover the Fermi-Dira statistis(minus sign) and in the ase θ = 0, the Bose-Einstein statistis (plus sign).Phase fator θ an also be viewed as Berry's phase and alulated aordinglyto �nd out the time evolution of a non-degenerate state under adiabati approx-imation. When we onsider the time evolution of a degenerate state under thesame approximation, θ doesn't remain a salar and beomes a matrix,

|x1σ1; x2σ2〉 = Uσ1σ2;σ
′

1
σ
′

2

∣

∣

∣
x2σ

′

2; x1σ
′

1

〉

, (1.44)where σ's denotes the spin degree of freedom. These kind of quasi-partiles arealled Non-abelian anyons.When non-abelian anyons are braided, the transformation of the quantum stateof the system depends only on the topologial lass of the anyoni trajetories whihare lassi�ed aording to the braid group. Therefore, the quantum informationwhih is stored in the state of the system is proteted from small errors in thetrajetories [29℄. 23



Chapter 1. Introdution
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Figure 1.4: The Kitaev Model. The x, y and z bonds are as indiated.Non-abelian anyons are theoretially predited to our in ertain frationalquantum Hall states like ν = 5/2 [30℄ and Kiatev's model [2, 31℄. There is alsotheoretial work showing how they ould be realised in quantum iruits [32℄. Veryreently, non-abelian anyons have also been found in various 3 dimensional systems[33, 34℄.1.6.2 Kitaev ModelIn Kitaev's sheme of topologial omputation, two non-abelian anyons are usedas a qubit. He presented a remarkable solvable spin-1/2 model on a honeyomblattie as shown in �gure (1.4) [2℄, where he ould perform braiding operation ona non-abelian anyons.Kitaev's Hamiltonian is written as follows,
H = Jx

∑
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i σ
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j + Jy

∑
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i σ
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j + Jz

∑

<ij>

σz
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z
j . (1.45)Using the fat that some operators exist whih ommute with Hamiltonian, Ki-taev showed that above Hamiltonian an be solved exatly. In honeyomb model24



Chapter 1. Introdutionorresponding to eah plaquette p, one operator Wp exists,
Wp = σx

1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6. (1.46)Beause of ommuting operators the problem redues to solving a theory of non-interating Majorana fermions in the bakground of stati Z2 gauge �eld on�gu-rations. For the sake of brevity, we will desribe all the terminology and mahineryof Majorana fermions on a 4 site system in the next setion.Kitaev's honeyomb model an be generalised to a variety of other latties[35, 36, 37, 38, 39℄. The generalised Kitaev models are integrable in the sensethat they all redue to systems of non-interating Majorana fermions. It an beonstruted on any lattie with oordination number three, if all the bonds anbe oloured using three olours. It has been shown that all suh models an berealised in old atom systems [40℄ and using Josephson juntion quantum iruits[4℄ whih we will disuss in the another setion.1.7 Qubits from Zero mode Majorana FermionsIn the Kitaev model, two non-abelian anyons form a qubit. These two qubits areonstruted from two degenerate quantum states of the model. These degeneratestates arise beause of existene of zero mode solutions in the single partile spe-trum. In order to perform braiding operation on non abelian anyons, we should beable to make these zero modes move on the lattie independently. Let us desribethe unpairing of these zero modes on a simple 4-site model. The model is shownin �gure (1.5).1.7.1 HamiltonianHamiltonian is given by
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Chapter 1. Introdution
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Figure 1.5: The 4 site XY-Ising Model. The x, y and z bonds are as indiated.Commuting operators are
W1 = σz
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z
2and W2 = σz
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z
4 . (1.48)1.7.2 Jordan-Wigner TransformationLet us de�ne Jordan-Wigner Transformation,

σy
j = (c+j + cj)exp

(

iπ
∑

i<j

c+i ci

)

,

σz
j = −i(c+j − cj)exp

(

iπ
∑

i<j

c+i ci

)and σx
j = 2c+j cj − 1 ≡ −(c+j + cj)(c

+
j − cj). (1.49)where c+j and cj are reation and annihilation operators and they follow the usualanti-ommutation relation.We an write the Hamiltonian in Jordan-Wigner basis as follows,

H = Jx(c
+
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1 − c1)(c

+
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. (1.50)
26



Chapter 1. Introdution1.7.3 Majorana FermionsLet us de�ne two hermitian operators alled Majorana operators,
ξj = (c+j + cj),

ηj =
1

i
(c+j − cj). (1.51)It an be heked that ξ†j = ξj and η†j = ηj . Two Majorana operators have to bepaired to form a fermioni reation or annihilation operators.These operators follow the fermion like anti-ommutation relations,

{ξi, ξj} = 2δi,j,

{ηi, ηj} = 2δi,j,and {ξi, ηj} = 0. (1.52)In terms of Majorana fermions, Hamiltonian,
H = Jx (iξ1η1iξ2η2 + iξ3η3iξ4η4)

+ Jy (iη1ξ2 + iη3ξ4)

− Jz (iξ2η3) . (1.53)Rotating the axis at odd sites,
ξ1 → η1, η1 → −ξ1,
ξ3 → η3, η3 → −ξ3. (1.54)The Hamiltonian then beomes

H = − Jx (iη1η2ξ1iξ2 + iη3η4ξ3iξ4)

− Jy (iξ1ξ2 + iξ3ξ4)

+ Jz (iξ2ξ3) . (1.55)
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Chapter 1. IntrodutionIn the rotated basis, ommuting operators
û1 = iη1η2and û2 = iη3η4. (1.56)Therefore, we an write Hamiltonian as

H = − Jx (û1ξ1iξ2 + û2ξ3iξ4)

− Jy (iξ1ξ2 + iξ3ξ4)

+ Jz (iξ2ξ3) . (1.57)As û12 = 1 and û22 = 1 and û1 and û2 ommute with Hamiltonian, these operatorsan be replaed by their eigenvalues ui = ±1,
H = −(u1Jx + Jy)iξ1ξ2 + (u2Jx + Jy)iξ3ξ4 + Jziξ2ξ3. (1.58)Thus, the problem redues to solving a theory of non-interatingMajorana fermionsin the bakground of stati Z2 gauge �eld on�gurations.1.7.4 Zero Mode Majorana Fermions and UnpairingBeing a non-interating Hamiltonian, it an be written as

H =
∑

i,j

ξ+i hi,jξj. (1.59)To diagonalise Hamiltonian, we substitute
ξi =

∑

n

φn
i
∗χn, (1.60)where φn

i is found out by solving single partile eigenvalue equation,
∑

j

hi,jφ
n
j = ǫnφ

n
i . (1.61)
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Chapter 1. IntrodutionThe eigenvetors φn
i 's follow orthogonality and ompleteness relation,

∑

i

φm
i
∗φn

i = δm,nand ∑
n

φn
i
∗φn

j = δi,j. (1.62)Or inversely,
χn =

∑

i

φn
i ξi. (1.63)And h is given by

h =













0 −i(u1Jx + Jy) 0 0

i(u1Jx + Jy) 0 iJz 0

0 −iJz 0 −i(u2Jx + Jy)

0 0 i(u2Jx + Jy) 0













. (1.64)For any non zero ǫn, we an see that
h∗i,jφ

n
j
∗ = ǫnφ

n
i
∗or hi,jφ

n
j
∗ = −ǫnφn

i
∗ (1.65)where we used the fat that h∗ = −h.Therefore the eigenvalues ome in pairs. The wavefuntions φn

i and φ∗
i
n belong-ing to positive and negative energy modes, peak around same site. This is alledpairing of Majorana fermions. Let us onsider n=1 and 2, n=3 and 4 are omplexonjugate modes. Then one an show from eqn.(1.63),

χ1† = χ2,and χ3† = χ4. (1.66)then Hamltonian in diagonalised spae redues to
H = ǫ1

(

2χ1†χ1 − 1
)

+ ǫ3

(

2χ3†χ3 − 1
)

. (1.67)29



Chapter 1. IntrodutionMultipartile eigenstates are
|0〉, χ1†|0〉, χ3†|0〉, χ1†χ3†|0〉 (1.68)where |0〉 is de�ned by χ1|0〉 = 0, χ3|0〉 = 0.Something very interesting happens in single partile eigenequation for ǫn = 0whih is alled zero mode solutions. For zero mode, two independent and denen-erate solutions φ(1) and φ(2) exist,

hφ(1) = 0and hφ(2) = 0. (1.69)Then, both the eigenvetors φ(1) and φ(2) belonging to zero mode di�er. Hene,probability amplitudes |φ(1)|2, |φ(2)|2 are di�erent and peak around di�erent sites.This is known as unpairing of zero mode Majorana fermions.When zero mode eqn.(1.69) is solved for Hamiltonian (1.64), it turns out thatzero mode exists for Jx = Jy for either u1 = −1 or u2 = −1. For example, let uswrite the zero mode solution for u1 = +1 and u2 = −1,
φ(1) =
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(1.70)where Jx = Jy = J .For zero mode we an rede�ne φ(1) and φ(2) by,
φ(01) →

(

φ(1) + iφ(2)
)

φ(02) →
(

φ(1) − iφ(2)
)

. (1.71)The Hamiltonian in eqn.(1.67) beomes
H = ǫ1

(

2χ01†χ01 − 1
)

+ ǫ3

(

2χ3†χ3 − 1
)

, (1.72)
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Chapter 1. Introdutionwhere
χ01 =

∑

i

φ
(01)
i ξi. (1.73)Here, multipartile states |0〉, χ01†|0〉 belong to the degenerate energy states. Letus all them |0〉 and |1〉 of our proposed qubit.The non-abelian anyons are realised in the system with these unpaired Majo-rana modes [41℄. In a fermioni system with N zero energy modes, there are 2NMajorana modes. If these 2N modes an be independently moved around eahother, then the geometri phase piked up orresponds to a non-abelian represen-tation of the braid group. The geometri phase piked up is a unitary matrix whihrepresents quantum logi gate operation on the qubit.1.8 Unitary Gate Operation on the QubitLet us onsider a system where we have four zero modes φ1

i , φ
2
i , φ

3
i and φ4

i .For zero modes we an de�ne χ01 and χ02 as
χ01 =

∑

i
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(
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χ02 =
∑
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2

(

ξ03 + iξ04
)

. (1.74)Then, number operators beome,
n̂1 = χ01†χ01 =

1 + iξ01ξ02

2and n̂2 = χ02†χ02 =
1 + iξ03ξ04

2
, (1.75)
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Chapter 1. Introdutionwhere
n̂1|σ1, σ2〉 = σ1|σ1, σ2〉and n̂2|σ1, σ2〉 = σ2|σ1, σ2〉. (1.76)In order to perform braiding operation, we interhange modes 1 and 3 keeping2 and 4 �xed. This is ahieved by a unitary transformation whih representsquantum logi gate operation on the qubit [42℄,

U = e
iπ
4
iξ01ξ03 =

1− ξ01ξ03√
2

. (1.77)Let us write U in terms of reation and annihilation operators,
U =

1√
2
{1− (χ01 + χ01†)(χ02 + χ02†)}. (1.78)Then,

U |0, 0〉 = 1√
2
(|0, 0〉 − |1, 1〉),

U |0, 1〉 = 1√
2
(|0, 1〉 − |1, 0〉),

U |1, 0〉 = 1√
2
(|1, 0〉+ |0, 1〉),

U |1, 1〉 = 1√
2
(|1, 1〉 − |0, 0〉). (1.79)Therefore, in terms of Pauli matries, U beomes

U =
1√
2
{I4 −

(

σ+ ⊗ σ+ + σ− ⊗ σ− + σ+ ⊗ σ− − σ− ⊗ σ+
)

}

=
1√
2
{I4 − (σx ⊗ σx + σy ⊗ σy + i(σy ⊗ σx − σx ⊗ σy))}, (1.80)whih is the unitary gate operation realised by performing exhange operation onMajorana modes.
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Chapter 1. Introdution1.9 Josephson Juntion Quantum CiruitsIn this thesis, we propose an experimental realisation of our model using Joseph-son juntion quantum iruits following J. Q. You et al. They devised a way toonstrut a Quantum omputer by realising Kitaev Model by Josephson juntionquantum iruits [4℄. They proposed a superonduting qubit box as a buildingblok to realise the qubit in Josephson juntion quantum iruits as shown in�gure (1.6). The superonduting qubit box onsists of a superonduting ring
CJ CJ

V

Cg C
V

L

g

VJ

L

VL

Figure 1.6: The superonduting qubit box.onneted with two idential Josephson juntions (a small box with ross sign)eah with oupling energy EJ and apaitane CJ (shown by a ross on the box),to form a SQUID loop. The SQUID loop is onneted to LC osillator as shownabove. The qubit box is ontrolled by both a voltage V (applied via the gateapaitor Cg and a magneti �ux Φ passing through the SQUID loop.Let the voltage aross apaitor Cg be Vg, voltage aross the LC osillator be
VL and voltage aross Josephson juntion be VJ . 33



Chapter 1. IntrodutionLagrangian of the system,
L = T − U =

1

2
2CJV

2
J +

1

2
CgV

2
g +

1

2
CV 2

L + EJ(Φ) cosφ− Φ2
L

2L
, (1.81)where �rst term denotes harging energy of Josephson apaitor, seond term de-notes harging energy of gate apaitor, third term denotes harging energy of LCosillator, fourth term denotes Josephson oupling energy and �fth and �nal termdenotes potential energy of LC osillator.Aording to Kirho�'s Law,

Vg = V − VJ − VL. (1.82)In Josephson juntion, voltage VJ is related to phase di�erene φ of wavefuntionof ooper pair by
VJ =

~

2e
φ. (1.83)Aording to Faraday's law,

VL = Φ̇L (1.84)where ΦL denotes magneti �ux passing through the loop.Substituting all these value in eqn. (1.81) we get,
L =

1

2
(2CJ + Cg)

(

~

2e

)2

φ̇2 + Cg

(

~

2e

)

φ̇(ΦL − V )

+
1

2
(C + Cg)Φ̇

2
L +

1

2
CgV

2 − CgV Φ̇L. (1.85)Therefore, Hamitonian of the system,
H =

1

2CJ + Cg
{2ep

~
− (

Cg

C
PL − CgV )}2 + P 2

L

2C
− EJ(Φ) cosφ+

Φ2
L

2L
, (1.86)where p and PL are onjugate momentum to φ and ΦL respetively.
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Chapter 1. IntrodutionLet us introdue gauge transformation
φ̃ = φ− 1

(2CJ + Cg)

(

2e

~

)

CgΦL (1.87)and
p̃ = p−

(

~

2e

)

Cg

C
ΦL, (1.88)then Hamiltonian beomes

H =
1

2(2CJ + Cg)

(

2ep̃

~
+ CgV

)2

+
P 2
L

2C

− EJ(Φ) cos

(

φ̃+
1

(2CJ + Cg)

2e

~
CgΦL

)

+
Φ2

L

2L
. (1.89)Flutuations of CgΦL are so weak [43℄ that

1

2CJ + Cg
CgΦL ≪ 2e

~
. (1.90)Then, cos(φ) an be written as

cos(φ) ≈ cos φ̃−
[

1

2CJ + Cg

(

2e

~

)

CgΦL

]

sin φ̃. (1.91)Therefore, Hamiltonian �nally beomes
H =

1

2(2CJ + Cg)

(

2ep̃

~
+ CgV

)2

+
P 2
L

2C
− EJ(Φ) cos φ̃

− 1

2CJ + Cg

(

2e

~

)

CgΦL sin φ̃+
Φ2

L

2L
. (1.92)Substituting Y = EJ (Φ)

Cg

2CJ+Cg
sin φ̃, Hamiltonian beomes

H =
1

2(2CJ + Cg)
(p̃+ CgV )

2 +
P 2
L

2C
−EJ(Φ) cos φ̃

− 1

2L

(

ΦL +
2e

~
LY

)2

− 1

2

(

2e

~

)2

LY 2. (1.93)35



Chapter 1. IntrodutionThe term p2L
2C

represents kineti energy of the LC osillator and the term (ΦL+( 2e
~
LY ))

2

2Lrepresents potential energy of the osillator. When the frequeny of LC osillatoris muh larger than the qubit frequeny, the LC osillator remains in the groundstate and, therefore, these terms an be negleted in the hamiltonian [43℄ to get
H =

4e2

2(2CJ + Cg)

(

p̃

~
+
CgV

2e

)2

− EJ(Φ) cos φ̃− 1

2

(

2e

~

)2

LY 2. (1.94)or, it an ve written as,
H = Ec(n + ng)

2 −EJ(Φ) cos φ̃− 1

2

(

2e

~

)2

LY 2. (1.95)Here, n = p̃
~
represents number of extra ooper pairs in the box and Ec =

4e2

2(2CJ+Cg)and ng =
CgV

2e
.At low temperature, only lowest energy eigenstates of a superonduting iruitelement are involved in the dynamis. As low energy eigenstates are mixtures ofzero and one extra ooper pair in the box, these two harge states an be onsideredas two level quantum system. Then, anonially onjugate variable n and φ obeyfollowing ommutation relation:

[n̂, φ̂] = i~. (1.96)In eqn. (1.95), the term Y 2 ≡ sin2 φ̃ is also removed beause they are redued tothe identity operators in the qubit subspae.Therefore, the Hamiltonian in eqn. (1.95)beomes
H = Ec(n+ ng)

2 − EJ(Φ) cos φ̃. (1.97)In the Hamiltonian for Ec >> EJ , we an tune ng via Cg to make the quantumstate n=0 and n=1 degenerate whih happens at ng = −1
2
. Therefore, Hamiltonianin eqn. (1.98) beomes,

H = Ec

(

n− 1

2

)2

. (1.98)
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Chapter 1. IntrodutionLet us label our quantum state by |n〉 where n=0,1 represents harge of zero, oneextra ooper pair. Then,
eiφ̂|n〉 = eiφ̂

∫

dφ|φ〉〈φ|n〉

=

∫

dφeiφ̂|φ〉einφ

=

∫

dφeiφ|φ〉einφ

=

∫

dφ|φ〉ei(n+1)φ

= |n+ 1〉.Thus,
eiφ̂|n〉 = |n+ 1〉. (1.99)Similarly,
e−iφ̂|n〉 = |n− 1〉. (1.100)As we have projeted to a two level quantum system, eiφ or e−iφ annot raise orlower the states inde�nitely, so we get only

〈1|eiφ̂|0〉 = 1and 〈0|e−iφ̂|1〉 = 1 (1.101)and all other matrix elements of eiφ̂ and e−iφ̂ vanish.So eiφ̂ and e−iφ̂ ating like spin raising and lowering ladder operators σ̂+ and
σ̂−. So cos φ̂ and sin φ̂ ats like σ̂x and σ̂y operators.Further,

(2n̂− 1)|0〉 = −|0〉
(2n̂− 1)|1〉 = +|1〉, (1.102)37



Chapter 1. Introdutionwhih is like σz operator.Therefore, in the low energy limit, the system variables of qubit spae an bemapped on to spin spae,
cos φ̂ = σx,

sin φ̂ = σy,

2n̂− 1 = σz. (1.103)Therefore, x, y and z bond of the model an be realised if we an engineer followingterms in the Hamiltonian,
σx
1σ

x
2 = cos φ̂1 cos φ̂2,

σy
1σ

y
2 = sin φ̂1 sin φ̂2,

σz
1σ

z
2 = (2n̂1 − 1)(2n̂2 − 1). (1.104)To design x-bond, iruit is made up of two superonduting qubit box oupledby a mutual indutane as shown in �gure 1.7. The Hamiltonian for the iruit

1 2

C C C

C

C
J J J J

L1 L2

V1 V2

C CgMg1
Vg1 Vg2

VJ1
VJ2

C
V

L
V

L

Figure 1.7: Josephson juntion quantum iruit to realise x bond
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Chapter 1. Introdutionshown in �gure (1.7) to be,
Hx = H1 +H2 + Jx cos φ̃1 cos φ̃2, (1.105)where Hi = Ec

(

ni −
1

2

)2and Jx = −MI2c sinΦ1 sinΦ2. (1.106)To design y-bond, iruit is made up of two superonduting qubit box onnetedby wire shown in �gure (1.8).
C C CJ J J CJ

L
L

CCg g C
V

V

V V

C
VL

L
’ L

1 2
1

2

Vg1 g2

J1 J2

V1 V2Figure 1.8: Josephson juntion quantum iruit to realise y bondThe Hamiltonian for iruit shown in �gure (??),
Hy = H1 +H2 + Jy sin φ̃1 sin φ̃2, (1.107)where Jy = −4

[

eLCgCΣ

~Λ

]2

EJ1(Φ1)EJ2(Φ2).Finally, we make a iruit for z-bond using two superonduting qubit boxonneted by a apaitor as shown in �gure (1.9),and the Hamiltonian for the iruit,
Hz = H1 +H2 + Jz (ñ1 + CgV1) (ñ2 + CgV2) (1.108)where CΣ = 2CJ + Cg + Cm, Λ = CΣ

2 − Cm
2 and Jz = 4e2Cm

Λ
.

39



Chapter 1. Introdution
Cm

C C CJ J J CJ

L

V

CCg g C
V V

V

Vm

V V

C
VL

L
’ L

1

L2

g1 g2

J1 J2

1 2

V1 2Figure 1.9: Josephson juntion quantum iruit to realise z bondTherefore, Hamiltonian in eqn.(1.105), eqn.(1.107) and eqn.(1.108) beomes
Hx = H1 +H2 + Jxσ

x
1σ

x
2 ,

Hy = H1 +H2 + Jyσ
y
1σ

y
2 ,

Hz = H1 +H2 + Jzσ
z
1σ

z
2 . (1.109)Here, we an see that Jx and Jy are tunable by external magneti �eld Φiand Jzis tunable via oupling apaitor cm. And, H1 and H2 are onstant term in theHamiltonian. Following these results Nori et al plaed a superonduting qubitbox at eah node of a honeyomb lattie. But, designing the 6-spin ommutingoperators (1.48) in the Kiatev model to manipulate the Majorana fermions is notpossible. Therefore, we proposed another model "XY-Ising model" where we oulddesign Hamiltonian altogether with ommuting operators.1.10 Organisation of the thesisIn hapter 2, we design a Tetrahedral model where zero energy modes an bestudied analytially. Further, we show that by tuning �ux on�guration, we ouldmanipulate the zero mode wavefuntion. but experimental realisation of 3-spinommuting operators does not seem to be possible.In hapter 3, we study another model XY-Ising model beause experimentalrealisation of 2-spin ommuting operators is possible. We solve the XY-Ising model40



Chapter 1. Introdutionexatly and �nd the ground state. We study the nature of low energy exitations.In hapter 4, we show that XYZ-Ising model an also be solved using theKitaev's trik even if it's not a kitaev type model. We study zero temperaturephase diagram of the XYZ-Ising model for all J and Jz numerially . We studythe ground state of the model analytially in extreme limits.In hapter 5, we take XY-Ising model where we have a qubit with two de-generate ground states of the model. We show that this qubit is proteted fromdeoherene by environmental perturbations. Finally, we disuss a possible physi-al realisation of XY-Ising model by Josephson juntion quantum iruits.We present the summary and outlook of the thesis in hapter 6.
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2Tetrahedral Model
In this hapter, we present a one dimensional generalisation of the Kitaev honey-omb model whih we all the Tetrahedral Chain (TC). In this model we study thezero energy Unpaired Majorana Fermions (UMF) modes analytially. One dimen-sional models with (UMF) at the edges have been studied earlier [44, 45℄. The newfeature of our model is that the wavefuntions of the UMF not neessarily peakat the edges of the hain but an peak anywhere in the bulk. As we will show,they are trapped to kink and anti-kink �ux on�gurations and an be moved bytuning the �ux on�guration. Further, by tuning the oupling onstants, theirwavefuntions, whih we obtain analytially, an also be tuned.2.1 The Hamiltonian

Figure 2.1: The tetrahedral hain. There are four sites per unit ell. The x, y and
z bonds are as indiated.The hain we de�ne our model on is shown in �gure (2.1). 42



Chapter 2. Tetrahedral ModelThe Hamiltonian,
H =

∑

i

(

Jx
(

σx
i−1,4σ

x
i,1 + σx

i,2σ
x
i,3

))

+Jy
(

σy
i,1σ

y
i,2 + σy

i,3σ
y
i,4

)

+Jz
(

σz
i,1σ

z
i,3 + σz

i,2σ
z
i,4

))

. (2.1)There are two triangular plaquettes operators in eah unit ell and a onserved Z2�ux assoiated with eah of them. The operators are,
WL

i = σx
i,1σ

z
i,2σ

y
i,3 WR

i = σx
i,4σ

z
i,3σ

y
i,2. (2.2)For future referene we de�ne an operator Wi,

Wi ≡WL
i W

R
i = σx

i,1σ
x
i,2σ

x
i,3σ

x
i,4. (2.3)As in Kitaev's honeyomb model, these quantities are onserved as a onsequeneof a loal spin rotation symmetry of the model, namely, a π rotation on eah siteof a plaquette about the diretion of the outgoing bond.Apart from these loal ommuting operators there are also three global opera-tors whih are onserved as a onsequene the fat that a global π rotation abouteah of the three axes is a symmetry of the model. We denote these by,

Σa ≡ ei
π
2

∑
i,a σa

i,α . (2.4)Therefore, Σx is the produt of the all the plaquette operators,
Σx =

∏

i

(

WL
i W

R
i

)

. (2.5)2.2 FermionisationWe express the Hamiltonian in terms of Majorana fermions using the Jordan-Wigner transformation. We hoose the Jordan-Wigner path to go along the x andthe y bonds from left to right. At every site we have two bonds that are tangentialto the path. We denote the inoming bond by t1. This is the x-bond on the43



Chapter 2. Tetrahedral Modelsublattties 1, 3 and y-bond on sublatties 2,4. The outgoing bond, orrespondingto y on sublatties 1, 3 and x on sublatties 2,4, is denoted by t2. The third bondon eah site whih is normal to the path, is denoted by n with the sign de�ned by
n̂ = t̂1 × t̂2. With our hoie of path, the normal bond is z for sublatties 1,3 and
−z for sublatties 2,4.The Hamiltonian,

H =
∑

i

Jx
(

σt2
i−1,4σ

t1
i,1 + σt2

i,2σ
t1
i,3

)

+Jy
(

σt2
i,1σ

t1
i,2 + σt2

i,3σ
t1
i,4

)

−Jz
(

σn
i,1σ

n
i,3 + σn

i,2σ
n
i,4

)

. (2.6)Let us de�ne the two Majorana fermions ξi,α and ηi,α at eah site,
ξi,α = σt1

i,α

∏

j<i

(

∏

β<α

σn
j,β

)

,

ηi,α = σt2
i,α

∏

j<i

(

∏

β<α

σn
j,β

)

. (2.7)It an be shown that ξi and ηi follow anti omutation relation,
{ξi, ξj} = 2δi,j; {ηi, ηj} = 2δi,j ; {ξi, ηj} = 0. (2.8)The Hamiltonian, then, an be expressed in terms of the Majorana operators,

H =

N
∑

i

Jx (iξi−1,4ξi,1 + iξi,2ξi,3)

+Jy (iξi,1ξi,2 + iξi,3ξi,4)

+Jz

(

−iûLi ξi,1ξi,3 + iûRi ξi,2ξi,4

)

, (2.9)where the link �elds, ûL(R)
i , are de�ned as,
ûLi ≡ iηi,3ηi,1 andûRi ≡ iηi,2ηi,4. (2.10)It is easy to see that the link operators ˆ

u
L,(R)
i are onserved quantities. Thus,44



Chapter 2. Tetrahedral Modelas expeted for a generalised Kitaev model, the theory gets written in terms ofMajorana fermions with nearest neighbour hopping in the bakground of onserved
Z2 gauge �elds, with the gauge �xing ondition that the gauge �elds on x and ybonds are equal to +1. The gauge �elds on the z bonds are equal to ±1. It iseasy to hek that the two plaquette operators, or say, �ux operators WL

i ,W
R
i , arenothing but link operators in the transformed basis,

ûLi = iηi,3ηi,1 ≡WL
i andûRi = iηi,2ηi,4 ≡WR

i . (2.11)Let us express the three global onserved quantities, Σx,y,z in terms of the fermionivariables. We have,
Σx =

∏

i

(ηi,1ηi,2ηi,3ηi,4) ,

Σy =
∏

i

(ξi,1ξi,2ξi,3ξi,4)and Σz = ΣxΣy. (2.12)We will refer to Σx as the �ux number and Σy as the Majorana number.2.3 DiagonalisationThe Hamiltonian an be diagonalised in the standard way. We write the eigenstatesas diret produts of states in the η fermion setor, |G〉, whih we refer to as thegauge setor and states in the ξ fermion setor, |M〉, whih we all the mattersetor. We hoose the states in the gauge setor to be the simultaneous eigenstatesof the Z2 �ux operators, i.e,
|G〉 = |{uLi , uRi }〉, where

û
L(R)
i |{uLi , uRi }〉 = u

L(R)
i |{uLi , uRi }〉. (2.13)We then have,

H
[

ûLi , û
R
i

]

|M〉|{uLi , uRi }〉 = H
[

uLi , u
R
i

]

|M〉|{uLi , uRi }〉. (2.14)The problem redues to �nding the eigenstates of the quadrati Hamiltonan of45



Chapter 2. Tetrahedral Modelthe ξ fermions in the bakground of the gauge �eld on�guration {uLi , uRi }. TheHamiltonian an be written as,
H =

∑

i,j

ξihi,jξj. (2.15)To diagonalise the Hamiltonian, we substitute
ξi =

∑

n

φn
i
∗χn, (2.16)where normal modes φn

i is found out by solving single partile eigenvalue equation
∑

j

hi,jφ
n
j = ǫnφ

n
i . (2.17)Here, h = T + V is a purely imaginary anti-symmetri matrix,

Ti,j = iJx













0 0 0 −δi−1,j

0 0 0 0

0 0 0 0

δi+1,j 0 0 0











 (2.18)and
Vi,j = iδi,j













0 Jy −JzuLi 0

−Jy 0 Jx Jzu
R
i

Jzu
L
i −Jx 0 Jy

0 −JzuRi −Jy 0













. (2.19)As we have shown the eigenvalues of antisymmetri matrix ome in pairs. There-fore, for every positive eigenvalue, h has one negative eigenvalue and the eigenve-tors orresponding to the positive and negative eigenvalues are omplex onjugatesof eah other. If, in equation (2.16), the summation index n runs only over modes
46



Chapter 2. Tetrahedral Modelof the positive energy, then we an expand the ξ fermions as,
ξi,α =

∑

n

φn∗
i,αχ

n + φn
i,αχ

n†. (2.20)In equation (2.16), χn and χn† are fermioni operators and follow the ommutationrelation,
[χm†, χn] = δm,n. (2.21)The diagonal form of the hamiltonian is then,

H =
∑

n

ǫn (2χn†χn − 1). (2.22)Therefore, the ground state energy is,
E0 = −

∑

n

ǫn. (2.23)2.3.1 Boundary ConditionsNow, we analyse the system with Periodi (PBC) and Open Boundary Conditions(OBC).Under open boundary ondition the fermioni Hamiltonian (2.9) have to besolved with the boundary ondition,
φ0,1 = φN+1,1 = 0. (2.24)Under periodi boundary ondition, the term in the Hamiltonian for the link i = Nto i = 1 is,
HN,1 = Jxσ

x
N,4σ

x
1,1. (2.25)After Jordan-Wigner Transformation it beomes,

HN,1 = JxΣ
ziξN,4ξ1,1. (2.26)47



Chapter 2. Tetrahedral Model
Σz is a onserved quantity and an hene be hosen to be diagonal. Thus, thespin Hamiltonian (2.1) beomes fermioni hamiltonian with periodi boundaryonditions for Σz = −1 and antiperiodi boundary onditions for Σz = +1. Wean express it in terms of wavefuntions,

φN+1,α = pφ1,α, (2.27)where p = ±1 is the eigenvalue of Σz.2.4 The Degeneray of the StatesWe have also found that eah eigenstate of the spetrum is 2N fold degenerateinluding the ground state for all values of the parameters. We observed that thisdenegeray omes from dependene of the single partile spetrum only on thevalues of the produt, ui ≡ uLi u
R
i , and not on their individual values, uLi and uRi .In this setion, we give an analyti proof of this 2N fold degeneray of all the states.This degeneray is related to, but not the same as, the 4N degeneray in thesimple one dimensional Kitaev hain, the Jz = 0 limit of our model. In this asethe degeneray is easy to understand. The gauge �elds do not our at all in theHamiltonian and, therefore, the model is equivalent to a system of non-interatingfermions with nearest neighbour hopping. Thus, eah state is 4N degenerate orre-sponding to all the states in the gauge setor (η fermion setor). The extra z-bondterms in our model lift this degeneray partially.At Jy = Jz, the denegeray an be explained easily in terms of a loal symmetry.It onsists of interhanging the spins at sublattie 2 and 3 in any unit ell and thenperforming a π/2 rotation about the x-axis on all the spins in that unit ell. Theoperator that implements this transformation is,

Pi ≡
(

~σi2 · ~σi3 + 1

2

)

ei
π
4

∑4
α=1 σ

x
iα . (2.28)Further, we an see that

PiW
L(R)
i Pi = −WL(R)

i , PiW
L
i W

R
i Pi = WL

i W
R
i . (2.29)48



Chapter 2. Tetrahedral ModelThus, it hanges the �ux on�guration while leaves the total �ux operator throughthe unit ell invariant. Sine the Pi's ommute with the Hamiltonian, it does notalso hange the energy eigenvalue. Therefore, every eigenstate of the hamiltonianis 2N fold degenerate.However, we numerially observe that the degeneray persists even when Jy 6=
Jz. We now give a proof for the degeneray whih is valid at all ouplings. Wenote that in equation (2.17), φi,2 and φi,3 ouple only to sites within the unit ell.We express them in terms of φi,1 and φi,4 and obtain an eigenvalue equation forthese quantities. We are then able to show that the eigenvalues depend only on
ui = uLi u

R
i .We de�ne the two omponent olumn vetors,

χi ≡
(

φi,1

φi,4

)

ψi ≡
(

φi,2

φi,3

) (2.30)and the matries,
Tij = iδi−1,j

(

0 −Jx
0 0

)

+ iδi+1,j

(

0 0

Jx 0

)

and Uij = iδi,j

(

Jy Jzu
L
i

Jzu
R
i −Jy.

) (2.31)The eigenvalue equations (2.17) an then be written as,
(

T U

U † Jxτ
2

)(

χ

ψ

)

= ǫ

(

χ

ψ

) (2.32)where τa, a = 1, 2, 3 are the Pauli matries.Eliminating ψ from the eqn. (2.32) we get,
(

T + U
1

ǫ− Jxτ 2
U †
)

χ = ǫχ. (2.33)Substituting the omponents of olumn vetors of χi, the equations an be expli-
49



Chapter 2. Tetrahedral Modelitly written as,
−iJxφi−1,4 + cie

iαiφi,4 = λφi,1and iJxφi+1,1 + cie
−iαiφi,1 = λφi,4, (2.34)where

ci =

√

J2
x(J

2
y + J2

z )
2 + 2J2

zJ
2
y (ǫ

2 − J2
x)(1− ui)

(ǫ2 − J2
x)

2
,

αi = tan−1

(

ǫJyJz
Jx(J2

y + J2
zui)

(

uRi − uLi
)

)

,

λ = ǫ

(

1−
J2
y + J2

z

ǫ2 − J2
x

)

. (2.35)When these equations are solved for λ, they will give an equation for ǫ. We nowmake a transformation to get rid of phases in eqn (2.34),
φi,1 → eiθiφi,1,

φi,4 → eiθi+1φi,4and θi = −
∑

j<i

(

αj +
π

2

) (2.36)whih beome �nally,
−iJxφi−1,4 − iciφi,4 = λφi,1,

iJxφi+1,1 + iciφi,1 = λφi,4. (2.37)Sine ci depends only on ui and not on uLi , uRi individually, λ and, hene, ǫ dependsonly on the ui. Thus, the energy eigenvalues depend only on the total �ux passingthrough the unit ell.This result is true for all values of Jx, Jy and Jz. Note that when Jz = 0, eqn.(2.35) implies that ci is independent of ui too. Thus, the 4N fold degeneray ofthe simple Kitaev hain is reovered in this limit.
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Chapter 2. Tetrahedral Model2.5 The Ground States and gapsThe translationally invariant �uxes through the unit ells, namely, uLi = −1 and
uRi = −1 is the ground state setor of the model. We all it defet free setor. Wean show analytially that energy of ui = 1 (defet free) on�guration is less thanthat of ui = −1 i.e. uLi = 1 and uRi = −1 (defet full) setor.We an solve the Hamiltonian for translationally invariant �ux setor uLi and
uRi using Fourier transform,

ξi,a =
1√
N

∑

k

ξk,ae
−ikRi. (2.38)Substituting Fourier transform in the eqns. (2.37), we get

−iJxφk,4e
ika − iciφk,4 = λφk,1,

iJxφk,1e
−ika + iciφk,1 = λφk,4. (2.39)If ui = u, then ci in eqn. (2.39) is independent of i, ci = c,

−iJxφk,4e
ika − icφk,4 = λφk,1,

iJxφk,1e
−ika + icφk,1 = λφk,4. (2.40)Eigenvalue λ is then given by,

λ = ±
√

c2 + J2
x + 2cJx cos k. (2.41)Along with eqn. ((2.35)), this alulation on�rms that the ui = +1 (defet free)setor has a lower ground state energy than the ui = −1 (defet full) setor.This an be shown analytially sine the expression in eqn. (2.35) simpli�esonsiderably at ui = 1. Let us substitute ui = 1 in eqn. (2.35) to get,

c =

√

J2
x(J

2
y + J2

z )
2

(ǫ2 − J2
x)

2
. (2.42)
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Chapter 2. Tetrahedral ModelNow substituting  from above eqn. and λ from eqn. (2.35),
ǫ2
(

1−
J2
y + J2

z

ǫ2 − J2
x

)2

=
J2
x(J

2
y + J2

z )
2

(ǫ2 − J2
x)

2
+ J2

x +
2J2

x(J
2
y + J2

z )

ǫ2 − J2
x

cos(k)

ǫ2 − 2ǫ2
(J2

y + J2
z )

ǫ2 − J2
x

+ ǫ2
(J2

y + J2
z )

2

(ǫ2 − J2
x)

2
=
J2
x(J

2
y + J2

z )
2

(ǫ2 − J2
x)

2
+ J2

x +
2J2

x(J
2
y + J2

z )

ǫ2 − J2
x

cos(k)

or, (ǫ2 − J2
x)− 2

(ǫ2 + J2
x cos(k)) (J

2
y + J2

z )

(ǫ2 − J2
x)

+ (ǫ2 − J2
x)

(J2
y + J2

z )

(ǫ2 − J2
x)

2
= 0or, (ǫ2 − J2

x)
2 − 2(ǫ2 + J2

x cos(k))(J
2
y + J2

z ) + (J2
y + J2

z )
2 = 0(2.43)and �nally,

ǫ =
√

(

J2
x + J2

y + J2
z

)

± 2Jx(J
2
y + J2

z ) cos

(

k

2

)

. (2.44)The fermioni gap denoted by ∆ is twie the value of the lowest single partileenergy eigenvalue. The gap is, therefore, given by
∆ = 2|

√

J2
y + J2

z − Jx|. (2.45)The irle in the parameter spae, J2
x = J2

y+J
2
z is, therefore, gapless. This is shownin �gure (2.2) where the iso-gap ontours are plotted in the Jy−Jz plane. Anotherway this an be on�rmed is by numerially evaluating the gap and plotting it asa funtion of J ≡

√

J2
y + J2

z . All the points fall on the straight line as shown in�gure (2.3).2.6 Zero modesAs we have stated earlier, solutions belonging to ǫ = 0 are alled zero modesolutions. The zero modes are given by the solution of the single partile eigenvalueequation,
∑

jβ

hiα,jβφ
n
jβ = 0. (2.46)
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Chapter 2. Tetrahedral Model
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Figure 2.2: The ontours of equal gap in the defet free �ux setor plotted in the
Jy − Jz plane at Jx = 1 for a 100 a site system. It an be seen that the ontoursare irular with the unit irle being gapless.The independent degenerate zero mode solutions peak around di�erent sites. Thisis known as unpairing of zero mode eigenvetors.Let us �nd out the ondition in whih zero modes exist in our model. For ǫ = 0or λ = 0, eqn. (2.37) beome,

Jxφi+1,1 +
J2
y + uiJ

2
z

Jx
φi,1 = 0,

Jxφi−1,4 +
J2
y + uiJ

2
z

Jx
φi,4 = 0. (2.47)
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Chapter 2. Tetrahedral Model

Figure 2.3: The gap in the defet free �ux setor plotted against J ≡
√

J2
y + J2

zfor a 100 site system. The points fall on straight lines with slopes ±2.Solving these reursion relations we get,
φi,1 =

∏

j<i

(

J2
y + ujJ

2
z

J2
x

)

φ1and φi,4 =
∏

j>i

(

J2
y + ujJ

2
z

J2
x

)

φ4, (2.48)where φ1(4) are arbitrary onstants. Thus, there are two formal solutions for everyset of values of the parameters and every �ux on�guration. One with φi,1 6= 0 and
φi,4 = 0, whih we denote by φ+, and the other with φi,1 = 0 and φi,4 6= 0, whihwe denote by φ−.Analyti solutions are not easy for the non-translationally invariant �ux setors.While strong oupling and other tehniques exist to study these setors in ertain54



Chapter 2. Tetrahedral Modelparameter ranges [46, 47, 48℄, a detailed analysis of the zero energy modes isgenerally not possible. However, the boundary onditions that the modes haveto satisfy will pik out ertain �ux on�gurations for eah point in the parameterspae. We now analyse the situation for the ases of open boundary ondition(OBC) and periodi boundary ondition (PBC).2.6.1 Periodi Boundary ConditionWe onsider a hain with N unit ells. As disussed in eqn. (2.27), PBC will implythat,
φN+1,1 = pφ1,1. (2.49)So, for zero modes to exist eqns. (3.90) and (2.49) imply,

N
∏

i=1

(

J2
y + ujJ

2
z

J2
x

)

= p. (2.50)Let us onsider the general ase where M ≤ N of the ui's are equal to −1 and
N−M of them are +1. We refer to suh on�gurations asM-defet on�gurations.Eqn. (2.50) an then be written as,

(

J2
y − J2

z

J2
y + J2

z

)M

= p

(

J2
x

J2
y + J2

z

)N

. (2.51)Thus, for zero modes to exist for M = 0 or ground state �ux on�guration,
p

(

J2
x

J2
y + J2

z

)N

= 1. (2.52)We only have solutions on the irle of radius Jx in the Jy − Jz plane when p ispositive. Thus, this result implies that the model is gapless only on the irle, inaordane with eqn. (2.45).When M > 0

(

J2
y − J2

z

J2
y + J2

z

)M

< 1. (2.53)55



Chapter 2. Tetrahedral ModelTherefore,
(

J2
x

J2
y + J2

z

)N

< 1. (2.54)Thus, zero modes does not exist within the irle of radius Jx.Outside the irle,
(

J2
x

J2
y + J2

z

)N

> 1. (2.55)So, for zero mode to exist,
(

J2
y − J2

z

J2
y + J2

z

)M

> p. (2.56)For every even M , eqn. (2.52) is satis�ed for both Jy > Jz and Jz > Jy for p = +1.For odd M , the Jy > Jz solution exists for p = +1 and the Jy < Jz solution existsfor p = −1.Thus, for every N , there is a disrete set of points outside the irle whihsupport zero energy modes. In the thermodynami limit of N → ∞, N/M antake all values from 1 to ∞. In this limit, all the points outside the irle in therange, J2
x ≤ |J2

y − J2
z | ≤ 0 support zero energy modes. This region is shown for

Jx = 1 in �gure (2.4).Let us onsider the ases when the M defets are in adjoining unit ells, sayfrom i = 1 to i = M . We all this a kink-antikink on�guration. We de�ne polaroordinates in the Jy − Jz plane,
J ≡

√

J2
y + J2

z , γ = tan−1

(

Jz
Jy

)

. (2.57)
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Chapter 2. Tetrahedral Model

Figure 2.4: The region in the Jy − Jz plane at Jx = 1 that supports zero energymodes in setors with defets.Then, the unnormalised wave funtions of the two zero modes are given by,
φ+
i,1 = J2(i−1) (cos 2γ)i−1 i ≤M + 1

= J2(i−1) (cos 2γ)i−1−M i > M + 1,

φ+
i,4 = 0 (2.58)and φ−
i,4 = J−2(i−1) (cos 2γ)−(i−1) i ≤M + 1,

= J−2(i−1) (cos 2γ)−(i−1−M) i > M + 1,

φ−
i,1 = 0. (2.59)
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Chapter 2. Tetrahedral Model
φ±
i,2 and φ±

i,3 are given in terms of φ±
i,1 and φ±

i,4,
φ±
i,2 =

1

Jx

(

Jyφ
±
i,1 − uRi Jzφ

±
i,4

)

, (2.60)
φ±
i,3 =

1

Jx

(

uLi Jzφ
±
i,1 + Jyφ

±
i,4

)

. (2.61)It an be seen that φ+ peaks at i=M and is minimum at i=1 whereas φ− peaks ati=1 and has a minimum at i =M . Thus, we have one Majorana mode loalised atthe loation of the kink and another at the loation of the antikink. When M islarge these are well separated. If the �ux on�guration an be manipulated, thenso an the Majorana modes trapped in them.2.6.2 Open Boundary ConditionLet us now onsider the Hamiltonian under open boundary ondition with N unitells. We then need to solve eqns. (2.47) with the boundary onditions (2.24).From the solutions in eqn. (2.48), we see that the above boundary ondition hasnon trivial solutions if and only if atleast one of the fators in the produts on theRHS of the eqn. (2.48) is zero. This is only possible when |Jy| = |Jz| and at leastone ui = −1. We an make unpaired majorana fermions to move along the haintuning �ux on�guration as shown in �gure (2.6).In OBC the zero mode wavefuntions an be made to vanish in the regionbetween the kink and the antikink. For example, if we onsider a �ux on�gurationwith ui = −1, i1 ≤ i < i1 +M , then the wavefuntions are given by,
φ+
i,1 = J2(i−1) i ≤ i1,

= 0 i > i1,

φ+
i,4 = 0 (2.62)And φ−
i,4 = J−2(i−1) i > i1 +M,

= 0 i > M + 1,

φ−
i,1 = 0 (2.63)and φ±

i,2 and φ±
i,3 are given in terms of φ±

i,1 and φ±
i,4 as before. These wavefuntionsare shown in �gure (2.5) for N = 25 and M = 7. 58
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Figure 2.5: The wavefuntions of the two Majorana zero modes for N = 25, M = 7with open boundary onditions.2.6.3 Inhomogenous hainsThe solutions for the zero mode equn. (2.47) hold even for the ase of inhomogenoushains where the oupling onstants Jy and Jz depend on i. The equations thenbeome,
Jxφi+1,1 +

J2
yi + uiJ

2
zi

Jx
φi,1 = 0,

Jxφi−1,4 +
J2
yi + uiJ

2
zi

Jx
φi,4 = 0. (2.64)

59



Chapter 2. Tetrahedral ModelThe solutions of these reursion relations are exatly the same as these in the aseof the homogenous hain with `i' dependent Jy(z).
φi,1 =

∏

j<i

(

J2
yj + ujJ

2
zj

J2
x

)

φ1,

φi,4 =
∏

j>i

(

J2
yj + ujJ

2
zj

J2
x

)

φ4. (2.65)It is lear that by tuning the values of the site dependent ouplings, a large varietyof zero mode wavefuntions an be engineered.2.6.4 The QubitAs φn
i 's obey the orthogonality and ompleteness relation, we an de�ne inverselyfrom eqn.(2.16),

χn =
∑

i

φn
i ξi, (2.66)where we take φ1 and φ2 to be two independent degenerate zero modes.We rede�ne χ1 and χ2 as χ01 and χ01† by,

χ01 =
(

χ1 + iχ2
)

,

χ01† =
(

χ1 − iχ2
)

. (2.67)If the vauum |0〉 is de�ned by χn|0〉 = 0, ∀n, then the lowest level degeneratemultiparile states
|0〉,

χ0†|0〉are the |0〉 and |1〉 of the proposed qubit.
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Chapter 2. Tetrahedral Model2.6.5 Tuning the �ux on�gurationWe an add the following �hemial potential� term for the plaquette operators,
Hµ =

∑

i

(

µL
i W

L
i + µR

i W
R
i

)

. (2.68)This term is ommuting with the Hamiltonian, adding it into the hamiltonian willnot hange the eigenstates but will hange the energy eigenvalues. If the µL(R)
i anbe tuned, then any partiular �ux on�gurations an be made the ground state.However, it is still not known how to engineer these 3-spin operators in thephysial realisation of the model in quantum iruits. Therefore, we propose an-other model in the next hapter 3 where ommuting operators are 2-spin operators.In the hapter 5, we show how to realise this model and its ommuting operators.
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(a) (b)

() (d)

(e) (f)Figure 2.6: Unpairing with 1, 5, 10, 15, 20 and 25 defets in �gure (a), (b), (),(d), (e) and (f) respetively. The defets have been put from the left end of thehain of 25 unit ells. 62



3XYZ-Ising Model: Exat Solutions
In this hapter, we will desribe a simpler version of Tetrahedron Model whih weall XYZ-Ising Model. The Tetrahedron model has loalised unpaired Majoranamodes whih we an move around the lattie by tuning the defets using three-spinommuting operators. The same thing an be ahieved in the XYZ-Ising model.The main motivation to study this model is that the unpaired Majorana modesan be moved around using two-spin ommuting operators. We solve the modelusing the Kitaev's method and reprodue their results. We further bring out thetopologial nature of the exitations of the model.3.1 The Hamiltonian

z z z zzzzzz

x x x x x

y y y y y

i i+1

1 2

i−1

z

Figure 3.1: The XYZ-Ising hain. There are two sites per unit ell. The x, y and
z bonds are as indiated.The Hamiltonian,

H =
N
∑

i

(

Jxσ
x
i,1σ

x
i,2 + Jyσ

y
i,1σ

y
i,2 + Jzσ

z
i,1σ

z
i,2 + σz

i,2σ
z
i+1,1

)

. (3.1)
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Chapter 3. XYZ-Ising Model: Exat SolutionsLeib, Shultz and Mattis have studied the model for Jx = Jy = Jz [49℄.The periodi boundary ondition (PBC) is given by,
σz
N+1,1 = σz

1,1. (3.2)In eah unit ell there is a ommuting operator Wi,
Wi = σz

i,1σ
z
i,2. (3.3)Apart from these loal onserved operators there are also three global operatorswhih are onserved as a onsequene the fat that a global π rotation about eahof the three axes is a symmetry of the model. We denote these by,

Σa ≡ ei
π
2

∑
i,a σa

i,α . (3.4)It an be veri�ed that Σz is the produt of the �uxes of all the bond operators,
Σz =

∏

i

(Wi) . (3.5)The XYZ-Ising model Hamiltonian an also be written as
H =

N
∑

i

(

Jxσ
x
i,1σ

x
i,2 + Jyσ

y
i,1σ

y
i,2 + JzWi + σz

i,2σ
z
i+1,1

)

. (3.6)Therefore, the eigenstates of the model are independent of Jz. In this hapter, wewill fous on Jz = 0 whih we all XY-Ising model. The hain we de�ne our model
z z z z

x x x x x

y y y y y

i i+1

1 2

i−1

z

Figure 3.2: The XY-Ising hain. There are two sites per unit ell. The x, y and zbonds are as indiated.on, is shown in �gure (3.2). 64



Chapter 3. XYZ-Ising Model: Exat SolutionsThe Hamiltonian is,
H =

N
∑

i=1

(

Jx
(

σx
i,1σ

x
i,2

)

+ Jy
(

σy
i,1σ

y
i,2

)

+
(

σz
i,2σ

z
i+1,1

))

. (3.7)3.2 FermionisationWe hoose the Jordan-Wigner path to go along the y and the z bonds from left toright. At every site we have two bonds that are tangential to the path. We denotethe inoming bond by t1 and the outgoing bond by t2. The third bond on eah sitewhih in normal to the path is denoted by n with the sign de�ned by n̂ = t̂1 × t̂2.With our hoie of path,
σx
i,1 → −σn

i,1

σx
i,2 → σn

i,2

σy
i,1 → σt2

i,1

σy
i,2 → σt1

i,2

σz
i,1 → σt1

i,1

σz
i,2 → σt2

i,2. (3.8)So, Hamiltonian an be written as
H =

N
∑

i=1

(

−Jx
(

σn
i,1σ

n
i,2

)

+ Jy
(

σt2
i,1σ

t1
i,2

)

+
(

σt2
i,2σ

t1
i+1,1

))

. (3.9)with periodi boundary ondition,
σt1
N+1,1 ≡ σt1

1,1. (3.10)The ommuting operator beomes,
Wi = σt1

i,1σ
t2
i,2. (3.11)
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Chapter 3. XYZ-Ising Model: Exat SolutionsWe express the Hamiltonian in terms of Majorana fermions using the Jordan-Wigner transformation. The two Majorana operators at eah site are de�ned as,
ξi,α = σt1

i,α

∏

j<i

(

∏

β<α

σn
j,β

)

,

ηi,α = σt2
i,α

∏

j<i

(

∏

β<α

σn
j,β

)

. (3.12)
ξi and ηi operators follow anti omutation relation,

{ξi, ξj} = 2δi,j; {ηi, ηj} = 2δi,j ; {ξi, ηj} = 0. (3.13)The Hamiltonian an be expressed in terms of the Majorana operators as de�nedabove,
H =

N
∑

i=1

(Jy − Jxûi) iξi,1ξi,2 +

N−1
∑

i=1

iξi,2ξi+1,1

+ i

n
∏

i

(iξi,1ξi,2)

N
∏

i

(ûi) iξN,2ξ1,1, (3.14)where the link �elds, ûi are de�ned as,
ûi ≡ iηi,1ηi,2. (3.15)The ommuting operator Wi beomes
Wi = −iηi,1ηi,2. (3.16)It is easy to see that the link �elds are ommuting operators. As ûi2 = 1, ûihas two eigenvalues ±1. We an interpret it as �ux passing through x-y bondand denote it by ui. Thus, the interating Hamiltonian of spin half operatorstransforms into a non-interating Hamiltonian of Majorana operators with nearestneighbour hopping in the bakground of onserved Z2 gauge �elds with the gauge�xing ondition that the gauge �elds on the y and z bonds are equal to +1.We an express the three global onserved quantities, Σa in terms of the66



Chapter 3. XYZ-Ising Model: Exat Solutionsfermioni variables,
Σz =

N
∏

i

(−iηi,1ηi,2) =
N
∏

i

ûi,

Σy =
N
∏

i

(iξi,1ξi,2) ,and Σx = ΣyΣz =
N
∏

i

(iξi,1ξi,2)
N
∏

i

ûi. (3.17)We refer to Σz as the �ux number and Σy as the Majorana number.From eqn. (3.17), we an write
H =

N
∑

i=1

(Jy − Jxûi) iξi,1ξi,2 +
N−1
∑

i=1

iξi,2ξi+1,1 + iΣx ξN,2ξ1,1, (3.18)where ∏n
i (iξi,1ξi,2)

∏N
i ûi = Σx is a onserved quantity. Hene, Hamiltonian anbe diagonalised in the basis of Σx.Thus, the spin Hamiltonian gets onverted into the fermioni hamiltonian withperiodi boundary ondition with Σx = +1 and with anti-periodi boundary on-ditions for states with Σx = −1.3.3 DiagonalisationThe Hamiltonian an be diagonalised in the standard way. We write the eigenstatesas diret produts of states |G〉 in the η fermion setor and states |M〉 in the

ξ fermion setor. We will refer to states belonging to η fermion setor as thegauge setor and states belonging to ξ fermion setor as matter setor. We hoosethe states in the gauge setor to be the simultaneous eigenstates of the Z2 �uxoperators, i.e |G〉 = |{ui}〉, where
ûi|{ui}〉 = ui|{ui}〉. (3.19)
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Chapter 3. XYZ-Ising Model: Exat SolutionsWe then have
H [ûi] |M〉|{ui}〉 = H [ui] |M〉|{ui}〉. (3.20)Therefore, the problem redues to �nding the eigenstates of the quadrati Hamil-tonan of the ξ fermions in the bakground of the gauge �eld on�guration {ui}.We an write the Hamiltonian as

H =
∑

i,α

∑

j,β

ξi,αhiα,jβξi,β. (3.21)To diagonalise the Hamiltonian, we substitute
ξi,a =

∑

n

φ∗n
i,aχn, (3.22)where normal modes φn,a

i are found out by solving single partile eigenvalue equa-tion,
∑

j,β

hiα,jβφ
n
j,β = ǫnφ

n
i,α, (3.23)where h is a purely imaginary hermitian matrix. For every positive eigenvalue,single partile Hamiltonian h has one negative eigenvalue and the eigenvetorsorresponding to the positive and negative eigenvalues are omplex onjugates ofeah other.The normal modes φn,a

i 's obey orthogonality and ompleteness relation.
∑

i

φm
i,a

∗φn
i,a = δm,n,

∑

n

φn
i,a

∗φn
j,a = δi,j . (3.24)In eqn. (3.22), χn and χn† are fermioni operators and follow the ommutationrelation,

{χm†, χn} = δm,n. (3.25)68



Chapter 3. XYZ-Ising Model: Exat SolutionsThe diagonal form of the Hamiltonian is then,
H =

∑

n

ǫn (2χn†χn − 1). (3.26)Therefore, ground state energy E0 an be written as,
E0 = −

∑

n

ǫn. (3.27)3.4 Exat Solution for all SetorsThe Hamiltonian for speial ase Jx = Jy =
J
2
is,

H =

N
∑

i=1

(

J

2
(1− ui) iξi,1ξi,2

)

+

N−1
∑

i=1

(iξi,2ξi+1,1) + iξN,2ξ1,1Σx. (3.28)The Hamiltonian for speial ase Jx = Jy =
J
2
an be solved exatly for all setorsbeause whenever ui = +1, at the ith unit ell, the hain is ut at that unit ell.Let us all ui = −1 , for all i, the defet free state and refer to every ui = +1 as adefet.3.4.1 The 0-defet setorWith the notation introdued above, the defet free setor orresponds to a Majo-rana fermions with nearest neighbour hopping on a losed hain of 2N sites,

H =
N
∑

i=1

(iJξi,1ξi,2) +
N−1
∑

i=1

(iξi,2ξi+1,1) + iξN,2ξ1,1Σx. (3.29)The defet free setor onsists of two setors orresponding to periodi or anti-periodi boundary onditions for Σx = +1 and Σx = −1 respetively.We an write the Hamiltonian as
H =

N
∑

i=1

(iJξi,1ξi,2 + iξi,2ξi+1,1) , (3.30)
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Chapter 3. XYZ-Ising Model: Exat Solutionswith boundary ondition
ξ1,1 = ±ξN+1,1, (3.31)where +1 orresponds to (PBC) and -1 orresponds to Anti-(PBC).The single partile eigenvalue equation in the zero defet setor is,

−i
2
φi−1,2 +

iJ

2
φi,2 = ǫφi,1and −iJ

2
φi,1 +

i

2
φi+1,1 = ǫφi,2, (3.32)with boundary onditions

φ1,1 = φN+1,1. (3.33)We use Fourier transform to solve this equation,
φi,a =

1√
N

∑

k

φk,ae
−ikRi , (3.34)(3.35)then, single partile energy eigenvalue equation beomes,

(−ieika + iJ)

2
φk,2 = ǫ(k)φk,1and (−iJ + ie−ika)

2
φk,1 = ǫ(k)φk,2. (3.36)The boundary ondition implies that

eikNa = ±1. (3.37)Therefore,
ka =

(2m− a)π

N
, (3.38)where m= 1,2,3 . . . N and a = 0, 1 for PBC and anti-PBC respetively. 70



Chapter 3. XYZ-Ising Model: Exat SolutionsSo, Hamiltonian beomes
H =

N
∑

k=1

(

iJ − ieika

2

)

ξ+k,1ξk,2 + h.c, (3.39)
or, H =

N
∑

k=1

[

ξ+k,1ξk,2

]

[

0 i
2
ǫke

iαk

− i
2
ǫke

−iαk 0

][

ξk,1

ξk,2

]

, (3.40)where ǫkeiαk = J − eikaSolving the Hamiltonian, we get
H =

∑

k

(

ǫ1(k)χ
+
k,1χk,1 + ǫ2(k)χ

+
k,2χk,2

)

, (3.41)where ǫ1,2(k) is given by,
ǫ1,2(k) = ±

√

J2 − 2J cos(ka) + 1, (3.42)and χk,1 and χk,2 is given by,
[

χk,1χk,2

]

=

[

1 1

ie−iαk −ieiαk

][

ξk,1

ξk,2

]

. (3.43)3.4.2 The 1-defet setorWithout any loss of generality, we an hoose uN = 1 and all other ui = −1. Theeqn. (3.28) then beomes,
H =

N−1
∑

i=1

(iJξi,1ξi,2 + iξi,2ξi+1,1) + iξN,2ξ1,1Σx. (3.44)
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Chapter 3. XYZ-Ising Model: Exat SolutionsWe rede�ne ξN,2Σx → ξN,2. The Hamiltonian then beomes,
H =

N−1
∑

i=1

(iJξi,1ξi,2 + iξi,2ξi+1,1) + iξN,2ξ1,1. (3.45)This orresponds to the fermions on an open hain with N sites.Let us relabel the site and replae ξN,2 by ξ0,2 so that we an express theHamiltonian in a onise form,
H =

N−1
∑

i=1

iJξi,1ξi,2 +

N−1
∑

i=0

iξi,2ξi+1,1. (3.46)The boundary ondition is,
ξ0,1 = 0and ξN,2 = 0. (3.47)We an write the Hamiltonian as,

H =
∑

i,α

∑

j,β

ξi,αhiα,jβξi,β. (3.48)The single partile eigenvalue equation in one defet setor is,
∑

j,β

hiα,jβφj,β = ǫφi,α. (3.49)Therefore,
−i
2
φi−1,2 +

iJ

2
φi,2 = ǫφi,1and −iJ

2
φi,1 +

i

2
φi+1,1 = ǫφi,2, (3.50)with boundary onditions

φ0,1 = 0and φN,2 = 0. (3.51)72



Chapter 3. XYZ-Ising Model: Exat SolutionsWe use now the standing waves transform to solve this open hain problem,
φi,a =

1√
2N

∑

k

φk,ae
ikRi + φ−k,ae

−ikRi. (3.52)Substituting φi,1 and φi,2 in eqn. (3.50) and equating eikRi and e−ikRi, we get
(−ieika + iJ)

2
φk,2 = ǫφk,1

(−iJ + ie−ika)

2
φk,1 = ǫφk,2. (3.53)

or, [ −ǫ i
2
ǫke

iαk

− i
2
ǫke

−iαk −ǫ

][

φk,1

φk,2

]

= 0, (3.54)where we substitute
J − eika = ǫke

iαk . (3.55)The relation J−eika = ǫke
iαk has been shown in the Argand plane in the �gure(3.3) and �gure (3.4).

αk is given by,
tanαk =

− sin(ka)

J − cos(ka)
. (3.56)For non trivial solution,

∣

∣

∣

∣

∣

−ǫ iǫke
iαk

2
−iǫke

−iαk

2
−ǫ

∣

∣

∣

∣

∣

= 0. (3.57)Therefore, ǫ(k) is given by
ǫ1,2(k) = ±ǫk = ±1

2

√

J2 − 2J cos(ka) + 1, (3.58)
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Chapter 3. XYZ-Ising Model: Exat Solutions

k
k

J

J

z

Real Axis

Imaginary Axis

Figure 3.3: J − eika = ǫke
iαk in Argand plane. For J > 1, α(0) = 0 and α(π) = 0.and phase fators φk,1 and φk,2 are,

φk,1 = ±ieαkφk,2. (3.59)The boundary ondition φ0,1 = 0 and φN,2 = 0 from eqn. (3.52) implies that
φk,1 = −φ−k,1 (3.60)
φk,2 = −φ−k,2e

−2i(N+1)ka, (3.61)
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Chapter 3. XYZ-Ising Model: Exat Solutions

k
Real Axis

k

Jz

J

Imaginary Axis

Figure 3.4: J − eika = ǫke
iαk in Argand plane. For J < 1, α(0) = 0 and α(π) = π.and substituting φk,1 and φ−k,1 from eqn. (3.59) in eqn. (3.60),

φ−k,2 = −e2iαkφk,2. (3.62)Using eqn. (3.61), above eqn. beomes,
e2iαk = e2i(N+1)ka. (3.63)The solution of this eqn. gives the values of k,

ka =
nπ

N + 1
+

αk

N + 1
, (3.64)where n goes to 1 to N. 75



Chapter 3. XYZ-Ising Model: Exat SolutionsThus, one defet setor Hamiltonian has been solved.Here, we have solved eqn. (3.56) and eqn. (3.64) numerially for N=10 andplotted k versus n for J > 1 and J < 1 as shown in �gure 3.5. In this �gure,
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n

k

Figure 3.5: The red line shows the plot between k and n without the orretion
αk. The green and blue line shows the plot between k and n for J < 1 and for
J > 1 respetively.one an see that for J < 1 number of allowed values of k for N (N=10) is N.But for J < 1 number of allowed values of k (for N=10) is N-1. The missing onemode is zero mode of the model. Sine the appearane of the zero mode dependson the topology of parameters of Hamiltonian as shown in �gure (3.3) and (3.4),therefore, zero mode of the Hamiltonian is robust.
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Chapter 3. XYZ-Ising Model: Exat Solutions3.4.3 The nD-defet setorIf we de�ne,
HL =

L−1
∑

i=1

(iJξi,1ξi,2 + iξi,2ξi+1,1) + iξL,2ξi,1, (3.65)then the one defet setor hamiltonian is,
H = HL. (3.66)The two defet setor hamiltonian is,

H = HL1
+HL2

, L1 + L2 = N,L1(2) ≥ 1 (3.67)and, similarly, nD setor hamiltonian is,
H =

nD
∑

n=1

HLn
, (3.68)where nD

∑

n=1

Ln = N,Ln ≥ 1.Thus, the one defet setor Hamiltonian is equivalent to open hain Hamiltonianand nD defet setor Hamiltonian is equivalent to nD open hain Hamiltonian. So,if we an solve one open hain Hamiltonian we an solve the Hamiltonian in allsetors.3.5 Ground State and GapIn this setion, we prove that zero defet setor is the ground state setor of XY-Ising Hamiltonian.For Hamiltonian with (PBC),
H =

N
∑

i=1

(

J

2
(1− ui) iξi,1ξi,2

)

+

N−1
∑

i=1

(iξi,2ξi+1,1) + iξN,2ξ1,1Σx. (3.69)
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Chapter 3. XYZ-Ising Model: Exat SolutionsIn order to prove the statement, �rst we show that the ground state energy of zerodefet setor is less than that of one defet setor for large N. Then, we prove thatground state energy of one defet setor is less than that of two defet setor, andso on.So, let us �rst show that the ground state energy of zero defet setor is lessthan that of one defet setor.Let us onsider the ground state energy GSEzds of zero defet setor,
GSEzds = −

N
∑

k=1

f

(

2kπ

N

)

, (3.70)where f(k) =√J2 − 2J cos(ka) + 1.The ground state energy GSEods of one defet setor,
GSEods = −

N
∑

k=1

f

(

kπ

N + 1
+
α(kπ/N + 1)

N + 1

)

, (3.71)where f(k) =√J2 − 2J cos(ka) + 1.In Appendix of this hapter, we have shown that ground state energy of zerodefet setor,
GSEzds = −N

π

∫ π

0

f(y)dy, (3.72)and ground state energy of one defet setor,
GSEods = −N

π

∫ π

0

f(y)dy

− 1

π

∫ π

0

dy
J2 − J cos(y)

√

J2 − 2J cos(y) + 1
+ J. (3.73)Therefore, we an always write

GSEods = GSEzds −
1

π

∫ π

0

dy
J2 − J cos(y)

√

J2 − 2J cos(y) + 1
+ J. (3.74)
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Chapter 3. XYZ-Ising Model: Exat SolutionsNow let us take the last part of above expression,
1

π

∫ π

0

dy
J2 − J cos(y)

√

J2 − 2J cos(y) + 1

=
1

π

∫ π

0

dy
J(J − cos(y))

√

J2 − 2J cos(y) + 1

=
1

π

∫ π

0

dyJ

√

J2 − 2J cos(y) + cos2(y)

J2 − 2J cos(y) + 1

<
1

π

∫ π

0

dyJ (3.75)and show that
−1

π

∫ π

0

dy
J2 − J cos(y)

√

J2 − 2J cos(y) + 1
+ J > 0. (3.76)Therefore, using eqn. (3.74), we an write �nally,

GSEods > GSEzds. (3.77)Thus, the ground state energy of zero defet setor is less than the ground stateenergy of one defet setor.Now, we prove that ground state energy for one defet setor is less than thatof for two defet setor.In order to show this we split the Hamiltonian into three parts,
HL1+L2

= HL1
+HL2

+H12, (3.78)where H is the Hamiltonian for one defet setor, HL1
and HL2

are Hamiltoniansof lengths L1 and L2 respetively, H12 is the link bond between HL1
and HL2

.From variational priniple,
ǫG (L1 + L2) ≤ 〈ψ0|H|ψ0〉, (3.79)where ǫG (L1 + L2) is the ground state energy of Hamiltonian for one defet setorand ψ0 is the simultanous ground state of HamiltonianHL1

and HL2
. We an write79



Chapter 3. XYZ-Ising Model: Exat Solutions
ψ0 as diret produt of ground state of Hamiltonian HL1

and HL2
,

|ψ0〉 = |ψL1
〉|ψL2

〉 (3.80)and
HL1

|ψL,1〉 = ǫG (L1) |ψL,1〉 (3.81)
HL2

|ψL,2〉 = ǫG (L2) |ψL,2〉. (3.82)If we substitite H in eqn. (3.79) from eqn. (3.78) , we get
ǫG (L1 + L2) ≤ 〈ψ0|HL1

+HL2
+H12|ψ0〉. (3.83)Now, let us substitute |ψ0〉 from eqn. (3.80),

ǫG (L1 + L2) ≤ 〈ψL1
|〈ψL2

|HL1
+HL2

+H12|ψL2
〉|ψL1

〉
ǫG (L1 + L2) ≤ 〈ψL1

|HL1
|ψL1

〉+ 〈ψL2
|HL2

|ψL2
〉

+ 〈ψL1
|〈ψL2

|H12|ψL2
〉|ψL1

〉
ǫG (L1 + L2) ≤ ǫG (L1) + ǫG (L2) + 〈ψL1

|〈ψL2
|H12|ψL2

〉|ψL1
〉. (3.84)Now, let us alulate 〈ψL1

|〈ψL2
|H12|ψL1

〉|ψL2
〉. Let us onsider the link Hamilto-nian H12 = iξnξn+1, where ξn belongs to the Hamiltonian HL1

beause n is lastsite of HL1
and ξn+1 belongs to the Hamiltonian HL2

beause n + 1 is �rst site of
HL2

. Therefore,
〈ψL1

|〈ψL2
|iξnξn+1|ψL1

〉|ψL2
〉 = i〈ψL1

|ξn|ψL1
〉〈ψL2

|ξn+1|ψL2
〉. (3.85)Now, expetation value of single ξn operator in the ground state is always zero.Therefore, eqn. (3.83) beomes

ǫG (L1 + L2) ≤ ǫG (L1) + ǫG (L2) , (3.86)where ǫG (L1) + ǫG (L2) is nothing but ground state energy of two defet setor.Therefore, the ground state energy of one defet setor is less than the groundstate energy of two defet setor. Similarly, we an prove for three defet setor80



Chapter 3. XYZ-Ising Model: Exat Solutionsand so on.Therefore, ground state of zero defet setor is the ground state ofthe model.As we have solved the Hamiltonian for zero defet setor using Fourier transformbeing translationally invariant �ux setor ui = −1 and get energy eigenspetrum
ǫk,

ǫk = ±1

2

√

J2 − 2J cos(ka) + 1. (3.87)Now, we an alulate the fermioni gap ∆, whih is twie the value of the lowestsingle partile energy eigenvalue. The gap is given by
∆ = |(1− J)|. (3.88)Therefore, model is gapless for J = 1.3.5.1 Nature of low energy exitationsThe low temperature behaviour of any system depends mostly on ground state andthe �rst exited state of the model. We proved that ground state of zero defetsetor, namely, ui = −1 , is the ground state of the model.Numerially we have shown that �rst exited state of ground state setoris the �rst exited state of the model for J=0.75 to J=1.17 (Assuming Jz=1). Theground state energy of the one defet setor is the �rst exited state of themodel for J=0 to J=0.74 and for J=1.17 onwards. We have plotted �rst exitedstate energy of zero defet setor (red line) with J and ground state energy ofone defet setor (green line) with J shown in �gure (3.6). (While plotting all theenergies, ground state of zero defet setor has been taken as referene point).3.5.2 Zero modesThe solutions belonging to ǫ = 0 are alled zero mode solutions. As we haveseen earlier that degenerate and independent zero mode solutions peak arounddi�erent sites whih is alled unpairing of zero mode eigenvetors. The single81
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Figure 3.6: First exitation in XY-Ising Modelpartile eigenvalue equation for zero energy is
−J(1 − ui)

2
φi,1 + φi+1,1 = 0and − φi−1,2 +
J(1− ui)

2
φi,2 = 0. (3.89)Solving these reursion relations we get,

φi,1 =
i
∏

j=1

(

J(1− uj)

2

)

φ1,1and φi,2 =
N
∏

j=i

(

2

J(1− uj)

)

φN,2. (3.90)
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Chapter 3. XYZ-Ising Model: Exat SolutionsIn zero defet setor the zero mode equation (3.89) beomes,
−Jφi,1 + φi+1,1 = 0and − φi−1,2 + Jφi,2 = 0. (3.91)Therefore, φi,1 and φi,2 an be expressed as
φi,1 = J i−1φ1,1and φi,2 =

(

1

J

)i−1

φN,2. (3.92)In zero defet setor, imposing boundary ondition φ1,1 = φN+1,1 we �nd that thezero mode exists for zero defet setor only at the gapless point J = 1.We will show that in one defet setor, zero mode does exist in the model. Inone defet setor, the zero mode equation is same as that of zero defet setor butwith boundary ondition,
φ0,1 = φN,2 = 0. (3.93)In this ase, φi,1 and φi,2 an be expressed as,
φi,1 = J iφ1,0and φi,2 =

(

1

J

)i−1

φN,2. (3.94)Non-trivial solutions for φ's exist only in in�nite hain for J > 1. This zero modeis topologially proteted about with we have disussed earlier.From eqn. (3.89) we an see that zero modes exist in �nite hain in two ormore defet setor for all values of J .AppendixThe ground state energy GSEzds of zero defet setor is,
GSEzds = −

N
∑

k=1

f

(

2kπ

N

)

, (3.95)83



Chapter 3. XYZ-Ising Model: Exat Solutionswhere f(k) =√J2 − 2J cos(ka) + 1.To evaluate the summation series, we onvert it into integral using Euler-Malaurin formula,
n
∑

x=1

f(x) =

∫ n

0

f(x)dx+B1[f(0)− f(n)] +

p
∑

k=1

B2k

(2k)!

(

f (2k−1)(n)− f (2k−1)(0)
)(3.96)where B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42... are theBernoulli numbers.The expression for ground state energy for zero defet setor eqn. (3.99) be-omes,

GSEzds = −
N
∑

k=1

f

(

2kπ

N

)

= −
∫ 2π

0

f(k
2π

N
)dk +

1

2
[f(0)− f(N

2π

N
)]

− 1

12
[f ′(N

2π

N
)− f ′(0)] + .... (3.97)Substituting y = 2kπ

N
and dx = N

2π
dy we get,

GSEzds = − N

2π

∫ 2π

0

f(y)dy +
1

2
[f(0)− f(2π)]

− 1

12

2π

N
[f ′(N

2π

N
)− f ′(0)] + .... (3.98)At thermodynami limit, N → ∞, only �rst two terms survive in the equation,

GSEzds = −N

2π

∫ 2π

0

f(y)dy +
1

2
[f(0)− f(2π)]. (3.99)We an take f(y) = f(cos(y)) and try to show for N → ∞,

N

2π

∫ 2π

0

f(cos y)dy =
N

π

∫ π

0

f(cos y)dy. (3.100)
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Chapter 3. XYZ-Ising Model: Exat SolutionsLHS of eqn. (3.100) is,
N

2π

∫ 2π

0

f(cos y)dy =
N

2π

∫ π
2

0

f(cos y)dy +
N

2π

∫ 3π
2

π
2

f(cos y)dy (3.101)
+

N

2π

∫ 2π

3π
2

f(cos y)dy. (3.102)It an be easily shown that
∫ 3π

2

π
2

f(cos y)dy = 2

∫ π
2

0

f(− cos y)dy (3.103)
∫ 2π

3π
2

f(cos y)dy =

∫ π
2

0

f(cos y)dy. (3.104)Therefore,
N

2π

∫ 2π

0

f(cos y)dy = 2
N

2π

∫ π
2

0

f(cos y)dy + 2
N

2π

∫ π
2

0

f(− cos y)dy. (3.105)Let us take RHS of eqn. (3.100),
N

π

∫ π

0

f(cos y)dy =
N

π

∫ π
2

0

f(cos y)dy +
N

π

∫ π
2

0

f(− cos y)dy. (3.106)Hene,
N

2π

∫ 2π

0

f(cos y)dy =
N

π

∫ π

0

f(cos y)dy. (3.107)Thus, from eqn. (3.99),
GSEzds = −N

π

∫ π

0

f(cos y)dy +
1

2
[f(0)− f(2π)]. (3.108)We know that f(0) = f(2π) = J + 1. Therefore, �nally we an write

GSEzds = −N
π

∫ π

0

f(y)dy. (3.109)
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Chapter 3. XYZ-Ising Model: Exat SolutionsThe ground state energy GSEods of one defet setor is,
GSEods = −

N
∑

k=1

f

(

kπ

N + 1
+
α(kπ/N + 1)

N + 1

) (3.110)where f(k) = √J2 − 2J cos(ka) + 1. To evaluate the summation series we againonvert it into integral using Euler-Malaurin formula and neglet last terms on-taining (N+1) in the denominator in limit N → ∞,
GSEods = −

∫ N

0

f

(

kπ

N + 1
+
α(kπ/N + 1)

N + 1

)

dk

+
1

2

[

f

(

α(0)

N + 1

)

− f

(

Nπ

N + 1
+
α(Nπ/N + 1)

N + 1

)]

. (3.111)Let us evaluate f ( α(0)
N+1

),
f

(

α(0)

N + 1

)

= f(0) +
α(0)

N + 1
f ′(0) + ..... = f(0), (3.112)where, again, we negleted terms ontaining (N+1) in the denominator in limit

N → ∞.Let us evaluate
f

(

Nπ

N + 1
+
α(Nπ/N + 1)

N + 1

)

= f

(

π − π

N + 1
+
α(π − π/N + 1)

N + 1

)

= f

(

π − π

N + 1
+
α(π − π/N + 1)

N + 1

)

= f

(

π − π

N + 1
+
α(π)− (π/N + 1)α

′

(π) + ...

N + 1

)
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Chapter 3. XYZ-Ising Model: Exat Solutions
= f

(

π − π

N + 1
+

α(π)

N + 1
− π

(N + 1)2
α

′

(π) + ...

)

= f

(

π − 1

N + 1

(

π + α(π)− π

(N + 1)
α

′

(π) + ...

))

= f(π)− 1

N + 1

(

π + α(π)− π

N + 1
α

′

(π) + ...

)

= f(π), (3.113)where we negleted last terms ontaining (N+1) in the denominator in limit N →
∞. Substituting all these values in eqn. (3.111) we get,

GSEods = −
∫ N

0

f

(

kπ

N + 1
+
α(kπ/N + 1)

N + 1

)

dk +
1

2
[f(0)− f(π)] . (3.114)Let us substitute y = kπ

N+1
then dy = dkπ

N+1
.At k=0, y=0 and at k=N, y= Nπ

N+1
above expression for ground state energy forone defet setor then beomes

GSEods = −N + 1

π

∫ Nπ
N+1

0

f

(

y +
α(y)

N + 1

)

dy +
1

2
[f(0)− f(π)] . (3.115)Using Taylor expansion,

GSEods = − N + 1

π

∫ Nπ
N+1

0

(

f(y) +
α(y)

N + 1
f ′(y) + ...

)

dy

+
1

2
[f(0)− f(π)]

= − N + 1

π

∫ Nπ
N+1

0

f(y)dy − 1

π

∫ Nπ
N+1

0

(α(y)f ′(y)) dy

+ terms ontaning 1

N + 1
+

1

2
[f(0)− f(π)] . (3.116)Negeleting terms ontaining 1

N+1
in thermodynami limit N → ∞,

GSEods = − N + 1

π

∫ Nπ
N+1

0

f(y)dy − 1

π

∫ Nπ
N+1

0

α(y)f ′(y)dy

+
1

2
[f(0)− f(π)] . (3.117)87



Chapter 3. XYZ-Ising Model: Exat SolutionsUsing integration by parts,
GSEods = − N + 1

π

∫ Nπ
N+1

0

f(y)dy − 1

π
[α(y)f(y)]

Nπ
N+1

0

+
1

π

∫ Nπ
N+1

0

α′(y)f(y)dy +
1

2
[f(0)− f(π)] . (3.118)Using eqn. (3.56), we evaluate α′(y),

dα(y)

dy
= − J cos(y)− 1

J2 − 2J cos(y) + 1
, (3.119)and we already know that f(y) =√J2 − 2J cos(y) + 1.Therefore,

∫ Nπ
N+1

0

α′(y)f(y)dy = −
∫ Nπ

N+1

0

J cos(y)− 1
√

J2 − 2J cos(y) + 1
. (3.120)So, eqn. (3.118) beomes,

GSEods = − N + 1

π

∫ Nπ
N+1

0

f(y)dy − 1

π

[

α(
Nπ

N + 1
)f(

Nπ

N + 1
)− α(0)f(0)

]

− 1

π

∫ Nπ
N+1

0

J cos(y)− 1
√

J2 − 2J cos(y) + 1
+

1

2
[f(0)− f(π)] . (3.121)Now, let us simplify �rst term in the above equation,

∫ Nπ
N+1

0

f(y)dy =

∫ π− π
N+1

0

f(y)dy

=

∫ π

0

f(y)dy −
∫ π

π− π
N+1

f(y)dy

=

∫ π

0

f(y)dy − π

(N + 1)
f(π) (3.122)
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Chapter 3. XYZ-Ising Model: Exat SolutionsTherefore,
GSEods = − N + 1

π

∫ π

0

f(y)dy + f(π)− 1

π

[

α

(

Nπ

N + 1

)

f

(

Nπ

N + 1

)

− α(0)f(0)

]

− 1

π

∫ Nπ
N+1

0

dy
J cos(y)− 1

√

J2 − 2J cos(y) + 1
+

1

2
[f(0)− f(π)] . (3.123)Now, we take the thermodynami limit,

GSEods = −N + 1

π

∫ π

0

f(y)dy + f(π)− 1

π
[α(π)f(π)− α(0)f(0)]

−1

π

∫ π

0

dy
J cos(y)− 1

√

J2 − 2J cos(y) + 1
+

1

2
[f(0)− f(π)] . (3.124)Finally,

GSEods = − N

π

∫ π

0

f(y)dy +
1

π

∫ π

0

dy
J cos(y)− J2

√

J2 − 2J cos(y) + 1

+
1

2
[f(0) + f(π)]− 1

π
[α(π)f(π)− α(0)f(0)] . (3.125)Here,

f(0) = J + 1

f(π) = J − 1 when J > 1

f(π) = 1− J when J < 1

α(0) = 0

α(π) = 0 when J > 1

α(π) = π when J < 1. (3.126)We show that for both ases J > 1 and J < 1 ground state energy of one defet
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Chapter 3. XYZ-Ising Model: Exat Solutionssetor is the same. For J > 1,
GSEods = − N

π

∫ π

0

f(y)dy +
1

π

∫ π

0

dy
J cos(y)− J2

√

J2 − 2J cos(y) + 1

+
1

2
[(J + 1) + (J − 1)]− 1

π
[0− 0]

= − N

π

∫ π

0

f(y)dy +
1

π

∫ π

0

dy
J cos(y)− J2

√

J2 − 2J cos(y) + 1

+ J. (3.127)For J < 1,
GSEods = − N

π

∫ π

0

f(y)dy +

∫ π

0

dy
J cos(y)− J2

√

J2 − 2J cos(y) + 1

+
1

2
[(J + 1) + (1− J)]− 1

π
[π(1− J)− 0]

= − N

π

∫ π

0

f(y)dy +
1

π

∫ π

0

dy
J cos(y)− J2

√

J2 − 2J cos(y) + 1

+ J. (3.128)
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4XYZ-Ising Model: Phase Diagram
In this hapter, we study the phases of XYZ-Ising model at zero temperature as afuntion of oupling onstants of Hamiltonian. Lieb, Shultz and Mattis studiedthis model where the interations are alternately Ising and isotropi Heisenberginterations [49℄. They solved the model exatly in the sense that the groundstate, all the elementary exitations and the free energy has been found.4.1 The HamiltonianAs we have mentioned in the hapter 3, the Hamiltonian is,

H =
N
∑

i

(

Jxσ
x
i,1σ

x
i,2 + Jyσ

y
i,1σ

y
i,2 + Jzσ

z
i,1σ

z
i,2 + σz

i,2σ
z
i+1,1

) (4.1)with σz
N+1,1 = σz

1,1.
z z z zzzzzz

x x x x x

y y y y y

i i+1

1 2

i−1

z

Figure 4.1: The XYZ-Ising hain. There are two sites per unit ell. The x, y and
z bonds are as indiated.
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Chapter 4. XYZ-Ising Model: Phase DiagramThe fermionised Hamiltonian,
H =

N
∑

i=1

((Jy − Jxui) iξi,1ξi,2 + Jzui)

+
N−1
∑

i=1

(iξi,2ξi+1,1) + iξN,2ξ1,1Σx. (4.2)The XYZ-Ising model an be be exatly solved as XY-Ising model has been solvedfor Jx = Jy = J/2 in the last setion.4.2 Ground State in Extreme Limit of CouplingConstantsLet us disuss the ground state of XYZ-Ising model in extreme limits. When Jz islarge then the Hamiltonian is expressed as
H = Jz

N
∑

i

σz
i,1σ

z
i,2 = Jz

N
∑

i

Wi. (4.3)For large and positive (negative) Jz, the Hamiltonian is minimum atWi = −1(+1).Then, Hamiltonian beomes
H = −(+)NJz. (4.4)Therefore, for large and positive (negative) Jz the ground state belongs to Wi =

−1(+1) setor as shown in �gure 4.2.Now let us onsider the another limit large J . In this limit, the Hamiltonian iswritten as
H =

J

2

N
∑

i

(

σx
i,1σ

x
i,2 + σy

i,1σ
y
i,2

) (4.5)
or, H =

J

4

N
∑

i

(

σ+
i,1σ

−
i,2 + σ−

i,1σ
+
i,2

)

.
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Chapter 4. XYZ-Ising Model: Phase DiagramThe eigenstates are
| ↑↑〉,

| ↑↓〉+ | ↓↑〉,
| ↑↓〉 − | ↓↑〉,and | ↓↓〉 (4.6)with eigenvalues 0, J

2
,−J

2
, 0.Therefore, spin singlet is the ground state of the model for large and positive

J and spin triplet is the ground state for large and negative J as shown in �gure(4.2).
J

Jz

Jz= −J/8

Jz=J/8

FM SS

FM ST

state State 

state state

A

ASPIN 1−

 SPIN 1

SPIN 1 AFMFMAFM  state state
state

ASPIN 1

Figure 4.2: The phase diagram of XYZ-Ising Model in J−Jz plane. The boundaryof the �gure indiates the extreme limits of J and Jz. The blue, red and greenline of the �gure shows the range for large J and Jz in whih the spin triplet (ST)state, spin singlet (SS) state and spin 1 antiferromegneti (SPIN 1 AFM) state isthe ground state respetively.Let us �nd out the ground state in the limit of large J and Jz. The Hamiltonianin this limit an be written as,
H =

J

2

N
∑

i

σx
i,1σ

x
i,2 + σy

i,1σ
y
i,2

+ Jz

N
∑

i

σz
i,1σ

z
i,2. (4.7)93



Chapter 4. XYZ-Ising Model: Phase DiagramThe same eigenstates written in eqn.(4.6) are the eigenstates of the aboveHamiltonian with eigenvalues Jz,−Jz + J
4
, −Jz − J

4
and Jz respetively.We have shown the zero temperature phase diagram of the model in �gure 4.2in extreme limit. In the �rst quadrant of �gure (4.2) where J > 0, Jz > 0, spinsinglet state is the ground state for large J, Jz as shown in �gure (4.2). In theseond quadrant of �gure (4.2) where J > 0 and Jz < 0, spin one antiferromagnet,

| ↑↑↓↓↑↑〉,is the ground state for |Jz| > |J |
8

for large J and Jz and spin singlet state isground state for |Jz| > |J |
8
for large J and Jz. In the third quadrant of �gure (4.2)where J < 0 and Jz < 0, spin triplet state is the ground state for |Jz| < |J |

8
forlarge J and Jz and spin one antiferromagneti state is ground state for |Jz| > |J |
8for large J and Jz. In the fourth quadrant of �gure (4.2) where J < 0 and Jz > 0,spin triplet is the ground state for large J and Jz.4.3 The Ground States in all defet setorsAs we have shown in the last hapter the zero defet setor of Hamiltonian onsistsof both periodi and anti-periodi boundary ondition. The ground state energyof zero defet setor GSEzds under anti-periodi and periodi boundary onditionis given by,

GSEzds = −NJz −
N
∑

n=1

√

J2 + 1− 2J cos(
(2n+ α)π

N
), (4.8)where α = 1 and 0 belongs to anti-periodi and periodi boundary onditionrespetively.Using this expression, we alulated numerially the ground state energy ofzero defet setor under anti-periodi and periodi boundary ondition for J and

Jz from -100 to 100, as shown in �gure 4.3(a) and �gure 4.3(). The ground stateenergy under anti-periodi or periodi boundary ondition is minimum for small
J and large positive Jz and large |J |. In �gure 4.3(b) and �gure 4.3(d) the signof ground state energy has been shown under anti-periodi and periodi boundaryondition.It was already shown in the last hapter, losed hain beomes nD deoupled94



Chapter 4. XYZ-Ising Model: Phase Diagramopen hain for nD defet setors. There an be various partitions of N for nD defetsetors. Therefore, instead of �nding the ground state energy of nD defet setorwe alulate the ground state energy for eah partition of N. Let us onsider {Li}as the partition of N belonging to nD defet setors. Then,
nD
∑

i=1

Li = N (4.9)Then, the ground state energy GSE{Li} of partition {Li} is given by
GSE{Li} = −(N − 2nD)Jz −

nD
∑

i=1

Li
∑

n=1

√

J2 + 1− 2J cos(
nπ

Li + 1
) (4.10)The ground state energy of various defet setors is plotted in J − Jz plane for Jand Jz from -100 to 100 for N=10 unit ells. There are 42 partitions for variousdefet setors of 10 unit ells.The ground state energy of zero defet setor under periodi and anti-periodiboundary ondition are equal.The ground state energy of 1 defet setor for partition 10 is shown in the �gure4.3(e). The ground state energy is minimum at large negative Jz and large |J |.The ground state energy of 2 defet setor for the partitions (9, 1), (8, 2), (7,3), (6, 4) and (5, 5) is shown in the �gure 4.4(a) and 4.4(b). The ground stateenergy is minimum at large positive Jz and large |J | for all partitions of 2 defetsetor.The ground state energy of 3 defet setor for the partitions (8, 1, 1), (7, 2, 1),(6, 3, 1), (6, 2, 2), (5, 4, 1), (5, 3, 2), (4, 4, 2) and (4, 3, 3) is shown in the �gure4.4(b), 4.5(a) and 4.5(b). The ground state energy is minimum at large positive Jzand large J for �rst, seond and third partitions. For fourth, �fth, sixth, seventhpartitions, the ground state energy is minimum at large positive J and Jz. Forlast partition (4, 3, 3), the ground state energy is minimum at large positive Jzand large |J |.The ground state energy of 4 defet setor for the partitions (7, 1, 1, 1), (6,2, 1, 1), (5, 3, 1, 1), (5, 2, 2, 1), (4, 4, 1, 1), (4, 3, 2, 1), (4, 2, 2, 2), (3, 3, 3, 1)and (3, 3, 2, 2) is shown in the �gure 4.5(b), 4.6(a) and �gure 4.6(b). The groundstate energy is minimum at large positive Jz and large J for �rst 7 partitions. For95



Chapter 4. XYZ-Ising Model: Phase Diagramother partitions (3, 3, 3, 1) and (3, 3, 2, 2), the ground state energy is minimumfor large positive J and Jz.The ground state energy of 5 defet setor for the partitions (6, 1, 1, 1, 1), (5,2, 1, 1, 1), (4, 3, 1, 1, 1), (4, 2, 2, 1, 1), (3, 3, 2, 1, 1), (3, 2, 2, 2, 1) and (2, 2, 2,2, 2) is shown in the �gure 4.6(b), 4.7(a) and 4.7(b). The ground state energy isminimum at large positive J for �rst two partitions. For all other partitions of 5defet setors, ground state is minimum at large |J |.The ground state energy of 6 defet setor for the partitions (5, 1, 1, 1, 1, 1),(4, 2, 1, 1, 1, 1), (3, 3, 1, 1, 1, 1), (3, 2, 2, 1, 1, 1), (2, 2, 2, 2, 1, 1) is shown in the�gure 4.7(b) and 4.8(a). The ground state energy is minimum at large negative Jzand large J for �rst three partitions. For other partitions of 6 defet setor, theground state energy is minimum for large negative Jz and large positive J .The ground state energy of 7 defet setor for the partitions (4, 1, 1, 1, 1, 1, 1),(3, 2, 1, 1, 1, 1, 1) and (2, 2, 2, 1, 1, 1, 1) is shown in the �gure 4.8(a) and 4.8(b).The ground state energy is minimum at large negative Jz and large positive J for�rst and seond partitions. For third partition, the ground state is minimum atlarge negative Jz and large |J |.The ground state energy of 8 defet setor for the partitions (3, 1, 1, 1, 1, 1, 1,1) and (2, 2, 1, 1, 1, 1, 1, 1) is shown in the �gure 4.8(b). The ground state energyis minimum at large negative Jz and large |J | for both partitions of 8 defet setor.The ground state energy of 9 defet setor for the partition (2, 1, 1, 1, 1, 1, 1,1, 1) is shown in the �gure 4.8(b). The ground state energy is minimum at largenegative Jz and large |J |.The ground state energy of 10 or full defet setor for the partition (1, 1, 1, 1,1, 1, 1, 1, 1, 1) is shown in the �gure 4.9(a). The ground state energy of full defetsetor is minimum at large negative Jz and large |J |. In the �gure 4.9(b), the signof ground state energy is plotted for J and Jz from -100 to 100.Among all these ground states of various defet setors, we �nd thatthe ground state energy of zero defet setor is minimum for positive
Jz.
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Chapter 4. XYZ-Ising Model: Phase Diagram4.4 Zero Temperature Phase DiagramFor eah J and Jz, we alulate the ground state numerially in all partitions ofthe model and plot the zero temperature phase diagram as shown in �gure (4.4).In order to plot the phase diagram, we found out the minimum energy for eahpartition for eah J and Jz and alulated numerially the �rst order derivative ofE with respet to J for eah J and Jz. For all those values of J and Jz, wherever wefound a disontinuity in the �rst derivative of ground state energy, we plot thosevalues of J and Jz in J − Jz plane. For Jz < 0, we �nd that the system undergoesthrough a �rst order phase transition and for Jz > 0, the system undergoes throughtopologial phase transition in the model beause it is haraterised by windingnumber. The fat that zero defet setor is ground state setor for Jz > 0 makesit easier to analyse the phase transition for Jz > 0.In order to show that the system has a �rst order phase transition we plot theground state energy versus J for Jz = −2 and Jz = −4 as shown in �gure (4.10).The ground state energy has two kinks whih indiates that �rst order derivativeis disontinuous.In order to show that the system has a topologial phase transition for Jz > 0,we ompute winding number. In order to ompute the winding number we alulateBerry's phase. The winding number ν is related to Berry's phase φ by
ν =

φ

π
. (4.11)The Berry's phase for Hamiltonian H(R) is given by

φ = φt − φ0 =

∫ R(t)

R(0)

〈Ψ†|i∂R|Ψ〉.dR, (4.12)where parameters R1, R2, ..., RN are omponents of a vetor R.For our ase, Hamiltonian H is funtion of only one parameter k whih runsfrom 0 to π as we have mentioned in hapter 3. Therefore,
φ =

∫ π

0

〈Ψ†|i∂k|Ψ〉.dk (4.13)
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Chapter 4. XYZ-Ising Model: Phase DiagramFrom eqn. (3.40) in hapter 3 we write the two omponent wave funtion,
|Ψk,1〉 =

[

eiαk

1

] (4.14)
and |Ψk,2〉 =

[

1

e−iαk

]

. (4.15)The integrand 〈Ψ†|i∂k|Ψ〉 is then given by,
〈Ψ†|i∂k|Ψ〉 =

[

e−iαk 1
]

i∂k

[

eiαk

1

]

= −∂αk

∂k
. (4.16)Therefore, the berry's phase is given by,

φ = −
∫ π

0

∂αk

∂k
.dk

= −
∫ π

0

dαk

= −(α(π)− α(0)). (4.17)In hapter 3, we have shown in �gure (3.3) and (3.4) that α(0) = 0 and α(π) = 0for |J | > 1 and α(0) = 0 and α(π) = π for |J | < 1. Therefore, the Berry's phase
φ is given by,

φ = 0 for |J | > 1and φ = −π for |J | < 1. (4.18)Now, we alulate the winding number from eqn. (4.11),
ν = 0 for |J | > 1,

ν = −1 and for |J | < 1. (4.19)Therefore, the winding number takes di�erent values for both ases |J | > 1 and
|J | < 1 whih haraterises the phase transition shown in �gure (4.4).For Jz > 0, the zero defet setor is the ground state setor of the Hamiltonian.98



Chapter 4. XYZ-Ising Model: Phase DiagramSo, for Jz > 0, we an alulate �rst order derivative substituting EG = GSEzdsfrom eqn. (4.10). From eqn. (4.10), we an write,
∂EG

∂J
= − 1

N

N
∑

n=1

J − cos(2nπ
N

)
√

J2 + 1− 2J cos(2nπ
N

)

∂2EG

∂J2
= − 1

N

N
∑

n=1

sin2(2nπ
N

)

{J2 + 1− 2J cos(2nπ
N

)}3/2 . (4.20)We an show analytially that at J = 1, the seond order derivative blows up. AtJ=1, the eqn. (4.20) beomes,
∂2EG

∂J2
= − 1

N

N
∑

n=1

sin2(2nπ
N

)

{4 sin2(nπ
N
)}3/2

= − 1

N

N
∑

n=1

4 sin2(nπ
N
) cos2(nπ

N
)

{8 sin3(nπ
N
)}

= − 1

N

N
∑

n=1

cos2(nπ
N
)

{2 sin(nπ
N
)}

= ∞ (4.21)beause at n = N , the denominator beomes zero.Similarly, we an show that at J=-1 also, the seond order derivative of groundstate energy blows up. At J=-1, the eqn. (4.20) beomes,
∂2EG

∂J2
= − 1

N

N
∑

n=1

sin2(2nπ
N

)

{4 cos2(nπ
N
)}3/2

= − 1

N

N
∑

n=1

4 sin2(nπ
N
) cos2(nπ

N
)

{8 cos3(nπ
N
)}

= − 1

N

N
∑

n=1

sin2(nπ
N
)

{2 cos(nπ
N
)}

= ∞ (4.22)beause at n = N/2, the denominator beomes zero.Thus, at J = ±1, the model has seond order phase transition for Jz > 0. In99



Chapter 4. XYZ-Ising Model: Phase Diagram�gure (4.12), we plot the �rst order and seond order derivative of energy versusJ for J=-2 to 2.
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Chapter 4. XYZ-Ising Model: Phase Diagram

(a)

(b)Figure 4.4: The ground state energy is plotted for various partitions of N=10shown in the light green path (for example (9, 1), (8, 2) et). The olor variationof the graph shows the magnitude of ground state energy.
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Chapter 4. XYZ-Ising Model: Phase Diagram

(a)

(b)Figure 4.5: The ground state energy is plotted for various partitions of N=10 shownin the light green path. The olor variation of the graph shows the magnitude ofground state energy.
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Chapter 4. XYZ-Ising Model: Phase Diagram

(a)

(b)Figure 4.6: The ground state energy is plotted for various partitions of N=10 shownin the light green path. The olor variation of the graph shows the magnitude ofground state energy.
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Chapter 4. XYZ-Ising Model: Phase Diagram

(a)

(b)Figure 4.7: The ground state energy is plotted for various partitions of N=10 shownin the light green path. The olor variation of the graph shows the magnitude ofground state energy.
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Chapter 4. XYZ-Ising Model: Phase Diagram

(a)

(b)Figure 4.8: The ground state energy is plotted for various partitions of N=10 shownin the light green path. The olor variation of the graph shows the magnitude ofground state energy.
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5Topologial Qubits in XY-Ising Model
The Tetrahedron model had loalised unpaired Majorana modes whih we anmove around the lattie tuning the defets. We reprodue these results in theXY-Ising model. But this models has some advantage over Tetrahedron model.We have taken up this model beause two spin operators are ommuting withthe model hamiltonian whih an be onstruted by Josephson juntion quantumiruits. Further, we show that we an make a qubit with the two degeneratestates, lying in the gap, of the model. This qubit is proteted from deohereneby environmental perturbations for ertain range of parameter of Hamiltonian. Inthe last setion we show the possible physial realisation of the XY-Ising model.The environment an be reated by eletomagneti in�uene of moving ion insidethe quantum iruit or lattie imperfetion in the physial realisation.5.1 The QubitWhenever zero modes exist in the single partile eigenspetrum of any non-interatingHamiltonian, the model will have two-fold degenerate multipartile states. Further,if there is a gap in the single partile eigenspetrum of non-interating Hamilto-nian, the energy of the degenerate multipartile ground states of the Hamiltonianare separated by a gap from the rest of the multipartile eigenspetrum of Hamilto-nian. As we have shown in hapter 3, the XY-Ising Hamiltonian is a non-interatingHamiltonian of Majorana fermions, the model has two fold degenerate multiparti-le states inluding the ground state. We have also shown that there is a gap in thesingle partile eigenspetrum of the model. Therefore, the model has a degenerate109



Chapter 5. Topologial Qubits in XY-Ising Model
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Figure 5.1: The absolute value of eigenvalues versus modes have been plotted.multipartile ground state separated by a gap from the rest of the eigenspetrum.We have shown in hapter 3 that degenerate groundstates of the Hamiltonianare
|0〉,
χ1†|0〉 where χi†|0〉 = 0 ∀ i. (5.1)The orresponding energy of these ground states are,

E0 = −
N
∑

n=2

ǫn. (5.2)In one defet setor of the XY-Ising model, there are two zero energy modes in thesingle partile eigenspetrum lying in the gap, as shown in the �gure (5.1).The gap ∆ in the single partile eigenspetrum is de�ned as twie the value ofthe lowest single-partile energy eigenvalue. The lowest single partile eigenstateis in the ground state setor. As we have shown in the hapter 3, ui = −1 is theground state setor. In the ground state setor energy eigenspetrum is given by
ǫ1,2(k) = ±1

2

√

(J2 − 2J cos(ka) + 1. (5.3)110



Chapter 5. Topologial Qubits in XY-Ising ModelThe lowest single partile state has the energy 1
2
|(1− J)| and therefore the gap isgiven by,

∆ = |(1− J)|. (5.4)Thus, the energy of the degenerate multipartile ground states of the Hamiltonianare separated by the gap ∆ from the rest of the multipartile eigenspetrum ofHamiltonian. Let us all them |0〉 and |1〉 of the proposed qubit i.e,
|0〉 = |0〉,
|1〉 = χ1†|0〉. (5.5)5.1.1 Tuning the �ux on�gurationIn order to make any �ux on�guration ground state setor, we an add the fol-lowing �hemial potential� term in the Hamiltonian,

Hµ =
∑

i

(µiWi) . (5.6)This term, being the ommuting operator, will not hange the eigenstates but willalter the energy eigenvalues. Therefore, tuning µi any partiular �ux on�gurationsan be made the ground state. Aessing any �ux on�guration as a ground state,we an make one of the degenerate zero modes move along the one dimensionalhain. If we put the n defets from the left end of the hain, the wavefuntion ofone of the zero mode gets suppressed up to n− 1th unit ell and peaks at nth unitell to derease afterwards (for J > 1) by the fator of 1
J
as shown in �gure (5.2).The hemial potential term being 2-spin operators an be realized experimen-tally in Josephson juntion quantum iruits.
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Chapter 5. Topologial Qubits in XY-Ising Model5.2 Protetion from DeohereneIn general, the environment an ouple with the qubit and an lift the degeneraybetween the qubit states |0 > and |1 > and, therefore, qubit an deohere inshort time.. Here, we show, taking single spin terms as environment, that theyan lift the degeneray, but this splitting an be made small for a ertain range ofparameters of the Hamiltonian and, therefore, deoherene time of qubit an bemade larger.Let us take the environment modelled by potential,
V = Vx + Vy + Vz (5.7)where

Vx =
∑

i

(

Bi,1
x σx

i,1 +Bi,2
x σx

i,2

)

,

Vy =
∑

i

(

Bi,1
y σy

i,1 +Bi,2
y σy

i,2

)

,

Vz =
∑

i

(

Bi,1
z σz

i,1 +Bi,2
z σz

i,2

)

. (5.8)We �nd the ondition for Vz whih does not lift the degeneray between qubitstates. We also prove that the the degeneray between qubit states is robust for
Vx and Vy part of the potential.In the Jordan-Wigner basis, V beomes,

Vx =
∑

i

{Bi,1
x (iηi,1ξi,1)−Bi,2

x (iηi,2ξi,2)},

Vy =
∑

i

{Bi,1
y ηi,1

i−1
∏

j=1

(ûj)
i−1
∏

j=1

(iξj,1ξj,2) +Bi,2
y ηi,1

i−1
∏

j=1

(ûj)
i
∏

j=1

(iξj,1ξj,2)},

Vz =
∑

i

{Bi,1
z

i−1
∏

j=1

(ûj)ξi,1

i−1
∏

j=1

(iξj,1ξj,2) +Bi,2
z

i
∏

j=1

(ûj)ξi,1

i−1
∏

j=1

(iξj,1ξj,2)}. (5.9)As zero modes exist in the setor of Hamiltonian u1 = +1, u2 = −1, u3 = −1etc.,
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Chapter 5. Topologial Qubits in XY-Ising Modelwe relabel the degenerates states of the the proposed qubit as,
|0〉 → |{un}〉|0〉,

χ1†|0〉 → |{un}〉χ1†|0〉, (5.10)and do �rst order perturbation theory in this degenerate subspae.The e�etive Hamiltonian in the twofold degenerate subspae for the system isgiven by,
Heff =

∑

i,α

[

〈{un}|〈0|V |0〉|{un}〉 〈{un}|〈0|V |1〉|{un}〉
〈{un}|〈1|V |0〉|{un}〉 〈{un}|〈1|V |1〉|{un}〉

]

. (5.11)If |α > and |β > are the degenerate states of the qubit then we evaluate 〈{un}|〈α|Vx|β〉|{un}〉
=
∑

i

{iBi,1
x 〈{un}|ηi,1|{un}〉〈α|ξi,1|β〉 − iBi,2

x 〈{un}|ηi,2|{un}〉〈α|ξi,2|β〉} = 0,(5.12)beause |{un}〉 is not eigenstate of ηi,1.Similarly, we evaluate 〈{un}|〈α|Vy|β〉|{un}〉
=

∑

i

{Bi,1
y 〈{un}|ηi,1

i−1
∏

j=1

(ûj)|{un}〉〈α|
i−1
∏

j=1

(iξj,1ξj,2)|β〉

+ Bi,2
y 〈{un}|ηi,1

i−1
∏

j=1

(ûj)|{un}〉〈α|
i
∏

j=1

(iξj,1ξj,2)|β〉} = 0. (5.13)Finally, we evaluate 〈{un}|〈α|Vz|β〉|{un}〉
=

∑

i

{Bi,1
z 〈{un}|

i−1
∏

j=1

(ûj)|{un}〉〈α|ξi,1
i−1
∏

j=1

(iξj,1ξj,2)|β〉

+ Bi,2
z 〈{un}|

i
∏

j=1

(ûj)|{un}〉〈α|ξi,1
i−1
∏

j=1

(iξj,1ξj,2)|β〉}

=
∑

i

Bi,1
z {〈α|ξi,1

i−1
∏

j=1

(iξj,1ξj,2)|β〉+Bi,2
z 〈α|ξi,1

i−1
∏

j=1

(iξj,1ξj,2)|β〉}. (5.14)
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Chapter 5. Topologial Qubits in XY-Ising ModelThus,
〈{ui}|〈α|Vx|β〉|{ui}〉 = 0,

〈{ui}|〈α|Vy|β〉|{ui}〉 = 0,

〈{ui}|〈α|Vz|β〉|{ui}〉 =
∑

i

Bi,1
z 〈α|ξi,1

i−1
∏

j=1

(iξj,1ξj,2)|β〉

+ Bi,2
z 〈α|ξi,1

i−1
∏

j=1

(iξj,1ξj,2)|β〉. (5.15)To alulate the matrix element of Vz part, we have to express all ξ operators interms of χ operators using,
ξi,α =

∑

n

φn∗
i,αχ

n + φn
i,αχ

n†, (5.16)where n runs over the modes belonging to positive energy eigenvalue.Then, we start getting sum of one χ operator term, three χ operators, �ve χoperators and so on. To handle this, we solve the system for eah spin separatelyde�ning J-W transformation for eah spin individually and �nally add them to getonly one χ operator term. De�ning Jordan-Wigner transformation for eah spinindividually does not hange the original Hamiltonian. We solve the system foreah spin at i, α separately de�ning J-W transformation for eah spin individually.Now, we alulate 〈α|ξi,α|β〉 where |α〉 and |β〉 are |0〉 or |1〉 = χ11|0〉.
〈0|ξi,α|0〉 = 〈0|χ1φ∗1

i,α + χ1†φ1
i,α|0〉+ 〈0|

∑

n 6=1

χnφ∗n
i,α + χn†φn

i,α|0〉

= 0,

〈0|ξi,α|1〉 = 〈0|χ1φ∗1
i,α + χ1†φ1

i,α|1〉+ 〈0|
∑

n 6=1

χnφ∗n
i,α + χn†φn

i,α|1〉

= φ∗1
i,α,

〈1|ξi,α|0〉 = 〈1|χ1φ∗1
i,α + χ1†φ1

i,α|0〉+ 〈1|
∑

n 6=1

χnφ∗n
i,α + χn†φn

i,α|0〉,

= φ1
i,α,
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Chapter 5. Topologial Qubits in XY-Ising Modeland �nally,
〈1|ξi,α|1〉 = 〈1|χ1φ∗1

i,α + χ1†φ1
i,α|1〉+ 〈1|

∑

n 6=1

χnφ∗n
i,α + χn†φn

i,α|1〉

= 0. (5.17)Substituting all these values in eqn. (5.11) we get,
Heff =

∑

i,α

Bi,α
z

(

0 φ∗1
i,α

φ1
i,α 0

)

. (5.18)Now, we substitute φi,α solving the reursion relation in hapter 3 in the setor
u1 = +1 and all other ui = −1 using the normalisation ondition,

N
∑

i

|φi,1|2 + |φi,2|2 = 1 (5.19)and the boundary ondition φN+1,1 = 0.We found that all all φi,1 = 0 (5.20)and φi,2 an be found out from boundary ondition φ0,2 = 0. For Jx = Jy =
J
2
andin setor u1 = +1, u2 = −1, u3 = −1... (the zero mode ondition), φi,2 is given by

φi,2 = ℵ
(

1

J

)i−1

, (5.21)where ℵ is normalisation onstant.Now plugging in all these values from φi,1 and φi,2 in normalisation ondition,we get,
ℵ2 =

1
J2 − 1

(

1
J2

)N − 1
. (5.22)
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Chapter 5. Topologial Qubits in XY-Ising ModelThe wavefuntions φi,1 and φi,2 for 1/J = a are given by,
φi,1 = 0,

φi,2 =

√

a2 − 1

a2N − 1
ai−1. (5.23)If a>1 then, for large N, the eqn. (5.23) for φi,2 beomes,

φi,2 =

√
a2 − 1

aN
ai−1. (5.24)Thus, the largest term for a>1 is,

φN,2 =

√
a2 − 1

a
. (5.25)If a < 1 then, for large N, a2N = 0 in eqn. (5.23). φi,2 is then given by,

φi,2 =
√
1− a2ai−1. (5.26)Thus, the largest term for a < 1 is,

φ1,2 =
√
1− a2. (5.27)For large N, in both ases (a>1 and a<1), wavefuntions and, therefore, matrixelements of eqn. (5.18) do not vanish whih would mean degeneray betweenthe qubit states is lifted. The matrix elements vanish only when a=1 (φi,2 = 1√

Nbeomes zero when N → ∞) but then, gap beomes smaller or zero and, therefore,seond order orretion in perturbation theory beomes dominant. From seondorder degenerate perturbation theory,
〈m|H2

eff |m′〉 =
∑

n

〈m|V |n〉〈n|V |m′〉
Em − En

, (5.28)where n runs over all exited states and m and m′ belong to degenerate groundstate spae.So, the seond or higher order perturbation theory beomes dominant if thegap between the degenerate ground states and other states is small or zero. In116



Chapter 5. Topologial Qubits in XY-Ising Modelorder to make seond order orretion term in perturbation theory ine�etive, wehave to maximize the gap while maintaining the zero mode onditon Jx = Jy =
J
2
.So, we an vary only J .The largest term of e�etive seond order Hamiltonian is,

〈m|H2
eff |m′〉 = 〈m|V |f.s〉〈f.s|V |m′〉

−J |1− a| , (5.29)where |f.s〉 is the �rst exited state separated by a gap |J − 1| = J |1− a| from theground state.Substituting V =
∑

i,α,aB
i,α
a σa

i,α, we get,
〈m|H2

eff |m′〉 =
∑

i,α,a;j,β,b

Bi,α
a Bj,β

b

〈m|σa
i,α|f.s〉〈f.s|σb

j,β|m′〉
−J |1− a| . (5.30)The seond order orretion is ine�etive when we hoose J suh that

min{Bi,α
a Bj,β

b }
|1− a| < J. (5.31)Thus, we an make �rst order orretion in Hamiltonian small by setting a ≈ 1 andan make seond order orretion in Hamiltonian small if we hoose J aordingto eqn. (5.31). Therefore, the environment V lifts the degeneray of the state ofqubit whih an be made small by tuning the parameter of Hamiltonian. Thisresults in making deoherene time of qubit larger. Further, the protetion fromdeoherene is robust for Vx and Vy part of potential.In the next setion, we disuss a physial realisation of qubit in the model byJosephson juntion quantum iruits. The environment potential whih we havetaken here is atually reated by external voltage applied by some nearby ion inthe quantum iruit or error in tuning the gate apaitor. (It reates a σz term inthe superonduting qubit box as shown in eqn. (1.98) of hapter 1). We knowthat protetion from deoherene is perfet for Vx and Vy. So, if we rotate thespins at eah site around x axis of XY-Ising model then z, y and x bond beomesy, z and x bonds respetively as shown in �gure (5.3). Then, the protetion fromdeoherene is perfet for Vx and Vz part of potential. Therefore, the qubit isproteted perfetly by external voltage �utuation in the superonduting qubit117



Chapter 5. Topologial Qubits in XY-Ising Modelbox.5.3 Physial RealisationIn the introdution of this thesis, we have shown how to design an arti�ial lattieusing Josephson juntion quantum iruits (superonduing quantum iruit) toengineer the model Hamiltonian. Here, we give a proposal to realise the XY-IsingModel. It onsists of superonduting qubit boxes (labeled 1-4) as shown in �gure5.4. To design x bond, superonduting qubit box 1 and 2 are oupled via a mutualindutor M. To design y bond, superonduting qubit box 1 and 2 are oupled viaa wire. To design z bond, superonduting iruit box 2 and 3 are oupled viaa apaitor Cm, and so on. Here, eah superonduting qubit box onsists of asuperonduting ring onneted with two idential Josephson juntions eah withoupling energy EJ and apaitane CJ (shown by a ross on the box). TheseJosephson juntions form a SQUID loop and are onneted to LC osillator. Eahiruit box is ontrolled by both a voltage Vi (applied via the gate apaitor Cg)and a magneti �ux Φi passing through the SQUID loop. The parameters ofthe Hamiltonian Jx, Jy an be tuned by tuning the magneti �ux and Jz an betuned by apaitor Cm. So, in order to the get the ground state degeneray inmany partile spetrum, we an tune Φ′
is to make Jx and Jy equal to get a zeromode in single partile eigenspetrum. Any moving harge in the iruit reatesmagneti �ux passing through eah superonduting qubit box randomly. Onewe reate the ondition for zero mode by tuning Jx and Jy, the random �uxesreated by moving ions an not destroy the zero mode beause zero mode existsfor inhomogenous hain (when strength parameters Jx and Jy is not uniform overthe full hain). This would result in only the resaling of Jx and Jy by a ommonfator inside eah unit ell and Jz remains una�eted. Therefore, the degenerayin the many partile state is well proteted against random magneti �uxes appliedby ions. Further, in order to manipulate the zero mode, we an add the ommutingoperators σz

1σ
z
2 in the Hamiltonian by onneting superonduting qubit box 1 withsuperonduting qubit box 2 via a apaitor Cm.
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6Conlusion
In the onluding hapter, we summarize our results whih we have presented inthe thesis and indiate possible future work arising out of the approah presentedhere.6.1 SummaryIn this thesis, we studied two one dimensional generalised versions of the Kitaev'smodel. Sine they redue to a non-interating Hamiltonians, it beame possiblefor us to give analyti solutions.In the Tetrahedral model, we found out numerially that the translationallyinvariant �uxes through the unit ells, namely uLi = −1 and uRi = −1 is theground state setor of the model. We gave a generi expression for fermionigap. The losed form solution for the zero modes of the Majorana fermions hasbeen derived. Unpairing and manipulation of zero Majorana modes tuning Z2 �uxon�gurations has been shown. The regions in parameter spae for homogenoushains has been shown where the zero modes our. We further showed that thereis a large parameter spae for inhomogenous hains where the unpaired modesour. Another important result we proved in the model using transfer marixmethod that every state of the system has a 2N/4 fold degeneray, where N is thenumber of sites.The XY-Ising model was studied under periodi boundary ondition and wesolved the model exatly for Jx = Jy for all �ux on�gurations and proved that for
Jx = Jy the ground state lies in translationally invariant �ux setor ui = −1. We121



Chapter 6. Conlusiongave an expression for fermioni gap. The losed form solution for the zero modesof the Majorana fermions was derived and unpairing and manipulation of zeroMajorana modes was shown. The topologial nature of the zero mode has beenfound. Further, it was shown that qubit made up of degenerate Majorana modesof the model are proteted from deoherene by environmental perturbations.We also studied ground state properties of the XYZ-Ising model for all Jx, Jyand Jz numerially whih agree with analytial results in extreme limits. The zerotemperature phase diagram of the system was plotted by numerially alulatingthe ground state in various setors. It was found that the model undergoes a �rstorder phase transition for Jz < 0 and for Jz > 0 the phase transition is desribedby a topologial order parameter alled winding number.Finally, physial realisation of XY-Ising model with its ommuting operatorhas been ahieved.6.2 OutlookThere are some loose ends in our work whih we would like to tie up in future.We have studied zero temperature phase diagram of the XYZ-Ising model. Infuture, we would like to study �nite temperaure behaviour of the model.In our sheme, the �ux on�guration setor we want to aess, we make ita ground state setor. At low temperature the system will be in ground state,therefore, the system would aess the required �ux on�guration setor. But inorder to be at low temperature system would have to interat with the environment.Still it has to be shown that how the system will go from one �ux on�gurationsetor to another �ux on�guration setor interating with environment.Our aim, above all, was to design a logi gate whih would perform quantumomputation on a qubit. In future, we would like to embark upon this venture.
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