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This thesis comnrises weork done by the author during

the pericd 10964.1068 under the supervision of Professor Alladil

Ramakrishnan, Director, MATSCIENCE, The Institute of Mathematical

Selences, Madras.

The thesgls consists of the work done by the author
in the fleld of group theory asnd spplicaticns $o particle physics.
It is divided into four parts, Part I dealing with the Clebsch=
Gordan progrence of arbitrary simple groups, Part IT with the
origin of unitary symmstry in strong interactions, Part III with
= the applications of symmetry principles to psrtiecle intaractions
to get sum rules which can be tested agalnst expariments and

Part IV with the genaralized Clifford algebra of Yamazaki and its 1

irreducible reprasentations.
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CHAPTER ]

INTRODUCT Tow

The study of symmetry groups has become important and
almost indispensable in Elementary Particle Physics since the
discovery of strange particles. While the importance of the study
of symmetry groups in Nuclear Physics has been realised since
the pioneering work of Wigner, Racah and others, the application
of symwetry groups to Elementary Particle Physlcs is of recent
origzin.

The main progress in modern physics after 1960 consists
in the introduction of internal quantum nmumbers which have no dy-
namical interpretation like spin, momentum and energy, but was
found necessary to explain certain conservation laws observed in
the interactions between slementary particles. Though there has
besn no mhu!'ull dynamiecal theory so Tar in explaining the
complexities of Interactlons, certain general principles known as
~ 'symmetry prineiples® have been known to govern the interactions.
This assumed a pre-eminent role with Gell-Mann's Termulation of
S7(2) symmetry and its spectacular successes in the classification
of elementary particles.

The proliferation of unatsble and semi-stable systems
celled 'resonances'® almost amounting to two hundréd in number _111

*§1dth of 100 MeV would fmply a 1life time Tmﬁp o lﬂ;ﬁ_ Sec.




reeent years has necessitated in grouning them on some ‘common
gromds' of similar physical properties like spin, parity, baryen
number ete. and almost similar properties like that of mass. ™n
ofther words, the particles may be classified intc smaller grouns with
very similar properties snd so the task is reduced to the diseunssion
of fewer entities, Of course, there could be 'suall' deviations
from this natfi‘act structure which cen be treated as perturbations.

A major step in this direction 1s the applicatiom of
group theory particulsrly SU(?) and 1ts generalizations to elementary
particle 1ntaractims1). It is therefore desirable that the facsh
alegebra of symmetry grouns of v-rious types is developed as extensively
as the Raeah algébra of the group S7(2) (angular momentum). Tut
“h‘ll been stressed by Wigner, Racah and others, several problems

have to be sclved before starting with such a programme.

£
This thesis is prima‘.l;‘y concerned with these problems.

. Tt is devided into four parts. Part I consisting of four chapters
. (Chapter IT to Chapter ¥) deals with the Clebsch-Gordan programme

of arbitrary simple groups, In particular the problem of internal
and maltiplicities. Part II comprising of two chanters
pter YT snd Chapter VII) deals with the origin of unitary sym-
metry in strong interactions. Part TIT compmising of seven

chapters (Chapter VITT to Chapter XIV) deals with several applica-

tions of symmetry groups to particle Interactions. “Part W

"ffiﬂ for instance 'The Eightfold way', Eds.M.Gell-Mann and Y.¥eeman,
Mm Pﬂbliﬁhﬂl‘ﬂ, Iﬂﬂ-, H- I--' 1983

X Esm Groups in Nuclear and Particle Physies'y Ed. F.J.Dyson,
m Publ 13&3"5- N.Y .y 1968,




comprising of two chanters (Chapnter XV and XVI) deals with the

irreducible representations of the generallsed ‘clifford algebra
of Temazaki, '

PAAT J:=

y The first problem In this programme, which is closely

connected with the labelling of the irreducible representations
(IR) of fha symmetry group (&), is the construction of invariants
or casimir operators of G « This problem has already been
nlvedﬂ. The second problem concerns with the determination of a
conplete set of operators whose eigenvalues uniquely characterize
an T.Re A given (IR) 1s specified by the elgenvalues of the ecasimir
-operators or eguivalently by the comnonent of the highest weight.
from the highest weight, the other weights can be commuted using
shiff: or ladder operators. The main difficulty here is that the
weights other than the highest one are not simple, but of multi-

plieity greater than one. @5is =ultisliolte of yolght fn' on 7.0 o
suitiplicity ereaterthan—one: This multiplicity of weight in

an I.,R. of G 1s called the 'internal' or 'inner multiplieity'

strue tﬂl‘la] -

#) O,Racah, Group Theory and Spectroscopy, CERN, Repnrint 61-8 (1961)45.
L.C.Biledenharn, J.Math,Phys. £, 476 (1963), Lectures on Theore-

tical Physles, W.E.Brittin,B.W.Downs and J.Down Fds. Tnterscience
Publishers, Ine.‘ Hew York (1267), Vol.5, p.346-352,

BaGruber and L.0 'Raifesrtaigh, J.lath,Phys. 5, 1796 (1964).
Le0'Ralfeariaigh, Lectures on 'Local Lie Croups and their re-

presentations', Matsclenece Report 25, (The Institute of Mathe-
matical Sclences, Madras, Tndia).

H,UEezava, 'uel,Phys. &111 (1963) A%’ 54 (1964) 65 (1984).
M. Umezawa, MONIEKL, N LAZADEMIE $AN NETENS CHAPPEN, Amsterdam
iﬂ' H' 'ﬂ.s. Im-
fcu, Suecl.Phys. 253 (1964). .
AM.Perelomov and V.S.Popov, Soviet Phys JETP Letts, 1,6 (1968Y.
) T;E-Emthm, J.Hath.ﬁ‘lﬂ. . 1886 ‘1“6}. 5
3) The terminology is due to A.J.Macfarlane, L.0'Raifeartaigh and = °
rzﬁginlﬂ, T Math, Phys. E‘ 536 (1967). i



; The third nroblem is that of the Clebsgeh-Cordan
wtu and coefficients of G, Here again there is a problem in
.m direet product of two I.R's of Gy which is in general reduci-

o
&
1

s a glven TeHs may occur more than once and this we call the

ey
B,

ih

Wot much work has been carried out
1n the problem of Clebsch-Gordan coefficlents of G excent in
some very special cases.

.

i ‘ In Chapter IT, some remarks are made on the construction
_ of invariants of compact, local seml-simple Lie m:ﬂ. Por

roe dimensional orthogonal gromo O(F), casimir considered the

- 2 2
I = J§+Jr + 3,

e Iy g are the gemerators of 0(3), This operator
eo '. __'.j' utth Ixs7y and J, and 1ts eigenvalues characteristic
8 LR, of 0{?), The gemeralization of € for any semisimple
grouvps was given by easimir, who introduced the operator

b
T = %‘ }(F_ Xy, ‘
05 v o3
%-F” C‘.H. f =5
% T2 oy




en,

o
k‘lhﬂ C's are the structure congtants and the X's are the
L

~ generators of the group. A possible generalization of I% was

| 'm:ﬁllcahgj vho considered the operator

i
N

L 3 " o 3 g
C. . =¢C B c 1 ses C n=1 x‘ IB ess X
. R X LR 4

and 1t is easy to verify that each of these operators commutes
':-."‘fi_-'-a_-- every X. But, these are again not all the invariants of the
gPoup as Racah himself has recognized sinee 1t 1s found, for ex-

&

a@ple, that for I.R's contragradient to each other and inegquivalent,
Jog :
they have the same sigenvalues. Han:rz) have suggested that if we

replace the adjoint revresentation by the self-representation in
n we can get all the Invariants. In chapter I, it is

sted that one can still deal with adjoint representations,

Some remarks.have been made on the geametrical
fcance of the casimir operators in the adjoint space.

gy In Chapter II, new algebraic tnchniqunﬁ} based on the

o

Antoine and Bpnisn'm have been presented on the computation

r sultiplicity structure of the group 5U(2). The formula

1y simple improvement over the well known Kostant's
. The only thing is that the techniques developed in the

e and D.Speiser, J.¥ath.Phys. 5, 1226 %1955), =

_ » 1560 (1965).
s Trans. Amer, Math. Sog. 93, 52 (1959). Tk




Simplification 1s achieved by limiting to only the dominant

Welghts, in which case, only few Weyl reflections contribute.

_ In Chapter IV, the same method 1s applied”) to the most
eomplicated second rank group G(2) and explieit analytical for-
mulae are given for the multiplieity of wighttgj.

In Chapter V, the method of generating functions has been

Hi“lupndm] to evaluate recursion relations for the partition func-

fions of the classiexl groups. The recursion relation i{s parti-

eularly slegurt for the graan S0{ L +1).
|
In dvpendilx 1, weny dalinitions of roo%s, zimple roots,

welghts, dominant welghts, highest wuight whieh have beea used in
the text have basn gm:wizeéu}

In Apcondix 2, many theorems on simple rocots which form
bhe maln cove in the evluation of ‘ianer' multinlicxties have been
simmarized and the material 1s collected from 'Lie algebra',
H.Jacobson, Tnterscience Publishers, New York,

In Apvendizx 2, 2 simple derivation of Kostsnt's formula
due to Stelnberg is given.

In Appendix 4, a complete discussion on the evaluation

D.Radhgirishnan and T.S.Santhanam, J.Math,Phys, 8, 2206 (1267).

®) Dr.J.0.B6linfante informs me that he has programsed Kostant's

foriiala for a computer (nrivate comaunleation). Our aim, howe
ever, is to zot explicit analytical expressions.
Santhanam, preprint, suimifted o the J. Math. Payse (in press).

ae for instance, T.S.8anthanam 'Group Theory and Unitary sym-

's Matscience Report 61, The Tnstitute of Mathematical
fei Mean, lin-dran, Indin.
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Amomg the strongly interacting partieles, we find multi-
rt: of particles having the same spin and parity, but with
y mcqual masses. It is conventional to identity sueh a

.’1“_ ip, the multiplets constituting the variouns I.R's of the group.
- It 1s now well established that there are regularities in the

particle (resonance) snectrum which go beyond charge independence

in the sense that the multinlets can be further grouped into super-
‘multinlets with the same spin,

e

parity, baryon number and comparable
,:f. ses wnich constitute T.R's of the group SU(AP, 1m this case
| 5’ irture from complete symmetry are not yet well understood. A1l
§ aen y the synmotry group vas given to start with and particles and
eson: necas were accommodated with varlous T.R's of the symmetry
The calculations have been carried out assuming the

- ‘hﬂ‘.m to be small and therefore neglected. But as to which

ts should occur, thn theory is silent. The Sakata model
bed the particles py,n and <\ to beleng to the Pundamental

sentation of T(?), However, it 414 not yield the correct

plicity structure to the other varticles. The Gell-Mann-Feeman

ion of 57(2) started with the eight dimensional representation

‘-_I_‘i_liuctlr. There are at least two shorteomings to this

_m. '"The Eightfold way'

HEds. M.Cell-lann and
ﬂ.l,ﬁlﬂjlﬂn Iﬂﬂ-, Ei?l (1 éﬁ



point of view, First, it does not tell which of the smaller re=

Presentations setually oceur. Sacondly, one has to coin reasons

vhy certain representations do nct make their presence. Tn the

i
- literature such questions have been raised and tn‘ﬁaxtant nxph!nndm)

There 1s a different line of apnroach which makes the
eonnection more perspieuon 14)

8 "« In a dynamical scheme, when the
particles and resonances appear in the direct channel of a two
.mtiﬂu’p’ seattering process as a result of the exchange of these
and other perticles in the cross-channels, there are certain gelf
Songlgtency eorditions 1mmosed on the number of particles and thelr
'&uplmg strengths and the mmultiplets that ecan be exchanged to

give an attractive force are not then arbitrary. There 1s then the

possibility of locking for the dynamieal origin of symmetries,
Iﬂurting from the existence of (mass-spin-parity degenerate) mwitisle
multiplets of interacting particles and requiring self consisteney.
Suopose, we do not assume the existence of a symmetry groun,

a2 priori, but we assert that not only are the masses and spins of

m various members of the multiplet equal, but alse the total

.....

multiplet are the same. Does this imply that there exists sn

symwetry group and 1f so is it unique ?

»GeSudarshan, Syracuse preprint 1206-Sl=07=KY0=-"290<07
. 'Symmetry in Particle Physics', 1964,

ReE,Cutkosky, Brandeis Lectures (1965). ‘



In Part IT of the this thesis, consisting of two

eha ters VT and VII, wo address ourselves to this oroblem and we
".-’.'h: Chapter VI, that within a suitable dynamical framework,

y answer is tyes '15). The principle of the equality of propa-

8y we call it the 'Smushkevich principle'. We show that under
ir dynamical assunptions the special unitary grouns are

ed out,

~ In Chapter VIT, we show that the symmetry breaking ean
@hhlr ineornorated in this schmam}.

In Appendix 5, we give certain identities of the recoun~

‘coefficients. In the Aopendix 6, we give Sakural's demonstra-

7 that the equality of masses does imply some symmetry group.

~ Symmetry is broken in ruifiiutie situations. Many methods
assed in the literature on the syumetry breaking

. The synmetry breaking we introduce 1s different from
methods known. Ve believe that symmetry breaking mani-
the various I.R's of the symmetry group, a fact

shan, L.0'Raifeartalgh and T.S.Santhanar, Phys. Zev.

md TeSeSanthanam, Fuovo Cimento (in press).
nm. Aev, Lett. 10, 446 (1962),
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Vvery anslogous to the d-state admixture to the otherwlse smme-

. Betric s-state ground state wave function of the deuteron. This

has beecome particularly useful in the problem of identifying the
IR
‘Roper resonance (1400 MeV) which has all the quantum mmbers same

‘as the nucleon. Tn Chapter VIII, we study the consequences of

| representation mixing'®! in SU(?) and several sum rules are presented

and gome of them can be tested against oxperiments. Tn Chapter TX,

‘the problem of representation mixing is studied in the Pramework
qr static SU(€) theory especially to the p-wave non-leptonic decays
;ﬁ.’ h'rpardum). In Chapter X, the same theory is arnlied to the

g —
o

onie decays and partiecularly an interesting relation between
"?GA ot (P/)a. e dertved™),

- In Chapter XI, the predictions of the higher symmetry
groups like =5 EI-’{“} @ H{‘?}j collinéar and SU(6), on
t!.vt decays of mesons are nramtudﬂ)

on the radla-

In Chapter XIT, the algebras formed by the integrated
constructed out of unrenormalized Helsenberg fields of
interancting particles are :‘Iimamﬂzm. In particular,
pight divensional baryonle flelds are used in constructing the

m_mnmmmm and therefore could

: Mishnm, TeS.8anthanar and A.Sundaran (Preprintl,
gnLnanagmn, Miﬂ‘l htt“'. _ﬂ, on4 (M}-

fanthanam, T.C.T.P. preprint IC/66/27 (umpublished). i
g2y WeRuhl and T.8.8anthanam, Helv.Act.Physica, 40, 9(126%9).

. TePradhan and T.H.Snnth!nnll, ICaToPs praprint
) unpublished.

. 5 [
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ﬁiii been postulated directly, nevertheless, it is equally
Anteresting to see the models which reproduce the algebra. In

XITT, the implications of the ecurrent algebra SU(2) x SW2)

; -T the alaﬂtruugnatl‘j forn factors are stﬁ&luﬂm). In Chapter XIV,
s
Stneckelborg fnr:iation of vector meson fields is used to study

the Al-v mixing and to reproduce some current algebra sum rultsm)

In Part IV of this thesis consisting of the last two
m‘tﬁrs, %0 and XVI which ha¥ been included for reasons of complet-

88y 15 described a completely new development in the stwdy of unitary
*Ms smnasriging a programme of work at Matscience.

T ALS

It 1::*5111'-
Suance of establishing the hitherto unobserved conneetion between

R Y

e unitary groups and the generalized clifford algebra initiated
by Ramakrishnan®®)

The representations of this generslized clifford
~algebra have been recently obtalned by A.0.Morris> "), However, it

*Ill found soon that there exists a distinet method due to ‘Inﬂsktiga}
to get the irreducible representations of clifford algebra. In

.0.Morris, Quart.J.Math., Oxford (2) 18 (1967 7-12.
aKeRagevskil, im. Math. Soc. Transl. Series 2, Vol.§, (1957) 1.
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-
-

eonnected with the generalized clifford algebra and in pastieular in
lapter XV, ve use the method of Rasevskil to obtain the Irreducie

ble representations of the generalized clifford alzebraZ®. In

‘ er XVI, an application of the theory of spinors in n-dimensicns
£0 the study of the relativistic wave esuations of massless

articles is givan“
S

AT TeB.5anthanam and P.8.Chandrasekharan, to
d in J, Math, and Physical Sn!..-, I-I-T-’ Madras,

AN, 1. !mtmm F-ﬂ-ﬂm&!mm and 4.
ha’; lpplienﬁms (in print),
n, T,8.5anthanam and P,3.Chandrasekharan, Proc.,
} Symposia in Theoretical Physics and Hntﬁmtie:,
2 Press, New York, (to be published).
iy PeS.Chandrssekharan, H.R.Ranganathan zmd
;IH Hi?m“m‘ J-Hﬂth-‘n‘li and .-“Flicﬂtiﬂﬂ 5

hed) .

_}?.E,‘Uhmdrmm, Prog.Theor. Physs 5
3)e * -




PART 31

| CLEBSCH.GORDAN PROGRAMME OF ARBITRARY SIMPLE

e



A general form of the L-i:uri:mtn of
- compact semisimple local Lie Groups of rank L
&s the spurs of the powers of the " Velocity
~ Potential " operator is suggested. The possi-
L tﬂt gemeralization of these invariants beyond
 those of the adjoint group has been diseussed.

23



CHAPTER _II,
i ONSTROCTION OF INVARIANTS O =51 HP
LOCAL LTE groupg®
I troductiont- The Pirst problem that one faces in the

mh-ﬂwam“ programue of arbitrary compact groups
”“ get a2 comnlete set of operators whose eigenvalues
characterise an irreducible representation (1.R ).
operators are the casimir npai-aturs which are functions

of the generators of the group comwuting with all the generators.

three dimensional orthogonal grouo 0(2), Casimir con-
red the operator

2.

e - T
G = ‘3-:.; =+ :r‘ﬁ- + -‘Tz. 5 sese t].]

-

= and -‘III are the generators of 0(3). This

, v
1
i itor is known to eommute with J_, 3'! o LR

N

representation is irreducible, then Schur's lemma esserts that

G = H'I sane (2)

= J (§*1), (3§ = intesral or half integral). We also

g '\

o .-..:.I L

my J. Math. Phys. 2, 1836 (1966).



in

15

of the Casimir operators for an I.5. The generalization of G
oF any semi-simple group was given by Casimir, who introduced the

r.t.‘.hl
= X
G g XKy
a - Pl
i 4 :
de e o oy o

(2)
the ¢'s are the structure constants and x's are the genera-
of the group.

4 A possible generalization of G was gliven by Racnht D who
ed the operator

T o, [+ s
o S tankCo 8. 'xE KP........ X
1

B [~ il
(=% a 1
"_“tmxm"._r—&

(4)

d 1t is ‘easy to verify that each of these operators commtes with
X$ '« PEut these are again not all the invariants of the group
ah himself has recognized, since it is found, for example, that
s contragradient to each other and unequivalent, they have
ame eigenvalues. 3So a pﬁluihilitf of generalizing (4) presents

Ny Oroun Thoory and Spectroscopy, CEAN, Reprint =i
* 61 - 8 (1961) p.45. - .
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. A
tself This is seen by moting that 1f we denote by X, the
gdljoint representation of the groun, we have
( A D A
&/ I (5)
Ay # are regarded as matrix indices so that
{!n = Sk meﬁ"“'xr R . D (8)

The gquestion then ariges whether one can use in (€) an arbi-

~
gentation KX instead of the adjoint representation. The
m of generalizing l::n

e has been solved recently in References
.-:.'I“‘..'.'.J'" and 5) -

¥e shall follow the notation used in Ref, 4 .

'___numhgm. J.Hath.Phys. 4, 436 (1963),
Phys.Lett. 3, 69 (1962)

* also L,C.fiedenharn, 'Lectures in Theoretical Physies,
Brittin, B.V.Dowvns and J.Downs, Fds,.

,I"nhrns.mea Publishers, Inec., Mew York, 1963) Vol.5, p.246-252,

| M.mezava, Fucl. Phys. 111 (1963),
54 (1964),
65 (1964).

IJ.“. M. mezava, KONINKL, NEDERL, AEADEMIE VAN WETENSCIAPPEN -
- AMSTREADAM,
ieprint fro= Proceedings Series B,

I.
.J!
P
1

N. No. :" 196,
sber and L.0'alfeartalgh, J.Math.Phys. S, 1796 (1964).
also L.O'Reifeartaigh, 'LECTURES ON LOCAL LIE GROUPS AND TIRIR

JENTATIORS 'y Matscience R t 28 {Tha Institute of Mathe-
T Sﬁ.ncu, Madras, India).

feartaigh, 5m¢sh on Thmeticul Physies, Fdited by,

. Ramakerishnan (Plenum Press, New York, 1966), Vol.2, »np 15,

MI. th"s. as2 (1964
Pere ﬂw Ewilt Physies JETP Letters 1, & ﬂ.ﬂ'ﬁﬁ}
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1

Suppose in Eq. (6), we replace the adjoint representation
X by an arbitpary representation X « Let

(7

()

: completeness of these invariants has been established.
ticular, the invariants for the classical groups A, 3, C,
‘have been obtained using the self representation. These

ire summarized in Table T,

TABLE I
INDEPENDENT INVARIAKTS
|.|" ] — :
__ Deseription Order of Representation
Linear Realization) Invariants used to form it

Ef” i El + 1} matrices 9,3,." 1+1 - mr
1z (20+1) matrices 2,4,6,i) 2L  se1r -

254565000 2L Self

E,“'E'iil- EE--‘ E, 3'.1r md one"-
= of the two s
fundsmental
3 spinor representa-
tions.
= SH




e

5

Biedenhsrn 2, on the other hand, has used the fact that
ase of unitary groups, there exists mét only the group
p of the con~utators

”
[% K )i= Cp 27 A ~ (9)

randent of the representationj but also the algebra of
putstor for the special case of the self representation

5 5 EL’?’ S
X, \":;3 = Mi’l, X,

L *mu. one knows, that the anticommutator depends on the

(10)

o
..... ' the representation. The symmetric coefficients d_ P
| been used by Eiudmharnm to construct all the invariants of the
: 7({n)s Subsequently, the method has been extended to

‘er o2f + 1) and Sp,, by Micu® , where 1% has also

d out that for the orthogonal group in even dimensions, an
ariant cannot be constructed in a similar way.
Yechor Potential Oneratorsi- The question naturally arises

s invariants have any geometriecal meaning. Do they speecify
lar property of the parametric space ? In the case of the
group 0(2), the invariant T +TT; L can be in-
| as the square of the rorm under rotations in the three dimen-
te spanned by T, J‘? and J . If so, how can one intersret
igher order invariants geometrically ? In literaturs,

-

B - *
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‘sueh ouestions have been puseﬂm. We now give a method of construct-
the invariants using the " Veloeity Potential Operators" .,
The " Veloecity potential is defined to be 3=

~ P, x.4)
a"j-’“ = -

(11)
*a the qb 's are the transformation functions of the Lie Eroup.

as is well lmmﬂ, the whole analysis and the classifica=
OF eontinuous groups are accomplished by the study of UU. The

9‘6& (209) = X vy Yoy Zpty, + £ Ty
+ -

1 ese = 1,7 ... n = Tumber of parameters (12)

3 f".!h infinitesimal gemerators of the groun X are defined bys-

X UL & 2
s E e s

(12)

for instance, L.D.Fisenhart, contimmous grouns of Transformae

" tions (Dover Publications, Inc., New York, 1961) pp. 155 -
’ﬂih)sq Topologieal Groups, Princeton 1846, (Princeton .
Hath, €5) e .




7

-

nd they obey the commutation relation
PL
BT

It 1s the famous nroof of Lie that showed that these structure
lu.

constants C o Bre nothing but the antisymmetrie part of the seccnd

yrder coefficient -:.'1..';_ oceurring in the expansion Fn.(12) for the
' 's , Tn other words

(14)

4 ol ol
&l By = L — G
(15)
concepts are indeed well known and are introduced Just for eon-

nuity and notation. The U @éperator for the group 0(?), for

o z -4
2T (Ij = —F (] 2C
¥ =< 9

:I:L — ('xJ%"_;zj

(16)
~ However, in this case, the adjoint and self representations
ars both three dimensional. In t rms of the natural basis of matrices,
matrix U (x) ean be written asl-

fo}:'E * @ s A0
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were the xi's are the natursl basis of 2 x 2 antigymmetric

ees and the product is the direct rroduct, The dimension of the
ie sp&cel is always egual to the number of generators, so that
0ef17) 1s always Aefined,

Invarisnts of the idioint Gromp:-

The adjoint group P of a group 0 1is defined through the
s= of G on the group of matrices. So, to every element

* 9 there corresponds a matrix b € P . The adjoint of the

test group is ealled the infinitesimal adjoint group.

let us start with the Casimir Operators-

(18)

I 1
F o n
b 4

F\}
®

x X
LS

S

T (18)

Il

‘U
U
e
22

)

X

-
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8o th:t the n'" - order invariant siay just be written asi-

e

¥ st () = s (Rie )

1

Il

(21)
Thase arey, of course, known as the invariants of the ad Joint munsl'_

The invariants are defined as the coefficients ¥ in the exnansion
of the characteristic equation

A =,0) = | VL"; (= g 5% “ '
’ (o)

A(x,P) is ealled the characteristic matrix. The paraveter [ is
sunposed to define the invariant directions. Since the rank of

of
“ "L_ﬁ f’-ﬂ“ is less than r (the mmber of parsmeters of the

' group which is the ssme as the dimension of the parametric :mu}ﬂ),
we ean oxpand the characteristie matrix asie

I

e =l I ey Wl
(=0 AlxP) =" § = Wil S Wielp T

-1

S e e (=) §

(23)

e N N R R Y N
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~ The . ’1__( x ) 4s the sum of the prineipal minors of

Ir, _I T | i i

1I*Eﬁ‘“ %1“ of order + o Hence, if the rank of the matrix is
the functions %, for 4 >% are zero and the characteristic
) admits zero as o root of order (r - q) at least. In fact,

-

asy to see that

¥ = sp(m),
. 2
B - ]

(24)
nd 0 om. The theorem of Killing states that the @'s are the
wariants of the adjoint mﬁ' Also, it has been shown that
there are only 4 indevendent %'s where { 1s the rank of the
group. The matrix M is just the operator ( Qﬂ®f¢} defined in
ie paper of Gruber and Haifeartaigh®), These are the veloelty
potential operators for the grop of infinitesizal generstors X of

MQ For the case of 0(2), the operator M {is obtained by
replacing, in the velocity potential U(x ) of the group, the come
one: its X of the parametric space by the infinitesimal generators X.
| Ve get,

1 (%) = Z Q,_@ XL_

L

= )
O _Ka _Xl

5 "‘.x;:; € *, !
X2 — Xy G (25)
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One importiant caution 1s that though in the ease of 0(2), W(x)
the seme for both self and adjoint reoresentations (as they are
ntical in this ease), in general En.(25) 1s defined through
F adjoint representation. The invariants of the group are

4 San e R (26)

 essy to shou that for 0(2),

uﬂ) and odd order invariants are automatieally zero,

Therefore, the method consi<ts in first replacing the x's

the U matrix by the infinitesimsl generators of the groun.

hen toke the spurs of the powers of this new matrix, It is clear
hat the mumber of x's 1is indeed equal to the order of the groun.
t 15 also easy to check that Sp(M® 1s the same even if one
ermutes the x's in U. OF course, the choice of U(x) stromgly

____ ﬂl&t the corresponding groun function is

, ot
cﬁ)n{ (e e) = CB?’ xE, Gk
(26"
U',;mc (x) = & #)"‘ e
2 Y
=0 =
- . Cl&f %
X B P
“ L3
= NGO



H
I
£
o
IR
&
X
pie

(28)
o i
The form of U (x) and henee that of P (X,Y)

Ammodiately tells us that we are in fact dealing with the in-

The next euestion is how to generalize these invariants
i the adjolnt group. One way suggested in the work of Ceuber
and mrmum‘” is to muuu:_- N as

< (29)

X
'@ X 1s an arbitrary representation. In particulsr, they

Ve used the self representation in constructing the invarisnés
the elassical zroups AL, Ho 9 Cp and D, except that in

case, one needs in addition to the self representation,’
. one of Tundamental spinor representations. Tt is tempte

& _.‘..i---. P e e & - S e - e o

29 .
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eperstor"™ and conseguently the group function when one replaces
the operator ( Q',; ® KL\ by (;\CL =) Ki\ « It is very hard
to answer these guestions directly. liowever, the following things
could be remarked, Tt is clear from the work of Bledenharn®) that
. we need eertain sysmetric coefficients to ret the invariants of the
group Utn). If ve want to ceneralize the invariants beyond the
ﬂlnl.nt group, we can still retain the form.

— cr
il = S ik o
_ But now, the U(x)'s are defined tharough the relation
Ul = o el K

£ ; oL ]’51_ ]3 b ] (31}

which implies that the group function qf:pc (<,%) 18

P ) = Xow %, +a"ﬂ{-f e ¥y
v = (32)

' ~ In Eq.(31), the a's are not the structure constants, they are the

‘secordl order coofficients in the expamsion of the group function.
Jsually, in the normal parameter systen, we make the symsetric part
of O. vanish so that the a's aecurring in the expansion can be
replaced by the strueture constants. Suppose we retain both the
muetric and antisymmetric parts in Eg.(22), we have,

== - A 4
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o | (d.u( Cn{ j
Ub-]?.‘_f ="' 3 EafShi = )
i ol
el Sl
(33)

) ol
while CP'?’ s by Lie's theorem is the sanl as the structure
constants, one can only speculate that the F;".r’ may be the .

mﬂﬂc structure constants oceurring in the anti-comrutator of

(24)
here we have used X  to demote the self-representation. We

i emphasize that Eq.(24) i3 very sensitive to the choice of
the representation. In many cases, the anti-commutator may not
ven close and ve have not cstablished that the d's in Bq.(24)

are alvays the same d's occurring in Eq.(32). In the case of .

(n) , one does know that Eq.(24) is certainly true and this

et hao been used by Bledenharn® to write the invariants of
he group U(n). !'._,h.p.,. the study pf the symmetric spaces may
Fov more light on Fq.(34),

-



ABRSTRACT

4 simple formula for the multinlieity
™' (n*") of an arbitrary veizht =" be-
m to the irreducible renresentation
with m' as its highest weight is derived,
It is then used to derive a compact and
simple formula for the decomposition
Dm*) @ dr).

28



$U(3): COPACT PORMULA FOR_D(pm" D o
e

MULTIPLICITY @' (nv) OF n* g p(mv)

Introduction:
- A diffieculty th:t one.confronts in the Clebzch-Gordan
programme of the group SU(3) is the multiple occurrence of a
_ glven weight in an T.R. (This problem is often called the pro-
blem of ''internal multiplicity'' structure). In the 1iterature,
Of course, there exists the Kostants formulal) to compute the
Mght multiplicities. However, it is too complicated for the
practieal caleulation of multiplicities, because it invslves,
along with the susmatlon over the Weyl group, the function P(u)
BIRISE 13" oqual to the muiber 'af asopiattions of ‘s Eivia vestie
1 into the sum of positive roots of the algebra, There is alss
the Freudenthal's recursion formula®) for the welght multipli-
eities, which is egually complicated,
Recently, Antoine and Speciser ) 14) ,5) have given a

" B.Gruber and T.S.Santhanam, Nuovo Cimento 45, 1046 (1966)
1) S.fostant, Trans Amer.Math.Soe. 93, 53 (1950).
See also N.Jacobson, Lie Algebras, Interseience
: Publishers (1961) p.261.
Jéﬂ’ NeJacobson, 1bid, p.247.
8) TePuintonine snd D.Speiser,t.Hath,Phys.5,1226 (1965),5,1560 {1965).

DeSpelger, Helv,Physica Acta 72 (1965)« Volume dedieated 4o
Prof,. E.C‘.&-S’tuﬂ hatl"; on this 60th bhthﬂ“-

D.3pelser, Orous Theoretical Concepts and Methods in Elementary
~ Particle Physies, Gordan and Breach (¥ew York, 1962) p,201,

ll-



geometrieal method for computing the internal multiplicities

in a very simple way. They have proved that if the Weyl's
character fmu].aﬁj is re-expressed as a product, instead of

- as nquotient, certain simplifications eccur as well as that the

_ method offers a very neat geametrical picture. In the first
‘section, a brief discussion of their method is included, However,
" their gecmetrical method 1s again cumbersome for higher rank
 groups, while an principle the weisht mmltiplicity is caleulable.
Ve hnﬂ developed an algebraie procedure of computing
the welght multinlicities alonz the same lines of Antoine and

speiger. The generalization to higher rank groups then becomes
straightforward, We derlve an explicit expression for the in-
multinlielity for the case of A, algebra (the correspond-
ing group being SU(3) ). Using this algebrale formula, we derive
. aet formula for the decomposition of the direct vroducts of

Lt's into irreducible components, The case of SU(3) 1is partie
'.

mlarly simple although mot trivial like SU(2) (where the inter-
bal multislieity is unity throughout). Tn the mext chapter, we
shall discuss the more difficult case of G(2).

tatlons and Definitionss
We shall summarize the necessary and relevant definitions
ton used in the Bext of this and the next Chapters.

The elassical Groups, Chapter VIT 5
Princeton University Press (1946). '
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A vector V 13 pnositive ilf its first non-vanlishing

component is rositive.
The vector V 1s greater than W, if the vector

(V =« W) 13 positive.

The vectors connected by Weyl reflections are gguivalent.
A veetor greater than all 1ts equivalents is eczlled
dominant.

7

For a semi-simple group, it is known'’ that if « 1s a
root, then (=) 1s also a root. Then the roots fall into two
- clamses, positive and negative. We denote the nositive roots by «

and negative roots by B8 (= «d). A guantity of great interest is

the vector Ry = _‘;—,Z Be {half the sum of positive roots).

— = '
For o group of rank f., there exists 1 positive roots, called the

rositive primitive roots (some people call them as elementary or
sluple) such that any positive root P, 1s gilven by

 i—
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‘1

shall see later, the role played by these primitive roots.
. Suppose we have a coordinate system with basis vectors
_":_1-?_ see Py o Tt defines an affine coordinate system, if all

- L
Vectors belong to ge (lattice generated by 1 vasts vectors)
if every V € g° takes the form

g N — SR
N 3= Z h L with integers Dy »

he funiamental demain D. 1s defined by

b b,; = for any Vi gD

o
.. a system, Ha:ﬂ.n has proved that
B = = (P'+ +P1;3

B0 that R, 1les inside D_ .

L

et el sigit{i B

] ¥eyl® has shown that the character of an IR of a
gemiesimple groun may be written in the form s=

X = =l
Y i (3.1)

the group is semi-simple, its centre is a discrete group.
arefore, its iuasf na Euclidem space E, 1is a point lattlce
generated by basis vectors.
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the characteristie K = X(k)= Z 85 exy ic (5K, ,‘{’:] :
x Se
=y c
Zra= PR e s e e S

A= X (R, = characteristie of the Identity Representation

[
0
ik
i
o=
-
—
0
A

0
-
N

(2.2)

gre W denotes the Weyl groun. :3{:: are the group parasmeters

O = +1 gccording as the Weyl reflection is even or odd
pectively. There exists another, but equivalent expression for
eharacter of an IR with =® as its highest weight.

€ D Gy

(2.7)

e the summation is over all the weights =" of I.R. Dim).

denotes the multiplieity of m". Antolne and apnimrm



e Z i eer (Sg—ﬁo,qb) |

5 €

1 then interpret Eg. (2.4) for & in the same way as one

3 A
| for the character ¢ (Eg.(2.7)).
¢ (P.gp)
In a torm '?’P e i s the multiplieity 7. at

pooint P is the value of the funtion % at the point P.

&
ergence of the sum ) 2 only means that the multiplicity

._jj."_‘-i.--- incressing. However, 1t has been shmn that only
= 1 _ c
0 A FipE t pounaed Jdomgii O ' 3R L E To
ind % we have yet another formula’)
o0 o
== - EI}J {“ Rq ,‘#“) Z s Z
& . =0 -E“ﬁ:o
.Ex||:. i [Z E‘i P-t: A c{jl
(2.5)

pre, the f,'s are the negative roots.

]

Then guantity Z ke Bo  #iz0 4 elearly represents

=

1 arb! trlr;r point of the lattice constructed on Bl.ﬂg..u,ﬂ..
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- with none-negative, intezer coefficients. The sum over k's re-
presents all points of one of the 7° ¥ getants ' of this
lattlee in F,. * 1s the same shifted by the Vector (—R_).

¥e have then

fe.a] oo 5,
I
Fom e 2 Qe esbi | Y kipi =R 4

(2.6)
dnd hawe ¥hen so the character formula becomes

W = Z ' Z Z ES exb ¢ i &L-F,;.,,skﬂ_,;ap

h‘--.:ﬂ ) 'E.H..-".-Cl' SEL\J . L= cﬁ} } v

. (2.7
The main r esult of Antoine and Speiser’’ 1s that 1t is

quite enough to imow the part X, of X contained in D_j
the other parts then will be obtained using the group "H

2 =

o 2

(4.8)




(3.Ra)
Since we are restricting any point to belong toe D ,
: folluu from our analysis that the multiplieity ™M (7) of &

ector 7 in 1 1s just the number of ways of expressing

Vs b iy _Z&'; - ol (3.9)

e Z‘?"'PL

(2.10)

™ (7) 1s the mumber of mn-ﬁagntiva intesral solutions

- 2
. ZELPL & Z{ A

(2.11)
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It should be remarked that this is exaetly the partition function
P(u) that enters the Xostant's rumulaa). Once M( 7) is known
the multiplicity i (") is mallsd calculated from the

Kostant 's formula

f“"lwl (m") = Z SE. ™ [”""”-— S f*ﬂi+ﬁm“,l] ‘
S € Ly
(2.12)
We exploit in our derivation that since the Weyl group W 1s known,
it is sufficient to know I when m" 1is dominant. Tn this
chapter we shall demonstrate this procedure for the case of 5STU(2).
A, alzebra.
The roots can be well described in g three dimensional
space as the vectors €r—€y 9 143 = 1,23, vhere the e's
are the three unit vectors €, = (1,0,0), e, =(0,1,0) and
€3 = (0,0,1) and the positive roots are =« = (¢, —e;)
= (e —e,;) ond o =(f ), « and o, are the positive
R
prinitive roots. We also have o = -Ldy + e, + o)

= {.(1 + 12) =d, = (2,0,=1).

It is equally convenient to describe the weights also as
vectors In a throe dimensional space, with a condition ss the

8) See Jan. Tarski, J. ¥.th. Phys. 4, 569 (1963) for more :
details on the Partition funerion.

-
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2

L=

fhis i3 then a nlame in the same space as roots.

2 (™, )

The condition that (x,<) = Iinteger where m

s a welght and « 1is a root becomes in this case

N e

ec—es I

(my =y ) = integer

 the dirrcrtm:u of the components of the m's are integers.

This along with Z ™M, =0 ylelds that

L=y

—a integer 1
i 3

s the conditions on the compnents of the weight aras

.- -
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Under a reflection in the plane perpendicular to

'.‘1 = (:EL X Eg:) ve haﬂ".

o (=2 g) (& —2y)
b v ey | =

I

= v~ (myg—my) (ec—ey)

i L ( 'rr'n.,_;- _—— "’""'—3,.\'1

Thus the VWeyl group W 1in this case econsists of 211 permutations

2 5- the components of m and it therefore of order 2 ! . The

nant weights (highest among equivalents) have to satisfy the

(2.14)

Let M (7) = ™ (& k) denote the miltinlicity

’?’: —Er:' +*E’.t{5F+‘E;|@Z

L

PI. BE are the two negative primitive roots. Then ™ ()
s given by the number of times 7 can be written as
" b A +E‘r|5.+‘£?1 Be “‘5-3.[33 i
8 . .
: with different coefficients, <. >0, ' y




40

the internal multinlicity ¥° (m"™) of a welght =" he=
ng toan IR with m?

: as its highest weight is gliven by
Ege(3.12). The problem of obtaining

— * [4
M (R, %2) for A, then
es to finding the mumber of ways of expressing the vector

'Fl‘tF’p +ﬁ1?F’1
ﬁ-fﬁ.“'%zr:’z +E3P3 .

[7’3 = {%'+F1

(2.185)
}'ﬂ given ( by, F"'zrj « The above equatlons may be rewritten as

£, = &, %
'%3_ = %;: = Rn
(P1%53)
The condition that R >0 & > O igmediately yields

6 = *\@23 = e (R, ki) (2.16)

MOk R = vum (Bied, £ 61) (30268
-Boa HcMahon Combinatory Analysisg Vol., I, Seec. VIII . >

1 Chelsea Publishing Company N.Y. (1960),
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Onece the expression for i {‘5,‘)&1’3 is known, Tl (n") is
immediately knoun,

In the particular case of Ay 9 aD alternate method for
getting ™ (&, ,%.) hes been vorked out’®’. This essentially
consists in using certain boundary conditions on- I!"'l (m™) ¢o
get an expression for ™M -

If we introduce the vectors

e — 'r"""'-J Ea-\}_'- g E“""‘"‘f"En‘j
S eI * (2.17)

it 13 easy to check that out of the vectors ©<: (or eguivalently,
out of the elements of the Weyl group W) at most three can con-
tribute to the mulitiplicity of the weight m" € D(m'), namely the
system of vectors

= = .r_'c:_,c’c:“}
Z ES — [{G_, ""f"l"'l_ll-—"'m:"l-"" — I:-ﬁqgi—-m_aﬂ-f}]
= i Fl
S e e
(3.18)

The other three vectors (corresponding to the other three elements
of W) 1lead necessarily to negative integer coefficients. Then

10) BE.Gruber and T.S. Bnnthmnf,\-lﬁ, 1046 (1966).

Muwesveo. coments .




== -[;1_- ( Wr"m‘: i m-?:—w‘;)
e R S
T (P EE

| (2.18)
This 1s just the Kostant's formula that can at most contribute
lﬂ.ﬁpllﬂty of weights, Now we use the following boundary
ns on i to get an expression for W

(1) Multiplicity of Equivalent weights 1s the same 1.e.
™ () = @m

‘ng The highest welight of a representation is non-

: degenerate

hhd ' (m*) =1,



lso from the definition of M (%,,%;) follows

M o,k = ™ (%£],0)

4

Il
=

M &R Y= M (Rl B
e M (& B) =0  f
%, < 5 G /o‘f‘
£ <0

(2. 20)
g these boundary conditions in the Kostant's formula, one gets

R ) - R )L,
(3.71)
B o+ EL)
By 8.
(o -4y R +R2)
(3.29)

]



To get the extrenal multinlicity we then oroceed as rullmlm -
L]
knowing e (m'") and the formula

% (') X (meRD) = X ("R,
2, D

the decomposition of the direct sroduct

| DY@ Dewmd> = 2 I D)
ﬁ'ﬂ.‘l:

I

(3.24)

be written as

|
ey
iy
5
g:
o
o
o
31
il
h]ﬂ
.t-
i
L)

! 2

(1) all (m + R, * m') have to be made dominant (1f not
already so). ﬁp =1 if this can be achieved by an

even permutation of the components, S.’ = =l n_tha;r-
vise




(2) All terms of the sum are omitted for which two

comnonents (or all three) of (m + no + m*) are

mlc
quation (22) can be written down more explicitly asge

HeGm') X (Cmp R .=

t 4 / J

PO A, o e :m'lrmﬁ
2. ey (f)

] L
T = -I-F”

e oy
(=2832) Mwa’m”“} é‘P D fmeam”i*ﬁ
}'3“ == {_’;.l f ﬂﬂ)
r'_'?w_.,_ = ( el J)
(3.26)

that have been used can be reneralized to any

8 since they are algebraie in nature. For G(2)
tonstrate this in the mext Chapter. .



CHAPTER IV

Mu ] -

An expliecit slgebraic erﬁu:sim is obtained
for the multiplicity ™M (7) of a veetor 7 be-
longing to the fundamental domain of the group
6(2). Using this, the internal multiplieity
M® (m') of a welght m' belonging to the Irre-

dueible Representztion DMm) with the highest
weight m is caleunlated through Kostant's formula
for the dominant weights, The ClebscheGordan
decomposition of the direet product of the two
Irreducible Representations is then obtained.



Introduetion

It is well known that the group G(2), whiech is a sub-
group of O(7) has been extensively used in Muclear Physican and
in Elementary Particle PhrslcaE) for classifying levels and for
studying interactions among particles. It is desirabls, therefore,
that the Raecah algebra of G(2) be developed as in the familiar

_ theory of angular momentum. The problem of finding the inveriants
has bsen mlﬂﬂm. Any irreducibdle representation (TR) 1is hus
specified by the eigenvalues of the Casimir operators, or, egui-

- valently, by the components of the highest weight.

The next problem is the determination of the internal
and exteynal mmltiplieity structures of the I.R's of the groun.

By Biedenharn's thanﬂnﬁ}, the external multiplicity of an IR DV,

occurring in the direct product of two R's D and D%, a is

'Inse‘.ly connected to the internal multinlieity of the weights in D

“D.3adhakeishnan and T.S.Santhanam, J.Math.Phys. 8, 2206 (1967).
i) G.Raesh, Phys. Rev, 76, 1352 (1949).

2) R.E.Behrends et al, Rev, Mod. Phys. 24, 1 (1962).

S8ee Chapter IT, for detalls.

: ,-'Ha use the tminnlﬂﬁﬂ introduéed by A.T.Macfarlane, L.O'laifear-
.ilh and P. S.Haﬂ, . lt-h-ph:fﬂ. 5’ 536 {1m

5) L.C,”1edenharn, Phys. Lett. 3, 254 (1963),
GeEealrd and LQC-HtHﬂﬂﬂhm‘ J‘Hﬂth-m!n- _ﬁ' 1730 (m,-




Dty Tho]:gh the internal multiplicity structure is known

thro

hrough Tostant's formula®), practical computations with it
are very tedious. It rurns out that it is sufficient to know

| e multiplieity structure of j:-?) « Knowing this, the multi-
eity M" (m?) of a welght m' contained in an TR with highest

weight m can be ealeulated®,

~ Recently, an algebréic method of getting ™ (n') has
n worked out>) for the case of SU(2). Tn the present chapter we
srive an expression for the internal multiplieity M® (m'), for
the gronp G(?). The problem is more complicated in view of the
act that there are six negative roots and two (negative) primi-

ive roots.

The root diagram can be conveniently rezarded as eonsist-

g 6f all vectors of the form €. - @ and e 2o, +ey |

": = 1,2,2), vhieh all belong to the hyperplane

acobson, Lie Algebras (Interscience, Wew Vork 1!62. P.261) .
 Antoine and D.Speiser, J.Math.Phys. 5, 1226 (1964

and T.5.8anthanam, Nuovo Cimento, 451, 1046 (1955).




(a) ﬁl - {ﬂ‘ “"1‘ 1) = EE‘, o e'i.’..

32' (-'1, 2' "1) = = %f"':"—eluaa

‘The welght space is three dimensional with a subsidiary condition

3
Z"“’Lf_ :Dp

t=1

e the '1'5 are the components of the weight m. Using the
‘theorem that 2(m,d)/(«,e) = integer, vhere m 1is a welght and «

18 a root, it is clear that the components of m are intagers.

Let us now discuss the Weyl zroup. Reflecting the weight

(myy my5 ®,) 1in the plane perpendicular to €. — ©4 9 we see

‘that my >y i.e., the components of m are permuted, Mext,
congider the reflection in *he plane nerpendicular to =28t 0p
rIt can be seen that the effedt of this is to permute the components

m with a fotal change of sign. Thus, we have considered all

_"n’.th!.u reflections perpendicular to the roots and seen that they

ite the components of m or permute the comnonents of =m

‘With an over all change in sign. The Weyl gromp isy therefore, of

r 12, From these results, it follows that if m = (myy Moy W)
is to be a dominant weight, then

(2)

(1)




Proof, Assume (1) is not true, le€ey m, < LY

P =1,%2). Avolying such a YWeyl reflection to m which ex-

changes m, and m, ., we get a weight m' such that the first

non-vanishing eomponent 13 positive, thus leading to m* being
M than m, ﬂmﬂ nr > mr+1 which »roves (a).

To prove (b), we note that condition (a) aleng with

3
ZML =l

L=1

BENds 1umeniately to m > 0 and m, = 0. We need to prove only

mponenty so that m' - m has as its first component m,, vhich

positive, we are led to a contradiction. Hence, m, < O,
TIT, yltiplielty structure M ( £, %, )

In order to find the multiplicity of the dominant weights,
lot us first caleulate the multiplicities M of the veetors in
using the expression’)

a3
i

=

I
M
M

(]

X
R%E

%

<05

|

&
2

(2)




o1

where . 5 are non-negative integers, the 33‘3 are all the

negative roots and Hu ig half the sum of all positive roots.
The multislielity M of a particular vector 7 of % (which be-

longs to the fundamental domain of a group of rank A ).

e Sapppe o ke pE S

¥

(2)

where (ByyesesB; ) are the negative prinmitive roots (L< n)

and { &,, ..., ;) are non-negative intezers, is then given by

the nunber of ways ) can be written as a sum ofer all the

necative roots

o (4)

The multiplicit¥es of the dominant weights m', M (m'), can then
be obtained from Kostant's formula’’

M (mr) = Z 5\5 i"”l [’I’ﬂ- — Sfm-rﬁ.mﬂ

Seld
— ) 5
= Z 85 jit (‘h‘a%"-‘-j,
Seid

(5)




 Where the summation extends over the elements of the Weyl group
¥ and 5, =41 according ss § is an even or odd reflection,

respectivel ¥

The problem of obtaining M({ *, » %2 ) for 4(2) then

 reduces to finding the mmber of ways ( &, By + %,.By) can be
wﬂlm as ( GJ* ﬂl ¥ sssssrsesansan ¥ G’E 'BE; )’ for zlm '&q
and &, 1.e.

'Ez.{ﬂlq- &2 ﬂa = G.-fﬁ.l-l- ‘1152"* &-3{51+ﬂ2)

4+ 0u(2, +8) ¢ X (28, +B)

+ % (36) + 2B (8
80 that
= o +% + 20, +30,+3%;
-0
%.1:0“1"‘&3‘*0*4—*_9'5*‘ “'{7)
» have to find all possible values allowed for fﬂfi, =Flsaie; '15‘3

for given ( %'4 v "31-‘__ )e These equation are known as Diophantine




S8,

Wﬂntiaﬂsﬂ and we have solved them using the theory of parti-

tions,. Ve shall now go to the detzils of Tinding the number of

solutions of the Diophantine amtianam]

« The cruelal noint in

Othervise, the number of solutions of the diophantine ecguations (7)

~ 1s trivially infinite, The nunmber of solutions of Eqs.(7) 1z just

the number of distinct values allowed for the set (o, ..., G%g)
for given (%, B.). To find this we proceed as follows:

First set O, =G5 =A.=0 , then Eq.(7) reduces to
‘Ea‘l ==t 0_3 J
’EZ-Q = 04 + a’.‘f‘, ;

9) P.A.Macmahon, Combinastory Analysis, Vol.IT, Sec.VIII, Chelsea
Publishing Company, W.Y.(1960). The number of solutions of
the Diophantine eguations (7) can be given by the methed of
generating series. Now fq.(7) ean be written as a matriz equation

(kb )i= €© (o, .o 00)
vhere € 1is a (6 x 2) matrix., The number of solutions of Eg.
(7) is then obtained as the cosfficient :x:,_%'* xf‘" of the

generating function

-1
_6 Cﬂl CI:J.
£ (=, %) = W = e Ey

L=

where the C.i are the elements of the matrix C.
S8ee Chanter V for sreater details.

10) See ref. (4) for all detalls about the conditions for D' to

dominste D. Tn thls paper a comnplete list of references to
earlier literature may be found.
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‘Which we rewrite as
s e

G"i
O Vi e el

Siasl

3 .

It may be recalled that these are just the enuations one gets in
the inner multiplicity problem for the group :W(:!)*l e For fixed
(2, %) @ ean have the range

2nd so the mumber of values allowed for & 1g given by

i [“&‘4—3*’1, %—3+{)

(»)
As the next step we set A3 ,04 F0, X5=0,=0,and so Eg.(7?)
reduces to
E’-{ = Gy +03 204
%"2, = gt e iR
which we rewvrite as :
Oy = ky-a3 —2ay
A, = E’:H @3 - %4

The alloveds non=gero values for (G, are given by (for fixed %)

s { [’g’_ﬂ“’;} , (%s.—'lﬂ} (9)

‘_'Eaa Chapter III,




where we have denoted by the square bracket the integral part of
the expression. Of course, &3 ecan have its range such that
oy, :}-_ ) « Two cases of mm inequality arises.when R, = kg
whieh implies F‘-—;X '{f k, 4 then the number of values of 4

BEIET '
= (93)
El3=g ;

and in order that @, ,+ 0 , we insist that 3 = 1 and there-

are

-

fore the second equation implies

W £ 4 = Ry
(eb)

t.l'l..u_E'.

Of course, if . < k,  then it is time that the maximum

value allewed for @ from (2a) [ﬂri’:}é kE.~2 and hence the
__m:@tarr condition (2b) is automatically satisfied by the matural
‘boundary of 4g.(9a).

If on the other hand

then the following

‘czgse arises

[’g“' < &, <%,

z

In this case the allowed range of values for G, is

k =




the allowed values for . +0 4s given by

>[4

but nov the subsidlary condition (making %, +0 ) O, i <b, ;

has to be carefully taken since the sun imolies

(Bp-t) < &-264 b & bk, <k,

values, flence 1t should be imposed. We can do this by Tirst

] ng @3 to range through all values allowed by the sum
‘this facilitates the evaluation of the sum and then subtract

f.2. values of 23 beyond 22— 1 upto £,-2 ,
Ais the next st'-pumuudtusﬂ o R o)
and @, -0 Eq.(7) reduces to




ona has to consider the following inegualities

Rosta i [Bhe b wn S TE S <)

nd depending on these limits we have to determine whether the
st or second equation has a say. Number of solutions for “s5

(
> e ] e

Gy ot

43 then

(10)

e
or instance when *, <k, implying [-—3-1 < %2 then the mumber
of values sllowed for C.- is then

% [‘E_._G..E_'LQH_

>
Qo O

0 ensure that d -+ 0 o we put this condition on the other equa-

'



B o (% __of
- On the other hand when 3 | then the number, values
allowed Tor ‘- becomes

Z (A = Ay - ay,)

3,94
but now the condition that G5+ 0 beeomes

ey + 294 +3 <= £,

The next step is then to set o e B :i:@ 80

the number of zllowed non-zero valuss of ¢ is then
>
‘ 5 ,E,_‘__ Bu'lﬂ-_q, 30 i 3_ Qg QA l)
% A L EEmas s ]T

]:,%- < L%X » then the first ters is minioum and &=

. L e .
0 ensure that Le = © 5 we insist Qs + g 4+ &5 + = kg,

t [’%L.X > [%\ s then the mecond term 1s decisive and Im

his case to ensure that Le 0 we set

L3 4294 + 345 +3 < Ky

ius the number of solution of the Diophantine equation (7) is
yen by the allowed distinet values of the set (S, St )

=



and 1s thus giwen by

- —

il e,

e
p—

(for given

A,

N T S S
it ; L 3\ lj ! ‘L}_ ;q‘" q:J J:ffl
W L}

o

il

g

3 Ga

T

YL

':L3 ‘Qq“ﬂ_s

(%, %2) )

"'Y'r’l.l.-_.l":'l., ('Etl-l‘fJ 'E‘-g_-l—{)

]

=
ky— %3 —zay
3

{f
b

{Lz -G‘Ej }

29

(R, —ay-a)¢

..-l:l.l_r —

':_-g“‘:
¥
Z

(11)

The evaluation of the sums of integral parts is straightforward

e

2

and we summarize them as follows

2

il

1

‘E:{ odd
J

%

4

Baresy!

(12)

-

|

Wy,
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If we denote by

CORD = E; [k~¢=1;}
£ 4 3

can be easily verified b$ actual computation that T (%)
eysthe difference enmmation

F(e) - § (R-G) = é‘. Efmtﬂ '-’.'hu:")a-ﬂ_g'

= 105 ik

s difference equation has the solution

g = L (B2 362 3k 4a)

d 13 as yet not known, to be fixed by boundary eondition
 each mod 6 of & , We find that

=

{ 9 SuTTL
d = kc:f-l-l.'_i’) ==l :—.)

% = (0,1,2,3,4,5) mod 6 resnectively. Thus

' -
Z [&_g_zf} sred) (iank%_&a.‘ﬁj%)

| ¥ 36 (12)
L .




[%—t-c—w-ﬂ S (R, )
. |

(14)

(15)

The impomant point is that the subsidiary conditions have to be
l=posed wherever they are annlicable, In these @ses, ve Tirst
# all values In the sum and subtract those which are forbldden
)y the subsidiary conditions. _
We find the following expressions for M({ %,, k,) in




62

Ome Tinds
= - bi—%
i (%, ko) (1+%) + E_ z ]
2y = ko
Z [a.,,;_lﬁ,]
.-f-.-
Lra_',_ 3
oy k-2t -3k
i i<t
4,.',}"1;, 3
b =
= (h+ k) 4+ Ri=d g0 BRicad =3
-q.
(=
'E'-]l J{l.::!lr J'?ql cfuen "_".-;?-
=70
—+ 3*_.G RSN RS o ) (16)
-+ _r_vl_" ‘:E?~:-3 ﬂ'z) i
™ (&, R 2 () o) + 2B =L)
2, = 3k, A\
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> e e
-L-;-a_,"’& 2

5 3 P
e s (%'11-'9—:.' (R ig'ﬁz#Ec:.Fel-y'z.L})

3 LF% ey ‘gi;.-
) e il B ety ('B.z'i‘ll%ll"r‘ 29 Ry +l+5j
Lt
Lo odd &,
(17)
™M (kR
i ) - Cr+ ke ) + Z(E"—_L)
_F'E'h_a.'_i;.'
S [T—l
‘-"'i"}l"i"" EE‘-Q
Zaliy s
. |
2
4-:'*13;1"3%_4'5 Eﬁll
= A R, CRye2)
=
gy -Q(EL;‘) o Ch, -2k, +1)
3 R '
b A Y e ks e
L% ¥

+1L1-§

-gl:] T SUE VL 'E 2 ?’ 2_
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3
+ (R sy {(E’_r_ﬂ_) + il [51—1)1.,. 37 (B,-2)
42
+ 4-5 %

Lo od 4 En,?;'}:ﬂ
3 o=
- I S {(quj + lo CK-2) 4+ 30(k=-2)

—\-11-|-%

Lorv eden K =2

| [ke=a1D i(li-l')3+ I (e-2) iL+_ = L A SR

i + 45 §
-pmr od. d. K S :
(18)
k= Ra-1 — Ft'_a]
3 )
Fq_ (&11%'}.‘)

e F‘:’]

L4y = Et.;_

- e

3

2 g Bol —k =4 =P

Lv2q+ 3k +3 <k,



d o
= Gk o REY el csaikg s
P
. Er {for evem e, =2
= ¥
z
— {{\’&1"&2\)-1% JI‘.E,-. amld.'[‘%l—‘ez:_-} 33
> ; 5
=1 [;_&,— ll&-:_)l -f—nf E-'IJETH.':;'%I" f?lj = >
= -

S Ry = PR 2k )

S b
Al g {(ﬁz—lj + lo (ky-2) & 30(k;-2)
48

+ E..L|- E -’.:-:'w 2ueT ﬁ’-_-._ .2

-

3
+ L (R )&@1_1) S l151""‘31+ 39 (Ra-2)
TR

+-—+5} fov cad B, =3

I 7 S
— = K U‘:—-l) + to (k-2) ¢+ 30 (k-2)
4%

-+ 11+§ -f:cw Blty K =9

= L (ke § (e e 0 Cemai® s a9 060

rasl .
& 1oy odd k=3

(1)




G TS

! = "*%1 &.ql
2k, < 2k, < 3%, : oot Z ‘}—H]

=z
L4+ = an

[ = _lé'
++3+1E
t—-t.-_'l -3k
L+&+§+1 "-E?

2=
%-‘: Loy sl d R 23

I
¥
1

xe
P
u
.i..

2
+ R fe
4

L B, k)
%( ) __% fov eda(Ri-hy) 23
.-4_

z
— ﬁf:i:_j {:5.. ELer (_E‘I--EL) = 2
=N

=t Ci ks Ll;ﬁl__lflz-a-i)

EvUey ‘EH =

)
_

=, i

R s R e el S Rl s e
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Bge (16) is a difference equation and ean be solved
for each modulus 6 of ‘E?q « However, Eg.(16) itself is

isuffietent to determine M (&, %)

(&< %2) stralghtavay.
N .

» Yultipiiclty Structure !‘-Im!m'l.

Kostant's formula Eq.(5) can now be used to find the

mnltiplieity strueture ¥Nm Y, since M can be wa}uataﬁ using
our formulae 16-~20 , The naxt probles is then of the eyl group
Which is of order twelve. Great simplielty is achieoved by first

getting =m' to be dowinant as the multiplicity of the other weizhts

gan be esslily known from this,

This makes only a Tew refleetions
B0 contribute to Tq.(5),

as the other elements of the Weyl sroun
gke the argument of " necative,

This we shall see as follows.
s A g o ——
fonsider the argument of H’ @ H' - 2(;n + ﬁu) « Bince M is the

Bater of ways of welight m' ( =m+ %, By * §2 8, can be
Xpreased as

=
vl == o R > a, Ge & S (m+Rg)
L= (m)
EE} o {-‘?'r_-r.l‘_':'j
=
st SSaGonmmgyl b SR 2 S
L=
s
— — Eﬂ — ‘E"“-.; P-t -+ %-1 1?'}1 .
S &
= (&'f 3 &ﬂ..

(22)
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5
('TV'LI+E:.-.) — S8 (iRt = ’GR{ '[3-',_,.?12_5(31

= e
M
R

7 S g5
@ can there ore exnress 7  in the (f?t. ,Ea_,; ) notation for

Il the twelve clements of the Weyl groun. We have sarlier seen
;"_ the Weyl group consists of all six permsutations of the compo=
of a wolght gnd all six permutstions of the components of

e welght with a totsl change in sign. Ve denote these elements

"192® “130 Sp1at Sajor Somyr Sagy AN Fpoas Fiage B0
':: 3312; 3.321 respectively and 55 in Fge.(5) 1s +1 de-

g on ke whether the permutation is even or odd., In the

liieS 5
Ry ,ﬁ',«_) notation, Bg. (5) becomes

WWny = -ﬁ(m:;-n'+m1-lg| nl-m;)

DR M -1
-¥ (sg-njempomy -4, m,mnf-a)
+ M (m:;-ml'+mg-u1-9,lg-m£-4)

i mat e s Y -

N (mﬂ'-m;.-l-na-lltlﬂ,nq-n;-E)

L=
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I T R
-E(m:;-ll{-!r!g-ﬂi"i Jt"nliheﬂ

-i(m:;_.l-hm_q-ng-ﬁ -(n;.-l-n‘i-gﬂ

v E(m.;-m£+u2-ns-4 -(n;+n53*-1))

* F(na'-n;«t-ul-na-l ,-(m;_l-ugi-ﬂ})

—_ﬁ(m::.niq*ml-nﬂ,-(ﬂ:{ua*l]). (22)

_ Sunpose now m' 1is dominant. Then both m and m*
jatisfy conditions (a) and (b) of See. TT, 1i.e.,

= m m,;, m1+n;+n:;=n,

-
i

] L]
fhzly 28 3 | +ta, ¢m, = 0,
Z
W4 0, m, <q0, m, < 0O,

: 13 then essy to see that

ﬂanm{-G{u
la-l;-ﬁdfﬂ
E::‘ﬂ;ltms-lziﬂc’:ﬂ (24)
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and since M (%.,R.)=0c when &k or %k <9 _ 1t follows

that only five terms from Eq.(27?) are non-vanishing when m' 1is
‘dominant . Thus Eq.(?2) becomes

W@y = W (mg -y my -

"1"‘“’1')
SH (mpemtmom,, m o)
VR (myemy e myemg ety (o syt D)
+¥ (mgem'jem omy=1,=(af+ms+2)

- M (ms'-ml-rml-n?_.-(m;_i-mafn) (25)

Equation (25) along with Egs. (16)=(20) give M'(m') -for any
dominant welght m'. The multiplicity of any other weight can be.
found using the Weyl refleetions. Tn Zas. (16)-(10), the inter=
Wals for {11 and &, depend sensitively on the coefficients of
the a's 1in the diophentine emmations (7). These coefficients

ire entries of the Cartan mgtr:l::- and thus are characteristiec

pf the group in guestion.

Externel Fultivlleity Structure.

It i3 well-known from the work of Bindenharnm that, if
MA) and DWA') aretwo IR's of a group L with A and A
s their highest welghts respectively, amd 1f D' dominates'®’ b,

fee nn_uan;llx Se




the nroduet D' x D contains TR's for which ( r'\.,f + m)
are highest welghts, vhere m stands for all welghts contained
'_ Pe The multiplicity of the renresentation {;"f + m) in the

Peduetion of D' x D 1s the same a3 the internal multiplicity of
the welght m 1in the representation D, The conditions for oY

o dominate D for G(9) arel) 'hi? 2N + 3, 7‘p N2
re (31,7\2) s (31,).2) are the components of A and A in

i@ Tamiliar twe componant notation. More explietly, Biedenharn's

orem can be stated in terms of characters:?®

DxD (A )
e ($) = Z’Ym paa R

(26)

assumption that D' dominates D 1s needed to make (A +1)
8atisfy the conditions for it to be dominant sc that it can be
@ highest weight of some representation in the reduction.

The important point is that the representation with

-

(/A + m) as highest weight eccurs Y g times vhere 7 . 18

¢ internal multiplieity of m In D(A ). @ ©an be frmedis-
computed for any m in D(/\ ) using our results in See, IV,
hms knowing ¥™(m') and equation (5) the Clebsch-Gordan reduetion

1 rroduct of two (IR'3) can be immediately written down,

Appendix 4,

7




Ve give a few examples of multiplicities of some

eights using the resultq obtained by us,
| Consider tha n7k1,ﬂ], dafined in tha convantional
:..1,).2) notation, vhere the highest welght (N,A) 1is given

!1 times cne fundamental welght and hp times the nthar. The

gonnection with the three component form is given by

x Pl g
=%
e il
“e calculate the internal multiplicity of the dominant
eight (0,0). From Eq.(25), we find that
w19 (0,00 = ¥ (2,1) «F (0,1) - F (2,0

fow using Fgs. (16-20), wo find that

w (E,I) = 3‘ (0’1) = 1' F ( 'n} = 1-

i 39 (5.0) = 1.

Similarly, for the internal mmnltiplicity of the dominant
(0,0) 1r the representation D %(D,1), we get

w91 (0.0) =W (2,9 =T (2,2 - F (2,0

= Pejul = 2,




- Let us now consider the direct product Dl‘;(n,l} X
#5%. It can be sesn that DI™7(2,7) dominates 01%(90,1).

ous Mlma of DH{G,D are

oy 3, | _“'_n‘ {1’01 ’ {-1'1} » ( ﬁ'l""lj

: : ("Ell}l {11"1)! {-l,ﬂ)
TR

n's Theorem, Eq.(m), we szo that

» P

6,0) <+ D (1,3)

)+ 02P0,m  + %8a g

D].ﬁf!?

‘noted that the occurance of (2,2)

etion 1s orecisely due to the anpeance
e In Blf(n,l).



CHAPTER V.

QENERAT [HC FUNCTIONS OF CLASSICAL GROUPS AND EVALUATION

1 PARTYITION FUNCTIONS

ABSTRACT

The generating functions of classieal grouprs
are used to set up recursion relations for their

\ partition functions. These are then used to find
[ the internal mmltiplicity structure of the velghts
- using Fostant's formula.
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ORNE3 \TING FUNCTIOES OF CLASSICAL GROUPS ARND EVALUATION OF

PARTITIOR FUNCTIONS®

The Clebsch-Gordan (C.G.) programme of classical groups

suffers from two major difficulties. Unlike the rotation group

~ three dimensions for which the C,G. programme is well known,

1
¥ i !

other classical groups do not possesz the properties of
simple reducibility and the equivalence of an irreducible repre-
" ation (T.R.) and its conjugate. Here, we mean by the lack

of simple reducibility, the multiple occurrance of an I.R. in the
product of two T.R's,

This multipliecity 1s called the external
multiplicity’)

» However, many relations have been worked uutm ’3),
iich relate this external multiplieity to the multiple occurrance
of a given weight in an T.R., a feature not shared by the T.R's

of 0(3), is called the internal multiplieity structure.

7

' T.5.Santhanam, communicated to J.Math. Phys.

) The terminology is due to - A.J.Maecfarlane, L.0'Raifeartaigh
* and P,S5.Reoy J.Math.Phys. 8, 526 (1967).

?) L.C.Biedenharn, Phys. Letts. 2, 25¢ (1963).

) C E.Bai:ldm ;:16.4L.C.Budanharn, J.Math.Phys. §, 1730 (1964).
‘Bee Arp x 4.

leRacah, Lectures on group theoretical concepts and methods
in Elementary Particle Physics, ed.F.Gursey (Corden and
Breach Science Publishers, Few York, 1964)
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.

, the internal multiplicity ntmctura can be
for instance, the reeursion method of
X !ll wﬂﬂu, EKostant's formulz is the
m'ua the partition funetion
te _11 linear combinaticn of posi-
"ﬁru integral linear combination
The: mnim functions have been known so

g
nl three mﬂ}.

m:, we nt up recursion relations for the
5y which are then used in cenjunction with
a to compute the internal multiplicities. OF
caloulztion gets more and more involved as one goes
£ :. However, the method is precise.

this chapter, we work out the gemerating functions

£ s Cy 3D, and G,. %w We also obtaln recursion re-
for the internal multiplicity.

jon, Lie Algebras, p.261 (Interscierce Publishars 1962).
Iy Lie ﬂgﬂb’ﬂﬂ, loe cit. p.ﬁ'!?'-
J.Math.Phys, 4, 569 (1963), "




i

In section 2, the general discussion of Hostant's

formula is given. We discuss the cases of A, ~SU( L + 1),

B, ~ o2l +1), ¢, ~ (5pg g )9 Dp~ O(2L) ama g,
in sections (2)-(7). The discussion ineludes the Weyl group,

‘the structure of positive and primitive (simple) roots and the

Diophantine equations. FExplicit formulae are obtained and possi-

‘ble recursion relations for the partition functions are given.

In Sec.(B), the connection between internal and external multipli-

_!tr structures is discussed. In Sec.(®), the conclusions are

‘glven. Many of the nroperties of the classical groups {nt;{‘uctnrl
of positive and prmitive roots and so on) are centained inm many
*Se We have taken them from the papers of E:mkin?).

The inner multipliecity M" (z') of a welght m' belong-

ing to the irreducible representation D(m) of highest welght m
-.f.- given by Kestant's formul '“_ which 1ig

["1 {m} = Z (5 P [S{*ﬂ-ﬁ-rﬂﬂ) {-'m-i-FZﬂ

0 , (2.1)
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Where W 1s the Weyl group and

R, 18 half the s:m of posi~
tive roots

55 =+ 1 neccording as whether the reflsction is

even or odd respectively. P(M) 1s the partition function for

This is the number of ways the weight M ecan
be written as a sum over all the noszitive roots

T
M= 2 esan
t=4

the welght M,

(2.2)

with different non-negative integers . e On the other hand,

Antoine and Epeiserﬂj have shown that the vector

5 |:"n-|+ E,_.,-) - {""‘*I-P En.)

€an be expressed for 2 fixed 5 € W uniquely in terms of the
primitive roots as

L
S (m+Ro) —(m +R.) = Ez_ *ep,

LI-'=|

(2.2)
£ baing the rank of the group. From (2.2) and (2.7), it 1s
€lear that P(M) 13 the number of ways we can write

L T
z 1?-"‘-{[54, = Z a}« ch.._

i g

T
(2.4)
2 20 , % Z0O

? J.P.Antoine and D.3peiser, J.Hutﬁ.Phr:.,ﬂ,.lEEﬁ and 15680 (1864). ..




7

_E_Eor-llven ’EH e It can be shown that [ [4’-4,--“-, {”-1&) is the
_ 8) :
multiplicity M( 7 ) of a2 vector v of % ‘where the '&

is relsted to the character by Wevl's formula

e ¥ (m+ Ra)
2% GEN = =
= (2.5)
A= T (RE)
74 (o Ry)
- Z8/= 1s the alternating elementary sum
)_({_m-t-ﬁ-m) = Z SS e;;f; [SEW+RD)' El .
: SeEly - (2.86)

where ¥ are the coordinates of the toroid (the group parameters).
(%1) can be written as

S 5
. ] S & = £
M (' ) = Z 5‘5 B4 ( el 4 E)
Sel
: —_ S %.5)
If we can caleulate the partition function R R g

hen #'(m') can be computed in i prineiple. In the following
ow sections, we shall exnlieitly ecalculata ™ f'fl‘ Sl 'E-.%)

or various classical grouns.
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A, ( ~ sl +21))

£
The roots of this alpebra are given by €. — Eé{» ]

i3] = 1,000y (€ +1). The €. form an orthogonal “asis in
‘L ¢+ 1) dimensional space in which the roots and welghts are
ned, There are £ ( £ + 1) roots. The L L (L +1) posi-

m‘.ﬁ) roots in this case are gi = 2. E'L'q.-; 5 i= 1'11-- En -

e (3.1)

= e )
pr 3

f Ol | 1Br. O]l @ o o

o o |11 ot ©

D 0 olo 1 oy R o

1, 0 o0 o|e o o|o 1 o

'C 5 0 0 ©/0 O 6|0 O a
"U}L: I - . . E ] o # .
‘i—; & 1.-

i 0 0 olo o ol ekE 1

Q0 10& 1 o o {




i
It can easily be sesn that only for the ease of L= 2y the

matrix € 1is a non-singular square matrix so that there is a

unique solution i.a, M( %,) = 1. However, in general C 1s a
rectangnler matrix and so given the vector K and the materix C,

tha nunber of a's 1s trivially Infinite and it 1s only because
¥e have the restriction that the elements of the matrix C are

b alel

i-negative integers the very nguestion of the mmber of solutions
nmber of a's, the compnents of the vector a are again non-
"ntivu integers) makes a meaning after an') « We recognise,
that the number of solutionsof Eq.(2.4) 1s given by the coefficient
y Ry Ry '
- g e Xy of the generating funections. To solve
the Bioshantine equations (2.1), (actually we mean finding the

number of solutions for given * amnd C) we now use the method

of generating functions, Let F (=(,... - ,%xz) be the generat-

ir g funetlon defined by

4 fkey)
. - =
|
J §-E- {1'.!“_' :L'E\) = G Sop Cp g
L= A )

(2.7)

‘T am grateful to Professor Ramakrishnan for fopussing my attention
to this genersl oroblem. There is a discussion about sueh a matrix
équation in the book on 'Linear Differential Operators' by Cornelus,
Lanczas, D.Van Nostrand Company Limited (London) (1261), p.l15.

' Ty the general problem of finding the number of solutions

3 to remain o although the generating fanction method we
developed in prlr._mipln gives a solution to this problem,



‘are chosen arbitrary parameters with modulus less

== . %) is now given by the coefficient of

e (,-----,=2), ‘This ean be checked by

£_-E_QI'I_, -, %g) in pover series. G5ince the
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go that

'D E ﬁr‘l""r:l_‘i'"' 4 T{_I E’ m'-?"‘[ t} ‘E"“)

. Define a new set of variables

e e U e e

i J AR 2 S e S,
(3.6)
then
™M Ok Ry
min (R, Re) By a oy

M
{2
e

(2.7

9.(%.7) 15 exactly the recursion relation we want since it faci-
tates the computation of the partition function for any
{ £ arbitrary) in terms of the simple partition function
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- s ST i (%u%‘i‘.j {3.9}

which has been obtalned oar].hrg}. The welght spsece is agzaln

X1
E T —== 7,
4:.::‘}

ng Weyl's theorems, it can be proved that the components are
Integer)/ ( L+ 1). The Weyl group in this ease persute the com=-
oments of m and is of order ( L + 1) ! The dominant welghts

£
2 Ty e 4 L {E-‘)




These properties of the du_ninant. welght will be used in picking
up the nom-vanishing contribution to M(m ).

4. Bo(~0 )e

W

The roots of this algebra are :t(e{-_ -_EE.};)'J—'[:-_E.L et

2 4% of them. The £~ positive roots may be cbtained

s €. 24 4 €.+ €5 amd €L (<4)e The simple roots in

this case ghyse are given dy P, = e. (e  Po= %2 o
Equation (24) then takes the form

', = CL.)“ a_.ﬁ ,
Pl (U H .E,
,-‘-:*J E'ﬂ.
= (4.1)
: where C 1s the (1 xﬁ) dimensional rectangular matrix
H‘ —_— 4, =raa .E-L
AR jlo O - (&l e e @]
I ot ld 4 1 @)
1 g |- -4 3 o
] “{_ Af_,
: @
e 5
=) 1 L(241)
i w
= 1 1 2 1 i < 0
{ = 2 |1 2 2 i
g 2 |2 Z 2 2

(4.2)




The generating function in this case is

B8

o
£ < |
1 :i: (A e, B e i N = Gz esp CE:.')
£ (‘ — Xy Xy e T
: L=

(4.9)

It can be easily checked that unlike the case of A ¢ s there

B Bp_y
is no simple recursior relation between ?FE < and :‘Fﬂu{

veTy the tollowing very intereating relation csn be obtained,

Ao
£ :E:E - x'_}“":ii}
Gy auia, Sep = == T 7
| ( S
=g dz0o LS Y=Li-1 (4.4)

It is therefore clear that for large vslues of A  the
eursion relation Eq.(4.4) i3 not aimpla. For L = 2, Eg.(4.4)

L AS

A
. - (e 20))

Bl

(f- x13t:_‘)

(4.85)
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» that the recursion relation for ? is

2 . i I
_l"’\_ (‘h; ,Jgt:_j = E M l(_fﬂ.l_!_:‘l 511_11.) ;

(4.8)

Which is the relation obtained by Gruber and Zaccaria earliepri’’

a1,
The weight space 1s { dimensional and the ecomponents

ay be integers or half integers. The Weyl zroup in thls case

asists of all possible permutation of the components of m to-

ther with all possible changes of sign and i3 therefore of order
fﬁ.k L! « The dominant weights satisfy

M, Z My 2z ... o, 20

(4.7
The roots of this algebrs are X Lﬁgﬂ:&};)) + ae, 34;:5...1
11d be stressed that the factor 2 I1n the sscond elass of
pts is very important and mekes this algebra different from B 2 .

ere sre -/~ roots, The 2 positive roots are given by

! s £ < 4 = The simple roots in this
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Nt el SR g S L. Equ(2.9) 1s
then
.S a
£ = CJ# )
& = el (5.1)
=4 L%

S
where C 15 the L7 x L Qimensional rectangular matrix

B, (5.2)
i_!'ha generating function is of the same type of 5'& (=, ... x,)

tut the elements of C we different in view of Fq.(5.2)s Again




c
. £
in this ease, there 1s no simple recursion relation between ‘_‘{‘_JL

C-E.-I.
and §E4 « However, the following relation ecan be easily
verified,
A
L
Cy Tp (=, =)
:FF. (o, g} = y P & A
I 10 [ T A (R ¢
oy i ke v=tof

For the speclal case of £ = 2y the above relaticn reads as

s Az
TF- ) (=, 9"—1\} == 5'1 {111:&1‘)

b 2

—_—

Cy —:‘:;‘sz-\) (5.4)

180 that the relation (4.6) 1is derived with &, <— %k,

T by T Ok

_1 § 13 not surprising because of the known isomorphism between

!_'-:_ ~and B,

The weight space is again £ ~dimensional and the compo=
tents of the weight one integers. The Weyl group is the same as
#hat for B, and is of order 2 L' . This consists of all
he permutations of the components of the weight and all changes
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in sign. The dominant weight satisfies

™, 2= M Z . . My T0 (5.6)
6. D ( ~ 'D‘t"?-ﬂ) -
s )

The roots are glven by + feo=+ E.};\) e

and there sre 2 (L — 2) of them, The £ (L-1) positive roots

are then 8. + E:}; and ey —ey c<4y The simpie roots are
(51:_" - E.'___ql -_— EL JJ.:Z:J---E- &nﬂ P_E = E'E__I bt EE, Fq‘{gﬁqj
is then

L= s y £

Poim ne RGRTEY (6.1)

where C 1is the AlL-13 » L dimensional rectangulsr matrix

r—s 4, oo ELE-O)
s G114 R (=S
1 1 L=, = q |
1 1 o S I 1 2,
it g o 2 |2 2
it 1]1 1 1 lf f




QLN -

Ae Ap
vhere C denotes the matrix C with the eolumn

(04044 .. 041,1) missing. Tn this case also, there is the follow-
" ing recursion relstion :

Ag

'I:IE. '»{'E |EE JSSh 3—_&‘) E' = xf'_-lxﬁ'j

IE‘ [:_":h "".1ﬁ) = PR T =5 L-a H-r-n
¢ ; { (- TT_ J=‘1;)-§%l
b= r=lak

( | — _FY _TK‘ xL

A=y = Loy
(6.2)
Tor L= 2, the above relation gives
16, A
< 2
§ (zuxa= § ) Di-yea] = '
iz = 13
L1 . ol :{5 Ip_‘)

(6.4)

and so H(® ,%R.) =1 forall &, k. . This of course is a
result, For L = 2, this yields

& Ay

SATORORNERIN
(I — IIIE}> (E-E}




30 that
oo L 3 vy &33

— Z 5N : s B
M [;-%-'J %21&3> 2 [ M 2 l:,?l._,,l_'! gl:z_) ]‘313 ‘L}
L:D

(6.6)
The weight space is A dimensional. The components of the welight

mast be Integers of half-integers. The Weyl group in this case eon-
sists of all permutations of the components of the velght (corres-
ponding to the reflection permendicular to the roots es—es 3
and all changes of sign in vairs (corresponding to the roflection
perpendlieunlar to the roots €L + €4 4 and is of order 134 el

The condition for a weight to be dominant is

™ g T iw"lli

-1

The roots for this exceptional group are + (E’-d F-a}?),

sy 1,1 =1,2,7%% ©; = - (e,+22) o The gix positive roots

LEf_ el) ) (&’- 33},(152 _-E:‘J-) 5 <y g }-?'3 = ['E’+E1-}




The simple roots =are 3, = e, —€3 and 8= €, . Eqge(24)

then becomes

g (7.1)

where the (6 x 2) rectangular matrix € 1s

.-'u'-:'r.‘ i lb
S N el N B 13
) tleo 4y 233 (7.9)
.

= %cwt;nt}
The pessval function is then

and so one immediately sees the following relations
A,

(5, ¢ ] :
:g‘ ‘-':11 xXy) = T 1,7
¥ = i
= el
(R=FaCTeEE S -5, 2 Yewioe Toe 3)

E‘::.
= g f. A, , g {?.4)

= b B

r - . = 5
\.I—x,:';._-j_b_:l'n'—“‘i x:}
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It follows thurafuralm »11)
(= =
™ f_&u'&l}: ;» ™ ‘t‘_b_?_lh:‘ P
‘;!}:};L ﬁ.l_lhwih}—":ﬁ) {?.!}
The above sum has been exnlieitly ecarried out in ref.n) for
various inequalities of "Plu and %_. ., From (7.4) it also
follows that
__ G By , . _ :
R RS L DT Ohidoag; hussie 2)
<3
(7.6)

The welght space in this case 1s again three dimensional like
Ay with the comnonent of a weipght satisfying

The components of the welghts are integers. The Weyl group is of
order 12 and consists of the six permutations of () ym9m.,)
corresnonding to the reflection perpendicular to the roots
(€,-€2) , Cey-e3) (2,-¢3) and six permutations with a totsl

change in sign corresponding to the roots €, ., The dovinant
velght satisfies

10) B.Gruber and F.Zaccaria, to appear in Suppl. 11 Nuove Cimento.
11) D.Radhakrishnan and T.S.Santhanam, J.Math,Phys. 8, 2206 (1967).
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(7.7

B, Exte Multi it

In the ease of rotation grouns in three dimensions, an
T.R's 1s characterised by the eigenvalue }§ of the single
Casimir operator J° » which is intesral or half intezral, One
is then familiar with the C.0. series

l'&.—!r-a.llx

* D

5

N

/’
e —

e (8.1)
¥= kit

vhere DY demotes an TI.R. with the highest weight §. Ir ,>%.
(in vhieh case we shall say that the representation :D?‘ domi-
nates D% )y the right hand side of (B.1) ean be Interpreted

as those I.R's whose highest weights are obtalned by adding to the
highest weight of the dominat I.R. f.e. D' , all the weights

of the T.R, Dh (fron %, to -%,). This s the main con-
gtent of Biedenharn's thmmq) + The conditions for one I.R., to
dominate another I.R. have been worked nutn. The general 1dea

follows from the two equivalent formulae for the character




S YL g
X (&) = » M ew) exp LOE)
™' € Dm)

(B.2)

WL
vhere the G (E) 1s the character of an I.R. with the highest

welght = and E are the group parameters. The other is Veyl's

formula
e K (m+ FE:-..]
KA = — (2.7)
X (Ro)
where

ap——

SE

Supnose, we are interested in the product of I.R's n{AI} and

D(A) with /A, and /A, as their highest weights respectively.

% GNDCAE= Z dg  exp < [5 f_h.«Rﬂg:,]

[5 Emrg].

(8.4)




where ve have used Eg.(R.?) for (/[ .-’\1} and (8,2) for 76{-'"“)

Eq.(R.4) ean now be regrouped to be written as

% ﬁl- 1 i ] . E—';'. (Asm + Rs)
"X-‘L"'-x} o A 1.) — a S P Cm } £xp L .

s
e

—_—

:::-L‘P < [5 Ro, %__\.

(2.5)

vhere wve have used the n»roperty

S(P) + s(Q) = s(P+0) (R.8)

Eq.(2.5) can now be interpreted as follows. In the product
D Ay ) x D A, ) where D( A, ) dominates R{ A, )y only
these I.R'%s with the highest welight N, +m' occeur m' € D( N)

in the reduction. These I.R's occur with the multiplicity
A

M T (=) t.e. multiplicity of the weight m® in the T.R. with
highest weight /Ao ., The condition of dominance of one I.A.
over the other is needed to the make ( N, + m') dominant. These
have been more general formulae of C.,7acah and n.suuer“:‘ which
do not irvolve the condition that one T.R. dominates the other.

For our purnose, Eq.(8,5) 1s quite sufficlent. Thus, we realize

that the external sultinlieity is very closely related to the in=-

ternal multiplieity structure,
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9. Conclusion,

We have constructed generating function for the various

classical groups. Ag 98y 9C; 3D0; and G, . These are

then used to set u» recursion rel-tiocns for the partition function
which enter ¥ostant's formula for the Ximmer multipliecity struce
ture. The essential idea of the whole analysis 1s the realization
that the number of solutions of the matrix emuation “<=Ca (for
given « amd (O ) where the matrix C 1is in general a
rectansular matrix with non-negative integer coefficients and the
components of the vectors &« and CL nru_ggnin non=negative

® 2
Integers 1s given by the coefficient of =, . . =, of the

o

generating function, In many cases the explieit x evalunation of
the number of solutions is not pessible and so we have set up re-
cursion relations. While in the case of A, , the recursion

relation 1s between the partition functions of A; , and Ao ;o

in the cases of B ¢

for thelr partition functions are among these and of i p e

» C, 9nd D, the recursion relations

For G6(2), there are two recursion relations one with A, and the

other with Bé. We have also discussed the connection between the

internal and external mulfiplinitr structures,



A, ~ suC L +1) 2

System of roots i (ei=ep) 3 i =T sie Lok
System of positive rootss (<. _c.), 1< §, 4,] = 1,... L+1
System of simple roots: (e *et-,,,"‘] 1 l,0ae L

F.LM o(e L+ 1):

= -1 )
System of roots : . 1'.1' = 1'.-- -E_.A
+ uhtfﬂS
System of positive roots: + e Ry & Lacnl
+ (€L + € J—I‘]
System of simple rootss By — B24g i1y = 14eee L1
and EE

ciw sp(2L) &

SN Sy
System of roots: 158 ® 1sies L
+ Cect ey)
System of positive rootss 2e.  { T sl
Ces+ ey))

System of simple roots: Cr—e ‘% 1) & 2sens.l=




B | X
¢ o(24 )1

- £ - 1
System of roots: + f.E-_’-‘-E}\) s Ky

System of positive rnuts;(eL:=E§7

System of simple roots:y <. — 2.,
eE.n -+ ‘Et
<xceptional Gpoup G(2):

+: 2
System of rootss: ¥

System of positive rootss .

System of simple roots: (e,-e1)

1’3 = 1'.--‘2’

4 1,: = 1..'.";]"

g 1 = 1‘1--- 2=l

e -2y 1y 3 = 1,722

The €.~ are unit veetors in £ or L4+ 1 dimensional

vector space. We shall not bother to write the table for the

Other exceptional groups as we have not worked the inner malti-

plicity structure of these groups. The system of roots of those
groups can be found in Dynkin's articls.
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APPERDIX 3

CONCEPTS OF & SIMPLE ROOT WEIGHTS, DOMINANT WEIGHTS

ARD HIGHEST WRIGHT

The Standard Fopm of a Semi-simnle Lie Alpebra.

Let 3 be a Lie algebra of 4= ension Y « Consider
the eigen value problem of the operator Al X ) defined by
Al X ) = [-A, X—J = fX o« If the secular equation of the overator
has Y distinet roots, then we have Y linearly indenendent
eigen vectors which can be used as é&asil for the vector snace

underlying G . If, however, the secular squation has degenerate

rootsy, Y 1linearly independent vectors mav not exist. lencey a
coordinate system for G cannot be arrived at by the above rentioned,

method. Put for semi-simnle Lie zlgebras we have the following.

ZUCOREM (Cartan): For a semi-simple Lie algebra 3 1If we
choose A so that the secular equation of A(X ) has the maximum
number of distinect roots (which we can), the only legenerate root
1s £ =0 andir L 13 the mltivlicity of the root, there
exist corresnonding to this root, £ linearly independent eigen-
vectors any two of which commute.

The mmber L 1s called rank of % .,

4 Te%sSanthanam, 'Groun Theory and Unitary Symmetry®, MATSCISNCE
HEPOAT 61, The Institute of Mathematical Selences, Madras and
references guoted there,




We shall choose as basis the L linearly independent
eigenvectors (say) H, -- -, Hg ecorresnonding to the de-
generate root F =0 togather with the (v — L) linearly inde-

pendent eoigenvectors Fy9B3 esee.e.. corresnonding to the distinct

roots *'l 3' sscnengy

The commutational rel=tions for H,, Hp s
.'",EB' cans can be obtalined to be
e
| Hyy HJ =0 (1)
&"i' !-(] "o Esi ()

[Ed'ﬂﬂih = Vs Eﬂ+3 if («+8) 1s not a vanishing root, (2)

i
[E‘, B_, i = o Hye . (4)
The structure constants are then,

T T T ol+H

T
Cog =0 1If I O N

| [ﬁ, H[_l = 0 {.5)

[l. K..(] = o E. (8)

“urther,
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As A 1is an eigenvector of Et, xj m
“rom (8), (7) and (2), it follows that
i
o = A dti {H)

~he Concent of oot

The rorﬁ () is called a poot of the semi-gimple Lie
algebra 3 o+ Tt can be thought of as a vector in a L-dimmslr‘rnal
vector snace.

A root is said to be nositive if its first non-vanishing
component 1s positive (in an arbitrary basis). A root is called
gimple (sometimes the termi‘nolopy primitive or elementary is also
used in the literature) i1f 1t is a positive root and in addition
cannot be decomposed into the sum of two positive roots.

1200 (1): For a simple group of rank £ there exist

b slmple roots and they are all linesrly !ndenendent (we shall
call the set of simple roots the wesystem).

(2) Any non-simple root can be exnressed as a linear combi-

nation of the simple roots z i

1 ‘1 vhere H'l‘. are gll
of £ w

nositive or gll negative integers.
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() If « 1s a root, then -« 1is also a root for any
simple groun,

(4) 17 o and 3 are two roots then

=
;{:E_:BT)' = {integer

and f = a%ju--t is also a root. Here («B) denotes thelr sealar
product, If < 1s the angle betwser o and 8 , then from
Theorem (4) above follows that
a
cos § = - m n,

and

flere m and %= n are ‘ntegers., This would mean that the angle

¥ ecan assure only certain values (imnlying thereby some ltind
of a quantization of the angle). In partienlar, this 1is true for
the simple roots. The allowed angles are 90°, 120°, 138° and
180° and the ratio between their lengths become

o 1 if @ = 120°
2 o i1f P = 138°
3 1If 9= 18°.

I* 9= 90° x then the ratio of lengths is undebermined.




Classical Groups:=
The realization of A ) is the grou» of unitary, uni-

modular mastrices in the cownlex svace of ( £ + 1) dimensiong

sul £ +1). The realization of BJE. and D; are the real ortho-
gonzl grouns in (2{ #1) and 2¢ dimensions respectively,

The realiza*ion of Cp is the groun of unitary matrices in
complex 2 L dizensions satisfying the condition U. J U = J
vhere J 13 a non-singular antisyrmetric matrix. In other vrisg,
the realization of C; 1s the sympletic groun in complex =20
dimensions,.

It should be kent in mind that not all the roots are
simple. If the order of the group is ¥ (denoting the total num-
ber of elements) L of the elements commute among themselves
( L fola degeneracy). Out of the rost (Nef) elements, each

glves rise to a root vector. However, since both « and =« are

roots, the distinet roots are only B L in number, Out of

2
N -3l
these L 9 ¥e have seen, are simple. Therefore, ther are >

non-simple roots. The entire root diagram could be constructed

(the root disgram is two dimensional when Lzo for example),

The root disgrams for fo HP' C2 and ug are shown in the fig.




- Bo
¥ =10 N =14

In general the entire root dlagram is obtained in the following

VAY.

Classical Orouns.

the collection of e(e+1) diffeorences

{ (ee —"E&}qﬁ' ‘op=, £+ 4 of (E+1)
The dizension of the algebra

unit vectors ylelds all the roots,

is LE-#Jj-— 1 3
* ey + (e, +e,)

$= The roots are obtained Trom

. st

i}
E. L
L, % i

1
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The dimension of the algebra is Z(28+1)
C; 3= The collection +£2€., =+ (ecrey) ylelds the roots of
C'E‘. L;}:IJ..._.E_
D 3= The colleetion + (20 4 e ) £ =

¥lelds all the roots. There are 22¢2-1) of them and the dimen-
sicn of the algebra is £Car_1)

Lxceptional Groungi~ G, 3~ The collection + (e;—ey)

and £ (€. _aeyep) 4,5,k = 1,2,2 yields all the roots.

The order of the groun is 14.

Fq 3= The dlagram of B

4 vith 16 more vectors

1
2 (‘tE 1k €ty 54\) (Total 48 vectors and dimensaion

is B592).

Fg 3= The dlagram A_y the vectors & EE' and

Lo le % ti’;‘-"_i-':"rfa

Constitute the root diagram of Fge lere we take four
positive and four negative in the f#rst fraction. The totsal

nmber of vectors sre 72 and the dimension is 78,

g 8= The dlagram A, and the vectors + (TS: .. teg)
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“here thw we take four nositive and four nmegative signs.
“This constitutes the root diasram of Eoe The number of
vVectors is 196 and the dimension is 122,

Fg 3= The diagram D, and the vectors L (%€ .. +¢g)

with each sign occurring an even mmber of times forms the root
diagram of !:8. There are 740 vectors and the dimension of the
algebra is 248,

deprezentation of Lie Croun and Lie Alzebras

Let G be a Lie group. If to each element of G, we
can associate a linear operator R(g) of a certain n dimensional

vector space V -such that 4f By Bp = By € Gy then 'H(gl) H{g,&) =
(g, =and the assoclation g —5 R(g) 1is further continuous,

then R 1s a n-dimensional representation of G.

Let 3 be the Lie algebra. If to each element L of %

we can associate an onerator A([) acting on V such that

ME+ M) = AlE) + a(m)
ACCE). = C A(B)

2 ([xm])= [ac®), am )

then A 1is sald to be a n-dimensionsl representation of 3 -




THLOREM 13~ Let G be a Re group and 3 its Lie |

algebra. Then any representation of G 1s a representation of
% and vice versa.
THCCRRM 2; The commutation relation of the Lie slrebra
(hence that of the Lie group) is true for any renresentation. |
Two representation Alf.l;) and AQEE} are said to be equivalent,
if there exists a nonsingular operator U  such that

U a0 vl= alo
for any £ .

A representation { -—— A(E) 1s pedueible, if the
operators A(E) acting on the vector space vV leave a nroper
sub-gpace of V invariant,

If a representation A(f) is redueible, then, it ecounld
Ye brought, by equivalence, to the standard matrix form

A 0 =
B c

A representation which could not be brought @ to this form by

equivalence 1s called an irpeducible reprssentation,

A reprosentation £ -— A(E) 1is decompogable if the
operators A(E) leave fwo mutually orthogonal subspaces which
together span the whole space V ., If a representation A 1is
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decomposable then there is an equivalent renresentation in

P 0O
which A could be brought to the form o o

-
TGEOREM 33~ Every mpresentation of a compact Lie groun
(see chavalley 'Lie Groups' for definition) is finite dimensional

and is equivalent to a unitary representation.

Thus H(g) takes
- th‘ﬂ form

M) = exp 1 €% X

vhere ﬁ"s are real and x‘ i3 hermitian.

THEDREM 4:-

For a unitary group, 1f a representation is
reducible, then it 1s fully reducible to the form

Consider a n-dimensional matrix representation of a semi=-

simple Lie algedbra & . The representation is completely

specified by rematrices (r being the dimension of % ) nF
P=1.... * which satisfy the eguation

A
[Dr’ nr—] = “,; Dh
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where 11‘:":":r are the struecture constants of ‘3 e Let us exnress

the representation with respect to the standard Cartan form. Let
I r

f L]
B, 9 g ,!“,._._ E,, be the matrices in the representation

corresponding to the basis H, .- - . Hy 9 Be oo E, of 3§ .

Let w8 'L be the simultaneous eigenvector of the diagonsl matrieces

B, 5 -:: 8, so that

H;u .liu‘

Then the lecomnonents {-1,....1 ¢ ) can be thought of as the
conponents of a l-dimensional vector m which is called the
¥blight vector. Tt should be noticed that while the root vectors
characterize the infinitesimal Lie group, the weight vectors

c¢haracterize the representation.

IHEOREM 13 Hvery reprssentation has at least one weight
(seec.Rachfi's Princeton notes for nroof).

_LEOREM 23 A vector U of weight m which is a linear
combination of vector i of welghts m;, gm, = m for each
k 4 must vanish. (The corresponding theorem in matrices is that

the eigenvectors corresponding to two Aistinct eigenvalues of a
hermitian matrix are orthogonal).



~EDJIEM 33 There exists at most n 1linearly independent
velghts correspondins to a representation.

THEOREM 4; If W 1s a vector of weight m, then Ed
!s an eigenvector with weight (n + o).

ZASORE® B: If a representation is firreducible, then all -
the H, 's (ve dpop the primes for convenlience and these denote the
matrix representation) can be simultaneously diagonalized,

THEOAMM 63 If m is a weight and « 13 a root then

%’- =  integer

"nd me gy o i3 a weight. (Rote: There 1s pio theorem analogus

to that of the roots that if m and m, are welghts, then

2 (m,m
73-2;-'1"1 is an integer}

THECREM: The 2et of all welights is invariant unier the
Weyl group S of trans-formations gemerated by reoflections with
respect to the hyperplanes passing through the origin and perpen-
dicular to the rocts.

JETINITIONSY A weight 1s said to be positive, 1f its first
non-vanishing component (in an arbitrary basis) is positive. One
velght 1s said to be highsr than the other, {f their difference is
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Positive. Thus welghts are gguivalent if they are connected by
a transformation belonging to S.

A welght higher than all its squivalents is said to be
dopinant, A weight is called simple if it belongs to only one
elgenvectorsg The highest among the dominant welights is called
the highest welight,

I ECREMC An irreducible representation is uniguely
tharacterized by its highest welight which is simple.

THEOREM:; Two irreducible representation are egquivalent
if their highest weights are equal.

: TIEOREM; For a semi-simple Lie algebra of rank £ *
there are weights (called fundamental dominant welghts) such

that any domirant weight is a pon-pmegative integral linesr combi-

nation of them,

THEOREMz There are £ fundamental irreducible representa-

tions kl""" A, 5 vhich have the fundamental weights as their

highest weights. The dimension of the representation with highest
weight A 1is given by
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!.‘+ is the system of all positive roots.

LEMMAL Any welght m of the T.R. of the Lie group
G with highest weight /\ can be written in the form

m = A-F c, r()
o %

where the r(of) are the positive roots of G and the Cd. are

non-negative integers.

Proof, In any T.R, the highest welight state |A>
in the only state muth such that

Eq, |A> = 0 for all positive < .

Yence given any state ln> y ©ither m = /\ or else there is
at least one E-[ with positive <« such that

Be [m) = |mer> .

Similarly either |m + r(«))= ]h>, or else there is at least one
%3 with positive 3 such that

Rgﬂq.in\) = Eal'“' () > =[l+r{ct}+rlf:!}> "




$1.3 .

If we proceed in this way, the fact that all T.R's
are Tinite dimensional, implies that we eventually reach

Ber() +2(8) +eee + (7 )  =E e B E nd
such that

Eﬁ Ifl!-tl‘{“)l-rfﬂ}-l---.l-r(’f }> = 0

for all E‘ with positive 8 ., In this case, we have

Alm+rti}*rtﬂl"-ci+r{‘f}

end sinee any given r(T) can ocecur on the right C, times

CT = 0'119.'---

B = A ez C, rl.
.(ﬂf

This proves the lemma,
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APPENDIX 2,
TEE PROPERTIES OF SIMPLE ROOTS.

“e have seen that the simple roots play a very imnortant
role in the discussion of multiplieity structures, we surmarize
here some of the interesting properties of the simple roots.

We recall the definition of simple roots. For a group
of rank £ , there exists <L indenendent roots ygece Lp
(eonstituting a basis in £ -dimensional vector space) such that
any root P ecan be expressed as

£
PIZ%

of
1=1 - S |
vhere the coefficlents "1 are integers and either all "i = 0

or all N, € 0. The system of roots (fy9eeeel ¢ ) 1s called

the simple roots, (or primitive roots or elementary roots) and

ve denote it by T .. We can prove the rnllnuinzn :

(1) If B € wy « ¥ B, then « = B 15 not a root.
This follovs from the definition

(11) If «, B € w, and « # 8, then («,3) < 0.

1) N.Jacobson, Lie Algebra, Interscience Publishers 1962,
: Chapter IV, page 120, .
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(111) The set w constitutes s basis for a vector

apace in L ~dimensions. If F 1s any p=otive

P e 2 &

of
Ly <=

root then

where the % o« B3re nonenegative integers.

(tv) Ir F 195 a positive root and f #‘! then
there esk exists an o« € w. such that P - o 13 a

positive root,

DEFIRITION, If o = (1gees L p ) 1s a simple system

of roots, the matpix

a
A..'-}, a qt":l D
(g )

is called a Cartan pgtrix of the Lie alzebra, The diag-nal
entries of the matrix are A..‘i_ = 2 and off disponal

elemonts are negative because of condition (11).

I ‘-'$ 11' g the "1 and -rj are linearly indencndent s=o

that 1f 9;;}' is the angle betueen «; and «,

hence O A Ayl <4, Thie tonlies that efther both Aly and

i

Agl are sero or one 1s =1 while the other is =1, =7, or -2,
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The determinant of the Cartsn matrix is a non-zero multinle of

that {-fl,ﬂt:l]. Hence

det [ﬁ..'j;i ?E o . y

If B = Z %L‘ﬂﬁl is a root, then we Jefine the Lo vel

“he level 13 a poSitive integer and the nositive roots of level
one are just the «, € w . The gset of roots 13 determined by

the simnle svstem v and the Cartan matrix. In other words, the
sequences (‘h i, Ra, oo ‘E&‘) such that z feg O

are roots can be determined from the matrix [ALJ « e shall

Just give an exsmple. The Cartan matrix for 6, 1s mm

,

2 =1

-7 2

that 1is,




5 B

Since u(l - -t? is not a root, these ral tions would imply

that "1 string eontaining o, and «, string containing "1

_are, respectively

of

o o

oy %o + oy

“4

‘1"1"*?;"[1*”2*‘1*”2

n'. + .'Hl iz not a root since

2 (o )
+‘1'4L = -2+ 2+ 0

() 9%y)

¥hich means that the chain oy # o, must stop. On the otherhand,

ﬂ-tl + ooy -tg)_ .

=3 4+ 2= <1 < 0 theroby
"E"‘e

implying that

-{11--( ‘o, = o+ M, is a root.

Since

2al, + Do o of
j—p'_i'-ﬂq‘.‘;"ﬂ

(oyty)

this imnlica that the -fl-ehun must step at ‘1 + B"E' Thus the
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Only positive root of level there is dl + %, Since '?(utli-d.))

s not root, on'y positive hot of level four is of, + Pel,e On

the other hand 9:(1 + ﬁi? can be vepified o0 be a root since

2 [{anl + 20, -tl—l

( 9%y )

There are no rositive roots of higher levels. lience the =nots are,
Ty 2oy 2l ¢, & (el + ),

204 )y 2 (g ¢ ).

A simple induction on levels shows that any nositive root 0 ean

be written as

A = o, + o ¥ eee + o
L 1 1

-:1.1 €« in a such a way that every p-rtialyg sum

of + of

¥ see *+ o
h 1, -

m < k

e

is a root.
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There exlists unigue isomorphism betwsen two Lie algebras

1€ thelr Cartsn matrices are identieal.

A simple system w 1s ealled indecomposahle if it is
impoasible to partition w 1into non-vacuous non-overlanping sets

i

" sueh that Ay =0 rurevary-tiif'.d’i:v =

w and w

A Lie algeira is called simple if and only if the zssoclated simple
system « of roots is indecornosable.

LESMA, Let y (&)
’E, =1 'Ez

2 a

be the simple roots.
If the Weyl reflections corresponding to these simple

roots we denote by Bk and if any welght ¥ 1s such that
Sk W = W
then W 1is dominant, It is required to prove that

3!:”5 W implies

8 W< W for all o

of
8 ¥ = Ve el . o)
r(k)-l‘(k)
2T PRSI
B W < W




“ut r(e«) (positive root) is expressible in terms of r(Xk)
with integer (non-n-gative) coofficionts

Wer(el) = 0O

fio reflection corresponding to any positive root can take W

to anything higher . .- W 1is dominant.
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APPENDIX =,

Zostant's Formulg

The slmple proof we shall indiecate is due to Cartier and

to steinberg (independently) .
we flrst introduce the partition funétinn P(K) as the
rumber of ways of writing M as a sum ofimentitk positive roots.

ie€sy, P(H) is the mmber of solutions fhﬂ, 3’-;3 3 o £p )
ol A
of ;E; o = vhere the '&x are non-negotive
w0

integers and (el,fgees p) iz the set of mugsttwe positive

roots, From the definition, 1t follows that

P(0) = 1 (1)

the only solution being (04050200y0) and since every positive
root can be expressed in terms of simple roots with non-negative

integer coefficlients, wve have

P(M) =0 (2)
unless M = Z my 11 vhere the "l are the simple roots and

W, are non-negative integers. We consider the generating func-
tion

E: PcM) e ()
~

"See N.Jacobson, Lie Algebras, Interscienée Publishers 1962,
Chapter VIII, page 260.
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where Lidh i
e (M) = X, 2
'
oL, = A
F = € ( i,'r\) g 1t i3 clear that we have

vhegre

the identity
e L)
. * £

Z P(m) eCrm) = Z_F’im., g ) e
™
= T (i+;:x]+zcii“]+---‘)
* >0
= — 41
_ Tr (1 — ecx))
o« >0
(2
Then it follows that
= -
(mj? [T (i-ew=)) = 1

i-;' P(m) e
™

X >0

¥eyl's formula for character 7, can be written as

i~ Z 5 (23 e(m) =
4 _ se W

(4)




where S are the elements of the Weyl group =nd Ro = L
2

%X >0
"fﬂ is the inner multinlieity of the
-
welght M € D(A), Henee
Sl ™ b
Z‘T*‘"" e c=mM) | :_> a. e (-SR,)
M S € L
S 5 e [staaed]
S - R
Sg1d
(5)
#ultiplying both sides by € (R.) we get
oy ’ e r. - = . 7 H‘} - __-;ED
> il €le=11) § oz @ LR /
™1 SE Ly
o '.'__'l;_ o e [ R = S CA w4 F:'Dﬂ
= e =1
SE |4
(8)

It can however be proved that

Z ?E:il:f;gb'\}: _fr:l;,'.ao\}-ll. [I._-G(Ua(“}‘\

& 20

(7
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[-E::—' SE”\‘FRE}])

Multiplying both sides of Eq.(5) by

- | o .
A H s e '\255 S

I

Oy
n

v

k!

m

|

A

Ly
M
-
“

Comparing the coefficlient of € (-M) on both sides we get

Fostant's formula for the inner multiplieity

A < o &
"'-7; ;> é.
(ad = “ S

TRa— &5 Cl“"tq-fc':a_)]

P L S(A+Ra) —(M4ER,
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APPRERDEXY S,

EXTERML MULTIPLICITY

Exoressions for external or outer miltiplieity are
obtained by the repeated use of the two charactap formulae, one
whieh follows from the definition

x : () = Z T @ e

vhere the summation !s over all the weights contained in the T.Re

with highest weight /\ and the other is ¥eyl's formula
}C A Z 55 C:\cl:l L [-‘5 (A +Rs) J‘-IJ:"]
S 8 exp i fsm,c{:] (2

vhere the summation 1s over all the elements of the Weyl group
and R, 1s half the sum of positive roots.
The product of two characters is given now given by’
f _— A
Fal ¥
o6 ol E BN ) 2
A"

L]

*O.facah, ‘roup Theoretical C and Methods in Flementary
Particle

Physiecs, (ed. F.Cursey), Gordan and Breach, ¥,7., 1964,




EZ6

vhere 7 ( ;\”) is the external mmltiplieity of the I.R. with

highest waight A" . !

A A
Suppose we insert Eg.(1l) for X and Bg.(?) for

‘hen Eg.(3) reads as

Z 3 €xhb [_S {_""*4"?1:'}#'#'_) 2
s L b
SEl Z Tt &
y m & DcA')
> S, exp i [srRe, )
Sl
U [
— Ff‘n‘;’ ‘Z_‘ 55 Q:’:b L %5{&4—9::)‘?*” Jd’z
vy ! SEL.-;
z ES exbp L {EEn,#’)
SE L4
= = Al]‘
o Z 7 £n”) 7, &
A
(4)
N
The l.hese of Eq.(4) looks like the character x ro-
vidad A+ is a dowinant weight 1.e.

o
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;"\_I.m* = A

“ce(4) 1s just Biedenharn's Tormula, and the condition for /\+m '
to be dominant is that the I.R. D (A) should dominate the ,R.

DCA) o Thendf D(A) domimates over D CA') then add to
each welght of the T.R. D(A') and the T,R. with highest welight
A+’ 3 ' £ Dca') Just eceurs 7, + times where p
is the inner multiplicity of the weight ~' 1n the 1.3, D(A),
The conditions for DCA) to doninate DCA') have been worked
out for all classical gr:mps'.

Suprose in Fq.(4), ve use Veyl's formula for x" also

then we get

Z +_, Z 5‘5 axp & [S (n+ﬂu3+v~n'Jc¥‘E

v " S €Ly
5’ ;{Au"} Z_- gS’ G:h:b L E':‘.i'(ﬂ”-l-ﬁn:'f#]
i e S/
T

(5)

*See for instance, X.7.Nacfarlane, L.O'iaifeartaigh, and P.3.0a0,
Jour. Math, Phys. B, 528 (1967).
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If we now insert Xostant's formula for 7 . in Eq.(5), we get

Z Z 55,, P [5 (A +RL) _(m'+eb}]

m' EDCA')  s'eyy

5 35 e T [Sc’h-ﬂ?uﬁ o 4’1

_ g = (A" .Z gg' eSchbiia [EI'T“H"'E“l%'j

Wy

which can now be rewritten as

Z- E_ (5‘5 55.,\} P !:5 (A'+saqj_cw‘+ﬂe..)}

' i
w & DA ) 5,s

exph 4L [5 [n+ﬂn"}+“"'"','-}:3}

= '_f_fn") S0 e ES’(A".._E:.‘;JQ#:]
Ef

(6)
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Multiplly both sides by x> —<.(A"4R.) and integrate

over C{: » then one gets using the orthogomality of the exnonentials

o i \" :
% Z (55 E'S’J P [ sin + Rs) -_.{"W'"+Eﬂ\}J

L')-_}

SC&I‘PEQ\}'E‘-'“’J A”*T'En

S!

o Tap = % |
r}( \A. ! ’ ! | L
= E - ) 5 Srd'+li'ﬁ'))ﬂf—f-ﬁ'u
N

(7
which after removing the summation over A’ on the r.h.s. reals

'\\- =

Ss — fjﬂ”+1‘?ﬂ]

= Z ng ‘? [dsr":“”ﬁ'-g-:)*ﬁn:’
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It /A 1s dominant, S (A"+Ro) ama 5 (n"¢Ra) =R,

[

are dominant if and only if S =T and hence one.gets,

“when A" 1s dominant whieh 1t should be

£ )
".‘L—FJ
D
ia

CA'3Ra) + SCA+Ra)

e i S (
# (A2 == L = s
s, 6 s” _.(h"+1.:a,‘]J

r

(9)
“q0(9) is Steinberg's formula for outer multiplicity. This is a

very usefal formula,
[¥ on the otherhand, one uses for all the characters in

fge(?) Weyl's formula then we get

In = \'u o : ':Th - : ] i i ‘#3
S, i) ex=p ¢ § S (arr)+s (A+rae|
§ 5 8 8
S,S €L
e ™
c‘-\_- _'z 'a."' I:'rﬁ' ‘j )
.- S Qe -
= i ~ (A7) - 5 S
A s S €Ll

{10)




'ultiplying both sides by ex 2

and integrating over < , wve zet

0 S (A v2r.), )

Ral + = (A +R.) A+2ZR
S, S €l

I = oy

— | \ ¥ |

2 7 (A") > \ ®°g* %5/

A 5: S E |4
O
s (A ER)+ SRs , N4ZR;
L
(11)
(4]
To remove the summation over /\ on the rJ.h.s. we set

-t}

{- f\” + Egﬂﬂj -

¥e have to solve for A in this

L= |

equation, Multiplying through-

out from the left by s” | we get

I

( A

e

+ R ) + sl S (A+2R,)

(12)



—
w
5 ’QELJ
0
:T_ "_".r‘ o < i h —
> s g - =
~ - = - SlAasrR)+ S (A+R) A+2R,
— F 2
5.5 €l

(12)
The product S 'S 13 ggain another element of LW  the
arguzent of 7 becomes
5” .,'_ ;+1E¢-) *—SHIEQ - Ra
— 5*‘ ( {._"I.'-f Ei.] —-Fea /h..'ncg_, ‘E” (¥.Y

Auwomme ol

i

and sinee /A 1is dominant S =T and thus Fg.(17) becomes
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—_ AR
7 (n )

i |

o ;‘ & I
— 2 g (A+Rs) +S (A +R.) Arap,

S E L]

(13)
I ]
" hen No= A+na

then 1t follows immediately that

= :-,,"-\,,__.q"' "_I_

J —_—

whieh is of course a known result,

Fq«(14) has been derived in
a slightly differeent fashion by A.U, Elymyk, Sowviet. Hath, Dokl.
Vol. 8, (1967), Wo0.6 p.15%71, )




EART I

SELV-COKRSIS TENT MODELS AND THE ORICIN OF
UNITARY SYMMETRY,




ORIGIN OF UNITARY

ABSTRACT

“e discuss the relation of the existence of
miltiplets of strongly interacting particles and
the possibtle unitary symmetry of their interactions.
¥e present here a dynamlecal principle that concerns
the one - particle propagators (two point functions)
but yielding the existance of a (unitary) symmstry
group for their trilinear interactions. We derive,
as a by-produet, electriec charge (and hypercharge)

conservation in the interaction of these nparticles.
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ORIGIH OF UNITARY SYMMETRY AND CHARGE CONSERVATION IN

STRONG INTERACTIONS®

tntrnﬂuggjgn;

One of the most remarkable features of elementary
narticles ls their multiplet structure. The simplest such
structure is the particle-antiparticle pairing with equal mass,
opin, 1life-time ete. but with opposite electrie charge, baryon
nunber (and hypercharge) ete. %e relate this regularity to the
TOP invariance of the theory. 1In this sense, we may say that
we understand the origin of particle-antiparticle symmetry,

Among the strongly interacting particles we find multi-
rlets of particles having the smme spin and, parity, but with
slightly unequal masses. It is conventional to identify sueh
a2 multiplet structure with the oxistence of an Internal symuetry
group, the multiolets constituting the various irreducible re-
presentations is now well established, This imnlies that the
P=py p-n and n-n forces are equal $o that the strong interaction
ls invariant under rotations in the isotopic spin space. The
slight difference between p=p and p=n forces 1s attributed
to the veak electromagnetic interaction (relative to the strong

‘E.H.G.Suﬂwrshan, L.0 'Raifeartaigh and T.S5.Santhanam, Phys.?sv.
136_B, 1092 (1964),




interaction strength) between the protons, although it 1s by

no means true that this is the only possible mechanism of viola-

-

tion of charge indenendence,

It 1s now well established that *here are regularities
in the particle (resonance) snectrum which go beyond charge
indevendence, in the sense that the multinlets ean be further
anim grouncd together to constitute supermultiplets with the same
spin, parity, baryon mumbor and comparable masses which constlinte
lrreduelble representations of the special unitary group in three
ﬂlmnnlinnslj. In this case, the departures from symmetry are
not yet well understocd. They are aseribed to a " small " part
of the strong interaction themselves.

A1l aléng, the symmetrr group wans piven to start with.
Particles and resonances were accommodated in the variouns irredue
cible renresentations of the symmetry group. The missing compo=-
nents were looked for as particles or resonances in various strong
interaction processes. The caleulations have been carrioed out
assuming the perturbations to be suall and therefore naglected.
fut as to vhich multinlets occur, or as to the identification of
particles with irreducible representations, the theory is silent.

N
"he Sakata wodel described the physieal particles p, n andhtn

waig ' (Eds) :
1) See, for examole, ''The fight-fold M.Cell-Mann snd Y.Ve'eran,
fods) Tev® g Y.Al.Benjaming Inc., Few York (1064),
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belong to the " fundamental representation™of U(2). fovevaer,
it did not yield the correct multinlicity structure %o the other
particles. The Oel!-¥Mann-Ye'eman version of SU(7) started with
the eight dimensional representztion of 5U(7) direetly, There
are at least two shurt-énaings to this noint of view; first, it
does not tell whichof the " smaller' representations actuslly
oceury second, one has to coin reasons why certain renresentations
40 not make their oresence. In the literature, such questions
have been ralsed and *o an extent n:nlninaﬁgi-

There is a different line of develonment which makes such
a commection more ﬁesirahldaj. 'n a dynamiecal scheme, vhen the
particles or resonances annear in the direct channel of a two
particle scattering nrocess as a resu:lt of the exchange of these
and other oarticles and resonances in the cross-channels, there
are certain gelf-consistency conditions imposed on the nunber of
particles and theéer counling strengthsf and the multinlets that

can.be exchanged to give an attractive force are not arbitrary.

f9) M,0ell-Mann, Physies 1, 63 (/964)

(?) See for an exhanstive diseussion E.CyG.5udarshan, paper
presented at the symnosium 'Symmetry in Partiele Physics"',
Chicago Meeting of the American Physieal Soclety, Novenber 1964,

Syracuse 'Iniversity prenrint 1206-37-07
NY0-2799-07,
E.C.G,“udarshan, Lecturss on 'Origin of Symmetries', ;
Matsclence Report 72, (Madras).
Also see, E,C.G,S%wiarshan, Symposia on Theoretical Physies
Zdited by Alladl Ramekrishnan, Plemms Press, (New Yonk) 1966.

HeFeCutkosky, Brandeis Lectures (1965),
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There is then the possibility of looking for the dynamical origin
of symmetries, starting from the existence of (mass-spinenarity

degenerate) multiplets of interactinz particles and requiring

sel f=consistency.

¥e might now ask ourselves the following guestion:
Suppose we 7o not assume the ézistencu of a symmetry groun g
priori, but we assert that ndt only are the masses and spins of the
various menbers of a multinlet egusl, but also the total sguarsd
transition matrix elements intoc members of other mufiplets.nrs
Then the propagators of cach nff;he narticles belonging to multinlet
are the same. DNoes this imply invariance of the interactions
between the particles under a suitable continuous symmetry rroun ?

"elshall see below *hat within a sultable dynamical
fremework, this guestion can be answered and the answer 1s " Yes® .
n view of the fundamental role played in this framework by the
postulated equality of the nropagators for menbers of a partiele
multiplet, we oropose to mwek elevate this postulate to the status
of a dynamical prineinle, to be ecalled the Smushkevich Princinle.
“e can formmlate it more orecisely as followss If the members of
a boson multiplet have the associated fields (,'{J‘( x )y Smushkevich

Princinle asserts

Lo| T (f}l’“rx} ¢T P(H‘*))ID> |
(1)

=
= é\#'ﬂ ﬁ:"—" (x-3) ‘

i

"
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Similarly, if the membars of a fermion multinlet have the

associated fields ﬁ‘(t], then,

=S

ol (9o, FPep) fod = 87 of cmny)
(=)

feeause of the well-known relations eonneeting the snectral func-

tion of these *wo=-point Tunctions “ith the mass renormalization

b constant snd with the nphysiecal mass, it follows that the masses
and the selfemasses of the various members of a multinlet are
enquals A more unsefl and (possidly) eguivalent statement of the
Smushkevieh Prineiple 1s the followings:®

" Torologieally identlieal self=-enorgy diagrams should
give equal contributions to the nropagators of components fields
of a mmltiplet.

In discussing the conservation laws for strong interace
tions, we encounter two kinds of addiitive guantuw» numbers. Aan
addltive aquantum nunber of the first kind has the same value for
@ach menber of an irreducible multiplet} each muiltinlet is asso-
clated with a Tixed value for each of these quantum numbers. The
most relevant example is the baryon mumber. On the other hand,
an additive guantum nunber of the second kind, like electric charge
or hynercharge, has different values for different members of a
pultinlet, “e shall see below that we can derive the conserva=-

tion law Tor sdditive quantum numbers of the second kind within our

dynamical framework.
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Tt is to be noted that Tor both boson and f=-mion mul=-
tiplets, we may make an arbitrary unitary transformation of the
particles belonzing to a multinlet., This is tantamount to a re-
definition of the "partiecles™ constituting the mmitinlet. Under
such a transformation, the additive. guantum nunbers of the first
kind are maltered; and the Smushkeviéh equations are umaltered,
which is as 1t should be. FExnlicit use is made of this cirecum-
stance in the seamel.

In the following section, we illus'rate the general method
by considering the »= pion-nucleon systen. ﬁhra. 83 vell as in
the general ease, we shall assume a trilinear interaction involving
tvo multinlets with n members each, and one multiplet with n =1
members.s The plon-mucleon system corresnonds to the cholece n = 2

and we then deduce the invariance of the interaction under SUP-

In the following section we rgeneralize this proof to deduce in-
variance under S, The naper concludes with some comments on
the primitive entries in the eight fold way realization of the SUH
syumetry of strong interactions, and on the conmection of the
Smushkevich prineiple with the Smushkevich method in strong inter=-

action nﬁys!cdq).

4) T.,M.Smushkevich, Doklady Acad. Nauk $SSR, 102, 205 (1955).

S5ee V,E,Marshak and E,C.G.Sudarshan, Introduction to Element
Particle Physics (Intersclence Puhlf:hurs, Inc,y Wew Yori, 1



IT, CHARGE INDEPENDENCE OF STRONG IKTERACTICHSs-

Tn this section we vish to derive the charge indenendence

(50, invariance) of the plon-nurleon interaction (of the

2

Tukawa type) from the Smushkevich prineiple without assuming charge
conservation, Ve write the trilinear interaction in the rurmsj

(suppressing gamrma ma*rices)s

* (3)

where summatlon over the repeated indices v, A, 6 o« 1= impliedy
v  and 4 take on t*wo values and < takes on three values. 1o

generality ls lost by taking the nion field to be Hermitian.
fermitieéfty of the Hamiltonian (2)

i s e e

Fig.1l. Pion diﬂ‘r“!t

then requlres

(4)
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¥e can now introduce a great deal of simplification in the
formalism by considering the gquantities *5‘:,: ~ as a set of
WX mateices F . By Fg.(4), these matrices are Her-
mitian. Then, for the meson pronagators cowputed in perturbation
theory, the Smushkevieh princinle ylelds a series of relations of

the form:

sp (£75°) = A 8°F

(5a)
9 =
si(57e7 Ps ) A
(5b)
F 5 “
sp (& L D B o
c

eke

is before, the surmation over repeated indices 1s understood.
These terms correspond to the propagator contributions from the
diagrams indiecated in Filg.l. Similarly, by considering the

nucleon nronagators, we obtain relutions of the types

PR 8,T

rl

(6a)
L B .* P
§ 8T et (6
of 2 j:_"f gﬂ B '1’-
S = £ = B,T o

eke
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(vhere T 15 the =xn unit matrix), corresponding to the
propagator contributions from the diagram shown in Fig.Z.

Before embarking on the solution of these equations, we
=
note that in any case the 3  will be undetersined up to the
following two tyves of transformzations:

(1) A unitsry transformation

j:ﬂ-—; f-'“c = ‘U’{-“U‘-i

, (7)
in the gpace of the ”r .
(11) A real unitary (orthogonal) transformation
of P, B F_g.

in the space of the T° , Tn each case the corresponding

linear transformations on the boson and fermion flelds nreserve

Eqse (1) and (?), as discussed in the introduction, as well as
Egs. (5) and (6).

Our aim will be to combine this frecdom with the
Smushkevich equations (5) and (6) to deduce that the + ° are
pronortional to the isotoniec spin matrices T~

We begin by using the transformation (8) to make

Sp(f*) = sp(¥®*) =0
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and the transformation (7) to diagonalize the traceless
Vi S PN i
i
Fig.?. Nucleon dlagrams.
3

dermitian matrix § in the form

3 3

+ = T

L (2)

At this »oint we make our first use of the Smushkevich equation

S -3
(B) and the tracelessness of & to obtain

=1

fF = '&.T‘-P e}";rz

S [ -

F o+, = F

?

By suitable transformation of the kind (7), we ean retaln "q.(?),
but cast { in the form
a .
f = a°T
(10)
A further use of (8a), together with (®) and (10), gives

1 - = s A
F = 3.1'14*‘3"‘1.3 3’.*3’.}=§-L_
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‘ere the term containing the unit matrix T appears because
1
& ¥ 1s not necessarily traceless. W¥eo may now use Bq.(6) to

deduce that

50 that either %, or % must vanish. Use of the Smush-
kevich equation (5b) eliminates the possibly that ?.r ecan vanish,
so that we have

4

f‘iz Ll AT
(11)

If wve now consider the real orthogonal transform-tion

a. -
'I_Tl-—-é-'_.twLJ T » T —I'T-%.. ;:;'TTB
we Tinally obtain
o ol
¥ =3c%

as requiredj 1.e., the interaction Hamiltonian now assumes the

6)

familiar charge=indenendent form '3

+
et Sl o]
(12)

6) if.Frohlich, ¥.Hdeltler and ¥.Kemmer, Proc.Roy.Soc.(London)
166, 154 (19238)3j N.Kemmer, Proc.Cambridge Phil.Soc.
34, 784 (1938),




¥e have thus established the charge indenendence of the nion-
nucleon interaction’), It 1s immortant to mote that ve have
not assumed charge conservation in this derivation. We may
now deduce the conservation electric charge if it is defined as
a linear sum of the 'third' component of isotonie spin and half

the baryon mumber,

We might now ask whether the strange-particle interactions
are also charge-independent. Clearly, the cascade hyperon-nion
system behaves in just the same wvay. The micleon-kaon-Y-hyperon
syastem behaves in essentially the same vay, except that the tri-

plet of I flelds may not
I<hyperoon-nion system for
It turns out that for this

ling scheme satisfying the

be devised, vhich violates

kaon-I-hyneron system, the

directly, but it an be adanted to deduce charge indepenience

(see Section TIT below).

Ye are then led to

independence is the highest symnetry of strong interactions, only
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be taken Wermitian., But what about
which all indices take on three values ¢
system the method fails, since a coun=-

Smushkevich equations (5) and (6) ecan

charge indevendence, For the macleon-

preceding analysis does not apnly

suggest that in a theory where charge

7) M.Orisaru has shown that it is possible to derive charge in-
dependence for the NNww ecounling using the Smushkevich
prineinle, We thank Professor Grisaru for communicating this
result to us prior to publiecation.
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the nucleon-pion, cascade hyperon-pion, mucheon-kaon-I-hyperon
and cascade hyperon-kaon=I-hyperon trilinear couplings are funda-
mental, the other couplings being induced effects. it is inter=-
esting to note that the singlet & hyn-oron does not enter any
of these reactions, Of course, 1" charge indenendence is a
consequence of a larger symuetry groun, these restrrictions do not
apnlyy they sre renlaced by other conditions. ?

In concluding this section, wve point out that onee charge
independence is deduced, all the egquations (5) amd (8) are auto-
matically satisfied.

ITI, UNITARY SYMMETRY:

Congider the derivation of Sﬂn invariance for a syatem
consisting of two multiplets E and F containing M partieles,
each couplied trilineadly to a multiplet ¢ econtaining m'—4

particlea. Ve may write the effective interaction in the form

+ L
Hoy = Cl E.F, &% & (c‘:r) F.Eg <j:“‘

(12)

Cnce again, summation over repeated indices is implied, and we
o o
regard C.s as elements of matrices C ., YNote, however,

that the matrices C are in general not Hermitian, since. E

and F are distinct., If the interaction is invariant under SULy




it ecould be east in the form

H, = 53 x:h :L Ef+F¢ ’TL'“ + Fr+Ee ’#Tﬁj

ol
vhere p. are the (normalized) Hermitian generators of

ol

e Without loss of genmerality, we may normalize X by
the relation

SP Lxdxﬁ\j = 8#{5
(14)

*

n the case E = F | the Smushkevich equations satisfied by
the C~ may be written in the form

&m‘" of
Sp (c%eP) = A 6"P_n G 70
(15a)
i 1'M||:‘I
op (Tl ) n A2 8
(15b)
o S NS RN AT 5P
Sk (c c c c ¢ P =]
(15¢)

etc
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and
: € s BiErsiiiyiei T
(16a)
Cﬁaﬁcfﬁ-&_ B X
(16b)
C“‘C[":-C‘T Cﬁufbﬂrf': BBI .
i Etc 4 tl&)

is in the pion-nucleon case, we have the possibility of

making the transformations

Cuf-—-.\ ":.:d: UC“U#1
(17
C“___‘_} cnwz \jﬂr}}cp
i
(18)
where 17 and V'  are unitary (Mxm) and (m*-1) x(mi oy

dimensional matrices, respectively. Our aim is now to use Egse

tlﬁ}g (1511 (17) and (18) to show that
C”= GxT,
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‘e can make a transformation of the type (18) to make the traces
of all C” vanish, except (possibly) that of C' . The eouni-

ing matrices now take the form

(19)
b "
where T 1s the trace of C .

substituting (19) in (15a), and taking account of the

tracelessness of x| y ¥e get

A\

n: 2\ " t_.l.. u-tfb of 4
L Cﬂljd'm= " a.ﬁ' (':Lﬁ J] & +(—' ) s J

i !

8o that

gﬂd!*(aﬁf“.'\‘) by [‘GL_ (%)z é_e-c.l.] gﬁr&
Let ug define

(=20)

80 that

(20)
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and
g T
et o e (Bt L s 2
(71)
with
‘{“‘ = T ek
(22)

ol
The Y so defined satisfy Fqs. (15) and (16) by virtue of the

properties of X™. Wwe have, in partieular,

S (v* yP)= = 8°F

2 Yd: {""l"-jlr

From these equations we can show that

o (Cviy Ere). st

2
vhere & is a non-negative constant, Putting mcnaivaly‘
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o = =21 and of =0 = 2, ve got
T'ul_.'l..
E Sp ([\rim*] o Vﬁfﬂ
+=3 _
. n-4
. : [ a3 ,1,-] r = ‘r.-f
_ E EF@‘“:"" 08
=3 .
(o2)
On the other hand, from Egs. (15) and (16), we can deduce
2 ni-4 |
p=t (T 7 R E
Z Sla ([ci*.:'f] [’cilcﬂfl) - Z s b ([c R MR j)
4=3 =3 *

i 3
Since C enters only in the comsutators on the left-hand side

of this egquation, the multinle® of the unit matrix in (21) does

not contribute. We can thus rewrite the above equation in the form




o { Gien {%Bl} Z Sk ([\r’ﬁ*r"] Evli‘rdjﬁ)
¥=3

111- 1

g g sk= [ [“"’zf’ﬁ-—g |

T=3

(24)

‘ow, the traees occurring in Eqs. (2?) and (24) are all nesative

definite. lience, on comparing Eqs. (2?) and (24), we deduce that

T =0
Consequently, Eq.(?1) becomes
of
€ Sl yets
If we now use the real unitary transformation
-
CJP:‘ = A -r‘xr"_ [

ve may rewrite the interaction (12) in *he form

+
o o : —
H-.-v..'c = n :‘(r}; E'_ E 4

?Cm + f-c )
vhich is the required Sﬂn invariant form. We have thus deduced

unitary symmetry for trilinear ‘nteractions from the Srmshkeviech
prineiple.
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IV, DISCUSSION:

It is gratifying to see that gmong symmetry groups of
rank two, the dynamical framework considered above singles out
50, « However, there are two cireumstances that ought to be

cors iderod, First, none of the triplet representations of SU,

has been discovered exneriment:1ly to date! secondly, the 30q
symmetry is not exaet, hut 1s only anrroximate. The anparent
nonexistence of the triplets may be accounted for by assuming
that th&y are very heavy in masa, The eight-comronent multinlets
may be taken te be the psenloscalar meson octet comprising nions,
kaons, antlkaons, and the eta; or the corresponding vector-mesony
octat,

If wve choose a theory with only one fundamental trinlet
(end dkstk its distinet antinarticle triplet), the guanta of
these flelds will ﬁ#v- to have nonintesral values of baryon
nunber and electric charge. On the other hand, we may choose two
triplets, one with baryon nuber gzero and one with baryon mmber
one. BEven in this case (unless new eun-ur;ltinn‘laui are postu-
lated), the electric charge would have fractional values. These
entities would then obey an assoelated nroduction rule, and could

nét decay into ordinary particles (with integral electric charges).
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“Mile such entities hsve been dlscussed reeently in

R)

related contexts ', In the present framework there is a

Fig.%, I1llustrating the relation of Smushkevich's
method and the Swushkevieh nrineinle.

rripitive eight-fold multinlet which participates in the nrimle
tive triline r interaction. This entalls introducing a larger
number of primitive entities than in the formulation in whieh the

symmetry grour is nostulatedy but on the obher hand, the present
work derives the svrmetry from'first'! nrineinles. liote that one

of the trinlets may be a barvon tripnlet, and the other one a meson

trinlet together with a baryon octety for exasmple, in the SV, case

8) H.Cell=dann, Phys.Letters 8, 714 (1964)§ G.Zweig, CERX (une
published),




We conld eonsider the nicleon-kaon-Fshyperon counling,

¥e must also take into account the breaking of the unitary
symmetry. A elue to the pssible violation of the sycmetry in
the Smushkevieh framework 1s provided by the structure of the one-
particle propagator which is susceptible to snontaneous sy=uetry
viuiatlnn, either from mass differences or fro= the lack of SyE-
metry of the ground stntag}. But a guantitative:inx study of these

effects requires dynarical calculstions goingz beyond the alzebraie
teehniques used here,

The Smushkevich principle nsed here is rather intimately re-
lated to the Smushkevich methsd in strong interaction nhystcsln).

9) The question of broken symuetries 1s discusced by several authors
in the Proeceedings of the Seminar on Unified Theories of Eles~
mentary Particles, edited by D.Lurie and T Mukunda (University
of Rochester Pres, Rochester, 1963). scec chap VIl of this bResls

10) The extension of the Smushkevich method to invariance under
arbitrary groups has been diseunssed in C.,Pullemond, i.J.
Macfarlane and B.C.C.5udarshan, Phys. Rev,Letts. }ﬁ, 422 (19623)4

AeJolinefarlane, M.Mukunda and SeC.0eSudarshan, Phys.Rev, 123,
D 475, (1964)y J.Hath,Phys. 5, 576 (1964);

MeE.Mayer, Lectures on Strong and Electromsgnetic I nteractions

(Brandels University Press, Waltham, Massachusetts, 1963),
Volume 1,




Consider, for exa=ple, the amplitude for the (virtual) process

o e
e s Nr-.- ”,,,‘r'ﬂ‘ﬁ

ol
Srushkevieh eonations for the 1T inelude the statement

v?:'j‘h

but in the framework of trilinéar interactions (and use of nertur-

bation theory) we have the additional result that

e
M - M s> .
iv-I'l"}i".'r ot o -3 vk i’E--#-‘:L‘
s0 that
of T+ B
r1 =0,
= =it C.vt L. &

'he Smushkevich equation for the production process now colnelides
with Bq.(15b), as illustrated in Pig.?. Similar comzents annly

to the other propapstor diagrams we well,

We mus=t also discuss the relation of the present work
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¥ith a more limited apnlicatinnll] in vhich charge (and hyper-

charge) conservation is imposed at the start., In this case the
nunber of counling constants are smaller, but so are the number
of useful egquations, since most of the Smushkevieh eguations be-
come identities. The previous demonstrations of charge indepen=-
dence of plon-nuecleon system required =w the postulate of charge
conservation. Por the I-hyperon-plon systemy, for wvhich, as ren-
tioned above, the Smushkevich principle Tails to yield 3“2 in=
variance if used alcne, the Smushkevich prinelple 1s successful
if we use charge conservation as well., But with sufficiently
high multinlets, either method would faily and the reason is
simple. If charge conservation 1s imposed, for trilinear inter-

actions, the number of coupling constants increases as the second

11) J.J.Sakural, Phys.Rev, Lﬂtt*?ﬂiﬁﬂm 446 (1967), In Sakural's
demonstration of charge independence of the plon-nucleon
Yuknwa interaction, he makes use of the conservation of
electriec charge exolieitly. In his demonstration of 80U,

invariance, he imposes charge independence (and charge
conjugation invariance) for the isotopie multiplets. But
in such & Tramework, where the meson-cctet components,are
taken to be degenerate in masses, we cannot ve char
indepenience from 'first' principles using his method.

the present work on the interaction of two trinlets and an
octet, we do not imnose charge independencs, but derive

it as a conseguence of 50, invariance. See also the deri-

vation of charge indenendence for pion-nucleon interaction
by Frohlich, Aeitler and Kemmer, Ref.6.
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power of the multiplieity, but the mmber of useful Smushkevieh
equations inersase linearly with the mimber of components of the
multiplets, Without any such constralnts, the musber of coupling
constants inereases as the third powver of the mumber of components,
vhile the mmber of usefml Szushkevieh equations inerease as the
square. In view of this, it 1s curlous to observe that usually
only the lower-lying multiplets are in nractice realized.

Some other commehts are in order. With strong interactions
one may be skeptical abdut the relevance of using algebrale rela-
tions deduced by considering peturbation diagrams. However, it is
to be noted that ve do not use the perturbation-theoretic sstimates
for the actual amplitudes, but only their denendemce on the ‘internal
labels, What is even more to the point is that similar equations
are obtalned as self-consistency relations in the strong counling
limit. V¥e may think of the Smushkevich equations as reflecting
the self-consisténgy of the trilinear vertex and the orthogomality
and completeness of 'wave functiona' of members of a multiplet
considered as bound states of members of the other two multiplets,
In the same sirit, we may also thihk of the trilinear interactions
between the three m'ltinlets with " , ™M and "= 1 members as
1tselfl being caused by the direct coupling of four multiplets with

M members each, which leads to ™ -1 bound states. Perhaps
these congiderations are of relevance to the theory of strongly
interacting particles.
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CHAPTERER VII

BROKER SYMMETRY AND THE SMUSHEEVICH PRINC]PLR,

Ann attempt 1s made to incorporate broken
3U(2) symmetry of isotopic spin in a dy-
namiecal scheme based on the Smushkevich
"rinciple, It 1z found that a unigue solu-
tion to the problem is nossible only 1if
congervation of electrie charge is sssumed.
The posslblliity of extending *his maethod

to higher sy=metles is disenssed.
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CHAPIER yII.

-
SROKEN SYMHETRY AND THRE SMUSHREVICH PRINCIPLE

1, INTRODOCTION:

In the reeent past, there have been many nttmp‘bsl-lm

to derive the unitary sysretry of strongly interacting narticles
from purely dynamical considerations. One sueh and perhans the
most successful, attempt is to deduce the internal symmetPry group
from the ssecalled Smmshkevieh nrinciblnﬂ. This prinecinle is the
dynamical requerement that the 'clothed' propazators of a given szot
of particles are egual and ean be most conveniently exnressed as

a set of egustions (305 equations), by taking recourse to perturba-

tion theory. This method has been used to derive the 3U(n)

_—
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invariance of a trilinezr interaction between sets of narticles
of multinideity n, n and n” = 1 . The remarkable feature
of this derivation is that the conservation of electrie c¢h rge
i3 not assumed but is rather a consequence of the 505 eguations.
“ore recently, there have bean several attempts tc oxtend the
method to the case of trilinear interaction among veetor meucnsll}
and to the trilinear interacti-n among three sets of particles
of arbitrary m 1tip11¢1ties‘j.

An advantage of this method consists in the fact that the
.nternal sy wetry groun comes equivped with the representation of
the symmetry group.

However, it 1s well known that a realistie description of
atrong interactions is not noasible in '=rms of an exact symmetry,
ng all symuetries are badly broken., Tt is thus worthwhile to in-
vestigate the structure of a broken symmetry in the framework of
ueh dynamical schemes, The S0S equations are the most sulted
for this purpose. In fact, Sudarshan has discussed the possibility
of introducing the symnetry vﬁﬁatinn in this nannara].

It 13 the purpose of this paper to Investigate the solu=-
tion of the 505 esuations in the npresence of a symetry vidlation.
The lack-of symmetry can be realized through the presence of an
additional term in the 508 eouation for the nrovagator which trans-

forms as an irredueible representation of the groun,

#ﬁ::k"r"iﬂ"“'

11) R.Musto, L.C*'Raifeartaigh and P.5.Ra0, Syreause Univepsity
™ Dpapeink, phys v 15g 1588 (167)
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In section 2 we investigate the 505 eguations for the simnle
case of “roken S7(2) of {iso-spin , when the nucleon propapater
is a linear combination cf an invariant pdus a small term transforme
ing like the third component of isc-spin. This method of introduc-
ing symmetry violation 1s analogous to that emplioved in ¢a1culatinn51m]
involving spontaneous syo-etry breakdown in fleld theory, 5y in-
corporating the symmetry wilelsting violation In this manner, wve get
three sets of solutions, satisfying sll the 79035 equations (at least
up to the sixth order)j these are analyzed in 3ection 2. We are
unable to obtain a unique solution without using charge conservation.
if charge conservation is assomed, a ique solution follows whieh
1s used to obtain sum rules for the coupling constants. In the last
section we discuss the possibility of extending this method to
higher syometries.

2. SOLUTION OF THE S0S  Eou

We consider the most general trilinear interactlion among

the nucleons and pions, assuming only the baryon conservations

ol

ﬁ-
H = %, N N, "

wak

A=

of =-41,2,3 . (1)

19) R.arnovitt and 3.Deser, Phys, Rev. 128, ? 717 (1965).
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The meson fielAd 9{"' can be chosen to be real and the ¢'s
can be treated ss matrices in the (v, 5) space. The hermitielty |

of the flamiltonian imnlies

(2)

implying that g s are hermitian matrices.

Suprose the symwetry breaking manifests through the follow-
Ing extended Smushkevich prineinle

Zo| T (W) Ws))lo> = Sp oy l:'i"f C R TS f"fﬂr:}

and we also assume that the breaking in meson self energy is only

in the fourth order. The 503 equations take the form

sprg? gfi= i ps S,
(2)
Sp '&HE‘TEPE# =Ry 8T R 5,8

(4)
5 | wp
sk (87372 3% 475%)= 4,5 R 88,

(5)

S

for the meson self energles, and

3:-!% :_'rﬂ'I -;-‘l‘ﬂlrall

(8)



(D)

for the nucleon self encrgies, (We adopt su=mation cnnvagtiuﬁ for
reneated indices,) It i35 known that when the symnetry-breaking
terms in the above eguations {'&3 ’ ’&5, ™2 and "4 ) are absent,
the Intersction 1s 5&{?} invariant. ¥e assume here that, in
the second order, the symmnetry-breaking term is present only in the
nacleon self energy, M2 is arbitrary (nositive or negative
but none-gero) parancter signifring the extent of symmetry violation,
‘owever, the meson self energy may d evelon synnetry~violating terms
in higher xorders as indicated in Egs. (4) and (8). We eonid have
in fact postulated the 505 equations stralghtavay. The presence
of these terms are indead dietated by the self consistency of the
05 equations, as will be seen later.

Sinee ¢ 's are hermitian matrices, they may be expanded
In terms of a comnlete set of 2 x 2 matrices, o can choose this
set to be ( T.T2, %3, T ) where the T's are the ugual Pauli

matrices, %o, we have

(=)
%.1 e ‘{q‘t';_,_ﬁ.*j:?

()
3% = coT; 4 e Lisiiasa)

(10)
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vhere’ @ . & o app peal.

‘e notlice that Fgs. (2)=(7) are left invariant under
rotations about the third axis in the isoapin space., This preoperty
can be exploited to set 2., equal to.zero. (We eonld have chosen
any oneof <. , &, . 2, A La s "2 to be zere without
affecting ths generality of the arguments.) Using Egqs. (8), (?) and
(10), the meson self energy Zq.(2?) yields

G‘{.:EJ‘,-I-QHE’-d_: E’L.CJ_,"!'E’_;_,:.;L o C-‘__'j..{-'"f_d_ﬂé?_:o
(11)
2= 51 - =
'D.u._lj":."'ﬂ'q-' :-t"-"‘-'-h"?‘ = l:t."‘l.."c"-i- :Jz-hj-i
(12)
and the nucleon self energy Tq. (6) gives
I‘:I:_.'iq _,.F-'.‘E"q.""'c{{::,_.{:‘
!
(12)
"'{"1 ba + Cata =10 ’
\ (14)
2 (2304 +6;8, + S3c4)= m,
(15)
S&r = 2MmMy
and (16)

‘rom the fourth order meson esuation, Bg. (4), we obtain
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= [ i {1?1

and

; 2 - 2
(2sSu+6uC3) + &ucy (5hi- aci)=0. qm

In deriving Pose (17) and (18), the explicit use of Fq.(8) has
been made, thus menifesting the effect of symmotry violation in
hirher ordier meson ﬂélr energys The fourth order mucleon self

energy, Fq.(7) implies

e a o e = 4
3 R, uky (e +85 +°4) — 4 (%4 +8a +°3)
2
S S - 5
Lo (aZsh +8ie, 4ciad
2 i
—z | epn s e (En 82y (19)




168 -

X s
( 20)
‘2 also nesd the following ecuations:
: P
det (@6c) €45 %ga =0 }
det (abec) Z%*a by =0
det (abe) %2 % =0, (=1)
whieh follow from the sixth order meson equation, Eq. (5). FHere

gk .
dekCabe)= €1 a bpCy .with Yow Bqe(17) with %2=0©

rlves

(22)
which means that either &, or 5, 45 gero. If £.=0, then
‘the second equation in Eg.(17) yields
L, e

3. 2 = ©

(27)

and similarly 1f <, =© , then the last equation In 5q.(1?) implies

(24)
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Il "gs. (22)=(74) are analyzed eareaf™lly, making extensive use
as. (11)=(21), we can deduce the “ollowing choices for the

o
structure of ¢4 3

g = 131‘3 + 2, T
V.
2
a.. o 'E’rt-l' J
(1)
2
3 = Szt
1 a.
& = Saita e ,
-~ e T
‘g s .FJI_qu + [ e
(1)
g = %, = &%,
and
31 = AT # gty s 24T
;;_ - {J,tr"_ -{.)J -:"_-3 q-EIc__I
. (11D
'g_ = &,y (= T.‘L 'i":q_I

It should be emphasized that (T7I) 1s not really a solution of the
305 eguations since there are a number of supplementary conditlons

to be satisfied by the constants a , & , © ., This will be

discussed in the next section.
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3. DISCUSSTOR OF THE SOLUTION3S

We first consider solution (I). Sow, Egqs. (12) and (15)

imply
Ry 4 A, = 6L = C5 —_LZEEJ’
2 A5 B, = g { =5)
witieh enables ns to express %; , %2 , ¢/ and S, 1in terms of

the two econstants ’ﬁh ari ™32 o, The nlonemicleon interaction

thns has the Torm
Hoo = (qa+23) ppm® 4+ (2i-a3)Rnm®

+ b, ('r'i?;-rr"" +F?'|_'!‘|'-\J _

( 26)
The physical ecoupling constants may then be identified as
e 8 - B <
% pn = 44 e Y,
(o7
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The above relatlon 1s weaker than that based on charge inde-
pendence and is consistent with charge symretry., It should be
mentioned here that the solutlion is consistent with the meson trace
ejuation only when a symretry-violating term is pregsent, az in Eq,
(5)e Y¥e thus have the requirement of self consistency of ths solue
tion and the "05 eguations. Such self consis tency may be understood
in terms of the situation mentioned earlier, namely, that the meson
sel? energy develops symmetry vidlation in the higher orders as a
rosult of the syrmetry bresking in the lowest order mucleon self

enorgyse This 1s also true in the case of solutions (IT) and (TTT).

As for solution (II), we have

- r i

Ra” + a5 = BF+e = =

(29)

For this case, it is'clear from the S05 equations that it is not
possible to exoress %ﬁ{ in torms of the constants =, and ™o
alone. However, if one imposes the conssrvation of electrie charge,
it can be shown lmmediately that this cholee will no longer satisfy
the eagqunations.

¥e now turn our attention to the solution (III) whieh

involves, besides ‘gs. (12)-(15), the folloving supnlementary
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conditionsgs

| -
“'q""cs g "'iﬂ'il-"-‘—ﬂ', -
(20)
= z = = - A o s -
- J-:“EL‘_
e

Perhaps, 1f one could po beyond the sixth order, one may e able
to oliminate this case as an indenendent solutfon of the 305 enige
tions, if not altogether ruled out. dowever, if one assumes charge
conservation (as in the case of s-lution (17) )y 31 this solutien
can bde eliminated,

Thus, 1f one assumes charge conservatlion, one 1: lad teo
& unique solution of the 303 equations, viz., solution (I). This
solution 13 not entirely unexpected, It is 'rue thni one i3 ahle to
deduce the syumetry group as a unique solution of the 303 equations
vithout having to assume charge conservstion in some special cases;
For example, the Yukawa interaction of nucleons and mesons, Howe
ever, for the case of Ifw systen, even when the symmetry is not
broken, one docs not have a unigque solution withont assumming conser-
vatlon of electric chargq?j"]. In Tact, for th; trilinear intere
action between vector mesons, it 1s known that additional require~
mants (e.g. complete antisymmetry of % in all the indices' )

are needed in order to obtain s unicue solution,
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4‘ R .H.HKE:

The method used here to include symmetry breaking
can be extended to higher symmetry groups by lettimg the quark
propagator transform like a linesr combination of an Inveriant
znd a specifie diagonsl orerator belonging to the adjoint renre-
centation, Thls will cause a mas: 4ifference betwasen the guarks.
FYor instance, in SU(2) the nquark propagstor can be assumed to

trensform like al +&Az , 1In the corresponding exact syme

metry situation ocne has the 37(3) invarianes of the trilinsasr
Interaction involving guark, antiouark and mesons. GCuch symmetry
breaking will then cause a mass splitting between the strange
and non-strance quarks. One ecan also derive sum rules for counl-

ing unnstantnlﬂ).

13) This method of obtaining the sum rules will then be
analogous to the phenomenological method where the
broken symmetry manifests 1tself in ke the Torm of a

few tadpole dlagrams, @.Z., S.Coleman and 5.L.Glashow,
Phys. Reve 134 B 671 !1

-
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APPEZEDIX 5.

Ve smm=sarize below some interesting relationshins be-
tween the ™ -1 symbols of 5'( 9}'. The problen we were Taced
in this chapter may be imrmediately realized as the inverse pro-
%lem, the gsolution of which may not zlways be straighforvard and
unigue,

We use the abbreviation

Cx] = 22x+1 .

Ve start with the usual orthogonal properties of the ' G4 symbols

> = %q g{ﬂ»ﬂag

T
- 3 CP;%E (1)
Cpl 2
. Pe3+x 4 & =) C c 4 =7
2 k= {c d-bg%_&"'%'j

(?)

The counpling diagrams are given by Figs. & and foye

- -
See for instance, 5.R.Judd. 'Operator Technigques in Atomie Spec=-
troscopy'y Yelraw-fill Book Company Inec., (New York) 1963, page 62,




Flg. 1 Flg. 2

‘ppropriate reduction techniques of ™ } -symbols, we summarise

through the following dlagvams

(1) Double links are removed by the gubstitution

a S
v 5(k.,%) P
) ( ) % i P
s Lp)

(2) Triangles are eliminated as follows
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and so on . For more detalls, see R.E.Cutkosky, Brandeis
Lectures (1965).
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APPENDIX 6

DEMONSTRATION OF CHARGE INDEPENDENCE FROM EQUALITY OF MASSES

Sunpose we ecnslider nion-mucleon system we can write

the symmetric, pseundogcalar, non-derivative ‘interaction as

H = %TPE‘{’#SLP,

(1)

where © denotes the nucleon isospinor and ‘f’ the pseudoscalar

flelds. Il the total isospin is consarved, we have

=

B

j?t'x‘) T T (=) A% 5
o : | + r oo 3
. 27 $x £ =) L

("
The first term on the r.,h.s denotes the isosnin current due to
the nucleons and the second term denotes that due to plons.
Suappose ¥ and QQ undergo the following zauge transformations
-

aj) — AP = R AR

1

c%;._:;f#lz UC%'U--
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dfere U 15 an operator in the larger Hilbart snace containe

ing both ¥ and C;D « Ve have

(4)
If the interaction is invariant under this transformation, the
equation of motion must remain unchanged. Hence, the mass is un-
altered under these transformations. Consider the nronasator

= o *-Tfr{xa , w)-)nr \}o

hace |

o 5. :
— c‘.ﬁW: S (=x-%)

(5)

I the vacuuz 13 invariant under these transformations

- (i e < ;r(x} ‘-igi“})) vt oD

o Y

(8
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In perturbation theory (6) may be develoned as

b = 2fe. o s B e

(7
The first one on the r.h.s. corresnonds to the hare propacator
and is the same for all particles of egual mass, If we consider
one particle diagrams, each of the diagrams contribute the same.
Yow, let us ask the converse problem. If diagrams contribute the
same to the masses (and therefore self masses), does this ilmply
the invariance of the interaction under isospin trnﬁsfnrmnttqn:,
implying thereby the origin of charge independence ?

Sakurat * has made a simple and exnlielt derivation of
the 1sospin syumetry by assuming trilinear interactions between
pions and nuecleons and by equating the contribtutions of various
self energy dlagrams. Since the first bare term is the save in al)
cases, let us look at the second terms. The various w-¥ ecases

Aare

" J.3.Sakural, Phys. Rev. Lett, 10, 446 (196%). Tt should be
restressed that in our derivation of charge ine-
denendence from Shamghkevieh prineiple, charge

congervation is pot assuzed; but i derived.
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counling nonstaqts

b s "r1_']T+ %-l
nr—3 P .53
}j — b,.n_ﬁ 13
n — mar®© ¥

_I'F+-—-—} I:_ %-r
|l|- o Fﬂ'_ %1'
T F’_i'; %

13--r’f-

E1E n._-'; n:r_'l

(»)
The 3% denote the various coupling constants for the various

reactioons. "rom charge independence, one knows that

31 2 = “+ [B)

Suprose we now exnlieitly evaluate the various self energy contri=-
butions.and equate those of’ b and m we have

1 155
ok W B 5
v P
™ T
—= “ﬁﬂ = e
b L
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implying the relation

B e 152 = el a sr

(10)

%, and 3, shonld be real

-

“imilarly 1f we compute nion gelf energies

e P == B “1—5_'011:
el D= RS
n P
- P = ﬂ
= ’\:E—OME: " _Wu
7
t: 4t
implying
Solving Fgs. (10) and (11), we get
5= Bl 2 (572 2 (e, (12)

Since % and %, are not necessarily real, to find the relative

phases 1in Fg.(12), let us take the next order in self enersy
diagrams
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T i
T FaP T = _._L 3 T
e > g - - sy o Sl T
= ELE R
E i L
P =
s g I
b L
- n
1_|_.¢ P _Wﬂ
+
" P
lmplying
3. - 2
%|1 13 34 = ?3 - ?4 -+ ?3?4 'ig"l-'}* %‘_)
or
g "t N
a3 °r '3’4 -+ 33 %'4 ti'z —al
(12)
't then trivially follows that
. %, = 0O
2 L (14)

Fe(14) along with Fq.(19) ylelds Eq.(9). Thus, Satural has shown
that the implications of charge independence can be derived from
just the equality of masses !



APPEHNDIX 7

Ve summarize here some of the formulae rapeatedly

used in the text

gls iSLES= 15-.}' ,
Sp Tt Th = 2 Ecik

(5.5 S oy s )
5}, T Tyt T = 2 1,, Yef g T e Ry ﬁsai 2

-

gb |\L’T_',"T& Tg T ',.‘WLTWB =12 (5'-?1'5{:& -':‘m___t

$c5 Saum Som + Suy Sp S,

e E.....-._ r"t 1 ;i_;_ + Ew; ri-m EFI.'E'_
— S Spe S a Bin Sy S
— E"'?}“’" Eﬁ;,_r . &..41-»-1-. EEEﬂj

[8.9%) = Bacm 4 cy &T 420 deklbed)
A o :
9 3 - Ca i:_ * ‘14£E " A R T d.ti;-lkﬂn:l_'f_‘\j”
S 1 ;.? 3 I = e {' g =
YRR 3 = PR ANt s
]
C i 3} P o [ = 2. E
i?"g ., = 2 gaic” SN o S el
S 7
Y9l s = CA NESEEEEEE S T
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APPENDIX 8.

BY THE GENIRATOR OF SU_

of
Let X be the (== 1) hermitian generators of

SHH. Then any traceless ™" x7- matrix ean be expanded in terms
ol

of X vith eco'plex coefficients, We choose the generators

g0 that

Sk (x™xP) :118HP_

If for any two matrices A, we define the secalar product by

(A,B) = Sp(AB)

the traceless "x" matrices constitute a unitary vector space
of m“-1 dimensions. If L 1ig any - xn~ unitary matrix and

}C'd. + o = As ﬂ{bx £

then

80 that Y 4s a real unitary (*JF'B x(7"*-1) wmatrix. The
mutrteusf;nrniuh the fundamental representation of Hﬂn while
the matrices Vv furnish the adjoint representatiocn of Sﬂhf

Now consider for any ™



o o
a0 that X ¥  commutes with every unitary materix. Hence X

must be a mmitiple of the identity

o of
.4 x — ﬁ‘tI
Similarly
— o
P SISt AR 2 st A e %
M+;¢‘-{:{P.ﬂix e = ¥ v v v x KRR
3
— }CHXJKHK
= 2
so that
el - ol P
.8 ?\'F‘;« # ::"’:}_I

and so on. .
By the cholice of generators we already have assured the
validty of the relation

5%;{:4“;?):115‘ ,

Putting o =[5 and summing we get
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Sut since

this implies that

. 2 2
'Ei‘..l'—'. F"'"-—-.L_, < * .'{ﬂ-i:'__}_"

‘e can also consider

Then (remembering that V' 1is real unitary),

, “ 8 W=
Tl sl (wl %" xPx? iR

= (vtv")ﬂ& |

L ) =Ry i}

80 that the {m—’lu) A o matrices V and T comnute.
“ut since v farnishes the adjoint representation of 8U,
this implies that fzﬂb must be a multiplet of the unit matrix

S“P o wWe may then write

P

STRINE et S e I S




Oimilarly wve can show that

Sk (x“xdxgxpx#xgjz %:; 5

ete. The comstants o , ®3 ,- - are related to fzaﬁa,
Since iIf weput «=p and since we ean obtain
4 o !

sp (o ™% D = (1) By == ka |

od = = 2 AT T o :
S]la [ = < x X o= » J:-{n-ﬂ%a ="-"L%=3

ete,.
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Let XX be the generators of st and u be any

nxn unitary matrix. Then

S ot f(uﬂvﬂxa

vwhere ﬂ"ﬁ 1s a real unitary matrix. Consider the matrix

H;f‘x".

Then
\I‘Hu-?‘avﬂ IaIY = IGIY%/I xax”-n.

Jut the only matrices vhich comoute with every matrix i1s a multiplet
of the unit matrix 1I. Hence

 off Sl 36 S A

Similarly

VP u e v PP BT P
= x* xP x¥* xP,
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APPENDIX 10
3 h or 2x23x2);

We give below the counter example of a2 set of three
(7 x 2) matrices different from the szet of matrices obeying SH(2)
algebra vhich satisfy all ths Smushkevich equations, Thus the
sclution of the Smushkevich problem (2 x 2 x 2) is not unique.

dowever, 1f we insist of charge conservation, the solution ecorres-
ponding to SU(2) is uniouely picked un.

The set of matrices

e '
) o o \ /r o \.‘I‘.'. BN
5 R o o O _ £
o @ —f| J ) o ° 8l o
i -\
| L= "é- = II'I
TE e | \
II - 3, [=] ...ﬂ )
BRI = A
- i
'.-.r\t:’n_ 5' - a - l

¥4 (- 4
C = 'ij
of &
S ¢ :F' =n @ [_,
c 4 BT | g
:‘1F‘ e® el eV e = STl o 7
Sk cHoTiaiNaRiat ol _ o =P




- 4
and so on, vhere C = T

o « Although, it looks that there

ere infinite sets of solutions, it hss bsen shown

that -the
solutions fall into one of the three classes characterized by

three different alzebraic properties

—

ol 2 LC"E{ }C’fb_l = O »
— - c
o [ee, opl) = 2t ey,
\ h ‘1"-5:
3 - { = i C C cqedde)
i Lo e T
g a_a
:T {:‘2. Ci
lu;____ __| 3 _I_cu 20 Ii ! Lo el i : l o o
| i LA A
=1 | = Siaivel e |I = ( :1 u) = T T -
I' B o o ' e gL S | L)
| \Pi@ | |
| | LT B A SR So
| \ f %\ | o B8
\ | & o I|'—-"‘ a | |
n I' L L | =& o8 | | [ L o @ L
Il e | = |
1 ol | LII f}jf - W O !
| =

.?i.Luutvrler and EoC.0.Sudarshan, Syracuse preprint, to bas
sabiished in Phys, fev. 156 1637 (1967)-

e




APPLICATION OF SYMMETRY PRINCIPLES TO PARTICLE RE-
ACTIONS *




STRHACT

The effect of nixing the irraducible re-
presentatiom of S7(2) group as a mechanisz of
breaking the symretry is studied in various ine-
teractions. It is found that many results ob-
tained earlier hy using the symretry-breaking in
the eonventional way are reproduced while in addle-
tion this offers a simpler way of understanding
the symmetry=breaking effects.

LA B ¢ 4

[HTHODICTION ,

It 1s well known in muclear physics that they symmetry
breaking many times manifests in mixing various rotation levels
of different symmetry properties. (For examnle, there 1is a
finite Destate admixture to the dominant 3S-state deuteron ground
stnte wave Pfunction). ¥e study in this naper the consequences
of a model in which the baryons and the ;gobars belong to an ade
rixture of 1rredneible renresentations (Tis) [ﬁ] and [id] of
1(?) and assume only charge indenendence of meson baryon inter-

acrtion. The motivation for this comes from a siople observation

*111ad! Ramakrishnan, T.S.8anthansm and A.Sundaramg (Praneint).



Eh t an isotriplet with Y (iHypercharge) = 0 and an isodoublet
with Y = <1 occur In both the lowest lying TRs (8 and [10
of SU(2). The recently discovered Roner reosonance (1400 Mev) has
all the gunantum nurbers of the necleon an’® the protlem therefore
ts nov to zccommodate it in the SU(?) scheme. This representation
mixing model can easily accommodate it. OF course, the problenm
will be nuwﬁé;;;;ithn other particles,

Using this wodel, we study the baryon-meson counlings.
We find relations for instance, Tor the strong decays of isobars
which have been esarlier obtained in ﬁha broken ST(?) model where
the breaking was introduced as a perturbation in the Interaction,
and these relations are consistent with azpari:-mtn1]. We also
a*udy the effect of such a mixing in the baryon~baryon-meson coup=-
lingas. The consequences of this model for mass relations and

mapnetic moments for baryons have been dlscussed,

THE MOD

¥e assume that the baryons and the isobars bhlnng to the
geduelible representation

‘g> = {« [8] + aﬁtﬂ} .
o” . 82 1 (1)

1) See for a recent clear analysis,

M,.Goldberg, J.Leitner H.Fuutn nnd Le0'Mafifeartaigh,
Huovo Cimento, 45, 169 (1
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of 50(2)., Tt itz immediately annarent that for nucleons and X o
A =0 sinece they have no counterparts in the menresentation [id]

and for Q7 g%= 0 since it has uo counterpart in [ﬁ]_ « The

parameter 3/« measures the amount of nixing.
STROHG DEC AYS

We first study the strong decays af-isnhars in this model

If we denote the matrix element as Tollows,
@[ﬂ +8 [10] , 8 J«* [8]) 48" [10] >

= N8, 8)8) + 2, (838, (%

¢ %, A0, 8] 10} + 2, (8,810

then the contributions to the various relevent decays are given in
the tahlaszﬂ 1 and 2,

?) The relevant C.G.Coefficients have besn taken from
JeJede Swart, levs. Mod. Phys. 3§, 916 (1962) and
pl!"ﬂ“ﬂ“ and F.Chlltﬂﬂ. nevs. !Mo H'-.," ﬁ' 1mﬁ, {1“4}.
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Fliminating the parameters, among the observed strong decays,

we zet one interesting sum rule

26(0°* — Ny) - 2SS S5 T @)

(?)
= (Y, > AW - 2 oY —> Tw).

Thiz sum rule has been sarlier obtained by ;rariuus penplam in
broken S1(3), vhere the symmetry breaking was assumed in a comple-
tely different way., This sum rule i1s well satisfled a::puﬂmantallyn.
There are many rmore relations that are predicted among the other
strong decay modes for which sufficlent exverimental dta is not yet

avallable

ﬂ(ﬂ-r':ﬂ'f) . e jﬁ— 'G(Y;-*Nt) + 20( 'E.'::-E'l" (4)

+ [2 o(ninm
2 = i) = - [6 oY1) +[6 O(¥-Tw)

+ 2 axSone (8)
8 T34 = [6 o(mR) - 3 filnSe)
+ 2 u{!{—uhﬂ (8)

PUNSIK) = J6 G(Y-ZK) = B O(N3%w) :
+ 0= T+ 66(GA
aotrpem = 28 ov’aom) -yl

& fm( __-"3'_.1-3 w) - E G{!’:EI) (2)

+ 60(Y) > Nw).
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o 5 mm = 2 6 {a(rlzm - nu‘}m’bz
+ % fs o= sw s [2 G(H:!‘Iﬂj (®)

These relations also have been predicted in the broken 37(2) mndﬂa).
An analysis of EN dats may provide information to cheek many of
these sum rules.

BARYOH-BARYON-MESON COUPLIRGCS,

The baryon-baryon meson couplings are all exorossible in

terms of five parameters, after eliminating which we get the follow-

ing sum rules

2 %ax = Yum + iy

> (10)

e =« Fum &+ 2 Tan = 0, (11)

2 % = 2 ham - Fwwe + Fraw (12)

- Toe = % %IE‘I + %m

: + 2 Tum - IWNe) (1)
ek = % Y35e - ?Im-% Fiowm

+ % E’H‘Hr -9 %IE v S tld)

Yaon = i(%_ ¥t + % Trme Tum . Ton o (15)

3) C.Pullemond, A.J.Macfarlane and E.C.C.Sudarshan, Phys. Rev.lett,
10, 423 (1963); V.Singh and V.0uptha, Phys.iev. 1358, 1442 (1964).

Cefiechi, F.Eberle and M.Morpur 9. €V, R0 (1964).
¥ Jonums and K.Tomozawa, Pws.mtm, n47 %}.
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2 %E!\K = 3 %H}m .- %HH‘I' + 2 %E.ﬂﬂ (16)

The present knowledgze of the counling constants doss not nermit
a check of these sum rules. However it should be remarked that
using forvard dispersion relation, Lusignoll et 114} have recently

estimated HAK and WIK and found substantial dwlatipn from
exact 8{3) predictions.

SASS RELATIONS AND MAGEETIC MOMENTS

The masses of all baryons are expressible in terms of six
parameters and therefore no useful prediction is obtained. However,
in the case of electromagnetic interactions, (assuming that the

electromagnetic current transforms like the ‘l’i’ component of the

octet of 87(7)) the following relatives are obtalined among the

magnetic moments of baryons

g, = % Uy (17)
e = 1 o (18)
Myt +  lp- -:uru : (19)
hig™ St + 2 "1‘“ _ (20)

4) WM.lusignoll et al., Phys, Lett, 21, 210 (1965).




The relations (18)=(20) are those predicted by exaet 01(2) of
which 1t is well known that the relation (19) follows from just
charge indenendence.

The seme set of relations are also obtained for e.n.

mass differences.

CORCLUS TIOR3

The model so far disenssed 1is essentially different ]
® Tfrom the mdelsm wvhich introduce the symmetry breaking effects
farough a linear combination of operators. Such types of breaking
the symmetry have the followingz undesirable t"untm'um. The assumo-
tion that the mass overator tranaforms like the TR [8) in the |

case of SU(7) ylelds the Gell-ManneOkubo formula which works wéill

Ffor both the baryons and the mesons. On the otherhand in SU(E)
the simplest traonsformation property & the mass operator as the N
Eﬂﬁ] ‘or even a simple linear combination T ertain representations,

Is cortainly insdequate, since for the mesons one has to assume
some different linear combination of representaticns. One may argue
that similar uncertainty is there in the parameters characterizing
the mixing of the representation, However, it is hoped that a

eretical analysis of various experimental tnformations may be used

5) R H.R.Rubinstein, Phys. Letts. 22, 210 (1965).

[ -

Tecently a similar model has besn tried to accommodate the Honer
resorance by F.lalzan and M.Konuma, prenrint AIRP-68, !arch, 1268,
Kyoto, Japarn, I thenk Pr.C.Shav Tor useful discussion on this point,
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to fix thése parameters approximately. The method is not af-

topether strange since we are already familiar with the o = qb

€)

mixing and 1s guite similar to the 'configuration mixing'

in nuelear spectroscopy.

6) J.J.Salural, Phys. “ev. Lett, 9, 472 (1962),

Os ﬂkltbtﬁ ph?iieﬂ Lﬂtt‘rl' n‘. m {M}'




CHAPTER IX

ABSTRACT,

Assuring that the final baryons in the parity
eonserving non-leptonic hyperon decays belong to
the comnletely antisymmetriec representation [mdl -
of 2U(8), it is shown that the p-wave amplitude
B(X"—= ne¢w ) =0, :

cTEww

Tt 13 well known that the S5U(6) theory J;‘ “Has been
able to mlnlnm the parity violating s-wave non-leptonic decays
of hyperons and certain relations have been obtalned consistent
with experiments, one of them being S ( ZI)=G. On the other
hand, the ralations obtained for the parity conserving p-wave
decays are not all consistent with experiments. This may be due
to the inadeguacy of the theory to accon=odate the orjibital angular
momentum, In this note we show that if one assumes that the final
baryons in the parity-conserving decays belong to the comple'ely
antl-gsymmetric representation fﬂ'ﬂ s One gets, in addition to *he

i

predictions of the AT = = rule (wvhich, of course, is built
in the theory through cctet dominance), the important relation

IT‘.ﬁ.Ennthm, Physics Letters, 21,224 (1966).

1) F.Cursey ad L.i,Radifcati, Phys.Rev.Letters 123, (1964) 172,
A.Pals, Phyz.lev,Letters 13 {1964) 175 ‘F‘.&uru:r i,Pals and
h&.ﬁa&icnt‘l, Phys.Rev,Letters 13 ( ) QB, B.Stkiza,f-’hrs.‘lev.
1726 (1964) N 1756.

o) S.P.losen and S5.Pakvasa, Thys.Rev.letters 12 (1864) 777, 7.Kawara-
bayashi, “hys.Rev.lett. 14 (1865) 86, M.Suzuki, Phys. Le%t.lﬂlﬂﬂﬁ}

64, C.Altarelli, F.Puccella and R.Catto, Phys.Letts.14 (1968) 70,
o habu, Phys.Rev.letters 14 (1965) 166.
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B{I:] = 0,

. It 1 assumed in the following that the flamiltonian for
the P C decayss transforms as s spurion with orbltal angulas
momentus £ =1 , The initial state of the baryon is assumed to
belong to pure [56| representation with £=0 ginece it 1s
decaying at rest. On the other hand, the final baryon is assumed
to transform 2s a pixture of both [56) with £=0 ana [ 2]
with £=1 pepresentations, Then, the non-lentonic parity-conserv-
ing decay can be deseribed through the interaction (assumpting ‘
that the final baryon belongs to the mixed representotion o [m__l +
3 (s8] ) ‘

f« B Cam)g B

By
Hp IPD(P(S 5 L 7 .
{ap.qf (z,m)
fupcam} p
3+ e ’LP T
{3“1}1‘ 1P B o
U T o

: : B
o = CALL), (5:(&,,}\): ok A=lC,R).

A,B‘C - 'flj',S ‘ J:rEJEL — 1‘:‘_




The expansions for the '[“E_L renregentation "&nws

and the [20 | representation "L'-HY_] in terms of their s1(23)

x 57(2) econtents are given by

o B § {4k ABC = e B o
{Pj_n ¢ 1 +£—_LE(1E”::¢“’+E??G
i &
EAEI} f;i (p}
B +R L) EBCD{A]
‘3 2 £ % *D
= S 2.k / o
wp) Sk ABE
LP "y ol b 'x.a“ s
=R
2 ABER C
L L e {E?E"’x £ b 3
oA & gcD A

L ik
Here C and OC ° stand for spin 3 and > vave
: A
functions respectively, & g 1s the bary'n octet tensor amd

ABC

is the decouplet tensor. For the parity-conserving decays

(=)
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Pg' is the usual oetet of psendosecalar mesons.

Using the interaction form (1), after somewhat lengthy,

but straightforward, caleulation, we @t

—

R (EJF‘) =1z (-3a +tob+c)
(=] 2 2

B (=5 :.SLE (za - 96 +3c),
L BN = ," o gt P c

B (A= -+ & ( 2& + &)
B (El)= Ll (2a-96 + 3c) @
B Eﬂﬂ-n}: _L fr_",: f'l—-q..{:-]-:—}

B(Z_)= _\ob

B 16T Ni= - (=3e+ed)

PR i \ -

vhere the notation is standard.

Nowy if one assumes that the final baryon belongs to a
nars [qu] repr-gentation ( b=e¢ = 0 ), (the corresponding
Fuler wave function of the three guark system has €= 1), then

one obtains in additlion to *the nredictions of AI =L rule the

following relations without assuring anything else:

B. 02 L r=ies

(S e LAY k%
| .

=




y — [T i .1':"
a[gij= ——;@ B.GNZ ) .

(D

Apart from sign, the second relatior is well satisfied exmarinentaly
uarxwarz-nmstfu*l:.ll.tll,-al":"!r }. However, the third relation 1= not.

'Ir one has all the three terms, one gets (of course in
addition to the predictions of AT= é_ 'rula}, the following
sum rules

1 B(AZ)+ 3 B(2,)+6B(E1)= =12 B{E-‘aim

which is not comsistent with experiments. This is due to the ine
conslstency of Eq.(7) with experiments,

The absence of ['HE] in the final state can be qualita-
tively argued as follows. If one associates an Buler wave Tunction
with £ =1 , vith the comple'ely antisymmetric | 20 | repre-
sen*ation, this conld be thought of as being responsible for indueing
the £=1 gpurton behaviour to the p-c fHamiltonian.ean he xssos
efuked The coupletely symmetric | 86 representation can be asso-
elated with L =0 g0 that 1t cannot contribute to the n-c decays.

One point has to be emphasized, that the [20 | representa-
tion is not the one with T=3  tut rather with  S= LT £-1
where 2 is the intrinsic orbital angular momentum of the three
auark wave function.

2) The exnerimental Information has been taken Trom 3.H.Dalitz, Lectu-
re Yotes given at the International School 6f "hysiecs, 'Fnrico Fermi?
on Weak Interactions organized by the Italian Physical Soeiety at

Yarenna in June 1964, We take B(I]) = 2.6 & 0,25,




LPRE LT T 3 & THE &
BETWEEE G, AND (D/F) "

ABSTRACT

Relations between ul and {Df?)n are

obtained in the frame work of static non-re-
lativhstic 57(6) theory using the mixed re-
pregentations [56| amd [20] (withl =0
and £ =1 for the baryons).

pepsaEny

Recently GATTO et. lln have obtained a relation between
!DfF}lx and G, using the algebra of chiral U(2) x (3) eurrents

of G-ll-ﬂmng}

which is in excellent agreement with experiments.
More recently, nnrnriaj has come out with the idea of representation
mixing and has been able to renroduce many interesting results in a
mach simpler wavye In this paper, we show that in the non-relativis-
tic static 87U(8) th-nrr’), one can deduce similar relations if one

belleves in representation mixing.

*?.S.3anthanam, T.C.T.P., nrenrint. 1.C/66/27 (unpublished).

1, A.0atto, Le.Malanl and G.Preparata, “hys.Rev.Letts,]6, 277 (1966).
B¢ MeGell-Mann, Physics ], 63 (1964),
2e U Harari (preprint). After the completion of this work, we became
aware of the preprint by N.,Cabibbo and H.Rueggz (CERN nranrint]
vhere they have got similar conclusions in the framework of XU(R)x
&7(3) chiral algebra.

4e ToJlursey and L.A.%adieatdi Fhvs.ﬂev.Latts. 172 (1964 A.Pals,
Phys.Rev, betts. 175 (1064 -Gursey,A.7als and LA, Radicstl
Phys. Rev. Letis. tmsh, B.Sakita, Phys.dev. 196, B 1758
1964).
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Let us assume that the baryons belong to the representa-

tion ]:'56 ’ vhere

[s6') = « [s6] + 8 [20)
with o> + 8° =1 : (1)
where EEG—X and Et-!ﬂj are the completely symmetric and anti-

svnoetrie representations respectively of S7(6). Ve know that in

the none-relstivistie limit,

= : 1
Y Yu¥s ¥ — P

.._.a
pX c%:a for space coxponents

—_— O for the time component
== i
and Py Y — $ for the time comnonent
— O for the space components.

!-L:oji,l‘a
13

Aere % and < stand for four and two comnponent spinors
respectively. Fvaluating the matrix element

M= { «Ts6l4paal|— Gy 46, |

(2)
::KESG'_‘.+|’5L'1¢{]>3

neing the usual SU(2) x 87(2) exvansions for the ITEEF] and
[mﬂ_l) representations, assuming that (- GA?-» G'v') transform
like the [35] representation, one Tinds




) 9
i G’A { e T (E_,-,E,.p) (%‘__nﬂl—"lj + TT{EP&_](%mLJEJJ

~
. . (&ep_Bp&d S
+ G'Pv % Jé T LT 6 PoD :g {3)
where 4> stands for the octet of baryons. As a conseguence,
ve Tind
o}, = D*F (4)

Sumnose now that the L'm] representation has’ £=1 so that in
— —>

the expansion (20, 20) the roles of & and 1 are inter~

changed (as {s usually done for the p-wave pgeudoscalar meson

Yukeawa coupling in static SU(E) theory). In this case we get

S e N0 [(aetn L Tel&pe E
(T e _'GA -{Tf (6P J) 2« 3)+3 Y .""J'
= ) [ f s 2 o b . 2y |
+ k_'nu {L T k > A P-j W= = ol ) + T+ (& Pb) {.] }u{ )f ,
(5)

so that one finds lmmediately

- G Vil :T(IDF:_%T (&)
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Relation (6) has been obtalned by GATTO et. al') by saturating

chiral T(2) x U(?) algebra with [-EE_J representation ( £= @)

and {m,} representation £=4 , Of course, the discussion

of orbital angular momentum #=z in non-relativistic 5U(6€) does
not earry much sense, Subseguently several people have reneated

the same caleulation in SU(G) .y model and they also get Fgs. (4)
and (6)..




CHAPTER XI

ABSTRACT,

The prediction of the zroups sU(?) x SU(2)
eollinear and EH(G)H on the radiative decays
of megons in presented.

rae
The study of the radtative decays of mesons is the most
interesting case for comparison with murtlmﬁ, sinee many decays
are energetically possible, and slowly experimental information
iz getting available., Tt is well known that for a real photon
only magnetic transitlons are allowéd, Hence, there is only one
forn factor Gpq (%), . m sidition, SU(6),.  relates p'L)
to Fm) vhere P(u and P‘m are the singlet and octet of psoudo=-
scalar mesons. Without further knowledge of G (%°) , we assume
it to vary slowly with ‘i,l using, however, a phase space factor
caleulated with the physical masses. For the decays V- P+ VY
or P = V+7 we start with the interaction

<Py S

€ ? Al 9, Vg P

'

-
flefueggy WeTihl and T.S.Santhanam, Helv, Phys. Acta, 40, 9 (1967).




where V  denctes the vector meson, A the photon field
and P the psendoscalar meson,

In momentum space, with the momentum ? of the photon
along say the third axis, one typical term will be

! _ 3102

|
|
Gmfilj %3 Mv P Al.p vﬂ_-—p ?
!
g

Assuming the symmetry relations for G, (1") , one
gets a2 phase space factor proportional to “&'3 . .
Considering the decay of a vector monet into a pseudo- i
scalar nonet and a photon, SU(3) alone (with C invariance) des-

eribes these decays in terms of three coupling cnn:tmtnn.

?EE 3 %?f i %13

The predictions of =] [U (3) = ufaﬂ collinear and ETT{E]H are

¥,

i

g = & %oc S [vead x ucay] 0

1

fig = V2 3gg = g, Sufe),
In the following table, the predictions of SU(2), S [ uca) xucs)

and SU{E}H are given.

1) M.Gourdin, *’niié::g Syzmetry, North-Holland Publishing Company,
Amg Alle '
Szr Also 5.0kubo, Lecturss on Unitary Sysmetry, University of
Rochester renort 1963, ’




femarks, Column 6; The values in A = = 0.642 and

Sin of = & 0,183 were used. These have been determined using.
the nuadratic mass formula, This choice minimises ?—:; Y .

Column 73 To give a rough idea for the order of magni-
tude, the fnput [ (ew®Y) = 1.2 Me7 was used, slthough this is

only an uoper limit with large errors (10 ). The five first

decay widths are then calculated using U(?) (3 U(2), the others
2

using SU(6)y,, and multiplying with g~ .

Column 8t The values for [’ are taken from Rosenfeld ot
aley 7CRL - 8020 (Rev.1.10,1965). The widths of X_=N' {s un-

known, but the values of the Table can be used to give a lower 1imit
to 1t. V¥ith

I_I {Kn —Q'FEJ-: I
B
[T (xo—> =f@)
one gets
Pxﬂ ™ Q.24 Mev
or
[.-I,( > 0.0 mMeay

=]

according to the two possible solutions. This is a prediction of
RU(H}H onlye.

As is apparent from the Table, threa decays are parti-
cularly well suited for ecomparison with experiment, because ﬂ?

has nearly the same wvalue.




From collinear 3 ["H*) x ”(Fﬂ one gets:

f e
M(em?) = o.log
[ Cwatry)
‘n addition, SU(S6),, predicts:
(v o)

(e ‘r'r'a‘)

Where the two solutions refer to the two possible signs of sin «.

From 8§ [ﬁ{ﬂ} & H(3)1 one gets the relation for amplitudes,

corrected for phase space

©0.284 [wn?] = ©0.093 [‘?W?i 4+ 9.06 fw‘rl"?s’l

Only upper linits are known for the experimental gquantities fnvolved,
Finally wve remark thalPeecehi -nd Hurnurr-;nm ealenlate

the absolute rate of @ __, Y , using a quark model and a quark
fagnetic moment deduced from the proton magnetic moment. They
find

rr(m-'n-}‘g"): 1.7 pleVv .

in agreement with experiment, They also get the other results of

the Table, although the physical assmmptions of their quark model
are different from SIJ{G)H.

E} C.Beechi and G.Merpurgo, Phys.Rev. 140 B, 687 (1965)
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CHAPTER XII

CURRENT ALGEBRA FROM

ASSTHACT

The algebras formed by the integrated errents
constructed out of unrenormalized Helisenberg

fields of strongly interacting particles are dis-
cussed.

the 1)
Following suggestion of Gell-Mann
o

that the algebra
generated by eurrent operators can nrovide a useful tool in under-
standing the syometries of strongly interacting narticles, there
have been a large mmber of 1nveutiza.tion.|m in this fleld, In
all these investigations, one starts with a set of current densi-
ties constructed from the fundamental (guark) fields of a symmetry
group, whose space integrals close among themselves under equal
time commutatlon (ETC), thereby forming an algebra. The assersion
ls that once the algebra is formed, we can forget the way by whieh
we obtained them. In fact, it is claimed that we could have straight-
awvay postulataed this Inlg-bra as a model. In vhat follows, we
 attempt to soe that if we start with eight fields instead of the
three nquark fields where do we end ?

“Pe eliarayanasamyy T.Pradhan and T.S.Santhanam, ICTP preptint 1966 (un-
publisghed).
1' ”.Uﬂll-ﬂa.nn' "h?!.qev.m' 10'5? {1“2)‘ qh?ﬂit! 1‘ m {19“)'

2. S-Fubini H.I!Iﬂ G-Ml.n u}]rﬂicl ?ﬂ {1“5)' 5-L-m.",m—3-1“.

Letts. 1051 {m VeleWels ql!"u- Rev,Letts, 14, 1047
(1965) , “e''slee, Phys,Hev,Letts, ]!._l,_. 8‘}3 (1965) and nthn%?:




o, ALGEERA OF VECTOR CURREERTS,

Ve first consider the set of eight vector currents

g .
L § 3 =15 =¥ = —
v (4 == f d7x LP‘r {za 1) HTJ': Y_}"' L}*‘éf:.‘t)?

fJ-
Wik —-4,

(1)

corstructed out of the eight known baryon fields

L=]

+ i, e s i Sy = et (BT

3

qfa = 4\ s Such that they have the (T, Y) guantum numbers

of the mesons -, T, 75, i1<", k° kK%, K~ and N respectively.

and

The I~<: , Bre arbitrary numbers, By using the equal time
L
anticommutation rule
e ¢ (= 8. St
LPY_ {xlt}} A xjk) = T o~ .‘-]Ig t?)

"rl‘nr our purpose these baryon fields along with the pseudoseclar
and sealar Tlelds to be discussed later in this paver can be

taken as Muniamental flelds.

& .ﬂ;tuﬂ.lz% Cedg maed “‘EE Efa ke o ke Tﬂiﬂ.b;bw -Fn'r LY l:.u'r*:-uul_-‘

+ 23 + +
[LP ‘Pi‘h 3 '-Pt‘ un.A} = S_.l_.,‘t "P,r '-i-'u_ - gfu. ‘-l-*'i: "P.,:' P

-
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for the Heisenberg field operators of the baryons, it is easy to

L
show that the time components of V,, close among themselves,
P

without any eondition on baryon massas, under ETC provided the
matrices K" obey the commutation relations

!_-H"‘:: H-?] == H;ﬁ. H:EE 2 ()

where the non-zero Iﬁ;ﬁ_ are given in Table 1 and hanpen to be
fdentical to the matrix elements of the canonical fors™) of the
Fematrices used in the sSU(3) symmetry of Gell-Mann and Ha‘mmﬁ}.
Our currents, therefore, form an algebra isomorphie to su(?), These
currents, however, are not g uite general, none of them contains terms
bilinear in ¥ and /. ., One cannot therefore use these currents
to describe electromagnetic processes such as Eﬂ_? N Vi

¥With eight baryons it is not possible to incorporate such
terms in the currents without unduly enlarging the nlphr:". On
the other hand, the situation is different if one starts with nine

baryons.

* o neglect the derivatives of delts funetfons, which, strictly speak-
ing, should ocecur in these comrutation relations. For detalls see
reference (7), - '

Ly
One can have, for example, an algebra isomornhie to U(8) with 64
currents constructed out of the eight baryon fields, These currents
will certainly have terms bilinear in I and A ,

< J-Bd’“ﬂiﬂgﬂ' :"hYs-"ﬂ-Lﬂttﬂl‘l 2’ 296 (195‘}. ’.Pl‘aﬂhﬂ.ﬂ, ﬂ‘ﬂﬁl’.ﬂlj"n-
9, 124 (1958).

4. P,Tarjanne, Ann, Acad.Sei., Fennicae, Series A VEj Physica 105 (1067),



The time comnonents of the vector currents

q
. - L)
Vil E [fx i 28 M th(xt)
Pkt

(4)

constructed out of the Helsenberg fields of these nine baryons
close among themselves under ETC provided
L(4) ‘ L
=l K
M*ra':. . .*l ( iy L_'”E*
A = 4 § 1'. . f q (5')
L
where the matrices L  obey the commutation relations
L : g k
[t %] = - kg K
vkt (e)
s
with .
280 -mon~gepo U~
L 3 v
: = S o
K’&‘t L ¥

The non-zero matrix elements of L are given in Table 2. It

will be seen that terms bilinear in £ and /\ appear in these
T

B .
mr-nt:;(h isomorphic to 8U(2?) x S5U(2) (non-chiral) . The baryon

*a cuark model based on thia mﬂn has been considered hrhm
“ur details, see ref.(6). it has also been Aiscussed Salam and
C Ward in the context of double gauge grouns. For d s see rof . £7

6 J.%chulngnr Phys.Rev.Letts, 12, 227 EIH'I}. gt )
7; teSalam and'J J.CeWard, '“trs.“%lﬂ 126, B 762 (1964).




The baryon Y;{ 1408) can be taken as the ninth baryon.

Tt will be noticed that the algebra is determined by
the nunber of baryons used. In general, with n barsons, currents
have to be constructed usimg (n x n) matrices. Sinca the comnlete
set of n” of these (n x n) matrices form the U(n) algebra, the
currents will also form U(n) algebra. Since such an algebra is
very large, one has to look for the smallest sube-algebra of (n x n)
matriees which ean account for all phy-ical processes. The munmber
of baryons needed to start with cannot be decided from any princirnle.
One has to take into consideration the simplicity of amrﬂ%h with no
loss of generslity that gives results consistent with observed data.
Our estire approath to current algebra from this point of view
¥t 13 phenomenological. Ouark current algebra is also phenomenolo-
gleal to the seme extent because one can have various models with
varying mxmbers of guarks. One uses only those that are compatible
with observed facts.

S0 far we have consldered currents constructed out of
baryon flelds. The mesons also contribute to these currents, In
faet, their congribution would be necessary if we want some of these
currents to be conserved, or if we want to account for thelr weak

decays and electromarnetic intersctions, W¥ith nine baryons and 9

obgerved pseudoscalar mesons ( X° being the ninth one) we ean
have 87(3) x “1{?) non-chiral algebra whose elements are
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' Pl + Lo
- + (Tt
\,”L f:f:‘){t] = E dax ( {Pr' MTJ: L|[".&_.
Y 5= { - isics)
= e qL”,,. m“rb gad’&) ’
(7

3. ALGEBRA OF VECTOR AND AXTIAL VECTOR CURRENTS,

The time components of the axial vector currents of the
baryon (we shall hereafter consider the case of nine baryons only)
fields

9 .
‘5‘ T L
A; (t) = / ﬂll-ﬂt -Pf g Koen \#& 5
Y, 5=1
L =1 , B

(2)
do not close armong themselves, However, along with the time compo-
nents of the vector currents

i - .
g > 2> ‘4’1-&*' P
\\d{ C‘t)_': -y T ¥/ 4 -

?f'-:'='1

(2)

they form the chiral SU(3) x SU(2) algebra. This algebra suffers
from the same drawback as that of the vector SU(3) algebra, L P
the currents do not contain terms bilinear in ¥ and /. and can-
not therefore account for weak decays of the type = — NV

-
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For applications to weak interactions one needs the bigger
algebra 8U(2) x 3U(3) x 5U(2) x 8U(2)° formed by the currents

9 - | -
HED E 3 = JH‘-+LL ¢ (et
A ) () = yﬂ = W (X O¥[ Ko+ L )Y G 1

v, 5=1

(10a)
9 d i
< (£) B s s -
v S - 2 x e =) Kl
e e
Yo (=, £).
(10b)

As for meson eontributions to these currents, we encounter some Alffi-
culties, It is not possible to construet axial vector currents that

are bilinear in pseundoscalar flelds. Although one can construct
such currents frowm trilinear products of ngeudoscalr fields, the

commutation relations become very cosplex. On the other hand, 1f
we introduce a nonet of scalar mesons, (the so-called o nu:unsgal,

*The corresponding symmetry group has been discussed by Y.Huﬁﬁ'nnd
PoFreund (ref,.(8)). A

8) 7.0.0,Freund and Y,Nambu, Phys.Rev.Letters 25, 714 (1964).
9) W.Cell-Mann and M,Levy, Nuovo Cimento 16, 705 (1960).
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there 1s absditely no problem, The currents of the ST(2) x SU(2) x
37(%) x ST(?) algebra along with the meson contributions are given
by

q
NS Z ( ’““:j
ih=y
T v (£) -
-+ & O, A, %y Cb.s
R ci>+ M" &) 'agn-)j
= LN j ':‘.-3 u.l.r I:iJL; )
(11)
VLC:EJC{_)F arl- f _I_ CeB)
Z dx | Y. WO
Tyds =1
: cizx-'- pEED) S &
& v va o Ta
; T Cet)
+ < o M_'_b ’ E},,U',_._j : (19)
vhere
‘:Ci:} . i
— }{ o :b L.L'

- Begldes this [Eﬂ(:ﬂ)] 5 algebra, one can have the following al~
sebras with veector and axial vector currants _

l. SU(3) x 97(2) with currents A, and V_ :
% ‘SU(3) x SU(2) x SU(3) with currents V., V.° ana A"V
=)

L

2  SU(3) x SU(3) x SU(3) with currents V. V. ana A

All these have been discussed by Nambu =nd Pramﬂm in the context
of syrmetry groups.
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CHAPTER xII

ND THE

The importance of infinite momentum li=it
to obtain covariant results using the algebra
of eurrents is studied, It is shown that un=

less one goes beyond the single particle appro-
ximation, it is very difficult to envisage an
exnonential behaviour of the electromagnetie

fﬂfﬂ factors.

sans /

Recently, there have been some ltt!l;‘pt-!l}'p] to find

- fomal solutions of the commut-tor algebra of the fourier transform
of the curront densities using the Pz,—’m technigue. Tn
narticular, “arnes and Kansz}uu considered the algebra of vector
current densitles (actually their Fourier Transform) vith su(2)

as the interwal symmetry algebra. By anproximaténg the matrix
elements of the commutator with single particle diagonal matrix
elements and using the B —- oo 1limit, they obtaln the 1so-
vectors form factors at finite moments., The purnose of thid
1.:&:- is to analyse their results in an arbitrary Lorentz frame.

The conclusions are that the Cabibbo-ladicatl sum rulum is

'T.S.smthmu A.Sundaram and X.Venkatesan (Preorint) 1967.

1) A.Dashen and ¥,Cell-Mann, "hys.%ev.bett. 240 (1966).
¥eJ.Barnes and E-K“Bl' “-Rﬂ-m;-. om {IM)-
3) ¥.Cabibbo and L.A.Radicati, Phys.Lett., 19, 697 (1966).

4) C.0,Bollini and J.J.Ciamblazl, Kuovo Cime 21, 107 (1961).
T.Saavedrs, Nucl. Phys. 74, 677 (1965).
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in‘ependent of the lorentz Trame one uses and one always gets only
a hsrmonic ‘%zr-duuunleEQ_fur the fora factors, no matter wvhat
momentum 1linit one employs so long as we limit ourselves to finite
nurher of dinzonal single narticle matrix elements, The only way markn
perhaps to get a more realistic exnonential %zldeﬂandants is to gzo
beyond the sincle particle matrix elesments or to take infinite
supernosition of sinzle particle matrix elements,

Following Barnes and Kazes, we consider the one dimen-

sional commutator algebra of vector currents

fv*ci‘ﬁjxr'ﬂa = 2v° (2+% ),

J (1)
fvgf% J,‘«’Tf%ﬂ = viElgglly !y
()
wvhere !
V)= (e % Vo, (x) dox
J ;s ;9

The V., are the vector current densities (Tourth component)
and ¢ reTers to the gisospin index.Differentiating Eq.(2) with
respect to 4  and taking the limit 3 —5 o0 , we get tha
Helsenberg tyre equation

’ -4 ™) <
[x2toy, ¥ ca il L)) ()



|
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With the well known iterated solution

L !
s = RS L £ Vo)
V'g) = e VEio) e
(5)

This 15 the relstion one gets using the algebra.
~ Consider the following matrix element of V. (== ‘3:{
between the nulceon states which form the approximate rnﬁrumta-
tion of the algebra

My = <LP+%| Votx==0) | b

il

— o . L 5
U (P+%) S F,oce*) ¥, + v F cy™) "Tﬁxc&ij;fa
L
=1 pald D)
By using the Foldy-Wouthuysen transformation one can write Eq.(6) as

iy b  ar ar -
M. = Uge) L Eh+%)ir1c1‘}a’a-r Fa g™l y

E X ]

L R
x T oL Ce)T,Uio),

(7

— e i
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and 6 = arctgy {%{
e
The ¥4 ig related to the angle appearing in the Lorentz trarse
formation
26
1w P
Elpy= e Flas
—
S
Ry i avc T~ Ec_}_:} 5
as S5
L@ = ave t3 (3% Lw)
=

(see tef, (4) for instance).. Hence Y. 'C%) may be reoresented
brs}

+ 3 C AT L (g-g")¥x
b -5, -_; s
()

4) C.0.Bollini and J.T.CGlambiagl, Nuovo Cimento 21, 107 (1961)
I.Saavedra, Wucl. Phys.,74, 677 (1965,

§) It 1s clear that V. 1s a function of aaly + only when p = o
Or p — . However 1f we look at the first few derivatives
i1t becomes immediately obvious that V's are functions of

4~ only when we go to the frame p — o0o0.
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so that
+ v =
.7 (e) = F, Gomy, ===
2 J
T e A ::_3‘
& & (o)
Substituting T0.{(9) in ;F'q.(ﬁ) one easily fh:d:m
S % ’1?
gL nr L, _L"F{rjﬂLrB-E
F‘JL{:’:&L) = I:J (e) C ok ,_ ;ﬂ: - B = jp
1 w : i P .J'__El oy : ?
| ™) = - o) ol S v )) ::‘1' Fa €02 JELG'E jjj
-351
(10)

68) The prn-nckf p dependent term < -©' 1n the form factors
13 essentlally due to the single particle approximation we use.
For example, the matrix element <p I VYeYy [P'>  consists

of two Feynman diagrams which we have approximated by a single
Feynman diagram. When ve take the infinite momentum limit, the
cross diagram does not eontribute so that the p-dependent term
8 -6  naturally drops out from the form factors. We thank
Professor Zaccariasen for discussions on this point,




whiech as can be verified goes to the Barnes-Kazes form for p— @.
From (10) one can get

- ‘ T 2

o) G

= 1

B
= (11)

Aetually Tge{11) is independent of any momentum limit. From Eg.{(11)
by reexpressing in terms of the Sachs form factors and differentiat-
ing with respect to % ~one can get the Cabibbo-Radiacati sum

rule without the continum term. _

One can easily sea that for smsll values of bf’ and %
the zero of F/ (% ) 1s pushed uwpto % = 30,7 rﬁ{i'rum around
15 ;F"E « However, the zero of F;:r[: ‘Bf} is brought down., A
detelled comparison is not wvorthwhile, since in any case one can
get only sine or cosine forms or perhaps 'Bu}l functions. To get
an oxponentisl form cne has to think for an infinite superposition
whieh can be done perhaps 1if we include many particle intermediate
states, a neat way of doing this is yet unclear.




CHAPTER XIV

STUBCYELBERG FT HD AR NMLES

STRACT

“tueckelberg formulation of vector meson
fields is applied formally to explain in a
natural vay the A -7 mixing and several
consequences ~f this model are studied.

LR ]

One of the most important sum rules obtained from
current algebra i1s the so-called Kawarabayashi-Suzuki-Riaznddine |

Payyazuddin (Ke3.R.F.) relation®’ |

i “
an - s "+"r1-f, FTI" :I

(1)

vhere Fy and F, are the coupling constants for the decays
J—= Vac gnd r-—s>wvac pegpectively. Doubts have deen raised on
the methods used in deriving this r-htinnm. This sum rule along

with Weinberg's first sum rnhm in fact prediets the famous
relation "4, = 2 ™Mp . In this I.m: we give a plausible

derivation of the equation (1) using Stueckelberg flelds )

e

":.. SeSanthanam, ¥uovo Cimento, 571, 440(196%),

1) K.Kawarabayashl and M,Suzuki, Phys.?ev.Lett, 255 (19866),

g) flazuddin and Fayyazuddin, Phys.Rev. 147, 1071.(1966). .

#) S.0kubo, Lecture notes on Asymptotic Symmetry and Algebras of
Currents, Ravalpindi report.

) S.Hcinberg, Phys. fAev, Lett, 18, 507 (1967).

4) gee next page,
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We show that not only ve need symmetry btreaking term in ’a-if-irﬂ:mm"g"-.iﬁ

second sum rule, but sglso in the first sum rule if we have to account
E

fer the obgerved ration X =1.28 (or 1.26)5).

Frr
Ve define Stueckelberg vector fTield I{"" as
I
Tre = A = —— BB

4) For a detailed Aiscuséion on Stueckelberg fledds see S.Kamefuehi,

Matseience Report 14, 'The Stueckelberg formalisw of vector meson
fields' (1962). Recently this Tact has also been realized by T,V.
Chen and R.E.Pugh, "hys. Rev, Lett. 20, 880 (1968), In using
Stueckelbarg flields, of course, we have ignored several formal
diffdculties that one encounters. Firstly, the A field has a non
vanishing divergence and so one has to some how interpret its
fourth component. The secord difficulty is the faet that both

A and B fields obey the same equation of motion and so, 1t will
be a crude aprroxmation to take ™, = ™, o I thank Professopg

S40kubo, S.Kamefuchi and £,C.0.Sudarshan for point out to me the
various problems that arise in using Stueckelberg fields. HNever-
theless, this model 1is attractive in its own right, ¥e believe
that this is the best place to study PCAC as the elimination of
the B-field has suchmi to do with the conservation of current.
ﬁﬂ:-, Me%0ss and A.81irlin (to be published). The non-renormali-
zation of F./p_ when there is no symretry breaking in the first
Welnberg sum rule has been earlier noted in a different.context by
C.S5.Lai, Phys. Rev. Lett., 20, 508 (1968).
R.J7.0akes , Phys. Rev. Lett,, 20, 512 (1968).

B —




vhere AL 1s the vector fleld and 2 {s a scalar fleld, X

'

is the mass of the vector field. The free field Lagrangian in the
Stueckelberg formalism is given by

-] = 3 X 1’]
5 E (:f/___LE (2. .B) + B

-

from which follow the free field commutation relations
[%M x> Aucx‘:}] = &S, A {x_x*)-}
(4a)

[Beo, Bexs] = € A (x-x).
(4b)

We shall not disecuss here the problem of elimination of H-field
and non-conservation of currents. The interaction responsible for

leptonic decays of vector (or axial vector) mesons in this formalsim
is given by

v R T
&'i“f’ d Q_h}; a } {!}




so that we get *he following interesting relations

A{ = Ai .rr |
= 3
F{: = e = :
-+

FI{'# = """'1-*:4 Fﬂ_

(6)

¥e have denoted here by & and % 4 the non-strange and strange

gealar excitations. These, in conjunction with Weinberg's fTirst
sun=rule

= &

=T -
F.G_ + _‘._-L = Fﬁ - FA i
mg “

& et WS ol S8 (7
M mika

e i CadEd = ) ™y
5 L = /
R - % -3 e
Fh:" =! ( Z F;.; - Fﬁ ) ""*"‘Kn ‘
2 -1 T -
Fu:r* = Fﬁ_ — 'i"_‘T — Fh:

(2)




The Tirst may be recognized to be the K,S.R.F, relation when

¥e ignore the scalar excitation o . flowever, this 1s very

diffieult in view of the last equality in Eq.(8). This equality

can be avolded if we do not have the last two relations in Eqe(8)

vhich is very hard to be understood in view of Eq.(S). Even in
Fk

This case ve always get _= —- 4 . From these econsiderations

o

it 1s clear that unless ve !ntroduce symmetry breaking term either

in Weinberg's first suz rule or ¥X.S.%,F. type relations we will

always end up with I‘-‘,_,/r: =1 even If we introduce a breaking
T

tern in Veilnberg's second sum rule.




PAaRT IV

CLIFFORD ALGEBRA AND ITS GENERALIZATIONS
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Prefatory note: This chapter which has been introduced

for the sake of completeness comprises the work done by the group
at Hatueiméa of which the author was one uf' the ceollaboratoms,

It 1s in pursuance of a programme of establishing the hitherto un-
observed cormections between the unitary grouns and the eclifford
algebra inititated by Zamskrishnan.

ABSTRACT

This chapter deals with two partiecular
aspects of the progranme mentioned above in finding
the irreducible reprasentations of the generalized
clifford algebra and to establish the connection be-
tween the generalized clifford algebra and the self=
representation of the unitary groups.

he

Hitherto we have been dealing with the work on unitary
groups and their irreducible representations. It was noticed by
Aanakrishnan that the non-diagonal Gell-Mann matrices A have the
property A’ = A, vhile in the case of dlagonal matrices, those
representing Iz.‘t!' and V_ also obey the same relation, Sinee in
a different context Ramakrishnan was concerned with matrices vhich

* Alladi Ramakrishnan, T.S.Santhanam and P.S.Chandrasekharan,
to be published in J.,Math, and Phys. SEimﬁﬂl' I. I-T., Madrase
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satisfy the relation that L° 1s a mlﬁnlc of unit matrix or
more generally A" = (constant) I, a programme was initilated to
inva_ﬂ:igatu the study of possible comnections and it turned out
that guch a cornection exists and we here study two particular
asvects of the work in which the anthor collaborated with Rana=
krishnan.

It has been shown by Hn:tria!nmn that there are (2v41)
anticommuting matrices of dimensfon 2 x 2° satisfying the two
clifford at conditions

I £L£} _— —-'Lj_ L } 4-“‘}:= 4 2= 11;"'1}‘]

-
=i A=

IT d;

£
(1)

If we form p,fold products (p = 0,15...2 V' ) of the L% » we obtain

an aggregate of Elv matrices constituting the elements of the

€1ifford algebra C, (n= 2% ), Out of these 2" olements, only

(2 ¥4 1) base elements -, satisfy both the elifford conditions

I and TI wvhile the other elements obey only the second clifford

conditior of (1) » Tn conformity with the mathematieal 1literature
we denote the 2‘ elements of tn by

-
»

1) Allsdl Ramakrishnan, Tx@xfanthensm sed RySzfiomdzusekhures
Je Math, Anal, Anpl. Vol. m' p. 9-16 (1967).
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(=)

It has been polinted m’*’ that there are three methodsg of

generating the (22 + 1) base elements which ecan represented
¥

as metrices of dimension ﬂp x 2 of cn. the first being

traced to the primary derivation of the <-matrices by Dirac )33 %)

the second one due to Hnnkrlshnmn and the third is due to

H“"lkiin. While the Tirst twvo methods wvhieh have been showm

2}, generate the 21 independent base matrices
)
of Ch of dimension 2 x 2” from the 27V «2 ( = nel)

1)- v —
independent base matrices of Chey ©F dimension 2 o x 2 :

to be equlivalent

:
in the third method of Raseveki1®) the n-independent base elemants

of tn are generated as a mapping on vectors constructed out of

saV
the complete set of 2 elements of t‘p .

2) Alladi Ramakrishnan, T.S.Santhanam and P.S.Chandrasekhran,
'Lemaptrices an’ the fundamental theorem in spinor theory', to be
published in the Symposia in Theoretical Physies and Mathenmaties,
7ol.10, Plenun Press, Few York,

3) P.A.H.Dirac, *'Quantum Theory of the Electron', Prog.Roy.Soce,
London, (1) 117, 610-624 (1928).

4) A,Prauer and H.Weyl, Spinors in n dimensions, Amer.J.Math.,57,
425-449 (1925).

5) H.Boerner, 'Hepresentations of Groups', fortheHolland Publishing
Coey Amsterdanm, 1963, Chapter VIII, page 268.

6) P.%X.Rasevskii, American Mathematical Society Translations,

series 2, Vol.6, (1957) 1.
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Recently ‘!'annzaki'n has fﬁrﬂlnttd a nev algebra (we
Cn i
call it generalized elifford algebra g,c,a) of ™  elements

generated from s set of n basic elements €, - ... . ,€,
obering
e,e; = wege; ;4:}'_=*J_... e
Eﬁ = D [ECJ)
- ’ ()
@

wviere @ 1s ske. m primitive root of unity. The m elenents
of the algebra C-: with the multiolication given by Eaq.(?) can

be shown to form a vector space and are obtalned as

& ks £l

AR AL R o€ Ry, v jhn Swmoy

(4)

Qecently l.u.Hurrhm has obtained exnlicit r'tpruantn-
tions of C: using the method of Bramer and Weyle In thils cha-
pter e attemnt to find the irreducible representations of C:
using the method of Rasevskii, The stimulus for stody of this
method as well as the g.c.a. 13 a3 direct outcome of the series of

papers published by A.Ramakrishnan.

L
We can write an arbitrary element A of c. ns
: R '”;* E;= JL.-ﬂ.
A=l Oy i + a""":l L U “""*- €, € ... ..,
: (5
(=] — *iy Lo = oMot

7) K.Yamazaki, J.Fac.Sei."niversity of Tokyo, Set I, 10 (1964)
147-195, See nage 191, .
B) A.D.Morris, Cuar.J.Math. Oxford (2), 18, 1967, 7-12.
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where wve have used the summation cnnvmiuﬁ of repeated indices,

Ve now dévide the n“ elements into m sets as

A= A, 5 Aja ... 5 A

i) (e
vhare AL contains terms of degree <L mod ™  each having
-1
| elerents,

We now construct after Raseveskii, the representation of
L
the 2n Dbase elements of C.C.A, C obeying

an

U i r ] q . e
e E';_ - (7% ] Ea‘__EA-_ "-4:3-'_‘ *-,}:l_’....:]_n
]

2T

E..

5 4

™0

The first ™  elements of C__  are obtained as the mapping

M

A £ 5> Ae,
e (7)
The other n elements are obtained as
it
Evu-i. -q ™ -3
A > 4 e w A G ow A+
+ 1 ﬁmq_;] (2)

j:a‘. - eodd

faf e WVETL.

i
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_J“ S
The affinors 'E, .. ... E__  can be shown to furnish a
f ™
representation of the generalized Clifford Algebra Cooe
ad "
Case l. For the first n elements, £, -.-. 6 &,
the proof is obvious since
e
EdEg . e
A t A e; ey g (%)
Aat e A |
AL A eje; = w A ecey
nd N A 'E
oo R (10)
and Jrs
Eg ---Eg A el ec = A
A = - Elamns
s Edwmaes
e i
(Ei) = 1T
(11)

Therefore by eq.(9), (10), (11) it follows thot Ex isg s
obey the algebra _C: . .
Case 2, To prove that E,..c also obey the algebra
C,n We proceed as follows:

L

: Tri= |
A EMJ'_. 4 E{ Y ALk S L. + 1 ﬂm-g_]
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Kotiece that the degree of the terms has been increased by one.

-

Hence
[k e
L 2m-3 el
A —— Toeje, | w Anr® A
are=4
1S Am{] a3)
f‘.? n A
“'l Ev-,.*_._', E“*}- ‘ . Lﬁl-if et
A —-——-—.} -g El;, Ez- L Aﬂ W . ale L - Am-i]
(14)
S E &
Thus, Eave Frmeg = @ Foug Sma

[t 13 then not hard to nrove that

A

Caze 25 We shall prove now, that E_. and E

'H.-r&:

obey the algebra

el Ll
E,_'E

o B & g N tonipes e no Bl

(15)
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and
E . E =1 m-3 -
ARSSR o Z e f-u Ao + @ Ar+ .o tw i&m_JE;
B (18)
T"rom (15) and (16) it is clear that
M A A 7S
E‘. L“"'i: = i) E'ﬂ-r;_' El,_ . {1?)

Thus Eq.(7) and (8) yield a representation of the 2n basic elements
m
'ﬂf Ciﬂ -
We shall demonstrate the above orocedure for the case
3
m =3y, n= 2, {,e. to obtain the renresentation of C, from C'i_ .
! 3

We start with two basic elements <€ =

e, of C

LI

3
obeying the G.,C.A, The complete set of § elements of C is

ES

glven by

1. €, e - = & B= - I
- & [~ E;Ezrfz) 'E| EE’EIEZ JEJ '2‘1

3
An arbitrary element of C is therefore written as

=4

A - a-nl -+ A, €, -+ a'ﬂe.l e a'" e, = q.; e, e,
a e - o 2z =
- - S - ] a Qe
i 23 =2 Fio? G ST At (18)
[
o o ‘.1': \ 25
{8
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The mapping

m >
i

The mapping

A—*.—Q-AE“

vields the matrix:

oo eooo
oo o0 aoe
Dos woo
o oo o8 b
aa o g .
a oo o O Ld
a wo eeo
&a e "t

ad o o W o

yields the matrix:

Ooo ool coo
298 oo0o o) =
i & o o a0 - - N -]

Aao0 Q9OW e |

[- B - oo O oo e

oo oo ©O0 o

o od | oo o o0

e a0

D1 o o oo

P o€ gao -

(1)

(1)



E = , _
The mapping A —=2>5 T & [ &t Ao wwoAy v o fol

glves the matrix there '2; =1 since m = 7)

rﬂﬂntﬂc o a a

| ws*0oo0 oceo o 02
Fa 3
E . o8 3 = oo Weo
3 cwo oep ©209
oo w &8 o L - T -]
o a9 oD a oLl
9 =2 o o ) o o O (E!]'
- eal i
o a o a o ﬂuﬂaﬂ‘J £
A
=
< z
A et e ™A -rwﬁ-riﬁ)
The mapoing 2 z ' “gives the
last matrix
" O oo oo | oo o
M a o o o oo o ) o
E L cﬂ'-ﬂl R a g o |
&4 o o © 2 o o crl:l"--ih
el © O
P T o o o - - = ]
&5 & © W | D e S lﬁ)
o o o CIuJ‘L'C? eow
= S o oo I oo

It istmportante to note that in contrast to the other method, the

method due to Rasevskii does not require the expliecit form of the

matrices of (’.‘.ﬂ

L
+ Yo construet the representation of

=
Zr =




If PyQ are the base elements of the gene zed
c117ford slgebra Cg , the explicit representations of whieh
have been obtained by Morris as follows '

- e

=
o 1 o e 0
P = o 0 1 0 = o » ¥
o © 1 e

~

then the Gell-Mann matrices can be expressed in terms of the
&2 2 ol SRR
corplete set of elements of C, , P,Q, Pg, P, 05,

er )
?%0%. This 10 a non-teivial stateasnt sines the connection has

become possible since the elements of the generalised clifford
algebra are automatically *raceless. Thus, just as the -_,__'j_;
of orthogonal group can be expressed in terms of ."_'Ej"'.

clifford algebra in partienlar representations (called the spi
representations), the self-renresentation of the special unit

grour can be built from elemonts cbeying gemeralised cliffor
algebra.




ABSTRACT

Tt is shown that an equation of motion of a 'Phu'-'_g.l.
half particle involving a eomplete set of mutually
anticommuting {ﬁtl) matrices furnishing the r : _ 5
tation of Clifford Algebra C_l: S9f order 89 can be re-
duced to the ordinary Dirac form involving only fom
anticommuting mmatrices when the particle is massive.
In the case massless particles It reduces to an equ
tlion involving five anticommuting matrices one ocew
ing in a singnlar idempbbent combination with the u
matrix. It is further shown that the above |
are connected by a singular idempotent op

LE L LA - -" ? .-

1. INTRODUCTION '

T

The freedom one has in linearising the Xlein-lordan

equation has been used to describe massless suin-hatimﬂu
(neutrino) in two different ways. The first, well<known, of cour Py s
1s to deséribe 1t through a wave eguation of the Dirae tn. in vhieh
the mass parasmeter is set equal to zero so that the tqnilﬂ
describing it 1is

27w =0 .
£ 2y 2

TeeSanthana= and P, ,Chandrasekaran, to be published %
Theor. Phys. (Japan), Vol.4ls 264, (1969).




< 2 4. 3 .

The equivalence of this eguation to the Tamiliar two component
from 13 well Immn. An alternate inequivalent way, however, is
to use singular idempotent matrices without explieitly putting
- the mass parameter equal to gero. This has been known in the lltera-
[ tare long b&ekg). Recently, attention has been drawn to this
' fact by z.“mm and H.D. Sen ﬁnnta“. 'n this case one uses
all the five zutually anticomsuting matrices in four dimensions

and the equation of motion can be written as

(yﬁaﬁﬂ_ﬂ*c;ﬂgﬂxy:o =

It 13 very clear that equations (1) and (2) are inequivalent,
The parameter ™™ (¢ (not connected with the mass as it does not
make its anpearance in the K.G. equation) has been interpreted as
the degree of chirality.
In this paper, we show the following: Even in the case of

a linear spuation involving the eanp].nta set of ("k;) mtually anti-
comruting matrices forming the -lm-nt:: of the Clifford Algebra

‘AJ U dimension, it is shown that this equation can be re-
duced to an ecuation of the Dirac type involving only four anti-
comruting matrices, when the spin half particles is massive. On the

1) T.D.Lee and C,¥.Yang, Phys. dev. 106, (1957), 1671.
Le Landau, *uel. Phys. 3, (1957), 127,

o Talam, "ove Ei:antn (1!5‘?}, 207,
'H Cﬂ-’!!’ :h?!- Rave {195?)' 207.
2) ‘arish-Chandra Proc.ﬂu .:uc. Al186, (1946), S07, H.J.%habha, fev.
0. "hys. l
3) 7.Takuoka, ug.'!'huar."h:rs. : (1867
4) ,D.Sengupta, Nucl., Phys. B4, !1

9268) , ta7.
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otherhand, in the case of massless narticles, the equation of
motion will involve five anticommuting matrices, one of them In

2 singuler idempotent combination with the unit matrix. Ve show
that in this ease also, we can reduce the equation to the original
Dirse form without the mass term.

The equation of motion which uses all the five mutually
t\-‘“
mt!mmﬁli' matrices in four dimensions can be written as

('X}A'&“""q. A -|-'rﬂ1->l|/:':t}ﬂ

(2a)
vhere Bj..L and ?'5 are hermitian,. #t follows that the
sguare of the Hamiltonlan

T *:"] - a -
M= ‘i”' + ("“1 4 )
If we multiply by an uumtur‘}
I
0 = . (‘“1 --""‘JJE) :
X e (4)

(-aju-aj-&+m’jl{):o> .

(5)




(6)

and " = ('mz"* mf‘)é‘:_

flow, the B;Jff& are not hermitian. However by a transformation

T D i P
[] > 3 5
Y = e V@ ’ (”
with : v e
£ o tu < = iy -
the eguation (5) reduces to
e N !
(:;;’aw—m)*-f’ =8, (=) '
vhere i X %
y = e Y

(®)

What has been now demonstrated is the fact that although
the complete set of Tlve anticommuting matrices was used in writing
down the equation of motion, by suitable transformation, the |
eauation can be brought to the standard Dirac form., The démonstra-
tion is true when m, == . . The transformation (4) and (7)




= = 2.

o not exist when ™3 = ™2 4n vhich case the equation of

motion deserbing the massless spin-half particle splits into two
as

r Ny
();4 "8"“+ ™y -t?’,_;j) q}.;_ : |l|
ani the two equations are connected by a charge cmiusntlm m
tion. Tt is interesting to note that (! + Y5 ) 1s singalas and
idempotent. Arguments have been advanced that **; ecan be lﬂﬁ.

preted as the degree of Chirality )

b= 2
3 suarion 1 o¥ D nemwstongs

We show below that in the case of massive spin half
particles, even if wve describe 1t by a wave Tunction in 2. ai
:iulu through an equation containing (2n+l) parameters, it cc

be ltﬂl brought to the standard Dirac form involving only four
mttmtlng matrices by a suitable transformation. In the case 3 l
of massless particles, the eguation can be reduced to the form cf
equation (10) involving five anticommuting matrices. In this,case,
the ecu~tion involves a singular {dempotent matrix.

It is ¥nwon that there are (2n+1) mutually anticommuting
matrices of dimension 2" x 2" which form the complete set of base
elements satisfying the Cl1fford ﬂg-hr%f dimension 3%, These
matrices are easily constructed using the elegant method developed




by l.ﬂn:mkrinhnmﬁ}. The most general wave equation of a spinor

partiele which makes use of all these (”n+l) matrices can be

vritten as
e P Sy g = L g k== =¥ Ay i‘jn_._:[__. rq}:"j 7
(11)
[:i;"‘ == ;:JJ 2'3
and =
{ f&, r;% = Mg e == 2 4n 44 J
with % - , 2 g
T;A'az Fo 8= T DRENE sl
In this case ve have
9 — ) 2 - -
g e * Tanes) (12)
If we operate on equation (11) by
! g = { b r-r; " T i+ m“-"‘l-B r:mj
G = =
I - s
'I'ﬂ.l e 2 1
{ 2w T E= i } :
- l'.:l‘ tml}

-
L

5) i.famakrishnan, Jour. Math. inal, and An-l. Vol.20 (1967), .




ve get

(18)
This ean be gbrought to the normal Sermitian form by a transformation,

) =

x
e o S
e A~ 4
vhere
wl'r‘q.-l' e Iz Im
K= =
{aﬂ-!. = 35 =
> mif=
SR £
and §1~'-3 Lii
. e
Goante i = ?E E
L=
i ' :
such that (r:“a _,,m)q/ =0 (16)




with '- £

Je have shown that a spin half particle can be deseribed by a o
dimensional wave function obeying the standard Birae equation (1§)
{f it 1s massive, Again, the whole procedure fails if

ZrL-3
3 «3— 2
LA i AR
| =4
In this case let us define a
i"r - i I:'rnl [-ra ¥ g ‘-1L&”_b -T.J.u 1
m:&.ﬂ-l g
(17
= I
so that [ = =i
:;] i .?' =
ﬂtﬂ li_ ]F-l.i I.-""“_:; = 0O

(1 on, mo R

- -

(18)




whleh is in the same form as couation (19), {f = F’) are agaln

singular and idempotent. The narsmeters -, m., j e PERCUSE

anpesr only in the ranresentation of R matrices,
Thuz we have :huwnm that even in the general case of %5l §

Clifford algsbra @, in 2" dimension, a massive spin half rarticle
¢an be deseribed through the Dirac type equation with only four anti=

comruting matrices and a massless snin half particle can be dest
through an enuation involving five anticommuting matrices ons of

them 1in a sinsulsr idempotent combination with the unit mitrix,
4. TJ]"'”EEESI‘:?E_
: 4 \
It 1s worth mentioning here that aven in the nnsds“u‘l_ﬂi_

particles, we can still deseribe it through an equation involving

only four anticomsuting matrices and In this case one gets a wave

function whieh 1s an elgenstate of the Chirality operator, Por, if
ve multiply eguation (10), by the singular operator (1 =+ ?E)n'ui" wi*

yM'}M lP:I: =X

“guation (19) involves only Tour anticommuting matrices and this 1s
just the mmme Dirac equstion with zero mass, [t 1s, Intercsting to

-~

note that equation (19) is Ys invariant and Vi  are efgonst

of 3)5 e This is also true in the ease ul“"aqnnt!m (18},

6) In act just one matrix whose square is unity is sufficlent n
the case of massive spini 1/2 narticles although relativistic in
Varlance requires four anticommuting matrices. Ve thank Professor

"eColieSuiarshan for a mertinent miestion in this connecti -_:.,




