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AbstratThe thesis aims at understanding the role of hydrogen-bond �utuations inliquid water in bringing about a solvent-indued interation between hydropho-bi moieties, alled hydrophobi fore. This interation plays a signi�ant rolein many oft-studied biologial phenomena like protein folding, ell membrane for-mation et. Surfae fore apparatus measurements reveal that hydrophobi foreis long-ranged and monotoni in nature. We provide a statistial desription ofhydrogen-bond �utuations in liquid water and address the long-distane natureof hydrophobi fore and also attempt to provide a onsistent piture of its depen-dene on the size of hydrophobes. The hydrogen-bond interation is essentiallyorientation-dependent and spei� in nature. The features imply for a system ofwater moleules that the density of dangling bonds and hydrogen bonds are tobe ommensurate with moleular density, whih an be stated as �sum rule" forwater. These aspets neessitate the statistial desription of water in terms ofboth density and orientational degrees of freedom of the moleules. We de�ne andanalyze density and orientational orrelations in popular water models in terms ofa omplete orthonormal set of orientational �elds. Large-sale moleular dynam-is simulations reveal that the density orrelations vanish beyond few moleulardiameters, whereas (longitudinal part of) dipolar orientational orrelation showslong-distane behavior, at least up to 75 Å. Two orrelation lengths of order 5.2 Åand 24 Å are inferred for the orrelation funtion. It is seen to be predominantlyin�uened by the hydrogen-bond interation. Coulomb interations, surprisingly,have little e�et on its long-distane behavior. The orientational orrelation fun-tion is utilized to dedue interation free energy for two mesosopi hydrophobisurfaes in water. The restrited orientational �utuations of water moleules inthe viinity of a hydrophobe are envisaged in a loal interation Hamiltonian andin presene of two suh hydrophobes, the dedued fore shows exponential deaywith a orrelation length half that of orientational orrelations. The range of thefore is strikingly onsistent with that seen in experiments. The magnitude of thefore is also shown to depend on shape and mutual orientations of the surfaes.We take a theoretial route to understand hydrophobi fore between largesurfaes, by envisaging a simple lattie model for water and investigating the ther-modynami onsequenes of on�ning hydrogen-bond �utuations. The model7



inorporates the essential density and orientational degrees of freedom of watermoleules. The restritions on network formation, due to the nature of hydrogen-bond interation, are handled in terms of dual lattie �elds. A mean �eld analysisonsistent with the sum rule for water is arried out and �utuations in dual �eldsabout the mean �eld are analyzed. The analytial framework is alled moleularmean �eld theory. Monte Carlo simulations in ompliane with onstraints andrestritions in the model are also arried out to attest the mean �eld results. Thesum rule manifests as an equation of network, i.e., a relation between moleulardensity and hydrogen-bond density. It orretly predits density saturation andbond saturation within the model and is in quantitative agreement with the simula-tion results. The mean �eld analysis is pursued at arbitrary densities in the model.However, it is seen to be a good approximation only at densities orresponding toliquid phase or above. Correlation funtions are also dedued in terms of dual�eld orrelations. The density orrelation vanishes within a short lattie distane,whereas orientational orrelations show long-distane behavior. The orrelationlength dedued here is onsistent with the shorter length inferred in moleulardynamis simulations. Coulomb interations are seen to have little e�et on theorrelation length.We then envisage large hydrophobi surfaes on�ning hydrogen-bond �utua-tions in their intervening region. Casimir-like fores are known to arise in variousontexts where �utuating �elds are on�ned between surfaes. The free energy ofthe system is inreased due to restrition imposed on �utuations by the bound-aries, thereby system tends to minimize the separation in order to redue the freeenergy ost. We investigate hydrophobi fore to be a manifestation of Casimir-likefore due to density and orientational �utuations in liquid water. The disretiza-tion of �utuation modes in on�nement diretion gives rise to a Casimir part offree energy. The modi�ed orientational �utuations in the interfaial region of hy-drophobi surfaes, in addition, give rise to interfaial free energy and interfaial�uutations-indued free energy, both of whih depend on nature of the surfaes.The Casimir part of free energy is the leading ontribution and varies as 1
L
for largedistanes. However, it is seen to be numerially small for distanes beyond fourtimes the orientational orrelation length in the model. Interfaial free energy isalso seen to vary with separation distane, albeit weakly and it reahes a onstantvalue, asymptotially. The interfaial �utuations-indued part is e�etively or-8



relation between modi�ed interfaial �utuations at both surfaes. Its asymptotibehavior is dominated by orientational orrelations in water and is analogous to hy-drophobi fore between mesosopi surfaes. The olletive onsequenes of thesee�ets are analyzed for both hydrophobi and hydrophili types of surfaes. Thequantitative details of hydrophobi interation are onsistent with experiments.Transverse density pro�le of water is also addressed in our alulation and is seento be qualitatively onomitant with results of on�ned water simulations.For both mesosopi surfaes and marosopi surfaes, hydrophobi intera-tion is seen to be largely in�uened by orientational orrelations in water. Ourmean �eld framework provides a diretion to eluidate the size dependene of theinteration in terms of water properties.Publiations and preprints[1℄ Jampa Maruthi Pradeep Kanth, Satyavani Vemparala, and Ramesh An-ishetty. Long-distane orrelations in moleular orientations of liquid waterand shape-dependent hydrophobi fore. Phys. Rev. E, 81(2):021201, 2010.[2℄ Jampa Maruthi Pradeep Kanth and Ramesh Anishetty. Moleular mean�eld theory for liquid water. Physia A, 391:439-455, 2012.[3℄ Jampa Maruthi Pradeep Kanth and Ramesh Anishetty. Hydrophobi forea Casimir-like e�et due to hydrogen-bond �utuations. arXiv:1109.2733,2011.
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�Hydrophobi interation isarguably the most impor-tant non-spei� interationin biologial systems and isresponsible for the reationof enlosed ompartments byproteins and lipid bilayers inwater, whih was fundamen-tal for the evolution of ellsand therefore life."J. N. Israelahvili
1Introdution

Liquid water provides matrix for many ubiquitous physial, hemial and biologi-al phenomena. Interesting among them is hydrophobi e�et whih manifests atmarosopi sale as tendeny of apolar hemial speies to minimize ontat withwater. Some well known onsequenes are oil-water demixing and formation ofnear-spherial water droplets on a lotus leaf. The e�et manifests at mirosopisale as a fore of attration between apolar moeities in aqueous medium, alledhydrophobi fore. This interation is dominantly prevalent in biology and is knownto be responsible for miellar aggregation, ell membrane formation, assembly ofproteins into funtional omplexes [1℄. Its ourene as a solvent-indued intera-tion was �rst suggested by Frank and Evans [2℄ and later eluidated in biologialontext by Kauzmann [3℄. The former study noted that transferring small hy-drophobes suh as hydroarbons into water was aompanied by unfavorable freeenergy hange [4℄, dominated by entropy redution due to reorganization of viinalwater moleules [2℄. Hene, two hydrophobes show tendeny to oalese in orderto minimize the unfavorable free energy. The low solubility of pure hydroarbonsin water, however, hampered e�orts to diretly measure or infer the interation atthis sale in experiments.In early 1980s, employing large hydrophobi surfaes the �rst diret measure-ment of hydrophobi fore was arried out using surfae fore apparatus (SFA) [5℄.Amphiphili moleules were hemisorbed on ativated mia surfaes with their hy-drophobi tails left open to interat with water. Two suh surfaes were employedin a ross-ylinder geometry inside water medium and the measured fore betweenthem was related to interation free energy using Derjaguin approximation [6℄.1



Chapter 1. IntrodutionHydrophobi interation was seen to be in�uential upto hundreds of Angstromsand stronger than inter-surfae van der Waal (vdW) interation. The qualitativenature of the interation i.e., long range and monotoni deay, withstood the testof time [7�9℄.A quantitative understanding of hydrophobi fore from statistial desriptionof liquid water is essential for many biophysial problems, eg., protein folding [10℄.We brie�y disuss essential degrees of freedom to be envisaged in the desriptionof water and past attempts in this diretion. The water moleules are uniquely setup with a geometry and intermoleular interation that failitate diverse mole-ular and orientational arrangements. Eah moleule has two positively polarizedhydrogen atoms (ovalently bonded to oxygen atom) and two negatively polarizedlone-pair of eletrons, distributed at tetrahedral angles about oxygen nuleus. Thegeometry is a onsequene of sp3 hybridization (of 2s and 2p orbitals) in oxygenatom and the assoiated harge distribution is due to eletronegative nature of oxy-gen [11℄. In the bakground of this knowledge, x-ray di�ration studies on strutureof ie and quantum-mehanial studies on water dimer in gas phase [11℄ indiatethat a hydrogen bond ours when two water moleules suitably orient suh thata hydrogen arm of one moleule interats with a lone-pair arm of the other. Theorientation dependene and the spei�ity of hydrogen bonding impart importaneto both density and orientational degrees of freedom in statistial analysis of water.There are models galore whih were proposed and analyzed to reprodue anoma-lous thermodynami properties of water [12, 13℄. Theoretial attempts to envisage�utuations in water are limited to Ornstein-Zernike-like phenomenologial ap-proahes, wherein integral equations only in terms of moleular density orrelationwere heuristially proposed and are numerially solved using di�erent losure ap-proximations [14, 15℄. Wertheim's theory for assoiating �uids envisages similardensity orrelations to be solved in ompliane with steri onstraints imposed byformation of moleular lusters [16℄. Other approahes spei� to moleular �uids,suh as referene interation-site model, were seen to be less preditive in ase of as-soiating �uids [17℄. Hydrophobi interation at both small and large lengthsaleshas also been onventionally addressed in terms of density �utuations in water.In ase of small solutes, phenomenologial approahes based on saled partiletheories envisage density exlusion aused by small solutes and estimate hydrationfree energies [17℄. The aompanying hange in density �utuations of water is2



Chapter 1. Introdutiononsidered small and using Ornstein-Zernike approah, the interation free energyis derived in terms of density orrelation funtion of bulk water [18℄. For extendedhydrophobi surfaes, large lengthsale density �utuations in metastable on�ned�uid [19℄, dewetting-indued avitation under liquid-vapor oexistene onditions[20℄, and �uid struturing e�ets [21℄ are some of the mehanisms suggested for theorigin of hydrophobi interation. These theories are envisaged in narrow range of�uid onditions and besides, were unsuessful in reproduing generi features ofthe interation seen in experiments [7℄. There were also other studies that envis-age eletrostati mehanisms [22, 23℄ or spei� surfae details like harged bilayerpathes [22℄, nanobubbles [24℄. The essential nature of hydrophobi interation isseen to be qualitatively similar between di�erent surfae types [25℄.The spei� nature of hydrogen bonding interation neessitates the densityof hydrogen bonds and dangling bonds (hydrogens and lone-pairs whih are nothydrogen bonded) to be ommensurate with water density. This an be stated asa sum rule for water. Consequently, the �utuations of density and orientational�elds of water moleules (the latter being inherently onneted to the bond �utu-ations) are not totally independent; their long wavelength �utuations espeiallyare to be onsistent with the sum rule. The essential features of hydrogen bondinginteration onsistent with the sum rule are impliitly inorporated in e�etiveharge models of water designed for numerial simulations (TIP5P, TIP3P, et).A water moleule is often modeled as a polar moleule with harges orrespondingto hydrogens and lone-pairs plaed at verties of a tetrahedron. A omplete de-sription of moleular orrelations an be ahieved by de�ning a set of orthonormalvetors in terms of atomi oordinates and de�ning orrelations among them. Weperform large-sale moleular dynamis simulations of the water models at am-bient onditions and observe that density orrelations are short-ranged, whereasdipolar orientations, whih are reeptive to bond �utuations in the neighborhood,are orrelated over large distanes, at least up to 75 Å. Two orrelation lengthsof order 5.2 Å and 24 Å are inferred. Coulomb interations, surprisingly, havelittle e�et on the asymptoti behavior of the orrelations [Chapter 2℄. We utilizeorientational orrelation funtion of bulk water to dedue hydrophobi fore be-tween mesosopi surfaes. The orientational �utuations of water in the viinityof a hydrophobe are modi�ed due to unfavorable surfae-water interations. Theorrelation between modi�ed interfaial �utuations at two hydrophobi surfaes3



Chapter 1. Introdutiongives rise to a long-range attrative fore between the surfaes. The magnitudeof the fore deays exponentially with distane and depends on shape and mu-tual orientation of the surfaes [Chapter 3℄. The exponential deay bears strikingonsisteny with that seen in SFA experiments.For the ase of large hydrophobi surfaes, orrelations in on�ned water needto be asertained. In this ase the desired system size to obtain proper equilibrationand small free energy hanges that need to be reliably omputed are limitations toarry out a simulation study. Alternatively, we propose a simple model for waterwhih inorporates essential features of hydrogen bonding and is envisaged onlattie to aount exatly for hard-sphere repulsion. An analytial framework alledmoleular mean �eld theory is developed to dedue thermodynami and �utuationproperties of the system onsistent with the sum rule for water [Chapter 4℄. Inthe model study we see that density orrelations show hydration peaks and vanishwithin a short lattie distane, whereas orientational orrelations display long-distane behavior, onsistent with the results of moleular dynamis simulations.The mean �eld results are validated using exat Monte Carlo simulations for thelattie model [Chapter 5℄. The mean �eld approximation is envisaged at arbitrarydensities. But, within the model the approximation is seen to be self-onsistentonly for densities orresponding to liquid phase or higher. Qualitative preditionsfor the orrelation funtions are veri�ed with exat simulation results. We thenenvisage large hydrophobi surfaes on�ning water in their intervening region.The presene of large surfaes substantially disrupts the hydrogen bond networkwhose �utuations are suppressed at surfae boundaries. The setting is ideallysuited for �utuations-indued fore between the surfaes. Fores of this natureare generially alled Casimir fores as they were �rst disussed by Casimir in thease of eletromagneti �utuations on�ned between onduting plates [26℄, laterstudied in detail by Lifshitz [27℄ and envisaged in widely di�erent ontexts [28℄.The ase of thermal �utuations-indued fore was �rst disussed by Fisher andde Gennes. They argued that when a binary liquid mixture is on�ned betweensurfaes whih have spei� a�nity towards one of the �uid omponents, Casimir-like density �utuations in the liquid give rise to an e�etive fore [29℄. Origin ofthe fore is entropi in nature; in that, the free energy of the system is inreaseddue to restriition imposed on �utuations by the boundaries, thereby system tendsto minimize the separation in order to redue the free energy ost. We investigate4



Chapter 1. Introdutionhydrophobi fore to be a manifestation of Casimir-like fore due to density andorientational �utuations in liquid water [Chapter 6℄. The Casimir-like behaviorand the modi�ed orientational �utuations near hydrophobi surfaes olletivelygive rise to a hydrophobi interation ating over large distanes and onsistentwith SFA experiments. The analysis is arried out for arbitrary �uid onditionsand for generi surfae types. We also dedue transverse density pro�le for waterin on�nement diretion. The density pro�le shows a haratersti rise near theinterfaes, onomitant with simulation studies on on�ned water and reahes thebulk density value within a hydrogen bond length. For both mesosopi surfaesand marosopi surfaes, hydrophobi interation is seen to be largely in�uenedby orientational orrelations in water. In the onluding hapter, important resultsfrom our model studies are summarized [Chapter 7℄.
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Part ICorrelations in bulk water andhydrophobi fore betweenmesosopi surfaes
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2Correlations in bulk water : A moleulardynamis study
The e�etive interation potentials designed for numerial simulations of water[13, 30℄ provide suessful instanes of impliitly envisaging hydrogen bondinginteration onsistent with its most essential features i.e., orientation-dependentattration and spei� nature of bonding between two water moleules. Here,a water moleule is modeled as a polar moleule with harges orresponding totwo hydrogens and two lone-pair of eletrons plaed at verties of a tetrahedron,as shown in Fig.(2.1). We de�ne position vetors ~H1,2 and ~L1,2 orrespondingto hydrogens and lone-pairs, respetively, with respet to the position of oxygen
O. Angles between the vetors and their lengths �utuate about respetive meanvalues. A water moleule's orientations an be onveniently desribed with a hoieof vetors de�ned as

~d1(2)(r) =
~H1 + ~H2

| ~H1 + ~H2|
− (+)

~L1 + ~L2

| ~L1 + ~L2|
(2.1)where r is the position of oxygen atom in the bulk. The hoie of ~d1(r) and ~d2(r)is suh that they do not depend upon bond lengths of the moleule; they aresymmetri under exhange of hydrogen or lone-pair positions of the moleule. Theorresponding unit vetors d̂1(r), d̂2(r) and d̂3 ≡ d̂1×d̂2 form an orthonormal set. Aset of three orthonormal unit vetors are su�ient to de�ne any diretion in threedimensional spae. Here, d̂1(r) is dominantly along the diretion of dipole �eldand d̂2(r) exists only if the water moleule di�ers from its mean near-tetrahedral7
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Figure 2.1: Geometry of a water moleule envisaged in TIP5P, TIP3P models.geometry i.e., it is proportional to the quadrupole moment of the moleule.The d̂-vetors [Eq.(2.1)℄ form a omplete triad with whih orientation of anyvetor ( ~H1,2 or ~L1,2) an be spei�ed. Consequently, dynamis of water an beunderstood to be an interating system of the d̂-vetor �elds. In partiular mole-ular dynamis (MD) simulation of water moleules impliitly gives us the dy-namis of these �elds. Various statistial orrelations involving d̂1(r), d̂2(r) and
ρ(r) ≡ (d̂1(r))

2 = (d̂2(r))
2 in the liquid phase of water an be formulated as

〈ρ(r1)ρ(r2)〉 = g(r1, r2) (2.2a)
〈

ρ(r1)d̂a(r2)
〉

=
r

r
fa(r1, r2) (2.2b)

〈

dia(r1)d
j
b(r2)

〉

=
1

2

(

δij − rirj

r2

)

tab(r1, r2)−
1

2

(

δij − 3
rirj

r2

)

lab(r1, r2) (2.2)where r = (r1 − r2), r = |r|, subsripts a, b = 1, 2, 3 denote either of d̂1, d̂2, d̂3 andvetor indies i, j = 1, 2, 3 denote diretions in three-dimensional spae. g(r1, r2) isdensity orrelation funtion, here, of oxygen. The remaining funtions apture theorrelations among other degrees of freedom of the vetor �elds. The translationaland rotational symmetry of the system enable deomposing the tensorial propertiesof these orrelations expliitly and thus analyze the data in terms of simple salar8
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Figure 2.2: TIP5P - g(r). Oxygen-oxygen radial distribution funtion. (inset)additional hydration shells in the end-hydration region.funtions like g(0, r), fa(0, r), tab(0, r), lab(0, r) here after denoted and de�ned asbelow.
g(r) = 〈ρ(0) ρ(r)〉 (2.3a)
fa(r) =

〈

ρ(0) d̂a(r) · r̂
〉 (2.3b)

tab(r) =
〈

d̂a(0) · d̂b(r)
〉 (2.3)

lab(r) =
〈

d̂a · r̂ d̂b · r̂
〉 (2.3d)TIP5P model [31℄ possesses all orientational degrees of freedom of a watermoleule and has improved auray in prediting the strutural properties of waterat ambient onditions [Fig.(2.1)℄. A large system size is hosen to aomodate largeorrelation lengths and failitate better statistis (see Methods setion 2.3). MDsimulations of TIP5P water model are performed in a large ubi box of side 150Å at ambient onditions i.e., ρ = 1 g m−3, P = 1 atm, T = 300K.2.1 ResultsThe funtion g(r), saled with respet to ideal �uid struture at the same density, isalled radial distribution funtion. It is the most onventionally studied orrelation9
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f1(r) is orrelation between oxygen atom and omponent of viinal dipole alongthe radial vetor separating them. This funtion also exhibits hydration strutureand vanishes beyond 14 Å [Fig.(2.3)℄.The orientational orrelations of dipolar �eld are analyzed in terms of trans-verse trae part t11(r) and longitudinal traeless part l11(r). The longitudinalpart measures the orrelation between omponents of two dipoles along the radialvetor separating them and transverse part aptures the rest. t11(r) orrelationsolely ontributes to Kirkwood dieletri funtion [32℄. It shows osillatory hydra-tion struture, but vanishes (in ompliane with rotational symmetry in the fullsystem) beyond 14 Å, as shown in Fig.(2.4).The longitudinal part l11(r) is plotted in Fig.(2.5). It is seen to be alwayspositive and furthermore, in the 14− 75 Å regime it an be �tted to an Ornstein-
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Figure 2.4: TIP5P - t11(r) : Transverse part of dipolar orientational orrelation.(inset) The orrelation vanishes beyond the hydration region of 14 ÅZernike (OZ) form as given below.
l11(r) = 0.39(2)

exp(−r/5.2(1)Å)
r

+ 0.027(1)
exp(−r/24(1)Å)

r
r > 14Å (2.4)

l11(r) shows longest orrelation length of 24 Å. Furthermore, it exhibits hydra-tion peaks upto 14 Å [Fig.(2.5)℄. The error bars are mentioned as explained inthe following illustration. Eg. The preise strength of the �rst exponential is
0.397541 ± 0.02168 and it is written here as 0.39(2) whih expresses the meanvalue and in braket, the error in the last signi�ant digit. The statistial sam-pling errors are dramatially redued for large distanes, as expeted [Appendix(2.4.1)℄.The orientational orrelations have not been measured or inferred in experi-ments. To asertain the generality of the long-range orrelation we also simulatedTIP3P model of water whih, by design, has d̂1 degree of freedom only [33℄. Thatis, eah water moleule's orientation an be ompletely desribed by d̂1 �eld alone[Fig.(2.1)℄. The simulations of TIP3P model are also performed with a large systemsize and at ambient onditions [see Methods setion (2.3)℄.Analysis in the ase of TIP3P model also shows that l11(r) orrelation followsthe same asymptoti behavior as desribed by Eq.(2.4). All other orrelations g(r),
f1(r), t11(r) vanish beyond 12 Å and display no long-distane behavior. 11



Chapter 2. Correlations in bulk water : A moleular dynamis study

 0

 0.0025

 0.005

 0.0075

 20  40  60

l11

r (Å)

−0.15

 0

 0.15

 0.3

 0.45

 0  5  10  15

 

 

Figure 2.5: Exponential deay in longitudinal part of dipolar orientational orrela-tion l11(r) outside the hydration region. (red and green, bottom urve) TIP5P dataand �t funtion given by Eq.(2.4) on top of eah other. (blue, middle urve) TIP3Pdata for l11(r). (pink, top urve) TIP3P with trunated Coulombi interations.For larity, the middle and the top plots are shifted up by 0.001 and 0.002 unitsrespetively. (inset) l11(r) inside the hydration region within TIP5P model.A water moleule in liquid phase is predominantly in�uened by hydrogen bond-ing and furthermore, it has a net dipole moment whih interats through Coloumbfore. In the e�etive harge models, Coulomb interations are suitably parameter-ized to envisage both short-range hydrogen bonding and long-range dipolar inter-ations. To asertain the ause for the long-distane behavior of l11(r), we trunatethe Coulomb interation potential smoothly in TIP3P model simulations and ef-fetively retain short-range interation that imitates hydrogen bonding [Appendix(2.4.1)℄. The hydration peaks in orrelation funtions are determined onsistentwith the hydrogen bonding interation. Sine the peaks extend upto about 12Å we hoose the same distane ut-o� in implementing the trunation proedure.The simulations with trunated-Coulomb potential are performed under ambientthermodynami onditions. There is no notieable variation in the density of thenew model system ompared to full-Coulomb ase. Our analysis shows that l11(r)remains essentially unhanged in the regions of �rst few hydration shells and for
r > 30 Å. This indiates that hydrogen-bond interations are responsible for12



Chapter 2. Correlations in bulk water : A moleular dynamis studythe long-distane behavior of orientational orrelations. The intermediate regionexhibits over-struturing e�ets upto 30 Å [34℄.It is also found that all orrelations involving d̂2, d̂3 vetors in TIP5P modelvanish upto statistial errors beyond the �rst hydration peak itself [Figs.(2.6)-(2.10)℄. Therefore, d̂2, the quadrupole moment of the water moleule, �utuatesloally and randomly without any non-loal orrelations. d̂3 being a pseudovetorhas vanishing orrelations with d̂1 and d̂2, demonstrating that there is no parityviolation in the system.
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Figure 2.6: TIP5P - l22, (inset)t22. Longitudinal and transverse parts of the or-relation < d̂2 d̂2 >, vanishing upto statistial errors beyond the �rst hydrationpeak2.2 DisussionThe three ase studies are in agreement with Eq.(2.4) asymptotially. These ob-servations suggest that (i) the orientational �utuations in liquid water are domi-nantly those of dipole degree of freedom; in ontrast, the quadrupole has no e�etbeyond the �rst hydration peak, (ii) in liquid phase these orientational �utua-tions are in�uened by loal environment of respetive moleule through hydrogenbonding, signi�antly more ompared to long-range eletrostati interations, (iii)furthermore, the orientational �utuations exhibit long-distane orrelations.
g(r) is the onventionally studied orrelation funtion in water. It displays13
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 Figure 2.7: TIP5P - l21, (inset)t21. Longitudinal and transverse parts of the or-relation < d̂2 d̂1 >, vanishing upto statistial errors beyond the �rst hydrationpeakonly hydration peaks and exhibits no long-distane behavior. Reent small-anglex-ray sattering experiments indiate that g(r) has a orrelation length of about
3 Å (300 K) [35℄ in orroboration with an earlier small-angle neutron-satteringexperiment [36℄. The origin of this length is speulated to be due to presene ofhydrogen-bonded strutures of two di�erent densities oexisting in liquid water[35℄. This e�et is absent in TIP5P and TIP3P models. In MD simulations usingspherially symmetri models of water [12, 37℄ the only interesting orrelation is
g(r), whih exhibits no signi�ant long-distane behavior. These fats supportour view that any long-range orrelation in water an only be due to orientationaldegree of freedom.2.3 Simulation methodsThe simulations of TIP5P water system are performed with gromas pakage(version 3.3.1) [38℄. In the ourse of simulations an integration time step of 2 fsis used. The fast-moving bonds O −H are onstrained using lins algorithm. Alarge system onsisting of 110592 moleules in a 150 Å box is equilibrated for 2ns in onstant pressure and temperature NPT ensemble. A onstant pressure ismaintained isotropially for the system. In order to ompute van der Waals inter-14
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 Figure 2.8: TIP5P - l31, (inset)t31. Longitudinal and transverse parts of the or-relation < d̂3 d̂1 >, vanishing upto statistial errors beyond the �rst hydrationpeakation a ut-o� distane of 12 Å is used i.e., the potential is smoothly trunated at
12 Å away from the moleule in question. The smooth trunation allows onserva-tion of energy as against abrupt trunation shemes. The long-ranged eletrostatiinteration is handled by inorporation of multiple time-stepping proedure. Toredue the omputational ost of handling non-bonded interations, a non-bondedpair-list is reated whih ontains all pairs of atoms for whih non-bonded intera-tions should be alulated. This list is updated periodially during the dynamis.The pair-list distane is hosen to be greater than ut-o� distane to ensure atomsmoving in and out of ut-o� distanes within the period of updation are also in-luded for alulation of non-bonded interations. A pair-list distane of 15 Å isused in our simulation. Periodi boundary onditions are imposed in all diretions.Full eletrostati interations are omputed with partile mesh Ewald method witha tolerane of 10−6 and updated every two time steps [39℄. The initial equilibria-tion run is arried out at 1 atm pressure and 300K temperature. The equilibratedvolume is noted and at this average volume a prodution run is arried out for 2ns in a onstant volume NV T ensemble. During the prodution run, the atomioordinates of all moleules in the system are saved every 100 ps for analysis.The simulations on TIP3P water system are performed using namd pakage(version 2.6) [40℄. Here, 33105 water moleules are simulated in a ubial box of size15
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Figure 2.9: TIP5P - l32, (inset)t32. Longitudinal and transverse parts of the or-relation < d̂3 d̂2 >, vanishing upto statistial errors beyond the �rst hydrationpeak
100 Å and the proedures employed for olleting equilibriated on�gurations aresame as those desribed in ase of TIP5P. The onstrained model is implementedusing settle algorithm. A ut-o� distane of 12 Å and a pair-list distane of 15Å are used. Simulations are arried out under periodi boundary onditions atambient onditions.The TIP3P model with trunated Coulomb potential is simulated using thesame proedure as desribed above in namd pakage. A smooth potential truna-tion sheme is employed to ensure onservation of energy and harge in the system.2.4 Appendix2.4.1 Fit funtions for l11(r)For ompleteness various �tting funtional forms are envisaged for l11(r) data ob-tained from both TIP5P and TIP3P model simulations. The funtions and theirorresponding root mean square deviations (RMSDs) are summarized in Table(2.1).Among the exponentials, the bi-exponential OZ funtion has at least a fatorof two better RMSD than other ombinations. A single power-law also seems to �t16
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Figure 2.10: TIP5P - l33, (inset)t33. Longitudinal and transverse parts of theorrelation < d̂3 d̂3 >, vanishing upto statistial errors beyond the �rst hydrationpeakthe data very well in this limited distane range upto 75 Å. From numeris pointof view the power-law behavior annot be stritly ruled out. If the r−n behavioris extrapolated asymptotially for large distanes, it amounts to the fat that thesystem is exhibiting ritial behavior. In MD simulations, we did not see anyonomitant signatures of ritial behavior at all. Furthermore, liquid water isertainly not ritial at ambient onditions. Therefore, we disard the power-lawextrapolation and onlude that the bi-exponential OZ �t funtion is the orretextrapolation.There are analyti theories for dipolar �uids whih argue that the dipolar orre-lations behave like r−3 asymptotially due to long-range nature of Coulomb intera-tions [14, 41℄. We notie from Fig.(2.5) that the trunation of Coulomb interationhas null e�et on the asymptoti behavior of dipolar orrelation. Also, the or-relation is seen to respond to variation in temperature [Table (2.2)℄. Hene, thearguments attributing long-distane dipolar orrelations to Coulomb interationsare not justi�ed.
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Model Fit funtion RMSDTIP5P 0.39(2)

exp(−r/5.2(1))
r + 0.027(1)

exp(−r/24(1))
r 2.54462e− 05TIP3P 0.34(2)

exp(−r/5.4(2))
r + 0.029(3)

exp(−r/24(1))
r 2.54122e− 05TIP5P 0.152(2)

exp(−r/10.36(9))
r 5.33897e− 05TIP3P 0.151(2)

exp(−r/10.5(1))
r 5.80041e− 05TIP5P 0.0220(4) exp(−r/6.71(5)) 6.72991e− 05TIP3P 0.0217(5) exp(−r/6.85(6)) 7.78593e− 05TIP5P 8.0(1) r−2.990(8) 2.5292e− 05TIP3P 7.2(1) r−2.940(8) 2.5860e− 05Table 2.1: Numerial �tting of l11(r) obtained from simulations of TIP5P andTIP3P data. The error bars quoted are as per the following illustration : Eg.

0.397541 ± 0.02168 is written as 0.39(2) whih expresses the mean value and itsleading signi�ant deviation.
18
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T (P=1 atm) Fit funtion RMSD
280K

0.42(3)
exp(−r/5.0(2))

r + 0.031(3)
exp(−r/24(1))

r

6.9(1) r−2.90(1)

9.00(1) r−3

3.3018e− 05

3.4272e− 05

3.8138e− 05

300K

0.34(2)
exp(−r/5.4(2))

r + 0.029(3)
exp(−r/24(1))

r

7.2(1) r−2.940(8)

8.58(1) r−3

2.5412e− 05

2.5870e− 05

2.7774e− 05

350K

0.31(2)
exp(−r/5.6(3))

r + 0.023(3)
exp(−r/27(3))

r

6.3(2) r−2.92(1)

7.93(1) r−3

3.3624e− 05

3.4253e− 05

3.6437e− 05Table 2.2: l11(r) in TIP3P : Temperature dependene and orresponding variationin �t funtion parameters.
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3Hydrophobi fore between mesosopisurfaes
Hydrophobi fore measured in SFA experiments is seen to be in�uential at largedistanes upto about 200 Å. Between stable hydrophobi surfaes the fore is in-ferred to be exponentially deaying with a orrelation length of 12 Å [5, 7℄. We mayenvisage the situation in a simulation study. The aompanying free energy hangeat large separation distanes ould be small and reliable free energy omputationshemes are neessary in order to ompute the interation to required preision insimulations. Alternatively, a quantitative theoreti study is onsidered below. Weenvisage small hydrophobi surfaes present inside aqueous medium. In the limit ofsmall surfae sizes the hydrogen-bond network in water medium is not disruptedsigni�antly. Hene, we utilize the orrelation funtions of bulk liquid water inorder to dedue hydrophobi interation free energy between mesosopi surfaes.Our analysis impliates the long-distane orientational orrelations responsible forthe long-range nature of hydrophobi fore [42℄.Hydrophobi surfaes annot form hydrogen-bonds with water. Consequently,water moleules in the viinity of a hydrophobe rearrange themselves suh thatthey form a sheet of hydrogen-bond network on the surfae. Their interationsare suh that the diretions of lone pairs and hydrogen atoms are perpendiularto the surfae normal of the hydrophobe. Owing to the approximate tetrahedralonformation, water moleules annot have a unique on�guration satisfying theabove riterion [43℄. Consequently, they explore other possible orientations aswell by �utuating at pio-seond time sales [44℄. These network �utuations20
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Figure 3.1: S1, S2 are hydrophobi surfaes with their loal normal vetors n̂1, n̂2.
R is the minimum distane between the two surfaesontribute signi�antly to the solvation free energy of the hydrophobe. Interationbetween a hydrophobi surfae and orientation of a viinal water moleule an bewritten in terms of n̂(r), the loal unit normal vetor to the hardore van der Waalssurfae of the hydrophobe and d̂1(r

′

), the dipole of water moleule near the surfae,where r′

= r+ δr; δr is typial length of hydrogen arm of water moleule (about 1Å). A simple loal interation term an be taken as (n̂(r)·d̂1(r′

))2 implying that thewater dipoles orient orthogonal to the surfae normal as seen in simulations [45℄(importantly, no linear term in (n̂ · d̂1), for that means a preferential orientationof the water dipole inward/outward to the surfae).The free energy hange ∆G due to two small hydrophobi surfaes S1 and S2[Fig.(3.1)℄ in water an be estimated by
exp(−∆G/kT ) = 〈exp(−∆H/kT )〉 (3.1)where ∆H =

γ1
2

∫

S1

dn̂1

(

n̂1(r1) · d̂1(r
′

1)
)2

+
γ2
2

∫

S2

dn̂2

(

n̂2(r2) · d̂1(r
′

2)
)2

γ is a measure of strength of interation between hydrophobi solute and waterand it an depend upon temperature, density and other parameters de�ning thethermodynami system. The brakets < ... > refer to statistial averaging withrespet to pure water system and integration is over area of eah surfae. R is avetor along minimum distane of separation between them.When the distane R (= |R|) is large ompared to radius of urvature of eahsurfae and the surfae areas are su�iently small, the statistial averaging an bedone by umulant expansion [Appendix (3.2.1)℄. The leading term that depends21



Chapter 3. Hydrophobi fore between mesosopi surfaeson distane R is expliitly given below.
exp(−∆G/kT ) = exp

[

γ1 〈. . .〉+ γ2 〈. . .〉+
γ1γ2

4(kT )2

∫

S1

∫

S2

dn̂1 dn̂2

×
〈

(n̂1(r1) · d̂1(r
′

1))
2 (n̂2(r2) · d̂1(r

′

2))
2
〉

+ . . .
] (3.2)In the above equation, terms proportional to γ1, γ2 (or their higher orders) onlyontribute to interfaial free energy for respetive hydrophobe-water interfae. Theterm proportional to (γ1γ2) ontributes to the interation free energy. The abovefree energy hange is a onsequene of surfae-water interations. The full solvationfree energy in addition omprises hydration free energy of eah solute proportionalto solute's volume, whih an be dedued in the in�nite dilution limit [17, 46℄.Other forms of short range surfae-water interation suh as van der Waal inter-ation may also be envisaged [18℄. They do not, however, a�et the long-distanebehavior of hydrophobi interation disussed below.The interation term in Eq.(3.2) is analyzed [Appendix (3.2.1)℄ and the leadingexpression for fore F (R) = −∂∆G/∂R is given by the following expression.

F (R) =
γ1γ2
2kT

A1A2
∂

∂R
Tr [ΣS1

E(R)ΣS2
E(R)] (3.3)where A1, A2 are areas of the surfaes. E is a matrix whose elements denoteorrelation between omponents of interfaial dipoles. ΣS is a geometri fatorharatersti of shape of the surfae. The elements of E, ΣS matries are given by

Eij(R) ≡
〈

d1
i(r

′

1) d1
j(r

′

2)
〉

≃ −1

2

(

δij − 3
RiRj

R2

)

l11(R) for large R (3.4)
(ΣS)

ij ≡ 1

A

∫

S

dn̂ ninj (3.5)where, the integration in Eq.(3.5) is over the diretion of surfae normal over theextent of surfae area.The above result on hydrophobi fore is very general in nature. As disussedin earlier paragraphs, the leading order (n̂ · d̂1)2 is taken to be the interationenergy term for simpliity. By inluding the non-leading terms in the interationenergy funtion [Eq.(3.1)℄ and doing the umulant expansion, it an be shown thatthe fore equation for large R [Eq.(3.3)℄ remains unhanged, thus establishing the22



Chapter 3. Hydrophobi fore between mesosopi surfaesgenerality of the result.These onsiderations are valid for distanes beyond the solvation region of a typ-ial water moleule. The umulant expansion allowed deomposing the fore equa-tion as a simple onvolution of surfae-dependent part and solvent-dependent part.Equation (3.3) enables us to onlude that range of the fore between hydrophobisurfaes at large distanes is always attrative governed by l211(R) ∝ exp(−R/12)for large R. Therefore, the hydrophobi fore falls o� exponentially with a largestorrelation length of about 12 Å [see Appendix (3.2.1)℄, in addition to several othershorter range exponents as well.
F (R) ∝ (−) exp(−R/12Å) for large R (3.6)The strength of attration is proportional to area and shape of eah surfaegiven by the tensor Σ, the seond moment of surfae normal. The �nal traeoperation over the matries E(R) and ΣS implies that the hydrophobi attrationis not just a purely distane-dependent interation suh as van der Waals'. Indeedthe orientation of the surfaes relative to eah other an modify the magnitude ofthe fore signi�antly. As an example if two small planar hydrophobi surfaes aremutually perpendiular and are su�iently far apart, the magnitude of the foreis zero. In ontrast, the fore is maximum when they are parallel to eah other[see Appendix (3.2.2)℄.3.1 DisussionA simple-minded theoretial estimate of the fore between mesosopi hydrophobisurfaes done here suggests that the surfaes experiene a long-range fore albeitthe strength is not large and in addition, the proposed fore depends on shapeand relative orientations of the surfaes. The long-range nature of the fore is aonsequene of orientational orrelations in water. The exponential deay impliedin Eq.(3.6) bears a striking onsisteny with that seen in experiments measuringhydrophobi fore [5, 7℄.For the ase of large hydrophobi surfaes, orrelations in water on�ned be-tween the surfaes need to be asertained. To simulate suh a system the surfaesneed to be several times larger than the longest orrelation length in the system in23



Chapter 3. Hydrophobi fore between mesosopi surfaesorder to obtain proper equilibriation. This requires huge system size that wouldrender the simulation prohibitively resoure intensive. In addition, the aompa-nying free energy hange ould be very small due to weak nature of orrelations atlarge distanes. Instead, we take analyti route to desribe hydrogen-bond �utu-ations in water and the e�et of spatial on�nement on them. This study formsthe seond part of the thesis.3.2 Appendix3.2.1 Derivation of fore equationIn this setion we provide a brief desription of intermediate steps in the dedu-tion of the fore equation. The tehnique under onsideration is umulant expan-sion used to perform statistial averaging in an approximate manner [47℄. FromEq.(3.1),
exp(−∆G/kT ) =

〈

1− γ1
2kT

∫
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dn̂1(n̂1(r1) · d̂1(r
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1))
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2(. . .)
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2
〉

+ . . .
] (3.7)Fore between the surfaes is given by F (R) = −∂∆G/∂R. Only the terms pro-portional to (γ1γ2) (or its higher order) depend on distane R and ontribute tothe fore. In the above equation we retained only the leading order fore term.Employing the notation that any repeated index is summed over, the fore termin Eq.(3.7) an be analyzed as below.
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](3.8)where i,j,k,p are vetor indies. The last step is tautologial as we added and sub-trated an important term in the expression. Furthermore, it an be shown thatin a system where asymptoti behavior of orrelation 〈d1i(r′

1)d1
k(r

′

2)
〉 is exponen-tially falling-o�, the last term denoted by {. . .} in Eq.(3.8) falls-o� exponentiallyeven faster than the �rst term and therefore, it an be negleted in the asymptotiregion (i.e., for large R). The vetor indies in the remaining expression implymatrix multipliation and a trae operation over the produt of matries omingfrom j index summation. This should be lear if we de�ne the matries
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(ΣS)
ij =

1

A

∫
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dn̂ ninj (3.10)where i,j are generi vetor indies and R is the minimum distane of separation.Now the fore expression takes the form
F (R) =

γ1γ2
2kT

A1A2
∂

∂R
Tr [ΣS1

E(R)ΣS2
E(R)] (3.11)where Tr[. . .] means trae over the produt of matries. The subsripts S1 and

S2 refer to respetive surfaes and Σ matrix de�nes the seond moment of surfaenormal for the respetive surfae.Now, the dipolar orrelations from Eq.(2.2) are given as
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Figure 3.2: A segment of spherial surfae (boldened). n̂ is loal normal vetor,and θ̄ is the setor angle for the segment. N̂ is the dipole vetor of the segment,obtained after integrating n̂ over the extent of segment area.Our analysis from the simulation of bulk liquid water shows that, at large R, onlythe longitudinal part of the dipolar orrelation survives [Eq.(2.4)℄, i.e.,
Eij(R) ≃ (−)

1

2

(

δij − 3
RiRj

R2

)

l11(R)where l11(R) = 0.39
e−R/5.2

R
+ 0.027

e−R/24

R
R > 14ÅHene, the fore equation [Eq.(3.11)℄ will take the form

F (R) ∝ ∂

∂R
Tr[. . .] l211(R)

∝ (−) Tr[. . .]× 1

R2
exp(−R/12Å) (3.12)where only the long-range exponential's ontribution is emphasized, sine analysisis for large R.3.2.2 Surfae fator ΣSThe Σmatrix is a geometri fator related to seond moment of the surfae normal.It is de�ned as

(ΣS)
ij ≡ 1

A

∫

S

dn̂ ninj (3.13)where n̂(r) is the loal normal vetor at the point r on the surfae; i,j are anytwo vetor omponents of n̂. For a segment of spherial surfae, as illustrated in26



Chapter 3. Hydrophobi fore between mesosopi surfaesFig.(3.2),
n̂ : (sin θ cosφ, sin θ sinφ, cos θ); (3.14)
AS =

∫

S

dn̂ =

∫ θ̄

0

dθ sin θ

∫ 2π

0

dφ = 2π(1− cos θ̄) (3.15)The integral ∫ ninj an be arried out in a similar manner over various pairs of
n̂ vetor omponents. The Σ matrix an be �nally expressed in terms of �rstmoment of the surfae as
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dn̂ niFor a spherial surfae, θ̄ = π. Hene (ΣS)
ij = 1

3
δij . For a planar surfae, θ̄ = 0.Hene (ΣS)

ij = N iN j . The diretion of N̂ is hosen only with respet to the sideof surfae under onsideration.We show below that the strength of the fore depends on the relative orienta-tions of the surfaes with respet to eah other. We onsider two planar surfaesseparated by large distane. For the surfae S1, (ΣS1
)ij = N i

1N
j
1 and similarlyfor S2, (ΣS2
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l
2 where i, j, k, l are dummy vetor indies in oordinatespae. For large R, Eij(R) ≃ −1
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l11(R) where i, j are dummyvetor indies. So, the part of fore expression involving onvolution of ΣS and Ematries reads as
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(
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R2 (3.17)For surfaes parallel to eah other, N̂1 · N̂2 = N̂1 · R̂ = N̂2 · R̂ = 1. Hene,
F ∝ (−)e

−R/12

R2 . For surfaes perpendiular to eah other, N̂1 · N̂2 = 0 and either
N̂1 ·R̂ = 0 or N̂2 ·R̂ = 0 depending on orientation of respetive surfae with respetto the radial vetor. Hene, F = 0. 27



Part IIMoleular mean �eld theory forwater and hydrophobi forebetween marosopi surfaes
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4Moleular mean �eld theory for water
We address the hydrophobi fore between large surfaes in a model theoreti study.This forms seond part of the thesis. We �rst develop a theoreti desription toanalyze hydrogen-bond �utuations in model water, alled moleular mean �eldtheory. The analysis is then extended to inlude marosopi hydrophobi surfaesas boundaries and thermodynami onsequenes of on�nement are dedued.The onstituent partiles of every �uid have a repulsive hard-ore of �nite ra-dius due to Pauli exlusion priniple obeyed by eletrons. As a onsequene of�nite size, eah partile has a maximum oordination number. If the partile pos-sesses orientation-dependent attrative regions in its potential, suh as hydrogenbonds, sulfur bonds, the partiles an partiipate in a �xed number of bonds. Con-sequently, there are related steri onstraints disallowing arbitrary number of o-ordinating or bonding partners from approahing an already oordinated/bondedpartile. These fats an be formulated into sum rule(s) for the system. Den-sity saturation and bond saturation e�ets are natural onsequenes of suh sumrule(s). In ase of water, a hydrogen bond ours when a hydrogen arm of onemoleule interats with a lone-pair arm of another moleule. The spei�ity nees-sitates the density of hydrogen bonds (HB) and density of dangling bonds (DB) i.e.,lone-pair and hydrogen arms whih are not hydrogen-bonded, to be ommensuratewith moleular density (ρ). This an be stated as a sum rule, given byDB+ 2 HB = 4ρ (4.1)Now, if we onsider a bulk system of water moleules the above equation still29



Chapter 4. Moleular mean �eld theory for waterholds when DB, HB and ρ are appropriately de�ned per unit volume. In otherwords, the loal topology of moleular interations implies a sum rule whih is alsotrue in the bulk for any thermodynami onditions suh as temperature, pressure.Furthermore, this is also independent of other interations in the dynamial systemsuh as van der Waals' (vdW), Coulombi et. These fats are not surprising sineEq.(4.1) is a topologial onstraint whih is insensitive to details of dynamis.Thermodynami properties of solid phase (ie forms) are governed by periodidistribution of water moleules whih also �xes HB. Hene, it is su�ient to envis-age water density �eld alone in the desription of solid phase. In low density phases(gas or vapor), the free energy is dominated by kineti energy of the moleules. Ifhydrogen bonds are present, an appropriate density of bond dimers an be intro-dued and the thermodynami phase behavior an be analyzed in a non-interatingsystem of monomers and dimers whih satisfy the sum rule.Liquid water, however, laks the trivial struture of solid or the non-interatingnature of gas moleules. The hydrogen-bond (formation and breaking) dynamisin the liquid phase take plae at pioseond timesales and ontribute to entropyof the system. In order to analyze the hydrogen-bond �utuations it is essential toenvisage both density and orientational degrees of freedom of eah water moleule.The �utuations of density and orientational �elds (the latter being inherentlyonneted to HB and DB �utuations) are not totally independent; their longwavelength �utuations espeially are to be onsistent with the sum rule.We propose a simple model Hamiltonian for water whih inorporates essentialfeatures of hydrogen bonding interation and analyze the �utuations onsistentwith the sum rule [48℄. To aomodate the hard-sphere repulsion we envisage alldensity �elds on a hyperubi lattie and the model is essentially a slight general-ization of the Pauling's model for water [49℄. The partition funtion orrespondingto the lattie model is analyzed by introduing appropriate disrete lattie �elds.It is shown that the sum rule is automatially true in the bulk. Moleular mean�eld (MMF) approximation extremizes the partition funtional in terms of de�neddual �elds. In addition, all the observables suh as ρ, HB and DB are funtionalsof these dual �elds. One of the mean �eld equation whih implies sum rule alsoimpliates the equation of network i.e., a relation between equilibrium densitiesHB and ρ. We study the equation of state and various mean �eld �utuations interms of dual �eld orrelation funtions. We also onsidered long range Coulomb30



Chapter 4. Moleular mean �eld theory for waterinteration and studied its onsequenes. Subsequently, an MC simulation studyof the model is pursued and ompared with the mean �eld theory quantitatively.We also disussed results of our analysis in the ontext of experiments and MDsimulations.4.1 Model for water
+

0

0

 _  

 _  

+

+
 _  

+

e

e
2 e

3

e
1

3

^

^ ^

^

 _  

e_1

_
e_

2Figure 4.1: Allowed on�gurations : A water site with two hydrogen arms (+)and two lone-pair arms (-) on links around the site, onsistent with onstraintsEq.(4.2). A hydrogen bond ours when a hydrogen arm (+) and a lone-pair arm(-) of two moleules meet at a site. (right bottom orner) Unit vetors on ubilattie.On a three-dimensional hyperubi lattie, we de�ne the oupation �eldW (r) =

{0, 1} orresponding to water being absent or present respetively, at a site r =

(x, y, z). At eah oupied site we de�ne bond arms Hα(r) = {0,±1}, where
α = {±1,±2,±3} denotes the diretion around the site. Hα(r) = 0 orrespondsto no arm on the orresponding link, +1 to that of hydrogen arm, and −1 for lonepair arm. The onstraints between W (r) and Hα(r) are

∑

α

H2
α(r) = 4W (r) (4.2a)

∑

α

Hα(r) = 0 (4.2b)
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Chapter 4. Moleular mean �eld theory for waterwhih imply that every water moleule has two hydrogen arms and two lone-pairarms only. A hydrogen bond is realized when two water moleules two lattie unitsapart have one of eah's hydrogen and lone-pair arms meet at a site, as shown inFig.(4.1). When two moleules are on near neighbor sites they are not allowed tohave any non-zero bond arm on the link between them. The onstraint is given by
W (r)

(

∑

α

H2
α(r + eα)

)

= 0 (4.3)We write a general interation Hamiltonian in terms of the Hα �eld as
H =

λ̃

2

∑

r

∑

α,α′

Hα(r − eα)Hα′ (r − eα′ ) (4.4)where, λ̃ is the interation strength and α and α
′ denote diretions around a site.There are additional restritions on Hα �eld, namely, (i) at any site no more thantwo bond arms meet i.e.,

0 ≤
∑

α

H2
α(r + eα) ≤ 2 (4.5)and (ii) two non-zero bond arms of same type are disallowed from meeting at asite i.e., anti-bonds are disallowed:

−1 ≤
∑

α

Hα(r + eα) ≤ 1 (4.6)The grand anonial partition funtion for the system at a �nite hemial po-tential µ̃ for water and inverse temperature β is given by
Z =

∏

r

′

∑

W (r), Hα(r)

exp

[

−β
∑

r

(H− µ̃W (r))

] (4.7)where the prime indiates that summation over W (r) and Hα(r) has to be arriedout in ompliane with Eqs.(4.2), (4.3), (4.5), and (4.6). Evaluating Z amountsto enumerating all possible on�gurations that satisfy the above onstraints andalulating the exponential in Eq.(4.7) for those on�gurations over the allowed32
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Figure 4.2: Disallowed on�gurations : non-zero bond arms of same type of twomoleules meeting at a site; more than two non-zero arms meeting at a site.range of W and Hα at �xed values of µ̃, β and V the volume of the system.The restritions shown in Fig.(4.2) represented by Eqs.(4.3), (4.5), and (4.6)are at sites where there is no water. To implement them in our analysis it is usefulto de�ne two disrete integer �elds b(r), q(r):
b(r) =

∑

α

H2
α(r + eα) (4.8a)

q(r) =
∑

α

Hα(r + eα) (4.8b)The disrete �eld b(r) ounts the number of non-zero arms in the neighborhood ofsite r, while q(r) measures the net harge i.e, the di�erene between the number ofhydrogen arms and lone-pair arms meeting at site r. By onstrution, b(r) variesbetween 0 and 6 on a three dimensional hyperubi lattie and q(r) in turn variesbetween −b(r) and b(r). By imposing the ondition that b(r) ≤ 2 in our analysis,we ensured that no more than two arms an meet at a site. Furthermore, for
b(r) = 2 we demand q(r) = 0 to disallow anti-bond on�gurations. In terms ofthese variables, Eqs.(4.3), (4.5), and (4.6) an be rewritten as

W (r)b(r) = 0 (4.9)
(b(r), q(r)) = {(0, 0), (1, 1), (1,−1), (2, 0)} (4.10)33



Chapter 4. Moleular mean �eld theory for waterThe �elds b(r) and q(r) are restrited only to the above set of mutually exlusivepairs. We now rewrite the partition funtion as
Z =

∏

r

′

∑

W (r), Hα(r)
b(r), q(r)

exp

[

−β
∑

r

(

H− ν̃q2(r)− µ̃W (r)
)

] (4.11)where we have additionally introdued a hemial potential ν̃ for dangling bondon�guration i.e., (b, q) = (1,±1). The �elds b and q are to be summed overtheir allowed range [Eq.(4.10)℄ and the prime over the summation indiates thatEqs.(4.2), (4.8), and (4.9) at as onstraints in the evaluation. Note that, sineonly hydrogen-bond interation is envisaged in the model, the Hamiltonian H anbe rewritten as a simple expression:
H = −λ̃

∑

r

δ(b(r), 2) (4.12)where the Kroneker delta funtion denoted here as δ(p, q) is de�ned as δ(p, q) = 1for p = q and 0 otherwise. All the possible hydrogen-bond on�gurations areimplied from solving the non-loal onstraints Eq.(4.8). These onstraints areenfored in the partition funtion by introduing dual �elds, as given below:
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∑

η(r)

exp

[

−i
π

N
η(r)

(

b(r)−
∑

α

H2
α(r + eα)

)](4.13a)
δ

(

q(r),
∑

α

Hα(r + eα)

)

=
1

2N + 1

∑

φ(r)

exp

[

−i
π

N
φ(r)

(

q(r)−
∑

α

Hα(r + eα)

)](4.13b)where η(r) and φ(r) at as dual �elds to the density and net harge of bond armsin a loal neighborhood. The disrete η and φ �elds take integer values in therange [−N,N ] at every site, where N is any suitably large integer (greater than
8). The partition funtion an be rewritten in terms of new variables and dual34



Chapter 4. Moleular mean �eld theory for water
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Figure 4.3: A set of orientations onsistent with Eq.(4.2) and orresponding to theterm proportional to µ in Eq.(4.16).�elds as
Z =













∏

r

′

∑

W (r), Hα(r)
b(r), q(r)

1

(2N + 1)2

∑

η(r), φ(r)













exp
∑

r

[

− β(H− ν̃q2(r)− µ̃W (r))

+ i
π

N
η(r)

(

∑

α

H2
α(r + eα)− b(r)

)

+ i
π

N
φ(r)

(

∑

α

Hα(r + eα)− q(r)

)] (4.14)Here, the prime over the summation refers to the sum being restrited to loal on-site onstraints Eqs.(4.2) and (4.9) only. The introdution of dual �elds η(r) and
φ(r) allows summation over other disrete �elds (W (r), Hα(r), b(r), q(r)) withintheir respetive allowed range at eah site without any restritions from the neigh-borhood on�gurations i.e., as if there were a single site funtional Zsite.

Z =





∏

r

1

(2N + 1)2

∑

η(r),φ(r)





∏

r

Zsite(η(r), φ(r),∇αη,∇αφ) (4.15)The Zsite expression thus obtained is stated below. For brevity, in the followingexpression, π
N
η is written as η, π

N
φ as φ.

Zsite = 1 + 2ν exp(−iη(r)) cos(φ(r)) + λ exp(−2iη(r)) + µC(η, φ,∇αη,∇αφ))(4.16)
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Chapter 4. Moleular mean �eld theory for water
C(η, φ,∇αη,∇αφ) =

′

∑

Hα = 0,±1
α = ±1,±2,±3

exp

[

i
∑

α

(H2
α(r)η(r + eα) +Hα(r)φ(r + eα))

]

(4.17)where ν ≡ exp(βν̃), λ ≡ exp(βλ̃) and µ ≡ exp(βµ̃) are fugaities of dangling bond,hydrogen bond and water states, respetively. Various terms in Eq.(4.16) followfrom the fat that at any site r there are only the following ontributions to thepartition funtion : (i) unity for vauum, (ii) ν term for unpaired hydrogen orlone-pair arms (dangling bonds), (iii) λ term for hydrogen bond and (iv) µ termfor water with all its possible orientations suitably weighted. The orientationaldegrees of freedom of water yields C(η, φ,∇αη,∇αφ) given by Eq.(4.17), wherethe summation is over orientations at site r. The prime over the summationindiates Hα's of eah orientation satisfy Eq.(4.2). The exponential orresponds toan orientation and it is a funtion of dual �elds at near-neighbor sites towards whihnon-zero bond arms of the orientation are direted. The densities of dangling bond(DB), hydrogen bond (HB) and water (ρ) are alulated from partial derivative ofthe partition funtion with respet to βν̃, βλ̃, βµ̃, respetively.
η(r) and φ(r) are disrete �elds varying in the range [−N,N ]. By onstrutionthe partition funtional is independent of N for N ≥ 8. In pratie, it is onvenientto evaluate this funtional by taking N → ∞, whereupon the e�etive η(r) and

φ(r) beome ontinuous �elds. We implement this limiting proedure and hek ifthe sum rule is obeyed. In the N → ∞ limit, summation over η and φ is replaedby integrals. The resulting funtional integral has the following trivial property:
[

∏

r

∫

dη(r)

2π

dφ(r)

2π

]

∑

r1

d

dη(r1)

∏

Zsite = 0 (4.18)Taking derivatives expliitly in the above equation gives terms proportional to ν,
λ, and µ. Sine these terms are summed over at all lattie sites eah of them anbe regrouped in terms of derivatives of ν, λ, and µ as

i

[

−ν
∂

∂ν
− 2λ

∂

∂λ
+ 4µ

∂

∂µ

]

Z = 0 (4.19)The µ-dependent term in the Eq.(4.19) has ontributions from the four neighboring36



Chapter 4. Moleular mean �eld theory for watersites. Sine all sites are being summed over, the µ term in Eq.(4.18) gets eahontribution four times. We notie that this equation is preisely the sum ruleonstraint [Eq.(4.1)℄. This demonstrates that the sum rule in terms of ontinuousdual �elds is automatially true.4.2 Moleular mean �eld theoryWe now evaluate the funtional integral within the MMF approximation. The par-tition funtion's integrand an be envisaged as a produt of �eld-dependent phasefators at eah site. When we enumerate them site by site, orresponding to physi-ally allowed on�gurations the phase fators anel exatly. Evaluating along thisproedure is analogous to the standard high temperature or Mayer-like expansion.Instead, we attempt an approximate method wherein we �rst notie that if werelax the onstraint Eq.(4.8) and Eq.(4.10) the integrand still peaks for the sameon�gurations that obey Eq.(4.8) stritly. Hene, in the thermodynami limit,approximating the integrand suitably around the peaking on�gurations, we mayreliably estimate the partition funtion. This reliability an be self-onsistentlyestablished by omputing the variane or orrelation funtions.The leading ontribution to the partition funtional is expeted to ome fromthe extremum whih maximizes the integrand Zsite. Furthermore, in order todesribe �uid phase of the model we seek suh spatial on�gurations in dual �eldswhih have disrete translational and rotational symmetry. The integrand Zsiteover a spae-independent �eld on�guration η̃, φ̃ is given by
Zsite|η = η̃, φ = φ̃

=
(

1 + 2ν exp ( −iη̃) cos φ̃+ λ exp ( −2iη̃) + 90µ exp ( 4iη̃)
)(4.20)It is evident that the maximum of Zsite ours at η̃ = φ̃ = 0, sine all fugaitiesare positive. Zsite at the maximum is given by Zo:

Zo = (1 + 2ν + λ+ 90µ) (4.21)This provides zeroth-order ontribution to the partition funtion in the form Z =

(Zo)
V . The extremization of Zo with respet to φ̃ is trivially true, while that with37



Chapter 4. Moleular mean �eld theory for waterrespet to η̃ yields
2ν + 2λ = 4(90µ) (4.22)This is a onsequene of the sum rule within the zeroth-order approximation. Usingthis relation, the densities of dangling bond, hydrogen bond and water are givenupto zeroth-order as DB ≡ ν
∂

∂ν
(lnZ) =

4ν

2 + 5ν + 3λ
(4.23a)HB ≡ λ

∂

∂λ
(lnZ) =

2λ

2 + 5ν + 3λ
(4.23b)

ρ ≡ µ
∂

∂µ
(lnZ) =

ν + λ

2 + 5ν + 3λ
(4.23)Eliminating λ from equations for DB and HB we obtainHB = 2ρ− ν

ν + 1
(1− 3ρ) (4.24)We all Eq.(4.24) as the equation of network. It is a manifestation of sum rulein terms of model parameters. The free energy is related to partition funtion as

βG = ln(Z). The mean �eld free energy Gm per unit volume an be given in termsof densities as
βGm = ln(1− 5ρ+ HB) = ln

(

1− 3ρ

1 + ν

) (4.25)From the sum rule, it follows that 0 ≤ HB ≤ 2ρ. Consequently, ρ here variesbetween ν/(5ν + 2) and 1/3. The upper bound on ρ (= 1/3) is indeed the highestpossible density in the model, while the lower bound is a onsequene of MMFapproximation, meaning that this desription is self-onsistent only for densitiesgreater than ν/(5ν + 2). The non-analyities of free energy implied in Eq.(4.25) arepreisely at the lower and higher limits of density. Without loosing any generality,we hoose λ̃ = 1 i.e, measure all energies in the units of hydrogen-bond energy.Then, we make the observation that if temperature (β−1) is always positive, wean show that ρ is greater than 1/5. Furthermore, as β → ∞, from Eq.(4.23) wesee that ρ → 1/3, HB → 2/3 and DB → 0. The saturation density ρ = 1/3 isveri�ed to be exatly true by expliit onstrution of suh on�gurations.Thus, the equation of network is a manifestation and density saturation e�etis a diret onsequene of the sum rule. 38



Chapter 4. Moleular mean �eld theory for water4.2.1 FlutuationsNext, we evaluate the funtional integral of the partition funtion by onsideringsmall �utuations about the mean �eld and obtain one-loop orretion to the freeenergy [50℄. At any arbitrary site we expand Zsite upto quadrati order in dual�elds and obtain
Zsite ≃ 1 + 2ν + λ + 90µ+ 2ν

(

−iη − η2

2
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(4.26)where ν ′

= 2ν/Zo, λ′

= λ/Zo, µ′

= 90µ/Zo are the redued fugaities, suh that allof them are less than 1 and their sum is also less than 1. In the above expression,we used the notation ∇αη(r) = (η(r + eα)− η(r)) and similarly for φ �eld.Inserting the above expression for Zsite in Eq.(4.14) and evaluating the resultingGaussian integral by Fourier transformation in a periodi box, the free energy perunit volume is given by
βG = βGm +

1

2

π
∫

−π

d3k

(2π)3
[ln(Pηη(∆)) + ln(Pφφ(∆))] (4.27)
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Chapter 4. Moleular mean �eld theory for waterwhere
Pηη(∆) =

[

64µ
′

∆2

(

9

10
− µ

′

)

+ 64µ
′

∆

(

− 9

10
+ µ

′ − ν
′

4
− λ

′

2

)

+ν
′

+ 4λ
′

+ 16µ
′ −
(

ν
′

+ 2λ
′ − 4µ

′

)2
] (4.28a)

Pφφ(∆) =

[

96µ
′

5
∆ (1−∆) + ν

′

] (4.28b)and ∆ =
1

6

3
∑

i=1

(1− cos(ki)), ki are vetor omponents of ~k. Equation (4.27) givesthe free energy density to one-loop order. Pηη and Pφφ are orrelation funtions for
η and φ �elds, respetively, in the momentum spae and are alled propagators.4.2.2 Correlation funtionsThe position spae orrelation funtions for η and φ �eld �utuations are given by

Gη(r1, r2) ≡ 〈η(0)η(r)〉 =

π
∫

−π

d3k

(2π)3
exp (i~k · (~r1 − ~r2))

Pηη(~k)
(4.29)where, ~r1, ~r2 are position vetors for any two sites. Similarly for φ �eld in termsof Pφφ.We note that to zeroth-order µ′ ≃ ρ, λ′ ≃ HB, ν ′ ≃ DB and using Eq.(4.22),leading order expressions for the propagators are given by

Pηη(~k) ≃ 64ρ

(

9

10
− ρ

)

[

(

∆− 9

20( 9
10

− ρ)

)2

+
3( 9

25
− ρ)

8( 9
10

− ρ)2

] (4.30a)
Pφφ(~k) ≃ 96ρ

5

[

∆(1−∆) +
5(DB)
96ρ

] (4.30b)The asymptoti behavior of Gη and Gφ orrelators an be obtained by pursuingsmall-k expansion of the integrand in Eq.(4.29) and noting that for small ~k, ∆ ≃
1
12

∑

i k
2
i . The Gη orrelator for large r = |~r1 − ~r2| is of funtional form

Gη(0, r) ∝
exp(−r/ξη)

r
sin(ωηr) (4.31)40



Chapter 4. Moleular mean �eld theory for waterwhere
(ξη)

−1 = 4

√
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√
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ωη = 4

√
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9
10
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1

2
tan−1

√

50

27

(

9

25
− ρ

)

) (4.33)This indiates that Gη has periodi peaks whose amplitudes are exponentiallyfalling o�.The Gφ orrelator takes the following asymptoti form for large r, in additionto osillatory behavior prominent at short distanes:
Gφ(0, r) ∝

exp(−r/ξφ)

r
(4.34)where

(ξφ)
−1 =

√

√

√

√6

(
√

1 +
5 DB
24ρ

− 1

)

=

√

√

√

√6

(

√

1 +
5

24
(4− h)− 1

) (4.35)where h = 2HB/ρ.All orrelations in the system an be dedued as funtions of Gη and Gφ. Thewater density orrelation an be alulated as given below.
〈W (r1)W (r2)〉 =

〈

µ{. . .}
Zsite(r1)

µ{. . .}
Zsite(r2)

〉 (4.36)The non-zero value of W -�eld at eah site piks only the term proportional to µin Zsite [Eq.(4.16)℄, denoted by {. . .} in the above equation. The onneted partof the orrelation is given by 〈W (r1)W (r2)〉c ≡ 〈W (r1)W (r2)〉− 〈W (r1)〉 〈W (r2)〉.The expliit expression for the orrelation funtion is given in Appendix (4.4.3).The expression suggests that, to the leading order, only η �eld ontributes to thedensity orrelations.Similarly, orientational orrelations an also be dedued using the expression fororientational weight given by Eq.(4.17). The asymptoti behavior of orientationalorrelations is dominated by φ �eld orrelation. 41



Chapter 4. Moleular mean �eld theory for waterThe dangling bond orrelation is a diretion funtion of Gφ. A dangling bondon�guration is identi�ed by non-zero value of q(r) �eld. Hene, the dangling bondorrelation is given by
〈q(0)q(r)〉 =

〈

ν{. . .}
Zsite(0)

ν{. . .}
Zsite(r)

〉

≃ −(DB)2Gφ(0, r) (4.37)The orrelation funtion falls-o� exponentially at large distanes, as implied inEq.(4.35).4.2.3 Fration of moleules with i hydrogen bondsAnother useful quantity namely the fration of water moleules with i hydrogenbonds an also be alulated. Consider a water moleule in a on�guration in whih
i arms are hydrogen bonded to neighboring moleules and the other (4 − i) armsremain of dangling type. A weight an be assoiated with eah suh on�gurationde�ned in terms of appropriate site �elds and summed over all possible orientationsof the moleule. We denote this weight averaged with respet to the full partitionfuntion for eah i as pi. For instane, the averaged weight assigned to a moleulewhih is hydrogen bonded to only two other moleules is given by
p2 =

′

∑

{α1,α2,...,α6}

〈W (r) δ(b(r + eα1
), 0) δ(b(r + eα2

), 0) δ(b(r + eα3
), 2) δ(q(r + eα3

), 0)

×δ(b(r + eα4
), 2) δ(q(r + eα4

), 0) δ(b(r + eα5
), 1) δ(b(r + eα6

), 1)〉 (4.38)The prime over summation means dissimilar α. The probability for an i-bondedmoleule at any site r is the probability that any two diretions around entralsite have zero arms, eah denoted by δ(b(x+ eα), 0), that i other diretions have ahydrogen bond denoted by δ(b(x+ eα), 2) δ(q(x+ eα), 0), and that the remaining
(4− i) sites are of dangling bond type denoted by δ(b(x+ eα), 1). The summationover the set {α1, α2, . . . , α6} implies summing over all possible rearrangementsof hydrogen bond and dangling bonds among all the diretions. With [6

2

] waysof hoosing two empty sites in the neighborhood, [4
2

] ways for there being two
42



Chapter 4. Moleular mean �eld theory for waterhydrogen bond sites, p2, to the leading order, is given by
p2 ≃

[

6

4

] [

4

2

] (HB)2(DB)2 = 1

24
15(6)ρ4h2(4− h)2 (4.39)where h = 2HB/ρ. Similarly, other pi values an be enumerated and omputed upto leading order. For i = 0, 1, 2, 3, 4,

pi =
1

24
15

[

4

i

]

ρ4hi(4− h)4−i (4.40)Thereupon, fi, whih is fration of i-bonded moleules, an be alulated from therelation
fi =

V pi
∑4

i=0 V pi
=

[

4

i

]

hi(4− h)4−i (4.41)Note that the above expression is obtained to zeroth-order approximation withinthe model. There exist one-loop orretions to it whih an be alulated fromMMF theory, but they are small numerially. The binomial distribution suggestedby Eq.(4.41) agrees well with MD simulations [51℄. Furthermore, moleular lusterssuh as trimers, tetramers, pentamers are also known to exist in liquid water [52℄.The probabilities for suh luster on�gurations an also be alulated within MMFtheory along the same lines as above alulation.4.2.4 Coulomb interationIn this setion, we onsider the in�uene of long range Coulomb interation betweenthe bond arm harges Hα. The interation potential is given in terms of eletroniharge Q as
HCol =

Q2

2

′

∑

r1,r2

∑

α,α′

Hα(r1)Hα
′ (r2)

|r1 + eα − r2 − eα′ | (4.42)where the prime over the summation means r1 6= r2. In our model we envisage theharges at the tip of bond arms. The interation potential an be inorporated in
43



Chapter 4. Moleular mean �eld theory for waterour analysis by using an auxiliary �eld tehnique.
exp (−βHCol) →

√det(−�+m2)
∏

r

∫

dχ(r)√
2π

(4.43)
× exp

∑

r

[

−1

2
χ(r)(−�+m2)χ(r) + i

√

βQ2
∑

α

Hα(r + eα)χ(r)

]

where the Laplaian operator �χ(r) =
∑

α (χ(r + eα)− χ(r)) =
∑

α∇αχ(r) and
m is a parameter that regulates the range of interation. The interation potentialbehaves as exp(−mr)/r for large distanes, whih when m = 0 redues to Coulombinteration with a short distane ut o�. If the lattie onstant and m are bothtaken to be zero, then it redues to exat Coulomb interation for all r.By inserting the above in our partition funtion Eq.(4.14), all the interationsof water degrees of freedom remain unhanged with the following transformation:
η → η, φ → φ + χ

√

βQ2. The extremum of the new partition funtion is stillat η̃ = φ̃ = χ̃ = 0. The leading zeroth-order term remains unhanged; the one-loop orretion about the mean �eld gets additional ontributions due to quadratiterms orresponding to φχ and χχ in the Gaussian expansion, given by
Pχχ =

(

12∆ +m2
)

+
96µ

′

βQ2

5
∆ (1−∆) (4.44)

Pφχ =
96µ

′
√

βQ2

5
∆ (1−∆) (4.45)The free energy density with Coulomb interations to one-loop order is givenby

βG = βGm +
1

2
ln(12∆ +m2)− 1

2

π
∫

−π

d3k

(2π)3
[ln(Pηη(∆)) + ln(P (∆))] (4.46)where

P (∆) ≡ PφφPχχ − P 2
φχ (4.47)

=
96µ′

5
(12∆ +m2)

[

∆(1−∆) +
5ν ′

96µ′
+

βQ2ν ′

12∆ +m2
∆(1−∆)

]
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Chapter 4. Moleular mean �eld theory for waterwhih to leading order an be written as
P (~k) ≃ 96ρ

5
(12∆ +m2)

[

∆(1−∆) +
5(DB)
96ρ

+

(

βQ2(DB)
12∆ +m2

)

∆(1−∆)

] (4.48)The fator Q2 being small, the strength of Coulomb interation in omparisonwith other interations is weak. Furthermore, all harge e�ets are proportionalto βQ2(DB), wherein β(DB) is always �nite sine, as β → ∞, DB → 0. Conse-quently, the e�et of Coulomb interations on thermodynami properties suh asthe equation of network and the equation of state is small. The oordination peaksand asymptoti behavior of the orrelation funtions are modi�ed slightly.4.3 ResultsWe understand from Eqs.(4.24) and (4.25) that the equation of network is a man-ifestation and density saturation is a onsequene of sum rule. The saturatione�et is independent of the dangling bond energy whih is an arbitrary parameterin the model. We may hoose ν̃ = 0 and measure temperature (β−1) in the unitsof hydrogen-bond strength (λ̃). To the zeroth-order, the theory is now parameterfree and all the densities an be obtained as a funtion of temperature only. Theone-loop orretion to the densities ρ, HB, and DB an be alulated from the freeenergy funtion given by Eq.(4.27) using the propagator expressions [Eq.(4.28)℄[see Appendix (4.4.2)℄. To the zeroth-order, the relation between ρ and HB issimply given by the equation of network. This equation an be reast as a simplerelation between ρ and h = 2HB
ρ

as
h = 7− 1

ρ
(4.49)Temperature is onjugate to HB and hene, it an be �xed self-onsistently forgiven h [Fig.(4.4)℄. By model de�nition, the maximum value of h is 4 and the aboveequation indiates that h = 4 is attained at maximum density ρ = 1/3. In this limitthe residual entropy per site at highest density is in agreement with known resultsin ie models [see Appendix (4.4.4)℄. However, we �nd that the highest densityin our model is not that of a unique rystal on�guration. Instead, from expliit45



Chapter 4. Moleular mean �eld theory for wateronstrution we �nd that there are in�nitely many on�gurations orrespondingto di�erent spatial and orientational arrangements of water moleules [Appendix(4.4.5)℄.The lattie onstant in the model is arbitrary. By omputing physial length-sales suh as orrelation lengths it an be �xed. The asymptoti behavior ofdensity and orientational orrelations is dedued in Eqs.(4.31) and (4.34) in termsof ξη and ξφ [Eqs.(4.32) and (4.35)℄. The expressions for ξη and ξφ are dedued fromleading order expressions for propagators [Eq.(4.30)℄. Their preise values an beobtained using Eq.(4.28) for propagators. We plot these lengths in Fig.(4.4) as afuntion of h. ξη is only about one lattie unit in liquid phase and does not varyonsiderably with h, while ξφ inreases with h. In MD simulation no orrelationlength is seen for density orrelation; this is onsistent with MMF result sine ξηis equal to the minimum length possible in the model and also independent of h.Orientational orrelation lengths inferred from MD simulation are 5.2 Å and 24 Å,of whih the latter is weaker in strength (one-tenth) relative to the shorter one [seeEq.(2.4) of Chapter 2℄. In our water model, we have only one orientational orre-lation length ξφ whih we relate to 5.2 Å. For liquid water, h value is suggested tobe about 3.6 [31℄. From Fig.(4.4), h = 3.58 orresponds to ξφ ≃ 3.3 lattie units.Consequently, we infer that 1 lattie unit ≃ 5.2
3.3

= 1.57 Å. It should be noted thatthese preditions are not robust as the oe�ients suh as 5
24

in the expression for
ξφ [Eq.(4.35)℄ vary with topology of the underlying lattie.We make the observation from Eq.(4.30) that the orrelation funtions of themean �eld theory diverge if ρ → 0 i.e., even the loal �utuations about the mean�eld are very large rendering the approximation invalid. Indeed, the theory failswell before ρ = 0 beause it violates the sum-rule already at ρ = ν/(5ν + 2) [Eq.4.24℄. Our mean �eld desription is onsistent only at high densities loser to thesaturation value within the model.The mean �eld on�guration and �utuations about it are self-onsistentlyalulated for arbitrary densities in the model. The expansion is neither aboutlow density nor high density. However, we �nd that the desription is onsistentonly at higher densities. In the free energy expression [Eq.(4.27)℄, the zeroth-order ontribution is energy omponent and one-loop orretion due to �utuations(say, βGf) is entropy omponent. The reliability of mean �eld approximation anbe understood by omparing magnitudes of the energy and entropy omponents,46



Chapter 4. Moleular mean �eld theory for water
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β is measured in units of hydrogen-bond strength λ̃ in the model. The lengths areexpressed in lattie units.given in Table (4.1). We see that, in the region where MMF approximation isonsistent, the entropy omponent is always smaller than the energy omponentand as saturation density is approahed, �utuations gradually derease, while theenergy ontribution is signi�antly larger.In order to attest important results dedued within MMF theory we arry outexat MC simulations for the water model. The simulations are performed withdangling bond energy set to zero and all other energies are measured in the unitsof hydrogen-bond energy. The simulation details and orresponding results aredisussed in Chapter (5).

47



Chapter 4. Moleular mean �eld theory for water
β−1 ρ HB ρ/ρmax h βGm βGf1.844 0.2183 0.27 0.6549 2.47 2.210 1.1900.835 0.2534 0.384 0.76 3.03 2.570 1.1550.642 0.2719 0.45 0.8158 3.30 2.800 1.1370.47 0.294 0.527 0.883 3.58 3.320 1.1220.378 0.309 0.581 0.929 3.75 3.660 1.110Table 4.1: State points and their orresponding thermodynami data4.4 Appendix4.4.1 Orientational weight C(η, φ)The orientational weight for the water state in bulk water is given by

C(η, φ) =

′

∑

Hα = 0,±1
α = ±1,±2,±3

exp

[

i
∑

α

(H2
α(r)η(r + eα) +Hα(r)φ(r + eα))

]

where the summation is over all possible orientations and the prime indiates thatthe summation is subjet to onstraints Eq.(4.2).About the mean �eld on�guration η = φ = 0, the dual �elds are expandedupto quadrati order. C(η, φ) is then given by
C(η, φ) ≃ 90

[

1 +
2i

3

∑

α

ηα − 1

3

∑

α

η2α − 2

5

∑

α,β

ηαηβ −
1

3

∑

α

φ2
α +

2

15

∑

α,β

φαφβ

](4.50)where ηα ≡ η(r + eα) and φα ≡ φ(r + eα).Note that there exists a linear term in φ �eld in the weight for eah orientation.Upon summation over all possible orientations, the linear φ terms anel out ex-atly sine the bond arm harges of a moleule take all possible diretions aroundthe site of oupation. 48



Chapter 4. Moleular mean �eld theory for water4.4.2 Densities upto one-loop orretionThe densities ρ, HB, and DB dedued from free energy upto one-loop orretionare given by
ρ = µ

′ − 1

2

[

(−ν
′

µ
′

)T1 + (−λ
′

µ
′

)T2 + µ
′

(1− µ
′

)T3

] (4.51a)HB = λ
′ − 1

2

[

(−ν
′

λ
′

)T1 + λ
′

(λ
′ − 1)T2 + (−λ

′

µ
′

)T3

] (4.51b)DB = ν
′ − 1

2

[

ν
′

(1− ν
′

)T1 + (−ν
′

λ
′

)T2 + (−ν
′

µ
′

)T3

] (4.51)where
T1 = (1− 2(ν

′

+ 2λ
′

))Gη(r, r) +
4µ

′

3

∑

α

Gη(r, r + eα) + Gφ(r, r) (4.52a)
T2 = (4− 4(ν

′

+ 2λ
′

))Gη(r, r) +
8µ

′

3

∑

α

Gη(r, r + eα) (4.52b)
T3 =

4µ
′

3
(ν

′

+ 2λ
′

)
∑

α

Gη(r, r + eα) +
4

15

∑

α

Gη(r + eα, r + eα)

+
2

15

(

1− 20µ
′

9

)

∑

α,α′

Gη(r + eα, r + eα′ )− 2

15

∑

α,α′

Gφ(r + eα, r + eα′ )

+
4

5

∑

α

Gφ(r + eα, r + eα) (4.52)and r = (x, y, z) is a site position, r + eα is a near-neighbor site in eα diretion.The Green's funtions are omputed using Eq.(4.29).The densities are omputed onsistent with the sum rule for water. The numeri-al proedure for the omputation an be onveniently arried out in the parameterspae of the redued fugaities ν ′ , λ′ , and µ
′, all of whih are less than 1 and theirsum is also less than 1. They are optimally varied in their allowed range suh thatthe solutions for ρ, HB, and DB are onsistent with the sum rule.
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Chapter 4. Moleular mean �eld theory for water4.4.3 Density orrelationsFrom Eq.(4.53), the density orrelation funtion is given by
〈W (r1)W (r2)〉 =

〈

µ{. . .}
Zsite(r1)

µ{. . .}
Zsite(r2)

〉 (4.53)where µ {. . .} is the term proportional to µ in Zsite [Eq.(4.16)℄. The dual �elds areexpanded upto quadrati order and the leading other expression for the onnetionpart of orrelation is given by
〈W (r1)W (r2)〉c ≃ −(µ

′

)2



(ν
′

+ 2λ
′

)2Gη(r1, r2) +

(

2µ
′

3

)2
∑

α,α
′

Gη(r1 + eα, r2 + eα′ )

+ 2

(

2µ
′

3

)

(ν
′

+ 2λ
′

)
∑

α′

Gη(r1, r2 + eα′ )



 (4.54)where r1 and r2 are arbitrary sites on same interfae; r1+ eα and r2+ eα′ are theirrespetive near-neighbor sites in the diretions eα and eα′ respetively. Gη(r1, r2)an be omputed from Eq.(4.29).Orientational orrelations an also be evaluated using the expression for ori-entational weight given in Appendix (4.4.1). The linear terms in η and φ �eldsin the weights for eah orientation provide leading ontribution to the orrelationfuntion. However, the asymptoti behavior is dominated by φ �eld only.4.4.4 Residual entropy at highest densityWe alulate entropy per site to the zeroth-order as below.
S = β2 ∂

∂β
(Gm) = ln

(

1 +
5ν

2
+

3

2
exp(β)

)

− β
3 exp(β)

2 + 5ν + 3 exp(β)
(4.55)In the limit β → ∞, ρ reahes its maximum value and the entropy at the highestdensity tends to a onstant value ln(3/2). This result ompares exatly with that ofPauling's estimate for tetrahedral ie model [49℄ and agrees well with the numerialestimate by Nagle i.e., ln(1.50685 ± 0.00015) [53℄. We note that our zeroth-orderresults are independent of the lattie dimension; hene, in two dimensions the50



Chapter 4. Moleular mean �eld theory for wateronstant also ompares well with the exat result for square ie by Lieb [54℄.4.4.5 Highest density on�gurationsA on�guration orresponding to highest density in the model is one with all thelattie sites either in a water state or in a hydrogen bond state. All the bond armsof eah moleule are hydrogen bonded. No site is either in a dangling bond or voidstate. For eah moleule one site orresponds to water state, tips of its four bondarms are at four neighboring sites. The bond arms are hydrogen bonded. Henethe share of hydrogen bond state for eah moleule is `half the site'. Colletively,eah moleule e�etively oupies three lattie sites. Hene, the maximum densitypossible in the model is 1/3.There are in�nitely many possible spatial and orientational arrangements atthe highest density. We illustrated a portion of few on�gurations in Figs.(4.5),(4.6), and (4.7). In the illustrations, W denotes a water state and all other sitesare in the hydrogen bond state. An arrow pointed away from W implies that themoleule is donating a proton (hydrogen arm) to the hydrogen bond present onthe neighboring site in the diretion of arrow. An arrow pointing inward impliesthat W is aepting a proton i.e., lone-pair of W. In the two dimensional planeshown in the �gures eah moleule is shown to partiipate in two hydrogen bonds.The moleule's other two arms are in the third dimension. The planes in thethird dimension whih �ank the given one have a omplementary arrangement ofwater and hydrogen bond states i.e., a W in the given plane is to be replaed bya hydrogen bond state in the other two planes and vie versa.In eah spatial on�guration of W and hydrogen bond states, a set of on-seutive forward arrows implies a path on the lattie. The set of all suh pathsrepresents an orientational arrangement for the on�guration. A omplete reversalof one or more paths results in a new orientational arrangement. Thus, a givenon�guration has in�nitely many orientational possibilities.Di�erent on�gurations an be obtained by ensuring that no voids or danglingbonds are present and that the orientations obey the onstraints and restritionsde�ned for the model.
51
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Chapter 4. Moleular mean �eld theory for water
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5Monte Carlo simulation of the watermodel
We validate the results of MMF theory by performing Monte Carlo simulations forthe water model exatly aounting for all the onstraints imposed on the lattie�elds. The sum rule is expliitly respeted during the simulation. The MC resultsare seen to be onsistent and in semi-quantitative agreement with the results ofMMF theory [48℄.5.1 MethodsThe water model is simulated using a standard Monte Carlo proedure for a grandanonial ensemble i.e., a µ̃V T ensemble [39, 55℄. We hoose to measure all energiesin units of hydrogen-bond energy i.e., λ̃ = 1. Furthermore, we set ν̃ = 0. Thetheory is now essentially parameter free. The temperature (β−1 > 0) and hemialpotential for water (µ̃) are varied as per needs of the simulation. We employsuitable loal on�gurational moves on a randomly hosen site on lattie in order tosmoothly explore the on�gurational spae of the model. The moves are INSERT,DELETE, ROTATE.

• If there is no water moleule or dangling bond or hydrogen bond on the hosensite we perform INSERT operation i.e., putW = 1 on the site, provided thereare four free diretions among the six available diretions around the site.That is, the neighboring sites in any four diretions should be unoupiedto ensure that the onstraint Eq.(4.3) is not violated in the neighborhood.54



Chapter 5. Monte Carlo simulation of the water modelThose neighboring sites shouldn't already have more than one bond arm intheir diretion so that the restrition Eq.(4.5) is omplied with. Then, in thefour free diretions four non-zero bond arms are plaed randomly suh thattwo of them are of hydrogen type Hα = 1 and other two are of lone-pair type
Hα = −1, in ompliane with Eq.(4.2).

• When there is a water moleule on the hosen site we perform either DELETEor ROTATE operation with equal probability.� In a DELETE operation we set W = 0 on the site and set Hα = 0 alongall diretions around the site.� In a ROTATE operation, the diretions of non-zero bond arms in theexisting on�guration are altered to a new on�guration implying arotation of the moleule. We ensure that the onstraints Eqs.(4.3),(4.5), and (4.6) are not violated in the neighborhood.Beginnning with a valid initial on�guration the moves ensure that the onstraintsEqs.(4.2) and (4.3) and restritions Eqs.(4.5) and (4.6) are always respeted andresult in only valid network on�gurations at eah simulation step. These loalmoves allow the system to explore all possible on�gurations at all sites and hene,ensemble averages given by MC proedure are expeted to provide reliable esti-mates for the desired thermodynami quantities.We employ importane sampling MC proedure using Metropolis riterion tosatisfy the detailed balane ondition during eah move. Aording to the riterionif total energy hange of the system during the move is negative the new on�gu-ration is aepted. If the energy hange is positive then the new on�guration isaepted with a probability equal to Boltzmann weight over the energy hange. Toompute the energy hange of the system during eah move, we note that the movesare loal and hene, they ause only loal hanges in partile number and/or hy-drogen bonds and anti-bonds in the immediate neighborhood. Hene, we assign aloal energy funtion to initial and �nal on�gurations and ompute energy hangein terms of hemial potential and interation energies due to hydrogen bonds andanti-bonds. An aeptane rate of about 30 − 40% is ahieved during simulationruns in the parameter regime of interest. 55



Chapter 5. Monte Carlo simulation of the water modelSome of the important thermodynami observables are ρ, HB, DB, total energy,density of moleules with i(= 0, 1, 2, 3, 4) hydrogen bonds. After a su�ient equi-libration run the densities are updated every 50− 300 MC steps over a simulationtime of 105 − 106 MC steps. The sampling rate is varied aording to aeptanerate. Running averages and varianes are omputed at every sampling step todetermine the e�ieny of the sampling proedure. It is ensured that there is noobservable overall rise or fall in the averages and varianes and that the resultssmoothly onverge to within a relative error of 10−2 − 10−3.The size dependene of the averages is asertained and an optimal lattie sizeof 20 sites per side is found to losely reprodue averages up to the fourth deimalplae relative to bigger lattie sizes.We explore onstant temperature urves to failitate omputation of pressureusing the Gibbs-Duhem proedure [56℄. The pressure at a desired density is ob-tained from the relation
P =

µ̃f
∫

µ̃i

ρ(µ̃) dµ̃ (5.1)where a ρ versus µ̃ urve is integrated between hemial potentials µ̃i and µ̃f toobtain pressure at ρ(µ̃f). The pressure is normalized to zero at zero density. Thevolume is kept �xed and hemial potential is varied in steps. Sine a range ofhemial potentials is to be explored the step size is appropriately adjusted so thata quenh-like situation is avoided. The system evolves smoothly in on�gurationspae without any unwanted domains persisting. At hosen hemial potential thesimulation is initialized using an end on�guration from the simulation at previoushemial potential value. This suessive seeding proedure aelerates equilibra-tion onsiderably ompared to any random seed on�guration. The end averagesremain unhanged when the seeding proedure is arried out in an alternative pa-rameter spae; for example, instead of the hemial potential, the temperature anbe varied in small steps. This on�rms the absene of any possible bias reated byour suessive seeding proedure in most part of the parameter spae (exept near�rst-order phase transitions where hysteresis exists).We also ompute spatial orrelation funtions as an ensemble average over equi-librium on�gurations. The underlying lattie struture dominates the orrelationfuntions. To failitate omparision with MMF results we extrat rotationally56



Chapter 5. Monte Carlo simulation of the water modelinvariant part of the orrelation using the following projetion proedure.
R(r0) =

∑

~r

Θ (|~r| − r0) Θ ((r0 + δr)− |~r|) (5.2a)
f(r0) =

1

R(r0)

∑

~r

f(~r) Θ (|~r| − r0) Θ ((r0 + δr)− |~r|) (5.2b)where ~r ≡ (x, y, z) is position index for a lattie site, |~r| is its magnitude inEulidean metri. f(r) is any funtion de�ned on the lattie and r0 is the distanewhere orrelation is desired; δr is a small distane window. Θ is the Heaviside stepfuntion de�ned as Θ(x−a) = 1 for x ≥ a and 0 for x < a. R(r) is weight funtionfor distane r.5.2 Results
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Chapter 5. Monte Carlo simulation of the water modelurve has two prominent shoulders where signi�ant slope hange ours. Beyonda ertain µ̃ value, no more equilibriated on�gurations ould be traed and thedensity starts shooting up to the saturation value. For inverse temperature β > 2the urves exhibit disontinuity. For instane, at β = 3 the system jumps from a
ρ ∼ 0.025 to ρ ∼ 0.16 upon an in�nitesmal inrease about µ̃ ∼ −1.91. The risein density is higher for higher β. Hysteresis is also seen when retraing the urveby dereasing the µ̃. This indiates the presene of �rst-order phase transitionin the region. We interpret this as a liquid-gas transition in the model. Withinour limited exploration of the phase diagram we �nd that ρ > 0.16 orrespondsto liquid phase. MMF theory is seen to be onsistent in this region only i.e., for
ρ > 1/5.The equation of state dedued within MMF theory [Eq.(4.25)℄ is ompared withthat omputed from MC simulation. In the theory pressure is simply negative ofthe free energy density. Their magnitude is same sine the free energy is deduedin in�nite volume limit. The omparison between MMF theory and MC simula-tion is put forth in Fig.(5.2). It shows that the high pressure states at eah ρ showqualitatively same pro�le as predited by MMF theory. A quantitative omparisonof equation of state between MMF theory and MC simulation is unreliable beausepressure from MMF theory absurdly vanishes at ρ = 1/7 whereas, physially thepressure is zero in this model only at ρ = 0. As disussed earlier, MMF approxima-tion fails for small densities. Therefore, a onsistent normalization between variousshemes of alulation is not present. Thus, the qualitative piture obtained fromMMF alulation is only indiative, nevertheless onsistent with MC results.One of the important expositions of the MMF theory is the equation of network.From Eq.(4.24), at ν̃ = 0, the mean �eld equation of network is given byHB =

7ρ

2
− 1

2
(5.3)We plot the ρ and the HB data obtained from MC simulation against the equationof network. This is shown in Fig.(5.3). The equation of network is a manifestationof sum rule and it is dedued within MMF approximation in the in�nite volumelimit. The linear relation between ρ and HB is borne out in MC simulation by on-�gurations with lowest free energy (or high pressure) at eah ρ. There is exellentquantitative agreement between MMF and MC results in this regard. 58



Chapter 5. Monte Carlo simulation of the water model
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Chapter 5. Monte Carlo simulation of the water model
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Chapter 5. Monte Carlo simulation of the water modelarrangement of moleules and their orientations [see Appendix 4.4.5 in Chapter 4℄.The presene of large set of rystalline states suggests that there ould be a liquid-glass transition at high densities or near zero temperature in our model. In MCsimulation we witnessed dynamial slowing down at low temperatures, onsistentwith our speulation. Furthermore, in this region MMF theory indiates a seondorder transition as seen from q(x) orrelator [Eq.(4.35)℄, wherein for β → ∞,
ρ → 1/3 and DB → 0 implying that ξφ → ∞. The impliations of this analytistruture to low temperature phase behavior of the model need to be studied indetail.The important orrelations in the model are 〈W (0)W (r)〉 and 〈q(0)q(r)〉. Inthe MMF theory they are expliit funtions of dual �eld orrelations Gη and Gφ[Eqs.(4.37) and (4.53)℄. They are omputed numerially and shown in Figs.(5.5)and (5.7). In MC simulation the orrelation funtions are omputed from the pro-jetion sheme given by Eq.(5.2) and are displayed in Figs.(5.6) and (5.8). Theorrelation funtions within MMF theory and in MC simulation are omputed atomparable values of ρ and HB. We �nd that the positions of oordination peaksin density orrelation funtion are in agreement and are in ompliane with theonstraints in the model and underlying lattie topology. The density orrela-tion funtion with haratersti hydration peaks appears qualitatively similar toradial distribution funtion of �uids. It does not show any long distane behav-ior. This is onsistent with MMF result sine ξη is only one lattie unit whih isminimum length in the model. The harge orrelations both in MMF theory andMC simulation show an asymptoti fall-o� with distane. MMF theory preditsan exponential fall-o� [Eq.(4.35)℄ onsistent with MD simulations for liquid water.It is enouraging to see that a onsistent qualitative piture of �utuations ouldbe obtained from a simple analytial alulation. It is however observed that thequantitative details of orrelation funtions depend on the underlying lattie, butthe analyti struture is amenable to interpretation in the ontinuum as well.
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Chapter 5. Monte Carlo simulation of the water model
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Chapter 5. Monte Carlo simulation of the water model
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6Hydrophobi fore between marosopisurfaes
In this hapter we address hydrophobi fore between large surfaes using theframework of MMF theory. The water model analyzed in the previous haptersis envisaged here. In our model study we analyze the onsequenes of on�ninghydrogen-bond �utuations in presene of large hydrophobi surfaes and inferthat hydrophobi fore is a manifestation of Casimir-like fore largely in�uenedby the long-distane orrelations of orientational �utuations.When water is on�ned between large hydrophobi surfaes the inherent �eld�utuations vanish on surfaes. Furthermore, water moleules at the interfae witheah surfae have restrited orientational entropy owing to repulsive hydrophobe-water interations. This e�et gives rise to modi�ed �utuations at eah interfae.We study the olletive onsequenes of these e�ets on the overall free energy ofthe system in a model study. Two marosopi surfaes are envisaged as bound-aries in a spatial dimension and water is on�ned between them. The hange infree energy due to the presene of surfaes is alulated and is seen to be omposedof three important ontributions : (i) Casimir part, whih arises solely from dis-retization of �utuation modes between boundaries and is generi to all surfaes;(ii) Interfaial free energy, whih is free energy hange due to modi�ed �utuationsat hydrophobe-water interfae. It is dependent on nature of surfae-water intera-tion and to a small extent, also on separation distane between the surfaes; (iii)Interfaial �utuations-indued free energy, whih is due to orrelation betweenmodi�ed �utuations at both interfaes. It depends on type of both surfaes and64



Chapter 6. Hydrophobi fore between marosopi surfaestheir interation with water. The results are disussed for di�erent types of sur-faes suh as hydrophobi and hydrophili. We �nd that the Casimir part is leadingontribution and is an inverse power-law funtion of separation distane. However,numerially the magnitude of Casimir part is signi�ant for distanes only uptofour times the longest orrelation length in the model. The interfaial free energyalso varies with separation distane, but its variation is numerially insigni�ant.The interfaial �utuations-indued ontribution is seen to be exponentially deay-ing with distane, analogous to the fore form dedued for mesosopi surfaes [seeChapter 3℄. Furthermore, we �nd that all the ontributions are of omparable orderof magnitude onsistent with experimental values. The dependene of the fore on�uid onditions like temperature, average hydrogen bonds is also disussed. Ourresults indiate that hydrophobi fore qualitatively imitates Casimir-like fore be-havior [59℄. It is desirable to emulate the omputation within more realisti modelsof water possibly with the help of MD simulations. We also looked at transversedensity pro�le for on�ned water and show that an inrease in density ours nearinterfaes.6.1 Water on�ned between marosopi surfaesWe envisage surfaes in the (x, y) plane of retangular oordinate system; onepresent at z = 0 and other at z = L [Fig.(6.1)℄. Eah surfae exludes water fromits region of oupation. Hene, W = 0 on surfae sites. On the immediate layer,i.e., at z = 1 or z = L − 1 alled the interfae layer, water an be present andan take various orientations. For a hydrophobi surfae if a non-zero bond armof interfae water is direted towards the surfae, there would be a dangling bondon surfae site; else a void state ours. There an never be a hydrogen bond onsurfae i.e., b 6= 2 on surfae. We will take are of these possibilities expliitly inour analysis. Consequently, we need not introdue η and φ integrals [Eq.(4.13)℄ onthe surfae. Alternatively, we set η = φ = 0 on surfaes.The alulation of partition funtion begins with formulating the site funtional
Zsite at eah site, whih omprises weights orresponding to eah allowed state inthe model. The site funtional for all the sites in bulk region is of same form asgiven by Eq.(4.16). On the interfae sites, weights orresponding to the void state,65
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z = L− 1.the dangling bond and the hydrogen bond states remain unaltered. When a watermoleule is present on an interfae site its bond arms an orient in all possibleways. Only if one of the arms is towards the surfae we assign a weight exp(βν̃S)to the orresponding orientation. For an ideal hydrophobi surfae i.e., whih isindi�erent to bond arms of viinal water, ν̃S = 0 (in general, ν̃S an be positive ornegative). Consequently, orientational weights for a water state on any interfaesite (with surfae in e3 diretion) are given by
C(η, φ)|interfae = 





′

∑

α 6= 3 Hα = 0,±1
H3 = 0

+ exp(βν̃S)

′

∑

α 6= 3 Hα = 0,±1
H3 = ±1













exp

[

i
∑

α

(H2
α(r)η(r + eα) +Hα(r)φ(r + eα))

]

= C(η, φ) + νS

′

∑

α 6= 3 Hα = 0,±1
H3 = ±1

exp

[

i
∑

α

(H2
α(r)η(r + eα) +Hα(r)φ(r + eα))

]

≡ C(η, φ) + νSC
′

(η, φ) (6.1)66



Chapter 6. Hydrophobi fore between marosopi surfaeswhere the prime over the Hα sum implies the onstraints Eq.(4.2), C ′

(η, φ) orre-sponds to a�eted orientations only i.e., those withH3 = ±1, and νS ≡ exp(βν̃S)−1is a funtion of surfae-water interation strength. The site funtional ZI for anyinterfaial site an be arranged as
ZI = Zsite + νSµC

′

(η, φ) (6.2)By de�nition, νS ranges from −1 to ∞. We remark that for a perfet hydrophobisurfae, νS = 0.The modi�ed site funtional at the interfae sites an be reast in the expressionfor full partition funtion suh that the following deomposition is dedued.
Z|| =

∫

[Dη][Dφ]
∏

r

Zsite

∏

r1∈I1

(1 + Γ(r1))
∏

r2∈I2

(1 + Γ(r2)))

= Z

〈

exp

(

∑

r1∈I1

ln(1 + Γ(r1)) +
∑

r2∈I2

ln(1 + Γ(r2))

)〉 (6.3)where Z|| is partition funtion for the system with the surfaes, Z is for the or-responding unperturbed ase (νS = 0) with η = φ = 0 on the surfae sites, and
Γ(r) is de�ned only on the interfae sites. It is relative orientational weight of thea�eted orientations with respet to Zsite, i.e.,

Γ(r) =
νSµC

′

(η, φ)

Zsite(r)
(6.4)The partition funtion for the unperturbed ase Z an be evaluated using theMMF tehnique. The leading mean �eld energy is obtained from the maximumof Zsite at eah site and the �utuations in η and φ �elds are analyzed subjetto vanishing boundary onditions on the surfaes. The interfaes-dependent partin Z|| is evaluated using luster tehnique and the orresponding free energy isobtained. The resulting form of total free energy Gtot per unit lattie area isorganized to be

Gtot = Go +GC + γS1
+ γS2

+GΓ (6.5)where Go + GC is the free energy obtained from the evaluation of Z, analogousto Eq.(4.27). Go inludes leading terms proportional to L and onstants obtained67



Chapter 6. Hydrophobi fore between marosopi surfaesin the large L limit. They ontribute only to bulk pressure of the system. GCis the remaining L-dependent part. γS1
, γS2

are free energy ontributions due tosurfae-water interation and evaluated only on the sites of respetive interfaes
I1 and I2 respetively. GΓ onstitutes terms whih involve sites of both interfaes.Expression for eah of the terms is dedued in the remaining setion and theirrelevane to hydrophobi interation is eluidated.We �rst evaluate Z using the MMF tehnique desribed in the previous setion.We identify the maximum of the funtional to be at η = φ = 0. It yields mean �eldfree energy per unit area, whih to the leading order is given by LGm [Eq.(4.25)℄.The dual �elds are then expanded upto quadrati order about their maximum andthe resulting Gaussian integrand funtional for Z is integrated over all the �eldon�gurations whih are onsistent with the boundary onditions. This yields theone-loop ontribution to the free energy. In the proess, the following Fouriertransformation is employed whih satis�es the vanishing boundary onditions inthe z diretion.

η(~r) =
2

L

L−1
∑

n=1

π
∫

−π

(dk1)(dk2)

(2π)2
η̃(~k) exp(ik1x+ ik2y) sin (nπz/L) (6.6)where ~r = (x, y, z) is position vetor for an arbitrary site and ~k = (k1, k2, k3 =

nπ
L
)denote modes in the momentum spae. Similarly for φ �eld.The entropy ontribution to the free energy for the unperturbed system is adisrete analog of the orresponding expression for bulk water [Eq.(4.27)℄, in thatthe integral over the wavevetor in z-diretion is replaed by a summation overa restrited number of wavevetors i.e., k3 = π

L
, 2π

L
, . . . , π(L−1)

L
. To analyze the

L-dependene, we de�ne entropy ontribution per unit area in eah mode in z-diretion as
S(k3) =

1

2

π
∫

−π

(dk1)(dk2)

(2π)2
ln
(

Pηη(~k)Pφφ(~k)
) (6.7)where the propagators Pηη and Pφφ are same as those dedued in the ase of bulkwater. Total entropy ontribution to the free energy of on�ned water is S(k3)summed over the allowed values of k3. Its large-L behavior an be enumerated
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Chapter 6. Hydrophobi fore between marosopi surfaesusing Euler-Malaurin series expansion [60℄.
π
L
(L−1)
∑

k3=
π
L

S(k3) = L

π
∫

0

dk3
π

S(k3)−
1

2
(S(0) + S(π)) + βGC (6.8)On the right hand side of Eq.(6.8), the �rst term is the total entropy ontributionin the same volume of bulk water. S(0) and S(π) are free energy densities in themodes k3 = 0 and k3 = π respetively. They are independent of L. From Eq.(6.8)we infer GC to be the net di�erene in entropy ontribution per unit area betweenon�ned water and bulk water in the same volume. GC an be alulated as aseries expansion in 1

L
, in whih the leading term is

βGC ≃ π

B2L

[

∂

∂k3
S(k3)

∣

∣

∣

∣

k3=π

− ∂

∂k3
S(k3)

∣

∣

∣

∣

k3=0

] for large L (6.9)where B2 = 2 is the �rst Bernoulli onstant. GC is analogous to the Casimirinteration energy derived in ase of onduting plates on�ning eletromagneti�utuations [26℄. Hene, we all GC the Casimir part of the free energy. It fallso� asymptotially as 1
L
for large L.In the expression for the partition funtion [Eq.(6.3)℄, the average over theinterfae terms is now pursued. At eah interfaial site, ln(1 + Γ(r)) ≃ Γ(r) is theleading order term. This is justi�ed beause in Eq.(6.4) for Γ(r), we note that

µC
′

(η,φ)
Zsite

≃ ρC
′

(η,φ)
90

whose maximum value is always less than 1, sine ρ < 1
3
and
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∣

∣

C
′

(η,φ)
90

∣

∣

∣
< 2

3
, C ′

(0, 0) = 60. The leading order ontribution from the interfaeterms in Eq.(6.3) is then given by
Z||

Z
=

〈

exp

(

∑

r1∈I1

Γ(r1) +
∑

r2∈I2

Γ(r2)

)〉 (6.10)The average an be evaluated using luster tehnique1. Terms that involve sites ofthe same interfae and those involving sites of both interfaes are segregated. γS1If A and B are funtions of a random variable whose probability distribution is known, theaverage < exp(A + B) > over the probability distribution is given by : 〈exp(A+B)〉 =
exp

[

< A > + < B > + 1

2
(< A2 > − < A >2 + < B2 > − < B >2)+ < AB > −

< A >< B > + . . .] 69



Chapter 6. Hydrophobi fore between marosopi surfaesis de�ned to onstitute terms orresponding to sites on the same interfae. Eahof them is proportional to νS or its higher order. γS is given to the leading orderas
−βγSA =







〈

∑

r∈I

Γ(r)

〉

+

〈

∑

r1,r2∈I

r1 6=r2

Γ(r1)Γ(r2)

〉

−
〈

∑

r∈I

Γ(r)

〉2





(6.11)where A is area of the surfae. γS arises due to surfae-water interation andonsequent e�et on orientational �utuations in the interfaial region.Eah of the averages in Eq.(6.11) an be evaluated using a funtional integrationrelation2. For an interfae site with surfae in e3 diretion, using Eqs.(6.1) and (6.4)

〈Γ(r)〉 is given to the leading order as
〈Γ(r)〉 =

(νSρ

90

)

′

∑

α 6= 3 Hα = 0,±1
H3 = ±1

exp





∑

α,α′

(

H2
α(r)H

2
α′ (r)Gη(r + eα, r + eα′ )

+ Hα(r)Hα′ (r)Gφ(r + eα, r + eα′ )
)

](6.12)where the Hα summation is over the a�eted orientations at site r. The prime overthe summation indiates that the Hαs of eah orientation satisfy the onstraintsEq.(4.2). The exponential in Eq.(6.12) orresponds to one suh orientation. Hαand Hα
′ are bond arms of the same orientation; r + eα and r + eα′ are the bondarm loations.2If φ is a random �eld whose ation is known and when a onstant external �eld J ouplesto φ suh that their interation is iJφ(r), then < exp(iJ(φ(r1) + φ(r2))) > = exp[− 1

2
J2(<

φ(r1)φ(r1) > + < φ(r2)φ(r2) + 2 < φ(r1)φ(r2) >) + . . .]. If the two-point orrelation is leadingorder among the orrelations, then the subsequent terms of higher order denoted by (. . .) an beignored
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Chapter 6. Hydrophobi fore between marosopi surfaesThe average 〈Γ(r1)Γ(r2)〉 is given to leading order as
〈Γ(r1)Γ(r2)〉 =

(νSρ

90

)2
′

∑

α 6= 3 Hα = 0,±1
H3 = ±1

′

∑

κ 6= 3 Hκ = 0,±1
H3 = ±1
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H2
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2
α′ (r1)Gη(r1 + eα, r1 + eα′ ) +Hα(r1)Hα′ (r1)Gφ(r1 + eα, r1 + eα′ )

)

+
∑

κ,κ
′

(

H2
κ(r2)H

2
κ′ (r2)Gη(r2 + eκ, r2 + eκ′ ) +Hκ(r2)Hκ′ (r2)Gφ(r2 + eκ, r2 + eκ′ )
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+
∑

α,κ
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H2
α(r1)H

2
κ(r2)Gη(r1 + eα, r2 + eκ) +Hα(r1)Hκ(r2)Gφ(r1 + eα, r2 + eκ)

)



(6.13)where Hα and Hα′ are bond arms of an a�eted orientation at site r1; Hκ and
Hκ

′ are those of an orientation at site r2. The exponential orresponds to theprodut of the two orientations and the summation is over all possible produts.The two-point Green's funtion Gη(r1, r2) for the η-�eld �utuations between anytwo arbitrary sites r1 = (x1, y1, z1) and r2 = (x2, y2, z2) is given by
Gη(r1, r2) =

2

L

L−1
∑

n=1

π
∫

−π

(dk1)(dk2)

(2π)2
exp (ik1(x1 − x2) + ik2(y1 − y2))

× sin (nπz1/L) sin (nπz2/L)

Pηη(~k)
(6.14)Similarly, Gφ(r1, r2) for φ �eld an be de�ned using the propagator Pφφ(~k).The expression for γS indiates that it varies with separation distane, owingto the L-dependent Green's funtions. The asymptoti value of the γS is theinterfaial tension for the hydrophobi surfae in ontat with water. The leadingorretion term is proportional to 1

L
for large-L and ontributes to fore betweenthe surfaes.From the luster expansion of the partition funtion, terms that involve sites

71



Chapter 6. Hydrophobi fore between marosopi surfaesof both interfaes are grouped as GΓ. It is given to the leading order as
−βGΓA =

[〈

∑

r1∈I1

Γ(r1)
∑

r2∈I2

Γ(r2)

〉

−
〈

∑

r1∈I1

Γ(r1)

〉〈

∑

r2∈I2

Γ(r2)

〉] (6.15)E�etively, GΓ is the onneted orrelation between orientational �utuations ofboth interfaes. Hene, we all this ontribution interfaial �utuations-induedpart of the free energy. The averages in Eq.(6.15) an be evaluated using theEq.(6.12) with νS orresponding to eah interfae and using the Eq.(6.13) withproportionality fator (νS1
νS2

) instead of (νS)2. The identity of the sites is as pergiven in the expression for GΓ [Eq.(6.15)℄.The long-distane behavior ofGΓ is dominated by the φ(r) orrelations, the η(r)being short-ranged. Between two hydrophobi surfaes, to the leading order, GΓ isproportional to the square of orientational orrelations i.e., (Gφ(r))
2, where Gφ(r)is an exponentially falling-o� funtion for large r [see setion (4.2.2) in Chapter 4℄.For the ase of mesosopi surfaes, hydrophobi fore is shown to arise fromorientational orrelations between water moleules present at the interfaes of bothsurfaes [see Chapter 3℄. The fore is seen to deay exponentially with the separa-tion distane, asymptotially [Eq.(3.6)℄. GΓ is thus analogous to the hydrophobiinteration free energy of mesosopi surfaes. However, for marosopi surfaes,in addition to GΓ, hydrophobi fore obtains ontributions from the Casimir partand the interfaial free energy. This aspet distinguishes the hydrophobi intera-tion between large surfaes from that of between small surfaes, both qualitativelyand quantitatively. The non-additive nature of hydrophobi interation with in-reasing size of surfaes has attrated onsiderable attention [17, 61℄ and our workprovides a diretion to eluidate the size dependene in terms of hydrogen-bond�utuations in water.6.1.1 Hydrophili surfaesWe an envisage surfaes of generi heterogeniety in our alulation. The heteroge-niety ould be in terms of spae-dependent νS and/or harge on the surfae. One ofthe simplest ases is a homogeneous hydrophili surfae with a �xed harge at eahsite. We �rst onsider the ase of a positively harged hydrophili surfae. On itsinterfae, the site funtional omprises weights orresponding to all states. When a72



Chapter 6. Hydrophobi fore between marosopi surfaeswater moleule is present on interfae, its hydrogen arm is restrited from pointingin the surfae diretion. We assign an energeti penalty to suh orientations andthe site funtional an be arranged, analogous to the ase of a hydrophobi surfae,as given below:
ZI = Zsite + νSµC

′

(η, φ)Here, νS ∈ (−1, 0) (ideally, νS = −1) and the orientational weight orrespondingto the a�eted orientations C ′

(η, φ) is given by
C

′

+(η, φ) =

′

∑

α 6= 3 Hα = 0,±1
H3 = 1

exp

[

i
∑

α

(H2
α(r)η(r + eα) +Hα(r)φ(r + eα))

]

(6.16)The above expression is for an interfae site with surfae in e3 diretion. A nega-tively harged hydrophili surfae an also be envisaged suh that, for an interfaewater moleule, orientations with lone-pair arm in the surfae diretion are ener-getially penalized. Here, the orientational weight for the a�eted orientations isgiven by
C

′

−(η, φ) =

′

∑

α 6= 3 Hα = 0,±1
H3 = −1

exp

[

i
∑

α

(H2
α(r)η(r + eα) +Hα(r)φ(r + eα))

]

(6.17)We now ompute the free energy omponents GC , γS1
, γS2

, and GΓ using theirrespetive expressions for di�erent types of surfaes. νS is an arbitrary parameterin the alulation. It is hosen lose to its ideal value for eah surfae type. Theproperties of water enter the omputation via Green's funtions Gη and Gφ. Theseare omputed within the model using Eq.(6.14). Due to the L-dependent modes inthe on�ned diretion, all the free energy omponents that depend on �utuationsare expeted to vary with the separation distane L.
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Chapter 6. Hydrophobi fore between marosopi surfaes6.2 Results : Hydrophobi fore, interfaial ten-sionWe �rst mention that this omputation is totally parameter free on lattie. Theequation of network uniquely �xes HB as a funtion of ρ. Temperature in the modelis onjugate to HB and an be self-onsistently �xed for a given h(= 2HB/ρ).Hene, we desribe our results in terms of h to relate to water. All the freeenergy omponents given by Eqs.(6.8, (6.11), and (6.15) are evaluated from thepartition funtion upto one-loop order using the orresponding expressions for thepropagators [Eq.(4.28)℄.
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Chapter 6. Hydrophobi fore between marosopi surfaes
L the results are predominantly in�uened by surfae e�ets. In the model, for
L = 4 there is only one layer whih an have free orientations (besides two interfaelayers), while for L ≥ 5 there are two or more suh free layers.
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GΓ in both ases is proportional to Gφ and hene, the orrelation length is twie aslonger in range than in the ase of hydrophobi surfaes (where GΓ is proportionalto (Gφ)

2). At short distanes, this ontribution is seen to be attrative for bothombinations of hydrophili surfaes. However, for large distanes, it is weakly re-pulsive between like-harged surfaes, in ontrast to attration between oppositelyharged surfaes. Fig.(6.8) depits the fore between hydrophili surfaes for bothsimilar and dissimilar ombinations. As expeted, the dissimilar pair of surfaeshave marginally larger attration than that of similar surfaes. It is interesting tonote that like-harged hydrophili surfaes also have a net attration. This is dueto dominane of the Casimir part GC whih is indi�erent to surfae harge.Figure (6.9) displays fore between a hydrophobi and hydrophili surfae. Itbears similar pro�le as in the ase of two hydrophobi surfaes. This is expetedbeause essentially GΓ is qualitatively same for both ases i.e., proportional to
(Gφ)

2. For all surfae ombinations the fore is seen to inrease in magnitude with76
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Figure 6.5: γS for a hydrophobi surfae (νS = −0.5). Top (red) urve orrespondsto h = 3.03, middle (green) urve : h = 3.30, bottom (blue) : h = 3.58.
h, dominantly due to the Casimir part whih is leading ontribution in all theases and is indi�erent to surfae types. This is a onsequene of the fat that theentropy indued fores are largely harge neutral.Next, we make an attempt to relate our omputational results to those of ex-periments. The free energy values presented in the graphs are in the units wherehydrogen-bond strength is unity. Generally, dimensionful quantities in lattie mod-els and those in orresponding ontinuum models are not the same. So, it is best toompare dimensionless quantities. In our instane, for h = 3.58 and L = 6 lattieunits whih translates to 6 × 1.57Å ≃ 9.5Å, |Gtot(6)−Gtot(∞)|

γS(∞)
≃ 9× 10−5

8.5× 10−3
≃

10−2. From experiments, the interation free energy estimate when two hydropho-bi plates are about 10 Å apart is about 1 mJ m−2 [9℄, while the interfaial tensionis in the range 50− 100 mJ m−2 [63℄; their ratio agrees with our omputation. Inexperiments the free energy values are also measured for larger distanes all theway up to 100 Å. Unfortunately, our model is not good for these distanes. Thisdisrepany was already notied when our results were ompared with the MDsimulation. The simple water model has only one orientational orrelation length,while there are more than one in both MD simulations [see Eq.(2.4) in Chapter2℄ and surfae fore apparatus experiments [7℄. We onlude that while the order77
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= −0.5). For L ≥ 6, top(red) urve orresponds to h = 3.03, middle (green) urve : h = 3.58, bottom(blue) : h = 3.75.of magnitude estimate of the strength of hydrophobi fore is in agreement withCasimir-like energies envisaged here, a few more important details are perhapsmissing in our simple model of water.6.3 Transverse density pro�leWe also dedue expression for water density pro�le along the on�nement diretion.
ρ(z) is obtained by assuming hemial potential for water µ̃ to be z-dependentand then, a partial derivative of ln(Z||) is taken with respet to βµ̃(z). At bothinterfaes i.e., z = 1 and z = L − 1, the modi�ed fugaity provides additionalorretion to the average density. The expression for the density pro�le is given by
ρ(z) ≡ ∂(ln(Z||))

∂(βµ̃(z))
= ρC(z) +

1

A

〈

∂

∂(βµ̃(z))

(

∑

r1∈I1

Γ(r1) +
∑

r2∈I2

Γ(r2)

)〉

+ . . .(6.18)
ρC is obtained from di�erentiating Z in Eq.(6.3). It is the density pro�le betweenideal hydrophobi surfaes (νS = 0) and is the dominant ontribution at all posi-tions. The expliit expression for ρC(z) upto the one-loop order is same as given78
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= −0.9). (+,+) urve orre-sponds to similar type of hydrophili surfaes and (+,−), to dissimilar type. Bothurves are plotted for h = 3.58.in the Appendix (4.4.2) [see Chapter 4℄. The Green's funtions Gη and Gφ in theexpression are to be omputed from Eq.(6.14). The interfaes-dependent term inEq.(6.18) an be analyzed using Eq.(6.12). This ontribution is only at z = 1 and
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1.2 for an ideal hydrophobi surfae. The under-estimation ould possibly be dueto disrete orientational freedom envisaged in our model. Also, the alkane head-79
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〈W (r)W (r
′

)〉 =

〈

µ{. . .}
Zsite(r)

µ{. . .}
Zsite(r

′)

〉 (6.19)where Zsite(r) is the site funtional at r. To ompute density orrelations onsame interfae, the site funtional at both sites is given by Eq.(6.2). For densityorrelations between one site on interfae and another site away from interfae,80
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= −0.5.6.4 Appendix6.4.1 Orientational weight on interfaeThe orientational weight for the water state in bulk water is given by
C(η, φ) =

′

∑

Hα = 0,±1
α = ±1,±2,±3

exp

[

i
∑

α

(H2
α(r)η(r + eα) +Hα(r)φ(r + eα))

]

where the prime indiates the summation is subjet to onstraints Eq.(4.2).About the mean �eld on�guration η = φ = 0, the dual �elds are expandedupto quadrati order. C(η, φ) is then given by
C(η, φ) ≃ 90
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](6.21)Near a hydrophili surfae, the orientational weight is given by
C
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±(η, φ) ≃ 30
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Chapter 6. Hydrophobi fore between marosopi surfaes6.4.2 Interfaial density orrelationsThe onneted part of density orrelation funtion between sites on same interfae,to leading order, is given by
〈W (r)W (r

′

)〉c ≃

− (µ
′

)2
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′
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 (6.23)where r and r
′ are arbitrary sites on same interfae; r+eα and r

′

+eα′ are respetivenear-neighbor sites in the diretions eα, eα′ respetively. Gη(r1, r2) and Gφ(r1, r2)an be omputed from Eq.(6.14). ν
′ , λ′, and µ

′ are the redued fugaities [seesetion (4.2.1) in Chapter 4℄.The density orrelation funtion between a site on an interfae and another siteaway from interfae is given by
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(6.24)where r is any site on the interfae and r
′ is away from interfae; r+eα and r

′

+eα′are their respetive near-neighbor sites.Orientational orrelations an also be evaluated using the expression for ori-entational weights given in Appendix (6.4.1) and an be omputed using knownexpressions for Green's funtions.
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7Results summary
• MD simulation study reveals that orientational orrelations in liquid waterare longer in range, whereas density orrelations vanish beyond few moleulardiameters (12 Å). The longitudinal dipolar orrelation, in partiular, exhibitstwo orrelation lengths, one of order 5.2 Å and the other of 24 Å. MMF theoryfor a simple lattie water model predits a orrelation length for orientational�utuations onsistent with the shorter length. MC simulation of the modelon�rms this feature qualitatively. Coulomb interations have no signi�ante�et on the orrelation length, asymptotially. This aspet is veri�ed bothwithin MD study and MMF theory.
• The �nite partile size and �nite number of bonds that partiles an undergoin assoiating �uids imply sum rule(s) for the �uid. MMF theory for thewater model expliitly respets the orresponding sum rule in the evaluationof partition funtion. The sum rule manifests in the form of equation ofnetwork, a relation between hydrogen bond density and moleular density.The same is borne out in experiments. Furthermore, as a onsequene of thesum rule the equation of state orretly predits the density saturation andthe bond saturation in the model.
• Two mesosopi hydrophobi surfaes in water are shown to experiene along range attrative fore mediated by orientational orrelations in water.The dedued fore expression suggests that, for distanes greater than thesurfae size itself, hydrophobi fore falls o� exponentially with a orrelationlength half that of orientational orrelations i.e., about 12 Å. This distane85



Chapter 7. Results summarydependene is quantitatively onsistent with experiments. The shape of thesurfaes and their mutual orientation are also shown to in�uene the magni-tude of the fore.
• For the ase of marosopi hydrophobi surfaes Casimir-like �utuationsin the intervening region give rise to an attrative hydrophobi fore. Thefore obtains ontributions from : (i) Casimir part of free energy, whih solelyarises from disretization of �utuation modes in the region between surfaesand is independent of nature of surfaes, (ii) Interfaial free energy, whiharises due to surfae-water interation and is weakly distane-dependent,(iii) Interfaial �utuations-indued part, whih is due to orrelation betweenorientational �utuations at both interfaes and depends on nature of bothsurfaes. All ontributions are of similar order of magnitude. The Casimirpart is the leading ontribution among them.
• The Casimir part is largely in�uened by long range orrelations of orienta-tional �utuations. It behaves as 1

L
, asymptotially. However, its strengthis pratially weak for distanes beyond four times the longest orrelationlength in water.

• We also dedue interfaial free energy for hydrophobi and hydrophili sur-faes in ontat with water. This ontribution is seen to weakly depend onseparation distane.
• The interfaial �utuations-indued part is exponentially deaying with aorrelation length half that of orientational orrelations in water. This on-tribution is analogous to the fore between mesosopi surfaes.
• Our analysis an be arried out for generi surfae types. In ase of hy-drophili surfaes the Casimir part is the leading ontribution. The interfaial�utuations-indued part is seen to depend on harge symmetry between thesurfaes and is longer in range ompared to the ase of hydrophobi surfaesi.e., its orrelation length is same as that of orientational orrelations.
• The transverse density pro�le of water in on�nement diretion is seen to dis-play a haratersti rise near interfaes, onomitant with simulation studies.The density approahes the bulk value within a hydrogen bond length. 86
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