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Abstract

The thesis aims at understanding the role of hydrogen-bond fluctuations in
liquid water in bringing about a solvent-induced interaction between hydropho-
bic moieties, called hydrophobic force. This interaction plays a significant role
in many oft-studied biological phenomena like protein folding, cell membrane for-
mation etc. Surface force apparatus measurements reveal that hydrophobic force
is long-ranged and monotonic in nature. We provide a statistical description of
hydrogen-bond fluctuations in liquid water and address the long-distance nature
of hydrophobic force and also attempt to provide a consistent picture of its depen-
dence on the size of hydrophobes. The hydrogen-bond interaction is essentially
orientation-dependent and specific in nature. The features imply for a system of
water molecules that the density of dangling bonds and hydrogen bonds are to
be commensurate with molecular density, which can be stated as “sum rule" for
water. These aspects necessitate the statistical description of water in terms of
both density and orientational degrees of freedom of the molecules. We define and
analyze density and orientational correlations in popular water models in terms of
a complete orthonormal set of orientational fields. Large-scale molecular dynam-
ics simulations reveal that the density correlations vanish beyond few molecular
diameters, whereas (longitudinal part of) dipolar orientational correlation shows
long-distance behavior, at least up to 75 A. Two correlation lengths of order 5.2 A
and 24 A are inferred for the correlation function. It is seen to be predominantly
influenced by the hydrogen-bond interaction. Coulomb interactions, surprisingly,
have little effect on its long-distance behavior. The orientational correlation func-
tion is utilized to deduce interaction free energy for two mesoscopic hydrophobic
surfaces in water. The restricted orientational fluctuations of water molecules in
the vicinity of a hydrophobe are envisaged in a local interaction Hamiltonian and
in presence of two such hydrophobes, the deduced force shows exponential decay
with a correlation length half that of orientational correlations. The range of the
force is strikingly consistent with that seen in experiments. The magnitude of the
force is also shown to depend on shape and mutual orientations of the surfaces.

We take a theoretical route to understand hydrophobic force between large
surfaces, by envisaging a simple lattice model for water and investigating the ther-

modynamic consequences of confining hydrogen-bond fluctuations. The model



incorporates the essential density and orientational degrees of freedom of water
molecules. The restrictions on network formation, due to the nature of hydrogen-
bond interaction, are handled in terms of dual lattice fields. A mean field analysis
consistent with the sum rule for water is carried out and fluctuations in dual fields
about the mean field are analyzed. The analytical framework is called molecular
mean field theory. Monte Carlo simulations in compliance with constraints and
restrictions in the model are also carried out to attest the mean field results. The
sum rule manifests as an equation of network, i.e., a relation between molecular
density and hydrogen-bond density. It correctly predicts density saturation and
bond saturation within the model and is in quantitative agreement with the simula-
tion results. The mean field analysis is pursued at arbitrary densities in the model.
However, it is seen to be a good approximation only at densities corresponding to
liquid phase or above. Correlation functions are also deduced in terms of dual
field correlations. The density correlation vanishes within a short lattice distance,
whereas orientational correlations show long-distance behavior. The correlation
length deduced here is consistent with the shorter length inferred in molecular
dynamics simulations. Coulomb interactions are seen to have little effect on the
correlation length.

We then envisage large hydrophobic surfaces confining hydrogen-bond fluctua-
tions in their intervening region. Casimir-like forces are known to arise in various
contexts where fluctuating fields are confined between surfaces. The free energy of
the system is increased due to restriction imposed on fluctuations by the bound-
aries, thereby system tends to minimize the separation in order to reduce the free
energy cost. We investigate hydrophobic force to be a manifestation of Casimir-like
force due to density and orientational fluctuations in liquid water. The discretiza-
tion of fluctuation modes in confinement direction gives rise to a Casimir part of
free energy. The modified orientational fluctuations in the interfacial region of hy-
drophobic surfaces, in addition, give rise to interfacial free energy and interfacial
flucutations-induced free energy, both of which depend on nature of the surfaces.
The Casimir part of free energy is the leading contribution and varies as % for large
distances. However, it is seen to be numerically small for distances beyond four
times the orientational correlation length in the model. Interfacial free energy is
also seen to vary with separation distance, albeit weakly and it reaches a constant

value, asymptotically. The interfacial fluctuations-induced part is effectively cor-



relation between modified interfacial fluctuations at both surfaces. Its asymptotic
behavior is dominated by orientational correlations in water and is analogous to hy-
drophobic force between mesoscopic surfaces. The collective consequences of these
effects are analyzed for both hydrophobic and hydrophilic types of surfaces. The
quantitative details of hydrophobic interaction are consistent with experiments.
Transverse density profile of water is also addressed in our calculation and is seen
to be qualitatively concomitant with results of confined water simulations.

For both mesoscopic surfaces and macroscopic surfaces, hydrophobic interac-
tion is seen to be largely influenced by orientational correlations in water. Our
mean field framework provides a direction to elucidate the size dependence of the

interaction in terms of water properties.
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“"Hydrophobic interaction is
arguably the most impor-
tant non-specific interaction
in biological systems and is
responsible for the creation
of enclosed compartments by
proteins and lipid bilayers in

water, which was fundamen- I nt ro d u Ct 1 on

tal for the evolution of cells
and therefore life."

J. N. Israelachvili

Liquid water provides matrix for many ubiquitous physical, chemical and biologi-
cal phenomena. Interesting among them is hydrophobic effect which manifests at
macroscopic scale as tendency of apolar chemical species to minimize contact with
water. Some well known consequences are oil-water demixing and formation of
near-spherical water droplets on a lotus leaf. The effect manifests at microscopic
scale as a force of attraction between apolar moeities in aqueous medium, called
hydrophobic force. This interaction is dominantly prevalent in biology and is known
to be responsible for micellar aggregation, cell membrane formation, assembly of
proteins into functional complexes [1]. Tts occurence as a solvent-induced interac-
tion was first suggested by Frank and Evans [2] and later elucidated in biological
context by Kauzmann [3|. The former study noted that transferring small hy-
drophobes such as hydrocarbons into water was accompanied by unfavorable free
energy change [4], dominated by entropy reduction due to reorganization of vicinal
water molecules [2]. Hence, two hydrophobes show tendency to coalesce in order
to minimize the unfavorable free energy. The low solubility of pure hydrocarbons
in water, however, hampered efforts to directly measure or infer the interaction at
this scale in experiments.

In early 1980s, employing large hydrophobic surfaces the first direct measure-
ment of hydrophobic force was carried out using surface force apparatus (SFA) [5].
Amphiphilic molecules were chemisorbed on activated mica surfaces with their hy-
drophobic tails left open to interact with water. Two such surfaces were employed
in a cross-cylinder geometry inside water medium and the measured force between

them was related to interaction free energy using Derjaguin approximation [6].



Chapter 1. Introduction

Hydrophobic interaction was seen to be influential upto hundreds of Angstroms
and stronger than inter-surface van der Waal (vdW) interaction. The qualitative
nature of the interaction i.e., long range and monotonic decay, withstood the test
of time [7-9].

A quantitative understanding of hydrophobic force from statistical description
of liquid water is essential for many biophysical problems, eg., protein folding [10].
We briefly discuss essential degrees of freedom to be envisaged in the description
of water and past attempts in this direction. The water molecules are uniquely set
up with a geometry and intermolecular interaction that facilitate diverse molec-
ular and orientational arrangements. Each molecule has two positively polarized
hydrogen atoms (covalently bonded to oxygen atom) and two negatively polarized
lone-pair of electrons, distributed at tetrahedral angles about oxygen nucleus. The
geometry is a consequence of sp hybridization (of 2s and 2p orbitals) in oxygen
atom and the associated charge distribution is due to electronegative nature of oxy-
gen [11]. In the background of this knowledge, x-ray diffraction studies on structure
of ice and quantum-mechanical studies on water dimer in gas phase [11] indicate
that a hydrogen bond occurs when two water molecules suitably orient such that
a hydrogen arm of one molecule interacts with a lone-pair arm of the other. The
orientation dependence and the specificity of hydrogen bonding impart importance
to both density and orientational degrees of freedom in statistical analysis of water.
There are models galore which were proposed and analyzed to reproduce anoma-
lous thermodynamic properties of water [12, 13]. Theoretical attempts to envisage
fluctuations in water are limited to Ornstein-Zernike-like phenomenological ap-
proaches, wherein integral equations only in terms of molecular density correlation
were heuristically proposed and are numerically solved using different closure ap-
proximations [14, 15]. Wertheim’s theory for associating fluids envisages similar
density correlations to be solved in compliance with steric constraints imposed by
formation of molecular clusters [16]. Other approaches specific to molecular fluids,
such as reference interaction-site model, were seen to be less predictive in case of as-
sociating fluids [17]. Hydrophobic interaction at both small and large lengthscales
has also been conventionally addressed in terms of density fluctuations in water.
In case of small solutes, phenomenological approaches based on scaled particle
theories envisage density exclusion caused by small solutes and estimate hydration

free energies [17|. The accompanying change in density fluctuations of water is
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considered small and using Ornstein-Zernike approach, the interaction free energy
is derived in terms of density correlation function of bulk water [18]. For extended
hydrophobic surfaces, large lengthscale density fluctuations in metastable confined
fluid [19], dewetting-induced cavitation under liquid-vapor coexistence conditions
[20], and fluid structuring effects [21] are some of the mechanisms suggested for the
origin of hydrophobic interaction. These theories are envisaged in narrow range of
fluid conditions and besides, were unsuccessful in reproducing generic features of
the interaction seen in experiments [7]. There were also other studies that envis-
age electrostatic mechanisms |22, 23| or specific surface details like charged bilayer
patches [22]|, nanobubbles [24]. The essential nature of hydrophobic interaction is
seen to be qualitatively similar between different surface types [25].

The specific nature of hydrogen bonding interaction necessitates the density
of hydrogen bonds and dangling bonds (hydrogens and lone-pairs which are not
hydrogen bonded) to be commensurate with water density. This can be stated as
a sum rule for water. Consequently, the fluctuations of density and orientational
fields of water molecules (the latter being inherently connected to the bond fluctu-
ations) are not totally independent; their long wavelength fluctuations especially
are to be consistent with the sum rule. The essential features of hydrogen bonding
interaction consistent with the sum rule are implicitly incorporated in effective
charge models of water designed for numerical simulations (TIP5P, TIP3P, etc).
A water molecule is often modeled as a polar molecule with charges corresponding
to hydrogens and lone-pairs placed at vertices of a tetrahedron. A complete de-
scription of molecular correlations can be achieved by defining a set of orthonormal
vectors in terms of atomic coordinates and defining correlations among them. We
perform large-scale molecular dynamics simulations of the water models at am-
bient conditions and observe that density correlations are short-ranged, whereas
dipolar orientations, which are receptive to bond fluctuations in the neighborhood,
are correlated over large distances, at least up to 75 A. Two correlation lengths
of order 5.2 A and 24 A are inferred. Coulomb interactions, surprisingly, have
little effect on the asymptotic behavior of the correlations [Chapter 2|. We utilize
orientational correlation function of bulk water to deduce hydrophobic force be-
tween mesoscopic surfaces. The orientational fluctuations of water in the vicinity
of a hydrophobe are modified due to unfavorable surface-water interactions. The

correlation between modified interfacial fluctuations at two hydrophobic surfaces
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gives rise to a long-range attractive force between the surfaces. The magnitude
of the force decays exponentially with distance and depends on shape and mu-
tual orientation of the surfaces [Chapter 3|. The exponential decay bears striking
consistency with that seen in SFA experiments.

For the case of large hydrophobic surfaces, correlations in confined water need
to be ascertained. In this case the desired system size to obtain proper equilibration
and small free energy changes that need to be reliably computed are limitations to
carry out a simulation study. Alternatively, we propose a simple model for water
which incorporates essential features of hydrogen bonding and is envisaged on
lattice to account exactly for hard-sphere repulsion. An analytical framework called
molecular mean field theory is developed to deduce thermodynamic and fluctuation
properties of the system consistent with the sum rule for water [Chapter 4|. In
the model study we see that density correlations show hydration peaks and vanish
within a short lattice distance, whereas orientational correlations display long-
distance behavior, consistent with the results of molecular dynamics simulations.
The mean field results are validated using exact Monte Carlo simulations for the
lattice model [Chapter 5|. The mean field approximation is envisaged at arbitrary
densities. But, within the model the approximation is seen to be self-consistent
only for densities corresponding to liquid phase or higher. Qualitative predictions
for the correlation functions are verified with exact simulation results. We then
envisage large hydrophobic surfaces confining water in their intervening region.
The presence of large surfaces substantially disrupts the hydrogen bond network
whose fluctuations are suppressed at surface boundaries. The setting is ideally
suited for fluctuations-induced force between the surfaces. Forces of this nature
are generically called Casimir forces as they were first discussed by Casimir in the
case of electromagnetic fluctuations confined between conducting plates [26], later
studied in detail by Lifshitz [27] and envisaged in widely different contexts [28].
The case of thermal fluctuations-induced force was first discussed by Fisher and
de Gennes. They argued that when a binary liquid mixture is confined between
surfaces which have specific affinity towards one of the fluid components, Casimir-
like density fluctuations in the liquid give rise to an effective force [29]. Origin of
the force is entropic in nature; in that, the free energy of the system is increased
due to restricition imposed on fluctuations by the boundaries, thereby system tends

to minimize the separation in order to reduce the free energy cost. We investigate

4



Chapter 1. Introduction

hydrophobic force to be a manifestation of Casimir-like force due to density and
orientational fluctuations in liquid water [Chapter 6]. The Casimir-like behavior
and the modified orientational fluctuations near hydrophobic surfaces collectively
give rise to a hydrophobic interaction acting over large distances and consistent
with SFA experiments. The analysis is carried out for arbitrary fluid conditions
and for generic surface types. We also deduce transverse density profile for water
in confinement direction. The density profile shows a characterstic rise near the
interfaces, concomitant with simulation studies on confined water and reaches the
bulk density value within a hydrogen bond length. For both mesoscopic surfaces
and macroscopic surfaces, hydrophobic interaction is seen to be largely influenced
by orientational correlations in water. In the concluding chapter, important results

from our model studies are summarized [Chapter 7|.
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Correlations in bulk water : A molecular

dynamics study

The effective interaction potentials designed for numerical simulations of water
[13, 30] provide successful instances of implicitly envisaging hydrogen bonding
interaction consistent with its most essential features i.e., orientation-dependent
attraction and specific nature of bonding between two water molecules. Here,
a water molecule is modeled as a polar molecule with charges corresponding to
two hydrogens and two lone-pair of electrons placed at vertices of a tetrahedron,
as shown in Fig.(2.1). We define position vectors ﬁLg and ELQ corresponding
to hydrogens and lone-pairs, respectively, with respect to the position of oxygen
O. Angles between the vectors and their lengths fluctuate about respective mean
values. A water molecule’s orientations can be conveniently described with a choice
of vectors defined as

dolr) = Syt (21)

|\Hy + H,| |L1 + Lo|

where r is the position of oxygen atom in the bulk. The choice of d;(r) and da(r)
is such that they do not depend upon bond lengths of the molecule; they are
symmetric under exchange of hydrogen or lone-pair positions of the molecule. The
corresponding unit vectors di (r), da(r) and dy = dy xd, form an orthonormal set. A
set of three orthonormal unit vectors are sufficient to define any direction in three
dimensional space. Here, czl(r) is dominantly along the direction of dipole field

and dy(r) exists only if the water molecule differs from its mean near-tetrahedral
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Figure 2.1: Geometry of a water molecule envisaged in TIP5P, TTP3P models.

geometry i.e., it is proportional to the quadrupole moment of the molecule.

The d-vectors [Eq.(2.1)] form a complete triad with which orientation of any
vector (ﬁ1,2 or [7172) can be specified. Consequently, dynamics of water can be
understood to be an interacting system of the d-vector fields. In particular molec-
ular dynamics (MD) simulation of water molecules implicitly gives us the dy-
namics of these fields. Various statistical correlations involving d, (r), da(r) and
p(r) = (dy(r))? = (da(r))? in the liquid phase of water can be formulated as

(p(r1)p(r2)) = g(ri,r2) (2.2a)
< d > —fa(rl, I'Q) (22b)

1 N 1 . rird
<dl I'l d] I‘2 > (51] — TZ ) tab<r17r2) — 5 (52.] — 7«2 ) lab(r17r2) (220)

where r = (r; — ry), r = |r|, subscripts a,b = 1,2, 3 denote either of dy, ds, d3 and
vector indices i, 7 = 1,2, 3 denote directions in three-dimensional space. g(ry,ry) is
density correlation function, here, of oxygen. The remaining functions capture the
correlations among other degrees of freedom of the vector fields. The translational
and rotational symmetry of the system enable decomposing the tensorial properties

of these correlations explicitly and thus analyze the data in terms of simple scalar
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Figure 2.2: TIP5P - g(r). Oxygen-oxygen radial distribution function. (inset)
additional hydration shells in the end-hydration region.

functions like g(0,7), f4(0,7), ta(0,7), lew(0,7) here after denoted and defined as

below.

TIP5P model [31] possesses all orientational degrees of freedom of a water
molecule and has improved accuracy in predicting the structural properties of water
at ambient conditions [Fig.(2.1)]. A large system size is chosen to accomodate large
correlation lengths and facilitate better statistics (see Methods section 2.3). MD
simulations of TTP5P water model are performed in a large cubic box of side 150
A at ambient conditions i.e., p=1gem™3, P =1 atm, T = 300K.

2.1 Results

The function g(r), scaled with respect to ideal fluid structure at the same density, is

called radial distribution function. It is the most conventionally studied correlation
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Figure 2.3: TIP5P - f(r). Oxygen-dipole correlation function vanishes beyond 14
A

function in fluid systems, both in experiments and theory [14]. As a consequence of
finite size of a molecule, hydration peaks and troughs appear beyond hard-sphere
radius (~ 2.5 A). In our study, due to large system size and hence better statistics,
few more prominent troughs are observed at about r = 8.0 A and r = 10.0 A
[Fig.(2.2)]. The hydration structure visibly vanishes for distances beyond 12 A
without displaying any long-distance behavior.

fi(r) is correlation between oxygen atom and component of vicinal dipole along
the radial vector separating them. This function also exhibits hydration structure
and vanishes beyond 14 A [Fig.(2.3)].

The orientational correlations of dipolar field are analyzed in terms of trans-
verse trace part ti1(r) and longitudinal traceless part l1;(r). The longitudinal
part measures the correlation between components of two dipoles along the radial
vector separating them and transverse part captures the rest. t1(r) correlation
solely contributes to Kirkwood dielectric function [32]. Tt shows oscillatory hydra-
tion structure, but vanishes (in compliance with rotational symmetry in the full
system) beyond 14 A, as shown in Fig.(2.4).

The longitudinal part l;;(r) is plotted in Fig.(2.5). It is seen to be always

positive and furthermore, in the 14 — 75 A regime it can be fitted to an Ornstein-

10
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Figure 2.4: TIP5P - ¢;,(r) : Transverse part of dipolar orientational correlation.
(inset) The correlation vanishes beyond the hydration region of 14 A

Zernike (OZ) form as given below.

exp(—r/5.2(1)A) +0.027(1) exp(—r/24(1)A)

r r

Iy (r) = 0.39(2) r>14A  (2.4)
l11(r) shows longest correlation length of 24 A. Furthermore, it exhibits hydra-
tion peaks upto 14 A [Fig.(2.5)]. The error bars are mentioned as explained in
the following illustration. Eg. The precise strength of the first exponential is
0.397541 4+ 0.02168 and it is written here as 0.39(2) which expresses the mean
value and in bracket, the error in the last significant digit. The statistical sam-
pling errors are dramatically reduced for large distances, as expected [Appendix
(2.4.1)].

The orientational correlations have not been measured or inferred in experi-
ments. To ascertain the generality of the long-range correlation we also simulated
TIP3P model of water which, by design, has d; degree of freedom only [33]. That
is, each water molecule’s orientation can be completely described by d, field alone
[Fig.(2.1)]. The simulations of TIP3P model are also performed with a large system
size and at ambient conditions [see Methods section (2.3)].

Analysis in the case of TIP3P model also shows that 1;1(r) correlation follows
the same asymptotic behavior as described by Eq.(2.4). All other correlations g(r),
f1(r), t11(r) vanish beyond 12 A and display no long-distance behavior.

11
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Figure 2.5: Exponential decay in longitudinal part of dipolar orientational correla-
tion 11 (r) outside the hydration region. (red and green, bottom curve) TIP5P data
and fit function given by Eq.(2.4) on top of each other. (blue, middle curve) TIP3P
data for ly1(r). (pink, top curve) TIP3P with truncated Coulombic interactions.

For clarity, the middle and the top plots are shifted up by 0.001 and 0.002 units
respectively. (inset) l11(r) inside the hydration region within TIP5P model.

A water molecule in liquid phase is predominantly influenced by hydrogen bond-
ing and furthermore, it has a net dipole moment which interacts through Coloumb
force. In the effective charge models, Coulomb interactions are suitably parameter-
ized to envisage both short-range hydrogen bonding and long-range dipolar inter-
actions. To ascertain the cause for the long-distance behavior of l11(r), we truncate
the Coulomb interaction potential smoothly in TTP3P model simulations and ef-
fectively retain short-range interaction that imitates hydrogen bonding [Appendix
(2.4.1)]. The hydration peaks in correlation functions are determined consistent
with the hydrogen bonding interaction. Since the peaks extend upto about 12
A we choose the same distance cut-off in implementing the truncation procedure.
The simulations with truncated-Coulomb potential are performed under ambient
thermodynamic conditions. There is no noticeable variation in the density of the
new model system compared to full-Coulomb case. Our analysis shows that ;1(r)
remains essentially unchanged in the regions of first few hydration shells and for

r > 30 A. This indicates that hydrogen-bond interactions are responsible for

12
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the long-distance behavior of orientational correlations. The intermediate region
exhibits over-structuring effects upto 30 A [34].

It is also found that all correlations involving dy, ds vectors in TIP5P model
vanish upto statistical errors beyond the first hydration peak itself [Figs.(2.6)-
(2.10)]. Therefore, dy, the quadrupole moment of the water molecule, fluctuates
locally and randomly without any non-local correlations. ds being a pseudovector
has vanishing correlations with dy and dy, demonstrating that there is no parity

violation in the system.

0.001

0.001

0.0005
t)
0.0005 0
5o ~0.0005=—=535 45 60 75
O.
~0.0005 5 15 60 75

30 F(A) 45

Figure 2.6: TIP5P - g, (inset)tsy. Longitudinal and transverse parts of the cor-
relation < dy dy >, vanishing upto statistical errors beyond the first hydration
peak

2.2 Discussion

The three case studies are in agreement with Eq.(2.4) asymptotically. These ob-
servations suggest that (i) the orientational fluctuations in liquid water are domi-
nantly those of dipole degree of freedom; in contrast, the quadrupole has no effect
beyond the first hydration peak, (ii) in liquid phase these orientational fluctua-
tions are influenced by local environment of respective molecule through hydrogen
bonding, significantly more compared to long-range electrostatic interactions, (iii)
furthermore, the orientational fluctuations exhibit long-distance correlations.

g(r) is the conventionally studied correlation function in water. It displays

13
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Figure 2.7 TIP5P - Iy, (inset)ty;. Longitudinal and transverse parts of the cor-
relation < dy d; >, vanishing upto statistical errors beyond the first hydration
peak

only hydration peaks and exhibits no long-distance behavior. Recent small-angle
x-ray scattering experiments indicate that ¢g(r) has a correlation length of about
3 A (300 K) [35] in corroboration with an earlier small-angle neutron-scattering
experiment [36]. The origin of this length is speculated to be due to presence of
hydrogen-bonded structures of two different densities coexisting in liquid water
[35]. This effect is absent in TIP5P and TIP3P models. In MD simulations using
spherically symmetric models of water [12, 37| the only interesting correlation is
g(r), which exhibits no significant long-distance behavior. These facts support
our view that any long-range correlation in water can only be due to orientational

degree of freedom.

2.3 Simulation methods

The simulations of TIP5P water system are performed with GROMACS package
(version 3.3.1) [38]. In the course of simulations an integration time step of 2 fs
is used. The fast-moving bonds O — H are constrained using LINCS algorithm. A
large system consisting of 110592 molecules in a 150 A box is equilibrated for 2
ns in constant pressure and temperature NPT ensemble. A constant pressure is

maintained isotropically for the system. In order to compute van der Waals inter-

14
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Figure 2.8: TIP5P - I3, (inset)ts;. Longitudinal and transverse parts of the cor-
relation < d3 d; >, vanishing upto statistical errors beyond the first hydration
peak

action a cut-off distance of 12 A is used i.e., the potential is smoothly truncated at
12 A away from the molecule in question. The smooth truncation allows conserva-
tion of energy as against abrupt truncation schemes. The long-ranged electrostatic
interaction is handled by incorporation of multiple time-stepping procedure. To
reduce the computational cost of handling non-bonded interactions, a non-bonded
pair-list is created which contains all pairs of atoms for which non-bonded interac-
tions should be calculated. This list is updated periodically during the dynamics.
The pair-list distance is chosen to be greater than cut-off distance to ensure atoms
moving in and out of cut-off distances within the period of updation are also in-
cluded for calculation of non-bonded interactions. A pair-list distance of 15 A is
used in our simulation. Periodic boundary conditions are imposed in all directions.
Full electrostatic interactions are computed with particle mesh Ewald method with
a tolerance of 107% and updated every two time steps [39]. The initial equilibria-
tion run is carried out at 1 atm pressure and 300K temperature. The equilibrated
volume is noted and at this average volume a production run is carried out for 2
ns in a constant volume NV'T ensemble. During the production run, the atomic
coordinates of all molecules in the system are saved every 100 ps for analysis.
The simulations on TIP3P water system are performed using NAMD package

(version 2.6) [40]. Here, 33105 water molecules are simulated in a cubical box of size

15
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Figure 2.9: TIP5P - I35, (inset)ts;. Longitudinal and transverse parts of the cor-
relation < d3 dy >, vanishing upto statistical errors beyond the first hydration
peak

100 A and the procedures employed for collecting equilibriated configurations are
same as those described in case of TIP5P. The constrained model is implemented
using SETTLE algorithm. A cut-off distance of 12 A and a pair-list distance of 15
A are used. Simulations are carried out under periodic boundary conditions at
ambient conditions.

The TIP3P model with truncated Coulomb potential is simulated using the
same procedure as described above in NAMD package. A smooth potential trunca-

tion scheme is employed to ensure conservation of energy and charge in the system.

2.4 Appendix

2.4.1 Fit functions for [;;(r)

For completeness various fitting functional forms are envisaged for {1;(r) data ob-
tained from both TIP5P and TIP3P model simulations. The functions and their
corresponding root mean square deviations (RMSDs) are summarized in Table
(2.1).

Among the exponentials, the bi-exponential OZ function has at least a factor

of two better RMSD than other combinations. A single power-law also seems to fit

16
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Figure 2.10: TIP5P - I33, (inset)tz3. Longitudinal and transverse parts of the
correlation < dsz d3 >, vanishing upto statistical errors beyond the first hydration
peak

the data very well in this limited distance range upto 75 A. From numerics point
of view the power-law behavior cannot be strictly ruled out. If the »~™ behavior
is extrapolated asymptotically for large distances, it amounts to the fact that the
system is exhibiting critical behavior. In MD simulations, we did not see any
concomitant signatures of critical behavior at all. Furthermore, liquid water is
certainly not critical at ambient conditions. Therefore, we discard the power-law
extrapolation and conclude that the bi-exponential OZ fit function is the correct
extrapolation.

There are analytic theories for dipolar fluids which argue that the dipolar corre-
lations behave like r 2 asymptotically due to long-range nature of Coulomb interac-
tions [14, 41]. We notice from Fig.(2.5) that the truncation of Coulomb interaction
has null effect on the asymptotic behavior of dipolar correlation. Also, the cor-
relation is seen to respond to variation in temperature [Table (2.2)]. Hence, the
arguments attributing long-distance dipolar correlations to Coulomb interactions

are not justified.

17
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Model Fit function RMSD

TIP5P | 0.39(2) SRET/5-2(0) 4 g g97(q) SXR=1/24M) |5 544690 — 05

TIP3P | 0.34(2) SRET/OAR) | g g9g(3) SR(=1/240)) 19 541990 05

TIP5P 0.152(2) SXR(=1/10-36(9)) 5.33897¢ — 05
TIP3P 0.151(2) SXR(=r/10.5(1) 5.80041¢ — 05
TIP5P 0.0220(4) exp(—r/6.71(5)) 6.72991¢ — 05
TIP3P 0.0217(5) exp(—r/6.85(6)) 7.78593¢ — 05
TIP5P 8.0(1) r—2-990(8) 2.5292¢ — 05
TIP3P 7.2(1) r—2:940(8) 2.5860¢ — 05

Table 2.1: Numerical fitting of [;;(r) obtained from simulations of TIP5P and
TIP3P data. The error bars quoted are as per the following illustration : Eg.
0.397541 £ 0.02168 is written as 0.39(2) which expresses the mean value and its
leading significant deviation.
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T (P=1 atm) Fit function RMSD

0.42(3) SRT/502)) g g313) =1/24) | 330186 — 05

280K 6.9(1) r—2:90(1) 3.4272¢ — 05

0.34(2) SR(=T/5AQ)) | g3y AR(=T/24U)) |9 5419 05

300K 7.2(1) r—2-940(8) 2.5870¢ — 05

0.31(2) SRET/OOB)) g gog(3) SRI1/2TB)) | 3 36040 — 05

350K 6.3(2) r—2:92(1) 3.4253¢ — 05

Table 2.2: 11;(r) in TIP3P : Temperature dependence and corresponding variation
in fit function parameters.

19



Hydrophobic force between mesoscopic

surfaces

Hydrophobic force measured in SFA experiments is seen to be influential at large
distances upto about 200 A. Between stable hydrophobic surfaces the force is in-
ferred to be exponentially decaying with a correlation length of 12 A [5, 7]. We may
envisage the situation in a simulation study. The accompanying free energy change
at large separation distances could be small and reliable free energy computation
schemes are necessary in order to compute the interaction to required precision in
simulations. Alternatively, a quantitative theoretic study is considered below. We
envisage small hydrophobic surfaces present inside aqueous medium. In the limit of
small surface sizes the hydrogen-bond network in water medium is not disrupted
significantly. Hence, we utilize the correlation functions of bulk liquid water in
order to deduce hydrophobic interaction free energy between mesoscopic surfaces.
Our analysis implicates the long-distance orientational correlations responsible for
the long-range nature of hydrophobic force [42].

Hydrophobic surfaces cannot form hydrogen-bonds with water. Consequently,
water molecules in the vicinity of a hydrophobe rearrange themselves such that
they form a sheet of hydrogen-bond network on the surface. Their interactions
are such that the directions of lone pairs and hydrogen atoms are perpendicular
to the surface normal of the hydrophobe. Owing to the approximate tetrahedral
conformation, water molecules cannot have a unique configuration satisfying the
above criterion [43]. Consequently, they explore other possible orientations as

well by fluctuating at pico-second time scales [44]. These network fluctuations
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Figure 3.1: Sy, Sy are hydrophobic surfaces with their local normal vectors nq, ns.
R is the minimum distance between the two surfaces

contribute significantly to the solvation free energy of the hydrophobe. Interaction
between a hydrophobic surface and orientation of a vicinal water molecule can be
written in terms of n2(r), the local unit normal vector to the hardcore van der Waals
surface of the hydrophobe and dy (r'), the dipole of water molecule near the surface,
where r’ = r+ dr; dr is typical length of hydrogen arm of water molecule (about 1
A). A simple local interaction term can be taken as (2(r)-d;(r'))? implying that the
water dipoles orient orthogonal to the surface normal as seen in simulations [45]
(importantly, no linear term in (7 - Jl), for that means a preferential orientation
of the water dipole inward/outward to the surface).

The free energy change AG due to two small hydrophobic surfaces S; and Sy
[Fig.(3.1)] in water can be estimated by

exp(—AG/kT) = (exp(—AH/ET)) (3.1)

where AH — X / dity (in(r1)- dl(r;))2 422 / iy (a(r) -cfl(r;)>2
2 Js, 2 Js,
~ is a measure of strength of interaction between hydrophobic solute and water
and it can depend upon temperature, density and other parameters defining the
thermodynamic system. The brackets < ... > refer to statistical averaging with
respect to pure water system and integration is over area of each surface. R is a
vector along minimum distance of separation between them.
When the distance R (= |R]) is large compared to radius of curvature of each
surface and the surface areas are sufficiently small, the statistical averaging can be

done by cumulant expansion [Appendix (3.2.1)]. The leading term that depends
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on distance R is explicitly given below.

exp(—AG/kT) = exp {% (o) () 2 [5 /S diy dits
o ((n(r) - dy(x)? (ha(re) - di()) +...] - (32)

In the above equation, terms proportional to 71, 72 (or their higher orders) only
contribute to interfacial free energy for respective hydrophobe-water interface. The
term proportional to (7172) contributes to the interaction free energy. The above
free energy change is a consequence of surface-water interactions. The full solvation
free energy in addition comprises hydration free energy of each solute proportional
to solute’s volume, which can be deduced in the infinite dilution limit [17, 46].
Other forms of short range surface-water interaction such as van der Waal inter-
action may also be envisaged [18]. They do not, however, affect the long-distance
behavior of hydrophobic interaction discussed below.

The interaction term in Eq.(3.2) is analyzed [Appendix (3.2.1)] and the leading
expression for force F'(R) = —0AG/OR is given by the following expression.

orr 142 5 Tr [Es, E(R)Zs, E(R)] (3.3)

where A;, A, are areas of the surfaces. E is a matrix whose elements denote
correlation between components of interfacial dipoles. g is a geometric factor

characterstic of shape of the surface. The elements of E, 3g matrices are given by

3 o 1(.. LRR
EY(R) = <d12(r1) dlj(r2)> > —5 (5”—3 7 )ln(R) for large R (3.4)
g 1 .
(Xs)” = Z/Sdﬁ n'n’ (3.5)

where, the integration in Eq.(3.5) is over the direction of surface normal over the
extent of surface area.

The above result on hydrophobic force is very general in nature. As discussed
in earlier paragraphs, the leading order (n - JI)Q is taken to be the interaction
energy term for simplicity. By including the non-leading terms in the interaction
energy function [Eq.(3.1)| and doing the cumulant expansion, it can be shown that

the force equation for large R [Eq.(3.3)| remains unchanged, thus establishing the
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generality of the result.

These considerations are valid for distances beyond the solvation region of a typ-
ical water molecule. The cumulant expansion allowed decomposing the force equa-
tion as a simple convolution of surface-dependent part and solvent-dependent part.
Equation (3.3) enables us to conclude that range of the force between hydrophobic
surfaces at large distances is always attractive governed by 13,(R) o exp(—R/12)
for large R. Therefore, the hydrophobic force falls off exponentially with a largest
correlation length of about 12 A [see Appendix (3.2.1)], in addition to several other

shorter range exponents as well.
F(R) o (=) exp(—R/12A) for large R (3.6)

The strength of attraction is proportional to area and shape of each surface
given by the tensor X, the second moment of surface normal. The final trace
operation over the matrices E(R) and 3g implies that the hydrophobic attraction
is not just a purely distance-dependent interaction such as van der Waals’. Indeed
the orientation of the surfaces relative to each other can modify the magnitude of
the force significantly. As an example if two small planar hydrophobic surfaces are
mutually perpendicular and are sufficiently far apart, the magnitude of the force
is zero. In contrast, the force is maximum when they are parallel to each other
[see Appendix (3.2.2)].

3.1 Discussion

A simple-minded theoretical estimate of the force between mesoscopic hydrophobic
surfaces done here suggests that the surfaces experience a long-range force albeit
the strength is not large and in addition, the proposed force depends on shape
and relative orientations of the surfaces. The long-range nature of the force is a
consequence of orientational correlations in water. The exponential decay implied
in Eq.(3.6) bears a striking consistency with that seen in experiments measuring
hydrophobic force [5, 7.

For the case of large hydrophobic surfaces, correlations in water confined be-
tween the surfaces need to be ascertained. To simulate such a system the surfaces

need to be several times larger than the longest correlation length in the system in
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order to obtain proper equilibriation. This requires huge system size that would
render the simulation prohibitively resource intensive. In addition, the accompa-
nying free energy change could be very small due to weak nature of correlations at
large distances. Instead, we take analytic route to describe hydrogen-bond fluctu-
ations in water and the effect of spatial confinement on them. This study forms

the second part of the thesis.

3.2 Appendix

3.2.1 Derivation of force equation

In this section we provide a brief description of intermediate steps in the deduc-
tion of the force equation. The technique under consideration is cumulant expan-
sion used to perform statistical averaging in an approximate manner [47|. From
Eq.(3.1),

exp(—AG/kT) = <1 S, di (R (ry) - di(r) + 72(...)

KT Js,
- ot [ daatintey) - )+

Y172 S g RS
+4(k:T)2 /51 /SQdm dng(ny(ry) - di(ry))” (Ra(ra) - di(ry)) +>

_ 7172 P
— exp {%<"'>+%<”'>+4<kT)2/sl/32dn1 diiy

< ((n(r) - dy @) Grara) - () +..]  (37)

Force between the surfaces is given by F(R) = —0AG/OR. Only the terms pro-
portional to (y172) (or its higher order) depend on distance R and contribute to
the force. In the above equation we retained only the leading order force term.
Employing the notation that any repeated index is summed over, the force term

in Eq.(3.7) can be analyzed as below.

(R - dy)? = mi'dy’ n?dy?

(’flg . 621)2 = ngkdlk Tlgpdlp
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(N1 (r1) - d1(1“1)2 (N2(r2) 'dl(rz))2
((utr) - ds(r h(x3))?)
= (W ) () et (xp)natd (x) )
= ni'nydnetny? <d1() () () ()>

= ni'ngdnetny? [2 <d1 I'1 d1 I‘2 >< >
+{(@)ar ) dt ) ()) -2 <d1i<r’1>d1k<r;>> <d1”(r;)dlj(r1)>}]
(3.8)

where i,7,k,p are vector indices. The last step is tautological as we added and sub-
tracted an important term in the expression. Furthermore, it can be shown that
in a system where asymptotic behavior of correlation (d;*(ry)d;"(ry)) is exponen-
tially falling-off, the last term denoted by {...} in Eq.(3.8) falls-off exponentially
even faster than the first term and therefore, it can be neglected in the asymptotic
region (i.e., for large R). The vector indices in the remaining expression imply
matrix multiplication and a trace operation over the product of matrices coming

from j index summation. This should be clear if we define the matrices
EI(R) = (d'(x)) di'(xy)) (3.9)
. 1 o
(X5)Y = —/dﬁ n'n’ (3.10)
A s

where 7,7 are generic vector indices and R is the minimum distance of separation.

Now the force expression takes the form

My 0
F(R) = 22;141142 o5 T [Zs,B(R)Ss, E(R)] (3.11)
where Tr[...] means trace over the product of matrices. The subscripts S; and

Sy refer to respective surfaces and ¥ matrix defines the second moment of surface
normal for the respective surface.

Now, the dipolar correlations from Eq.(2.2) are given as

3 1/ pip L[ 'l
Bi(r) =5 (5” - ) () = 5 (5” -3 ) f(r)
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zZ>

Figure 3.2: A segment of spherical surface (boldened). 7 is local normal vector,
and 6 is the sector angle for the segment. N is the dipole vector of the segment,
obtained after integrating n over the extent of segment area.

Our analysis from the simulation of bulk liquid water shows that, at large R, only

the longitudinal part of the dipolar correlation survives [Eq.(2.4)], i.e.,

1 (. LRR
EY(R) ~ (-) 3 (5]_3 7 ) l11(R)
—R/5.2 —R/24
where li(R) = 039 —%— 40027 ——  R> 14A

Hence, the force equation [Eq.(3.11)| will take the form
F(R) iTr[ ] 13,(R)
op Dl
1

o (=) Tr[..] x 72 exp(—R/124A) (3.12)

where only the long-range exponential’s contribution is emphasized, since analysis

is for large R.

3.2.2 Surface factor Xg

The X matrix is a geometric factor related to second moment of the surface normal.
It is defined as

(Xg)¥ = %/dﬁ n'n’ (3.13)
S

where 7(r) is the local normal vector at the point r on the surface; i,j are any

two vector components of n. For a segment of spherical surface, as illustrated in
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Chapter 3. Hydrophobic force between mesoscopic surfaces

Fig.(3.2),
n : (sinf cos¢, sinf sin¢, cosh); (3.14)

AS—/dn = / desme/ dp = 2m(1 — cosf) (3.15)

The integral [n‘n’ can be carried out in a similar manner over various pairs of
n vector components. The 3 matrix can be finally expressed in terms of first

moment of the surface as

(B5)7 = = / di n'n’

= - 5” - 6(:08 0(1 + cos §) (67 — 3N'N7) (3.16)
M | 4
where N'= —, MZ:—/dﬁ n'
| M| AJs
For a spherical surface, = 7. Hence ($g)¥ = £ 6Y. For a planar surface, § = 0.

Hence (Xg)% = N?N7. The direction of N is chosen only with respect to the side
of surface under consideration.

We show below that the strength of the force depends on the relative orienta-
tions of the surfaces with respect to each other. We consider two planar surfaces

separated by large distance. For the surface Sy, (Xg,)Y = NN/ and similarly

for Sy, (Xg,)" = NEN, where i, j, k, 1 are dummy vector indices in coordinate
space. For large R, FY(R) =~ —% (5“ 3RR]§]> l11(R) where 4, j are dummy

vector indices. So, the part of force expression involving convolution of ¥g and E

matrices reads as

] ; J Rk L i -
FOC(—)Tr[NfN{ (yk_ R R )NW (511_3RR)} exp(= /12
R? R2 R

2 exp(—R/12)

= (3.17)

o (=) [N1~N2—3(N1~R) (N R)}

For surfaces parallel to each other, Nl . NQ = Nl ‘R = Ng ‘R = 1. Hence,
—R/12
F o (—)€

Ni-R=00r No-R =0 depending on orientation of respective surface with respect

. For surfaces perpendicular to each other, Ni - Ny =0 and either

to the radial vector. Hence, F' = 0.
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Molecular mean field theory for
water and hydrophobic force

between macroscopic surfaces
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Molecular mean field theory for water

We address the hydrophobic force between large surfaces in a model theoretic study.
This forms second part of the thesis. We first develop a theoretic description to
analyze hydrogen-bond fluctuations in model water, called molecular mean field
theory. The analysis is then extended to include macroscopic hydrophobic surfaces
as boundaries and thermodynamic consequences of confinement are deduced.

The constituent particles of every fluid have a repulsive hard-core of finite ra-
dius due to Pauli exclusion principle obeyed by electrons. As a consequence of
finite size, each particle has a maximum coordination number. If the particle pos-
sesses orientation-dependent attractive regions in its potential, such as hydrogen
bonds, sulfur bonds, the particles can participate in a fixed number of bonds. Con-
sequently, there are related steric constraints disallowing arbitrary number of co-
ordinating or bonding partners from approaching an already coordinated/bonded
particle. These facts can be formulated into sum rule(s) for the system. Den-
sity saturation and bond saturation effects are natural consequences of such sum
rule(s). In case of water, a hydrogen bond occurs when a hydrogen arm of one
molecule interacts with a lone-pair arm of another molecule. The specificity neces-
sitates the density of hydrogen bonds (HB) and density of dangling bonds (DB) i.e.,
lone-pair and hydrogen arms which are not hydrogen-bonded, to be commensurate

with molecular density (p). This can be stated as a sum rule, given by
DB+ 2 HB =4p (4.1)

Now, if we consider a bulk system of water molecules the above equation still
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Chapter 4. Molecular mean field theory for water

holds when DB, HB and p are appropriately defined per unit volume. In other
words, the local topology of molecular interactions implies a sum rule which is also
true in the bulk for any thermodynamic conditions such as temperature, pressure.
Furthermore, this is also independent of other interactions in the dynamical system
such as van der Waals’ (vdW), Coulombic etc. These facts are not surprising since
Eq.(4.1) is a topological constraint which is insensitive to details of dynamics.

Thermodynamic properties of solid phase (ice forms) are governed by periodic
distribution of water molecules which also fixes HB. Hence, it is sufficient to envis-
age water density field alone in the description of solid phase. In low density phases
(gas or vapor), the free energy is dominated by kinetic energy of the molecules. If
hydrogen bonds are present, an appropriate density of bond dimers can be intro-
duced and the thermodynamic phase behavior can be analyzed in a non-interacting
system of monomers and dimers which satisfy the sum rule.

Liquid water, however, lacks the trivial structure of solid or the non-interacting
nature of gas molecules. The hydrogen-bond (formation and breaking) dynamics
in the liquid phase take place at picosecond timescales and contribute to entropy
of the system. In order to analyze the hydrogen-bond fluctuations it is essential to
envisage both density and orientational degrees of freedom of each water molecule.
The fluctuations of density and orientational fields (the latter being inherently
connected to HB and DB fluctuations) are not totally independent; their long
wavelength fluctuations especially are to be consistent with the sum rule.

We propose a simple model Hamiltonian for water which incorporates essential
features of hydrogen bonding interaction and analyze the fluctuations consistent
with the sum rule [48]. To accomodate the hard-sphere repulsion we envisage all
density fields on a hypercubic lattice and the model is essentially a slight general-
ization of the Pauling’s model for water [49]. The partition function corresponding
to the lattice model is analyzed by introducing appropriate discrete lattice fields.
It is shown that the sum rule is automatically true in the bulk. Molecular mean
field (MMF) approximation extremizes the partition functional in terms of defined
dual fields. In addition, all the observables such as p, HB and DB are functionals
of these dual fields. One of the mean field equation which implies sum rule also
implicates the equation of network i.e., a relation between equilibrium densities
HB and p. We study the equation of state and various mean field fluctuations in

terms of dual field correlation functions. We also considered long range Coulomb
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Chapter 4. Molecular mean field theory for water

interaction and studied its consequences. Subsequently, an MC simulation study
of the model is pursued and compared with the mean field theory quantitatively.
We also discussed results of our analysis in the context of experiments and MD

simulations.

4.1 Model for water

_/'/+ /'/+_

g e

Figure 4.1: Allowed configurations : A water site with two hydrogen arms (+)
and two lone-pair arms (-) on links around the site, consistent with constraints
Eq.(4.2). A hydrogen bond occurs when a hydrogen arm (+) and a lone-pair arm
(-) of two molecules meet at a site. (right bottom corner) Unit vectors on cubic
lattice.

On a three-dimensional hypercubic lattice, we define the occupation field W (r) =
{0, 1} corresponding to water being absent or present respectively, at a site r =
(z,y,z). At each occupied site we define bond arms H,(r) = {0,£1}, where
a = {£1,+2,£+3} denotes the direction around the site. H,(r) = 0 corresponds
to no arm on the corresponding link, +1 to that of hydrogen arm, and —1 for lone

pair arm. The constraints between W (r) and H,(r) are
> Hr) = 4W(r) (4.2a)
> Hu(r) =0 (4.2b)
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Chapter 4. Molecular mean field theory for water

which imply that every water molecule has two hydrogen arms and two lone-pair
arms only. A hydrogen bond is realized when two water molecules two lattice units
apart have one of each’s hydrogen and lone-pair arms meet at a site, as shown in
Fig.(4.1). When two molecules are on near neighbor sites they are not allowed to

have any non-zero bond arm on the link between them. The constraint is given by

W(r) (Z H%(r + ea)> =0 (4.3)

We write a general interaction Hamiltonian in terms of the H, field as

H = % D> Ho(r—eo)Hy(r —ey) (4.4)

/
T o«

where, \ is the interaction strength and a and o denote directions around a site.
There are additional restrictions on H, field, namely, (i) at any site no more than

two bond arms meet i.e.,

0<> Hi(r+eq) <2 (4.5)

and (ii) two non-zero bond arms of same type are disallowed from meeting at a

site i.e., anti-bonds are disallowed:
—1<) Hy(r+e)<1 (4.6)

The grand canonical partition function for the system at a finite chemical po-

tential i for water and inverse temperature (3 is given by

Z=1[ Y. e [—B d (H- ﬁW('f’))] (4.7)

T W(r), Ha(r)

where the prime indicates that summation over W (r) and H,(r) has to be carried
out in compliance with Eqs.(4.2), (4.3), (4.5), and (4.6). Evaluating Z amounts
to enumerating all possible configurations that satisfy the above constraints and

calculating the exponential in Eq.(4.7) for those configurations over the allowed
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Chapter 4. Molecular mean field theory for water
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Figure 4.2: Disallowed configurations : non-zero bond arms of same type of two
molecules meeting at a site; more than two non-zero arms meeting at a site.

range of W and H, at fixed values of fi, 8 and V' the volume of the system.
The restrictions shown in Fig.(4.2) represented by Eqgs.(4.3), (4.5), and (4.6)
are at sites where there is no water. To implement them in our analysis it is useful

to define two discrete integer fields b(r), ¢(r):

b(r) = Z H2(r +eg) (4.8a)
g(r) = Y Ha(r+ea) (4.8b)

The discrete field b(r) counts the number of non-zero arms in the neighborhood of
site r, while ¢(r) measures the net charge i.e, the difference between the number of
hydrogen arms and lone-pair arms meeting at site . By construction, b(r) varies
between 0 and 6 on a three dimensional hypercubic lattice and ¢(r) in turn varies
between —b(r) and b(r). By imposing the condition that b(r) < 2 in our analysis,
we ensured that no more than two arms can meet at a site. Furthermore, for
b(r) = 2 we demand ¢(r) = 0 to disallow anti-bond configurations. In terms of
these variables, Eqs.(4.3), (4.5), and (4.6) can be rewritten as

W(r)b(r) = 0 (4.9)
(b(r), q(r)) = {(0,0),(1,1),(1,-1),(2,0)} (4.10)
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Chapter 4. Molecular mean field theory for water

The fields b(r) and ¢(r) are restricted only to the above set of mutually exclusive

pairs. We now rewrite the partition function as

7 = H Z exp BZ — vg*(r) — pW (r)) (4.11)

" Wi(r), Ha(r)
b(r), q(r)

where we have additionally introduced a chemical potential 7 for dangling bond
configuration i.e., (b,q) = (1,£1). The fields b and ¢ are to be summed over
their allowed range [Eq.(4.10)] and the prime over the summation indicates that
Eqs.(4.2), (4.8), and (4.9) act as constraints in the evaluation. Note that, since
only hydrogen-bond interaction is envisaged in the model, the Hamiltonian H can

be rewritten as a simple expression:
H=-X)_ 6(b(r)2) (4.12)

where the Kronecker delta function denoted here as d(p, q) is defined as d(p, q) =1
for p = ¢ and 0 otherwise. All the possible hydrogen-bond configurations are
implied from solving the non-local constraints Eq.(4.8). These constraints are

enforced in the partition function by introducing dual fields, as given below:

) (b(r),ZHg(erea)) 2N1+ ; Z exp [—zﬁn ( ZH2 T+ eq )

n(r)

(4.13a)

5<q(r),ZHa(7’+ea)> = 2N1+1 Z exp [—z% ( ZH T+ eq )]
@ o(r)

(4.13b)

where 7(r) and ¢(r) act as dual fields to the density and net charge of bond arms
in a local neighborhood. The discrete n and ¢ fields take integer values in the
range [—N, N] at every site, where N is any suitably large integer (greater than
8).

The partition function can be rewritten in terms of new variables and dual
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Chapter 4. Molecular mean field theory for water
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Figure 4.3: A set of orientations consistent with Eq.(4.2) and corresponding to the
term proportional to p in Eq.(4.16).

fields as

z = |II z ﬁ )% epo[—B(H—ﬂf('f’)—/lW(r))

+z—77 <ZH2r+ea —b(r )>+Z— (ZH r+eq) —q(r ))] (4.14)

Here, the prime over the summation refers to the sum being restricted to local on-
site constraints Eqs.(4.2) and (4.9) only. The introduction of dual fields n(r) and
¢(r) allows summation over other discrete fields (W (r), Hy(r),b(r), q(r)) within
their respective allowed range at each site without any restrictions from the neigh-

borhood configurations i.e., as if there were a single site functional Z;..
1
z = H (2N +1)2 ()qu( ) H Zsite((1), &(1), Van, Vad) (4.15)
T n(r),o(r r

The Z,;. expression thus obtained is stated below. For brevity, in the following

expression, =7 is written as 7, ¢ as ¢.

Zsite = 1 + 2vexp(—in(r)) cos(¢(r)) + Aexp(=2in(r)) + nC(n, ¢, Van, Vad))
(4.16)
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Chapter 4. Molecular mean field theory for water

’

C(n,¢,Van, Vo) = > exp [i Y (H2(r)n(r + ea) + Ho(r)o(r + €a))
H,=0,=+1 a
a=+1,42 +3
(4.17)

where v = exp(fv), A = exp(ﬁj\) and p = exp(fji) are fugacities of dangling bond,
hydrogen bond and water states, respectively. Various terms in Eq.(4.16) follow
from the fact that at any site r there are only the following contributions to the
partition function : (i) unity for vacuum, (ii) v term for unpaired hydrogen or
lone-pair arms (dangling bonds), (iii) A term for hydrogen bond and (iv) p term
for water with all its possible orientations suitably weighted. The orientational
degrees of freedom of water yields C(n, ¢, Van, V@) given by Eq.(4.17), where
the summation is over orientations at site r. The prime over the summation
indicates H,’s of each orientation satisfy Eq.(4.2). The exponential corresponds to
an orientation and it is a function of dual fields at near-neighbor sites towards which
non-zero bond arms of the orientation are directed. The densities of dangling bond
(DB), hydrogen bond (HB) and water (p) are calculated from partial derivative of
the partition function with respect to Sr, ﬁj\, B, respectively.

n(r) and ¢(r) are discrete fields varying in the range [— N, N]. By construction
the partition functional is independent of N for N > 8. In practice, it is convenient
to evaluate this functional by taking N — oo, whereupon the effective n(r) and
¢(r) become continuous fields. We implement this limiting procedure and check if
the sum rule is obeyed. In the N — oo limit, summation over 7 and ¢ is replaced

by integrals. The resulting functional integral has the following trivial property:

dn(r) do(r d
T ISR

Taking derivatives explicitly in the above equation gives terms proportional to v,

A, and p. Since these terms are summed over at all lattice sites each of them can

be regrouped in terms of derivatives of v, A\, and u as

. 0 0 0

The p-dependent term in the Eq.(4.19) has contributions from the four neighboring
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Chapter 4. Molecular mean field theory for water

sites. Since all sites are being summed over, the p term in Eq.(4.18) gets each
contribution four times. We notice that this equation is precisely the sum rule
constraint [Eq.(4.1)]. This demonstrates that the sum rule in terms of continuous

dual fields is automatically true.

4.2 Molecular mean field theory

We now evaluate the functional integral within the MMF approximation. The par-
tition function’s integrand can be envisaged as a product of field-dependent phase
factors at each site. When we enumerate them site by site, corresponding to physi-
cally allowed configurations the phase factors cancel exactly. Evaluating along this
procedure is analogous to the standard high temperature or Mayer-like expansion.
Instead, we attempt an approximate method wherein we first notice that if we
relax the constraint Eq.(4.8) and Eq.(4.10) the integrand still peaks for the same
configurations that obey Eq.(4.8) strictly. Hence, in the thermodynamic limit,
approximating the integrand suitably around the peaking configurations, we may
reliably estimate the partition function. This reliability can be self-consistently
established by computing the variance or correlation functions.

The leading contribution to the partition functional is expected to come from
the extremum which maximizes the integrand Z ;.. Furthermore, in order to
describe fluid phase of the model we seek such spatial configurations in dual fields
which have discrete translational and rotational symmetry. The integrand Zg;.

over a space-independent field configuration 'F],gz; is given by

Zsite|n =g (1 + 2vexp ( —if]) cos ¢ + Aexp ( —2i77) + 90p exp ( 4277))
(4.20)

It is evident that the maximum of Zg;,. occurs at n = ¢ = 0, since all fugacities

are positive. Zg . at the maximum is given by Z,:
Zo= (14204 X+90u) (4.21)

This provides zeroth-order contribution to the partition function in the form Z =

(ZO)V. The extremization of Z, with respect to ¢ is trivially true, while that with
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Chapter 4. Molecular mean field theory for water

respect to 7 yields
2v 4 2\ = 4(90p) (4.22)

This is a consequence of the sum rule within the zeroth-order approximation. Using
this relation, the densities of dangling bond, hydrogen bond and water are given

upto zeroth-order as

4y

DB = ye%(ln Z) = 3T 50 1 3x (4.23a)
HB = )\%(In Z) = ﬁ (4.23b)
p = ,u%(ln Z) = % (4.23¢)
Eliminating A\ from equations for DB and HB we obtain
HB = 2p— ——(1—3p) (4.24)
v+1

We call Eq.(4.24) as the equation of network. It is a manifestation of sum rule
in terms of model parameters. The free energy is related to partition function as
BG =1n(Z). The mean field free energy G, per unit volume can be given in terms

of densities as

8G, = 1In(1 — 5p+ HB) = In (11_ 3,)) (4.25)

+ v

From the sum rule, it follows that 0 < HB < 2p. Consequently, p here varies
between v/(5v 4 2) and 1/3. The upper bound on p (= 1/3) is indeed the highest
possible density in the model, while the lower bound is a consequence of MMF
approximation, meaning that this description is self-consistent only for densities
greater than v/(5v + 2). The non-analycities of free energy implied in Eq.(4.25) are
precisely at the lower and higher limits of density. Without loosing any generality,
we choose A\ = 1 i.e, measure all energies in the units of hydrogen-bond energy.
Then, we make the observation that if temperature (371) is always positive, we
can show that p is greater than 1/5. Furthermore, as f — oo, from Eq.(4.23) we
see that p — 1/3, HB — 2/3 and DB — 0. The saturation density p = 1/3 is
verified to be exactly true by explicit construction of such configurations.

Thus, the equation of network is a manifestation and density saturation effect

is a direct consequence of the sum rule.
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4.2.1 Fluctuations

Next, we evaluate the functional integral of the partition function by considering
small fluctuations about the mean field and obtain one-loop correction to the free
energy [50]. At any arbitrary site we expand Z;. upto quadratic order in dual
fields and obtain

U

Zgite =21 + 2 + X + 90p+2v (—in—;—;) +)\(—2i77—2n2)

2
. 2. 8 p 1
+90u |4in + gzgvan —3 (; an) —8n° — R <; Vw)
2
2N (T <Zv ¢) -2 3 (Vaoy
15 * 15 “ 5 ’
a a
~ 7, exp {—in(az) <V, +2)\ — 4,ul> — 3 Z Van
1 240 "4
4 ’ ’ ’ 9 i i 2
5 <1/ + 4\ +16u>7} (x) + 5 (; Voﬂ?) + 15 ;(Vcﬂl)
164/ 24 2
() - (@ 423 ko) - 2 )
ap 20 2
2 o 2 2P
+) + 3 (Va0) - (; w) (4.26)

where v’ = 20/Z,, N = N/ Z,, i’ = 90u/Z, are the reduced fugacities, such that all
of them are less than 1 and their sum is also less than 1. In the above expression,
we used the notation V,n(r) = (n(r + eo) — n(r)) and similarly for ¢ field.
Inserting the above expression for Zy;. in Eq.(4.14) and evaluating the resulting
Gaussian integral by Fourier transformation in a periodic box, the free energy per

unit volume is given by

5G = G-+ 5 [ s (P (&) + In(Poo(A) (1.27)

—T
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where

!

/ 9 ’ / 9 , v )\/
Pp(A) = {64MA2 (1_0_“)+64“A(‘E+“ _Z_E)
/ ’ / ’ ’ , 2
AN 16— (V2N -4y } (4.284)

Pyy(A) = %TMA (1-A)+v (4.28b)

3
1 -
and A = 5 E (1 — cos(k;)), k; are vector components of k. Equation (4.27) gives
i=1
the free energy density to one-loop order. P, and Py, are correlation functions for

n and ¢ fields, respectively, in the momentum space and are called propagators.

4.2.2 Correlation functions

The position space correlation functions for 17 and ¢ field fluctuations are given by

G,r.m) = () = [ =

—Tr

(ri —73))

ik -
Pl (429)

where, 77, 75 are position vectors for any two sites. Similarly for ¢ field in terms
of P¢>¢>'
We note that to zeroth-order y' ~ p, ' ~ HB, v’ ~ DB and using Eq.(4.22),

leading order expressions for the propagators are given by

o 9 9 > 3(% )
P, (k) ~ 64p (1—0 — p) [(A — 20(% = )> + 32— )2] (4.30a)
Pyy(k) ~ ? [A(l —A)+ 5(%5)} (4.30b)

The asymptotic behavior of G, and G4 correlators can be obtained by pursuing
small-k expansion of the integrand in Eq.(4.29) and noting that for small k, A ~

= >, k2. The G, correlator for large r = |r{ — 73] is of functional form

exp(=71/&y)

r

G,(0,r) sin(w,r) (4.31)
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3
2 1 50 (9
Ry - in [ —tan'y )= (=2 — 4.32
(&) %—p sin <2tan 57 (25 /J) ) (4.32)
o2 1, [50/9
wn = 1% 8_ p COS <§tan ! 2—7 (2—5 — p) (433)

This indicates that G, has periodic peaks whose amplitudes are exponentially

where

falling off.
The G4 correlator takes the following asymptotic form for large r, in addition

to oscillatory behavior prominent at short distances:

Gy (0,r) oc SRLZT/Es) (4.34)

r

where

1 5 DB B 5
(&) = 6(“”%‘1)— 6< 1+ﬂ(4—h)—1> (4.35)

where h = 2HB/p.

All correlations in the system can be deduced as functions of G, and G4. The

water density correlation can be calculated as given below.

W rw) = (bl (430

The non-zero value of W-field at each site picks only the term proportional to u
in Zg |Eq.(4.16)], denoted by {...} in the above equation. The connected part
of the correlation is given by (W (ri)W(r2)). = (W (r )W (rs)) — (W (r1)) (W (ra)).
The explicit expression for the correlation function is given in Appendix (4.4.3).
The expression suggests that, to the leading order, only 7 field contributes to the
density correlations.

Similarly, orientational correlations can also be deduced using the expression for
orientational weight given by Eq.(4.17). The asymptotic behavior of orientational

correlations is dominated by ¢ field correlation.
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The dangling bond correlation is a direction function of G4. A dangling bond
configuration is identified by non-zero value of ¢(r) field. Hence, the dangling bond

correlation is given by

v{...} y{}> )
O)g(r)) = ~ —(DB)“G4(0,r 4.37
w0y = (Gt ALy = opra,0n wan
The correlation function falls-off exponentially at large distances, as implied in
Eq.(4.35).

4.2.3 Fraction of molecules with : hydrogen bonds

Another useful quantity namely the fraction of water molecules with ¢ hydrogen
bonds can also be calculated. Consider a water molecule in a configuration in which
i arms are hydrogen bonded to neighboring molecules and the other (4 — 7) arms
remain of dangling type. A weight can be associated with each such configuration
defined in terms of appropriate site fields and summed over all possible orientations
of the molecule. We denote this weight averaged with respect to the full partition
function for each i as p;. For instance, the averaged weight assigned to a molecule

which is hydrogen bonded to only two other molecules is given by

pr= Y (W) S+ €a,),0) 6(b(r + €a,),0) 6(b(r + €ay),2) 5(q(r + €a;), 0)
XO(D(r + €ay),2) 0(q(r + €0,),0) 0(b(r + €as), 1) (b(r + eng), 1)) (4.38)

The prime over summation means dissimilar «. The probability for an i-bonded
molecule at any site r is the probability that any two directions around central
site have zero arms, each denoted by d(b(x + e,),0), that ¢ other directions have a
hydrogen bond denoted by §(b(z + e,),2) d(q(z + e,),0), and that the remaining
(4 — i) sites are of dangling bond type denoted by §(b(z + e,),1). The summation
over the set {aj,as,...,ag} implies summing over all possible rearrangements
of hydrogen bond and dangling bonds among all the directions. With [g] ways

of choosing two empty sites in the neighborhood, [;] ways for there being two
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hydrogen bond sites, py, to the leading order, is given by

6] (4 1

Py [4] H (HB)*(DB)? = ?15(6)/)4}12(4 — h)? (4.39)

where h = 2HB/p. Similarly, other p; values can be enumerated and computed up

to leading order. For i = 0,1, 2, 3,4,
1 4 , .

;i =—15 thi(4 — h)t 4.40

b= 5] =) (4.40)

Thereupon, f;, which is fraction of --bonded molecules, can be calculated from the
relation

fi

. Vpi - {4
Z?:o Vp; i

Note that the above expression is obtained to zeroth-order approximation within

] h'(4 — h)* (4.41)

the model. There exist one-loop corrections to it which can be calculated from
MMF theory, but they are small numerically. The binomial distribution suggested
by Eq.(4.41) agrees well with MD simulations [51]. Furthermore, molecular clusters
such as trimers, tetramers, pentamers are also known to exist in liquid water [52].
The probabilities for such cluster configurations can also be calculated within MMF

theory along the same lines as above calculation.

4.2.4 Coulomb interaction

In this section, we consider the influence of long range Coulomb interaction between
the bond arm charges H,. The interaction potential is given in terms of electronic

charge () as

Q% ¢ Ho(r)H, (12)
=Y a 4.42
Hea 2 A~ “|r1+eq — T2 —ey| (4.42)

where the prime over the summation means r; # 5. In our model we envisage the

charges at the tip of bond arms. The interaction potential can be incorporated in
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our analysis by using an auxiliary field technique.

exp (—fHceo) — /det(—0 + m?2) H/ dj;_:;) (4.43)
X exp Z

where the Laplacian operator Ox(r) = > (x(r +ea) — x(r)) = >_, Vax(r) and

m is a parameter that regulates the range of interaction. The interaction potential

behaves as exp(—mr)/r for large distances, which when m = 0 reduces to Coulomb
interaction with a short distance cut off. If the lattice constant and m are both
taken to be zero, then it reduces to exact Coulomb interaction for all .

By inserting the above in our partition function Eq.(4.14), all the interactions
of water degrees of freedom remain unchanged with the following transformation:
n—=mn ¢ — ¢+ X\/W- The extremum of the new partition function is still
at 1 = ¢ = X = 0. The leading zeroth-order term remains unchanged; the one-
loop correction about the mean field gets additional contributions due to quadratic

terms corresponding to ¢y and xx in the Gaussian expansion, given by

P = (12A+m?) + MA (1—-A) (4.44)
p, - Y1 VBQ gﬂQzAa N (4.45)

The free energy density with Coulomb interactions to one-loop order is given
by

B8G = By + %mam +m?) — % / % In(P,(A)) + In(P(A))]  (4.46)

—T

where

P(A) = PPy — P, (4.47)

96,4/ , 5 O
— 124 A(l—A A(l—A
5 +m)[ =)+ 560t a2 =58

X (=0 w2 (r) + iV/BQE S Halr + ea)x(r)
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which to leading order can be written as

P(R) ~ ?(1% +m?) |A1—A)+

5(DB) [ BQ*DB)
96p - (12A T m2) Al = A)} (4.48)

The factor Q? being small, the strength of Coulomb interaction in comparison
with other interactions is weak. Furthermore, all charge effects are proportional
to SQ?*(DB), wherein $(DB) is always finite since, as 3 — oo, DB — 0. Conse-
quently, the effect of Coulomb interactions on thermodynamic properties such as
the equation of network and the equation of state is small. The coordination peaks

and asymptotic behavior of the correlation functions are modified slightly.

4.3 Results

We understand from Eqs.(4.24) and (4.25) that the equation of network is a man-
ifestation and density saturation is a consequence of sum rule. The saturation
effect is independent of the dangling bond energy which is an arbitrary parameter
in the model. We may choose 7 = 0 and measure temperature (47!) in the units
of hydrogen-bond strength (\). To the zeroth-order, the theory is now parameter
free and all the densities can be obtained as a function of temperature only. The
one-loop correction to the densities p, HB, and DB can be calculated from the free
energy function given by Eq.(4.27) using the propagator expressions [Eq.(4.28)]
[see Appendix (4.4.2)]. To the zeroth-order, the relation between p and HB is
simply given by the equation of network. This equation can be recast as a simple

relation between p and h = % as

h=7-— ! (4.49)

p
Temperature is conjugate to HB and hence, it can be fixed self-consistently for
given h [Fig.(4.4)]. By model definition, the maximum value of & is 4 and the above
equation indicates that h = 4 is attained at maximum density p = 1/3. In this limit
the residual entropy per site at highest density is in agreement with known results
in ice models [see Appendix (4.4.4)]. However, we find that the highest density

in our model is not that of a unique crystal configuration. Instead, from explicit
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construction we find that there are infinitely many configurations corresponding
to different spatial and orientational arrangements of water molecules [Appendix
(4.4.5)].

The lattice constant in the model is arbitrary. By computing physical length-
scales such as correlation lengths it can be fixed. The asymptotic behavior of
density and orientational correlations is deduced in Eqs.(4.31) and (4.34) in terms
of &, and &, [Eqgs.(4.32) and (4.35)]. The expressions for &, and £, are deduced from
leading order expressions for propagators [Eq.(4.30)]. Their precise values can be
obtained using Eq.(4.28) for propagators. We plot these lengths in Fig.(4.4) as a
function of h. &, is only about one lattice unit in liquid phase and does not vary
considerably with A, while {, increases with h. In MD simulation no correlation
length is seen for density correlation; this is consistent with MMF result since &,
is equal to the minimum length possible in the model and also independent of h.
Orientational correlation lengths inferred from MD simulation are 5.2 A and 24 A,
of which the latter is weaker in strength (one-tenth) relative to the shorter one [see
Eq.(2.4) of Chapter 2|. In our water model, we have only one orientational corre-
lation length &4 which we relate to 5.2 A. For liquid water, h value is suggested to
be about 3.6 [31]. From Fig.(4.4), h = 3.58 corresponds to {, ~ 3.3 lattice units.
Consequently, we infer that 1 lattice unit ~ % — 1.57 A. It should be noted that
these predictions are not robust as the coefficients such as % in the expression for
s |Eq.(4.35)] vary with topology of the underlying lattice.

We make the observation from Eq.(4.30) that the correlation functions of the
mean field theory diverge if p — 0 i.e., even the local fluctuations about the mean
field are very large rendering the approximation invalid. Indeed, the theory fails
well before p = 0 because it violates the sum-rule already at p = v/(5v + 2) [Eq.
4.24]. Our mean field description is consistent only at high densities closer to the
saturation value within the model.

The mean field configuration and fluctuations about it are self-consistently
calculated for arbitrary densities in the model. The expansion is neither about
low density nor high density. However, we find that the description is consistent
only at higher densities. In the free energy expression [Eq.(4.27)], the zeroth-
order contribution is energy component and one-loop correction due to fluctuations
(say, SGy) is entropy component. The reliability of mean field approximation can

be understood by comparing magnitudes of the energy and entropy components,
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3.2 3.6 4

3 3.2 3.4 3.6 3.8 4

Figure 4.4: Inverse temperature  and the lengthscales §,, s as a function of h.
[ is measured in units of hydrogen-bond strength A in the model. The lengths are
expressed in lattice units.

given in Table (4.1). We see that, in the region where MMF approximation is
consistent, the entropy component is always smaller than the energy component
and as saturation density is approached, fluctuations gradually decrease, while the
energy contribution is significantly larger.

In order to attest important results deduced within MMF theory we carry out
exact MC simulations for the water model. The simulations are performed with
dangling bond energy set to zero and all other energies are measured in the units
of hydrogen-bond energy. The simulation details and corresponding results are
discussed in Chapter (5).
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671 P HB p/pmaa: h BGm BGf

1.844 | 0.2183 | 0.27 | 0.6549 | 2.47 | 2.210 | 1.190

0.835 | 0.2534 | 0.384 | 0.76 3.03 | 2.570 | 1.155

0.642 | 0.2719 | 0.45 | 0.8158 | 3.30 | 2.800 | 1.137

0.47 | 0.294 | 0.527 | 0.883 | 3.58 | 3.320 | 1.122

0.378 | 0.309 | 0.581 | 0.929 | 3.75 | 3.660 | 1.110

Table 4.1: State points and their corresponding thermodynamic data

4.4 Appendix

4.4.1 Orientational weight C(n, ¢)

The orientational weight for the water state in bulk water is given by

/

Cn,¢) = > exp [i Y (H2(r)n(r + eq) + Ha(r)o(r + e4))
H,=0,+1 a
a=+1,42 +3

where the summation is over all possible orientations and the prime indicates that
the summation is subject to constraints Eq.(4.2).

About the mean field configuration = ¢ = 0, the dual fields are expanded
upto quadratic order. C(n, ¢) is then given by

Clne)= 90 |1+ 53 m =3 SR =2 Y e — 536+ D 6u
’ ’ " ’ " (4.50)
where 17, = n(r + e,) and ¢, = O(r + €4).
Note that there exists a linear term in ¢ field in the weight for each orientation.
Upon summation over all possible orientations, the linear ¢ terms cancel out ex-
actly since the bond arm charges of a molecule take all possible directions around

the site of occupation.
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4.4.2 Densities upto one-loop correction

The densities p, HB, and DB deduced from free energy upto one-loop correction

are given by

! ]. i / / i ! ! i
p=H-3 _(—VM)T1+(—)\M)T2+M(1—M)T3} (4.51a)
/ 1 i ! ’ / ! / /
HB = X' — 2 [(=/ )T + X (A —1)T2+(—)\/,L)T3} (4.51b)
/ 1 :/ / / ’ / /
DB = v -5 1/(1—1/)T1+(—1/)\)T2+(—1/u)T3] (4.51c)
where
Lo Ap
T, = (1-2v +2A))gn(r,r)+?”Zgn(r,r+ea)+g¢(r,r) (4.52a)
Lo 8y
Ty = (4—4(v +2)\))gn(r,r)Jr?ngn(r,rJrea) (4.52b)
T; = 4“(1/ +2X\) Zg T+ eq) izg(r+e T+ eq)
3 3 n e 15 n s fe'
2 2044
+1—5<1 )Zgnr+ea,r+e Zg¢r+ea,r—|—e /)
+4Zg (r + €q, ™ + €a) (4.52¢)
52 s(r+eq,m+eq 52¢

and r = (z,y, z) is a site position, r + e, is a near-neighbor site in e, direction.
The Green’s functions are computed using Eq.(4.29).

The densities are computed consistent with the sum rule for water. The numeri-
cal procedure for the computation can be conveniently carried out in the parameter
space of the reduced fugacities v', ', and ', all of which are less than 1 and their
sum is also less than 1. They are optimally varied in their allowed range such that

the solutions for p, HB, and DB are consistent with the sum rule.
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4.4.3 Density correlations

From Eq.(4.53), the density correlation function is given by

o} i} >
W(r )W(ry)) = 4.53

< ( 1) ( 2)> <Zsite<rl) Zsite('r2> ( )
where p {...} is the term proportional to u in Zg;e [Eq.(4.16)]. The dual fields are
expanded upto quadratic order and the leading other expression for the connection

part of correlation is given by

’

(VWD) = 6 |0+ 2PGy () + () G+ earre b )

20N\ oy
+ 2 (?,u) (v +2X) Z, Gy(ri,ra +e,) (4.54)

where 7, and 7 are arbitrary sites on same interface; r; 4+ e, and ry e are their
respective near-neighbor sites in the directions e, and e, respectively. G, (r1,72)
can be computed from Eq.(4.29).

Orientational correlations can also be evaluated using the expression for ori-
entational weight given in Appendix (4.4.1). The linear terms in 1 and ¢ fields
in the weights for each orientation provide leading contribution to the correlation

function. However, the asymptotic behavior is dominated by ¢ field only.

4.4.4 Residual entropy at highest density

We calculate entropy per site to the zeroth-order as below.

3exp(S)
2+ 5v 4+ 3exp(B)

5 = Pop (G = (145 + Jew(s)) -0

5 (4.55)

In the limit S — oo, p reaches its maximum value and the entropy at the highest
density tends to a constant value In(3/2). This result compares exactly with that of
Pauling’s estimate for tetrahedral ice model [49] and agrees well with the numerical
estimate by Nagle i.e., In(1.50685 £ 0.00015) [53]. We note that our zeroth-order

results are independent of the lattice dimension; hence, in two dimensions the
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constant also compares well with the exact result for square ice by Lieb [54].

4.4.5 Highest density configurations

A configuration corresponding to highest density in the model is one with all the
lattice sites either in a water state or in a hydrogen bond state. All the bond arms
of each molecule are hydrogen bonded. No site is either in a dangling bond or void
state. For each molecule one site corresponds to water state, tips of its four bond
arms are at four neighboring sites. The bond arms are hydrogen bonded. Hence
the share of hydrogen bond state for each molecule is ‘half the site’. Collectively,
each molecule effectively occupies three lattice sites. Hence, the maximum density
possible in the model is 1/3.

There are infinitely many possible spatial and orientational arrangements at
the highest density. We illustrated a portion of few configurations in Figs.(4.5),
(4.6), and (4.7). In the illustrations, W denotes a water state and all other sites
are in the hydrogen bond state. An arrow pointed away from W implies that the
molecule is donating a proton (hydrogen arm) to the hydrogen bond present on
the neighboring site in the direction of arrow. An arrow pointing inward implies
that W is accepting a proton i.e., lone-pair of W. In the two dimensional plane
shown in the figures each molecule is shown to participate in two hydrogen bonds.
The molecule’s other two arms are in the third dimension. The planes in the
third dimension which flank the given one have a complementary arrangement of
water and hydrogen bond states i.e., a W in the given plane is to be replaced by
a hydrogen bond state in the other two planes and vice versa.

In each spatial configuration of W and hydrogen bond states, a set of con-
secutive forward arrows implies a path on the lattice. The set of all such paths
represents an orientational arrangement for the configuration. A complete reversal
of one or more paths results in a new orientational arrangement. Thus, a given
configuration has infinitely many orientational possibilities.

Different configurations can be obtained by ensuring that no voids or dangling
bonds are present and that the orientations obey the constraints and restrictions
defined for the model.
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Figure 4.5: An illustration of a spatial and orientational arrangement at highest
density in the model. W denotes a water state and H denotes a hydrogen bond
state.
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Figure 4.6: An illustration of a spatial and orientational arrangement at highest
density in the model.
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Figure 4.7: An illustration of a spatial and orientational arrangement at highest
density in the model.
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model

We validate the results of MMF theory by performing Monte Carlo simulations for
the water model exactly accounting for all the constraints imposed on the lattice
fields. The sum rule is explicitly respected during the simulation. The MC results
are seen to be consistent and in semi-quantitative agreement with the results of
MMF theory [48].

5.1 Methods

The water model is simulated using a standard Monte Carlo procedure for a grand
canonical ensemble i.e., a 1V'T ensemble [39, 55]. We choose to measure all energies
in units of hydrogen-bond energy i.e., A = 1. Furthermore, we set 7 = 0. The
theory is now essentially parameter free. The temperature (37! > 0) and chemical
potential for water (i) are varied as per needs of the simulation. We employ
suitable local configurational moves on a randomly chosen site on lattice in order to
smoothly explore the configurational space of the model. The moves are INSERT,
DELETE, ROTATE.

e If there is no water molecule or dangling bond or hydrogen bond on the chosen
site we perform INSERT operation i.e., put W = 1 on the site, provided there
are four free directions among the six available directions around the site.
That is, the neighboring sites in any four directions should be unoccupied

to ensure that the constraint Eq.(4.3) is not violated in the neighborhood.
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Those neighboring sites shouldn’t already have more than one bond arm in
their direction so that the restriction Eq.(4.5) is complied with. Then, in the
four free directions four non-zero bond arms are placed randomly such that
two of them are of hydrogen type H, = 1 and other two are of lone-pair type
H, = —1, in compliance with Eq.(4.2).

e When there is a water molecule on the chosen site we perform either DELETE
or ROTATE operation with equal probability.

— In a DELETE operation we set W = 0 on the site and set H, = 0 along

all directions around the site.

— In a ROTATE operation, the directions of non-zero bond arms in the
existing configuration are altered to a new configuration implying a
rotation of the molecule. We ensure that the constraints Eqs.(4.3),
(4.5), and (4.6) are not violated in the neighborhood.

Beginnning with a valid initial configuration the moves ensure that the constraints
Eqs.(4.2) and (4.3) and restrictions Eqs.(4.5) and (4.6) are always respected and
result in only valid network configurations at each simulation step. These local
moves allow the system to explore all possible configurations at all sites and hence,
ensemble averages given by MC procedure are expected to provide reliable esti-
mates for the desired thermodynamic quantities.

We employ importance sampling MC procedure using Metropolis criterion to
satisfy the detailed balance condition during each move. According to the criterion
if total energy change of the system during the move is negative the new configu-
ration is accepted. If the energy change is positive then the new configuration is
accepted with a probability equal to Boltzmann weight over the energy change. To
compute the energy change of the system during each move, we note that the moves
are local and hence, they cause only local changes in particle number and/or hy-
drogen bonds and anti-bonds in the immediate neighborhood. Hence, we assign a
local energy function to initial and final configurations and compute energy change
in terms of chemical potential and interaction energies due to hydrogen bonds and
anti-bonds. An acceptance rate of about 30 — 40% is achieved during simulation

runs in the parameter regime of interest.
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Some of the important thermodynamic observables are p, HB, DB, total energy,
density of molecules with i(= 0, 1,2, 3,4) hydrogen bonds. After a sufficient equi-
libration run the densities are updated every 50 — 300 MC steps over a simulation
time of 10° — 10® MC steps. The sampling rate is varied according to acceptance
rate. Running averages and variances are computed at every sampling step to
determine the efficiency of the sampling procedure. It is ensured that there is no
observable overall rise or fall in the averages and variances and that the results
smoothly converge to within a relative error of 1072 — 1073,

The size dependence of the averages is ascertained and an optimal lattice size
of 20 sites per side is found to closely reproduce averages up to the fourth decimal
place relative to bigger lattice sizes.

We explore constant temperature curves to facilitate computation of pressure
using the Gibbs-Duhem procedure [56]. The pressure at a desired density is ob-

tained from the relation i
Ky

P= [ i di (5.1)
i

where a p versus fi curve is integrated between chemical potentials fi; and jif to
obtain pressure at p(fif). The pressure is normalized to zero at zero density. The
volume is kept fixed and chemical potential is varied in steps. Since a range of
chemical potentials is to be explored the step size is appropriately adjusted so that
a quench-like situation is avoided. The system evolves smoothly in configuration
space without any unwanted domains persisting. At chosen chemical potential the
simulation is initialized using an end configuration from the simulation at previous
chemical potential value. This successive seeding procedure accelerates equilibra-
tion considerably compared to any random seed configuration. The end averages
remain unchanged when the seeding procedure is carried out in an alternative pa-
rameter space; for example, instead of the chemical potential, the temperature can
be varied in small steps. This confirms the absence of any possible bias created by
our successive seeding procedure in most part of the parameter space (except near

first-order phase transitions where hysteresis exists).
We also compute spatial correlation functions as an ensemble average over equi-
librium configurations. The underlying lattice structure dominates the correlation

functions. To facilitate comparision with MMF' results we extract rotationally
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invariant part of the correlation using the following projection procedure.

R(ro) = Y O (IF] —r0) ©((ro+0r) — | (5.2a)

o) = =——S" () O (I — 1) O((ro+0r)—|Fl)  (5.2b)
R('f’o) -~

where 7 = (x,y, z) is position index for a lattice site, |r] is its magnitude in
Euclidean metric. f(r) is any function defined on the lattice and ry is the distance
where correlation is desired; dr is a small distance window. O is the Heaviside step
function defined as O(z —a) = 1 for x > a and 0 for z < a. R(r) is weight function

for distance 7.

5.2 Results
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Figure 5.1: First order phase transition in MC simulation seen for > 2: Isotherms
correspond to 3 = 3.0,2.0,1.5. The 8 = 3.0 isotherm (red curve) shows disconti-
nuity near ;1 = —1.91 when density changes from p ~ 0.025 to p ~ 0.16.

We made preliminary investigations in studying phase transitions in the model.

A set of representative constant temperature curves are shown in Fig.(5.1). Each
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curve has two prominent shoulders where significant slope change occurs. Beyond
a certain ji value, no more equilibriated configurations could be traced and the
density starts shooting up to the saturation value. For inverse temperature 5 > 2
the curves exhibit discontinuity. For instance, at § = 3 the system jumps from a
p ~ 0.025 to p ~ 0.16 upon an infinitesmal increase about i ~ —1.91. The rise
in density is higher for higher S. Hysteresis is also seen when retracing the curve
by decreasing the . This indicates the presence of first-order phase transition
in the region. We interpret this as a liquid-gas transition in the model. Within
our limited exploration of the phase diagram we find that p > 0.16 corresponds
to liquid phase. MMF theory is seen to be consistent in this region only i.e., for
p>1/5.

The equation of state deduced within MMF theory [Eq.(4.25)| is compared with
that computed from MC simulation. In the theory pressure is simply negative of
the free energy density. Their magnitude is same since the free energy is deduced
in infinite volume limit. The comparison between MMF theory and MC simula-
tion is put forth in Fig.(5.2). It shows that the high pressure states at each p show
qualitatively same profile as predicted by MMF theory. A quantitative comparison
of equation of state between MMF theory and MC simulation is unreliable because
pressure from MMF theory absurdly vanishes at p = 1/7 whereas, physically the
pressure is zero in this model only at p = 0. As discussed earlier, MMF approxima-
tion fails for small densities. Therefore, a consistent normalization between various
schemes of calculation is not present. Thus, the qualitative picture obtained from
MMF calculation is only indicative, nevertheless consistent with MC results.

One of the important expositions of the MMF theory is the equation of network.
From Eq.(4.24), at 7 = 0, the mean field equation of network is given by

7p

HB = —
2

(5.3)

N —

We plot the p and the HB data obtained from MC simulation against the equation
of network. This is shown in Fig.(5.3). The equation of network is a manifestation
of sum rule and it is deduced within MMF approximation in the infinite volume
limit. The linear relation between p and HB is borne out in MC simulation by con-
figurations with lowest free energy (or high pressure) at each p. There is excellent

quantitative agreement between MMF and MC results in this regard.
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Figure 5.2: Equation of state : (green, dotted line) MMF theory zeroth order; (ma-
genta, filled triangles) MMF theory upto one-loop correction; (red lines) isotherms
in MC simulation with temperature increasing from top to bottom; (blue, dashed
line) high pressure states at each density in MC simulation.

We also pursued a preliminary study of equation of network obtained from
experiments and MD simulations. The density of hydrogen bonds is indirectly
probed and inferred under varying external conditions in experiments [57] and is
also computed in MD and MC simulations [51, 58]. The data are put in perspective
by converting the mass densities to number densities using the known radius of a
water molecule. As shown in Fig.(5.4), in the region of high molecular density i.e.,
corresponding to liquid water we find that p and HB are linearly related to each
other. A linear fit function is used for the HB versus p curve and compared with
that of the MMF equation [Eq.(4.24)]. We infer a dangling bond fugacity v in the
range (0.06,0.18), implying that the corresponding energy v is positive and large
compared to the thermal energy. This implies that dangling bonds are highly
disfavored in liquid water. Due to anomalous thermal expansion the functional
relation between HB and p in liquid water is expected to exhibit non-linearity at
higher densities.

The highest density state in the model exhibits infinite degeneracy in spatial
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Figure 5.3: Equation of network for 7 = 0 : (green, dashed lines) MC simulation
isotherms (temperatures increasing from bottom to top); (blue, dotted line) mean
field equation; (magenta, open triangles) with one-loop correction.
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Figure 5.4: Equation of network : (blue, filled circles) Experiments and (magenta,
filled triangles) MD simulations.
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arrangement of molecules and their orientations [see Appendix 4.4.5 in Chapter 4].
The presence of large set of crystalline states suggests that there could be a liquid-
glass transition at high densities or near zero temperature in our model. In MC
simulation we witnessed dynamical slowing down at low temperatures, consistent
with our speculation. Furthermore, in this region MMF theory indicates a second
order transition as seen from g¢(z) correlator [Eq.(4.35)|, wherein for § — oo,
p — 1/3 and DB — 0 implying that £, — oo. The implications of this analytic
structure to low temperature phase behavior of the model need to be studied in
detail.

The important correlations in the model are (W (0)W(r)) and (g(0)q(r)). In
the MMF theory they are explicit functions of dual field correlations G, and G,
[Eqs.(4.37) and (4.53)]. They are computed numerically and shown in Figs.(5.5)
and (5.7). In MC simulation the correlation functions are computed from the pro-
jection scheme given by Eq.(5.2) and are displayed in Figs.(5.6) and (5.8). The
correlation functions within MMF theory and in MC simulation are computed at
comparable values of p and HB. We find that the positions of coordination peaks
in density correlation function are in agreement and are in compliance with the
constraints in the model and underlying lattice topology. The density correla-
tion function with characterstic hydration peaks appears qualitatively similar to
radial distribution function of fluids. It does not show any long distance behav-
ior. This is consistent with MMF result since &, is only one lattice unit which is
minimum length in the model. The charge correlations both in MMF theory and
MC simulation show an asymptotic fall-off with distance. MMF theory predicts
an exponential fall-off [Eq.(4.35)| consistent with MD simulations for liquid water.
It is encouraging to see that a consistent qualitative picture of fluctuations could
be obtained from a simple analytical calculation. It is however observed that the
quantitative details of correlation functions depend on the underlying lattice, but

the analytic structure is amenable to interpretation in the continuum as well.
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Figure 5.5: MMF theory : (W (0)W (r)) correlation at two representative densities.
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Figure 5.6: MC simulation : (W (0)W(r)) correlation.
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Figure 5.8: MC simulation : dangling bond correlation.
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Hydrophobic force between macroscopic

surfaces

In this chapter we address hydrophobic force between large surfaces using the
framework of MMF theory. The water model analyzed in the previous chapters
is envisaged here. In our model study we analyze the consequences of confining
hydrogen-bond fluctuations in presence of large hydrophobic surfaces and infer
that hydrophobic force is a manifestation of Casimir-like force largely influenced
by the long-distance correlations of orientational fluctuations.

When water is confined between large hydrophobic surfaces the inherent field
fluctuations vanish on surfaces. Furthermore, water molecules at the interface with
each surface have restricted orientational entropy owing to repulsive hydrophobe-
water interactions. This effect gives rise to modified fluctuations at each interface.
We study the collective consequences of these effects on the overall free energy of
the system in a model study. Two macroscopic surfaces are envisaged as bound-
aries in a spatial dimension and water is confined between them. The change in
free energy due to the presence of surfaces is calculated and is seen to be composed
of three important contributions : (i) Casimir part, which arises solely from dis-
cretization of fluctuation modes between boundaries and is generic to all surfaces;
(ii) Interfacial free energy, which is free energy change due to modified fluctuations
at hydrophobe-water interface. It is dependent on nature of surface-water interac-
tion and to a small extent, also on separation distance between the surfaces; (iii)
Interfacial fluctuations-induced free energy, which is due to correlation between

modified fluctuations at both interfaces. It depends on type of both surfaces and
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Chapter 6. Hydrophobic force between macroscopic surfaces

their interaction with water. The results are discussed for different types of sur-
faces such as hydrophobic and hydrophilic. We find that the Casimir part is leading
contribution and is an inverse power-law function of separation distance. However,
numerically the magnitude of Casimir part is significant for distances only upto
four times the longest correlation length in the model. The interfacial free energy
also varies with separation distance, but its variation is numerically insignificant.
The interfacial fluctuations-induced contribution is seen to be exponentially decay-
ing with distance, analogous to the force form deduced for mesoscopic surfaces [see
Chapter 3|. Furthermore, we find that all the contributions are of comparable order
of magnitude consistent with experimental values. The dependence of the force on
fluid conditions like temperature, average hydrogen bonds is also discussed. Our
results indicate that hydrophobic force qualitatively imitates Casimir-like force be-
havior [59]. It is desirable to emulate the computation within more realistic models
of water possibly with the help of MD simulations. We also looked at transverse
density profile for confined water and show that an increase in density occurs near

interfaces.

6.1 Water confined between macroscopic surfaces

We envisage surfaces in the (x,y) plane of rectangular coordinate system; one
present at z = 0 and other at z = L [Fig.(6.1)]. Each surface excludes water from
its region of occupation. Hence, W = 0 on surface sites. On the immediate layer,
ie., at z = 1 or 2z = L — 1 called the interface layer, water can be present and
can take various orientations. For a hydrophobic surface if a non-zero bond arm
of interface water is directed towards the surface, there would be a dangling bond
on surface site; else a void state occurs. There can never be a hydrogen bond on
surface i.e., b # 2 on surface. We will take care of these possibilities explicitly in
our analysis. Consequently, we need not introduce n and ¢ integrals [Eq.(4.13)] on
the surface. Alternatively, we set 7 = ¢ = 0 on surfaces.

The calculation of partition function begins with formulating the site functional
Zsite at each site, which comprises weights corresponding to each allowed state in
the model. The site functional for all the sites in bulk region is of same form as

given by Eq.(4.16). On the interface sites, weights corresponding to the void state,
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Figure 6.1: Water confined between macroscopic surfaces. Si, Sy are surface planes
at z = 0 and z = L respectively; I;, Iy are their respective interfaces at z = 1 and
z=L-—1.

the dangling bond and the hydrogen bond states remain unaltered. When a water
molecule is present on an interface site its bond arms can orient in all possible
ways. Only if one of the arms is towards the surface we assign a weight exp(/57s)
to the corresponding orientation. For an ideal hydrophobic surface i.e., which is
indifferent to bond arms of vicinal water, 7s = 0 (in general, s can be positive or
negative). Consequently, orientational weights for a water state on any interface

site (with surface in ez direction) are given by

’ ’

C(nv ¢)|interface = Z + eXp(BI]S) Z
a#3H,=0,+1 a#3H,=0,+1
H3 — 0 H3 — :l:l

exp [@ Y (HZ(r)n(r + ea) + Ha(r)o(r + ea))

«

= Clno)+vs > exp [iZ<H2<r>n<r+ea>+Ha<r>¢<r+ea»

a#3 H,=0,+1
Hy = +1

C(n,¢) +vsC (n, 9) (6.1)

«
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Chapter 6. Hydrophobic force between macroscopic surfaces

where the prime over the H, sum implies the constraints Eq.(4.2), C'(n, ) corre-
sponds to affected orientations only i.e., those with Hy = 41, and vg = exp(Svs)—1
is a function of surface-water interaction strength. The site functional Z; for any

interfacial site can be arranged as

ZI - Zsite + VSMC, (777 ¢) (62)

By definition, vg ranges from —1 to co. We remark that for a perfect hydrophobic
surface, vg = 0.
The modified site functional at the interface sites can be recast in the expression

for full partition function such that the following decomposition is deduced.

2 = [©ipe [ 2 TT (+100) TT (14 102)

ri€lr ro€ls

=7 <exp (Z In(1+T(r)) + Z In(1+ F(rg))> > (6.3)

ri1€ly ro€la

where Z)| is partition function for the system with the surfaces, Z is for the cor-
responding unperturbed case (vs = 0) with 7 = ¢ = 0 on the surface sites, and
['(r) is defined only on the interface sites. It is relative orientational weight of the

affected orientations with respect to Zg., i.e.,

vsuC' (1, 9)

F<T> - Zsite<r)

(6.4)

The partition function for the unperturbed case Z can be evaluated using the
MMEF technique. The leading mean field energy is obtained from the maximum
of Zg at each site and the fluctuations in 1 and ¢ fields are analyzed subject
to vanishing boundary conditions on the surfaces. The interfaces-dependent part
in Z) is evaluated using cluster technique and the corresponding free energy is
obtained. The resulting form of total free energy Gy, per unit lattice area is

organized to be
Gtot = Go + GC + Vs, T s, GF (65)

where G, + G¢ is the free energy obtained from the evaluation of Z, analogous

to Eq.(4.27). G, includes leading terms proportional to L and constants obtained
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in the large L limit. They contribute only to bulk pressure of the system. Gg
is the remaining L-dependent part. ~s,, vs, are free energy contributions due to
surface-water interaction and evaluated only on the sites of respective interfaces
I; and I5 respectively. G constitutes terms which involve sites of both interfaces.
Expression for each of the terms is deduced in the remaining section and their
relevance to hydrophobic interaction is elucidated.

We first evaluate Z using the MMF technique described in the previous section.
We identify the maximum of the functional to be at n = ¢ = 0. It yields mean field
free energy per unit area, which to the leading order is given by LG,, |[Eq.(4.25)].
The dual fields are then expanded upto quadratic order about their maximum and
the resulting Gaussian integrand functional for Z is integrated over all the field
configurations which are consistent with the boundary conditions. This yields the
one-loop contribution to the free energy. In the process, the following Fourier
transformation is employed which satisfies the vanishing boundary conditions in
the z direction.

% Z / (dk1)( dk‘z) (E) exp(ik 2 + ikyy) sin (nmz/L) (6.6)

where 7= (x,y, z) is position vector for an arbitrary site and k= (k1) ko, kg = )
denote modes in the momentum space. Similarly for ¢ field.

The entropy contribution to the free energy for the unperturbed system is a
discrete analog of the corresponding expression for bulk water [Eq.(4.27)], in that

the integral over the wavevector in z-direction is replaced by a summation over

3 — I Lo L

L-dependence, we define entropy contribution per unit area in each mode in z-

a restricted number of wavevectors i.e., To analyze the

direction as

(k) = 5 [ tn (PPl (6.7

where the propagators P,, and P,4 are same as those deduced in the case of bulk
water. Total entropy contrlbutlon to the free energy of confined water is S(k3)

summed over the allowed values of k3. Its large-L behavior can be enumerated
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using Euler-Maclaurin series expansion [60].

T(L-1) T
2 Sli) = L[Sty - 5 (SO +S(m) +6Ge (68)

On the right hand side of Eq.(6.8), the first term is the total entropy contribution
in the same volume of bulk water. S(0) and S(m) are free energy densities in the
modes k3 = 0 and k3 = 7 respectively. They are independent of L. From Eq.(6.8)
we infer G¢ to be the net difference in entropy contribution per unit area between

confined water and bulk water in the same volume. G can be calculated as a

series expansion in %, in which the leading term is

0

0
a—kgs(k‘s)

— 5k
T ()

s
Go ~ —
BGe Bl

for large L (6.9)
k3=0

where By = 2 is the first Bernoulli constant. G¢ is analogous to the Casimir
interaction energy derived in case of conducting plates confining electromagnetic
fluctuations [26]. Hence, we call G¢ the Casimir part of the free energy. It falls
off asymptotically as - for large L.

In the expression for the partition function [Eq.(6.3)], the average over the
interface terms is now pursued. At each interfacial site, In(1 + I'(r)) ~ ['(r) is the
leading order term. This is justified because in Eq.(6.4) for I'(r), we note that

/ /

c C : : .

£ Z(Z’¢) ~ L 9(57’@ whose maximum value is always less than 1, since p < % and
site

3

’%) < %, C'(0,0) = 60. The leading order contribution from the interface

terms in Eq.(6.3) is then given by
2 = <exp (Z L(ry) + Z F(T2)>> (6.10)
Z
riel ro€l2

The average can be evaluated using cluster technique'. Terms that involve sites of

the same interface and those involving sites of both interfaces are segregated. g

'If A and B are functions of a random variable whose probability distribution is known, the
average < exp(A 4+ B) > over the probability distribution is given by : (exp(A + B)) =
exp[<A>+<B>+43(<A?>-<A>2+<B*>-<B>%)+<AB> -
<A><B>+..]
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is defined to constitute terms corresponding to sites on the same interface. Each
of them is proportional to vg or its higher order. ~g is given to the leading order

as

—BrysA = <Z F<r>> + < > r(m>r<r2>> - <Z F<r>> (6.11)

rel r1,r9€l rel
ri#rs
where A is area of the surface. 7g arises due to surface-water interaction and
consequent effect on orientational fluctuations in the interfacial region.
Each of the averages in Eq.(6.11) can be evaluated using a functional integration
relation®. For an interface site with surface in e3 direction, using Eqgs.(6.1) and (6.4)

(I'(r)) is given to the leading order as

!

o) = (5F) X e | Y (HOHLEGr + ear +ey)
Hi;o,ﬂ a0

+ Ho(r)H,  (r)Gys(r + eq,r + ea/))
(6.12)

where the H, summation is over the affected orientations at site . The prime over
the summation indicates that the H,s of each orientation satisfy the constraints
Eq.(4.2). The exponential in Eq.(6.12) corresponds to one such orientation. H,
and H_ are bond arms of the same orientation; r + e, and r + e are the bond

arm locations.

2Tf ¢ is a random field whose action is known and when a constant external field J couples
to ¢ such that their interaction is iJ@(r), then < exp(iJ(¢(r1) + ¢(r2))) > = exp[—3J%(<
d(r1)é(r) > + < o(r2)o(re) +2 < ¢(r1)¢(rz) >) + ...]. If the two-point correlation is leading
order among the correlations, then the subsequent terms of higher order denoted by (...) can be
ignored
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The average (I'(r1)['(r3)) is given to leading order as

/ /

Vsp\?
(Cr)0(r) = () > S ew
a#3H,=0,+1 k#3H,=0,+1
Hy = +1 Hy = +1

Z (HZ(ri)H?2 (r1)Gy(r1 + €a, 11+ €0) + Ho(r1)Hy (r1)Go(r1 + €a, 71 + €,))

+ Z H(ry)H T2)gn(7’2 + e o+ ey) + Ho(ra) Ho (r2)Gg(ra2 + e, 12 + 6,,5))

+ Z H2(r1)H2(r2)G(r1 + €a, T2 + €x) + Ho(r1) Hi(r2) G (11 + €0, 12 + €4))
(6.13)

where H, and H_ are bond arms of an affected orientation at site ry; H, and
H, are those of an orientation at site ry. The exponential corresponds to the
product of the two orientations and the summation is over all possible products.
The two-point Green’s function G, (71, 72) for the n-field fluctuations between any

two arbitrary sites 7, = (1, y1, 21) and ro = (22, Y2, 22) is given by

L—-1

2 (dky) dk:
Gy(r1,m2) = 7 Z / DICL) exp (ik1 (21 — 22) +ika(y1 — y2))

n=1 "

" sin (nmzy /L) sin (nmzy /L)
Py (F)

(6.14)

Similarly, Gy(r1,r2) for ¢ field can be defined using the propagator P¢¢(E).

The expression for g indicates that it varies with separation distance, owing
to the L-dependent Green’s functions. The asymptotic value of the g is the
interfacial tension for the hydrophobic surface in contact with water. The leading
correction term is proportional to % for large-L and contributes to force between
the surfaces.

From the cluster expansion of the partition function, terms that involve sites
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of both interfaces are grouped as Gr. It is given to the leading order as

<Z T(r) > F(r2)> —~ <Z F('rl)> <Z F(r2)>] (6.15)

ri€ly ro€ls ri€ly ro€ls

_BGrA =

Effectively, Gr is the connected correlation between orientational fluctuations of
both interfaces. Hence, we call this contribution interfacial fluctuations-induced
part of the free energy. The averages in Eq.(6.15) can be evaluated using the
Eq.(6.12) with vg corresponding to each interface and using the Eq.(6.13) with
proportionality factor (vg,vs,) instead of (vg)?. The identity of the sites is as per
given in the expression for Gr [Eq.(6.15)].

The long-distance behavior of G is dominated by the ¢(r) correlations, the n(r)
being short-ranged. Between two hydrophobic surfaces, to the leading order, Gt is
proportional to the square of orientational correlations i.e., (Gy4(r))?, where Gy(r)
is an exponentially falling-off function for large r [see section (4.2.2) in Chapter 4].

For the case of mesoscopic surfaces, hydrophobic force is shown to arise from
orientational correlations between water molecules present at the interfaces of both
surfaces [see Chapter 3]. The force is seen to decay exponentially with the separa-
tion distance, asymptotically [Eq.(3.6)]. Gr is thus analogous to the hydrophobic
interaction free energy of mesoscopic surfaces. However, for macroscopic surfaces,
in addition to G, hydrophobic force obtains contributions from the Casimir part
and the interfacial free energy. This aspect distinguishes the hydrophobic interac-
tion between large surfaces from that of between small surfaces, both qualitatively
and quantitatively. The non-additive nature of hydrophobic interaction with in-
creasing size of surfaces has attracted considerable attention [17, 61] and our work
provides a direction to elucidate the size dependence in terms of hydrogen-bond

fluctuations in water.

6.1.1 Hydrophilic surfaces

We can envisage surfaces of generic heterogeniety in our calculation. The heteroge-
niety could be in terms of space-dependent vg and/or charge on the surface. One of
the simplest cases is a homogeneous hydrophilic surface with a fixed charge at each
site. We first consider the case of a positively charged hydrophilic surface. On its

interface, the site functional comprises weights corresponding to all states. When a
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water molecule is present on interface, its hydrogen arm is restricted from pointing
in the surface direction. We assign an energetic penalty to such orientations and
the site functional can be arranged, analogous to the case of a hydrophobic surface,

as given below:
ZI - Zsite + VSMC,(,IL ¢)

Here, vg € (—1,0) (ideally, v¢ = —1) and the orientational weight corresponding
to the affected orientations C' (1, ¢) is given by

/

C(n,¢) = > exp [i Y (H2(r)n(r + ea) + Ha(r)o(r + €a))
a#£3H,=0,+1 o
Hy =1
(6.16)

The above expression is for an interface site with surface in ez direction. A nega-
tively charged hydrophilic surface can also be envisaged such that, for an interface
water molecule, orientations with lone-pair arm in the surface direction are ener-
getically penalized. Here, the orientational weight for the affected orientations is

given by

C_(n,¢) = > exp i) (HA(r)n(r + ¢a) + Ha(r)o(r + ¢a))
H,=0,+1 o

(6.17)

We now compute the free energy components G¢, 7vs,, 7s,, and Gr using their
respective expressions for different types of surfaces. vg is an arbitrary parameter
in the calculation. It is chosen close to its ideal value for each surface type. The
properties of water enter the computation via Green’s functions G, and G,. These
are computed within the model using Eq.(6.14). Due to the L-dependent modes in
the confined direction, all the free energy components that depend on fluctuations

are expected to vary with the separation distance L.
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6.2 Results : Hydrophobic force, interfacial ten-
sion

We first mention that this computation is totally parameter free on lattice. The
equation of network uniquely fixes HB as a function of p. Temperature in the model
is conjugate to HB and can be self-consistently fixed for a given h(= 2HB/p).
Hence, we describe our results in terms of h to relate to water. All the free
energy components given by Eqs.(6.8, (6.11), and (6.15) are evaluated from the
partition function upto one-loop order using the corresponding expressions for the

propagators [Eq.(4.28)].
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Figure 6.2: Different contributions to Gy, for two hydrophobic surfaces (vs, =
vs, = —0.5). The curves are plotted for h = 3.58. In the order from top to bottom
the curves correspond to vys(L) — vs(00), Gr, G¢, and Gipt(L) — Gor(00) respec-
tively. The free energy densities are measured per unit hydrogen-bond strength.

In Fig.(6.2) various contributions to the interaction free energy and their rel-
ative magnitudes are plotted as a function of the separation distance L between
the surfaces. The plot is presented for h = 3.58. The Casimir part G¢ is leading
attractive component of the total interaction, followed by G, while the interfacial
free energy ~g is repulsive, albeit very small. G and g fall off as % for large L
from our analytic calculation. Numerically, beyond 15 lattice units they are in-

significant. All the plots are presented for the lattice distance L > 5. For smaller
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L the results are predominantly influenced by surface effects. In the model, for
L = 4 there is only one layer which can have free orientations (besides two interface

layers), while for L > 5 there are two or more such free layers.
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Figure 6.3: Force between two hydrophobic surfaces (vg, = vg, = —0.5). Top (red)
curve corresponds to h = 3.03, middle (green) curve : h = 3.58, bottom (blue)
: h = 3.75. Force is measured per unit hydrogen-bond strength per unit lattice
distance.

Force between the surfaces is computed as discrete derivative of the total free
energy with respect to L and plotted in Fig.(6.3) for various h. The curves ef-
fectively show that the force can manifest upto a length of about 15 lattice units
which translates to about four times the orientational correlation length in the
model. All the free energy components and the force obtain major contributions
from orientational fluctuations.

Figures (6.4), (6.5), and (6.6) display the h-dependence of G¢, vs, and Gr
functions. The Casimir part G¢ monotonically increases in magnitude with A.
The interfacial free energy s decreases and is always slightly repulsive. Interfacial
fluctuations-induced part Gr increases with h for L > 6. At shorter distances
it decreases with increasing h. This indicates that the adhesion strength of Gr
is higher for higher temperatures. This behavior is qualitatively similar to the
temperature dependence of interaction free energy for mesoscopic hydrophobic

surfaces [2, 62]. This reaffirms our interpretation that Gr is analogous to the
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Figure 6.4: G¢ as a function of L. Top (red) curve corresponds to h = 3.03, middle
(green) curve : h = 3.58, bottom (blue) : h = 3.75.

hydrophobic interaction free energy for mesoscopic surfaces.

Figure (6.7) is the plot for G contribution between two hydrophilic surfaces
for two cases: (i) Both surfaces are of the same type i.e., both are either hydrogen
donor type or hydrogen acceptor type, and (ii) Both surfaces are of dissimilar type.
Gt in both cases is proportional to G, and hence, the correlation length is twice as
longer in range than in the case of hydrophobic surfaces (where Gr is proportional
to (Gy)?). At short distances, this contribution is seen to be attractive for both
combinations of hydrophilic surfaces. However, for large distances, it is weakly re-
pulsive between like-charged surfaces, in contrast to attraction between oppositely
charged surfaces. Fig.(6.8) depicts the force between hydrophilic surfaces for both
similar and dissimilar combinations. As expected, the dissimilar pair of surfaces
have marginally larger attraction than that of similar surfaces. It is interesting to
note that like-charged hydrophilic surfaces also have a net attraction. This is due
to dominance of the Casimir part G¢ which is indifferent to surface charge.

Figure (6.9) displays force between a hydrophobic and hydrophilic surface. Tt
bears similar profile as in the case of two hydrophobic surfaces. This is expected
because essentially Gr is qualitatively same for both cases i.e., proportional to

(G4)?. For all surface combinations the force is seen to increase in magnitude with
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Figure 6.5: 7g for a hydrophobic surface (vg = —0.5). Top (red) curve corresponds
to h = 3.03, middle (green) curve : h = 3.30, bottom (blue) : h = 3.58.

h, dominantly due to the Casimir part which is leading contribution in all the
cases and is indifferent to surface types. This is a consequence of the fact that the
entropy induced forces are largely charge neutral.

Next, we make an attempt to relate our computational results to those of ex-
periments. The free energy values presented in the graphs are in the units where
hydrogen-bond strength is unity. Generally, dimensionful quantities in lattice mod-
els and those in corresponding continuum models are not the same. So, it is best to

compare dimensionless quantities. In our instance, for h = 3.58 and L = 6 lattice

O - ot\ OO 1 -5
units which translates to 6 x 1.57A ~ 9.54, [Gro1(6) = Gror(0)] ~ 9 x 10 ~
vs(00) 8.5 x 10—3

1072 From experiments, the interaction free energy estimate when two hydropho-

bic plates are about 10 A apart is about 1 mJ m~2 [9], while the interfacial tension
is in the range 50 — 100 mJ m~2 [63]; their ratio agrees with our computation. In
experiments the free energy values are also measured for larger distances all the
way up to 100 A. Unfortunately, our model is not good for these distances. This
discrepancy was already noticed when our results were compared with the MD
simulation. The simple water model has only one orientational correlation length,
while there are more than one in both MD simulations [see Eq.(2.4) in Chapter

2| and surface force apparatus experiments [7]. We conclude that while the order
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Figure 6.6: Gr for two hydrophobic surfaces (v, = vg, = —0.5). For L > 6, top
(red) curve corresponds to h = 3.03, middle (green) curve : h = 3.58, bottom
(blue) : h = 3.75.

of magnitude estimate of the strength of hydrophobic force is in agreement with
Casimir-like energies envisaged here, a few more important details are perhaps

missing in our simple model of water.

6.3 Transverse density profile

We also deduce expression for water density profile along the confinement direction.
p(z) is obtained by assuming chemical potential for water fi to be z-dependent
and then, a partial derivative of In(Z)) is taken with respect to fi(z). At both
interfaces i.e., 2z = 1 and z = L — 1, the modified fugacity provides additional

correction to the average density. The expression for the density profile is given by

6(1n(Z||)) 1 0
2) = o = 2)+ = = I'(ry) + I'(r + ...
(6.18)
pc is obtained from differentiating Z in Eq.(6.3). It is the density profile between

ideal hydrophobic surfaces (vg = 0) and is the dominant contribution at all posi-

tions. The explicit expression for pc(z) upto the one-loop order is same as given
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Figure 6.7: Gr for hydrophilic surfaces (vs, = vs, = —0.9). (+,4+) curve corre-
sponds to similar type of hydrophilic surfaces and (4, —), to dissimilar type. Both
curves are plotted for h = 3.58.

in the Appendix (4.4.2) [see Chapter 4]. The Green’s functions G, and G, in the
expression are to be computed from Eq.(6.14). The interfaces-dependent term in
Eq.(6.18) can be analyzed using Eq.(6.12). This contribution is only at z = 1 and
z=L—-1.

The transverse density profile is shown in Fig.(6.10) after scaling p(z) with
respect to the bulk density value. At both interfaces there is a characterstic rise
in density. From the expressions for pc(z) and the interface terms [Eq.(6.12)] it is
evident that the net contribution of ¢ field correlations is numerically small, since,
density is a charge-neutral quantity and linear ¢-dependent terms tend to cancel
each other. Hence, away from the interfaces, density reaches bulk density value
rapidly within a distance &,. Many a model simulations in the past computed the
transverse density profile for water confined between model hydrophobic surfaces.
The short-distance density increase is generically observed [64, 65]. At ambient
conditions the magnitude of the interfacial density is seen to be typically 1.3 times
the bulk density value in case of surfaces with alkane headgroups [65] and is inde-
pendent of L. In our model study we see an L-independent increase of magnitude
1.2 for an ideal hydrophobic surface. The under-estimation could possibly be due

to discrete orientational freedom envisaged in our model. Also, the alkane head-
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Figure 6.8: Force between two hydrophilic surfaces (vs, = vg, = —0.9). (+,+)

indicates similar type of hydrophilic surfaces and (+, —) indicates dissimilar type.
Both curves correspond to h = 3.58.

groups in simulations may have an extra entropy due to fluctuating short-length
polymer chains.

The rise in interfacial density is also seen for water in the vicinity of hydrophilic
surfaces [65, 66]. In our model study, p(z) between hydrophilic surfaces also dis-
plays qualitatively similar profile and a lower magnitude of interfacial density com-
pared to that near an ideal hydrophobic surface. In all the cases, the phenomenon
is seen to be a consequence of the fact that the water density has to vanish on the
surface. This is compensated by an increase at the interface and the system comes
back to its bulk equilibrium density value within a distance &, from the interface.

We also calculate density correlations within the interfacial plane and between
sites on interface and away from the interface. Density correlations between any

two sites  and 7 can be calculated as given below.

i) = (Gt ted) (6.19)

where Zg.(r) is the site functional at r. To compute density correlations on
same interface, the site functional at both sites is given by Eq.(6.2). For density

correlations between one site on interface and another site away from interface,
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Figure 6.9: Force between a hydrophilic (vs, = —0.9) and a hydrophobic surface
(vs, = —0.5). Top (red) curve corresponds to h = 3.03, middle (green) curve
: h = 3.58, bottom (blue) : h = 3.75. (£,0) indicates that force is between a
positively (negatively) charged hydrophilic surface and a hydrophobic surface.

the site functionals are given by Eqs.(6.2) and (4.16) respectively. p{...} refers to
the term proportional to p in the respective site functional. The connected part
of the correlation is given by < W(r)W (r') >, = (< W(r)W(r') > — < W(r) ><
W (r") >). The explicit expression in each context is deduced upto one-loop order
in terms of G,, G, and are given in Appendix (6.4.2).

Density correlations scaled appropriately with respect to the bulk density value
are plotted in Fig.(6.11). The plot corresponds to h = 3.58. The figure essentially
indicates that density correlations do not extend beyond few molecular diameters
from the interface. Also, there is no significant difference between correlations
within an interface and that of between interface and non-interface sites.

Similarly, orientational correlations can also be analyzed using the expressions
for orientational weights given in Appendix (6.4.1). Their effect persists upto
longer distances away from interface, proportional to the long correlation length

of the ¢ field.
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Figure 6.10: Transverse density profile for water between two hydrophobic surfaces
separated by distance L = 16 and (inset) L = 6. Here, h = 3.58. The steeper
(red) curve corresponds to ideal case vg, = vgs, = 0 and the other (green) curve
corresponds to vg, = vg, = —0.5.

6.4 Appendix

6.4.1 Orientational weight on interface

The orientational weight for the water state in bulk water is given by

Cn.¢) = > exp [Z Y (HZ(r)n(r + ea) + Ha(r)o(r + ea))

H,=0,+1
a=41,42 43

a

where the prime indicates the summation is subject to constraints Eq.(4.2).
About the mean field configuration n = ¢ = 0, the dual fields are expanded
upto quadratic order. C(n, ¢) is then given by

1+%Zna—%Znﬁ—%Z%%—%ZéiJr%Z%%]
a a a,f e o,

(6.20)

C(n,¢) ~ 90

where 17, = n(r + e,) and ¢, = O(r + €4).
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Figure 6.11: Density correlations near a hydrophobic interface (vg = —0.5) scaled
appropriately with respect to bulk density value at h = 3.58. Correlations are
between a reference site on interface (z = 1) and an arbitrary site on a plane
defined by its z coordinate. Distance between the two sites is measured using
Euclidean metric.

The orientational weight for the affected orientations for an interfacial water
near hydrophobic surface are denoted by C'(7, ¢). With boundary conditions 1 =

¢ = 0 on surface sites, it is given by

31 3 3 3 1
1—1-32;7}0[—%;772—%;%?7 _1_0;¢(21+1_0a25%¢6]

(6.21)

/

C (n,¢) ~ 60

Near a hydrophilic surface, the orientational weight is given by
31 3 3 3
1 e Y — — 2 Y N v 2

+% > ats T % > %] (6.22)
a,f «

!

C:l:<777¢) ~ 30
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6.4.2 Interfacial density correlations

The connected part of density correlation function between sites on same interface,

to leading order, is given by

(Wr)W(r)e ~

2
= [0+ 276,00+ (5 (1422 ) ) LGl + ear )

!
a,o

+2 @ <1+3% —,,L)) (J+2X)Zgn(r,r'+ea,) (6.23)

where 7 and " are arbitrary sites on same interface; r+e, and r/+ea/ are respective
near-neighbor sites in the directions e,, e, respectively. G,(r1,72) and Gs(r1,72)
can be computed from Eq.(6.14). v/, X', and p' are the reduced fugacities [see
section (4.2.1) in Chapter 4].

The density correlation function between a site on an interface and another site

away from interface is given by

/

(rW(r)). =~

/
a,o

!y +2)\) gn'r’r)—i—g(l—,u)(1+3?S—u)zgn(r+ea,r'+ea,)
L2
3

(v +2)\)( —1—3&—2 ) Zgn'r’+ea, )"‘ZGn(TuT/_'_ea/)
) (6.24)

where 7 is any site on the interface and 7 is away from interface; r+ e, and r’ +e,
are their respective near-neighbor sites.

Orientational correlations can also be evaluated using the expression for ori-
entational weights given in Appendix (6.4.1) and can be computed using known

expressions for Green’s functions.
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Results summary

e MD simulation study reveals that orientational correlations in liquid water
are longer in range, whereas density correlations vanish beyond few molecular
diameters (12 A) The longitudinal dipolar correlation, in particular, exhibits
two correlation lengths, one of order 5.2 A and the other of 24 A. MMF theory
for a simple lattice water model predicts a correlation length for orientational
fluctuations consistent with the shorter length. MC simulation of the model
confirms this feature qualitatively. Coulomb interactions have no significant
effect on the correlation length, asymptotically. This aspect is verified both
within MD study and MMF' theory.

e The finite particle size and finite number of bonds that particles can undergo
in associating fluids imply sum rule(s) for the fluid. MMF theory for the
water model explicitly respects the corresponding sum rule in the evaluation
of partition function. The sum rule manifests in the form of equation of
network, a relation between hydrogen bond density and molecular density.
The same is borne out in experiments. Furthermore, as a consequence of the
sum rule the equation of state correctly predicts the density saturation and

the bond saturation in the model.

e Two mesoscopic hydrophobic surfaces in water are shown to experience a
long range attractive force mediated by orientational correlations in water.
The deduced force expression suggests that, for distances greater than the
surface size itself, hydrophobic force falls off exponentially with a correlation

length half that of orientational correlations i.e., about 12 A. This distance
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dependence is quantitatively consistent with experiments. The shape of the
surfaces and their mutual orientation are also shown to influence the magni-
tude of the force.

For the case of macroscopic hydrophobic surfaces Casimir-like fluctuations
in the intervening region give rise to an attractive hydrophobic force. The
force obtains contributions from : (i) Casimir part of free energy, which solely
arises from discretization of fluctuation modes in the region between surfaces
and is independent of nature of surfaces, (ii) Interfacial free energy, which
arises due to surface-water interaction and is weakly distance-dependent,
(iii) Interfacial fluctuations-induced part, which is due to correlation between
orientational fluctuations at both interfaces and depends on nature of both
surfaces. All contributions are of similar order of magnitude. The Casimir

part is the leading contribution among them.

The Casimir part is largely influenced by long range correlations of orienta-

tional fluctuations. It behaves as %, asymptotically. However, its strength
is practically weak for distances beyond four times the longest correlation

length in water.

We also deduce interfacial free energy for hydrophobic and hydrophilic sur-
faces in contact with water. This contribution is seen to weakly depend on

separation distance.

The interfacial fluctuations-induced part is exponentially decaying with a
correlation length half that of orientational correlations in water. This con-

tribution is analogous to the force between mesoscopic surfaces.

Our analysis can be carried out for generic surface types. In case of hy-
drophilic surfaces the Casimir part is the leading contribution. The interfacial
fluctuations-induced part is seen to depend on charge symmetry between the
surfaces and is longer in range compared to the case of hydrophobic surfaces

i.e., its correlation length is same as that of orientational correlations.

The transverse density profile of water in confinement direction is seen to dis-
play a characterstic rise near interfaces, concomitant with simulation studies.

The density approaches the bulk value within a hydrogen bond length.
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