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Abstra
tThe thesis aims at understanding the role of hydrogen-bond �u
tuations inliquid water in bringing about a solvent-indu
ed intera
tion between hydropho-bi
 moieties, 
alled hydrophobi
 for
e. This intera
tion plays a signi�
ant rolein many oft-studied biologi
al phenomena like protein folding, 
ell membrane for-mation et
. Surfa
e for
e apparatus measurements reveal that hydrophobi
 for
eis long-ranged and monotoni
 in nature. We provide a statisti
al des
ription ofhydrogen-bond �u
tuations in liquid water and address the long-distan
e natureof hydrophobi
 for
e and also attempt to provide a 
onsistent pi
ture of its depen-den
e on the size of hydrophobes. The hydrogen-bond intera
tion is essentiallyorientation-dependent and spe
i�
 in nature. The features imply for a system ofwater mole
ules that the density of dangling bonds and hydrogen bonds are tobe 
ommensurate with mole
ular density, whi
h 
an be stated as �sum rule" forwater. These aspe
ts ne
essitate the statisti
al des
ription of water in terms ofboth density and orientational degrees of freedom of the mole
ules. We de�ne andanalyze density and orientational 
orrelations in popular water models in terms ofa 
omplete orthonormal set of orientational �elds. Large-s
ale mole
ular dynam-i
s simulations reveal that the density 
orrelations vanish beyond few mole
ulardiameters, whereas (longitudinal part of) dipolar orientational 
orrelation showslong-distan
e behavior, at least up to 75 Å. Two 
orrelation lengths of order 5.2 Åand 24 Å are inferred for the 
orrelation fun
tion. It is seen to be predominantlyin�uen
ed by the hydrogen-bond intera
tion. Coulomb intera
tions, surprisingly,have little e�e
t on its long-distan
e behavior. The orientational 
orrelation fun
-tion is utilized to dedu
e intera
tion free energy for two mesos
opi
 hydrophobi
surfa
es in water. The restri
ted orientational �u
tuations of water mole
ules inthe vi
inity of a hydrophobe are envisaged in a lo
al intera
tion Hamiltonian andin presen
e of two su
h hydrophobes, the dedu
ed for
e shows exponential de
aywith a 
orrelation length half that of orientational 
orrelations. The range of thefor
e is strikingly 
onsistent with that seen in experiments. The magnitude of thefor
e is also shown to depend on shape and mutual orientations of the surfa
es.We take a theoreti
al route to understand hydrophobi
 for
e between largesurfa
es, by envisaging a simple latti
e model for water and investigating the ther-modynami
 
onsequen
es of 
on�ning hydrogen-bond �u
tuations. The model7



in
orporates the essential density and orientational degrees of freedom of watermole
ules. The restri
tions on network formation, due to the nature of hydrogen-bond intera
tion, are handled in terms of dual latti
e �elds. A mean �eld analysis
onsistent with the sum rule for water is 
arried out and �u
tuations in dual �eldsabout the mean �eld are analyzed. The analyti
al framework is 
alled mole
ularmean �eld theory. Monte Carlo simulations in 
omplian
e with 
onstraints andrestri
tions in the model are also 
arried out to attest the mean �eld results. Thesum rule manifests as an equation of network, i.e., a relation between mole
ulardensity and hydrogen-bond density. It 
orre
tly predi
ts density saturation andbond saturation within the model and is in quantitative agreement with the simula-tion results. The mean �eld analysis is pursued at arbitrary densities in the model.However, it is seen to be a good approximation only at densities 
orresponding toliquid phase or above. Correlation fun
tions are also dedu
ed in terms of dual�eld 
orrelations. The density 
orrelation vanishes within a short latti
e distan
e,whereas orientational 
orrelations show long-distan
e behavior. The 
orrelationlength dedu
ed here is 
onsistent with the shorter length inferred in mole
ulardynami
s simulations. Coulomb intera
tions are seen to have little e�e
t on the
orrelation length.We then envisage large hydrophobi
 surfa
es 
on�ning hydrogen-bond �u
tua-tions in their intervening region. Casimir-like for
es are known to arise in various
ontexts where �u
tuating �elds are 
on�ned between surfa
es. The free energy ofthe system is in
reased due to restri
tion imposed on �u
tuations by the bound-aries, thereby system tends to minimize the separation in order to redu
e the freeenergy 
ost. We investigate hydrophobi
 for
e to be a manifestation of Casimir-likefor
e due to density and orientational �u
tuations in liquid water. The dis
retiza-tion of �u
tuation modes in 
on�nement dire
tion gives rise to a Casimir part offree energy. The modi�ed orientational �u
tuations in the interfa
ial region of hy-drophobi
 surfa
es, in addition, give rise to interfa
ial free energy and interfa
ial�u
utations-indu
ed free energy, both of whi
h depend on nature of the surfa
es.The Casimir part of free energy is the leading 
ontribution and varies as 1
L
for largedistan
es. However, it is seen to be numeri
ally small for distan
es beyond fourtimes the orientational 
orrelation length in the model. Interfa
ial free energy isalso seen to vary with separation distan
e, albeit weakly and it rea
hes a 
onstantvalue, asymptoti
ally. The interfa
ial �u
tuations-indu
ed part is e�e
tively 
or-8



relation between modi�ed interfa
ial �u
tuations at both surfa
es. Its asymptoti
behavior is dominated by orientational 
orrelations in water and is analogous to hy-drophobi
 for
e between mesos
opi
 surfa
es. The 
olle
tive 
onsequen
es of thesee�e
ts are analyzed for both hydrophobi
 and hydrophili
 types of surfa
es. Thequantitative details of hydrophobi
 intera
tion are 
onsistent with experiments.Transverse density pro�le of water is also addressed in our 
al
ulation and is seento be qualitatively 
on
omitant with results of 
on�ned water simulations.For both mesos
opi
 surfa
es and ma
ros
opi
 surfa
es, hydrophobi
 intera
-tion is seen to be largely in�uen
ed by orientational 
orrelations in water. Ourmean �eld framework provides a dire
tion to elu
idate the size dependen
e of theintera
tion in terms of water properties.Publi
ations and preprints[1℄ Jampa Maruthi Pradeep Kanth, Satyavani Vemparala, and Ramesh An-ishetty. Long-distan
e 
orrelations in mole
ular orientations of liquid waterand shape-dependent hydrophobi
 for
e. Phys. Rev. E, 81(2):021201, 2010.[2℄ Jampa Maruthi Pradeep Kanth and Ramesh Anishetty. Mole
ular mean�eld theory for liquid water. Physi
a A, 391:439-455, 2012.[3℄ Jampa Maruthi Pradeep Kanth and Ramesh Anishetty. Hydrophobi
 for
ea Casimir-like e�e
t due to hydrogen-bond �u
tuations. arXiv:1109.2733,2011.
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�Hydrophobi
 intera
tion isarguably the most impor-tant non-spe
i�
 intera
tionin biologi
al systems and isresponsible for the 
reationof en
losed 
ompartments byproteins and lipid bilayers inwater, whi
h was fundamen-tal for the evolution of 
ellsand therefore life."J. N. Israela
hvili
1Introdu
tion

Liquid water provides matrix for many ubiquitous physi
al, 
hemi
al and biologi-
al phenomena. Interesting among them is hydrophobi
 e�e
t whi
h manifests atma
ros
opi
 s
ale as tenden
y of apolar 
hemi
al spe
ies to minimize 
onta
t withwater. Some well known 
onsequen
es are oil-water demixing and formation ofnear-spheri
al water droplets on a lotus leaf. The e�e
t manifests at mi
ros
opi
s
ale as a for
e of attra
tion between apolar moeities in aqueous medium, 
alledhydrophobi
 for
e. This intera
tion is dominantly prevalent in biology and is knownto be responsible for mi
ellar aggregation, 
ell membrane formation, assembly ofproteins into fun
tional 
omplexes [1℄. Its o

uren
e as a solvent-indu
ed intera
-tion was �rst suggested by Frank and Evans [2℄ and later elu
idated in biologi
al
ontext by Kauzmann [3℄. The former study noted that transferring small hy-drophobes su
h as hydro
arbons into water was a

ompanied by unfavorable freeenergy 
hange [4℄, dominated by entropy redu
tion due to reorganization of vi
inalwater mole
ules [2℄. Hen
e, two hydrophobes show tenden
y to 
oales
e in orderto minimize the unfavorable free energy. The low solubility of pure hydro
arbonsin water, however, hampered e�orts to dire
tly measure or infer the intera
tion atthis s
ale in experiments.In early 1980s, employing large hydrophobi
 surfa
es the �rst dire
t measure-ment of hydrophobi
 for
e was 
arried out using surfa
e for
e apparatus (SFA) [5℄.Amphiphili
 mole
ules were 
hemisorbed on a
tivated mi
a surfa
es with their hy-drophobi
 tails left open to intera
t with water. Two su
h surfa
es were employedin a 
ross-
ylinder geometry inside water medium and the measured for
e betweenthem was related to intera
tion free energy using Derjaguin approximation [6℄.1



Chapter 1. Introdu
tionHydrophobi
 intera
tion was seen to be in�uential upto hundreds of Angstromsand stronger than inter-surfa
e van der Waal (vdW) intera
tion. The qualitativenature of the intera
tion i.e., long range and monotoni
 de
ay, withstood the testof time [7�9℄.A quantitative understanding of hydrophobi
 for
e from statisti
al des
riptionof liquid water is essential for many biophysi
al problems, eg., protein folding [10℄.We brie�y dis
uss essential degrees of freedom to be envisaged in the des
riptionof water and past attempts in this dire
tion. The water mole
ules are uniquely setup with a geometry and intermole
ular intera
tion that fa
ilitate diverse mole
-ular and orientational arrangements. Ea
h mole
ule has two positively polarizedhydrogen atoms (
ovalently bonded to oxygen atom) and two negatively polarizedlone-pair of ele
trons, distributed at tetrahedral angles about oxygen nu
leus. Thegeometry is a 
onsequen
e of sp3 hybridization (of 2s and 2p orbitals) in oxygenatom and the asso
iated 
harge distribution is due to ele
tronegative nature of oxy-gen [11℄. In the ba
kground of this knowledge, x-ray di�ra
tion studies on stru
tureof i
e and quantum-me
hani
al studies on water dimer in gas phase [11℄ indi
atethat a hydrogen bond o

urs when two water mole
ules suitably orient su
h thata hydrogen arm of one mole
ule intera
ts with a lone-pair arm of the other. Theorientation dependen
e and the spe
i�
ity of hydrogen bonding impart importan
eto both density and orientational degrees of freedom in statisti
al analysis of water.There are models galore whi
h were proposed and analyzed to reprodu
e anoma-lous thermodynami
 properties of water [12, 13℄. Theoreti
al attempts to envisage�u
tuations in water are limited to Ornstein-Zernike-like phenomenologi
al ap-proa
hes, wherein integral equations only in terms of mole
ular density 
orrelationwere heuristi
ally proposed and are numeri
ally solved using di�erent 
losure ap-proximations [14, 15℄. Wertheim's theory for asso
iating �uids envisages similardensity 
orrelations to be solved in 
omplian
e with steri
 
onstraints imposed byformation of mole
ular 
lusters [16℄. Other approa
hes spe
i�
 to mole
ular �uids,su
h as referen
e intera
tion-site model, were seen to be less predi
tive in 
ase of as-so
iating �uids [17℄. Hydrophobi
 intera
tion at both small and large lengths
aleshas also been 
onventionally addressed in terms of density �u
tuations in water.In 
ase of small solutes, phenomenologi
al approa
hes based on s
aled parti
letheories envisage density ex
lusion 
aused by small solutes and estimate hydrationfree energies [17℄. The a

ompanying 
hange in density �u
tuations of water is2
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tion
onsidered small and using Ornstein-Zernike approa
h, the intera
tion free energyis derived in terms of density 
orrelation fun
tion of bulk water [18℄. For extendedhydrophobi
 surfa
es, large lengths
ale density �u
tuations in metastable 
on�ned�uid [19℄, dewetting-indu
ed 
avitation under liquid-vapor 
oexisten
e 
onditions[20℄, and �uid stru
turing e�e
ts [21℄ are some of the me
hanisms suggested for theorigin of hydrophobi
 intera
tion. These theories are envisaged in narrow range of�uid 
onditions and besides, were unsu

essful in reprodu
ing generi
 features ofthe intera
tion seen in experiments [7℄. There were also other studies that envis-age ele
trostati
 me
hanisms [22, 23℄ or spe
i�
 surfa
e details like 
harged bilayerpat
hes [22℄, nanobubbles [24℄. The essential nature of hydrophobi
 intera
tion isseen to be qualitatively similar between di�erent surfa
e types [25℄.The spe
i�
 nature of hydrogen bonding intera
tion ne
essitates the densityof hydrogen bonds and dangling bonds (hydrogens and lone-pairs whi
h are nothydrogen bonded) to be 
ommensurate with water density. This 
an be stated asa sum rule for water. Consequently, the �u
tuations of density and orientational�elds of water mole
ules (the latter being inherently 
onne
ted to the bond �u
tu-ations) are not totally independent; their long wavelength �u
tuations espe
iallyare to be 
onsistent with the sum rule. The essential features of hydrogen bondingintera
tion 
onsistent with the sum rule are impli
itly in
orporated in e�e
tive
harge models of water designed for numeri
al simulations (TIP5P, TIP3P, et
).A water mole
ule is often modeled as a polar mole
ule with 
harges 
orrespondingto hydrogens and lone-pairs pla
ed at verti
es of a tetrahedron. A 
omplete de-s
ription of mole
ular 
orrelations 
an be a
hieved by de�ning a set of orthonormalve
tors in terms of atomi
 
oordinates and de�ning 
orrelations among them. Weperform large-s
ale mole
ular dynami
s simulations of the water models at am-bient 
onditions and observe that density 
orrelations are short-ranged, whereasdipolar orientations, whi
h are re
eptive to bond �u
tuations in the neighborhood,are 
orrelated over large distan
es, at least up to 75 Å. Two 
orrelation lengthsof order 5.2 Å and 24 Å are inferred. Coulomb intera
tions, surprisingly, havelittle e�e
t on the asymptoti
 behavior of the 
orrelations [Chapter 2℄. We utilizeorientational 
orrelation fun
tion of bulk water to dedu
e hydrophobi
 for
e be-tween mesos
opi
 surfa
es. The orientational �u
tuations of water in the vi
inityof a hydrophobe are modi�ed due to unfavorable surfa
e-water intera
tions. The
orrelation between modi�ed interfa
ial �u
tuations at two hydrophobi
 surfa
es3
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tiongives rise to a long-range attra
tive for
e between the surfa
es. The magnitudeof the for
e de
ays exponentially with distan
e and depends on shape and mu-tual orientation of the surfa
es [Chapter 3℄. The exponential de
ay bears striking
onsisten
y with that seen in SFA experiments.For the 
ase of large hydrophobi
 surfa
es, 
orrelations in 
on�ned water needto be as
ertained. In this 
ase the desired system size to obtain proper equilibrationand small free energy 
hanges that need to be reliably 
omputed are limitations to
arry out a simulation study. Alternatively, we propose a simple model for waterwhi
h in
orporates essential features of hydrogen bonding and is envisaged onlatti
e to a

ount exa
tly for hard-sphere repulsion. An analyti
al framework 
alledmole
ular mean �eld theory is developed to dedu
e thermodynami
 and �u
tuationproperties of the system 
onsistent with the sum rule for water [Chapter 4℄. Inthe model study we see that density 
orrelations show hydration peaks and vanishwithin a short latti
e distan
e, whereas orientational 
orrelations display long-distan
e behavior, 
onsistent with the results of mole
ular dynami
s simulations.The mean �eld results are validated using exa
t Monte Carlo simulations for thelatti
e model [Chapter 5℄. The mean �eld approximation is envisaged at arbitrarydensities. But, within the model the approximation is seen to be self-
onsistentonly for densities 
orresponding to liquid phase or higher. Qualitative predi
tionsfor the 
orrelation fun
tions are veri�ed with exa
t simulation results. We thenenvisage large hydrophobi
 surfa
es 
on�ning water in their intervening region.The presen
e of large surfa
es substantially disrupts the hydrogen bond networkwhose �u
tuations are suppressed at surfa
e boundaries. The setting is ideallysuited for �u
tuations-indu
ed for
e between the surfa
es. For
es of this natureare generi
ally 
alled Casimir for
es as they were �rst dis
ussed by Casimir in the
ase of ele
tromagneti
 �u
tuations 
on�ned between 
ondu
ting plates [26℄, laterstudied in detail by Lifshitz [27℄ and envisaged in widely di�erent 
ontexts [28℄.The 
ase of thermal �u
tuations-indu
ed for
e was �rst dis
ussed by Fisher andde Gennes. They argued that when a binary liquid mixture is 
on�ned betweensurfa
es whi
h have spe
i�
 a�nity towards one of the �uid 
omponents, Casimir-like density �u
tuations in the liquid give rise to an e�e
tive for
e [29℄. Origin ofthe for
e is entropi
 in nature; in that, the free energy of the system is in
reaseddue to restri
ition imposed on �u
tuations by the boundaries, thereby system tendsto minimize the separation in order to redu
e the free energy 
ost. We investigate4
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tionhydrophobi
 for
e to be a manifestation of Casimir-like for
e due to density andorientational �u
tuations in liquid water [Chapter 6℄. The Casimir-like behaviorand the modi�ed orientational �u
tuations near hydrophobi
 surfa
es 
olle
tivelygive rise to a hydrophobi
 intera
tion a
ting over large distan
es and 
onsistentwith SFA experiments. The analysis is 
arried out for arbitrary �uid 
onditionsand for generi
 surfa
e types. We also dedu
e transverse density pro�le for waterin 
on�nement dire
tion. The density pro�le shows a 
hara
tersti
 rise near theinterfa
es, 
on
omitant with simulation studies on 
on�ned water and rea
hes thebulk density value within a hydrogen bond length. For both mesos
opi
 surfa
esand ma
ros
opi
 surfa
es, hydrophobi
 intera
tion is seen to be largely in�uen
edby orientational 
orrelations in water. In the 
on
luding 
hapter, important resultsfrom our model studies are summarized [Chapter 7℄.

5



Part ICorrelations in bulk water andhydrophobi
 for
e betweenmesos
opi
 surfa
es
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2Correlations in bulk water : A mole
ulardynami
s study
The e�e
tive intera
tion potentials designed for numeri
al simulations of water[13, 30℄ provide su

essful instan
es of impli
itly envisaging hydrogen bondingintera
tion 
onsistent with its most essential features i.e., orientation-dependentattra
tion and spe
i�
 nature of bonding between two water mole
ules. Here,a water mole
ule is modeled as a polar mole
ule with 
harges 
orresponding totwo hydrogens and two lone-pair of ele
trons pla
ed at verti
es of a tetrahedron,as shown in Fig.(2.1). We de�ne position ve
tors ~H1,2 and ~L1,2 
orrespondingto hydrogens and lone-pairs, respe
tively, with respe
t to the position of oxygen
O. Angles between the ve
tors and their lengths �u
tuate about respe
tive meanvalues. A water mole
ule's orientations 
an be 
onveniently des
ribed with a 
hoi
eof ve
tors de�ned as

~d1(2)(r) =
~H1 + ~H2

| ~H1 + ~H2|
− (+)

~L1 + ~L2

| ~L1 + ~L2|
(2.1)where r is the position of oxygen atom in the bulk. The 
hoi
e of ~d1(r) and ~d2(r)is su
h that they do not depend upon bond lengths of the mole
ule; they aresymmetri
 under ex
hange of hydrogen or lone-pair positions of the mole
ule. The
orresponding unit ve
tors d̂1(r), d̂2(r) and d̂3 ≡ d̂1×d̂2 form an orthonormal set. Aset of three orthonormal unit ve
tors are su�
ient to de�ne any dire
tion in threedimensional spa
e. Here, d̂1(r) is dominantly along the dire
tion of dipole �eldand d̂2(r) exists only if the water mole
ule di�ers from its mean near-tetrahedral7
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Figure 2.1: Geometry of a water mole
ule envisaged in TIP5P, TIP3P models.geometry i.e., it is proportional to the quadrupole moment of the mole
ule.The d̂-ve
tors [Eq.(2.1)℄ form a 
omplete triad with whi
h orientation of anyve
tor ( ~H1,2 or ~L1,2) 
an be spe
i�ed. Consequently, dynami
s of water 
an beunderstood to be an intera
ting system of the d̂-ve
tor �elds. In parti
ular mole
-ular dynami
s (MD) simulation of water mole
ules impli
itly gives us the dy-nami
s of these �elds. Various statisti
al 
orrelations involving d̂1(r), d̂2(r) and
ρ(r) ≡ (d̂1(r))

2 = (d̂2(r))
2 in the liquid phase of water 
an be formulated as

〈ρ(r1)ρ(r2)〉 = g(r1, r2) (2.2a)
〈

ρ(r1)d̂a(r2)
〉

=
r

r
fa(r1, r2) (2.2b)

〈

dia(r1)d
j
b(r2)

〉

=
1

2

(

δij − rirj

r2

)

tab(r1, r2)−
1

2

(

δij − 3
rirj

r2

)

lab(r1, r2) (2.2
)where r = (r1 − r2), r = |r|, subs
ripts a, b = 1, 2, 3 denote either of d̂1, d̂2, d̂3 andve
tor indi
es i, j = 1, 2, 3 denote dire
tions in three-dimensional spa
e. g(r1, r2) isdensity 
orrelation fun
tion, here, of oxygen. The remaining fun
tions 
apture the
orrelations among other degrees of freedom of the ve
tor �elds. The translationaland rotational symmetry of the system enable de
omposing the tensorial propertiesof these 
orrelations expli
itly and thus analyze the data in terms of simple s
alar8
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Figure 2.2: TIP5P - g(r). Oxygen-oxygen radial distribution fun
tion. (inset)additional hydration shells in the end-hydration region.fun
tions like g(0, r), fa(0, r), tab(0, r), lab(0, r) here after denoted and de�ned asbelow.
g(r) = 〈ρ(0) ρ(r)〉 (2.3a)
fa(r) =

〈

ρ(0) d̂a(r) · r̂
〉 (2.3b)

tab(r) =
〈

d̂a(0) · d̂b(r)
〉 (2.3
)

lab(r) =
〈

d̂a · r̂ d̂b · r̂
〉 (2.3d)TIP5P model [31℄ possesses all orientational degrees of freedom of a watermole
ule and has improved a

ura
y in predi
ting the stru
tural properties of waterat ambient 
onditions [Fig.(2.1)℄. A large system size is 
hosen to a

omodate large
orrelation lengths and fa
ilitate better statisti
s (see Methods se
tion 2.3). MDsimulations of TIP5P water model are performed in a large 
ubi
 box of side 150Å at ambient 
onditions i.e., ρ = 1 g 
m−3, P = 1 atm, T = 300K.2.1 ResultsThe fun
tion g(r), s
aled with respe
t to ideal �uid stru
ture at the same density, is
alled radial distribution fun
tion. It is the most 
onventionally studied 
orrelation9
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f1

r (Å)Figure 2.3: TIP5P - f1(r). Oxygen-dipole 
orrelation fun
tion vanishes beyond 14Åfun
tion in �uid systems, both in experiments and theory [14℄. As a 
onsequen
e of�nite size of a mole
ule, hydration peaks and troughs appear beyond hard-sphereradius (∼ 2.5 Å). In our study, due to large system size and hen
e better statisti
s,few more prominent troughs are observed at about r = 8.0 Å and r = 10.0 Å[Fig.(2.2)℄. The hydration stru
ture visibly vanishes for distan
es beyond 12 Åwithout displaying any long-distan
e behavior.
f1(r) is 
orrelation between oxygen atom and 
omponent of vi
inal dipole alongthe radial ve
tor separating them. This fun
tion also exhibits hydration stru
tureand vanishes beyond 14 Å [Fig.(2.3)℄.The orientational 
orrelations of dipolar �eld are analyzed in terms of trans-verse tra
e part t11(r) and longitudinal tra
eless part l11(r). The longitudinalpart measures the 
orrelation between 
omponents of two dipoles along the radialve
tor separating them and transverse part 
aptures the rest. t11(r) 
orrelationsolely 
ontributes to Kirkwood diele
tri
 fun
tion [32℄. It shows os
illatory hydra-tion stru
ture, but vanishes (in 
omplian
e with rotational symmetry in the fullsystem) beyond 14 Å, as shown in Fig.(2.4).The longitudinal part l11(r) is plotted in Fig.(2.5). It is seen to be alwayspositive and furthermore, in the 14− 75 Å regime it 
an be �tted to an Ornstein-

10
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Figure 2.4: TIP5P - t11(r) : Transverse part of dipolar orientational 
orrelation.(inset) The 
orrelation vanishes beyond the hydration region of 14 ÅZernike (OZ) form as given below.
l11(r) = 0.39(2)

exp(−r/5.2(1)Å)
r

+ 0.027(1)
exp(−r/24(1)Å)

r
r > 14Å (2.4)

l11(r) shows longest 
orrelation length of 24 Å. Furthermore, it exhibits hydra-tion peaks upto 14 Å [Fig.(2.5)℄. The error bars are mentioned as explained inthe following illustration. Eg. The pre
ise strength of the �rst exponential is
0.397541 ± 0.02168 and it is written here as 0.39(2) whi
h expresses the meanvalue and in bra
ket, the error in the last signi�
ant digit. The statisti
al sam-pling errors are dramati
ally redu
ed for large distan
es, as expe
ted [Appendix(2.4.1)℄.The orientational 
orrelations have not been measured or inferred in experi-ments. To as
ertain the generality of the long-range 
orrelation we also simulatedTIP3P model of water whi
h, by design, has d̂1 degree of freedom only [33℄. Thatis, ea
h water mole
ule's orientation 
an be 
ompletely des
ribed by d̂1 �eld alone[Fig.(2.1)℄. The simulations of TIP3P model are also performed with a large systemsize and at ambient 
onditions [see Methods se
tion (2.3)℄.Analysis in the 
ase of TIP3P model also shows that l11(r) 
orrelation followsthe same asymptoti
 behavior as des
ribed by Eq.(2.4). All other 
orrelations g(r),
f1(r), t11(r) vanish beyond 12 Å and display no long-distan
e behavior. 11
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Figure 2.5: Exponential de
ay in longitudinal part of dipolar orientational 
orrela-tion l11(r) outside the hydration region. (red and green, bottom 
urve) TIP5P dataand �t fun
tion given by Eq.(2.4) on top of ea
h other. (blue, middle 
urve) TIP3Pdata for l11(r). (pink, top 
urve) TIP3P with trun
ated Coulombi
 intera
tions.For 
larity, the middle and the top plots are shifted up by 0.001 and 0.002 unitsrespe
tively. (inset) l11(r) inside the hydration region within TIP5P model.A water mole
ule in liquid phase is predominantly in�uen
ed by hydrogen bond-ing and furthermore, it has a net dipole moment whi
h intera
ts through Coloumbfor
e. In the e�e
tive 
harge models, Coulomb intera
tions are suitably parameter-ized to envisage both short-range hydrogen bonding and long-range dipolar inter-a
tions. To as
ertain the 
ause for the long-distan
e behavior of l11(r), we trun
atethe Coulomb intera
tion potential smoothly in TIP3P model simulations and ef-fe
tively retain short-range intera
tion that imitates hydrogen bonding [Appendix(2.4.1)℄. The hydration peaks in 
orrelation fun
tions are determined 
onsistentwith the hydrogen bonding intera
tion. Sin
e the peaks extend upto about 12Å we 
hoose the same distan
e 
ut-o� in implementing the trun
ation pro
edure.The simulations with trun
ated-Coulomb potential are performed under ambientthermodynami
 
onditions. There is no noti
eable variation in the density of thenew model system 
ompared to full-Coulomb 
ase. Our analysis shows that l11(r)remains essentially un
hanged in the regions of �rst few hydration shells and for
r > 30 Å. This indi
ates that hydrogen-bond intera
tions are responsible for12



Chapter 2. Correlations in bulk water : A mole
ular dynami
s studythe long-distan
e behavior of orientational 
orrelations. The intermediate regionexhibits over-stru
turing e�e
ts upto 30 Å [34℄.It is also found that all 
orrelations involving d̂2, d̂3 ve
tors in TIP5P modelvanish upto statisti
al errors beyond the �rst hydration peak itself [Figs.(2.6)-(2.10)℄. Therefore, d̂2, the quadrupole moment of the water mole
ule, �u
tuateslo
ally and randomly without any non-lo
al 
orrelations. d̂3 being a pseudove
torhas vanishing 
orrelations with d̂1 and d̂2, demonstrating that there is no parityviolation in the system.
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Figure 2.6: TIP5P - l22, (inset)t22. Longitudinal and transverse parts of the 
or-relation < d̂2 d̂2 >, vanishing upto statisti
al errors beyond the �rst hydrationpeak2.2 Dis
ussionThe three 
ase studies are in agreement with Eq.(2.4) asymptoti
ally. These ob-servations suggest that (i) the orientational �u
tuations in liquid water are domi-nantly those of dipole degree of freedom; in 
ontrast, the quadrupole has no e�e
tbeyond the �rst hydration peak, (ii) in liquid phase these orientational �u
tua-tions are in�uen
ed by lo
al environment of respe
tive mole
ule through hydrogenbonding, signi�
antly more 
ompared to long-range ele
trostati
 intera
tions, (iii)furthermore, the orientational �u
tuations exhibit long-distan
e 
orrelations.
g(r) is the 
onventionally studied 
orrelation fun
tion in water. It displays13
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 Figure 2.7: TIP5P - l21, (inset)t21. Longitudinal and transverse parts of the 
or-relation < d̂2 d̂1 >, vanishing upto statisti
al errors beyond the �rst hydrationpeakonly hydration peaks and exhibits no long-distan
e behavior. Re
ent small-anglex-ray s
attering experiments indi
ate that g(r) has a 
orrelation length of about
3 Å (300 K) [35℄ in 
orroboration with an earlier small-angle neutron-s
atteringexperiment [36℄. The origin of this length is spe
ulated to be due to presen
e ofhydrogen-bonded stru
tures of two di�erent densities 
oexisting in liquid water[35℄. This e�e
t is absent in TIP5P and TIP3P models. In MD simulations usingspheri
ally symmetri
 models of water [12, 37℄ the only interesting 
orrelation is
g(r), whi
h exhibits no signi�
ant long-distan
e behavior. These fa
ts supportour view that any long-range 
orrelation in water 
an only be due to orientationaldegree of freedom.2.3 Simulation methodsThe simulations of TIP5P water system are performed with groma
s pa
kage(version 3.3.1) [38℄. In the 
ourse of simulations an integration time step of 2 fsis used. The fast-moving bonds O −H are 
onstrained using lin
s algorithm. Alarge system 
onsisting of 110592 mole
ules in a 150 Å box is equilibrated for 2ns in 
onstant pressure and temperature NPT ensemble. A 
onstant pressure ismaintained isotropi
ally for the system. In order to 
ompute van der Waals inter-14
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 Figure 2.8: TIP5P - l31, (inset)t31. Longitudinal and transverse parts of the 
or-relation < d̂3 d̂1 >, vanishing upto statisti
al errors beyond the �rst hydrationpeaka
tion a 
ut-o� distan
e of 12 Å is used i.e., the potential is smoothly trun
ated at
12 Å away from the mole
ule in question. The smooth trun
ation allows 
onserva-tion of energy as against abrupt trun
ation s
hemes. The long-ranged ele
trostati
intera
tion is handled by in
orporation of multiple time-stepping pro
edure. Toredu
e the 
omputational 
ost of handling non-bonded intera
tions, a non-bondedpair-list is 
reated whi
h 
ontains all pairs of atoms for whi
h non-bonded intera
-tions should be 
al
ulated. This list is updated periodi
ally during the dynami
s.The pair-list distan
e is 
hosen to be greater than 
ut-o� distan
e to ensure atomsmoving in and out of 
ut-o� distan
es within the period of updation are also in-
luded for 
al
ulation of non-bonded intera
tions. A pair-list distan
e of 15 Å isused in our simulation. Periodi
 boundary 
onditions are imposed in all dire
tions.Full ele
trostati
 intera
tions are 
omputed with parti
le mesh Ewald method witha toleran
e of 10−6 and updated every two time steps [39℄. The initial equilibria-tion run is 
arried out at 1 atm pressure and 300K temperature. The equilibratedvolume is noted and at this average volume a produ
tion run is 
arried out for 2ns in a 
onstant volume NV T ensemble. During the produ
tion run, the atomi

oordinates of all mole
ules in the system are saved every 100 ps for analysis.The simulations on TIP3P water system are performed using namd pa
kage(version 2.6) [40℄. Here, 33105 water mole
ules are simulated in a 
ubi
al box of size15
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Figure 2.9: TIP5P - l32, (inset)t32. Longitudinal and transverse parts of the 
or-relation < d̂3 d̂2 >, vanishing upto statisti
al errors beyond the �rst hydrationpeak
100 Å and the pro
edures employed for 
olle
ting equilibriated 
on�gurations aresame as those des
ribed in 
ase of TIP5P. The 
onstrained model is implementedusing settle algorithm. A 
ut-o� distan
e of 12 Å and a pair-list distan
e of 15Å are used. Simulations are 
arried out under periodi
 boundary 
onditions atambient 
onditions.The TIP3P model with trun
ated Coulomb potential is simulated using thesame pro
edure as des
ribed above in namd pa
kage. A smooth potential trun
a-tion s
heme is employed to ensure 
onservation of energy and 
harge in the system.2.4 Appendix2.4.1 Fit fun
tions for l11(r)For 
ompleteness various �tting fun
tional forms are envisaged for l11(r) data ob-tained from both TIP5P and TIP3P model simulations. The fun
tions and their
orresponding root mean square deviations (RMSDs) are summarized in Table(2.1).Among the exponentials, the bi-exponential OZ fun
tion has at least a fa
torof two better RMSD than other 
ombinations. A single power-law also seems to �t16
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Figure 2.10: TIP5P - l33, (inset)t33. Longitudinal and transverse parts of the
orrelation < d̂3 d̂3 >, vanishing upto statisti
al errors beyond the �rst hydrationpeakthe data very well in this limited distan
e range upto 75 Å. From numeri
s pointof view the power-law behavior 
annot be stri
tly ruled out. If the r−n behavioris extrapolated asymptoti
ally for large distan
es, it amounts to the fa
t that thesystem is exhibiting 
riti
al behavior. In MD simulations, we did not see any
on
omitant signatures of 
riti
al behavior at all. Furthermore, liquid water is
ertainly not 
riti
al at ambient 
onditions. Therefore, we dis
ard the power-lawextrapolation and 
on
lude that the bi-exponential OZ �t fun
tion is the 
orre
textrapolation.There are analyti
 theories for dipolar �uids whi
h argue that the dipolar 
orre-lations behave like r−3 asymptoti
ally due to long-range nature of Coulomb intera
-tions [14, 41℄. We noti
e from Fig.(2.5) that the trun
ation of Coulomb intera
tionhas null e�e
t on the asymptoti
 behavior of dipolar 
orrelation. Also, the 
or-relation is seen to respond to variation in temperature [Table (2.2)℄. Hen
e, thearguments attributing long-distan
e dipolar 
orrelations to Coulomb intera
tionsare not justi�ed.
17
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Model Fit fun
tion RMSDTIP5P 0.39(2)

exp(−r/5.2(1))
r + 0.027(1)

exp(−r/24(1))
r 2.54462e− 05TIP3P 0.34(2)

exp(−r/5.4(2))
r + 0.029(3)

exp(−r/24(1))
r 2.54122e− 05TIP5P 0.152(2)

exp(−r/10.36(9))
r 5.33897e− 05TIP3P 0.151(2)

exp(−r/10.5(1))
r 5.80041e− 05TIP5P 0.0220(4) exp(−r/6.71(5)) 6.72991e− 05TIP3P 0.0217(5) exp(−r/6.85(6)) 7.78593e− 05TIP5P 8.0(1) r−2.990(8) 2.5292e− 05TIP3P 7.2(1) r−2.940(8) 2.5860e− 05Table 2.1: Numeri
al �tting of l11(r) obtained from simulations of TIP5P andTIP3P data. The error bars quoted are as per the following illustration : Eg.

0.397541 ± 0.02168 is written as 0.39(2) whi
h expresses the mean value and itsleading signi�
ant deviation.
18
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T (P=1 atm) Fit fun
tion RMSD
280K

0.42(3)
exp(−r/5.0(2))

r + 0.031(3)
exp(−r/24(1))

r

6.9(1) r−2.90(1)

9.00(1) r−3

3.3018e− 05

3.4272e− 05

3.8138e− 05

300K

0.34(2)
exp(−r/5.4(2))

r + 0.029(3)
exp(−r/24(1))

r

7.2(1) r−2.940(8)

8.58(1) r−3

2.5412e− 05

2.5870e− 05

2.7774e− 05

350K

0.31(2)
exp(−r/5.6(3))

r + 0.023(3)
exp(−r/27(3))

r

6.3(2) r−2.92(1)

7.93(1) r−3

3.3624e− 05

3.4253e− 05

3.6437e− 05Table 2.2: l11(r) in TIP3P : Temperature dependen
e and 
orresponding variationin �t fun
tion parameters.
19



3Hydrophobi
 for
e between mesos
opi
surfa
es
Hydrophobi
 for
e measured in SFA experiments is seen to be in�uential at largedistan
es upto about 200 Å. Between stable hydrophobi
 surfa
es the for
e is in-ferred to be exponentially de
aying with a 
orrelation length of 12 Å [5, 7℄. We mayenvisage the situation in a simulation study. The a

ompanying free energy 
hangeat large separation distan
es 
ould be small and reliable free energy 
omputations
hemes are ne
essary in order to 
ompute the intera
tion to required pre
ision insimulations. Alternatively, a quantitative theoreti
 study is 
onsidered below. Weenvisage small hydrophobi
 surfa
es present inside aqueous medium. In the limit ofsmall surfa
e sizes the hydrogen-bond network in water medium is not disruptedsigni�
antly. Hen
e, we utilize the 
orrelation fun
tions of bulk liquid water inorder to dedu
e hydrophobi
 intera
tion free energy between mesos
opi
 surfa
es.Our analysis impli
ates the long-distan
e orientational 
orrelations responsible forthe long-range nature of hydrophobi
 for
e [42℄.Hydrophobi
 surfa
es 
annot form hydrogen-bonds with water. Consequently,water mole
ules in the vi
inity of a hydrophobe rearrange themselves su
h thatthey form a sheet of hydrogen-bond network on the surfa
e. Their intera
tionsare su
h that the dire
tions of lone pairs and hydrogen atoms are perpendi
ularto the surfa
e normal of the hydrophobe. Owing to the approximate tetrahedral
onformation, water mole
ules 
annot have a unique 
on�guration satisfying theabove 
riterion [43℄. Consequently, they explore other possible orientations aswell by �u
tuating at pi
o-se
ond time s
ales [44℄. These network �u
tuations20
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S1

S2

R

n1
^

2
n̂

Figure 3.1: S1, S2 are hydrophobi
 surfa
es with their lo
al normal ve
tors n̂1, n̂2.
R is the minimum distan
e between the two surfa
es
ontribute signi�
antly to the solvation free energy of the hydrophobe. Intera
tionbetween a hydrophobi
 surfa
e and orientation of a vi
inal water mole
ule 
an bewritten in terms of n̂(r), the lo
al unit normal ve
tor to the hard
ore van der Waalssurfa
e of the hydrophobe and d̂1(r

′

), the dipole of water mole
ule near the surfa
e,where r′

= r+ δr; δr is typi
al length of hydrogen arm of water mole
ule (about 1Å). A simple lo
al intera
tion term 
an be taken as (n̂(r)·d̂1(r′

))2 implying that thewater dipoles orient orthogonal to the surfa
e normal as seen in simulations [45℄(importantly, no linear term in (n̂ · d̂1), for that means a preferential orientationof the water dipole inward/outward to the surfa
e).The free energy 
hange ∆G due to two small hydrophobi
 surfa
es S1 and S2[Fig.(3.1)℄ in water 
an be estimated by
exp(−∆G/kT ) = 〈exp(−∆H/kT )〉 (3.1)where ∆H =

γ1
2

∫

S1

dn̂1

(

n̂1(r1) · d̂1(r
′

1)
)2

+
γ2
2

∫

S2

dn̂2

(

n̂2(r2) · d̂1(r
′

2)
)2

γ is a measure of strength of intera
tion between hydrophobi
 solute and waterand it 
an depend upon temperature, density and other parameters de�ning thethermodynami
 system. The bra
kets < ... > refer to statisti
al averaging withrespe
t to pure water system and integration is over area of ea
h surfa
e. R is ave
tor along minimum distan
e of separation between them.When the distan
e R (= |R|) is large 
ompared to radius of 
urvature of ea
hsurfa
e and the surfa
e areas are su�
iently small, the statisti
al averaging 
an bedone by 
umulant expansion [Appendix (3.2.1)℄. The leading term that depends21



Chapter 3. Hydrophobi
 for
e between mesos
opi
 surfa
eson distan
e R is expli
itly given below.
exp(−∆G/kT ) = exp

[

γ1 〈. . .〉+ γ2 〈. . .〉+
γ1γ2

4(kT )2

∫

S1

∫

S2

dn̂1 dn̂2

×
〈

(n̂1(r1) · d̂1(r
′

1))
2 (n̂2(r2) · d̂1(r

′

2))
2
〉

+ . . .
] (3.2)In the above equation, terms proportional to γ1, γ2 (or their higher orders) only
ontribute to interfa
ial free energy for respe
tive hydrophobe-water interfa
e. Theterm proportional to (γ1γ2) 
ontributes to the intera
tion free energy. The abovefree energy 
hange is a 
onsequen
e of surfa
e-water intera
tions. The full solvationfree energy in addition 
omprises hydration free energy of ea
h solute proportionalto solute's volume, whi
h 
an be dedu
ed in the in�nite dilution limit [17, 46℄.Other forms of short range surfa
e-water intera
tion su
h as van der Waal inter-a
tion may also be envisaged [18℄. They do not, however, a�e
t the long-distan
ebehavior of hydrophobi
 intera
tion dis
ussed below.The intera
tion term in Eq.(3.2) is analyzed [Appendix (3.2.1)℄ and the leadingexpression for for
e F (R) = −∂∆G/∂R is given by the following expression.

F (R) =
γ1γ2
2kT

A1A2
∂

∂R
Tr [ΣS1

E(R)ΣS2
E(R)] (3.3)where A1, A2 are areas of the surfa
es. E is a matrix whose elements denote
orrelation between 
omponents of interfa
ial dipoles. ΣS is a geometri
 fa
tor
hara
tersti
 of shape of the surfa
e. The elements of E, ΣS matri
es are given by

Eij(R) ≡
〈

d1
i(r

′

1) d1
j(r

′

2)
〉

≃ −1

2

(

δij − 3
RiRj

R2

)

l11(R) for large R (3.4)
(ΣS)

ij ≡ 1

A

∫

S

dn̂ ninj (3.5)where, the integration in Eq.(3.5) is over the dire
tion of surfa
e normal over theextent of surfa
e area.The above result on hydrophobi
 for
e is very general in nature. As dis
ussedin earlier paragraphs, the leading order (n̂ · d̂1)2 is taken to be the intera
tionenergy term for simpli
ity. By in
luding the non-leading terms in the intera
tionenergy fun
tion [Eq.(3.1)℄ and doing the 
umulant expansion, it 
an be shown thatthe for
e equation for large R [Eq.(3.3)℄ remains un
hanged, thus establishing the22



Chapter 3. Hydrophobi
 for
e between mesos
opi
 surfa
esgenerality of the result.These 
onsiderations are valid for distan
es beyond the solvation region of a typ-i
al water mole
ule. The 
umulant expansion allowed de
omposing the for
e equa-tion as a simple 
onvolution of surfa
e-dependent part and solvent-dependent part.Equation (3.3) enables us to 
on
lude that range of the for
e between hydrophobi
surfa
es at large distan
es is always attra
tive governed by l211(R) ∝ exp(−R/12)for large R. Therefore, the hydrophobi
 for
e falls o� exponentially with a largest
orrelation length of about 12 Å [see Appendix (3.2.1)℄, in addition to several othershorter range exponents as well.
F (R) ∝ (−) exp(−R/12Å) for large R (3.6)The strength of attra
tion is proportional to area and shape of ea
h surfa
egiven by the tensor Σ, the se
ond moment of surfa
e normal. The �nal tra
eoperation over the matri
es E(R) and ΣS implies that the hydrophobi
 attra
tionis not just a purely distan
e-dependent intera
tion su
h as van der Waals'. Indeedthe orientation of the surfa
es relative to ea
h other 
an modify the magnitude ofthe for
e signi�
antly. As an example if two small planar hydrophobi
 surfa
es aremutually perpendi
ular and are su�
iently far apart, the magnitude of the for
eis zero. In 
ontrast, the for
e is maximum when they are parallel to ea
h other[see Appendix (3.2.2)℄.3.1 Dis
ussionA simple-minded theoreti
al estimate of the for
e between mesos
opi
 hydrophobi
surfa
es done here suggests that the surfa
es experien
e a long-range for
e albeitthe strength is not large and in addition, the proposed for
e depends on shapeand relative orientations of the surfa
es. The long-range nature of the for
e is a
onsequen
e of orientational 
orrelations in water. The exponential de
ay impliedin Eq.(3.6) bears a striking 
onsisten
y with that seen in experiments measuringhydrophobi
 for
e [5, 7℄.For the 
ase of large hydrophobi
 surfa
es, 
orrelations in water 
on�ned be-tween the surfa
es need to be as
ertained. To simulate su
h a system the surfa
esneed to be several times larger than the longest 
orrelation length in the system in23
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 for
e between mesos
opi
 surfa
esorder to obtain proper equilibriation. This requires huge system size that wouldrender the simulation prohibitively resour
e intensive. In addition, the a

ompa-nying free energy 
hange 
ould be very small due to weak nature of 
orrelations atlarge distan
es. Instead, we take analyti
 route to des
ribe hydrogen-bond �u
tu-ations in water and the e�e
t of spatial 
on�nement on them. This study formsthe se
ond part of the thesis.3.2 Appendix3.2.1 Derivation of for
e equationIn this se
tion we provide a brief des
ription of intermediate steps in the dedu
-tion of the for
e equation. The te
hnique under 
onsideration is 
umulant expan-sion used to perform statisti
al averaging in an approximate manner [47℄. FromEq.(3.1),
exp(−∆G/kT ) =

〈

1− γ1
2kT

∫

S1

dn̂1(n̂1(r1) · d̂1(r
′

1))
2 + γ1

2(. . .)

− γ2
2kT

∫

S2

dn̂2(n̂2(r2) · d̂1(r
′

2))
2 + γ2

2(. . .)

+
γ1γ2

4(kT )2

∫

S1

∫

S2

dn̂1 dn̂2(n̂1(r1) · d̂1(r
′

1))
2 (n̂2(r2) · d̂1(r

′

2))
2 + . . .

〉

= exp

[

γ1 〈. . .〉+ γ2 〈. . .〉+
γ1γ2

4(kT )2

∫

S1

∫

S2

dn̂1 dn̂2

×
〈

(n̂1(r1) · d̂1(r
′

1))
2 (n̂2(r2) · d̂1(r

′

2))
2
〉

+ . . .
] (3.7)For
e between the surfa
es is given by F (R) = −∂∆G/∂R. Only the terms pro-portional to (γ1γ2) (or its higher order) depend on distan
e R and 
ontribute tothe for
e. In the above equation we retained only the leading order for
e term.Employing the notation that any repeated index is summed over, the for
e termin Eq.(3.7) 
an be analyzed as below.

(n̂1 · d̂1)2 ≡ n1
id1

i n1
jd1

j

(n̂2 · d̂1)2 ≡ n2
kd1

k n2
pd1

p 24
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〈

(n̂1(r1) · d̂1(r
′

1)
2 (n̂2(r2) · d̂1(r

′

2))
2
〉

=
〈

n1
id1

i(r
′

1)n1
jd1

j(r
′

1) n2
kd1

k(r
′

2)n2
pd1

p(r
′

2)
〉

= n1
in1

jn2
kn2

p
〈

d1
i(r

′

1)d1
j(r

′

1) d1
k(r

′

2)d1
p(r

′

2)
〉

= n1
in1

jn2
kn2

p
[

2
〈

d1
i(r

′

1)d1
k(r

′

2)
〉〈

d1
p(r

′

2)d1
j(r

′

1)
〉

+
{〈

d1
i(r

′

1)d1
j(r

′

1) d1
k(r

′

2)d1
p(r

′

2)
〉

− 2
〈

d1
i(r

′

1)d1
k(r

′

2)
〉〈

d1
p(r

′

2)d1
j(r

′

1)
〉}

](3.8)where i,j,k,p are ve
tor indi
es. The last step is tautologi
al as we added and sub-tra
ted an important term in the expression. Furthermore, it 
an be shown thatin a system where asymptoti
 behavior of 
orrelation 〈d1i(r′

1)d1
k(r

′

2)
〉 is exponen-tially falling-o�, the last term denoted by {. . .} in Eq.(3.8) falls-o� exponentiallyeven faster than the �rst term and therefore, it 
an be negle
ted in the asymptoti
region (i.e., for large R). The ve
tor indi
es in the remaining expression implymatrix multipli
ation and a tra
e operation over the produ
t of matri
es 
omingfrom j index summation. This should be 
lear if we de�ne the matri
es

Eij(R) =
〈

d1
i(r

′

1) d1
j(r

′

2)
〉 (3.9)

(ΣS)
ij =

1

A

∫

S

dn̂ ninj (3.10)where i,j are generi
 ve
tor indi
es and R is the minimum distan
e of separation.Now the for
e expression takes the form
F (R) =

γ1γ2
2kT

A1A2
∂

∂R
Tr [ΣS1

E(R)ΣS2
E(R)] (3.11)where Tr[. . .] means tra
e over the produ
t of matri
es. The subs
ripts S1 and

S2 refer to respe
tive surfa
es and Σ matrix de�nes the se
ond moment of surfa
enormal for the respe
tive surfa
e.Now, the dipolar 
orrelations from Eq.(2.2) are given as
Eij(r) =

1

2

(

δij − rirj

r2

)

t11(r) − 1

2

(

δij − 3
rirj

r2

)

l11(r)
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θ
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^

−
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n̂

Figure 3.2: A segment of spheri
al surfa
e (boldened). n̂ is lo
al normal ve
tor,and θ̄ is the se
tor angle for the segment. N̂ is the dipole ve
tor of the segment,obtained after integrating n̂ over the extent of segment area.Our analysis from the simulation of bulk liquid water shows that, at large R, onlythe longitudinal part of the dipolar 
orrelation survives [Eq.(2.4)℄, i.e.,
Eij(R) ≃ (−)

1

2

(

δij − 3
RiRj

R2

)

l11(R)where l11(R) = 0.39
e−R/5.2

R
+ 0.027

e−R/24

R
R > 14ÅHen
e, the for
e equation [Eq.(3.11)℄ will take the form

F (R) ∝ ∂

∂R
Tr[. . .] l211(R)

∝ (−) Tr[. . .]× 1

R2
exp(−R/12Å) (3.12)where only the long-range exponential's 
ontribution is emphasized, sin
e analysisis for large R.3.2.2 Surfa
e fa
tor ΣSThe Σmatrix is a geometri
 fa
tor related to se
ond moment of the surfa
e normal.It is de�ned as

(ΣS)
ij ≡ 1

A

∫

S

dn̂ ninj (3.13)where n̂(r) is the lo
al normal ve
tor at the point r on the surfa
e; i,j are anytwo ve
tor 
omponents of n̂. For a segment of spheri
al surfa
e, as illustrated in26
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esFig.(3.2),
n̂ : (sin θ cosφ, sin θ sinφ, cos θ); (3.14)
AS =

∫

S

dn̂ =

∫ θ̄

0

dθ sin θ

∫ 2π

0

dφ = 2π(1− cos θ̄) (3.15)The integral ∫ ninj 
an be 
arried out in a similar manner over various pairs of
n̂ ve
tor 
omponents. The Σ matrix 
an be �nally expressed in terms of �rstmoment of the surfa
e as

(ΣS)
ij =

1

A

∫

S

dn̂ ninj

=
1

3
δij − 1

6
cos θ̄(1 + cos θ̄)(δij − 3N iN j) (3.16)where N i =

M i

|M | , M i =
1

A

∫

S

dn̂ niFor a spheri
al surfa
e, θ̄ = π. Hen
e (ΣS)
ij = 1

3
δij . For a planar surfa
e, θ̄ = 0.Hen
e (ΣS)

ij = N iN j . The dire
tion of N̂ is 
hosen only with respe
t to the sideof surfa
e under 
onsideration.We show below that the strength of the for
e depends on the relative orienta-tions of the surfa
es with respe
t to ea
h other. We 
onsider two planar surfa
esseparated by large distan
e. For the surfa
e S1, (ΣS1
)ij = N i

1N
j
1 and similarlyfor S2, (ΣS2

)kl = Nk
2N

l
2 where i, j, k, l are dummy ve
tor indi
es in 
oordinatespa
e. For large R, Eij(R) ≃ −1

2

(

δij − 3R
iRj

R2

)

l11(R) where i, j are dummyve
tor indi
es. So, the part of for
e expression involving 
onvolution of ΣS and Ematri
es reads as
F ∝ (−) Tr [N i

1N
j
1

(

δjk − 3
RjRk

R2

)

Nk
2N

l
2

(

δli − 3
RlRi

R2

)]

exp(−R/12)

R2

∝ (−)
[

N̂1 · N̂2 − 3
(

N̂1 · R̂
)(

N̂2 · R̂
)]2 exp(−R/12)

R2 (3.17)For surfa
es parallel to ea
h other, N̂1 · N̂2 = N̂1 · R̂ = N̂2 · R̂ = 1. Hen
e,
F ∝ (−)e

−R/12

R2 . For surfa
es perpendi
ular to ea
h other, N̂1 · N̂2 = 0 and either
N̂1 ·R̂ = 0 or N̂2 ·R̂ = 0 depending on orientation of respe
tive surfa
e with respe
tto the radial ve
tor. Hen
e, F = 0. 27
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4Mole
ular mean �eld theory for water
We address the hydrophobi
 for
e between large surfa
es in a model theoreti
 study.This forms se
ond part of the thesis. We �rst develop a theoreti
 des
ription toanalyze hydrogen-bond �u
tuations in model water, 
alled mole
ular mean �eldtheory. The analysis is then extended to in
lude ma
ros
opi
 hydrophobi
 surfa
esas boundaries and thermodynami
 
onsequen
es of 
on�nement are dedu
ed.The 
onstituent parti
les of every �uid have a repulsive hard-
ore of �nite ra-dius due to Pauli ex
lusion prin
iple obeyed by ele
trons. As a 
onsequen
e of�nite size, ea
h parti
le has a maximum 
oordination number. If the parti
le pos-sesses orientation-dependent attra
tive regions in its potential, su
h as hydrogenbonds, sulfur bonds, the parti
les 
an parti
ipate in a �xed number of bonds. Con-sequently, there are related steri
 
onstraints disallowing arbitrary number of 
o-ordinating or bonding partners from approa
hing an already 
oordinated/bondedparti
le. These fa
ts 
an be formulated into sum rule(s) for the system. Den-sity saturation and bond saturation e�e
ts are natural 
onsequen
es of su
h sumrule(s). In 
ase of water, a hydrogen bond o

urs when a hydrogen arm of onemole
ule intera
ts with a lone-pair arm of another mole
ule. The spe
i�
ity ne
es-sitates the density of hydrogen bonds (HB) and density of dangling bonds (DB) i.e.,lone-pair and hydrogen arms whi
h are not hydrogen-bonded, to be 
ommensuratewith mole
ular density (ρ). This 
an be stated as a sum rule, given byDB+ 2 HB = 4ρ (4.1)Now, if we 
onsider a bulk system of water mole
ules the above equation still29



Chapter 4. Mole
ular mean �eld theory for waterholds when DB, HB and ρ are appropriately de�ned per unit volume. In otherwords, the lo
al topology of mole
ular intera
tions implies a sum rule whi
h is alsotrue in the bulk for any thermodynami
 
onditions su
h as temperature, pressure.Furthermore, this is also independent of other intera
tions in the dynami
al systemsu
h as van der Waals' (vdW), Coulombi
 et
. These fa
ts are not surprising sin
eEq.(4.1) is a topologi
al 
onstraint whi
h is insensitive to details of dynami
s.Thermodynami
 properties of solid phase (i
e forms) are governed by periodi
distribution of water mole
ules whi
h also �xes HB. Hen
e, it is su�
ient to envis-age water density �eld alone in the des
ription of solid phase. In low density phases(gas or vapor), the free energy is dominated by kineti
 energy of the mole
ules. Ifhydrogen bonds are present, an appropriate density of bond dimers 
an be intro-du
ed and the thermodynami
 phase behavior 
an be analyzed in a non-intera
tingsystem of monomers and dimers whi
h satisfy the sum rule.Liquid water, however, la
ks the trivial stru
ture of solid or the non-intera
tingnature of gas mole
ules. The hydrogen-bond (formation and breaking) dynami
sin the liquid phase take pla
e at pi
ose
ond times
ales and 
ontribute to entropyof the system. In order to analyze the hydrogen-bond �u
tuations it is essential toenvisage both density and orientational degrees of freedom of ea
h water mole
ule.The �u
tuations of density and orientational �elds (the latter being inherently
onne
ted to HB and DB �u
tuations) are not totally independent; their longwavelength �u
tuations espe
ially are to be 
onsistent with the sum rule.We propose a simple model Hamiltonian for water whi
h in
orporates essentialfeatures of hydrogen bonding intera
tion and analyze the �u
tuations 
onsistentwith the sum rule [48℄. To a

omodate the hard-sphere repulsion we envisage alldensity �elds on a hyper
ubi
 latti
e and the model is essentially a slight general-ization of the Pauling's model for water [49℄. The partition fun
tion 
orrespondingto the latti
e model is analyzed by introdu
ing appropriate dis
rete latti
e �elds.It is shown that the sum rule is automati
ally true in the bulk. Mole
ular mean�eld (MMF) approximation extremizes the partition fun
tional in terms of de�neddual �elds. In addition, all the observables su
h as ρ, HB and DB are fun
tionalsof these dual �elds. One of the mean �eld equation whi
h implies sum rule alsoimpli
ates the equation of network i.e., a relation between equilibrium densitiesHB and ρ. We study the equation of state and various mean �eld �u
tuations interms of dual �eld 
orrelation fun
tions. We also 
onsidered long range Coulomb30



Chapter 4. Mole
ular mean �eld theory for waterintera
tion and studied its 
onsequen
es. Subsequently, an MC simulation studyof the model is pursued and 
ompared with the mean �eld theory quantitatively.We also dis
ussed results of our analysis in the 
ontext of experiments and MDsimulations.4.1 Model for water
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2Figure 4.1: Allowed 
on�gurations : A water site with two hydrogen arms (+)and two lone-pair arms (-) on links around the site, 
onsistent with 
onstraintsEq.(4.2). A hydrogen bond o

urs when a hydrogen arm (+) and a lone-pair arm(-) of two mole
ules meet at a site. (right bottom 
orner) Unit ve
tors on 
ubi
latti
e.On a three-dimensional hyper
ubi
 latti
e, we de�ne the o

upation �eldW (r) =

{0, 1} 
orresponding to water being absent or present respe
tively, at a site r =

(x, y, z). At ea
h o

upied site we de�ne bond arms Hα(r) = {0,±1}, where
α = {±1,±2,±3} denotes the dire
tion around the site. Hα(r) = 0 
orrespondsto no arm on the 
orresponding link, +1 to that of hydrogen arm, and −1 for lonepair arm. The 
onstraints between W (r) and Hα(r) are

∑

α

H2
α(r) = 4W (r) (4.2a)

∑

α

Hα(r) = 0 (4.2b)
31



Chapter 4. Mole
ular mean �eld theory for waterwhi
h imply that every water mole
ule has two hydrogen arms and two lone-pairarms only. A hydrogen bond is realized when two water mole
ules two latti
e unitsapart have one of ea
h's hydrogen and lone-pair arms meet at a site, as shown inFig.(4.1). When two mole
ules are on near neighbor sites they are not allowed tohave any non-zero bond arm on the link between them. The 
onstraint is given by
W (r)

(

∑

α

H2
α(r + eα)

)

= 0 (4.3)We write a general intera
tion Hamiltonian in terms of the Hα �eld as
H =

λ̃

2

∑

r

∑

α,α′

Hα(r − eα)Hα′ (r − eα′ ) (4.4)where, λ̃ is the intera
tion strength and α and α
′ denote dire
tions around a site.There are additional restri
tions on Hα �eld, namely, (i) at any site no more thantwo bond arms meet i.e.,

0 ≤
∑

α

H2
α(r + eα) ≤ 2 (4.5)and (ii) two non-zero bond arms of same type are disallowed from meeting at asite i.e., anti-bonds are disallowed:

−1 ≤
∑

α

Hα(r + eα) ≤ 1 (4.6)The grand 
anoni
al partition fun
tion for the system at a �nite 
hemi
al po-tential µ̃ for water and inverse temperature β is given by
Z =

∏

r

′

∑

W (r), Hα(r)

exp

[

−β
∑

r

(H− µ̃W (r))

] (4.7)where the prime indi
ates that summation over W (r) and Hα(r) has to be 
arriedout in 
omplian
e with Eqs.(4.2), (4.3), (4.5), and (4.6). Evaluating Z amountsto enumerating all possible 
on�gurations that satisfy the above 
onstraints and
al
ulating the exponential in Eq.(4.7) for those 
on�gurations over the allowed32



Chapter 4. Mole
ular mean �eld theory for water
+ +

+
+
 _ 

Figure 4.2: Disallowed 
on�gurations : non-zero bond arms of same type of twomole
ules meeting at a site; more than two non-zero arms meeting at a site.range of W and Hα at �xed values of µ̃, β and V the volume of the system.The restri
tions shown in Fig.(4.2) represented by Eqs.(4.3), (4.5), and (4.6)are at sites where there is no water. To implement them in our analysis it is usefulto de�ne two dis
rete integer �elds b(r), q(r):
b(r) =

∑

α

H2
α(r + eα) (4.8a)

q(r) =
∑

α

Hα(r + eα) (4.8b)The dis
rete �eld b(r) 
ounts the number of non-zero arms in the neighborhood ofsite r, while q(r) measures the net 
harge i.e, the di�eren
e between the number ofhydrogen arms and lone-pair arms meeting at site r. By 
onstru
tion, b(r) variesbetween 0 and 6 on a three dimensional hyper
ubi
 latti
e and q(r) in turn variesbetween −b(r) and b(r). By imposing the 
ondition that b(r) ≤ 2 in our analysis,we ensured that no more than two arms 
an meet at a site. Furthermore, for
b(r) = 2 we demand q(r) = 0 to disallow anti-bond 
on�gurations. In terms ofthese variables, Eqs.(4.3), (4.5), and (4.6) 
an be rewritten as

W (r)b(r) = 0 (4.9)
(b(r), q(r)) = {(0, 0), (1, 1), (1,−1), (2, 0)} (4.10)33



Chapter 4. Mole
ular mean �eld theory for waterThe �elds b(r) and q(r) are restri
ted only to the above set of mutually ex
lusivepairs. We now rewrite the partition fun
tion as
Z =

∏

r

′

∑

W (r), Hα(r)
b(r), q(r)

exp

[

−β
∑

r

(

H− ν̃q2(r)− µ̃W (r)
)

] (4.11)where we have additionally introdu
ed a 
hemi
al potential ν̃ for dangling bond
on�guration i.e., (b, q) = (1,±1). The �elds b and q are to be summed overtheir allowed range [Eq.(4.10)℄ and the prime over the summation indi
ates thatEqs.(4.2), (4.8), and (4.9) a
t as 
onstraints in the evaluation. Note that, sin
eonly hydrogen-bond intera
tion is envisaged in the model, the Hamiltonian H 
anbe rewritten as a simple expression:
H = −λ̃

∑

r

δ(b(r), 2) (4.12)where the Krone
ker delta fun
tion denoted here as δ(p, q) is de�ned as δ(p, q) = 1for p = q and 0 otherwise. All the possible hydrogen-bond 
on�gurations areimplied from solving the non-lo
al 
onstraints Eq.(4.8). These 
onstraints areenfor
ed in the partition fun
tion by introdu
ing dual �elds, as given below:
δ

(

b(r),
∑

α

H2
α(r + eα)

)

=
1

2N + 1

∑

η(r)

exp

[

−i
π

N
η(r)

(

b(r)−
∑

α

H2
α(r + eα)

)](4.13a)
δ

(

q(r),
∑

α

Hα(r + eα)

)

=
1

2N + 1

∑

φ(r)

exp

[

−i
π

N
φ(r)

(

q(r)−
∑

α

Hα(r + eα)

)](4.13b)where η(r) and φ(r) a
t as dual �elds to the density and net 
harge of bond armsin a lo
al neighborhood. The dis
rete η and φ �elds take integer values in therange [−N,N ] at every site, where N is any suitably large integer (greater than
8). The partition fun
tion 
an be rewritten in terms of new variables and dual34
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ular mean �eld theory for water
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Figure 4.3: A set of orientations 
onsistent with Eq.(4.2) and 
orresponding to theterm proportional to µ in Eq.(4.16).�elds as
Z =













∏

r

′

∑

W (r), Hα(r)
b(r), q(r)

1

(2N + 1)2

∑

η(r), φ(r)













exp
∑

r

[

− β(H− ν̃q2(r)− µ̃W (r))

+ i
π

N
η(r)

(

∑

α

H2
α(r + eα)− b(r)

)

+ i
π

N
φ(r)

(

∑

α

Hα(r + eα)− q(r)

)] (4.14)Here, the prime over the summation refers to the sum being restri
ted to lo
al on-site 
onstraints Eqs.(4.2) and (4.9) only. The introdu
tion of dual �elds η(r) and
φ(r) allows summation over other dis
rete �elds (W (r), Hα(r), b(r), q(r)) withintheir respe
tive allowed range at ea
h site without any restri
tions from the neigh-borhood 
on�gurations i.e., as if there were a single site fun
tional Zsite.

Z =





∏

r

1

(2N + 1)2

∑

η(r),φ(r)





∏

r

Zsite(η(r), φ(r),∇αη,∇αφ) (4.15)The Zsite expression thus obtained is stated below. For brevity, in the followingexpression, π
N
η is written as η, π

N
φ as φ.

Zsite = 1 + 2ν exp(−iη(r)) cos(φ(r)) + λ exp(−2iη(r)) + µC(η, φ,∇αη,∇αφ))(4.16)
35



Chapter 4. Mole
ular mean �eld theory for water
C(η, φ,∇αη,∇αφ) =

′

∑

Hα = 0,±1
α = ±1,±2,±3

exp

[

i
∑

α

(H2
α(r)η(r + eα) +Hα(r)φ(r + eα))

]

(4.17)where ν ≡ exp(βν̃), λ ≡ exp(βλ̃) and µ ≡ exp(βµ̃) are fuga
ities of dangling bond,hydrogen bond and water states, respe
tively. Various terms in Eq.(4.16) followfrom the fa
t that at any site r there are only the following 
ontributions to thepartition fun
tion : (i) unity for va
uum, (ii) ν term for unpaired hydrogen orlone-pair arms (dangling bonds), (iii) λ term for hydrogen bond and (iv) µ termfor water with all its possible orientations suitably weighted. The orientationaldegrees of freedom of water yields C(η, φ,∇αη,∇αφ) given by Eq.(4.17), wherethe summation is over orientations at site r. The prime over the summationindi
ates Hα's of ea
h orientation satisfy Eq.(4.2). The exponential 
orresponds toan orientation and it is a fun
tion of dual �elds at near-neighbor sites towards whi
hnon-zero bond arms of the orientation are dire
ted. The densities of dangling bond(DB), hydrogen bond (HB) and water (ρ) are 
al
ulated from partial derivative ofthe partition fun
tion with respe
t to βν̃, βλ̃, βµ̃, respe
tively.
η(r) and φ(r) are dis
rete �elds varying in the range [−N,N ]. By 
onstru
tionthe partition fun
tional is independent of N for N ≥ 8. In pra
ti
e, it is 
onvenientto evaluate this fun
tional by taking N → ∞, whereupon the e�e
tive η(r) and

φ(r) be
ome 
ontinuous �elds. We implement this limiting pro
edure and 
he
k ifthe sum rule is obeyed. In the N → ∞ limit, summation over η and φ is repla
edby integrals. The resulting fun
tional integral has the following trivial property:
[

∏

r

∫

dη(r)

2π

dφ(r)

2π

]

∑

r1

d

dη(r1)

∏

Zsite = 0 (4.18)Taking derivatives expli
itly in the above equation gives terms proportional to ν,
λ, and µ. Sin
e these terms are summed over at all latti
e sites ea
h of them 
anbe regrouped in terms of derivatives of ν, λ, and µ as

i

[

−ν
∂

∂ν
− 2λ

∂

∂λ
+ 4µ

∂

∂µ

]

Z = 0 (4.19)The µ-dependent term in the Eq.(4.19) has 
ontributions from the four neighboring36



Chapter 4. Mole
ular mean �eld theory for watersites. Sin
e all sites are being summed over, the µ term in Eq.(4.18) gets ea
h
ontribution four times. We noti
e that this equation is pre
isely the sum rule
onstraint [Eq.(4.1)℄. This demonstrates that the sum rule in terms of 
ontinuousdual �elds is automati
ally true.4.2 Mole
ular mean �eld theoryWe now evaluate the fun
tional integral within the MMF approximation. The par-tition fun
tion's integrand 
an be envisaged as a produ
t of �eld-dependent phasefa
tors at ea
h site. When we enumerate them site by site, 
orresponding to physi-
ally allowed 
on�gurations the phase fa
tors 
an
el exa
tly. Evaluating along thispro
edure is analogous to the standard high temperature or Mayer-like expansion.Instead, we attempt an approximate method wherein we �rst noti
e that if werelax the 
onstraint Eq.(4.8) and Eq.(4.10) the integrand still peaks for the same
on�gurations that obey Eq.(4.8) stri
tly. Hen
e, in the thermodynami
 limit,approximating the integrand suitably around the peaking 
on�gurations, we mayreliably estimate the partition fun
tion. This reliability 
an be self-
onsistentlyestablished by 
omputing the varian
e or 
orrelation fun
tions.The leading 
ontribution to the partition fun
tional is expe
ted to 
ome fromthe extremum whi
h maximizes the integrand Zsite. Furthermore, in order todes
ribe �uid phase of the model we seek su
h spatial 
on�gurations in dual �eldswhi
h have dis
rete translational and rotational symmetry. The integrand Zsiteover a spa
e-independent �eld 
on�guration η̃, φ̃ is given by
Zsite|η = η̃, φ = φ̃

=
(

1 + 2ν exp ( −iη̃) cos φ̃+ λ exp ( −2iη̃) + 90µ exp ( 4iη̃)
)(4.20)It is evident that the maximum of Zsite o

urs at η̃ = φ̃ = 0, sin
e all fuga
itiesare positive. Zsite at the maximum is given by Zo:

Zo = (1 + 2ν + λ+ 90µ) (4.21)This provides zeroth-order 
ontribution to the partition fun
tion in the form Z =

(Zo)
V . The extremization of Zo with respe
t to φ̃ is trivially true, while that with37



Chapter 4. Mole
ular mean �eld theory for waterrespe
t to η̃ yields
2ν + 2λ = 4(90µ) (4.22)This is a 
onsequen
e of the sum rule within the zeroth-order approximation. Usingthis relation, the densities of dangling bond, hydrogen bond and water are givenupto zeroth-order as DB ≡ ν
∂

∂ν
(lnZ) =

4ν

2 + 5ν + 3λ
(4.23a)HB ≡ λ

∂

∂λ
(lnZ) =

2λ

2 + 5ν + 3λ
(4.23b)

ρ ≡ µ
∂

∂µ
(lnZ) =

ν + λ

2 + 5ν + 3λ
(4.23
)Eliminating λ from equations for DB and HB we obtainHB = 2ρ− ν

ν + 1
(1− 3ρ) (4.24)We 
all Eq.(4.24) as the equation of network. It is a manifestation of sum rulein terms of model parameters. The free energy is related to partition fun
tion as

βG = ln(Z). The mean �eld free energy Gm per unit volume 
an be given in termsof densities as
βGm = ln(1− 5ρ+ HB) = ln

(

1− 3ρ

1 + ν

) (4.25)From the sum rule, it follows that 0 ≤ HB ≤ 2ρ. Consequently, ρ here variesbetween ν/(5ν + 2) and 1/3. The upper bound on ρ (= 1/3) is indeed the highestpossible density in the model, while the lower bound is a 
onsequen
e of MMFapproximation, meaning that this des
ription is self-
onsistent only for densitiesgreater than ν/(5ν + 2). The non-analy
ities of free energy implied in Eq.(4.25) arepre
isely at the lower and higher limits of density. Without loosing any generality,we 
hoose λ̃ = 1 i.e, measure all energies in the units of hydrogen-bond energy.Then, we make the observation that if temperature (β−1) is always positive, we
an show that ρ is greater than 1/5. Furthermore, as β → ∞, from Eq.(4.23) wesee that ρ → 1/3, HB → 2/3 and DB → 0. The saturation density ρ = 1/3 isveri�ed to be exa
tly true by expli
it 
onstru
tion of su
h 
on�gurations.Thus, the equation of network is a manifestation and density saturation e�e
tis a dire
t 
onsequen
e of the sum rule. 38



Chapter 4. Mole
ular mean �eld theory for water4.2.1 Flu
tuationsNext, we evaluate the fun
tional integral of the partition fun
tion by 
onsideringsmall �u
tuations about the mean �eld and obtain one-loop 
orre
tion to the freeenergy [50℄. At any arbitrary site we expand Zsite upto quadrati
 order in dual�elds and obtain
Zsite ≃ 1 + 2ν + λ + 90µ+ 2ν

(

−iη − η2

2
− φ2

2

)

+ λ
(

−2iη − 2η2
)

+ 90µ



4iη +
2

3
i
∑

α
∇αη −

8

3

(

∑

α

η∇αη

)

− 8η2 − 1

5

(

∑

α
∇αη

)2

− 2

15

∑

α
(∇αη)

2 +
1

15

(

∑

α
∇αφ

)2

− 2

5

∑

α
(∇αφ)

2





≃ Zo exp{−iη(x)
(

ν
′

+ 2λ
′ − 4µ

′

)

− 2iµ
′

3

∑

α

∇αη

−1

2





(

ν
′

+ 4λ
′

+ 16µ
′

)

η2(x) +
2µ

′

5

(

∑

α
∇αη

)2

+
4µ

′

15

∑

α
(∇αη)

2

+
16µ

′

3

(

∑

α

η∇αη

)

−
(

(ν
′

+ 2λ
′ − 4µ

′

)η(x)− 2µ
′

3

∑

α
∇αη

)2

+ν
′

φ2(x) +
4µ

′

5

∑

α
(∇αφ)

2 − 2µ
′

15

(

∑

α
∇αφ

)2










(4.26)where ν ′

= 2ν/Zo, λ′

= λ/Zo, µ′

= 90µ/Zo are the redu
ed fuga
ities, su
h that allof them are less than 1 and their sum is also less than 1. In the above expression,we used the notation ∇αη(r) = (η(r + eα)− η(r)) and similarly for φ �eld.Inserting the above expression for Zsite in Eq.(4.14) and evaluating the resultingGaussian integral by Fourier transformation in a periodi
 box, the free energy perunit volume is given by
βG = βGm +

1

2

π
∫

−π

d3k

(2π)3
[ln(Pηη(∆)) + ln(Pφφ(∆))] (4.27)
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Chapter 4. Mole
ular mean �eld theory for waterwhere
Pηη(∆) =

[

64µ
′

∆2

(

9

10
− µ

′

)

+ 64µ
′

∆

(

− 9

10
+ µ

′ − ν
′

4
− λ

′

2

)

+ν
′

+ 4λ
′

+ 16µ
′ −
(

ν
′

+ 2λ
′ − 4µ

′

)2
] (4.28a)

Pφφ(∆) =

[

96µ
′

5
∆ (1−∆) + ν

′

] (4.28b)and ∆ =
1

6

3
∑

i=1

(1− cos(ki)), ki are ve
tor 
omponents of ~k. Equation (4.27) givesthe free energy density to one-loop order. Pηη and Pφφ are 
orrelation fun
tions for
η and φ �elds, respe
tively, in the momentum spa
e and are 
alled propagators.4.2.2 Correlation fun
tionsThe position spa
e 
orrelation fun
tions for η and φ �eld �u
tuations are given by

Gη(r1, r2) ≡ 〈η(0)η(r)〉 =

π
∫

−π

d3k

(2π)3
exp (i~k · (~r1 − ~r2))

Pηη(~k)
(4.29)where, ~r1, ~r2 are position ve
tors for any two sites. Similarly for φ �eld in termsof Pφφ.We note that to zeroth-order µ′ ≃ ρ, λ′ ≃ HB, ν ′ ≃ DB and using Eq.(4.22),leading order expressions for the propagators are given by

Pηη(~k) ≃ 64ρ

(

9

10
− ρ

)

[

(

∆− 9

20( 9
10

− ρ)

)2

+
3( 9

25
− ρ)

8( 9
10

− ρ)2

] (4.30a)
Pφφ(~k) ≃ 96ρ

5

[

∆(1−∆) +
5(DB)
96ρ

] (4.30b)The asymptoti
 behavior of Gη and Gφ 
orrelators 
an be obtained by pursuingsmall-k expansion of the integrand in Eq.(4.29) and noting that for small ~k, ∆ ≃
1
12

∑

i k
2
i . The Gη 
orrelator for large r = |~r1 − ~r2| is of fun
tional form

Gη(0, r) ∝
exp(−r/ξη)

r
sin(ωηr) (4.31)40



Chapter 4. Mole
ular mean �eld theory for waterwhere
(ξη)

−1 = 4

√

3
8

9
10

− ρ
sin

(

1

2
tan−1

√

50

27

(

9

25
− ρ

)

) (4.32)
ωη = 4

√

3
8

9
10

− ρ
cos

(

1

2
tan−1

√

50

27

(

9

25
− ρ

)

) (4.33)This indi
ates that Gη has periodi
 peaks whose amplitudes are exponentiallyfalling o�.The Gφ 
orrelator takes the following asymptoti
 form for large r, in additionto os
illatory behavior prominent at short distan
es:
Gφ(0, r) ∝

exp(−r/ξφ)

r
(4.34)where

(ξφ)
−1 =

√

√

√

√6

(
√

1 +
5 DB
24ρ

− 1

)

=

√

√

√

√6

(

√

1 +
5

24
(4− h)− 1

) (4.35)where h = 2HB/ρ.All 
orrelations in the system 
an be dedu
ed as fun
tions of Gη and Gφ. Thewater density 
orrelation 
an be 
al
ulated as given below.
〈W (r1)W (r2)〉 =

〈

µ{. . .}
Zsite(r1)

µ{. . .}
Zsite(r2)

〉 (4.36)The non-zero value of W -�eld at ea
h site pi
ks only the term proportional to µin Zsite [Eq.(4.16)℄, denoted by {. . .} in the above equation. The 
onne
ted partof the 
orrelation is given by 〈W (r1)W (r2)〉c ≡ 〈W (r1)W (r2)〉− 〈W (r1)〉 〈W (r2)〉.The expli
it expression for the 
orrelation fun
tion is given in Appendix (4.4.3).The expression suggests that, to the leading order, only η �eld 
ontributes to thedensity 
orrelations.Similarly, orientational 
orrelations 
an also be dedu
ed using the expression fororientational weight given by Eq.(4.17). The asymptoti
 behavior of orientational
orrelations is dominated by φ �eld 
orrelation. 41



Chapter 4. Mole
ular mean �eld theory for waterThe dangling bond 
orrelation is a dire
tion fun
tion of Gφ. A dangling bond
on�guration is identi�ed by non-zero value of q(r) �eld. Hen
e, the dangling bond
orrelation is given by
〈q(0)q(r)〉 =

〈

ν{. . .}
Zsite(0)

ν{. . .}
Zsite(r)

〉

≃ −(DB)2Gφ(0, r) (4.37)The 
orrelation fun
tion falls-o� exponentially at large distan
es, as implied inEq.(4.35).4.2.3 Fra
tion of mole
ules with i hydrogen bondsAnother useful quantity namely the fra
tion of water mole
ules with i hydrogenbonds 
an also be 
al
ulated. Consider a water mole
ule in a 
on�guration in whi
h
i arms are hydrogen bonded to neighboring mole
ules and the other (4 − i) armsremain of dangling type. A weight 
an be asso
iated with ea
h su
h 
on�gurationde�ned in terms of appropriate site �elds and summed over all possible orientationsof the mole
ule. We denote this weight averaged with respe
t to the full partitionfun
tion for ea
h i as pi. For instan
e, the averaged weight assigned to a mole
ulewhi
h is hydrogen bonded to only two other mole
ules is given by
p2 =

′

∑

{α1,α2,...,α6}

〈W (r) δ(b(r + eα1
), 0) δ(b(r + eα2

), 0) δ(b(r + eα3
), 2) δ(q(r + eα3

), 0)

×δ(b(r + eα4
), 2) δ(q(r + eα4

), 0) δ(b(r + eα5
), 1) δ(b(r + eα6

), 1)〉 (4.38)The prime over summation means dissimilar α. The probability for an i-bondedmole
ule at any site r is the probability that any two dire
tions around 
entralsite have zero arms, ea
h denoted by δ(b(x+ eα), 0), that i other dire
tions have ahydrogen bond denoted by δ(b(x+ eα), 2) δ(q(x+ eα), 0), and that the remaining
(4− i) sites are of dangling bond type denoted by δ(b(x+ eα), 1). The summationover the set {α1, α2, . . . , α6} implies summing over all possible rearrangementsof hydrogen bond and dangling bonds among all the dire
tions. With [6

2

] waysof 
hoosing two empty sites in the neighborhood, [4
2

] ways for there being two
42



Chapter 4. Mole
ular mean �eld theory for waterhydrogen bond sites, p2, to the leading order, is given by
p2 ≃

[

6

4

] [

4

2

] (HB)2(DB)2 = 1

24
15(6)ρ4h2(4− h)2 (4.39)where h = 2HB/ρ. Similarly, other pi values 
an be enumerated and 
omputed upto leading order. For i = 0, 1, 2, 3, 4,

pi =
1

24
15

[

4

i

]

ρ4hi(4− h)4−i (4.40)Thereupon, fi, whi
h is fra
tion of i-bonded mole
ules, 
an be 
al
ulated from therelation
fi =

V pi
∑4

i=0 V pi
=

[

4

i

]

hi(4− h)4−i (4.41)Note that the above expression is obtained to zeroth-order approximation withinthe model. There exist one-loop 
orre
tions to it whi
h 
an be 
al
ulated fromMMF theory, but they are small numeri
ally. The binomial distribution suggestedby Eq.(4.41) agrees well with MD simulations [51℄. Furthermore, mole
ular 
lusterssu
h as trimers, tetramers, pentamers are also known to exist in liquid water [52℄.The probabilities for su
h 
luster 
on�gurations 
an also be 
al
ulated within MMFtheory along the same lines as above 
al
ulation.4.2.4 Coulomb intera
tionIn this se
tion, we 
onsider the in�uen
e of long range Coulomb intera
tion betweenthe bond arm 
harges Hα. The intera
tion potential is given in terms of ele
troni

harge Q as
HCol =

Q2

2

′

∑

r1,r2

∑

α,α′

Hα(r1)Hα
′ (r2)

|r1 + eα − r2 − eα′ | (4.42)where the prime over the summation means r1 6= r2. In our model we envisage the
harges at the tip of bond arms. The intera
tion potential 
an be in
orporated in
43



Chapter 4. Mole
ular mean �eld theory for waterour analysis by using an auxiliary �eld te
hnique.
exp (−βHCol) →

√det(−�+m2)
∏

r

∫

dχ(r)√
2π

(4.43)
× exp

∑

r

[

−1

2
χ(r)(−�+m2)χ(r) + i

√

βQ2
∑

α

Hα(r + eα)χ(r)

]

where the Lapla
ian operator �χ(r) =
∑

α (χ(r + eα)− χ(r)) =
∑

α∇αχ(r) and
m is a parameter that regulates the range of intera
tion. The intera
tion potentialbehaves as exp(−mr)/r for large distan
es, whi
h when m = 0 redu
es to Coulombintera
tion with a short distan
e 
ut o�. If the latti
e 
onstant and m are bothtaken to be zero, then it redu
es to exa
t Coulomb intera
tion for all r.By inserting the above in our partition fun
tion Eq.(4.14), all the intera
tionsof water degrees of freedom remain un
hanged with the following transformation:
η → η, φ → φ + χ

√

βQ2. The extremum of the new partition fun
tion is stillat η̃ = φ̃ = χ̃ = 0. The leading zeroth-order term remains un
hanged; the one-loop 
orre
tion about the mean �eld gets additional 
ontributions due to quadrati
terms 
orresponding to φχ and χχ in the Gaussian expansion, given by
Pχχ =

(

12∆ +m2
)

+
96µ

′

βQ2

5
∆ (1−∆) (4.44)

Pφχ =
96µ

′
√

βQ2

5
∆ (1−∆) (4.45)The free energy density with Coulomb intera
tions to one-loop order is givenby

βG = βGm +
1

2
ln(12∆ +m2)− 1

2

π
∫

−π

d3k

(2π)3
[ln(Pηη(∆)) + ln(P (∆))] (4.46)where

P (∆) ≡ PφφPχχ − P 2
φχ (4.47)

=
96µ′

5
(12∆ +m2)

[

∆(1−∆) +
5ν ′

96µ′
+

βQ2ν ′

12∆ +m2
∆(1−∆)

]
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Chapter 4. Mole
ular mean �eld theory for waterwhi
h to leading order 
an be written as
P (~k) ≃ 96ρ

5
(12∆ +m2)

[

∆(1−∆) +
5(DB)
96ρ

+

(

βQ2(DB)
12∆ +m2

)

∆(1−∆)

] (4.48)The fa
tor Q2 being small, the strength of Coulomb intera
tion in 
omparisonwith other intera
tions is weak. Furthermore, all 
harge e�e
ts are proportionalto βQ2(DB), wherein β(DB) is always �nite sin
e, as β → ∞, DB → 0. Conse-quently, the e�e
t of Coulomb intera
tions on thermodynami
 properties su
h asthe equation of network and the equation of state is small. The 
oordination peaksand asymptoti
 behavior of the 
orrelation fun
tions are modi�ed slightly.4.3 ResultsWe understand from Eqs.(4.24) and (4.25) that the equation of network is a man-ifestation and density saturation is a 
onsequen
e of sum rule. The saturatione�e
t is independent of the dangling bond energy whi
h is an arbitrary parameterin the model. We may 
hoose ν̃ = 0 and measure temperature (β−1) in the unitsof hydrogen-bond strength (λ̃). To the zeroth-order, the theory is now parameterfree and all the densities 
an be obtained as a fun
tion of temperature only. Theone-loop 
orre
tion to the densities ρ, HB, and DB 
an be 
al
ulated from the freeenergy fun
tion given by Eq.(4.27) using the propagator expressions [Eq.(4.28)℄[see Appendix (4.4.2)℄. To the zeroth-order, the relation between ρ and HB issimply given by the equation of network. This equation 
an be re
ast as a simplerelation between ρ and h = 2HB
ρ

as
h = 7− 1

ρ
(4.49)Temperature is 
onjugate to HB and hen
e, it 
an be �xed self-
onsistently forgiven h [Fig.(4.4)℄. By model de�nition, the maximum value of h is 4 and the aboveequation indi
ates that h = 4 is attained at maximum density ρ = 1/3. In this limitthe residual entropy per site at highest density is in agreement with known resultsin i
e models [see Appendix (4.4.4)℄. However, we �nd that the highest densityin our model is not that of a unique 
rystal 
on�guration. Instead, from expli
it45
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ular mean �eld theory for water
onstru
tion we �nd that there are in�nitely many 
on�gurations 
orrespondingto di�erent spatial and orientational arrangements of water mole
ules [Appendix(4.4.5)℄.The latti
e 
onstant in the model is arbitrary. By 
omputing physi
al length-s
ales su
h as 
orrelation lengths it 
an be �xed. The asymptoti
 behavior ofdensity and orientational 
orrelations is dedu
ed in Eqs.(4.31) and (4.34) in termsof ξη and ξφ [Eqs.(4.32) and (4.35)℄. The expressions for ξη and ξφ are dedu
ed fromleading order expressions for propagators [Eq.(4.30)℄. Their pre
ise values 
an beobtained using Eq.(4.28) for propagators. We plot these lengths in Fig.(4.4) as afun
tion of h. ξη is only about one latti
e unit in liquid phase and does not vary
onsiderably with h, while ξφ in
reases with h. In MD simulation no 
orrelationlength is seen for density 
orrelation; this is 
onsistent with MMF result sin
e ξηis equal to the minimum length possible in the model and also independent of h.Orientational 
orrelation lengths inferred from MD simulation are 5.2 Å and 24 Å,of whi
h the latter is weaker in strength (one-tenth) relative to the shorter one [seeEq.(2.4) of Chapter 2℄. In our water model, we have only one orientational 
orre-lation length ξφ whi
h we relate to 5.2 Å. For liquid water, h value is suggested tobe about 3.6 [31℄. From Fig.(4.4), h = 3.58 
orresponds to ξφ ≃ 3.3 latti
e units.Consequently, we infer that 1 latti
e unit ≃ 5.2
3.3

= 1.57 Å. It should be noted thatthese predi
tions are not robust as the 
oe�
ients su
h as 5
24

in the expression for
ξφ [Eq.(4.35)℄ vary with topology of the underlying latti
e.We make the observation from Eq.(4.30) that the 
orrelation fun
tions of themean �eld theory diverge if ρ → 0 i.e., even the lo
al �u
tuations about the mean�eld are very large rendering the approximation invalid. Indeed, the theory failswell before ρ = 0 be
ause it violates the sum-rule already at ρ = ν/(5ν + 2) [Eq.4.24℄. Our mean �eld des
ription is 
onsistent only at high densities 
loser to thesaturation value within the model.The mean �eld 
on�guration and �u
tuations about it are self-
onsistently
al
ulated for arbitrary densities in the model. The expansion is neither aboutlow density nor high density. However, we �nd that the des
ription is 
onsistentonly at higher densities. In the free energy expression [Eq.(4.27)℄, the zeroth-order 
ontribution is energy 
omponent and one-loop 
orre
tion due to �u
tuations(say, βGf) is entropy 
omponent. The reliability of mean �eld approximation 
anbe understood by 
omparing magnitudes of the energy and entropy 
omponents,46
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Figure 4.4: Inverse temperature β and the lengths
ales ξη, ξφ as a fun
tion of h.
β is measured in units of hydrogen-bond strength λ̃ in the model. The lengths areexpressed in latti
e units.given in Table (4.1). We see that, in the region where MMF approximation is
onsistent, the entropy 
omponent is always smaller than the energy 
omponentand as saturation density is approa
hed, �u
tuations gradually de
rease, while theenergy 
ontribution is signi�
antly larger.In order to attest important results dedu
ed within MMF theory we 
arry outexa
t MC simulations for the water model. The simulations are performed withdangling bond energy set to zero and all other energies are measured in the unitsof hydrogen-bond energy. The simulation details and 
orresponding results aredis
ussed in Chapter (5).
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Chapter 4. Mole
ular mean �eld theory for water
β−1 ρ HB ρ/ρmax h βGm βGf1.844 0.2183 0.27 0.6549 2.47 2.210 1.1900.835 0.2534 0.384 0.76 3.03 2.570 1.1550.642 0.2719 0.45 0.8158 3.30 2.800 1.1370.47 0.294 0.527 0.883 3.58 3.320 1.1220.378 0.309 0.581 0.929 3.75 3.660 1.110Table 4.1: State points and their 
orresponding thermodynami
 data4.4 Appendix4.4.1 Orientational weight C(η, φ)The orientational weight for the water state in bulk water is given by

C(η, φ) =

′

∑

Hα = 0,±1
α = ±1,±2,±3

exp

[

i
∑

α

(H2
α(r)η(r + eα) +Hα(r)φ(r + eα))

]

where the summation is over all possible orientations and the prime indi
ates thatthe summation is subje
t to 
onstraints Eq.(4.2).About the mean �eld 
on�guration η = φ = 0, the dual �elds are expandedupto quadrati
 order. C(η, φ) is then given by
C(η, φ) ≃ 90

[

1 +
2i

3

∑

α

ηα − 1

3

∑

α

η2α − 2

5

∑

α,β

ηαηβ −
1

3

∑

α

φ2
α +

2

15

∑

α,β

φαφβ

](4.50)where ηα ≡ η(r + eα) and φα ≡ φ(r + eα).Note that there exists a linear term in φ �eld in the weight for ea
h orientation.Upon summation over all possible orientations, the linear φ terms 
an
el out ex-a
tly sin
e the bond arm 
harges of a mole
ule take all possible dire
tions aroundthe site of o

upation. 48



Chapter 4. Mole
ular mean �eld theory for water4.4.2 Densities upto one-loop 
orre
tionThe densities ρ, HB, and DB dedu
ed from free energy upto one-loop 
orre
tionare given by
ρ = µ

′ − 1

2

[

(−ν
′

µ
′

)T1 + (−λ
′

µ
′

)T2 + µ
′

(1− µ
′

)T3

] (4.51a)HB = λ
′ − 1

2

[

(−ν
′

λ
′

)T1 + λ
′

(λ
′ − 1)T2 + (−λ

′

µ
′

)T3

] (4.51b)DB = ν
′ − 1

2

[

ν
′

(1− ν
′

)T1 + (−ν
′

λ
′

)T2 + (−ν
′

µ
′

)T3

] (4.51
)where
T1 = (1− 2(ν

′

+ 2λ
′

))Gη(r, r) +
4µ

′

3

∑

α

Gη(r, r + eα) + Gφ(r, r) (4.52a)
T2 = (4− 4(ν

′

+ 2λ
′

))Gη(r, r) +
8µ

′

3

∑

α

Gη(r, r + eα) (4.52b)
T3 =

4µ
′

3
(ν

′

+ 2λ
′

)
∑

α

Gη(r, r + eα) +
4

15

∑

α

Gη(r + eα, r + eα)

+
2

15

(

1− 20µ
′

9

)

∑

α,α′

Gη(r + eα, r + eα′ )− 2

15

∑

α,α′

Gφ(r + eα, r + eα′ )

+
4

5

∑

α

Gφ(r + eα, r + eα) (4.52
)and r = (x, y, z) is a site position, r + eα is a near-neighbor site in eα dire
tion.The Green's fun
tions are 
omputed using Eq.(4.29).The densities are 
omputed 
onsistent with the sum rule for water. The numeri-
al pro
edure for the 
omputation 
an be 
onveniently 
arried out in the parameterspa
e of the redu
ed fuga
ities ν ′ , λ′ , and µ
′, all of whi
h are less than 1 and theirsum is also less than 1. They are optimally varied in their allowed range su
h thatthe solutions for ρ, HB, and DB are 
onsistent with the sum rule.

49



Chapter 4. Mole
ular mean �eld theory for water4.4.3 Density 
orrelationsFrom Eq.(4.53), the density 
orrelation fun
tion is given by
〈W (r1)W (r2)〉 =

〈

µ{. . .}
Zsite(r1)

µ{. . .}
Zsite(r2)

〉 (4.53)where µ {. . .} is the term proportional to µ in Zsite [Eq.(4.16)℄. The dual �elds areexpanded upto quadrati
 order and the leading other expression for the 
onne
tionpart of 
orrelation is given by
〈W (r1)W (r2)〉c ≃ −(µ

′

)2



(ν
′

+ 2λ
′

)2Gη(r1, r2) +

(

2µ
′

3

)2
∑

α,α
′

Gη(r1 + eα, r2 + eα′ )

+ 2

(

2µ
′

3

)

(ν
′

+ 2λ
′

)
∑

α′

Gη(r1, r2 + eα′ )



 (4.54)where r1 and r2 are arbitrary sites on same interfa
e; r1+ eα and r2+ eα′ are theirrespe
tive near-neighbor sites in the dire
tions eα and eα′ respe
tively. Gη(r1, r2)
an be 
omputed from Eq.(4.29).Orientational 
orrelations 
an also be evaluated using the expression for ori-entational weight given in Appendix (4.4.1). The linear terms in η and φ �eldsin the weights for ea
h orientation provide leading 
ontribution to the 
orrelationfun
tion. However, the asymptoti
 behavior is dominated by φ �eld only.4.4.4 Residual entropy at highest densityWe 
al
ulate entropy per site to the zeroth-order as below.
S = β2 ∂

∂β
(Gm) = ln

(

1 +
5ν

2
+

3

2
exp(β)

)

− β
3 exp(β)

2 + 5ν + 3 exp(β)
(4.55)In the limit β → ∞, ρ rea
hes its maximum value and the entropy at the highestdensity tends to a 
onstant value ln(3/2). This result 
ompares exa
tly with that ofPauling's estimate for tetrahedral i
e model [49℄ and agrees well with the numeri
alestimate by Nagle i.e., ln(1.50685 ± 0.00015) [53℄. We note that our zeroth-orderresults are independent of the latti
e dimension; hen
e, in two dimensions the50
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onstant also 
ompares well with the exa
t result for square i
e by Lieb [54℄.4.4.5 Highest density 
on�gurationsA 
on�guration 
orresponding to highest density in the model is one with all thelatti
e sites either in a water state or in a hydrogen bond state. All the bond armsof ea
h mole
ule are hydrogen bonded. No site is either in a dangling bond or voidstate. For ea
h mole
ule one site 
orresponds to water state, tips of its four bondarms are at four neighboring sites. The bond arms are hydrogen bonded. Hen
ethe share of hydrogen bond state for ea
h mole
ule is `half the site'. Colle
tively,ea
h mole
ule e�e
tively o

upies three latti
e sites. Hen
e, the maximum densitypossible in the model is 1/3.There are in�nitely many possible spatial and orientational arrangements atthe highest density. We illustrated a portion of few 
on�gurations in Figs.(4.5),(4.6), and (4.7). In the illustrations, W denotes a water state and all other sitesare in the hydrogen bond state. An arrow pointed away from W implies that themole
ule is donating a proton (hydrogen arm) to the hydrogen bond present onthe neighboring site in the dire
tion of arrow. An arrow pointing inward impliesthat W is a

epting a proton i.e., lone-pair of W. In the two dimensional planeshown in the �gures ea
h mole
ule is shown to parti
ipate in two hydrogen bonds.The mole
ule's other two arms are in the third dimension. The planes in thethird dimension whi
h �ank the given one have a 
omplementary arrangement ofwater and hydrogen bond states i.e., a W in the given plane is to be repla
ed bya hydrogen bond state in the other two planes and vi
e versa.In ea
h spatial 
on�guration of W and hydrogen bond states, a set of 
on-se
utive forward arrows implies a path on the latti
e. The set of all su
h pathsrepresents an orientational arrangement for the 
on�guration. A 
omplete reversalof one or more paths results in a new orientational arrangement. Thus, a given
on�guration has in�nitely many orientational possibilities.Di�erent 
on�gurations 
an be obtained by ensuring that no voids or danglingbonds are present and that the orientations obey the 
onstraints and restri
tionsde�ned for the model.
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Figure 4.5: An illustration of a spatial and orientational arrangement at highestdensity in the model. W denotes a water state and H denotes a hydrogen bondstate.
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5Monte Carlo simulation of the watermodel
We validate the results of MMF theory by performing Monte Carlo simulations forthe water model exa
tly a

ounting for all the 
onstraints imposed on the latti
e�elds. The sum rule is expli
itly respe
ted during the simulation. The MC resultsare seen to be 
onsistent and in semi-quantitative agreement with the results ofMMF theory [48℄.5.1 MethodsThe water model is simulated using a standard Monte Carlo pro
edure for a grand
anoni
al ensemble i.e., a µ̃V T ensemble [39, 55℄. We 
hoose to measure all energiesin units of hydrogen-bond energy i.e., λ̃ = 1. Furthermore, we set ν̃ = 0. Thetheory is now essentially parameter free. The temperature (β−1 > 0) and 
hemi
alpotential for water (µ̃) are varied as per needs of the simulation. We employsuitable lo
al 
on�gurational moves on a randomly 
hosen site on latti
e in order tosmoothly explore the 
on�gurational spa
e of the model. The moves are INSERT,DELETE, ROTATE.

• If there is no water mole
ule or dangling bond or hydrogen bond on the 
hosensite we perform INSERT operation i.e., putW = 1 on the site, provided thereare four free dire
tions among the six available dire
tions around the site.That is, the neighboring sites in any four dire
tions should be uno

upiedto ensure that the 
onstraint Eq.(4.3) is not violated in the neighborhood.54



Chapter 5. Monte Carlo simulation of the water modelThose neighboring sites shouldn't already have more than one bond arm intheir dire
tion so that the restri
tion Eq.(4.5) is 
omplied with. Then, in thefour free dire
tions four non-zero bond arms are pla
ed randomly su
h thattwo of them are of hydrogen type Hα = 1 and other two are of lone-pair type
Hα = −1, in 
omplian
e with Eq.(4.2).

• When there is a water mole
ule on the 
hosen site we perform either DELETEor ROTATE operation with equal probability.� In a DELETE operation we set W = 0 on the site and set Hα = 0 alongall dire
tions around the site.� In a ROTATE operation, the dire
tions of non-zero bond arms in theexisting 
on�guration are altered to a new 
on�guration implying arotation of the mole
ule. We ensure that the 
onstraints Eqs.(4.3),(4.5), and (4.6) are not violated in the neighborhood.Beginnning with a valid initial 
on�guration the moves ensure that the 
onstraintsEqs.(4.2) and (4.3) and restri
tions Eqs.(4.5) and (4.6) are always respe
ted andresult in only valid network 
on�gurations at ea
h simulation step. These lo
almoves allow the system to explore all possible 
on�gurations at all sites and hen
e,ensemble averages given by MC pro
edure are expe
ted to provide reliable esti-mates for the desired thermodynami
 quantities.We employ importan
e sampling MC pro
edure using Metropolis 
riterion tosatisfy the detailed balan
e 
ondition during ea
h move. A

ording to the 
riterionif total energy 
hange of the system during the move is negative the new 
on�gu-ration is a

epted. If the energy 
hange is positive then the new 
on�guration isa

epted with a probability equal to Boltzmann weight over the energy 
hange. To
ompute the energy 
hange of the system during ea
h move, we note that the movesare lo
al and hen
e, they 
ause only lo
al 
hanges in parti
le number and/or hy-drogen bonds and anti-bonds in the immediate neighborhood. Hen
e, we assign alo
al energy fun
tion to initial and �nal 
on�gurations and 
ompute energy 
hangein terms of 
hemi
al potential and intera
tion energies due to hydrogen bonds andanti-bonds. An a

eptan
e rate of about 30 − 40% is a
hieved during simulationruns in the parameter regime of interest. 55



Chapter 5. Monte Carlo simulation of the water modelSome of the important thermodynami
 observables are ρ, HB, DB, total energy,density of mole
ules with i(= 0, 1, 2, 3, 4) hydrogen bonds. After a su�
ient equi-libration run the densities are updated every 50− 300 MC steps over a simulationtime of 105 − 106 MC steps. The sampling rate is varied a

ording to a

eptan
erate. Running averages and varian
es are 
omputed at every sampling step todetermine the e�
ien
y of the sampling pro
edure. It is ensured that there is noobservable overall rise or fall in the averages and varian
es and that the resultssmoothly 
onverge to within a relative error of 10−2 − 10−3.The size dependen
e of the averages is as
ertained and an optimal latti
e sizeof 20 sites per side is found to 
losely reprodu
e averages up to the fourth de
imalpla
e relative to bigger latti
e sizes.We explore 
onstant temperature 
urves to fa
ilitate 
omputation of pressureusing the Gibbs-Duhem pro
edure [56℄. The pressure at a desired density is ob-tained from the relation
P =

µ̃f
∫

µ̃i

ρ(µ̃) dµ̃ (5.1)where a ρ versus µ̃ 
urve is integrated between 
hemi
al potentials µ̃i and µ̃f toobtain pressure at ρ(µ̃f). The pressure is normalized to zero at zero density. Thevolume is kept �xed and 
hemi
al potential is varied in steps. Sin
e a range of
hemi
al potentials is to be explored the step size is appropriately adjusted so thata quen
h-like situation is avoided. The system evolves smoothly in 
on�gurationspa
e without any unwanted domains persisting. At 
hosen 
hemi
al potential thesimulation is initialized using an end 
on�guration from the simulation at previous
hemi
al potential value. This su

essive seeding pro
edure a

elerates equilibra-tion 
onsiderably 
ompared to any random seed 
on�guration. The end averagesremain un
hanged when the seeding pro
edure is 
arried out in an alternative pa-rameter spa
e; for example, instead of the 
hemi
al potential, the temperature 
anbe varied in small steps. This 
on�rms the absen
e of any possible bias 
reated byour su

essive seeding pro
edure in most part of the parameter spa
e (ex
ept near�rst-order phase transitions where hysteresis exists).We also 
ompute spatial 
orrelation fun
tions as an ensemble average over equi-librium 
on�gurations. The underlying latti
e stru
ture dominates the 
orrelationfun
tions. To fa
ilitate 
omparision with MMF results we extra
t rotationally56



Chapter 5. Monte Carlo simulation of the water modelinvariant part of the 
orrelation using the following proje
tion pro
edure.
R(r0) =

∑

~r

Θ (|~r| − r0) Θ ((r0 + δr)− |~r|) (5.2a)
f(r0) =

1

R(r0)

∑

~r

f(~r) Θ (|~r| − r0) Θ ((r0 + δr)− |~r|) (5.2b)where ~r ≡ (x, y, z) is position index for a latti
e site, |~r| is its magnitude inEu
lidean metri
. f(r) is any fun
tion de�ned on the latti
e and r0 is the distan
ewhere 
orrelation is desired; δr is a small distan
e window. Θ is the Heaviside stepfun
tion de�ned as Θ(x−a) = 1 for x ≥ a and 0 for x < a. R(r) is weight fun
tionfor distan
e r.5.2 Results
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Chapter 5. Monte Carlo simulation of the water model
urve has two prominent shoulders where signi�
ant slope 
hange o

urs. Beyonda 
ertain µ̃ value, no more equilibriated 
on�gurations 
ould be tra
ed and thedensity starts shooting up to the saturation value. For inverse temperature β > 2the 
urves exhibit dis
ontinuity. For instan
e, at β = 3 the system jumps from a
ρ ∼ 0.025 to ρ ∼ 0.16 upon an in�nitesmal in
rease about µ̃ ∼ −1.91. The risein density is higher for higher β. Hysteresis is also seen when retra
ing the 
urveby de
reasing the µ̃. This indi
ates the presen
e of �rst-order phase transitionin the region. We interpret this as a liquid-gas transition in the model. Withinour limited exploration of the phase diagram we �nd that ρ > 0.16 
orrespondsto liquid phase. MMF theory is seen to be 
onsistent in this region only i.e., for
ρ > 1/5.The equation of state dedu
ed within MMF theory [Eq.(4.25)℄ is 
ompared withthat 
omputed from MC simulation. In the theory pressure is simply negative ofthe free energy density. Their magnitude is same sin
e the free energy is dedu
edin in�nite volume limit. The 
omparison between MMF theory and MC simula-tion is put forth in Fig.(5.2). It shows that the high pressure states at ea
h ρ showqualitatively same pro�le as predi
ted by MMF theory. A quantitative 
omparisonof equation of state between MMF theory and MC simulation is unreliable be
ausepressure from MMF theory absurdly vanishes at ρ = 1/7 whereas, physi
ally thepressure is zero in this model only at ρ = 0. As dis
ussed earlier, MMF approxima-tion fails for small densities. Therefore, a 
onsistent normalization between variouss
hemes of 
al
ulation is not present. Thus, the qualitative pi
ture obtained fromMMF 
al
ulation is only indi
ative, nevertheless 
onsistent with MC results.One of the important expositions of the MMF theory is the equation of network.From Eq.(4.24), at ν̃ = 0, the mean �eld equation of network is given byHB =

7ρ

2
− 1

2
(5.3)We plot the ρ and the HB data obtained from MC simulation against the equationof network. This is shown in Fig.(5.3). The equation of network is a manifestationof sum rule and it is dedu
ed within MMF approximation in the in�nite volumelimit. The linear relation between ρ and HB is borne out in MC simulation by 
on-�gurations with lowest free energy (or high pressure) at ea
h ρ. There is ex
ellentquantitative agreement between MMF and MC results in this regard. 58



Chapter 5. Monte Carlo simulation of the water model
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Figure 5.2: Equation of state : (green, dotted line) MMF theory zeroth order; (ma-genta, �lled triangles) MMF theory upto one-loop 
orre
tion; (red lines) isothermsin MC simulation with temperature in
reasing from top to bottom; (blue, dashedline) high pressure states at ea
h density in MC simulation.We also pursued a preliminary study of equation of network obtained fromexperiments and MD simulations. The density of hydrogen bonds is indire
tlyprobed and inferred under varying external 
onditions in experiments [57℄ and isalso 
omputed in MD and MC simulations [51, 58℄. The data are put in perspe
tiveby 
onverting the mass densities to number densities using the known radius of awater mole
ule. As shown in Fig.(5.4), in the region of high mole
ular density i.e.,
orresponding to liquid water we �nd that ρ and HB are linearly related to ea
hother. A linear �t fun
tion is used for the HB versus ρ 
urve and 
ompared withthat of the MMF equation [Eq.(4.24)℄. We infer a dangling bond fuga
ity ν in therange (0.06, 0.18), implying that the 
orresponding energy ν̃ is positive and large
ompared to the thermal energy. This implies that dangling bonds are highlydisfavored in liquid water. Due to anomalous thermal expansion the fun
tionalrelation between HB and ρ in liquid water is expe
ted to exhibit non-linearity athigher densities.The highest density state in the model exhibits in�nite degenera
y in spatial59



Chapter 5. Monte Carlo simulation of the water model
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Chapter 5. Monte Carlo simulation of the water modelarrangement of mole
ules and their orientations [see Appendix 4.4.5 in Chapter 4℄.The presen
e of large set of 
rystalline states suggests that there 
ould be a liquid-glass transition at high densities or near zero temperature in our model. In MCsimulation we witnessed dynami
al slowing down at low temperatures, 
onsistentwith our spe
ulation. Furthermore, in this region MMF theory indi
ates a se
ondorder transition as seen from q(x) 
orrelator [Eq.(4.35)℄, wherein for β → ∞,
ρ → 1/3 and DB → 0 implying that ξφ → ∞. The impli
ations of this analyti
stru
ture to low temperature phase behavior of the model need to be studied indetail.The important 
orrelations in the model are 〈W (0)W (r)〉 and 〈q(0)q(r)〉. Inthe MMF theory they are expli
it fun
tions of dual �eld 
orrelations Gη and Gφ[Eqs.(4.37) and (4.53)℄. They are 
omputed numeri
ally and shown in Figs.(5.5)and (5.7). In MC simulation the 
orrelation fun
tions are 
omputed from the pro-je
tion s
heme given by Eq.(5.2) and are displayed in Figs.(5.6) and (5.8). The
orrelation fun
tions within MMF theory and in MC simulation are 
omputed at
omparable values of ρ and HB. We �nd that the positions of 
oordination peaksin density 
orrelation fun
tion are in agreement and are in 
omplian
e with the
onstraints in the model and underlying latti
e topology. The density 
orrela-tion fun
tion with 
hara
tersti
 hydration peaks appears qualitatively similar toradial distribution fun
tion of �uids. It does not show any long distan
e behav-ior. This is 
onsistent with MMF result sin
e ξη is only one latti
e unit whi
h isminimum length in the model. The 
harge 
orrelations both in MMF theory andMC simulation show an asymptoti
 fall-o� with distan
e. MMF theory predi
tsan exponential fall-o� [Eq.(4.35)℄ 
onsistent with MD simulations for liquid water.It is en
ouraging to see that a 
onsistent qualitative pi
ture of �u
tuations 
ouldbe obtained from a simple analyti
al 
al
ulation. It is however observed that thequantitative details of 
orrelation fun
tions depend on the underlying latti
e, butthe analyti
 stru
ture is amenable to interpretation in the 
ontinuum as well.
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6Hydrophobi
 for
e between ma
ros
opi
surfa
es
In this 
hapter we address hydrophobi
 for
e between large surfa
es using theframework of MMF theory. The water model analyzed in the previous 
haptersis envisaged here. In our model study we analyze the 
onsequen
es of 
on�ninghydrogen-bond �u
tuations in presen
e of large hydrophobi
 surfa
es and inferthat hydrophobi
 for
e is a manifestation of Casimir-like for
e largely in�uen
edby the long-distan
e 
orrelations of orientational �u
tuations.When water is 
on�ned between large hydrophobi
 surfa
es the inherent �eld�u
tuations vanish on surfa
es. Furthermore, water mole
ules at the interfa
e withea
h surfa
e have restri
ted orientational entropy owing to repulsive hydrophobe-water intera
tions. This e�e
t gives rise to modi�ed �u
tuations at ea
h interfa
e.We study the 
olle
tive 
onsequen
es of these e�e
ts on the overall free energy ofthe system in a model study. Two ma
ros
opi
 surfa
es are envisaged as bound-aries in a spatial dimension and water is 
on�ned between them. The 
hange infree energy due to the presen
e of surfa
es is 
al
ulated and is seen to be 
omposedof three important 
ontributions : (i) Casimir part, whi
h arises solely from dis-
retization of �u
tuation modes between boundaries and is generi
 to all surfa
es;(ii) Interfa
ial free energy, whi
h is free energy 
hange due to modi�ed �u
tuationsat hydrophobe-water interfa
e. It is dependent on nature of surfa
e-water intera
-tion and to a small extent, also on separation distan
e between the surfa
es; (iii)Interfa
ial �u
tuations-indu
ed free energy, whi
h is due to 
orrelation betweenmodi�ed �u
tuations at both interfa
es. It depends on type of both surfa
es and64



Chapter 6. Hydrophobi
 for
e between ma
ros
opi
 surfa
estheir intera
tion with water. The results are dis
ussed for di�erent types of sur-fa
es su
h as hydrophobi
 and hydrophili
. We �nd that the Casimir part is leading
ontribution and is an inverse power-law fun
tion of separation distan
e. However,numeri
ally the magnitude of Casimir part is signi�
ant for distan
es only uptofour times the longest 
orrelation length in the model. The interfa
ial free energyalso varies with separation distan
e, but its variation is numeri
ally insigni�
ant.The interfa
ial �u
tuations-indu
ed 
ontribution is seen to be exponentially de
ay-ing with distan
e, analogous to the for
e form dedu
ed for mesos
opi
 surfa
es [seeChapter 3℄. Furthermore, we �nd that all the 
ontributions are of 
omparable orderof magnitude 
onsistent with experimental values. The dependen
e of the for
e on�uid 
onditions like temperature, average hydrogen bonds is also dis
ussed. Ourresults indi
ate that hydrophobi
 for
e qualitatively imitates Casimir-like for
e be-havior [59℄. It is desirable to emulate the 
omputation within more realisti
 modelsof water possibly with the help of MD simulations. We also looked at transversedensity pro�le for 
on�ned water and show that an in
rease in density o

urs nearinterfa
es.6.1 Water 
on�ned between ma
ros
opi
 surfa
esWe envisage surfa
es in the (x, y) plane of re
tangular 
oordinate system; onepresent at z = 0 and other at z = L [Fig.(6.1)℄. Ea
h surfa
e ex
ludes water fromits region of o

upation. Hen
e, W = 0 on surfa
e sites. On the immediate layer,i.e., at z = 1 or z = L − 1 
alled the interfa
e layer, water 
an be present and
an take various orientations. For a hydrophobi
 surfa
e if a non-zero bond armof interfa
e water is dire
ted towards the surfa
e, there would be a dangling bondon surfa
e site; else a void state o

urs. There 
an never be a hydrogen bond onsurfa
e i.e., b 6= 2 on surfa
e. We will take 
are of these possibilities expli
itly inour analysis. Consequently, we need not introdu
e η and φ integrals [Eq.(4.13)℄ onthe surfa
e. Alternatively, we set η = φ = 0 on surfa
es.The 
al
ulation of partition fun
tion begins with formulating the site fun
tional
Zsite at ea
h site, whi
h 
omprises weights 
orresponding to ea
h allowed state inthe model. The site fun
tional for all the sites in bulk region is of same form asgiven by Eq.(4.16). On the interfa
e sites, weights 
orresponding to the void state,65
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ros
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es. S1, S2 are surfa
e planesat z = 0 and z = L respe
tively; I1, I2 are their respe
tive interfa
es at z = 1 and
z = L− 1.the dangling bond and the hydrogen bond states remain unaltered. When a watermole
ule is present on an interfa
e site its bond arms 
an orient in all possibleways. Only if one of the arms is towards the surfa
e we assign a weight exp(βν̃S)to the 
orresponding orientation. For an ideal hydrophobi
 surfa
e i.e., whi
h isindi�erent to bond arms of vi
inal water, ν̃S = 0 (in general, ν̃S 
an be positive ornegative). Consequently, orientational weights for a water state on any interfa
esite (with surfa
e in e3 dire
tion) are given by
C(η, φ)|interfa
e = 





′

∑

α 6= 3 Hα = 0,±1
H3 = 0

+ exp(βν̃S)

′

∑

α 6= 3 Hα = 0,±1
H3 = ±1













exp

[

i
∑

α

(H2
α(r)η(r + eα) +Hα(r)φ(r + eα))

]

= C(η, φ) + νS

′

∑

α 6= 3 Hα = 0,±1
H3 = ±1

exp

[

i
∑

α

(H2
α(r)η(r + eα) +Hα(r)φ(r + eα))

]

≡ C(η, φ) + νSC
′

(η, φ) (6.1)66



Chapter 6. Hydrophobi
 for
e between ma
ros
opi
 surfa
eswhere the prime over the Hα sum implies the 
onstraints Eq.(4.2), C ′

(η, φ) 
orre-sponds to a�e
ted orientations only i.e., those withH3 = ±1, and νS ≡ exp(βν̃S)−1is a fun
tion of surfa
e-water intera
tion strength. The site fun
tional ZI for anyinterfa
ial site 
an be arranged as
ZI = Zsite + νSµC

′

(η, φ) (6.2)By de�nition, νS ranges from −1 to ∞. We remark that for a perfe
t hydrophobi
surfa
e, νS = 0.The modi�ed site fun
tional at the interfa
e sites 
an be re
ast in the expressionfor full partition fun
tion su
h that the following de
omposition is dedu
ed.
Z|| =

∫

[Dη][Dφ]
∏

r

Zsite

∏

r1∈I1

(1 + Γ(r1))
∏

r2∈I2

(1 + Γ(r2)))

= Z

〈

exp

(

∑

r1∈I1

ln(1 + Γ(r1)) +
∑

r2∈I2

ln(1 + Γ(r2))

)〉 (6.3)where Z|| is partition fun
tion for the system with the surfa
es, Z is for the 
or-responding unperturbed 
ase (νS = 0) with η = φ = 0 on the surfa
e sites, and
Γ(r) is de�ned only on the interfa
e sites. It is relative orientational weight of thea�e
ted orientations with respe
t to Zsite, i.e.,

Γ(r) =
νSµC

′

(η, φ)

Zsite(r)
(6.4)The partition fun
tion for the unperturbed 
ase Z 
an be evaluated using theMMF te
hnique. The leading mean �eld energy is obtained from the maximumof Zsite at ea
h site and the �u
tuations in η and φ �elds are analyzed subje
tto vanishing boundary 
onditions on the surfa
es. The interfa
es-dependent partin Z|| is evaluated using 
luster te
hnique and the 
orresponding free energy isobtained. The resulting form of total free energy Gtot per unit latti
e area isorganized to be

Gtot = Go +GC + γS1
+ γS2

+GΓ (6.5)where Go + GC is the free energy obtained from the evaluation of Z, analogousto Eq.(4.27). Go in
ludes leading terms proportional to L and 
onstants obtained67



Chapter 6. Hydrophobi
 for
e between ma
ros
opi
 surfa
esin the large L limit. They 
ontribute only to bulk pressure of the system. GCis the remaining L-dependent part. γS1
, γS2

are free energy 
ontributions due tosurfa
e-water intera
tion and evaluated only on the sites of respe
tive interfa
es
I1 and I2 respe
tively. GΓ 
onstitutes terms whi
h involve sites of both interfa
es.Expression for ea
h of the terms is dedu
ed in the remaining se
tion and theirrelevan
e to hydrophobi
 intera
tion is elu
idated.We �rst evaluate Z using the MMF te
hnique des
ribed in the previous se
tion.We identify the maximum of the fun
tional to be at η = φ = 0. It yields mean �eldfree energy per unit area, whi
h to the leading order is given by LGm [Eq.(4.25)℄.The dual �elds are then expanded upto quadrati
 order about their maximum andthe resulting Gaussian integrand fun
tional for Z is integrated over all the �eld
on�gurations whi
h are 
onsistent with the boundary 
onditions. This yields theone-loop 
ontribution to the free energy. In the pro
ess, the following Fouriertransformation is employed whi
h satis�es the vanishing boundary 
onditions inthe z dire
tion.

η(~r) =
2

L

L−1
∑

n=1

π
∫

−π

(dk1)(dk2)

(2π)2
η̃(~k) exp(ik1x+ ik2y) sin (nπz/L) (6.6)where ~r = (x, y, z) is position ve
tor for an arbitrary site and ~k = (k1, k2, k3 =

nπ
L
)denote modes in the momentum spa
e. Similarly for φ �eld.The entropy 
ontribution to the free energy for the unperturbed system is adis
rete analog of the 
orresponding expression for bulk water [Eq.(4.27)℄, in thatthe integral over the waveve
tor in z-dire
tion is repla
ed by a summation overa restri
ted number of waveve
tors i.e., k3 = π

L
, 2π

L
, . . . , π(L−1)

L
. To analyze the

L-dependen
e, we de�ne entropy 
ontribution per unit area in ea
h mode in z-dire
tion as
S(k3) =

1

2

π
∫

−π

(dk1)(dk2)

(2π)2
ln
(

Pηη(~k)Pφφ(~k)
) (6.7)where the propagators Pηη and Pφφ are same as those dedu
ed in the 
ase of bulkwater. Total entropy 
ontribution to the free energy of 
on�ned water is S(k3)summed over the allowed values of k3. Its large-L behavior 
an be enumerated
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opi
 surfa
esusing Euler-Ma
laurin series expansion [60℄.
π
L
(L−1)
∑

k3=
π
L

S(k3) = L

π
∫

0

dk3
π

S(k3)−
1

2
(S(0) + S(π)) + βGC (6.8)On the right hand side of Eq.(6.8), the �rst term is the total entropy 
ontributionin the same volume of bulk water. S(0) and S(π) are free energy densities in themodes k3 = 0 and k3 = π respe
tively. They are independent of L. From Eq.(6.8)we infer GC to be the net di�eren
e in entropy 
ontribution per unit area between
on�ned water and bulk water in the same volume. GC 
an be 
al
ulated as aseries expansion in 1

L
, in whi
h the leading term is

βGC ≃ π

B2L

[

∂

∂k3
S(k3)

∣

∣

∣

∣

k3=π

− ∂

∂k3
S(k3)

∣

∣

∣

∣

k3=0

] for large L (6.9)where B2 = 2 is the �rst Bernoulli 
onstant. GC is analogous to the Casimirintera
tion energy derived in 
ase of 
ondu
ting plates 
on�ning ele
tromagneti
�u
tuations [26℄. Hen
e, we 
all GC the Casimir part of the free energy. It fallso� asymptoti
ally as 1
L
for large L.In the expression for the partition fun
tion [Eq.(6.3)℄, the average over theinterfa
e terms is now pursued. At ea
h interfa
ial site, ln(1 + Γ(r)) ≃ Γ(r) is theleading order term. This is justi�ed be
ause in Eq.(6.4) for Γ(r), we note that

µC
′

(η,φ)
Zsite

≃ ρC
′

(η,φ)
90

whose maximum value is always less than 1, sin
e ρ < 1
3
and

∣

∣

∣

C
′

(η,φ)
90

∣

∣

∣
< 2

3
, C ′

(0, 0) = 60. The leading order 
ontribution from the interfa
eterms in Eq.(6.3) is then given by
Z||

Z
=

〈

exp

(

∑

r1∈I1

Γ(r1) +
∑

r2∈I2

Γ(r2)

)〉 (6.10)The average 
an be evaluated using 
luster te
hnique1. Terms that involve sites ofthe same interfa
e and those involving sites of both interfa
es are segregated. γS1If A and B are fun
tions of a random variable whose probability distribution is known, theaverage < exp(A + B) > over the probability distribution is given by : 〈exp(A+B)〉 =
exp

[

< A > + < B > + 1

2
(< A2 > − < A >2 + < B2 > − < B >2)+ < AB > −

< A >< B > + . . .] 69
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opi
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esis de�ned to 
onstitute terms 
orresponding to sites on the same interfa
e. Ea
hof them is proportional to νS or its higher order. γS is given to the leading orderas
−βγSA =







〈

∑

r∈I

Γ(r)

〉

+

〈

∑

r1,r2∈I

r1 6=r2

Γ(r1)Γ(r2)

〉

−
〈

∑

r∈I

Γ(r)

〉2





(6.11)where A is area of the surfa
e. γS arises due to surfa
e-water intera
tion and
onsequent e�e
t on orientational �u
tuations in the interfa
ial region.Ea
h of the averages in Eq.(6.11) 
an be evaluated using a fun
tional integrationrelation2. For an interfa
e site with surfa
e in e3 dire
tion, using Eqs.(6.1) and (6.4)

〈Γ(r)〉 is given to the leading order as
〈Γ(r)〉 =

(νSρ

90

)

′

∑

α 6= 3 Hα = 0,±1
H3 = ±1

exp





∑

α,α′

(

H2
α(r)H

2
α′ (r)Gη(r + eα, r + eα′ )

+ Hα(r)Hα′ (r)Gφ(r + eα, r + eα′ )
)

](6.12)where the Hα summation is over the a�e
ted orientations at site r. The prime overthe summation indi
ates that the Hαs of ea
h orientation satisfy the 
onstraintsEq.(4.2). The exponential in Eq.(6.12) 
orresponds to one su
h orientation. Hαand Hα
′ are bond arms of the same orientation; r + eα and r + eα′ are the bondarm lo
ations.2If φ is a random �eld whose a
tion is known and when a 
onstant external �eld J 
ouplesto φ su
h that their intera
tion is iJφ(r), then < exp(iJ(φ(r1) + φ(r2))) > = exp[− 1

2
J2(<

φ(r1)φ(r1) > + < φ(r2)φ(r2) + 2 < φ(r1)φ(r2) >) + . . .]. If the two-point 
orrelation is leadingorder among the 
orrelations, then the subsequent terms of higher order denoted by (. . .) 
an beignored
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ros
opi
 surfa
esThe average 〈Γ(r1)Γ(r2)〉 is given to leading order as
〈Γ(r1)Γ(r2)〉 =

(νSρ

90

)2
′

∑

α 6= 3 Hα = 0,±1
H3 = ±1

′

∑

κ 6= 3 Hκ = 0,±1
H3 = ±1

exp





∑

α,α
′

(

H2
α(r1)H

2
α′ (r1)Gη(r1 + eα, r1 + eα′ ) +Hα(r1)Hα′ (r1)Gφ(r1 + eα, r1 + eα′ )

)

+
∑

κ,κ
′

(

H2
κ(r2)H

2
κ′ (r2)Gη(r2 + eκ, r2 + eκ′ ) +Hκ(r2)Hκ′ (r2)Gφ(r2 + eκ, r2 + eκ′ )

)

+
∑

α,κ

(

H2
α(r1)H

2
κ(r2)Gη(r1 + eα, r2 + eκ) +Hα(r1)Hκ(r2)Gφ(r1 + eα, r2 + eκ)

)



(6.13)where Hα and Hα′ are bond arms of an a�e
ted orientation at site r1; Hκ and
Hκ

′ are those of an orientation at site r2. The exponential 
orresponds to theprodu
t of the two orientations and the summation is over all possible produ
ts.The two-point Green's fun
tion Gη(r1, r2) for the η-�eld �u
tuations between anytwo arbitrary sites r1 = (x1, y1, z1) and r2 = (x2, y2, z2) is given by
Gη(r1, r2) =

2

L

L−1
∑

n=1

π
∫

−π

(dk1)(dk2)

(2π)2
exp (ik1(x1 − x2) + ik2(y1 − y2))

× sin (nπz1/L) sin (nπz2/L)

Pηη(~k)
(6.14)Similarly, Gφ(r1, r2) for φ �eld 
an be de�ned using the propagator Pφφ(~k).The expression for γS indi
ates that it varies with separation distan
e, owingto the L-dependent Green's fun
tions. The asymptoti
 value of the γS is theinterfa
ial tension for the hydrophobi
 surfa
e in 
onta
t with water. The leading
orre
tion term is proportional to 1

L
for large-L and 
ontributes to for
e betweenthe surfa
es.From the 
luster expansion of the partition fun
tion, terms that involve sites
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opi
 surfa
esof both interfa
es are grouped as GΓ. It is given to the leading order as
−βGΓA =

[〈

∑

r1∈I1

Γ(r1)
∑

r2∈I2

Γ(r2)

〉

−
〈

∑

r1∈I1

Γ(r1)

〉〈

∑

r2∈I2

Γ(r2)

〉] (6.15)E�e
tively, GΓ is the 
onne
ted 
orrelation between orientational �u
tuations ofboth interfa
es. Hen
e, we 
all this 
ontribution interfa
ial �u
tuations-indu
edpart of the free energy. The averages in Eq.(6.15) 
an be evaluated using theEq.(6.12) with νS 
orresponding to ea
h interfa
e and using the Eq.(6.13) withproportionality fa
tor (νS1
νS2

) instead of (νS)2. The identity of the sites is as pergiven in the expression for GΓ [Eq.(6.15)℄.The long-distan
e behavior ofGΓ is dominated by the φ(r) 
orrelations, the η(r)being short-ranged. Between two hydrophobi
 surfa
es, to the leading order, GΓ isproportional to the square of orientational 
orrelations i.e., (Gφ(r))
2, where Gφ(r)is an exponentially falling-o� fun
tion for large r [see se
tion (4.2.2) in Chapter 4℄.For the 
ase of mesos
opi
 surfa
es, hydrophobi
 for
e is shown to arise fromorientational 
orrelations between water mole
ules present at the interfa
es of bothsurfa
es [see Chapter 3℄. The for
e is seen to de
ay exponentially with the separa-tion distan
e, asymptoti
ally [Eq.(3.6)℄. GΓ is thus analogous to the hydrophobi
intera
tion free energy of mesos
opi
 surfa
es. However, for ma
ros
opi
 surfa
es,in addition to GΓ, hydrophobi
 for
e obtains 
ontributions from the Casimir partand the interfa
ial free energy. This aspe
t distinguishes the hydrophobi
 intera
-tion between large surfa
es from that of between small surfa
es, both qualitativelyand quantitatively. The non-additive nature of hydrophobi
 intera
tion with in-
reasing size of surfa
es has attra
ted 
onsiderable attention [17, 61℄ and our workprovides a dire
tion to elu
idate the size dependen
e in terms of hydrogen-bond�u
tuations in water.6.1.1 Hydrophili
 surfa
esWe 
an envisage surfa
es of generi
 heterogeniety in our 
al
ulation. The heteroge-niety 
ould be in terms of spa
e-dependent νS and/or 
harge on the surfa
e. One ofthe simplest 
ases is a homogeneous hydrophili
 surfa
e with a �xed 
harge at ea
hsite. We �rst 
onsider the 
ase of a positively 
harged hydrophili
 surfa
e. On itsinterfa
e, the site fun
tional 
omprises weights 
orresponding to all states. When a72
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ros
opi
 surfa
eswater mole
ule is present on interfa
e, its hydrogen arm is restri
ted from pointingin the surfa
e dire
tion. We assign an energeti
 penalty to su
h orientations andthe site fun
tional 
an be arranged, analogous to the 
ase of a hydrophobi
 surfa
e,as given below:
ZI = Zsite + νSµC

′

(η, φ)Here, νS ∈ (−1, 0) (ideally, νS = −1) and the orientational weight 
orrespondingto the a�e
ted orientations C ′

(η, φ) is given by
C

′

+(η, φ) =

′

∑

α 6= 3 Hα = 0,±1
H3 = 1

exp

[

i
∑

α

(H2
α(r)η(r + eα) +Hα(r)φ(r + eα))

]

(6.16)The above expression is for an interfa
e site with surfa
e in e3 dire
tion. A nega-tively 
harged hydrophili
 surfa
e 
an also be envisaged su
h that, for an interfa
ewater mole
ule, orientations with lone-pair arm in the surfa
e dire
tion are ener-geti
ally penalized. Here, the orientational weight for the a�e
ted orientations isgiven by
C

′

−(η, φ) =

′

∑

α 6= 3 Hα = 0,±1
H3 = −1

exp

[

i
∑

α

(H2
α(r)η(r + eα) +Hα(r)φ(r + eα))

]

(6.17)We now 
ompute the free energy 
omponents GC , γS1
, γS2

, and GΓ using theirrespe
tive expressions for di�erent types of surfa
es. νS is an arbitrary parameterin the 
al
ulation. It is 
hosen 
lose to its ideal value for ea
h surfa
e type. Theproperties of water enter the 
omputation via Green's fun
tions Gη and Gφ. Theseare 
omputed within the model using Eq.(6.14). Due to the L-dependent modes inthe 
on�ned dire
tion, all the free energy 
omponents that depend on �u
tuationsare expe
ted to vary with the separation distan
e L.
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e between ma
ros
opi
 surfa
es6.2 Results : Hydrophobi
 for
e, interfa
ial ten-sionWe �rst mention that this 
omputation is totally parameter free on latti
e. Theequation of network uniquely �xes HB as a fun
tion of ρ. Temperature in the modelis 
onjugate to HB and 
an be self-
onsistently �xed for a given h(= 2HB/ρ).Hen
e, we des
ribe our results in terms of h to relate to water. All the freeenergy 
omponents given by Eqs.(6.8, (6.11), and (6.15) are evaluated from thepartition fun
tion upto one-loop order using the 
orresponding expressions for thepropagators [Eq.(4.28)℄.
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Figure 6.2: Di�erent 
ontributions to Gtot for two hydrophobi
 surfa
es (νS1
=

νS2
= −0.5). The 
urves are plotted for h = 3.58. In the order from top to bottomthe 
urves 
orrespond to γS(L) − γS(∞), GΓ, GC , and Gtot(L) − Gtot(∞) respe
-tively. The free energy densities are measured per unit hydrogen-bond strength.In Fig.(6.2) various 
ontributions to the intera
tion free energy and their rel-ative magnitudes are plotted as a fun
tion of the separation distan
e L betweenthe surfa
es. The plot is presented for h = 3.58. The Casimir part GC is leadingattra
tive 
omponent of the total intera
tion, followed by GΓ, while the interfa
ialfree energy γS is repulsive, albeit very small. GC and γS fall o� as 1

L
for large Lfrom our analyti
 
al
ulation. Numeri
ally, beyond 15 latti
e units they are in-signi�
ant. All the plots are presented for the latti
e distan
e L ≥ 5. For smaller74
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es
L the results are predominantly in�uen
ed by surfa
e e�e
ts. In the model, for
L = 4 there is only one layer whi
h 
an have free orientations (besides two interfa
elayers), while for L ≥ 5 there are two or more su
h free layers.
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Figure 6.3: For
e between two hydrophobi
 surfa
es (νS1
= νS2

= −0.5). Top (red)
urve 
orresponds to h = 3.03, middle (green) 
urve : h = 3.58, bottom (blue): h = 3.75. For
e is measured per unit hydrogen-bond strength per unit latti
edistan
e.For
e between the surfa
es is 
omputed as dis
rete derivative of the total freeenergy with respe
t to L and plotted in Fig.(6.3) for various h. The 
urves ef-fe
tively show that the for
e 
an manifest upto a length of about 15 latti
e unitswhi
h translates to about four times the orientational 
orrelation length in themodel. All the free energy 
omponents and the for
e obtain major 
ontributionsfrom orientational �u
tuations.Figures (6.4), (6.5), and (6.6) display the h-dependen
e of GC , γS, and GΓfun
tions. The Casimir part GC monotoni
ally in
reases in magnitude with h.The interfa
ial free energy γS de
reases and is always slightly repulsive. Interfa
ial�u
tuations-indu
ed part GΓ in
reases with h for L ≥ 6. At shorter distan
esit de
reases with in
reasing h. This indi
ates that the adhesion strength of GΓis higher for higher temperatures. This behavior is qualitatively similar to thetemperature dependen
e of intera
tion free energy for mesos
opi
 hydrophobi
surfa
es [2, 62℄. This rea�rms our interpretation that GΓ is analogous to the75
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Figure 6.4: GC as a fun
tion of L. Top (red) 
urve 
orresponds to h = 3.03, middle(green) 
urve : h = 3.58, bottom (blue) : h = 3.75.hydrophobi
 intera
tion free energy for mesos
opi
 surfa
es.Figure (6.7) is the plot for GΓ 
ontribution between two hydrophili
 surfa
esfor two 
ases: (i) Both surfa
es are of the same type i.e., both are either hydrogendonor type or hydrogen a

eptor type, and (ii) Both surfa
es are of dissimilar type.
GΓ in both 
ases is proportional to Gφ and hen
e, the 
orrelation length is twi
e aslonger in range than in the 
ase of hydrophobi
 surfa
es (where GΓ is proportionalto (Gφ)

2). At short distan
es, this 
ontribution is seen to be attra
tive for both
ombinations of hydrophili
 surfa
es. However, for large distan
es, it is weakly re-pulsive between like-
harged surfa
es, in 
ontrast to attra
tion between oppositely
harged surfa
es. Fig.(6.8) depi
ts the for
e between hydrophili
 surfa
es for bothsimilar and dissimilar 
ombinations. As expe
ted, the dissimilar pair of surfa
eshave marginally larger attra
tion than that of similar surfa
es. It is interesting tonote that like-
harged hydrophili
 surfa
es also have a net attra
tion. This is dueto dominan
e of the Casimir part GC whi
h is indi�erent to surfa
e 
harge.Figure (6.9) displays for
e between a hydrophobi
 and hydrophili
 surfa
e. Itbears similar pro�le as in the 
ase of two hydrophobi
 surfa
es. This is expe
tedbe
ause essentially GΓ is qualitatively same for both 
ases i.e., proportional to
(Gφ)

2. For all surfa
e 
ombinations the for
e is seen to in
rease in magnitude with76
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Figure 6.5: γS for a hydrophobi
 surfa
e (νS = −0.5). Top (red) 
urve 
orrespondsto h = 3.03, middle (green) 
urve : h = 3.30, bottom (blue) : h = 3.58.
h, dominantly due to the Casimir part whi
h is leading 
ontribution in all the
ases and is indi�erent to surfa
e types. This is a 
onsequen
e of the fa
t that theentropy indu
ed for
es are largely 
harge neutral.Next, we make an attempt to relate our 
omputational results to those of ex-periments. The free energy values presented in the graphs are in the units wherehydrogen-bond strength is unity. Generally, dimensionful quantities in latti
e mod-els and those in 
orresponding 
ontinuum models are not the same. So, it is best to
ompare dimensionless quantities. In our instan
e, for h = 3.58 and L = 6 latti
eunits whi
h translates to 6 × 1.57Å ≃ 9.5Å, |Gtot(6)−Gtot(∞)|

γS(∞)
≃ 9× 10−5

8.5× 10−3
≃

10−2. From experiments, the intera
tion free energy estimate when two hydropho-bi
 plates are about 10 Å apart is about 1 mJ m−2 [9℄, while the interfa
ial tensionis in the range 50− 100 mJ m−2 [63℄; their ratio agrees with our 
omputation. Inexperiments the free energy values are also measured for larger distan
es all theway up to 100 Å. Unfortunately, our model is not good for these distan
es. Thisdis
repan
y was already noti
ed when our results were 
ompared with the MDsimulation. The simple water model has only one orientational 
orrelation length,while there are more than one in both MD simulations [see Eq.(2.4) in Chapter2℄ and surfa
e for
e apparatus experiments [7℄. We 
on
lude that while the order77
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Figure 6.6: GΓ for two hydrophobi
 surfa
es (νS1
= νS2

= −0.5). For L ≥ 6, top(red) 
urve 
orresponds to h = 3.03, middle (green) 
urve : h = 3.58, bottom(blue) : h = 3.75.of magnitude estimate of the strength of hydrophobi
 for
e is in agreement withCasimir-like energies envisaged here, a few more important details are perhapsmissing in our simple model of water.6.3 Transverse density pro�leWe also dedu
e expression for water density pro�le along the 
on�nement dire
tion.
ρ(z) is obtained by assuming 
hemi
al potential for water µ̃ to be z-dependentand then, a partial derivative of ln(Z||) is taken with respe
t to βµ̃(z). At bothinterfa
es i.e., z = 1 and z = L − 1, the modi�ed fuga
ity provides additional
orre
tion to the average density. The expression for the density pro�le is given by
ρ(z) ≡ ∂(ln(Z||))

∂(βµ̃(z))
= ρC(z) +

1

A

〈

∂

∂(βµ̃(z))

(

∑

r1∈I1

Γ(r1) +
∑

r2∈I2

Γ(r2)

)〉

+ . . .(6.18)
ρC is obtained from di�erentiating Z in Eq.(6.3). It is the density pro�le betweenideal hydrophobi
 surfa
es (νS = 0) and is the dominant 
ontribution at all posi-tions. The expli
it expression for ρC(z) upto the one-loop order is same as given78
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Figure 6.7: GΓ for hydrophili
 surfa
es (νS1
= νS2

= −0.9). (+,+) 
urve 
orre-sponds to similar type of hydrophili
 surfa
es and (+,−), to dissimilar type. Both
urves are plotted for h = 3.58.in the Appendix (4.4.2) [see Chapter 4℄. The Green's fun
tions Gη and Gφ in theexpression are to be 
omputed from Eq.(6.14). The interfa
es-dependent term inEq.(6.18) 
an be analyzed using Eq.(6.12). This 
ontribution is only at z = 1 and
z = L− 1.The transverse density pro�le is shown in Fig.(6.10) after s
aling ρ(z) withrespe
t to the bulk density value. At both interfa
es there is a 
hara
tersti
 risein density. From the expressions for ρC(z) and the interfa
e terms [Eq.(6.12)℄ it isevident that the net 
ontribution of φ �eld 
orrelations is numeri
ally small, sin
e,density is a 
harge-neutral quantity and linear φ-dependent terms tend to 
an
elea
h other. Hen
e, away from the interfa
es, density rea
hes bulk density valuerapidly within a distan
e ξη. Many a model simulations in the past 
omputed thetransverse density pro�le for water 
on�ned between model hydrophobi
 surfa
es.The short-distan
e density in
rease is generi
ally observed [64, 65℄. At ambient
onditions the magnitude of the interfa
ial density is seen to be typi
ally 1.3 timesthe bulk density value in 
ase of surfa
es with alkane headgroups [65℄ and is inde-pendent of L. In our model study we see an L-independent in
rease of magnitude
1.2 for an ideal hydrophobi
 surfa
e. The under-estimation 
ould possibly be dueto dis
rete orientational freedom envisaged in our model. Also, the alkane head-79



Chapter 6. Hydrophobi
 for
e between ma
ros
opi
 surfa
es

−0.00012

−9e−05

−6e−05

−3e−05

 0

 4  6  8  10  12  14
L (lattice units)

F (+, +)
(+, −)

(+, +)

(+, −)

Figure 6.8: For
e between two hydrophili
 surfa
es (νS1
= νS2

= −0.9). (+,+)indi
ates similar type of hydrophili
 surfa
es and (+,−) indi
ates dissimilar type.Both 
urves 
orrespond to h = 3.58.groups in simulations may have an extra entropy due to �u
tuating short-lengthpolymer 
hains.The rise in interfa
ial density is also seen for water in the vi
inity of hydrophili
surfa
es [65, 66℄. In our model study, ρ(z) between hydrophili
 surfa
es also dis-plays qualitatively similar pro�le and a lower magnitude of interfa
ial density 
om-pared to that near an ideal hydrophobi
 surfa
e. In all the 
ases, the phenomenonis seen to be a 
onsequen
e of the fa
t that the water density has to vanish on thesurfa
e. This is 
ompensated by an in
rease at the interfa
e and the system 
omesba
k to its bulk equilibrium density value within a distan
e ξη from the interfa
e.We also 
al
ulate density 
orrelations within the interfa
ial plane and betweensites on interfa
e and away from the interfa
e. Density 
orrelations between anytwo sites r and r
′ 
an be 
al
ulated as given below.

〈W (r)W (r
′

)〉 =

〈

µ{. . .}
Zsite(r)

µ{. . .}
Zsite(r

′)

〉 (6.19)where Zsite(r) is the site fun
tional at r. To 
ompute density 
orrelations onsame interfa
e, the site fun
tional at both sites is given by Eq.(6.2). For density
orrelations between one site on interfa
e and another site away from interfa
e,80
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Figure 6.9: For
e between a hydrophili
 (νS1
= −0.9) and a hydrophobi
 surfa
e(νS2

= −0.5). Top (red) 
urve 
orresponds to h = 3.03, middle (green) 
urve: h = 3.58, bottom (blue) : h = 3.75. (±, 0) indi
ates that for
e is between apositively (negatively) 
harged hydrophili
 surfa
e and a hydrophobi
 surfa
e.the site fun
tionals are given by Eqs.(6.2) and (4.16) respe
tively. µ{. . .} refers tothe term proportional to µ in the respe
tive site fun
tional. The 
onne
ted partof the 
orrelation is given by < W (r)W (r
′

) >c ≡ (< W (r)W (r
′

) > − < W (r) ><

W (r
′

) >). The expli
it expression in ea
h 
ontext is dedu
ed upto one-loop orderin terms of Gη, Gφ and are given in Appendix (6.4.2).Density 
orrelations s
aled appropriately with respe
t to the bulk density valueare plotted in Fig.(6.11). The plot 
orresponds to h = 3.58. The �gure essentiallyindi
ates that density 
orrelations do not extend beyond few mole
ular diametersfrom the interfa
e. Also, there is no signi�
ant di�eren
e between 
orrelationswithin an interfa
e and that of between interfa
e and non-interfa
e sites.Similarly, orientational 
orrelations 
an also be analyzed using the expressionsfor orientational weights given in Appendix (6.4.1). Their e�e
t persists uptolonger distan
es away from interfa
e, proportional to the long 
orrelation lengthof the φ �eld.
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Figure 6.10: Transverse density pro�le for water between two hydrophobi
 surfa
esseparated by distan
e L = 16 and (inset) L = 6. Here, h = 3.58. The steeper(red) 
urve 
orresponds to ideal 
ase νS1
= νS2

= 0 and the other (green) 
urve
orresponds to νS1
= νS2

= −0.5.6.4 Appendix6.4.1 Orientational weight on interfa
eThe orientational weight for the water state in bulk water is given by
C(η, φ) =

′

∑

Hα = 0,±1
α = ±1,±2,±3

exp

[

i
∑

α

(H2
α(r)η(r + eα) +Hα(r)φ(r + eα))

]

where the prime indi
ates the summation is subje
t to 
onstraints Eq.(4.2).About the mean �eld 
on�guration η = φ = 0, the dual �elds are expandedupto quadrati
 order. C(η, φ) is then given by
C(η, φ) ≃ 90

[

1 +
2i

3

∑

α

ηα − 1

3

∑

α

η2α − 2

5

∑

α,β

ηαηβ −
1

3

∑

α

φ2
α +

2

15

∑

α,β

φαφβ

](6.20)where ηα ≡ η(r + eα) and φα ≡ φ(r + eα). 82
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Figure 6.11: Density 
orrelations near a hydrophobi
 interfa
e (νS = −0.5) s
aledappropriately with respe
t to bulk density value at h = 3.58. Correlations arebetween a referen
e site on interfa
e (z = 1) and an arbitrary site on a planede�ned by its z 
oordinate. Distan
e between the two sites is measured usingEu
lidean metri
.The orientational weight for the a�e
ted orientations for an interfa
ial waternear hydrophobi
 surfa
e are denoted by C
′

(η, φ). With boundary 
onditions η =

φ = 0 on surfa
e sites, it is given by
C

′

(η, φ) ≃ 60

[

1 +
3i

5

∑

α

ηα − 3

10

∑

α

η2α − 3

10

∑

α,β

ηαηβ −
3

10

∑

α

φ2
α +

1

10

∑

α,β

φαφβ

](6.21)Near a hydrophili
 surfa
e, the orientational weight is given by
C

′

±(η, φ) ≃ 30

[

1 +
3i

5

∑

α

ηα − 3

10

∑

α

η2α − 3

10

∑

α,β

ηαηβ −
3

10

∑

α

φ2
α

+
1

10

∑

α,β

φαφβ ∓
i

5

∑

α

φα

] (6.22)
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Chapter 6. Hydrophobi
 for
e between ma
ros
opi
 surfa
es6.4.2 Interfa
ial density 
orrelationsThe 
onne
ted part of density 
orrelation fun
tion between sites on same interfa
e,to leading order, is given by
〈W (r)W (r

′

)〉c ≃

− (µ
′

)2



(ν
′

+ 2λ
′

)2Gη(r, r
′

) +

(

2

3

(

1 +
3νS
5

− µ
′

))2
∑

α,α′

Gη(r + eα, r
′

+ eα′ )

+ 2

(

2

3

(

1 +
3νS
5

− µ
′

))

(ν
′

+ 2λ
′

)
∑

α′

Gη(r, r
′

+ eα′ )



 (6.23)where r and r
′ are arbitrary sites on same interfa
e; r+eα and r

′

+eα′ are respe
tivenear-neighbor sites in the dire
tions eα, eα′ respe
tively. Gη(r1, r2) and Gφ(r1, r2)
an be 
omputed from Eq.(6.14). ν
′ , λ′, and µ

′ are the redu
ed fuga
ities [seese
tion (4.2.1) in Chapter 4℄.The density 
orrelation fun
tion between a site on an interfa
e and another siteaway from interfa
e is given by
〈W (r)W (r

′

)〉c ≃

− (µ
′

)2



(ν
′

+ 2λ
′

)2Gη(r, r
′

) +
2

3
(1− µ

′

)

(

1 +
3νS
5

− µ
′

)

∑

α,α′

Gη(r + eα, r
′

+ eα′ )

+
2

3
(ν

′

+ 2λ
′

)

(

2 +
3νS
5

− 2µ
′

)





∑

α

Gη(r + eα, r
′

) +
∑

α′

Gη(r, r
′

+ eα′ )







(6.24)where r is any site on the interfa
e and r
′ is away from interfa
e; r+eα and r

′

+eα′are their respe
tive near-neighbor sites.Orientational 
orrelations 
an also be evaluated using the expression for ori-entational weights given in Appendix (6.4.1) and 
an be 
omputed using knownexpressions for Green's fun
tions.
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7Results summary
• MD simulation study reveals that orientational 
orrelations in liquid waterare longer in range, whereas density 
orrelations vanish beyond few mole
ulardiameters (12 Å). The longitudinal dipolar 
orrelation, in parti
ular, exhibitstwo 
orrelation lengths, one of order 5.2 Å and the other of 24 Å. MMF theoryfor a simple latti
e water model predi
ts a 
orrelation length for orientational�u
tuations 
onsistent with the shorter length. MC simulation of the model
on�rms this feature qualitatively. Coulomb intera
tions have no signi�
ante�e
t on the 
orrelation length, asymptoti
ally. This aspe
t is veri�ed bothwithin MD study and MMF theory.
• The �nite parti
le size and �nite number of bonds that parti
les 
an undergoin asso
iating �uids imply sum rule(s) for the �uid. MMF theory for thewater model expli
itly respe
ts the 
orresponding sum rule in the evaluationof partition fun
tion. The sum rule manifests in the form of equation ofnetwork, a relation between hydrogen bond density and mole
ular density.The same is borne out in experiments. Furthermore, as a 
onsequen
e of thesum rule the equation of state 
orre
tly predi
ts the density saturation andthe bond saturation in the model.
• Two mesos
opi
 hydrophobi
 surfa
es in water are shown to experien
e along range attra
tive for
e mediated by orientational 
orrelations in water.The dedu
ed for
e expression suggests that, for distan
es greater than thesurfa
e size itself, hydrophobi
 for
e falls o� exponentially with a 
orrelationlength half that of orientational 
orrelations i.e., about 12 Å. This distan
e85



Chapter 7. Results summarydependen
e is quantitatively 
onsistent with experiments. The shape of thesurfa
es and their mutual orientation are also shown to in�uen
e the magni-tude of the for
e.
• For the 
ase of ma
ros
opi
 hydrophobi
 surfa
es Casimir-like �u
tuationsin the intervening region give rise to an attra
tive hydrophobi
 for
e. Thefor
e obtains 
ontributions from : (i) Casimir part of free energy, whi
h solelyarises from dis
retization of �u
tuation modes in the region between surfa
esand is independent of nature of surfa
es, (ii) Interfa
ial free energy, whi
harises due to surfa
e-water intera
tion and is weakly distan
e-dependent,(iii) Interfa
ial �u
tuations-indu
ed part, whi
h is due to 
orrelation betweenorientational �u
tuations at both interfa
es and depends on nature of bothsurfa
es. All 
ontributions are of similar order of magnitude. The Casimirpart is the leading 
ontribution among them.
• The Casimir part is largely in�uen
ed by long range 
orrelations of orienta-tional �u
tuations. It behaves as 1

L
, asymptoti
ally. However, its strengthis pra
ti
ally weak for distan
es beyond four times the longest 
orrelationlength in water.

• We also dedu
e interfa
ial free energy for hydrophobi
 and hydrophili
 sur-fa
es in 
onta
t with water. This 
ontribution is seen to weakly depend onseparation distan
e.
• The interfa
ial �u
tuations-indu
ed part is exponentially de
aying with a
orrelation length half that of orientational 
orrelations in water. This 
on-tribution is analogous to the for
e between mesos
opi
 surfa
es.
• Our analysis 
an be 
arried out for generi
 surfa
e types. In 
ase of hy-drophili
 surfa
es the Casimir part is the leading 
ontribution. The interfa
ial�u
tuations-indu
ed part is seen to depend on 
harge symmetry between thesurfa
es and is longer in range 
ompared to the 
ase of hydrophobi
 surfa
esi.e., its 
orrelation length is same as that of orientational 
orrelations.
• The transverse density pro�le of water in 
on�nement dire
tion is seen to dis-play a 
hara
tersti
 rise near interfa
es, 
on
omitant with simulation studies.The density approa
hes the bulk value within a hydrogen bond length. 86
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