Geometry of Linear Diophantine Equations

Kamalakshya Mahatab

The Institute of Mathematical Sciences
Chennai

A thesis submitted in partial fulfillment of the requirements for the award of the degree of Master of Science
of
Homi Bhabha National Institute

Certificate

Certified that the work contained in the thesis entitled

Geometry of Linear Diophantine Equations

by Kamalakshya Mahatab has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

Amritanshu Prasad
The Institute of Mathematical Sciences
Chennai

Abstract

The non-negative solutions of linear homogeneous Diophantine equations are studied using the geometric theory of convex polytopes. After a brief introduction to the theory of convex polytopes and its relation to solutions of linear homogeneous Diophantine equations, a theorem of Stanley, Bruggesser and Mani on the decomposition of the monoid of solutions is discussed in detail. An application of this theorem, due to Stanley, to prove a conjecture of Anand, Dumir and Gupta is explained.

Acknowledgements

First and foremost I would like to express my sincere gratitude to my advisor Prof. Amritanshu Prasad, for providing me a helping hand whenever I was in need, be it mathematical, or linguistic. He has provided me a lot of nice ideas for many a proofs given in this thesis. I have been amply benefitted from his immense patience while correcting all the rough drafts of this thesis. I have been able to enrich my knowledge from many of the discussions we had during the course of this work. I am very grateful to him for giving me so much of his precious time.

I would also like to extend my gratitude to Prof. V. S. Sunder, who provided me the proof of Lemma 1.20.

I would like to thank my friends Sridhar Narayanan, Dinesh Valluri, Uday Bhaskar Sharma and Anish Mallick for enduring my talks, during the 'Combinatorics Seminar'. Their interest, interaction and patience has encouraged me to study and understand the subject in a better way.

I would also like to thank Sandipan De, Issan Patri, Srinivas Sista, Prateep Chackraborty and C. P. Anil Kumar with whom I discussed many of my ideas and also got some new ideas from these discussions.

My special thanks goes to Mr. Dibyakrupa Sahoo for helping me in $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ and for his constant encouragement during the course of this work.

Last but not the least, I wish to thank my institute 'The Institute of Mathematical Sciences, Chennai', for providing me an excellent environment for research. I am especially indebted to the excellent library of our institute.

Contents

Certificate iii
Abstract v
Acknowledgements vii
Notations and Conventions xi
Introduction 1
Chapter 1. Geometry of Solutions 3

1. Linear Homogeneous Diophantine Equations 3
2. Basic Theory of Convex Polyhedra 4
3. The Polyhedral Cone of a System of Linear Equations 14
Notes 20
Chapter 2. The Stanley-Bruggesser-Mani Decomposition 21
4. Pulling the Vertices of a Polytope 21
5. Shelling and the Bruggesser-Mani Theorem 28
6. The Stanley-Bruggesser-Mani Decomposition 30
Notes 32
Chapter 3. The Reciprocity Theorem 35
Notes 38
Chapter 4. The ADG Conjecture 39
Notes 43
Bibliography 45

Notations and Conventions

I have followed the following notations and coneventions in this report.

Symbol	Meaning		
\mathbb{N}	set of natural numbers $\{0,1,2, \ldots\}$		
\mathbb{Z}	set of integers		
\mathbb{Q}	set of rational numbers		
\mathbb{R}	set of real numbers		
$\mathbb{Z}_{>0}$	$\{1,2,3, \ldots\}$		
$\mathbb{Z}_{\geq 0}$	$\{0,1,2, \ldots\}$ same as \mathbb{N}		
bd A	boundary of A		
int A	interior of A		
relint	relative interior of A		
Conv A	convex hull of A		
Aff A	affine hull of A		
$[a, b]$	$\{x \mid x=\lambda a+(1-\lambda) b, 0 \leq \lambda \leq 1\}$		
$[a, b)$	$\{x \mid x=\lambda a+(1-\lambda) b, 0<\lambda \leq 1\}$		
(a, b)	$\{x \mid x=\lambda a+(1-\lambda) b, 0<\lambda<1\}$		
$L(x, y)$	line passing through x and y		
$x \rightarrow x$	x_{n} converges to x		
$\\|x\\|$	norm of x		
$x \cdot y$	usual dot product of x and y		
$X \cdot y$	$\{x \cdot y \mid x \in X\}$		
$y+X$	$\{y+x \mid x \in X\}$		
$\alpha+X$ for α scalar	$\left\{\left(\alpha+x_{1}, \ldots, \alpha+x_{n}\right) \mid x=\left(x_{1}, \ldots, x_{n}\right) \in X \subseteq \mathbb{R}^{n}\right\}$		

$A \coprod B$
$\mathbb{N} A$
$A-B$
\emptyset
$f: A \longrightarrow B$
$f(S)$ where $S \subseteq A$
$\left[a_{i, j}\right]_{m \times n}$ or simply $\left[a_{i, j}\right]$
$\delta_{i, j}$
0
H^{+}or H^{-}
$\Phi x=0$
\mathcal{C}_{Φ}
$S(P, w)$
$U(P, w)$
A disjoint union B
free monoid generated by A
elements of A not in B
the empty set
f is a map from A to B
$\{f(x) \mid x \in S\}$
an $m \times n$ matrix whose (i, j) th entry is $a_{i, j}$
$\delta_{i, j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}$
sometimes denotes the origin in \mathbb{R}^{n}
A half space determined by the hyperplane H (+ or sign depends on the context)
linear system of equations defined by the matrix Φ and the vector variable x
cone defined by the non-negative solutions of the linear system of equations $\Phi x=0$
facets of the polytope P visible from the point w
facets of the polytope P not visible from the point w

Introduction

This thesis concerns the solutions of linear homogeneous Diophantine equations, namely, equations of the form

$$
\Phi x=0,
$$

where Φ is an $m \times n$ matrix with integer entries, $x=\left(x_{1}, \ldots, x_{n}\right)^{t}$ is a column vector of variables, and we are only interested in solutions that are non-negative integers.

For example, one may wish to describe the set

$$
E_{\Phi}=\left\{\beta \in \mathbb{N}^{n} \mid \Phi \beta=0\right\}
$$

of solutions in a compact form. One way of doing this is to study the formal power series:

$$
E_{\Phi}(x)=\sum_{\beta \in E_{\Phi}} x^{\beta},
$$

where, for $\beta=\left(\beta_{1} \ldots, \beta_{n}\right), x^{\beta}$ denotes the monomial $x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}$. For example, for the equation

$$
\begin{equation*}
x_{1}-x_{2}=0, \tag{1}
\end{equation*}
$$

the formal power series is given by the rational function

$$
E_{\Phi}(x)=\frac{1}{1-x_{1} x_{2}} .
$$

This follows from the fact that the non-negative solutions to (1) form a free monoid, which is generated by $(1,1)$. It turns out that $E_{\Phi}(x)$ is always a rational function. This can be deduced from the fact that every pointed convex cone can be triangulated (see [Sta12, Theorem 4.6.11]). An alternative approach uses Hilbert's basis theorem from commutative algebra (see [Sta83] Theorem 3.7).

In this thesis, in Theorem 2.16 we show that E_{Φ} can be expressed as a disjoint union of translates of free monoids. This not only gives the rationality of $E_{\Phi}(x)$, but also the non-negativity of the coefficients of the Ehrhart polynomial [Sta80], and lies at the heart of the theory of Ehrhart polynomials. This result also turns out to be the crucial ingredient needed to prove the conjectures of Anand, Dumir and Gupta (see Chapter 4) on integer stochastic matrices.

Most of the material that I have presented in this thesis is motivated and influenced by Stanley's work [Sta83, Sta12, Sta82]. Here I have emphasized the theory of Convex polytopes that appears in Chapter 1 and Chapter 2. Chapter 1 is an introduction to the general theory of convex polyhedra and its relation to the solutions of linear Diophantine equations. Chapter 2 is devoted to proving the shellability of the boundary complex of a convex polytope (due to Brugesser and Mani [BM71]) and the resulting decomposition of the monoid of non-negative integer solutions of a system of linear Diophantine equations (due to Stanley [Sta80, Sta82]). Chapter 3 is devoted to the reciprocity theorem, and Chapter 4 to the proof of the conjectures of Anand, Dumir and Gupta due to Stanley.

In the first two chapters I have tried to give the proofs in detail while in Chapter 3 and Chapter 4 it is not so. I hope that this idea of presentation will make the thesis smooth to read and enjoyable as well.

CHAPTER 1

Geometry of Solutions

1. Linear Homogeneous Diophantine Equations

Let Φ be an $m \times n$ matrix with integer entries. Let $x=\left(x_{1}, \ldots, x_{n}\right)^{t}$ be a column vector of n-variables. Consider the system

$$
\Phi x=0
$$

of linear homogeneous equation with integral coefficients. Let

$$
E_{\Phi}=\left\{\beta \in \mathbb{N}^{n} \mid \Phi \beta=0\right\}
$$

denote the set of non-negative integer solutions of the above system. Our main purpose is to understand E_{Φ}.

Note here that instead of non-negative integer solutions if we just ask for integral solutions then the problem is easy. The integer solutions of $\Phi x=0$ form a subgroup of \mathbb{Z}^{n} which is free. The rank of this free group is the nullity of Φ. To find all the integral solutions of $\Phi x=0$ we just need to find a basis for this free group. But this is not the case for E_{Φ}. The set E_{Φ} is not a group, but rather, a monoid and further it can not be guaranteed that E_{Φ} is a free monoid.

Definition 1.1. Given any subset $S \subset \mathbb{N}^{n}$ define $S(x)=\sum_{\beta \in S} x^{\beta}$.

Here S is completely described by $S(x)$. In our case, understanding $E_{\Phi}(x)$ is equivalent to understanding E_{Φ}, which is what we are going to do in the following discussion.

The theory of E_{Φ} can be developed purely algebraically as well as geometrically. Here I have chosen the geometric way since it is more elegant and intuitive. The geometric theory of E_{Φ} proceeds by understanding the geometry of C_{Φ}, the convex hull of elements of E_{Φ}. It will turn out that C_{Φ} is a pointed convex polyhedral cone. To Make our
argument systematic and clear we need to go through some basic results concerning convex polyhedra.

2. Basic Theory of Convex Polyhedra

We will work with \mathbb{R}^{n} with its standard topology. \mathbb{R}^{n} will be considered as a vector space over \mathbb{R} with usual scalar multiplication and vector addition. The inner product is defined to be the dot product. If $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ then $x \cdot y=$ $\sum_{i=1}^{n} x_{i} y_{i}$.

Definition 1.2. A vector $z \in \mathbb{R}^{n}$ is said to be an affine combination of k vectors z_{1}, \ldots, z_{k} in \mathbb{R}^{n} if there exist real numbers $\lambda_{1}, \ldots, \lambda_{k}$ such that $\lambda_{1}+\ldots+\lambda_{k}=1$ and

$$
z=\lambda_{1} z_{1}+\cdots+\lambda_{k} z_{k}
$$

If, in addition, the real numbers $\lambda_{1}, \ldots, \lambda_{k}$ can be chosen to be non-negative, then z is said to be a convex combination of z_{1}, \ldots, z_{k}.

Given a set $A \subset \mathbb{R}^{n}$, the set of all affine combinations formed from all finite subsets of A is called the affine hull of A, and is denoted by Aff A. Similarly, the set of all convex combinations formed from all finite subsets of A is called the convex hull of A and is denoted by $\operatorname{Conv} A$. If $A=\operatorname{Conv} A$, then A is called a convex set.

Definition 1.3. Given $x \neq y$ in \mathbb{R}^{n}, we denote by $L(x, y)$ the set of all affine combinations of x and y and call it the line through x and $y . L(x, y)$ is uniquely determined by the following property: if $x^{\prime}, y^{\prime} \in L(x, y)$, with $x^{\prime} \neq y^{\prime}$, then $L(x, y)=L\left(x^{\prime}, y^{\prime}\right)$.

If a subset H of \mathbb{R}^{n} contains all lines $L(x, y)$ for all $x, y \in H$ such that $x \neq y$, then H is called a flat.

It follows from the above definition that for any subset $A \subset \mathbb{R}^{n}$, Aff A is flat.

Theorem 1.4. Every flat $H \in \mathbb{R}^{n}$ is the affine hull of a finite set of points in \mathbb{R}^{n}. Moreover, there exists $x \in \mathbb{R}^{n}$ and a linear subset V of \mathbb{R}^{n} such that $H=x+V$.

Proof. Consider a strictly increasing sequence of flats in H :

$$
x_{1} \subsetneq \operatorname{Aff}\left\{x_{1}, x_{2}\right\} \subsetneq \operatorname{Aff}\left\{x_{1}, x_{2}, x_{3}\right\} \subsetneq \cdots
$$

We claim that the above chain is of finite length. To prove this, define $B_{i-1}=\left\{x_{1}-\right.$ $\left.x_{i}, \ldots, x_{i-1}-x_{i}\right\}$. Suppose that the above sequence of flats has infinite length. Since we are in a finite dimensional vector space, there exists a least j such that B_{j} is a linearly dependent set. So there exist scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j-1}$, not all zero, such that

$$
\alpha_{1}\left(x_{1}-x_{j}\right)+\cdots+\alpha_{j-1}\left(x_{j-1}-x_{j}\right)=0 .
$$

Note that if $\alpha_{1}+\cdots+\alpha_{j-1}=0$, then B_{j-1} will be linearly dependent (easy to check). This gives

$$
\sum_{i=1}^{j-1} \frac{\alpha_{i}}{\sum_{l=1}^{j-1} \alpha_{l}} x_{i}=x_{j} .
$$

Since x_{j} is an affine combination of x_{1}, \ldots, x_{j-1}, we get a contradiction to our assumption that the chain of flats has infinite length. This also shows the chain stops in $j-1$ steps. So $H=\operatorname{Aff}\left\{x_{1}, x_{2}, \ldots, x_{j-1}\right\}$. But Aff $\left\{x_{1}, x_{2}, \ldots, x_{j-1}\right\}=x_{j}+\operatorname{span} B_{j-1}$.

If, for two vectors x and x^{\prime}, and two linear subspaces V and $V^{\prime}, x+V=x^{\prime}+V^{\prime}$, then it is easy to see that $V=V^{\prime}$ and $x-x^{\prime} \in V$.

Definition 1.5. The dimension of a flat H is defined to be the dimension of V, where V is the linear subspace for which H can be written as $x+V$.

Here is a result about convex sets stated without proof as the proof is easy and straightforward. A similar result also holds for affine sets or flats.

Lemma 1.6. Intersection of convex sets is convex. Intersection of flats is a flat.

Definition 1.7. For $\alpha \in \mathbb{R}^{n}$ and $a \in \mathbb{R}$, define a hyperplane

$$
H_{\alpha, a}=\left\{x \in \mathbb{R}^{n} \mid \alpha \cdot x=a\right\} .
$$

We will often denote $H_{\alpha, a}$ by H_{α} or simply H when the context is clear.
Every hyperplane $H_{\alpha, a}$ determines two half-spaces $H_{\alpha, a}^{+}=\left\{x \in \mathbb{R}^{n} \mid \alpha . x \geq a\right\}$ and $H_{\alpha, a}^{-}=\left\{x \in \mathbb{R}^{n} \mid \alpha . x \leq a\right\}$.

Here $H_{\alpha, a}$ is flat, and is a linear subspace only if $a=0 . H_{\alpha, a}^{+}$and $H_{\alpha, a}^{-}$are convex sets having intersection $H_{\alpha, a}$.

Definition 1.8. A convex polyhedron is an intersection of finitely many half-spaces (and hence is convex). The dimension of a convex polyhedron is defined to be the dimension of its affine hull.

Definition 1.9. Lat K be a convex polyhedron of dimension n in \mathbb{R}^{n}. A supporting hyperplane for a convex polyhedron K is a hyperplane H such that $K \subseteq H^{+}$or $K \subseteq H^{-}$ and $K \cap H$ is nonempty.

Now onwards, unless otherwise specified, we will always assume that our convex polyhedron K is of maximum dimension, i.e., if $K \subseteq \mathbb{R}^{n}$, then the dimension of K is n.

Definition 1.10. A face of a convex polyhedron is its intersection with a supporting hyperplane. If the polyhedron has dimension n then its $n-1$ dimensional faces are called facets; the 0 dimensional faces are called vertices or extremal points. The set of all faces of a convex polyhedron K will be denoted by $\mathcal{F}(K)$.

Note here that every face of a convex polyhedron is also a convex polyhedron. So the dimension of a face is well defined. Given a convex polyhedron K which is intersection of half-spaces, say $K=\cap_{i=1}^{n} H_{i}^{+}$, and a face $F=K \cap H$ of K, where H is a supporting hyperplane with $K \subseteq H^{+}, F$ is expressed as an intersection of half-spaces by $F=\cap_{i=1}^{n} H_{i}^{+} \cap H^{-}$.

Definition 1.11. Let $K=\cap_{i=1}^{n} H_{i}^{+}$, then the family $\left\{H_{i}^{+} \mid i \leq 1 \leq n\right\}$ is called irredundant $i f$, for all $1 \leq i \leq n, \cap_{j \neq i} H_{j}^{+} \neq K$.

The following theorem gives a unique representation of a convex polyhedron in terms of half-spaces.

Theorem 1.12. Let $K \subseteq \mathbb{R}^{m}$ be a convex polyhedron of dimension m. An expression $K=\cap_{i=1}^{n} H_{i}^{+}$, where $\left\{H_{i}^{+} \mid i \leq 1 \leq n\right\}$ is an irredundant family, is unique. Also all the facets of K are given by $F_{i}=K \cap H_{i}$.

Proof. If we can show that all the facets of K are given by $K \cap H_{i}$, then the uniqueness follows. First we will show that H_{i} is a supporting hyperplane for K. Let
$K_{i}=\cap_{j \neq i} H_{j}^{+} . H_{i}^{+}$does not contain K_{i} because $K_{i} \neq K . H_{i}^{-}$does not contain K_{i}, for if it did, then $K \subseteq H_{i}^{-} \cap H_{i}^{+}=H_{i}$, which contradicts the fact that K is of dimension m. So H_{i} intersects K_{i} in its interior. Therefore $H_{i} \cap K$ is of dimension $m-1$. Hence H_{i} is a supporting hyperplane for K intersecting it in a facet.

Conversely, given a facet F of K, consider the hyperplane $H=$ Aff $F . H$ is a supporting hyperplane, and we may assume that $K \subset K \cap H^{+}$. If H is not parallel to any H_{i}, then $H \cap H_{1}$ has dimension $n-2$. Since the boundary of K is contained in the union of the H_{i} 's, H must intersect K in its interior, which contradicts the fact that H is a supporting hyperplane. But if H is parallel to H_{i} and supporting, then $H=H_{i}$.

Corollary. Let $F_{i}:=K \cap H_{i}$, then $\operatorname{bd} K=\cup_{i=1}^{n} F_{i}$.
Proof. Clearly $\cup_{i=1}^{n} F_{i} \subseteq \operatorname{bd} K$. Let $x \in K$ such that $x \notin H_{i}$ for any i. Then there exists δ_{i} such that the ball $B\left(x, \delta_{i}\right) \subseteq H_{i}^{+}$. Let $\delta=\min \left\{\delta_{i}\right\}$. Then $B(x, \delta) \subseteq K$. So $x \notin \mathrm{bd} K$. Hence $\mathrm{bd} K \subseteq \cup_{i=1}^{n} F_{i}$.

Corollary. Every face is contained in a facet.

Proof. Since every face F is in the boundary of K, F is contained in $\cup_{i=1}^{n} F_{i}$, the union of all facets. Let H be the supporting hyperplane that determines F. Clearly Aff $F \subseteq H$. If F is not contained in any of the F_{i} 's, then Aff F intersects K in its interior, contradicting the assumption that H is supporting. So $F \subseteq F_{i}$ for some i.

Till now we only know that the number of facets of a convex polyhedron is finite, but need not the number of faces. Also the faces are subsets of facets, but what kind of subset are they? We will soon see that the lower dimensional faces are also faces of the facets. So an induction argument on the dimension of faces shows that the total number of faces is also finite. To understand all this, we begin with the following lemma which says that faces are closed under intersection.

Lemma 1.13. Any nonempty intersection of faces of a convex polyhedron is a face of the polyhedron.

Proof. Let G_{1}, \ldots, G_{r} be r faces of the convex polyhedron K such that they have a nonempty intersection. Assume, without loss of generality, that each of them contains
zero. Let $H_{\alpha_{i}}$ be the supporting hyperplane that determines G_{i} : $H_{\alpha_{i}}=\left\{x \mid x \cdot \alpha_{i}=0\right\}$. Also assume that $K \subseteq H_{\alpha_{i}}^{+}$. Consider $H=\left\{x \mid x \cdot\left(\alpha_{1}+\cdots+\alpha_{i}\right)=0\right\}$. Then $K \subseteq H^{+}$ and $\cap_{i=1}^{r} G_{i} \subseteq K \cap H$. Now if $x \in K \cap H$, then $x \cdot\left(\alpha_{1}+\cdots+\alpha_{i}\right)=0$, so that $x \cdot \alpha_{i}=0$ for all i. Therefore, $x \in G_{i}$. So we got $\cap_{i=1}^{r} G_{i}=K \cap H$ is a face of K with the supporting hyperplane H.

Lemma 1.14. Let G_{1} and G_{2} be two faces of K such that $G_{1} \subsetneq G_{2}$. Then G_{1} is a face of G_{2}.

Proof. Let H_{1}^{\prime} be the supporting hyperplane for G_{1}, then $H_{1} \cap \operatorname{Aff} G_{2}$ will be a supporting hyperplane for G_{2} in $\mathrm{Aff} G_{2}$. So G_{1} is a face of G_{2}.

Corollary. Let G_{1} and G_{2} be two faces of the same dimension such that $G_{1} \subseteq G_{2}$, then $G_{1}=G_{2}$.

Proof. If $G_{1} \subsetneq G_{2}$ then G_{1} is a face of G_{2}, hence their dimensions can not be equal. So we must have $G_{1}=G_{2}$.

Lemma 1.15. A facet of a facet is intersection of two facets.

Proof. Let F_{1} be a facet of K with facet plane H_{1}. In other words, $F_{1}=H_{1} \cap K=$ $H_{1} \cap_{i=1}^{n} H_{i}^{+}=\cap_{i=2}^{n} H_{i}^{+} \cap H_{1}$. The intersections $H_{i}^{+} \cap H_{1}$ are half-spaces in H_{1}. So every facet of F_{1} corresponds to the relative boundary of $\left(H_{i}^{+} \cap H_{1}\right)$, which is $H_{i} \cap H_{1}$. So facets of F_{1} are of the form $H_{i} \cap H_{1} \cap K=\left(H_{i} \cap K\right) \cap\left(H_{1} \cap K\right)=F_{i} \cap F_{1}$.

Theorem 1.16. Every face of K can be expressed as intersection of its facets.

Proof. Let F be a face of K. Then there exists a facet F_{1} such that $F \subseteq F_{1}$. If $F=F_{1}$ then we are done. Otherwise F is a face of F_{1} by Lemma 1.14, and so is contained in a facet of F_{1} say F_{1}^{1}. If $F_{1}=F_{1}^{1}$ then also we are done since every facet of a facet is intersection of two facets by Lemma 1.15. We will continue this process by constructing $F_{1}^{1}, F_{1}^{2}, F_{1}^{3}, \ldots$ and so on until $\operatorname{dim} F_{1}^{j}=\operatorname{dim} F$. But $F \subseteq F_{1}^{j}$, so by the corollary of Lemma 1.14, $F=F_{1}^{j}$.

Now we need to show that F_{1}^{j} is an intersection of facets. In fact, we ill show that it is an intersection of $j+1$ facets. We will do this by induction on the co-dimension
of F_{1}^{j}. The base case is clear by Lemma 1.15, where the co-dimension is 2. Assume $F_{1}^{j-1}=F_{1} \cap F_{2} \cap \cdots \cap F_{j}$ by induction hypothesis. Here F_{i} are facets of K with facet planes H_{i}. Now $F_{1}^{j-1}=\left(K \cap H_{1}\right) \cap \cdots \cap\left(K \cap H_{j}\right)=\left(\cap_{i=1}^{n} H_{i}^{+} \cap H_{1}\right) \cap \cdots \cap\left(\cap_{i=1}^{n} H_{i}^{+} \cap H_{j}\right)=$ $\cap_{i=j+1}^{n}\left(H_{1} \cap \cdots \cap H_{j} \cap H_{i}^{+}\right)$. Here $H_{1} \cap \cdots \cap H_{j} \cap H_{i}^{+}$is half-space in $H_{1} \cap \cdots \cap H_{j}$. We know that F_{1}^{j+1} is a facet of F_{1}^{j}, hence is of the form $H_{1} \cap \cdots \cap H_{j} \cap H_{i} \cap K$ for some $i \geq j+1$. Therefore $F_{1}^{j+1}=\left(H_{1} \cap K\right) \cap \cdots \cap\left(H_{j} \cap K\right) \cap\left(H_{i} \cap K\right)=F_{1} \cap F_{2} \cap \cdots \cap F_{j} \cap F_{i}$. This completes the proof.

Corollary. A face of a face is a face.

Proof. Let F be a face of K and G be face of F. G is the intersection of facets of F. To show that G is a face of K we need to show it is an intersection of facets of K. We will be done by Theorem 2 , if we can show that every facet of F is a face of K. From the proof of the Theorem 2, $F=F_{1} \cap \cdots \cap F_{j}$ is an intersection of j facets represented by $F=\cap_{i=j+1}^{n}\left(H_{1} \cap \cdots \cap H_{j} \cap H_{i}^{+}\right)$. So each facet of F is of the form $F_{1} \cap \cdots \cap F_{j} \cap F_{i}$ for some $i \geq j+1$. Since every facet of F is intersection of facets of K, it is a face of K.

Now we will look at a special type of convex polyhedron which is called a convex polytope. Formally,

Definition 1.17. A bounded convex polyhedron is called a convex polytope.

Here are two standard theorems that characterizes a convex polytope:

Theorem 1.18. Let P be convex polytope and let Vert P be the set of all zero dimensional faces of P, then Vert P is nonempty and P is the convex hull of Vert P.

Proof. Since P is convex, $\operatorname{ConvVert} P \subseteq P$. So we need to show $P \subseteq \operatorname{ConvVert} P$. Suppose that $\operatorname{Vert} P=\left\{x_{1}, \ldots, x_{l}\right\}$, so that

$$
\operatorname{ConvVert} P=\left\{\sum_{i=1}^{l} \lambda_{i} x_{i} \mid 0 \leq \lambda_{i} \leq 1, \sum_{i=1}^{l} \lambda_{i}=1\right\} .
$$

We will use induction on the dimension of P. If $\operatorname{dim} P=1$, then P is a line segment and it is the convex hull of its end points. Now assume the result to be true for all polytopes up to dimension $m-1$. We will prove it for $\operatorname{dim} P=m$. If $y \in \operatorname{bd} P$, then y is in some face
F of P which is also a polytope. By induction hypothesis $y \in \operatorname{ConvVert} F \subseteq \operatorname{ConvVert} P$. So choose $y \in \operatorname{int} P$. Consider a line passing through y. It intersects the boundary of the polytope at exactly two points (since P is bounded), say y_{1} and y_{2}. We have $y_{1}, y_{2} \in$ $\operatorname{ConvVert} P$ and $y=\lambda y_{1}+(1-\lambda) y_{2}$ for some $0<\lambda<1$. Therefore $y \in \operatorname{ConvVert} P$.

The next theorem is the converse of the previous one. That means we want to show that if something is the convex hull of finitely many points then it is a convex polytope. Here let $P=\operatorname{Conv} X$ where $X=\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$. Again we assume that P is of dimension m in \mathbb{R}^{m}. Before going into the theorem we need the following two lemmas.

Lemma 1.19. If H is a supporting hyperplane for P, then there exists a subset Y of X such that $H \cap P=\operatorname{Conv} Y$.

Note: Here we extended the definition of a supporting hyperplane to convex sets by defining: H is a supporting hyperplane for a convex set A if $H \cap A$ is nonempty and $A \subseteq H^{+}$.

Proof. Let $y=\sum_{j=1}^{r} \lambda_{i} x_{i_{j}} \in H \cap P$ where $x_{i_{j}} \in X$ and $0<\lambda_{i} \leq 1$. To prove the lemma it is enough to prove that each $x_{i_{j}} \in H \cap P$. Consider $x_{i_{1}}$ and the line $L:=L\left(x_{i_{1}}, \frac{\lambda_{2}}{\lambda_{1}-1} x_{i_{2}}+\cdots+\frac{\lambda_{r}}{\lambda_{1}-1} x_{i_{r}}\right)$. Either $H \cap L=L$ or a singleton set. Clearly $y \in H \cap L$. Let $y^{\prime}=\frac{\lambda_{2}}{\lambda_{1}-1} x_{i_{2}}+\cdots+\frac{\lambda_{r}}{\lambda_{1}-1} x_{i_{r}}$. Since $x_{i_{1}}$ and y^{\prime} are on the same side of H and y is on the line segment joining $x_{i_{1}}, y^{\prime}, L \subseteq H$. Hence $x_{i_{1}} \in H \cap P$. Similarly we can prove for each $x_{i_{j}}$.

The next lemma is a very useful fact about closed convex sets and uses the HahnBanach theorem. Here just the statement of the Hahn-Banach theorem (only the case that is useful to us) is given.

Theorem (Hahn-Banach). Given a compact convex set K and a point x outside K there exists a linear functional f and a constant c such that $f(x)<c<f(K)$.

Lemma 1.20. If $A \subseteq \mathbb{R}^{m}$ is a compact convex set of dimension m and $x \in \operatorname{bd} A$, then there exists a supporting hyperplane H of A containing x.

Proof. Since $x \in \operatorname{bd} A$ there is a sequence $x_{n} \rightarrow x$ and $\|x\| \leq 1$. By Hahn-Banach for each x_{n} there exists $y_{n} \in \mathbb{R}^{m}$ and $c_{n} \in \mathbb{R}$ such that $K \cdot y_{n}<c_{n}<x_{n} \cdot y_{n}$. Clearly $y_{n} \neq 0$.

We can assume $\left\|y_{n}\right\|$ is bounded, because for each $0<\lambda \leq 1, K \cdot \lambda y_{n}<\lambda c_{n}<x_{n} \cdot \lambda y_{n}$, and if $\left\|y_{n}\right\|>1$, then for some $\lambda<1 /\left\|y_{n}\right\|$ we replace λy_{n} instead of y_{n}. So y_{n} has a convergent subsequence. Without loss of generality we assume $y_{n} \rightarrow y$. So we have $K \cdot y \leq x \cdot y$. Now our required hyperplane is $H=\left\{z \in \mathbb{R}^{n} \mid z . y=x . y\right\}$.

Theorem 1.21. P, the convex hull of the finite set X, is a polytope.
Proof. We only need to show that P is a convex polyhedron, since the boundedness of P is clear. Let $y \in \mathbb{R}^{n}$ such that $y \notin P . S$ be the set of all affine combinations of at most $m-1$ points of X. Intersection of P with a supporting hyperplane will be called a face. By Lemma 1.19, S contain all faces of P of dimension at most $m-2$. Let M denote the union of cones spanned by S with vertex y. By Bair's category since $\operatorname{dim} P=m$, $\operatorname{int} P-M$ is nonempty. For $x \in \operatorname{int} P-M$, consider the ray $R=\{\lambda x+(1-\lambda) y \mid \lambda \geq 0\}$ with beginning point y. Let $\lambda_{0}=\inf \{\lambda \geq 0 \mid \lambda x+(1-\lambda) y \in P\}$. Since P is compact and $y \notin P, \lambda_{0}$ exists and nonzero. So $x_{0}:=\lambda_{0} x+\left(1-\lambda_{0}\right) y \in \operatorname{dd} P$. So x_{0} is in some face of P, by Lemma 1.20. Since $x \notin M, x_{0}$ does not belongs to any element of C. So F must have dimension $m-1$ and $H=\operatorname{Aff} F$ is a supporting hyperplane of P that contain y and P in two opposite sides. There fore $P=\cap_{H \in \Lambda} H^{+}$, where Λ is the collection of all supporting hyperplanes H of P such that $H \cap P$ is $m-1$ dimensional and $P \subseteq H^{+}$. Note that H is determined uniquely by $H \cap P$, and so by Lemma 1.19, Λ is finite.

Here Theorem 1.18 and Theorem 1.21 suggest an equivalent definition of polytope, namely, the convex hull of finitely many points. While working with them we will choose the more convenient one.

Now we will introduce another special type of convex polyhedron, namely the convex polyhedral cone.

Definition 1.22. A convex polyhedral cone \mathcal{C} is intersection of half-spaces where all the hyperplanes of the half-spaces pass through a common point, say o.

Usually o is assumed to be the origin $(0,0, \ldots, 0)$ of \mathbb{R}^{m}. So every facet plane of \mathcal{C} is linear. From now on, we will assume that o is the origin, unless otherwise specified.

Intuitively we understand that a cone has a unique vertex called the apex and in the above case we guess that the apex must be o. But here \mathcal{C} may not have a vertex at all.

But for some cases our intuition is true. To explain it more clearly note that if \mathcal{C} has a vertex then it must be the intersection of m facet planes of \mathcal{C} (as usual we assume that \mathcal{C} has dimension m and is in $\left.\mathbb{R}^{m}\right)$. Suppose the m facet planes of C whose intersection is a vertex of \mathbb{R}^{m}, are represented by a system of m linearly independent equations as:

$$
\begin{gathered}
a_{1,1} x_{1}+\cdots+a_{1, m} x_{m}=0 \\
\vdots \\
a_{m, 1} x_{1}+\cdots+a_{m, m} x_{m}=0
\end{gathered}
$$

The vector of variables $\left(x_{1}, \ldots, x_{m}\right)$ represents a point in \mathbb{R}^{m}. So if \mathcal{C} has a vertex then it must be 0 . But to say when exactly it has a vertex, we need to introduce the following definition; the Lemma following it answers our question.

Definition 1.23. \mathcal{C} is called pointed if it does not contain a line, equivalently, if $v \in \mathcal{C}$ then $-v \notin \mathcal{C}$.

Lemma 1.24. \mathcal{C} has a vertex if and only if it is pointed.

Proof. Suppose that \mathcal{C} is pointed. Let \mathcal{C} have n facets with facet planes given by:

$$
\begin{gathered}
a_{1,1} x_{1}+\cdots+a_{1, m} x_{m}=0 \\
\vdots \\
a_{n, 1} x_{1}+\cdots+a_{n, m} x_{m}=0
\end{gathered}
$$

Since v and $-v(v \neq 0)$ both can not be the solution of the above system the solution space must be zero dimensional so 0 is vertex of \mathcal{C}. Now given that 0 is a vertex of \mathcal{C}, we must have a supporting hyperplane H for \mathcal{C} which will intersect it at 0 . For any $v \neq 0$ in \mathcal{C}, v and $-v$ are in opposite sides of H, so $-v \notin \mathcal{C}$. This shows \mathcal{C} is pointed.

The only vertex of \mathcal{C} (when it is pointed) is 0 . Next come the one dimensional faces, which are called extremal rays. The role of extremal rays for a pointed polyhedral cone \mathcal{C} is same as the role of vertices for a convex polytope. In fact a pointed convex polyhedral cone \mathcal{C} is some way equivalent to a convex polytope P. To understand this correspondence we need the following definition:

Definition 1.25. If H is a (possibly affine) hyperplane that intersects \mathcal{C} in such a way that every ray coming out of 0 intersects H at a unique point, we call $\mathcal{C} \cap H$ is a nondegenerate cross section of \mathcal{C}.

Theorem 1.26. Let \mathcal{C} be a pointed convex polyhedral cone. Then there exists a hyperplane H such that $P:=\mathcal{C} \cap H$ is a nondegenerate cross section of \mathcal{C}. Further
(i) P is a convex polytope.
(ii) $\psi: \mathcal{F}(\mathcal{C})-\{0\} \longrightarrow \mathcal{F}(P)$ defined by $\psi(F)=F \cap H$ is a bijection and $\operatorname{dim} F=$ $\operatorname{dim}(F \cap H)-1$.

Proof. The half-spaces that define \mathcal{C} be given by the following set of inequalities.

$$
\begin{gathered}
a_{1} \cdot x \geq 0 \\
a_{2} \cdot x \geq 0 \\
\vdots \\
a_{n} \cdot x \geq 0
\end{gathered}
$$

where $a_{i}=\left(a_{i, 1}, a_{i, 2}, \ldots, a_{i, n}\right)$ and $x=\left(x_{1}, \ldots, x_{n}\right)$. Define the hyperplanes

$$
H^{0}=\left\{x \mid\left(a_{1}+\cdots+a_{n}\right) \cdot x=0\right\}
$$

and

$$
H^{1}=1+H^{0}
$$

It is easy to check that H^{0} is a supporting hyperplane for $\mathcal{C}, \mathcal{C} \cap H^{0}=\{0\}$ and $\mathcal{C} \subseteq\left(H^{0}\right)^{+}$. Now we claim that $\mathcal{C} \cap H^{1}$ is a nondegenerate cross section. For $x \in \mathcal{C}$ and $x \neq 0$, the ray through x originating from 0 is given by $R=\{\lambda x \mid \lambda \geq 0\}$. If $\lambda x \in H^{1}$ then $\left(\sum_{i=1}^{n} a_{i}\right) \cdot x=1$. Note here that $\left(\sum_{i=1}^{n} a_{i}\right) \cdot x>1$, since $x \in\left(H^{0}\right)^{+}-H^{0}$. Therefore the unique value for λ for x is $\frac{1}{\left(\sum_{i=1}^{n} a_{i}\right) \cdot x}$. This proves that $\mathcal{C} \cap H^{1}$ is nondegenerate.

Proof of (i). P is clearly a convex polyhedron. To show that it is a polytope we only need to show that P is bounded. If P is not bounded, then it contains a ray $R\left(x_{0}, \alpha\right)=\left\{x_{0}+t \alpha \mid t \geq 0, x_{0} \in P, \alpha \in H^{0}\right\}$. Every ray from 0 that intersects $R\left(x_{0}, \alpha\right)$ is of the form $\left.R_{t}=\left\{\lambda\left(x_{o}+t \alpha\right) \mid \lambda \geq\right)\right\}$. Let $A=\cup_{t \geq 0} R_{t} \subseteq \mathcal{C}$. Note that any element of
the form $\lambda x_{0}+s \alpha \in A$ for all $\lambda, s \geq 0$. If we fix s, since $s=\lambda t$, we have $\lambda=s / t$. When $t \rightarrow \infty, \lambda \rightarrow 0$. So $s \alpha \in \bar{A} \subseteq \mathcal{C}$. Choose $s=1$. This gives contradiction to the fact that $\mathcal{C} \cap H^{0}=\{o\}$. So P must be bounded and hence is a polytope.

Proof of (ii). To say that ψ is well defined we must show that for any face F of $\mathcal{C}, F \cap H^{1}$ is a face of P. Since every ray passing through an interior point of \mathcal{C} lies in $\{0\} \cup \operatorname{int} \mathcal{C}$ and intersects H^{1} at a nonzero point, $H^{1} \cap \operatorname{int} \mathcal{C} \neq \emptyset$, Therefore $\operatorname{dim} P=\operatorname{dim} H^{1}=m-1$. Let H be a supporting hyperplane for \mathcal{C} such that $H \cap \mathcal{C}=F$, then $H \cap H^{1}$ is a supporting hyperplane in H^{1} for P that intersects P at $F \cap H^{1}$. So $F \cap H^{1}$ is a face of P.

To show ψ is one to one, let F and G be two faces of \mathcal{C} such that $H^{1} \cap F=H^{1} \cap G$. Consider $\left\{\lambda x \mid x \in H^{1} \cap F, \lambda \geq 0\right\}$, which is equal to the set $\left\{\lambda x \mid x \in H^{1} \cap G, \lambda \geq 0\right\}$ since H^{1} intersects \mathcal{C} at nondegenerate cross section. So $F=G$.

To show ψ is onto, consider a face F^{\prime} of P with supporting hyperplane H^{\prime} in H^{1}. Then $\operatorname{Aff}\left(0, H^{\prime}\right)$ will be a supporting hyperplane of \mathcal{C} that intersects \mathcal{C} at a face F such that $F \cap \mathcal{C}=F^{\prime}$. So $\psi(F)=F^{\prime}$.

Now the only thing left is to show $\operatorname{dim} \psi(F)=\operatorname{dim} F-1$. Aff F is intersection of $\operatorname{dim} F$ number of facet planes that are not parallel to H^{0} and so to H^{1}. Therefore $\operatorname{dim} \psi(F)=$ $\operatorname{dimAff} F \cap H^{1}=\operatorname{dimAff} F-1=\operatorname{dim} F-1$.

Corollary. If \mathcal{C} is convex pointed polyhedral cone then it is the convex hull of its extremal rays.

Proof. Every extremal ray of \mathcal{C} corresponds to a vertex of P. Now given $x \in \mathcal{C}$, $x \neq 0$, there exists $\lambda>0$ such that $\lambda x \in P$. Since λx is in the convex hull of vertices of P (by Theorem 1.18), x is convex hull of extremal rays of \mathcal{C}.

Here we conclude this section and will go back to our original problem in the next section.

3. The Polyhedral Cone of a System of Linear Equations

Our interest is in the non-negative integral solutions of the system of linear equations $\Phi x=0$. Instead of non-negative integral solutions, if we ask for all non-negative realvalued solutions, the set of solutions is a convex pointed polyhedral cone in \mathbb{R}^{n} and the
integral solutions will form a lattice in this cone. To justify this let $\Phi=\left[a_{i, j}\right]_{m \times n}$. The non-negative solutions will be given by the intersection of the following half-spaces:
(*)

$$
\begin{aligned}
a_{1,1} x_{1}+\cdots+a_{1, n} x_{n} & \geq 0 \\
a_{1,1} x_{1}+\cdots+a_{1, n} x_{n} & \leq 0 \\
\vdots & \\
a_{m, 1} x_{1}+\cdots+a_{m, n} x_{n} & \geq 0 \\
a_{m, 1} x_{1}+\cdots+a_{m, n} x_{n} & \leq 0 \\
x_{1} & \geq 0 \\
\vdots & \\
x_{n} & \geq 0
\end{aligned}
$$

Note that all the hyperplanes for these half-spaces pass through origin. So the set of non-negative real-valued solutions, say \mathcal{C}_{Φ}, is a convex polyhedral cone. To see that it is pointed, consider the hyperplane $H=\left\{\left(y_{1}, \ldots, y_{n}\right) \mid \sum_{i=1}^{n} y_{i}=0\right\}$. Clearly H is a supporting hyperplane for \mathcal{C}_{Φ}, intersecting it only at the origin $\{o\}$. So \mathcal{C}_{Φ} is pointed. We will always assume \mathcal{C}_{Φ} is nonzero.

The special thing about \mathcal{C}_{Φ} in comparison to other pointed cones is that all its faces are uniquely determined by its support:

Definition 1.27. Given $x \in \mathbb{R}^{n}$ such that $x=\left(x_{1}, \ldots, x_{n}\right)$, define its support to be $\operatorname{Supp}(x)=\left\{i \mid x_{i} \neq 0\right\}$. For a subset A of $\mathbb{R}^{n}, \operatorname{Supp}(A)=\cup_{x \in A} \operatorname{Supp}(x)$.

Theorem 1.28. Let B_{n} be all the subsets of the set $\{0,1, \ldots, n\}$. Define a map f : $\mathcal{F}\left(\mathcal{C}_{\Phi}\right) \longrightarrow B_{n}$ by $f(F)=\operatorname{Supp}(F)$, then f is one to one.

Proof. We will prove it by induction on n. For the base case consider $n=2$. In this case if $\mathcal{C}_{\Phi} \neq 0$ then \mathcal{C}_{Φ} is a ray that starts from the origin. Clearly, $\operatorname{Supp}(0)=\emptyset$ and $\operatorname{Supp}\left(\mathcal{C}_{\Phi}\right) \neq \emptyset$. Assume that the induction hypothesis is true up to $n-1$. Now let \mathcal{C}_{Φ} be a cone in \mathbb{R}^{n}. Let the coordinate planes be $G_{i}=\left\{x \mid x_{i}=0\right\}$. If $\operatorname{dim} \mathcal{C}_{\Phi}=1$ the theorem is trivial. So assume $\operatorname{dim} \mathcal{C}_{\Phi} \geq 2$.

Claim 1. Every face has to be contained in some G_{i}.
If $x \in \mathcal{C}_{\Phi}$ that is not in any G_{i} then there exists an open ball around x, say B, which does not intersect any G_{i}. Let the solution space of $\Phi x=0$ be V, then $B \cap \mathcal{C}_{\Phi}=B \cap V$,
which is a open ball in V and hence in \mathcal{C}_{Φ}. So $x \in \operatorname{int} \mathcal{C}_{\Phi}$. This says that every element of the boundary of \mathcal{C}_{Φ} is contained in some G_{i}, again since G_{i} are flat and faces of \mathcal{C}_{Φ} have at most dimension n every face of \mathcal{C}_{Φ} is contained in some G_{i}.

Claim 2. If F_{1}, F_{2} are two distinct faces of \mathcal{C}_{Φ} then $\operatorname{Supp}\left(F_{1}\right) \neq \operatorname{Supp}\left(F_{2}\right)$.
If F_{1} and F_{2} do not lie in same G_{i} then clearly we are done. Otherwise F_{1} and F_{2} are faces of $\mathcal{C}_{\Phi} \cap G_{i}$ and we are done by induction. This completes the proof of Claim 2 and hence proof of the theorem.

To understand the non-negative integral solutions of E_{Φ} we need to deal with some kind of generating set for E_{Φ}. One way is as follows.

Definition 1.29. $\beta \in E_{\Phi}$ is called a completely fundamental solution if, for all positive integers n and $\alpha, \alpha^{\prime} \in E_{\Phi}$ such that $n \beta=\alpha+\alpha^{\prime}$, we have $\alpha=i \beta$ and $\alpha^{\prime}=(n-i) \beta$ where i and $n-i$ are positive integers. We will denote the set of all completely fundamental solutions by $C F\left(E_{\Phi}\right)$ or just $C F$ when the context is clear.

Theorem 1.30. $\beta \in C F$ if and only if β satisfies the following two properties:
(i) β is in some extremal ray say R_{β} of C_{Φ}.
(ii) Every $\beta^{\prime} \in R_{\beta} \cap E_{\Phi}$ satisfies $\beta-\beta^{\prime} \in E_{\Phi}$.

Proof. Let $\beta \in C F$. If $\operatorname{Supp} \beta$ is not minimal then there exists $\alpha \in E_{\Phi}$ such that $\operatorname{Supp} \alpha \subset \operatorname{Supp} \beta$. Now choose a large enough n such that $n \beta-\alpha \in E_{\Phi}$. This contradicts the fact that $\beta \in C F$. So $\operatorname{Supp} \beta$ is minimal, hence by Theorem 1.26β is contained in an extremal ray R_{β}. This completes the proof of (i). For (ii), we know that $R_{\beta} \cap E_{\Phi}$ is a singly generated monoid. Because it is a completely fundamental element, β must be the generator of this monoid which implies (ii).

For the converse, suppose β is an element of E_{Φ} that satisfies conditions (i) and (ii). Suppose that for some positive integer $n, n \beta=\alpha+\alpha^{\prime}, \alpha, \alpha^{\prime} \in E_{\Phi}$. Since β is in an extremal ray $R_{\beta}, \alpha, \alpha^{\prime} \in R_{\beta}$. By (ii) since β is the generator of the monoid $R_{\beta} \cap E_{\Phi}$, $\alpha=i \beta$ and $\alpha^{\prime}=i^{\prime} \beta$ where $i, i^{\prime} \in \mathbb{Z}_{>0}$ and $i+i^{\prime}=n$. This shows $\beta \in C F$.

Corollary. $C F\left(E_{\Phi}\right)$ is finite and unique.

Elements of $C F$ are the generators of the extremal rays of \mathcal{C}_{Φ}. So every element of E_{Φ} can be expressed as a positive rational linear combination of elements of $C F$. But this expression may not be unique. For example, consider $\Phi=\left[\begin{array}{llll}1 & -1 & 1 & -1\end{array}\right]$, then

$$
C F=\{(1,1,0,0),(1,0,0,1),(0,0,1,1),(0,1,1,0)\} .
$$

Now, $(1,1,1,1)=(1,1,0,0)+(0,0,1,1)=(1,0,0,1)+(0,1,1,0)$. But if elements of $C F$ are linearly independent, then we can guarantee the uniqueness.

Definition 1.31. A pointed convex polyhedral cone is called simplicial if non-zero vectors chosen from its distinct extremal rays are linearly independent.

We will call a hyperplane rational if the equation that defines it has rational coefficients. Similarly a convex polyhedron is said to be rational if all the intersecting half-spaces are defined by rational hyperplanes.

Definition 1.32. A simplicial monoid is defined to be the set of lattice points of a rational simplicial cone.

For a simplicial monoid $S, C F(S)$ is a linearly independent set. Let $C F(S)=$ $\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$. So $C F$ is t dimensional. Here $\alpha_{1}, \ldots, \alpha_{t}$ are called quasi-generators of S. Define

$$
D_{S}=\left\{\gamma \in S \mid \gamma=a_{1} \alpha_{1}+\cdots+a_{t} \alpha_{t}, 0 \leq a_{i}<1\right\}
$$

Lemma 1.33. S be a simplicial monoid with quasi-generators $\alpha_{1}, \ldots, \alpha_{t}$. Then every element $\gamma \in S$ can be written uniquely in the form $\gamma=\beta+a_{1} \alpha_{1}+\cdots+a_{t} \alpha_{t}$ where $\beta \in D_{S}$ and a_{i} are non-negative integers.

Proof. Suppose that γ is expressed in terms of the quasi-generators as $\gamma=b_{1} \alpha_{1}+$ $\cdots+b_{t} \alpha_{t}$, where b_{i} 's are positive rationals. If $b_{i}^{\prime}=b_{i}-\left[b_{i}\right]$, then $\gamma=\left(b_{1}^{\prime} \alpha_{1}+\cdots+b_{t}^{\prime} \alpha_{t}\right)+$ $\left(\left[b_{1}\right] \alpha_{1}+\cdots+\left[b_{t}\right] \alpha_{t}\right)$. We choose $\beta=b_{1}^{\prime} \alpha_{1}+\cdots+b_{t}^{\prime} \alpha_{t}$ and $a_{i}=\left[b_{i}\right]$. Now to prove the uniqueness of the expression let $\gamma=\beta+a_{1} \alpha_{1}+\cdots+a_{t} \alpha_{t}=\beta^{\prime}+a_{1}^{\prime} \alpha_{1}+\cdots+a_{t}^{\prime} \alpha_{t}$ such that $\beta, \beta^{\prime} \in D_{S}$ and $a_{i} \in \mathbb{Z}_{\geq 0}$. So $\beta-\beta^{\prime}=\left(a_{1}-a_{1}^{\prime}\right) \alpha_{1}+\cdots+\left(a_{t}-a_{t}^{\prime}\right) \alpha_{t}$. Since $\beta, \beta^{\prime} \in D_{S}$, $a_{i}-a_{i}^{\prime} \in(-1,1)$ and is integer as a_{i}, a_{i}^{\prime} are integers. So $a_{i}-a_{i}=0$, hence $\beta=\beta^{\prime}$. Also
$a_{1} \alpha_{1}+\cdots+a_{t} \alpha_{t}=a_{1}^{\prime} \alpha_{1}+\cdots+a_{t}^{\prime} \alpha_{t}$. By the linear independence of $\alpha_{i}, a_{i}=a_{i}^{\prime}$. This completes the proof of uniqueness of the expression of γ.

In the beginning of the chapter we have remarked that any subset $S \subseteq \mathbb{N}$ is completely described by its generating function $S(x)$. The above lemma helps us to write $S(x)$ for a simplicial monoid S in a nice form.

Corollary. We have

$$
S(x)=\frac{\sum_{\beta \in D_{S}} x^{\beta}}{\prod_{i=1}^{t}\left(1-x^{\alpha_{i}}\right)}
$$

Proof. Indeed,

$$
\begin{aligned}
S(x) & =\sum_{\beta \in D_{S}} \sum_{a_{i} \in \mathbb{N}} x^{\beta+a_{1} \alpha_{1}+\cdots+a_{t} \alpha_{t}} \\
& =\sum_{\beta \in D_{S}} x^{\beta}\left(\sum_{a_{i} \in \mathbb{N}} \prod_{i=1}^{t}\left(x^{\alpha_{i}}\right)^{a_{i}}\right) \\
& =\frac{\sum_{\beta \in D_{S}} x^{\beta}}{\prod_{i=1}^{t}\left(1-x^{\alpha_{i}}\right)}
\end{aligned}
$$

as claimed.
This shows that the generating function of a simplicial monoid is a rational function, where the numerator is a polynomial with positive coefficients. Can we use this to express the generating function function of E_{Φ} in such a nice form? We will now see that this is done by decomposing \mathcal{C}_{Φ} into simplicial cones.

Definition 1.34. A triangulation of a pointed convex polyhedral cone \mathcal{C} is a collection $\Gamma=\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$ of simplicial cones such that the following three properties are satisfied:
(i) $\cup_{i=1}^{t} \sigma_{i}=\mathcal{C}$
(ii) If $\sigma \in \Gamma$ then every nonzero face of σ also in Γ
(iii) $\sigma_{i} \cup \sigma_{j}$ is a common face of σ_{i} and σ_{j}.

Here is an important theorem about triangulation of a pointed polyhedral cone.

Theorem 1.35. A pointed convex polyhedral cone \mathcal{C} possess a triangulation Γ whose extremal rays are the extremal rays of \mathcal{C}.

We are skipping the proof of this theorem in this chapter and will come back to it in the next chapter after introducing the concept of pulling of vertices of a convex polytope. Although a proof without using pulling of vertices can be given (by induction on the dimension of P using Theorem 2.10, see also [BR07, Appendix B]), we prefer to use pulling, since it gives a shellable triangulation (Corollary to Theorem 2.10). Our next theorem is just a corollary of the above one, but separately given as a theorem to emphasize its importance.

Theorem 1.36. For a system of linear diophantine equations $\Phi x=0$,

$$
E_{\Phi}(x)=\frac{p(x)}{\prod_{\beta \in C F}\left(1-x^{\beta}\right)}
$$

Here $p(x)$ is a polynomial in x_{1}, \ldots, x_{n}.

Proof. Let Γ be a triangulation of \mathcal{C}_{Φ} such that the extremal rays of Γ are the extremal rays of \mathcal{C}_{Φ}. Let $\sigma_{1}, \ldots, \sigma_{t}$ be the maximal elements of Γ (with respect to inclusion). Let S_{i} be the lattice points of σ_{i}, which is a simplicial monoid. Since $C_{\Phi}=\cup_{i=1}^{t} \sigma_{i}$, $E_{\Phi}=\cup_{i=1}^{t} S_{i}$. Fix the notation $[t]=\{1, \ldots, t\}$ for each positive integer t. For any subset A of $[t]$ define $S_{A}=\cap_{i \in A} S_{i}$. If S_{A} is non-zero then it is a simplicial monoid. By corollary to the Lemma 1.33, $S_{A}(x)=\frac{p_{A}(x)}{\Pi_{\beta \in C F\left(S_{A}\right)}\left(1-x^{\beta}\right)}$. Now we will use the principle of inclusion exclusion to write a formula for $E_{\Phi}(x)$:

$$
E_{\Phi}(x)=\sum_{A \subseteq[t]}(-1)^{|A|-1} \frac{p_{A}(x)}{\prod_{\beta \in C F\left(S_{A}\right)}\left(1-x^{\beta}\right)}
$$

By our triangulation $C F_{\Phi}=\cup_{A \subseteq[t]} C F\left(S_{A}\right)$. So $E_{\Phi}(x)=\frac{p(x)}{\Pi_{\beta \in C F}\left(1-x^{\beta}\right)}$. (Note here that $p(x)$ may not have positive coefficients.)

From the above theorem we know that $E_{\Phi}(x)$ is a rational function where the denominator is given with respect to completely fundamental elements of $E_{\Phi}(x)$. But to know the numerator exactly is a difficult task. The next two chapters of this article are developed in this direction.

Notes

In this chapter, Section 2 serves as an introduction to the theory of convex polytopes and convex polyhedra. I have referred to Grunbaum's book [Grü03] for this section. The proof of Theorem 1.12 and a part of the proof of Theorem 1.21 are taken from this book. Materials of Section 3, Theorems 1.30, 1.35, 1.36 and Lemma 1.33, are taken from [Sta12] (see 4.6). For a brief introduction to generating functions see [Sta78].

CHAPTER 2

The Stanley-Bruggesser-Mani Decomposition

In this section we will go through two important techniques regarding a polytope P. The first one is called pulling of vertices which is used to triangulate faces of P without introducing new vertices; this is something similar to Theorem 1.35 in case of convex polyhedral cone. In fact we will prove Theorem 1.35 using pulling. The second one is of great importance as it proves two well known conjectures, namely the Upper bound Conjecture proved by Macmullen [McM70] and the ADG Conjecture proved by Stanley [Sta82]. It is called the shelling of facets of a polytope. Finally, in the third section we will see the Stanley-Bruggesser-Mani decomposition of the monoid E_{Φ}, which uses both shelling and pulling and is a beautiful as well as useful theorem about E_{Φ}.

1. Pulling the Vertices of a Polytope

We will begin with a n-dimensional polytope in \mathbb{R}^{n}.

Definition 2.1. Let H be a hyperplane in \mathbb{R}^{n} such that P is contained in one of the half-spaces determined by H. Say $P \subseteq H^{+}$. For some $w \in \mathbb{R}^{n}-P$, we say w is beneath H if $w \in \operatorname{int} H^{+}$and w is beyond H if $w \in \operatorname{int} H^{-}$. If $w \in \mathbb{R}^{n}-P$, and for all facet planes H of $P, w \notin H$, we say w is admissible. Further for some facet F of P, we say that an admissible point w is beyond or beneath F if and only if it is so for the facet plane Aff F.

The following theorem explains the faces of the new polytope that are obtained by adding a new vertex to a given polytope.

Theorem 2.2. Let P be a n-dimensional polytope in \mathbb{R}^{n}, and let $w \in \mathbb{R}^{n}-P$. Then all the faces of the polytope $P^{\prime}:=\operatorname{Conv}(\{w\} \cup P)$ other than the vertex w are characterized as follows:
(i) A face F of P is a face of P^{\prime} if and only if there is a facet $F^{\prime \prime}$ of P which contains F, and w is beneath $F^{\prime \prime}$ with respect to P.
(ii) If F is a face of P, then $F^{\prime}=\operatorname{Conv}(\{w\} \cup F)$ is a face of P^{\prime} if and only if at least one of the following two conditions holds
(a) $w \in \operatorname{Aff} F$
(b) w is beyond at least one facet of P containing F and beneath another.

Proof. P^{\prime} is a polytope, and since $w \notin P, w$ is a vertex of P^{\prime}. First we will show that the faces of P^{\prime} are either of type (i) or (ii). Let's begin the proof of this fact with the following claim:

Claim. Let H be a supporting hyperplane for P^{\prime} (we exclude the case when H intersects P^{\prime} only at w). Then $H \cap P$ is nonempty.

If H does not contain w, consider $\lambda x+(1-\lambda) w \in H$ for some $0<\lambda \leq 1$ and $x \in P$. If $\lambda<1$ then x and w lie in two different open half spaces determined by H which gives a contradiction to the fact that H is supporting for P^{\prime}. So $\lambda=1$ and $x \in H$. Now if H contains w and some other element, say $\lambda x+(1-\lambda) w$, where $\lambda>0$ and $x \in P$ then the line through x and w contained in H. So $x \in H$. This shows in any case $H \cap P \neq \emptyset$.

The above claim shows that H is a supporting hyperplane for P and so $H \cap P$ is a face of P. If $w \notin H$ then $H \cap P^{\prime}$ is a face of type (i), and if $w \in H, H \cap P^{\prime}$ is a face of type (ii).

Proof of (i). Let F be a face contained in a facet $F^{\prime \prime}$ of P and w be beneath $F^{\prime \prime}$ with respect to P. Then Aff $F^{\prime \prime}$ is a supporting hyperplane of P^{\prime}, intersecting it at $F^{\prime \prime}$. So $F^{\prime \prime}$ is a face of P^{\prime} too. Since F is a face of $F^{\prime \prime}$, it is a face of P^{\prime}. To prove the other implication, let F be a common face of P and P^{\prime}. If all the facets of P^{\prime} containing F contain w, then their intersection which is F also contains w. This is a contradiction to $w \notin F$. So we must have a facet $F^{\prime \prime}$ of P^{\prime} that contains F and $w \notin F^{\prime \prime} . F^{\prime \prime}$ is a face of P, since it is face of type (i) of P^{\prime}. Clearly w is beneath $F^{\prime \prime}$ with respect to P .

Proof of (ii). Suppose, for a face F of $P, \operatorname{Conv}(\{w\} \cup F)$ is a face of P^{\prime}. Choose $x \in \operatorname{relint} F$ and $y \in \operatorname{int} P$ such that $A=\operatorname{Aff}\{x, y, w\}$ is a two dimensional face (this is possible if we are assuming $n \geq 2$; for $n=1$ the statement of the theorem is trivial). Let $P_{1}=P \cap A . P_{1}$ is a polygon and $F_{1}=F \cap A$ is a face of it. $P_{1}^{\prime}=P^{\prime} \cap A=\operatorname{Conv}\left(\{w\} \cup P_{1}\right)$. If $F_{1}^{\prime}=\operatorname{Conv}\left(F_{1} \cup\{w\}\right)$ is a face of P_{1}^{\prime} then either F_{1} is a vertex or Aff F_{1} contains w, in which case F_{1} is an edge. If $w \in \operatorname{Aff} F_{1}$, then clearly $w \in \operatorname{Aff} F$. For the other case, when
F_{1} is a vertex, it is intersection of two edges of P_{1}. It's easy to check that w is beneath one of these edges and beyond the other. The same is true for the facets containing these edges. Now we will prove, if (a) or (b) of (ii) is satisfied, then $\operatorname{Conv}(\{w\} \cup F)$ is a face of P^{\prime}. The case of (a) is trivial. For (b), assume that $0 \in F$. Let F_{1} and F_{2} be two facets of P such that $F \subseteq F_{1} \cap F_{0}, w$ is beyond F_{1} and beneath F_{2}. Let $H_{1}=\left\{x \mid x \cdot a_{1}=0\right\}$ be Aff $F_{1}, H_{2}=\left\{x \mid x . a_{2}=0\right\}$ be Aff F_{2} and $P \subseteq H_{1}^{+} \cap H_{2}^{+}$. Lat $H_{0}=\left\{x \mid x \cdot a_{0}=0\right\}$ be a supporting hyperplane for P that intersects it at F. By our assumption $w \cdot a_{1}<0$ and $w \cdot a_{2}>0$. If $w \in H_{0}$, then H_{0} will be a supporting hyperplane for P^{\prime} intersecting it at $\operatorname{Conv}(\{w\} \cup F)$ and so we are done. Otherwise $w \cdot a_{0}>0$ or $w \cdot a_{0}<0$. We will only treat the case $w \cdot a_{0}>0$, as other case is similar. Let $c=\frac{w \cdot a_{0}+w \cdot a_{2}}{-w \cdot a_{1}}>0$, and $b:=a_{0}+a_{2}+c a_{1}$. Define $H=\{x \mid x . b=0\}$. It is easy to check that H is a supporting hyperplane that intersects P^{\prime} at $\operatorname{Conv}(\{w\} \cup F)$.

Definition 2.3. Consider bdP. Let w be an admissible point. The set of all visible points of bd P from w is defined as $S(P, w)=\cup_{F \in \Lambda_{v}} F$ where

$$
\Lambda_{v}=\{F \mid F \text { is a facet of } P \text { and } w \text { is beyond } F\} .
$$

Similarly the set of invisible points on $\operatorname{bd} P$ is defined as $U(P, w)=\cup_{F \in \Lambda_{u}} F$ where

$$
\Lambda_{u}=\{F \mid F \text { is a facet of } P \text { and } w \text { is beneath } F\} .
$$

Lemma 2.4. Given a polytope P with a vertex v, there exists an admissible w such that $S(P, w)$ is the union of the facets that contain v and $U(P, w)$ is the union of the facets that do not contain v.

Proof. Let F_{1}, \ldots, F_{r} be all the facets that contain v. Let $H_{i}=\operatorname{Aff} F_{i}$ and $P \subseteq$ $\cap_{i=1}^{r} H_{i}^{+}$. Since $\cap_{i=1}^{r} H_{i}^{+}$has nonempty interior so does $\cap_{i=1}^{r} H_{i}^{-}$. Choose a point $w \in$ int $\cap_{i=1}^{r} H_{i}^{-}$, then w is beyond F_{1}, \ldots, F_{r} with respect to P and $[w, v) \subseteq$ int $\cap_{i=1}^{r} H_{i}^{-}$. Consider F, a facet of P that does not contain v. Then Aff F either does not intersect $[w, v)$ or intersects it exactly at one point. So we can choose w such that Aff F does not intersect $[w, v)$ for any facet F of P. Since v and w are on the same side of Aff F for any facet F not containing v, w is beneath F.

From the above lemma there exists a w such that it is beyond all the facets that contain v and beneath all the facets that do not contain v; also $[w, v)$ does not intersect any facet plane of P.

Definition 2.5. Let v be a vertex of a polytope P and w be an admissible point such that $[w, v)$ does not intersect any facet plane and v is an interior point of $P^{\prime}=\operatorname{Conv}(\{w\} \cup P)$, then we say P^{\prime} is obtained from P by pulling the vertex v to w.

Lemma 2.6. We can pull any vertex of a polytope to some admissible point.

Proof. The w we described in Lemma 2.4 is a point to which v can be pulled. Here we need to verify that v is an interior point of P^{\prime}. If not, then v is in some facet of P^{\prime}. From Theorem 2.2, every facet of P^{\prime} is a face of P not containing v or of the form $\operatorname{Conv}(\{w\} \cup F)$. So v is in a facet of P^{\prime} which is of the form $\operatorname{Conv}(\{w\} \cup F)$. Since F is a face of P and w is admissible, $w \notin \operatorname{Aff} F$. Again by Theorem $2.2, w$ is beyond a facet of P containing F. So $\operatorname{Conv}(\{w\} \cup F) \cap P=F$ and since $v \notin F$ we have $v \notin \operatorname{Conv}(\{w\} \cup F)$. We saw in any case v can not be contained in a facet of P^{\prime}, hence v must be an interior point of P^{\prime}.

Pulling of vertices brings changes to the structure of the faces of a polytope. We will see that the number of faces of a polytope increases with pulling. But after a finite number of steps the number of faces remains same, which is a kind of 'saturation point' while pulling. At that stage the faces of the polytope become simplices. We discuss this briefly in our next theorem.

Definition 2.7. A cell complex Λ is defined to be a finite set of polytopes in \mathbb{R}^{n} such that, given $\sigma_{1}, \sigma_{2} \in \Lambda$, we have $\sigma_{1} \cap \sigma_{2} \in \Lambda$ and is a common face of σ_{1} and σ_{2}. Each element of Λ is called a cell. $A=\cup_{\sigma \in \Lambda} \sigma$ is called a geometric realization of Λ. Conversely, Λ is called a cell complex structure on A.

We will also use the term 'cell complex' to refer to the geometric realization of a cell complex.

Definition 2.8. A polytope is called a simplex if it is convex hull of $k+1$ vertices and is of dimension k. A triangulation of a subset A of \mathbb{R}^{n} is a cell complex structure on

A whose every element is a simplex. A simplicial cell complex is a cell complex (or the geometric realization of a cell complex) whose every element is a simplex.

Note that if a polytope A is a simplex then the convex hull of any proper subset of vertices of A gives a face of A.

The following theorem gives a way to triangulate the boundary of a polytope by pulling its vertices.

Theorem 2.9. By successively pulling the vertices of a polytope P finitely many times we can obtain a polytope P^{\prime} such that $\mathrm{bd} P^{\prime}$ is a simplicial cell complex. Further let $\Gamma^{\prime}=\left\{F \mid F \in \mathcal{F}\left(P^{\prime}\right)\right\}$ and define $f: \operatorname{Vert} P^{\prime} \rightarrow \operatorname{Vert} P$ by setting $f\left(v^{\prime}\right)=v$ if v^{\prime} is pulled from v successively. Construct $\Gamma=\left\{F \mid F=\operatorname{Conv}\left(f\left(\operatorname{Vert} F^{\prime}\right)\right), F^{\prime} \in \Gamma^{\prime}\right\}$. Then Γ is a triangulation of $\mathrm{bd} P$.

Proof. If $\operatorname{dim} P=1$ the above theorem is trivial. If $\operatorname{dim} P=2$ then P is a polygon. Since all the faces are one dimensional, $\operatorname{bd} P$ is simplicial. So assume $\operatorname{dim} P \geq 3$. Let v be a vertex of P and let P_{1} be obtained from P by pulling v to v^{\prime}.

Claim. If all the i dimensional faces of P are simplices then all the $i+1$ dimensional faces of P_{1} containing v^{\prime} are simplices.

By Theorem 2.2, the faces of P_{1} that contain v^{\prime} are of the form $\operatorname{Conv}\left(\left\{v^{\prime}\right\} \cup F\right)$, where F is a face of P. If $\operatorname{dim} \operatorname{Conv}\left(\left\{v^{\prime}\right\} \cup F\right)=i+1$, then $\operatorname{dim} F=i$. Since all i dimensional faces of P are simplices, we have that F is a simplex and so $\operatorname{Conv}\left(\left\{v^{\prime}\right\} \cup F\right)$ is a simplex. This proves our claim.

By the above claim if we successively pull all the vertices of the polytope P at least once and obtain a new polytope P_{2}, then all the two dimensional faces of P_{2} are simplices. Continuing this way, we obtain a polytope P^{\prime} all of whose faces are simplices. Note that the number of vertices of P is equal to the number of vertices of P^{\prime}.

Now to show Γ is a triangulation of $b d P$ we need to show that the following two properties hold:
(1) $\operatorname{bd} P=\cup_{G \in \Gamma} G$
(2) If $G_{1}, G_{2} \in \Gamma$ then $G_{1} \cap G_{2} \in \Gamma$ and is a common face of G_{1} and G_{2}.

We will prove it by using induction on the number of pullings. For the base case, suppose we obtained P_{1} from P by pulling a vertex v to v_{1}. Let $\Gamma_{1}=\left\{\operatorname{Conv}\left(f_{1}(\operatorname{Vert} F)\right) \mid F \in\right.$ $\left.\mathcal{F}\left(P_{1}\right)\right\}$, where $f_{1}: \operatorname{Vert} P_{1} \longrightarrow \operatorname{Vert} P$ is defined by $f_{1}\left(v_{1}\right)=v$ and f_{1} is identity on all other vertices. We will show condition (1) and (2) for Γ_{1}.

For (1), note that all the faces which do not contain v are faces of P_{1}. So we consider $x \in \operatorname{bd} P$ that is contained in a facet F_{1} which contains v. The line $L(x, v)$ intersects the boundary of F_{1} at a unique point other than v, say u. We claim that u is in a facet of F_{1} that does not contain v. We will prove this by induction on the dimension of F_{1}. Let u be in a facet F_{2} of F_{1} that contains v (otherwise the proof of our claim is clear). The line $L(x, v)$ is contained in $\operatorname{Aff} F_{2}$ and intersects the boundary of F_{2} at u. By induction hypothesis there exists a facet of F_{2} not containing v and containing u. But this facet of F_{2} is the intersection of a facet of F_{1} not containing v with F_{2}. So we have proved that there is a facet F of F_{1} that does not contain v but contains u. F is the intersection of two facets, one of which contains v and other does not contain v. So $\operatorname{Conv}(\{v\} \cup F) \in \Gamma_{1}$. But $x \in \operatorname{Conv}(\{v\} \cup F)$ since $x \in[v, u]$. This completes the proof of the fact that $\mathrm{bd} P=\cup_{G \in \Gamma_{1}} G$.

To show condition (2) holds for Γ_{1}, we will characterize the intersection of two elements σ_{1} and σ_{2} of Γ_{1} in the following three cases:
(a) σ_{1} and σ_{2} are faces of P not containing v.
(b) σ_{1} is a face of P not containing v but $\sigma_{2}=\operatorname{Conv}\left(\{v\} \cup F_{2}\right)$
(c) $\sigma_{1}=\operatorname{Conv}\left(\{v\} \cup F_{1}\right)$ and $\sigma_{2}=\operatorname{Conv}\left(\{v\} \cup F_{2}\right)$

Case (a) clearly satisfies (2). For Case (b) first we will show that if $\sigma_{1} \cap F_{2}=\emptyset$ then $\sigma_{1} \cap \sigma_{2}=\emptyset$. If not, let $x \in \sigma_{1} \cap \sigma_{2} \neq \emptyset$. Let H be a supporting hyperplane for P determining σ_{1} and $P \subseteq H^{+}$. Let the line $L(x, v)$ intersect F_{2} at u. Then $x \in[v, u]$. But $[v, u] \subseteq \operatorname{int}\left(H^{+}\right)$since $\sigma_{1} \cap F_{2}=\emptyset$. This contradicts the assumption that $x \in \sigma_{1}$. Now suppose $\sigma_{1} \cap F_{2} \neq \emptyset$. Any $x \in \sigma_{1} \cap \sigma_{2}$ is of the form $x=\lambda v+(1-\lambda) y$ for some $y \in F_{2}$ and $0<\lambda \leq 1$. We will show that $x \in \sigma_{1} \cap F_{2}$. If $\lambda=1$ then we are done, so assume $\lambda \neq 1$. If $y \in \sigma_{1} \cap F_{2}$ then $v \in \sigma_{1}$ since $x \in \sigma_{1}$, which is not possible. If $y \notin \sigma_{1}$ then the supporting hyperplane for P determining σ_{1} has to separate y and v giving a contradiction. It follows that λ must be 1 and so $x \in \sigma_{1} \cap F_{2}$. We conclude that
$\sigma_{1} \cap \sigma_{2}=\sigma_{1} \cap F_{2}$, which is a common face of σ_{1} and σ_{2}, and is in Γ_{1}. For Case (c), since $\operatorname{Conv}\left(\{v\} \cup\left(F_{1} \cap F_{2}\right)\right.$ is a common face of F_{1} and F_{2} and is contained in Γ_{1}, we only need to show $\sigma_{1} \cap \sigma_{2}=\operatorname{Conv}\left(\{v\} \cup\left(F_{1} \cap F_{2}\right)\right.$. Clearly $\operatorname{Conv}\left(\{v\} \cup\left(F_{1} \cap F_{2}\right) \subseteq \sigma_{1} \cap \sigma_{2}\right.$. For the other inclusion let $x \in \sigma_{1} \cap \sigma_{2}$. Then x can be written in the following two forms: $x=\lambda v+(1-\lambda) y_{1}$ and $x=\lambda^{\prime} v+\left(1-\lambda^{\prime}\right) y_{2}$, where $y_{1} \in F_{1}, y_{2} \in F_{2}$ and $0<\lambda, \lambda^{\prime} \leq 1$. Then the line through x, v intersects F_{1} at y_{1} and F_{2} at y_{2}. But this line intersects $\operatorname{bd} P$ at a unique point other than v. So $y_{1}=y_{2}, \lambda=\lambda^{\prime}$ and $x \in \operatorname{Conv}\left(\{v\} \cup\left(F_{1} \cap F_{2}\right)\right)$. This completes the proof of property (2) for Γ_{1}.

Suppose that, after successively pulling the vertices of $P m+1$ times, we obtained P^{\prime}. Suppose that P^{\prime} was obtained from P_{m} by pulling the vertex v_{m} to w. Let w correspond to the vertex v of P by f. Let Γ_{m} be the cell complex structure induced by P_{m} on $\mathrm{bd} P$. By induction hypothesis Γ_{m} satisfies (1) and (2). We have to prove that Γ satisfies (1) and (2). To prove (1), we will only consider those elements in $\operatorname{bd} P$ that lie in some facet of P containing v. Let x be a point on such a facet. Since Γ_{m} satisfies (1), $x \in G \in \Gamma_{m}$, where G corresponds to G^{\prime}, a face of P_{m} containing v_{m}. Let x correspond to x^{\prime} in G^{\prime}. Every line through x^{\prime} and v_{m} intersects the boundary of G^{\prime} in some facet $G^{\prime \prime}$ of G^{\prime} such that $v_{m} \notin G^{\prime \prime}$. Then $\operatorname{Conv}\left(\{w\} \cup G^{\prime \prime}\right)$ is a face of P^{\prime} and so $\operatorname{Conv}\left(\{v\} \cup G_{1}\right) \in \Gamma$ (where $G^{\prime \prime}$ correspond to G_{1} in $\left.P\right)$. Since $x \in \operatorname{Conv}\left(\{v\} \cup G_{1}\right)$ this completes the proof of (1). For the case (2), if $\sigma_{1}, \sigma_{2} \in \Gamma$, we only need to consider the cases when at least one of σ_{1}, σ_{2} is not in Γ_{m}. Proof for these cases are similar to that of case (b) and (c) of Γ_{1}.

Theorem 2.10. P be a polytope and v be a vertex of P. Let Λ^{\prime} be a triangulation of the set of facets of $\mathrm{bd} P$ that do not contain v. Define $A=\left\{\operatorname{Conv}(v, F) \mid F \in \Lambda^{\prime}\right\}$ and let Λ be the set consisting of all the elements of A along with their faces. Then Λ is a triangulation of P.

Proof. Let $x \in P$ and $x \neq v$. The line through x and v intersects a facet of P not containing v and so an element of Λ^{\prime}, say it F. Then $x \in \operatorname{Conv}(\{v\} \cup F)$. This shows that $P=\cup_{\sigma \in \Lambda} \sigma$. Now to show the intersection property, let $\sigma_{1}=\operatorname{Conv}\left(\{v\} \cup F_{1}\right)$ and $\sigma_{2}=\operatorname{Conv}\left(\{v\} \cup F_{2}\right)$, where F_{1} and F_{2} are in Λ^{\prime}. If $x \in \sigma_{1} \cap \sigma_{2}$, then the line through x and v intersects $\operatorname{bd} P$ at a unique point other than v. So the line intersects $F_{1} \cap F_{2}$
and hence $x \in \operatorname{Conv}\left(\{v\} \cup F_{1} \cap F_{2}\right)$ which is a common face of σ_{1} and σ_{2} and is in Λ. Verifying the intersection property for the other cases is trivial.

Corollary. Let Γ be as in Theorem 2.9. Let v be the vertex that was pulled last. Let $\Lambda^{\prime}=\{F \in \Gamma \mid v \notin F\}$. Then Λ constructed in Theorem 2.10 is a triangulation of P. Also $\mathrm{bd} \Lambda^{\prime}:=\left\{F \mid F \in \Lambda^{\prime}, F \subseteq \operatorname{bd} P\right\}$ is the same as Γ.

The proof of the above corollary is clear from the construction of Γ in Theorem 2.9 and by the construction of Λ in Theorem 2.10.

2. Shelling and the Bruggesser-Mani Theorem

Definition 2.11. Let P be a polytope. A line G is said to be in general position with respect to P if
(1) it is not parallel to any of the facet planes of P
(2) it intersects the facet planes of P at distinct points.

Lemma 2.12. Given an admissible point w with respect to the polytope P, there exists a line in general position passing through w that intersects int P.

Proof. Let F_{1}, \ldots, F_{r} be the facets of P. The set of all lines that pass through w and are parallel to F_{i} forms a hyperplane H_{i} through w. Let $H_{i, j}$ be the hyperplane passing through Aff $F_{i} \cap \operatorname{Aff} F_{j}$ and w. Since P is n dimensional, $\operatorname{int} P \nsubseteq \cup_{i=1}^{r} H_{i} \cup_{i, j} H_{i, j}$. So there exists a line in general position that passes through w and $\operatorname{int} P$.

Definition 2.13. Let G be a line in general position as described in Lemma 2.12. Then G intersects $\operatorname{bd} P$ at two distinct points p_{1} and p_{2}. Suppose that $\left(p_{1}, w\right]$ does not intersect P and $\left(p_{2}, w\right]$ intersects P. Let the connected components of $G-\operatorname{int} P$ be G_{1} and G_{2} where $w, p_{1} \in G_{1}$ and $p_{2} \in G_{2}$. We will give a linear ordering on $G-\operatorname{int} P$ as follows; given $x, y \in G-\operatorname{int} P$ we will say $y \geq x$ if
(1) $x \in G_{1}$ and $y \in G_{2}$ or if,
(2) $x, y \in G_{1}$ and $x \in\left[p_{1}, y\right]$ or if,
(3) $x, y \in G_{2}$ and $y \in\left[x, p_{2}\right]$.

Lemma 2.14. Let $t \in G_{1}$. For a facet F of P, let $g(F)$ be the point of intersection of G with $\operatorname{Aff} F$. Let $t \neq g(F)$ for any F. Then

$$
S(P, t)=\bigcup_{\substack{F \text { is a facet of } P \\ g(F)<t}} F
$$

and

$$
U(P, t)=\bigcup_{\substack{F \text { is a facet of } P \\ g(F)>t}} F
$$

Proof. $F \subseteq S(P, t)$ if and only if t and P are on different sides of Aff F. Since $g(F)<t$ and $t \in G_{1}$, clearly t and p_{1} are on different sides of Aff F and therefore t and P are on different sides of Aff F. Conversely, given $t>p_{1}$ and $g(F)<t$, Aff F intersects the line joining t and p_{1} and so t is beyond Aff F. This completes the proof of the expression for $S(P, t)$. The expression for $U(P, t)$ follows since it contains all the facets that are not contained in $S(P, t)$.

We now come to the theorem for shellability, which is due to Bruggesser and Mani [BM71, Section 4, Prop. 2]:

Theorem 2.15 (Bruggesser and Mani). Let $P \subseteq \mathbb{R}^{n}$ be an n-dimensional polytope and $w \in \mathbb{R}^{n}$ be an admissible point with respect to P. Then we can arrange facets of $S(P, w)$ (Similarly $U(P, w))$ as F_{1}, \ldots, F_{r} such that for all $i \geq 2, F_{i} \cap\left(\cup_{j=1}^{i-1} F_{j}\right)$ is a union of facets of F_{i}. This technique of arranging facets is called the shelling of facets of $S(P, w)$ (or $U(P, w)$).

Proof. We will apply induction on the number of facets. If there is only one facet the result is trivial. Assume by induction hypothesis that the result is true for any $S(P, w)$ (or $U(P, w))$ having fewer than r facets. Consider a line G in general position that intersects P in its interior and passes through w. By Lemma 2.12 such a line exists. Suppose the line from w intersects P at p_{1} and leaves it at p_{2}. We will arrange the facets of P as $\left\{F_{i}\right\}_{i=1}^{k}$ such that according to the linear order described in Definition 2.13; $i \leq j$ if and only if $g\left(F_{i}\right) \leq g\left(F_{j}\right)$. Therefore $p_{1}=g\left(F_{1}\right)<g\left(F_{2}\right)<\cdots<g\left(F_{k}\right)=p_{2}$.

Case 1. $S(P, w)$; where $S(P, w)$ has r facets.

Let i_{0} be the largest integer such that $g\left(F_{i_{0}}\right)<w$. By Lemma 2.14, $i_{0}=r$ and $S(P, w)=\cup_{i=1}^{r} F_{i}$. We have assumed $r>1$. Let t be a point on G such that $g\left(F_{r-1}\right)<$ $t<g\left(F_{r}\right)$. Again by Lemma 2.14 $S(P, t)=\cup_{i=1}^{r-1} F_{i}$. By induction hypothesis, the given ordering of the facets is a shelling of $S(P, t)$. To show $S(P, w)$ has a shelling we need to show $S(P, t) \cap F_{r}$ is union of facets of F_{r}. We claim $S(P, t) \cap F_{r}=S\left(F_{r}, g\left(F_{r}\right)\right)$. Note that $g\left(F_{r}\right)$ is admissible with respect to F_{r}. In Aff $F_{r}, g\left(F_{r}\right)$ is beyond $F_{i} \cap F_{r}$ if $i<r$ and beneath $F_{i} \cap F_{r}$ if $i>r$. So $S(P, t) \cap F_{r}$ is union of facets of F_{r}.

Case 2. $U(P, w)$; where $U(P, w)$ has r facets and for all facets F in $U(P, w), g(F) \in G_{2}$.
In this case we can find w^{\prime} sufficiently faraway from p_{2} in G_{2} such that $U(P, w)=$ $S\left(P, w^{\prime}\right)$. Now by Case 1 , the result follows.

Case 3. $U(P, w)$ where $U(P, w)$ has at least one facet in G_{1}, and $U(P, w)$ is a union of r facets.

Let j_{0} be the smallest number such that $F_{j_{0}} \in U(P, w)$. Then $j_{0}=k-r+1$. Choose $t \in G_{1}$ such that $g\left(F_{j_{0}}\right)<t<g\left(F_{j_{0}+1}\right)$. By Lemma 2.14, $U(P, t)=\cup_{i=j_{0}+1}^{k} F_{i}$, and so $U(P, w)=U(P, t) \cup F_{j_{0}}$. By the induction hypothesis, the given order on facets is a shelling for $U(P, t)$. We have to show that $U(P, t) \cap F_{j_{0}}$ is a union of facets of $F_{j_{0}}$, which is equivalent to showing that $U(P, t) \cap F_{j_{0}}=U\left(F_{j_{0}}, g\left(F_{j_{0}}\right)\right)$. In $\operatorname{Aff} F_{j_{0}}, g\left(F_{j_{0}}\right)$ is beyond $F_{i} \cap F_{j_{0}}$ if $i<j_{0}$ and beneath $F_{i} \cap F_{j_{0}}$ if $i>j_{0}$. So $U(P, t) \cap F_{j_{0}}=U\left(F_{j_{0}}, g\left(F_{j_{0}}\right)\right)$, that is, $U(P, t) \cap F_{j_{0}}$ is union of facets of $F_{j_{0}}$. This completes the proof of Case 3.

3. The Stanley-Bruggesser-Mani Decomposition

We will return to the problem of understanding non-negative integral solutions of the linear system Φ. Here the same notation as there in Chapter 1 will be used. As before the cone \mathcal{C}_{Φ} will have dimension n and will be contained in \mathbb{R}^{n}.

Theorem 2.16 (Stanley, Bruggesser and Mani). There exist free submonoids E_{1}, \ldots, E_{t} of E_{Φ} of rank n and $\delta_{1}, \ldots, \delta_{t} \in E_{\Phi}$ such that E_{Φ} is disjoint union of $\delta_{i}+E_{i}$, i.e.,

$$
E_{\Phi}=\coprod_{i=1}^{t}\left(\delta_{i}+E_{i}\right)
$$

Proof. Let $H^{1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \sum_{i=1}^{n} x_{i}=1, x_{i} \in \mathbb{R}^{n}\right\}$ and $P:=H^{1} \cap \mathcal{C}_{\Phi}$ be a nondegenerate cross section of \mathcal{C}_{Φ}. Then P is an $n-1$ dimensional polytope. By pulling
the vertices of P successively we triangulate $\mathrm{bd} P$ as described in Theorem 2.9. Let P^{\prime} be the polytope obtained from P by pulling its vertices and whose boundary complex corresponds to the triangulation of $\mathrm{bd} P$ by f (see Theorem 2.9). Let v be the vertex of P which corresponds to the last vertex pulled to obtain P^{\prime}. Assume that v corresponds to w of P^{\prime}. There exists a point w^{\prime} such that $U\left(P^{\prime}, w^{\prime}\right)$ is the union of all the facets of P^{\prime} not containing w. The facets of P^{\prime} not containing w will correspond to the $n-1$ dimensional elements, say F_{1}, \ldots, F_{r}, in the triangulation of $\operatorname{bd} P$ that do not contain v. Let $G_{i}:=\operatorname{Conv}\left(\{v\} \cup F_{i}\right)$. By Corollary to the Theorem 2.10 the G_{i} 's, along with their faces, give a triangulation of P. As P is a nondegenerate cross section of \mathcal{C}_{Φ}, by Theorem 1.26, this triangulation of P gives a triangulation of \mathcal{C}_{Φ}. Let $C\left(G_{i}\right)$ be the cone of G_{i}, which is the union of all the rays having source 0 and intersecting G_{i}. The $C\left(G_{i}\right)$'s are the n dimensional elements in the triangulation of \mathcal{C}_{Φ}. Let Q_{i} be the monoid of lattice points in $C\left(G_{i}\right)$. Since $C\left(G_{i}\right)$'s are simplicial cones, Q_{i} are simplicial monoids and so $C F\left(Q_{i}\right)$'s are linearly independent sets. Recall that $D_{Q_{i}}=\left\{\sum_{\beta \in C F\left(Q_{i}\right)} a_{\beta} \beta \mid 0 \leq a_{\beta}<1\right\}$. By Lemma 1.33, $Q_{i}=\coprod_{\gamma \in D_{Q_{j}}}\left(\gamma+\mathbb{N} C F\left(Q_{i}\right)\right)$, where $\mathbb{N} C F\left(Q_{i}\right)$ is the free monoid of $C F\left(Q_{i}\right)$. Since $U\left(P^{\prime}, w^{\prime}\right)$ is shellable, so are F_{1}, \ldots, F_{r}. Assume that our indexing of F_{i} matches with the ordering for shelling, i.e., $\left(\cup_{i=1}^{j-1} F_{i}\right) \cap F_{j}$ is a union of facets of F_{j}. Then $\left(\cup_{i=1}^{j-1} G_{i}\right) \cap G_{j}$ is union of facets of G_{j} and $\left(\cup_{i=1}^{j-1} C\left(G_{i}\right)\right) \cap C\left(G_{j}\right)$ is union of facets of $C\left(G_{j}\right)$. We will prove the theorem with the following claims.

Claim 1. There is a unique face G_{j}^{\prime} of G_{j} which is minimal with respect to being not contained in $\cup_{i=1}^{j-1} G_{i}$.

The set $\cup_{i=1}^{j-1} G_{i}$ is a union of facets of G_{j}. Enumerate the facets of G_{j} as $F_{1}^{\prime}, F_{2}^{\prime}, \ldots$. For each k, let x_{k} denote the unique vertex of G_{j} that is not contained in F_{k}^{\prime}. Let X be the set of all such x_{k} 's. We will show that $G_{j}^{\prime}:=\operatorname{Conv} X$ has the required property. Note $F_{j} \nsubseteq \cup_{i=1}^{j-1} G_{i}$, so X does not contain all the vertices of G_{j} and hence G_{j}^{\prime} is a face of G_{j}. If $G_{j}^{\prime} \subseteq \cup_{i=1}^{j-1} G_{i}$ then $G_{j}^{\prime} \subseteq F_{k}^{\prime}$ for some facet F_{k}^{\prime} of G_{j} which is contained in $\cup_{i=1}^{j-1} G_{i}$. Therefore $x_{k} \notin G_{j}^{\prime}$, which contradicts the definition of G_{j}^{\prime}. Hence $G_{j}^{\prime} \nsubseteq \cup_{i=1}^{j-1} G_{i}$. Any face of G_{j}^{\prime} is contained in $\cup_{i=1}^{j-1} G_{i}$ because it misses some of the $x_{k} \in X$, and is therefore contained in F_{k}^{\prime}, showing that G_{j}^{\prime} is minimal with respect to not being contained in $\cup_{i=1}^{j-1} G_{i}$.

To show the uniqueness, let F be a face of G_{j} not contained in $\cup_{i=1}^{j-1} G_{i}$. Then F is not contained in F_{k}^{\prime} for any k. So each $x_{k} \in X$ is in F, which gives $G_{j}^{\prime} \subseteq F$. By minimality of $G_{j}^{\prime}, F=G_{j}^{\prime}$. This proves the uniqueness of G_{j}^{\prime}, completing the proof of Claim 1.

Let T_{j} be the set of all completely fundamental elements of $C F\left(Q_{j}\right)$ that are in extremal rays of G_{j}^{\prime}. Given $\gamma \in D_{Q_{j}}$, we define $\hat{\gamma}=\gamma+\sum \beta$ where $\beta \in T_{j}$ and γ linearly depends on $C F\left(Q_{j}\right)-\{\beta\}$. To complete the proof of the theorem we need to show the following claim.

Claim 2. The monoid E_{Φ} has a decomposition into a disjoint union of translates of free monoids:

$$
E_{\Phi}=\coprod_{j=1}^{r} \coprod_{\gamma \in D_{Q_{j}}}\left(\hat{\gamma}+\mathbb{N} C F\left(Q_{j}\right)\right)
$$

To prove the above claim, we will show that given $\eta \in E_{\Phi}$, we have $\eta \in \hat{\gamma}+\mathbb{N} C F\left(Q_{j}\right)$ if and only if j is the minimum index such that $\eta \in Q_{j}$.

Let j be minimum such that $\eta \in Q_{j}$. Then $\eta=\gamma+\sum_{\beta_{i} \in C F\left(Q_{j}\right)} a_{i} \beta_{i}$ where $a_{i} \in \mathbb{N}$ and $\gamma \in D_{Q_{j}}$. For some $\beta_{i} \in T_{j}$, if η is linearly dependent on $C F\left(Q_{j}\right)-\left\{\beta_{i}\right\}$ then there exists a facet of $C\left(G_{j}\right)$ containing η and contained in some $C\left(G_{i}\right)$ with $i<j$. This contradicts the minimality of j. So η depends on every element of T_{j} in Q_{j}. Therefore if γ depends on $C F\left(Q_{j}\right)-\left\{\beta_{i}\right\}$ for some $\beta_{i} \in T_{j}$ then $a_{i} \geq 1$. So $\eta-\hat{\gamma} \in \mathbb{N} C F\left(Q_{j}\right)$.

If $\eta \in \hat{\gamma}^{\prime}+\mathbb{N} C F\left(Q_{l}\right)$ for some $l>j$ and some $\gamma^{\prime} \in D_{Q_{l}}$, then η has an expression $\hat{\gamma}^{\prime}+\sum_{\beta_{i}^{\prime} \in C F\left(Q_{l}\right)} a_{i}^{\prime} \beta_{i}^{\prime}$. Here $\hat{\gamma}^{\prime}$ has to linearly depend on all elements of T_{l} in Q_{l}. Since $\eta \in C\left(G_{l}\right) \cap C\left(G_{j}\right)$, there exists $\beta^{\prime} \in T_{l}$ such that η is linearly independent of β^{\prime} in Q_{l}, which contradicts to the fact that $\hat{\gamma}^{\prime}$ linearly depends on all elements of T_{l} in Q_{l}. So such an l should not exist, and so j is unique such that $\eta \in \hat{\gamma}+\mathbb{N} C F\left(Q_{j}\right)$ for some $\gamma \in D_{Q_{j}}$. This completes the proof of Claim 2 and hence the proof of the theorem.

Notes

The main ideas in this chapter are 'pulling the vertices of a convex polytope' and 'shelling the boundary complex of a convex polytope'. For the results about techniques of pulling I referred to [MS71]. Theorem 2.2 is from this book. Theorem 2.15 is proved by Bruggesser and Mani in [BM71]. Even though our way of defining visible and invisible facets differs from that of [BM71], the idea of the proof of Theorem 2.15 remains the
same. Here I only discussed the shelling of visible and invisible facets, but the shelling of all the facets of a polytope is an easy consequence [BM71, Section 2, corollary of Proposition 2]. The last section is from [Sta82]. For the proof of Theorem 2.16, I have followed [Sta82, Section 5].

CHAPTER 3

The Reciprocity Theorem

The contents of this chapter do not quite depend on the results of the previous chapter. The only thing used in this chapter from the previous chapter is the existence of triangulations of \mathcal{C}_{Φ}. Here we will mainly focus on the results about poset structure of the triangulation. But before going into that we need to know some results about finite posets mainly the Mobius inversion formula. These results, being incidental to the main emphasis of this thesis, are stated without proof.

Definition 3.1. A finite set \mathcal{P} with a binary relation \leq is called a poset (finite poset) if for all $x, y, z \in \mathcal{P}$
(i) $x \leq x$
(ii) if $x \leq y$ and $y \leq x$ then $x=y$
(iii) if $x \leq y$ and $y \leq z$ then $x \leq z$

Definition 3.2. The Mobius function μ on $\mathcal{P} \times \mathcal{P}$ is defined as follows:
for all $x \in \mathcal{P}$ we have $\mu(x, x)=1$ and $\mu(x, y)=-\sum_{x \leq z<y} \mu(x, y)$

The significance of Mobius function appears in the Mobius inversion formula:

Theorem 3.3 (Mobius Inversion Formula). Let $f, g: \mathcal{P} \longrightarrow \mathbb{Q}$, then $g(x)=\sum_{y \leq x} f(y)$ if and only if $g(x)=\sum_{y \leq x} g(y) \mu(y, x)$ for all $x \in \mathcal{P}$

A proof of the Mobius inversion formula can be found in [Sta12, 3.7.1].
To use Mobius inversion we should know the Mobius function for the corresponding poset. There is not always a nice expression for the Mobius function of a poset. Our interest, fortunately, is in the following nice class of posets:

Let Γ be any triangulation of the convex pointed polyhedral cone $\mathcal{C}_{\Phi} . \hat{\Gamma}$ be the poset of elements of Γ ordered by inclusion along with a highest element $\hat{1}$, i.e., for any $\sigma \in \Gamma$ we have $\sigma<\hat{1}$. Let $\operatorname{dim} \mathcal{C}_{\Phi}=n$. The formula for the Mobius function on $\hat{\Gamma}$ is given by;

Theorem 3.4. For $\sigma, \tau \in \Gamma$

$$
\mu(\sigma, \tau)= \begin{cases}(-1)^{\operatorname{dim} \tau-\operatorname{dim} \sigma} & \text { if } \sigma \leq \tau<\hat{1} \\ (-1)^{n-\operatorname{dim} \sigma+1} & \text { if } \sigma \nsubseteq \operatorname{bdC}_{\Phi} \text { and } \tau=\hat{1} \\ 0 & \text { if } \sigma \subseteq \operatorname{bdC}_{\Phi} \text { and } \tau=\hat{1}\end{cases}
$$

The proof of the above theorem needs some results on simplicial complexes. See [Sta12, 3.8.9, 4.6.2] for details.

Definition 3.5. For a simplex $\sigma \in \Gamma$ define E_{σ} to be the set $\sigma \cap \mathbb{N}^{n}$ of lattice points in σ and $\overline{E_{\sigma}}$ to be the set $\left\{x \in E_{\sigma} \mid x \notin E_{\tau}\right.$ for all $\left.\tau<\sigma\right\}$ of lattice points in the relative interior of σ. Define $E_{\hat{1}}=E_{\Phi}, \overline{E_{\hat{1}}}=\emptyset, \overline{E_{\Phi}}=E_{\Phi}-\mathrm{bd} \mathcal{C}_{\Phi}$ and $\bar{\Gamma}=\left\{\sigma \in \Gamma \mid \sigma \notin \mathrm{bd} \mathcal{C}_{\Phi}\right\}$.

Lemma 3.6. We have

$$
\overline{E_{\Phi}}(x)=\sum_{\sigma \in \bar{\Gamma}} \overline{E_{\sigma}}(x)
$$

and

$$
E_{\Phi}(x)=-\sum_{\sigma \in \Gamma} \mu(\sigma, \hat{1}) E_{\sigma}(x)
$$

Proof. $\overline{E_{\Phi}}(x)=\sum_{\sigma \in \overline{\bar{\Gamma}}} \overline{E_{\sigma}}(x)$ is clear from the definition. For the formula for E_{Φ} note $E_{\hat{1}}(x)=E_{\Phi}(x)$ and $\overline{E_{\hat{1}}}(x)=0$. Clearly $E_{\sigma}(x)=\sum_{\tau \leq \sigma} \overline{E_{\tau}}(x)$ for all $\sigma, \tau \in \hat{\Gamma}$. In particular

$$
E_{\Phi}(x)=E_{\hat{1}}(x)=\sum_{\tau \in \hat{\Gamma}} \overline{E_{\tau}}(x)=\sum_{\tau \in \Gamma} \overline{E_{\tau}}(x) .
$$

Applying Mobius inversion formula

$$
0=\overline{E_{\hat{1}}}=\sum_{\sigma \in \hat{\Gamma}} E_{\sigma}(x) \mu(\sigma, \hat{1})=E_{\Phi}(x) \mu(\hat{1}, \hat{1})+\sum_{\sigma \in \Gamma} E_{\sigma}(x)
$$

so

$$
E_{\Phi}(x)=-\sum_{\sigma \in \Gamma} \mu(\sigma, \hat{1}) E_{\sigma}(x) .
$$

Any point in the interior of a simplicial cone depends on all its extremal rays: For simplicial monoids, we have:

Lemma 3.7. If $\left\{\eta_{1}, \ldots, \eta_{t}\right\}$ is the set of quasi-generators of E_{σ} then

$$
\overline{E_{\sigma}}=\left\{\sum_{i=1}^{t} a_{i} \eta_{i} \in E_{\sigma} \mid a_{i}>0\right\}
$$

Lemma 3.8. For a simplicial cone σ we have

$$
\overline{E_{\sigma}}(x)=(-1)^{t} E_{\sigma}(1 / x)
$$

Proof. We have

$$
\begin{align*}
E_{\sigma}(1 / x) & =\left(\sum_{\beta \in D_{E_{\sigma}}} x^{-\beta}\right) \prod_{i=1}^{t}\left(1-x^{-\eta_{i}}\right)^{-1} \\
& =(-1)^{t}\left(\sum_{\beta \in D_{E_{\sigma}}} x^{\hat{\eta}-\beta}\right) \prod_{i=1}^{t}\left(x^{\eta_{i}}-1\right)^{-1} \tag{2}
\end{align*}
$$

where $\hat{\eta}=\sum_{i=1}^{t} \eta_{i}$. But $D_{E_{\sigma}}=\left\{\sum_{i=1}^{t} a_{i} \eta_{i} \mid 0 \leq a_{i}<1\right\}$. So $\hat{\eta}-D_{E_{\sigma}}=\left\{\sum_{i=1}^{t} a_{i} \eta_{i} \mid 0<\right.$ $\left.a_{i} \leq 1\right\}$. Thus

$$
\left(\hat{\eta}-D_{E_{\sigma}}\right) \oplus \mathbb{N} C F(\sigma)=\left\{\sum_{i=1}^{t} a_{i} \eta_{i} \in E_{\sigma} \mid a_{i}>0\right\}=\overline{E_{\sigma}}
$$

Comparing with (2) gives the identity of the lemma.

The following reciprocity theorem is a generalization of the above result to E_{Φ} :

Theorem 3.9 (Reciprocity Theorem). For the given system of linear equations Φ we have

$$
E_{\Phi}(1 / x)=(-1)^{n} \overline{E_{\Phi}}(x)
$$

Proof. We have

$$
\begin{array}{rlrl}
E_{\Phi}(x) & =-\sum_{\sigma \in \Gamma} \mu(\sigma, \hat{1}) E_{\sigma}(x) & & \text { by Lemma } 3.6 \\
& =-\sum_{\sigma \in \hat{\Gamma}}(-1)^{n+1-\operatorname{dim} \sigma} E_{\sigma}(x) & & \text { by Theorem } 3.4 \\
& =(-1)^{n} \sum_{\sigma \in \hat{\Gamma}}(-1)^{\operatorname{dim} \sigma} E_{\sigma}(x) &
\end{array}
$$

which implies

$$
\begin{aligned}
E_{\Phi}(1 / x) & =(-1)^{n} \sum_{\sigma \in \hat{\Gamma}}(-1)^{\operatorname{dim} \sigma} E_{\sigma}(1 / x) \\
& =(-1)^{n} \sum_{\sigma \in \bar{\Gamma}} \overline{E_{\sigma}}(x) \\
& =(-1)^{n} \overline{E_{\Phi}}(x),
\end{aligned}
$$

$$
=(-1)^{n} \sum_{\sigma \in \bar{\Gamma}} \overline{E_{\sigma}}(x) \quad \text { by Lemma } 3.8
$$

which proves the theorem.

Corollary. Given $\gamma \in \mathbb{Z}^{n}$ the following two conditions are equivalent
(i) $E_{\Phi}(1 / x)=(-1)^{n} x^{\gamma} E_{\Phi}(x)$
(ii) $\overline{E_{\Phi}}=\gamma+E_{\Phi}$

Proof. By the reciprocity theorem, (i) is equivalent to

$$
\overline{E_{\Phi}}(x)=x^{\gamma} E_{\Phi}(x),
$$

which is clearly equivalent to (ii).

Notes

For this chapter I mainly referred to [Sta12, Chapter 2, 3]. Rota's article [Rot64] is a good exposition of Mobius functions.

CHAPTER 4

The ADG Conjecture

This chapter is about an application of all the results from the previous chapters. I have chosen the Anand-Dumir-Gupta Conjecture (ADG conjecture) because it was the main motivation behind the theory of E_{Φ}. Before stating this conjecture I would like to begin with the following combinatorial problem:

Suppose n distinct things, each replicated r times, are distributed among n persons equally. In how many ways can we do this?

If $r=1$ then it is same as giving n distinct things to n persons, which can be done in n ! ways. If $n=1$ the answer is 1 , for $n=2$ the problem is equivalent to find the number of ways we can partition r in 2 different parts which is $r+1$. For further discussion let us fix the notation $H_{n}(r)$ for this count. MacMahon [Mac04] showed that

$$
H_{3}(r)=\binom{r+4}{4}+\binom{r+3}{4}+\binom{r+2}{4}
$$

A nice general formula for $H_{n}(2)$ is given by Anand, Dumir and Gupta [ADG66] as

$$
\sum_{n \geq 0} \frac{H_{n}(2) x^{n}}{(n!)^{2}}=\frac{e^{x / 2}}{\sqrt{1-x}}
$$

But to describe $H_{n}(r)$ in complete generality seems to be a difficult problem. Anand, Dumir and Gupta in their paper [ADG66] gave some conjectures about $H_{n}(r)$ which help us to calculate $H_{n}(r)$ for certain values and gives some descriptions about a general formula for $H_{n}(r)$. I will not state this conjecture as it appears in [ADG66], rather I will give an equivalent formulation that appears in [Sta83, 1.1]:

Conjecture (Anand, Dumir and Gupta). For every positive integer n

$$
\sum_{r \geq 0} H_{n}(r) \lambda^{r}=\frac{h_{0}+h_{1} \lambda+\cdots+h_{d} \lambda^{d}}{(1-\lambda)^{(n-1)^{2}+1}}
$$

with $h_{0}+h_{1}+\cdots+h_{d} \neq 0, d=n^{2}-3 n+2$ and $h_{i}=h_{d-i}$ for $i=0,1, \ldots, d$. In addition to this, Stanley conjectured that h_{i} is a non-negative integer and $h_{0} \leq h_{1} \leq \cdots \leq h_{[d / 2]}$.

We will soon see the proof of the conjecture except the last part i.e. $h_{0} \leq h_{1} \leq \cdots \leq$ $h_{[d / 2]}$, which still stands as an open problem [Sta83, 1.1].

Before going to the proof of ADG, let us take another look at our distribution problem. If $a_{i, j}$ denotes the number of things of type j that the i th person gets then the matrix $\left[a_{i, j}\right]$ determines the distribution uniquely. So the calculation of $H_{n}(r)$ is equivalent to counting the number of matrices of the form $\left[a_{i, j}\right]_{n \times n}$ where $a_{i, j} \in \mathbb{N}$ and $\sum_{i=1}^{n} a_{i, j}=\sum_{j=1}^{n} a_{i, j}=r$. If we consider the system of linear equations

$$
\sum_{i=1}^{n} x_{i, j}=\sum_{k=1}^{n} x_{k, l}
$$

for $i, j, k, l \in\{1, \ldots, n\}$. The non-negative integral solutions of this system of equations give the set of all matrices in our required form. Let the above system be Φ and \mathcal{C}_{Φ} be the cone of non-negative real valued solutions of Φ. Then \mathcal{C}_{Φ} is a cone in $\mathbb{N}^{n^{2}}$ of dimension $(n-1)^{2}+1$. To investigate E_{Φ} further, we need to know what its completely fundamental elements are. The following lemma tells us how to find $C F\left(E_{\Phi}\right)$.

Lemma 4.1. Every element of E_{Φ} can be written as sum of permutation matrices. Recall that a permutation matrix is of the form $\left[\delta_{i, \sigma(i)}\right]$, where $\sigma \in S_{n}$, the group of permutations of n elements.

The proof of the above lemma uses Hall's Marriage Condition [Hal86, Theorem 5.1.1]:

Theorem (Hall's Marriage Condition). Let G_{1}, \ldots, G_{n} be n sets such that for all $k \leq n$ union of any k sets has at least k elements then we can choose distinct representatives $g_{i} \in G_{i}$ for each i.

Proof of Lemma 4.1. Let $A=\left(a_{i, j}\right)_{n \times n}$ be a matrix in E_{Φ} with

$$
\sum_{i=1}^{n} a_{i, j}=\sum_{j=1}^{n} a_{i, j}=r .
$$

Let $G_{i}=\left\{j \mid a_{i, j} \neq 0\right\}$. We claim that G_{i} 's satisfy Hall's Marriage Condition. Consider any k of the G_{i} 's say $G_{i_{1}}, \ldots, G_{i_{k}}$. Let

$$
y=\sum_{l=1}^{k} \sum_{j=1}^{n} a_{i_{l}, j}=r k
$$

If $\cup_{l=1}^{k} G_{i_{l}}=\left\{j_{1}, \ldots, j_{s}\right\}$ then

$$
y=\sum_{l=1}^{k} \sum_{t=1}^{s} a_{i_{l}, j_{t}} \leq \sum_{i=1}^{n} \sum_{t=1}^{s} a_{i, j_{t}}=r s
$$

So $r k \leq r s$ that implies $k \leq s$. Since G_{i} satisfy Hall's condition, we can choose distinct representatives from each G_{i} say it j_{i}. Clearly $a_{i, j_{i}} \geq 1$. Let P be the permutation matrix $\left[\delta_{i, j_{i}}\right]$. Then $A-P \in E_{\Phi}$. Say $A-P=\left[a_{i, j}^{\prime}\right]$. Then

$$
\sum_{i=1}^{n} a_{i, j}^{\prime}=\sum_{j=1}^{n} a_{i, j}^{\prime}=r-1
$$

Now by induction on r we can write A as sum of permutation matrices.

A matrix in E_{Φ} is called an integer stochastic matrix. An integer stochastic matrix $\left[a_{i, j}\right]$ said to have line sum r if

$$
\sum_{i=1}^{n} a_{i, j}=\sum_{j=1}^{n} a_{i, j}=r
$$

Let P be a permutation matrix. If

$$
n P=n_{1} A_{1}+n_{2} A_{2}
$$

for some $A_{1}, A_{2} \in E_{\Phi}$ and $n_{1}, n_{2} \in \mathbb{N}$ then the (i, j) th entry of P is non-zero if and only if (i, j) th entry of at least one of the A_{i} is non-zero. But in P exactly one entry of each row and each column is non-zero so for A_{i} either it is zero or exactly the same entry of it is nonzero. So A_{i} are multiples of P and $n=n_{1}+n_{2}$. This shows that the set of all completely fundamental elements of E_{Φ} are the set of all permutation matrices.

By Theorem 2.16

$$
E_{\Phi}=\coprod_{i=1}^{t}\left(\delta_{i}+E_{i}\right)
$$

where $E_{1}, \ldots, E_{t} \subseteq E_{\Phi}$ are free monoids of rank $(n-1)^{2}+1$ and $\delta_{1}, \ldots, \delta_{t} \in E_{\Phi}$. In fact, from the proof of Theorem 2.16, $C F\left(E_{i}\right) \subseteq C F\left(E_{\Phi}\right)$, and

$$
E_{\Phi}(x)=\sum_{i=1}^{t} \frac{x^{\delta_{i}}}{\prod_{\eta \in C F\left(E_{i}\right)}\left(1-x^{\eta}\right)}
$$

Specializing the variables $\left(x_{1,1}, \ldots, x_{n, n}\right)$ as

$$
x_{i, j}= \begin{cases}\lambda & \text { if } i=1 \\ 1 & \text { otherwise }\end{cases}
$$

$E_{\Phi}(x)$ becomes

$$
E_{\Phi}(\lambda)=\sum_{i=1}^{t} \frac{\lambda^{a_{i}}}{(1-\lambda)^{(1-n)^{2}+1}}
$$

where a_{i} is the line sum of δ_{i}. Note for any $A \in E_{\Phi}$ having line sum a, x^{A} becomes λ^{a} after substitution. So

$$
E_{\Phi}(\lambda)=\sum_{r \geq 0} H_{n}(r) \lambda^{r}=\frac{p(\lambda)}{(1-\lambda)^{(n-1)^{2}+1}}
$$

Here

$$
p(\lambda)=\sum_{i=1}^{t} \lambda^{a_{i}}=h_{0}+h_{1} \lambda+\cdots+h_{d} \lambda^{d} \quad(\text { say })
$$

is a polynomial with non-negative integral coefficients, i.e,

$$
h_{i} \geq 0
$$

and clearly

$$
h_{0}+h_{1}+\cdots+h_{d} \neq 0 .
$$

Note that $H_{n}(0)=1$ implies $h_{0}=1$. Now to find the degree of $p(\lambda)$ recall the Corollary of the Reciprocity Theorem 3.9. It is easy to see that

$$
\overline{E_{\Phi}}=[1]_{n \times n}+E_{\Phi} .
$$

Hence

$$
E_{\Phi}(1 / x)=(-1)^{(n-1)^{2}+1} x^{[1]} E_{\Phi}(x),
$$

which implies

$$
E_{\Phi}(1 / \lambda)=(-1)^{(n-1)^{2}+1} \lambda^{n} E_{\Phi}(\lambda)
$$

After simplification we get

$$
\left(h_{0} \lambda^{d}+h_{1} \lambda^{d-1}+\cdots+h_{d}\right) \lambda^{(n-1)^{2}+1-d}=\lambda^{n}\left(h_{0}+\cdots+h_{d} \lambda^{d}\right) .
$$

Equating the powers of λ on both the sides, we get

$$
(n-1)^{2}+1=n+d \quad \Rightarrow d=n^{2}-3 n+d
$$

Also note that

$$
h_{0} \lambda^{d}+h_{1} \lambda^{d-1}+\cdots+h_{d}=h_{0}+h_{1} \lambda \cdots+h_{d} \lambda^{d}
$$

which says

$$
h_{i}=h_{d-i} .
$$

This completes the part of the ADG conjecture that we wanted to prove.

Notes

The statement of the ADG conjecture given here is an extension due to Stanley [Sta83, 1.1] of the original formulation of Anand, Dumir and Gupta [ADG66]. A proof of the original conjecture without using the Stanley-Bruggesser-Mani decomposition appears in [Sta12, Section 4.6]. One may refer to [Sta83, Chapter 1] for an algebraic proof of the ADG Conjecture.

We saw that

$$
\sum_{r \geq 0} H_{n}(r) \lambda^{r}=\frac{h_{0}+h_{1} \lambda+\cdots+h_{d} \lambda^{d}}{(1-\lambda)^{(n-1)^{2}+1}}
$$

from which it follows that

$$
H_{n}(r)=\binom{r+(n-1)^{2}}{(n-1)^{2}} h_{0}+\binom{r-1+(n-1)^{2}}{(n-1)^{2}} h_{1}+\cdots+\binom{r-d+(n-1)^{2}}{(n-1)^{2}} h_{d}
$$

This says we know a formula for $H_{n}(r)$ if we know all the h_{i} 's. One way to find the values of the h_{i} 's is by interpolation. We already have $h_{i}=h_{d-i}, h_{0}=1$ and $h_{1}=n!-n$. So to interpolate $p(\lambda)$ we need to know the values of $p(\lambda)$ at another $[d / 2]-2$ points. It turns out that the volume of the polytope having extremal points at permutation matrices gives
$p(1)$ [BR07, Lemma 3.19]. But it is an open problem to find an easy way to compute $p(1)$. Now what about $p(\lambda)$, is it easier to compute $p(\lambda)$ than $p(1)$? Computing $p(\lambda)$ is also an open problem. For further discussion of this see [DG95] and [DS98].

Bibliography

[ADG66] Harsh Anand, Vishwa Chander Dumir, and Hansraj Gupta. A combinatorial distribution problem. Duke Math. J., 33:757-769, 1966.
[BM71] H. Bruggesser and P. Mani. Shellable decompositions of cells and spheres. Math. Scand., 29:197205 (1972), 1971.
[BR07] Matthias Beck and Sinai Robins. Computing the continuous discretely: Integer-point enumeration in polyhedra.. Undergraduate Texts in Mathematics. Springer, New York, 2007.
[DG95] Persi Diaconis and Anil Gangolli. Rectangular arrays with fixed margins. In Discrete probability and algorithms (Minneapolis, MN, 1993), volume 72 of IMA Vol. Math. Appl., pages 15-41. Springer, New York, 1995.
[DS98] Persi Diaconis and Bernd Sturmfels. Algebraic algorithms for sampling from conditional distributions. Ann. Statist., 26(1):363-397, 1998.
[Grü03] Branko Grünbaum. Convex polytopes, volume 221 of Graduate Texts in Mathematics. SpringerVerlag, New York, second edition, 2003. Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler.
[Hal86] Marshall Hall, Jr. Combinatorial Theory. John Wiley \& Sons, New York, second edition, 1986.
[Mac04] Percy A. MacMahon. Combinatory analysis. Vol. I, II (bound in one volume). Dover Phoenix Editions. Dover Publications Inc., Mineola, NY, 2004. Reprint of An introduction to combinatory analysis (1920) and Combinatory analysis. Vol. I, II (1915, 1916).
[McM70] P. McMullen. The maximum numbers of faces of a convex polytope. Mathematika, 17:179-184, 1970.
[MS71] P. McMullen and G. C. Shephard. Convex polytopes and the upper bound conjecture. Cambridge University Press, London, 1971. Prepared in collaboration with J. E. Reeve and A. A. Ball, London Mathematical Society Lecture Note Series, 3.
[Rot64] Gian-Carlo Rota. On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 2:340-368 (1964), 1964.
[Sta78] Richard P. Stanley. Generating functions. In Studies in combinatorics, volume 17 of MAA Stud. Math., pages 100-141. Math. Assoc. America, Washington, D.C., 1978.
[Sta80] Richard P. Stanley. Decompositions of rational convex polytopes. Ann. Discrete Math., 6:333342, 1980. Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978).
[Sta82] Richard P. Stanley. Linear Diophantine equations and local cohomology. Invent. Math., 68(2):175-193, 1982.
[Sta83] Richard P. Stanley. Combinatorics and commutative algebra, volume 41 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1983.
[Sta12] Richard P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2012.

