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Abstract

The non-negative solutions of linear homogeneous Diophantine equations are studied

using the geometric theory of convex polytopes. After a brief introduction to the theory

of convex polytopes and its relation to solutions of linear homogeneous Diophantine

equations, a theorem of Stanley, Bruggesser and Mani on the decomposition of the monoid

of solutions is discussed in detail. An application of this theorem, due to Stanley, to prove

a conjecture of Anand, Dumir and Gupta is explained.
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Notations and Conventions

I have followed the following notations and coneventions in this report.

Symbol Meaning

N set of natural numbers {0, 1, 2, . . . }

Z set of integers

Q set of rational numbers

R set of real numbers

Z>0 {1, 2, 3, . . . }

Z≥0 {0, 1, 2, . . . } same as N

bdA boundary of A

intA interior of A

relint relative interior of A

ConvA convex hull of A

AffA affine hull of A

[a, b] {x | x = λa+ (1− λ)b, 0 ≤ λ ≤ 1}

[a, b) {x | x = λa+ (1− λ)b, 0 < λ ≤ 1}

(a, b) {x | x = λa+ (1− λ)b, 0 < λ < 1}

L(x, y) line passing through x and y

xn → x xn converges to x

‖x‖ norm of x

x · y usual dot product of x and y

X · y {x · y | x ∈ X}

y +X {y + x | x ∈ X}

α +X for α scalar {(α + x1, . . . , α + xn) | x = (x1, . . . , xn) ∈ X ⊆ Rn}

xi



xii NOTATIONS AND CONVENTIONS

A
∐
B A disjoint union B

NA free monoid generated by A

A−B elements of A not in B

∅ the empty set

f : A −→ B f is a map from A to B

f(S) where S ⊆ A {f(x) | x ∈ S}

[ai,j]m×n or simply [ai,j] an m× n matrix whose (i, j)th entry is ai,j

δi,j δi,j =


1 if i = j

0 if i 6= j

0 sometimes denotes the origin in Rn

H+ or H− A half space determined by the hyperplane H (+ or −

sign depends on the context)

Φx = 0 linear system of equations defined by the matrix Φ and

the vector variable x

CΦ cone defined by the non-negative solutions of the linear

system of equations Φx = 0

S(P,w) facets of the polytope P visible from the point w

U(P,w) facets of the polytope P not visible from the point w



Introduction

This thesis concerns the solutions of linear homogeneous Diophantine equations,

namely, equations of the form

Φx = 0,

where Φ is an m× n matrix with integer entries, x = (x1, . . . , xn)t is a column vector of

variables, and we are only interested in solutions that are non-negative integers.

For example, one may wish to describe the set

EΦ = {β ∈ Nn|Φβ = 0}

of solutions in a compact form. One way of doing this is to study the formal power series:

EΦ(x) =
∑
β∈EΦ

xβ,

where, for β = (β1 . . . , βn), xβ denotes the monomial xβ1

1 · · · xβnn . For example, for the

equation

(1) x1 − x2 = 0,

the formal power series is given by the rational function

EΦ(x) =
1

1− x1x2

.

This follows from the fact that the non-negative solutions to (1) form a free monoid,

which is generated by (1, 1). It turns out that EΦ(x) is always a rational function. This

can be deduced from the fact that every pointed convex cone can be triangulated (see

[Sta12, Theorem 4.6.11]). An alternative approach uses Hilbert’s basis theorem from

commutative algebra (see [Sta83] Theorem 3.7).
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2 INTRODUCTION

In this thesis, in Theorem 2.16 we show that EΦ can be expressed as a disjoint union

of translates of free monoids. This not only gives the rationality of EΦ(x), but also

the non-negativity of the coefficients of the Ehrhart polynomial [Sta80], and lies at the

heart of the theory of Ehrhart polynomials. This result also turns out to be the crucial

ingredient needed to prove the conjectures of Anand, Dumir and Gupta (see Chapter 4)

on integer stochastic matrices.

Most of the material that I have presented in this thesis is motivated and influenced

by Stanley’s work [Sta83, Sta12, Sta82]. Here I have emphasized the theory of Convex

polytopes that appears in Chapter 1 and Chapter 2. Chapter 1 is an introduction to the

general theory of convex polyhedra and its relation to the solutions of linear Diophantine

equations. Chapter 2 is devoted to proving the shellability of the boundary complex of a

convex polytope (due to Brugesser and Mani [BM71]) and the resulting decomposition of

the monoid of non-negative integer solutions of a system of linear Diophantine equations

(due to Stanley [Sta80, Sta82]). Chapter 3 is devoted to the reciprocity theorem, and

Chapter 4 to the proof of the conjectures of Anand, Dumir and Gupta due to Stanley.

In the first two chapters I have tried to give the proofs in detail while in Chapter 3

and Chapter 4 it is not so. I hope that this idea of presentation will make the thesis

smooth to read and enjoyable as well.



CHAPTER 1

Geometry of Solutions

1. Linear Homogeneous Diophantine Equations

Let Φ be an m × n matrix with integer entries. Let x = (x1, . . . , xn)t be a column

vector of n-variables. Consider the system

Φx = 0

of linear homogeneous equation with integral coefficients. Let

EΦ = {β ∈ Nn|Φβ = 0}

denote the set of non-negative integer solutions of the above system. Our main purpose

is to understand EΦ.

Note here that instead of non-negative integer solutions if we just ask for integral

solutions then the problem is easy. The integer solutions of Φx = 0 form a subgroup of

Zn which is free. The rank of this free group is the nullity of Φ. To find all the integral

solutions of Φx = 0 we just need to find a basis for this free group. But this is not the

case for EΦ. The set EΦ is not a group, but rather, a monoid and further it can not be

guaranteed that EΦ is a free monoid.

Definition 1.1. Given any subset S ⊂ Nn define S(x) =
∑
β∈S

xβ.

Here S is completely described by S(x). In our case, understanding EΦ(x) is equivalent

to understanding EΦ, which is what we are going to do in the following discussion.

The theory of EΦ can be developed purely algebraically as well as geometrically. Here

I have chosen the geometric way since it is more elegant and intuitive. The geometric

theory of EΦ proceeds by understanding the geometry of CΦ, the convex hull of elements

of EΦ. It will turn out that CΦ is a pointed convex polyhedral cone. To Make our

3



4 1. GEOMETRY OF SOLUTIONS

argument systematic and clear we need to go through some basic results concerning

convex polyhedra.

2. Basic Theory of Convex Polyhedra

We will work with Rn with its standard topology. Rn will be considered as a vector

space over R with usual scalar multiplication and vector addition. The inner product

is defined to be the dot product. If x = (x1, . . . , xn) and y = (y1, . . . , yn) then x · y =∑n
i=1 xiyi.

Definition 1.2. A vector z ∈ Rn is said to be an affine combination of k vectors z1, . . . , zk

in Rn if there exist real numbers λ1, . . . , λk such that λ1 + . . .+ λk = 1 and

z = λ1z1 + · · ·+ λkzk.

If, in addition, the real numbers λ1, . . . , λk can be chosen to be non-negative, then z is

said to be a convex combination of z1, . . . , zk.

Given a set A ⊂ Rn, the set of all affine combinations formed from all finite subsets

of A is called the affine hull of A, and is denoted by AffA. Similarly, the set of all convex

combinations formed from all finite subsets of A is called the convex hull of A and is

denoted by ConvA. If A = ConvA, then A is called a convex set.

Definition 1.3. Given x 6= y in Rn, we denote by L(x, y) the set of all affine combinations

of x and y and call it the line through x and y. L(x, y) is uniquely determined by the

following property: if x′, y′ ∈ L(x, y), with x′ 6= y′, then L(x, y) = L(x′, y′).

If a subset H of Rn contains all lines L(x, y) for all x, y ∈ H such that x 6= y, then

H is called a flat.

It follows from the above definition that for any subset A ⊂ Rn, AffA is flat.

Theorem 1.4. Every flat H ∈ Rn is the affine hull of a finite set of points in Rn.

Moreover, there exists x ∈ Rn and a linear subset V of Rn such that H = x+ V .

Proof. Consider a strictly increasing sequence of flats in H:

x1 ( Aff{x1, x2} ( Aff{x1, x2, x3} ( · · ·
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We claim that the above chain is of finite length. To prove this, define Bi−1 = {x1 −

xi, . . . , xi−1 − xi}. Suppose that the above sequence of flats has infinite length. Since we

are in a finite dimensional vector space, there exists a least j such that Bj is a linearly

dependent set. So there exist scalars α1, α2, . . . , αj−1, not all zero, such that

α1(x1 − xj) + · · ·+ αj−1(xj−1 − xj) = 0.

Note that if α1 + · · · + αj−1 = 0, then Bj−1 will be linearly dependent (easy to check).

This gives
j−1∑
i=1

αi∑j−1
l=1 αl

xi = xj.

Since xj is an affine combination of x1, . . . , xj−1, we get a contradiction to our assumption

that the chain of flats has infinite length. This also shows the chain stops in j − 1 steps.

So H = Aff{x1, x2, . . . , xj−1}. But Aff{x1, x2, . . . , xj−1} = xj + spanBj−1. �

If, for two vectors x and x′, and two linear subspaces V and V ′, x+V = x′+V ′, then

it is easy to see that V = V ′ and x− x′ ∈ V .

Definition 1.5. The dimension of a flat H is defined to be the dimension of V , where

V is the linear subspace for which H can be written as x+ V .

Here is a result about convex sets stated without proof as the proof is easy and

straightforward. A similar result also holds for affine sets or flats.

Lemma 1.6. Intersection of convex sets is convex. Intersection of flats is a flat.

Definition 1.7. For α ∈ Rn and a ∈ R, define a hyperplane

Hα,a = {x ∈ Rn|α.x = a}.

We will often denote Hα,a by Hα or simply H when the context is clear.

Every hyperplane Hα,a determines two half-spaces H+
α,a = {x ∈ Rn|α.x ≥ a} and

H−α,a = {x ∈ Rn|α.x ≤ a}.

Here Hα,a is flat, and is a linear subspace only if a = 0. H+
α,a and H−α,a are convex sets

having intersection Hα,a.
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Definition 1.8. A convex polyhedron is an intersection of finitely many half-spaces (and

hence is convex). The dimension of a convex polyhedron is defined to be the dimension

of its affine hull.

Definition 1.9. Lat K be a convex polyhedron of dimension n in Rn. A supporting

hyperplane for a convex polyhedron K is a hyperplane H such that K ⊆ H+ or K ⊆ H−

and K ∩H is nonempty.

Now onwards, unless otherwise specified, we will always assume that our

convex polyhedron K is of maximum dimension, i.e., if K ⊆ Rn, then the

dimension of K is n.

Definition 1.10. A face of a convex polyhedron is its intersection with a supporting

hyperplane. If the polyhedron has dimension n then its n− 1 dimensional faces are called

facets; the 0 dimensional faces are called vertices or extremal points. The set of all faces

of a convex polyhedron K will be denoted by F(K).

Note here that every face of a convex polyhedron is also a convex polyhedron. So

the dimension of a face is well defined. Given a convex polyhedron K which is inter-

section of half-spaces, say K = ∩ni=1H
+
i , and a face F = K ∩ H of K, where H is a

supporting hyperplane with K ⊆ H+, F is expressed as an intersection of half-spaces by

F = ∩ni=1H
+
i ∩H− .

Definition 1.11. Let K = ∩ni=1H
+
i , then the family {H+

i |i ≤ 1 ≤ n} is called irredundant

if, for all 1 ≤ i ≤ n, ∩j 6=iH+
j 6= K.

The following theorem gives a unique representation of a convex polyhedron in terms

of half-spaces.

Theorem 1.12. Let K ⊆ Rm be a convex polyhedron of dimension m. An expression

K = ∩ni=1H
+
i , where {H+

i |i ≤ 1 ≤ n} is an irredundant family, is unique. Also all the

facets of K are given by Fi = K ∩Hi.

Proof. If we can show that all the facets of K are given by K ∩ Hi, then the

uniqueness follows. First we will show that Hi is a supporting hyperplane for K. Let
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Ki = ∩j 6=iH+
j . H+

i does not contain Ki because Ki 6= K. H−i does not contain Ki, for if

it did, then K ⊆ H−i ∩H+
i = Hi, which contradicts the fact that K is of dimension m.

So Hi intersects Ki in its interior. Therefore Hi ∩K is of dimension m− 1. Hence Hi is

a supporting hyperplane for K intersecting it in a facet.

Conversely, given a facet F of K, consider the hyperplane H = AffF . H is a sup-

porting hyperplane, and we may assume that K ⊂ K ∩H+. If H is not parallel to any

Hi, then H ∩H1 has dimension n− 2. Since the boundary of K is contained in the union

of the Hi’s, H must intersect K in its interior, which contradicts the fact that H is a

supporting hyperplane. But if H is parallel to Hi and supporting, then H = Hi. �

Corollary. Let Fi := K ∩Hi, then bdK = ∪ni=1Fi.

Proof. Clearly ∪ni=1Fi ⊆ bdK. Let x ∈ K such that x /∈ Hi for any i. Then there

exists δi such that the ball B(x, δi) ⊆ H+
i . Let δ = min{δi}. Then B(x, δ) ⊆ K. So

x /∈ bdK. Hence bdK ⊆ ∪ni=1Fi. �

Corollary. Every face is contained in a facet.

Proof. Since every face F is in the boundary of K, F is contained in ∪ni=1Fi, the

union of all facets. Let H be the supporting hyperplane that determines F . Clearly

AffF ⊆ H. If F is not contained in any of the Fi’s, then AffF intersects K in its interior,

contradicting the assumption that H is supporting. So F ⊆ Fi for some i. �

Till now we only know that the number of facets of a convex polyhedron is finite,

but need not the number of faces. Also the faces are subsets of facets, but what kind of

subset are they? We will soon see that the lower dimensional faces are also faces of the

facets. So an induction argument on the dimension of faces shows that the total number

of faces is also finite. To understand all this, we begin with the following lemma which

says that faces are closed under intersection.

Lemma 1.13. Any nonempty intersection of faces of a convex polyhedron is a face of

the polyhedron.

Proof. Let G1, . . . , Gr be r faces of the convex polyhedron K such that they have

a nonempty intersection. Assume, without loss of generality, that each of them contains
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zero. Let Hαi be the supporting hyperplane that determines Gi: Hαi = {x|x · αi = 0}.

Also assume that K ⊆ H+
αi

. Consider H = {x | x · (α1 + · · · + αi) = 0}. Then K ⊆ H+

and ∩ri=1Gi ⊆ K ∩H. Now if x ∈ K ∩H, then x · (α1 + · · ·+αi) = 0, so that x ·αi = 0 for

all i. Therefore, x ∈ Gi. So we got ∩ri=1Gi = K ∩H is a face of K with the supporting

hyperplane H. �

Lemma 1.14. Let G1 and G2 be two faces of K such that G1 ( G2. Then G1 is a face

of G2.

Proof. Let H ′1 be the supporting hyperplane for G1, then H1 ∩ AffG2 will be a

supporting hyperplane for G2 in AffG2. So G1 is a face of G2. �

Corollary. Let G1 and G2 be two faces of the same dimension such that G1 ⊆ G2, then

G1 = G2.

Proof. If G1 ( G2 then G1 is a face of G2, hence their dimensions can not be equal.

So we must have G1 = G2. �

Lemma 1.15. A facet of a facet is intersection of two facets.

Proof. Let F1 be a facet of K with facet plane H1. In other words, F1 = H1 ∩K =

H1 ∩ni=1 H
+
i = ∩ni=2H

+
i ∩H1. The intersections H+

i ∩H1 are half-spaces in H1. So every

facet of F1 corresponds to the relative boundary of (H+
i ∩H1), which is Hi∩H1. So facets

of F1 are of the form Hi ∩H1 ∩K = (Hi ∩K) ∩ (H1 ∩K) = Fi ∩ F1. �

Theorem 1.16. Every face of K can be expressed as intersection of its facets.

Proof. Let F be a face of K. Then there exists a facet F1 such that F ⊆ F1. If

F = F1 then we are done. Otherwise F is a face of F1 by Lemma 1.14, and so is contained

in a facet of F1 say F 1
1 . If F1 = F 1

1 then also we are done since every facet of a facet is

intersection of two facets by Lemma 1.15. We will continue this process by constructing

F 1
1 , F

2
1 , F

3
1 , . . . and so on until dimF j

1 = dimF . But F ⊆ F j
1 , so by the corollary of

Lemma 1.14, F = F j
1 .

Now we need to show that F j
1 is an intersection of facets. In fact, we ill show that

it is an intersection of j + 1 facets. We will do this by induction on the co-dimension
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of F j
1 . The base case is clear by Lemma 1.15, where the co-dimension is 2. Assume

F j−1
1 = F1 ∩ F2 ∩ · · · ∩ Fj by induction hypothesis. Here Fi are facets of K with facet

planes Hi. Now F j−1
1 = (K∩H1)∩· · ·∩(K∩Hj) = (∩ni=1H

+
i ∩H1)∩· · ·∩(∩ni=1H

+
i ∩Hj) =

∩ni=j+1(H1 ∩ · · · ∩Hj ∩H+
i ). Here H1 ∩ · · · ∩Hj ∩H+

i is half-space in H1 ∩ · · · ∩Hj. We

know that F j+1
1 is a facet of F j

1 , hence is of the form H1 ∩ · · · ∩ Hj ∩ Hi ∩ K for some

i ≥ j+1. Therefore F j+1
1 = (H1∩K)∩· · ·∩ (Hj ∩K)∩ (Hi∩K) = F1∩F2∩· · ·∩Fj ∩Fi.

This completes the proof. �

Corollary. A face of a face is a face.

Proof. Let F be a face of K and G be face of F . G is the intersection of facets of

F . To show that G is a face of K we need to show it is an intersection of facets of K.

We will be done by Theorem 2, if we can show that every facet of F is a face of K. From

the proof of the Theorem 2, F = F1∩ · · ·∩Fj is an intersection of j facets represented by

F = ∩ni=j+1(H1 ∩ · · · ∩Hj ∩H+
i ). So each facet of F is of the form F1 ∩ · · · ∩ Fj ∩ Fi for

some i ≥ j + 1. Since every facet of F is intersection of facets of K, it is a face of K. �

Now we will look at a special type of convex polyhedron which is called a convex

polytope. Formally,

Definition 1.17. A bounded convex polyhedron is called a convex polytope.

Here are two standard theorems that characterizes a convex polytope:

Theorem 1.18. Let P be convex polytope and let VertP be the set of all zero dimensional

faces of P , then VertP is nonempty and P is the convex hull of VertP .

Proof. Since P is convex, ConvVertP ⊆ P . So we need to show P ⊆ ConvVertP .

Suppose that VertP = {x1, . . . , xl}, so that

ConvVertP =
{ l∑

i=1

λixi | 0 ≤ λi ≤ 1,
l∑

i=1

λi = 1
}
.

We will use induction on the dimension of P . If dimP = 1, then P is a line segment and

it is the convex hull of its end points. Now assume the result to be true for all polytopes

up to dimension m−1. We will prove it for dimP = m. If y ∈ bdP , then y is in some face
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F of P which is also a polytope. By induction hypothesis y ∈ ConvVertF ⊆ ConvVertP .

So choose y ∈ intP . Consider a line passing through y. It intersects the boundary of the

polytope at exactly two points (since P is bounded), say y1 and y2. We have y1, y2 ∈

ConvVertP and y = λy1 + (1− λ)y2 for some 0 < λ < 1. Therefore y ∈ ConvVertP . �

The next theorem is the converse of the previous one. That means we want to show

that if something is the convex hull of finitely many points then it is a convex polytope.

Here let P = ConvX where X = {x1, x2, . . . , xl}. Again we assume that P is of dimension

m in Rm. Before going into the theorem we need the following two lemmas.

Lemma 1.19. If H is a supporting hyperplane for P , then there exists a subset Y of X

such that H ∩ P = ConvY .

Note: Here we extended the definition of a supporting hyperplane to convex sets

by defining: H is a supporting hyperplane for a convex set A if H ∩ A is nonempty and

A ⊆ H+.

Proof. Let y =
∑r

j=1 λixij ∈ H ∩ P where xij ∈ X and 0 < λi ≤ 1. To prove

the lemma it is enough to prove that each xij ∈ H ∩ P . Consider xi1 and the line

L := L(xi1 ,
λ2

λ1−1
xi2 + · · · + λr

λ1−1
xir). Either H ∩ L = L or a singleton set. Clearly

y ∈ H ∩ L. Let y′ = λ2

λ1−1
xi2 + · · · + λr

λ1−1
xir . Since xi1 and y′ are on the same side of H

and y is on the line segment joining xi1 , y
′, L ⊆ H. Hence xi1 ∈ H ∩P . Similarly we can

prove for each xij . �

The next lemma is a very useful fact about closed convex sets and uses the Hahn-

Banach theorem. Here just the statement of the Hahn-Banach theorem (only the case

that is useful to us) is given.

Theorem (Hahn-Banach). Given a compact convex set K and a point x outside K there

exists a linear functional f and a constant c such that f(x) < c < f(K).

Lemma 1.20. If A ⊆ Rm is a compact convex set of dimension m and x ∈ bdA, then

there exists a supporting hyperplane H of A containing x.

Proof. Since x ∈ bdA there is a sequence xn → x and ‖x‖ ≤ 1. By Hahn-Banach for

each xn there exists yn ∈ Rm and cn ∈ R such that K · yn < cn < xn · yn. Clearly yn 6= 0.
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We can assume ‖yn‖ is bounded, because for each 0 < λ ≤ 1, K · λyn < λcn < xn · λyn,

and if ‖yn‖ > 1, then for some λ < 1/‖yn‖ we replace λyn instead of yn. So yn has

a convergent subsequence. Without loss of generality we assume yn → y. So we have

K · y ≤ x · y. Now our required hyperplane is H = {z ∈ Rn|z.y = x.y}. �

Theorem 1.21. P , the convex hull of the finite set X, is a polytope.

Proof. We only need to show that P is a convex polyhedron, since the boundedness

of P is clear. Let y ∈ Rn such that y /∈ P . S be the set of all affine combinations of at

most m− 1 points of X. Intersection of P with a supporting hyperplane will be called a

face. By Lemma 1.19, S contain all faces of P of dimension at most m−2. Let M denote

the union of cones spanned by S with vertex y. By Bair’s category since dimP = m,

intP −M is nonempty. For x ∈ intP −M , consider the ray R = {λx + (1− λ)y|λ ≥ 0}

with beginning point y. Let λ0 = inf{λ ≥ 0|λx+ (1− λ)y ∈ P}. Since P is compact and

y /∈ P , λ0 exists and nonzero. So x0 := λ0x+(1−λ0)y ∈ bdP . So x0 is in some face of P ,

by Lemma 1.20. Since x /∈M , x0 does not belongs to any element of C. So F must have

dimension m− 1 and H = AffF is a supporting hyperplane of P that contain y and P in

two opposite sides. There fore P = ∩H∈ΛH
+, where Λ is the collection of all supporting

hyperplanes H of P such that H ∩ P is m− 1 dimensional and P ⊆ H+. Note that H is

determined uniquely by H ∩ P , and so by Lemma 1.19, Λ is finite. �

Here Theorem 1.18 and Theorem 1.21 suggest an equivalent definition of polytope,

namely, the convex hull of finitely many points. While working with them we will choose

the more convenient one.

Now we will introduce another special type of convex polyhedron, namely the convex

polyhedral cone.

Definition 1.22. A convex polyhedral cone C is intersection of half-spaces where all the

hyperplanes of the half-spaces pass through a common point, say o.

Usually o is assumed to be the origin (0, 0, . . . , 0) of Rm. So every facet plane of C is

linear. From now on, we will assume that o is the origin, unless otherwise specified.

Intuitively we understand that a cone has a unique vertex called the apex and in the

above case we guess that the apex must be o. But here C may not have a vertex at all.
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But for some cases our intuition is true. To explain it more clearly note that if C has a

vertex then it must be the intersection of m facet planes of C (as usual we assume that

C has dimension m and is in Rm). Suppose the m facet planes of C whose intersection is

a vertex of Rm, are represented by a system of m linearly independent equations as:

a1,1x1 + · · ·+ a1,mxm = 0

...

am,1x1 + · · ·+ am,mxm = 0

The vector of variables (x1, . . . , xm) represents a point in Rm. So if C has a vertex then

it must be 0. But to say when exactly it has a vertex, we need to introduce the following

definition; the Lemma following it answers our question.

Definition 1.23. C is called pointed if it does not contain a line, equivalently, if v ∈ C

then −v /∈ C.

Lemma 1.24. C has a vertex if and only if it is pointed.

Proof. Suppose that C is pointed. Let C have n facets with facet planes given by:

a1,1x1 + · · ·+ a1,mxm = 0

...

an,1x1 + · · ·+ an,mxm = 0

Since v and −v (v 6= 0) both can not be the solution of the above system the solution

space must be zero dimensional so 0 is vertex of C. Now given that 0 is a vertex of C, we

must have a supporting hyperplane H for C which will intersect it at 0. For any v 6= 0 in

C, v and −v are in opposite sides of H, so −v /∈ C. This shows C is pointed. �

The only vertex of C (when it is pointed) is 0. Next come the one dimensional faces,

which are called extremal rays. The role of extremal rays for a pointed polyhedral cone C

is same as the role of vertices for a convex polytope. In fact a pointed convex polyhedral

cone C is some way equivalent to a convex polytope P . To understand this correspondence

we need the following definition:
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Definition 1.25. If H is a (possibly affine) hyperplane that intersects C in such a way that

every ray coming out of 0 intersects H at a unique point, we call C∩H is a nondegenerate

cross section of C.

Theorem 1.26. Let C be a pointed convex polyhedral cone. Then there exists a hyperplane

H such that P := C ∩H is a nondegenerate cross section of C. Further

(i) P is a convex polytope.

(ii) ψ : F(C) − {0} −→ F(P ) defined by ψ(F ) = F ∩H is a bijection and dimF =

dim(F ∩H)− 1.

Proof. The half-spaces that define C be given by the following set of inequalities.

a1 · x ≥ 0

a2 · x ≥ 0

...

an · x ≥ 0,

where ai = (ai,1, ai,2, . . . , ai,n) and x = (x1, . . . , xn). Define the hyperplanes

H0 = {x | (a1 + · · ·+ an) · x = 0}

and

H1 = 1 +H0.

It is easy to check that H0 is a supporting hyperplane for C, C∩H0 = {0} and C ⊆ (H0)+.

Now we claim that C ∩ H1 is a nondegenerate cross section. For x ∈ C and x 6= 0,

the ray through x originating from 0 is given by R = {λx|λ ≥ 0}. If λx ∈ H1 then

(
∑n

i=1 ai).x = 1. Note here that (
∑n

i=1 ai).x > 1, since x ∈ (H0)+ − H0. Therefore the

unique value for λ for x is 1
(
∑n
i=1 ai).x

. This proves that C ∩H1 is nondegenerate.

Proof of (i). P is clearly a convex polyhedron. To show that it is a polytope we

only need to show that P is bounded. If P is not bounded, then it contains a ray

R(x0, α) = {x0 + tα|t ≥ 0, x0 ∈ P, α ∈ H0}. Every ray from 0 that intersects R(x0, α)

is of the form Rt = {λ(xo + tα)|λ ≥)}. Let A = ∪t≥0Rt ⊆ C. Note that any element of
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the form λx0 + sα ∈ A for all λ, s ≥ 0. If we fix s, since s = λt, we have λ = s/t. When

t→∞, λ→ 0. So sα ∈ A ⊆ C. Choose s = 1. This gives contradiction to the fact that

C ∩H0 = {o}. So P must be bounded and hence is a polytope.

Proof of (ii). To say that ψ is well defined we must show that for any face F of C, F∩H1

is a face of P . Since every ray passing through an interior point of C lies in {0}∪ intC and

intersects H1 at a nonzero point, H1∩ intC 6= ∅,. Therefore dimP = dimH1 = m−1. Let

H be a supporting hyperplane for C such that H ∩ C = F , then H ∩H1 is a supporting

hyperplane in H1 for P that intersects P at F ∩H1. So F ∩H1 is a face of P .

To show ψ is one to one, let F and G be two faces of C such that H1 ∩ F = H1 ∩G.

Consider {λx | x ∈ H1 ∩ F, λ ≥ 0}, which is equal to the set {λx|x ∈ H1 ∩ G, λ ≥ 0}

since H1 intersects C at nondegenerate cross section. So F = G.

To show ψ is onto, consider a face F ′ of P with supporting hyperplane H ′ in H1.

Then Aff(0, H ′) will be a supporting hyperplane of C that intersects C at a face F such

that F ∩ C = F ′. So ψ(F ) = F ′.

Now the only thing left is to show dimψ(F ) = dimF −1. AffF is intersection of dimF

number of facet planes that are not parallel to H0 and so to H1. Therefore dimψ(F ) =

dimAffF ∩H1 = dimAffF − 1 = dimF − 1. �

Corollary. If C is convex pointed polyhedral cone then it is the convex hull of its extremal

rays.

Proof. Every extremal ray of C corresponds to a vertex of P . Now given x ∈ C,

x 6= 0, there exists λ > 0 such that λx ∈ P . Since λx is in the convex hull of vertices of

P (by Theorem 1.18), x is convex hull of extremal rays of C. �

Here we conclude this section and will go back to our original problem in the next

section.

3. The Polyhedral Cone of a System of Linear Equations

Our interest is in the non-negative integral solutions of the system of linear equations

Φx = 0. Instead of non-negative integral solutions, if we ask for all non-negative real-

valued solutions, the set of solutions is a convex pointed polyhedral cone in Rn and the
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integral solutions will form a lattice in this cone. To justify this let Φ = [ai,j]m×n. The

non-negative solutions will be given by the intersection of the following half-spaces:

(∗)

a1,1x1 + · · ·+ a1,nxn ≥ 0

a1,1x1 + · · ·+ a1,nxn ≤ 0

...

am,1x1 + · · ·+ am,nxn ≥ 0

am,1x1 + · · ·+ am,nxn ≤ 0

x1 ≥ 0

...

xn ≥ 0

Note that all the hyperplanes for these half-spaces pass through origin. So the set of

non-negative real-valued solutions, say CΦ, is a convex polyhedral cone. To see that it

is pointed, consider the hyperplane H = {(y1, . . . , yn)|
∑n

i=1 yi = 0}. Clearly H is a

supporting hyperplane for CΦ, intersecting it only at the origin {o}. So CΦ is pointed. We

will always assume CΦ is nonzero.

The special thing about CΦ in comparison to other pointed cones is that all its faces

are uniquely determined by its support:

Definition 1.27. Given x ∈ Rn such that x = (x1, . . . , xn), define its support to be

Supp(x) = {i|xi 6= 0}. For a subset A of Rn, Supp(A) = ∪x∈ASupp(x).

Theorem 1.28. Let Bn be all the subsets of the set {0, 1, . . . , n}. Define a map f :

F(CΦ) −→ Bn by f(F ) = Supp(F ), then f is one to one.

Proof. We will prove it by induction on n. For the base case consider n = 2. In

this case if CΦ 6= 0 then CΦ is a ray that starts from the origin. Clearly, Supp(0) = ∅ and

Supp(CΦ) 6= ∅. Assume that the induction hypothesis is true up to n− 1. Now let CΦ be

a cone in Rn. Let the coordinate planes be Gi = {x|xi = 0}. If dimCΦ = 1 the theorem

is trivial. So assume dimCΦ ≥ 2.

Claim 1. Every face has to be contained in some Gi.

If x ∈ CΦ that is not in any Gi then there exists an open ball around x, say B, which

does not intersect any Gi. Let the solution space of Φx = 0 be V , then B ∩ CΦ = B ∩ V ,
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which is a open ball in V and hence in CΦ. So x ∈ intCΦ. This says that every element of

the boundary of CΦ is contained in some Gi, again since Gi are flat and faces of CΦ have

at most dimension n every face of CΦ is contained in some Gi.

Claim 2. If F1, F2 are two distinct faces of CΦ then Supp(F1) 6= Supp(F2).

If F1 and F2 do not lie in same Gi then clearly we are done. Otherwise F1 and F2 are

faces of CΦ ∩Gi and we are done by induction. This completes the proof of Claim 2 and

hence proof of the theorem. �

To understand the non-negative integral solutions of EΦ we need to deal with some

kind of generating set for EΦ. One way is as follows.

Definition 1.29. β ∈ EΦ is called a completely fundamental solution if, for all positive

integers n and α, α′ ∈ EΦ such that nβ = α+α′, we have α = iβ and α′ = (n− i)β where

i and n − i are positive integers. We will denote the set of all completely fundamental

solutions by CF (EΦ) or just CF when the context is clear.

Theorem 1.30. β ∈ CF if and only if β satisfies the following two properties:

(i) β is in some extremal ray say Rβ of CΦ.

(ii) Every β′ ∈ Rβ ∩ EΦ satisfies β − β′ ∈ EΦ.

Proof. Let β ∈ CF . If Suppβ is not minimal then there exists α ∈ EΦ such that

Suppα ⊂ Suppβ. Now choose a large enough n such that nβ −α ∈ EΦ. This contradicts

the fact that β ∈ CF . So Suppβ is minimal, hence by Theorem 1.26 β is contained in

an extremal ray Rβ. This completes the proof of (i). For (ii), we know that Rβ ∩ EΦ is

a singly generated monoid. Because it is a completely fundamental element, β must be

the generator of this monoid which implies (ii).

For the converse, suppose β is an element of EΦ that satisfies conditions (i) and (ii).

Suppose that for some positive integer n, nβ = α + α′, α, α′ ∈ EΦ. Since β is in an

extremal ray Rβ, α, α′ ∈ Rβ. By (ii) since β is the generator of the monoid Rβ ∩ EΦ,

α = iβ and α′ = i′β where i, i′ ∈ Z>0 and i+ i′ = n. This shows β ∈ CF . �

Corollary. CF (EΦ) is finite and unique.
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Elements of CF are the generators of the extremal rays of CΦ. So every element of

EΦ can be expressed as a positive rational linear combination of elements of CF . But

this expression may not be unique. For example, consider Φ = [1 −1 1 −1], then

CF = {(1, 1, 0, 0), (1, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 0)}.

Now, (1, 1, 1, 1) = (1, 1, 0, 0) + (0, 0, 1, 1) = (1, 0, 0, 1) + (0, 1, 1, 0). But if elements of CF

are linearly independent, then we can guarantee the uniqueness.

Definition 1.31. A pointed convex polyhedral cone is called simplicial if non-zero vectors

chosen from its distinct extremal rays are linearly independent.

We will call a hyperplane rational if the equation that defines it has rational co-

efficients. Similarly a convex polyhedron is said to be rational if all the intersecting

half-spaces are defined by rational hyperplanes.

Definition 1.32. A simplicial monoid is defined to be the set of lattice points of a rational

simplicial cone.

For a simplicial monoid S, CF (S) is a linearly independent set. Let CF (S) =

{α1, . . . , αt}. So CF is t dimensional. Here α1, . . . , αt are called quasi-generators of

S. Define

DS = {γ ∈ S|γ = a1α1 + · · ·+ atαt, 0 ≤ ai < 1}.

Lemma 1.33. S be a simplicial monoid with quasi-generators α1, . . . , αt. Then every

element γ ∈ S can be written uniquely in the form γ = β + a1α1 + · · · + atαt where

β ∈ DS and ai are non-negative integers.

Proof. Suppose that γ is expressed in terms of the quasi-generators as γ = b1α1 +

· · ·+ btαt, where bi’s are positive rationals. If b′i = bi− [bi], then γ = (b′1α1 + · · ·+ b′tαt) +

([b1]α1 + · · · + [bt]αt). We choose β = b′1α1 + · · · + b′tαt and ai = [bi]. Now to prove the

uniqueness of the expression let γ = β + a1α1 + · · ·+ atαt = β′ + a′1α1 + · · ·+ a′tαt such

that β, β′ ∈ DS and ai ∈ Z≥0. So β−β′ = (a1−a′1)α1 + · · ·+(at−a′t)αt. Since β, β′ ∈ DS,

ai − a′i ∈ (−1, 1) and is integer as ai, a
′
i are integers. So ai − ai = 0, hence β = β′. Also
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a1α1 + · · · + atαt = a′1α1 + · · · + a′tαt. By the linear independence of αi, ai = a′i. This

completes the proof of uniqueness of the expression of γ. �

In the beginning of the chapter we have remarked that any subset S ⊆ N is completely

described by its generating function S(x). The above lemma helps us to write S(x) for a

simplicial monoid S in a nice form.

Corollary. We have

S(x) =

∑
β∈DS x

β∏t
i=1(1− xαi)

.

Proof. Indeed,

S(x) =
∑
β∈DS

∑
ai∈N

xβ+a1α1+···+atαt

=
∑
β∈DS

xβ
(∑
ai∈N

t∏
i=1

(xαi)ai
)

=

∑
β∈DS x

β∏t
i=1(1− xαi)

as claimed. �

This shows that the generating function of a simplicial monoid is a rational function,

where the numerator is a polynomial with positive coefficients. Can we use this to express

the generating function function of EΦ in such a nice form? We will now see that this is

done by decomposing CΦ into simplicial cones.

Definition 1.34. A triangulation of a pointed convex polyhedral cone C is a collection

Γ = {σ1, . . . , σr} of simplicial cones such that the following three properties are satisfied:

(i) ∪ti=1σi = C

(ii) If σ ∈ Γ then every nonzero face of σ also in Γ

(iii) σi ∪ σj is a common face of σi and σj.

Here is an important theorem about triangulation of a pointed polyhedral cone.

Theorem 1.35. A pointed convex polyhedral cone C possess a triangulation Γ whose

extremal rays are the extremal rays of C.
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We are skipping the proof of this theorem in this chapter and will come back to

it in the next chapter after introducing the concept of pulling of vertices of a convex

polytope. Although a proof without using pulling of vertices can be given (by induction

on the dimension of P using Theorem 2.10, see also [BR07, Appendix B]), we prefer to

use pulling , since it gives a shellable triangulation (Corollary to Theorem 2.10). Our

next theorem is just a corollary of the above one, but separately given as a theorem to

emphasize its importance.

Theorem 1.36. For a system of linear diophantine equations Φx = 0,

EΦ(x) =
p(x)∏

β∈CF (1− xβ)

Here p(x) is a polynomial in x1, . . . , xn.

Proof. Let Γ be a triangulation of CΦ such that the extremal rays of Γ are the

extremal rays of CΦ. Let σ1, . . . , σt be the maximal elements of Γ (with respect to inclu-

sion). Let Si be the lattice points of σi, which is a simplicial monoid. Since CΦ = ∪ti=1σi,

EΦ = ∪ti=1Si. Fix the notation [t] = {1, . . . , t} for each positive integer t. For any subset

A of [t] define SA = ∩i∈ASi. If SA is non-zero then it is a simplicial monoid. By corollary

to the Lemma 1.33, SA(x) = pA(x)∏
β∈CF (SA)(1−xβ)

. Now we will use the principle of inclusion

exclusion to write a formula for EΦ(x):

EΦ(x) =
∑
A⊆[t]

(−1)|A|−1 pA(x)∏
β∈CF (SA)(1− xβ)

.

By our triangulation CFΦ = ∪A⊆[t]CF (SA). So EΦ(x) = p(x)∏
β∈CF (1−xβ)

. (Note here that

p(x) may not have positive coefficients.) �

From the above theorem we know that EΦ(x) is a rational function where the de-

nominator is given with respect to completely fundamental elements of EΦ(x). But to

know the numerator exactly is a difficult task. The next two chapters of this article are

developed in this direction.
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Notes

In this chapter, Section 2 serves as an introduction to the theory of convex polytopes

and convex polyhedra. I have referred to Grunbaum’s book [Grü03] for this section.

The proof of Theorem 1.12 and a part of the proof of Theorem 1.21 are taken from this

book. Materials of Section 3, Theorems 1.30, 1.35, 1.36 and Lemma 1.33, are taken

from [Sta12] (see 4.6). For a brief introduction to generating functions see [Sta78].



CHAPTER 2

The Stanley-Bruggesser-Mani Decomposition

In this section we will go through two important techniques regarding a polytope P .

The first one is called pulling of vertices which is used to triangulate faces of P without

introducing new vertices; this is something similar to Theorem 1.35 in case of convex

polyhedral cone. In fact we will prove Theorem 1.35 using pulling. The second one is

of great importance as it proves two well known conjectures, namely the Upper bound

Conjecture proved by Macmullen [McM70] and the ADG Conjecture proved by Stanley

[Sta82]. It is called the shelling of facets of a polytope. Finally, in the third section we

will see the Stanley-Bruggesser-Mani decomposition of the monoid EΦ, which uses both

shelling and pulling and is a beautiful as well as useful theorem about EΦ.

1. Pulling the Vertices of a Polytope

We will begin with a n-dimensional polytope in Rn.

Definition 2.1. Let H be a hyperplane in Rn such that P is contained in one of the

half-spaces determined by H. Say P ⊆ H+. For some w ∈ Rn − P , we say w is beneath

H if w ∈ intH+ and w is beyond H if w ∈ intH−. If w ∈ Rn−P , and for all facet planes

H of P , w /∈ H, we say w is admissible. Further for some facet F of P , we say that an

admissible point w is beyond or beneath F if and only if it is so for the facet plane AffF .

The following theorem explains the faces of the new polytope that are obtained by

adding a new vertex to a given polytope.

Theorem 2.2. Let P be a n-dimensional polytope in Rn, and let w ∈ Rn − P . Then all

the faces of the polytope P ′ := Conv({w} ∪ P ) other than the vertex w are characterized

as follows:

(i) A face F of P is a face of P ′ if and only if there is a facet F ′′ of P which contains

F , and w is beneath F ′′ with respect to P .

21
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(ii) If F is a face of P , then F ′ = Conv({w} ∪ F ) is a face of P ′ if and only if at

least one of the following two conditions holds

(a) w ∈ AffF

(b) w is beyond at least one facet of P containing F and beneath another.

Proof. P ′ is a polytope, and since w /∈ P , w is a vertex of P ′. First we will show

that the faces of P ′ are either of type (i) or (ii). Let’s begin the proof of this fact with

the following claim:

Claim. Let H be a supporting hyperplane for P ′ (we exclude the case when H inter-

sects P ′ only at w). Then H ∩ P is nonempty.

If H does not contain w, consider λx+ (1− λ)w ∈ H for some 0 < λ ≤ 1 and x ∈ P .

If λ < 1 then x and w lie in two different open half spaces determined by H which gives

a contradiction to the fact that H is supporting for P ′. So λ = 1 and x ∈ H. Now if H

contains w and some other element, say λx+ (1− λ)w, where λ > 0 and x ∈ P then the

line through x and w contained in H. So x ∈ H. This shows in any case H ∩ P 6= ∅.

The above claim shows that H is a supporting hyperplane for P and so H ∩ P is a

face of P . If w /∈ H then H ∩ P ′ is a face of type (i), and if w ∈ H, H ∩ P ′ is a face of

type (ii).

Proof of (i). Let F be a face contained in a facet F ′′ of P and w be beneath F ′′ with

respect to P . Then AffF ′′ is a supporting hyperplane of P ′, intersecting it at F ′′. So

F ′′ is a face of P ′ too. Since F is a face of F ′′, it is a face of P ′. To prove the other

implication, let F be a common face of P and P ′. If all the facets of P ′ containing F

contain w, then their intersection which is F also contains w. This is a contradiction to

w /∈ F . So we must have a facet F ′′ of P ′ that contains F and w /∈ F ′′. F ′′ is a face of

P , since it is face of type (i) of P ′. Clearly w is beneath F ′′ with respect to P.

Proof of (ii). Suppose, for a face F of P , Conv({w} ∪ F ) is a face of P ′. Choose

x ∈ relintF and y ∈ intP such that A = Aff{x, y, w} is a two dimensional face (this is

possible if we are assuming n ≥ 2; for n = 1 the statement of the theorem is trivial). Let

P1 = P ∩A. P1 is a polygon and F1 = F ∩A is a face of it. P ′1 = P ′∩A = Conv({w}∪P1).

If F ′1 = Conv(F1 ∪ {w}) is a face of P ′1 then either F1 is a vertex or AffF1 contains w, in

which case F1 is an edge. If w ∈ AffF1, then clearly w ∈ AffF . For the other case, when
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F1 is a vertex, it is intersection of two edges of P1. It’s easy to check that w is beneath

one of these edges and beyond the other. The same is true for the facets containing these

edges. Now we will prove, if (a) or (b) of (ii) is satisfied, then Conv({w}∪F ) is a face of

P ′. The case of (a) is trivial. For (b), assume that 0 ∈ F . Let F1 and F2 be two facets

of P such that F ⊆ F1 ∩ F0, w is beyond F1 and beneath F2. Let H1 = {x|x.a1 = 0}

be AffF1, H2 = {x|x.a2 = 0} be AffF2 and P ⊆ H+
1 ∩H+

2 . Lat H0 = {x|x.a0 = 0} be a

supporting hyperplane for P that intersects it at F . By our assumption w · a1 < 0 and

w · a2 > 0. If w ∈ H0, then H0 will be a supporting hyperplane for P ′ intersecting it at

Conv({w}∪F ) and so we are done. Otherwise w ·a0 > 0 or w ·a0 < 0. We will only treat

the case w · a0 > 0, as other case is similar. Let c = w·a0+w·a2

−w·a1
> 0, and b := a0 + a2 + ca1.

Define H = {x|x.b = 0}. It is easy to check that H is a supporting hyperplane that

intersects P ′ at Conv({w} ∪ F ). �

Definition 2.3. Consider bdP . Let w be an admissible point. The set of all visible points

of bdP from w is defined as S(P,w) = ∪F∈ΛvF where

Λv = {F |F is a facet of P and w is beyond F}.

Similarly the set of invisible points on bdP is defined as U(P,w) = ∪F∈ΛuF where

Λu = {F |F is a facet of P and w is beneath F}.

Lemma 2.4. Given a polytope P with a vertex v, there exists an admissible w such that

S(P,w) is the union of the facets that contain v and U(P,w) is the union of the facets

that do not contain v.

Proof. Let F1, . . . , Fr be all the facets that contain v. Let Hi = AffFi and P ⊆

∩ri=1H
+
i . Since ∩ri=1H

+
i has nonempty interior so does ∩ri=1H

−
i . Choose a point w ∈

int ∩ri=1 H
−
i , then w is beyond F1, . . . , Fr with respect to P and [w, v) ⊆ int ∩ri=1 H

−
i .

Consider F , a facet of P that does not contain v. Then AffF either does not intersect

[w, v) or intersects it exactly at one point. So we can choose w such that AffF does not

intersect [w, v) for any facet F of P . Since v and w are on the same side of AffF for any

facet F not containing v, w is beneath F . �
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From the above lemma there exists a w such that it is beyond all the facets that

contain v and beneath all the facets that do not contain v; also [w, v) does not intersect

any facet plane of P .

Definition 2.5. Let v be a vertex of a polytope P and w be an admissible point such that

[w, v) does not intersect any facet plane and v is an interior point of P ′ = Conv({w}∪P ),

then we say P ′ is obtained from P by pulling the vertex v to w.

Lemma 2.6. We can pull any vertex of a polytope to some admissible point.

Proof. The w we described in Lemma 2.4 is a point to which v can be pulled. Here

we need to verify that v is an interior point of P ′. If not, then v is in some facet of

P ′. From Theorem 2.2, every facet of P ′ is a face of P not containing v or of the form

Conv({w}∪F ). So v is in a facet of P ′ which is of the form Conv({w}∪F ). Since F is a

face of P and w is admissible, w /∈ AffF . Again by Theorem 2.2, w is beyond a facet of P

containing F . So Conv({w} ∪ F ) ∩ P = F and since v /∈ F we have v /∈ Conv({w} ∪ F ).

We saw in any case v can not be contained in a facet of P ′, hence v must be an interior

point of P ′. �

Pulling of vertices brings changes to the structure of the faces of a polytope. We

will see that the number of faces of a polytope increases with pulling. But after a finite

number of steps the number of faces remains same, which is a kind of ‘saturation point’

while pulling. At that stage the faces of the polytope become simplices. We discuss this

briefly in our next theorem.

Definition 2.7. A cell complex Λ is defined to be a finite set of polytopes in Rn such that,

given σ1, σ2 ∈ Λ, we have σ1 ∩ σ2 ∈ Λ and is a common face of σ1 and σ2. Each element

of Λ is called a cell. A = ∪σ∈Λσ is called a geometric realization of Λ. Conversely, Λ is

called a cell complex structure on A.

We will also use the term ‘cell complex’ to refer to the geometric realization of a cell

complex.

Definition 2.8. A polytope is called a simplex if it is convex hull of k + 1 vertices and

is of dimension k. A triangulation of a subset A of Rn is a cell complex structure on
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A whose every element is a simplex. A simplicial cell complex is a cell complex (or the

geometric realization of a cell complex) whose every element is a simplex.

Note that if a polytope A is a simplex then the convex hull of any proper subset of

vertices of A gives a face of A.

The following theorem gives a way to triangulate the boundary of a polytope by

pulling its vertices.

Theorem 2.9. By successively pulling the vertices of a polytope P finitely many times

we can obtain a polytope P ′ such that bdP ′ is a simplicial cell complex. Further let

Γ′ = {F |F ∈ F(P ′)} and define f : VertP ′ → VertP by setting f(v′) = v if v′ is pulled

from v successively. Construct Γ = {F |F = Conv(f(VertF ′)), F ′ ∈ Γ′}. Then Γ is a

triangulation of bdP .

Proof. If dimP = 1 the above theorem is trivial. If dimP = 2 then P is a polygon.

Since all the faces are one dimensional, bdP is simplicial. So assume dimP ≥ 3. Let v

be a vertex of P and let P1 be obtained from P by pulling v to v′.

Claim. If all the i dimensional faces of P are simplices then all the i+ 1 dimensional

faces of P1 containing v′ are simplices.

By Theorem 2.2, the faces of P1 that contain v′ are of the form Conv({v′}∪F ), where

F is a face of P . If dimConv({v′} ∪ F ) = i + 1, then dimF = i. Since all i dimensional

faces of P are simplices, we have that F is a simplex and so Conv({v′}∪F ) is a simplex.

This proves our claim.

By the above claim if we successively pull all the vertices of the polytope P at least

once and obtain a new polytope P2, then all the two dimensional faces of P2 are simplices.

Continuing this way, we obtain a polytope P ′ all of whose faces are simplices. Note that

the number of vertices of P is equal to the number of vertices of P ′.

Now to show Γ is a triangulation of bdP we need to show that the following two

properties hold:

(1) bdP = ∪G∈ΓG

(2) If G1, G2 ∈ Γ then G1 ∩G2 ∈ Γ and is a common face of G1 and G2.
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We will prove it by using induction on the number of pullings. For the base case, suppose

we obtained P1 from P by pulling a vertex v to v1. Let Γ1 = {Conv(f1(VertF ))|F ∈

F(P1)}, where f1 : VertP1 −→ VertP is defined by f1(v1) = v and f1 is identity on all

other vertices. We will show condition (1) and (2) for Γ1.

For (1), note that all the faces which do not contain v are faces of P1. So we consider

x ∈ bdP that is contained in a facet F1 which contains v. The line L(x, v) intersects

the boundary of F1 at a unique point other than v, say u. We claim that u is in a

facet of F1 that does not contain v. We will prove this by induction on the dimension

of F1. Let u be in a facet F2 of F1 that contains v (otherwise the proof of our claim is

clear). The line L(x, v) is contained in AffF2 and intersects the boundary of F2 at u.

By induction hypothesis there exists a facet of F2 not containing v and containing u.

But this facet of F2 is the intersection of a facet of F1 not containing v with F2. So we

have proved that there is a facet F of F1 that does not contain v but contains u. F is

the intersection of two facets, one of which contains v and other does not contain v. So

Conv({v} ∪ F ) ∈ Γ1. But x ∈ Conv({v} ∪ F ) since x ∈ [v, u]. This completes the proof

of the fact that bdP = ∪G∈Γ1G.

To show condition (2) holds for Γ1, we will characterize the intersection of two elements

σ1 and σ2 of Γ1 in the following three cases:

(a) σ1 and σ2 are faces of P not containing v.

(b) σ1 is a face of P not containing v but σ2 = Conv({v} ∪ F2)

(c) σ1 = Conv({v} ∪ F1) and σ2 = Conv({v} ∪ F2)

Case (a) clearly satisfies (2). For Case (b) first we will show that if σ1 ∩ F2 = ∅ then

σ1 ∩ σ2 = ∅. If not, let x ∈ σ1 ∩ σ2 6= ∅. Let H be a supporting hyperplane for P

determining σ1 and P ⊆ H+. Let the line L(x, v) intersect F2 at u. Then x ∈ [v, u].

But [v, u] ⊆ int(H+) since σ1 ∩ F2 = ∅. This contradicts the assumption that x ∈ σ1.

Now suppose σ1 ∩ F2 6= ∅. Any x ∈ σ1 ∩ σ2 is of the form x = λv + (1 − λ)y for some

y ∈ F2 and 0 < λ ≤ 1. We will show that x ∈ σ1 ∩ F2. If λ = 1 then we are done,

so assume λ 6= 1. If y ∈ σ1 ∩ F2 then v ∈ σ1 since x ∈ σ1, which is not possible. If

y /∈ σ1 then the supporting hyperplane for P determining σ1 has to separate y and v

giving a contradiction. It follows that λ must be 1 and so x ∈ σ1 ∩F2. We conclude that
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σ1 ∩ σ2 = σ1 ∩ F2, which is a common face of σ1 and σ2, and is in Γ1. For Case (c), since

Conv({v}∪ (F1∩F2) is a common face of F1 and F2 and is contained in Γ1, we only need

to show σ1 ∩ σ2 = Conv({v} ∪ (F1 ∩ F2). Clearly Conv({v} ∪ (F1 ∩ F2) ⊆ σ1 ∩ σ2. For

the other inclusion let x ∈ σ1 ∩ σ2. Then x can be written in the following two forms:

x = λv + (1 − λ)y1 and x = λ′v + (1 − λ′)y2, where y1 ∈ F1, y2 ∈ F2 and 0 < λ, λ′ ≤ 1.

Then the line through x, v intersects F1 at y1 and F2 at y2. But this line intersects bdP

at a unique point other than v. So y1 = y2, λ = λ′ and x ∈ Conv({v} ∪ (F1 ∩ F2)). This

completes the proof of property (2) for Γ1.

Suppose that, after successively pulling the vertices of P m+1 times, we obtained P ′.

Suppose that P ′ was obtained from Pm by pulling the vertex vm to w. Let w correspond

to the vertex v of P by f . Let Γm be the cell complex structure induced by Pm on bdP .

By induction hypothesis Γm satisfies (1) and (2). We have to prove that Γ satisfies (1)

and (2). To prove (1), we will only consider those elements in bdP that lie in some facet

of P containing v. Let x be a point on such a facet. Since Γm satisfies (1), x ∈ G ∈ Γm,

where G corresponds to G′, a face of Pm containing vm. Let x correspond to x′ in G′.

Every line through x′ and vm intersects the boundary of G′ in some facet G′′ of G′ such

that vm /∈ G′′. Then Conv({w} ∪G′′) is a face of P ′ and so Conv({v} ∪G1) ∈ Γ (where

G′′ correspond to G1 in P ). Since x ∈ Conv({v} ∪ G1) this completes the proof of (1).

For the case (2), if σ1, σ2 ∈ Γ, we only need to consider the cases when at least one of σ1,

σ2 is not in Γm. Proof for these cases are similar to that of case (b) and (c) of Γ1. �

Theorem 2.10. P be a polytope and v be a vertex of P . Let Λ′ be a triangulation of

the set of facets of bdP that do not contain v. Define A = {Conv(v, F )|F ∈ Λ′} and

let Λ be the set consisting of all the elements of A along with their faces. Then Λ is a

triangulation of P .

Proof. Let x ∈ P and x 6= v. The line through x and v intersects a facet of P not

containing v and so an element of Λ′, say it F . Then x ∈ Conv({v} ∪ F ). This shows

that P = ∪σ∈Λσ. Now to show the intersection property, let σ1 = Conv({v} ∪ F1) and

σ2 = Conv({v} ∪ F2), where F1 and F2 are in Λ′. If x ∈ σ1 ∩ σ2, then the line through

x and v intersects bdP at a unique point other than v. So the line intersects F1 ∩ F2
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and hence x ∈ Conv({v} ∪ F1 ∩ F2) which is a common face of σ1 and σ2 and is in Λ.

Verifying the intersection property for the other cases is trivial. �

Corollary. Let Γ be as in Theorem 2.9. Let v be the vertex that was pulled last. Let

Λ′ = {F ∈ Γ|v /∈ F}. Then Λ constructed in Theorem 2.10 is a triangulation of P . Also

bdΛ′ := {F |F ∈ Λ′, F ⊆ bdP} is the same as Γ.

The proof of the above corollary is clear from the construction of Γ in Theorem 2.9

and by the construction of Λ in Theorem 2.10.

2. Shelling and the Bruggesser-Mani Theorem

Definition 2.11. Let P be a polytope. A line G is said to be in general position with

respect to P if

(1) it is not parallel to any of the facet planes of P

(2) it intersects the facet planes of P at distinct points.

Lemma 2.12. Given an admissible point w with respect to the polytope P , there exists a

line in general position passing through w that intersects intP .

Proof. Let F1, . . . , Fr be the facets of P . The set of all lines that pass through w

and are parallel to Fi forms a hyperplane Hi through w. Let Hi,j be the hyperplane

passing through AffFi ∩AffFj and w. Since P is n dimensional, intP * ∪ri=1Hi ∪i,j Hi,j.

So there exists a line in general position that passes through w and intP . �

Definition 2.13. Let G be a line in general position as described in Lemma 2.12. Then

G intersects bdP at two distinct points p1 and p2. Suppose that (p1, w] does not intersect

P and (p2, w] intersects P . Let the connected components of G − intP be G1 and G2

where w, p1 ∈ G1 and p2 ∈ G2. We will give a linear ordering on G − intP as follows;

given x, y ∈ G− intP we will say y ≥ x if

(1) x ∈ G1 and y ∈ G2 or if,

(2) x, y ∈ G1 and x ∈ [p1, y] or if,

(3) x, y ∈ G2 and y ∈ [x, p2] .
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Lemma 2.14. Let t ∈ G1. For a facet F of P , let g(F ) be the point of intersection of G

with AffF . Let t 6= g(F ) for any F . Then

S(P, t) =
⋃

F is a facet of P
g(F )<t

F

and

U(P, t) =
⋃

F is a facet of P
g(F )>t

F.

Proof. F ⊆ S(P, t) if and only if t and P are on different sides of AffF . Since

g(F ) < t and t ∈ G1, clearly t and p1 are on different sides of AffF and therefore t and P

are on different sides of AffF . Conversely, given t > p1 and g(F ) < t, AffF intersects the

line joining t and p1 and so t is beyond AffF . This completes the proof of the expression

for S(P, t). The expression for U(P, t) follows since it contains all the facets that are not

contained in S(P, t). �

We now come to the theorem for shellability, which is due to Bruggesser and Mani

[BM71, Section 4, Prop. 2]:

Theorem 2.15 (Bruggesser and Mani). Let P ⊆ Rn be an n-dimensional polytope and

w ∈ Rn be an admissible point with respect to P . Then we can arrange facets of S(P,w)

(Similarly U(P,w)) as F1, . . . , Fr such that for all i ≥ 2, Fi ∩ (∪i−1
j=1Fj) is a union of

facets of Fi. This technique of arranging facets is called the shelling of facets of S(P,w)

(or U(P,w)).

Proof. We will apply induction on the number of facets. If there is only one facet the

result is trivial. Assume by induction hypothesis that the result is true for any S(P,w) (or

U(P,w)) having fewer than r facets. Consider a line G in general position that intersects

P in its interior and passes through w. By Lemma 2.12 such a line exists. Suppose the

line from w intersects P at p1 and leaves it at p2. We will arrange the facets of P as

{Fi}ki=1 such that according to the linear order described in Definition 2.13; i ≤ j if and

only if g(Fi) ≤ g(Fj). Therefore p1 = g(F1) < g(F2) < · · · < g(Fk) = p2.

Case 1. S(P,w); where S(P,w) has r facets.



30 2. THE STANLEY-BRUGGESSER-MANI DECOMPOSITION

Let i0 be the largest integer such that g(Fi0) < w. By Lemma 2.14, i0 = r and

S(P,w) = ∪ri=1Fi. We have assumed r > 1. Let t be a point on G such that g(Fr−1) <

t < g(Fr). Again by Lemma 2.14 S(P, t) = ∪r−1
i=1Fi. By induction hypothesis, the given

ordering of the facets is a shelling of S(P, t). To show S(P,w) has a shelling we need to

show S(P, t) ∩ Fr is union of facets of Fr. We claim S(P, t) ∩ Fr = S(Fr, g(Fr)). Note

that g(Fr) is admissible with respect to Fr. In AffFr, g(Fr) is beyond Fi∩Fr if i < r and

beneath Fi ∩ Fr if i > r. So S(P, t) ∩ Fr is union of facets of Fr.

Case 2. U(P,w); where U(P,w) has r facets and for all facets F in U(P,w), g(F ) ∈ G2.

In this case we can find w′ sufficiently faraway from p2 in G2 such that U(P,w) =

S(P,w′). Now by Case 1, the result follows.

Case 3. U(P,w) where U(P,w) has at least one facet in G1, and U(P,w) is a union

of r facets.

Let j0 be the smallest number such that Fj0 ∈ U(P,w). Then j0 = k− r+ 1. Choose

t ∈ G1 such that g(Fj0) < t < g(Fj0+1). By Lemma 2.14, U(P, t) = ∪ki=j0+1Fi, and so

U(P,w) = U(P, t) ∪ Fj0 . By the induction hypothesis, the given order on facets is a

shelling for U(P, t). We have to show that U(P, t)∩ Fj0 is a union of facets of Fj0 , which

is equivalent to showing that U(P, t) ∩ Fj0 = U(Fj0 , g(Fj0)). In AffFj0 , g(Fj0) is beyond

Fi ∩ Fj0 if i < j0 and beneath Fi ∩ Fj0 if i > j0. So U(P, t) ∩ Fj0 = U(Fj0 , g(Fj0)), that

is, U(P, t) ∩ Fj0 is union of facets of Fj0 . This completes the proof of Case 3. �

3. The Stanley-Bruggesser-Mani Decomposition

We will return to the problem of understanding non-negative integral solutions of the

linear system Φ. Here the same notation as there in Chapter 1 will be used. As before

the cone CΦ will have dimension n and will be contained in Rn.

Theorem 2.16 (Stanley, Bruggesser and Mani). There exist free submonoids E1, . . . , Et

of EΦ of rank n and δ1, . . . , δt ∈ EΦ such that EΦ is disjoint union of δi + Ei, i.e.,

EΦ =
t∐
i=1

(δi + Ei).

Proof. Let H1 = {(x1, . . . , xn)|
∑n

i=1 xi = 1, xi ∈ Rn} and P := H1 ∩ CΦ be a

nondegenerate cross section of CΦ. Then P is an n− 1 dimensional polytope. By pulling
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the vertices of P successively we triangulate bdP as described in Theorem 2.9. Let P ′

be the polytope obtained from P by pulling its vertices and whose boundary complex

corresponds to the triangulation of bdP by f (see Theorem 2.9). Let v be the vertex of

P which corresponds to the last vertex pulled to obtain P ′. Assume that v corresponds

to w of P ′. There exists a point w′ such that U(P ′, w′) is the union of all the facets of

P ′ not containing w. The facets of P ′ not containing w will correspond to the n − 1

dimensional elements, say F1, . . . , Fr, in the triangulation of bdP that do not contain v.

Let Gi := Conv({v} ∪ Fi). By Corollary to the Theorem 2.10 the Gi’s, along with their

faces, give a triangulation of P . As P is a nondegenerate cross section of CΦ, by Theorem

1.26, this triangulation of P gives a triangulation of CΦ. Let C(Gi) be the cone of Gi,

which is the union of all the rays having source 0 and intersecting Gi. The C(Gi)’s are

the n dimensional elements in the triangulation of CΦ. Let Qi be the monoid of lattice

points in C(Gi). Since C(Gi)’s are simplicial cones, Qi are simplicial monoids and so

CF (Qi)’s are linearly independent sets. Recall that DQi = {
∑

β∈CF (Qi)
aββ | 0 ≤ aβ < 1}.

By Lemma 1.33, Qi =
∐

γ∈DQj
(γ + NCF (Qi)), where NCF (Qi) is the free monoid of

CF (Qi). Since U(P ′, w′) is shellable, so are F1, . . . , Fr. Assume that our indexing of Fi

matches with the ordering for shelling, i.e., (∪j−1
i=1Fi)∩Fj is a union of facets of Fj. Then

(∪j−1
i=1Gi) ∩ Gj is union of facets of Gj and (∪j−1

i=1C(Gi)) ∩ C(Gj) is union of facets of

C(Gj). We will prove the theorem with the following claims.

Claim 1. There is a unique face G′j of Gj which is minimal with respect to being not

contained in ∪j−1
i=1Gi.

The set ∪j−1
i=1Gi is a union of facets of Gj. Enumerate the facets of Gj as F ′1, F

′
2, . . . .

For each k, let xk denote the unique vertex of Gj that is not contained in F ′k. Let X

be the set of all such xk’s. We will show that G′j := ConvX has the required property.

Note Fj * ∪j−1
i=1Gi, so X does not contain all the vertices of Gj and hence G′j is a face of

Gj. If G′j ⊆ ∪
j−1
i=1Gi then G′j ⊆ F ′k for some facet F ′k of Gj which is contained in ∪j−1

i=1Gi.

Therefore xk /∈ G′j, which contradicts the definition of G′j. Hence G′j * ∪j−1
i=1Gi. Any

face of G′j is contained in ∪j−1
i=1Gi because it misses some of the xk ∈ X, and is therefore

contained in F ′k, showing that G′j is minimal with respect to not being contained in

∪j−1
i=1Gi.
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To show the uniqueness, let F be a face of Gj not contained in ∪j−1
i=1Gi. Then F is not

contained in F ′k for any k. So each xk ∈ X is in F , which gives G′j ⊆ F . By minimality

of G′j, F = G′j. This proves the uniqueness of G′j, completing the proof of Claim 1.

Let Tj be the set of all completely fundamental elements of CF (Qj) that are in

extremal rays of G′j. Given γ ∈ DQj , we define γ̂ = γ +
∑
β where β ∈ Tj and γ linearly

depends on CF (Qj) − {β}. To complete the proof of the theorem we need to show the

following claim.

Claim 2. The monoid EΦ has a decomposition into a disjoint union of translates of

free monoids:

EΦ =
r∐
j=1

∐
γ∈DQj

(γ̂ + NCF (Qj))

To prove the above claim, we will show that given η ∈ EΦ, we have η ∈ γ̂+NCF (Qj)

if and only if j is the minimum index such that η ∈ Qj.

Let j be minimum such that η ∈ Qj. Then η = γ+
∑

βi∈CF (Qj)
aiβi where ai ∈ N and

γ ∈ DQj . For some βi ∈ Tj, if η is linearly dependent on CF (Qj)−{βi} then there exists

a facet of C(Gj) containing η and contained in some C(Gi) with i < j. This contradicts

the minimality of j. So η depends on every element of Tj in Qj. Therefore if γ depends

on CF (Qj)− {βi} for some βi ∈ Tj then ai ≥ 1. So η − γ̂ ∈ NCF (Qj).

If η ∈ γ̂′ + NCF (Ql) for some l > j and some γ′ ∈ DQl , then η has an expression

γ̂′ +
∑

β′
i∈CF (Ql)

a′iβ
′
i. Here γ̂′ has to linearly depend on all elements of Tl in Ql. Since

η ∈ C(Gl) ∩ C(Gj), there exists β′ ∈ Tl such that η is linearly independent of β′ in Ql,

which contradicts to the fact that γ̂′ linearly depends on all elements of Tl in Ql. So such

an l should not exist, and so j is unique such that η ∈ γ̂ + NCF (Qj) for some γ ∈ DQj .

This completes the proof of Claim 2 and hence the proof of the theorem. �

Notes

The main ideas in this chapter are ‘pulling the vertices of a convex polytope’ and

‘shelling the boundary complex of a convex polytope’. For the results about techniques

of pulling I referred to [MS71]. Theorem 2.2 is from this book. Theorem 2.15 is proved

by Bruggesser and Mani in [BM71]. Even though our way of defining visible and invisible

facets differs from that of [BM71], the idea of the proof of Theorem 2.15 remains the
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same. Here I only discussed the shelling of visible and invisible facets, but the shelling

of all the facets of a polytope is an easy consequence [BM71, Section 2, corollary of

Proposition 2]. The last section is from [Sta82]. For the proof of Theorem 2.16, I have

followed [Sta82, Section 5].





CHAPTER 3

The Reciprocity Theorem

The contents of this chapter do not quite depend on the results of the previous chap-

ter. The only thing used in this chapter from the previous chapter is the existence of

triangulations of CΦ. Here we will mainly focus on the results about poset structure of

the triangulation. But before going into that we need to know some results about finite

posets mainly the Mobius inversion formula. These results, being incidental to the main

emphasis of this thesis, are stated without proof.

Definition 3.1. A finite set P with a binary relation ≤ is called a poset (finite poset) if

for all x, y, z ∈ P

(i) x ≤ x

(ii) if x ≤ y and y ≤ x then x = y

(iii) if x ≤ y and y ≤ z then x ≤ z

Definition 3.2. The Mobius function µ on P × P is defined as follows:

for all x ∈ P we have µ(x, x) = 1 and µ(x, y) = −
∑

x≤z<y µ(x, y)

The significance of Mobius function appears in the Mobius inversion formula:

Theorem 3.3 (Mobius Inversion Formula). Let f, g : P −→ Q, then g(x) =
∑

y≤x f(y)

if and only if g(x) =
∑

y≤x g(y)µ(y, x) for all x ∈ P

A proof of the Mobius inversion formula can be found in [Sta12, 3.7.1].

To use Mobius inversion we should know the Mobius function for the corresponding

poset. There is not always a nice expression for the Mobius function of a poset. Our

interest, fortunately, is in the following nice class of posets:

Let Γ be any triangulation of the convex pointed polyhedral cone CΦ. Γ̂ be the poset

of elements of Γ ordered by inclusion along with a highest element 1̂, i.e., for any σ ∈ Γ

we have σ < 1̂. Let dimCΦ = n. The formula for the Mobius function on Γ̂ is given by;

35
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Theorem 3.4. For σ, τ ∈ Γ

µ(σ, τ) =


(−1)dimτ−dimσ if σ ≤ τ < 1̂

(−1)n−dimσ+1 if σ * bdCΦ and τ = 1̂

0 if σ ⊆ bdCΦ and τ = 1̂

The proof of the above theorem needs some results on simplicial complexes. See

[Sta12, 3.8.9, 4.6.2] for details.

Definition 3.5. For a simplex σ ∈ Γ define Eσ to be the set σ ∩ Nn of lattice points in

σ and Eσ to be the set {x ∈ Eσ | x /∈ Eτ for all τ < σ} of lattice points in the relative

interior of σ. Define E1̂ = EΦ, E1̂ = ∅, EΦ = EΦ − bdCΦ and Γ = {σ ∈ Γ|σ /∈ bdCΦ}.

Lemma 3.6. We have

EΦ(x) =
∑
σ∈Γ

Eσ(x)

and

EΦ(x) = −
∑
σ∈Γ

µ(σ, 1̂)Eσ(x) .

Proof. EΦ(x) =
∑

σ∈ΓEσ(x) is clear from the definition. For the formula for EΦ

note E1̂(x) = EΦ(x) and E1̂(x) = 0. Clearly Eσ(x) =
∑

τ≤σ Eτ (x) for all σ, τ ∈ Γ̂. In

particular

EΦ(x) = E1̂(x) =
∑
τ∈Γ̂

Eτ (x) =
∑
τ∈Γ

Eτ (x).

Applying Mobius inversion formula

0 = E1̂ =
∑
σ∈Γ̂

Eσ(x)µ(σ, 1̂) = EΦ(x)µ(1̂, 1̂) +
∑
σ∈Γ

Eσ(x)

so

EΦ(x) = −
∑
σ∈Γ

µ(σ, 1̂)Eσ(x).

�

Any point in the interior of a simplicial cone depends on all its extremal rays: For

simplicial monoids, we have:
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Lemma 3.7. If {η1, . . . , ηt} is the set of quasi-generators of Eσ then

Eσ = {
t∑
i=1

aiηi ∈ Eσ|ai > 0}

Lemma 3.8. For a simplicial cone σ we have

Eσ(x) = (−1)tEσ(1/x)

Proof. We have

Eσ(1/x) =
( ∑
β∈DEσ

x−β
) t∏
i=1

(1− x−ηi)−1

= (−1)t
( ∑
β∈DEσ

xη̂−β
) t∏
i=1

(xηi − 1)−1,(2)

where η̂ =
∑t

i=1 ηi. But DEσ = {
∑t

i=1 aiηi|0 ≤ ai < 1}. So η̂ − DEσ = {
∑t

i=1 aiηi|0 <

ai ≤ 1}. Thus

(η̂ −DEσ)⊕ NCF (σ) =
{ t∑

i=1

aiηi ∈ Eσ|ai > 0
}

= Eσ.

Comparing with (2) gives the identity of the lemma. �

The following reciprocity theorem is a generalization of the above result to EΦ:

Theorem 3.9 (Reciprocity Theorem). For the given system of linear equations Φ we

have

EΦ(1/x) = (−1)nEΦ(x)

Proof. We have

EΦ(x) = −
∑
σ∈Γ

µ(σ, 1̂)Eσ(x) by Lemma 3.6

= −
∑
σ∈Γ̂

(−1)n+1−dimσEσ(x) by Theorem 3.4

= (−1)n
∑
σ∈Γ̂

(−1)dimσEσ(x),
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which implies

EΦ(1/x) = (−1)n
∑
σ∈Γ̂

(−1)dimσEσ(1/x)

= (−1)n
∑
σ∈Γ

Eσ(x) by Lemma 3.8

= (−1)nEΦ(x),

which proves the theorem. �

Corollary. Given γ ∈ Zn the following two conditions are equivalent

(i) EΦ(1/x) = (−1)nxγEΦ(x)

(ii) EΦ = γ + EΦ

Proof. By the reciprocity theorem, (i) is equivalent to

EΦ(x) = xγEΦ(x),

which is clearly equivalent to (ii). �

Notes

For this chapter I mainly referred to [Sta12, Chapter 2, 3]. Rota’s article [Rot64] is

a good exposition of Mobius functions.



CHAPTER 4

The ADG Conjecture

This chapter is about an application of all the results from the previous chapters. I

have chosen the Anand-Dumir-Gupta Conjecture (ADG conjecture) because it was the

main motivation behind the theory of EΦ. Before stating this conjecture I would like to

begin with the following combinatorial problem:

Suppose n distinct things, each replicated r times, are distributed among

n persons equally. In how many ways can we do this?

If r = 1 then it is same as giving n distinct things to n persons, which can be done in n!

ways. If n = 1 the answer is 1, for n = 2 the problem is equivalent to find the number of

ways we can partition r in 2 different parts which is r + 1. For further discussion let us

fix the notation Hn(r) for this count. MacMahon [Mac04] showed that

H3(r) =

(
r + 4

4

)
+

(
r + 3

4

)
+

(
r + 2

4

)
.

A nice general formula for Hn(2) is given by Anand, Dumir and Gupta [ADG66] as

∑
n≥0

Hn(2)xn

(n!)2
=

ex/2√
1− x

.

But to describe Hn(r) in complete generality seems to be a difficult problem. Anand,

Dumir and Gupta in their paper [ADG66] gave some conjectures about Hn(r) which

help us to calculate Hn(r) for certain values and gives some descriptions about a general

formula for Hn(r). I will not state this conjecture as it appears in [ADG66], rather I

will give an equivalent formulation that appears in [Sta83, 1.1]:

Conjecture (Anand, Dumir and Gupta). For every positive integer n

∑
r≥0

Hn(r)λr =
h0 + h1λ+ · · ·+ hdλ

d

(1− λ)(n−1)2+1
,

39
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with h0 + h1 + · · ·+ hd 6= 0, d = n2− 3n+ 2 and hi = hd−i for i = 0, 1, . . . , d. In addition

to this, Stanley conjectured that hi is a non-negative integer and h0 ≤ h1 ≤ · · · ≤ h[d/2].

We will soon see the proof of the conjecture except the last part i.e. h0 ≤ h1 ≤ · · · ≤

h[d/2], which still stands as an open problem [Sta83, 1.1].

Before going to the proof of ADG, let us take another look at our distribution problem.

If ai,j denotes the number of things of type j that the ith person gets then the matrix [ai,j]

determines the distribution uniquely. So the calculation of Hn(r) is equivalent to counting

the number of matrices of the form [ai,j]n×n where ai,j ∈ N and
∑n

i=1 ai,j =
∑n

j=1 ai,j = r.

If we consider the system of linear equations

n∑
i=1

xi,j =
n∑
k=1

xk,l

for i, j, k, l ∈ {1, . . . , n}. The non-negative integral solutions of this system of equations

give the set of all matrices in our required form. Let the above system be Φ and CΦ be the

cone of non-negative real valued solutions of Φ. Then CΦ is a cone in Nn2
of dimension

(n−1)2 +1. To investigate EΦ further, we need to know what its completely fundamental

elements are. The following lemma tells us how to find CF (EΦ).

Lemma 4.1. Every element of EΦ can be written as sum of permutation matrices. Recall

that a permutation matrix is of the form [δi,σ(i)], where σ ∈ Sn, the group of permutations

of n elements.

The proof of the above lemma uses Hall’s Marriage Condition [Hal86, Theorem 5.1.1]:

Theorem (Hall’s Marriage Condition). Let G1, . . . , Gn be n sets such that for all k ≤ n

union of any k sets has at least k elements then we can choose distinct representatives

gi ∈ Gi for each i.

Proof of Lemma 4.1. Let A = (ai,j)n×n be a matrix in EΦ with

n∑
i=1

ai,j =
n∑
j=1

ai,j = r .
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Let Gi = {j|ai,j 6= 0}. We claim that Gi’s satisfy Hall’s Marriage Condition. Consider

any k of the Gi’s say Gi1 , . . . , Gik . Let

y =
k∑
l=1

n∑
j=1

ail,j = rk

If ∪kl=1Gil = {j1, . . . , js} then

y =
k∑
l=1

s∑
t=1

ail,jt ≤
n∑
i=1

s∑
t=1

ai,jt = rs

So rk ≤ rs that implies k ≤ s. Since Gi satisfy Hall’s condition, we can choose distinct

representatives from each Gi say it ji. Clearly ai,ji ≥ 1. Let P be the permutation matrix

[δi,ji ]. Then A− P ∈ EΦ. Say A− P = [a′i,j]. Then

n∑
i=1

a′i,j =
n∑
j=1

a′i,j = r − 1 .

Now by induction on r we can write A as sum of permutation matrices. �

A matrix in EΦ is called an integer stochastic matrix. An integer stochastic matrix

[ai,j] said to have line sum r if

n∑
i=1

ai,j =
n∑
j=1

ai,j = r .

Let P be a permutation matrix. If

nP = n1A1 + n2A2

for some A1, A2 ∈ EΦ and n1, n2 ∈ N then the (i, j)th entry of P is non-zero if and only

if (i, j)th entry of at least one of the Ai is non-zero. But in P exactly one entry of each

row and each column is non-zero so for Ai either it is zero or exactly the same entry of

it is nonzero. So Ai are multiples of P and n = n1 + n2. This shows that the set of all

completely fundamental elements of EΦ are the set of all permutation matrices.

By Theorem 2.16

EΦ =
t∐
i=1

(δi + Ei)
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where E1, . . . , Et ⊆ EΦ are free monoids of rank (n− 1)2 + 1 and δ1, . . . , δt ∈ EΦ. In fact,

from the proof of Theorem 2.16, CF (Ei) ⊆ CF (EΦ), and

EΦ(x) =
t∑
i=1

xδi∏
η∈CF (Ei)

(1− xη)
.

Specializing the variables (x1,1, . . . , xn,n) as

xi,j =


λ if i = 1,

1 otherwise,

EΦ(x) becomes

EΦ(λ) =
t∑
i=1

λai

(1− λ)(1−n)2+1
,

where ai is the line sum of δi. Note for any A ∈ EΦ having line sum a, xA becomes λa

after substitution. So

EΦ(λ) =
∑
r≥0

Hn(r)λr =
p(λ)

(1− λ)(n−1)2+1

Here

p(λ) =
t∑
i=1

λai = h0 + h1λ+ · · ·+ hdλ
d (say)

is a polynomial with non-negative integral coefficients, i.e,

hi ≥ 0

and clearly

h0 + h1 + · · ·+ hd 6= 0 .

Note that Hn(0) = 1 implies h0 = 1. Now to find the degree of p(λ) recall the Corollary

of the Reciprocity Theorem 3.9. It is easy to see that

EΦ = [1]n×n + EΦ.

Hence

EΦ(1/x) = (−1)(n−1)2+1x[1]EΦ(x),
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which implies

EΦ(1/λ) = (−1)(n−1)2+1λnEΦ(λ).

After simplification we get

(h0λ
d + h1λ

d−1 + · · ·+ hd)λ
(n−1)2+1−d = λn(h0 + · · ·+ hdλ

d).

Equating the powers of λ on both the sides, we get

(n− 1)2 + 1 = n+ d ⇒ d = n2 − 3n+ d.

Also note that

h0λ
d + h1λ

d−1 + · · ·+ hd = h0 + h1λ · · ·+ hdλ
d,

which says

hi = hd−i.

This completes the part of the ADG conjecture that we wanted to prove. �

Notes

The statement of the ADG conjecture given here is an extension due to Stanley [Sta83,

1.1] of the original formulation of Anand, Dumir and Gupta [ADG66]. A proof of the

original conjecture without using the Stanley-Bruggesser-Mani decomposition appears in

[Sta12, Section 4.6]. One may refer to [Sta83, Chapter 1] for an algebraic proof of the

ADG Conjecture.

We saw that ∑
r≥0

Hn(r)λr =
h0 + h1λ+ · · ·+ hdλ

d

(1− λ)(n−1)2+1

from which it follows that

Hn(r) =

(
r + (n− 1)2

(n− 1)2

)
h0 +

(
r − 1 + (n− 1)2

(n− 1)2

)
h1 + · · ·+

(
r − d+ (n− 1)2

(n− 1)2

)
hd.

This says we know a formula for Hn(r) if we know all the hi’s. One way to find the values

of the hi’s is by interpolation. We already have hi = hd−i, h0 = 1 and h1 = n!− n. So to

interpolate p(λ) we need to know the values of p(λ) at another [d/2]− 2 points. It turns

out that the volume of the polytope having extremal points at permutation matrices gives
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p(1) [BR07, Lemma 3.19]. But it is an open problem to find an easy way to compute

p(1). Now what about p(λ), is it easier to compute p(λ) than p(1)? Computing p(λ) is

also an open problem. For further discussion of this see [DG95] and [DS98].
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matics. Birkhäuser Boston Inc., Boston, MA, 1983.

[Sta12] Richard P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge Studies in

Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2012.


	Certificate
	Abstract
	Acknowledgements
	Notations and Conventions
	Introduction
	Chapter 1. Geometry of Solutions
	1. Linear Homogeneous Diophantine Equations
	2. Basic Theory of Convex Polyhedra
	3. The Polyhedral Cone of a System of Linear Equations
	Notes

	Chapter 2. The Stanley-Bruggesser-Mani Decomposition
	1. Pulling the Vertices of a Polytope
	2. Shelling and the Bruggesser-Mani Theorem
	3. The Stanley-Bruggesser-Mani Decomposition
	Notes

	Chapter 3. The Reciprocity Theorem
	Notes

	Chapter 4. The ADG Conjecture
	Notes

	Bibliography

