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Abstract

We study the concept of a Bipartite Graph Planar Algebra (BGPA) corresponding to a uniformly
locally finite bipartite graph with a uniformly bounded spin function as well as the automorphism
group of this planar algebra. This has its origins in [J2] and [B]. We show that this group is
isomorphic to the semidirect product of two special types of subgroups which are easily computable
from the bipartite graph. We are interested in those group actions whose fixed point subalgebras
are Subfactor Planar Algebras (SPAs) because new SPAs will produce new subfactors. Finally we
show that the SPA of a ‘diagonal subfactor without cocycle’ can be obtatined by this fixed point
technique.
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Chapter 1

Introduction

The study of subfactors arose in the seminal work of Jones [J1]. The first isomorphism invariants
of a subfactor which were investigated were its index and principal graph. The more tractable sub-
factors were those with finite depth (equivalently, the principal graph was a finite bipartite graph),
in which case the former being the square of Perron-Frobenius eigenvalue of the latter.

The notion of a planar algebra arose in Jones’ [J1] description of the so-called ‘standard in-
variant of a subfactor’. The initial formulation of a planar algebra restricted itself to those planar
tangles where the ‘distinguished (starred) regions were always unshaded’ - see [J1], [KS1]. It was
soon realised that this ‘parity constraint’ was neither necessary nor desirable. Also, the planar alge-
bras that arose from a subfactor had many more special properties not necessarily seen in the more
general examples that the obvious/natural axiomatisation of a planar algebra demanded. Thus, it
was harder to construct planar algebras which were also ‘subfactor planar algebras’.

In view of the two initial subfactor invariants discussed earlier, it is not surprising that, in his
quest for examples, Jones initiated the study of a class of planar algebras built out of a finite bi-
partite graph (in [J2]). Subsequently, this construction was re-examined by Burstein [B], allowing
infinite bipartite graphs which satisfied mild ‘local finiteness conditions’. His motivation was to
construct a large class of planar algebras which, even if they themselves were not subfactor pla-
nar algebras, often had planar subalgebras which were! This thesis is an attempt to understand
and explain Burstein’s construction of what he calls a BGPA, this being an acronym for ‘bipartite
graph planar algebra’. Further, unlike their finite counterparts, infinite connected graphs do not
possess a unique Perron-Frobenius eigenvalue (up to scaling by a positive constant); so these BG-
PAs have an ‘spin function’ or postive weight function on their vertex sets built into their definition.

Overview of the thesis:

In Chapter 2 we recall the concept of planar algebra with the original definition relaxed so as
to permit starred region to be shaded. In our case each vector space and disk of a planar tangle
will be doubly indexed. We then illustrate some planar tangles which are the building blocks of
the operad of planar tangles and introduce the concept of Subfactor Planar Algebra (SPA).

In Chapter 3 we introduce Bipartite Graph Planar Algebra ( BGPA ) corresponding to a con-
nected locally finite bipartite graph with a locally bounded spin function. We construct a graded

9



Hilbert space with the paths of the graph as orthonormal basis and embed the graded vector spaces
of the BGPA inside the set of bounded operators of the graded Hilbert spaces. The above identi-
fication induces topological structures on the graded vector spaces. We then study the action of
some generating planar tangles on this planar algebra and these actions happen to be continuous
in a particular sense. We then try to make the BGPA into a ‘good’ planar algebra by introducing
positive definite forms on the vector spaces and show that the existence of modulus-δ for a finite
graph demands the spin function to be the Perron-Frobenius eigenvector ( upto normalization )
and δ to be the Perron-Frobenius eigenvalue of the graph.

In Chapter 4 we study automorphisms of BGPA. We introduce two types of automorphisms -
multiplication operator and graph automorphism operator and prove that the group of automor-
phisms is the semidirect product of the group of graph automorphism operators and multiplication
operators.

In Chapter 5 we deduce some sufficient conditions on a planar ∗-subalgebra of a BGPA to be an
SPA and it becomes an important tool to decide whether the fixed point subalgera corresponding
to a group action on a BGPA is SPA. We then give an example of a fixed point subfactor planar
algebra.

10



Chapter 2

Planar algebra

Planar algebras were first introduced by Jones in [J1]. The main motivation was to study the
‘standard invariants’ of certain subfactors. The main bridge between planar algebras and subfac-
tors is Jones’ theorem ([J1]), which imposes planar algebra structute on the ‘standard invariants’ of
subfactors and conversely shows that a planar algebra with some additional properties is the stan-
dard invariant of a subfactor. However, since its introduction, the definition of planar algebras has
undergone some modifications, and for completeness we shall mainly follow [J1], [KS1], [JP],[Pet]
with slight modifications.

2.1 Planar tangles

Planar tangles are essentially the pictorial forms of the elements of a colored planar operad, which is
just a slight modification of operad and can be defined along the lines of [Ma]. Each element of the
colored planar operad, i.e., each planar tangle determines a multilinear operation on the standard
invariant. The definition of a planar tangle here will be a slight modification of the definition given
in [J1].

2.1.1 Definition of a planar tangle

We define a set Col=(N ∪ {0}) × {+,−}, whose members we shall call ‘colors’ and will denote by
ordered pairs (k, ǫ). If a variable ǫ takes a value from {+,−}, then the variable ǫ̃ will take the other
value. If ǫ is +, then ǫn is defined as + ∀n ∈ N ∪ {0}. If ǫ is −, then ǫn is defined as + if n is even
and − if n is odd. Now we define a planar tangle T as a system with the following data:

1. It has a closed disk D0(T ) in the complex plane and a finite collection {Di(T )|i = 1, . . . , b(T )}
of pairwise disjoint disks in the interior of D0(T ),

2. It has a compact one dimensional submanifold T of D0(T )\ ∪
b(T )
i=1 Int(Di(T )) with

(a) ∂(T ) ⊂ ∪
b(T )
i=0 δ(Di(T )) and all intersections of T with each ∂(Di(T )) are transversal;

(b) |T ∩ ∂(Di(T ))| = 2ki for some integers ki ≥ 0, for each 0 ≤ i ≤ b(T );
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3. The connected components of D0\
(
(∪

b(T )
i=1 Int(Di(T )) ∪ T

)
will be called regions. If the

system satisfies the above two conditions the set of regions of T has a chequerboard shading.
Choose a chequerboard shading of T .

4. For each disk Di(T ) mark one adjacent region as ∗-region.

We say the color of Di(T ) is (ki, ǫi) if |∂(T )∩∂(Di(T )| = 2ki and the ∗-region of Di(T ) is white
(when ǫi = +) or black (when ǫi = −).

An example of a tangle T with 3 internal disks is illustrated below - in which the outer disk has
color (3,+) and the internal disks D1, D2 and D3 have colors (0,-), (3,+) and (3,+) respectively:

D1(T )

D2(T )

D3(T ) D1(T )

D2(T )

D3(T )

⋆

⋆

⋆

⋆

Figure 2.1: (3,+)-tangle T

The connected components of T will be called strings and the local maxima and minima of
the y-coordinate function of each string will be called singular points if they do not occur at the
boundary of the disks.

Two tangles T and S will be called equivalent if b(T ) = b(S) and there exists an orientation
preserving diffeomorphism of the complex plane which maps each Di(T ) onto Di(S), the subman-
ifold T onto S, and preserves the ∗-regions of each disk. Finally, an equivalence class under above
equivalence is called a (k0, ǫ0)-tangle.

2.1.2 Composition of two tangles

There is a natural way to ‘compose’ two tangles. Suppose T is a (k0(T ), ǫ0(T ))-tangle, with b(T )(≥
1) internal disks of colors (kj(T ), ǫj(T )) and S is a (ki, ǫi)-tangle for some i ∈ {1, . . . , b(T )} with b(S)
internal disks of colors (kr(S), ǫr(S), then the compostion of S and T will be obtained by gluing the
boundaries of D0(S) and Di(T ) taking care to match ∗-regions and colors of the adjacent regions
and matching and smoothing the strings at ∂D0(S) and finally deleting ∂D0(S); the resulting tangle
T1 will be denoted by T ◦i S. The numbering of the internal disks of T1 is given by

Dj(T1) =





Dj(T ) if 1 ≤ j < i ;
Dj−i+1(S) if i ≤ j ≤ i+ b(S)− 1;
Dj−b(S)+1(T ) if i+ b(S) ≤ j ≤ b(T ) + b(S)− 1.
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We illustrate this by the following example in Figure 2.2:

D1(T )

D2(T )

D3(T ) D1(T )

D2(T )

D3(T )

⋆

⋆

⋆

⋆

◦2
D1(S) D2(S)D1(S) D2(S)

⋆

⋆
⋆

||

D4(T1)
D1(T1)

D2(T1)
D3(T1)

D4(T1)
D1(T1)

D2(T1)
D3(T1)

⋆

⋆

⋆
⋆

⋆

Figure 2.2: Composition of two tangles

2.1.3 Standard form of a planar tangle

Suppose a planar tangle T is arranged so that

1. all the disks are horizontal rectangles with all strings (except loops) emanating from the top
or bottom edge of the rectangles;

2. for each disk the number of strings attached to the top and bottom edge are same;

3. the left edge of each rectangle is adjacent to the ∗-region of the same;

4. the total number of singular points of the strings is finite;
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5. we can partition the outer disk into a finite number of horizontal strips having the internal
disks and the singular points in different strips.

This is called a “Standard form representative” of a tangle. A standard form representative of
the above tangle T is shown below:

D1

D3

D2

⋆

⋆

⋆
⋆

Figure 2.3: Standard form of the tangle T

Note that there could be several standard forms of a tangle T . However it is a fact from [J1],
[BDG1] that one standard form of all such T can be transformed into another by a finite sequence
of moves of the following five types:

I. Horizontal sliding of the internal disks:

⋆ ←→ ⋆

II. Vertical sliding of the internal disks:

14



⋆

←→

⋆

III. Vertical Wiggling of the strings:

←→

IV. 360◦ rotation of an internal disk :

⋆ ←→ ⋆

V. isotopy in a segment of a string such that at each time the curve in the isotopoy does not
have any singular point.

2.1.4 Some important tangles

In this sub-section we define a set of important tangles in the operad of colored tangles. Some
of them form a generating set in the collection of all tangles, i.e., any tangle can be obtained by
composing finitely many tangles from the set of generating tangles.

1. Identity tangles:
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D1⋆⋆

I
(0,+)
(0,+)

D1⋆⋆

I
(k,+)
(k,+)

Similarly, I
(0,−)
(0,−) and I

(k,−)
(k,−) are defined by reverse shadings respectively.

2. Inclusion tangles:

(a) Right Inclusion tangles:

D1⋆⋆

RI
(1,+)
(0,+)

D1⋆⋆

RI
(k+1,+)
(k,+)

Similarly, RI
(1,−)
(0,−) and RI

(k+1,−)
(k,−) are defined by reverse shadings respectively.

(b) Left Inclusion tangles:

D1⋆⋆

LI
(1,−)
(0,+)

D1⋆⋆

LI
(k+1,−)
(k,+)

Similarly, LI
(1,+)
(0,−) and LI

(k+1,+)
(k,−) are defined by reverse shadings respectively.

3. Unit tangles:

16



1(0,+)

⋆

1(k,+)

⋆

Similarly, 1(0,−) and 1(k,−) are defined by reverse shadings respectively.

4. Multiplication tangles:

⋆

⋆

⋆

D2

D1

M(0,+)

⋆

⋆

⋆

D2

D1

M(k,+)

Similarly,M(0,−) andM(k,−) are defined by reverse shadings respectively.

5. Conditional Expectation tangles:

(a) Right Expectation tangles:

D1⋆⋆

RE
(0,+)
(1,+)

D1⋆⋆

RE
(k,+)
(k+1,+)

Similarly, RE
(0,−)
(1,−) and RE

(k,−)
(k+1,−) are defined by reverse shadings respectively.

(b) Left Expectation tangles:

17



D1⋆⋆

LE
(0,−)
(1,+)

D1⋆⋆

LE
(k,−)
(k+1,+)

Similarly, LE
(0,+)
(1,−) and LE

(k,+)
(k+1,−) are defined by reverse shadings respectively.

6. Half rotation tangles:

⋆⋆

R
(k,−)
(k,+)

Similarly, R
(k,+)
(k,−) is defined by reverse shading.

7. Temperley-Lieb tangles:

⋆ k

T L(k,+)( k is even)

⋆ k

T L(k,−)(k is odd)

Similarly, T L(k,−) is defined by reverse shading. For the notational convenience, T L(0,+) and
T L(0,−) will be denoted by T L+ and T L− respectively.

Now we are ready to give the list of generating tangles.

Theorem 2.1.1. [KS1]Let T be a collection of colored tangles containing

G :=
{
1(0,±),T L+,T L−

}
∪
{
M(k,±),RI

(k,±)
(k+1,±),LI

(k,∓)
(k+1,±),RE

(k,±)
(k+1,±),LE

(k,±)
(k+1,∓) : k ≥ 0

}
, (2.1)

and suppose T is closed under composition of tangles, whenever it makes sense. Then T contains
all tangles.
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Definition 2.1.2. For any tangle T we define the ‘adjoint’ of T , denoted by T ∗, as the reflection
of T about any line in the plane such that the shadings and the ∗-regions are preserved by this
reflection.

2.2 Planar algebras

A planar algebra is a collection of vector spaces P = {P(k,ǫ) : (k, ǫ) ∈ Col} which admits an action
of each tangle, i.e., if T is a (k0, ǫ0)-tangle with b internal disks of colors (ki, ǫi) then there is a
linear map (called tangle map)

ZP
T :

{
⊗b

i=1P(ki,ǫi) → P(k0,ǫ0) if b(T ) > 0 ;

C→ P(k0,ǫ0) if b(T ) = 0.

such that the set of tangle maps satisfy the following conditions:

1. Compatibility with the composition of tangles: Suppose T and S are as in § 2.1.2, then

(i) if b(S) > 0 the following diagram commutes:

(⊗i−1
j=1P(kj(T ),ǫj(T )))⊗ (⊗

b(S)
r=1P(kr(S),ǫr(S)))⊗ (⊗

(b(T )
j=i+1P(kj(T ),ǫj(T )))

⊗
b(T )
j=1P(kj(T ),ǫj(T ))

P(k0(T ),ǫ0(T ))

ZP
T◦iS

id⊗ ZP
S ⊗ id

ZP
T

(ii) if b(S) = 0 this diagram commutes:

(⊗i−1
j=1P(kj(T ),ǫj(T )))⊗ C⊗ (⊗

(b(T )
j=i+1P(kj (T ),ǫj(T )))

⊗j 6=iP(kj(T ),ǫj(T )

⊗
b(T )
j=1P(kj(T ),ǫj(T ))

P(k0(T ),ǫ0(T ))

ZP
T◦iS

id⊗ ZP
S ⊗ id

ZP
T

∼=

2. Independence of the ordering of the internal disks: For a tangle T with b internal disks of
colors (kj , ǫj), and for a permutation σ ∈ Sb, let us write Uσ for the map

Uσ : ⊗b
j=1P(kσ(j),ǫσ(j))

→ ⊗b
j=1P(kj ,ǫj)

⊗b
j=1xσ(j) 7→ ⊗

b
j=1xj

19



Let us define σ−1(T ) to be the tangle which differs from T only in the numbering of its
internal disks, this numbering being given by Di(σ

−1(T )) = Dσ(i)(T ), 1 ≤ i ≤ b. Then

ZP
T ◦ Uσ = ZP

σ−1(T ).

3. Non-degeneracy Condition: P must satisfy ZP

I
(k,ǫ)
(k,ǫ)

= idP(k,ǫ)
∀(k, ǫ) ∈ Col.

Remark 2.2.1. For each (k, ǫ) ∈ Col, P(k,ǫ) is a unital asociative algebra with respect to multipli-

cation given by x1x2 := ZP
M(k,ǫ)

(x1 ⊗ x2) for all x1, x2 ∈ P(k,ǫ), and multiplicative identity being the

element 1(k,ǫ) := ZP
1(k,ǫ)

(1) ∈ P(k,ǫ).

Definition 2.2.2. Let P = {P(k,ǫ) : (k, ǫ) ∈ Col} and Q = {Q(k,ǫ) : (k, ǫ) ∈ Col} be two planar
algebras. A planar algebra morphism from P to Q is a collection φ = {φ(k,ǫ) : (k, ǫ) ∈ Col} of linear
maps φ(k,ǫ) : P(k,ǫ) → Q(k,ǫ) which commutes with all the tangle maps, i.e., if T is a (k0, ǫ0)-tangle
with b internal disks of colors (ki, ǫi), then

φk0 ◦ Z
P
T =

{
ZQ
T ◦ (⊗

b
i=1φ(ki,ǫi)) if b > 0; and

ZQ
T if b = 0.

(2.2)

Further, the morphism φ is said to be a planar algebra isomorphism if the maps φk are all
linear isomorphisms. By an automorphism of a planar algebra P we shall mean a ‘∗’ preserving
planar isomorphism from P into itself and the set of all automorphisms of a planar algebra P will
be denoted by Aut(P ).

Remark 2.2.3. [VP] Let P and Q be planar algebras as above, and let {φ(k,ǫ) : P(k,ǫ) → Q(k,ǫ), (k, ǫ)
∈ Col} be a collection of linear maps. If T is a the set of those tangles T for which equation 2.2
holds, then T is closed under composition of tangles. Thus, by Theorem 2.1.1, in order to verify
whether such a collection is a planar algebra morphism or not, we just need to check equation 2.2
for the set of generating tangles.

Definition 2.2.4. Let G be a group and P = {P(k,ǫ) : (k, ǫ) ∈ Col} be a planar algebra. We say G
acts on P if there exists a group homomorphism from G into Aut(P ).

Remarks 2.2.5. 1. Suppose φ : G→ Aut(P ) is a group homomorphism and φ(g) = {φ(k,ǫ)(g) :
P(k,ǫ) → P(k,ǫ)|(k, ǫ) ∈ Col} ∀g ∈ G. Then for notational convenience, we write gx for the
element φ(k,ǫ)(g)(x), for all g ∈ G, x ∈ P(k,ǫ) and (k, ǫ) ∈ Col. Defining

PG
(k,ǫ) := {x ∈ P(k,ǫ) : gx = x∀g ∈ G}, (k, ǫ) ∈ Col,

we note that PG := {PG
(k,ǫ) : (k, ǫ) ∈ Col} is a planar subalgebra of P .

2. When the planar algebra P is clear from the context, the tangle map ZP
T will be denoted by

ZT only. Also, deleting the superscript and subscript, we only use ZLI instead of Z
LIk+1,ǫ̃

(k,ǫ)

when the domain V ǫ
k is clear from the context, and we follow the same type of notation for

the right embedding tangles and conditional expectation tangles. The map Z
LI

(k+n,ǫ̃)
(k+n−1,ǫ)

◦ · · · ◦

Z
LI

(k+2,ǫ)
(k+1,ǫ̃)

◦ Z
LI

(k+1,ǫ̃)
(k,ǫ)

will be denoted by [ZLI ]
n, where n is odd, and we follow the same type

of notation when n is even and for the right embedding tangles and expectation tangles.
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2.3 Subfactor planar algebras

First we define some ‘good’ properties of a planar algebra, and then a planar algebra having those
‘good’ properties is defined as a ‘subfactor planar algebra’.

Some good properties of planar algebras:

1. A planar algebra is said to be connected (respectively, irreducible) if dim P(0,±) = 1 (respec-
tively, dim P(1,±) = 1).

Remark: If P is a connected planar algebra, then there is a unique algebra isomorphism
between P(0,±) and C. By this isomorphism we identify P(0,±) with C.

2. A connected planar algebra P is said to have modulus δ if there is a scalar δ such that

ZP
T±
∓

(1(0,±)) = δ1(0,∓)

where the tangles T±
∓ are illustrated below:

⋆ D1

T+
−

⋆ ⋆ D1

T−
+

⋆

(a) Remark: A planar algebra P having modulus δ is equivalent to saying that a contractible
loop comes out as the constant δ, i.e., if T is a tangle with a contractible loop and T ′ is
the same tangle except that loop, then ZP

T ′ = δZP
T .

(b) Remark: If a planar algebra has non-zero modulus, then inclusion tangles give injective
maps.

3. A planar algebra P is said to be spherical if ZP

LE
(0,−)
(1,+)

=ZP

RE
(0,+)
(1,+)

, where P(0,±) are identified

with C as above.

Subfactor Planar Algebra (SPA): A planar algebra is said to be a subfactor planar algebra
if

1. P is connected, spherical, has a positive modulus;

2. each P(k,ǫ) is a finite dimensional C∗-algebra;

3. for any (k0, ǫ0)-tangle T with b internal disks of colors (ki, ǫi),

[ZP
T (x1 ⊗ · · · ⊗ xb)]

∗ = ZP
T ∗(x∗1 ⊗ · · · ⊗ x∗b) (2.3)

∀xi ∈ P(ki,ǫi), 1 ≤ i ≤ b ( ‘∗ property’ of P );
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4. the scalar sesquilinear form on each P(k,ǫ) given by 〈x, y〉 = [ZP
RE ]

n(y∗x), where x, y ∈ P(k,ǫ)

and P(0,ǫ) is identified with C, is a positive definite form (‘positive definiteness’ of P ).

Remark 2.3.1. [DGG] Let P = {P(k,ǫ) : (k, ǫ) ∈ Col} and Q = {Q(k,ǫ) : (k, ǫ) ∈ Col} be two
planar algebras with non-zero moduli and each of P(k,ǫ) and Q(k,ǫ) is finite dimensional. Also, let
φ := {φ(k,ǫ) : P(k,ǫ) → Q(k,ǫ), (k, ǫ) ∈ Col} be a collection of linear maps. Then φ is a planar algebra
morphism if it commutes with the actions of the following set of tangles:

{
M(k,+),RI

(k+1,+)
(k,+) ,LI

(k+1,+)
(k,−) ,LE

(k,−)
(k+1,+),T L

(k,+) : k ≥ 0
}
.

The importance of planar algebras in subfactor theory lies in Jones’ theorem. Now we state
Jones’ theorem.

Theorem 2.3.2. [J1] Let N ⊂M be a finite index extremal II1 subfactor with [M : N ] = δ1/2 <∞.
Let N(:= M−1) ⊂ M(:= M0) ⊂

e1 M1 ⊂
e2 M2 ⊂ · · · be its associated tower of basic construction.

Then the ‘standard invariant’ of the subfactor N ⊂ M is given by the following grid of relative
commutants:

N ′ ∩M−1 N ′ ∩M0 N ′ ∩M1 N ′ ∩M2 · · ·

M ′ ∩M0 M ′ ∩M1 M ′ ∩M2 · · ·

C =

C =

Define P+
n := N ′∩Mn−1 and P−

n := M
′
∩Mn for all n ∈ N∪{0}. Then there is a unique subfactor

planar algebra structure on PN⊂M := P = {P ǫ
n : (n, ǫ) ∈ Col} satisfying the following properties:

1. ZP
T L(n,+)(1) = δen+1, Z

P
T L(n,−)(1) = δen+2 for all n ≥ 0;

2. ZP

RI
(n+1,+)
(n,+)

, ZP

RI
(n+1,−)
(n,−)

and ZP

LI
(n+1,+)
(n,−)

are the inclusions N ′ ∩Mn−1 →֒ N ′ ∩Mn, M
′ ∩Mn →֒

M ′ ∩Mn+1 and M ′ ∩Mn →֒ N ′ ∩Mn respectively for all n ≥ 0;

3. ZP

RE
(n,+)
(n+1,+)

= δEN ′∩Mn

N ′∩Mn−1
for all n ≥ 1 and ZP

RE
(n,−)
(n+1,−)

= δE
M ′∩Mn+1

M ′∩Mn
for all n ≥ 1;

4. ZP

RE
(0,+)
(1,+)

(x) = δtrM0(x) for all x ∈ N ′ ∩M0 and ZP

RE
(0,−)
(1,−)

(x) = δtrM1(x) for all x ∈M ′ ∩M1;

5. ZP

LE
(n,−)
(n+1,+)

= δEN ′∩Mn

M ′∩Mn
for all n ≥ 1 and ZP

LE
(0,−)
(1,+)

(x) = δtrM0(x) for all x ∈ N ′M0.

where {en : n ∈ N} and {EN ′∩Mn

N ′∩Mn−1
,E

M ′∩Mn+1

M ′∩Mn
,EN ′∩Mn

M ′∩Mn
: n ∈ N} are the sets of Jones’ projections

and conditional expectations associated to the subfactor N ⊂M respectively.
Conversely, for any subfactor planar algebra P , Jones via Popa [Po1] shows that there exists a

finite index extremal II1 subfactor N ⊂M of which P is the standard invariant.

So, Jones’ theorem not only helps in the classification of subfactors, but also gives a way
to construct new subfactors, and the construction of new subfactors is important in subfactor
theory. The construction of subfactors from SPAs was re-established recently by Guionnet-Jones-
Shlyakhtenko ([GJS]), Jones-Shlyakhtenko-Walker ([JSW]) and Kodiyalam-Sunder ([KS2]).
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Chapter 3

Bipartite Graph Planar Algebra

Bipartite Graph Planar Algebra (BGPA) was first introduced by Jones for finite connected bipartite
graphs in [J2] for constructing new SPAs and Burstein extended this idea for ‘uniformly locally finite
connected bipartite graphs’ in [B]. Also, the recent developments show that BGPA is an important
object in planar algebra. Peters in [Pet] found the planar algebra of the Haagerup subfactor inside
the planar algebra of the bipartite graph of its principal graph, and Bigelow, Morrison, Peters,
and Snyder using this technique gave the first construction of the extended Haagerup subfactor
[BMPS]. Both of these results stemmed from the supposition that a finite depth, subfactor planar
algebra is embedded in the graph planar algebra of its principal graph, which was shown by Jones
and Penneys in [JP]. However, in this chapter we shall mainly follow the formalisms given in [J2],
[VP] and [B].

3.1 Definitions, notations and assumptions

Let Γ be a uniformly locally finite connected bipartite graph, i.e., each vertex of Γ is an endpoint of
at most N edges for some N ∈ N. Suppose V +, V − and E be the sets of positive vertices, negative
vertices and edges respectively. Let µ be a function from V +⊔V − to (0,∞) satisfying the following
uniform boundedness condition: there is some M > 0 such that for any two adjacent vertices v and
w, we have µ(v)/µ(w) < M . The function µ is called a ‘spin function’ on Γ.

For any (k, ǫ) ∈ Col, define lǫk as the set of all loops of length 2k starting at a vertex in V ǫ,
pǫk as the set of all paths of length k starting at a vertex in V ǫ and V ǫ

k as the vector space of all
bounded functions from lǫk to C. For any path p in Γ, s(p) and t(p) will denote the starting and
terminal point of p respectively. For any path p and loop L, p̃ and L̃ will denote the reverse of p
and L respectively. Concatenation of two paths p and q with t(p) = s(q) will be denoted by c(p, q).
If a loop of length 2k is the concatenation of two k-length paths π and λ̃, we denote the loop by
the ordered pair (π, λ).

Let T be a (k0, ǫ0)-tangle with b(T ) internal disks {Di|i = 1, . . . , b(T )} such that (ki, ǫi) is the
color of Di.

Definition 3.1.1. A state σ of a tangle T is a function

σ : {regions of T} ⊔ {strings of T} → V + ⊔ V − ⊔ E
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such that

1. σ({unshaded regions}) ⊂ V +, σ({shaded regions}) ⊂ V −;

2. σ({strings}) ⊂ E;

3. if a string s lies in the closure of two regions r1 and r2, then σ(s) is an edge between the
vertices σ(r1) and σ(r2).

Remarks 3.1.2. 1. We observe that a state σ on a tangle T induces a unique loop at each disk of
T in the following way.
Let D be a disk of T of color (k, ǫ) with ∗-region r1. We start from a point of ∂(D) ∩R1, traverse
along the boundary of D in anticlockwise direction and come back to the starting point. Suppose
the regions and strings we come across while traversing are in the following order:

r1

r2 rk

rk+1

rk+2r2k

s1 sk

sk+1s2k

where ri and si are the adjacent regions and strings respectively. Then the loop induced at D is:

σ(r1)

σ(r2) σ(rk)

σ(rk+1)

σ(rk+2)σ(r2k)

σ(s1) σ(sk)

σ(sk+1)σ(s2k)

and the loop will be denoted by σ(D).

2. If T is a (k, ǫ)-tangle and L is a loop of length 2k and based at a vertex in V ǫ , then the
number of states σ on T such that σ(D) = L is bounded by N |S(T )|, where |S(T )| denotes the
number of strings in T .

3. We isotope the tangle T to a standard form representative and for each singular point α of
T we define µα := µ[σ(inner region at α)]/µ[σ(outer region at α)]
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inner

outer

inner

outer
α

α

For a given spin function µ and a tangle T ,

c(T, σ) :=
∏

singular points α of T

µα

is independent of the standard form representatives of T because the value of c(T, σ) is invariant
under each of the five moves discussed in § 2.1.3.

4. Suppose T and S be two tangles as in § 2.1.2. Let σ and σ′ be two states on T and S
respectively such that σ(Di(T ))=σ′(D0(S)). Then σ ◦i σ

′ denotes the state on T ◦i S defined by
glueing σ and σ′ in natural way. We observe that there is a 1-1 correspondence between

{(σ, σ′)|σ and σ′ are states on T and S respectively with σ(Di(T ))=σ′(D0(S))}

and {states on T ◦i S} by (σ, σ′) 7→ σ ◦i σ
′. We also note that c(T ◦i S, σ ◦i σ

′) = c(T, σ)c(S, σ′).

5. For A ∈ V ǫ
k , we define ‖A‖∞ = sup{|A(L)| : L ∈ lǫk}.

3.2 Planar algebra structure on VΓ

We take one of the standard form representatives of the tangle T . Let |α(T )| be the total number
of singular points in that standard form representative of T and |S(T )| be the total number of
strings in T . Now we define the linear map ZVΓ

T as follows:

Case1: Suppose b(T ) > 0. We take xi ∈ V ǫi
ki
∀i = 1, . . . , b(T ). Then

∣∣∣∣∣∣∣

∑

states σ on T � σ(T ) = L

b(T )∏

i=1

xi(σ(D))c(T, σ)

∣∣∣∣∣∣∣

≤ M |α(T )|N |S(T )|(Maxi{‖xi‖∞})
b(T ),

∀L ∈ lǫ0k0 . Therefore, Z
VΓ
T : ⊗

b(T )
i=1 V

ǫi
ki
→ V ǫ0

k0
, given by

[ZVΓ
T (x1 ⊗ · · · ⊗ xi ⊗ · · · ⊗ xb(T ))](L)

=
∑

states σ on T � σ(T ) = L

b(T )∏

i=1

xi(σ(D))c(T, σ),
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where L ∈ lǫ0k0 , is defined as the action of T on VΓ. By the fifth remark made in Remarks 3.1.2,

we observe that c(T, σ) is independent of the standard form of T . Therefore, ZVΓ
T is a well-defined

map.

Case2: Suppose b(T ) = 0. Then

∣∣∣∣∣∣∣

∑

states σ on T � σ(T ) = L

c(T, σ)

∣∣∣∣∣∣∣
≤ N |S(T )|M |α(T )|,

∀L ∈ lǫ0k0 . Therefore, Z
VΓ
T : C→ V ǫ0

k0
, given by

[ZVΓ
T (1)](L) =

∑

states σ on T � σ(T ) = L

c(T, σ),

where L ∈ lǫ0k0 , is defined as the action of T on VΓ. By a similar argument like the first case,

ZVΓ
T is a well-defined map.

Theorem 3.2.1. {V ǫ
k : (k, ǫ) ∈ Col} forms a planar algebra under above tangle actions.

Proof. The ‘Independence of the ordering of the internal disks’ and ‘Non-degeneracy Condition’
immediately follow from the definition of ZVΓ

T . Now we prove the first condition given in Definition
2.2. Suppose T and S be two tangles as given there. We first consider the case when S has at least
one internal disk. Take xj ∈ V

ǫj
kj
∀ j = 1, . . . , i − 1 and i, . . . , b(T ) and yr ∈ V ǫr

kr
∀ r = 1, . . . , b(S).

We shall prove that

ZVΓ
T (⊗i−1

j=1xj ⊗ (ZVΓ
S (⊗

b(S)
r=1yr))⊗

b(T )
j=i+1 xj) = ZVΓ

T◦iS
(⊗i−1

j=1xj ⊗
b(S)
r=1 yr ⊗

b(T )
j=i+1 xj).

Let L be a loop in l
ǫ0(T )
k0(T ). Then we have

ZVΓ

T (⊗i−1
j=1xj ⊗ (ZVΓ

S (⊗
b(S)
r=1yr))⊗

b(T )
j=i+1 xj)(L)

=
∑ b(T )∏

j=1;j 6=i

xj(σ(Dj(T )))

b(S)∏

r=1

yr(σ(Dr(S)))c(T ◦i S, σ)

states σ on T ◦i S
� σ(D0(T ◦i S)) = L

=
∑




b(T )∏

j=1;j 6=i

xj(σ(Dj(T ))c(T, σ))





 ∑ b(S)∏

r=1

yr(σ(Dr(S)))c(S, σ
′)




states σ on T states σ
′ on S

� σ(D0(T )) = L � σ
′(D0(S)) = σ(Di(T ))

= ZVΓ

T (⊗i−1
j=1xj ⊗ (ZVΓ

S (⊗
b(S)
r=1yr))⊗

b(T )
j=i+1 xj)(L)

In a similar way we can check the ‘Compatibility with the composition of tangles’ when S has
no internal disks.

Definition 3.2.2. Define ∗ : V ǫ
k → V ǫ

k by A∗(L) = A(L̃) for all A ∈ V ǫ
k , L ∈ lǫk. We later prove in

Theorem 3.5.2 that VΓ has ∗ property.
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3.3 V ǫ
k as a von Neumann algebra

Suppose for each (k, ǫ) ∈ Col, H(k,ǫ) is the Hilbert space with an orthonormal basis {xp} labelled
by the paths p ∈ pǫk. Let H

v
(k,ǫ) be the closed linear span of {xp : s(p) = v} in H(k,ǫ) for v ∈ V ǫ, and

Hvw
(k,ǫ) be the closed linear span of {xp : s(p) = v, t(p) = w} in H(k,ǫ) for v ∈ V ǫ and w ∈ V + ⊔ V −.

Observe that H(k,ǫ) =
⊕

v

Hv
(k,ǫ) =

⊕

v,w

Hvw
(k,ǫ). Let us define two types of projections sv and tw in

B(H(k,ǫ)) for all (k, ǫ) ∈ Col, which we shall often use later. For any two vertices v and w, we define
sv as the projection onto the closed linear span of {xp : p ∈ pǫk, s(p) = v, (k, ǫ) ∈ Col} and tw as
the projection onto the closed linear span of {xp : p ∈ pǫk, t(p) = w, (k, ǫ) ∈ Col}.

Now we define ‘concatenation’ and ‘reverse’ operators on {H(k,ǫ) : (k, ǫ) ∈ Col}.

Definition 3.3.1. For all (k, ǫ), (k′, ǫ′) ∈ Col, we define ‘concatenation’ operator c : H(k,ǫ) ⊗
H(k′,ǫ′) → H(k+k′,ǫ) by linearly and continuously extending the following map:

c(xp ⊗ xq) =

{
xc(p,q) if t(p) = s(q) ;

0 otherwise.

∀ p ∈ pǫk, q ∈ pǫ
′

k′. We define ‘reverse’ operator rev : Hǫ
1 → H ǫ̃

1 by continuously and anti-linearly
extending xe 7→ xẽ ∀e ∈ pǫ1.

Remark 3.3.2. c : H(k,ǫ) ⊗ H(k′,ǫ′) → H(k+k′,ǫ) is a partial isometry onto H(k+k′,ǫ) with initial

space as the closed linear span of {xp⊗ xq : p ∈ pǫk, q ∈ pǫ
′

k , t(p) = s(q)} and ‘rev’ is an anti-unitary
operator.

Next we prove a lemma related to ‘concatenation’ and ‘reverse’ operators.

Lemma 3.3.3. Suppose v and w are two adjacent vertices in Γ with v ∈ V ǫ. Let {ei : i =
1, . . . , n(v,w)} be the set edges between v and w, and {ai : i = 1, . . . , n(v,w)} be an orthonormal
basis of Hvw

(1,ǫ). Then

n(v,w)∑

i=1

c(ai ⊗ rev(ai)) =

n(v,w)∑

i=1

c(xei ⊗ xẽi).

Proof. First observe that {c(xei ⊗ xẽj ) : i, j = 1, . . . , n(v,w)} is an orthonormal basis of c(Hvw
(1,ǫ) ⊗

Hwv
(1,ǫ̃)). Therefore, it suffices to prove that the inner product of

n(v,w)∑

i=1

c(ai⊗rev(ai)) with c(xei⊗xẽj)

is δji ∀i, j = 1, . . . , n(v,w). Let U = ((uij)) be the unitary matrix such that ai =
∑

j

uijxej) ∀i.

Then one simple computation gives that the inner product of

n(v,w)∑

i=1

c(ai⊗ rev(ai)) with c(xei ⊗xẽj)

is equal to the inner product of ith column and jth column of U , and which is equal to δji .

Now we identifty V ǫ
k with a type I von Neumann subalgebra of B(H(k,ǫ)) in the following

manner: We take A ∈ V ǫ
k and it will correspond to an operator Â in B(H(k,ǫ)). Since Hvw

(k,ǫ) is
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finite dimensional for all v ∈ V ǫ and w ∈ V + ⊔ V −, the matrix (A(π, λ)) defines a unique operator
on Hvw

(k,ǫ) with respect to the basis {xλ : λ ∈ pǫk}. Since the dimension of Hvw
(k,ǫ) is bounded by

Nk for all v ∈ V ǫ and w ∈ V + ⊔ V −, the operator norm of Â on Hvw
(k,ǫ) is bounded by Nk‖A‖∞

∀v ∈ V ǫ, w ∈ V + ⊔ V −. Therefore, Â extends to a continuous linear operator on H(k,ǫ) with

operator norm ‖A‖op ≤ Nk‖A‖∞.

Theorem 3.3.4. The map V ǫ
k → B(H(k,ǫ)) defined by A 7→ Â is a one-one ∗-algebra morphism

and the image of V ǫ
k in B(H(k,ǫ)) is a type I von Neumann algebra.

Proof. Let A,B ∈ V ǫ
k . Consider two basis elements xπ and xλ of H(k,ǫ). then

〈ÂB(xλ), xπ〉 =

{
AB((π, λ)) if s(π) = s(λ) and t(π) = t(λ),
0 otherwise;

=





∑

δ∈pǫ
k
� s(δ)=s(π),

t(δ)=t(π)

A((π, δ))B((δ, λ)) if s(π) = s(λ) and t(π) = t(λ),

0 otherwise;

= 〈ÂB̂(xλ), xπ〉

and 〈Â∗(xλ), xπ〉 = A∗((π, λ)) = A((λ, π)) = 〈Â(xπ), xλ〉 = 〈Â
∗(xλ), xπ〉.

Therefore, A 7→ Â is a ∗-algebra morphism. The injectivity of the map directly follows from
definition. Now to prove that the image of V ǫ

k in B(H(k,ǫ)) is a von Neumann algebra it suffices to
show that the image is equal to the commutant of {PHvw

(k,ǫ)
: v ∈ V ǫ, w ∈ V + ⊔ V −}, because the

commutant of a ∗-closed subset of B(H(k,ǫ)) is a von Neumann algebra. Clearly Â(Hvw
(k,ǫ)) ⊆ Hvw

(k,ǫ)

∀ v ∈ V ǫ, w ∈ V + ⊔ V − and A ∈ V ǫ
k . Therefore, Â ∈ {PHvw

(k,ǫ)
: v ∈ V ǫ, w ∈ V + ⊔ V −}

′
∀ A ∈ V ǫ

k .

Suppose B ∈ {PHvw
(k,ǫ)

: v ∈ V ǫ, w ∈ V + ⊔ V −}. Then |〈B(xλ), xπ〉| ≤ ‖B‖op ∀ xπ, xλ. Therefore,

for A ∈ V ǫ
k defined by A(L) := 〈B(xλ), xπ〉, where L = (π, λ) ∈ lǫk, we have Â = B. So the image

of V ǫ
k is {PHvw

(k,ǫ)
: v ∈ V ǫ, w ∈ V + ⊔ V −}′. Now from the facts that H(k,ǫ) =

⊕

v,w

Hvw
(k,ǫ) and the

image of V ǫ
k is equal to {PHvw

(k,ǫ)
: v ∈ V ǫ, w ∈ V + ⊔ V −}′, we can conclude that the image of V ǫ

k is

isomorphic to
⊕

vw

B(Hvw
(k,ǫ)), which implies that the image of V ǫ

k is a type I von Neumann algebra.

Remark 3.3.5. From now onwards, the image of V ǫ
k in B(H(k,ǫ)), under the map ̂ , also will be

denoted by V ǫ
k .

3.4 Actions of some tangles on VΓ

In this section we study the actions of inclusion tangles, expectation tangles and Temperley-Lieb
tangles on VΓ and discuss some properties of them.

1. Actions of LI and RI on VΓ: Suppose A ∈ V ǫ
k . Then ZLI(A) ∈ V ǫ̃

k+1 is given as follows:
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[ZLI(A)](L) =





A((π, λ)) if L = (c(e, π), c(e, λ)) for some edge e and paths π, λ
with s(π) = s(λ) = t(e), t(π) = t(λ) and s(e) ∈ V ǫ̃,

0 otherwise;

where L is a loop in lǫ̃k+1. If we look at ZLI(A) as an operator on H(k+1,ǫ̃), then it is given
by:

[ZLI(A)](xp) =
∑

π� s(π)=s(λ),t(π)=t(λ)

A((π, λ))c(xe, xπ), (3.1)

where e ∈ pǫ̃1, λ ∈ pǫk with s(λ) = t(e) and p = c(e, λ).

Now we observe that H(k+1,ǫ̃) is the direct sum of subspaces H
(e,v)
(k+1,ǫ̃) generated by {c(xe, xλ) :

λ ∈ pǫk, s(λ) = t(e) = v}, where v ∈ V ǫ and e ∈ pǫ̃1 with t(e) = v. ZLI(A) maps each of these

subspaces into itself and the action of ZLI(A) on H
(e,v)
k+1 is same as the action of A on Hv

(k,ǫ)

after identifying Hv
(k,ǫ) with H

(e,v)
(k+1,ǫ̃) by xλ 7→ c(xe, xλ), ∀λ ∈ pǫk with s(λ) = v. Therefore,

‖ZLI(A)‖op = ‖A‖op ∀ A ∈ V ǫ
k .

Similarly, ZRI : V ǫ
k → V ǫ

k+1 is given by

[ZRI(A)](xp) =
∑

π� s(π)=s(λ),t(π)=t(λ)

A((π, λ))c(xπ , xe),

where A ∈ V ǫ
k , e is an edge, λ ∈ pǫk with t(λ) = s(e) and p = c(λ, e), and ‖ZRI(A)‖op = ‖A‖op

∀A ∈ V ǫ
k . It is clearly seen that both ZLI and ZRI are injective.

2. Actions of LE and RE on VΓ: For A ∈ V ǫ
k , ZLE(A) ∈ V ǫ̃

(k−1) is given as follows:

[ZLE(A)](L) =
∑

e∈pǫ1� t(e)=s(π)=s(λ)

A(c(e, π), c(e, λ)) (µ(s(e)/µ(t(e)))2 ,

where L = (π, λ) is a loop in lǫ̃k−1. If we look at ZLE(A) as an operator on H(k−1,ǫ̃), then it
is given by

ZLE(A)(xλ) =
∑

π� s(π)=s(λ),
t(π)=t(λ)

[
∑

e∈pǫ1�
t(e)=s(π)=s(λ)

A(c(e, π), c(e, λ)) (µ(s(e)/µ(t(e)))2] xπ, (3.2)

where λ ∈ pǫ̃k−1. From the above expression of ZLE(A)(L), we obtain |ZLE(A)(L)| ≤

NM2‖A‖∞ ∀L ∈ lǫ̃k−1. Therefore, ‖ZLE(A)‖op ≤ NkM2‖A‖∞ ≤ NkM2‖A‖op ∀A ∈ V ǫ
k .

Similarly, for A ∈ V ǫ
k , ZRE (A) as an operator on Hǫ

k−1 is given by:

ZRE(A)(xλ) =
∑

π� s(π)=s(λ),
t(π)=t(λ)

[
∑

edge e�
s(e)=t(π)=t(λ)

A(c(π, e), c(xλ , xe)) (µ(t(e)/µ(s(e)))
2] xπ,

where λ ∈ pǫk, and ‖ZRE (A)‖op ≤ NkM2‖A‖op ∀A ∈ V ǫ
k .
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3. Action of T Lǫ tangles on VΓ: ZT Lǫ(1) ∈ V ǫ
2 is given by:

ZT Lǫ(1)(L) =





µ(t(e1))µ(t(e2))/µ
2(s(e1)) if L = (c(e1, ẽ1), c(e2, ẽ2)), where e1, e2

are two edges with s(e1) = s(e2) ∈ V ǫ;
0 otherwise.

For each vertex v ∈ V ǫ, let

yv =
∑

f∈pǫ1� s(f)=v

µ(t(f))c(xf , xf̃ ) and δv =
∑

f∈pǫ1� s(f)=v

µ2(t(f))/µ2(v).

Then ZT Lǫ(1) as an operator on Hv
(2,ǫ), where v ∈ V ǫ, is given by:

ZT Lǫ(1)(xp) =

{
µ(t(e))/(µ2(v))yv if p = c(e, ẽ) for some e ∈ pǫ1 with s(e) = v;
0 otherwise.

Since ZT Lǫ(1)(L) = ZT Lǫ(1)(L̃) for all L ∈ lǫ2, ZT Lǫ(1) is a selfadjoint operator. Observe that

ZT Lǫ(1)(yv) =
∑

f∈pǫ1� s(f)=v

µ(t(f))ZT Lǫ(1)(c(xf , xf̃ ))

=
∑

f∈pǫ1� s(f)=v

(µ2(t(f))/µ2(v))yv = δvyv.

If δv is independent of v, then the range of ZT Lǫ(1) is the closed linear span of {yv : v ∈ V ǫ}
and ZT Lǫ(1) being a self adjoint operator is zero off the closed linear span of {yv : v ∈ V ǫ}.

We now introduce the concept of ‘partition function’ from [J2] and prove a lemma which will
help establish the ‘sphericality’ of a planar subalgebra of VΓ.

Lemma 3.4.1. Let Γ be a finite connected bipartite graph with a spin function µ. Define a ‘partition
function’ Zǫ : V ǫ

0 → C by mapping the indicator function 1v to µ4(v) ∀v ∈ V ǫ. Then

Z+ ◦ Z
RE

(0,+)
(1,+)

= Z− ◦ Z
LE

(0,−)
(1,+)

.

Proof. Let A ∈ V +
1 . Observe that

[ZRE (A)](v) =
∑

e∈p+1 �s(e)=v

A((e, e))[µ2(t(e))/µ2(v)]

∀v ∈ V +. So we have

ZRE (A) =
∑

v∈V +

[
∑

e∈p+1 � s(e)=v

A((e, e))[µ2(t(e))/µ2(v)]] 1v ,

which implies
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[Z+ ◦ ZRE ](A) =
∑

v∈V +

∑

e∈p+1 �s(e)=v

A((e, e))µ2(t(e))µ2(v)

=
∑

e∈p+1

A((e, e))µ2(t(e))µ2(s(e)).

Similarly, we have

ZLE(A) =
∑

v∈V −

[
∑

e∈p+1 � t(e)=v

A((e, e))[µ2(s(e))/µ2(v)]] 1v ,

which implies

[Z− ◦ ZLE ](A) =
∑

v∈V −

∑

e∈p+1 �t(e)=v

A((e, e))µ2(s(e))µ2(v)

=
∑

e∈p+1

A((e, e))µ2(t(e))µ2(s(e))

= [Z+ ◦ ZRE ](A).

Now we discuss a special type of continuity of the tangle-maps which is close to strong continuity.
This concept is relevent in this context because the continuity of ZRC in this sense helps establish
the positive-definiteness of a sesquilinear form on V ǫ

k .

Theorem 3.4.2. Let T be a tangle with b(≥ 1) internal discs. Suppose Aj
i

SOT
−−−→ Aj ∀j = 1, . . . , b

with sup
i,j
‖Aj

i ‖ <∞. Then

ZT

(
A1

i ⊗A2
i · · · ⊗Ab

i

)
SOT
−−−→ ZT

(
A1 ⊗A2 · · · ⊗Ab

)
.

Moreover, sup
i
‖ZT

(
A1

i ⊗A2
i · · · ⊗Ab

i

)
‖ <∞.

Proof. From Theorem 2.1.1, we can conclude that ZT can be obtained by composing ZLI , ZRI ,
ZLE , ZRE , ZM(k,ǫ)

and ZTLǫ in the way discussed in ‘Compatibility with the composition of tangles’
in the definition of planar algebra. A little thought gives that it suffices to prove the theorem for
ZLI , ZRI , ZLE , ZRE and ZM(k,ǫ)

.

Consider V ǫ
k for some (k, ǫ) ∈ Col. Let Ai

SOT
−−−→ A in V ǫ

k with sup
i
‖Ai‖op < ∞. Therefore,

Ai(L) → A(L) for all L ∈ lǫk. So from the expression in equation (3.1), we have ZLI(Ai)(xp) →
ZLI(A)(xp) for all p ∈ pǫ̃k+1. Now from sup

i
‖Ai‖op < ∞ and ‖ZLI(Ai)‖op = ‖Ai‖op, we get

sup
i
‖ZLI(Ai)‖op < ∞. Therefore, ZLI(Ai)

SOT
−−−→ ZLI(A). So the theorem is true for ZLI . In

a similar way, from the expression in equation (3.2), we have ZLE(Ai)(xp) → ZLE(A)(xp) ∀p ∈
pǫ̃k−1. Now from sup

i
‖Ai‖op < ∞ and ‖ZLE(Ai)‖op ≤ NkM2‖Ai‖op, we get sup

i
‖ZLI(Ai)‖op < ∞.

Therefore, ZLE(Ai)
SOT
−−−→ ZLE(A). So the theorem is true for ZLE . Similarly, we can prove that the

theorem is true for ZRI and ZRE .
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Now consider Ai
SOT
−−−→ A and Bi

SOT
−−−→ B in V ǫ

k with sup
i
‖Ai‖op < ∞ and sup

i
‖Bi‖op < ∞. It

is clear that sup
i
‖AiBi‖op <∞. Now for ξ ∈ H(k,ǫ), we have

‖(AiBi)(ξ)− (AB)(ξ)‖ = ‖(AiBi)(ξ)− (AiB)(ξ) + (AiB)(ξ)− (AB)(ξ)‖
≤ ‖Ai‖‖Bi(ξ)−B(ξ)‖+ ‖(Ai −A)(B(ξ))‖,

which implies that AiBi
SOT
−−−→ AB.

Remark 3.4.3. ‘∗’-map is also continuous in the above sense. Consider Ai
SOT
−−−→ A in V ǫ

k with

sup
i
‖Ai‖op < ∞. Therefore, Ai(L) → A(L) ∀L ∈ lǫk. A∗

i , which implies A∗
i (L) = Ai(L̃) → A(L̃) =

A∗(L) ∀L ∈ lǫk. A∗
i . Now from the equation

B∗(xp) =
∑

q∈pǫ
k

�s(q)=s(p),t(q)=t(p)

B∗((q, p))xq ,

∀B ∈ V ǫ
k and p ∈ pǫk, we obtain A∗

i (xp)→ A∗(xp) ∀p ∈ pǫk. Also, we have sup
i
‖A∗

i ‖ <∞. Therefore,

A∗
i

SOT
−−−→ A∗.

3.5 Some good properties of VΓ

The BGPAs are almost never of subfactor type, because their vector spaces are too large. In fact,
in most cases V ǫ

0 is not one dimensional. However, they possess several of the necessary properties
required for SPAs, which are inherited by planar subalgebras. We may therefore try to find SPAs
by looking at small planar subalgebras of BGPAs.

Theorem 3.5.1. For each (k, ǫ) ∈ Col, 〈, 〉 : V ǫ
k × V ǫ

k → V ǫ
0 given by 〈x, y〉 = [ZRE ]

k(y∗x) ∀x, y ∈
V ǫ
k , is a positive definite V ǫ

0 -valued sesquilinear map on V ǫ
k .

Proof. Clearly 〈, 〉 is a sesquilinear form on V ǫ
k . Let A ∈ V ǫ

k . We prove that 〈A,A〉 is a positive
operator in V ǫ

0 . For each v ∈ V ǫ and w ∈ V + ⊔ V −, let us define Avw ∈ V ǫ
k as the restriction

of A on Hvw
(k,ǫ) and zero on [Hvw

(k,ǫ)]
⊥. Then clearly A =

∑

v,w

Avw in SOT and 〈Avw, Av′w′〉 = 0 if

(v,w) 6= (v′, w′). Let for p, q ∈ pǫk with s(p) = s(q) = v and t(p) = t(q) = w, Evw
pq denote a rank

one partial isometry which sends the basis element xq into xp. We observe that [ZRE ]
k(Evw

pq ) = 1v
if p = q and 0 otherwise.

Suppose A =
∑

v,w

Avw and Avw =
∑

p,q

λvw
pq E

vw
pq as above. Therefore, using Theorem 3.4.2 and

Remark 3.4.3, we have

〈A,A〉 =
∑

v,w

〈Avw, Avw〉 =
∑

v,w

[
∑

p,q� s(p)=s(q)=v,
t(p)=t(q)=w

|λvw
pq |

2] 1v,

and hence 〈A,A〉 is a positive operator. Also 〈A,A〉 = 0 implies λvw
pq = 0 ∀p, q, v, w, i.e., A = 0.

Therefore, 〈, 〉 is a positive definite sesquilinear form.
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Theorem 3.5.2. ‘∗’ commutes with the tangle maps, i.e., for any (k0, ǫ0)-tangle T with b internal
disks of colors (ki, ǫi);

[ZVΓ
T (x1 ⊗ · · · ⊗ xb)]

∗ = ZVΓ
T ∗ (x

∗
1 ⊗ · · · ⊗ x∗b), (3.3)

∀xi ∈ V ǫi
ki
, 1 ≤ i ≤ b;

Proof. First we observe that there is a natural 1-1 correspondence between the states on T and T ∗

by mapping a state σ on T to the state σ′ on T ∗, which is the composition of σ with the reflection

map from T ∗ to T . We also observe that σ(Di(T )) = ˜σ′(Di(T ∗)). Therefore, for L ∈ lǫ0k0 we have

[ZVΓ
T (x1 ⊗ · · · ⊗ xb)]

∗(L)

=
∑

states σ on T
� σ(T ) = L̃

b∏

i=1

xi(σ(Di(T )))c(T, σ)

=
∑

states σ′ on T ∗

� σ′(Di(T )) = L

b∏

i=1

x∗i (
˜σ′(Di(T ∗)))c(T, σ)

= [ZVΓ
T ∗ (x∗1 ⊗ · · · ⊗ x∗b)](L).

For a uniformly locally finite connected bipartite graph Γ with possibly infinite vertices, the
adjacency matrix can be seen as a linear map on C|V |, where |V | is the total number of vertices of
Γ, by matrix multiplication. We now prove a necessary and sufficient for having modulus δ of VΓ

in terms of the adjacency matrix of Γ.

Theorem 3.5.3. For δ > 0 the following are equivalent:
(i) δv = δ ∀v ∈ V + ⊔ V −;
(ii) [ZT Lǫ(1)]2 = δZT Lǫ(1);
(iii) VΓ has modulus δ;
(iv) δ is an eigenvalue of the adjacency matrix of Γ with eigenvector (µ2(v))v∈V +⊔V −.

Proof. (1 ⇒ 2) [ZT Lǫ(1)]2(yv) = δ2yv = δZT Lǫ(1)(yv) and both sides are zero off the closed linear
span of {yv : v ∈ V ǫ}.

(2 ⇒ 1) [ZT Lǫ(1)]2(yv) = δZT Lǫ(1)(yv), for v ∈ V ǫ, which implies δ2vyv = δδvyv, which further
implies δv = δ.

(1⇔ 3) [ZT ǫ̃
ǫ
(1)](v) = δvv, for all v ∈ V ǫ̃. Therefore, ZT ǫ̃

ǫ
(1) = δ1 ⇔ δv = δ ∀v ∈ V + ⊔ V −.

(1⇔ 4) It follows from the observation that δv =
∑

w�n(v,w)6=0

n(v,w)µ2(w)/µ2(v) ∀v.

Remark 3.5.4. Suppose the adjacency matrix of a uniformly locally finite bipartite graph Γ has
an eigenvector (x(v))v∈V +⊔V − ∈ C|V +⊔V −|, where x(v) > 0 ∀v, with eigenvalue δ > 0. Then
((x(v))1/2)v∈V +⊔V − gives a uniformly bounded spin function on Γ. The vector ((x(v))1/2)v∈V +⊔V −
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will be called a modulus-δ spin function on Γ. For a finite connected bipartite graph Γ, there is only
one modulus-δ spin function on Γ (up to normalization), where δ is the Perron-Frobenius eigenvalue
of Γ and the entries of the spin function are the square roots of the entries of the Perron-Frobenius
eigen vector. A uniformly locally finite connected bipartite graph may have many modulus-δ spin
functions with many values of δ.
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Chapter 4

Automorphisms of a BGPA

In this chapter we mainly study the automorphism group of a BGPA. We express any automorphism
of a BGPA as the product of two types of automorphisms - ‘graph automorphism operator’ and
‘multiplication operator’. These two types of automorphisms are easily computable from the given
graph. As in Chapter 3, we assume that Γ is a uniformly locally finite connected bipartite graph.
We also assume that µ is a modulus-δ spin function on Γ. We shall use all the notations of Chapter
3 related to the graph Γ and planar algebra VΓ.

4.1 Operators on H(k,ǫ) commuting with ‘concatenation’ and ‘re-

verse’ operators

In this section we derive a sufficient condition for an invertible graded linear map of {V ǫ
k : (k, ǫ) ∈

Col}, given by {Ad(U ǫ
k) : U

ǫ
k is unitary in B(H(k,ǫ)) and (k, ǫ) ∈ Col}, to be an automorphism of

VΓ. In that sufficient condition we demand that the unitaries {U ǫ
k : (k, ǫ) ∈ Col} commute with the

‘concatenation’ operator and ‘reverse’ operator. This sufficient condition will help prove that the
‘graph automorphism operators’ and ‘multiplication operators’ are automorphisms of VΓ.

Lemma 4.1.1. Let Γ be a bipartite graph as before. Let U = {U(k,ǫ) : (k, ǫ) ∈ Col} be a collection
of unitaries in B(H(k,ǫ)) which commute with the ‘concatenation’ operator, i.e., c◦(U(k,ǫ)⊗U(k′,ǫ′)) =
U(k+k′,ǫ) ◦ c for all (k, ǫ), (k′, ǫ′) ∈ Col. Then the action of U on H(0,+) and H(0,−) is given by a
graph automorphism, i.e., there exists a graph automorphism κ such that the restriction of U(0,+)

on {xv : v ∈ V +} and U(0,−) on {xv : v ∈ V −} are given by κ. Moreover, Ad(U(k,ǫ))(V
ǫ
k ) ⊆

V ǫ
k , ∀(k, ǫ) ∈ Col.

Proof. Let xv be a standard basis element in H(0,+). We know that c(xv ⊗ xv) = xv. Therefore,
from c ◦ (U(0,+) ⊗ U(0,+)) = U(0,+) ◦ c we have c(U(0,+)(xv) ⊗ U(0,+)(xv)) = U(0,+)(xv). Now if we

have y =
∑

v∈V +

λvxv in H(0,+) with c(y ⊗ y) = y, then it implies
∑

v

λ2
vxv =

∑

v

λvxv which further

implies λv = 0 or 1. Therefore, U(xv) =
∑

w∈S

xw for some finite subset S of V +. But unitarity of U

implies U(xv) = xw for some w ∈ V + and therefore the restriction of U on {xv : v ∈ V +} gives a
permutation of {xv : v ∈ V +}. Similarly, the restriction of U on {xv : v ∈ V −} gives a permutation
on {xv : v ∈ V −}.
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Now we prove that the permutation κ of V + ⊔ V − coming from the restriction of U ex-
tends to a graph automorphism of Γ. It suffices to prove that n(κ(v), κ(w)) = n(v,w) for all
v ∈ V +, w ∈ V −; where for any two vertices v ∈ V +, w ∈ V −, n(v,w) denotes the num-
ber of edges between v and w. For any path p with s(p) = v ∈ V ǫ and t(p) = w, we have
c(U(xv) ⊗ c(U(xp) ⊗ U(xw))) = U(xp), that means c(xκ(v) ⊗ c(U(xp) ⊗ xκ(w))) = U(xp), which

implies that U(Hvw
(k,ǫ)) ⊆ H

κ(v)κ(w)
(k,ǫ) . Now we prove that U∗ = {U∗

(k,ǫ) : (k, ǫ) ∈ Col} also commutes

with the ‘concatenation’ operator. From the unitarity of U , we have c◦(U⊗U)◦(U∗⊗U∗) = UU∗c,
which implies U ◦ c ◦ (U∗⊗U∗) = UU∗c because U commutes with ‘concatenation’ operator, which
further implies c ◦ (U∗ ⊗ U∗) = U∗c. Since U∗ commutes with ‘concatenation’ operator, applying

the above argument to U∗, we have U∗(H
(κ(v),κ(w))
(k,ǫ) ) ⊆ Hvw

(k,ǫ). Therefore, U(Hvw
(k,ǫ)) = H

κ(v)κ(w)
(k,ǫ) ,

which implies dim U(Hvw
(1,+)) = dim H

(κ(v),κ(w))
(1,+)

, that means n(κ(v), κ(w)) = n(v,w).

We observe that U(k,ǫ)(svtw)U
∗
(k,ǫ) = sκ(v)tκ(w). Therefore, if A ∈ V ǫ

k = {svtw : v ∈ V ǫ and w ∈

V + ⊔ V −}′, then for v ∈ V ǫ and w ∈ V + ⊔ V − we have

svtw(U
∗AU) = U∗sκ(v)tκ(w)AU = U∗Asκ(v)tκ(w)U = U∗AU(svtw).

Therefore, U∗AU ∈ {svtw : v ∈ V ǫ and w ∈ V +⊔V −}′ which implies Ad(U(k,ǫ))(V
ǫ
k ) ⊆ V ǫ

k ∀(k, ǫ) ∈
Col.

Lemma 4.1.2. If ω = {ω(k,ǫ)|ω(k,ǫ) : V
ǫ
k → V ǫ

k is unital algebra map and (k, ǫ) ∈ Col} commutes
with the tangle maps ZRI , ZLI and fixes ZTLǫ(1), then it also commutes with ZRE and ZLE .

Proof. We first show that

[ZRI ]
k−1(ZTLǫ(1))ZLI(A)[ZRI ]

k−1(ZTLǫ(1)) = [ZRI ]
k−1(ZTLǫ(1))[ZLI ]

2(ZLE(A))

for all A ∈ V ǫ
k , which follows from the following tangle-equality:

k-1

k-1

= k-1

Similarly, we can prove that

[ZLI ]
k−1(ZTLǫ(1))ZRI(A)[ZLI ]

k−1(ZTLǫ(1)) = [ZLI ]
k−1(ZTLǫ(1))[ZRI ]

2(ZRE (A)).

for all A ∈ V ǫ
k . Now we have
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[ZRI ]
k−1(ZTLǫ(1))[ZLI ]

2(ZLE(ω(A)))
= [ZRI ]

k−1(ZTLǫ(1))ZLI(ω(A))[ZRI ]
k−1(ZTLǫ(1))

= ω([ZRI ]
k−1(ZTLǫ(1))ZLI(A)[ZRI ]

k−1(ZTLǫ(1)))
= ω([ZRI ]

k−1(ZTLǫ(1))[ZLI ]
2(ZLE (A)))

= [ZRI ]
k−1(ZTLǫ(1))[ZLI ]

2(ω(ZLE (A)),

which implies [ZRI ]
k−1(ZTLǫ(1))[ZLI ]

2 (ZLE(ω(A))− ω(ZLE(A))) = 0 for all A ∈ V ǫ
k . We observe

that ZLE

(
[ZRI ]

k−1(ZTLǫ(1))[ZLI ]
2(B)

)
= ZLI(B) for all B ∈ V ǫ

k by an easy tangle-equality.
Therefore, [ZRI ]

k−1(ZTLǫ(1))[ZLI ]
2(B) = 0 implies

ZLI(B) = ZLE

(
[ZRI ]

k−1(ZTLǫ(1))[ZLI ]
2(B)

)
= 0,

which further implies B = 0, since ZLI is injective. Therefore, ZLE(ω(A) = ω(ZLE(A)) for all
A ∈ V ǫ

k . Similarly, we can prove that ZRE commutes with ω.

Theorem 4.1.3. Let Γ be a uniformly locally finite connected bipartite graph as before with a
modulus-δ spin function µ. Let U be a collection of unitary operators as in Lemma 4.1.1 which
commutes with the ‘concatenation’ operator. Assume further that the restriction of U to H(1,ǫ)

commutes with the ‘reverse’ operator, and the vertex permutation κ induced by U scales the spin
function, i.e., σ(κ(v)) = λσ(v) for all vertices v and some scalar λ > 0. Then Ad(U) := {Ad(U ǫ

k) :
V ǫ
k → V ǫ

k |(k, ǫ) ∈ Col} is an automorphism of VΓ.

Proof. From Lemma 4.1.1, we know that Ad(U(k,ǫ))(V
ǫ
k ) ⊆ V ǫ

k for all (k, ǫ) ∈ Col. Now from
Theorem 2.2.3, Theorem 2.1.1 and Lemma 4.1.2, we conclude that to prove that Ad(U) is a planar
algebra morphism it suffices to prove that Ad(U) commutes with the multiplication tangles, unit
tangles, embedding tangles and Temperley-Lieb tangles. Since U(k,ǫ) is unitary, Ad(U(k,ǫ)) is a
unital ∗-algebra map.

Let us take A ∈ V ǫ
k and any basis element xp = xc(e,λ) in H ǫ̃

k+1, where e ∈ pǫ̃1 and λ ∈ pǫk with
t(e) = s(λ). Then we have

U∗ZLI(A)U(xc(e,λ)) = U∗ZLI(A)c(U(xe)⊗ U(xλ))

= U∗c(U(xe)⊗AU(xλ))
= c(xe ⊗ U∗AU(xλ))
= ZLI(U

∗AU)(xc(e,λ)).

So Ad(U) commutes with left embedding. By a similar argument it commutes with right embed-
ding as well.

Now we prove that Ad(U) commutes with Temperley-Lieb tangles, i.e., it fixes ZTLǫ(1). Let

us define yvw =
∑

f∈pǫ1� s(f)=v,t(f)=w

c(xf ⊗ rev(xf )), for all adjacent vertices v and w. Then yv =

∑

f∈pǫ1� s(f)=v

µ(t(f))xc(f,f̃), as defined earlier, can also be written as yv =
∑

w�n(v,w)6=0

µ(w)yvw for

all v ∈ V ǫ. {xf : f ∈ pǫ1, s(f) = v, t(f) = w} is an orthonormal basis of Hvw
(1,ǫ). Therefore,

{U(xf ) : s(f) = v, t(f) = w} is an orthonormal basis of H
κ(v)κ(w)
(1,ǫ) . Therefore, by Lemma 3.3.3

∑

f� s(f)=v,t(f)=w

c(U(xf )⊗ rev(U(xf ))) = yκ(v)κ(w).
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Since U commutes with the ‘concatenation’ operator and the ‘reverse’ operator, we have

U(yvw) =
∑

f� s(f)=v,t(f)=w

c(U(xf )⊗ rev(U(xf ))) = yκ(v)κ(w).

Therefore, for all v ∈ V ǫ, we obtain

U(yv) =
∑

w�n(v,w)6=0

µ(w)yκ(v)κ(w)

= λ−1[
∑

w�n(κ(v),w)6=0

µ(κ(w))yκ(v)w ] = λ−1yκ(v).

Also, for all v ∈ V ǫ, we have

δκ(v) =
∑

f� s(f)=κ(v)

µ2(t(f))/µ2(κ(v))

=
∑

f� s(f)=v

µ2(κ(t(f)))/µ2(κ(v))

=
∑

f� s(f)=v

λ2µ2(t(f))/λ2µ2(v)

=
∑

f� s(f)=v

µ2(t(f))/µ2(v) = δv .

Therefore, for all v ∈ V ǫ, we have

U∗ZTLǫU(yv) = U∗ZTLǫ(λ−1yκ(v)) = λ−1δκ(v)U
∗(yκ(v)) = δκ(v)yv = δvyv = ZTLǫ(yv),

and both U∗ZTLǫU and ZTLǫ are zero off the closed linear span of {yv : v ∈ Vǫ}. So Ad(U) fixes
ZTLǫ(1).

Let U∗ = {(U ǫ
k)

∗ : (k, ǫ) ∈ Col and Ad(U∗) = {Ad((U ǫ
k)

∗) : (k, ǫ) ∈ Col}. By a similar argument
given in the proof of Lemma 4.1.1, we can prove that U∗ commutes with the ‘concatenation’
operator. Now rev ◦U ǫ

1 = U ǫ̃
1 ◦ rev implies that (U ǫ̃

1)
∗ ◦ rev = rev ◦ (U ǫ

1)
∗, i.e., the restriction of U∗

to H(1,ǫ) commutes with the ‘reverse’ operator. Therefore, Ad(U∗) is a planar algebra morphism
and Ad(U) is an automorphism of VΓ with Ad(U∗) as the inverse of Ad(U).

4.2 Graph automorphism operators and multiplication operators

In this section we define the ‘graph automorphism’ operator and ‘multiplication’ operator and
discuss some properties of these operators.

Definition 4.2.1. Let Γ be a bipartite graph as before with a modulus-δ spin function µ. Let κ
be a permutation of the vertices of Γ such that n(κ(v), κ(w)) = n(v,w) for all vertices v and w,
κ(v) ∈ V ǫ for v ∈ V ǫ and µ(κ(v)) = λµ(v) for all v ∈ V ǫ and for some λ > 0. Label each of the m
edges between two adjacent vertices by {1, . . . ,m}. We can extend κ to the edges of Γ by mapping
the ith edge between (v,w) to the ith edge between (κ(v), κ(w)). Now extend κ to the paths of Γ
by sending a path p = c(e1, · · · , ek) of length k to the path κ(p) = c(κ(e1), · · · , κ(ek)), where ei’s
are the edges of Γ, which gives rise to a unitary operator U ǫ

k on H(k,ǫ) for all (k, ǫ) ∈ Col. Let
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U = {U ǫ
k : (k, ǫ) ∈ Col}. Clearly U satisfies all the hypotheses of Theorem 4.1.3. Therefore, by

Theorem 4.1.3,

Ad(U) := {Ad(U ǫ
k) : V

ǫ
k → V ǫ

k |(k, ǫ) ∈ Col}

is an automorphism of VΓ. Ad(U) is said to be the graph automorphism operator associated to κ.
The set of ‘graph automorphism’ operators of VΓ will be denoted by GΓ.

Definition 4.2.2. Let O+ be a unitary operator in V +
1 . Let O− = rev ◦O+ ◦ rev . Let K be the

closed linear span of {⊗k
i=1xei : t(ei) = s(ei+1) for i = 1, . . . , k − 1} in (H(1,ǫ) ⊗ H(1,ǫ̃) ⊗ H(1,ǫ) ⊗

· · · k times). Let c be the ‘concatenation’ operator from (H(1,ǫ)⊗H(1,ǫ̃)⊗H(1,ǫ)⊗· · · k times) to H(k,ǫ).
Observe that c is an onto partial isometry with initial subspace K and (Oǫ ⊗ Oǫ̃ ⊗Oǫ · · · k times )
maps the range of c∗ isometrically onto the initial subspace K of c. Therefore, for all (k, ǫ) ∈ Col,

U ǫ
k := c ◦ (Oǫ ⊗Oǫ̃ ⊗Oǫ · · · k times ) ◦ c∗

is an unitary operator on H(k,ǫ). Let U = {U ǫ
k : (k, ǫ)}. Clearly U satisfies all the hypotheses of

Theorem 4.1.3. Therefore, by Theorem 4.1.3,

Ad(U) := {Ad(U ǫ
k) : V

ǫ
k → V ǫ

k |(k, ǫ) ∈ Col}

is an automorphism of VΓ. Ad(U) is said to be the ‘multiplication’ operator corresponding to the
unitary O+ in V +

1 . If O+ acts on each basis element by scalar multiplication, then the corresponding
multiplication operator is said to be a ‘scalar multiplication’ operator. The set of ‘multiplication’
operators of VΓ will be denoted by MΓ.

We discuss the properties of ‘graph automorphism’ and ‘multiplication’ operators in the follow-
ing lemmas.

Lemma 4.2.3. GΓ and MΓ are subgroups of Aut(VΓ).

Proof. Let α and β be two ‘graph automorphism’ operators. Suppose κ and γ are the graph
automophisms associated to α and β respectively. Then it is easy to see that α ◦ β is given by the
graph automorphism κ ◦ γ and α−1 is given by the graph automorphism κ−1. Therefore, GΓ is a
subgroup of Aut(VΓ).

Now suppose that α and β are two ‘multiplication’ operators. Let {α(k,ǫ) : (k, ǫ) ∈ Col} be the
unitary operators associated α and {β(k,ǫ) : (k, ǫ) ∈ Col} be the unitary operators associated to β.
From the definition of ‘multiplication operators’, we have

α(k,ǫ) = c ◦ (α(1,ǫ) ⊗ α(1,ǫ̃) ⊗ α(1,ǫ) · · · k times ) ◦ c∗

and β(k,ǫ) = c ◦ (β(1,ǫ) ⊗ β(1,ǫ̃) ⊗ β(1,ǫ) · · · k times ) ◦ c∗.

Therefore, α(k,ǫ)β(k,ǫ) is given by the follwing expression:

c ◦
(
(α(1,ǫ)β(1,ǫ))⊗ (α(1,ǫ̃)β(1,ǫ̃))⊗ (α(1,ǫ)β(1,ǫ)) · · · k times

)
◦ c∗.

Also observe that rev◦(α(1,+)β(1,+))◦rev = α(1,−)β(1,−). Therefore, αβ is a ‘multiplication’ operator

given by the unitary α(1,+)β(1,+) in V +
1 . It is easy to check that α−1 is also a ‘multiplication’ operator

given by the unitary (α(1,+))
∗ in V +

1 . Therefore, MΓ is a subgroup of Aut(VΓ).
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Lemma 4.2.4. MΓ is closed under the conjugation action of the elements of GΓ and MΓ∩GΓ = 1.

Proof. Let {α(k,ǫ) : (k, ǫ) ∈ Col} be the unitary operators associated to a ‘graph automorphism’
operator α and {β(k,ǫ) : (k, ǫ) ∈ Col} be the unitary operators associated to a ‘multiplication’

operator β. Therefore, the unitaries associated to α−1βα are given by {α−1
(k,ǫ)β(k,ǫ)α(k,ǫ) : (k, ǫ) ∈

Col}. Observe that

α(k,ǫ) = c ◦ (α(1,ǫ) ⊗ α(1,ǫ̃) ⊗ α(1,ǫ) · · · k times ) ◦ c∗.

And also by the definition of ‘multiplication’ operator,

β(k,ǫ) = c ◦ (β(1,ǫ) ⊗ β(1,ǫ̃) ⊗ β(1,ǫ) · · · k times ) ◦ c∗.

So α−1
(k,ǫ)β(k,ǫ)α(k,ǫ) is given by the following expression:

c ◦
(
(α−1

(1,ǫ)β(1,ǫ)α(1,ǫ))⊗ (α−1
(1,ǫ̃)β(1,ǫ̃)α(1,ǫ̃))⊗ (α−1

(1,ǫ)β(1,ǫ)α(1,ǫ)) · · · k times
)
◦ c∗.

We define O+ := α−1
(1,+)β(1,+)α(1,+) in V +

1 . Observe that

α−1
(1,−)β(1,−)α(1,−)

=
(
rev ◦ α−1

(1,+) ◦ rev
)
◦
(
rev ◦ β(1,+) ◦ rev

)
◦
(
rev ◦ α(1,+) ◦ rev

)

= rev ◦
(
α−1
(1,+) ◦ β(1,+) ◦ α(1,+)

)
◦ rev

= rev ◦O+ ◦ rev.

Therefore, α−1βα is a multiplication operator associated to the unitary O+ in V +
1 . Now we prove

that GΓ ∩MΓ = 1. Suppose α ∈ GΓ ∩MΓ. Let {α(k,ǫ) : (k, ǫ) ∈ Col} be the unitary operators
associated to α. Since α is a multiplication operator, α(1,+)(H

vw
(1,+)) = Hvw

(1,+) ∀v ∈ V + and w ∈ V −.
Therefore, the permuation on the set of vertices induced by α is trivial, which implies α(1,+) =
IdH(1,+)

, which further implies α = 1.

4.3 Aut(VΓ) as the semidirect product of MΓ and GΓ

In this section we prove the main theorem of the thesis that any automorphism of VΓ is the
composition of a ‘graph automorphism operator’ and a ‘multiplication operator’. We prove it in
Theorem 4.3.5 after a couple of lemmas.

Lemma 4.3.1. Let α be an automorphism of VΓ. Then there is a graph automorphism operator β
such that α and β agree on V ǫ

0 .

Proof. For v ∈ V ǫ, sv is a minimal projection in V ǫ
0 . Since the restriction of α on V ǫ

0 is an
automorphism of V ǫ

0 , α(sv) is a minimal projection in V ǫ
0 . Now observe that any minimal projection

in V ǫ
0 is equal to sw for some w ∈ V ǫ. Therefore, there is a permutation κ of the vertices of Γ

preserving the parity such that α(sv) = sκ(v) ∀v ∈ V + ⊔ V −.
Let v ∈ V + and w ∈ V −. Now ZRI(sv)ZLI(sw) is a projection onto the closed linear span of the
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edges between v and w. Observe that this is either zero or a minimal central projection in V +
1 .

Since α commutes with ZLI and ZRI , we have

α(ZRI(sv)ZLI(sw)V
+
1 ) = ZRI(sκ(v))ZLI(sκ(w))V

+
1 .

The dimension of ZRI(sv)ZLI(sw)V
+
1 is the square of n(v,w). Since α is an automorphism, the

dimension is preserved by α. Therefore, n(v,w) = n(κ(v), κ(w)).
Now we prove that κ scales the spin function. Let v ∈ V ǫ. Then

T ǫ̃
ǫ (sv) =

∑

w�n(v,w)6=0

n(v,w)[µ2(v)/µ2(w)]sw.

Since α commutes with this tangle, we have
∑

w�n(v,w)6=0

n(v,w)[µ2(v)/µ2(w)]sκ(w) =
∑

w�n(κ(v),w)6=0

n(κ(v), w)[µ2(κ(v))/µ2(w)]sw,

which implies µ(v)/µ(w) = µ(κ(v))/µ(κ(w)) for the adjacent vertices v and w. By induction we
can prove it for any two vertices v and w. Therefore, µ(v)/µ(κ(v)) = µ(w)/µ(κ(w)) for any two
vertices v and w, which means µ(κ(v)) = λµ(v) ∀ vertices v in Γ and for some λ > 0. Suppose κ
extends to the graph automorphism operator β. Then α and β agree on V ǫ

0 .

Lemma 4.3.2. Consider the map ZT : V +
1 → V −

1 given by the following tangle T .

⋆ ⋆

T

Then ZT (A) = rev ◦ A∗ ◦ rev, for all A ∈ V +
1 . Moreover, we have ZT (AB) = ZT (B)ZT (A),

ZT (A
∗) = [ZT (A)]

∗ ∀A,B ∈ V +
1 and ZT is invertible with inverse map ZVΓ

T−1, where T−1 is the
tangle T with reverse shading.

Proof. We observe that ZT (A)((e, f)) = A((f̃ , ẽ)), ∀A ∈ V +
1 and L = (e, f) ∈ l−2 . Therefore,

ZT (A)(xf ) =
∑

e∈p−1 � s(e)=s(f),
t(e)=t(f)

A((f̃ , ẽ))xe,

∀A ∈ V +
1 and f ∈ p−1 . On the other hand we have

[rev ◦ A∗ ◦ rev](xf ) = rev ◦ A∗(xf̃ ) = rev




∑

e∈p+1 � s(e)=s(f̃),

t(e)=t(f̃ )

A∗((e, f̃ ))xe




=
∑

e∈p−1 � s(e)=s(f),
t(e)=t(f)

A((f̃ , ẽ))xe,
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∀f ∈ p1. Therefore, ZT (A) = rev ◦A∗ ◦ rev, for all A ∈ V +
1 .

Now by the first part of this lemma and the anti-unitarity of ‘rev’, we get ZT (AB) = rev ◦
(AB)∗ ◦ rev = (rev ◦B∗ ◦ rev) ◦ (rev ◦A∗ ◦ rev) = ZT (B)ZT (A) and [ZT (A)]

∗ = (rev ◦A ◦ rev)∗ =
rev ◦ A∗ ◦ rev = ZT (A

∗).

Lemma 4.3.3. Let α be an automorphism of VΓ which acts trivially on V ǫ
0 . Then there is a

multiplication operator β such that α and β agree on V ǫ
1 .

Proof. We know that the center of V +
1 is the σ-weak closure of the subspace generated by {ZRI(sv)

ZLI(tw) : v ∈ V +, w ∈ V − with n(v,w) 6= 0}. Since α acts trivially on V ǫ
0 , it fixes all elements of

the form ZRI(sv)ZLI(tw), where v ∈ V +, w ∈ V − with n(v,w) 6= 0, which means it fixes the center
V +
1 elementwise. Now V +

1 being a type I von Neumann algebra, α acts as an inner automorphism
on V +

1 . Therefore, there exists an unitary O+ in V +
1 such that ZT (A) = (O+)∗AO+ ∀A ∈ V +

1

, where T is the as in Lemma 4.3.2. We shall prove that α on V −
1 is given by Ad(O−), where

O− = rev ◦O ◦ rev. From Lemma 4.3.2, we obtain O− = ZT ((O
+)∗). Now using the properties of

ZT discussed in Lemma 4.3.2 and the fact that α commutes with ZT , we obtain

α(A) = α[ZTZT−1(A)]
= ZTα[ZT−1(A)]
= ZT [(O

+)∗ZT−1(A)O+]
= ZT (O

+) A ZT ((O
+)∗)

= [ZT ((O
+)∗)]∗ A ZT ((O

+)∗)
= (O−)∗AO−.

∀A ∈ V −
1 . Let β be the multiplication operator corresponding to the unitary O+ in V +

1 . Then α
and β agree on V ǫ

1 .

Lemma 4.3.4. Let α be an automorphism of VΓ which acts trivially on V ǫ
1 . Then α is a scalar

multiplication operator.

Proof. If p and q are two paths in pǫk with same end points, let Epq denote the rank one partial
isometry in V ǫ

k which maps the basis element xq to xp. For a loop l = (p, q), by El we mean Epq.
Let p = c(e1, · · · , ek) ∈ p+k . We observe that ZT (⊗

k
i=1Eeiei) = Epp, where T is the tangle as given

below:

⋆ ⋆ ⋆⋆ D1 D2 D3

Since α commutes with ZT and acts trivially on V ǫ
1 , it also fixes Epp ∀p ∈ p+k . Similarly, we can

prove that α fixes Epp ∀p ∈ p−k . Now consider the rank one partial isometry Epq corresponding to
the loop l = (p, q) ∈ lǫk. We have EppEpqEqq = Epq, which implies Eppα(Epq)Eqq = α(Epq) because
α fixes Epp and Eqq. Therefore, α sends Epq to a scalar multiple of itself. Let us denote this scalar
by ρ(l).

Claim: (i) |ρ(l)| = 1 for all loops l in Γ;
(ii) ρ(l) = 1 on the loops of length 2;
(iii) ρ(l) is independent of the base point of l;
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(iv) ρ(l1 ∗ l2) = ρ(l1)ρ(l2), where l1 ∗ l2 denotes the concatenation of two loops l1 and l2 based at
the same point;
(v) Suppose l′ is a loop in Γ that goes first from a vertex v0 to v1 by a path p, then across a loop l
based at v1, then back to v0 by the same path p. Then ρ(l) = ρ(l′).

Proof. (i) α(El) = ρ(l)El, where l = (p, q). Since α is a ∗-algebra morphism and it fixes the
projection Epp, applying α on both sides of the equation E∗

pqEpq = Epp we obtain |ρ(l)| = 1.

(ii) It follows from the fact that α acts trivially on V ǫ
1 ∀ǫ.

(iii) Let l = (p, q) ∈ lǫk. Also let l′ be the same loop l with the base point as the next vertex
of the base point of l. Observe that Z

R
(k,ǫ̃)
(k,ǫ)

(El) = El′ . Since α commutes with Z
R

(k,ǫ̃)
(k,ǫ)

, we have

ρ(l) = ρ(l′). Therefore, ρ(l) is independent of the base point of l.

(iv) Let l1 ∗ l2 be the concatenation of two loops l1 and l2 based at the same point and of
lengths 2k1 and 2k2 respectively. Observe that ZT (El1 ⊗El2) = El1∗l2 , where T is the tangle given
as follows:

⋆ ⋆

2k1 2k2

⋆ D1 D2

Since α commutes with α, applying α on both sides of ZT (El1⊗El2) = El1∗l2 , we obtain ρ(l1 ∗ l2) =
ρ(l1)ρ(l2).

(v) It easily follows from (ii), (iii) and (iv).

Let Y be a maximal tree in Γ. Fix a vertex v0 ∈ V + in the interior of Y . Let S := {eα : α ∈ Λ}
be the set of edges in Γ whose interiors are in Γ − Y and whose starting points are in V +. Each
edge eα determines a loop lα in Γ that goes first from v0 to s(eα) by a path in Y , then across eα,
then back to v0 by a path in Y . We know that π1(Γ) is a free group with basis the classes [lα]
corresponding to the edges eα. Define a unitary operator O+ in V +

1 as follows:

O+(xeα) =

{
ρ(lα)xeα if eα ∈ S;
xeα otherwise.

Let U = {U ǫ
k : (k, ǫ) ∈ Col} be the collection of unitary operators corresponding to O+ obtained

by the procedure discussed in Definition 4.2.2 and Ad(U) = {Ad(U ǫ
k) : (k, ǫ) ∈ Col} be the corre-

sponding scalar multiplication operator. Now we shall prove that Ad(U)(Elα) = ρ(lα)Elα ∀α ∈ Λ.
Let lα = (pα, qα), where α ∈ Λ.

Case 1. Suppose the edge eα is in the path pα. Then U(xpα) = ρ(lα)xpα and U∗(xqα) =
xqα , which implies U∗ElαU(xp) = ρ(lα)xq and is zero on the other basis elements. Therefore,
Ad(U)(Elα) = ρ(lα)Elα .

Case 2. Suppose the edge eα is in the path qα. Then U(xpα) = xpα and U∗(qα) = ρ(lα)qα, which
implies U∗ElαU(xp) = ρ(lα)xq and is zero on the other basis elements. Therefore, Ad(U)(Elα) =

43



ρ(lα)Elα .

So from the previous claim and from the fact that Ad(U)(Elα) = ρ(lα)Elα ∀α ∈ Λ, we conclude
that Ad(U)(El) = α(El) for all loops l in Γ. Since V ǫ

k is the σ-weak closure of {El : l ∈ lǫk} for all
(k, ǫ) ∈ Col and each automorphism of VΓ is σ-weakly continuous on V ǫ

k for all (k, ǫ) ∈ Col, we
have Ad(U) = α. Therefore, α is a scalar multiplication operator.

Theorem 4.3.5. Consider the planar algebra VΓ with Γ as before. Let α be an automorphism of
VΓ. Then α = βγ for some β ∈ GΓ and γ ∈MΓ. Moreover, Aut(VΓ) = MΓ ⋊GΓ.

Proof. From Lemma 4.3.1, we know that there exists β ∈ GΓ such that α and β agree on V ǫ
0 ∀ ǫ.

Therefore, β−1α acts trivially on V ǫ
0 ∀ ǫ. By Lemma 4.3.3, there exists γ1 ∈ MΓ such that β−1α

and γ1 agree on V ǫ
1 ∀ ǫ. Therefore, γ

−1
1 β−1α acts trivially on V ǫ

1 ∀ ǫ. So by Lemma 4.3.4, γ−1
1 β−1α

is a scalar multiplication operator, say γ2. Therefore, α = βγ1γ2 with β ∈ GΓ and γ1γ2 ∈MΓ.

From Lemma 4.2.4, we know that MΓ is closed under the conjugation action of GΓ and MΓ ∩
GΓ = 1. Also from the first part of the theorem we obtain GΓMΓ = Aut(VΓ). Therefore, Aut(VΓ) =
MΓ ⋊GΓ.
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Chapter 5

Subfactor planar algebras of BGPAs

In this chapter we describe a tool for constructing a wide range of subfactor planar algebras obtained
as fixed point subalgebras of BGPAs under group actions. It happens that the fixed point set of a
BGPA under a group action is a planar ∗-subalgebra, but it fails to be an SPA in general. So in
the first section we derive some sufficient conditions for a planar ∗-subalgebra to be an SPA.

5.1 Sufficient conditions for a planar ∗-subalgebra of a BGPA to

be an SPA

In this section we first derive a sufficient condition for connected finite bipartite graphs, which
just demands that the planar ∗-subalgebra X has 1-dimensinal intersection with V ǫ

0 and the spin
function µ is a modulus-δ spin function. For a unifomly locally finite connected bipartite graph we
need that the planar ∗-subalgebra X is spherical, it has 1-dimensional intersection with V ǫ

0 and the
spin function µ is a modulus-δ spin function. In this chapter we follow all the notations used in the
previous chapters.

Theorem 5.1.1. Let VΓ be a BGPA corresponding to a connected finite bipartite graph Γ. Let µ be
a modulus-δ spin function on Γ. Suppose X is a planar ∗-subalgebra of VΓ such that dimX∩V ǫ

0 = 1
for all ǫ. Then X is a subfactor planar algebra.

Proof. From Theorem 3.5.1, we know that the scalar sesquilinear form defined by 〈x, y〉 = [ZP
RE ]

n(y∗x),
where x, y ∈ P(k,ǫ), is positive definite, and from Theorem 3.5.3, we know that X has ∗ prop-
erty. Since Γ is a finite graph, clearly dimX ∩ V ǫ

k is finite dimensional for all (k, ǫ) ∈ Col. So
it remains only to show that X is spherical. Let A ∈ V +

1 ∩ X. Since dimX ∩ V ǫ
0 = 1 for all ǫ,

ZX
LE(A) = λl

∑

v∈V −

1v and ZX
RE(A) = λr

∑

v∈V +

1v, for some λl, λr ∈ C. So Z−◦ZX
LE(A) = λl

∑

v∈V −

µ4(v)

and Z+ ◦ ZX
RE(A) = λl

∑

v∈V +

µ4(v). By Lemma 3.4.1, Z− ◦ ZX
LE(A) = Z+ ◦ ZX

RE (A). Therefore,

λl/λr = [
∑

v∈V +

µ4(v)]/[
∑

v∈V −

µ4(v)], and which is independent of A. Since µ is a modulus-δ spin

function, if we take B = ZX
1(1,+)(1), we have ZX

LE(B) = δ
∑

v∈V −

1v and ZX
RE(B) = δ

∑

v∈V +

1v by the

following pictures.
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LC ◦ 1(1,+) RC ◦ 1(1,+)

Now Z− ◦ ZX
LE(B) = Z+ ◦ ZX

RE (B) gives [
∑

v∈V +

µ4(v)]/[
∑

v∈V −

µ4(v)] = δ/δ = 1. Therefore, λl = λr,

that means ZX
LE(A) = ZX

RE (A). So X is spherical.

Theorem 5.1.2. Let VΓ be a BGPA, where Γ is a uniformly locally finite connected bipartite graph.
Let X be a planar ∗-subalgebra of VΓ with dimX ∩ V ǫ

0 = 1 ∀ǫ. Then X ∩ V ǫ
k is finite dimensional

∀(k, ǫ) ∈ Col. Moreover, if we assume that X is spherical and the spin function µ is a modulus-δ
spin function, then X is a subfactor planar algebra.

Proof. Fix a (k, ǫ) ∈ Col and a vertex v ∈ V ǫ. Consider the minimal projection sv ∈ V ǫ
0 . Observe

that y := [RI]k(sv) is a projection on Hv
(k,ǫ). Define a map f : X ∩ V ǫ

k → yV ǫ
k by x 7→ yx

∀x ∈ X ∩V ǫ
k . Since H

v
(k,ǫ) is finite dimensinal, yV ǫ

k is also a finite dimensional subspace of V ǫ
k . Now

to prove that X ∩ V ǫ
k is finite dimensional, it suffices to prove that the linear map f is injective.

Suppose x ∈ X ∩ V ǫ
k such that yx = 0. Since x fixes the subspace Hv

(k,ǫ), it will commute with

y. Therefore, yx∗x = 0, which implies [RE ]k(yx∗x) = 0. Now observe from the following tangle-
equality that [RE ]k(yz) = sv[RE ]

k(z)∀z ∈ V ǫ
k .

=

Therefore, [RE ]k(yx∗x) = 0 implies sv[RE ]
k(x∗x) = 0. Since dimX ∩ V ǫ

0 = 1, [RE ]k(x∗x) is a
scalar multiple of identity in V ǫ

0 . So sv[RE ]
k(x∗x) = 0 implies 〈x, x〉 = [RE ]k(x∗x) = 0. Now from

Theorem 3.5.1, we know that 〈, 〉 is a positive definite form. Threfore, x = 0, which implies f is
injective. So X ∩ V ǫ

k is finite dimensional ∀ (k, ǫ) ∈ Col.
Theorem 3.5.1 gives that the scalar sesquilinear form defined by 〈x, y〉 = [ZP

RE ]
n(y∗x), where

x, y ∈ P(k,ǫ), is positive definite and from Theorem 3.5.2 we obtain that X has ∗ property. Now the
assumption that the spin function µ is a modulus-δ spin function ensures that VΓ has a positive
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modulus (by Theorem 3.5.3). So further assuming the ‘sphericality’ property of X, we have X is a
subfactor planar algebra.

5.2 Fixed point subfactor planar algebras

Let a group G act on a BGPA VΓ by the group homomorphism α : G→ Aut(VΓ). A little thought
gives that V G

Γ is a planar *-subalgebra of VΓ. We take a modulus-δ spin function on Γ so that VΓ

has a positive modulus. Now V G
Γ will be an SPA if we further assume the ‘connectedness’ of V G

Γ ,
when Γ is finite, and both the ‘connectedness’ and ‘sphericality’ of V G

Γ , when Γ is infinite. In the
following remarks we describe two sufficient conditions for the ‘connectedness’ and ‘sphericality’ of
V G
Γ which are easy to verify.

Remark 5.2.1. Suppose, for all g ∈ G, α(g) = β(g)γ(g), where β(g) is a ‘graph automorphism’
operator and γ(g) is a ‘multiplication operator’. Now observe that V G

Γ is connected if and only if
{β(g) : g ∈ G} acts on V + and V − transitively.

Remark 5.2.2. If VΓ has modulus δ, we know that Z
LE

(0,−)
(1,+)

(1) = δ1 and Z
RE

(0,+)
(1,+)

(1) = δ1. So if

we have the ‘irreducibility’ of V G
Γ , then V G

Γ automatically becomes spherical.

Now we are ready to give the definition of ‘fixed point subfactor planar algebra’.

Definition 5.2.3. Let VΓ be a BGPA and G be a subgroup of Aut(VΓ) with V G
Γ an SPA. Then VΓ

is said to be a ‘fixed point subfactor planar algebra’.

5.3 An Example of Fixed Point SPA

In this section we present a detailed proof of the fact that the SPA of a ‘diagonal subfactor without
cocyle’ can be obtained as a fixed point subfactor planar algebra, what was remarked in [B] as
an example of a fixed point SPA. To do this, we will follow the description of the tower of basic
construction of a ‘diagonal subfactor’ as given in [BDG1].

Let N be a II1 factor and G is a finitely generated subgroup of Out(N). Let {gi : i ∈ I}
generate G, where I is a finite set. We assume that g1 = 1. Let α : G → Aut(N) be a lift of
G in Aut(N) such that α(1) = 1. Set αi = α(gi) for all i ∈ I. Let MIn(C) denote the matrix
algebra over C with rows and columns indexed by the elements of In for all non-negative integers n.
Define M = N ⊗MI(C). Now define the subfactor N →֒M by sending x ∈ N to

∑
i∈I αi(x)⊗Ei,i

for all x ∈ N . This is called a ‘diagonal subfactor’. If the lift α is a group homomorphism, we
call it a ‘diagonal subfactor without cocyle’. We shall be interested in diagonal subfactors without
cocyle, so from now onwards the lift α is a group homomorphism. For i = (i1, i2, · · · , in) ∈ In, the

automorphism α−1
i1

αi2 · · ·α
(−1)n

in
will be denoted by altα(i).

Computation of the tower of basic construction of the subfactor N →֒M :

Now we compute the tower of basic construction of the subfactor N →֒ M from [BDG1] and
[Pi-Po]. Define Mn = N ⊗MIn+1(C) for all n ≥ −1. Suppose Mn−1 = N ⊗MIn(C) is included in
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Mn = N ⊗MIn+1(C) in the following way:

x⊗ Ei,j 7→
∑

k∈I

α
(−1)n

k (x)⊗ E(i,k),(j,k)

where x ∈ N , i, j ∈ In+1 and n ≥ 0. Therefore, N is included in Mn by the following map:

y 7→
∑

i∈In+1

alt−1
α (i)(y)⊗ Ei,i

for all y ∈ N . Let trN be the unique normal faithful tracial state on N . Define trMn on Mn by

trMn(
∑

i,j∈In+1

xi,j ⊗ Ei,j) = |I|
−1

∑

i,i∈In+1

trN (xi,i)

where xi,j ∈ N and n ≥ 0. trMn is the unique faithful normal tracial state on Mn. Observe that
the inclusion maps preserve the traces. Then the unique trace preserving conditional expectation
EMn

Mn−1
from Mn to Mn−1 is given by

x⊗ E(i,k),(j,l) 7→ δk,l|I|
−1α

(−1)n−1

k (x)⊗ Ei,j

where x ∈ N and n ≥ 1. Consider the orthogonal projections

en = |I|−1
∑

k∈In−1,i,j∈I

1N ⊗ E(k,i,i),(k,j,j) ∈Mn

for all n ≥ 1. We observe the following:

(i) [Mn : Mn−1] = |I|
2 for all n ≥ 0;

(ii) each Mn is a II1 factor;

(iii) [en, y] = 0 for all y ∈ N and n ≥ 1;

(iV) EMn

Mn−1
(en) = |I|

−2 1Mn for all n ≥ 1.

Therefore, using Proposition 1.2 in [Pi-Po] we have the following Proposition:

Proposition 5.3.1. With the running notations,

N →֒M →֒M1 →֒ · · · →֒Mn →֒ · · ·

is the Jones tower of II1 factors associated to the subfactor N →֒ M where the Jones projections
and conditional expectations are given by {en : n ≥ 1} and {EMn

Mn−1
: n ≥ 1} respectively.
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Computation of the relative commutants of the subfactor N →֒M :

We now compute the relative commutants associated to the subfactor N →֒M . Let
∑

i,j∈In+1

xi,j ⊗

Ei,j ∈ N ′ ∩Mn, where n ≥ 0. Then it will commute with
∑

k∈In+1

alt−1
α (k)(y) ⊗ Ek,k for all y ∈ N ,

which implies xi,j
(
alt−1

α (j)altα(i)
)
(y) = yxi,j for all y ∈ N and i, j ∈ In+1. It implies that xi,j = 0

if altα(i) 6= altα(j) and xi,j is a scalar if altα(i) = altα(j). So for all n ≥ 0, N ′ ∩Mn is the span of

{1N ⊗ Ei,j|i, j ∈ In+1 and altα(i) = altα(j)}.

Now for n ≥ 0 identify Mn = N ⊗MIn+1(C) with (N ⊗MI(C))⊗MIn(C) = M ⊗MIn(C) by

∑

i,j∈In,k,l∈I

x(k,i),(l,j) ⊗ E(k,i),(l,j) 7→
∑

i,j∈In,k,l∈I

(x(k,i),(l,j) ⊗Ek,l)⊗ Ei,j.

For all αk, k ∈ I, the automorphism αk of N induces an automorphism βk of M by the following
way:

βk(
∑

i,j∈I

xi,j ⊗ Ei,j) =
∑

i,j∈I

α−1
k (xi,j)⊗ Ei,j .

Let altβ(i) = β−1
i1

βi2 · · · β
(−1)n

in
, where i = (i1, i2, · · · , in) ∈ In. Now observe that the inclusion

Mn−1 →֒Mn is also given by the following map:

x⊗ Ei,j 7→
∑

k∈I

β
(−1)n−1

k (x)⊗ E(i,k),(j,k)

where x ∈M , i, j ∈ In−1 and n ≥ 1. Also, en ∈Mn is given by

en = |I|−1
∑

k∈In−2,i,j∈I

1M ⊗ E(k,i,i),(k,j,j) ∈Mn

for all n ≥ 2 and the conditional expectation EMn

Mn−1
from Mn to Mn−1 is given by

x⊗ E(i,k),(j,l) 7→ δk,l|I|
−1α

(−1)n

k (x)⊗ Ei,j

where x ∈ N , i, j ∈ In−1, k, l ∈ I and n ≥ 2. We also observe that the inclusion M →֒Mn is given
by the following map:

y 7→
∑

i∈In

alt−1
β (i)(y)⊗ Ei,i

for all y ∈ M . By a similar argument in the previous paragraph we can prove that M ′ ∩Mn is
given by the span of

{1M ⊗ Ei,j |i, j ∈ In and altβ(i) = altβ(j)}.

Now observe that 1M⊗Ei,j , where i, j ∈ In and altβ(i) = altβ(j), can also be written as
∑

k∈I 1N⊗
E(k,i),(k,j), where altα((k, i)) = altα((k, j)). Therefore, the inclusion M ′ ∩Mn →֒ N ′ ∩Mn is given
by:

1M ⊗ Ei,j →֒
∑

k∈I

1N ⊗ E(k,i),(k,j)
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for all n ≥ 0 and the unique trace preserving conditional expectation EN ′∩Mn

M ′∩Mn
from N ′ ∩Mn to

M ′ ∩Mn is given by:

1N ⊗ E(k,i),(l,j) 7→ δk,l|I|
−11M ⊗ Ei,j.

for all n ≥ 1.

From now onwards we shall look N ′ ∩Mn as a subalgebra of N ⊗MIn+1(C) for all n ≥ −1 and
M ′ ∩Mn as a subalgebra of M ⊗MIn(C) for all n ≥ 0. The standard invariant of the subfactor
N →֒M is given by the following grid of relative commutants:

N ′ ∩M−1 N ′ ∩M0 N ′ ∩M1 N ′ ∩M2 · · ·

M ′ ∩M0 M ′ ∩M1 M ′ ∩M2 · · ·

C =

C =

Now we prove the extremality of this subfactor.

Proposition 5.3.2. With the running notations, N →֒M is an extremal subfactor.

Proof. From [Po2], we observe that N →֒M is extremal if and only if

[pMp : Np] = trM (p)2[M : N ] (5.1)

for all projections p in N ′ ∩M . Now observe that if two projectios p and q are unitarily equivalent
and p satisfies equation (5.1), then q also satisfies the equation. Since N ′ ∩M = {1N ⊗ x : x ∈
MI(C)}, any projection in N ′ ∩M is of the form 1N ⊗ p for some projection p in MI(C). But
any projection p in MI(C) is unitarily equivalent to q :=

∑
i∈I′ Ei,i for some I ′ ⊆ I. Therefore, it

suffices to prove equation (5.1) only for 1N ⊗ q, but that also holds because [qMq : Nq] = |I ′|2 and
trM (q) = |I ′|/|I|.

Define P+
n = N ′ ∩Mn−1 and P−

n = M ′ ∩Mn for all n ≥ 0. Therefore, by 2.3.2 there is a unique
subfactor planar algebra structure on PN →֒M := P = {P ǫ

n : (n, ǫ) ∈ Col} satisfying the following
properties:

1. ZP
T L(n,+)(1) = |I|en+1, Z

P
T L(n,−)(1) = |I|en+2 for all n ≥ 0;

2. ZP

RI
(n+1,+)
(n,+)

, ZP

RI
(n+1,−)
(n,−)

and ZP

LI
(n+1,+)
(n,−)

are the inclusions N ′ ∩Mn−1 →֒ N ′ ∩Mn, M
′ ∩Mn →֒

M ′ ∩Mn+1 and M ′ ∩Mn →֒ N ′ ∩Mn respectively for all n ≥ 0;

3. ZP

RE
(n,+)
(n+1,+)

= |I|EN ′∩Mn

N ′∩Mn−1
for all n ≥ 1 and ZP

RE
(n,−)
(n+1,−)

= |I|E
M ′∩Mn+1

M ′∩Mn
for all n ≥ 1;

4. ZP

RE
(0,+)
(1,+)

(x) = |I|trM0(x) for all x ∈ N ′∩M0 and ZP

RE
(0,−)
(1,−)

(x) = |I|trM1(x) for all x ∈M ′∩M1;

5. ZP

LE
(n,−)
(n+1,+)

= |I|EN ′∩Mn

M ′∩Mn
for all n ≥ 1 and ZP

LE
(0,−)
(1,+)

(x) = |I|trM0(x) for all x ∈ N ′ ∩M0.
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Construction of a fixed point SPA V G
Γ :

Now we construct a uniformly locally finite connected bipartite graph Γ. Let {v+g : g ∈ G} and {v−g :
g ∈ G} be the set of positive and negative vertices, respectively, corresponding to each element of G.
Two vertces v+g and v−h will be connected if and only if there exists i ∈ I such that g = hg−1

i . Define a
modulus-δ spin function µ by giving the weight 1 to each vertex. Let VΓ be the BGPA corresponding
to the graph G. Observe that the modulus of VΓ is |I|. Now define a graph automorphism by
h.vǫg := vǫhg for all g, h ∈ G and ǫ ∈ {+,−}. Observe that the spin function is invariant under this
graph automorphism, so it induces an automorphism of VΓ. Therefore, there is a group action of G

on VΓ. For all i ∈ In, we define alt(G,+)(i) = g−1
i1

gi2 · · · g
(−1)n

in
and alt(G,−)(i) = gi1g

−1
i2
· · · g

(−1)n−1

in
. It

is an immediate observation that altα(i) = altα(j) iff alt(G,+)(i) = alt(G,+)(j) and altβ(i) = altβ(j)

iff alt(G,−)(i) = alt(G,−)(j). Now observe that for each positive vertex v+g of Γ, there is a one-one
correspondence between {(altα(i), altα(j))|i, j ∈ In and altα(i) = altα(j)} and the set of all loops

of length 2n based at v+g by mapping (altα(i), altα(j)) to the loop L
(alt(G,+)(i),alt(G,+)(j))
v+g

defined as

below:

v
+
g → v

−

gg
−1
i1

→ v
+

gg
−1
i1

gi2

→ · · · → v
ǫn

g alt(G,+)(i)
→ v

ǫn+1

g alt(G,+)(i) g
(−1)n−1

in

→ · · · → v
ǫ2n

g alt(G,+)(i) alt
−1
(G,+)

(j)
= v

+
g .

Similarly, for each negative vertex v−g of Γ, there is a one-one correspondence between

{(altβ(i), altβ(j))|i, j ∈ In and altβ(i) = altβ(j)} and the set of all loops of length 2n based at v−g

by mapping (altβ(i), altβ(j)) to the loop L
(alt(G,−)(i),alt(G,−)(j))
v−g

defined as below:

v
−
g → v

−
ggi1

→ v
−1

ggi1
g
−1
i2

→ · · · → v
ǫn

g alt(G,−)(i)
→ v

ǫn+1

g alt(G,−)(i) g
(−1)n

in

→ · · · → v
ǫ2n

g alt(G,−)(i) alt
−1
(G,−)

(j)
= v

−
g .

Observe that




∑

g∈G

L
(alt(G,+)(i),alt(G,+)(j))
v+g

(SOT) : i, j ∈ In and alt(G,+)(i) = alt(G,+)(j)





is a basis of the (n,+) colored vector space of V G
Γ for all n ≥ 0 and




∑

g∈G

L
(alt(G,−)(i),alt(G,−)(j))
v−g

(SOT) : i, j ∈ In and alt(G,−)(i) = alt(G,−)(j)





is a basis of the (n,−) colored vector space of V G
Γ colored for all n ≥ 0. Now we prove that V G

Γ is
a subfactor planar algebra.

Proposition 5.3.3. With the running notations, V G
Γ is a subfactor planar algebra.

Proof. We observe that V G
Γ has finite dimensinal intersection with V ǫ

n for all (n, ǫ) ∈ Col. Therefore,
it suffices to prove the sphericality of V G

Γ . Observe that

ZVΓ

LE
(0,−)
(1,+)


∑

g∈G

L
(alt(G,+)(i),alt(G,+)(j))
v+g


 = 1V −

0
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for all i, j ∈ In with alt(G,−)(i) = alt(G,−)(j) and

ZVΓ

RE
(0,+)
(1,+)


∑

g∈G

L
(alt(G,+)(i),alt(G,+)(j))
v+g


 = 1V +

0

for all i, j ∈ In with alt(G,+)(i) = alt(G,+)(j). Therefore, V
G
Γ is a subfactor planar algebra.

Isomorphism between PN →֒M and V G
Γ :

Now we are ready to give the isomorphism between the SPA corresponding to a diagonal subfactor
without cocyle and a fixed point SPA.

Theorem 5.3.4. With the running notations, we have the subfactor planar algebra P corresponding
to the diagonal subfactor N →֒M (without cocycle) is isomorphic to the fixed point SPA V G

Γ .

Proof. First define a vector space isomorphism φ(n,+) : P
+
n → V +

n by

1N ⊗ Ei,j 7→
∑

g∈G

L
(alt(G,+)(i),alt(G,+)(j))
v+g

for all i, j ∈ In with altα(i) = altα(j) and n ≥ 0, and a vector space isomorphism φ(n,−) : P
−
n → V −

n

by

1M ⊗ Ei,j 7→
∑

g∈G

L
(alt(G,−)(i),alt(G,−)(j))
v−g

for all i, j ∈ In with altβ(i) = altβ(j) and n ≥ 0. Now it is easy to check that {φ(n,ǫ) : (n, ǫ) ∈ Col}

respects the actions of the tangles - 1(n,ǫ),M(n,ǫ), RI
(n+1,ǫ)
(n,ǫ) , RE

(n,ǫ)
(n+1,ǫ), T L

(n,ǫ) for all (n, ǫ) ∈ Col

and LI
(n+1,+)
(n,−) , LE

(n,−)
(n+1,+) for all n ≥ 0. Therefore, by 2.3.1 the subfactor planar algebra P is

isomorphic to the fixed point subfactor planar algebra V G
Γ .
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